
123

Daniel Große
Rolf Drechsler

Quality-Driven
SystemC Design

Quality-Driven SystemC Design

Daniel Große • Rolf Drechsler

Quality-Driven SystemC
Design

123

Dr. Daniel Große
Universität Bremen
AG Rechnerarchitektur
Bibliothekstr. 1
28359 Bremen
Germany
grosse@informatik.uni-bremen.de

Dr. Rolf Drechsler
Universität Bremen
AG Rechnerarchitektur
Bibliothekstr. 1
28359 Bremen
Germany
drechsle@informatik.uni-bremen.de

ISBN 978-90-481-3630-8 e-ISBN 978-90-481-3631-5
DOI 10.1007/978-90-481-3631-5
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009942231

c© Springer Science+Business Media B.V. 2010
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Luca, Alia

and

Milena

Contents

vii

Dedication v
List of Figures xi
List of Tables xv
Preface xvii
Acknowledgments xix

1. INTRODUCTION 1

2. PRELIMINARIES 11

2.1 Boolean Reasoning 11
2.1.1 Basic Notations and Boolean Algebra 11
2.1.2 Binary Decision Diagrams 13
2.1.3 Boolean Satisfiability 15

2.2 Circuits 18
2.2.1 Modeling of Sequential Circuits 18
2.2.2 CNF Transformation 19

2.3 Formal Verification 20
2.3.1 Equivalence Checking 20
2.3.2 Model Checking 21

2.4 SystemC 27
2.4.1 Basics and Concepts 27
2.4.2 SystemC Design Example 29

3. SYSTEM-LEVEL VERIFICATION 33

3.1 Constraint-Based Simulation 35
3.1.1 Scenario 35
3.1.2 Using the SCV Library 35

viii QUALITY-DRIVEN SYSTEMC DESIGN

3.2 Improvements for Constraint-Based Simulation 39
3.2.1 Bit Operators 39
3.2.2 Uniform Distribution 41

3.3 Contradiction Analysis for Constraint-Based Simulation 45
3.3.1 Contradiction Analysis Approach 46
3.3.2 Implementation 51
3.3.3 Experimental Results 53

3.4 Measuring the Quality of Testbenches 60
3.4.1 Code Coverage-Based Approach 61
3.4.2 Phases of Code Coverage-Based Approach 62
3.4.3 Experimental Results 66

3.5 Summary and Future Work 71

4. BLOCK-LEVEL VERIFICATION 73

4.1 Property Checking 75
4.1.1 Bounded Model Checking 76
4.1.2 Property Language 77
4.1.3 Implementation 80
4.1.4 Experimental Results 85

4.2 Acceleration of Iterative Property Checking 88
4.2.1 Main Flow 89
4.2.2 Reusing Learned Information 91
4.2.3 Experimental Results 92

4.3 Contradictory Antecedent Debugging for Property Checking 94
4.3.1 Analysis of Contradictory Antecedents 96
4.3.2 Algorithms and Implementation 99
4.3.3 Experimental Results 103

4.4 Analyzing Functional Coverage in Property Checking 106
4.4.1 Idea 109
4.4.2 Coverage Property 109
4.4.3 Experimental Results 114
4.4.4 Discussion 124

4.5 Summary and Future Work 126

5. TOP-LEVEL VERIFICATION 129

5.1 Checker Generation 130
5.1.1 Generation of a Checker from a Property 131
5.1.2 Transformation into SystemC Checkers 133
5.1.3 Experimental Results 137

Contents ix

5.2 HW/SW Co-Verification for Embedded Systems 142
5.2.1 Co-Verification Model 143
5.2.2 Co-Verification Steps 144
5.2.3 Experimental Results 145

5.3 Summary and Future Work 154

6. SUMMARY AND CONCLUSIONS 155

References 157

Index 169

List of Figures

xi

1.1 Design- and verification gap 2
1.2 System design flow [Sys02] 3
1.3 SystemC design flow 4
1.4 Enhanced SystemC design and verification flow 6
2.1 BDDs for function f = x1x2 + x3x4 + x5x6 14
2.2 DPLL algorithm in modern SAT solvers 16
2.3 Library of basic gates 18
2.4 Odd parity checker 19
2.5 Miter circuit 21
2.6 Architecture of SystemC [IEE05a] 28
2.7 SystemC tool flow 29
2.8 SystemC counter 30
2.9 Top function sc main 31
2.10 Waveform for simulated SystemC counter 32
3.1 System-level parts of enhanced SystemC design and

verification flow 34
3.2 Example constraint 37
3.3 Hierarchical constraint 38
3.4 Simple constraint 38
3.5 BDD of simple constraint 39
3.6 Example constraint with bit operators 40
3.7 BDD for f = x1x2 + x1x2x3 42
3.8 Triangle constraint 43
3.9 Distribution for a+ b = 99 with original SCV 44
3.10 Distribution for a+ b = 99 with improved SCV 45

xii QUALITY-DRIVEN SYSTEMC DESIGN

3.11 Contradictory constraint 48
3.12 Types of contradictions 54
3.13 Architecture for verification at AMD DDC 57
3.14 PCIe transaction generator constraint with examples 58
3.15 Overall flow of code-coverage based approach 61
3.16 Parts of the original SystemC DUV 63
3.17 AST of next state method 63
3.18 Instrumented code of the next state method 65
3.19 Coverage report for program counter 66
3.20 RISC CPU including memories and full data paths 67
3.21 Assembler program for gray code 68
3.22 Color region recognition schematic 69
4.1 Block-level parts of enhanced SystemC design

and verification flow 74
4.2 Unrolled circuit and property 77
4.3 General structure of PSL property 78
4.4 Example PSL property 79
4.5 Property checking work flow 81
4.6 Transformation of a SystemC description into an FSM

representation 82
4.7 2-bit counter 83
4.8 FSM of 2-bit counter 83
4.9 Property RESET for the module counter 84
4.10 Property COUNT for the module counter 84
4.11 Property MODULO for the module counter 84
4.12 Bubble sort 86
4.13 Property SORTED for module bubble 86
4.14 Property checking flow with reusing 90
4.15 Example property lowestWins 2 91
4.16 Simple example for contradiction analysis 101
4.17 FSM 103
4.18 PSL property for Example 4.15 104
4.19 PSL property for Example 4.16 104
4.20 Property for load instruction 105
4.21 Insertion of the multiplexor 110
4.22 1-bit memory 111
4.23 PSL property for the 1-bit memory 112

List of Figures xiii

4.24 Coverage property for the 1-bit memory 112

4.25 Counter-example for coverage of the memory cell 113

4.26 Additional property for the 1-bit memory 113

4.27 FIFO 113

4.28 PSL properties for the FIFO 114

4.29 Coverage property for the FIFO output 114

4.30 Structure of the RISC CPU including data
and instruction memory 115

4.31 Program counter 116

4.32 Properties for the program counter 117

4.33 Coverage property for the program counter 118

4.34 Counter-example for program counter coverage 119

4.35 Property for the jump instruction 123

4.36 Enhanced verification flow 125

5.1 Top-level parts of enhanced SystemC design
and verification flow 130

5.2 Example PSL property 131

5.3 Shift register and logic for property test 132

5.4 Mapping of time points 133

5.5 Work flow for checker generation 134

5.6 Generic register 134

5.7 Usage of generic register 135

5.8 Insertion of a shift register for property test 135

5.9 Checker for property test 136

5.10 Bus architecture 137

5.11 Simulation trace of a bus example 138

5.12 Comparison of simulation performance for checker
mutual exclusion 139

5.13 Comparison of simulation performance for checker
conservativeness 140

5.14 Comparison of simulation performance for checker
liveness 141

5.15 Comparison of simulation performance for checker
master id 141

5.16 Comparison of simulation performance for checker
acknowledge master 142

5.17 TES architecture and models for verification 144

xiv QUALITY-DRIVEN SYSTEMC DESIGN

5.18 Structure of the RISC CPU including data
and instruction memory 146

5.19 ADD instruction 149
5.20 Specified property for the ADD instruction

of the RISC CPU 150
5.21 Example assembler program 151
5.22 Property count 151
5.23 Assembler program for 8-bit multiplication 152
5.24 Property mul 153

List of Tables

2.1 Operations for Boolean algebra of circuits 12
2.2 CNF for basic gates 20
3.1 Probabilities for solutions 42
3.2 Table of contradictory constraint 49
3.3 Constraint characteristics 55
3.4 Effect of using Property 1 and Property 2 55
3.5 Definition of random variables used in the PCIe constraint 59
3.6 Video processor execution traces 71
4.1 Results for different input sizes of module bubble

and property SORTED 87
4.2 Results for different bit sizes of module bubble and

input properties 87
4.3 Results for different FIFO depths 88
4.4 Overhead for arbiter 93
4.5 Acceleration for arbiter 93
4.6 Overhead for FIFO 94
4.7 Acceleration for FIFO 94
4.8 Costs of block-level verification 118
4.9 Results of coverage analysis 120
4.10 Costs of block-level coverage 121
4.11 Costs of instruction set verification 121
4.12 Results of top-level coverage 123
4.13 Costs of top-level coverage 124
5.1 Instructions of RISC CPU 147
5.2 Results for hardware verification 148
5.3 Run-time of interface verification 150

xv

Preface

Faced with the steadily increasing complexity and rapidly shortening time-
to-market requirements designing electronic systems is a very challenging task.
To manage this situation effectively the level of abstraction in modeling has
been raised during the past years in the computer aided design community.
Meanwhile, for the so-called system-level design the system description lan-
guage SystemC has become the de facto standard. However, while modeling
from abstract to synthesizable descriptions in combination with specification
concepts like Transaction Level Modeling (TLM) leads to very good results,
the verification quality is poor. The two main reasons are that (1) the existing
SystemC verification techniques do not escort the different abstraction levels
effectively and (2) in particular the resulting quality in terms of the covered
functionality is only checked manually. Hence, due to the increasing design
complexity the number of undetected errors is growing rapidly.

Therefore a quality-driven design and verification flow for digital systems
is developed and presented in this book. Two major enhancements character-
ize the new flow: First, dedicated verification techniques are integrated which
target the different levels of abstraction. Second, each verification technique is
complemented by an approach to measure the achieved verification quality.

The new flow distinguishes three levels of abstraction (namely system level,
top level and block level) and can be incorporated in existing approaches. Af-
ter reviewing the preliminary concepts, in the following chapters the three lev-
els for modeling and verification are considered in detail. At each level the
verification quality is measured. In summary, following the new design and
verification flow a high overall quality results.

xvii

Acknowledgments

We would like to thank the members of the research group for computer
architecture at the University of Bremen. A great atmosphere and inspiring
discussions are so important.

Furthermore, we would like to thank all co-authors of the papers which
formed the starting point for this book: Tim Cassens, Rüdiger Ebendt,
Görschwin Fey, Christian Genz, Wolfgang Klingauf, Ulrich Kühne, Hernan
Peraza, Robert Siegmund, Tim Warode, and Robert Wille. Especially, we
thank Ulrich Kühne and Robert Wille for numerous discussions and successful
collaborations.

Many thanks go to Görschwin Fey for proof-reading. We also like to thank
Lisa Jungmann for designing the cover page. Cornelia Große improved the
readability for non-experts significantly.

Daniel Große and Rolf Drechsler, August 2009

xix

Chapter 1

INTRODUCTION

D. Große and R. Drechsler, Quality-Driven SystemC Design, 1
DOI 10.1007/978-90-481-3631-5 1, c© Springer Science+Business Media B.V. 2010

Over the last decades electronic systems have become more and more
important. Nowadays, they play a major role for example in communication,
consumer electronic and safety–critical applications. From the design perspec-
tive this leads to very diverse requirements. For instance, a design aspect is
high computing power as in case of personal computers. For mobile devices
like modern cell phones or PDAs rich functionality is the central aspect. In
contrast, for safety–critical systems as for example found in automobiles,
airplanes or medical devices the design correctness is most important.

Overall the growth of electronic systems is due to the continued advance
in the fabrication technology of integrated circuits. As predicted by Gordon
Moore in 1965 the number of transistors per chip doubles every 18 months.
This exponential growth leads to huge problem instances that have to be han-
dled during the design of a system. For example, Intel has been able to build a
processor consisting of 2 billion transistors: Tukwila is scheduled for produc-
tion in the first quarter of 2010 [Int09].

However, it has been observed that the number of available transistors
grows faster than the ability to design chips, which is called design gap.
But this situation is even intensified if verification is considered. Verification
refers to the task of ensuring the correct functional behavior of the design
and is essential to guarantee high quality systems. Figure 1.1 illustrates both
problems [Sem03, Bai04]. As can be seen verification falls behind design
and fabrication capabilities which widens the verification gap. As a result,
several companies meanwhile describe the current situation as verification
crisis [Sem06]. Thus, in current projects verification engineers outnumber
designers, with a ratio of two or three to one [Sem06].

2 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 1.1. Design- and verification gap

In summary, the verification crisis can be attributed to the following points:

Increasing design sizes.

Shortening time-to-market demands.

Besides hardware also software has to be considered.

Errors are unacceptable in safety–critical systems.

Rising costs in case of errors.

Electronic Design Automation (EDA) tools are not keeping up with the
growing complexity.

To cope with the increasing design sizes the level of abstraction in the design
of electronic systems has been raised over the last years. The system engi-
neer writes a C or C++ model of the system to check the concepts and al-
gorithms at the system level. After this design step, the parts of the C/C++
model which have to be implemented in hardware are rewritten in a differ-
ent language, i.e. typically one of the two major Hardware Description Lan-
guages (HDLs) Verilog or VHDL is used. This in industry widely applied de-
sign flow is depicted in Figure 1.2 where angular boxes denote input/output
data and rounded boxes describe a task. However, this design flow has sev-
eral disadvantages. The most important one is the manual conversion from the

Introduction 3

Figure 1.2. System design flow [Sys02]

C/C++ model to the HDL description. Obviously since it is a manual con-
version this step is error prone. Furthermore, after conversion the designers
only concentrate on the HDL model and hence changes done in the HDL
model are not available in the C/C++ model. In addition, for verification a
high effort is required since the tests written for the C/C++ model have to be
converted to the HDL environment, too. Again, this is a tedious and manual
process.

To tackle the decoupling of the system-level model and the HDL description
as well as the verification limitations, the C++-based system description lan-
guage SystemC [Sys02,GLMS02] has been developed and standardized by the
IEEE [IEE05a]. Using SystemC offers significant advantages over the design
flow described above. The proposed SystemC design flow with the subsequent
focus on hardware is depicted in Figure 1.3. In the left part of the figure the
steps that address the modeling phases of the system are illustrated. Starting
from the textual specification the system-level model is written in SystemC.
Already at this high level of abstraction the system can be simulated using the
SystemC library and a standard C++ compiler to build the executable specifi-
cation. Hence, design space exploration can be performed and hardware/soft-
ware trade-offs can be checked to meet the requirements of the specification.
The parts of the system-level model that have to be implemented in hardware

4 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 1.3. SystemC design flow

are not converted into a separate HDL description. In fact, the system is step-
wise refined to add hardware and timing constructs until the synthesizable
model (typically specified at the Register Transfer Level (RTL)) is obtained
(see left side of Figure 1.3). Hence, by using SystemC, modeling from the sys-
tem level to RTL is supported within one language. From the verification per-
spective SystemC allows very fast simulation at different levels of abstraction,
i.e. from the abstract descriptions at the system level across the refined mod-
els down to the synthesizable model at the RTL. Furthermore, as illustrated in
Figure 1.3 on the right, the tests can be reused from the system-level model to
the synthesizable model saving conversion time. Reusing the tests, i.e. refining
the testbench so that the tests can finally communicate with the synthesizable
description gives a higher confidence that the system-level model and the syn-
thesizable model implement the same functionality.

Introduction 5

However, the demand for high quality systems reveals the weaknesses of
the SystemC design flow. While the modeling from abstract to synthesizable
descriptions in combination with specification concepts like Transaction Level
Modeling (TLM) leads to very good modeling results, the verification quality
is poor: the SystemC verification techniques do not “escort” the design steps
and in particular the resulting quality in terms of the covered functionality is
only checked manually. Hence, due to the increasing design complexity the
number of undetected errors will grow rapidly and therefore, the verification
costs will increase significantly.

In this book a quality-driven design and verification flow for digital sys-
tems is proposed. Two major enhancements beyond the “traditional” SystemC
design flow characterize the new flow: First, dedicated verification techniques
are integrated which target the different levels of abstraction. This allows spe-
cific improvements of each verification technique and the utilization of for-
mal methods for parts of a verification task or even the entire task. Second,
each verification technique is complemented by an approach to measure the
achieved verification quality. Hence, a continuous flow results to successfully
obtain high quality systems. The flow has been developed at the University of
Bremen (see [Gro08]) in collaboration with several industrial partners.

The enhanced design and verification flow is depicted in Figure 1.4. Un-
changed data and tasks still have the same color gray as in Figure 1.3, whereas
new/modified data and tasks are shown in white. Before the dedicated verifi-
cation tasks and the respective tasks to check the verification quality – shown
in the middle of the figure – are described, we focus on the modeling phases
(see left part of Figure 1.4). Like in the “traditional” SystemC design flow the
design entry starts with the system-level model derived from the textual speci-
fication. Then, the system-level model is stepwise refined. In the new flow, the
resulting synthesizable model is split up: as a whole the synthesizable model
is denoted as top-level model, which in turn is divided into several block-level
models. The reason for this splitting becomes clear in the following when the
different verification techniques as well as the complementing quality checks
are explained. As depicted in the middle of Figure 1.4 three levels of abstrac-
tion for verification and quality checks are distinguished. In the following the
approaches developed in this book are described along these three levels of
abstraction (a more detailed description is given at the beginning of the re-
spective chapter). Thereby, the presentation follows the verification steps to be
performed, but this order is not identical to the three major modeling steps.
First, the verification at the system level is described. Due to employed verifi-
cation techniques and the complementing quality check the verification at the
block level is considered next. Finally, verification at the top level is detailed.

System Level. At first, “pure” simulation is replaced by improved constraint-
based simulation. The major advantage of this technique is that instead

6 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 1.4. Enhanced SystemC design and verification flow

of simulating fixed tests, stimuli are generated that satisfy specified
constraints. Thus, scenarios are checked that may be hard to create man-
ually. Particularly corner cases may not be missed which is usually the
case in pure simulation. Nevertheless, directed and random tests are still
possible. The technology of constraint-based simulation is provided by
the SystemC Verification (SCV) library. Very good results are obtained
by using the already available SCV library. The fundament of the SCV
library is a constraint solver that is based on formal methods – Binary
Decision Diagrams (BDDs) are used to represent the constraints. However,
improvements for the SCV library are necessary and have been realized in
this work: At first, new operators are added to enrich the constraint specifi-
cation. Then, the uniform distribution among all solutions of a constraint is
guaranteed, which is an important requirement to maximize the chance for
entering unexplored regions of the design state space.

Introduction 7

Besides the core aspects of constraint-based simulation within the SCV
library, during the formulation of complex non-trivial constraints over-con-
straining occurs, i.e. there is no solution for all constraints. In practice, this
is often the case if constraints are added to drive the simulation into a certain
direction. To handle this problem, a new contradiction debugging method
is introduced that automatically identifies all contradictory constraint ex-
pressions and thus the manual debugging time is reduced. In Figure 1.4 the
approach is denoted as contradiction debugging.

To check the resulting verification quality an approach is presented to mea-
sure “how thorough” the design was tested (denoted as coverage check in
the figure). The method is based on dedicated code coverage techniques
that have been developed for SystemC models. A coverage report is gen-
erated that presents all parts of the model that have not been executed dur-
ing simulation. Thereby, feedback about the achieved verification quality is
provided and the manual quality check is removed.

Block Level. Continuing the design process from the system-level model (see
left part of Figure 1.4), the proposed flow separates the synthesizable model
into the top-level model and several block-level models. This splitting re-
sults from the fact that different verification techniques are used at both
levels. For the block-level models, formal methods are applied that allow
to guarantee the design correctness (in general, at the top-level this is not
possible, since the resulting models become too complex). Hence, before
investing much effort in the verification at the top level, block-level verifi-
cation is performed.

Therefore, a property checking method for SystemC is presented. For
property checking the temporal properties are specified in the standardized
Property Specification Language (PSL). Furthermore, all properties have
the form of an implication and are defined over a bounded time interval.
Thus, based on Bounded Model Checking (BMC) the properties are proven
if the corresponding Boolean Satisfiability (SAT) instance is unsatisfiable.
In addition, the iterative application of property checking is improved as
follows. Usually, at the beginning the verification engineer specifies a prop-
erty with a “strong” antecedent. Then, this antecedent is stepwise weakened
and the property check is performed again. For this scenario a speed-up of
the underlying SAT proof is achieved by reusing learned information from
a previous run. Property checking as well as the enhancement are shown as
the combined task improved property check in Figure 1.4.

Typically, in the antecedent of the property the assumptions about the
design environment are specified and joined by logical AND. However, for
complex designs and hence non-trivial properties the verification engineer
may be confronted with the problem of an overall conjunction which has no

8 QUALITY-DRIVEN SYSTEMC DESIGN

solution, i.e. the antecedent is contradictory. Since in this case a property
trivially holds, this situation has to be avoided. An automatic approach is
presented for debugging of a contradictory antecedent. The basic principles
are similar to the contradiction debugging at the system level. However, for
property checking the approach has to distinguish whether a contradiction
results from the antecedent solely or from the antecedent and parts of the
design (see task antecedent debugging in Figure 1.4).

Again, at this level the quality of verification is ensured. Therefore, an ap-
proach to analyze coverage in property checking is presented. With this
technique the completeness of a property set can be shown, i.e. there is no
scenario where the behavior of the design is not determined by the proper-
ties. If such a scenario – a gap – is found, this gap is presented to the user.
How to deal with uncovered scenarios to achieve full coverage is discussed
in detail. In Figure 1.4 the corresponding task is formal coverage check.

Top level: To bridge the verification from block level to system level checkers
are generated. The motivation for this procedure is that the verified block-
level parts exchange data using complex communication mechanisms and
hence this is the focus of verification here. The basic idea of checkers is
to embed temporal properties after a respective transformation directly into
the SystemC description. The checkers can also be reused from the block-
level verification. They are validated at the top level during simulation.
Hence, the system level coverage check for ensuring the verification quality
is also available here. Besides simulation, the checkers are also synthesiz-
able and can be utilized for on-line tests after fabrication. The task checker
generation denotes this method in Figure 1.4.

Finally, a formal hardware/software co-verification approach for embedded
systems is introduced. The approach is based on BMC and the formal cov-
erage check. At first, the correctness of the underlying hardware is proved.
Then, the hardware/software interface is considered and verified applying
BMC. Based on this result programs using the hardware/software inter-
face can be formally verified. This task is depicted in Figure 1.4 as formal
HW/SW co-verification.

All mentioned approaches have been implemented and evaluated in several
experiments. In summary, the main advantages of this advanced and innovative
design and verification flow are:

System design and verification flow covering all levels of abstraction

Dedicated verification techniques at each level of abstraction

System-level verification by improved constraint-based simulation

Introduction 9

Block-level verification based on improved property checking

Top-level verification with checkers and formal hardware/software
co-verification

Integration of debugging approaches to identify contradictions in specified
tests

High verification quality due to automatic coverage checks

Usage of code coverage techniques to ensure system-level and top-level
verification quality

Formal coverage analysis for property checking to guarantee verification
quality at the block level

In the following chapters of this book the approaches themselves are
described, and related work, experimental results and directions for further
research are given.

This book is structured as follows: Chapter 2 gives the basic notations,
the background on formal verification and a brief introduction to SystemC.
Chapter 3 presents the system-level verification methods. Improvements for
constraint-based simulation in the SCV library, the approach for constraint
contradiction debugging, and the method to guarantee the verification quality
of the testbench using code coverage are detailed. In Chapter 4 block-level veri-
fication is considered. First, the SystemC property checker is introduced. Then,
the improvement to accelerate the iterative application of property checking is
described. The next section provides the method for automatic antecedent de-
bugging. Afterwards, the formal coverage analysis approach to ensure the re-
sulting verification quality is presented. Chapter 5 describes the method for
checker generation. Moreover, the formal hardware/software co-verification
method for embedded systems is introduced. Finally, in Chapter 6 the book
ends with a summary and conclusions.

Chapter 2

PRELIMINARIES

D. Große and R. Drechsler, Quality-Driven SystemC Design, 11
DOI 10.1007/978-90-481-3631-5 2, c© Springer Science+Business Media B.V. 2010

In this chapter the basic notations and definitions are given to make this
book self-contained. In the first part Boolean reasoning including state-of-
the-art proof techniques are reviewed. Then, circuits and their respective
representation are introduced. Thereafter, the two typical scenarios of formal
verification are described, i.e. equivalence checking and (bounded) model
checking. Finally, the basics and concept of the system description language
SystemC are given.

The presentation is always given in a compact way, but references for further
reading are provided.

2.1 Boolean Reasoning
First, in this section the basics regarding Boolean functions and the impor-

tant mathematical structure Boolean algebra are given. Then, binary decision
diagrams and Boolean satisfiability are reviewed. For more details we refer the
reader, e.g., to [Weg87, HS96, DB98, GG07].

2.1.1 Basic Notations and Boolean Algebra
Boolean variables may assume values from the set B := {0, 1}.

Definition 2.1 A Boolean function f is a mapping from f : B
n → B,

n ∈ N. Usually, f is defined over the finite set of Boolean variables Xn :=
{x1, x2, . . . , xn} and hence is denoted by f(x1, . . . , xn). A multi-output
Boolean function f is a mapping from f : B

n → B
m with n,m ∈ N and

m ≥ 2.

Since the Boolean algebra is the basis for digital circuits its definition is
given in the following.

12 QUALITY-DRIVEN SYSTEMC DESIGN

Definition 2.2 A Boolean algebra is a set A with two binary operations +
and ·, one unary operation − and two distinct elements 0 and 1 such that for
all elements x1, x2, x3 ∈ A the following holds:

Associative laws: x1 + (x2 + x3) = (x1 + x2) + x3

x1 · (x2 · x3) = (x1 · x2) · x3

Commutative laws: x1 + x2 = x2 + x1

x1 · x2 = x2 · x1

Distributive laws: x1 · (x2 + x3) = (x1 · x2) + (x1 · x3)
x1 + (x2 · x3) = (x1 + x2) · (x1 + x3)

Complements: x1 + x1 = 1
x1 · x1 = 0

Absorption: x1 + (x1 · x2) = x1

x1 · (x1 + x2) = x1

Example 2.3 If we choose A = B and define the operations +, · and − as
shown in Table 2.1, then the Boolean algebra results that is used for describ-
ing the behavior of circuits. + is called disjunction or OR-function, · is called
conjunction or AND-function, and − is called negation or NOT-function, re-
spectively. Sometimes, instead of the symbols +, ·,− the symbols ∨,∧,¬ are
used, respectively.

From Boolean variables xi ∈ Xn, constants 0, 1, and the operations +,
·, − and parentheses (,) Boolean expressions can be formed. Note that every
Boolean function can be written as a Boolean expression. In addition to the
already introduced operations, the following operations are important:

XOR: x1 ⊕ x2 := x1 · x2 + x1 · x2

Implication: x1 → x2 := x1 + x2

Equivalence: x1 ↔ x2 := x1 ⊕ x2

Finally, the positive and negative cofactors of a Boolean function f : B
n →

B with respect to a variable xi are fxi := f(x1, . . . , xi−1, 1, xi+1, . . . , xn)
and fxi := f(x1, . . . , xi−1, 0, xi+1, . . . , xn), respectively.

Table 2.1. Operations for Boolean algebra of circuits

x1 x2 x1 + x2

0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 x1 · x2

0 0 0
0 1 0
1 0 0
1 1 1

x1 x1

0 1
1 0

Preliminaries 13

2.1.2 Binary Decision Diagrams
A Boolean function f : B

n → B can be represented by a Binary Decision
Diagram (BDD) [Bry86] which is a directed acyclic graph where a Shannon
decomposition

f = xifxi + xifxi (1 ≤ i ≤ n)

is carried out in each node. The function which is represented by an internal
node of a BDD is determined recursively by the two children, whereas the
terminal nodes represent the two constant functions 0 and 1. With respect to
the carried out Shannon decomposition of a node, fxi is called the high child
and fxi is called the low child, respectively.

A BDD is called ordered if each variable is encountered at most once on
each path from the root to a terminal node and if the variables are encountered
in the same order on all such paths. Formally, the resulting variable ordering
is nothing else than a mapping o : {1, . . . , n} → Xn, where o(i) denotes the
ith variable in the ordering.

A BDD is called reduced if it does neither contain isomorphic subgraphs
nor does it have redundant nodes. Reduced and ordered BDDs (ROBDDs)
are canonical representations, i.e. the BDD representation for a given Boolean
function is unique as long as the variable ordering is fixed [Bry86]. In the fol-
lowing, we refer to reduced and ordered BDDs for brevity as BDDs. The size
of a BDD is given by the number of non-terminal nodes.

It is well known that BDDs are very sensitive to the chosen variable order-
ing, i.e. the size may vary from linear to exponential.

Example 2.4 Consider the BDDs for the function f = x1x2 + x3x4 +
. . . + x2n−1x2n with n = 3 depicted in Figure 2.1. Dashed lines are used
for the 0-assignment, while solid lines denote the 1-assignment. For the or-
dering o1 = (x1, x2, . . . , x2n−1, x2n) the BDD shown in Figure 2.1(a) has
a size of O(n), whereas the BDD shown in Figure 2.1(b) with the ordering
o2 = (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n) has a size of O(2n).

Since the problem to decide whether a given variable ordering can be im-
proved is NP-complete [BW96], several heuristics to find a good variable
ordering have been proposed. There are topology-based heuristics using struc-
tural information [FOH93] and dynamic reordering techniques like sifting
[Rud93] which are based on level exchanges. For scalable design descriptions
word-level information can be used to learn a good ordering for the small
instance and extrapolate this for the large instance [GD03a]. Furthermore,
methods using evolutionary algorithms have been proposed [DBG96] which
can obtain better results than the approaches mentioned before but usually the
run-time is much higher.

14 QUALITY-DRIVEN SYSTEMC DESIGN

x1

x3

x4

x2

x5

x6

10

(a)

x1

x4

x6

x3 x3

x5 x5 x5

x2 x2 x2 x2

x4

x5

0 1

(b)

Figure 2.1. BDDs for function f = x1x2 + x3x4 + x5x6

To further minimize the size of the representation complement edges
have been introduced [BRB90]. They allow to represent both a function
and its complement by the same node, modifying the edge pointing to the
node instead. Besides a compact representation of Boolean functions effi-
cient techniques for symbolic manipulations of BDDs exist. The core opera-
tion used in the recursive manipulation algorithms is the If-Then-Else (ITE)
operator:

ite(f, g, h) = f · g + f · h
With the recursive formulation

ite(f, g, h) = xi · ite(fxi , gxi , hxi) + xi · ite(fxi , gxi , hxi)

the computation of an operation is determined. As a result the binary oper-
ations + and · can be implemented efficiently as graph algorithms, i.e. given
two BDDs of size |F | and |G| the complexity for the operations is O(|F | · |G|).
Furthermore, existential quantification ∃xif = fxi + fxi as well as the univer-
sal quantification ∀xif = fxi ·fxi can be implemented such that the complexity
is polynomial in the BDD sizes.

Preliminaries 15

For the practical application of BDDs very efficient implementations have
been proposed. A widely used high quality BDD package is the Colorado
University Decision Diagram Package (CUDD) [Som01]. Basically, in such
a package a BDD node is represented as a triple (index(v), high(v),
low(v)), where the first entry gives the index of the variable to which v is re-
lated, and high(v) and low(v) are pointers to the memory locations of the
high and low child of v, respectively. Complement edges are realized by using
the least significant bit of these pointers to store the information about com-
plementation. This is feasible since the memory is addressed word-wise and
hence the least significant bit of a pointer is always zero. All the node triples
are stored in a hash table (the so-called unique table). Then, whenever an op-
eration needs to add a new BDD node it is checked if the node already exists
in the table. By this, a BDD is automatically build in the reduced form. For the
above mentioned symbolic manipulation operations a second hash table, the
computed table, is employed. As hash key the two pointers of an operation and
the operation itself are used and as value the resulting node is stored. Since dur-
ing the computation of operations each result is stored in the computed table,
repeated computations are avoided.

BDDs can also be used to represent multi-output functions. Then, a BDD
for each component function is used in the shared BDD representation. Note
that in this case the variable ordering is the same for each BDD.

2.1.3 Boolean Satisfiability
Studies have shown that Boolean satisfiability (SAT) and BDDs are orthogo-

nal techniques for Boolean reasoning. From a theoretical point of view this can
be proven [GZ03]. In particular, SAT has shown advantages in formal verifica-
tion where often a single counter-example is sufficient. Hence, SAT addresses
the scalability and performance limitations of BDD-based methods. In the fol-
lowing the definition of the SAT problem as well as an example and basic
concepts to solve an instance of SAT are provided.

Definition 2.5 The Boolean Satisfiability (SAT) problem is to determine an
assignment α = (a1, . . . , an) to variables of a Boolean function f(x1, . . . , xn)
such that f(α) = 1 (i.e. f is satisfiable) or to prove that no such assignment
exists (i.e. f is unsatisfiable).

SAT is one of the central NP-complete problems. In fact, it was the first
known NP-complete problem that was proven by Cook in 1971 [Coo71]. De-
spite the complexity of the SAT problem, in practice many large SAT instances
can be solved today.

Usually, a SAT instance is represented as a Boolean formula in Conjunctive
Normal Form (CNF) which is given as a set of clauses; each clause is a set
of literals and each literal is a propositional variable or its negation. The CNF

16 QUALITY-DRIVEN SYSTEMC DESIGN

(c) decision

(d) propagation

(e) conflict ?

(f) resolve conflict

yes

no

ok

(a) free var. left?

(g) UNSAT

(b) SAT

noyes

failed

Figure 2.2. DPLL algorithm in modern SAT solvers

formula is satisfied if all clauses are satisfied. A clause is satisfied if at least one
of its literals is satisfied. The positive literal x is satisfied if 1 is assigned to the
variable x. The negative literal x is satisfied if 0 is assigned to the variable x.

Example 2.6 The following Boolean formula f is given in CNF:

f = (x1 + x2 + x3) · (x1 + x3) · (x2 + x3)

Then x1 = 1, x2 = 1 and x3 = 1 is a satisfying assignment for f . The values
of x1 and x2 ensure that the first clause becomes satisfied, while x3 ensures
this for the remaining two clauses.

The basic search procedure to find a satisfying assignment is shown in
Figure 2.2 and follows the structure of the DPLL algorithm [DP60, DLL62].
Instead of simply traversing the complete space of assignments, intelligent de-
cision heuristics and other improvements that are explained below lead to an
effective search procedure. The description follows the implementation of the
procedure in modern SAT solvers. While there are free variables left (a), a de-
cision is made (c) to assign a value to one of these variables. Then, implications
are determined due to the last assignment by Boolean Constraint Propagation
(BCP) (d). This may cause a conflict (e) that is analyzed. If the conflict can
be resolved by undoing assignments from previous decisions, backtracking is
done (f). Otherwise, the instance is unsatisfiable (g). If no further decision

Preliminaries 17

can be done, i.e. a value is assigned to all variables and this assignment did
not cause a conflict, the CNF is satisfied (b). The decision level denotes the
number of variables assigned by decisions in the current partial assignment,
i.e. neglecting variable assignments due to implications.

During the last years several techniques have been developed to improve the
efficiency of SAT solvers. They can be categorized into conflict based learn-
ing with non-chronological backtracking, intelligent decision heuristics, and
improvements of BCP. A brief discussion is given in the following.

Conflict based learning with non-chronological backtracking was proposed
in [MSS96]. The main idea is that a detected conflict may have been caused
by much earlier assignments and hence it is possible to jump back to an earlier
decision level than in the original SAT algorithms. For conflict based learning
usually all implications are stored in an implication graph which describes the
implication relationships of variable assignments. By forming a cut on the im-
plication graph, i.e. to identify a set of assignments that are sufficient to cause a
conflict a so-called conflict clause is build and added to the SAT instance. This
clause prevents the SAT solver to reenter the same non-solution space again
and is also used to determine the respective decision level to backtrack to. Of
course the conflict clauses have to be deleted from time to time since otherwise
they might cause a memory problem. Details how this can be achieved can be
found in [MS99, ZMMM01, ES04].

Another major improvement results from sophisticated decision heuristics.
Several decision heuristics have been proposed. Very often statistical data like
the occurrence of literals in clauses forms the basis for the heuristics. For exam-
ple, a heuristic which emphasizes the role of recently learned conflict clauses
is the Variable State Independent Decaying Sum (VSIDS) [MMZ+01]. This
heuristic uses counters for each literal. They are updated accordingly each time
a new conflict is learned and all the counters are divided by a constant period-
ically. As a result, the literals of recently learned clauses are preferred for the
upcoming decisions.

The efficiency of BCP as described above is very important for the over-
all performance of a SAT solver. After each decision BCP is called. A very
efficient implementation is the two literal watching scheme found in the SAT
solver Chaff [MMZ+01]. The basic idea is to watch two literals per clause
which are used to detect whether a conflict or an implication is possible since
assigning a literal to false not necessarily causes a conflict or implication. In to-
tal, during the search not all the time each clause has to evaluated. This results
in a significant speed-up.

Because of all the described advances, SAT solvers are widely used in
computer-aided design today. For example, SAT is applied in domains like
verification [BCCZ99, KPKG02], automatic test pattern generation [Lar92,
DEF+08], diagnosis [SVV04, FSBD08], and synthesis [ZSM+05, GWDD09].

18 QUALITY-DRIVEN SYSTEMC DESIGN

2.2 Circuits
First, in this section the formal model of sequential circuits is introduced

and a simple example is provided. Then, in the second part the transformation
of basic circuit elements into CNF is given.

2.2.1 Modeling of Sequential Circuits
A sequential circuit is composed of memory elements (like flip-flops or reg-

isters) and combinational logic. The combinational logic consists of elements
from a set of basic gates (called gate library). A typical library is shown in
Figure 2.3. It contains the standard gates NOT, AND, OR and XOR. In the
figure also the respective Boolean functions are given.

Usually, the behavior of a sequential circuit is modeled as a Finite State
Machine (FSM) where the output is associated to each state transition. Such a
FSM is called a Mealy machine and is defined as

Definition 2.7 A Mealy machine is a 6-tuple M = (I,O, S, S0, δ, λ),
where

I is the finite set of inputs,

O is the finite set of outputs,

S is the finite set of states,

S0 ⊆ S is the set of initial states,

x

x
z

z

y

z
x

x

y
z

y

z = x NOT gate

z = x · y AND gate

z = x+ y OR gate

z = x⊕ y XOR gate

Figure 2.3. Library of basic gates

Preliminaries 19

10
even odd

0/0 0/1

1/0

1/1

(a) FSM

FF
i

o

(b) Circuit

Figure 2.4. Odd parity checker

δ : I × S → S is the state transition function, and

λ : I × S → O is the output function.

