THE E

XPERT’S VOICE® IN ARDUINO

Building
Arduino Projects
for the Internet

of Things

Experiments with Real-World
Applications

A guidebook for the eager-to-learn
Arduino enthusiast

Adeel Javed

Apress-

Building Arduino
Projects for the
Internet of Things

Adeel Javed

Apress’

Building Arduino Projects for the Internet of Things: Experiments with Real-World Applications

Adeel Javed
Lake Zurich, Illinois, USA

ISBN-13 (pbk): 978-1-4842-1939-3 ISBN-13 (electronic): 978-1-4842-1940-9
DOI 10.1007/978-1-4842-1940-9

Library of Congress Control Number: 2016943433
Copyright © 2016 by Adeel Javed

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Development Editor: James Markham

Technical Reviewer: Jeff Tang

Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springer.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
g0 to www.apress.com/source-code/.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To my wife Naila, for supporting me throughout the process.

Contents at a Glance

About the Authorccccsrismmismms s —————— Xv
About the Technical ReVIEWErcuccerssssssssssssssssssssssssssssssssnsassnsnss xvi
o £ T Xix
Part 1: Building BIOCKScuussenmnmnnmmmmmmmmmmmnnsnnnnnnnsssssssnnnas 1
Chapter 1: Arduing BaSiCSccourssssmsnmmsssssnnsssssssssssssssssssssssssnsnssssnnns 3
Chapter 2: Internet Connectivity.......ccourserrrssssnnnsnssssnnssssssnnssssssnns 15
Chapter 3: Communication Protocols.........cuccsmmmmnnnnsssssssssssssnnnnnas 35
Part 2: Prototypes..........ccounnmmmmmmmmmnmnsssnsssnssssssssssssssnnnnns 49
Chapter 4: Complex Flows: Node-RED..........cccccmmmmrressssssnsnnnnnnnnnas 51
Chapter 5: loT Patterns: Realtime Clients........ccccusssunensrsssnnnnssssnnns 75
Chapter 6: loT Patterns: Remote Controlccccvvvvnsssnnnnnnnnnnnas 111
Chapter 7: loT Patterns: On-Demand Clients...........cccosveeeennnnnnnns 139
Chapter 8: loT Patterns: Web ApPPSccuvemrrmsssnnnsssssssssssssssssssssss 177
Chapter 9: loT Patterns: Location AWare........ccceesreesssssssssnnsnnnnnas 195
Chapter 10: loT Patterns: Machine to Human.............oceceeeennnnens 213
Chapter 11: loT Patterns: Machine to Machinecccccuseenneinns 241
Chapter 12: 10T Platforms.......cuunmemmmmmmmmmmmmmssssssssssssssssssssssssssnns 253
INA@X..iiieiiiesrsmsssmssss s s ——— 279

Contents

About the AULNOLccuiiiieeeiiirreneirr s nm e mn e nmmnns XV
About the Technical REeVIEWETcuueeeerssrremmssssssnnssssmsnsssssssnnssssnsnnnnns XVi
] [- Xix

Part 1: Building BIOCKSccccmmemmmmmmmmmmmmnnnnnnnnnsnsnnssssnsnnnes 1

Chapter 1: Arduing BaSiCSccsurusssmsnmmssssssnsssssssssssssssssnsssssssnsnssssnnns 3
Learning ODJECLIVES........ccverererrrerr e sae e e e se e snssne e 3
Hardware Requirementsc.ccocverersersessesssssesses s sessessessessessesssssnsenns 3
Software Requirements..........cccceeececrcscs s 5
L0107 OO S 6
STATUS WINAOW........ceeeeeer et 7
Serial Monitor WiNAOW ...t 7
Arduino Programming Language Referencecccecevvververrerrerserseniennns 8
Arduino Code EXECULION.........cococeeeererererererereresesere e sesesesesesenenes 11
SUMMAIY ...t s n s 13
Chapter 2: Internet Connectivity........ccccevnnisnnnmsnnnnnnnmmnmsssssssnnns 15
Learning ObJECTIVES.......ccovereririerercre s 15
Arduino Uno Wired Connectivity (Ethernet)ccccoeeeeeeeeecsceecercnnnene 16
Hardware REqUITEd.........coocerrereirerere et 16
SOftWAre REQUITEM ..ot 16

vii

CONTENTS

Lo T T 16
(L0 A (o (110) O 17
Final Product ... s 20
Arduino Uno Wireless Connectivity (WiFi)........cccoueerrereriesnseresessessnsennnns 21
Hardware REQUIFEU.........cveererrreeerrssnseesessssesessssssesesssssss s ssssssesssssssssssssssssnsenes 21
SOftWAre REQUITE.......ccveeeerreneseerise e se s s nes 21
CIFCUIL ..vveeeeesere ettt re se e sesesenesesesesesenenenenenenenens 21
COUE (AFAUINOD) ..vveveueerrreseeresesesesesessssesesesss e e e sss e e s sss e e e e sss s e s ssnsssesssssessnssnes 22
LT o 0T 1 26
Arduino Yan Wireless Connectivity (WiFi)........ccocvrerrereriererrersserseressenens 26
Hardware REQUIFEU........ccevecerririrerstr st 26
SOftWAre REQUITET......ccueeerererereeerseseresesseresessesessessssesessesssessesesssssssessssessenssssssaens 27
LT g=] T T=1 (1 o 27
COAE (ArAUIND) ...veuereeereerererersersesersesesseresserssessssessessssessssessssessessssensssersssensenssssssaens 32
FiNal Product ..o s 34
SUMMANY ...t se s e e e e e e s e 34
Chapter 3: Communication Protocols........cc.ucccmmmsssnnnnnssssnnnsesssnnes 35
Learning ObJeCtiVES.......ccccvveeereecrecee e 35
3 I 1 =SSR 35
COUE (AFAUINOD) ..vvrveueererrseerrreseseseses e sesesessssesesssss s e s sss e e e e sss e e s ssnsesesssnssssnsnenes 36
LT o 0T 1 40
MOTT . r e e nnan 42
Intrusion Detection SYSIEMccccvecrerre s 43
Remote Lighting CONTrOL.........cccovverererererererererseresesseserse e sesessessssessssesssessssssenes 44
COAE (ArAUIND) ...veueeeeereerererersersesersesesseressersssessesessessssessssessssessesssssnsssersssensenssssssnaens 45
Final Product ... s 47
SUMMANY ..o s e e e e e 48

viii

CONTENTS

Part 2: Prototypes............ossrrrmrmmmmmmmmmnsssemsssssssssssssssnnnnnss 49

Chapter 4: Complex Flows: Node-RED..........cccccmmmmrressssssnsnnsnnnnnnas 51
Learning ODJECLIVES.......cccvererererrerie e ree e e 53
Hardware ReqUIredcccvcveercersessessesses s s e 53
Software REQUIrE(.........cceeeeeeeereeecircir e sn s 54
6 (o | T 54
NOAE-RED FIOWcveeeereeeericee s snssnnens 56
Code (ArdUIND).....ccerueererrerrerressersessessessessessesressessessesasssessssrssnesassnsssssnnses 69
EXTErNal LIDIaries.coveruieirirerecires e 69
Internet Connectivity (WIreleSs).......oueeeererrrererereresesiriseesesesse e 70
Read SeNnSOr Data.........ccocoeeerereeiererireereres et 70
Data PUBIISH ...t 70
Standard FUNCTIONS ..o s 72
FiNal ProduCt ...t 72
SUMMAIY ...t sa s r s s 73
Chapter 5: loT Patterns: Realtime Clients.........ccccivninnsssnnnnnsnnnnnas 75
Learning ObJECTIVES......c.cceverereriererc s 76
Hardware ReqUIredc.ccocvcreercrcercercer s 76
Software REQUITEM........ceeevreererreerirreererreeses e sesssesse e ssnessessnessesssssnes 77
0 (o | P 77
Code (ArdUIND).....cceeuerrerrerrerresseraessessessessessesressessessesaessessssrssnssnsssessessnnes 79
EXTErNal LIDIaries.coveruieirirerecires e 79
Internet Connectivity (WIreleSs).......oueeererrrencrerereresiseseesesesse e 79
Read SenSOr Data........c.cocoeeerereeieniririeeseres et 79
Data PUDIISH ... 81
Standard FUNCTIONS ..o s 83

ix

CONTENTS

Code (ANAroid)........cccererrerrerierrerrerrer s 83
o €] (=T =1 (1 84
SCrEEN LAYOUL.......ceueereeererercreeseree s se e s e se s e sae e sae e sae e sse e s e saesesas e saesassesssnesasnssanns 89
SCIBEN LOGICecveereeereerererersersssersesersesesessssessssessesessessssessssessesesssssaesssensenssssnssanns 94
MQTT ClENE ..vitccsrrt i 96

The Final Product ... 106

SUMMAIY ... s 110

Chapter 6: loT Patterns: Remote Controlccocccrrnsnmnnssansnsanns 111

Learning ObjecCtiVes........ccoeveverecerrercir e 112

Hardware REQUIrEdcccceveerveererreeresreeree e seessesse e snessessnsssesssens 112

Software REQUIrEU.........cccverererererere e sese s 113

1 S 113

Code (ANAroid)........cccrrerrerrerrerrerserser e 115
o (0] (=T =1 (1 115
SCrEEN LAYOUL.......coveereeererererereree e ree e rae s e e s e ses e sae e sae e sae e s e se s e sae e sae e saenesaenes 121
S0 T T 0 125
1 T | 126

Code (ArduiN).......cererrererersrerreseserse s e ses e sse e sss s e e s sss e s e sesseenas 132
EXTErnal LIDraries. ... oo s 133
Internet Connectivity (WIreleSs)......cuvmerrerniesesisenssesessss e s sesesss s sesesessenes 133
Data SUDSCHIDE ... s 133
[0 1 0] I o 1) PRSP 134
Standard FUNCHIONScovuvrinerinsissenn s sssssessssnens 134

The Final ProducCt ... 135

31111 4P 138

CONTENTS

Chapter 7: loT Patterns: On-Demand Clientscccccnnrnsssnnnsnnsns 139
Learning ObJECLIVES.........ccceeeeererrece e 140
Hardware REqUIredccvverrerierrerieerereesesssessesssessessssssessnsssssssesnes 140
Software REQUIrEU.........coveereeererrrere s sss s sns e enes 141
CIFCUIT . r e n e r e n e sn e nn e nn e nnenas 141
Database Table (MYSQL).........ccccerrrereressernsesessnsessesesessssessesessessesensens 144
COUE (PHP)....eeeeeereeereeenreris e sn e 144
Database CONNECLION..........ccccviierrnne e 145
Receive and Store Sensor Data..........cccceeveveriereniersnenesere s seesessenenaes 146
Get the Parking SPot CouNtcccoeveverere s sa e ennes 148
Code (ArdUIND).....ccceereereererrersersesse e ssessessessessessessessesressessessesnsssssnensnsnes 149
EXternal LIDraries... ..o s ss s sas e saenis 149
Internet Connectivity (WIreleSs).......covueeeerererenererrreeeresesee e sessesens 149
Read Sensor Data..........cccceviinninnsr s 150
COUE (I0S)...crruerreererenerresesessssessessssesss e ssesessessesessesss e esesessesssssssnssnsens 153
PrOJECT SEIUP ..ttt 153
SCIEEN LAYOUL......cceeeeereeeerisieesese e se e nesnns 157
SCIEEN LOGIC ... viveerererreseseressssesesessssesesessssssesesssesssssssens 165
The Final Productcccocveereersereseresses s ses e s e snnnns 171
SUMMANY ...ttt sn s sn e sn e sn s sn s sr s sn e nr e nn s nn e nn s 175
Chapter 8: loT Patterns: Web ApPpPSccuveemrrmssssnsnssssssssnssssssnsssssss 177
Learning ObJECLIVES.........ccceeeeererrece e 177
Hardware REqUIredccvververiernerieeresee e ssse e sssessessssssessassnssssesnes 178
Software REQUIrEU.........coveereeererrrere s sss s sns e enes 178
CIFCUIT e r e a e sn e sn e sn e nr e nnenas 179
Database Table (MYSQL).........ccccerrereressersnesessnsessesesessssessesessessesensens 181
COUE (PHP)....eeeeereeercrenrer st n s sn s 182

xi

CONTENTS

Database CONNECHoN.........coninn 182
Receive and Store Sensor Data...........covnnnnnnnn s 184
DAShDOAN ... ———————— 185
Code (ArdUiND)......ceurerrerererrnsersesessersssessessssessesessessssessesssssssssessessssssns 189
EXTErNal LIDIAIIES.....cceeeeeeeeee e 189
Internet Connectivity (WIireleSS)......ccuurrurererrrrssesesrresesesssessssesessssssssessssssssesssessanes 189
Read Sensor Data..........cccocoeeeeeceeee e e 189
Data PUBIISH ...t s 190
Standard FUNCHIONSooirrrcrecerereresse st 192
The Final Product ... 192
SUMMANY ... sa e 193
Chapter 9: loT Patterns: Location Aware..........cccssseennsrssssnsnsnsans 195
Learning ObJecCtiVeS........ccceeeeereecercre e 196
Hardware ReqUIredcccevevererrerrerrinses e 196
Software REQUIred..........cceververververrerrerrerser s 197
CIrCUIL .. ———— 197
Database Table (MYSQL)........ccccuvererrmererenesersneserssesesssssessssssesessenens 199
COUE (PHP).....ooreerreeererreer e se e sn s sn s sn e e s 199
Database CONNECHION..........cuvcvnrrininis i 200
Receive and Store Sensor Data...........ouvvmnnnnn 201
D ——————————————————— 203
Code (ArdUiND).......cceeerrereersersersersessesses s e s e s s e s se e e e s 206
EXternal LIDraries. ... 206
Get GPS COOrdiNALES.cuvviriererrrrnissss s 206
Data PUBIISH ... 208
Standard FUNCHIONS ... 209
The Final ProducCt ..o s 210
R3] 11 4P 211

xii

CONTENTS

Chapter 10: loT Patterns: Machine to Human............ccccessnennnrnnns 213
Learning ObJECLIVES.........ccceeeeererrece e 214
Hardware REqUIredccvverrerierrerieerereesesssessesssessessssssessnsssssssesnes 214
Software REQUIrEU.........coveereeererrrere s sss s sns e enes 215
0o RN 215
Code (ArdUIND).....ccereerrerrereereersessessessessessesaessessessesassassasssssassasssssssssnsnns 217
EXTErNal LIDIari@S. . ..cceerereeeeererrsee s esesss e ses e sssesssssssesessssesenes 217
Internet Connectivity (WIr€leSS).......cuvrrerererrresesersssssesesesssesesessssssesessssssssessssssenes 217
Read SeNSOr DAta.........ccveverererreenerrsssesesesssss e ssesassssenes 217
DAt PUBIIS «....covveeeeeeevveeeessssssssssssssessssssssssssssssssssssssssssssssessssssssssssssassssssens 219
Standard FUNCIONScocevrieecrerrceserre e 220
EffEKtf WOIKFIOW ... se e 221
ProCESS Cre@lioN........cococeeererereserereseseseesesese e s 221
Process Configurations..........ccccveeeverererereressesessessssessesessesessessssessssessssessssssssnssaes 222
NOAE-RED FIOWcoeieeiiirirircreseren s 230
The Final Product ... 236
3101 T2 239
Chapter 11: loT Patterns: Machine to Machineooveeeeennnnens 241
Learning ObJECTIVES......c.ccovverrrerernrerre st sns e 242
Light SENSOr DEVICEc.ceeeeerrerecrerrerre e see s s sne e sne e 242
COUE (ArQUIND) ..ecuveeeecererieeere e 242
Lighting Control DEVICEccceeeeeeerserrnsereressessesesesessessesessessssesssssnsens 246
COAE (ArUIND) ...coveeereereererrererererrersesersesessesesseses e rseessesessesessesassesassessssessenesssnsnaes 246
The Final Product ... 249
SUMMANY ...ttt sn s sn e sn e sn s sn s sr s sn e nr e nn s nn e nn s 251

xiii

CONTENTS

Chapter 12: loT Platforms.........cccuccmmisemmmsssnmmsssnsmsssssssssssssssnssssnns 253
Learning ObJecCtiVES.........ccceeveereecercercee e 254
Hardware REQUIredcccceveerveererieeresreesee e seesseseessesssessesssessesssens 254
Software REQUIrEU........cceveerrrererererre e sns e enas 254
1 255
XiVElY SETUD....coereririrre e 256
101 T (o OSSR 263
D LT\ LT o] SRS 269
Code (ArdUIN).......ccecerrerrerrerrerrer s 271
EXTErNal LIDIari@S.....ceoeeeeereeererrsrsesesessss s sss s ss s sss s s ssssssssessssssnnes 27
Internet ConNectivity (WIr€leSS)......ccuurrrrrererrressenesrresesesesessssesesessssesessssssssesssensans 272
Read SeNSOr DAta..........cccvverererenesesesrsnsesess s se e snsssssssssssnsanes 272
Dt PUDISHvvvveeeeeeveesssssssssesssssssessssssssssssssssessssssssessssssssessssssssessssssssssssses 272
Standard FUNCHIONScccoerireccrrnnec e e 274
The Final Product ... 274
SUMMANY ... e 278
1T - 279

Xiv

About the Author

Adeel Javed is a Solutions Architect with over 11 years of software development, design,
and systems-architect experience in enterprise-wide business process management
(BPM) and service-oriented architecture (SOA) solutions. He helps organizations from
diverse global-industry domains with process improvements and implementation
initiatives. Adeel Javed regularly writes about BPM, SOA, 10T, cloud, and all things
process-oriented on his blog, ProcessRamblings.com, as well as for other major industry
sites such as BPMLeader.com, BPTrends.com, and IBM developerWorks.

In his time off, Adeel is an avid—and process-driven—Arduino enthusiast and device
developer.