Since we consider circuits, the set of inputs, outputs and states uses a binary
encoding, i.e. the corresponding sets are defined over the Boolean values B as:
S := B

n, I := B
m and O := B

k.
In the following a simple example of an FSM and the corresponding sequen-

tial circuit is given.

Example 2.8 Consider the FSM in Figure 2.4(a). This FSM realizes an odd
parity checker, i.e. the output becomes one whenever the processed input data
has an odd number of 1’s. In the depicted diagram the states are represented
as nodes, whereas the transitions between the states are given as arrows. The
arrows are labeled with the corresponding input followed by the output. If for
this FSM the state is denoted by variable s, the input by variable i and the
output by variable o, then the state transition function is δ(i, s) = s ⊕ i and
the output function for o is λ(i, s) = s. The corresponding sequential circuit
is depicted in Figure 2.4(b). It has one input i and one output o. The internal
output of the XOR gate is connected to a flip-flop denoted as FF in the figure.
We assume that the initial state of this flip-flop is 0 (which cannot be seen in
the figure) since the initial state of the FSM is the state even.

2.2.2 CNF Transformation
As described in Section 2.1.3 SAT is applied for solving different problems

in computer-aided design. However, to apply SAT an efficient translation of a
circuit into CNF is necessary. The principle transformation in the context of
Boolean formulas has been proposed by Tseitin [Tse68]. The Tseitin transfor-
mation can be done in linear time maintaining satisfiability. This is achieved by
introducing a new variable for each sub-formula and constraining that this new
variable is equivalent to the sub-formula. For circuits the respective transfor-
mation has been presented in [Lar92]. We only briefly summarize the results
of the transformation in Table 2.2. Note that by applying the transformation

20 QUALITY-DRIVEN SYSTEMC DESIGN

Table 2.2. CNF for basic gates

Gate Boolean function CNF

NOT z = x (x + z) · (x + z)
AND z = x · y (z + x) · (z + y) · (z + x + y)
OR z = x + y (z + x) · (z + y) · (z + x + y)
XOR z = x ⊕ y (z + x + y) · (z + x + y) · (z + x + y) · (z + x + y)

redundant clauses might result. But they can be eliminated using resolution.
The table shows the minimized CNF already. The CNF for the complete cir-
cuit is formed by the conjunction of all “local” CNFs. The presented transfor-
mation is used very often. Of course also optimizations have been proposed
like for example to merge gates and hence reduce the number of auxiliary
variables [Vel04].

2.3 Formal Verification
The main idea of formal verification is to prove the functional correctness of

a system. The two typical scenarios – equivalence checking and model check-
ing – that build the basis of formal verification are described in the following.
For a more detailed presentation we refer the reader to [Kro99,CGP99,Dre04,
GG07].

2.3.1 Equivalence Checking
The task of equivalence checking is to formally prove that two circuit rep-

resentations are functional equivalent. In the following we only briefly review
equivalence checking of combinational circuits. Hence, we assume that both
circuits have the same number of states and that a matching between them
is known. Then, equivalence checking can be carried out by building the so-
called miter circuit [Bra93] (see Figure 2.5). First, the corresponding inputs
of both circuits are connected. Then, each corresponding output pair is fed
into an XOR, whereas all XORs are fed into a large OR which becomes the
overall output of the miter structure. This output is 1 if there exists an input
assignment to the miter circuit which causes at least one output pair producing
different values.

Obviously, for solving the equivalence checking problem BDDs and SAT
techniques can be used. However, for large circuits the BDD-based approaches
suffer from memory explosion. Hence, SAT-based approaches have been con-
sidered (see, e.g., [GPB01, DS07]) where the (partial) miter is translated to
CNF and the overall output constrained to 1. A combination of proof engines
which exploits structural information and merges identical circuit parts has
been considered in [KPKG02].

Preliminaries 21

i1

i1
i

i

2

m

i1
i

i

2

m

2

1

ko

o
o

i

i

2

m

C2

2

1

ko

o
o

C1

Figure 2.5. Miter circuit

The presentation of equivalence checking is mainly given here to introduce
both typical scenarios of formal verification. Of course in the literature also the
more general problem of sequential equivalence checking is considered (for an
overview see [MS05]). Besides this, also first approaches to show equivalence
between high-level descriptions, like for example C descriptions and circuit
implementations, have been proposed. But in this context, the research is still
at the very beginning (see, e.g., [SMS+07] where as high-level language SpecC
is used).

2.3.2 Model Checking
The idea of model checking is to verify whether a model – derived from

hardware or software – satisfies a formal specification. This specification is
described by temporal logic formulas such as Linear Time Logic (LTL) [Pnu77]
formulas or Computation Tree Logic (CTL) [BAMP81] formulas. The model
represents the behavior of the considered system. Usually, the temporal logic
specification is interpreted in terms of a Kripke structure.1 Hence, first Kripke
structures are introduced. Then, the transformation of a Mealy machine into a
Kripke structure is described. On top of these models the temporal logic for
specification of properties is presented. Finally, algorithms for model checking
are reviewed.

1A Kripke structure is also called temporal structure.

22 QUALITY-DRIVEN SYSTEMC DESIGN

Models

Definition 2.9 A Kripke structure K is a 5-tuple K = (S, S0, R, V, L),
where

S is the finite set of states,

S0 ⊆ S is the set of initial states,

R ⊆ S × S is the transition relation with ∀s ∈ S ∃s′ ∈ S : (s, s′) ∈ R
(i.e. R is total),

V is the set of propositional variables (or atomic formulas), and

L : S → P(V) is the labeling function that labels each state with the
subset of variables that are true in that state.

A Kripke structure determines the set of computations of a system as an
“unrolled” tree structure. For a sequential circuit given as a Mealy machine
according to Definition 2.7 the corresponding Kripke structure is constructed
as follows:

Definition 2.10 Let M = (IM , OM , SM , S0M
, δ, λ) be a Mealy machine.

Then, the Kripke structure K = (S, S0, R, V, L) for M is defined as

S := IM × SM ,

S0 := {(i, s)|i ∈ IM , s ∈ S0M
},

R ⊆ S × S with ((i, s), (i′, s′)) ∈ R if s′ = δ(i, s),

V := {̂i1,̂i2, . . . , ̂im} ∪ {ô1, ô2, . . . , ôk} ∪ {ŝ1, ŝ2, . . . , ŝn} is the set of
new variables for the inputs, outputs and states of M , and

L((i, s)) :=
m
⋃

j=1
{̂ij | ij = 1} ∪

k
⋃

j=1
{ôj | λj(i, s) = 1} ∪

n
⋃

j=1
{ŝj | sj = 1}.

A state s′ is the next state of s in the Kripke structure K if there exist values
for the inputs of M such that M makes a transition from s to s′. All possible
inputs for the Mealy machine are encoded in the states of the Kripke structure.
The labeling function is formed such that each state is marked with the input,
output and state variables that are true in that state. In the following definition
a sequence of states (also called path) is considered since the semantics of
temporal logic formulas are interpreted over paths.

Definition 2.11 Let K = (S, S0, R, V, L) be a Kripke structure. A path π
is a infinite sequence of states, i.e. π = 〈s0, s1, . . . 〉 with ∀j ≥ 0 : (sj, sj+1) ∈
R. A suffix of a path π = 〈s0, s1, . . . 〉 is defined by πi = 〈si, si+1, . . . 〉 and
π(i) = si. The set of all paths is denoted as Π. Note that we do not require
here that s0 is an initial state of the Kripke structure.

Preliminaries 23

Temporal Logic

The introduced Kripke structures allow to consider linear time as well
as branching time. In linear time each state has exactly one successor state,
whereas in branching time several successors are possible. In model checking
for both time models there is an according temporal logic, i.e. LTL for linear
time and CTL for branching time, respectively. In the following the more
expressive temporal logic CTL* is introduced, which contains both LTL and
CTL.

Besides all the standard operators of propositional logic, CTL* contains two
additional sets of operators. The linear time operators are for reasoning about a
single path starting at the actual state: G expresses that a formula must hold for
all successor states on the path, F indicates that a formula must be true for at
least one of the successor states, X is used to reason about the immediate next
state of the current state of the path and U states that a formula will be valid
in all states until a second formula is true in some future states. The branching
time operators are used to reason about sets of paths, i.e. the tree aspect in the
Kripke structure is reflected. The operator A determines if a formula is true on
all possible paths beginning at the current state. The dual operator of A is E
which requires that a formula is true on one path only. A formal definition of
the syntax of CTL* is given now.

Definition 2.12 (Syntax of CTL*) Let V be the set of propositional
variables (atomic formulas). Then, the two formula classes state formulas and
path formulas are distinguished. They are defined as follows:

State formulas:

Every v ∈ V is a state formula.

If p and q are state formulas, so are ¬p, p ∨ q and p ∧ q.

If p is a path formula, then Ep and Ap are a state formulas.

Path formulas:

If p is a state formula, then p is also a path formula.

If p and q are path formulas, so are ¬p, p∨ q, p∧ q, Xp, pUq, Fp and Gp.

All state formulas are CTL* formulas.

Next, the semantics of CTL* is defined.

Definition 2.13 (Semantics of CTL*) Let K = (S, S0, R, V, L) be
a Kripke structure, s ∈ S a state and π a path in K . Furthermore, let q1, q2 be
state formulas and p1, p2 be path formulas. For a state formula q, K, s |= q

24 QUALITY-DRIVEN SYSTEMC DESIGN

denotes that q holds at the state s of K . For a path formula p, K,π |= p
denotes that p holds along the path π in K . If K is clear from the context it
can be omitted. For the semantics of CTL* the relation |= is inductively defined
as follows:

s |= v :⇔ v ∈ L(s), if v ∈ V

s |= ¬q1 :⇔ not s |= q1

s |= q1 ∨ q2 :⇔ s |= q1 or s |= q2

s |= q1 ∧ q2 :⇔ s |= q1 and s |= q2

s |= Eq1 :⇔ there exists a path π which starts at s, such that π |= q1

s |= Aq1 :⇔ for all paths π starting at s, it holds that π |= q1

π |= q1 :⇔ s |= q1 and s is the first state of π

π |= ¬p1 :⇔ not π |= p1

π |= p1 ∨ p2 :⇔ π |= p1 or π |= p2

π |= p1 ∧ p2 :⇔ π |= p1 and π |= p2

π |= Xp1 :⇔ π1 |= p1

π |= Gp1 :⇔ for all k ≥ 0 it holds that πk |= p1

π |= Fp1 :⇔ there exists a k ≥ 0 such that πk |= p1

π |= p1Up2 :⇔ there exists a k ≥ 0 such that πk |= p2 and for all
0 ≤ j < k it holds that πj |= p1

Based on the syntax and semantics introduced above we finally define when
a CTL* formula holds for a Kripke structure.

Definition 2.14 A CTL* formula ϕ holds for a Kripke structure K =
(S, S0, R, V, L) if for all initial states s0 ∈ S0 : K, s0 |= ϕ.

As mentioned earlier CTL* covers the two most commonly used temporal
logics:

LTL is the subset obtained from CTL* by restricting the CTL* syntax to
path formulas only, i.e. an LTL formula has the form Af , where f is a path
formula which can only use atomic formulas as state formulas. By this, for
LTL it is required that f has to be true on all possible paths beginning at an
initial state. Consequently, the preceding A operator is implicitly assumed
and not written for an LTL formula.

Preliminaries 25

CTL is obtained from CTL* by requiring that each temporal operator
(X,G,F,U) must be directly preceded by a branching time operator
A or E.

Frequently two types of formulas (or properties) are distinguished: safety
properties and liveness properties. Informally speaking, safety properties ex-
press that “something bad does never happen”, while liveness properties state
that “something good eventually happens”. An example for a safety property
is mutual exclusion, as LTL property, e.g., G¬(ack1 ∧ ack2). An example
for liveness is “any request will be granted eventually”, as LTL property, e.g.,
G(req → Fack).

A counter-example to a safety property is a finite execution trace, while
a counter-example to a liveness property is an infinite execution trace. For a
finite-state system, such an infinite execution trace is a loop on states where
the “good” behavior never happens.

Model Checking Algorithms

In this section the basics of model checking algorithms are reviewed. We
start with a short presentation of Symbolic Model Checking (SMC). In SMC
the states and the transitions are represented symbolically. Usually for this
task BDDs are used, more precisely the transitions are represented by BDDs
as well as the set of states by representing its characteristic function as a
BDD [BCMD90, McM93, BCL+94]. To show whether a CTL formula holds
for a given Kripke structure K, all states in K have to be determined in which
the formula holds and it has to be checked if each initial state of K is con-
tained in the computed state set. Technically, the state set computation for
a CTL formula starts in the leaves of the formula and ends at its root. The
cases at the leaves correspond to the evaluation of the labeling function for
the variables at the leaves. In the implementation only the formulas ¬ϕ,ϕ1 ∧
ϕ2, EXϕ,E(ϕ1Uϕ2) and EGϕ have to be handled with an according evalu-
ation function since the remaining formulas can be reduced to these formulas.
With the results from the leaves the propositional operators are calculated us-
ing the corresponding set operations. For the complex operators E(ϕ1Uϕ2)
and EGϕ fix-point computations are necessary. The core steps for this task are
the image and pre-image computations. These operations are used to determine
the set of states that are reachable in one step from a given set of states and all
predecessor states of the given set of states, respectively. Both operations are
shown below:

Image(X) = {s′ ∈ S | ∃s ∈ X with R(s, s′)}
PreImage(X) = {s ∈ S | ∃s′ ∈ X with R(s, s′)},

26 QUALITY-DRIVEN SYSTEMC DESIGN

where X is the given set of states. Both operations can be implemented
efficiently using BDDs by carrying out conjunction and existential quantifica-
tion on the respective BDD representations. However, for large designs these
operations suffer from “memory explosion” problems.

Hence, methods for model checking have been developed to overcome this
limitation. A very successful technique that is based on SAT is Bounded Model
Checking (BMC). BMC has been introduced by Biere et al. in [BCCZ99] and
gained popularity very fast. For industrial case studies see, e.g., [AKMM03,
ADK+05]. A survey in this context can be found in [PBG05] and for more
details we refer the reader to [GG07]. For an LTL formula ϕ the basic idea of
BMC is to search for counter-examples to ϕ in executions of the system whose
length is bounded by k time steps. More formally, this can be described as:

BMCk = I(S0) ∧
k−1
∧

i=0

T (si, si+1) ∧ ¬ϕk,

where I(S0) denotes the predicate for the initial states, T denotes the transition
relation and ¬ϕk constraints that the property ϕ is violated by an execution of
length k.

Since LTL formulas have to hold for all paths, finding counter-examples
means to check whether there exists an execution that contradicts the LTL for-
mula. Such an execution is a witness for the negated LTL formula. For exam-
ple, for a liveness property of the form AFp,2 BMC tries to find a witness for
EG¬p, i.e. ¬ϕk represents a loop within an execution of length at most k,
such that p is violated on each state in the loop. BMC is also very often used
to check safety properties. If the safety property has the form AGp where p is
some propositional formula, then the considered witness is EF¬p. Hence, in
this case the resulting translation for ¬ϕk is

∨k
i=0 ¬pi, where pi is the propo-

sitional formula at time point i. In general, a propositional formula has to be
generated from the LTL formula ϕ for the given bound k. For the temporal
operators of ϕ the well-known LTL expansion rules [MP91] are used, e.g.,
Ff ≡ f ∨XFf and Gf ≡ f ∧XGf . In addition, during the translation it is
taken into account whether the witness requires an infinite behavior or not. For
instance, a witness for EGp with a finite execution is only possible by includ-
ing a back loop in the translation. For more details on the translation we refer
the reader to [BCCZ99].

Finally, the overall problem formulation is transformed into CNF. Hence,
if the resulting SAT instance is satisfiable a counter-example of length k
has been found. Usually BMC is applied by iteratively increasing k until a
counter-example for the property has been determined or the resources are

2For clarity the path quantifiers E and A are used to denote whether the formula has to hold for all paths or
only for at least one path.

Preliminaries 27

exceeded. For proving a property, k has to reach the sequential diameter
which is not feasible for large designs. Therefore, approaches for BMC have
been developed which can ensure completeness for safety properties (see,
e.g., [SSS00, IPC03, WTSF04]), i.e. a property can be proven also. Note
in [BAS02], Biere et al. have shown that liveness properties can be reduced to
safety properties.

In this book a BMC variant is used that restricts the properties to bounded
ones and thereby allows to prove a property. A detailed presentation of the
approach including the syntax and semantics with respect to the used Property
Specification Language (PSL) is given in Section 4.1.

2.4 SystemC
To handle the increasing complexity of circuits and systems the abstrac-

tion level for the design has been raised in the last decades: from transistors
to gates, from gates to Register Transfer Level (RTL), and since a few years
from RTL to C/C++ based models. This evolution has driven the development
of the system description language SystemC [LTG97, GLMS02] which has
been standardized by the IEEE [IEE05a]. SystemC has been introduced by the
Open SystemC Initiative (OSCI) [OSC08], an independent, non-profit associa-
tion composed of industrial and academic partners. In the following SystemC
is briefly reviewed and a simple SystemC modeling example is provided.

2.4.1 Basics and Concepts
This section gives a brief introduction into the basics and concepts of the

system description language SystemC. For a more detailed presentation we
refer the reader to [GLMS02, MRR03, BD05].

The central idea of SystemC is to provide a language which spans from
concept to implementation. Thus, in SystemC hardware and software systems
can be modeled. Using traditional HDLs like VHDL or Verilog the simulation
of hardware and software requires complex interfacing of hardware and soft-
ware simulators. Thereby the simulation speed degrades and designers have to
know both languages. Another advantage of SystemC is that the initial high
level description of a system can be refined progressively within one language
trough the different levels of abstraction, until finally a synthesizable descrip-
tion is reached. The underlying SystemC refinement methodology eliminates
the manual translation step into a traditional HDL.

For modeling hardware the following aspects are fundamental:

Concurrency, since hardware is inherently concurrent.

A notion of time is required.

HW datatypes to support for example tristates.

28 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 2.6. Architecture of SystemC [IEE05a]

All these aspects have been incorporated during the development of SystemC.
Essentially, SystemC is a C++ class library. Thus, SystemC inherits all features
of C++, e.g., the concept of object orientation. By this, the issues for describing
software are taken into account. For the description of hardware in addition
to the above mentioned aspects the SystemC class library adds a simulation
semantic to C++ which is similar to the one of event-based HDL simulators.
This includes the concept of delta cycles as well as sensitivity lists.

The architecture of SystemC is depicted in Figure 2.6. On top of C++ the
SystemC class library is shown as shaded blocks. The class library consists
of four parts: the core language, the SystemC data types, the predefined chan-
nels and the utilities. The layer above SystemC represents standard or pro-
prietary C++ libraries that provide specific design or verification methodolo-
gies. One example is the add-on library to support Transaction Level Modeling
(TLM) [CG03]. TLM allows to describe the communication in a system in
terms of abstract operations (transactions). Another example is the SystemC
Verification (SCV) library [Sys03] which is considered in more detail in the
next chapter. In the following we summarize the major parts of the SystemC
layer with the focus on modeling a system:

Modules are the basic building blocks for partitioning a design. A module
can contain processes, ports, channels and other modules. Thus, a hierar-
chical design description becomes possible.

Communication is realized with the concept of interfaces, ports and chan-
nels. An interface defines a set of methods to access channels. Through

Preliminaries 29

Compiler

Linker

Debugger

SystemC
class library and
simulation kernel

SystemC
source files

Make

Executable
specification

RunStimuli Trace/Output

Figure 2.7. SystemC tool flow

ports a module can send or receive data and access channel interfaces. A
channel serves as a container for communication functionality, e.g., to hide
communication protocols from modules.

Processes are used to describe the functionality of the system and allow ex-
pressing concurrency in the system. They are declared as special functions
of modules and can be sensitive to events, e.g., an event on an input signal.

Hardware specific objects are supplied, like, e.g., signals, which repre-
sent physical wires, clocks, and a set of data-types useful for hardware
modeling.

Besides this, SystemC provides a simulation kernel. Note that a SystemC de-
scription can be compiled with a standard C++ compiler to produce the exe-
cutable specification of the system. By starting the executable the system is
simulated. The resulting tool flow for simulation is illustrated in Figure 2.7. In
the next section a simple SystemC example is given. More complex ones are
presented in the respective chapters.

2.4.2 SystemC Design Example
In the following a simple SystemC description is presented to exemplify the

above mentioned modeling features.

30 QUALITY-DRIVEN SYSTEMC DESIGN

1 t y p e d e f s c _ u i n t <3> T ;
2
3 SC_MODULE(c o u n t e r) {
4 / / p o r t s and s i g n a l s
5 s c _ i n _ c l k c l o c k ;
6 sc_ in <bool > r e s e t ;
7 sc_ou t < T > o u t ;
8 T c o u n t _ v a l ;
9

10 / / p r o c e s s e s
11 void do_count () {
12 i f (r e s e t . r e a d ()) {
13 c o u n t _ v a l = 0 ;
14 } e l s e {
15 c o u n t _ v a l = c o u n t _ v a l + 1 ;
16 }
17 o u t = c o u n t _ v a l ;
18 }
19
20 / / c o n s t r u c t o r
21 SC_CTOR(c o u n t e r) {
22 SC_METHOD(do_count) ;
23 s e n s i t i v e << c l o c k . pos () ;
24 }
25 } ;

Figure 2.8. SystemC counter

Example 2.15 In Figure 2.8 a SystemC implementation of a counter is
shown. The bit size of the counter is determined by a typedef . Here, the type
T is defined as an unsigned integer with 3 bits (line 1). The SystemC module
counter has two inputs, reset and clock. In addition, the counter has one
output out. The current value of the counter is stored in count val. In the
process do_count the functionality of the counter is described. Obviously the
counter counts modulo 8 based on the given typedef. Finally, in the constructor
of the module the method do_count is declared as an SC_METHOD which is
sensitive to the positive clock.

To simulate the SystemC counter a testbench that provides the input stim-
uli and a simulation environment are required. The simulation environment is
provided by specifying the top level function sc main(). Here, the modules
of the design are instantiated, connected and the simulation is started.

Example 2.16 The respective sc_main for the counter is shown in Figure
2.9. After declaration of signals a module for stimuli generation (line 10) and

Preliminaries 31

1 # in c l u d e < sys t emc . h>
2 # i n c l u d e " c o u n t e r . h "
3 # i n c l u d e " s t imGen . h "
4
5 i n t sc_main (i n t argc , char ∗ a rgv []) {
6 s c _ c l o c k c l k (" Clock " , 1 , 0 . 5 , 0 . 0) ;
7 s c _ s i g n a l < bool > r e s e t ;
8 s c _ s i g n a l < T > o u t ;
9

10 s t imGen s (" S t i m u l i G e n e r a t o r ") ;
11 s . s t a r t = 5 ;
12 s . r e s e t (r e s e t) ;
13 s . c l o c k (c l k) ;
14
15 c o u n t e r c (" Counte r ") ;
16 c . c l o c k (c l k) ;
17 c . r e s e t (r e s e t) ;
18 c . o u t (o u t) ;
19
20 s c _ t r a c e _ f i l e ∗ t f = s c _ c r e a t e _ v c d _ t r a c e _ f i l e (" c o u n t e r ") ;
21 s c _ t r a c e (t f , r e s e t , " r e s e t ") ;
22 s c _ t r a c e (t f , out , " o u t ") ;
23
24 / / s t a r t s i m u l a t i o n
25 s c _ s t a r t (c lk , 1 0 0) ;
26
27 s c _ c l o s e _ v c d _ t r a c e _ f i l e (t f) ;
28 re tu rn 0 ;
29 }

Figure 2.9. Top function sc main

the counter (line 15) are instantiated. The implementation of the module for
stimuli generation is not given. The connections (or port bindings) are accom-
plished after module instantiation. For example, in line 17 the input reset of the
counter is bound to the above declared reset signal. Then, a trace file is cre-
ated and the reset signal and the out signal are recorded. Finally, the counter
is simulated for 100 clock cycles (line 25). The resulting waveform is shown
in Figure 2.10. The reset is released after the fifth clock cycle (the waveform
viewer dinotrace [Sny08] starts to count from zero).

32 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 2.10. Waveform for simulated SystemC counter

Chapter 3

SYSTEM-LEVEL VERIFICATION

D. Große and R. Drechsler, Quality-Driven SystemC Design, 33
DOI 10.1007/978-90-481-3631-5 3, c© Springer Science+Business Media B.V. 2010

The parts of the proposed design and verification flow covered in this
chapter are shown in Figure 3.1. As already mentioned, for modeling a system
in this book the system description language SystemC is used. Thus, from the
textual specification the initial system-level model is directly described in Sys-
temC. Following the design methodology of SystemC the system-level model
is very abstract and can be simulated at this high level of abstraction already
by compiling the model into the executable specification. This allows for effi-
cient design space exploration. After analyzing the results of a certain design
direction the designer can go back and revise design decisions (for simplicity
this loop is not shown in the figure). Since not all details have been modeled
already, this can be accomplished with moderate costs. Also part of the de-
sign space exploration phase is to check hardware/software trade-offs. Hence,
hardware/software partitioning is performed to meet the requirements of the
specification. During the development of the system-level model verification
is started.

In the middle of Figure 3.1 the dedicated verification techniques and the re-
spective quality check that are proposed in this chapter for the system level are
depicted. In the first part of this chapter constraint-based simulation is consid-
ered which overcomes the limitations of “pure” simulation. Constraint-based
simulation is based on stimulus generation by constraint solving. The result-
ing stimuli will in particular cover corner case test scenarios which are usually
hard to identify manually by the verification engineer. For SystemC the Sys-
temC Verification (SCV) library [Sys03] offers constraint-based simulation.
The underlying constraint-solver of the SCV library is based on formal meth-
ods. More precisely, Binary Decision Diagrams (BDDs) are used to represent
the constraints. In Section 3.1 the scenario of constraint-based simulation in

34 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 3.1. System-level parts of enhanced SystemC design and verification flow

general and thereafter in the context of SystemC using the SCV library is
considered. Section 3.2 presents two improvements: First, new operators for
the specification of SCV constraints are provided. Second, the uniform dis-
tribution among all solutions of a constraint is guaranteed for maximizing the
chance of entering unexplored regions of the design state space. Both improve-
ments have been published in [GED07]. In Figure 3.1 they are summarized in
the verification task improved constraint-based simulation.

While specifying complex non-trivial constraints (and for example fo-
cussing on special scenarios), the verification engineer is faced with the
problem of over-constraining, i.e. the overall constraint defined for a certain
test scenario has no solution. In this case the root cause of the contra-
diction has to be identified and resolved. Given the complexity of con-
straints used to describe test scenarios, this can be a very time-consuming
process. Thus, in Section 3.3 a fully automated approach for contradic-
tion analysis is introduced. The method determines all “non-relevant” con-
straints and computes all reasons that lead to the over-constraining (see task
contradiction debugging in the figure). The approach has been published
in [GWSD08].

Finally, to ensure the resulting verification quality we investigate the ques-
tion how thorough the design was tested. Hence, in Section 3.4 an approach
to measure the quality of the testbench is presented. Dedicated code cov-
erage techniques that have been developed for SystemC models are used
for the analysis. As a result a coverage report is generated that shows all
statements in the model that have not been executed during simulation
(see task coverage check in Figure 3.1). The method has been published
in [GPKD08].

System-Level Verification 35

3.1 Constraint-Based Simulation
First, in this section the general scenario of constraint-based simulation is

described. Then, the SystemC verification library is introduced with the partic-
ular focus on constraint-based simulation for SystemC designs.

3.1.1 Scenario
Constraint-based simulation is used to improve pure simulation. Constraint-

based simulation can be used in early design phases as well as in subsequent
phases where the design is stepwise refined down to synthesizable descriptions.
In the following the difference of constraint-based simulation in comparison to
pure simulation is explained.

In directed simulation1 explicitly specified stimulus patterns, e.g. written by
verification engineers, are applied to the design. Each of those patterns stimu-
lates a very specific design functionality, called a verification scenario, and the
response of the design is compared thereafter with the expected result. Due to
project time constraints, it is inherent for directed simulation that only a limited
number of such scenarios can be verified.

With random simulation these limitations are compensated. Random stimuli
are generated as inputs for the design. For example, to verify the communica-
tion over a bus, random addresses and random data are computed.

A substantial time reduction for the creation of simulation scenarios is
achieved by constraint-based simulation (see e.g. [YSP+99, Ber06, YPA06]).
Here, the stimuli are generated directly from specified constraints by means
of a constraint solver, i.e. stimulus patterns are selected by the solver which
satisfy the constraints. The resulting stimuli will also cover test scenarios for
corner cases that may be difficult to generate manually. As a consequence,
design bugs will be found that might otherwise remain undetected, and the
quality of design verification increases substantially. In the next section the
SystemC verification library is introduced with a focus on constraint-based
simulation.

3.1.2 Using the SCV Library
The first version of the SystemC Verification (SCV) library was introduced

in 2002 as an open source class library [Sys03, RS03, IS03]. The SCV library
layers on top of SystemC (see also Section 2.4) and adds tightly integrated
verification capabilities to SystemC. In the following the main features of the
SCV library are summarized:

1Directed simulation [BMA05] is typically seen as pure simulation, since it is the simplest form of
simulation.

36 QUALITY-DRIVEN SYSTEMC DESIGN

Data introspection for SystemC and C++ data types

– Manipulation of arbitrary data types

– Manipulation of data objects without compile time information

Transaction API

– Transaction monitoring and recording

– Basis for debugging, visualization and coverage by providing transac-
tion data

Constraint-based stimulus generation for SystemC and C++

– High quality pseudo random generator

– Integrated constraint solver based on BDDs

Since we present in the next sections several improvements for constraint-
based simulation with the SCV library, we give in the following some examples
how constraints are specified using this library. In addition, the representation
of the constraints using BDDs is discussed.

Before the SystemC specific concepts for constraint specification are de-
scribed, the type and structure of constraints is formalized in the following
definitions.

Definition 3.1 A constraint is a Boolean function over variables from the
set of variables V . For the specification of a constraint the typical HDL oper-
ators such as, e.g. logic AND, logic OR, arithmetic operators and relational
operators can be used.

Usually a constraint consists of a conjunction of other constraints. We for-
malize the resulting overall constraint in the following definition.

Definition 3.2 An overall constraint is defined as

C =
n−1
∧

i=0

Ci

where Ci are constraints according to Definition 3.1.

Within the SCV library, constraints are modeled in terms of C++ classes.
The constraints can be hierarchically layered using C++ class inheritance. In
detail a constraint is derived from the scv constraint base class. The data
to be randomized is specified as scv smart ptr variables. The conjunction
as shown in Definition 3.2 is built in SystemC by the explicit use of several
SCV CONSTRAINT() macros or by applying inheritance, i.e. parts of the con-
straints are defined in a base class and inherited by the actual constraint. Note

System-Level Verification 37

1 s t r u c t m y _ c o n s t r a i n t : p u b l i c s c v _ c o n s t r a i n t _ b a s e {
2 s c v _ s m a r t _ p t r < s c _ u i n t <64> > a , b , addr ;
3
4 SCV_CONSTRAINT_CTOR(m y _ c o n s t r a i n t) {
5 SCV_CONSTRAINT(a () > 100) ;
6 SCV_CONSTRAINT(b () == 0) ;
7 SCV_CONSTRAINT(addr () >= 0 && addr () <= 0 x400) ;
8 }
9 } ;

Figure 3.2. Example constraint

that this is not specific to constraint-based simulation using the SCV library.
In fact, the same principles are found, for example, in the random constraints
of SystemVerilog [IEE05b].

We illustrate the specification of SCV constraints in the following.

Example 3.3 An example of an SCV constraint is shown in Figure 3.2.
The name of the constraint is my constraint. Here, the three 64-bit un-
signed integer variables a, b and addr are randomized. The conditions on
the variables a, b and addr are defined by expressions in the respective
SCV CONSTRAINT() macro. For example, the value of the variable a is
restricted to be always greater than 100. All constraint expressions specified
by the respective SCV CONSTRAINT() macro have to hold in conjunction,
i.e. the underlying constraint solver computes a logical AND of all the con-
straint expressions.

The above mentioned principle of hierarchical constraints is shown in the
next example.

Example 3.4 Using the C++ concept of inheritance the hierarchical con-
straint in Figure 3.3 is formulated. From the logical point of view the overall
constraint consists of the conjunction of the base constraint and the current
constraint expressions given in the hierarchical constraint. The constraint ex-
pressions from the base class are “imported” to the derived class with the
macro SCV CONSTRAINT BASE(). In summary, the hierarchical constraint
adds another restriction to my constraint, i.e. the value of a has to be smaller
than 32768.

It is also possible to merge more than one constraint by inheriting from the
respective constraint classes. In addition, the derived constraint can also define
new constraint variables.

In the SCV library a constraint is represented by the corresponding charac-
teristic function, i.e. the function is true for all solutions of the constraint. This

38 QUALITY-DRIVEN SYSTEMC DESIGN

1 s t r u c t h i e r a r c h i c a l _ c o n s t r a i n t : p u b l i c m y _ c o n s t r a i n t {
2
3 SCV_CONSTRAINT_CTOR(h i e r a r c h i c a l _ c o n s t r a i n t) {
4 SCV_CONSTRAINT_BASE (m y _ c o n s t r a i n t) ;
5 SCV_CONSTRAINT(a () < 32768) ;
6 }
7 } ;

Figure 3.3. Hierarchical constraint

1 s t r u c t s i m p l e : p u b l i c s c v _ c o n s t r a i n t _ b a s e {
2 s c v _ s m a r t _ p t r < s c _ u i n t <4> > a ;
3
4 SCV_CONSTRAINT_CTOR(s i m p l e) {
5 SCV_CONSTRAINT(a () > 0) ;
6 }
7 } ;

Figure 3.4. Simple constraint

characteristic function of a constraint is represented as a BDD.2 The following
example illustrates a constraint and the corresponding BDD representation.

Example 3.5 In Figure 3.4 the specification of the SCV constraint simple
is shown. This constraint uses only a single variable of bit width 4 (line 2)
and a simple constraint expression (line 5) so that the corresponding BDD
has a small size and can be understood easily.3 The characteristic function of
this constraint represented as a BDD is depicted in Figure 3.5. The constraint
variable a is equivalent to a0a1a2a3 where a0 is the LSB of a. In the figure the
0-edge is shown as a dashed line and a dot on an edge represents a complement
edge (i.e. the function below is inverted). As can be seen the BDD evaluates to
0 for the assignment a0a1a2a3 = 00002 = 010 only, all other assignments lead
to 1. Obviously this BDD represents the simple constraint.

The presented information in this section mainly focused on the specifica-
tion of constraints using the SCV library. In the next section, the available op-
erators in SCV constraints are enriched. Furthermore, constraint solving with
respect to a uniform distribution among all solutions of a constraint is consid-
ered in detail.

2 The BDD package CUDD [Som98] is used in the SCV library.
3If more variables are used especially the interleaved variable ordering makes it hard to see the relation of
the constraint and the BDD representation of its characteristic function.

System-Level Verification 39

1

0

2

3

a

a

a

a

1

Figure 3.5. BDD of simple constraint

3.2 Improvements for Constraint-Based Simulation
The improvements for constraint-based simulation using the SCV library are

motivated by observations in an industrial setting. At the AMD Dresden Design
Center (DDC) a verification environment that integrates the constraint-based
simulation of the SCV library is used. There it has been observed that the SCV
library has two major disadvantages which restrict the practical use. On the one
hand in the constraints no bit operators are supported. These are important if
parts of the system have been refined already to the lower levels. On the other
hand the constraint solver does not fulfill the important requirement that the
constraint solutions are distributed uniformly if certain constraint variables are
set to a fixed value, i.e. the randomization for these variables is disabled. We
analyze these two problems and describe improvements that overcome these
limitations.

The section is structured as follows. In Section 3.2.1 new bit operators for
SCV constraints are introduced that significantly help during constraint speci-
fication. Section 3.2.2 explains how a uniform distribution across all constraint
solutions can be guaranteed.

3.2.1 Bit Operators
In Section 3.1.2 the specification of constraints using the SCV library in-

cluding several examples has been presented. In the following the composition
of constraint expressions is discussed in more detail. Constraint expressions
over variables to be randomized can only use the following operators [Sys03]:

Arithmetic operators: +, -, *

Relational operators: ==, !=, >, >=, <, <=

Logical operators: !, &&, ||

40 QUALITY-DRIVEN SYSTEMC DESIGN

1 s t r u c t c o n s t r a i n t : p u b l i c s c v _ c o n s t r a i n t _ b a s e {
2 s c v _ s m a r t _ p t r < s c _ u i n t <64> > a d d r e s s ;
3 s c v _ s m a r t _ p t r < s c _ u i n t <32> > mode ;
4
5 SCV_CONSTRAINT_CTOR(c o n s t r a i n t) {
6 SCV_CONSTRAINT(a d d r e s s () . r a n g e (0 , 1) == 0) ;
7 SCV_CONSTRAINT(mode () [1 0] == 1) ;
8 }
9 } ;

Figure 3.6. Example constraint with bit operators

As can be seen there is no support for bit operators in the SCV constraint
solver. However, bit operators are very important for the verification engineer
during the specification of constraints. Bit operators allow for simpler and more
compact formulations of complex constraints. In detail the following bit oper-
ators have been added to the SCV library:

1. Bitwise AND: a() & b()

2. Bitwise OR: a() | b()

3. Bitwise NOT:˜a()

4. Bit-select: a()[i] for constant i

5. Slice-select: a().range(x,y) for constant x and y

A concrete example shows the usefulness of the new operators.

Example 3.6 In Figure 3.6 an example constraint that uses bit operators
is depicted. For the 64-bit variable address the constraint enforces that the
two lower bits are 0 (line 6). Such a specification is typically used to express
valid word-wise addressing in a constraint. Without the new range(x,y) oper-
ator this can only be formulated by explicitly enumerating all allowed values,
i.e. address()==0 || address()==4 || address()==8 ... Such an enumera-
tion is obviously not desirable for large address variables as it is the case in
the example. A similar argumentation holds for setting a single bit in the mode
variable.

A more complex industrial constraint example is presented in Section 3.3
where PCI express constraints are described. In addition, this example makes
use of the “bitwise AND” operator.

For the integration of the new operators in the SCV library, first in the class
scv expression the according C++ operators have been overloaded and new

System-Level Verification 41

member functions have been added. The class scv expression is used for
the internal representation of the constraint expressions in form of an expres-
sion tree. In such a tree leaf nodes are variables or constants and non-terminal
nodes are marked with operators. The class scv expr is used to store the
BDD representation of an scv expression. For the construction of the
BDD in this class each bit operator has to be mapped to the corresponding
BDD synthesis operation. For example, in case of a “bitwise AND” the result-
ing bit vector is computed by the BDD-AND operation for each bit of the two
input vectors. Of course there are several special cases like different length of
vectors, different data types etc. that have to be taken into account.

In summary, the new operators allow a concise and compact way of con-
straint specification.

3.2.2 Uniform Distribution
The uniform distribution of the solutions of constraints is a very important

aspect for the quality of a constraint solver. However, this is not supported
by the SCV library in all circumstances. The problem occurs in scenarios of
high practical relevance. If variables are fixed to a certain value for constraint
solving, i.e. these variables are disabled for randomization, then the solutions
computed by the constraint solver are not uniformly distributed across the set
of all possible solutions. Later this phenomenon will be illustrated by a simple
example. Before describing the solution to this problem the constraint solving
process of the SCV library is explained in more detail.

The constraint solver works on individual bits when solving constraints. As
explained in Section 3.1.2 for a constraint, a BDD representation is computed.
The constraint solver generates a solution of a constraint by using the BDD that
represents the constraint. For this purpose the algorithm starts at the root node
and traverses the BDD down to the 1-terminal. A path starting from the root
and ending at the 1-terminal determines the values of the variables along the
path. These values correspond to a solution of the constraints since the BDD
is the characteristic function of the constraint. One could assume that choosing
the 0-assignment or 1-assignment for a Boolean variable with a probability
of 50% guarantees a uniform distribution. However, the following observation
shows that this is not true. As explained above all constraint solutions are paths
to the 1-terminal starting from the root node. But during the BDD traversal
some sub-BDDs can have more paths to the 1-terminal than other sub-BDDs.
Thus, if a sub-BDD with fewer paths is selected this leads to an overweighting
of the fewer represented solutions. This is illustrated by the following example.

Example 3.7 In Figure 3.7 the BDD for the function f = x1x2 + x1x2x3

is shown, where dashed lines (solid lines) are used for the 0-assignment (1-
assignment) and a dot on an edge represents a complement edge (i.e. the

42 QUALITY-DRIVEN SYSTEMC DESIGN

1

2 2

f

x
x x

x3

1

Figure 3.7. BDD for f = x1x2 + x1x2x3

Table 3.1. Probabilities for solutions

x1 x2 x3 probability
0 1 0 25%
0 1 1 25%
1 1 1 50%

function below is inverted). If during the BDD traversal of the function the
1-edge of the root node is chosen there is exactly one path to the 1-terminal.
If instead the 0-edge is chosen, the reached sub-BDD has two paths to the
1-terminal: In the non-reduced BDD there is a node marked with x3 that is
reached by assigning x1 = 0 and x2 = 1; the 1-edge of this node as well as
the uncomplemented 0-edge point to the 1-terminal. In total, the probabilities
following the intuitive traversal algorithm are shown in Table 3.1.

This example demonstrates that the probability for choosing the 1-edge of
the root node should be corrected to 33% instead of 50%. By this, a uniform
distribution across all solutions is achieved.

In the SCV constraint solver a special weighting algorithm is implemented
to guarantee the uniform distribution of all solutions. In a pre-processing step
the BDD of all initial constraints is traversed and the correct probabilities are
computed for each node. The basic idea of the recursive weighting algorithm
is to compute weights of the else- and then-child of a node while taking into
account whether nodes have been removed due to BDD reduction rules. Based
on the weights a probability is assigned to each BDD node. Then, for the gen-
eration of values – one solution is picked uniformly distributed across all solu-
tions of the constraint – the computed probabilities of the pre-processing step
are used during the BDD traversal.

System-Level Verification 43

The SCV constraint solver calls the weighting algorithm only once at
the beginning for the initial BDD that represents the constraints (below the
reasons including the required modifications of the SCV data structures are
given). Thus, the SCV constraint solver is not able to handle simplifications
like e.g. fixing variables to a certain value. In this case the BDD that represents
the constraints is modified due to the simplification but the probabilities are not
updated. This causes a non-uniform distribution of the constraint solution. We
provide an example for this observation. For simplicity we only use one single
constraint in the following example. Note that the presented technique is not
restricted to this case. An arbitrary number of constraints as well as derived
constraints are fully supported. After the example some technical details are
given for solving the problem.

Example 3.8 Consider the constraint in Figure 3.8. This constraint speci-
fies that a+b = c and c is fixed to 99 (see lines 7 and 8). The distribution shown
in Figure 3.9 was the result from running this constraint 100,000 times in the
SCV constraint solver. As can be seen there is a strong bias of the solutions in
the middle part.

One has to overcome several difficulties while correcting this behavior. This
is due to the design of the SCV library which divides the functionality of
handling the BDD-based representation of constraints roughly into two parts,
i.e. one global constraint manager object and the respective constraint objects
(one for each constraint specified). On the one hand, it may seem natural to di-
rect all BDD-related tasks via one dedicated constraint manager object (which
is encapsulated in a class called scv constraint manager and creates
a manager object for CUDD at start). On the other hand, a closer inspection
unveils serious flaws in the centralized design:

The SCV constraint manager maintains the number of BDD variables nec-
essary for representing the least recently used constraint object. However,

1 s t r u c t t r i a n g l e _ c : p u b l i c s c v _ c o n s t r a i n t _ b a s e {
2 s c v _ s m a r t _ p t r < s c _ u i n t <7> > a , b ;
3 s c v _ s m a r t _ p t r < s c _ u i n t <8> > c ;
4
5 SCV_CONSTRAINT_CTOR(t r i a n g l e _ c) {
6 SCV_CONSTRAINT(a () + b () == c ()) ;
7 c−>d i s a b l e _ r a n d o m i z a t i o n () ;
8 ∗c = 9 9 ;
9 }

10 } ;

Figure 3.8. Triangle constraint

44 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 3.9. Distribution for a + b = 99 with original SCV

this number is reset, i.e. “forgotten”, as soon as a new constraint object
is created. Hence, if a previous constraint is simplified, this number is not
available anymore. This is a problem since the weighting algorithm crucially
depends on this number. There are similar problems with the information con-
tained in two hash tables stored at the constraint manager object: the tables
nodeHashP and nodeWeightHash hold the probability information for
all nodes of the BDD representing a constraint and the according weighting
information, respectively. At the time of simplification of a previous constraint,
the data stored in the table needs to be cleared which is not done by the SCV
system.

We did a complete redesign of the constraint management classes that also
solved these problems. Furthermore, we put more intelligence into the con-
straint objects. For example, now every constraint object is capable to return
a pointer to its BDD representation via a method getBddNodeP. Backwards
compatibility has been preserved and full functionality/structure of the SCV
interfaces, e.g. the possibility of overloading C++ virtual member functions
like scv constraint base::next which triggers the next random as-
signment of the constraint variables. In order to achieve this, it was necessary
to give the simplified BDD to the constraint object in several methods of the
class scv constraint manager, e.g. assignRandomValue, as well
as in several internal utility routines called from other code within the SystemC
verification standard, e.g. in scv set value.

The result of our redesign now is a tight integration of the weighting algo-
rithm and the BDD synthesis operations. After structural modifications in the
interfaces and correct initialization of internal data structures now the weight-
ing algorithm is called after a simplification. Thus, the weights and probabili-
ties are recomputed and a uniform distribution is achieved. In Figure 3.10 the

System-Level Verification 45

Figure 3.10. Distribution for a + b = 99 with improved SCV

result for the constraint from Example 3.8 is shown again for 100,000 times
calling the SCV constraint solver. As can be seen a uniform distribution among
all solution was established and hence the chance for entering unexplored re-
gions of the design state space is maximized.

3.3 Contradiction Analysis for Constraint-Based
Simulation

For constraint-based random simulation several approaches have been
proposed (see e.g. [YSP+99, YAPA04, DKBE02, Iye03, KK07]). However,
besides concise specifications of constraints and a uniform distribution across
all constraint solutions as discussed in the previous section, a crucial problem
arises: If complex constraints are specified for a test scenario, the verifica-
tion engineer can be faced with over-constraining, i.e. the constraint solver
is not able to find a valid solution for the given set of constraints. When-
ever such a contradiction occurs in a constraint-based simulation run, this
run has to be terminated as no valid stimulus patterns can be applied. Note
that over-constraining may not necessarily happen at the very beginning of
the simulation run, as modern testbench languages allow the addition of con-
straints dynamically during simulation. In any case of over-constraining the
verification engineer has to identify the root cause of the contradiction. As this
is usually done manually by either code inspection or trial-and-error debug, it
is a tedious and time-consuming process.

To the best of our knowledge in this book we propose the first non-trivial
algorithm for contradiction analysis in constraint-based simulation. In the area
of constraint satisfaction problems methods for diagnosing over-constrained
problems have been studied (see e.g. [BDTW93, PRB01]). These methods

46 QUALITY-DRIVEN SYSTEMC DESIGN

aim to find a solution for the over-constrained problem by relaxing constraints
according to a given weight for each constraint. In the considered problem
no weights are available. Also, the approaches do not determine all minimal
reasons that cause the overall contradiction. In contrast, Yuan et al. proposed
an approach to locate the source of a conflict using a kind of exhaustive
enumeration [YPA06]. But since a very large run-time of this method is
supposed – neither an implementation nor experiments are provided – they
recommend to build an approximation. In the domain of Boolean Satisfiability
(SAT) a somewhat similar problem can be found: computing an UNSAT core
of an unsatisfiable formula, i.e. to identify an unsatisfiable sub-formula of
the overall formula [GN03, ZM03]. However, to obtain a minimal reason the
much more complex problem of a minimal UNSAT core has to be consid-
ered [OMA+04, Hua05, MLA+05]. Furthermore, all minimal UNSAT cores
are required to determine all minimal contradictions. In general this is very
time consuming (see e.g. [LS05]).

In this section we propose a fully automatic technique for analyzing contra-
dictions in constraint-based random simulation. The basic idea is as follows:
The overall constraint is reformulated such that (contradicting) constraints
can be disabled by introducing new free variables. Next, an abstraction
is computed that forms the basis for the following steps. First, the self-
contradicting constraints are identified. Then, all “non-relevant” constraints
are determined. Finally, for the remaining constraints – typically only a very
small set – a detailed analysis is performed. In total our approach identifies
all reasons of the over-constraining, i.e. all minimal constraint combinations
that lead to a contradiction of the overall constraint. The proposed tech-
nique has been evaluated in a verification environment at AMD Dresden
Design Center (DDC). As shown by the experiments the debugging time is re-
duced significantly. The verification engineer can completely understand what
causes the over-constraining and thus can resolve the contradictions in one
single step.

This section is structured as follows. In Section 3.3.1 the considered prob-
lem is formalized and the concepts of the contradiction analysis approach
are given. The implementation of the approach is described in detail in
Section 3.3.2. Section 3.3.3 provides experimental results. First, some re-
sults obtained for different types of contradictions are discussed. Then, the
application of the analysis technique for a real-life industrial example in a
verification environment at AMD DDC is presented.

3.3.1 Contradiction Analysis Approach
In this section first the considered problem is formalized. Then, the concepts

for the contradiction analysis approach are presented.

System-Level Verification 47

Problem Formulation

During the specification of complex non-trivial constraints, the problem of
over-constraining arises:

Definition 3.9 An overall constraint C =
n−1
∧

i=0
Ci is over-constrained or

contradictory iff C is not satisfiable, i.e. C always evaluates to 0.

Typically, if C is over-constrained the verification engineer has to manually
identify the reason for the over-constraining. This process can be very time-
consuming because several cases are possible. For example, one of the con-
straints Ci may have no solution. Another reason for a contradiction may be
that the conjunction of some of the constraints Ci leads to 0. In the following
the term reason is defined as used in the remaining part of this section.

Definition 3.10 A reason for a contradictory overall constraint C is the
set R = {Ci1 , Ci2 , . . . , Cik} ⊆ {C0, C1, . . . , Cn−1} with the two properties:

1. The constraints in R form a contradiction, i.e. the conjunction Ci1 ∧Ci2 ∧
. . . ∧Cik always evaluates to 0. Therefore the overall constraint C is over-
constrained.

2. Removing an arbitrary constraint from R resolves the contradiction,
i.e. minimality of R is required.

Often the root cause of over-constraining can result from more than one
contradiction, i.e. there is more than one reason. If in this case only one reason
is identified by the verification engineer, the constraint solver has to solve the
fixed constraint again, but still there is no solution.

Based on these observations, the following problem is considered here:

How can we efficiently compute all minimal reasons for an over-
constraining and thereby support the verification engineer in constraint
debugging?

Analyzing the contradictions in the overall constraint C and presenting all
reasons is facilitated by our approach. In particular excluding all constraints
which are not part of a contradiction reduces the debugging time significantly.

Concepts for Contradiction Analysis

The general idea of the contradiction analysis approach is as follows: The
overall constraint C is reformulated such that the conflicting constraints can be
disabled by the constraint solver and C becomes satisfiable. By analyzing the
logical dependencies of the disabled constraints, we can identify all reasons
for the over-constraining.

48 QUALITY-DRIVEN SYSTEMC DESIGN

Definition 3.11 Let C be over-constrained. Then the reformulated con-
straint C ′ is built by introducing a new free variable si for each constraint
Ci and by substituting each constraint Ci with an implication from si to Ci.
That is,

C ′ =
n−1
∧

i=0

(si → Ci).

For the reformulated constraint C ′ the following holds:

1. If si is set to 1, then the constraint Ci is enabled.

2. If si is set to 0, then the constraint Ci is disabled because Ci may evaluate
to 0 or 1.

Note that the usage of an implication is crucial. If an equivalence is used in-
stead of an implication, si = 0 would imply the negation of Ci.

Example 3.12 Figure 3.11 shows a constraint C which is over-constrained
(for clarity the SCV specific declaration parts are not shown, in fact each con-
straint expression is marked with Ci). Reformulating C to C ′ avoids the over-
constraining because a constraint Ci may be disabled by assigning si to 0.
Table 3.2 gives all assignments to si such that the reformulated overall con-
straint C ′ evaluates to 1.4 That is, the table shows which constraints have to
be disabled to get a valid solution. For example, disabling C0, C2, C3 and C5

avoids the contradiction.

C0 ⇔ b()<3 && b() == 7

C1 ⇔ a() + b() == c()

C2 ⇔ a() < 6

C3 ⇔ a() == 5

C4 ⇔ a() == 10

C5 ⇔ d() == 8

C6 ⇔ d() > 10

Note that all variables a(), b(), c(), d() are positive integers.

Figure 3.11. Contradictory constraint

4Here ‘−’ denotes a don’t care, i.e. the value of si can be either 0 or 1. The table is derived from a symbolic
BDD representation of all solutions for the si variables after abstraction of all other variables.

System-Level Verification 49
Table 3.2. Table of contradictory constraint

s0 s1 s2 s3 s4 s5 s6

0 − 0 0 − 0 −
0 − 0 0 − 1 0
0 − 0 1 0 0 −
0 − 0 1 0 1 0
0 − 1 − 0 0 −
0 − 1 − 0 1 0

Based on the reformulation the verification engineer is able to avoid the
over-constraining. However, in order to understand what causes the over-
constraining, i.e. to identify the reason of each contradiction, a more detailed
analysis is required. Here, two properties of the assignment table obtained
from the reformulated overall constraint can be exploited.

Note that for simplicity we always refer to the assignment table in the pre-
sentation. As shown later in the implementation the assignment table needs not
to be build explicitly.

Property 3.1 The value of variable si is 0 for all solutions (i.e. in each row
of the table) iff the respective constraint Ci is self-contradictory, that is Ci has
no solution.

Proof: ⇒: We show this by contraposition: If Ci has at least one solution, then
there is a row where si is 1. Obviously this solution (row) can be constructed
by assigning 1 to si and 0 to sj for j �= i, because (si → Ci) = si ∨ Ci =
0 ∨ Ci = Ci = 1 and (sj → Cj) = sj ∨ Cj = 1 ∨Cj = 1 for j �= i.
⇐: To satisfy C ′ each element of the conjunction must evaluate to 1, so
(si → Ci) = si ∨ Ci. Since Ci has no solution (Ci is always 0) si must
be 0. �

Thus, each constraint Ci whose si variable is always assigned to 0, is a
reason for the contradictory overall constraint C .

Property 3.2 The value of variable si is don’t care for all solutions (i.e. for
all rows of the table) if the constraint Ci is never part of a contradiction of C .

Proof: ⇒: This property is shown by contradiction. Assume that si is don’t care
for all solutions and Ci is part of a contradiction. Then, without loss of gener-
ality there has to be another satisfiable constraint Cj such that Ci ∧ Cj = 0.5

If sj is set to 1 and all other constraints Ck with k �= j are disabled by sk = 0,

5According to Property 3.1 both constraints Ci and Cj have at least one solution.

50 QUALITY-DRIVEN SYSTEMC DESIGN

then C ′ is 1. However, switching si to 1 is not possible due to the conflict of
Ci and Cj . But this contradicts the assumption that the value of si is don’t care
for all solutions.
⇐: Because the constraint Ci is never part of a contradiction, Ci can be en-
abled or can be disabled. In other words, si can be set to 0 and also to 1
for each solution of the overall constraint, which is equivalent to si being
don’t care. �

Thus, each constraint Ci whose si variable is always don’t care, is not part
of a reason for the contradictory overall constraint. Therefore these constraints
are not presented to the verification engineer and can be left out in the next
steps.

Example 3.13 Consider again Example 3.12. Because the value of s0 is 0
for all solutions, C0 is self-contradictory. Thus, R0 = {C0} is a reason for C .
Since the value of s1 is always don’t care, C1 is never part of a contradiction.
As a result the first two constraints can be ignored in the further analysis.

Note that the overall constraint of the example in Figure 3.11 has been spec-
ified to demonstrate the two properties. In practice, the number of constraints
that are never part of a contradiction is considerably larger. Thus, applying
Property 3.2 reduces the debugging effort significantly because every “non-
relevant” constraint does not have to be considered any further by the verifica-
tion engineer.

In fact, all remaining constraints (if there are any) are part of at least one
contradiction. Furthermore, since contradictory constraints have been filtered
out by Property 3.1 only a conjunction of two or more constraints causes a
contradiction. Now the question is, how to identify the minimal contradicting
conjunctions of the remaining constraints, i.e. the reasons?

Example 3.14 Again Example 3.12 is considered. The constraints C0 and
C1 have been handled already according to Property 3.1 and Property 3.2.
Now, the conjunction of two or more of the remaining constraints, C2, C3,
C4, C5 and C6, causes a contradiction. Only identifying the complete product
of all these constraints certainly does not help to resolve the conflict. In fact,
each individual contradiction has to be presented to the verification engineer.
But this requires the computation of all minimal reasons according to Defini-
tion 3.10. In the example, three reasons can be found in total: R1 = {C2, C4}
and R2 = {C3, C4} which overlap as well as R3 = {C5, C6} which is inde-
pendent of R1 and R2.

To find the minimal reason for each contradiction, all constraint combina-
tions are tested for a contradiction starting with the smallest conjunction. For

System-Level Verification 51

each tested combination the respective si variables are set to 1. Thus, if the con-
junction Ci1 ∧ · · · ∧ Cik leads to a contradiction ((si1 = 1) ∧ · · · ∧ (sik = 1)
∧ C ′ ≡ 0), then this combination is a reason of C . Minimality is ensured
by building the constraint combinations in ascending order with respect to
their size and skipping each superset of a previously found reason. Since the
overall problem has already been simplified by exploiting Property 3.1 and
Property 3.2, the described procedure has to be applied only for a small set
of constraints, i.e. the remaining ones. This is the key to the efficiency of the
overall contradiction analysis procedure.

The next section presents the details on the implementation of the overall
contradiction analysis approach.

3.3.2 Implementation
As explained in Section 3.1.2, the SCV library uses BDDs for the represen-

tation of constraints. More precisely the characteristic function of the overall
constraint is represented as a BDD. This characteristic function is true for all
solutions of the constraint, false otherwise. We implemented the contradic-
tion analysis approach using the SCV library. Therefore our implementation is
“BDD driven”.

The pseudo-code of the contradiction analysis approach is shown in
Algorithm 3.1. As input the approach starts with the BDD representation
of the reformulated constraint C ′ and the set of all constraint variables V . At
first, all constraint variables are existentially quantified from the reformulated
constraint (line 2). Thus, the resulting function C ′′ only depends on the si

variables. In other words, this function is the symbolic representation of the
assignment table described in the previous section. In general the quantified
BDD is much more compact than the BDD for the reformulated constraint.
Thus, the following BDD operations can be executed very fast.

After quantification the two sets R and S are initialized to be empty. R
stores all reasons that are found. Note that for simplicity R contains the sets
of the corresponding si variables of a reason, not the constraints themselves.
The set S is used to save all si variables that are passed to the detailed analysis
later. So this set corresponds to the remaining constraints. Then, for each con-
straint Ci it is checked whether Ci is either contradictory (line 8) or never part
of a contradiction (line 11) according to Property 3.1 and Property 3.2. In the
former case the respective si variable is added to the set of reasons R (line 10).
Both checks are conducted on the quantified representation C ′′ of the reformu-
lated constraint, that is

To check whether si is 0 for all solutions (see Property 3.1) the conjunction
C ′′ ∧ si = 1 is carried out. If the result is the constant zero-function, si is
never 1 in any solution, i.e. si is always 0. Thus, Ci becomes a reason.

52 QUALITY-DRIVEN SYSTEMC DESIGN

Algorithm 3.1: contradictionAnalysis(BDD C ′, set of constraint vars V)
Result: Set R of reasons
// abstraction1

C ′′ = ∃v1, . . . ,∃v|V | C ′
2

// initialization3

R = ∅ ; // reasons of contradictions4

S = ∅ ; // si variables for detailed analysis5

// test properties6

for (i = 0 . . . n− 1) do7

if ((C ′′ ∧ si = 1) ≡ 0) then8

// Ci is self-contradictory9

R = R∪ {{si}};10

else if ((C ′′ ∧ si = 0) ≡ (C ′′ ∧ si = 1)) then11

// Ci is not responsible for12

over-constraining
else13

// Ci is selected for detailed analysis14

S = S ∪ {si};15

// detailed analysis16

foreach (X ∈ P(S)) do17

// from the smallest to the largest18

if (∃X ′ ∈ R : X ′ ⊂ X)) then19

// ensure minimality20

continue ;21

if ((C ′′ ∧ ∧

si∈X
si = 1) ≡ 0) then

22

// subset leads to over-constraining of C23

R = R∪ {X};24

return R;25

The check whether si is don’t care in all solutions (see Property 3.2) is
carried out by (C ′′ ∧ si = 0) ≡ (C ′′ ∧ si = 1). If the respective BDDs are
equal, it has been shown that si is don’t care, since regardless of the value
of si the solutions are identical. Therefore, the constraint Ci is not relevant
for a contradiction and thus neither added to the set R nor to the set S .

If both properties cannot be applied (line 13), then the respective constraint
Ci is part of a contradiction caused by the conjunction of Ci with one or more
other constraints. Thus, Ci is passed to the detailed analysis by inserting the
respective si into S (line 15).

System-Level Verification 53

Finally, the detailed analysis for all elements in S – the remaining constraints
– is performed (line 17–24). First, the power set P(S) of S is created resulting
in all subsets, i.e. combinations, of constraints considered for detailed analysis.
Note that we exclude the empty set as well as all sets which only contain one
element from the power set, since this is already covered by Property 3.1.
Furthermore, during the construction the elements of the power set are ordered
according to their cardinality. Then, for each subset X, i.e. for each combina-
tion, the conjunction of the respective constraints is tested for a contradiction.
Therefore, the conjunction of the current combination X – represented as a
cube of all variables si ∈ X – and C ′′ is created, i.e. all respective constraints
Ci are enabled (line 22). If the conjunction leads to a contradiction, then X
is a reason and thus, X is added to R (line 24). To ensure minimality each
contradiction test of a subset X is only carried out if no reason X ′ ∈ R exists
such that X ′ ⊂ X (line 19–21), i.e. no subset of X has already been identified
as reason for a contradiction (see also Definition 3.10).

In summary, the presented contradiction analysis procedure computes all
minimal reasons R of a contradictory overall constraint C . First, the proposed
reformulation of the overall constraint allows a representation where all con-
tradictory constraints can be disabled. From this representation a much more
compact one is computed by quantification. All following operations have to
be carried out on this representation only. Then, the two properties are applied
which significantly reduces the problem size since only 2n−|Z|−|DC| instead
of all 2n subsets have to be considered in the detailed analysis (Z denotes the
set of self-contradictory constraints, and DC denotes the set of constraints that
are not part of a contradiction). In practice, especially the number of “non-
relevant” constraints that belong to the set DC is very large, so the input for
the detailed analysis shrinks considerably.

3.3.3 Experimental Results
This section provides experimental results for the contradiction analysis.

First, different types of contradictions are discussed that have been observed in
practice. Then, we show the efficiency of our approach using several testcases.
Finally, we demonstrate the advantages of our approach in an industrial setting.
We briefly discuss a constraint-based simulation environment used at AMD
DDC for verification of SoC designs. By means of a concrete example we will
show how time spent on debugging constraint contradictions is significantly
reduced by our approach.

In all examples the partitioning of the constraints is given according to the
specification in the constraint classes, i.e. each Ci in the following corresponds
to a separate SCV CONSTRAINT() macro (see also Section 3.3.1). The con-
tradiction analysis is started by an additional command line switch and runs
fully automatic in the SCV library environment.

54 QUALITY-DRIVEN SYSTEMC DESIGN

Types of Contradictions

We have identified different types of contradictions. In the following the
general structure is shown by means of examples. We assume that self-contra-
dictory constraints as well as “non-relevant” constraints have been removed.
Assume k constraints are left. Then, one of the following cases are possible
which are identified fully automatic by our approach:

1. There is exactly one contradiction that is caused by all k constraints. Here,
no other subset of the constraints forms a contradiction and thus all con-
straints are the only reason for the over-constraining. A simple and a more
complex example is shown in Figure 3.12(a).6

2. There are at least two contradictions. This case can be refined further:

(a) Our approach determines m disjoint partitions from the constraint set.
This means our approach has identified m independent contradictions.
An example is given in Figure 3.12(b). In this example for the con-
straint set {C0, C1, C2, C3} the two reasons R0 = {C0, C1} and R1 =
{C2, C3} are determined.

(b) There is at least one overlapping, i.e. at least one constraint Ci is part of
at least two reasons. Also here an example is given in Figure 3.12(c).
This example shows the two reasons R0 = {C0, C2, C4} and R1 =
{C1, C3, C4}. Obviously C4 is part of both reasons.

Our proposed approach is able to identify the minimal reason for all these
types of contradictions.

C0 ⇔ a() == 6
C1 ⇔ a() == 10

C0 ⇔ a() == 6
C1 ⇔ a() == 5 || b() == 1
C2 ⇔ b() == 2 || a() < 2

(a) Exactly one contradiction caused by all constraints

C0 ⇔ a()==1
C1 ⇔ a()>2
C2 ⇔ b()==1
C3 ⇔ b()==2

(b) Independent contradictions

C0 ⇔ a() == 6
C1 ⇔ b() == 7
C2 ⇔ a() < 3 || c() == 1
C3 ⇔ b() < 3 || d() == 1
C4 ⇔ c() + d() == 0

(c) Overlapping contradictions

Figure 3.12. Types of contradictions

6The reasons are marked by brackets.

System-Level Verification 55

Effect of Property 1 and Property 2

Applying the two properties introduced in Section 3.3.1 significantly
reduces the complexity of the contradiction analysis since each matched
constraint can be excluded from further considerations. To show the increas-
ing efficiency we tested our approach for several examples which contain
some typical over-constraining errors (e.g. typos, contradicting implications,
hierarchical contradictions, etc.).

For the considered constraints we give some statistics in Table 3.3. In the
first column a number to identify the testcase is given. Then, in the next
columns information on the constraint variables and their respective sizes
are provided. Finally, the total number of constraints is given. The results
after application of our contradiction analysis are shown in Table 3.4. The
first four columns give some information about the testcase, i.e. the number
of constraints in total (n), the number of contradictions/reasons (|R|), and
the run-time in CPU seconds needed to construct the BDD in the SCV li-
brary (BDD Time). The next columns provide the results for the analysis
approach without (w/o properties) and with the application of the prop-
erties (with properties), respectively. Here the number of checks in the
worst case (2n or 2n′

, respectively), the number of checks actually executed
by the approach (#

√
), and the run-time for the detailed analysis (Time) are

given. Additionally, the number of “non-relevant” constraints (|DC|) and self-
contradictory constraints (|Z|) obtained by the two properties are provided.

Table 3.3. Constraint characteristics

Boolean Int Long Bits Constraint (n)

1 10 8 – 328 15
2 3 3 6 483 16
3 10 10 – 330 26
4 8 40 – 1,288 50
5 5 30 15 1,925 53

Table 3.4. Effect of using Property 1 and Property 2

BDD w/o properties with properties

n |R| Time 2n
√

Time |Z| |DC| 2n′
#
√

Time

1 15 1 5.48 32,768 24,577 4.12 0 13 4 4 0.06
2 16 3 14.90 65,536 26,883 11.25 1 8 128 107 0.04
3 26 1 22.30 67,108,864 – TO 0 21 32 32 0.30
4 50 3 35.96 > 1.1 · 1015 – TO 0 42 256 190 2.10
5 53 2 238.07 > 9.0 · 1015 – TO 0 47 64 55 9.77

56 QUALITY-DRIVEN SYSTEMC DESIGN

The results clearly show, that identifying all reasons without applying the
properties leads to a large number of checks in the worst case (e.g. 253 ≥
9.0 · 1015 in example #5). Since the detailed analysis is only carried out for
a combination X if no subset of X has already been identified as reason, the
real number of checks is smaller. In contrast, when the properties are applied
most of the constraints can be excluded for the analysis since they are “non-
relevant”. This significantly reduces the number of checks to be performed at
detailed analysis. Instead of all 2n only 2n−|Z|−|DC| checks are needed in the
worst case (only 64 in example #5). As a result the run-time of the detailed
analysis is magnitudes faster when the properties are applied. Moreover, for the
last three testcases the reasons can be determined within the timeout of 7,200
CPU seconds only when the properties are applied.

Real-Life Example

The constraint contradiction analysis algorithm has been evaluated using
a real-life design example. The used verification environment is depicted in
Figure 3.13 (see also [GSD06]).

The Design Under Verification (DUV) is a PCIe root complex design with
an AMD-proprietary host bus interface which is employed in a SoC recently
developed by AMD. The root complex supports a number of PCIe links. The
verification tasks are to show (1) that transactions are routed correctly from
the host bus to one of the PCIe links and vice versa, (2) that the PCIe proto-
col is not violated and (3) that no deadlocks occur when multiple PCIe links
communicate to the host bus at the same time.

Host bus and PCIe links (only one depicted in Figure 3.13) are driven by
Bus Functional Models (BFMs) which convert abstract bus transactions into
the detailed signal wigglings on those buses. The abstract bus transactions are
generated by means of random generators (denoted by G) which are in turn
controlled by constraints. Bus monitors observe the transactions sent into or
from either interface and send them to checkers which perform the end-to-
end transaction checking of the DUV. The verification environment is imple-
mented in SystemC 2.1, the SCV library and SystemVerilog, with a special
co-simulation interface synchronizing the SystemVerilog and SystemC sim-
ulation kernels. The constraint-based verification methodology was chosen in
order to both reduce effort in stimulus pattern development and to get high cov-
erage of stimulation corner cases. The PCIe and host bus protocol rules were
captured in SCV constraint descriptions and are used to generate the contents
of the abstract bus transactions driving the BFMs.

The PCIe constraint used to control stimulus generation within the PCIe
transaction generator is a layered constraint. The lower level layer describes
generic PCIe protocol rules and is comprised of a number of 16 constraint

System-Level Verification 57

functional
coverage
tracking

DUV

Monitor

stimulation

functional
checks

Monitor

BFM BFM

GG constraints

Test

stimulus stimulus

stimulation

Protocol Interfaces

check check

host
bus

PCIe
link

C
on

st
ra

in
t-

ra
nd

om
st

im
ul

us
 g

en
er

at
io

n
F

un
ct

io
na

l c
he

ck
s

+
co

ve
ra

ge
 tr

ac
ki

ng

assertions

Figure 3.13. Architecture for verification at AMD DDC

expressions. They are shown in Figure 3.14(a) (denoted from C0 to C15).7

The meaning of the constraint variables is given in Table 3.5. The upper
level constraint layer imposes user-specific constraints on the generic PCIe
constraints (denoted by CUi) in order to generate specific stimulus sce-
narios. Generic PCIe constraints and user-defined constraints are usually

7Bit operators are used as introduced for the SCV library in Section 3.2.1. For example, the constraint C12

makes use of the “bitwise AND”.

58 QUALITY-DRIVEN SYSTEMC DESIGN

(a)

(b)

Example 1:
CU1 ⇔ length > 128

Example 2:
CU2 ⇔ addr == 4000
CU3 ⇔ length == 100

C0 ⇔ (addr_space != memory ||
((mem_addr_base0 <= addr) && ((addr+length) <= mem_addr_base0 + mem_size0)))

|| ((mem_addr_base1 <= addr) && ((addr+length) <= mem_addr_base1 + mem_size1)))
// address boundaries for memory

C1 ⇔ (addr_space != io || ((io_addr_base <= addr) && ((addr + length)<= io_addr_base + io_size)))
// address boundaries for io

C2 ⇔ (addr_space != config ||
((cfg_base_addr <= addr)&&((addr+length) <= config_base_addr + config_size)))

// address boundaries for config
C3 ⇔ be[] <= 0xf

// valid byte enables are in 0x0...0xf
C4 ⇔ be[].len == length

// generate as many byte enables as we have dword data
C5 ⇔ data[].len == length

// set data length
C6 ⇔ cmd != read || posted == false

// read transactions are always non−posted
C7 ⇔ gen_host_trans.addr_space == memory || (addr&3)+length <= 4

// transactions to IO/Config space are 1 dword (4bytes) only
C8 ⇔ addr <= 0xFFFFFFFF

// addresses are in 32 bit range
C9 ⇔ addr_space == memory || addr_space == config || addr_space == io

// only generate transactions in memory/IO/config space
C10 ⇔ length > 0

// requests must have length > 0
C11 ⇔ addr_space == sr::mem || addr <= 0xFFFFFFFF

// IO and config space are restricted to 32 bits
C12 ⇔ (addr&4095) + length <= 4096

// transactions must not cross 4k page boundary
C13 ⇔ (addr&3) + length <= 128

// keep transaction length to max. 128 bytes
C14 ⇔ tkind == request

// generate requests only (not responses)
C15 ⇔ msr == false

// do not generate MSR accesses

Figure 3.14. PCIe transaction generator constraint with examples

developed by different verification engineers; the former by the designer of
the test environment and the latter by the engineer who implements and runs
the tests.

The engineer writing the tests and hence the user-specific constraints which
are layered on top of the generic PCIe constraints is faced with the problem
to resolve contradictions which are generated by imposing the user-defined

System-Level Verification 59

Table 3.5. Definition of random variables used in the PCIe constraint

Variable name Description

addr Transaction address (64 bits)
addr space Transaction address space (memory,io,config)
tkind Transaction kind (request,response)
cmd Transaction command (read,write)
msr Transaction is targeted at MSR space
posted Transaction is posted (yes/no)
length Transaction size in dwords
be[] Array of byte enables (one per each dword data)
data[] Array of dword (32 bit) data
be[].len Length of byte enable array
data[].len Length of data array
[io|mem|cfg] addr base0,1 io, memory and config space window base addresses
[io|mem|cfg] size0,1 io, memory and config space window sizes

constraints on the PCIe generic constraints. Given the complexity of the
constraints, this is usually a non-trivial task. Two real-life examples of con-
tradictions that are not easy to resolve by manual constraint inspection are
depicted in Figure 3.14(b).

In the first example the user sets the maximum transaction length to a value
greater than 128 bytes (CU1), thereby causing a contradiction to constraint C13,
which states that the total transaction length must not exceed 128 bytes. In
the second example, the user independently constrains the transaction address
to byte address 4,000 (CU2) and the transaction length to 100 bytes (CU3).
While both values, viewed independently, are each perfectly legal (the ad-
dress should be in 32 bit range and the transaction length is less than 128
bytes), an over-constraining occurs. The reason identified by our approach is
R1 = {C12, CU2, CU3}. By manual constraint inspection it is not immediately
obvious that a PCIe protocol rule is violated when combining constraints CU2

and CU3 . However, reason R1 found for the contradiction by our algorithm
shows that when combining constraints CU2 and CU3 , then PCIe protocol rule
C12 is violated: “A transaction must not cross a 4k page boundary”. Our user
constraints of transaction start address set to 4,000 and transaction length of
100 bytes would result in addresses that cross a 4 k page and therefore violate
this constraint.

The presented algorithm was able to identify exactly the violating constraint
expressions for both examples in about 30 CPU seconds fully automatic. The
PCIe constraint to be analyzed contained a total of 21 random variables to
be solved which are constrained by 17 and 18 constraint expressions for the
respective examples. The total bit count for the random variables amounted to

60 QUALITY-DRIVEN SYSTEMC DESIGN

long time on manual constraint inspection in order to identify the root cause for
the constraint contradiction. Thus, a significant speed-up of the contradiction
debug cycle can be achieved.

3.4 Measuring the Quality of Testbenches
As presented in the previous section for system-level verification constraint-

based simulation has been used. This allows to create high quality verification
scenarios by constraints. However, even such a sophisticated verification tech-
nique does not include a measure how thorough the design was executed dur-
ing the simulation. As the size of the testbench – given as directed tests or
constraints – grows, the designer needs a reliable feedback about its quality.

In this section, an approach to measure the quality of the testbench is pre-
sented. Our analysis is based on dedicated code coverage techniques. They
have been developed for SystemC models. By exploiting automated code in-
strumentation based on a SystemC front-end, for each test run a coverage re-
port is generated that presents to the user all statements in the model that have
not been executed during simulation. The report is based on the analysis of
the exercised control flow statements. It includes exact source code references
to unexecuted code blocks in combination with SystemC specific information,
like process context and hierarchy information.

In software testing code coverage techniques have been used to measure
the fraction of code that has been exercised by a test case [Bei90]. From this
domain coverage methods have been derived and extended for HDLs. For
Verilog or VHDL several approaches and tools exists (for an overview see
e.g. [TK01]). However, no code coverage method to measure the quality of a
SystemC testbench has been proposed. Note, that approaches based on stan-
dard C++ coverage tools (like e.g. the GNU coverage tool gcov [gco]) have
several drawbacks. On the one hand the SystemC kernel is also included in the
coverage analysis. On the other hand SystemC specific data, like e.g. context
information or hierarchy information, is only implicitly available and has to be
extracted manually. In the following we present an approach to overcome these
limitations.

This section is structured as follows. In Section 3.4.1 we present our ap-
proach. We start with the description of the overall flow in Section 3.4.1. Then,
we continue with a detailed description of the three phases of our approach
in Section 3.4.2. Along the way we provide an example to show the effects
of each phase. Experimental results for two SystemC designs are presented
in Section 3.4.3. The first design is a RISC CPU and the second design is a
TLM-based video processor.

781 bits. Without such an analysis capability, we would have had to spend a

System-Level Verification 61

3.4.1 Code Coverage-Based Approach
In this section the code coverage-based approach for measuring the quality

of the testbench is introduced. Our approach consists of three phases: SystemC
analysis, code instrumentation and coverage analysis. Before the details on the
three phases are given the overall flow is presented. Throughout the descrip-
tion of the phases a simple example is used to demonstrate the effects of each
phase.