XV

About the Technical
Reviewer

Jeff Tang worked on enterprise and web app development for many years before
reinventing himself to focus on building great iOS and Android apps. He had Apple-featured,
top-selling iOS apps with millions of users and was recognized by Google as a Top
Android Market Developer. He’s the author of the Beginning Google Glass Development
book published by Apress in 2014. His current passion is in IoT and Al and he actually
received his master’s degree in AL

xvii

Preface

Analysts are forecasting that by the year 2020 there will be more than 50 billion connected
things (devices) and the total revenue from the Internet of things (IoT) will easily surpass
$1.5 trillion.

The numbers look phenomenal, but what exactly is IoT? Is it simply things
connected to the Internet? Why do connected things matter?

IoT is much more than things connected to the Internet. IoT is about making dumb
things smarter by giving them the ability to sense, communicate, and respond. We have five
senses—we can see, hear, taste, smell, and touch. Similarly if you add these sensors to things
they can do the same as well. For example, using a camera things can see, using a sound
detector things can hear, and using a speaker things can talk. There are so many other sensors
that things can use to do so much more than us. By connecting these things to the Internet,
they can communicate with us, with other things, and the next frontier where they can use
artificial intelligence to think as well. There are numerous applications of IoT, but here are a
couple of examples to further understand how IoT is being used to improve our lives:

e Awristband with the ability to monitor your vitals. If it finds anything
out of the ordinary, it can alert you and your doctor immediately.

e Asecurity system that monitors the premises of your house for
any intrusions and alerts you and any security agencies.

What This Book Covers

This book is based on my personal experience of getting started with IoT. It is divided into
two logical sections. The first one teaches the basics of building IoT applications and the
second section follows a project-based approach. At the end of each chapter you will have
a working prototype of an IoT application.

Part 1: Building Blocks
Chapters 1-3 cover the building blocks of IoT:

e Chapter 1, “Arduino Basics,” introduces the Arduino prototyping
platform, which is used throughout the book.

e Chapter 2, “Internet Connectivity,” discusses the different options
available for connecting things to the Internet.

e Chapter 3, “Communication Protocols,” teaches you what
communication protocols are and which ones are available for IoT.

Xix

http://dx.doi.org/10.1007/978-1-4842-1940-9_1
http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_1
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

PREFACE

Part 2: Prototypes

Chapters 4-12 use the information covered in Part 1 to build prototypes of IoT
applications.

e Chapter 4, “Complex Flows: Node-RED,” introduces Node-RED,
which is a visual designer that helps reduce the amount of code
required for IoT applications.

e Chapter 5, “IoT Patterns: Realtime Clients,” talks about
components required for building IoT applications that provide
data to users in real time and shows you how to build an intrusion
detection system as an example.

e Chapter 6, “IoT Patterns: Remote Control,” discusses components
of IoT applications that can remotely control things, such as a
lighting control system.

e Chapter 7, “IoT Patterns: On-Demand Clients,” shows you
different components involved in building an on-demand IoT
application. You'll build a smarter parking system in this chapter.

e Chapter 8, “IoT Patterns: Web Apps,” teaches you scenarios where
web clients are preferred and uses a temperature monitoring
system as an example.

e Chapter9, “IoT Patterns: Location-Aware Devices,” discusses
importance of location-aware devices. You'll develop a livestock
tracking system as an example.

e Chapter 10, “IoT Patterns: Machine to Human,” talks about
scenarios where human response is needed; you'll build a waste
management system as an example.

e Chapter 11, “IoT Patterns: Machine to Machine,” discusses
a pattern of IoT that is going to be very popular as things get
smarter. The example is an energy conservation system.

e Chapter 12, “IoT Platforms,” wraps up the book by introducing
you to IoT platforms that help expedite entry into IoT. The
example in this chapter builds a soil moisture control system.

What You Need for This Book

IoT applications require hardware and software and can span different technologies, so
this book uses quite a few technologies. However, we have tried to keep them as simple
and minimal as possible.

XX

http://dx.doi.org/10.1007/978-1-4842-1940-9_4
http://dx.doi.org/10.1007/978-1-4842-1940-9_12
http://dx.doi.org/10.1007/978-1-4842-1940-9_4
http://dx.doi.org/10.1007/978-1-4842-1940-9_5
http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_7
http://dx.doi.org/10.1007/978-1-4842-1940-9_8
http://dx.doi.org/10.1007/978-1-4842-1940-9_9
http://dx.doi.org/10.1007/978-1-4842-1940-9_10
http://dx.doi.org/10.1007/978-1-4842-1940-9_11
http://dx.doi.org/10.1007/978-1-4842-1940-9_12

PREFACE

Required Hardware

Read the complete instructions provided in each chapter because, based on your device,
you may or may not need additional components.

Arduino Uno or Arduino Ydn

Ethernet shield

WiFi (wireless) shield

Breadboard

Jumper cables (male-male, male-female)
Light sensor

Motion sensor (HC-SR501)

LED

2202 resistor

Proximity sensor (Ultrasonic Rangemeter HC-SR04)
Temperature sensor (TMP36)

GPS module (NEO6MV2)

Soil moisture sensor

Software

Arduino IDE
Node-RED

MQTT broker (book uses free and publicly available broker from
Eclipse Foundation)

Android Studio

Xcode/Swift

PHP server

MySQL server

Text editor

Effektif BPM (cloud-based, free account required)
Xively (cloud-based, free account required)

Zapier (cloud-based, free account required)

xxi

PREFACE

To further help you, we have also created a web site at http://codifythings.com
dedicated to the book. The web site contains variations and enhancements to prototypes
developed in this book along with additional prototypes.

Who This Book Is For

This book is for hobbyists and professionals who want to enter the world of IoT.

The material in this book requires some prior knowledge of Arduino or similar
devices and programming experience. We have used basic hardware components
and provided step-by-step instructions for building circuits. We kept the code simple,
readable, and minimal to help newbies understand concepts and develop useable
prototypes. Throughout the book, the code is consistent and, wherever needed, is
explained in detail.

xxii

http://codifythings.com/

PART 1

Building Blocks

CHAPTER 1

Arduino Basics

Arduino is an open-source platform that’s composed of very simple and easy-to-use
hardware and software. In a nutshell your Arduino can read sensor data and control
components such as lights, motors, thermostats, and garage doors. It has mainly been
developed for prototyping purposes, so it is a great fit for this IoT beginner’s book.

Learning Objectives

At the end of this chapter, you will be able to:
e Use Arduino hardware
e Use the Arduino IDE

e Write, upload, and execute basic Arduino programs

Hardware Requirements

Arduino comes in various models (also known as boards). Each board has different
specifications. If your board does not come built-in with the features you are looking
for, then you always have an option to add a shield that supports required features.
In the Arduino world, a shield is very similar to a board, but it only supports specific
functionality such as the ability to connect to a WiFi network or the ability to control
servo motors. A shield acts as an add-on; that is, it is physically attached to the top of an
Arduino board. Once attached, the Arduino board becomes capable of handling shield
features as well.

Figure 1-1 shows a diagram of Arduino Uno, while Figure 1-2 shows a diagram of an
Ethernet shield.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-1940-9_1) contains supplementary material, which is
available to authorized users.

© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_1

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 1 " ARDUINO BASICS

Figure 1-1. Arduino Uno

% Ethernet

Arduino”

fritzing
Figure 1-2. Ethernet shield

The following list summarizes some of the important parts of the board that have
been used in projects throughout the book.

Note Parts will vary based on the Arduino board you choose.

CHAPTER 1 * ARDUINO BASICS

e Digital pins: In total there are 14 digital pins on Arduino Uno.
Digital pins can be both INPUT and OUTPUT, but their state can
only be HIGH or LOW. HIGH means there is current while LOW
means no current. An example of digital pin usage is turning an
LED light on or off. To turn it on, the digital pin should be set to
HIGH and to turn it off the digital pin should be set to LOW.

e Analog pins: Arduino Uno supports six analog pins, A0 through
A5. Unlike digital pins, the readings of analog pins can range
from 0 to 1023. A good example of a sensor that provides analog
readings is a soil moisture sensor. The range helps identify how
much moisture is left in the soil.

e USB connector: A USB connector lets you connect Arduino to the
computer, power the board, upload code, and receive logs on a
serial monitor.

e Battery power: [oT applications that need to be placed in remote
locations will need their own power source. You can use the
battery power connector to power the board.

This book uses Arduino Uno for all projects. Arduino Uno is categorized as an
entry-level board most suited for beginners. Even though the book uses Arduino Uno,
you are not required to use it; you can choose any of the Arduino boards to complete
projects in this book. Since this book is about the Internet of things, Internet connectivity
is an important requirement. Whichever Arduino board you decide to use, just make
sure that it supports Internet connectivity in some form. The Arduino board should
either come with a built-in Internet connectivity option or you should have the required
Internet connectivity shield.

Note Arduino Uno does not come with built-in Internet connectivity support, so in the
book both Ethernet and WiFi shields have been used. On the other hand, a more advanced
model of Arduino called Yun does support built-in Ethernet and WiFi connectivity. Chapter 2
discusses Internet connectivity in more detail.

Software Requirements

Arduino provides a C-like language for programming Arduino boards. You will be using
the Arduino IDE for writing code and uploading it to an Arduino board. You can install
the latest version of Arduino IDE from https://www.arduino.cc/en/Main/Software.

Once Arduino IDE has been installed on your machine, open it and, as shown in
Figure 1-3, it will load with default code.

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
https://www.arduino.cc/en/Main/Software

CHAPTER 1 " ARDUINO BASICS

[NON | ArduinoDefault | Arduino 1.6.4

ArduinoDefault

d setup() {

// put your setup code here, to run once:

id loop() {

// put your main code here, to run repeatedly:

Arduino Uno on /dev/cu.usbmodemi41l

Figure 1-3. Default view of Arduino IDE
There are three components of Arduino IDE that are referenced in every chapter of
this book.
e Toolbar
e Status window

e Serial Monitor window

Toolbar

The toolbar on top of the IDE, as shown in Figure 1-4, provides easy access to frequently
used options.

Figure 1-4. Arduino IDE toolbar

CHAPTER 1 * ARDUINO BASICS

e Verify/Compile: This is the first button from the left (the tick mark).
Click this button to verify and compile your code for correctness.
You can view the results in the Status window at the bottom.

e Upload: This is the second button from left (right-pointing
arrow). If your Arduino board is connected to your machine
that is running the Arduino IDE, this will upload the code on the
Arduino board. You can view the deployment results in the Status
window at the bottom.

e New/Open/Save: The next three buttons, as their names suggest,
let you open a new code window, open an existing code file, or
save the currently open code. Arduino code files have an *. ino
extension.

e Serial/Monitor: The last button on the right lets you open the
Serial Monitor window.

Status Window

When you verify the code or upload it to a board, the Status window shown in Figure 1-5
lists all the results. Any errors that occur during code verification or uploading will be
shown in the Status window.

Sketch uses 2,806 bytes (6%) of program storage space. Maximum is 32,256 bytes.
Global variobles use 208 bytes (1@%) of dynomic memory, leaving 1,840 bytes for local varigbles. Maximum is
2,848 bytes.

Figure 1-5. Arduino IDE Status window

Serial Monitor Window

The Serial Monitor window shown in Figure 1-6 prints all log messages generated by
the Serial.print() and Serial.println() functions in the code. In order to print any
messages on the Serial Monitor window, you first need to initialize the message in the
code (discussed later).

CHAPTER 1 " ARDUINO BASICS

0@ /dev/cu.usbmodem1411 (Arduino Uno)
' Send

NELLU LfLErnec or (LN
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Helle Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things

Autoscroll No line ending * 9600 baud =
Figure 1-6. Log messages on the Serial Monitor window

Arduino Programming Language Reference

The Arduino programming language has quite a few constructs. However, this chapter
provides the basics that have been used throughout the projects in this book; see Table 1-1.

Table 1-1. Language Reference

Code Construct Description

int Integer values, such as 123

float Decimal values, such as 1.15

char[] String values, such as "Arduino”

HIGH Digital pin with current

LOW Digital pin with no current

INPUT Pin can only be read

OUTPUT Pin can only be set

Ao - A7 Constants for analog pins; varies by board
0-13 Value for digital pins; varies by board
analogRead() Returns analog pin value (0 - 1023)
analoghrite(...) Sets analog pin value

digitalRead() Returns digital pin value (HIGH or LOW)

(continued)

CHAPTER 1 * ARDUINO BASICS

Table 1-1. (continued)

Code Construct Description

digitalWrite(...) Sets digital pin value (HIGH or LOW)

Serial.begin() Initializes serial monitor

Serial.print() Logs message on serial monitor
Serial.println() Logs message on serial monitor with new line
delay(ms) Adds a wait in processing

setup() Standard Arduino function called once
loop() Standard Arduino function called repeatedly
if Checks for a true/false condition

if ... else Checks for a true/false condition; if false goes to else
// Single-line comment

/¥ */ Multiline comment

#define Defines a constant

#include Includes an external library

You can explore the complete language at https://www.arduino.cc/en/Reference.
The Arduino IDE provides a very simple and clean interface to write code. Normally
you would structure your code in three parts:

External libraries: Includes all required libraries. A library is a
fully developed and tested piece of code that you can include and
use in your code. For instance, if you wanted to communicate
over the Internet using an Ethernet connection, instead of writing
all of that code from scratch, you could simply import and include
the Ethernet library using #include <Ethernet.h>.

Constants and variables: Defines all constants and variables
that will be used to read and manipulate data. Constants do not
change, so you can, for instance, use them for port numbers on
the board. Variables can change, so they can be used for reading
sensor data.

Functions: Provides implementation of all custom and standard
functions. A function encapsulates a specific functionality. It is
recommended to put your code in functions, especially when you
are looking to reuse that piece of code. Functions help avoid code
duplication.

Listing 1-1 provides an example of code that is structured according to points
discussed previously.

https://www.arduino.cc/en/Reference

CHAPTER 1 " ARDUINO BASICS

Listing 1-1. Recommended Code Structure

/*
* External Libraries
*/

#include <SPI.h>
/*
* Constants & Variables
*/
char message[] = “Hello Internet of Things”; // Single line comment
/*
* Custom & Standard Functions

*/

void printMessage()

{
}

Serial.println(message);

void setup()

// Initialize serial port
Serial.begin(9600);
}

void loop()

printMessage();
delay(5000);

Listing 1-1 consists of three functions. It has two standard Arduino functions,
called setup() and loop(), which are automatically called by Arduino once the code
is uploaded. They therefore must be present for the code to run. The third is a custom
function called printMessage() that simply prints a message to the Serial Monitor
window shown in Figure 1-6.

The setup() function is called only once. Initializations are done in this function
including serial monitor initialization using code Serial.begin(9600). The loop()
function, as the name suggests, runs in a continuous loop. Any post-initialization
processing such as reading sensor data can be done in this function. The loop() function
calls printMessage() function and then waits 5,000 milliseconds before repeating.

10

CHAPTER 1 * ARDUINO BASICS

Arduino Code Execution

Start your Arduino IDE and either type the code provided in Listing 1-1 or download it
from book’s site and open it. Click on the Verify button to compile and check the code.
Next, using the USB cable that came with your Arduino, connect your Arduino to the
computer that is running Arduino IDE.
Once Arduino is connected to your computer, as shown in Figure 1-7, click on
Tools » Board and select Arduino Uno (or whichever board you are using). This informs
Arduino IDE about the board where the code will be uploaded.

Auto Format #T ArduinoBasics | Arduino 1.6.4
Archive Sketch

Fix Encoding & Reload

Serial Monitor T#M

Board: "Arduino Uno*

> Boards Manager...
>

\ Port
Programmer: "AVRISP mkll" 3 Arduino Yun

Burn Bootloader v Arduino Uno
' Arduino Duemilanove or Diecimila

Arduino Nano
Arduino Mega or Mega 2560
Arduino Mega ADK
Arduino Leonardo
Arduino Micro
Arduino Esplora
Arduino Mini
Arduino Ethernet
Arduino Fio
Arduino BT
LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma

3 /7 Single line comment

Figure 1-7. Select the Arduino board

11

CHAPTER 1 " ARDUINO BASICS

You will also need to select what port to use for code upload. As shown in Figure 1-8
from Tools » Port, select the USB port that connects Arduino to your computer.

Help

Auto Format 8T ArduinoBasics | Arduino 1.6.4
Archive Sketch

Fix Encoding & Reload

Serial Monitor T ¥M

Board: *Arduino Uno* >

Serial ports
. . /dev/cu.Bluetooth-Incoming-Port
Programmer: "AVRISP mkil /dev/cu.Bluetooth-Modem
Burn Bootloader | V /dev/cu.usbmodem1411 (Arduino Uno)

Figure 1-8. Select the Arduino port

Finally, click on the Upload button and open the Serial Monitor window. Make sure
the value selected in the Serial Monitor dropdown is the same as the value set in the
Serial.begin() function. In this case, it is 9600 in the code, so 9600 baud needs to be
selected in the Serial Monitor dropdown. Otherwise, you will not be able to see the log
messages.

As shown in Figure 1-9, you will start seeing log messages in the Serial Monitor
window at an interval of 5,000 milliseconds.

@ ~ /dev/cu.usbmodem1411 (Arduino Uno)

o
1

MAELLYU LNTErNET Ur imungs
Hello Internet of Things
Hello Internet of Things f
Hello Internet of Things '
Helle Internet of Things
Helle Internet of Things
Helle Internet of Things
Helloe Internet of Things
Helle Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Hello Internet of Things
Helle Internet of Things

Autoscroll | Nolineending | | 9600 baud]

Figure 1-9. Log messages from the code in the Serial Monitor window

12

CHAPTER 1 * ARDUINO BASICS

Summary

In this chapter you learned the basics of Arduino hardware and software. You also learned
the common code constructs of the Arduino programming language, which will be used
throughout this book.

This chapter in no way is a complete reference of Arduino; it only provides the basics
required to complete all the projects in this book. To learn more about Arduino, visit the
official web site at https://www.arduino.cc.

13

https://www.arduino.cc/

CHAPTER 2

Internet Connectivity

All IoT devices require a mechanism to send or receive data. There are numerous options
available for connecting devices to the Internet, including wired and wireless options,
Bluetooth, cellular networks, and many more. The option you choose depends on various
factors, such as:

e Scale and size of the network where the application will run
e Amount of data that needs to be processed and transferred
e Physical location of the device

Table 2-1 lists some of the Internet connectivity options with an example of where
they have been used.

Table 2-1. Internet Connectivity Options for IoT Devices

Option Example

Wired (Ethernet) Food storage temperature monitoring
Wireless (WiFi) Soil moisture sensor

Bluetooth Key tracker

Cellular data Wildlife tracker

RFID (Radio Frequency Identification) Inventory management

Learning Objectives

At the end of this chapter, you will be able to:

e Attach an Ethernet shield to Arduino and write Ethernet
connectivity code

e Attach a WiFi shield to Arduino and write WiFi connectivity code

e Setup Arduino Yun to connect to WiFi

© Adeel Javed 2016 15
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_2

CHAPTER 2 * INTERNET CONNECTIVITY

Arduino Uno Wired Connectivity (Ethernet)

In this section, you are going to attach an Ethernet shield to your Arduino Uno and write
code to connect it to the Internet using Ethernet.

Note If you are using a model of Arduino that comes with built-in Ethernet capabilities
such as Arduino Yun, then you do not need a separate Ethernet shield. Arduino Ydn Internet
connectivity setup is discussed later in this chapter.

Hardware Required

Figure 2-1 provides a list of all hardware components required for connecting Arduino
Uno to the Internet using an Ethernet shield.

Arduing”

Arduino Ethernet Shield

fritzing

Figure 2-1. Hardware required for wired Internet connectivity

Software Required
In order to write the Internet connectivity code, you need following software:

e Arduino IDE 1.6.4 or later version

Circuit

In this section, you are going to build the circuit required for Internet connectivity using
Ethernet.

1. Make sure your Arduino is not connected to a power source,
such as a computer via USB or a battery.

16

CHAPTER 2 * INTERNET CONNECTIVITY

2. Attach the Ethernet shield to the top of Arduino. All the pins
should align.

3. Connect an Ethernet cable from Arduino to the LAN (Local
Area Network) port of your router. The router should already
be connected to the Internet.

Once the Ethernet shield has been attached to Arduino, it should look similar to
Figure 2-2.

— -
' ANALDG IN
5U 6nd SV AD 1 2 3

Figure 2-2. Ethernet shield attached to the top of Arduino Uno

Code (Arduino)

Now that your Arduino is physically connected to Ethernet, you are going to write the
code that will allow your Arduino to send and receive data over the Internet.

Start Arduino IDE and type the code provided here or download it from the book's
site and open it. All the code goes into a single source file (*.ino), but in order to make it
easy to understand and reuse, it is divided into three sections.

e External libraries
e Internet connectivity (Ethernet)

e Standard functions

17

CHAPTER 2 * INTERNET CONNECTIVITY

External Libraries

First section of the code as provided in Listing 2-1 includes all external libraries required
to run the code. Since you are connecting to the Internet using Ethernet, the main
dependency of code is on <Ethernet.h>. Your Arduino IDE should already have the
Ethernet library installed, but for any reason it is missing, you can download it from:

e <Ethernet.h>:https://github.com/arduino/Arduino/tree/
master/libraries/Ethernet

Listing 2-1. Code for Including External Dependencies

#tinclude <Ethernet.h>

Internet Connectivity (Ethernet)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet.
As provided in Listing 2-2, first you need to define the MAC address in the mac[]
variable. For newer Ethernet shields, the MAC address might be printed on a sticker.
You will also need to set a static IP address of Arduino for cases where it fails to get
a dynamic IP from DHCP (Dynamic Host Configuration Protocol). Make sure the IP
address you use is free, i.e., not currently in use by some other device on the network.
Define the EthernetClient variable that will be used for connectivity.

Listing 2-2. Constants and Variables for Connecting to the Internet Using Ethernet

byte mac[] = { oxDE, oxAD, OxBE, OXEF, OXFE, OXED };
IPAddress staticIP(20, 0, 0, 20);
EthernetClient client;

Listing 2-3 provides the code for the Ethernet connectivity setup. The
connectToInternet() function first attempts to connect to Ethernet with DHCP. If DHCP
fails to assign a dynamic IP address to Arduino, it will attempt connection to Ethernet
with the static IP you defined.

Listing 2-3. Code for Connecting to the Internet Using Ethernet

void connectToInternet()

{

// Attempt to connect to Ethernet with DHCP
if (Ethernet.begin(mac) == 0)
{
Serial.print("[ERROR] Failed to Configure Ethernet using DHCP");

18

https://github.com/arduino/Arduino/tree/master/libraries/Ethernet
https://github.com/arduino/Arduino/tree/master/libraries/Ethernet

CHAPTER 2 * INTERNET CONNECTIVITY

// DHCP failed, attempt to connect to Ethernet with static IP
Ethernet.begin(mac, staticIP);

}
// Delay to let Ethernet shield initialize

delay(1000);

// Connection successful

Serial.println("[INFO] Connection Successful");

Serial.print("");

printConnectionInformation();

Serial.printIn("-------mmm o ");
Serial.println("");

Once Arduino has successfully connected to the Internet, the Ethernet
printConnectionInformation() function, provided in Listing 2-4, is called. This function
prints connection information such as IP address, subnet mask, gateway, and DNS to the
Serial Monitor window.

Listing 2-4. Function to Display Connection Information

void printConnectionInformation()

{
// Print Connection Information
Serial.print("[INFO] IP Address: ");
Serial.println(Ethernet.localIP());
Serial.print("[INFO] Subnet Mask: ");
Serial.println(Ethernet.subnetMask());
Serial.print("[INFO] Gateway: ");
Serial.println(Ethernet.gatewayIP());
Serial.print("[INFO] DNS: ");
Serial.println(Ethernet.dnsServerIP());

Standard Functions

Finally, the code in this third and last section is provided in Listing 2-5. It implements
Arduino’s standard setup() and loop() functions. For this project, you are simply
connecting Arduino to the Internet with no processing thereafter, so the loop() function
will remain empty.

19

CHAPTER 2 * INTERNET CONNECTIVITY

Listing 2-5. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

}
void loop()
{

// Do nothing
}

Your Arduino code is complete.

Final Product

To test the application, verify and upload the code to Arduino as discussed in Chapter 1.
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages as shown in Figure 2-3.

0@ /dev/cu.usbmodem1411 (Arduino Uno)

' Send
[INFO] Connection Successful

[INFO] IP Address: 192.168.2.7

[INFO] Subnet Mask: 255.255.255.0

(INFO] Gateway: 192.168.2.1

[INFO] DNS: 192.168.2.1

™ Autoscroll No line ending 3 9600 baud &

Figure 2-3. Log messages from Arduino

20

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 2 * INTERNET CONNECTIVITY

Arduino Uno Wireless Connectivity (WiFi)

In this section, you are going to attach a Wireless shield to your Arduino Uno and write
code to connect it to the Internet using WiFi.

Note If you are using a model of Arduino that comes with built-in wireless capabilities
such as Arduino Yun, then you do not need a separate Wireless shield. Arduino Yun Internet
connectivity setup is discussed later in this chapter.

Hardware Required

Figure 2-4 provides a list of all hardware components required for connecting Arduino
Uno to the Internet using a Wireless shield.

Arduino Wireless Shield

fritzing

Figure 2-4. Hardware required for wireless Internet connectivity

Software Required
In order to write the Internet connectivity code, you will need following software:

e Arduino IDE 1.6.4 or later version

Circuit
In this section you are going to build the circuit required for Internet connectivity using WiFi.

1. Make sure your Arduino is not connected to a power source,
such as a computer via USB or a battery.

2. Attach the WiFi shield (a.k.a., wireless shield) to the top of
your Arduino. All the pins should align.

21

CHAPTER 2 * INTERNET CONNECTIVITY

Once the wireless shield has been attached to Arduino, it should look similar to
Figure 2-5.

Figure 2-5. WiFi shield attached to the top of Arduino Uno

Code (Arduino)

Now that your Arduino is capable of connecting to a wireless network, you are going to
write the code that will allow your Arduino to send and receive data over the Internet.

Start your Arduino IDE and type the following code or download it from book’s site
and open it. All the code goes into a single source file (*. ino), but in order to make it easy
to understand and reuse, it has been divided into three sections.

e External libraries
e Internet connectivity (wireless)

e Standard functions

External Libraries

The first section of the code, as provided in Listing 2-6, includes all external libraries
required to run the code. Since you are connecting to the Internet wirelessly, the main
dependency of code is on <WiFi.h>. Your Arduino IDE should already have WiFi library
installed, but for any reason it is missing, you can download it from:

o <WiFi.h>: https://github.com/arduino/Arduino/tree/
master/libraries/WiFi

22

https://github.com/arduino/Arduino/tree/master/libraries/WiFi
https://github.com/arduino/Arduino/tree/master/libraries/WiFi

CHAPTER 2 * INTERNET CONNECTIVITY

Listing 2-6. External Libraries

#include <SPI.h>
#include <WiFi.h>

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet.

To connect Arduino to your wireless router, set the ssid and password (pass) of your
wireless network, as provided in Listing 2-7. Also create a WiFiClient variable that will be
used for Internet connectivity.

Listing 2-7. Constants and Variables for Connecting to the Internet Using WiFi

char ssid[] = "YOUR_SSID";
char pass[] = "YOUR_PASSWORD" ;

int keyIndex = 0;
int status = WL_IDLE_STATUS;

WiFiClient client;

Listing 2-8 provides code for wireless connectivity setup. The connectToInternet()
function first checks if the WiFi shield is attached. Next, the code keeps attempting
to connect to the wireless network. The loop and the function end once Arduino
successfully connects to the wireless network.

Listing 2-8. Code for Connecting to the Internet Using WiFi

void connectToInternet()

{
status = WiFi.status();

// Check for the presence of the shield

if (status == WL_NO_SHIELD)

{
Serial.printIn("[ERROR] WiFi Shield Not Present");
// Do nothing
while (true);

}

// Attempt to connect to WPA/WPA2 Wifi network
while (status != WL_CONNECTED)

{

Serial.print("[INFO] Attempting Connection - WPA SSID: ");
Serial.println(ssid);

status = WiFi.begin(ssid, pass);

}

23

CHAPTER 2 * INTERNET CONNECTIVITY

// Connection successful

Serial.print("[INFO] Connection Successful");

Serial.print("");
printConnectionInformation();

Serial.println("----------=---cmmmmmmmeoo

Serial.println("");

Once Arduino has successfully connected to the wireless network, the
printConnectionInformation() function provided in Listing 2-9 is called. It prints the
SSID, the router’s MAC address, the Signal Strength (RSSI), Arduino’s IP address, and

Arduino’s MAC address, all on the Serial Monitor window.

Listing 2-9. Function to Display Connection Information

void printConnectionInformation()
{
// Print Network SSID
Serial.print("[INFO] SSID: ");
Serial.println(WiFi.SSID());

// Print Router's MAC address
byte bssid[6];
WiFi.BSSID(bssid);
Serial.print("[INFO] BSSID: ");
Serial.print(bssid[5], HEX);
Serial.print(":");
Serial.print(bssid[4], HEX);
Serial.print(":");
Serial.print(bssid[3], HEX);
Serial.print(":");
Serial.print(bssid[2], HEX);
Serial.print(":");
Serial.print(bssid[1], HEX);
Serial.print(":");
Serial.println(bssid[0], HEX);

// Print received signal strength
long rssi = WiFi.RSSI();

Serial.print("[INFO] Signal Strength (RSSI):

Serial.println(rssi);

// Print encryption type

byte encryption = WiFi.encryptionType();
Serial.print("[INFO] Encryption Type: ");
Serial.println(encryption, HEX);

24

");

CHAPTER 2 * INTERNET CONNECTIVITY

// Print WiFi Shield's IP address
IPAddress ip = WiFi.localIP();
Serial.print("[INFO] IP Address: ");
Serial.println(ip);

// Print MAC address

byte mac[6];
WiFi.macAddress(mac);
Serial.print("[INFO] MAC Address: ");
Serial.print(mac[5], HEX);
Serial.print(":");
Serial.print(mac[4], HEX);
Serial.print(":");
Serial.print(mac[3], HEX);
Serial.print(":");
Serial.print(mac[2], HEX);
Serial.print(":");
Serial.print(mac[1], HEX);
Serial.print(":");
Serial.println(mac[0], HEX);

Standard Functions

Finally, the code in the third and last section, as provided in Listing 2-10, implements
Arduino’s standard setup() and loop() functions. For this project, all you are doing is
connecting Arduino to the Internet and there is no processing thereafter, so the loop()
function will remain empty.

Listing 2-10. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to Internet
connectToInternet();

}

void loop()

// Do nothing
}

Your Arduino code is now complete.

25

CHAPTER 2 * INTERNET CONNECTIVITY

Final Product

To test the application, verify and upload the code to Arduino as discussed in Chapter 1.
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages as shown in Figure 2-6.

0] @ /dev/cu.usbmodem1411 (Arduino Uno)

| Send
[INFO] Attempting Connection - WPA SSID: Belkin.3796

[INFO] Connection Successful [INFO] SSID: Belkin.3796

[INFO] BSSID: 94:44:52:54:87:96

[INFO] Signal Strength (RSSI): -79

[INFO] Encryption Type: 4

[INFO] IP Address: 192.168.2.2

[INFO] MAC Address: 78:(4:E:2:94:8D

™ Autoscroll No line ending + 9600 baud a

Figure 2-6. Log messages from Arduino

Arduino Yun Wireless Connectivity (WiFi)

Ytn is a more advanced model of Arduino that has been developed for the Internet of
things. For beginners, Arduino Ydan may be a little complex as compared to Arduino Uno,
but it comes with built-in Ethernet and wireless capabilities so you do not need to buy
additional shields.

As mentioned in Chapter 1, this book uses Arduino Uno throughout. This section is
only provided as a reference for readers who already have an Arduino Ytin and still want
to follow the real-life prototypes developed in this book. Even though Arduino Yun is
not referenced in rest of the book, the code download contains Arduino Ydn-compatible
code as well.

Hardware Required

You do not need any additional hardware to connect Arduino Yiin to the Internet, so
Figure 2-7 only includes a diagram of Arduino Yudn.

26

http://dx.doi.org/10.1007/978-1-4842-1940-9_1
http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 2 * INTERNET CONNECTIVITY

Arduino”

1

Figure 2-7. Arduino Yun

Software Required
In order to write the Internet connectivity code you will need following software:

e Arduino IDE 1.6.4 or later version

Wireless Setup

Unlike Arduino Uno, where you need to attach a wireless or Ethernet shield, Arduino Ydn
comes with a built-in Ethernet and wireless connectivity capability. Arduino Yun acts as
a hotspot by directly connecting to your wired or wireless network. So, you do not need to
write the Internet connectivity code; instead, you just need to set up your Arduino Yin to
connect to your network. This section discusses the wireless setup for Arduino Yun.

1. Connect Arduino Yun to your computer with a Micro USB cable.

2. Arduino Yun acts as a hotspot as well, so from your
computer’s WiFi, search for Arduino Yin. Depending on
where you purchased your Arduino Yun, it might appear as
ArduinoYunXXXXXXXXXXXX or LininoXXXXXXXXXXXX in your
computer’s available WiFi connections. As shown in
Figure 2-8, connect to Arduino Yan wirelessly.

| Turn Wi-Fi Off
'V Linino-B4218AF00A07 7

Figure 2-8. Select Arduino Yin from wireless networks

27

CHAPTER 2 * INTERNET CONNECTIVITY

3. Onceit’s connected, open a web browser on your computer
and enter http://arduino.local (if this does not work then
enter the default IP http://192.168.240.1). As shown in
Figure 2-9, a login screen for your Arduino Ytn should open.

182.168.240.1/cgi-binfuci'webpanalhomepage

Linino.org

Welcome to your Arduine Yun . Please enter password to access the web control panel

PASEWORD

Please be sure you have cookies enabled before proceeding

Wenures CUI argnaty deviieces By Aobe o

Figure 2-9. Arduino Yun login screen

4. Ifthis is the first time you are accessing your Arduino Yun, then
enter the default password arduino (if this does not work, try
doghunter; otherwise check the manufacturer’s documentation).
Click the Log In button as shown in Figure 2-10.

[} 192.188.240. 1/cgi-bin/luc webpanelhomepage

| Linino.org

Welcome to your Arduino Yun . Please enter password to access the web control panel

Piease bt sure you have cookies enabled befare proceeding

Figure 2-10. Enter the password and log in

28

http://arduino.local/

CHAPTER 2 * INTERNET CONNECTIVITY

5. Upon successful login you will be redirected to the
configuration page of your Arduino Ytin, as shown in
Figure 2-11. Click on the Configure button.

WELCOME TO LININO, YOUR ARDUINO YUN

WIFI (WLANO) CONNECTED

Address
Netmask
MAC Address

192.168.240.1
255.255.255.0
B4:21:8A:F0:0A:07

Received 532.69 KB
Trasmitted 1.47 MB

WIRED ETHERNET (ETH1)

MAC Address B4:21:BA:FB:0A:07
Received 0.008

Trasmitted 0.00B

SYSTEM

System Type Atheros AR9330 rev 1
Machine Arduino Yun
BogoMIPS 265.42

Kernel Version 338

Local Time
Uptime

Load Average

Sat Oct 3 11:08:59 2015
994 seconds
0%

Figure 2-11. Arduino Yun default configuration

6. Asshown in Figure 2-12, you can change the Board Name,
Password, and Timezone of your Arduino Ytn. Under the
Wireless Parameters section, select the wireless network you
commonly use from the Detected Wireless Networks list.
Select the security type and enter network Password. Once
you are done, click the Configure & Restart button.