Overall Flow

The overall flow of our approach is depicted in Figure 3.15. In the analysis
phase the SystemC code of the DUV is parsed, analyzed and transformed into
an Abstract Syntax Tree (AST) representation. This AST is traversed in the con-
secutive code instrumentation phase. During the traversal the original SystemC
DUV is augmented with SystemC specific code that enables the collection of
coverage information during simulation. Then, the rewritten SystemC DUV,
the coverage library of our approach and the SystemC libraries are compiled
into an executable. By running this executable, simulation is performed and
the data structures available through our coverage library are filled. Finally, in
the coverage analysis phase the collected data is interpreted and the coverage
report is generated. By the report the verification engineer is informed which
statements have not been executed using the tests defined in the testbench.
This information is presented with exact source code references to unexe-
cuted blocks in the original SystemC DUV including hierarchy. Furthermore
the frequency of the execution of statement blocks can be given for further
analysis.

Figure 3.15. Overall flow of code-coverage based approach

62 QUALITY-DRIVEN SYSTEMC DESIGN

3.4.2 Phases of Code Coverage-Based Approach
In the following we describe the three phases in more detail.

SystemC Analysis

For the transformation of the SystemC DUV into an AST the front-end
from [FGC+04,GD06] is used. The important features of the front-end that are
required for the proposed approach are briefly described in the following. The
parser of the front-end was built with PCCTS (Purdue Compiler Construction
Tool Set) [Par97]. PCCTS enables the description of the SystemC syntax in
form of a grammar, provides facilities for AST construction and finally gener-
ates a parser. Note that the front-end has an exact source code reference includ-
ing character positions of each token. Therefore, a special C++ pre-processor
has been implemented to allow for identification of the SystemC macros be-
fore they are expanded. The correct source code information annotated to each
node in the AST is very important for our approach. Without this information
only a non-reliable feedback for the verification engineer would be possible.
In the following the analysis phase is demonstrated by an example.

Example 3.15 Since we use a program counter of a RISC CPU also as ex-
ample for the other phases, we give some details on this module. In order to
address the 2048 entries of the program memory, the PC has an 11 bit regis-
ter which holds the address of the current instruction. Output pcout holds this
address. The output pcinc gives the address increased by one. An address can
be loaded into the PC via the input din, if the input le (load enable) is set to 1.
Using the reset signal, the PC can be set to 0. On every positive edge of the
clock signal the current address is increased if the input en (enable) is set to 1.
In Figure 3.16 the method that computes the next state of the PC is shown.
This method is sensitive to the positive clock. The internal register of the PC
module is pc. Figure 3.17 depicts a sample of the AST of this method, which
has been generated by our tool. Please note that for each AST node only a
fragment of the available information is shown. The second number in each
line corresponds to the line number of the parsed element.

As can be seen, the structure of the SystemC program is reflected and this
representation is well suited for code instrumentation.

Code Instrumentation

In the code instrumentation phase the SystemC DUV is augmented with
instructions to allow for coverage analysis. The main steps in this phase are
described in the following.

Coverage Library. First, the global variable cov is defined that holds an
instance of our coverage class COVER. This class provides data structures like

System-Level Verification 63

1 void p r o g _ c o u n t : : n e x t _ s t a t e () {
2 i f (r e s e t . r e a d ()) {
3 pc = 0 ; / / r e s e t t o a d r e s s 0
4 } e l s e {
5 i f (en . r e a d ()) {
6 i f (l e . r e a d ()) {
7 pc = d i n ; / / l oad a d d r e s s
8 } e l s e {
9 / / i n c r e a s e c o u n t e r

10 pc = pc . r e a d () + 1 ;
11 }
12 } e l s e {
13 pc = pc . r e a d () ;
14 }
15 }
16 }

Figure 3.16. Parts of the original SystemC DUV

1 10 IF
2 10 LPAREN
3 10 ID == " r e s e t "
4 10 DOT
5 10 ID == " r e a d "
6 10 LPAREN
7 10 RPAREN
8 10 RPAREN
9 10 LCURLY

10 11 ASSIGNEQUAL
11 11 ID == " pc "
12 11 OCTALINT
13 11 SEMICOLON
14 12 RCURLY
15 12 ELSE
16 12 LCURLY
17 13 IF
18 13 LPAREN
19 13 ID == " en "
20 . . .

Figure 3.17. AST of next state method

hash tables for coverage statistics as well as wrapper functions to take care of
the control flow inside the methods of the DUV. Furthermore, the class has
methods to analyze the collected coverage data and to generate the report for
the user.

64 QUALITY-DRIVEN SYSTEMC DESIGN

AST Traversal and Code Instrumentation. While traversing the AST, first
the member functions that belong to a SystemC module are identified. Then,
in each function the conditions of the control flow statements are substituted
with wrapper functions. The idea is to perform a call-back during the sim-
ulation and thereby notifying the coverage class which control branch has
been taken. The following control statements are distinguished: IF, IF/ELSE,
SWITCH-CASE, FOR-loop, WHILE-loop. Next, the wrapper functions are
explained.

Wrapper Functions. For the IF, IF-ELSE, FOR-loop and WHILE-loop the
condition of the control statement is replaced by a wrapper function call. The
arguments of the wrapper functions are

1. The condition of the control statement (as Boolean and string).

2. The type of control statement.

3. Start position and end position of the block(s) that are executed if the con-
trol condition evaluates to true/false.

4. File name of the current method.

5. Class name if available.

6. Current method name.

7. this pointer, in case of a member function. The this pointer is used to
distinguish between several instances of the same module.

The following example demonstrates the application of a wrapper function for
an IF-ELSE control statement.

Example 3.16 Consider again the program counter in Figure 3.16 and fo-
cus on the if statement in line 2 and the corresponding else-branch starting in
line 4. The condition of the if statement is the expression reset.read().
This expression is replaced by the function wrapperStatement(...).
The instrumented code is depicted in Figure 3.18. The first and second ar-
gument of this function hold the condition as a Boolean and as a string, re-
spectively. The third argument reflects the type of the condition statement –
here tIFELSE. Then, the next four numbers mark the if-block, i.e. the if-block
starts in line 10 at the absolute character position 125 and ends in line 12
at character position 203. The next two numbers give the same information
for the else-block, but only the end position of the else-block is used; the else-
block ends in line 22 at character position 419. Then, the file name where the
method is implemented (prog count.cc), the class name (prog count),
the method name (next state) and the this pointer are given.

System-Level Verification 65

1 # i n c l u d e " c o v e r . h "
2 # i n c l u d e " l a b e l . h "
3 extern COVER ∗cov ;
4
5 # i n c l u d e " p r o g _ c o u n t . h "
6 . . .
7 void p r o g _ c o u n t : : n e x t _ s t a t e () {
8 i f (cov−>W rapperS t a t ement (r e s e t . r e a d () , " r e s e t . r e a d () " ,

tIFELSE , 1 0 , 1 2 5 , 1 2 , 2 0 3 , 2 2 , 4 1 9 , " p r o g _ c o u n t . cc " , "
p r o g _ c o u n t " , " n e x t _ s t a t e " , t h i s)) {

9 pc = 0 ;
10 } e l s e {
11 . . .

Figure 3.18. Instrumented code of the next state method

In a SWITCH-CASE statement at the beginning of each case block we
instrument a wrapper function that has as additional argument the value of the
current case. After a SWITCH-CASE statement a wrapper function is instru-
mented that enables the propagation of all possible CASE values.

Note that the approach is able to handle also nested variants of all types of
control statements. In the next section the coverage analysis phase is explained.

Coverage Analysis

After the compilation of the instrumented SystemC code the coverage analy-
sis is executed during simulation. Based on the instrumented wrapper functions
the instance of the cover class collects all the coverage data. The main data
structures in the cover class are based on Standard Template Library (STL)
maps. As unique keys the arguments of the wrapper functions are transformed
into a string representation. To each coverage point we associate two counters
to track the frequency of the evaluation of the corresponding condition to true
or false. For case statements obviously only one counter is needed. Finally, in
the coverage report that is started by a call from sc main after the end of
the simulation, the coverage data is analyzed. For IF, IF/ELSE a warning is
generated if the condition was always true/false and thus a block was never
executed. In case of FOR-loops or WHILE-loops the user is informed if the
condition was false all the time and therefore the loop body was skipped. For
SWITCH-CASE statements each case is identified that was never activated. In
total this allows to argue about the quality of the tests defined by the testbench.
If blocks have been identified that have never been executed, these blocks are
dead code or the testbench has to be improved.

In the following example the results of the coverage analysis are shown for
the program counter.

66 QUALITY-DRIVEN SYSTEMC DESIGN

<< COVERAGE REPORT >>

IF−ELSE S t a t e m e n t : ∗ IF−BLOCK
NOT EXECUTED∗

F i l e name : p r o g _ c o u n t . cc
C l a s s : p r o g _ c o u n t
I n s t a n c e : pc
Func . Member : n e x t _ s t a t e
C o n d i t i o n : l e . r e a d ()
IF s t a r t : l i n e 14 pos 246
IF end : l i n e 16 pos 322
c o u n t t o t a l : 87
c o u n t TRUE: 0 c o u n t FALSE : 87

Figure 3.19. Coverage report for program counter

Example 3.17 A directed testbench has been written for the program
counter shown in Figure 3.16. The testbench includes three tests. We ap-
plied our approach for this example. The automatically generated coverage
report is shown in Figure 3.19. As can be seen the scenario to load a value into
the program counter by setting load enable to 1 was not executed. We added
another test for this behavior and thereby closed this gap.

3.4.3 Experimental Results
In this section we apply the approach to two examples. The first example is

a hardware oriented model, a RISC CPU is considered. The second example is
a system for color region recognition in video data.

Hardware Model: RISC CPU

Before we apply our method to the RISC CPU the basic data of the CPU is
briefly reviewed (see [GKG+05, Kue06] and Section 5.2.3 for more details).

Specification. In Figure 3.20 the components of the RISC CPU are shown.
The CPU has been designed as a Harvard architecture. The data width of the
program memory and the data memory is 16 bit. The size of the program mem-
ory is 4 kByte and the size of the data memory is 128 kByte. The length of an
instruction is 16 bit. We briefly describe the five different classes of instructions
in the following: 6 load/store instructions, 8 arithmetic instructions, 8 logic in-
structions, 5 jump instructions and 5 other instructions. For the RISC CPU a
compiler has been implemented which generates object code from an assem-
bler program. This object code runs on the SystemC model, i.e. the model of
the CPU executes an assembler program.

System-Level Verification 67

reset
push
pop

data

enable
write

enable
write clock

Mux4

Mux7

Mux1

Mux2

Mux5

Mux6

C= 0

data out

clock

read address A
read address B
write address

write data

H
write enable

L

=0C

clock
reset

ALU select

clock

load enable

write enable

clock

ALU

(RAM)

clock

1

0

I/O bus

0

0

0

1

1

1

0

0

1

1

address+1
address

Stack

Status register

Data memory

Program counter

Register bank
Control unit

Program memory

address

instruction

read data A

read data B

read data

address

write data

address

Figure 3.20. RISC CPU including memories and full data paths

Testbench Quality. Based on successful simulation of each component the
designer starts with the simulation at the top level. (More details on top-level
verification is given later). For this purpose usually a high-level testbench is
created that enables a black-box test of the design. For the CPU such a test-
bench corresponds to the execution of a set of assembler programs including
the analysis of the simulation results. In the following we describe how the
high-level testbench was created and how this process was improved by our
approach. The SystemC model of the RISC CPU was automatically instru-
mented with code to analyze coverage. The following non-trivial assembler
program was formulated to test the CPU.

Example 3.18 The assembler program shown in Figure 3.21 converts a set
of numbers into gray-code. The gray-code encodes numbers such that in the
binary encoding adjacent numbers have a hamming distance of 1. The number
n of elements to be converted is given in the data memory at address 0. After

68 QUALITY-DRIVEN SYSTEMC DESIGN

1 LDL R[6] , 0
2 LDH R[6] , 0
3 LDL R[2] , 0
4 LDH R[2] , 0
5 LDD R[3] , R[2]
6 loop1 :
7 ADD R[2] , R[2] , R[1]
8 LDD R[4] , R[2]
9 ADD R[5] , R[4] , R[0]

10 SHR R[5] , R[5]
11 XOR R[6] , R[4] , R[5]
12 STO R[2] , R[6]
13 SUB R[3] , R[3] , R[1]
14 JNZ l oop1
15 HLT

Figure 3.21. Assembler program for gray code

clearing registers R[6] and R[2], n is loaded into register R[3]. Then, in the
loop each single number is converted. The idea is to invert each bit if the next
higher bit of the input value (read from the data memory into register R[4]) is
set to one. Therefore the input is shifted by one and a bitwise XOR operation
is performed. The result R[6] of the conversion is stored in the data memory at
the same position as the input.

After simulation of the gray-code program on the CPU our approach re-
ported unexecuted code fragments in the following modules: stack point,
mux4, mux5, mux6, mux7 and alu. The handling for the cases of push and
pop operations in the stack point module was not tested, since the inputs
from the control unit to this module have been zero during the complete simula-
tion. To test this behavior another program that uses push and pop instructions
had to be added.

For the multiplexor modules we found that in the method do select
which describes the functionality of a multiplexor only the ELSE-block for
the select condition was simulated. For the CPU this observation corresponds
to the fact that the select inputs of the multiplexers have been zero all the time
and thus only one data input was routed to the multiplexor output. As can be
seen in Figure 3.20 all multiplexers belong to the data path of the CPU. To
also test the effects on the CPU in case of data coming through the other in-
put, a different data path has to be activated. The multiplexor mux5 is part of
the stack pointer data path and thus was tested by using stack pointer opera-
tions (see above). For mux4 and mux6 the alternative data path is activated by
adding a program that uses sub-routine calls. For mux7 we set the select input
to one by an additional program that uses I/O instructions.

System-Level Verification 69

In case of the ALU several CASE statements of the main SWITCH
statement have not been executed since not all operations of the ALU are
activated by the considered assembler programs. Therefore we created another
program to check the remaining arithmetic operations.

In total by adding additional assembler programs to the testbench the quality
of the testbench was improved. Here our approach supported the verification
engineer by directly pointing to untested functionality of the RISC CPU.

High-Level Model: Color Region Recognition

In the second example we applied our approach to a high-level SystemC
model of a video processor SoC. In contrast to the RISC CPU (which has been
implemented as an RTL design), this model is a very abstract system-level
design and uses TLM features intensively.

Specification. The configurable model EmViD consists of a set of SystemC
cores that can be integrated to build a video processor. For video input and
output, abstract TLM channels are used. The video processing IP cores use the
SystemC High-level Interface Protocol (SHIP) [Kli05] for data exchange over
these channels. Communication with the main memory (DDR RAM) is estab-
lished by ST‘s TAC protocol [Mic05]. In the following, we consider a SoC
for color region recognition that is based on EmViD cores. The system pro-
cesses video frames in real-time and draws rectangles around detected regions.
A high-level schematic of the system is shown in Figure 3.22. The system

Figure 3.22. Color region recognition schematic

70 QUALITY-DRIVEN SYSTEMC DESIGN

has been configured as a pipelined architecture and for the connection of the
DDR RAM an IBM CoreConnect On-Chip Peripheral Bus (OPB) is used. The
complete transaction-level interconnect (including an OPB simulation model)
is set up using the GreenBus TLM fabric [KGB+06]. EmViD can be found
at [EmV].

The video processing starts by reading in an MPEG video as video input.
Then, erosion and dilation are performed. In the labeling stage the regions are
recognized and the rectangles are added. Afterwards the core outputs the image
to a display.

Testbench Quality. As a concrete application we decided to detect skins in
the video data. We set the color range for the recognition accordingly. The
system segments the processed video data in the labeling phase. Therefore
adjacent pixels are analyzed and the image is partitioned into a set of regions
using the defined color information.

In the overall video processor system the high-level testbench consists of
the video data (coming from video files or a camera). We applied our approach
to the system. We simulated the system with different video files and observed
that depending on the video data different parts of the system have not been
executed. For example, in the morph segm module (labeling phase) the seg-
mentation algorithm checks the minimum region size with an IF-condition.
For video data that contains no skins or very small areas no regions are de-
tected. Here, our approach presents directly the SystemC file with the exact
source code position of the never executed block(s). Note that this improves
the debugging during the development of such high-level models significantly.
Moreover, analyzing the results of nested control structures – which are used
in the segmentation algorithm – our approach helps the verification engineer to
test the design thoroughly. To give an example, the segmentation algorithm is
realized as a state machine with 47 states, which are traversed in different (par-
tial) execution orders depending on the video input data. With the output of the
coverage analysis, untaken control paths can be discovered and the stimulus
video material can be adjusted accordingly.

Further Design Analysis. During the analysis of the video processor model,
we also experimented with different communication architecture configura-
tions for the design. As one might expect, some architectures are better suited
than others to meet efficiency requirements such as a given frame rate. In par-
ticular, when connecting all components to a shared bus with fixed-priority
scheduling (here, the OPB), the overall video processing performance highly
depends on the priority allocation.

System-Level Verification 71
Table 3.6. Video processor execution traces

ex. # ex. FPS FPS
Config video detect. video detect. Comment

Bus only model 1 500 500 24.98 24.98 Ascending priority
Bus only model 2 451 872 22.55 43.60 Higher detection priority
Mixed bus/pipeline model 1 500 500 24.98 24.98 Lower pipeline priority
Mixed bus/pipeline model 2 500 999 24.98 49.90 Higher pipeline priority

We utilized the ability of our coverage analysis to count the number of exe-
cutions for the various processes in the model in order to identify the location
of communication bottlenecks in design configurations with poor frame rates.
Table 3.6 presents some results of the experiments.

The column #ex video shows the total number of video frames successfully
sent from the video input component (MPEG decoder) to the video output
component (display controller). The column #ex detect. shows the total num-
ber of video frames processed by the region detection. From these numbers
the overall frame rates have been calculated (columns FPS video and FPS de-
tect.). Row 1 and row 2 show the frame rates we got with a bus-only model.
While in row 1, the bus access priorities were assigned in ascending order ac-
cording to the sequence of video processing stages in the model, in row 2 we
assigned a higher priority to the region detection components than to the video
display data path. As expected, the frames per second processed for region de-
tection goes up, but as an unintentional side effect due to higher bus workload,
the number of video frames displayed per second drops down. Rows 3 and 4
show the results we achieved with a mixed bus/pipeline model as depicted in
Figure 3.22. Here, we could considerably increase the video display frame rate
by just swapping the bus access priorities of two components. With this setup,
≈25 frames per second full resolution live video display is achieved while the
region detection runs at the high rate of ≈50 frames per second.

Overall, the presented approach allows to measure the quality of a SystemC
testbench and hence helps to improve the verification quality. Moreover, the
TLM example revealed that our analysis methodology can also support design
space exploration by providing data on execution counts.

3.5 Summary and Future Work
In this chapter techniques for system-level verification have been presented.

At first, constraint-based simulation in general and in the context of the SCV li-
brary has been described. This technique improves simulation by using formal
methods for generating verification scenarios from constraints.

72 QUALITY-DRIVEN SYSTEMC DESIGN

Then, two disadvantages of the SCV library have been resolved: First, new
operators to simplify constraint specification have been integrated in the SCV
library. The new operators are important especially for partially refined de-
sign descriptions. Second, the uniform distribution of all constraint solutions
is guaranteed if constraint variables are fixed to a certain value. By this, the
chance of entering unexplored regions of the design state space is maximized.

In the third part of the chapter a fully automated approach to analyze con-
flicts in contradictory constraints has been introduced. The method identifies
all minimal reasons that are responsible for a contradiction in one single step.
Thus, the manual debugging process is replaced by an automatic method. The
approach together with improvements from above has been evaluated in a ver-
ification environment at AMD DDC. The experimental results have shown that
the debugging time can be reduced significantly.

To ensure the resulting verification quality an approach to measure how thor-
ough the design was tested by the testbench has been presented. The method
uses dedicated code coverage techniques based on a SystemC front-end. Thus,
the not tested design parts are presented to the user in form of a coverage re-
port. Overall, the approach helps to enhance the testbench significantly since
the manual quality check is removed.

Improving the underlying constraint-solving techniques of the SCV library
remains a topic for future work. Promising directions are the integration of a
Satisfiability Modulo Theories (SMT) solver for the stimuli generation. A first
approach is presented in [WGHD09]. Driving the constraint-based simulation
automatically into untested design parts by using the results of the coverage re-
port is another interesting direction. A first step in this direction for pure com-
binational SystemC designs exploiting code coverage information has been
proposed in [DCdS07].

In summary, the presented verification techniques in combination with the
coverage check guarantees a high quality model at the system level. In the
next chapter the verification at the block level is considered to ensure fully
verified blocks before considering the entire top level where the verification of
the communication between all synthesizable blocks has to be carried out.

Chapter 4

BLOCK-LEVEL VERIFICATION

D. Große and R. Drechsler, Quality-Driven SystemC Design, 73
DOI 10.1007/978-90-481-3631-5 4, c© Springer Science+Business Media B.V. 2010

In this chapter techniques for verification at the block level are presented.
Figure 4.1 shows the respective parts of the proposed design and verification
flow that are described in this chapter. The motivation for considering compo-
nents of the system at the block level before addressing the top level in more
detail is as follows. Based on the SystemC design methodology the system is
stepwise refined and finally consists of hierarchical modules (with the respec-
tive functionality) and interfaces for communication. At this point all parts of
the system are synthesizable. But from the verification perspective along the re-
finement process until reaching the synthesizable descriptions only simulation-
based techniques have been used to check that the specification is met. Even
with the strong constraint-based simulation methods and the complementing
testbench quality check as presented in Chapter 3 typically not all design er-
rors can be found. Thus, in the following formal methods are applied to the
blocks of the design. Thereby, their functional correctness can be guaranteed.

The middle of Figure 4.1 shows the proposed verification techniques as well
as the corresponding quality check for the block level. First, in this chapter
a property checking approach for SystemC is presented. The approach uses
the front-end of [FGC+04], which is part of the SystemC design environment
SyCE1 [DFGG05], to generate a Finite State Machine (FSM) representation
from a SystemC description.

The properties to be checked are specified in the standardized Prop-
erty Specification Language (PSL). For the property check a variant of
Bounded Model Checking (BMC) is used. Therefore, the property and the
FSM representation are converted into an instance of Boolean Satisfiability

1A new version has been presented recently in [SKF+09].

74 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 4.1. Block-level parts of enhanced SystemC design and verification flow

(SAT). Since the properties in this book are specified as implications and are
formulated over a bounded time interval, they are proven if the correspond-
ing SAT instance is unsatisfiable. Section 4.1 describes the BMC approach,
the bounded PSL properties including their semantics and the implemented
property checker in detail. Also several SystemC examples and their veri-
fication are discussed. The approach and achieved results have been pub-
lished in [GD05b, DG05]. As property checking is often applied iteratively,
a technique has been developed to accelerate the corresponding proofs. Here,
iteratively means that the verification engineer usually specifies a property
with a “strong” antecedent at the beginning of property checking. Then, this
antecedent is stepwise weakened and the property check is performed again.
For this scenario a speed-up of the underlying SAT proof is achieved. The
technique is presented in Section 4.2 and has been published in [GD05a].
All mentioned approaches are summarized as the verification task improved
property check in Figure 4.1.

Usually in the antecedent of a property the assumptions about the design en-
vironment are specified and joined by logical AND. However, if, e.g., the ver-
ification engineer focuses on a complex verification scenario in the antecedent
of a property, the overall conjunction (possibly together with the design) may
have no solution, i.e. the antecedent of the property is contradictory. Since in
this case the property trivially holds, the consequent is never checked. Hence,
this situation has to be avoided by identifying the reason. In Section 4.3 a fully
automatic approach for debugging of a contradicting antecedent is presented.
The method determines all minimal reasons for the antecedent contradiction
and reveals if a conflict results from the property and/or parts of the design.
The concepts of the debugging approach are similar to the approach presented
Section 3.3. However the debugging problem that is considered here addition-
ally takes contradictions with the design into account. The approach has been
published in [GWKD09]. In Figure 4.1 the approach is denoted as antecedent
debugging.

Block-Level Verification 75

Finally, the verification quality at the block level is guaranteed by a formal
coverage check presented in Section 4.4. The approach generates a coverage
property for each considered signal. If the specified properties do not describe
the signal’s entire behavior, the coverage property fails and a counter-example
is generated. A counter-example corresponds to an uncovered scenario, i.e. a
verification gap. How to deal with verification gaps to achieve full coverage
is discussed in detail. As final result the behavior of the design is determined
under all circumstances, i.e. the property set completely specifies the behavior
of the design. The approach has been published in [GKD07,KGD07,GKD08].

4.1 Property Checking
As described in the preliminaries property checking (or model checking)

[CGP99] is a key verification technique to show whether a design satisfies
the specification or not. In the last years especially Bounded Model Checking
(BMC) [BCCZ99, BCC+03] has become very successful in industrial prac-
tice [AKMM03,ADK+05], since BMC overcomes the often observed memory
explosion of classical model checking. BMC reduces the verification problem
to a SAT problem and then searches for counter-examples in executions whose
length is bounded by k time steps. If the resulting SAT instance is satisfiable
a counter-example of length k has been found. However, BMC can only show
that the design is free of errors for the given property up to the bound k. For
proving a property, k has to finally reach the sequential diameter of the un-
derlying FSM, which is infeasible for large circuits. Therefore, approaches for
BMC and safety properties have been developed which can ensure complete-
ness (see e.g. [SSS00, IPC03, WTSF04]). More precisely, the result of these
approaches is a proven (or disproven property), in contrast to the “usual” result
that no counter-example up to the bound k has been found.

The property checker which is presented in this section is based on a variant
of BMC as proposed in [BS01, Joh02, BJW04, WTSF04]. It is characterized
as follows: First, only properties over a fixed time interval – usually specified
as implications – are allowed. Second, the restriction of the starting state for
the unrolled circuit logic to the initial state is replaced by assumptions formu-
lated explicitly in the antecedent of the property. As a result, the BMC problem
consists only of a single SAT instance built by synthesizing the property and
unrolling the design as many times as the property requires. If this SAT in-
stance is unsatisfiable, the property holds.

Recently, in the context of SystemC property checking, some papers have
been published. But still deriving a model for formal verification at the differ-
ent abstraction levels is very difficult [Var07]. A first approach which uses a
reachability analysis for checking LTL formulas of SystemC descriptions has
been proposed in [DG02, GD03b]. However, this approach is limited to gate-
level designs. A method that models a SystemC description as a labeled Kripke

76 QUALITY-DRIVEN SYSTEMC DESIGN

structure by partitioning the system into hardware and software parts has been
presented in [KS05]. This technique allows proving properties using predicate
abstraction [GS97] but does not take timing into account. In [HT05] an ap-
proach addressing model checking of TLM has been introduced. However, the
design entry of this method is the Unified Modeling Language (UML) and only
during the construction of the derived FSM some properties can be checked.
Finally, the approach performs only simulation-based verification. Another ap-
proach has been proposed in [MMMC06]. This technique can extract structural
and behavioral data from a SystemC design using the gcc front-end. After ab-
straction an intermediate model is built which can be used for model checking
of generic properties. In [KEP06] a SystemC design is translated into Petri
nets and CTL model checking is applied. However, the resulting Petri nets be-
come very large even for small SystemC descriptions as the experiments show
(several hours were necessary to verify simple properties for a small commu-
nication system).

This section is structured as follows. Section 4.1.1 reviews and formalizes
important aspects of the used BMC variant. Afterwards in Section 4.1.2 the
syntax and semantics of the PSL subset is described which is used here for
specifying properties. Implementation aspects and a small example are dis-
cussed in Section 4.1.3. Then, Section 4.1.4 presents experimental results.

4.1.1 Bounded Model Checking
This section describes the principles of the used BMC variant. First, the

properties over a finite time interval are formalized. Then, the BMC instance
is defined.

For a considered sequential design let (I,O, S, S0, δ, λ) be the correspond-
ing Mealy machine. Furthermore, in the following st ∈ S denotes the states
at time point t, it ∈ I the inputs and ot ∈ O the outputs at time point t,
respectively. Then, a property is defined as:

Definition 4.1 A property over a finite time interval [0, c] is a function

p : (I ×O × S)c+1 → B.

In practice, this function is specified as an implication, which is detailed in the
next section.

For a sequence of inputs, outputs and states the value of

p(i0, o0, s0, . . . , ic, oc, sc)

determines whether the property holds or fails on the sequence. Based on such
a bounded property the corresponding BMC instance b : Ic+1 × S → B is
formulated. Thereby, the state variables of the underlying FSM are connected
at the different time points, i.e. the current state variables are identified with

Block-Level Verification 77

s0

i0

o0 o1 oc

i1 ic

...

...

p

Figure 4.2. Unrolled circuit and property

the previous next state variables. This concept is called unrolling. In addition
the outputs over the time interval are determined by the output function of the
Mealy machine. Formally, we have:

Definition 4.2 For a Mealy machine M = (I,O, S, S0, δ, λ) and a prop-
erty p : (I × O × S)c+1 → B over the time interval [0, c] the corresponding
BMC instance is given by:

b(i0, i1, . . . , ic, s0) =
c−1
∧

j=0

(sj+1 ≡ δ(ij , sj)) ∧
c

∧

j=0

(oj ≡ λ(ij , sj)) ∧ ¬p

In Figure 4.2 the unrolled design and the property resulting in the defined
BMC instance is depicted. To check the property the BMC instance is trans-
formed into a SAT instance. As the property is negated in the formulation,
a satisfying assignment corresponds to a case where the property fails, i.e. a
counter-example has been found. In contrast to the original BMC as proposed
in [BCCZ99] there is no restriction for the state s0 in the first time frame dur-
ing the proof. This may lead to false negatives, i.e. counter-examples that start
from an unreachable state. In such a case these states are excluded by adding
additional assumptions to the property. But, for the BMC variant as used here,
it is not necessary to determine the diameter of the underlying sequential cir-
cuit. Thus, if the SAT instance is unsatisfiable, the property holds.

In the next section the PSL subset is described which is used in this book
for specifying properties.

4.1.2 Property Language
Describing temporal properties can be done in many different ways, since

there exist several languages and temporal logics (see also Section 2.3.2). We
use the Property Specification Language (PSL) [Acc05]. PSL has been devel-
oped by Accellera, a consortium of several chip and EDA vendors. Meanwhile
PSL has been standardized as IEEE standard 1850 [IEE05c].

78 QUALITY-DRIVEN SYSTEMC DESIGN

1 property PROP =
2 always (
3 / / a n t e c e d e n t
4) −> (
5 / / c o n s e q u e n t
6) ;

Figure 4.3. General structure of PSL property

For BMC we use only a subset of PSL. In this book each property is an
implication of the form always(A → C). A is the antecedent and C is the
consequent of the property. The motivation for the implication form is that
the verification engineer defines assumptions about the design environment in
the antecedent of the property and specifies the expected behavior under these
assumptions in the consequent. In PSL this general structure is reflected as
shown in Figure 4.3.

The antecedent and the consequent consist of expressions in temporal logic,
i.e. propositional logic extended by temporal operators to reason about rela-
tions at different time points within the finite time interval [0, c].2 In PSL dif-
ferent flavors for the expressions exist, e.g. VHDL or Verilog. Since the de-
signs are modeled in SystemC we use a SystemC flavor in the following. Thus,
the propositional expressions and operators are taken from SystemC and C++,
respectively. As temporal operators for a PSL property we have:

next[i](expr): The expression expr holds in i steps.

prev[i](expr): The expression expr holds i steps before the current
time point.

next e[a..b](expr): The expression expr holds at least once in the
interval [a,b].

next a[a..b](expr): is the dual operator for the next e operator,
i.e. the expression expr holds always in the interval [a,b].

In the following example a simple property is shown to illustrate some of
the temporal operators.

Example 4.3 Figure 4.4 depicts the property PROP. This property is de-
fined over the interval [0, 3]. The antecedent consists of three assumptions: The
reset is disabled for three cycles (line 2),mode is 2 at time point 0 (line 3) and

2Overall, the considered properties can be written in LTL as Gϕ with ϕ = A → C, where only the
temporal operator X is allowed in the antecedent A and the consequent C.

Block-Level Verification 79

1 property PROP = always (
2 next_a [0 . . 2] (r e s e t == 0) &&
3 mode == 2 &&
4 high == 1
5) −> (
6 next [3] (o u t) == 1
7) ;

Figure 4.4. Example PSL property

high is 1 also at time point 0 (line 4). Under these assumptions specified
in the antecedent, the property requires in the consequent that out has to
become 1 three cycles later (line 6).

To define the semantics of PSL properties we recall the notion of paths in a
Kripke structure informally (see also Definition 2.9). A path π = 〈s0, s1, . . . 〉
in a Kripke structure corresponds to an execution of the Mealy machine. In the
corresponding Kripke structure the labeling function L(sj) returns all input,
output and state variables that are true at the particular time point j for a path.
The semantics of the PSL properties is determined by the relation |=j which
is defined in the following. For the propositional expressions we only give a
minimal operator set. Further operators can be reduced to the given operators.3

Definition 4.4 (Semantics of PSL properties) Let ϕ,ψ be formu-
las using only the propositional operators and the above mentioned temporal
operators, i, a, b ∈ N, and π be a path. Then the relation |=j is inductively
defined as:

π |=j ϕ :⇔ ϕ ∈ L(π(j))
π |=j ¬ϕ :⇔ not π |=j ϕ
π |=j ϕ ∧ ψ :⇔ π |=j ϕ and π |=j ψ
π |=j prev[i](ϕ) :⇔ π |=j−i ϕ for j ≥ i and i > 0
π |=j next[i](ϕ) :⇔ π |=j+i ϕ and i > 0
π |=j next e[a..b](ϕ) :⇔ ∃k, a ≤ k ≤ b : π |=j+k ϕ
π |=j next a[a..b](ϕ) :⇔ ∀k, a ≤ k ≤ b : π |=j+k ϕ

The described subset of PSL allows us to specify properties over a finite
time interval. If the prev[i] operator is used in a property, one has to take
care that the referenced time point does not become negative (this is the reason

3The same holds for arithmetic and relational operators, e.g. +,−, <,≤, etc. These operators can be build
by mapping them to respective circuit descriptions and synthesizing them down to the Boolean level.

80 QUALITY-DRIVEN SYSTEMC DESIGN

for the condition j ≥ i in the definition above). During the construction of the
property the verification tool checks whether the prev[i] operator is used
incorrectly and terminates with an error in this case.4

Based on the semantic definition a PSL property of the form always(ϕ)
holds, if the formula ϕ holds for all executions of the FSM starting in an arbi-
trary state, i.e. in contrast to BMC as proposed in [BCCZ99] here also invalid
executions – executions starting from an unreachable state – are considered.
Formally, we have

Definition 4.5 (Validity) Given a PSL property p = always(ϕ) over
the time interval [0, c], we define

∀π ∈ Π : π |=0 ϕ⇒ p holds

If the antecedent of this implication is false, it has to be checked whether
the starting state of the failing execution is reachable or not. In the former
case a counter-example for the property has been found. In the latter case a
false negative (see also discussion in Section 4.1.1) has occurred. However,
the main strength of the used BMC variant is that properties can be proven
without unrolling up to the diameter of the underlying FSM.

4.1.3 Implementation
In this section the property checker for SystemC is described. Before the

details are given, the overall flow is outlined. After design implementation
(coming from a refined system-level model) and formalization of the speci-
fication into temporal properties, the proposed approach works as follows (see
also Figure 4.5):

1. The SystemC design is transformed into an internal FSM representation by
the SystemC front-end.

2. A single property and the FSM representation is translated into a BMC
problem.

3. The BMC problem is checked for satisfiability to decide whether the prop-
erty holds or not.

These steps are now discussed in more detail.

FSM Representation

The property checker uses the SystemC front-end presented in [FGC+04].
For the generation of the FSM representation the last step of the overall pro-
cedure of the front-end has been extended (see also Figure 4.6). This step

4It is also possible to determine all time points in a pre-processing phase and then “moving” the whole
property such that the first referenced time point becomes zero.

Block-Level Verification 81

Bounded model checking problem

Counter-example

PropertySystemC
design

SystemC

Satisfiable ?no yes

Property holds

front-end

Property checker

Figure 4.5. Property checking work flow

now generates additional information like for example data-types of variables,
names of enum fields and data about hierarchy. This information is stored also
in the resulting file.

BMC Problem and Property Checker

The property checker takes the FSM representation of the SystemC design
and a property as input. Then the property is translated into an expression
using only inputs, states, referenced internal signals and outputs of the Sys-
temC design annotated with time points. The unrolled FSM representation
and the property expression are converted into a bit-level representation. Here
hashing and merging techniques for minimization are used, i.e. for exam-
ple constants are automatically propagated and commutativity is exploited.
The bit-level representation is given to the SAT solver zChaff [MMZ+01]
which has been integrated into the property checker. In case of a counter-
example a waveform in VCD format [IEE01] is generated to allow for easy
debugging.

To illustrate the transformation of a property and the unrolled FSM repre-
sentation into a BMC instance we provide a small example. In Figure 4.7 a
SystemC description of a 2-bit counter is shown. Besides the clock input the
counter has a reset input reset and the output out. The current value of
the counter is stored in count val. Figure 4.8 depicts the underlying FSM of

82 QUALITY-DRIVEN SYSTEMC DESIGN

SystemC description

Preprocessor

Preprocessed
SystemC description

Parser

Abstract syntax tree

Analyzer

Generator

FSM representation

Intermediate
representation

Figure 4.6. Transformation of a SystemC description into an FSM representation

the counter. Since the output and the state of the counter are identical only the
states are shown in the figure. Basically this FSM is the result of the SystemC
front-end. Besides the FSM other information of the SystemC design is stored,
like e.g. data-types of variables. If the reset is represented by the Boolean vari-
able r and count val by the two state variables h (high) and l (low), the
transition function of the FSM is given by:

δh(r, h, l) = ¬r ∧ (h⊕ l)

δl(r, h, l) = ¬r ∧ ¬l

For the counter three properties have been formulated. The first propertyRESET
describes the reset behavior of the counter (see Figure 4.9). With the second

Block-Level Verification 83

1 SC_MODULE(c o u n t e r)
2 {
3 s c _ i n _ c l k c l o c k ;
4 sc_ in <bool > r e s e t ;
5 sc_ou t < s c _ u i n t <2> > o u t ;
6
7 / / c o u n t e r v a l u e
8 s c _ u i n t <2> c o u n t _ v a l ;
9

10 void do_count () {
11 i f (r e s e t . r e a d ()) {
12 c o u n t _ v a l = 0 ;
13 } e l s e {
14 c o u n t _ v a l = c o u n t _ v a l + 1 ;
15 }
16 o u t = c o u n t _ v a l ;
17 }
18
19 SC_CTOR(c o u n t e r) {
20 SC_METHOD(do_count) ;
21 s e n s i t i v e << c l o c k . pos () ;
22 }
23 } ;

Figure 4.7. 2-bit counter

00

11

01

10

-

0

0

0

1

1

1

Figure 4.8. FSM of 2-bit counter

property COUNT the normal operation of the counter is characterized (see
Figure 4.10). The last property states that the counter counts from three to zero
(see Figure 4.11). Obviously these properties hold for the 2-bit counter. Now
we consider the property MODULO in more detail. Since this property argues

84 QUALITY-DRIVEN SYSTEMC DESIGN

1 property RESET = always (
2 r e s e t == 1
3) −> (
4 next [1] (c o u n t _ v a l) == 0
5) ;

Figure 4.9. Property RESET for the module counter

1 property COUNT = always (
2 r e s e t == 0 &&
3 c o u n t _ v a l < 3
4) −> (
5 next [1] (c o u n t _ v a l) == prev [1] (

c o u n t _ v a l) + 1
6) ;

Figure 4.10. Property COUNT for the module counter

1 property MODULO = always (
2 r e s e t == 0 &&
3 c o u n t _ v a l == 3
4) −> (
5 next [1] (c o u n t _ v a l) == 0
6) ;

Figure 4.11. Property MODULO for the module counter

over the interval [0, 1] the underlying FSM is unrolled only once (c = 1). For
the state vector s = (h, l) and the input r, the first part of the resulting BMC
instance is (see also Definition 4.2):

1−1
∧

j=0

(sj+1 ≡ δ(ij , sj)) = s1 ≡ δ(i0, s0)

= (h1, l1) ≡ δ((r0), (h0, l0))

= (h1 ≡ ¬r0 ∧ (h0 ⊕ l0)) ∧ (l1 ≡ ¬r0 ∧ ¬l0)

Based on this unrolling step the values of variables at time point 1 are available
(e.g. count val at time point 1 via h1 and l1). The part regarding the output

Block-Level Verification 85

is not shown because in the property the output of the counter is not used. The
property MODULO corresponds to the following function:

p(i0, o0, s0, i1, o1, s1) = ¬(¬r0
︸︷︷︸

reset@0=0

∧ h0 ∧ l0
︸ ︷︷ ︸

count val@0=3

) (antecedent)

∨ (¬h1 ∧ ¬l1
︸ ︷︷ ︸

count val@1=0

) (consequent)

Finally, as explained above the BMC instance is converted into CNF and
checked for satisfiability.