29

CHAPTER 2 * INTERNET CONNECTIVITY

LININO ONE BOARD
CONFIGURATION

BOARD NAME* Arduino
PASSWORD sesssss
CONFIRM PASSWORD sssssns

TIMEZONE * America/Chicago %]

WIRELESS PARAMETERS

CONFIGURE A WIRELESS NETWORK
DETECTED WIRELESS NETWORKS HOME-8252 (WPA2) B Refresh
WIRELESS NAME* HOME-9252

securry weaz [

PASSWORD * ssssssssssssssss

DISCARD CONFIGURE & RESTART

Figure 2-12. Arduino Yun wireless configuration

7. Arduino Yan will restart with updated settings, as shown in
Figure 2-13.

CONFIGURATION SAVED!

I'm restarting.
Please connect your computer to the wireless network called HOME-9252.

Figure 2-13. Arduino Yun restarting

30

CHAPTER 2 * INTERNET CONNECTIVITY

8. Asshown in Figure 2-14, during restart Arduino Yan will
display a message for you to connect to the commonly used
wireless network. Once restarted, you will be able to access
your Arduino Ytn using an IP assigned by your wireless
router. If you are unable to find the assigned IP, follow rest of
the steps and upload the code provided in a later section that
prints connection information.

CONFIGURATION SAVED!

I'm restarting.
Please connect your computer to the wireless network called HOME-9252.

Restarted! You'll find me here.

Figure 2-14. Arduino Yun restart complete

9. Open Arduino IDE while Arduino Yin is still connected via
Micro USB to your computer. As shown in Figure 2-15 from
Tools » Board, select Arduino Yun.

Help

Auto Format 8T sketch_feb13a | Arduino 1.6.4
Archive Sketch

Fix Encoding & Reload

Serial Monitor - #M

Board: "Arduino Ydn" > Boards Manager...

Port: "/dev/cu.usbmodem...” >

Programmer: "AVRISP mkll" » / Arduino Yun

Burn Bootloader Arduino Uno
. Arduino Duemilanove or Diecimila

Figure 2-15. Select the Arduino Yun board

31

CHAPTER 2 * INTERNET CONNECTIVITY

10. Asshown in Figure 2-16, from Tools » Port, select the port
that says Arduino Yun.

Help

Auto Format ®T sketch_feb13a | Arduino 1.6.4
Archive Sketch

Fix Encoding & Reload

Serial Monitor T ¥M

Board: "Arduino Yin" 2

Port: "/dev/cu.usbmodem..." Serial ports
/dev/cu.Bluetooth-Incoming-Port
/dev/cu.Bluetooth-Modem

Programmer: "AVRISP mkll"

. Bum Bootloader | v /dev/cu.usbmodem1411 (Arduino Ydn)

Figure 2-16. Select the Arduino Yun port

Code (Arduino)

Now that your Arduino Ytin is connected to a wireless network, you are going to write
the code that will allow your Arduino to send and receive data over the Internet. Since
Arduino Yun is already connected to the Internet, this is where the code will vary slightly.
Instead of adding code to connect, you will simply use the library <Bridge.h> to use the
wireless connection.

Start your Arduino IDE and either type the following code or download it from our
site and open it. All the code goes into a single source file (*.1no), but in order to make it
easy to understand and reuse it has been divided into three sections.

e External libraries
e Internet connectivity (Wireless)

e Read sensor data

External Libraries

The first section of the code as provided in Listing 2-11 includes all external libraries
required to run the code. For Arduino Yun, <Bridge.h> lets you access the already
established Internet connection. You are also going to use <Process.h> to print the
connection information. Your Arduino IDE has both these libraries installed.

Listing 2-11. External Libraries

#include <Bridge.h>
#tinclude <Process.h>

32

CHAPTER 2 * INTERNET CONNECTIVITY

Internet Connectivity (Wireless)

The second section of the code, which is provided in Listing 2-12, defines the functions
that are going to be used for displaying connection information.

Since Arduino is already connected to the wireless network, the
printConnectionInformation() function is called. It prints the wireless connection
information.

Listing 2-12. Function to Display Connection Information

void printConnectionInformation()

{

// Initialize a new process
Process wifiCheck;

// Run Command
wifiCheck.runShellCommand("/usr/bin/pretty-wifi-info.lua");

// Print Connection Information
while (wifiCheck.available() > 0)
{
char ¢ = wifiCheck.read();
Serial.print(c);

Serial.printIn(M-------mmmmmm e ");
Serial.println("");

Standard Functions

Finally, the code in third and last section, provided in Listing 2-13, implements Arduino’s
standard setup() and loop() functions. For this project, all you are doing is printing
the Internet connection information and there is no processing thereafter, so the loop()
function will remain empty.

One main difference in this code versus the Arduino Uno code is that you need to
initialize the bridge using Bridge.begin(). This basically lets you access the Arduino Yin
Internet connection.

Listing 2-13. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Do nothing until serial monitor is opened
while (!Serial);

33

CHAPTER 2 * INTERNET CONNECTIVITY

// Contact the Linux processor
Bridge.begin();

// Connect Arduino to Internet
printConnectionInformation();

}
void loop()

// Do nothing
}

Your Arduino code is now complete.

Final Product

To test the application, verify and upload the code to Arduino, as discussed in Chapter 1.
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages as shown in Figure 2-17.

@] Q /dev/cu.usbmodem1411 (Arduino Yun)
Send
Starting bridge...
Current WiFi configuration
SSID: HOME-9252
Mode: Client
Signal: 81%
Encryption method: WPA PSK (NONE)
Interface name: wlan@
Active for: 1 minutes
IP oddress: 10.9.8.16/255.255.255.90
MAC oddress: B4:21:8A:F0:0A:07
RX/TX: 19/118 KBs
Autoscroll No line ending = 9600 baud -

Figure 2-17. Log messages from Arduino

Summary

In this chapter you developed code to connect Arduino Uno to the Internet using both
Ethernet shield and WiFi shield. You also looked at the wireless setup for Arduino Yin
and the code needed to access the Internet connection.

For any of your future projects that require Internet connectivity using Ethernet or Wik,
you can use the code provided in this chapter as a base and then add your own code to it.

34

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 3

Communication Protocols/

In Chapter 2, you connected Arduino to the Internet using Ethernet and WiFi respectively.
This chapter looks at two protocols used for sending and receiving data. A protocol is an
agreed-upon structured format that is used for network communication. It defines what
should be sent and received and what actions should be taken.

Learning Objectives

At the end of this chapter, you will be able to:
e Understand the basics of the HTTP protocol
e Send an HTTP request to the server
e Understand the basics of the MQTT protocol
e Publish and subscribe to an MQTT broker

HTTP

The web uses Hyper Text Transfer Protocol (HTTP) as its underlying protocol. HTTP
supports multiple methods of data transmission, but in this project you are going to write
code for the two more popular methods, GET and POST. The GET and POST methods do

the same job and their code is very similar, but there is a slight variation in their request
formats. GET has a limit on how much data it can transmit compared to POST, which

has no such limitations. POST is also considered safer compared to GET. Based on your
requirements, you can decide which one works better for you. Figure 3-1 shows a
high-level interaction between a device and an HTTP server.

© Adeel Javed 2016 35
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_3

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

HTTP Request

—

HTTP Response

Device HTTP Server

Figure 3-1. Hyper Text Transfer Protocol (HTTP)

Note For hardware and software requirements and circuit instructions, refer to the
“Arduino Uno Wireless Connectivity (WiFi)” section in Chapter 2.

Code (Arduino)

Next you are going to write the code for connecting Arduino to the Internet using WiFi
and sending test data to a server using HTTP.

Start Arduino IDE and type the following code or download it from book’s site
and open it. All the code goes into a single source file (*. ino) in the same sequence as
provided here, but in order to make it easy to understand and reuse, it has been divided
into four sections.

e External libraries
e Internet connectivity (wireless)
e Data publish (HTTP)

e Standard functions

External Libraries

The first section of the code includes all external libraries required to run the code. Code
in this section is the same as Listing 2-6.

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(Chapter 2) here.

36

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par57
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par60
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par62
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par64
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 COMMUNICATION PROTOCOLS

Data Publish

The third section of the code defines variables, constants, and functions that are going to
be used for sending data to the server using HTTP.

As provided in Listing 3-1, you first define the address and port of server that
Arduino will connect to and send data. For the purposes of this project, you can publish
it to www.httpbin.org, which is an openly available test server that simply echoes all the
request information along with some additional information. In future projects, you will
use servers that process the request data.

Listing 3-1. Variables to Define the HTTP Server

char server[] = {"www.httpbin.org"};

[]
int port = 80;

The doHttpGet () function provided in Listing 3-2 encapsulates all the details of
preparing the request for the GET method, connecting to the server and sending request.

Attempt to connect to the server using client.connect(server, port)inan IF
condition. If the connection is successful, then prepare the request.

In a request that uses the GET method, data is sent as part of the URL in a name/
value pair format, for example, http://www.httpbin.org/get?temperatureSensor=
858metric=F. The example shows that two parameters will be sent, the first is the
temperatureSensor with a value of 85 and the second is metric with a value of F.

Finally, transmit the HTTP request to the server using the client.println()
method. This method will send the commands to the server over the network and then
receive any response from the server.

Listing 3-2. HTTP GET Request

void doHttpGet()
{

// Prepare data or parameters that need to be posted to server
String requestData = "requestVar=test";

// Check if a connection to server:port was made
if (client.connect(server, port))

{
Serial.println("[INFO] Server Connected - HTTP GET Started");

// Make HTTP GET request

client.printIn("GET /get?" + requestData + " HTTP/1.1");
client.println("Host: " + String(server));
client.println("Connection: close");

client.println();

Serial.printIn("[INFO] HTTP GET Completed");

37

http://www.httpbin.org/
http://www.httpbin.org/get?temperatureSensor=85&metric=F
http://www.httpbin.org/get?temperatureSensor=85&metric=F

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

else

{
}

Serial.println("[ERROR] Connection Failed");

Serial.printIn("--------mm oo ");
}

This code is for sending an HTTP GET request, but as mentioned earlier, it has a
length limitation, so if you want to avoid this limitation then use HTTP POST instead.

The doHttpPost () function provided in Listing 3-3 encapsulates all the details of
preparing request for the POST method, connecting to the server, and sending the request.

Attempt to connect to the server using client.connect(server, port)inan
IF condition. So far, the code is similar to the HTTP GET request. If the connection is
successful, then prepare the request.

In a request that uses the POST method, data is also sent in name/value pair format,
but it is part of the request. As you can see in Listing 3-3, sending an HTTP POST request
requires additional header information.

Finally, transmit the HTTP request to the server using the client.println()
method. This method will send the commands to the server over the network and then
receive any response from the server.

Listing 3-3. HTTP POST Request
void doHttpPost()

// Prepare data or parameters that need to be posted to server
String requestData = "requestData={\"requestVar:test\"}";

// Check if a connection to server:port was made
if (client.connect(server, port))

{
Serial.println("[INFO] Server Connected - HTTP POST Started");

// Make HTTP POST request

client.println("POST /post HTTP/1.1");

client.println("Host: " + String(server));
client.println("User-Agent: Arduino/1.0");
client.println("Connection: close");

client.println("Content-Type: application/x-www-form-urlencoded;");
client.print("Content-Length: ");
client.println(requestData.length());

client.println();

client.println(requestData);

Serial.println("[INFO] HTTP POST Completed");

38

CHAPTER 3 COMMUNICATION PROTOCOLS

else

{

// Connection to server:port failed
Serial.printIn("[ERROR] Connection Failed");

}

Serial.printIn("-------mmmmm ");
}

That is pretty much it for publishing data from your Arduino to a server.

Standard Functions

The code in the fourth and final section implements Arduino’s standard setup() and
loop() functions.

As Listing 3-4 shows, the setup() function initializes the serial port, connects to
Internet, and then makes either the HTTP GET request by calling doHttpGet () or the
HTTP POST request by calling the doHttpPost () function.

Listing 3-4. Code for Standard Arduino Functions—setup()

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

// Make HTTP GET request
doHttpGet();

Since in this project you are not doing any server-side processing with the data that
is being sent from sensor, you will add code to read response from the server to loop()
function. The test server that you are using simply echoes all the request information in
the response, so you are just going to read the response and print it to the Serial Monitor
window.

As provided in Listing 3-5, check if there are any bytes available to be read from
WiFiClient, read all the available bytes, and print them to the Serial Monitor window.
Once all the bytes have been read and printed, stop the client.

39

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

Listing 3-5. Code for Standard Arduino Functions—loop()

void loop()
{

if (client.available())
{
Serial.println("[INFO] HTTP Response");

}

// Read available incoming bytes from the server and print
while (client.available())
{

char ¢ = client.read();

Serial.write(c);

}

// If the server:port has disconnected, then stop the client
if (!client.connected())
{
Serial.println();
Serial.println("[INFO] Disconnecting From Server");
client.stop();

Your Arduino code is complete.

Final Product

To test the application, verify and upload the code as discussed in Chapter 1. Once the
code has been uploaded, open the Serial Monitor window. You will start seeing log
messages similar to ones shown in Figure 3-2 for HTTP GET and in Figure 3-3 for HTTP
POST.

40

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 3 COMMUNICATION PROTOCOLS

[NON] /dev/cu.usbmodem1411 (Arduino Uno)

[| [_Send |

[INFO] Server Connected - HTTP GET Started
[INFO] HTTP GET Completed

[INFO] HTTP Response

HTTP/1.1 200 0K

Server: nginx

Date: Wed, 23 Sep 2015 02:03:47 GMT
Content-Type: application/json
Content-Length: 183

Connection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

{
"args": {
"requestVar®: "test”
}I
b rs": {
"Host": “waw.httpbin.org”
}l
“origin®: "98.220.116.106",
“url®: “http://www.httpbin.org/get?requestVar=test”
}

[INFO] Disconnecting From Server

™ Autoscroll | Nolineending %/ | 9600 baud

ar
—

Figure 3-2. HTTP request: GET method

41

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

| NoN | /dev/cu.usbmodem1411 (Arduino Uno)
| Send |

[INFO] Server Connected - HTTP POST Started
[INFO] HTTP POST Completed

[INFO] HTTP Response

1TTP/1.1 200 OK

server: nginx

Jate: Wed, 23 Sep 2015 02:08:14 GMT
Zontent-Type: application/json
content-Length: 371

Zonnection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

{

“args”: {},

“data™: "7,

"files™: {},

“form™: {
"requestData”™: "{\"requestVar:test\"}"

}’

“headers™: {
“Content-Length™: "317,
"Content-Type”: “application/x-www-form-urlencoded;”,
"Host™: “www.httpbin.org”,
"User-Agent”: “Arduino/1.@"

"json”: null,

“origin”: "98.220.116.106",

"url™: “"http://waw.httpbin.org/post”
b

[INFO] Disconnecting From Server

g Autoscroll | No line ending 3 | l 9600 baud 3|

Figure 3-3. HTTP request: POST method

MQTT

MQTT is a lightweight machine-to-machine protocol. It follows the publisher-subscriber
model, whereby a publisher publishes data to a server (a.k.a., a broker) and subscribers
receive the data. Publishers and subscribers do not know each other; they connect to
the broker, which makes this communication asynchronous. The broker notifies all
subscribers that relevant data has been published using the concept of topics. A topic

is similar to a newsfeed, in that you subscribe to certain topics you want to receive

news about. Publishers and subscribers could be sensors, machines, and mobile apps.
Figure 3-4 provides a high-level overview of the MQTT protocol.

42

CHAPTER 3 COMMUNICATION PROTOCOLS

i 1

i 1

I Topic: intrusionDetected | /'

1 I

1 i
—1 0

i | e

I |

il Topic: lightsControl] \

1 1

Publisher : MQTT Broker : Subscribers

Figure 3-4. The MQTT protocol

Understanding MQTT is important for building IoT applications, so let’s take a look
at a few scenarios that will help you understand MQTT.

Intrusion Detection System

A simple version of an intrusion detection system is shown in Figure 3-5. It will consist of
three components—the motion sensors that detect intrusions and publish data, a mobile
app that receives this data and alerts the app user, and the component, which is a topic
on an MQTT broker.

| |
| 1
| 1
1 |
1 |
q}. ﬁ | |
| 1
| 1
| 1
1 |
; 1 | p
Device i MQTT Broker 1 Mobile App

Figure 3-5. Components of the intrusion detection system

43

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

The sensor will act as a publisher and publish a new message to the codifythings/
intrusionDetected topic on the MQTT broker as soon as an intrusion is detected. The
MQTT broker will add this message to the topic. The mobile app will be a subscriber of
the codifythings/intrusionDetected topic. Whenever a new message is published to the
topic, it will get notified. This will result in the mobile app creating a notification for the app
user. You will build this system in Chapter 6.

Remote Lighting Control

Another great usage of MQTT is developing mobile apps that act as remote controls for
various types of devices, such as a lighting control app. As shown in Figure 3-6, a remote
control app will also consist of three components, but compared to the previous example
the order of first two components is reversed. That means the first component is a
mobile app that lets the user switch the lights on or off, the second component is a device
connected to lights, and the third component is a topic on an MQTT broker.

0 ¢ 0

Mobile App MQTT Broker Device

Figure 3-6. Components of the remote lighting control

Mobile app users interact with the app to turn the lights on or off, whatever selection
is made the mobile app will publish a new message to the codifythings/lightsControl
topic on the MQTT broker. The MQTT broker will add this message to the topic. The
device that is connected to the physical lights will be a subscriber of the codifythings/
lightsControl topic. Whenever a new message is published to the topic it will get
notified; the device as a result will turn the lights on or off. You will build this remote
control in Chapter 8.

Note For hardware and software requirements and circuit instructions, refer to the
“Arduino Uno Wireless Connectivity (WiFi)” section in Chapter 2.

44

http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_8
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 COMMUNICATION PROTOCOLS

Code (Arduino)

Next you are going to write the code for connecting Arduino to the Internet using WiFi
and publishing it to a server using MQTT.

Start your Arduino IDE and type the following code or download it from book’s site
and open it. All the code goes into a single source file (*.1no) in the same sequence as
provided here, but in order to make it easy to understand and reuse, it has been divided
into four sections.

e External libraries

e Internet connectivity (wireless)
e Data publish (MQTT)

e Data subscribe (MQTT)

External Libraries

The first section of code is provided in Listing 3-6. It includes all the external libraries
required to run the code. This sketch has two main dependencies. For Internet
connectivity, you need to include <WiFi.h> (assuming you are using WiFi shield) and, for
MQTT broker communication, you need to include <PubSubClient.h>. You can install
the <PubSubClient.h> library from:

e <PubSubClient.h>:https://github.com/knolleary/
pubsubclient/releases/tag/v2.3

Listing 3-6. External Libraries

#include <SPI.h>
#include <WiFi.h>
#include <PubSubClient.h>

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8,
and Listing 2-9 from Chapter 2 here.

Data Publish/Subscribe MQTT

The third section of the code defines variables, constants, and functions that are going
to be used for publishing and subscribing to an MQTT broker. The code publishes and
subscribes to same topic.

Define the address and port (default is 1883) of the MQTT broker that you want
Arduino to connect to, as shown in Listing 3-7. The topic variable defines which topic
on the broker data will be published and subscribed. If you do not have an MQTT broker

45

https://github.com/knolleary/pubsubclient/releases/tag/v2.3
https://github.com/knolleary/pubsubclient/releases/tag/v2.3
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par60
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par62
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par64
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

installed on your machine, you can use the openly available MQTT broker from Eclipse
Foundation (iot.eclipse.org) or Mosquitto (test.mosquitto.org).

Listing 3-7. MQTT Setup

// IP address of the MQTT broker

char server[] = {"iot.eclipse.org"};

int port = 1883

char topic[] = {"codifythings/testMessage"};

As shown in Listing 3-8, initialize the MQTT client. The callback() function
encapsulates all the details of receiving payload from broker.

Listing 3-8. MQTT Initialization and Callback Function
PubSubClient pubSubClient(server, 1883, callback, client);

void callback(char* topic, byte* payload, unsigned int length)
{
// Print payload
String payloadContent = String((char *)payload);
Serial.println("[INFO] Payload: " + payloadContent);
}

Standard Functions

Finally, the code in this last section is provided in Listing 3-9. It implements Arduino’s
standard setup() and loop() functions.

In the setup() function, the code initializes the serial port and connects to the
Internet. If the MQTT broker is connected, it will subscribe to the codifythings/
testMessage topic. Once successfully subscribed, the code publishes a new message to
the codifythings/testMessage topic. The code subscribes to same topic to which it is
publishing. Therefore, as soon as a message is published, the callback() function will be
called. The loop() function simply waits for new messages from the MQTT broker.

Listing 3-9. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

46

CHAPTER 3 COMMUNICATION PROTOCOLS

//Connect MQTT Broker
Serial.println("[INFO] Connecting to MQTT Broker");
if (pubSubClient.connect("arduinoClient"))

{ Serial.printIn("[INFO] Connection to MQTT Broker Successful");
pubSubClient.subscribe(topic);
Serial.printIn("[INFO] Successfully Subscribed to MQTT Topic ");
Serial.printIn("[INFO] Publishing to MQTT Broker");
pubSubClient.publish(topic, "Test Message");

}

else

{
Serial.printIn("[INFO] Connection to MQTT Broker Failed");

}

}

void loop()

// Wait for messages from MQTT broker
pubSubClient.loop();

}

Your Arduino code is complete.

Final Product

To test the application, verify and upload the code as discussed in Chapter 1. Once the
code has been deployed, open the Serial Monitor window. You will start seeing log
messages from Arduino as shown in Figure 3-7.

[NoN | /dev/cu.usbmodem1411 (Arduine Uno)
' Send |

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 9@:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -52

[INFO] Encryption Type: 4

[INFO] IP Address: 10.9.9.13

[INFO] MAC Address: 78:(4:E:2:94:BD

[INFO] Connecting to MQTT Broker
[INFO] Connection to MQTT Broker Successfull
[INFO] Successfully Subscribed to MQTT Topic
[INFO] Publishing to MQTT Broker
[INFO] Payload: Test Messageage

™ Autoscroll No line ending i J 9600 baud .

Figure 3-7. MQTT: Publish/subscribe log messages

47

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 3 ©' COMMUNICATION PROTOCOLS

Summary

In this chapter, you learned about HTTP and MQTT, two very important, popular, and
lightweight communication protocols used in IoT applications. These protocols are
device agnostic, so they can be used for communication with any type of device or server.
You will use both these protocols extensively in the next chapters.

48

PART 2

Prototypes

CHAPTER 4

Complex Flows: Node-RED/

Now that you understand the basics of Arduino, including the different connectivity
options available and the communication protocols, you are going to use that knowledge
to prototype IoT applications.

This chapter starts with a hypothetical scenario. Imagine that you are responsible
for monitoring noise levels around an animal sanctuary. Whenever noise levels cross
a certain threshold, you are required to send an SMS to the supervisor and log noise
information in a database for future trends analysis. Let’s look at what will it take to
implement this IoT application:

Connect a sound sensor to Arduino

Write code that sends an HTTP request to a server whenever
noise levels exceed a threshold

Create a service on a server that receives HTTP requests
Write a service to send an SMS to the supervisor

Write a service to store sensor data in a database

Looking at these tasks, you can see that a lot of code needs to be developed to
create this application. Most IoT applications require implementation of tasks such as
HTTP request/response, MQTT publish/subscribe, e-mails, SMS, tweets, and storing/
loading data. Engineers at IBM faced this same issue. Every time they had to create a

new prototype they were required to code the flow and tasks from scratch, even though

they were repetitive. So, they developed Node-RED, which is an excellent drag-and-drop
toolkit of reusable code that does these tasks and many more.

Node-RED is an event-processing engine that helps IoT developers avoid reinventing
the wheel. You still need to write code but the amount of code required is significantly
reduced. Figure 4-1 shows the Node-RED development environment.

© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_4

51

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

= input Light Sermor Twael Fiow Hode-RED Flow * inio dabug

AT

; Hove
- - Marno Fecaive HTTP Requost
———] ofeS45a 1c01a8
[b J
Proparties

| hep

Fecetve HTTF Faquest e] Provides an input node for hitp requasts,
———a allowing the creaion of smple wed
Transiom Data () senices.
J——Y The rm‘mg massags has the lollowing
5 Senc At | H properties.

+ msg.req : hiip rog
* msg.res : hily

For POS!.'PuTrMhs. ms body i

available under =g, res. . This usos

the Express bodyPar crr-w> eware 1o
parse the content 1o a JSON object.

By dalault, this expects the body of tha
request 10 be url encoded:

foo=barhthissthot
To send JSON encoded data to the node,

the contant- mn nsaner ol Ihe mm!
must be st to o

Figure 4-1. Node-RED development environment

Asyou can see, a Node-RED flow is made of nodes. Each node encapsulates a
reusable piece of code that performs a certain task. To create a flow, you simply drag
nodes from palette on the left and drop them on your flow designer. You can find a lot of
nodes pre-built and openly available for use. A flow starts after receiving an input. There
are quite a few standard input sources available, such as HTTP, MQTT, and TCP. A flow
ends with an output task such as a HTTP response, an MQTT publish, a tweet, etc. A flow
is not limited to one input/output node; it can start or end with multiple nodes. Nodes in
between input and output usually transform or manipulate data, for example, converting
an HTTP request into an e-mail body.

You are going to build a simple project in order to get more acquainted with Node-
RED. The idea of this project is to tweet whenever it is sunny outside. Figure 4-2 displays
all the components that will be used to design this system. The first component is an
Arduino device with a light sensor attached to it. The second component is a Node-RED
flow that is started by Arduino. The final component is Twitter, as your Node-RED flow
will tweet a message whenever a certain threshold is crossed.

| i
| i
| i
i |
1 |
. 1 |
+ ﬁ i l' 2 1
| i
| i
1 |
. | | .
Device 1 Node-RED i Twitter

Figure 4-2. Components of the light sensor tweet system

52

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Learning Objectives

At the end of this chapter, you will be able to:
e Read light sensor data from Arduino

e Build a Node-RED flow that receives an HTTP request and tweets
amessage

e Send sensor data in an HTTP request to start a Node-RED flow

Hardware Required

Figure 4-3 provides a list of all hardware components required for building the light
sensor tweet system.

Light Sensor

Arduino
Jumper Cables

sesrTIIEEE T tEsrETREIIEITESS
- . . - . -
'K Tesvre sesee sewe T
e sewwe ® ve .w
Breadboard WiFi Shield

fritzing

Figure 4-3. Hardware required for light sensor tweet system

53

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Software Required

In order to develop the light sensor tweet system, you need following software:

Circuit

Arduino IDE 1.6.4 or later version

Node-RED 0.13.2 or later version

In this section you are going to build the circuit required for the light sensor tweet system.
This circuit uses an analog light intensity sensor, which returns values between 0 and
1023. Higher values mean higher intensity of light.

1.

Make sure your Arduino is not connected to a power source,
such as a computer via a USB or a battery.

Attach a WiFi shield to the top of Arduino. All the pins should
align.

Using jumper cables, connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

Tip

It is a good practice to use red jumper cables for power (+/VNC/5V/3.3V) and black

jumper cables for ground (-/GND).

54

Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the light sensor.

To read the light sensor values, you need to connect a jumper
cable from the analog read port of light sensor to the A0
(analog) port of your Arduino. Your code will use this port to
read the light’s intensity value.

Your circuit is now complete and it should look similar to Figures 4-4 and 4-5.

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

fritzing

Figure 4-4. Circuit diagram of the light sensor tweet system

Figure 4-5. Actual circuit of the light sensor tweet system

55

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Node-RED Flow

Note This book does not cover the installation of the Node-RED server. You can find
installation instructions at Node-RED’s official web site (http://nodered.org/docs/
getting-started/installation.html).

In this section you are going to develop a flow in Node-RED that will perform the
following tasks:

e Receive an HTTP request sent from the light sensor
e Prepare a tweet using data sent by the light sensor
e Tweet the message

e Send an HTTP response

Start your Node-RED server using the node-red command in a terminal window.
Figure 4-6 shows the log messages you will see once the Node-RED server starts.

Adeels-MacBook-Air:~ adeeljaved$ node-red

Welcome to Node-RED

Oct 17:25:28 - [info] Node-RED version: v@.10.6
Oct 17:25:28 - [info] Node.js wersion: v@.10.36
Oct 17:25:28 - [info] Loading palette nodes

Oct 17:25:29 - [warn]
Oct 17:25:29 - [warn] Failed to register 4 node types
Oct 17:25:29 - [warn] Run with -v for details

Oct 17:25:29 - [warn]
Oct 17:25:29 - [info] User Directory : /Users/adeeljaved/.node-red

Oct 17:25:29 - [info)] Flows file : /Users/adeeljaved/.node-red/flows_Adeel
s-MacBook-Air.local.json

4 Oct 17:25:30 - [info] Server now running at http://127.0.0.1:1880/

4 Oct 17:25:30 - [info] Starting flows

4 Oct 17:25:30 - [info] Started flows

bbb bbb

Figure 4-6. Startup logs of Node-RED

In Figure 4-6, the log message Server now running athttp://127.0.0.1:1880
contains the exact URL of the Node-RED server.

56

http://nodered.org/docs/getting-started/installation.html
http://nodered.org/docs/getting-started/installation.html

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Note The Node-RED server URL in logs http://127.0.0.1:1880 is the IP of your
local computer and cannot be accessed by Arduino. You will need to replace the local IP
127.0.0.1 with the network IP of your machine. The IP of the Node-RED server used in this
book was 10.0.0.6, so the URL you will see is http://10.0.0.6:1880.

Enter the Node-RED server URL in a browser to access the designer. The designer
opens up with an empty flow tab called Flow 1. Figure 4-7 shows the default view of the
Node-RED designer.

Fiow 1

Figure 4-7. Default view of the Node-RED designer

On the left side of designer, as shown in Figure 4-7, is a palette with all available
nodes. Nodes are grouped into various categories, such as input, output, function, etc.
Figure 4-8 shows the list of input nodes that comes with default installation of Node-RED,
and Figure 4-9 shows the list of output nodes in the default installation.

57

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

v input

Figure 4-8. Input nodes in the default installation of Node-RED

58

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Figure 4-9. Output nodes in the default installation of Node-RED

On the right side of the designer, as shown in Figure 4-7, are the Info and Debug
tabs. The Info tab displays documentation about the currently selected node in the Node
palette or Flow tab. The Debug tab displays log messages and errors generated from the
flow during execution.

Finally, the Deploy button on the top-right of the designer, as shown in Figure 4-7,
lets you deploy and activate your flow changes to the server.

Now let’s start creating the flow. If this is your first flow in Node-RED, you can use
Flow 1 to create your flow. If you have already created some flows and want to create a
new one, click on the plus (+) button on top-right side to add a new flow. Double-click
the flow tab name to open the properties dialog box shown in Figure 4-10. Call the new
flow Light Sensor Tweet Flow and then click OK to save your changes.

59

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Rename flow %

® Name Light Sensor Tweet Flow

| Ok Cancel

Figure 4-10. Flow properties dialog box

Drag and drop the http request input node from the palette in the Flow tab. Your flow
should look similar to Figure 4-11.

[http

Figure 4-11. HTTP request node

Double-click the http node to open the properties dialog box, as shown in Figure 4-12.
Set the method to GET, which specifies that the HTTP request will be sent by the client
(in this case, the light sensor) using a GET method. As discussed in Chapter 3, the structure
of the request varies based on the method you select. You saw the Arduino code for the GET
and POST methods in Chapter 3.

Edit http in node

= Method GET v
Q url /lightSensorTweet
% Name Receive HTTP Request

Ok Cancel

Figure 4-12. HTTP request node properties dialog box

60

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Set the URL property to /1ightSensorTweet. This URL will be prepended by the
Node-RED server and port. The Node-RED server used in this project is available at
10.0.0.6:1880, so Arduino will send data to 10.0.0.6:1880/1ightSensorTweet.

Finally, each node can be given a custom name that describes the task it performs.
Call this node Receive HTTP Request.

Click OK to make the updates.

Data coming from the device using HTTP is in string format, so you need to convert
itinto a number. Drag and drop a function node and place it in the Flow tab after the
Receive HTTP Request node. A function node lets you write code to manipulate payload.
Your flow should look similar to Figure 4-13 at this point.

® 9
Receive HTTP Request |) @

Figure 4-13. Function node

Double-click the function node to open the properties dialog, as shown in
Figure 4-14. Change the name to Convert to Number. Update the code inside function
as provided in Listing 4-1. Click OK to save your changes. Connect your Receive HTTP
Request and Convert to Number nodes.

61

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Edit function node

¥ Name Convert to Number a8~

Function

1 msg.payload.requestVar = parselnt(msg.payload.re
2 return msg;

G Outputs 1

See the Info tab for help writing functions.

Ok Cancel

Figure 4-14. Function node properties dialog box

Listing 4-1. Code for Converting a String to a Number

msg.payload.requestVar = parseInt(msg.payload.requestVar);
return msg;

At this point, your light sensor will send readings every few seconds whether it’s
sunny or not. So within the Node-RED flow, you need to add a rule to check if the sensor
value has crossed a certain threshold and only tweet when that threshold has been
crossed.

62

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

You can add this threshold check within Arduino code as well, but consider a real-
life implementation of this same project. Instead of tweeting you can also use same logic
to build an application that conserves energy by opening window blinds and turning
lights inside the house off if it is sunny outside. If you hard-code such checks in Arduino
code, then individual users might not be able to set their light preferences, because they
cannot directly update the code. Taking such logic away from sensors will enable you to
build something that can be customized by individual users.

Drag and drop a switch node from the function category and place it in the Flow tab
after the Convert to Number node. Your flow should look similar to Figure 4-15 at this
point.

Q (o] o
Receive HTTP Request (=1 ~ Convert to Number [I switch

Figure 4-15. Switch node

A switch node lets you follow a certain path in the flow based on a condition.

Double-click the switch node to open its properties dialog box and set the conditions
shown in Figure 4-16.

63

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Edit switch node

¥ Name Check Threshold

Property « msg. payload.requestVar

>= 4 v 8 750 -1 x

otherwise $ —2 x

+ rule

checking all rules

Ok Cancel

Figure 4-16. Switch node properties dialog box

Change the name to Check Threshold. By default, there will be only one path, so
click on the + Rule button to add a new path. If the sensor value is greater than 750, it will
follow path 1; otherwise, it will follow path 2. Path 2 will not check any conditions, so you
can change it to otherwise from the dropdown.

Node-RED keeps all input information in msg.payload. You will be sending the
sensor value in requestVar from Arduino, which is why the condition checks msg.
payload.requestVar.

Connect your Convert to Number and Check Threshold nodes.

You are going to use the sensor value to create a tweet message. Drag and drop a function
node on to the flow diagram. Place it after the Check Threshold node, as shown in Figure 4-17.

64

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

e e .
Receive HTTP Request | —— Convert to Number | ——— Check Threshold
Figure 4-17. Function node

Double-click the function node to open the properties dialog box, as shown in
Figure 4-18. Name it Set Tweet Message. Update the code inside the function node, as

shown in Listing 4-2. Click OK to save your changes.

Edit function node

% Name Set Tweet Message &~
Function

1 msg.payload = "Sunny OQutside! " +

2 msg.payload. requestVar +

3 " #IoT";

4 return msg;

¢ Outputs 1 =

See the Info tab for help writing functions.

Ok Cancel

Figure 4-18. Function node properties dialog box

65

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Listing 4-2. Code for Creating the Tweet

msg.payload = "Sunny Outside! " + msg.payload.requestVar + " #IoT";
return msg;

Connect the Set Tweet Message node to the first path of the Check Threshold switch
node. This connection will make sure that whenever a light sensor value crosses the
threshold of 750, the flow follows path 1 that tweets.