4.1.4 Experimental Results
The property checker has been implemented in C++. All experiments have

been carried out on an Intel Pentium IV 3 GHz with 1 GB RAM running Linux.
A run-time limit of 2 CPU hours has been set.

In a first example we studied a scalable hardware realization of the bubble
sort algorithm. The SystemC description is shown in Figure 4.12.

This module implements the sort algorithm for eight data words. The bit
size of each data word is determined by a typedef. Notice that the approach
from [GD03b] did not support constructs, like e.g. typedefs or for-loops. In
total, the correctness of sorting has been proven with nine properties. The
first property SORTED ensures that the resulting sequence is ordered correctly,
i.e. that the value of an output is greater or equal compared to values at outputs
with smaller indices (see Figure 4.13).5

In Table 4.1 the results are given for the property SORTED and increasing bit
sizes of data words (column bit size). The next two columns provide informa-
tion about the SAT instance, i.e. the number of clauses and literals, respectively.
In the last column the overall CPU time needed in CPU seconds is reported.
Due to the heuristic nature of the SAT solver the proof time might vary slightly
as can be seen in case of bit size 8 where the increase is not monotone. But in
general the run-time needed increases with the bit size and is moderate even
for larger bit sizes.

Finally, additional eight properties have been proven for the SystemC mod-
ule bubble. These properties formalize that all input values of the module
bubble can be found at the outputs. The summarized results for different bit
sizes are shown in Table 4.2. Again the first column gives the bit size. In the
next two columns details of a single SAT instance are shown. These numbers
are identical for each of the eight properties, since the properties are symmet-
ric, i.e. only the according input differs within the eight properties. The last

5For this property the antecedent is empty. However, a “1” is specified in the antecedent of the PSL property
due to restrictions of our PSL parser.

86 QUALITY-DRIVEN SYSTEMC DESIGN

1 t y p e d e f s c _ u i n t <4> T ;
2 SC_MODULE(bubble)
3 {
4 sc_ in < T > i n [8] ;
5 sc_ou t < T > o u t [8] ;
6 T buf [8] ;
7 void d o _ i t () {
8 f o r (i n t i = 0 ; i < 8 ; i ++)
9 buf [i] = i n [i] ;

10 f o r (i n t i = 0 ; i < 8−1; i ++) {
11 f o r (i n t j = 0 ; j < (8− i)−1; j ++) {
12 i f (buf [j] > buf [j +1]) {
13 T tmp ;
14 tmp = buf [j] ;
15 buf [j] = buf [j + 1] ;
16 buf [j +1] = tmp ;
17 }
18 }
19 }
20 f o r (i n t i = 0 ; i < 8 ; i ++)
21 o u t [i] = buf [i] ;
22 }
23 SC_CTOR(bubble) {
24 SC_METHOD(d o _ i t) ;
25 s e n s i t i v e << i n [0] << i n [1] << i n [2] << i n [3]
26 << i n [4] << i n [5] << i n [6] << i n [7] ;
27 }
28 } ;

Figure 4.12. Bubble sort

1 property SORTED = always (
2 1
3) −> (
4 o u t [0] <= o u t [1] &&
5 o u t [1] <= o u t [2] &&
6 o u t [2] <= o u t [3] &&
7 o u t [3] <= o u t [4] &&
8 o u t [4] <= o u t [5] &&
9 o u t [5] <= o u t [6] &&

10 o u t [6] <= o u t [7]
11) ;

Figure 4.13. Property SORTED for module bubble

Block-Level Verification 87
Table 4.1. Results for different input sizes of module bubble and property SORTED

Bit size Clauses Literals CPU time (s)

4 6,390 14,458 17.18
8 12,754 28,894 286.93

16 25,482 57,766 125.25
32 50,938 115,510 560.48

Table 4.2. Results for different bit sizes of module bubble and input properties

Bit size Clauses Literals CPU time (s)

4 6,298 14,262 58.49
8 12,570 28,502 681.52

16 25,114 56,982 845.76
32 50,202 113,942 3662.07

column provides the sum of the run-times for all eight properties. As can be
seen, the correctness of the implementation of the bubble sort algorithm can be
proven for up to 32 bits in 1 CPU hour.

While SystemC 1.x focused more on RTL descriptions, SystemC 2.x sup-
ports several constructs for system-level modeling. In this context channels
are of high relevance. An important example of a channel provided with the
SystemC distribution are FIFOs. In the refinement step, these FIFOs are then
translated to the RTL. In a second series of experiments synchronous FIFOs
with variable depth have been studied. The FIFO uses a register bank, a read
pointer, a write pointer and a counter. It supports simultaneous read and write.
Different properties have been developed which describe, e.g. the behavior af-
ter reset, no change of the FIFO content if no data is written to the FIFO and
that the data is stored into the FIFO in case of a write access. For a bit size
of 32 bits and increasing FIFO depths results are shown in Table 4.3. In the
first and second column the depth of the FIFO and the property are given, re-
spectively. In the next two columns details on the SAT instance are provided,
i.e. the number of clauses and literals. Finally, the run-time is given in the last
column. The results clearly show that also for high FIFO depths, i.e. FIFOs
with more than 100 registers, the verification time needed is in the range of
a few minutes. This demonstrates that even though it cannot be expected that
complete systems can be checked, also complex system-level constructs can
be formally verified using this approach.

88 QUALITY-DRIVEN SYSTEMC DESIGN
Table 4.3. Results for different FIFO depths

Depths Property Clauses Literals CPU time (s)

8 reset 2,708 6,264 0.26
8 nochange 11,145 25,631 0.51
8 write 13,302 30,612 0.81

16 reset 5,181 12,025 0.52
16 nochange 22,309 51,327 1.78
16 write 26,158 60,248 2.75
32 reset 9,958 23,162 1.08
32 nochange 44,557 102,539 7.90
32 write 51,741 119,229 14.24
64 reset 19,343 45,051 2.35
64 nochange 88,865 204,531 40.64
64 write 102,680 236,670 58.63

128 reset 37,944 88,444 6.50
128 nochange 177,377 408,279 247.82
128 write 204,415 471,227 283.74

4.2 Acceleration of Iterative Property Checking
In SAT-based property checking the initial SAT instance is generated from

the design description together with the property to be proven. Usually, the
largest part will result from the unrolled design description. In comparison,
the logic parts that come from the property are much smaller. From a practical
perspective, during property checking as long as no design bug is found the
design remains unchanged, but the verification engineer modifies and adds new
properties. Thus, the property checker is used interactively. For the verification
engineer on the one hand, proving becomes more easy if the assumptions in the
antecedent of a property are very strong, i.e. the property is very restrictive and
argues only over a small part of the design. On the other hand, such proofs are
not very general. Hence in practice, the formulation of a property is an iterative
process. For example, the verification engineer starts writing a property with
strong assumptions. Then, the verification engineer stepwise weakens some of
the assumptions to obtain a more general proof.

The basic idea is to exploit the iterative process of property checking. As
described, only a very small part of the verification problem changes in con-
secutive property checking runs if the assumptions are weakened. Thus, re-
computations can be avoided if learned information is reused for consecutive
SAT problems. BMC as introduced in [BCCZ99] reduces the verification prob-
lem to a SAT problem and then searches for counter-examples in executions
whose length is bounded by k time steps. For BMC, it has been suggested to
reuse constraints on the search space deduced in instance k for solving the

Block-Level Verification 89

consecutive instance k + 1 faster [Sht01]. However, in [Sht01] this concept is
only used during the proof of a single or several fixed properties.

In contrast to [Sht01], in the BMC variant that is used in the following two
SAT instances for slightly different property checking problems are considered
and information from the two properties with respect to the underlying design
is utilized. This enables to reuse learned conflict clauses in the SAT instance of
the consecutive property checking problem.

The approach has been integrated in the property checker presented in
Section 4.1. Hence, all necessary information is available: For a design and a
given property the property checker stores resulting conflict clauses and rele-
vant information in a data base. In consecutive runs for a property and a derived
version of the property (by weakening assumptions) some of the stored clauses
can be reused. Typically, this makes the current instance easier to solve,
since the search space is pruned by the reusable clauses. Besides this, re-
computations of identical conflicts can be avoided. So a speed-up of the current
proof can be expected. Reusable conflict clauses are such clauses that can be
deduced by the intersection of the resulting clauses of the two property check-
ing problems. We will show that these conflict clauses can be identified effi-
ciently, if the information about the source of conflicts in terms of the property
and a variable mapping is preserved. Experiments show that up to 100% of the
clauses can be reused. This results in speed-ups of nearly a factor of 30 in our
experiments.

The remaining part of the section is structured as follows: Section 4.2.1 pro-
vides the main flow for reusing conflict clauses in iterative PC. In Section 4.2.2
the formalization of the approach is presented. Experimental results demon-
strating the benefits of the approach are described in Section 4.2.3.

4.2.1 Main Flow
In this section the main flow for reusing conflict clauses during iterative

property checking is presented. In Figure 4.14 this flow is depicted.
At first the design and the property are compiled into an internal represen-

tation. In this step information to allow for a syntactic comparison between
properties is stored in the data base (A). Then, the internal representation is
converted into a BMC problem expressed as a CNF formula. While solving
this SAT instance the references to the clauses that lead to a new conflict clause
are stored in a data structure. After termination of the SAT solver this conflict
clause information can be related to the expressions in the antecedent and the
consequent of the checked property. Finally, this information is minimized and
added to the data base (B). Now assume that property checking is repeated
but the property has been weakened. This is detected (X) and before the BMC

90 QUALITY-DRIVEN SYSTEMC DESIGN

Design

Frontend

Property

DB BMC problem

SAT Solver:
Satisfiable? yesno

Property holds Counter-example

A

X

Y

B

Figure 4.14. Property checking flow with reusing

problem is given to the SAT solver, conflict clauses are read from the data
base. Then, they are analyzed and reused (Y), if possible. In the following, the
approach is illustrated for an example.

Example 4.6 In Figure 4.15 the property lowestWins 2 is shown. The
property has been written for a scalable bus arbiter. The arbiter consists of
n cells (here n = 3) and combines priority arbitration with a round robin
scheme. The property lowestWins 2 states that if exactly one token is set
(A0) and no cell is waiting (persistent signals) (A1) and exactly the request
req2 is high (A2, A3, A4), then the corresponding acknowledge will be set in
the same clock cycle.

This property has been proven and the conflict clause information has been
written in the data base as explained above. Now the question is raised whether
all assumptions are necessary. A detailed analysis of the arbiter and the prop-
erty shows that assumption A4 can be removed, since this assumption is too
restrictive. (If req2 is 1, the value of req3 does not matter.) Proving this mod-
ified property is now faster because the re-computation of already learned con-
flicts is superfluous, since conflict clauses from the previous proof are reused.

We continue with the formalization of the proposed approach.

Block-Level Verification 91

1 property lowestWins_2 = always (
2 (A0) (c e l l 1 . t o k e n + c e l l 2 . t o k e n + c e l l 3 . t o k e n) == 1 &&
3 (A1) (c e l l 1 . p e r s + c e l l 2 . p e r s + c e l l 3 . p e r s) == 0 &&
4 (A2) r eq1 == 0 &&
5 (A3) r eq2 == 1 &&
6 (A4) r eq3 == 0
7) −> (
8 ack2 == 1
9) ;

Figure 4.15. Example property lowestWins 2

4.2.2 Reusing Learned Information
Let M be the set of clauses resulting from the translation of the design D,

and let P be the set of clauses resulting from the property p. Then P can be
partitioned into P = A∪C ∪R, where A are the clauses from the antecedent,
C from the consequent and R the clauses to “glue” the antecedent expressions
and the consequent expressions of the property together. Now consider two
consecutive runs of the property checker for the unchanged design D and for
two properties pF (first) and pS(second). Assume that the property pS has been
derived from the property pF by weakening some of the assumptions in the
antecedent. Let PF = AF ∪CF ∪RF be the resulting clauses of the property
of the first run and PS = AS ∪ CS ∪ RS the clauses for the second run, re-
spectively. Further assume that the variables in PS are renamed with a variable
mapping function which maps a variable from the second set of variables VS

to the according variables of the variable set VF from the first run. Then, the
following holds:

1. CS = CF , since the consequents of properties pS and pF are equal.

2. RS = RF , since the variables to combine the antecedent and the conse-
quent can be identified.

3. AS ⊂ AF , because the assumptions in the antecedent of pS are weaker
than the assumptions of pF .

Since the clauses M of the design remain unchanged, only the clauses re-
sulting from the two properties pF and pS have to be compared. We formulate
the following theorem:

Theorem 4.7 For the corresponding set of clauses PF and PS of two con-
secutive property checking problems it holds:

PF \ PS = AF \AS

92 QUALITY-DRIVEN SYSTEMC DESIGN

Proof

P F \ P S = (AF ∪ CF ∪ RF) \ (AS ∪ CS ∪ RS)
= (AF ∪ CF ∪ RF) \ (AS ∪ CF ∪ RF) (1. & 2. from above)
= (AF ∪ CF ∪ RF) ∩ (AS ∪ CF ∪ RF) (set difference)
= (AF ∪ CF ∪ RF) ∩ AS ∩ CF ∩ RF (de Morgan)
= AF ∩ AS ∩ CF ∩ RF ∪ (distributive law)

CF ∩ AS ∩ CF ∩ RF ∪
RF ∩ AS ∩ CF ∩ RF

= AF ∩ AS ∩ CF ∩ RF (empty intersections)
= AF ∩ AS (AF ∩ CF = AF ∩ RF = ∅)
= AF \ AS (set difference)

�

Based on Theorem 4.7 all conflict clauses can be reused which have not been
learned from a conflict where clauses of AF \AS participated. In other words,
we have to identify the conflict clauses which have been deduced exclusively
from the intersection of the two consecutive property checking problems. This
intersection is given by:

(M ∪ P F) ∩ (M ∪ P S)= M ∪ (P F ∩ P S) (distributive law)
= M ∪ (AF ∪ CF ∪ RF ∩ AS ∪ CS ∪ RS) (definition of P)
= M ∪ (AF ∪ CF ∪ RF ∩ AS ∪ CF ∪ RF) (1. & 2. from above)
= M ∪ ((AF ∩ AS) ∪ (CF ∪ RF)) (distributive law)
= M ∪ AS ∪ CF ∪ RF (3. from above)

Thus, for each conflict clause of the first run the sequence of clauses which
produced that conflict clause have to be determined. With this information we
can exactly identify the source of the conflict in terms of the two properties pF

and pS . This becomes possible, if we further know which clauses have been
produced by the design, the individual expressions in the antecedent (separated
at the logical ANDs) and the individual expressions of the consequent of both
properties. Finally, for a conflict clause cl the minimal source information is
stored which allows to check whether cl was produced by a clause of the design
or by an antecedent or a consequent expression. Altogether it can be decided
which conflict clauses of the first run can be reused to speed up the current
proof.

4.2.3 Experimental Results
All experiments have been carried out on an AMD Athlon XP 2800+ with

1 GB main memory. The following experiments always consist of two steps.
First, for a circuit a property with “overly” strong assumptions is proved. This
is done with and without our approach to measure the time overhead. Next,

Block-Level Verification 93

we prove the same property but in a more general version, i.e. some of the
assumptions in the antecedent of the property have been weakened. In this
case we measure the speed-up that can be achieved by reusing conflict clauses.

In a first series of experiments we considered the scalable bus arbiter which
has already been used in Example 4.6. The considered properties for the arbiter
circuit are mutual exclusion of the outputs of the arbiter and the lowestWins
property already described in Example 4.6. In Table 4.4 the overhead for our
approach is given for different arbiter sizes (column Cells). In the second col-
umn the name of the considered property is shown. The next two columns pro-
vide information about the corresponding SAT instance. The run-time needed
without and with our approach is given in column std and column reuse, re-
spectively. The difference between the two given run-times is the time needed
to store learned information into the data base. As can be seen the overhead is
negligible, i.e. less than 1% of the run-time for the larger examples.

The achieved improvement of the proposed approach for the arbiter is shown
in Table 4.5. In the weakened variant of the property mutualexclusion
the assumption that no arbiter cell is waiting is no longer used. In case of the
property lowestWins 50 we follow exactly Example 4.6. The first seven
columns give the same information as in Table 4.4. Because the considered
properties have been weakened the resulting number of clauses and literals
decreases. However, since for each property learned information can be found
in the data base, conflict clauses can be reused. Thus, column Reused Cl. gives

Table 4.4. Overhead for arbiter

Cells Property Clauses Literals CPU time (s)
Std Reuse

100 mutualexclusion 240,776 541,742 9.15 9.57
100 lowestWins 50 161,399 363,193 14.15 14.49
200 mutualexclusion 961,576 2,163,542 176.65 177.78
200 lowestWins 50 642,799 1,446,393 588.30 590.45

Table 4.5. Acceleration for arbiter

Cells Property Clauses Literals CPU time (s) Reused Speed-up
Std Reuse cl. (%)

100 mutualexclusion 161,076 362,442 13.26 13.01 20.23 1.0
100 lowestWins 50 161,247 362,839 8.71 4.54 100.00 1.9
200 mutualexclusion 642,176 1,444,942 1078.80 343.77 6.23 3.1
200 lowestWins 50 642,347 1,445,339 656.35 22.70 100.00 28.9

94 QUALITY-DRIVEN SYSTEMC DESIGN

Table 4.6. Overhead for FIFO

Size Property Clauses Literals CPU time (s)
Std Reuse

64 nochange 68,077 156,723 14.82 14.92
128 nochange 156,595 361,173 101.83 102.03

Table 4.7. Acceleration for FIFO

Size Property Clauses Literals CPU time (s) Reused Speed-up
Std Reuse cl. (%)

64 nochange 68,072 156,712 14.80 2.16 100.00 6.9
128 nochange 156,590 361,162 101.72 6.42 100.00 15.8

the percentage of reused clauses. In the last column the achieved speed-up
is shown. As can be seen for the 100 cell arbiter in case of the property
mutualexclusion no speed-up results. But for the three remaining exam-
ples a significant speed-up was obtained, i.e. up to nearly a factor of 30.

In a second series of experiments we studied FIFOs of different depths. In
a property we prove that the content of a FIFO does not change under the as-
sumption that no write operation is performed. In the initial version of this
property it has also been assumed that no read operation is performed. Simi-
lar information as for the arbiter examples is provided in Tables 4.6 and 4.7,
respectively. Also in this case for larger examples a speed-up of more than a
factor of 10 can be observed.

Overall, the proposed approach significantly improves the run-time for prov-
ing properties in an iterative property checking flow.

4.3 Contradictory Antecedent Debugging
for Property Checking

In practice, during the specification of a property the verification engineer
formulates assumptions about the design environment in the antecedent of the
property and joins them by logical AND. A typical example for such an as-
sumption is to disable the reset for several cycles. However, for sophisticated
properties formulated for complex designs the verification engineer may be
confronted with the problem of a contradictory antecedent, i.e. the antecedent
has no solution. Obviously such a situation has to be detected by the property
checker, since otherwise the consequent would not be checked.

The underlying ideas of the debugging method presented in the following
are similar to the approach introduced in Section 3.3.1. The difference is that

Block-Level Verification 95

in property checking a contradiction may also occur in combination with the
design. This has to be taken into account by the approach and actually given as
feedback to the user.

Typical scenarios that lead to a contradictory antecedent are

Typos in an expression and/or temporal operator in the antecedent

Misinterpretation of the specification or incorrect specification

Bug(s) in the design, whereas the antecedent conforms to the specification

Too strong assumptions about the design environment

The latter case can often be observed in practice, since the verification engineer
intentionally specifies strong assumptions to understand a complex design. At
the beginning it is much easier to focus on a certain design functionality instead
of writing a general property.

A closer inspection of these scenarios reveals that two different kinds of a
contradictory antecedent have to be distinguished:

1. The contradictory antecedent is solely caused by one or more conflicts of
the antecedent expressions.

2. The contradictory antecedent results from one or more conflicts of the an-
tecedent expressions and the design.

Related work to the described problem is discussed below. For BMC as used
in this book, to test if the antecedent is contradictory is straightforward. In-
stead of checking the whole property, only the antecedent (for point 1) or the
antecedent including the unrolled circuit logic (for point 2) is tested for satisfi-
ability. However, in case of a negative answer, i.e. the SAT instance is unsatis-
fiable and hence we have a contradictory antecedent, the verification engineer
has to identify what exactly causes the contradiction. As the debugging of a
contradictory assumption is done manually, this might become a very time-
consuming process.

In this section we present a fully automatic approach to analyze a contra-
dictory antecedent. The proposed method can handle all scenarios as described
above. Thereby, first the reasons of the contradictions in the property are given
and in the second step the reasons with respect to the design. A reason is a
conjunction of antecedent sub-expressions (and the design) that evaluates to 0.
In addition, a reason is minimal in the sense that removing a sub-expression
from the conjunction resolves the contradiction. Thereby, the method helps
the verification engineer in debugging since he/she understands what causes
the contradictions. The approach is based on a reformulation of the antecedent
using new free variables such that sub-expressions of the antecedent can be dis-
abled. From the assignments to the free variables the approach derives which

96 QUALITY-DRIVEN SYSTEMC DESIGN

sub-expressions are “non-relevant”, i.e. they are never part of any contradic-
tion. For the remaining sub-expressions the logical dependencies of the re-
spective values of the free variables are analyzed and thereby minimal reasons
for all contradictions in the antecedent are determined.

In this book temporal properties are specified as implications. If the an-
tecedent of a property is contradictory such a property is said to be vacuously
satisfied in the literature [BBDER97]. An antecedent failure – for the first time
mentioned in [BB94] – has been considered as motivation to study the more
general question: can a model or a property contain an error if model check-
ing was executed successfully [BBDER97, BBDER01]. Searching for errors
in this direction is called vacuity detection [BBDER97, KV99, PS02, AFF+03,
SDGC07]. Vacuity for temporal logic model checking is syntactically defined
as follows: A formula ϕ is vacuously satisfied in a model M if ϕ is satisfied in
M and there exists a sub-formula ψ of ϕwhich can be replaced by any formula
θ without changing the truth-value of ϕ in M . In [KV99] this definition was
further extended to consider occurrences of sub-formulas. However, all these
approaches only address the detection of vacuity which is accomplished here
by checking if the antecedent (and the design) is unsatisfiable. In [CS07] the
vacuity checks are further improved in two directions: First, it is proposed to
perform some of the vacuity checks without the design. Second, redundancy
in a property set is identified to tighten the specification. In [SDGC07] the
authors speed up vacuity detection for BMC by using resolution proofs. As
a result they are able to identify vacuous variables in properties. Again, both
papers are not targeting the identification of reasons in case of a contradictory
antecedent. The most related paper to the approach presented in the following
is [BDFR07] where a method is proposed to identify a Temporal Antecedent
Failure (TAF). The authors consider model checking of temporal implication
properties specified as regular expressions. The proposed method computes a
position in the regular expression that is a reason for a TAF. However, a posi-
tion may involve a complex Boolean formula that cannot be further analyzed.

This section is structured as follows: In Section 4.3.1 the analysis approach
for a contradictory antecedent is presented. After the definition of the problem,
the reformulation of the antecedent based on a partitioning of the antecedent
is introduced. Then, in Section 4.3.2 the analysis algorithm is described in
detail. Section 4.3.3 provides the experimental results. Besides some smaller
examples also a real life example in the context of a MIPS CPU is presented.

4.3.1 Analysis of Contradictory Antecedents
In this section we describe the method for determining the reasons of a con-

tradictory antecedent. First, it is checked whether the antecedent is contradic-
tory. In this case, the contradiction analysis is started. The approach is based
on a partitioning of the antecedent expression into sub-expressions. A reason

Block-Level Verification 97

is a set of sub-expressions that is sufficient to cause a contradiction. With our
algorithm, all reasons for a contradiction can be computed.

First, we give a definition of the problem. Then, we describe the reformu-
lation of the antecedent expression that is performed in preparation for the
algorithms discussed in the next section.

Contradictory Antecedent

Definition 4.8 For a given design with the transition relation Tδ
6 and a

property p = A→ C over the finite interval [0, c] let
c−1
∧

i=0
Tδ(si, si+1)∧¬(A→

C) be the corresponding BMC instance. Then, A is a contradictory antecedent
of the property p, iff

A always evaluates to 0 (considering all inputs, states and outputs used in
p as free variables) or

c−1
∧

i=0
Tδ(si, si+1) ∧ A always evaluates to 0 (i.e. the contradiction(s) are

caused by both, the antecedent A and the design)

Remark 4.1 The fact whether the contradiction(s) are caused solely by the
antecedent or by the antecedent and the design is important for two reasons:
First, in the former case debugging is simpler as will be shown later. Second,
the size of the SAT instance is much smaller if the design does not have be
unrolled as in the second case.

Reformulation of the Antecedent

We use a partitioning of the antecedent into several sub-expressions. This
partitioning is motivated by the typical form of an antecedent, i.e. the an-
tecedent consists of assumptions that are joined by logical AND. In addition,
the chosen partitioning allows the identification of contradictions at low com-
putational costs. A refinement can easily be done by performing our analysis
again for the first result. The partitioning of the antecedent of a property is
defined as follows.

Definition 4.9 Let p = A → C be a property with a contradictory an-
tecedent A. Then, the antecedent A is partitioned into n sub-expressions
A0, A1, . . . , An−1 such that A = A0 ∧A1 ∧ · · · ∧An−1, where the positions
of the logical AND operators are derived from the antecedent according to the
conjunction of different assumptions.

6 In the following the symbol Tδ always covers the transition relation as well as the output functions (see
also Definition 4.2).

98 QUALITY-DRIVEN SYSTEMC DESIGN

Example 4.10 Consider again the property PROP in Figure 4.4. The
antecedent of this property is partitioned into the three sub-expressions:

A0 = ’next_a [0..2](reset == 0)’,
A1 = ’mode == 2’, and
A2 = ’high == 1’.

Based on this partitioning, a reason in terms of our approach is a subset of all
sub-expressions, that form a contradiction and hence have to be considered by
the verification engineer for debugging. The definition for a reason is given as
follows. In contrast to the contradiction analysis approach for constraint-based
simulation (see Definition 3.10), here contradictions in combination with the
design have to be taken also into account.

Definition 4.11 Let p = A → C be a property with the contradictory
antecedent partitioned into A = A0 ∧ A1 ∧ · · · ∧ An−1. Then a reason for
the contradiction is a non-empty set R ⊆ {A0, A1, . . . , An−1} such that all
sub-expressions Aj ∈ R (either in combination with the design or not) form a
contradiction, i.e.

c−1
∧

i=0

Tδ(si, si+1)
∧

Aj∈R

Aj or
∧

Aj∈R

Aj

is not satisfiable, respectively. Additionally all reasons are defined to be mini-
mal, i.e. removing any sub-expression Aj from R resolves the contradiction.

Remark 4.2 In some cases more than one reason for a contradictory an-
tecedent can occur. If in this case only one conflict is fixed the antecedent is
still contradictory. Thus, our approach computes all reasons and thereby al-
lows the verification engineer to handle the debugging of the contradictory
antecedent in one single step.

To determine the reasons for a contradiction our algorithm uses a re-
formulated antecedent A′. This is done such that each sub-expression Aj

can be disabled by the BMC tool and hence each contradiction can be
resolved.

Definition 4.12 Let A be a contradictory antecedent. Then A is reformu-
lated to A′ such that

1. For each sub-expression Aj a new free variable ej (called enable variable)
is introduced and

2. Aj is substituted by the implication ej → Aj

Block-Level Verification 99

In this way A = A0 ∧ A1 ∧ · · · ∧ An−1 is reformulated to A′ = (e0 →
A0)∧ (e1 → A1)∧ · · · ∧ (en−1 → An−1). For the reformulated antecedent A′
the following holds:

1. If ej is set to 1, then the sub-expression Aj is enabled.

2. If ej is set to 0, then the sub-expression Aj is disabled, because 0 → Ai

evaluates to 1 independently of Aj .

4.3.2 Algorithms and Implementation
Based on the introduced definitions and concepts, first the main algorithm

for the antecedent debugging approach is presented. Then, the algorithm to
compute the reasons is described.

Main Algorithm

All steps introduced above are summarized in Algorithm 4.1: First, it is dis-
tinguished whether A causes a contradiction or not (line 1). In the former case
A is reformulated to A′ according to Definition 4.12 (line 2). If a contradiction
already occurs solely in A (line 3), at first the analysis is done without the de-
sign (line 4). For the further consideration all reasons that have been found here
are excluded (line 5). After this, the analysis is performed with the design to
determine the reasons for contradictions caused by both, the antecedent A and
the design (line 6). Thus, in total all reasons are presented to the verification en-
gineer. Since properties with contradictory antecedents hold independently of
the consequent no explicit property checking is necessary. Hence, after analy-
sis the algorithm terminates and contradictory is returned (line 7). In contrast,
if no antecedent contradiction occurs (line 8) the property is checked (line 9).

Algorithm 4.1: doPropertyCheck(Transition relation Tδ, interval [0, c],
property p)

Result: result ∈ {holds , fails , contradictory}
if (

∧c−1
i=0 Tδ(si, si+1) ∧A ≡ 0) then1

A′ = partitionAndReformulate(A);2

if (A ≡ 0) then3

contradictionAnalysis(A′ , 1, [0, c]);4

excludeFoundReasons();5

contradictionAnalysis(A′ , Tδ, [0, c]);6

return contradictory ;7

else8

return checkProperty(p, Tδ, [0, c]);9

100 QUALITY-DRIVEN SYSTEMC DESIGN

Algorithm for Analysis of the Contradictory Antecedent

If the antecedent is contradictory, then our approach determines all reasons
of the contradiction. This task is performed by Algorithm 4.2. In the following
the single steps of this algorithm are described in detail.

The reformulation of the antecedent from A to A′ as described in the pre-
vious section allows to enable/disable sub-expressions. The basic idea for the
computation of all reasons is as follows. Since the enable variables are free
variables, we can obtain an assignment to these variables such that the overall
contradiction of the antecedent is resolved. Such an assignment contains infor-
mation which assumptions cannot occur together. But from a single satisfying
assignment we cannot conclude which expressions form a contradiction. This
is illustrated in the following example:

Example 4.13 Consider the property MYPROP depicted in Figure 4.16(a).
For simplicity assume that there are no contradictions of the antecedent in
combination with the design. All assignments to the enable variables that re-
solve the contradiction are given in Figure 4.16(b). As can be seen from a
single assignment it is not possible to conclude what is the reason of a contra-
diction.

Therefore, all satisfying assignments for the enable variables are computed
in Algorithm 4.2 (line 2). This is done using an All Solution SAT solver,
i.e. once a solution has been found a blocking clause [McM02] is added to
exclude the same solution for the enable variables from the remaining search
space and the search for another solution continues. Each new solution of the
enable variables is stored in a set A (line 3).

Using these solutions, for each sub-expression Aj it can be checked whether
Aj is either self-contradictory or never part of a reason according to the fol-
lowing two observations7:

Observation 4.1 If ej is 0 for all solutions, then the respective sub-expres-
sion Aj is self-contradictory.

Observation 4.2 If the assignment of ej is don’t care for all solutions
(i.e. the value of ej can be either 0 or 1 in all solutions), then the respective
sub-expression Aj is never part of a contradiction.

Thus, each sub-expression Aj for which the respective enable variable ej
matches one of these two properties is either self-contradictory or never part of
a contradiction.

7Both observations and the respective proofs can be directly transferred from the method presented in Sec-
tion 3.3.1. Therefore, the proofs are not given here again.

Block-Level Verification 101

1 property MYPROP =
2 always (
3 (A0) x == 1 &&
4 (A1) x > 5 &&
5 (A2) y == 0
6) −> (
7 next [1] (o) == 1
8) ;

(a)

e0 e1 e2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

(b)

e0 e1 e2

0 − −
1 0 −

(c)

Figure 4.16. Simple example for contradiction analysis

Algorithm 4.2: contradictionAnalysis(Reformulated antecedent A′, de-
sign Tδ, interval [0, c])

Result: Set R of reasons
A = ∅ ; // Set of assignments for the ej variables1

while (find new assignment a for ej in (
∧c−1

i=0 Tδ(si, si+1) ∧A′)) do2

A = A ∪ {a} ;3

R = ∅ ; // Set of reasons4

E = ∅ ; // Set of enable variables for detailed5

analysis
n =getNumberOfEnableVariables(A′);6

for (j = 0 . . . n− 1) do7

if (∀a ∈ A : a(ej) = 0) then8

R = R∪ {{ej}};9

else if (∀a ∈ A : a(ej) = don′t care) then10

continue;11

else12

E = E ∪ {ej};13

foreach (X ∈ P(E)) do from smallest to the largest14

if (X = ∅ or |X| = 1) then15

continue;16

else if (∃X ′ ∈ R : X ′ ⊂ X) then17

continue;18

else if ((
∨

a∈A
∧ ∧

ej∈X
ej = 1) ≡ 0) then

19

R = R∪ {X};20

printReasons(R);21

102 QUALITY-DRIVEN SYSTEMC DESIGN

Example 4.14 Consider again the property MYPROP shown in Figure
4.16(a). Figure 4.16(c) depicts a disjoint sum of the product cover derived
from the BDD representation of the function from Figure 4.16(b). As can be
seen the value of the enable variable e2 is always don’t care and hence we can
conclude that this expression is never part of a contradiction.

In both cases the respective sub-expressions do not have to be considered
any longer. This early classification significantly reduces the number of subsets
R ⊆ {A0, A1, . . . , An−1} to be checked as reasons.

In Algorithm 4.2 both observations are applied in line 8 and line 10, re-
spectively. In the former case (ej is 0 for all solutions and thus Aj is self-
contradictory) the enable variable ej is added as a single reason to a set R
storing all reasons for the contradiction (line 9). Note that R stores the reasons
in terms of the ej variables, not in terms of the respective sub-expressions Aj

themself. If the second observation holds (ej is don’t care for all solutions
and thus Aj is never part of a contradiction), then this sub-expression can be
skipped (line 11). For all remaining cases (line 12), ej is stored in a set E
including all sub-expressions (in terms of enable variables) which cannot be
classified by the two observations and thus have to be considered in the de-
tailed analysis (line 13).

The detailed analysis checks subsets consisting of the remaining enable vari-
ables (i.e. sub-expressions) for being a reason of the contradiction. The respec-
tive subsets X are obtained by creating the power set P(E) of E (line 14).
Thereby, the empty subset ∅ ∈ P(E) as well as all subsets X ∈ P(E) with
|X| = 1 are omitted (line 15) since ∅ can never be a reason for a contradiction
and all subsets containing only one element are already covered by the two ob-
servations. Furthermore, by ordering the subsets according to their cardinality,
the smaller conjunctions of sub-expressions are checked first. In this way, by
excluding all supersets of reasons determined so far (line 17), minimality is
guaranteed.

For each remaining subset X (i.e. for each combination) the conjunction of
the respective sub-expressions is tested for a contradiction. Therefore, all vari-
ables ej ∈ X are assigned to 1 to enable all respective sub-expressions of X.
Then, the resulting cube is combined with a disjunction of all solutions a ∈ A
as shown in line 19. If the cube of enable variables (i.e. the enabling of the
respective sub-expressions) leads to a contradiction, then a reason has been
found and thus, X is added to R (line 20). The final result of the algorithm
is the set of all minimal reasons. From this set the algorithm outputs all sub-
expressions of each reason since a direct link to the syntax tree of the PSL
property is available (line 21).

Block-Level Verification 103

In summary, the presented approach computes all minimal reasons R of a
contradictory antecedent by exploiting

The reformulation of the antecedent A to A′ which allows the disabling/en-
abling of sub-expressions

A two-stage problem formulation to distinguish between contradictions
solely caused by the antecedent and contradictions of the antecedent in
combination with the design

The two observations which reduce the numbers of subsets to be consid-
ered, and

A detailed analysis for the remaining enable variables which excludes su-
persets of already found reasons

In the next section the application of the algorithm to practical examples is
studied.

4.3.3 Experimental Results
Motivating Example

As an example we will use the FSM depicted in Figure 4.17. There are four
states encoded by two bits. The FSM falls back to state 00 when the signal
reset is set to 1. Otherwise, it steps through the states in increasing order
and wraps around to state 00 unless the signal hold is set.

Example 4.15 Consider the property shown in Figure 4.18. In the an-
tecedent it is assumed that there is a reset at time point 0 (line 2), the state
should be 10 at the next time point (line 3) and there is no reset and no hold
during the cycles 0 to 4 (lines 4 and 5, respectively), which leads to a contradic-
tion. For the analysis, the antecedent is split into the four expressions A0 . . . A3

hold=1,
reset=0

hold=1,
reset=0

hold=1,
reset=0

hold=1,
reset=0

01 10 1100

reset=1
reset=1

reset=1

Figure 4.17. FSM

104 QUALITY-DRIVEN SYSTEMC DESIGN

mentioned above. It is reported that A3 is irrelevant and that there are two
different reasons for the contradiction. The first reason isR1 = {A0, A2}. This
is because the expression A2 = next a[0..4](reset == 0) implies that there
is no reset at time point 0 which contradicts expression A0. The second reason
is R2 = {A0, A1}, because after the reset at time point 0 – as demanded by
A0 – the state will be 00 at time point 1, which contradicts A1.