Next, drag and drop a Tweet node on to the flow diagram after the Set Tweet Message

node, as shown in Figure 4-19.
Set Tweet Message
J

e a0
Tweet

[+} L+
Receive HTTP Request | ——— Convert to Number | —— Check Threshold

Figure 4-19. Tweet node

For Node-RED to be able to tweet, you need to configure your Twitter credentials.
Double-click the twitter out node to open the properties dialog box shown in Figure 4-20.
If you already have your Twitter credentials configured in Node-RED, select them from
the Twitter dropdown. Otherwise, select the Add New Twitter-Credentials option from
the dropdown and click on the Edit/Pencil icon to start the configuration steps.

Edit twitter out node

& Twitter Add new twitter-credentials... sl

¥ Name Tweet

Ok Cancel

Figure 4-20. Add new Twitter credentials

Figure 4-21 shows the next dialog box that appears. Click on the Click Here to
Authenticate with Twitter button.

66

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Add new twitter-credentials config node

Click here to authenticate with Twitter.

Cancel

Figure 4-21. Authenticate the Twitter account

On the next screen, shown in Figure 4-22, enter your Twitter username and password
and click the Authorize App button to grant Node-RED access to your Twitter account.

Authorize Node RED to use your
account?

Node RED
codifythings@gmail.cor nodered.org
P Node-RED Twitter node

Remember me - Forgot password?

This application will be able to:

« Read Tweets from your timeline.

« See who you follow, and follow new people.
« Update your profile.

« Post Tweets for you.

+ Access your direct messages.

Will not be able to:

« See your Twitter password.

Figure 4-22. Authorize Node-RED to use your Twitter account

67

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Once the authorization process is complete, click on the Add button in the dialog
box shown in Figure 4-23.

Edit twitter out node

Add new twitter-credentials config node

& Twitter ID = @codifythings

Add Cancel

Figure 4-23. Add the authorized Twitter account to the flow

Figure 4-24 shows the dialog box that you will be presented with next; it’s the same
dialog box where you started the Twitter configuration process. Click OK to complete the
Twitter configuration.

Edit twitter out node

& Twitter @codifythings

%

¥ Name Tweet

Ok Cancel

Figure 4-24. Select the authorized Twitter credentials

Connect the Tweet node to the Set Tweet Message node.
Finally, add an HTTP response node to your flow under the Twitter node. Your flow
should look similar to Figure 4-25.

68

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Q

)
Set Tweet Message — Tweet
L Q °I]

Recaive HTTP Request | ——— Convert to Number | —— Check Threshold - hitp

Figure 4-25. HTTP response node

The HTTP response node will simply send msg. payload back to the client in the
JSON format. Change the name of this node to Send HTTP Response.

Connect the Send HTTP Response node to the second path of the Check Threshold
switch node and also to the Set Tweet Message. Your final flow should look similar to
Figure 4-26.

Sat Twest Message 2 Twoat
QI i]

o L]
Roceive HTTP Request | —— Convent to Number | —— Chack Threshold Send HTTP Response

Figure 4-26. Completed Node-RED flow

Code (Arduino)

Next, you are going to write code for connecting Arduino to the Internet using WiFi,
reading light sensor data, and sending it to the Node-RED server as an HTTP request.

Start your Arduino IDE and either type the code provided here or download it from
book’s site and open it. All the code goes into a single source file (*.ino), but in order to
make it easy to understand and reuse, it has been divided into five sections.

e Externallibraries

e Internet connectivity (WiFi)
e Read sensor data

e HTTP (GET)

e Standard functions

External Libraries

The first section of the code, as provided in Listing 4-3, includes all the external libraries
required to run the code. Since you are connecting to the Internet wirelessly, the main
dependency of code is on <WiFi.h>.

Listing 4-3. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>

69

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Internet Connectivity (Wireless)

The second section of the code defines variables, constants and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(Chapter 2) here.

Read Sensor Data

The third section of the code is provided in Listing 4-4. It defines variables, constants, and
functions that are going to be used for reading sensor data.

The readSensorData() function reads data from Analog Pin A0, and the result is
between 0 and 1023. The greater the value returned, the brighter the light source. The
light sensor value is assigned to the 1ightValue variable.

Listing 4-4. Code for the Reading Light Sensor Data
int lightValue;

void readSensorData()

{
//Read Light Sensor Value
lightValue = analogRead(A0);

Serial.print("[INFO] Light Sensor Reading: ");
Serial.println(lightValue);

Data Publish

The fourth section of the code is provided in Listing 4-5. It defines variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET that you developed in
Chapter 3.

The main modification in this code is its ability to open and close a connection to
the server repeatedly. Apart from that, make sure to change the server and port values to
your Node-RED server’s values. The other changes include passing a 1ightValue variable
in the request and invoking the /lightSensorTweet URL.

Listing 4-5. Code for Starting the Node-RED Flow Using HTTP Request

//IP address of the HTTP server
char server[] = {"10.0.0.6"};
int port = 1880;

unsigned long lastConnectionTime s= 0;
const unsigned long postingInterval = 10L * 1000L;

70

http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par60
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par62
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par64
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

void doHttpGet()
{

// Read all incoming data (if any)
while (client.available())

{
char ¢ = client.read();
Serial.write(c);

}

Serial.println();
Serial.println(------mmm oo ")s
if (millis() - lastConnectionTime > postingInterval)

client.stop();
//Read sensor data
readSensorData();

// Prepare data or parameters that need to be posted to server
String requestData = "requestVar=" + String(lightValue);

Serial.printIn("[INFO] Connecting to Server");

// Check if a connection to server:port was made
if (client.connect(server, port))

{
Serial.println("[INFO] Server Connected - HTTP GET Started");

// Make HTTP GET request

client.println("GET /lightSensorTweet?" + requestData + " HTTP/1.1");
client.println("Host: " + String(server));
client.println("Connection: close");

client.println();

lastConnectionTime = millis();

Serial.println("[INFO] HTTP GET Completed");

}

else

{
// Connection to server:port failed
Serial.println("[ERROR] Connection failed");

}

}
}

71

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

Standard Functions

Finally, the code in the fifth and last section is provided in Listing 4-6. It implements
Arduino’s standard setup() and loop () functions.

The setup() function initializes the serial port and connects to the Internet. While
it’s in the loop() function, it calls doHttpGet () at an interval of 5,000 milliseconds. The
doHttpGet () function reads the sensor data and sends this sensor value to Node-RED in
an HTTP request.

Listing 4-6. Code for the Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

}

void loop()

// Make HTTP GET request
doHttpGet();

delay(5000);

Your Arduino code is now complete.

Final Product

To test the application, make sure your Node-RED server is up and running with the flow
deployed.

Also verify and upload the Arduino code, as discussed in Chapter 1. Once the code
has been uploaded, open the Serial Monitor window. You will start seeing log messages
similar to the ones shown in Figure 4-27.

72

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 4 © COMPLEX FLOWS: NODE-RED

[BoN] /dev/cu.usbmodem1411 (Arduino Uno)

|| Send |

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 90:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -47

[INFO] Encryption Type: 4

[INFO] IP Address: 10.9.0.13

[INFO] MAC Address: 78:C4:E:2:94:BD

[INFO] Light Sensor Reading: 1823
[INFO] Connecting to Server

[INFO] Server Connected - HTTP GET Started
[INFO] HWTTP GET Completed

HTTP/1.1 200 0K

X-Powered-By: Express

Content-Length: 24

Content-Type: text/html; charset=utf-8
ETag: W/"18-HpHERatAjxnxCPOhLZ1PuQ"
Date: Sat, @5 Mar 2016 23:03:21 GMT
Connection: close

Sunny Outside! 1023 #IoT

Autoscroll | Nolineending :| | 9600 baud :)

Figure 4-27. Log messages from the light sensor tweet system

Arduino will be continuously sending data to the server, so as soon as you put the
sensor in bright light, the Node-RED flow condition will become true and a tweet will
be sent. This is shown in Figure 4-28. There is no condition to send this once, so the
application will keep sending tweets unless the sensor is moved away from bright light or
turned off.

CodifyThings @ codifythings - 51s

Sunny Outside! 882 #loT

Figure 4-28. Tweet from the light sensor tweet system

Summary

In this chapter you learned about Node-RED and developed a simple flow that is initiated
by Arduino. This flow publishes a tweet whenever a certain threshold value is crossed.

You can utilize hundreds of readily available nodes in Node-RED to expedite your
IoT application development.

73

CHAPTER 5

loT Patterns: Realtime Clienty

An important pattern of IoT is the ability to sense data and make it available to users in
realtime, such as with home monitoring solutions, perimeter security applications, and
inventory alerts.

In this chapter, you are going to build an example of this pattern, an intrusion
detection system. Figure 5-1 shows components of an intrusion detection system. The
first component is an Arduino device that has a motion sensor attached to it. The second
component is an MQTT broker. You will use the publish-subscribe model of MQTT for
sending intrusion detection notifications in realtime (for details, see Chapter 3). The final
component of your IoT application is an Android app that subscribes to the MQTT broker
and shows an alert notification to users whenever Arduino detects an intrusion and
publishes a message to the MQTT broker.

] 1
1 |
]]
i]
i i
N ﬁ i]
v [
1 1
] |
| 1
i]
Device 1 MQTT Broker 1 Mobile App
Figure 5-1. Components of the intrusion detection system
© Adeel Javed 2016 75

A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_5

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Learning Objectives

At the end of this chapter, you will be able to:
e Read motion sensor data from Arduino
e Publish sensor data to an MQTT broker
e Build an Android app that subscribes to an MQTT broker

e Display a notification in the app whenever a new message is
published to the MQTT broker

Hardware Required

Figure 5-2 provides a list of all hardware components required for building the intrusion
detection system.

—— ‘ UNO)
| s T - : paieel_ L1)
- 8 remm Arduino
3
Motion Sensor (HC-SR501)
- o

Arduino
Jumper Cables

"E s seEEEe sEEEE EEEEE e
L I I

.
.
R I
.

Breadboard WiFi Shield

fritzing

Figure 5-2. Hardware required for the intrusion detection system

76

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

Software Required

In order to develop the intrusion detection system, you need the following software:
e Arduino IDE 1.6.4 or later version

e Android Studio 1.5.1 or later

In this section, you are going to build the circuit required for the intrusion detection
system. This circuit uses an HC-SR501 motion sensor to detect intrusions.

1. Make sure your Arduino is not connected to a power source,
such as to a computer via a USB or a battery.

2. Attach a WiFi shield to the top of Arduino. All the pins
should align.

3. Usejumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the motion sensor.

5. Toread motion sensor values, you need to connect a jumper
cable from signal port of the motion sensor (usually the
middle port) to digital port 3 of your Arduino. You can use
other digital ports as well, but if you do, make sure to change
the Arduino code appropriately.

Your circuit is now complete and it should look similar to Figures 5-3 and 5-4.

77

|0T PATTERNS: REALTIME CLIENTS

CHAPTER 5

fritzing

-3. Circuit diagram of the intrusion detection system

Figure 5

Figure 5-4. Actual circuit of the intrusion detection system

78

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

Code (Arduino)

Next you are going to write code for connecting Arduino to the Internet using WiFi,
reading motion sensor data, and publishing it to an MQTT broker.

Start your Arduino IDE and type the code provided here or download it from book’s
site and open it. All the code goes into a single source file (*. ino), but in order to make it
easy to understand and reuse, it has been divided into five sections.

e Externallibraries

e Internet connectivity (WiFi)
e Read sensor data

e MQTT (publish)

e Standard functions

External Libraries

The first section of code is provided in Listing 5-1. It includes all external libraries
required to run the code. This sketch has two main dependencies. For Internet
connectivity, you need to include the <WiFi.h> (assuming you are using a WiFi shield)
and for MQTT broker communication, you need to include <PubSubClient.h>.

Listing 5-1. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>
#include <PubSubClient.h>

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(from Chapter 2) here.

Read Sensor Data

The third section of code is shown in Listing 5-2. It defines variables, constants, and
functions that are going to be used for reading the sensor data.

Listing 5-2. Variables for Reading Motion Sensor Data

int calibrationTime = 30;

long unsigned int lowIn;

long unsigned int pause = 5000;
boolean lockLow = true;

boolean takeLowTime;

int pirPin = 3;

79

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Listing 5-3 provides the code for the calibrateSensor () function, which waits for
the motion sensor to calibrate properly. The sensor can take between 5 and 15 seconds
to calibrate, so the code allows 30 seconds for sensor to calibrate. Once calibration is
complete, the motion sensor is active and can start detection. If you do not give it enough
time to calibrate, the motion sensor might return incorrect readings.

Listing 5-3. Function to Calibrate the Motion Sensor

void calibrateSensor()

{
pinMode(pirPin, INPUT);
digitalWrite(pirPin, LOW);

Serial.println("[INFO] Calibrating Sensor ");

for(int i = 0; i < calibrationTime; i++)
{

Serial.print(".");

delay(1000);

Serial.println("");

Serial.println("[INFO] Calibration Complete");
Serial.println("[INFO] Sensor Active");
delay(50);

The readSensorData() function in Listing 5-4 reads data from Digital Pin 3 and the
result is either HIGH or LOW. HIGHmeans motion was detected and LOW means there was no
motion or the motion stopped. The additional condition if(lockLow) is there to avoid
publishing too many messages to the MQTT broker for the same motion.

Listing 5-4. Code for Reading Motion Sensor Data

void readSensorData()

{
if(digitalRead(pirPin) == HIGH)

if(lockLow)
{
lockLow = false;
Serial.print("[INFO] Activity Detected @ ");
Serial.print(millis()/1000);
Serial.print(" secs");
Serial.println("");

80

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

// Publish sensor data to MQTT broker
publishSensorData();

delay(50);

}

takeLowTime = true;

}
if(digitalRead(pirPin) == LOW)

if(takeLowTime)

{
lowIn = millis();
takeLowTime = false;

}

if(!lockLow && millis() - lowIn > pause)
{

lockLow = true;

Serial.print("[INFO] Activity Ended @ "); //output
Serial.print((millis() - pause)/1000);

Serial.print(" secs");

Serial.println("");

delay(50);

Data Publish

The fourth section of the code defines variables, constants, and functions that are going
to be used for publishing the data to an MQTT broker.

This is the same code that you saw in Chapter 3. You do not need to make any
changes for the code to work, but it is recommended that you customize some of the
messages so that they do not get mixed up with someone else using the same values.

All values that can be changed have been highlighted in bold in Listing 5-5. If you are
using your own MQTT server, make sure to change the server and port values. The two
recommended changes include value of the topic variable and the name of the client
that you need to pass while connecting to the MQTT broker.

81

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Listing 5-5. Code for Publishing an MQTT Message

// IP address of the MQTT broker

char server[] = {"iot.eclipse.org"};

int port = 1883;

char topic[] = {" codifythings/intrusiondetection"};

void callback(char* topic, byte* payload, unsigned int length)
{

//Handle message arrived

}

PubSubClient pubSubClient(server, port, 0, client);

void publishSensorData()
{

// Connect MQTT Broker
Serial.println("[INFO] Connecting to MQTT Broker");

if (pubSubClient.connect("arduinoIoTClient"))

{
Serial.println("[INFO] Connection to MQTT Broker Successful");

else

{
Serial.printIn("[INFO] Connection to MQTT Broker Failed");

}

// Publish to MQTT Topic
if (pubSubClient.connected())

{
Serial.println("[INFO] Publishing to MQTT Broker");

pubSubClient.publish(topic, "Intrusion Detected");
Serial.printIn("[INFO] Publish to MQTT Broker Complete");
}

else

{
Serial.println("[ERROR] Publish to MQTT Broker Failed");

}

pubSubClient.disconnect();

82

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

Standard Functions
The code in the fifth and final section implements Arduino’s standard setup() and
loop() functions.

In the setup() function, you initialize the serial port, connect to the Internet, and
calibrate the sensor for correct readings, as shown in Listing 5-6.
Listing 5-6. Code for Standard Arduino Function—setup()
void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

// Calibrate motion sensor
calibrateSensor();

In the loop() function, you only need to call the readSensorData() function, as
shown in Listing 5-7.
Listing 5-7. Code for Standard Arduino Function—loop()
void loop()

//Read sensor data
readSensorData();

}

Your Arduino code is now complete.

Code (Android)

This section provides instructions for developing an Android app that will fulfill the
following two requirements:

e Display a notification in realtime whenever motion is detected by
the sensor

e Create a simple screen where app users can see when last motion
was detected

83

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Project Setup

In this section, you are going to create a new project in Android Studio to develop an
app. Android Studio is the official IDE for Android platform development and can be
downloaded from http://developer.android.com/sdk/index.html.

Start Android Studio and create a new Android Studio project.

If you are on the Quick Start screen, as shown in Figure 5-5, click on the Start a New
Android Studio Project option to create a new project.

Android Studio

*,a Welcome to Android Studio

o~

Recent Projects

Al @

=
'S
LA

do &l €

B2

Android Studio 1.2.2 Build 141.1980579. Check for updates now.

Quick Start

Start a new Android Studio project

Open an existing Android Studio project

Import an Android code sample

Check out project from Version Control

Import project (Eclipse ADT, Gradle, etc.)

Configure

Docs and How-Tos

Figure 5-5. Create new project from the Quick Start screen

84

http://developer.android.com/sdk/index.html

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

If you are already in Android Studio, as shown in Figure 5-6, choose File » New »
New Project to create a new Android Studio project.

F(-W Edit View Navigate Code Analyze Refactor Build Run

LT New Project...

|
Import Sample... Import Project... {
1 Open... Project from Version Control > l
Open Recent >
Close Project New Module...

Import Module...

Figure 5-6. Create new project from the Android Studio menu bar

Figure 5-7 shows the new project configuration screen. Enter a name for the new
project, for example, Intrusion Detection System. Enter your company or personal
domain name. This will be used by Android Studio to define the package hierarchy of the
Java code. Click Next.

% New Project
=A Android Studio

Configure your new project

Application name: Intrusion Detection System

Company Domain: codifythings.com

n
S
S

Package name: com.codifythings.intrusic

Project location: fUsers fadeeliaved. TR

Cancel] [Previous | (R | Finish

Figure 5-7. New project configuration

85

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Note As a norm, package hierarchy is the domain name in reverse. Therefore,
codifythings.com becomes com.codifythings.<packagename>.

For this project, you are only going to run your app on an Android phone or tablet, so
select Phone and Tablet for the target platform, as shown in Figure 5-8.

e o Croate Now Project

&; Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

[Phone and Tablet
Minimum SDK | AP 14: Android 4.0 (iceCreamSandwich)

Lower API levels target more devices, but have fewer features available.

By targeting API 14 and later, your app will run on approximately 97.3% of the devices
that are active on the Google Play Store.

Help me choose
Wear

Minimum SDK | APl 21: Android 5.0 (Lollipop)
™

Minimum SDK | API 21: Android 5.0 (Lollipop)
Android Aute

Class

Minimum SDK | Class Development Kit Preview

Cancel Previous | | Next | Finish

Figure 5-8. Android device selection screen

Your app requires a screen to display the time when the last intrusion was detected.
To accomplish this, you need to create an activity. From the activity template selection
screen, select Blank Activity; see Figure 5-9. Click Next.

86

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

e o Create New Project

Add No Activity
Blank Activity Empty Activity Fullscreen Activity Coogle AdMob Ads Activity
Coogle Maps Activity Login Activity Master/Detail Flow Navigation Drawer Activity Scralling Activity

| Cancel | | Previous 5: | Finish

Figure 5-9. Activity template selection screen
Leave the default values for Activity Name, Layout Name, Title, and Menu Resource

Name, as shown in Figure 5-10. The rest of the chapter will reference them with these
same names.

87

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

e @ Create New Project

Q Customize the Activity

Creates a new blank activity with an app bar.

hawiytame: (i

Layout Name: activity_main
Title: [MainActivity
Menu Resource Name: menu_main

Use a Fragment

Blank Activity

Cancel Previous Next | [oFinishis]
Figure 5-10. Activity customization screen

Click Finish. Android Studio will create quite a few folders and files, as shown in
Figure 5-11. These are the most important ones:

e app > manifests > AndroidManifest.xml—A mandatory file
required by the system that contains application information,
such as required permissions, screens and services, etc. Most of
the elements in this file are system-generated, but you can update
it manually as well.

e app > java > *.* - package-hierarchy—Contains all Java
code and unit tests.

e app > res > layout > *.xml—Contains layout XMLs for all
screens. Determines how each screen will look, fonts, colors,
position, etc. You can access any layout XML in Java using the
auto-generated Java class R, such as R.1layout.activity main.
To access an individual element in layout XML, you can use the
syntaxR.id.updated field.

88

CHAPTER 5

i+ Android M|
v [Ciapp
v [CImanifests
‘o AndroidManifest.xml
v [Cjava
» [21 com.codifythings.intrusiondetectionsystem

IOT PATTERNS: REALTIME CLIENTS

&

» [51 com.codifythings.intrusiondetectionsystem (androidTest)

v [Cares
1 drawable
v [E1layout
‘@ activity_main.xml
@ content_main.xml
» [EImenu
» [E1mipmap
v [Zlvalues
‘o colors.xml
» [E1dimens.xml (2)
& strings.xml
» [Estyles.xml (2)

Figure 5-11. Default folders generated by Android Studio

Screen Layout

o+
e >

Ll o

To start designing the screen layout, click on activity main.xml in the App » Res »
Layout folder. This will open the Main Activity screen. The default screen in Design view

will look like Figure 5-12.

89

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

[comtens_mainxml x

Palette B (L. Tmeusa- [)- (InoActiomBar ~ MunActvity- - Fi23- Component Tree
e &80 e 2capg o7 Iomneaosiciymn
FrameLayout v [Relatvelayout
UnearLayout (Horizontal) | Textview - Helia Workd!™
UnearLayout (Vertical)
TableLayout
= TableRow
GridLayout
(4] RetativeLayout
1 Widgets
| Plain Textview
A Large Text
At Medium Text
A Small Text
* Bumon

o
Al
2
Ll

+ Small Button

) RadicButton

| ChitckBox

o Switch

= ToggleButton

& ImageBution
& imageview
== ProgressBar (Large)
== ProgressBar (Normal)
== ProgressBar (Small)
== ProgressBar (Horizontal)
o SeekBar
* RatingBar

* Spinner

Nothing to show

Design | Text

Figure 5-12. Default development view of Android Studio

There are two options to customize screen layout. You can either use the drag-and-
drop feature in Design view or manually edit the XML file in Text view. We are going to
directly edit the XML in Text view.

Switch to Text view and you will be able to see the screen layout in XML, as shown
in Listing 5-8. This layout file acts as a container for other sub-layout files. As you can
see in Listing 5-8, content_main is included in the activity_main.xml layout file.

Listing 5-8. Default Text View of activity_main.xml

< <?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout xmlns:android="http://

schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:fitsSystemWindows="true"
tools:context="com.codifythings.intrusiondetectionsystem.MainActivity">

<android.support.design.widget.AppBarLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:theme="@style/AppTheme.AppBarOverlay">

<android.support.v7.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="match_parent"”

90

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

android:layout_height="?attr/actionBarSize"
android:background="?attr/colorPrimary"
app:popupTheme="@style/AppTheme.PopupOverlay" />

</android.support.design.widget.AppBarLayout>
<include layout="@layout/content_main" />

<android.support.design.widget.FloatingActionButton
android:id="@+id/fab"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="bottom|end"
android:layout_margin="@dimen/fab_margin"
android:src="@android:drawable/ic_dialog_email" />

</android.support.design.widget.CoordinatorLayout>

The activity main.xml file adds a toolbar and a floating action button on the
view. None of these widgets is required in this app, so you will remove those two. After
removing the toolbar and floating action button, activitiy main.xml should look
similar to Listing 5-9.

Listing 5-9. activity_main.xml Without the Toolbar and Floating Action Button

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout xmlns:android="http://
schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout_height="match_parent"
android:fitsSystemWindows="true"
tools:context="com.codifythings.intrusiondetectionsystem.MainActivity">

<include layout="@layout/content_main" />
</android.support.design.widget.CoordinatorLayout>

It is recommended to add custom content in the content_main.xml file. Listing 5-10
shows the default code of content_main.xml.

Listing 5-10. Default Text View of content_main.xml

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"

91

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

android:paddingBottom="@dimen/activity vertical margin"
android:paddingleft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
app:layout_behavior="@string/appbar_scrolling view behavior"
tools:context="com.codifythings.intrusiondetectionsystem.MainActivity
tools:showIn="@layout/activity main">

<TextView
android:layout_width="wrap content"”
android:layout_height="wrap_content"
android:text="Hello World!" />
</Relativelayout>

You are going to start by first removing the existing TextView element for Hello
World shown in Listing 5-11.

Listing 5-11. Remove Default Element from content_main.xml

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!" />

Next, add the ImageView element provided in Listing 5-12 to content_main.xml. This
will display an intruder image.

Listing 5-12. Add an ImageView element to content_main.xml

<ImageView
android:id="@+id/intrusion_icon"
android:src="@drawable/intrusion_icon"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
/>

The element references an image called intrusion_icon, so you need to paste an
image named intrusion_icon.png to the App » Res » Drawable folder, as shown in
Figure 5-13. You can upload your own image or download the one in the example from
https://openclipart.org/detail/212125/walking.

92

https://openclipart.org/detail/212125/walking

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

Copy

Copy file /Users/adeeljaved /Desktop/intrusion_icon.png

New name: intrusion_icon.png

To directory: pment/loT_Code/IntrusionDetectionSystem/app/src/main/res/drawable ~

Use ~Space for path completion

Cancel | | oK |

Figure 5-13. Dialog box for adding an image to an app

As provided in Listing 5-13, add a second element TextView. This will display the
time when the last motion was detected.

Listing 5-13. Add a TextView Element to content_main.xml

<TextView
android

/>

:id="@+id/updated_field"
android:
android:
android:
android:
android:
android:
android:
android:

layout_width="wrap_content"
layout_height="wrap_content"
layout_centerHorizontal="true"

layout below="@+id/intrusion_icon"
textAppearance="?android:attr/textAppearanceMedium"
textSize="20sp"

textColor="#000000"

text="Intrusion Detected @ "

Your app’s screen layout is ready, and it should look similar to Figure 5-14.

93

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

e activity_mainxml

LonE B L Bnewsd- - @apsTheme ~ManActviy- @~ §i22- Companent Tree - -1
£ tayouns -5 GRS ~ - Ocvce Screen
_FrameLayout ¥ Relatvelayout
LinearLayout (Horizontal) = intrusion_icon (Imageview) - “drawab
|| UinearLayout (Vertical) Ay updated_field (TextView) - ‘Intrusion Dy
TableLayout
[TableRow
[GridLayout
[l RelativeLayout
[widgets
(a5 Prain Textview
A5 Large Text
A5 Medium Text
A5l Small Text

Hh

]

Nothing to show

== ProgressBar (Large)

== ProgressBar (Normal)
== ProgressBar (Small

== Progress@ar (Horizontal)
+0¢ SeekBar

RatingBar

Figure 5-14. Final screen layout of app

Screen Logic

Next you are going to add logic to the screen that will make it dynamic and create a
notification when a new message is received from the sensor.

Open the MainActivity. java file from the App » Java » com.codifythings.
intrusiondetectionsystem package. By default, there will be three methods auto-
generated by Android Studio, as shown in Listing 5-14.

Listing 5-14. Default Code for MainActivity.java

public class MainActivity extends AppCompatActivity {
{

@0verride
protected void onCreate(Bundle savedInstanceState) { ... }

@0verride
public boolean onCreateOptionsMenu(Menu menu) { ... }

@0verride
public boolean onOptionsItemSelected(Menultem item) { ... }

94

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

For now you are going to add two new methods. The first method is provided in
Listing 5-15. It's updateView(. . .) and will update the screen with new messages from the
Sensor.

Listing 5-15. Add the updateView(...) Method to MainActivity.java

public void updateView(String sensorMessage) {
try {
SharedPreferences sharedPref = getSharedPreferences(
"com.codifythings.motionsensorapp.PREFERENCE_FILE_KEY",
Context.MODE_PRIVATE);

if (sensorMessage == null || sensorMessage == "") {
sensorMessage = sharedPref.getString("lastSensorMessage”,
"No Activity Detected");
}

final String tempSensorMessage = sensorMessage;

runOnUiThread(new Runnable() {
@0verride
public void run() {

TextView updatedField = (TextView)
findViewById(R.id.updated field);
updatedField.setText(tempSensorMessage);
}
D;

SharedPreferences.Editor editor = sharedPref.edit();
editor.putString("lastSensorMessage", sensorMessage);
editor.commit();

} catch (Exception ex) {
Log.e(TAG, ex.getMessage());

}

The second method is provided in Listing 5-16. It is createNotification(...) and
will create a realtime notification on a phone or tablet to alert the users.

Listing 5-16. Add the createNotification(...) Method to MainActivity.java

public void createNotification(String notificationTitle,
String notificationMessage) {
NotificationCompat.Builder mBuilder =
new NotificationCompat.Builder(getApplicationContext())
.setSmallIcon(R.drawable.notification_template_icon bg)
.setContentTitle(notificationTitle)
.setContentText(notificationMessage);

95

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

// Creates an explicit intent for an Activity in your app
Intent resultIntent = new Intent(getApplicationContext(),
MainActivity.class);

// The stack builder object will contain an artificial back

// stack for the started Activity. This ensures that navigating

// backward from the Activity leads out of your application to the

// Home screen.

TaskStackBuilder stackBuilder =
TaskStackBuilder.create(getApplicationContext());

// Adds the back stack for the Intent (but not the Intent itself)
stackBuilder.addParentStack(MainActivity.class);

// Adds the Intent that starts the Activity to the top of the stack
stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =
stackBuilder.getPendingIntent(o,
PendingIntent.FLAG _UPDATE_CURRENT);

mBuilder.setContentIntent(resultPendingIntent);
NotificationManager mNotificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION SERVICE);

// mId allows you to update the notification later on.
mNotificationManager.notify (100, mBuilder.build());

MQTT Client

The final piece of your app is the MQTT client. It will connect to an MQTT server and
subscribe to the codifythings/intrusiondetection topic.

In order to communicate with an MQTT broker, your app requires MQTT libraries.
Therefore, download the following two libraries:

e MQTT clientlibrary: https://eclipse.org/paho/clients/java/

e Android service library: https://eclipse.org/paho/clients/
android/

Once you have downloaded both JAR files, switch the view of Android Studio from
Android to Project, as shown in Figure 5-15.

96

https://eclipse.org/paho/clients/java/
https://eclipse.org/paho/clients/android/
https://eclipse.org/paho/clients/android/

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

' Android ~

Packages
Scratches
Android
Project Files
Problems
Production
Tests

Figure 5-15. Switch the perspective from Android to Project

Expand IntrusionDetectionSystem » App and paste both libraries into the 1ibs
folder. Figure 5-16 shows the 1ibs folder where both libraries need to be pasted.

oy © % | % I |
v [ZIntrusionDetectionSystem (~/Developme nt,"lc;
» [C.gradle
» [O.idea
v [iapp |
» [Jbuild New >
llibs
» [lsrc 36 Cut 38X
[5] .gitignore [J! Copy ®C
Il app.iml Copy Path ¢ %8C
** build.gradle Copy as Plain Text
5| proguard-rules.pro Copy Reference X{¢38C

» [build 1! Paste %8V

Figure 5-16. Import library to resolve dependencies

97

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Figure 5-17 shows the dialog box that will be presented when you paste the
MQTT library.

® 0 Copy
Copy file /Users/adeeljaved/..iceClient/libs/org.eclipse.paho.client.mqttv3.jar

New name: | org.eclipse.paho.client.mgttv3.jar

To directory: /adeeljaved/Development/loT_Code/IntrusionDetectionSystem/app/libs =

Use ~Space for path completion

? | Cancel
Figure 5-17. Import MQTT library

Figure 5-18 shows the dialog box that will be presented when you paste the Android
Service library.

® o Copy

Copy file /Users/adeeljaved /Downloads/org.eclipse.paho.android.service-1.0.2 jar

New name: 'org.eclipse‘pa'ho.androi'd.servic& 1"0.2‘j'ar

To directory: /adeeljaved/Development/loT_Code/IntrusionDetectionSystem/app/libs =
Use ~Space for path completion

? Cancel E

Figure 5-18. Import Android Service library

As shown in Figure 5-19, right-click on the newly added libraries and click on the
Add As Library option. You can do this for both libraries individually or select both and
then add them as libraries.

Local History >
() Synchronize 'org.eclipse.paho.android.service-1.0.2.jar'

Reveal in Finder

Compare With... ®8D

Figure 5-19. Add the imported files as libraries

98

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

As shown in Figure 5-20, select App from the Add to Module option. Click OK and
switch back to the Android view.

@® @ Create Library

Add to module: | Czapp +|
| Cancel | L OK

Figure 5-20. Add libraries to app module

Next you are going to write code to communicate with the MQTT broker. As shown in
Figure 5-21, right-click on the top-level package (in the example, it is com.codifythings.
intrusiondetectionsystem) and choose New » Java Class.

v ?'.'afp New * O Java Class
v [Imanifests 3 = Android resource file
o AndroidManifest.xml I_"_ Cut ® 1 Android resource directory
v Cljava [l Copy #C File
v [com. Copy Path 08C Package
£ & MainActivity Copy as Plain Text

B lmaana Accatr

Figure 5-21. Add a new class

Enter MQTTClient in the Name field and click OK, as shown in Figure 5-22.

® O Create New Class

Name: 'MQTTClient Tl

Kind: | € Class v
. Cancel | oK

Figure 5-22. Enter new class name

99

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Android Studio will generate an empty class file with the default code, as shown in
Listing 5-17.

Listing 5-17. Default Code for MQTTClient.java

public class MQTTClient
{

}

Next you are going to add code to the MQTTClient that will connect and subscribe to an
MQTT broker, and whenever a new message is received to the subscribed topic, code will
update the app’s user interface. Listing 5-18 provides the complete code for MQTTClient.

Listing 5-18. Complete Code of MQTTClient.java

package com.codifythings.intrusiondetectionsystem;
import android.util.log;

import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;

import org.eclipse.paho.client.mqttv3.MqttCallback;

import org.eclipse.paho.client.mqttv3.MqttClient;

import org.eclipse.paho.client.mqttv3.MqttConnectOptions;

import org.eclipse.paho.client.mqttv3.MqttException;

import org.eclipse.paho.client.mqttv3.MqttMessage;

import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

import java.text.DateFormat;
import java.util.Date;

public class MQTTClient {
private static final String TAG = "MQTTClient";
private String mqttBroker = "tcp://iot.eclipse.org:1883";
private String mqttTopic = "codifythings/intrusiondetection”;
private String deviceld = "androidClient";

// Variables to store reference to the user interface activity.
private MainActivity activity = null;

public MQTTClient(MainActivity activity) {
this.activity = activity;
}

public void connectToMQTT() throws MgttException {
// Request clean session in the connection options.
Log.i(TAG, "Setting Connection Options");
MgttConnectOptions options = new MqttConnectOptions();
options.setCleanSession(true);

100

}

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

// Attempt a connection to MQTT broker using the values of

// connection variables.

Log.i(TAG, "Creating New Client");

MgttClient client = new MqttClient(mqttBroker, deviceld, new
MemoryPersistence());

client.connect(options);

// Set callback method name that will be invoked when a new message
// is posted to topic, MqgttEventCallback class is defined later in
// the code.