In case of the next a statements the analysis can still be refined, as the
expression next a[i..j](x) can be rewritten as a conjunction next[i](x) &&
next[i+ 1](x) && . . . && next[j](x). By splitting up the next a operator
the analysis points exactly to the expression related to time point 0 for the first
reason.

We consider another more complex example in the following.

Example 4.16 Consider the property in Figure 4.19. The antecedent is a
conjunction of four expressions A0 . . . A3. It is assumed that there is a reset
at time point 0 followed by 5 cycles with no reset (lines 2 and 3). Further-
more there may not be two consecutive cycles with the hold signal activated
(line 4). Finally, at time point 5 it is assumed that the FSM is in state 01
(line 5). When checking this property it is reported that its antecedent is con-
tradictory. The single reason that is given by our approach is the conjunction

1 property P1 = always (
2 (A0) r e s e t == 1 &&
3 (A1) next (c u r r _ s t a t e == " 10 ") &&
4 (A2) next_a [0 . . 4] (r e s e t == 0) &&
5 (A3) next_a [0 . . 4] (ho ld == 0)
6) −> (
7 next [5] (c u r r _ s t a t e == " 00 ")
8) ;

Figure 4.18. PSL property for Example 4.15

1 property P2 = always (
2 (A0) r e s e t == 1 &&
3 (A1) next_a [1 . . 5] (r e s e t == 0) &&
4 (A2) next_a [0 . . 5] (! (ho ld && next (ho ld))) &&
5 (A3) next [5] (c u r r _ s t a t e == " 01 ")
6) −> (
7 next [6] (c u r r _ s t a t e == " 01 ") | | next [6] (c u r r _ s t a t e

== " 10 ")
8) ;

Figure 4.19. PSL property for Example 4.16

Block-Level Verification 105

of all four expressions and the design. This means that removing any of the
assumptions would remove the contradiction. In this case it is the combination
of the antecedent with the functionality of the design that makes the scenario
impossible.

RISC CPU

We applied our approach during the formal verification of a RISC CPU.
The CPU implements parts of the MIPS instruction set architecture [PH04]. It
is based on a five-stage pipeline and contains 32 general purpose registers. The
overall design has a gate count of approximately 300,000.

During the design process BMC has been applied for early debugging of the
basic functionality of the CPU. For this purpose relatively restrictive proper-
ties are written to check aspects of the design that have recently been imple-
mented. One of these properties is shown in Figure 4.20. The property checks
that the load word (LW) instruction works properly for a certain case. The an-
tecedent is divided into seven expressions A0 to A6 (lines 14–21). It states that
there is first a NOOP (no operation) instruction (A0) to avoid control hazards

1 a s s i g n LW_op = " 100011 " ;
2 a s s i g n NOOP_op = " 00000000000000000000000000000000 " ;
3 a s s i g n I n s t r 1 = i d a t a ;
4 a s s i g n I n s t r 2 = next (i d a t a) ;
5
6 a s s i g n Op = I n s t r 2 . r a n g e (3 1 , 26) ;
7 a s s i g n Rs = I n s t r 2 . r a n g e (2 5 , 21) ;
8 a s s i g n Rt = I n s t r 2 . r a n g e (2 0 , 16) ;
9

10 a s s i g n Addr = next [4] (mem . memaddr) ;
11 a s s i g n Data = next [4] (mem . rmemdata) ;
12
13 property LOAD = always (
14 (A0) I n s t r 1 == NOOP_op && / / n o t i n shadow o f branch
15 (A1) Op == LW_op && / / e x e c u t e load i n s t r u c t i o n
16 (A2) Rt != " 00000 " && / / do n o t w r i t e t o c o n s t . $0
17 (A3) Data == 127 && / / read v a l u e 127
18 (A4) Addr == 13 && / / f rom RAM a d d r e s s 13
19
20 (A5) next_a [0 . . 6] (! r e s e t) && / / no r e s e t
21 (A6) next_a [0 . . 6] (! ex) / / no e x c e p t i o n r a i s e d
22) −> (
23 next [6] (r e g . r e g [Rt]) == Data
24) ;

Figure 4.20. Property for load instruction

106 QUALITY-DRIVEN SYSTEMC DESIGN

(e.g. a taken branch). Then, the NOOP is followed by a load instruction (A1),
the target register is not the constant register (A2) and the value 127 should
be read from memory address 13 (A3 and A4). Furthermore it is assumed
that during the execution of the instructions there is no reset and no excep-
tion raised (A5 and A6). Under these assumptions it should be proven that
the value is saved into the correct register when the LW instruction finishes
(line 23).

During BMC, a contradictory antecedent was reported and the analysis
approach was started. It revealed a single reason corresponding to the sub-
expressions A1, A4, A5, A6. Furthermore, the contradiction is not caused
solely by the antecedent, but in combination with the design. With this result,
the problem could be figured out quickly. The design always raises an excep-
tion when there is an unaligned load access, i.e. when the address is not a
multiple of 4. So the scenario described in the property – loading from address
13 without raising an exception – is impossible.

The experiments have been run on an Intel Xeon CPU with 3 GHz and 32
GB main memory under the Linux operating system. The time spent for the
detection of the contradictory antecedent was 6.24 CPU seconds. The detailed
analysis took another 50.86 CPU seconds, involving 121 SAT solver calls to
collect the assignments to the enable variables. Note that the design of 300,000
gates has to be unrolled 6 times due to the time interval [0, 6] of the prop-
erty. This result clearly shows that the antecedent debugging can be performed
very fast.

In summary, the debugging problem of a contradictory antecedent has been
considered. This situation occurs if the verification engineer focuses on so-
phisticated scenarios where a manual design and property review process was
necessary before. The introduced approach allows an automatic debugging of
a contradictory antecedent and identifies whether a contradiction results solely
from the antecedent and/or parts of the design. Hence, the debugging time is
reduced significantly.

4.4 Analyzing Functional Coverage in Property Checking
Today, formal verification is standard in many industrial design flows. One

prominent technique in this context is Model Checking (MC) [CGP99]. As al-
ready explained in Section 4.1 due to significant improvements in the tools for
SAT solving, SAT-based MC methods like BMC [BCCZ99] can be applied to
large designs and are widely used in industry [AKMM03,WTSF04,ADK+05,
BBM+07].

In MC the functional properties are specified in temporal logic. Thus, each
property describes parts of the circuit’s behavior unambiguously. However, the
most important question that arises here is: “Have I written enough proper-
ties?” [KG99]. In simulation-based verification computing coverage is well

Block-Level Verification 107

understood since coverage corresponds to an activation of signals or source
code during the execution of input vectors. Also formal techniques have been
used to analyze testbenches with respect to functional coverage [FD04]. For
MC estimating coverage is more difficult since the correspondence of coverage
is not obvious because the complete underlying Finite State Machine (FSM) is
traversed during the proof. Nevertheless there exist several notions of coverage
for model checking [CKV03]. For CTL-based approaches the covered states of
the FSM are computed [HKHZ99, JPS03]. By mutation-based coverage mod-
ifications are applied to the FSM and it is checked whether this is detected
by the specified properties [CKV01,CKV03]. But most of the existing metrics
suffer from complexity problems as in the case of CTL model checking or are
still very hard to use by verification engineers in practice.

An approach for measuring the coverage for BMC has been proposed in
[FD06]. There the focus is mainly to relate errors in the design to the source
code level. A component is considered covered, if there is at least one property
that is invalidated, if this component is changed. The notion of “change” is
described using a multiplexor construct based on the ideas of [AVS+04]. The
approach cannot specify exact functional coverage. Instead, components are
identified that influence the behavior of the circuit. Thus, the approach cannot
present the uncovered scenarios in form of counter-examples.

In [Cla06, Cla07] a method for coverage analysis of safety property lists
has been presented. This method works only on the specified LTL properties
without using the design. The properties are synthesized into a checker circuit
that has exactly one output. This output is 1 iff all properties hold. Then, the
checker circuit is duplicated. The two checker circuits use the same variables
except for the output signal that is analyzed in the current step. Based on this
construction the method can identify a forgotten case, i.e. a trace where a par-
ticular output signal is not constrained by the properties. Therefore the method
looks for traces where both checker outputs are 1, but the values of the ana-
lyzed output signal differ at exactly one time point. The presented method is
efficient because the design is not needed. However, if the method has identi-
fied a forgotten case there is no information about the circuit behavior, as the
design is not regarded in the check. Furthermore, the method needs to intro-
duce a new LTL construct for specifying that a signal is allowed to be uncon-
strained in a certain case, while our method is built on top of the standard PSL
language.

In [BBM+07] a technique to find gaps in a verification plan has been pro-
posed (for more details see [Bor09]). It determines whether every possible in-
put scenario corresponding to a sequence of operations of the DUV can be
covered by a chain of properties that predicts the value of states and out-
puts at every point in time. The properties are linked up in a property graph
which is used to carry out the completeness analysis. The properties which

108 QUALITY-DRIVEN SYSTEMC DESIGN

have to be specified for this approach are so-called operation properties. Such
an operation property captures a single design transaction which is basically a
transition between high-level design states. However, the notion of operation
properties is very specific to the commercial approach behind [BBM+07]. In-
stead, our method concentrates on revealing single concrete traces for simple
designs. Furthermore, the techniques presented here can be applied to any set
of properties without the need to specify a property graph.

In this section we propose a practical approach for the analysis of coverage
in BMC as introduced in Section 4.1. The basic idea is the following: First, for
each output o of the design all proven properties are identified which involve o.
Then, it is checked whether there exists a scenario where o is not determined
by the set of properties. Here “not determined” means that an input and state
assignment has been found, where no consequent of the set of properties spec-
ifies the value of o unambiguously. We show that this idea can be integrated
easily in a BMC verification tool. Furthermore, the approach automatically
generates uncovered scenarios in form of counter-examples. Analyzing these
counter-examples and adding corresponding properties allows the verification
engineer to stepwise close the coverage gap.

As a non-trivial example we study the formal verification and coverage anal-
ysis of a RISC CPU. At first the block-level verification is considered. The ver-
ification and the coverage tests are described in detail by means of examples.
Several cases that we observed to be the reason of a coverage gap are identi-
fied and it is explained how these gaps can be closed. During this process also
the run-times for verification and coverage analysis are studied. Furthermore,
we investigate the analysis of coverage on a higher level. Based on the results
of the complete block-level verification we consider the RISC CPU at the top
level.8 Typically, at this level properties for each CPU instruction are formu-
lated. In such a property the exact behavior of all involved hardware blocks
with respect to the considered CPU instruction is specified. In other words the
effect that results from the execution of an instruction including the commu-
nication of hardware blocks is checked. We show that the coverage approach
can be used to guarantee coverage at this level. On the basis of a detailed ex-
ample the suggested notion of higher level coverage based on proven correct
instructions is discussed and the costs for the coverage check are analyzed,
too. Following a certain property style is helpful for achieving full functional
coverage by reducing the number of uncovered scenarios.

The remaining part of this section is structured as follows. Section 4.4.1
describes the general idea of the coverage approach. In Section 4.4.2 the details
on the coverage property are provided. Then, in a case study in Section 4.4.3

8This is possible since the considered RISC CPU has a moderate gate count and hence can be handled
formally also at the top level.

Block-Level Verification 109

we demonstrate the coverage approach for the formal verification of a RISC
CPU. In Section 4.4.4 we discuss how the verification flow can be improved
by the presented techniques.

4.4.1 Idea
After proving a set of properties the verification engineer wants to know if

the properties describe the complete functional behavior of the circuit. Thus,
typically the properties are manually reviewed and the verification engineer
checks that properties have been specified for each output (and important in-
ternal signals) which prove the expected behavior in all possible scenarios.
Here, the goal of our approach is to automatically detect scenarios – assign-
ments to inputs and states – where none of the properties specify the value of
the considered output.

This idea is realized by the generation of a coverage property for each con-
sidered output. If this coverage property holds, there does not exist a scenario
where the value of the output o is not determined by the properties. It is shown
that the union of all properties that involve the output o admit no behavior else
than the one defined by the circuit. This is done by introducing a multiplexor
for each bit that is driven by the output o and the inverted value of o. Then
the coverage check is performed by proving that the multiplexor is forced to
select the original value of o, assuming all involved properties. In the following
section this is described in more detail.

4.4.2 Coverage Property
To analyze the coverage we generate a coverage property for each output o

of the design. This coverage property for the output o is constructed as follows:

1. The set of properties Po that involve the output o is identified.

2. The maximum time point tmax is determined. The time point tmax is de-
fined as the latest time point in the consequent of all properties in Po, at
which o is constrained.

3. A multiplexor is inserted for each bit of the considered output o in the orig-
inal design. Let o consist of the single bit signals o0, . . . , on−1. Then, the
bit oi of the output is connected to the data input d1 of the i-th multiplexor,
whereas the negation of oi is connected to the data input d0. If o is a single
bit signal, then we add the new input sel to the design that is connected
to sel0 (which is the select input of the multiplexor). Otherwise we add
sel0, . . . , seln−1 as new inputs and the signal sel =

∧n−1
i=0 seli.

4. The output o is renamed to o orig and the name of the output of the in-
serted multiplexor is set to o. Thus, in the following all properties that

110 QUALITY-DRIVEN SYSTEMC DESIGN

sel0

o
o_orig

0

0

o
o_orig

1

1

. .
 .

sel1

sel

. . .

1

0

1

0

Figure 4.21. Insertion of the multiplexor

use o are dealing with the output of the multiplexor instead of the origi-
nally considered output. The overall transformation for the single bits of o
including the multiplexor insertion from step 3 is depicted in Figure 4.21.

5. Now the coverage property for the considered output o is generated. In the
antecedent, all properties of Po are assumed. Possibly a property pi has to
be shifted by applying the next operator such that output o in the conse-
quent of pi is constrained at the maximum time point tmax. If the output
o is constrained in the consequent of the property pi at m time points with
m > 1, then pi is splitted into m separate properties, i.e. each such prop-
erty consists of the antecedent of pi and m different consequents. For each
property pi the resulting properties are summarized as p̂i. Furthermore, in
the antecedent of the coverage property the signal sel is set to 1 during the
time interval [0, tmax −1]. This guarantees that in all properties p̂i the orig-
inal output o is used for all time points up to tmax − 1. In the consequent
of the coverage property we force the signal sel to be 1 at time point tmax.
More formally the coverage property is

⎛

⎝

|Po|
∧

i=1

p̂i ∧
tmax−1

∧

t=0

Xtsel = 1

⎞

⎠ → Xtmaxsel = 1,

where Xj denotes the application of the next operator for j times.

Following these steps we have formulated the coverage analysis problem as
a BMC problem. In the following theorem the soundness of the approach is
considered.

Theorem 4.17 If the coverage property for the considered output o holds,
then o is covered by the properties (given as the set Po).

Block-Level Verification 111

Proof: We show this by contraposition: if the output o is not covered, then the
coverage property fails. In the following we denote the output of the multi-
plexers with oM . All properties p̂i hold due to construction. If the output o is
not covered, then the value of oM at time point tmax is not uniquely deter-
mined by the properties p̂i. In contrast, if the value of oM is determined by
the properties p̂i, then for each input and state assignment there is a property
that predicts the value of oM . Hence, the value of oM and o orig have to be
identical since the predicting property has been proven on the design. Thus,
in this case sel is 1. Now, if the properties do not predict the value, then there
exists at least one assignment o′M for output oM , that differs from the original
value o orig in at least one bit. But this is equivalent to the fact that the select
signal for this bit can be set to 0 at time point tmax, thus selecting the value o′M
without invalidating any of the properties p̂i. As a consequence, there exists a
counter-example with sel =

∧n−1
i=0 seli = 0 at time point tmax, which means

that the coverage property fails. �

Complete coverage in terms of our approach is achieved by considering all
outputs of a circuit. If all outputs are successfully proven to be covered by the
properties, then the functional behavior of the circuit is fully specified.

Examples

As a first example consider the 1-bit memory shown in Figure 4.22. If the
signal we (write enable) is set to 1, the flip-flop is updated with the value of the
input din. Otherwise it keeps its value.

To verify an implementation of this simple memory cell, a PSL property has
been specified (see Figure 4.23). It states that whenever we is set, the value of
din can be seen at the output dout one cycle later. The property holds.

We can now check whether the behavior of the memory cell is covered by
this property. Therefore, a coverage property is generated (see Figure 4.24).
In line 2 a special command enclosed in a comment instructs the verification
tool to insert a multiplexor at signal dout with a select signal named sel. In the

1

0
FF dout

din

we

Figure 4.22. 1-bit memory

112 QUALITY-DRIVEN SYSTEMC DESIGN

1 property WRITE =
2 always (
3 we == 1
4) −> (
5 next (dou t) == d i n
6) ;

Figure 4.23. PSL property for the 1-bit memory

1 property COV =
2 / / @inser tMuxF orS igna l : dou t s e l
3 always (
4 ((we == 1) ? (next (dou t) == d i n) : 1) &&
5 s e l == 1
6) −> (
7 next (s e l == 1)
8) ;

Figure 4.24. Coverage property for the 1-bit memory

antecedent of the coverage property it is assumed that property WRITE holds
(line 4).9 Furthermore, it is assumed that the sel signal is set to 1 in the first
cycle. Thereby the original value of dout is routed to the output. Under these
assumptions it has to hold that the select signal is 1 in the next cycle (line 7).

As a result, the coverage property fails and a counter-example is generated
which is shown in Figure 4.25. The case that has not been covered can be
deduced from the trace. Apparently it has not been specified how the memory
cell behaves if the signal we is set to 0. As a consequence the sel signal can
be set to 0 in the second cycle without violating the property WRITE. After
adding an appropriate property like the one in Figure 4.26, the output is fully
covered. The additional property NO CHANGE states that the output remains
unchanged as long as the write enable signal is set to 0.

As a second example we consider a FIFO of depth 3 that filters some value
by setting the output to 0 if the last three inputs have been 1. See Figure 4.27
for the implementation of the FIFO. The two basic properties for the FIFO are
shown in Figure 4.28. In the first property the regular shifting of the FIFO is
proven if the content of the FIFO is different from three times 1. The second

9This is expressed in PSL using the C-like ?-operator for an if-then-else construct. The property A → C is
transformed to A ? C : 1 due to syntactical restrictions of our PSL parser.

Block-Level Verification 113

we

FF

dout

dout_orig

sel

0 1 2

din

Figure 4.25. Counter-example for coverage of the memory cell

1 property NO_CHANGE =
2 always (
3 we == 0
4) −> (
5 next (dou t) == dout
6) ;

Figure 4.26. Additional property for the 1-bit memory

FF1 FF2FF0 doutdin

Figure 4.27. FIFO

property proves the filtering of the FIFO. Note that the comma operator is used
here for concatenation of the three values of the flip-flops to one memory word.
Both properties hold.

We check whether the output dout of the FIFO is covered with the coverage
property given in Figure 4.29. Again the multiplexor is inserted with the special
command in line 2. For the FIFO and the given properties tmax is 3.

Thus, the property PROPAGATE is assumed without shifting because o is
already constrained at time point tmax. However, the property FILT has to be
shifted such that the output dout is constrained in this property at time point
tmax (see line 9). The last expression in the antecedent forces the select input to
be 1 up to time point 2 (the next_a operator constrains the following expression
to hold at every time point during the specified interval; see line 10). In the

114 QUALITY-DRIVEN SYSTEMC DESIGN

1 property PROPAGATE =
2 always (
3 next [3] ((FF0 , FF1 , FF2) != " 111 ")
4) −> (
5 next [3] (dou t) == d i n
6) ;
7
8 property FILT =
9 always (

10 (FF0 , FF1 , FF2) == " 111 "
11) −> (
12 dout == 0
13) ;

Figure 4.28. PSL properties for the FIFO

1 property COV =
2 / / @inser tMuxF orS igna l : dou t s e l
3 always (
4 / / PROPAGATE
5 (next [3] ((FF0 , FF1 , FF2) != " 111 ") ?
6 (next [3] (dou t) == d i n) : 1)&&
7
8 / / FILT p r o p e r t y was s h i f t e d
9 next [3] ((((FF0 , FF1 , FF2) == " 111 ") ? (dou t == 0) :

1)) &&
10 next_a [0 . . 2] (s e l == 1)
11) −> (
12 next [3] (s e l == 1)
13) ;

Figure 4.29. Coverage property for the FIFO output

consequent we want to show that the select input is 1 at time point tmax = 3.
The verification tool reports that the coverage property holds and therefore the
FIFO output is covered by the two properties given.

Based on these two examples the generation of the coverage property for
simple and more complex properties with respect to several time points has
been shown. In the following our approach is studied on a RISC CPU.

4.4.3 Experimental Results
In this section we provide experimental results for the complete verification

and coverage analysis of a RISC CPU, moving from the level of single hard-
ware blocks to the instruction set on the top level. The distinction between these

Block-Level Verification 115

levels of abstraction is not a consequence of the coverage approach, but comes
from the verification of hierarchical designs. In this methodology single hard-
ware blocks, that might have been reused from former designs, are verified first
before reasoning about the behavior of the complete circuit. All experiments
that are reported have been carried out on an AMD Athlon XP 2800+ with
1 GB main memory under the Linux operating system. In the following, we
first give some basic data of the CPU.

RISC CPU

In Figure 4.30 the main components of the RISC CPU are shown.
The CPU is designed as a Harvard architecture. The data width of the pro-

gram memory and the data memory is 16 bit. The size of the program memory
is 4 kByte and the size of the data memory is 128 kByte. The length of an
instruction is 16 bit. We only briefly describe the five different classes of in-
structions in the following:

6 load/store instructions (movement of data between register bank and data
memory or I/O device, loading of a constant into high- or low-byte of
register)

8 arithmetic instructions (addition/subtraction with and without carry, left/
right rotation and shift)

8 logic instructions (bit by bit negation, bit by bit exor, conjunction/disjunc-
tion of two operands, masking, inverting, clearing and setting of single bits
of an operand)

M
U
X

0

1

M
U
X

0

1

enable
write

PC
reset
load enable

data

data

ALU

ALU select

=0

=0

write enable

write
enable

enable
write

H L

program counter

control unit

clock

clock

clock

memory
program

C

register bank

address

instruction

read
address A
read
address B
write
address
write

read
data A

read
data B

clock

status register

data memory

clock

address

write
data

C

read
data

Figure 4.30. Structure of the RISC CPU including data and instruction memory

116 QUALITY-DRIVEN SYSTEMC DESIGN

5 jump instructions (unconditional jump, conditional jump, jump on
set/cleared carry or zero flag)

5 other instructions (stack instructions push and pop, program halt, subrou-
tine call, return from subroutine)

The overall design has a size of approximately 22,000 gates and includes
about 1,700 state bits.10

Block-Level Verification

In order to guarantee the correct behavior of the RISC CPU, it is verified us-
ing BMC. In a first step, for each of the hardware blocks it is checked, whether
the input/output behavior of the implemented circuit matches the specification.
Therefore a number of properties has been formulated in PSL.

As the program counter (PC) will serve as an example, it is described first.
Figure 4.31 shows the PC with all its inputs and outputs.

The PC has an internal 11 bit register pc which holds the current program
address. The address is shown at the output pcout, while the output pcinc
shows the current address increased by 1. The PC is reset to address 0 by setting
the input reset to 1. If the load enable input le is set to 1, the PC is loaded
with the address from input din. Otherwise it is increased by 1 in every cycle
if the PC is enabled, which means that the enable input en is set to 1.

In Figure 4.32 some of the properties for the PC can be seen. The first prop-
erty RESET checks the correct behavior after a reset. The second property INC
checks that the PC is increased if it is enabled, there is no reset, there is no load,
and if the end of the address space has not been reached yet. The third property
LOAD checks the load functionality of the PC.

pcout

clock

en
reset

din

le

pcincPC

Figure 4.31. Program counter

10In the verification model the data and instruction memories have been reduced to 64 and 32 words, re-
spectively. This is done for complexity reasons since otherwise the corresponding SAT instances become
too large if the complete memories are included. Technically, the descriptions of both memories can be
easily scaled down by resizing the respective array sizes and ignoring the higher bits of the addresses.

Block-Level Verification 117

1 property RESET =
2 always (
3 r e s e t == 1
4) −> (
5 next (p c o u t == 0 && p c i n c == 1)
6) ;
7
8 property INC =
9 always (

10 r e s e t == 0 && l e == 0 &&
11 pc < 2047
12) −> (
13 next ((prev (en) == 1) ?
14 (p c o u t == prev (pc) + 1) :
15 (p c o u t == prev (pc))
16)
17) ;
18
19 property LOAD =
20 always (
21 r e s e t == 0 &&
22 l e == 1
23) −> (
24 next (
25 (prev (en) == 1) ?
26 (p c o u t == prev (d i n)) :
27 (p c o u t == prev (pc))
28)
29) ;

Figure 4.32. Properties for the program counter

For all hardware blocks of the CPU properties have been specified in a
similar way. In Table 4.8 the results of the block-level verification are shown.
The first column gives the name of the hardware block. The second column
provides the number of properties that have been written for the respective
block. In the last two columns the total CPU time for the verification and
the maximal used memory during the verification are given. As can be seen,
the verification can be carried out very fast using BMC.

Block-Level Coverage

Coverage Analysis. If all properties hold, the coverage check can be per-
formed in a next step. Following the approach described in Section 4.4.2, for
each single output of each hardware module it is checked, whether its behavior
is specified unambiguously by the properties. Therefore a coverage property is
generated for each output.

118 QUALITY-DRIVEN SYSTEMC DESIGN
Table 4.8. Costs of block-level verification

Block #p CPU time (s) Max. mem (MB)

ALU 18 4.30 15
Program memory 2 1.21 21
Data memory 2 4.52 41
Register bank 5 1.22 15
Program counter 4 0.10 8
Stack pointer 6 0.09 8
Control unit 19 0.23 8

1 property PCOUT_COV =
2 / / @inser tMuxF orS igna l : p c o u t s e l e c t
3 always (
4 / / RESET
5 ((r e s e t == 1) ?
6 (next (
7 p c o u t == 0 && p c i n c == 1
8)) : 1) &&
9

10 / / INC
11 (((r e s e t == 0) && (l e == 0) &&
12 (pc < 2047)) ?
13 (next (
14 (prev (en) == 1) ?
15 (p c o u t == prev (pc) + 1) :
16 (p c o u t == prev (pc))
17)) : 1) &&
18
19 / / LOAD
20 (((r e s e t == 0) && (l e == 1)) ?
21 (next (
22 (prev (en) == 1) ?
23 (p c o u t == prev (d i n)) :
24 (p c o u t == prev (pc))
25)) : 1) &&
26
27 s e l e c t == 1
28) −> (
29 next (s e l e c t == 1) / / c o v e r e d ?
30) ;

Figure 4.33. Coverage property for the program counter

Figure 4.33 shows the coverage property for the output pcout of the PC.
In line 2 the multiplexor needed for the coverage check is inserted using the
already described special command. The original output pcout is replaced by

Block-Level Verification 119

le

reset

select

0 2047pcout_orig_not

2047 2047pcout

0 1 2

en

2047 0pcout_orig

Figure 4.34. Counter-example for program counter coverage

the multiplexor construct – consisting of a multiplexor for each output bit – and
is renamed to pcout orig. Now the original value pcout orig is routed
to the output pcout iff the signal select is set to 1. Thus, all properties
that use pcout are now treating the output of the multiplexers instead of the
originally considered output (see also Figure 4.21). In lines 4 to 25 the original
properties are assumed. Furthermore, it is assumed that at time point 0 the
select signal is set to 1 (line 27), and thus we are dealing with the original
value of the circuit on output pcout at time point 0.

Under these assumptions we want to prove that the select signal has to be 1
at time point 1 as well (line 29), meaning that the output is determined in any
case. It appears that the coverage property fails. Figure 4.34 shows a counter-
example that has been generated by the verification tool. From the trace it can
be concluded which scenario has not been specified by the properties discussed
in the previous section. As can be seen in the figure, none of the properties
covers the case that the PC is enabled, there is no reset or load, and the PC
points to the end of the address space.

At the same time, the trace gives information on the actual behavior of the
circuit in the unregarded case. Signal pcout orig gives the original value of
pcout. Obviously, the PC starts over at address 0 when it exceeds the highest
possible address.

Before closing this gap we present the results of the coverage analysis phase
in Table 4.9. In the same way every hardware block of the CPU is checked
based on the coverage approach. The first column of Table 4.9 gives the name
of the module. In the second column the number of generated coverage prop-
erties is provided. Column cov reports whether all outputs were covered. If
not, the last column provides the solution. As can be seen we found three
gaps in total. The details on closing these gaps and gaps in general are dis-
cussed next.

120 QUALITY-DRIVEN SYSTEMC DESIGN

Table 4.9. Results of coverage analysis

Module # p Cov Solution

ALU 17 No Added property
Program memory 2 Yes –
Data memory 2 Yes –
Register bank 4 Yes –
Program counter 3 No Excluded states
Stack pointer 3 No Excluded states
Control unit 19 No Added 2 properties, excluded states

Closing the Gap. If a gap is found using the presented coverage approach,
there are different ways how to deal with it. It is possible that the verification
engineer has in fact forgotten to check a certain scenario. In this case the prop-
erties have to be completed until coverage is achieved. For the RISC CPU we
found that the properties for the ALU did not specify the value of the carry
bit in case of a logical operation. Therefore, we added an according prop-
erty. In the same way we had to add two properties in order to cover the
behavior of the control unit in terms of our approach (see Table 4.9). For ex-
ample it was not properly specified how the I/O interface behaves during a
reset.

It is also possible that some scenarios have been left out intentionally, possi-
bly because the specification itself is incomplete. In this case the assumptions
of the coverage property can be extended to exclude these states explicitly. Re-
ferring to the block-level coverage analysis example, the specification did not
define the behavior of the PC at the end of the address space. It is left to the
programmer of the CPU to avoid an address overflow. This is expressed by ex-
cluding the state 2047 in the coverage property. Thereby, the program counter
was fully covered. In Table 4.9 this procedure is denoted as “excluded states”.
As can be seen in the table, three harmless gaps have been found. For example
one of the gaps in the control unit was related to inactive parts of the data path.
In these cases the coverage was completed by excluding the respective states
directly in the coverage properties.

In total by the presented coverage approach we found three coverage
gaps. Following the described steps we achieved full coverage on the block-
level.

Computation Costs. To compare the effort for verification and coverage the
results of the final full coverage proof for each block are shown in Table 4.10.
The first column gives the name of the hardware block. In the second column
the number of outputs are given that have been checked for coverage in the

Block-Level Verification 121

Table 4.10. Costs of block-level coverage

Block #o CPU time (s) Mem (MB)

ALU 3 10.72 30
Program memory 1 1.33 23
Data memory 1 3.52 38
Register bank 2 0.48 17
Program counter 2 0.05 9
Stack pointer 1 0.04 8
Control unit 24 0.06 9

Table 4.11. Costs of instruction set verification

Category #p CPU time (s) Max. mem (MB)

Load/store 6 86.98 94
Arithmetic 8 676.44 144
Logical 8 51.25 79
Jump 5 13.79 69
Other, reset 6 22.95 80

respective block. The last two columns show the run-time and the memory
needed for the coverage check. As can be seen the run-times and memory
requirements for coverage check and verification (see above) are in the same
order of magnitude.

Top-Level Verification

Based on the successful verification of all involved hardware blocks, the in-
struction set of the RISC CPU is formally verified. A property has been formu-
lated for each of the 32 instructions that checks if the effects of the instruction
meet the specification. Typically, these properties affect all of the hardware
blocks.

We only summarize the results of the verification, see Table 4.11. A
detailed presentation for the ADD instruction can be found in the context
of the HW/SW co-verification approach in the next chapter in Example 5.4
(Section 5.2.3). The first column gives the category of the verified instructions.
The number of properties for the respective category can be found in the sec-
ond column. The last two columns give the total run-time and the maximum
memory needed during verification. Note that for the considered design the
time interval of most of the properties is [0, 1]. Thus, the model has to be
unrolled for two time steps.

122 QUALITY-DRIVEN SYSTEMC DESIGN

Top-Level Coverage

Coverage Analysis. In contrast to block-level verification the properties for
the instructions of the RISC CPU do not consider single outputs or signals. In
fact the instruction set verification involves different hardware blocks and their
communication. Therefore, the notion of coverage at this level is not as clear as
for single hardware blocks. Obviously it is not sufficient to prove the coverage
of the outputs of the CPU because the input/output interface is only affected by
few instructions. To be sure that the properties form a complete specification
of the circuit’s behavior, the state holding elements have to be considered as
well. If all state bits of the circuit are uniquely determined at any point in time,
its behavior is fully covered in terms of our approach. We justify this approach
by the fact that the circuit is equivalent to an FSM and by covering all state
bits we describe the transition function in a unique way. Note that for the RISC
CPU most of the outputs of a block become a next state input of a state element
at the top-level.

As an example the status bits of the RISC CPU are considered – the zero
flag and the carry flag indicate the result of the last logical or arithmetic oper-
ation, respectively (see also Figure 4.30). Among the properties, for top-level
verification there are 32 properties for the instructions and a reset property.
In order to achieve full coverage with this partitioning of the properties, ev-
ery property has to define the value of the status bits, regardless whether the
respective instruction changes the flags or not.

As an example consider the property for the jump instruction in Figure 4.35.
It states that whenever there is no reset (line 6) and the current instruction is
a JMP (line 7), then the program counter is set to the target address in the
next cycle (line 11). This obviously describes the correct behavior of the jump
instruction. However, in order to achieve full coverage the property must also
specify what the jump instruction does not do. This is expressed in lines 14
to 21 which state that in the next cycle the status bits and the content of the
registers remain unchanged.

As a consequence, all properties have to be assumed in the coverage prop-
erty for the status bits. In this way, a large monolithic property is generated
including all instructions. It could be proved that under all circumstances
the value of the status bits is unambiguously defined by the instruction set
properties.

Table 4.12 gives the results of the top-level coverage analysis. The first col-
umn shows the state bits and signals that have been tested for coverage. The
second column reports whether the initial coverage check has been successful
or not. In the latter case the solution to reveal the coverage gap is shown in
the last column. As can be seen, we found some gaps in the coverage of the
remaining state bits and the global outputs of the I/O interface. The steps taken
to close these gaps are discussed in the next section.

Block-Level Verification 123

1 a s s i g n OPCODE = i n s t r . r a n g e (1 5 , 1 1) ;
2 a s s i g n DEST = i n s t r . r a n g e (1 0 , 0) ;
3
4 property JMP =
5 always (
6 r e s e t == 0 &&
7 OPCODE == " 11110 "
8) −> (
9

10 / / jump t o t a r g e t a d d r e s s
11 next (pc . pc == DEST) &&
12
13 / / no s i d e e f f e c t s
14 next (
15 (s t a t . C == prev (s t a t . C)) &&
16 (s t a t . Z == prev (s t a t . Z)) &&
17 (r e g . r e g [0] == prev (r e g . r e g [0])) &&
18 (r e g . r e g [1] == prev (r e g . r e g [1])) &&
19 [. . .]
20 (r e g . r e g [7] == prev (r e g . r e g [7]))
21)
22) ;

Figure 4.35. Property for the jump instruction

Table 4.12. Results of top-level coverage

Signal Cov Solution

Carry bit Yes –
Zero bit Yes –
Stack pointer No Adopted properties, excluded states
Program counter No Adopted properties
Constant register Yes –
General purpose register No Excluded states
I/O signals No Added property

Closing the Gap and Property Style. As for the block-level coverage
discussed before there are different solutions for the gaps on top level. To
achieve full coverage for the state holding elements of the program counter
and the stack pointer, most of the instruction set properties had to be adopted to
the style already mentioned in the previous section. For all instructions except
jump and conditional branches we had to specify that the program counter
increases by one. Similarly, we specified that all instructions except push, pop
and subroutine calls do not change the stack pointer.

124 QUALITY-DRIVEN SYSTEMC DESIGN

Table 4.13. Costs of top-level coverage

Signal CPU time (s) Mem (MB)

Carry bit 54.04 105
Zero bit 38.58 96
Stack pointer 4.40 88
program counter 4.42 88
Constant register 4.16 87
General purpose register 1,771.16 166
I/O signals 4.62 88

For the coverage of the stack pointer we excluded the states that correspond
to a stack overflow or underflow, respectively. This has been done because the
specification did not define the behavior for these cases, so it is left to the
programmer to avoid these situations.

As the I/O signals are only affected by two instructions, we decided to define
a new property that states that the I/O interface is in an idle state unless one
of these two instructions is performed. After these changes we achieved full
coverage on top level in terms of our approach.

Computation Costs. The costs for the final top-level coverage analysis are
shown in Table 4.13. For most of the signals the coverage check could be car-
ried out very fast. Most effort is spent for the status bits and the general purpose
registers. However, the coverage proofs for the carry bit and the zero bit were
still faster than some particular instruction set properties. Only the check for
the registers required a significantly higher run-time. We assume that this is
due to the fact that the instructions perform many different logical and arith-
metic operations on the registers which have to be taken in account during the
coverage check.

In summary, we have shown that the complexity to prove functional cover-
age is manageable with our approach. This is possible by breaking down the
overall problem into several block-level and top-level proofs. Thereby each
single proof in turn is carried out using BMC.

4.4.4 Discussion
In this section we discuss the contributions of the proposed approach. We

show how the formal verification flow is improved using our method. The en-
hanced formal verification flow is illustrated in Figure 4.36. Note that the new
parts of the flow are indicated in dashed lines. Starting from the specifica-
tion the design is implemented. In parallel properties are formulated to prove
that the design meets the specification using BMC. Based on the verification

Block-Level Verification 125

Textual specification

Implementation Properties

BMC Coverage
check

ok

change
implementation

design bug

add property

review
specification

done

Figure 4.36. Enhanced verification flow

results the implementation is changed until the properties hold. In contrast to
the traditional formal verification flow now a coverage check can be performed
fully automated. If all properties cover the entire behavior of the design in
terms of the coverage approach, then the properties form a complete and unam-
biguous specification of the design. This complete verification can be achieved
stepwise by closing all coverage gaps that are being revealed by the approach.

Whenever a coverage check fails and a counter-example is generated for the
uncovered scenario, the verification engineer has to decide whether the gap has
to be considered harmless. The counter-example provides information on the
actual behavior of the circuit in the uncovered scenario. If the behavior does
not meet the specification, then there is a bug in the design. If the behavior
conforms to the specification, then there is a coverage gap and the verification
has to be completed by adding a property.

But it is also possible that the specification itself is incomplete and the ver-
ification engineer has left out certain scenarios intentionally. Another reason
might be that the verification engineer only wants to check that a certain subset
of all possible scenarios is covered by the properties. In these cases the un-
specified scenarios can be excluded from the coverage check by an additional
assumption in the coverage property. After handling of the gap the algorithm
has to be rerun.

In any case the approach provides valuable feedback for the verification
engineer and enables him/her to reason about the uncovered scenarios. In this
way it supports design understanding and helps to improve the quality of the
verification.

126 QUALITY-DRIVEN SYSTEMC DESIGN

4.5 Summary and Future Work
For block-level verification improved property checking, automatic

antecedent debugging and formal coverage analysis were considered in de-
tail in this chapter.

At first, a property checking approach based on a variant of BMC has been
introduced. To prove a property for a SystemC description the description is
unrolled and together with the property converted into a SAT instance. The
advantages of the approach have been shown in experiments. Since property
checking is applied in an iterative way, i.e. often the assumptions in a property
are stepwise weakened, a technique to accelerate the corresponding SAT proofs
has been developed. For different examples a significant speed-up has been
documented.

Next, an automatic debugging approach for a contradictory antecedent in
property checking has been proposed. This situation occurs if the verification
engineer checks sophisticated scenarios. The introduced approach distin-
guishes between a contradiction solely caused by the antecedent and contra-
dictions that result from the antecedent and the design. As a result all minimal
reasons are computed. Hence, the manual debugging process is replaced by an
automatic method which reduces the debugging time significantly.

Finally, the presented block-level verification techniques are complemented
by an approach to guarantee the verification quality. The proposed method an-
alyzes functional coverage in property checking. This allows to automatically
identify uncovered scenarios (so-called coverage gaps), i.e. scenarios where
non of the specified properties define the behavior of the considered output
unambiguously. After closing all of the gaps the highest possible verification
quality is obtained since the behavior of the design is determined under all
circumstances.

Directions for future work include the derivation of word-level information
to further speed up the proofs. First general steps have been made already in
this direction (see e.g. [WFG+07, SKW+07]) but the specific properties of
SystemC have to be investigated. Furthermore, for the acceleration approach
of iterative property checking as well as for the antecedent debugging approach
UNSAT cores can be exploited. Another important research direction is prop-
erty checking at the top level and system level, respectively. While proving
properties at the top level needs better scalability of the proof techniques, prop-
erty checking at the system level requires deriving suitable formal models as
well as devising new high level verification methods. First steps to specify
properties at the system level without relating expressions at clock cycles have
been published recently [TVKS08]. Besides this, also methods to analyze cov-
erage for such approaches have to be investigated.

Altogether the described verification techniques and the complementing for-
mal coverage check allows to deliver a high quality system at the block level.

Block-Level Verification 127

Particularly, in the proposed quality-driven design and verification flow the
achieved result of 100% correct blocks builds the foundation for the follow-
ing verification tasks that are considered in the next chapter: techniques are
presented to bridge the gap between the block level and the system level,
i.e. the communication of the completely verified blocks is the focus of top-
level verification.

Chapter 5

TOP-LEVEL VERIFICATION

D. Große and R. Drechsler, Quality-Driven SystemC Design, 129
DOI 10.1007/978-90-481-3631-5 5, c© Springer Science+Business Media B.V. 2010

After complete formal verification at the block level – based on the
techniques presented in the previous chapter – this chapter addresses the veri-
fication at the top level. The top-level verification task is required since large
systems cannot be handled completely by formal methods due to complexity
reasons. Thus, as introduced by the proposed design and verification flow,
block-level verification is carried out first and then top-level verification starts
on top of the high quality result, i.e. 100% correct proven blocks. Hence, the
techniques that are presented in the following focus on the verification of the
communication between the proven blocks.

The parts of the proposed design and verification flow that are covered here
are depicted in Figure 5.1. In black the top-level parts are shown whereas in
light gray the dependencies to the system level and the block level are illus-
trated, respectively. The dependencies are explained below when the respective
top-level task is described.

First, in Section 5.1 an approach for checker generation is introduced.
The basic idea is to embed properties directly into the top-level SystemC
description after appropriate transformations have been carried out. Then, the
embedded properties are checked during simulation at the top level. Especially
properties for communication between different blocks are verified using this
approach. In Figure 5.1 this verification task is denoted as checker generation.
As can be seen for ensuring the verification quality the coverage check at the
system level is used. Besides simulation, the checkers are also synthesizable
and can be utilized for on-line tests after fabrication. The approach has been
published in [GD04, DG05].

In addition to checker generation also formal verification at the top level
is investigated for a special class of systems. For embedded systems a for-
mal hardware/software co-verification approach is presented in Section 5.2.

130 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 5.1. Top-level parts of enhanced SystemC design and verification flow

The approach is based on BMC and the formal coverage check to ensure ver-
ification quality (see Chapter 4). Besides correctness proofs of the underlying
hardware, the hardware/software interface and programs using this interface
can be formally verified. The method is shown in Figure 5.1 as the task for-
mal HW/SW co-verification. Parts of the results have published in [GKD05a,
GKD05b, GKD06].

5.1 Checker Generation
Besides formal verification of the SystemC blocks as described in the previ-

ous chapter, their mutual communication has to be checked. This verification
task has to be performed at the top level.

There are several approaches for top-level verification which are based on
assertions (for an overview see e.g. [FKL03]). The key idea is to describe ex-
pected or unexpected behavior directly in the device under verification. These
conditions are checked dynamically during simulation.

To validate properties of SystemC transaction level models a language ex-
tension of System Verilog Assertions has been proposed in [EEH+06]. The
respective implementation using proxies has been described in [EES+07]

Top-Level Verification 131

and does not focus on temporal properties. An approach to check temporal
assertions for SystemC has been presented in [RHKR01]. There, the speci-
fied properties are translated to a special kind of finite state machines (AR-
automata). These automata are then checked during the simulation run by
algorithms, which have been integrated into the SystemC simulation kernel.
In contrast, in [Dre03] a method has been proposed to synthesize properties
for circuits into hardware checkers. Properties which have been specified for
(formal) verification are directly mapped onto a very regular hardware layout.

Following the latter idea in this section a method is presented which allows
checking of temporal properties for circuits and systems described in SystemC
not only during simulation. A property is translated into a synthesizable Sys-
temC checker and embedded into the SystemC description. This enables the
evaluation of the properties during the simulation and after fabrication of the
system. Furthermore, the properties are specified in the standardized Prop-
erty Specification Language (PSL). Of course, with this approach a property
is not formally proven and only parts of the functionality are covered. But the
proposed method is applicable to large circuits and systems and supports the
checking of properties in form of an on-line test. This on-line test is applicable,
even if formal approaches failed due to limited resources.

The remaining part of this section is structured as follows: Section 5.1.1
describes the concepts and the translation of a PSL property into a checker cir-
cuit. Then, Section 5.1.2 introduces the transformation into a SystemC checker.
Experimental results demonstrating the advantages of the approach are given
in Section 5.1.3.

5.1.1 Generation of a Checker from a Property
At first the basic idea of the translation of a property into a checker is illus-

trated by the following example.

Example 5.1 Consider the PSL property shown in Figure 5.2. For the prop-
erty test it has to be checked that whenever signal x is 1, two time frames
later y has to be 2. This is equivalent to ¬(x′′ = 1) ∨ (y = 2), if x′′ is x
delayed by two clock cycles. If the equation evaluates to false the property is
violated. Obviously the translation of the property can be expressed in SystemC

1 property t e s t = always (
2 x == 1
3) −> (
4 next [2] (y == 2)
5) ;

Figure 5.2. Example PSL property

132 QUALITY-DRIVEN SYSTEMC DESIGN

=

=

1
x

y
2

Figure 5.3. Shift register and logic for property test

based on shift registers and additional logic representing the relations of the
specified signals. The basic idea of a possible hardware realization is shown
in Figure 5.3. If the output of the OR gate is 0 the property fails.

In general the translation of a property works as follows: Let p be a property
which consists of the antecedent A and the consequent C . We separate the an-
tecedent and the consequent into the respective sub-expressions at the logical
AND level, i.e. A = A1∧A2∧ . . .∧Am and C = C1∧C2∧ . . .∧Cn. Further-
more, we assume that the temporal operators next_a[a .. b] and next_e[a .. b]
are used only as a prefix of Ai or Cj . Then, the translation algorithm is based
on four steps:

1. Determine the maximum time point tmax of the property by analyzing the
time points defined by sub-expressions Ai and Cj . Thereby, also nested
utilization of the next[i] operator within the temporal operators next_a[a .. b]

and next_e[a .. b] is taken into account.

2. For each signal used in p generate a shift register of length tmax. Then,
the values of a signal at time points 0, 1, . . . , tmax are determined by the
outputs of the flip-flops in the corresponding shift register. Time point i can
directly be identified with the ith flip-flop, if the flip-flops are enumerated
in descending order. This is illustrated in Figure 5.4.

3. Combine the signals of each Ai (and Cj) as stated by the logic operations
in their expressions. Thereby the variables of the appropriate time points
are used. In case of the temporal operators next_a[a .. b] and next_e[a .. b] an
AND and an OR of the resulting expressions is computed, respectively.
The results of this step are the equations Â1, . . . , Âm and Ĉ1, . . . , Ĉn

corresponding to the antecedent and consequent of p, respectively.

4. The final equation for the property p is checkp = ¬
m
∧

i=1
Âi ∨

n
∧

j=1
Ĉj .

All described transformations from the property into the resulting equation
checkp have to be performed by using SystemC constructs, i.e. the use of dif-
ferent data types and operators has to be incorporated. Finally, the property p

Top-Level Verification 133

tmax max−1t

s

t

u

0

Figure 5.4. Mapping of time points

can be checked by evaluating checkp in each clock cycle during simulation or
operation. In the next section the work flow and details about the transforma-
tion into SystemC code are given.

5.1.2 Transformation into SystemC Checkers
The work flow of the proposed approach is shown in Figure 5.5. At first the

design has to be built and the specification has to be formalized into properties.
Then, the properties are translated to checkers and embedded into the design
description (shaded area in the figure). If all checkers hold during simulation
the next step of the design flow can be entered. Otherwise the design errors
have to be fixed or the properties have to be adjusted.

A property is assumed to use only port variables and signals of a fixed Sys-
temC module or from its sub-modules. During the translation for the variables
of the properties shift registers have to be created as has been described in the
previous section (step 2). For this purpose a generic register as shown in Figure
5.6 has been modeled. The register delays an arbitrary data type for one clock
cycle. The data type is specified as a template parameter (see line 1). If such a
templated register is not directly supported by the synthesis tool, it is possible
to replace every templated register with a version where the concrete input and
output types are explicitly specified. The generic register can be used as shown
in the example in Figure 5.7. There a register with an sc int<8> input and
output is declared and instantiated.

134 QUALITY-DRIVEN SYSTEMC DESIGN

SystemC
design

Specification

Properties

Translation

Synthesis

Simulation
fails

ok

Figure 5.5. Work flow for checker generation

1 template < c l a s s T >
2 c l a s s regT : p u b l i c sc_module {
3 p u b l i c :
4 s c _ i n _ c l k c l o c k ;
5 sc_ in <T > i n ;
6 sc_ou t <T > o u t ;
7
8 SC_CTOR(regT) {
9 SC_METHOD(d o i t) ;

10 s e n s i t i v e _ p o s << c l o c k ;
11 }
12
13 void d o i t () {
14 o u t = i n . r e a d () ;
15 }
16 } ;

Figure 5.6. Generic register

During the generation of the shift registers of length tmax for a variable,
tmax generic registers have to be declared and instantiated. This is done in
the constructor of the considered module. The necessary sc signals (output
variables of the registers) for the different time points are declared as member

Top-Level Verification 135

1 regT < s c _ i n t <8> > ∗ r = new regT < s c _ i n t <8> >(" r e g ") ;
2 r−>c l o c k (c l o c k) ;
3 r−>i n (a) ;
4 r−>o u t (a_d) ;

Figure 5.7. Usage of generic register

1 SC_MODULE(module) {
2 p u b l i c :
3 / / p o r t s
4 s c _ i n _ c l k c l o c k ;
5 . . .
6
7 / / s c _ s i g n a l s f o r d i f f e r e n t t i m e p o i n t s
8 s c _ s i g n a l <T> x_d1 , x_d2 ;
9

10 SC_CTOR(module) {
11 / / s h i f t r e g i s t e r
12 regT <T > ∗ rx_d1 = new regT <T >(" r e g _ r x _ d 1 ") ;
13 rx_d1−>c l o c k (c l o c k) ;
14 rx_d1−>i n (x) ;
15 rx_d1−>o u t (x_d1) ;
16 regT <T > ∗ rx_d2 = new regT <T >(" r e g _ r x _ d 2 ") ;
17 rx_d2−>c l o c k (c l o c k) ;
18 rx_d2−>i n (x_d1) ;
19 rx_d2−>o u t (x_d2) ;
20 . . .
21 }
22 } ;

Figure 5.8. Insertion of a shift register for property test

variables of the considered module. Their names are produced by adding the
number of delays to the variable name. The absolute time points cannot be
used, because if a variable is employed in at least two properties the delay of
the same time points may differ.

Example 5.2 Consider again Example 5.1. Let the data type of x be T. Let
the property test be written for the SystemC module module. As has been
explained above, x has to be delayed two times. Then, the resulting shift regis-
ter is inserted into the module as shown in Figure 5.8.

As can be seen in Figure 5.8 the data type of a variable used in a property
has to be known for declaration of the sc signals and shift registers. Thus,
with a simple parser the considered SystemC module is scanned for the data
types of the property variables.

136 QUALITY-DRIVEN SYSTEMC DESIGN

1 / / p r o p e r t y : t e s t
2 bool c h e c k _ t e s t = ! (x_d2 . r e a d () == 1) | | (y . r e a d () == 2) ;
3 i f (c h e c k _ t e s t == f a l s e) {
4 c o u t << "@" << s c _ s i m u l a t i o n _ t i m e () ;
5 c o u t << " : PROPERTY t e s t FAILS ! " << e n d l ;
6 }

Figure 5.9. Checker for property test

The resulting code to check a property (equivalent to equation checkp) is
embedded into an SC METHOD process of the module, which is sensitive to
the module clock, i.e. the process is triggered every clock cycle. In the final
step of generating SystemC code for the translated property the following is
taken into account:

The shift register for each variable used in a property is shared between
different checkers.

In case of an array access it has to be distinguished between an access to
an array of ports and an access to a port which contains an array type.
An array of ports is mapped onto different variables each representing a
different index of the array. Furthermore, the access operator [] has to be
replaced accordingly.

The resulting checker formula is assigned to a Boolean variable check
<property name>. If this variable becomes false during simulation the
property is violated and a message is produced using cout. For the syn-
thesis part an output port for the considered module has to be generated,
which assumes zero if the property fails.

Example 5.3 In Figure 5.9 the translated equation check test for the
property test is shown. If the property fails, this is prompted directly to the
verification engineer.

Optimizations

All shift registers for different properties of one concrete module which are
driven by the same clock, can be integrated into one clocked process. Then, in
the constructor SC CTOR of the module instead of the shift registers only one
clocked process has to be declared. In this process the according output vari-
ables are written, e.g. in case of the property test the process statements are:

x d1.write(x); x d2.write(x d1);

So the number of SC METHODs is reduced and the simulation speed increases
(see also Section 5.1.3).

Top-Level Verification 137

As has been explained in the previous section if the checkers are synthesized
one-to-one for each property an output port is generated, which takes the value
zero if the property fails. This leads to a trade-off between good diagnosis and
number of output pins. Diagnosis is easy if each property directly corresponds
to an output pin, while many output pins require more chip area.

5.1.3 Experimental Results
The technique described above has been experimentally studied. For this

task a bus architecture has been modeled. In Figure 5.10 a block diagram of
the bus architecture is shown.

The bus is described as a SystemC module, and masters and slaves can
connect to the bus. The bus is divided into a data part, an address part and
a flag part. These are all sc inout-ports and they are of type sc uint with
a scalable size to allow for variable data width, number of slaves, and num-
ber of masters. The address is used by the masters to address a slave. The
flags send flag and recv flag are set during a bus transaction (see be-
low). Furthermore the bus contains a scalable arbiter. Thus the bus also has
a request input and an acknowledge output for each master. The arbiter con-
sists of n cells (one for each master) and combines priority arbitration with a
round robin scheme. This guarantees that every master will finally get access
to the bus.

Summarized, the features of the bus are
Only masters can write to the bus and each master has a unique id.

A slave has a unique address. This address is given at instantiation of
the slave.

ack_out
req_in

Arbiter

Master 1

Slave 1

data, address
send_flag
recv_flag

Figure 5.10. Bus architecture

138 QUALITY-DRIVEN SYSTEMC DESIGN

Figure 5.11. Simulation trace of a bus example

A bus transaction works as follows:

1. A master requests the bus via its request output. If access is granted see
step 2, otherwise the master waits for an acknowledgment.

2. The master writes the target address and the data to the bus. Further-
more, the master writes its id to the send flag. Then, the master
waits for an acknowledge that the slave has received the data via the
recv flag (id of the master at the recv flag).

3. If a slave detects its address on the bus, the slave reads the data and
writes the id from the send flag to the recv flag of the bus.

4. If the master detects its id on the bus, the data transmission was suc-
cessful.

A waveform example of a bus with five masters and eight slaves is shown in
Figure 5.11.

Checkers

In the following an informal description of the properties is given, that have
been embedded as checkers into the bus module:

1. Two output signals of the arbiter can never become 1 at the same time
(mutual exclusion).

2. The acknowledge is only set if there has been a request (conservativeness).

Top-Level Verification 139

3. Each request is confirmed by an acknowledge within 2 · n time frames
(liveness).

4. If the bus has been granted for a master, the master writes its id to the
send flag in the next cycle (master id).

5. If a slave has been addressed, the slave writes the master id (available at the
send flag) to the recv flag (acknowledge master).

Simulation Results

All experiments have been carried out on an Intel Pentium IV 3 GHz with
1 GB of main memory running Linux. Checkers have been generated for all
described properties (see previous section). In the following for each property
the simulation performance in case of no checkers, the simple approach, and
the optimized approach are compared. For this task the bus model has been
simulated for 100,000 clock cycles for a different number of masters. Note that
the number of masters connected to the bus is equal to the number of arbiter
cells. For the checkers described above we obtained the following results:

1. In Figure 5.12 the performance comparison for the checker mutual exclu-
sion is shown. As can be seen the simulation time for the simple and the
optimized approach increases with the number of masters. Both approaches
behave similar since the property interval of the mutual exclusion prop-
erty considers only one time point, so no registers have to be created. For
this reason no optimization is possible. The total run-time overhead of up

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

ti
m

e
(C

P
U

 s
ec

on
ds

)

number of masters

no checker
simple

optimized

Figure 5.12. Comparison of simulation performance for checker mutual exclusion

140 QUALITY-DRIVEN SYSTEMC DESIGN

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

5 10 15 20 25 30 35 40 45 50

tim
e

(C
P

U
 s

ec
on

ds
)

number of masters

no checker
simple

optimized

Figure 5.13. Comparison of simulation performance for checker conservativeness

to the factor of 2.5 in Figure 5.12 is due to the quadratic nature of the
mutual exclusion property, i.e. each pair of distinct acknowledge signals is
accessed in the property.

2. The simulation performance with and without the checkers for the conser-
vativeness properties is nearly identical (see Figure 5.13). This is an ex-
pected behavior, because each conservativeness property only argues over
two signals of each arbiter cell.

3. In Figure 5.14 the results for the liveness checkers are depicted. The run-
time overhead compared to pure simulation is due to the significantly in-
creasing size of the time interval of the liveness properties, i.e. the size is
2 · n, where n is the number of masters. As can be seen the optimized ap-
proach leads to better results than the simple approach because the number
of SC METHODs has been reduced effectively by optimization.

4. The results for the checkers of master id show that there is a small benefit
of the optimized approach over the simple approach (see Figure 5.15). In
total these properties can be checked during simulation very fast.

5. As expected the acknowledge master property leads to the same perfor-
mance as pure simulation, because this property only relates two time
points, i.e. the time interval of the property is [0, 1]. Figure 5.16 shows the
diagram.

Top-Level Verification 141

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

5 10 15 20 25 30 35 40 45 50

ti
m

e
(C

P
U

 s
ec

on
ds

)

number of masters

no checker
simple

optimized

Figure 5.14. Comparison of simulation performance for checker liveness

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

5 10 15 20 25 30 35 40 45 50

ti
m

e
(C

P
U

 s
ec

on
ds

)

number of masters

no checker
simple

optimized

Figure 5.15. Comparison of simulation performance for checker master id

The experiments demonstrate that the overhead during simulation for
properties with large time intervals is acceptable, and negligible for prop-
erties with smaller time intervals.

Overall, the presented approach enables the verification of complex com-
munication of blocks at the top level by embedding checkers directly into

142 QUALITY-DRIVEN SYSTEMC DESIGN

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

5 10 15 20 25 30 35 40 45 50

ti
m

e
(C

P
U

 s
ec

on
ds

)

number of masters

no checker
simple

optimized

Figure 5.16. Comparison of simulation performance for checker acknowledge master

the SystemC description. In the next part of this chapter a formal verification
approach is presented that takes the characteristics of embedded systems into
account.

5.2 HW/SW Co-Verification for Embedded Systems
In the last few years embedded system design has become a very impor-

tant research area and the application domains range from telecommunication
devices to automotive units. These systems not only consist of hardware com-
ponents, i.e. a large portion is realized by firmware and programs. Since these
systems are used more and more in safety-critical applications, the aspect of
verification is very important to ensure the correct functional behavior of the
system.

In the meantime hardware verification has been intensively studied and
successfully used, even though the tools sometimes suffer from limit of re-
sources. But assertion-based verification and formal approaches have ensured
high quality also for large hardware systems. This standard so far is not
achieved, if software components1 are included. For example, a study by
Collett International Research Inc. has shown that errors caused by firmware
and hardware/software interfaces account for up to 13of failures with an in-
creasing trend. To reduce this type of errors in embedded systems integrated
hardware/software verification is needed.

1In this section we consider hardware dependent software, i.e. there is a direct software to hardware corre-
spondence.

Top-Level Verification 143

A successful technique for verification of hardware is Bounded Model
Checking (BMC) [BCCZ99] (see also Section 2.3.2). BMC checks whether
a circuit satisfies a temporal property or not. Therefore, BMC reduces the
verification problem to a Boolean Satisfiability (SAT) problem and searches
for counter-examples in executions whose length is bounded by k time steps.

In this section we show that the concepts of BMC2 can also be applied
in the context of hardware/software integration. For an embedded system,
that in our context consists of digital components without analog units, com-
plete verification can be performed. This includes the underlying hardware,
interface instructions and programs based on sequences of instructions. Ar-
guing over the behavior of a program becomes possible by specifying the
corresponding sequences of instructions as assumptions in the antecedent of
the BMC property and formulating the intended behavior as goal in the conse-
quent. In total, the integrated hardware/software verification approach allows
the complete formal verification of an embedded system.

The remaining part of this section is structured as follows. We introduce the
notion of a Timed Embedded System (TES) that defines the type of embedded
system that can be verified by our approach in Section 5.2.1. Then, the inte-
grated verification approach is presented in Section 5.2.2. The verification of a
TES is divided into hardware, interface and program verification. These steps
are discussed and in each phase the application of BMC is explained. A case
study demonstrates the verification of a RISC CPU in Section 5.2.3. Follow-
ing the approach, first, the correctness of the underlying hardware is shown.
In the second step the hardware/software interface of the RISC CPU is for-
mally verified. Based on this result, assembler programs for the RISC CPU are
considered and successfully verified.

5.2.1 Co-Verification Model
Before the details on the integrated verification approach for hardware and

software are given we specify the type of embedded systems that is consid-
ered. Then, the verification steps that allow the formal co-verification of an
embedded system are explained.

Timed Embedded System

In the following we restrict ourselves to embedded systems that guarantee a
response in a fixed number of cycles. We call such a system a Timed Embed-
ded System (TES). These systems include all kinds of digital microprocessors,
e.g. specialized DSPs or RISC CPUs.

2See Section 4.1 for BMC variant used here.

144 QUALITY-DRIVEN SYSTEMC DESIGN

TES
PC

instr1
instr2

.

.

.

...

TES

instr

TES

...

HW
block

...

Hardware

HW/SW interface

Software

TES

instr3

TES
PC

instr1
instr2

.

.

.

instr3

TES
PC

instr1
instr2

.

.

.

instr3

HW
block

HW
block

Figure 5.17. TES architecture and models for verification

A simplified architecture of a TES is shown in the left part of Figure 5.17.
The hardware layer includes hardware blocks like memories, ALUs, etc. The
hardware/software interface layer defines ports and instructions for the com-
munication between software and the underlying hardware. On top, the soft-
ware layer contains the programs.

Often in the area of test or hardware verification as underlying model the
unrolled circuit is used. We apply this concept for the verification of a TES.
But here not only hardware is verified. In fact, the correctness of software
can be shown as well. Software of a TES consists of instructions that access
the underlying hardware via an interface. This allows to consider hardware,
interface and software in one integrated system view model.

In the following section these observations are explained in more detail.

5.2.2 Co-Verification Steps
Hardware

To verify the underlying hardware we directly apply BMC for all hardware
units. For each block several temporal properties are proven. The model for
formal verification of a hardware block is shown in the lower right part of
Figure 5.17. As illustrated a block is unrolled up to the size of the time interval
which depends on the timing constructs used in a property. In total the func-
tional correctness of each hardware block is verified. The completeness of the
formal verification of each hardware block is shown with the approach pre-
sented in Section 4.4. Thus, the properties form an unambiguous specification
of each hardware block. The results of this verification step are the basis for
the interface verification.

Top-Level Verification 145

Interface

The interface is viewed as a specification that exists between hardware and
software. By calling instructions of an interface, programs can communicate
with the underlying hardware. At the interface the functionality of the hard-
ware is available but the concrete hardware realization is hidden. In contrast to
hardware verification, the interface verification with BMC formulates for each
interface instruction the exact response of all hardware blocks involved. Be-
sides this, it is also assured that no side effects occur. The unrolled model only
consists of parts of the TES. In particular, in each property the considered inter-
face instruction is assumed to be executed in the first cycle (see right hand side
of Figure 5.17, middle). The objective of interface verification is to guarantee
the correctness of all interface instructions. Therefore, again the formal cov-
erage check as introduced in the previous chapter is used. Hence, all interface
instructions have to be proven since otherwise full coverage cannot be achieved
for the state holding elements at the top level which are updated by the interface
instructions. Overall, this step forms the basis for program verification.

Program

Based on instructions available at an interface a program is a struc-
tural sequence of instructions. By a combination of BMC and inductive
proofs [BC00, SSS00] a concrete program can be formally verified. Argu-
ing over the behavior of a program is possible by constraining the considered
sequence of instructions as assumptions in the antecedent of a BMC property.
Thus, the property checker “executes” the program and can check the intended
behavior in the consequent of the property. The intended behavior specified in
the consequent of the property, requires a careful consideration of the effects
of the used instructions in a program. For different example programs this is
detailed later. As a model for program verification, the TES is unrolled and
the instructions of the program under verification are assumed to be executed
next. Therefore, in the antecedent of the property it is constrained that the
instructions reside in the memory and the program counter points to the first
instruction. The upper right part of Figure 5.17 illustrates this procedure. In-
ductive reasoning is used to verify properties which describe functionality
where the upper time bound varies, e.g. this can be the case if loops are used.

In the following section the integrated verification approach is applied to a
RISC CPU.

5.2.3 Experimental Results
This section provides the basics of the RISC CPU and the SystemC model of

this CPU. Afterwards, the proposed integrated verification approach is applied
to the RISC CPU and some example programs. All experiments have been
carried out on an AMD Athlon XP 2800+ with 1 GB of main memory.

146 QUALITY-DRIVEN SYSTEMC DESIGN

Specification and SystemC Model

In Figure 5.18 the main components of the RISC CPU are shown. We use
the same RISC CPU as in Section 4.4.3. The basic data of the RISC CPU is
briefly reviewed. In addition, more details with respect to the instructions are
provided.

The CPU has been designed as a Harvard architecture. The data width of
the program memory and the data memory is 16 bit. The size of the program
memory is 4 kByte and the size of the data memory is 128 kByte. The length
of an instruction is 16 bit. We only briefly describe the five different classes of
instructions in the following:

6 load/store instructions (movement of data between register bank and data
memory or I/O device, loading of a constant into high- or low-byte of
register)

8 arithmetic instructions (addition/subtraction with and without carry, left/
right rotation and shift)

8 logic instructions (bit by bit negation, bit by bit exor, conjunction/
disjunction of two operands, masking, inverting, clearing and setting of
single bits of an operand)

5 jump instructions (unconditional jump, conditional jump, jump on set/
cleared carry or zero flag)

5 other instructions (stack instructions push and pop, program halt, subrou-
tine call, return from subroutine)

M
U
X

0

1

M
U
X

0

1

enable
write

PC
reset
load enable

data

data

ALU

ALU select

=0

=0

write enable

write
enable

enable
write

H L

program counter

control unit

clock

clock

clock

memory
program

C

register bank

address

instruction

read
address A
read
address B
write
address
write

read
data A

read
data B

clock

status register

data memory

clock

address

write
data

C

read
data

Figure 5.18. Structure of the RISC CPU including data and instruction memory

Top-Level Verification 147

Since we later consider different assembler programs a short overview
including the assembler notation for each instruction is provided in Table 5.1.
For more details on the CPU specification we refer the reader to [BDM05].
The RISC CPU has been modeled in SystemC. Details on the SystemC model
can be found in [GKG+05, Kue06]. For the RISC CPU a compiler has been
implemented which generates object code from an assembler program. This
object code runs on the SystemC model, i.e. the model of the CPU executes an
assembler program.

Table 5.1: Instructions of RISC CPU

Assembler code Description
Load/store instructions
LDD R[i], R[j] Load memory content from address R[j] into R[i]
STO R[j], R[k] Store R[k] into memory at address R[j]
LDL R[i], d Load constant d into low part of R[i]
LDH R[i], d Load constant d into high part of R[i]
IN R[i], R[j] Load data from I/O device address R[j] into R[i]
OUT R[j], R[k] Save data of R[k] to I/O device address R[j]

Arithmetic instructions
ADC R[i], R[j], R[k] Addition with carry into R[i]
SBC R[i], R[j], R[k] Substraction with carry into R[i]
ADD R[i], R[j], R[k] Addition w/o carry into R[i]
SUB R[i], R[j], R[k] Substraction w/o carry into R[i]
ROR R[i], R[j] Bitrotation right of R[j]
ROL R[i], R[j] Bitrotation left of R[j]
SHR R[i], R[j] Bitshift right of R[j]
SHL R[i], R[j] Bitshift left of R[j]

Logic instructions
NOT R[i], R[j] Bit by bit negation
XOR R[i], R[j], R[k] Bit by bit exor
OR R[i], R[j], R[k] Bit by bit or
AND R[i], R[j], R[k] Bit by bit and
MKB R[i], R[j], b Masking of bit b
INB R[i], R[j], b Inverting of bit b
SEB R[i], R[j], b Set bit b
CLB R[i], R[j], b Clear bit b

Jump instructions
JMP d Jump to address d
JC d Jump to address d, if carry is set

148 QUALITY-DRIVEN SYSTEMC DESIGN

JZ d Jump to address d, if zero-flag is set
JNC d Jump to address d, if carry is not set
JNZ d Jump to address d, if zero-flag is not set

Other instructions
PSH R[k] Push R[k] to stack
POP R[i] Pop from stack into R[i]
JS d Jump to subroutine at address d
RTS Return from subroutine
HLT Program halt

Table 5.2. Results for hardware verification

Block #p CPU time (s) Max. mem (MB)

ALU 18 4.30 15
Program memory 2 1.21 21
Data memory 2 4.52 41
Register bank 5 1.22 15
Program counter 4 0.10 8
Stack pointer 6 0.09 8
Control unit 19 0.23 8

Formal Co-Verification

For BMC of the RISC CPU the approach presented in Section 4.1 is used. In
the following the complete verification of the hardware, interface and programs
for the RISC CPU is discussed.

Hardware. Properties for each block of the RISC CPU have been formu-
lated. For example, for the control unit it has been verified which control lines
are set according to the opcode of the instruction input. Overall the correctness
of each block has been verified. Note that based on the functional coverage
approach for BMC presented in the previous chapter 100% coverage of each
hardware block is guaranteed (see Section 4.4.3). Table 5.2 summarizes the re-
sults. The first column gives the name of the considered block. Next, the num-
ber of properties specified for a block are denoted. The last columns provide
the overall run-time needed to prove all properties of a block and the maximal
used memory during verification, respectively. As can be seen the functional
correctness of the hardware blocks has been formally verified very fast with 50
properties. The required effort to ensure full coverage for each hardware block
is in the same order of magnitude (see Section 4.4.3 for the details).

Top-Level Verification 149

Interface. Based on the complete formal hardware verification of the RISC
CPU, in the next step the interface is verified. Thus, for each instruction of
the RISC CPU a property has been specified which expresses the effects on
all hardware blocks involved. Also for the verification of each instruction at
the top level of the RISC CPU the formal coverage approach from Chapter 4
has been applied (see Section 4.4.3) and hence full functional coverage was
achieved here. The fundamental verification task at the interface is illustrated
by the following example.

Example 5.4 Figure 5.19 gives details on the ADD instruction. Besides the
assembler notation also the instruction format of the ADD instruction is de-
picted. The symbol bin(i) denotes the binary encoding of the natural num-
ber i. The specified property for the ADD instruction is shown in Figure 5.20.
First of all the opcode and the three addresses of the registers are assigned
to variables (lines 1–6) which make the following property expressions eas-
ier to read. The antecedent of the ADD property is defined from line 11 to 12
and states that there is no reset (line 11), the current instruction is addition
(line 12) and the registers R[0] and R[1] are not addressed (since these registers
are special purpose registers that contain the constants zero and one, respec-
tively). Under these assumptions we prove that in the next cycle the register
R[i] (=reg . reg[prev(Ri_A)]) contains the sum of register R[j] and register
R[k] (line 17), the carry (stat .C) in the status register is updated properly
(line 16) and the zero bit (stat .Z) is set if the result of the sum is zero (line 18).
Furthermore, we prove that the ADD instruction has no side effects, i.e. the
contents of all registers which are different from R[i] remain unchanged.

Analogously to the ADD instruction the complete instruction set of the
RISC CPU is verified. Table 5.3 summarizes the results.

The first column gives the category of the instruction. In the second column
the number of properties for each category is provided. The last two columns
show the total run-time needed to prove all properties of a category and the
maximum memory needed during verification, respectively. As can be seen

Assembler notation: ADD R[i],R[j],R[k]

Task: addition of R[j] and R[k], the result is stored in R[i]

Instruction format:
15 . . . 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 bin(i) - - bin(j) bin(k)

Figure 5.19. ADD instruction

150 QUALITY-DRIVEN SYSTEMC DESIGN

1 a s s i g n OPCODE = i n s t r . r a n g e (1 5 , 1 1) ;
2 a s s i g n Ri_A = i n s t r . r a n g e (1 0 , 8) ;
3 a s s i g n Rj_A = i n s t r . r a n g e (5 , 3) ;
4 a s s i g n Rk_A = i n s t r . r a n g e (2 , 0) ;
5 a s s i g n Rj = r e g . r e g [Rj_A] ;
6 a s s i g n Rk = r e g . r e g [Rk_A] ;
7
8 proper ty ADD =
9 always (

10 / / a n t e c e d e n t
11 r e s e t == 0 && OPCODE == " 00111 " &&
12 Ri_A > 1 && Rj_A > 1 && Rk_A > 1
13) −> (
14 / / c o n s e q u e n t
15 next (
16 (r e g . r e g [prev (Ri_A)] + (65536 ∗ s t a t . C) == prev (Rj) + prev (Rk))
17 && ((r e g . r e g [prev (Ri_A)] == 0) ? (s t a t . Z == 1) : (s t a t . Z == 0))
18
19 / / no s i d e e f f e c t s
20 && ((prev (Ri_A) != 2) ? (r e g . r e g [2] == prev (r e g . r e g [2])) : 1)
21 && ((prev (Ri_A) != 3) ? (r e g . r e g [3] == prev (r e g . r e g [3])) : 1)
22 && ((prev (Ri_A) != 4) ? (r e g . r e g [4] == prev (r e g . r e g [4])) : 1)
23 . . .
24)
25) ;

Figure 5.20. Specified property for the ADD instruction of the RISC CPU

Table 5.3. Run-time of interface verification

Category #p CPU time (s) Max. mem (MB)

Load/store 6 79.70 93
Arithmetic 8 970.94 216
Logical 8 47.76 79
Jump 5 13.83 69
Other, reset 6 26.02 76

the complete instruction set of the RISC CPU can be verified in less than 20
CPU minutes. For details on the coverage analysis see Section 4.4.3.

Program. Finally, we describe the approach to verify assembler programs
for the RISC CPU. As explained, the considered programs of the RISC CPU
can be verified by constraining the instructions of the program as assumptions
in the proof. These assumptions are automatically generated by the compiler of
the RISC CPU. The verification of programs is illustrated by three case studies.

Top-Level Verification 151

Loop Unrolling. Consider the assembler program shown in Figure 5.21.
The program loads the integer 10 into register R[7] and decrements register
R[7] in a loop until it contains value 0. For this program the property count
has been formulated (see Figure 5.22). At first it is assumed that the CPU
memory contains the instructions of the given example (lines 4–7).3 Further-
more, the program counter points to the corresponding memory position (line
8), no memory write operation is allowed (line 9) and there is no reset for the
considered 22 cycles (line 10). Then, we prove that register R[7] is zero after
21 cycles (line 13). The time point 21 results from the fact that the first two
cycles (zero and one) are used by the load instructions and the following 20
cycles are required to loop 10 times. The complete proof has been carried out
in less than 25 CPU seconds.

Fibonacci Numbers. An assembler program has been written that com-
putes the Fibonacci numbers (defined as f(n) = f(n − 1) + f(n − 2) with

1 /∗ c o u n t s f rom 10 down t o 0 ∗ /
2 LDL R[7] , 10
3 LDH R[7] , 0
4 loop :
5 SUB R[7] , R[7] , R[1]
6 JNZ l oop

Figure 5.21. Example assembler program

1 property c o u n t =
2 always (
3 / / a n t e c e d e n t
4 rom .mem[0] == 18186 && / / LDL R [7] , 10
5 rom .mem[1] == 20224 && / / LDH R [7] , 0
6 rom .mem[2] == 14137 && / / SUB R [7] , R [7] , R [1]
7 rom .mem[3] == 24578 && / / JNZ 2
8 pc . pc == 0 &&
9 next_a [0 . . 2 1] (prog_mem_we == 0) &&

10 next_a [0 . . 2 1] (r e s e t == 0)
11) −> (
12 / / c o n s e q u e n t
13 next [2 1] (r e g . r e g [7] == 0)
14) ;

Figure 5.22. Property count

3This part of the assumptions has been generated automatically by the compiler.

152 QUALITY-DRIVEN SYSTEMC DESIGN

f(0) = 1 and f(1) = 1). We only give the results. The correctness of the
program has been verified by induction. In the property for the base case the
result for f(0) and f(1) has been proven. The induction step formulates that in
each loop the next Fibonacci number is computed by adding the two previous
Fibonacci numbers. In total the correctness of the Fibonacci program has been
proven in less than 20 CPU seconds.

Multiplication. Since the ALU of the RISC CPU has no multiply opera-
tion this functionality has to be implemented as a program. Figure 5.23 shows
a program that performs an 8-bit multiplication. The program is based on shift
instructions and addition instructions. In the beginning the two multiplication
factors are in registers R[2] and R[3]. The partial product is kept in R[5] during
multiplication. The result is stored in R[6]. Register R[7] is used as a counter
and is initialized to 8 in lines 6 and 7. In the loop, the instruction in line 9 tests
the next bit in the first factor. If the bit is set, the current partial product is added
to the result (line 11). The shift instruction in line 13 computes the next partial
product. Then the counter is decremented (line 14) and the loop continues until
R[7] reaches the value 0. Note that the number of cycles needed to complete
the program depends on the number of bits set to 1 in the first factor because
line 11 may not be executed in every loop.

Figure 5.24 shows a PSL property for the described assembler program. At
first the multiplication factors in registers R[2] and R[3] are assigned to the
variables FAC1 and FAC2. As assumption it is required that the multiplication
program is located in the memory (lines 6–10). Again, this part has been gen-
erated automatically. Line 11 states that the program counter points to the first

1 mul t :
2 OR R [4] , R [2] , R[0]
3 OR R [5] , R [3] , R[0]
4 LDL R [6] , 0
5 LDH R [6] , 0
6 LDL R [7] , 8
7 LDH R [7] , 0
8 loop :
9 SHR R [4] , R[4]

10 JNC l 1
11 ADD R [6] , R [6] , R[5]
12 l 1 :
13 SHL R [5] , R[5]
14 SUB R [7] , R [7] , R[1]
15 JNZ l oop

Figure 5.23. Assembler program for 8-bit multiplication

Top-Level Verification 153

1 a s s i g n FAC1 = r e g . r e g [2] ;
2 a s s i g n FAC2 = r e g . r e g [3] ;
3 property mul =
4 always (
5 / / a n t e c e d e n t
6 rom .mem [0] == 5136 && / / OR R [4] , R [2] , R [0]

7 rom .mem [1] == 5400 && / / OR R [5] , R [3] , R [0]
8 rom .mem [2] == 17920 && / / LDL R [6] , 0
9 . . .

10 rom .mem[1 1] == 24582 && / / JNZ 6
11 pc . pc == 0 &&
12 next_a [0 . . 5 4] (prog_mem_we == 0) &&
13 next_a [0 . . 5 4] (r e s e t == 0) &&
14 FAC1 < 256 && FAC2 < 256
15) −> (
16 / / c o n s e q u e n t
17 n ext_e [4 6 . . 5 4] (pc . pc == 12) &&
18 (r e g . r e g [6] == FAC1 ∗ FAC2)) ;

Figure 5.24. Property mul

instruction of the multiplication program in the beginning. Lines 12 and 13
assure that no reset and no write access to the memory take place during pro-
gram execution. Finally, line 14 requires that both multiplication factors are
within an 8-bit range. Under these assumptions we prove that between cycles
46 and 54 after starting the algorithm4 the program counter points to the next
instruction5 (line 17) and register R[6] contains the product at the same time
(line 18). In other words, we prove that the assembler program does in fact
perform a multiplication.

The SAT instance generated for this property consisted of 2, 894, 173
clauses and 6, 735, 707 literals. The correctness of the multiplication program
has been verified in less than 4, 000 CPU seconds.

To summarize, the proposed approach allows the hardware/software co-
verification of timed embedded systems. As has been shown the correctness
of simple and complex programs has been proven.

4As mentioned above, the number of cycles depends on the input. Six cycles are needed for the first six
instructions plus eight times the loop of five or six instructions.
5This instruction is the first after the instruction JNZ loop.

154 QUALITY-DRIVEN SYSTEMC DESIGN

5.3 Summary and Future Work
We presented two techniques for verifying the functionality at the top level.

Since the entire top-level model cannot be handled completely by formal meth-
ods an approach to generate checkers from temporal properties has been pro-
posed. The resulting SystemC checkers are validated during simulation and
can be also synthesized for on-line tests after fabrication. The simulation is per-
formed using the improved system-level techniques and hence the system-level
quality check is also available after refining the system. For a bus architecture
the benefits of the approach have been demonstrated.

Then, a formal hardware/software co-verification approach for embedded
systems has been presented. The approach is based on BMC and the formal
coverage check as introduced in the previous chapter. On top of hardware ver-
ification the correctness of the interface is proven. In the last step software
which uses this interface can be formally verified which has been demonstrated
for different examples.

Possible directions for future work are the combination of the system-level
coverage check with the checker generation approach. The idea is to ensure that
the antecedent of each checker has to evaluate to true at least once. For the
hardware/software co-verification method we plan to automatically derive time
bounds from assembler programs to aid the specification of the consequent
of software properties. Also the formal coverage analysis technique proposed
in the previous chapter has to be extended to check the coverage of software
properties.

In summary, the techniques presented in this chapter allow a continuous
design and verification flow by connecting the system level and the block level.
Based on this tight integration of the dedicated verification techniques and the
complementing coverage checks a high quality system can be build since the
verification quality is guaranteed along the complete design flow from abstract
descriptions down to synthesizable ones.

Chapter 6

SUMMARY AND CONCLUSIONS

D. Große and R. Drechsler, Quality-Driven SystemC Design, 155
DOI 10.1007/978-90-481-3631-5 6, c© Springer Science+Business Media B.V. 2010

Today, the design and verification of electronic systems is a very challenging
task. To cope with the steadily increasing complexity and the pressure of time-
to-market the design entry has been lifted to high-level descriptions, i.e. the
level of abstraction for designing systems has been raised. In this book a promi-
nent design flow based on the system description language SystemC was con-
sidered. However, while the single-language concept of the SystemC design
flow allows a continuous modeling from system level down to synthesizable
descriptions, only low verification quality is achieved. There are two main rea-
sons: First, the existing verification techniques are decoupled and are often
based on simple simulation techniques. Second, the resulting verification qual-
ity in terms of the covered functionality is not ensured automatically along the
refinement process. Therefore, a quality-driven design and verification flow
was developed in this book. The “traditional” SystemC design flow is en-
hanced by

1. dedicated verification techniques which target each level of abstraction and
employ formal methods where possible and

2. complementing each verification task by measuring the resulting quality.

In the new flow three levels of abstraction for modeling of digital systems are
distinguished: The system-level model that is refined to the synthesizable top-
level model which again consists of several block-level models.

For verifying the system-level model “pure” simulation is replaced by im-
proved constraint-based simulation in the new flow. Hence, test scenarios are
generated that satisfy given constraints. In particular corner-case scenarios
are produced very effectively. The SystemC-based implementation on top of
the SCV library is improved such that new operators are available as well

156 QUALITY-DRIVEN SYSTEMC DESIGN

as a uniform distribution among all constraint solutions is guaranteed. Since
over-constraining occurs while formulating specific constraints to check com-
plex behavior an approach for debugging was proposed. The method finds all
minimal reasons of the constraint contradictions and hence the debugging time
is reduced significantly. The resulting verification quality is checked by an ap-
proach which measures how thorough the system was tested. In a coverage re-
port the results are presented. Thus, an automatic quality check is guaranteed.

In the next step, the block-level verification starts since the correctness of
the block-level models can be proven. For this task a SystemC property checker
using bounded model checking was developed. The temporal properties are
formulated in the standardized property language PSL as implications. The
property checker is improved by reusing learned information while weaken-
ing the antecedent of a property; this results in faster proofs. In addition, an
approach for debugging of a contradictory property was presented which iden-
tifies automatically whether a contradiction results solely form the property or
in combination with the design. For ensuring high verification quality an ap-
proach to analyze the coverage of property checking was developed. By clos-
ing all coverage gaps which are automatically identified by the approach, it is
guaranteed that the behavior of each block is specified unambiguously by the
properties. Hence, here the highest possible quality is achieved.

Based on the block-level verification results the top level is considered.
There, an approach to generate checkers from temporal properties was proposed
which are validated during simulation. Thus, the verification quality is ensured
with the respective system-level method. Furthermore, for embedded systems
a complete formal hardware/software co-verification methodology was pre-
sented. Besides the hardware and the interface also programs are formally
verified.

In several experiments the proposed techniques were evaluated using differ-
ent benchmarks and have shown to be very effective. At the end of each chapter
several directions and ideas for future work were discussed. In summary, the
new design and verification flow allows to develop high quality systems. This
becomes possible due to specialized verification techniques which heavily use
formal methods as well as consequently checking the verification quality in
an automatic way. Overall, following the introduced flow helps design teams
and verification engineers in delivering correct systems which is important for
consumer electronics and life-saving in case of safety-critical devices.

References

[Acc05] Accellera Property Specification Language Reference Manual, version 1.1.
http://www.pslsugar.org, 2005.

157

[ADK+05] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan, and K. L. McMillan. An anal-
ysis of SAT-based model checking techniques in an industrial environment. In
Correct Hardware Design and Verification Methods, pages 254–268, 2005.

[AFF+03] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and
M. Y. Vardi. Enhanced vacuity detection in linear temporal logic. In Computer
Aided Verification, volume 2725 of LNCS, pages 368–380. Springer, 2003.

[AKMM03] N. Amla, R. P. Kurshan, K. L. McMillan, and R. Medel. Experimental analysis
of different techniques for bounded model checking. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 34–48, 2003.

[AVS+04] M. F. Ali, A. Veneris, S. Safarpour, R. Drechsler, A. Smith, and M. S. Abadir.
Debugging sequential circuits using Boolean satisfiability. In Int’l Conf. on
CAD, pages 204–209, 2004.

[Bai04] B. Bailey. A new vision of scalable verification. EE Times, 2004.
http://www.eetimes.com/showArticle.jhtml?articleID=18400907.

[BAMP81] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
Symposium on Principles of Programming Languages, pages 164–176, 1981.

[BAS02] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking.
In International Workshop on Formal Methods for Industrial Critical Systems,
2002.

[BB94] D. L. Beatty and R. E. Bryant. Formally verifying a microprocessor using a
simulation methodology. In Design Automation Conf., 1994.

[BBDER97] I. Beer, S. Ben-David, U. Eisner, and Y. Rodeh. Efficient detection of vacuity
in ACTL formulas. In Computer Aided Verification, volume 1254 of LNCS,
pages 279–290, 1997.

158 REFERENCES

[BBDER01] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
temporal model checking. Formal Methods in System Design, 18(2):141–163,
2001.

[BBM+07] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Blackmore, and
F. Bruno. Complete formal verification of Tricore2 and other processors. In
Design and Verification Conference (DVCon), 2007.

[BC00] P. Bjesse and K. Claessen. SAT-based verification without state space traver-
sal. In Int’l Conf. on Formal Methods in CAD, volume 1954 of LNCS, pages
372–389. Springer, 2000.

[BCC+03] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 1579 of LNCS, pages 193–207. Springer Verlag, 1999.

[BCL+94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Sym-
bolic model checking for sequential circuit verification. IEEE Trans. on CAD,
13(4):401–424, 1994.

[BCMD90] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential cir-
cuit verification using symbolic model checking. In Design Automation Conf.,
pages 46–51, 1990.

[BD05] D. C. Black and J. Donovan. SystemC: From the Ground Up. Springer-Verlag
New York, Inc., 2005.

[BDFR07] S. Ben-David, D. Fisman, and S. Ruah. Temporal antecedent failure: Refining
vacuity. In International Conference on Concurrency Theory, pages 492–506,
2007.

[BDM05] B. Becker, R. Drechsler, and P. Molitor. Technische Informatik — Eine Ein-
führung. Pearson Education Deutschland, 2005.

[BDTW93] R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnosing
and solving over-determined constraint satisfaction problems. In International
Joint Conference on Artificial Intelligence, pages 276–281, 1993.

[Bei90] B. Beizer. Software Testing Techniques. John Wiley & Sons, Inc., 1990.

[Ber06] J. Bergeron. Writing Testbenches Using SystemVerilog. Springer, 2006.

[BJW04] R. Brinkmann, P. Johannsen, and K. Winkelmann. Application of property
checking and underlying techniques. In R. Drechsler, editor, Advanced Formal
Verification, pages 125–166. Kluwer Academic Publishers, 2004.

[BMA05] B. Bailey, G. Martin, and T. Anderson. Taxonomies for the Development and
Verification of Digitial Systems. Springer, 2005.

[Bor09] J. Bormann. Vollständige funktionale Verifikation. PhD thesis, Technische
Universität Kaiserslautern, 2009.

REFERENCES 159

[Bra93] D. Brand. Verification of large synthesized designs. In Int’l Conf. on CAD,
pages 534–537, 1993.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a
BDD package. In Design Automation Conf., pages 40–45, 1990.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Trans. on Comp., 35(8):677–691, 1986.

[BS01] J. Bormann and C. Spalinger. Formale Verifikation für Nicht-Formalisten
(Formal verification for non-formalists). Informationstechnik und Technische
Informatik, 43:22–28, 2001.

[BW96] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Trans. on Comp., 45(9):993–1002, 1996.

[CG03] L. Cai and D. Gajski. Transaction level modeling: an overview. In
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, pages 19–24, 2003.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[CKV01] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for tempo-
ral logic model checking. In Tools and algorithms for the construction and
analysis of systems, number 2031 in LNCS, pages 528 – 542, 2001.

[CKV03] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for formal
verification. In Correct Hardware Design and Verification Methods, pages
111–125, 2003.

[Cla06] K. Claessen. A coverage analysis for safety property lists. Presentation at
Workshop on Designing Correct Circuits, 2006.

[Cla07] K. Claessen. A coverage analysis for safety property lists. In Int’l Conf. on
Formal Methods in CAD, pages 139–145, 2007.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In 3. ACM Sym-
posium on Theory of Computing, pages 151–158, 1971.

[CS07] H. Chockler and O. Strichman. Easier and more informative vacuity checks.
In ACM & IEEE International Conference on Formal Methods and Models for
Codesign, pages 189–198, 2007.

[DB98] R. Drechsler and B. Becker. Binary Decision Diagrams – Theory and Imple-
mentation. Kluwer Academic Publishers, 1998.

[DBG96] R. Drechsler, B. Becker, and N. Göckel. A genetic algorithm for variable or-
dering of OBDDs. IEE Proceedings, 143(6):364–368, 1996.

[DCdS07] A. Dias, Jr and D. Cecilio da Silva, Jr. Code-coverage based test vector gen-
eration for SystemC designs. In IEEE Annual Symposium on VLSI, pages
198–206, 2007.

160 REFERENCES

[DEF+08] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and
D. Tille. On acceleration of SAT-based ATPG for industrial designs. IEEE
Trans. on CAD, 27(7):1329–1333, 2008.

[DFGG05] R. Drechsler, G. Fey, C. Genz, and D. Große. SyCE: An integrated environ-
ment for system design in SystemC. In IEEE International Workshop on Rapid
System Prototyping, pages 258–260, 2005.

[DG02] R. Drechsler and D. Große. Reachability analysis for formal verification of
SystemC. In EUROMICRO Symp. on Digital System Design, pages 337–340,
2002.

[DG05] R. Drechsler and D. Große. System level validation using formal techniques.
IEE Proceedings Computer & Digital Techniques, Special Issue on Embedded
Microelectronic Systems: Status and Trends, 152(3):393–406, May 2005.

[DKBE02] R. Dechter, K. Kask, E. Bin, and R. Emek. Generating random solutions for
constraint satisfaction problems. In Eighteenth national conference on Artifi-
cial intelligence, pages 15–21, 2002.

[DLL62] M. Davis, G. Logeman, and D. Loveland. A machine program for theorem
proving. Comm. of the ACM, 5:394–397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:506–521, 1960.

[Dre03] R. Drechsler. Synthesizing checkers for on-line verification of system-on-chip
designs. In IEEE International Symposium on Circuits and Systems, pages
IV:748–IV:751, 2003.

[Dre04] R. Drechsler, editor. Advanced Formal Verification. Kluwer Academic Pub-
lishers, 2004.

[DS07] S. Disch and C. Scholl. Combinational equivalence checking using incremental
SAT solving, output ordering, and resets. In ASP Design Automation Conf.,
pages 938–943, 2007.

[EEH+06] W. Ecker, V. Esen, M. Hull, T. Steininger, and M. Velten. Requirements and
concepts for transaction level assertions. In Int’l Conf. on Comp. Design, pages
286–293, 2006.

[EES+07] W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull. Interactive presen-
tation: Implementation of a transaction level assertion framework in SystemC.
In Design, Automation and Test in Europe, pages 894–899, 2007.

[EmV] EmViD: Embedded Video Detection.
http://www.greensocs.com/GreenBench/EmViD.

[ES04] N. Eén and N. Sörensson. An extensible SAT solver. In Theory and Applica-
tions of Satisfiability Testing, volume 2919 of LNCS, pages 502–518, 2004.

[FD04] G. Fey and R. Drechsler. Improving simulation-based verification by means of
formal methods. In ASP Design Automation Conf., pages 640–643, 2004.

REFERENCES 161

[FD06] G. Fey and R. Drechsler. SAT-based calculation of source code coverage for
BMC. In ITG/GI/GMM-Workshop “Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen”, pages
163–170, 2006.

[FGC+04] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode, and R. Drechsler. ParSyC:
An Efficient SystemC Parser. In Workshop on Synthesis And System Integra-
tion of Mixed Information technologies, pages 148–154, 2004.

[FKL03] H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design. Kluwer Aca-
demic Publishers, 2003.

[FOH93] H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable ordering methods
for ordered binary decision diagrams. In Int’l Conf. on CAD, pages 38–41,
1993.

[FSBD08] G. Fey, S. Staber, R. Bloem, and R. Drechsler. Automatic fault localization for
property checking. IEEE Trans. on CAD, 27(6):1138–1149, 2008.

[gco] gcov – a Test Coverage Program. http://gcc.gnu.org/
onlinedocs/gcc/Gcov.html.

[GD03a] D. Große and R. Drechsler. BDD-based verification of scalable designs. In
IEEE International High Level Design Validation and Test Workshop, pages
123–128, 2003.

[GD03b] D. Große and R. Drechsler. Formal verification of LTL formulas for SystemC
designs. In IEEE International Symposium on Circuits and Systems, pages
V:245–V:248, 2003.

[GD04] D. Große and R. Drechsler. Checkers for SystemC designs. In ACM & IEEE
International Conference on Formal Methods and Models for Codesign, pages
171–178, 2004.

[GD05a] D. Große and R. Drechsler. Acceleration of SAT-based iterative property
checking. In Correct Hardware Design and Verification Methods, pages 349–
353, 2005.

[GD05b] D. Große and R. Drechsler. CheckSyC: An efficient property checker for RTL
SystemC designs. In IEEE International Symposium on Circuits and Systems,
pages 4167–4170, 2005.

[GD06] C. Genz and R. Drechsler. System exploration of SystemC designs. In IEEE
Annual Symposium on VLSI, pages 335–340, 2006.

[GED07] D. Große, R. Ebendt, and R. Drechsler. Improvements for constraint solving
in the SystemC verification library. In ACM Great Lakes Symposium on VLSI,
pages 493–496, 2007.

[GG07] M. Ganai and A. Gupta. SAT-Based Scalable Formal Verification Solutions
(Series on Integrated Circuits and Systems). Springer, 2007.

[GKD05a] D. Große, U. Kühne, and R. Drechsler. Formale Verifikation des Befehlssatzes
eines SystemC Mikroprozessors. In GI Jahrestagung (1), volume 67 of LNI,
pages 308–312, 2005.

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

162 REFERENCES

[GKD05b] D. Große, U. Kühne, and R. Drechsler. Hw/sw co-verification of embedded
systems using bounded model checking. In IEEE International Workshop on
Microprocessor Test and Verification, pages 133–137, 2005.

[GKD06] D. Große, U. Kühne, and R. Drechsler. Hw/sw co-verification of embedded
systems using bounded model checking. In ACM Great Lakes Symposium on
VLSI, pages 43–48, 2006.

[GKD07] D. Große, U. Kühne, and R. Drechsler. Estimating functional coverage in
bounded model checking. In Design, Automation and Test in Europe, pages
1176–1181, 2007.

[GKD08] D. Große, U. Kühne, and R. Drechsler. Analyzing functional coverage in
bounded model checking. IEEE Trans. on CAD, 27(7):1305–1314, 2008.

[GKG+05] D. Große, U. Kühne, C. Genz, F. Schmiedle, B. Becker, R. Drechsler, and
P. Molitor. Modellierung eines Mikroprozessors in SystemC. In ITG/GI/GMM-
Workshop “Methoden und Beschreibungssprachen zur Modellierung und Ver-
ifikation von Schaltungen und Systemen”, 2005.

[GLMS02] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[GN03] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Design, Automation and Test in Europe, pages 886–891, 2003.

[GPB01] E. I. Goldberg, M. R. Prasad, and R. K. Brayton. Using SAT for combina-
tional equivalence checking. In Design, Automation and Test in Europe, pages
114–121, 2001.

[GPKD08] D. Große, H. Peraza, W. Klingauf, and R. Drechsler. Measuring the quality of
a SystemC testbench by using code coverage techniques. In E. Villar, editor,
Embedded Systems Specification and Design Languages: Selected contribu-
tions from FDL’07, pages 73–86. Springer, 2008.

[Gro08] D. Große. Quality-Driven Design and Verification Flow for Digital Systems.
Dissertation, Universität Bremen, Bremen, Germany, October 2008.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification, volume 1254, pages 72–83. Spring, 1997.

[GSD06] D. Große, R. Siegmund, and R. Drechsler. Processor verification. In P. Ienne
and R. Leupers, editors, Customizable Embedded Processors, pages 281–302.
Elsevier, 2006.

[GWDD09] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple con-
trol Toffoli network synthesis with SAT techniques. IEEE Trans. on CAD,
28(5):703–715, 2009.

[GWKD09] D. Große, R. Wille, U. Kühne, and R. Drechsler. Contradictory antecedent
debugging in bounded model checking. In ACM Great Lakes Symposium on
VLSI, pages 173–176, 2009.

REFERENCES 163

[GWSD08] D. Große, R. Wille, R. Siegmund, and R. Drechsler. Contradiction analysis
for constraint-based random simulation. In Forum on specification and Design
Languages, pages 130–135, 2008.

[GZ03] J. F. Groote and H. Zantema. Resolution and binary decision diagrams
cannot simulate each other polynomially. Discrete Applied Mathematics,
130(2):157–171, 2003.

[HKHZ99] Y. V. Hoskote, T. Kam, P. Ho, and X. Zhao. Coverage estimation for symbolic
model checking. In Design Automation Conf., pages 300–305, 1999.

[HS96] G. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Kluwer Academic Publisher, 1996.

[HT05] A. Habibi and S. Tahar. Design for verification of SystemC transaction level
models. In Design, Automation and Test in Europe, pages 560–565, 2005.

[Hua05] J. Huang. MUP: A minimal unsatisfiability prover. In ASP Design Automation
Conf., pages 432–437, 2005.

[IEE01] IEEE Std. 1346. IEEE Standard Verilog hardware description language, 2001.

[IEE05a] IEEE Std. 1666. IEEE Standard SystemC Language Reference Manual, 2005.

[IEE05b] IEEE Std. 1800. IEEE SystemVerilog, 2005.

[IEE05c] IEEE Std. 1850. IEEE Standard for Property Specification Language (PSL),
2005.

[Int09] Intel. World’s first 2-billion transistor microprocessor, 2009. http://www.
intel.com/technology/architecture-silicon/2billion.
htm.

[IPC03] M. K. Iyer, G. Parthasarathy, and K.-T. Cheng. SATORI - a fast sequential SAT
engine for circuits. In Int’l Conf. on CAD, pages 320–325, 2003.

[IS03] C. Norris Ip and S. Swan. A tutorial introduction on the new SystemC verifi-
cation standard. White paper, www.systemc.org, 2003.

[Iye03] M. A. Iyer. Race: A word-level ATPG-based constraints solver system for
smart random simulation. Int’l Test Conf., pages 299–308, 2003.

[Joh02] P. Johannsen. Speeding up Hardware Verification by Automated Data Path
Scaling. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2002.

[JPS03] N. Jayakumar, M. Purandare, and F. Somenzi. Dos and don’ts of CTL state
coverage estimation. In Design Automation Conf., pages 292–295, 2003.

[KEP06] D. Karlsson, P. Eles, and Z. Peng. Formal verification of SystemC designs
using a petri-net based representation. In Design, Automation and Test in
Europe, pages 1228–1233, 2006.

[KG99] S. Katz and O. Grumberg. Have I written enough properties - a method of
comparison between specification and implementation. In Correct Hardware
Design and Verification Methods, pages 280–297, 1999.

http://www.
intel.com/technology/architecture-silicon/2billion.htm
intel.com/technology/architecture-silicon/2billion.htm

164 REFERENCES

[KGB+06] W. Klingauf, R. Günzel, O. Bringmann, P. Parfuntseu, and M. Burton. Green-
bus: a generic interconnect fabric for transaction level modelling. In Design
Automation Conf., pages 905–910, 2006.

[KGD07] U. Kühne, D. Große, and R. Drechsler. Improving the quality of bounded
model checking by means of coverage estimation. In IEEE Annual Symposium
on VLSI, pages 165–170, 2007.

[KK07] N. Kitchen and A. Kuehlmann. Stimulus generation for constrainted random
simulation. In Int’l Conf. on CAD, pages 258–265, 2007.

[Kli05] W. Klingauf. Systematic transaction level modeling of embedded systems with
SystemC. In Design, Automation and Test in Europe, pages 566–567, 2005.

[KPKG02] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai. Robust Boolean rea-
soning for equivalence checking and functional property verification. IEEE
Trans. on CAD, 21(12):1377–1394, 2002.

[Kro99] Th. Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[KS05] D. Kroening and N. Sharygina. Formal verification of SystemC by automatic
hardware/software partitioning. In ACM & IEEE International Conference on
Formal Methods and Models for Codesign, pages 101–110, 2005.

[Kue06] U. Kuehne. Modellierung und Verifikation eines RISC Prozessors. Master’s
thesis, Universität Bremen, 2006.

[KV99] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking.
In Correct Hardware Design and Verification Methods, pages 82–96, 1999.

[Lar92] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE Trans.
on CAD, 11:4–15, 1992.

[LS05] M. H. Liffiton and K. A. Sakallah. On finding all minimally unsatisfiable sub-
formulas. In Theory and Applications of Satisfiability Testing, pages 173–186,
2005.

[LTG97] S. Liao, S. Tjiang, and R. Gupta. An efficient implementation of reactivity for
modeling hardware in the scenic design environment. In Design Automation
Conf., pages 70–75, 1997.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher,
1993.

[McM02] K. L. McMillan. Applying SAT methods in unbounded symbolic model check-
ing. In Computer Aided Verification, volume 2404 of LNCS, pages 250–264,
2002.

[Mic05] ST Microelectronics. TAC: Transaction Accurate Communication. http:
//www.greensocs.com/TACPackage, 2005.

[MLA+05] M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. Marques-Silva, and K. A.
Sakallah. A branch and bound algorithm for extracting smallest minimal un-
satisfiable formulas. In Theory and Applications of Satisfiability Testing, pages
467–474, 2005.

http:
//www.greensocs.com/TACPackage

REFERENCES 165

[MMMC06] M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: an open tool for the
analysis of systems-on-a-chip at the transaction level. Design Automation for
Embedded Systems, pages 73–104, 2006.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Design Automation Conf., pages 530–535,
2001.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1991.

[MRR03] W. Müller, W. Rosenstiel, and J. Ruf, editors. SystemC Methodologies and
Applications. Kluwer Academic Publishers, 2003.

[MS99] J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propo-
sitional satisfiability. IEEE Trans. on Comp., 48(5):506–521, 1999.

[MS05] M. N. Mneimneh and Karem A. Sakallah. Principles of sequential-equivalence
verification. IEEE Design & Test of Comp., 22(3):248–257, 2005.

[MSS96] J. P. Marques-Silva and K. A. Sakallah. GRASP – a new search algorithm for
satisfiability. In Int’l Conf. on CAD, pages 220–227, 1996.

[OMA+04] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.
AMUSE: a minimally-unsatisfiable subformula extractor. In Design Automa-
tion Conf., pages 518–523, 2004.

[OSC08] OSCI. SystemC, 2008. Available at http://www.systemc.org.

[Par97] T. Parr. Language Translation using PCCTS and C++: A Reference Guide.
Automata Publishing Co., 1997.

[PBG05] M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in
SAT-based formal verification. Software Tools for Technology Transfer,
7(2):156–173, 2005.

[PH04] D. A. Patterson and J. Hennessy. Computer Organization and Design. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[Pnu77] A. Pnueli. The temporal logic of programs. In Symposium on Foundations of
Computer Science, pages 46–57, 1977.

[PRB01] T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-
constrained problems. LNCS, 2239:451–463, 2001.

[PS02] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Computer
Aided Verification, volume 2404 of LNCS, pages 485–499, 2002.

[RHKR01] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel. Simulation-guided prop-
erty checking based on multi-valued ar-automata. In Design, Automation and
Test in Europe, pages 742–748, 2001.

[RS03] J. Rose and S. Swan. SCV Randomization Version 1.0, 2003.

166 REFERENCES

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.
In Int’l Conf. on CAD, pages 42–47, 1993.

[SDGC07] J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. Exploiting resolution
proofs to speed up LTL vacuity detection for BMC. In Int’l Conf. on Formal
Methods in CAD, pages 3–12, 2007.

[Sem03] Semiconductor Industry Association. International Technology Roadmap for
Semiconductors, 2003.

[Sem06] Semiconductor Industry Association. International Technology Roadmap for
Semiconductors, 2006.

[Sht01] O. Shtrichman. Pruning techniques for the SAT-based bounded model check-
ing problem. In Correct Hardware Design and Verification Methods, volume
2144 of LNCS, pages 58–70, 2001.

[SKF+09] A. Sülflow, U. Kühne, G. Fey, D. Große, and R. Drechsler. WoLFram - a word
level framework for formal verification. In IEEE/IFIP International Sympo-
sium on Rapid System Prototyping (RSP), pages 11–17, 2009.

[SKW+07] A. Sülflow, U. Kühne, R. Wille, D. Große, and R. Drechsler. Evaluation of
SAT like proof techniques for formal verification of word level circuits. In
IEEE Workshop on RTL and High Level Testing, pages 31–36, 2007.

[SMS+07] T. Sakunkonchak, T. Matsumoto, H. Saito, S. Komatsu, and M. Fujita. Equiv-
alence checking in C-based system-level design by sequentializing concurrent
behaviors. In International Conference on Advances in Computer Science and
Technology, pages 36–42, 2007.

[Sny08] W. Snyder. Dinotrace, 2008. Available at http://www.veripool.org/
wiki/dinotrace.

[Som98] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.0. University
of Colorado at Boulder, 1998.

[Som01] F. Somenzi. Efficient manipulation of decision diagrams. Software Tools for
Technology Transfer, 3(2):171–181, 2001.

[SSS00] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using
induction and a SAT-solver. In Int’l Conf. on Formal Methods in CAD, volume
1954 of LNCS, pages 108–125. Springer, 2000.

[SVV04] A. Smith, A. Veneris, and A. Viglas. Design diagnosis using Boolean satisfia-
bility. In ASP Design Automation Conf., pages 218–223, 2004.

[Sys02] SystemC 2.0 user’s guide. http://www.systemc.org, 2002.

[Sys03] SystemC Verification Working Group, http://www.systemc.org. SystemC Veri-
fication Standard Specification Version 1.0e, 2003.

[TK01] S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hard-
ware designs. IEEE Design and Test of Computers, 18(4):36–45, 2001.

http://www.veripool.org/
wiki/dinotrace

REFERENCES 167

[Tse68] G. Tseitin. On the complexity of derivation in propositional calculus. In Stud-
ies in Constructive Mathematics and Mathematical Logic, Part 2, pages 115–
125, 1968. (Reprinted in: J. Siekmann, G. Wrightson (Ed.), Automation of
Reasoning, Vol. 2, Springer, Berlin, 1983, pp. 466–483.).

[TVKS08] D. Tabakov, M.Y. Vardi, G. Kamhi, and E. Singerman. A temporal language
for SystemC. In Int’l Conf. on Formal Methods in CAD, pages 1–9, 2008.

[Var07] M. Y. Vardi. Formal techniques for SystemC verification. In Design Automa-
tion Conf., pages 188–192, 2007.

[Vel04] M. N. Velev. Efficient translation of boolean formulas to CNF in formal verifi-
cation of microprocessors. In ASP Design Automation Conf., pages 310–315,
2004.

[Weg87] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd.,
and B.G. Teubner, Stuttgart, 1987.

[WFG+07] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler. Sword: A SAT
like prover using word level information. In VLSI of System-on-Chip, pages
88–93, 2007.

[WGHD09] R. Wille, D. Große, F. Haedicke, and R. Drechsler. SMT-based stimuli genera-
tion in the SystemC verification library. In Forum on specification and Design
Languages, 2009.

[WTSF04] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey. Cost-efficient block veri-
fication for a UMTS up-link chip-rate coprocessor. In Design, Automation and
Test in Europe, volume 1, pages 162–167, 2004.

[YAPA04] J. Yuan, A. Aziz, C. Pixley, and K. Albin. Simplifying boolean constraint solv-
ing for random simulation-vector generation. IEEE Trans. on CAD, 23(3):412–
420, 2004.

[YPA06] J. Yuan, C. Pixley, and A. Aziz. Constraint-based Verification. Springer, 2006.

[YSP+99] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz. Modeling design con-
straints and biasing in simulation using BDDs. In Int’l Conf. on CAD, pages
584–590, 1999.

[ZM03] L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications. In
Design, Automation and Test in Europe, pages 880–885, 2003.

[ZMMM01] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In Int’l Conf. on CAD, pages
279–285, 2001.

[ZSM+05] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton, and M. Chrzanowska-Jeske.
Simulation and satisfiability in logic synthesis. In Int’l Workshop on Logic
Synth., pages 161–168, 2005.

Index

A, see antecedent
C, see constraint, see consequent
Ci, see overall constraint
Π, 22
B, 11
⊕, see XOR
π, see path
f , see Boolean function

abstract syntax tree, see AST
antecedent, 78, 80, 145

contradictory, 94
antecedent debugging, 94
AST, 61

BCP, 16
BDD, 13, 33, 38

high child, 13
low child, 13
quantification

existential, 14
universal, 14

shared, 15
size, 13
variable ordering, 13

binary decision diagram, see BDD
BMC, 26, 73, 75, 76, 143

instance, 77
Boolean

algebra, 12
expression, 12
function, 11
variables, 11

Boolean constraint propagation, see BCP
Boolean satisfiability, see SAT
bounded model checking, see BMC

checker, 131
circuit, 18
clause, 15

CNF, 15, 20, 26, 85, 89
code coverage, 60
cofactor

negative, 12
positive, 12

complement edges, 14
Computation Tree Logic, see CTL
conflict clause, 17
conjunction, 12
conjunctive normal form, see CNF
consequent, 78, 145
constraint, 36, 37

contradictory, 47
hierarchical constraint, 37
over-constrained, 47
overall constraint, 36
SCV CONSTRAINT, 37

constraint debugging, 47
constraint-based simulation, 35
counter-example, 25, 75, 77, 81, 108
coverage property, 109
coverage report, 66
CTL, 21, 25
CTL*, 23

debugging
antecedent, 94
constraint, 47

disjunction, 12
DPLL, 16

embedded system, 142
timed embedded system, 143

equivalence checking, 20
executable specification, 29

false negative, 77, 80
finite state machine, see FSM
FSM, 18, 73, 76

169

170 INDEX

gate library, 18

HW/SW co-verification, 142
hardware, 144
interface, 145
program, 145

If-Then-Else, see ITE
image computation, 25
ITE, 14

Kripke structure, 21

Linear Time Logic, see LTL
literal, 15

negative, 16
positive, 16

liveness property, 25
LTL, 21, 24, 78

Mealy machine, 18
miter, 20
model checking, 21

negation, 12
next operator, 78, 79
next a operator, 78, 79
next e operator, 78, 79

path, 22, 79
pre-image computation, 25

property, 76
property checking, 75

iterative, 88
property specification language, see PSL
PSL, 73, 77–80, 131

reason, 47, 98
ROBDD, 13

safety property, 25
SAT, 15
satisfiable, 15
SCV library, 28, 35
SCV CONSTRAINT, 37
Shannon decomposition, 13
symbolic model checking, 25
SystemC, 27

communication, 28
hardware specific objects, 29
modules, 28
process, 29
tool flow, 29

SystemC verification library, see SCV library

temporal logic, 23
two literal watching scheme, 17

unrolling, 77
unsatisfiable, 15

XOR, 12

	Quality-Driven SystemC Design
	Dedication
	List of Figures
	List of Tables
	Preface
	Acknowledgmentshss
	1. Introduction
	2. Preliminaries
	2.1 Boolean Reasoning
	2.1.1 Basic Notations and Boolean Algebra
	2.1.2 Binary Decision Diagrams
	2.1.3 Boolean Satisfiability

	2.2 Circuits
	2.2.1 Modeling of Sequential Circuits
	2.2.2 CNF Transformation

	2.3 Formal Verification
	2.3.1 Equivalence Checking
	2.3.2 Model Checking

	2.4 SystemC
	2.4.1 Basics and Concepts
	2.4.2 SystemC Design Example

	3. System-Level Verification
	3.1 Constraint-Based Simulation
	3.1.1 Scenario
	3.1.2 Using the SCV Library

	3.2 Improvements for Constraint-Based Simulation
	3.2.1 Bit Operators
	3.2.2 Uniform Distribution

	3.3 Contradiction Analysis for Constraint-Based Simulation
	3.3.1 Contradiction Analysis Approach
	3.3.2 Implementation
	3.3.3 Experimental Results

	3.4 Measuring the Quality of Testbenches
	3.4.1 Code Coverage-Based Approach
	3.4.2 Phases of Code Coverage-Based Approach
	Coverage Library
	AST Traversal and Code Instrumentation
	Wrapper Functions

	3.4.3 Experimental Results
	Specification
	Testbench Quality
	Specification
	Testbench Quality
	Further Design Analysis

	3.5 Summary and Future Work

	4. Block-Level Verification
	4.1 Property Checking
	4.1.1 Bounded Model Checking
	4.1.2 Property Language
	4.1.3 Implementation
	4.1.4 Experimental Results

	4.2 Acceleration of Iterative Property Checking
	4.2.1 Main Flow
	4.2.2 Reusing Learned Information
	4.2.3 Experimental Results

	4.3 Contradictory Antecedent Debugging for Property Checking
	4.3.1 Analysis of Contradictory Antecedents
	4.3.2 Algorithms and Implementation
	4.3.3 Experimental Results

	4.4 Analyzing Functional Coverage in Property Checking
	4.4.1 Idea
	4.4.2 Coverage Property
	4.4.3 Experimental Results
	Coverage Analysis
	Closing the Gap
	Computation Costs
	Coverage Analysis
	Closing the Gap and Property Style
	Computation Costs

	4.4.4 Discussion

	4.5 Summary and Future Work

	5. Top-Level Verification
	5.1 Checker Generation
	5.1.1 Generation of a Checker from a Property
	5.1.2 Transformation into SystemC Checkers
	5.1.3 Experimental Results

	5.2 HW/SW Co-Verification for Embedded Systems
	5.2.1 Co-Verification Model
	5.2.2 Co-Verification Steps
	5.2.3 Experimental Results
	Hardware
	Interface
	Program
	Loop Unrolling
	Fibonacci Numbers
	Multiplication

	5.3 Summary and Future Work

	6. Summary and Conclusions
	References
	Index