Log.i(TAG, "Subscribing to Topic");

client.setCallback(new MqttEventCallback());

// Subscribe to topic "codifythings/intrusiondetection", whenever a
// new message is published to this topic

// MgttEventCallback.messageArrived will be called.
client.subscribe(mqttTopic, 0);

// Implementation of the MqttCallback.messageArrived method, which is
// invoked whenever a new message is published to the topic

// "codifythings/intrusiondetection”.

private class MqttEventCallback implements MgttCallback {

@0verride

public void connectionLost(Throwable argo) {
// Do nothing

}

@0verride

public void deliveryComplete(IMgttDeliveryToken argo) {
// Do nothing

}

@verride
public void messageArrived(String topic, final MqttMessage msg)
throws Exception {
Log.i(TAG, "New Message Arrived from Topic - " + topic);

try {
// Append the payload message "Intrusion Detected"
// with "@ Current Time".
DateFormat df = DateFormat.getDateTimeInstance();
String sensorMessage = new String(msg.getPayload()) + " @ "
+ df.format(new Date());

// User is not going to be on the screen all the time,

// so create a notification.

activity.createNotification("Intrusion Detection System",
sensorMessage);

101

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

// Update the screen with newly received message.
activity.updateView(sensorMessage);

} catch (Exception ex) {
Log.e(TAG, ex.getMessage());

}

In Listing 5-18, variable TAG will be used while logging so that you can identify your
app’s messages in the log.

The mqttBroker, mqttTopic, and deviceld variables define the MQTT broker your
app will connect to, the topic that your app is subscribing to, and the device ID that will
show up on the server when your app successfully connects.

The activity variable is defined to store a reference of user interface activity so that
you can directly make updates.

The code for connecting and subscribing to the MQTT broker goes in the
connectToMQTT() method. Initialize a new MqttClient and connect it to the iot.
eclipse.org:1883 server with a clean session. You need to execute your code whenever
anew message is published to the codifythings/intrusiondetection queue, so first
set the callback method by providing a new instance of MqttEventCallback and then
subscribe to the topic codifythings/intrusiondetection.

Once you subscribe to a topic and set a callback method, the MQTT library will
always call your MqttCallback.messageArrived method. So now you need to provide
implementation that specifies what to do when a new message has arrived.

Your app has two requirements. It needs to create a new notification for users and
to update the screen with the latest time the activity was detected. You have already
implemented these two methods in the MainActivity class, so you are going to use the
activity reference and call the createNotification and updateView methods.

Both the screen and MQTT client are now ready, but you have not yet added the
code in the MainActivity class that actually starts the MOTTClient whenever the app
is created. So update the onCreate() method of the MainActivity class to update the
screen with an empty string and start the MQTTClient. Since you removed toolbar and
floating action button from activity main.xml, you will need to remove the reference in
the onCreate method as well. The final code for MainActivity is provided in Listing 5-19,
with the changes in the onCreate() method highlighted.

Listing 5-19. Complete Code of MainActivity.java

package com.codifythings.intrusiondetectionsystem;

import android.app.NotificationManager;
import android.app.PendingIntent;

import android.app.TaskStackBuilder;
import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;
import android.os.Bundle;

102

import
import
import
import
import
import

CHAPTER 5

android.support.v4.app.NotificationCompat;
android.support.v7.app.AppCompatActivity;
android.util.log;

android.view.Menu;

android.view.Menultem;
android.widget.TextView;

public class MainActivity extends AppCompatActivity {
private static final String TAG = "MainActivity";

@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity main);

updateView("");

try
{
MOTTClient client = new MOTTClient(this);
client.connectToMOTT();
}
catch(Exception ex)
{
Log.e(TAG, ex.getMessage());
}
}
@0verride

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it
// is present.
getMenuInflater().inflate(R.menu.menu_main, menu);
return true;

}

@0verride
public boolean onOptionsItemSelected(MenuItem item) {

// Handle action bar item clicks here. The action bar will

// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.

int

id = item.getItemId();

//noinspection SimplifiableIfStatement
if (id == R.id.action_settings) {

}

return true;

IOT PATTERNS: REALTIME CLIENTS

103

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

return super.onOptionsItemSelected(item);

}

//Custom function that renders view
public void updateView(String sensorMessage) {
try {
SharedPreferences sharedPref = getSharedPreferences(
"com.codifythings.motionsensorapp.PREFERENCE_FILE_KEY",
Context.MODE_PRIVATE);

if (sensorMessage == null || sensorMessage == "") {
sensorMessage = sharedPref.getString("lastSensorMessage",
"No Activity Detected");

}

final String tempSensorMessage = sensorMessage;

runOnUiThread(new Runnable() {
@0verride
public void run() {

TextView updatedField = (TextView)
findViewById(R.id.updated field);
updatedField.setText(tempSensorMessage);
}
1;

SharedPreferences.Editor editor = sharedPref.edit();
editor.putString("lastSensorMessage", sensorMessage);
editor.commit();

} catch (Exception ex) {
Log.e(TAG, ex.getMessage());

}

}

public void createNotification(String notificationTitle,
String notificationMessage) {
NotificationCompat.Builder mBuilder =
new NotificationCompat.Builder(getApplicationContext())
.setSmallIcon(R.drawable.notification_template icon_bg)
.setContentTitle(notificationTitle)
.setContentText(notificationMessage);

// Creates an explicit intent for an Activity in your app

Intent resultIntent = new Intent(getApplicationContext(),
MainActivity.class);

104

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

// The stack builder object will contain an artificial back

// stack for the started Activity. This ensures that navigating

// backward from the Activity leads out of your application to the

// Home screen.

TaskStackBuilder stackBuilder =
TaskStackBuilder.create(getApplicationContext());

// Adds the back stack for the Intent (but not the Intent itself)
stackBuilder.addParentStack(MainActivity.class);

// Adds the Intent that starts the Activity to the top of the stack
stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =
stackBuilder.getPendingIntent(o,
PendingIntent.FLAG_UPDATE_CURRENT);

mBuilder.setContentIntent(resultPendingIntent);
NotificationManager mNotificationManager = (NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE);

// mId allows you to update the notification later on.
mNotificationManager.notify(100, mBuilder.build());

Finally, you need to update AndroidManifest.xml under the App » Manifests folder.
Your app uses MgttService in the backend, so you need to add a reference to the service.
Your app also needs to access the Internet for connecting to the MQTT broker, so add the
Internet permissions in AndroidManifest.xml as well. Listing 5-20 provides the code that
needs to be added to AndroidManifest.xml.

Listing 5-20. Add App Permissions in AndroidManifest.xml

<!l-- MQTT Service -->
<service android:name="org.eclipse.paho.android.service.MqttService" >
</service>

<uses-permission android:name="android.permission.INTERNET" />

105

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

The Final Product

To test the application, verify and upload the Arduino code, as discussed in Chapter 1.
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages similar to ones shown in Figure 5-23.

[NN] /dev/cu.usbmodem1411 (Arduino Uno)
[| Send

[INFO] Attempting Connection - WPA S5S5ID: HOME-9252
[INFO] Connection Successful

[INFO] SSID: HOME-9252

[INFO] BSSID: 90:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -45

[INFO] Encryption Type: 4

[INFO] IP Address: 10.0.0.13

[INFO] MAC Address: 78:C4:E:2:94:BD

[INFO] Calibration Complete
[INFO] Sensor Active

Autoscroll | Noline ending + 9600 baud s

Figure 5-23. Log messages from the intrusion detection system

In Android Studio, deploy and run the app on your Android device by choosing Run »
Run ‘App’ from the menu bar, as shown in Figure 5-24.

MY Tools VvCS Window Help

» Run 'app' “R
#i Debug 'app' D
» Run... SN=H
#i« Debug... guNaL)
[Edit Configurations...

Figure 5-24. Deploy and run the app from Android Studio

106

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

If you have an Android device connected to your computer, Android Studio will
prompt you to use your existing running device or launch a new emulator to run the app.

As shown in Figure 5-25, select the emulator or device that you want to test your app on
and click OK.

® @ Choose Device
(*) Choose a running device

Device Serial Number State Compatible

Motorola DROID RAZR Android 4.1.2 (AP 16) 0A3C0C120200500E lonline ~~ fves |

() Launch emulator

Android virtual device Nexus 5 APl 22 x86

Use same device for future launches

Cance

Figure 5-25. Select the device to deploy and run app

107

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Open the device where your app was deployed. If your app is not already running,
locate your app on the device and run it. Figure 5-26 shows the default view of your app.

Intrusion Detection System

No Activity Detected

Figure 5-26. Default view of the Android app

108

CHAPTER 5 " IOT PATTERNS: REALTIME CLIENTS

Make some movement in front of your motion sensor. As soon as the sensor detects
the motion, a message will be published to the MQTT broker and your app will display a
notification, as shown in Figure 5-27.

Figure 5-27. Intrusion notification from the Android app

109

CHAPTER 5 ' I0T PATTERNS: REALTIME CLIENTS

Click on the notification to open the app screen. It will display the last time an
intrusion was detected, as shown in Figure 5-28.

Intrusion Detection System

Intrusion Detection System @ Nov 2,
2015 8:32:54 PM

Figure 5-28. Intrusion details in Android app

Summary

In this chapter, you learned about realtime clients, a very important pattern of IoT
applications. You developed an intrusion detection system with an Android app as a
client to illustrate this pattern.

The Android app is just one example and clients can be of many different types,
including iOS, wearables, web-based apps, etc.

110

CHAPTER 6

loT Patterns: Remote Contrcy

Remote control is currently one of the most popular IoT patterns. Examples of this
pattern can be found in IoT applications that let you remotely control things such as
lights, thermostats, and garage doors using handheld devices or computers. It has mainly
been used for home automation applications so far.

In this chapter, you are going to build a lighting control system. Figure 6-1 shows
components of a lighting control system. The first component is an Android app that lets
users control lights. It publishes messages to an MQTT broker whenever the user taps
on the app screen. The second component is an MQTT broker, and the final component
of this IoT application is an Arduino device that turns lights on or off based on messages
received from the MQTT broker.

1 0
1 i
1 i
i i
i i
I i e A
1 fi ﬁ e
1 1
| i
i |
. I [;
Mobile App 1 MQTT Broker I Device
Figure 6-1. Components of the lighting control system
© Adeel Javed 2016 111

A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_6

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

Learning Objectives

At the end of this chapter, you will be able to:
e Write code to turn LEDs connected to Arduino on or off
e Subscribe Arduino to an MQTT broker
e Build an Android app that publishes to an MQTT broker

Hardware Required

Figure 6-2 provides a list of all hardware components required for building this lighting
control system.

-

LED 2200 Resistor

Jumper Cables

Arduino

Breadboard WiFi Shield

fritzing

Figure 6-2. Hardware required for this lighting control system

112

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

Software Required

In order to develop this lighting control system, you need the following software:

Circuit

Arduino IDE 1.6.4 or later
Android Studio 1.5.1 or later

In this section, you are going to build the circuit required for the lighting control system.

1.

Make sure your Arduino is not connected to a power source,
such as to a computer via a USB or a battery.

Attach a WiFi shield to the top of the Arduino. All the pins
should align.

Unlike previous circuits, you do not want to power your
breadboard all the time, instead you want to control it. So
use a jumper cable to connect digital port 3 of your Arduino
to power (+) port on the breadboard. You will use this port to
turn the LED on and off.

Use jumper cables to connect the ground (GND) port on
Arduino to the ground (-) port on the breadboard.

Attach an LED to your breadboard.

Use the jumper cable to connect the power (+) port of the
breadboard to the power (+) port of the LED.

Attach a 220Q resistor between the ground (-) port of the
breadboard and the ground (-) port of the LED.

Your circuit is now complete and should look similar to Figures 6-3 and 6-4.

113

|0T PATTERNS: REMOTE CONTROL

CHAPTER 6

s 8 8 8 8
. 8 8 8
. 8 8 80
LI O A
. 8 8 8

LI)
® o 0 80
LI
LI I
CI)
CR R

® s 0 80
LA B
. s
" " 00
LR B

L
. "
. "

.

LR B
LI B
LB B
LA B B
LI LB
LI B

LA B B
LI B
LI
- s " 00
LI B
LI B
LI

® s 80
LI B
L B
LI

ng

tz

fr

Figure 6-3. Circuit diagram of the lighting control system

114

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

Figure 6-4. Actual circuit of the lighting control system

Code (Android)

This section provides instructions for developing an Android app that will allow users to
tap on the screen to turn the lights on and off.

Project Setup

In this section, you are going to create a new project in Android Studio to develop an app.
Start Android Studio and create a new Android Studio project.
If you are on the Quick Start screen, as shown in Figure 6-5, then click on Start a New
Android Studio Project to create a new project.

115

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

® Android Studio

ﬁ Welcome to Android Studio

Recent Projects Quick Start

Start a new Android Studio project

1

Open an existing Android Studio project

7

&l

Import an Android code sample

s
M
W

Check out project from Version Control

Import project (Eclipse ADT, Gradle, etc.)

do & «

Configure L

D

Docs and How-Tos =

Android Studio 1.2.2 Build 141.1980579. Check for updates now.

Figure 6-5. Create a new project from the Quick Start screen

If you are already in Android Studio, as shown in Figure 6-6, choose File » New »
New Project to create a new Android Studio project.

ZICW Edit View Navigate Code Analyze Refactor Build Run

BTN New Project...

Import Sample... Import Project...

3 Open... Project from Version Control >
Open Recent B

Close Project New Module...

Import Module...

Figure 6-6. Create new project from the Android Studio menu bar

116

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

Figure 6-7 shows the new project configuration screen. Enter the name for the new
project as Lighting Control System. Enter your company or personal domain name,
as this will be used by Android Studio to define the package hierarchy of the Java code.

Click Next.

& New Project
Android Studio

Create New Project

Configure your new project

Application name:
Company Domain:

Package name:

Project location:

Figure 6-7.

Lighting Contral System
codifythings.com

com.codifythings.lightingcontrolsystem

m
i

[Users j D id-apps /LightingC

_Cancel

New project configuration

Note Asa norm, package hierarchy is the domain name in reverse, so codifythings.com
becomes com. codifythings.<packagename>.

For this project, you are only going to run your app on an Android phone or tablet.
As shown in Figure 6-8, check Phone and Tablet as the target platform and click Next.

117

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

[] Create New Project

&r Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

™ Phone and Tablet
Minimum SDK | APl 14: Android 4.0 (lceCreamSandwich)

Lower APl levels target more devices, but have fewer features available.

By targeting API 14 and later, your app will run on approximately 97.3% of the devices
that are active on the Coogle Play Store.

Help me choose
| Wear

Minimum SDK | API 21: Android 5.0 (Lollipop)
™

Minimum SDK | API 21: Android 5.0 (Lollipop)
Android Auto

Glass

SD): s Glass. Owvalopmant Kit. Preview

Cancel | [Previous | [iNemt] | finish
Figure 6-8. Android device selection screen

Your app requires a screen where users can tap to turn lights on or off. To accomplish
this, you need to create an activity. So, from the Activity Template selection screen,
choose Blank Activity, as shown in Figure 6-9. Click Next.

118

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

e @ Create New Project

L4
Add No Activity
Blank Activity Empty Activity Fullscreen Activity Coogle AdMob Ads Activity
i {
|
Coogle Maps Activity Login Activity Master/Detail Flow Navigation Drawer Activity Scrolling Activity

| Cancel | | Previous | [[iNext] = finish

Figure 6-9. Activity template selection screen

Leave the default values for Activity Name, Layout Name, Title, and Menu
Resource Name, as shown in Figure 6-10. The rest of the chapter references them with
these same names.

119

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

e @ Create New Project

QCusmmize the Activity

Creates a new blank activity with an app bar.
P T

Layout Name: activity_main

Title: MainActivity

Menu Resource Name: | menu_main

Use a Fragment

Blank Activity

If true, the content will be a fragment

Cancel Previous MNext ~ Finish

Figure 6-10. Activity customization screen

Click on Finish. Android Studio will create quite a few folders and files, as shown in
Figure 6-11. These are the most important ones:

e app > manifests > AndroidManifest.xml: A mandatory file
required by the system that contains application information such
as required permissions, screens and services, etc. Most of the
elements in this file are system-generated, but you can update it
manually as well.

e app > java > *.* - package-hierarchy: This folder contains
all Java code and unit tests.

e app > res > layout > *.xml:This folder contains layout XMLs
for all screens, including how each screen will look, fonts, colors,
position, etc. You can access any layout XML in Java using the
auto-generated Java class R, such as R.layout.activity main. To
access an individual element in layout XML, you can use syntax
R.id.updated field.

120

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

. LightingControlSystem = _app | Isrc |/ main _=res | | layout
i+ Android vi
v [Ciapp
v [Z1manifests
‘© AndroidManifest.xml
v [Cjava
> [=7 com.codifythings.lightingcontrolsystem
» [com.codifythings.lightingcontrolsystem (android Test)
v [aEres
[F1drawable
v [Z1layout
‘© activity_main.xml
‘© content_main.xml
> [Imenu
» =1 mipmap
v [Clvalues
‘o colors.xml
» [Eddimens.xml (2)
o strings.xml
> [Estyles.xml (2)

(v- Captures

Project

1+ 1

«] 7:Structure

Figure 6-11. Default folders generated by Android Studio

Screen Layout

To start designing the layout of the screen, click on the activity main.xml filein the
App » Res » Layout folder, which will open the Main Activity screen. The default screen
in Design view will look like Figure 6-12.

121

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

Palette @1 [L- Einexusd4- [- (DNoActionBar ™ Mainctvity- @- f2i- Companent Tree
[Layouts B-B5E |T waRE & £ Shown in @layout/activity_main
FrameLayout v [RelativeLayout
| LinearLayout (Horizontal) b TextView - “Hello World!®
LinearLayout (Verticall
TableLayout
 TableRow
GridLayout
1] RelativeLayout
1 Widgets.
Ao Plain TextView
A5 Large Text
A Medium Text
At Semall Text
* Bumton
* Small Button
* RadioButton
| ChieckBox
= Switch
= ToggleButton
& ImageButton
& Imageview
== ProgressBar (Large)
== ProgressBar (Normal)
== ProgressBar (Small)
== ProgressBar (Horizontal)
o SeekBar
* RatingBar

@1

Wl

X

Properties ST

Nothing to show

Figure 6-12. Default development view of Android Studio

There are two options to customize screen layout—you can either use the drag-and-drop
feature in Design view or manually edit the XML file in Text view. We are going to directly edit
the XML in the Text view.

Switch from Design view to Text view and you will be able to see the screen layout in
XML, as shown in Listing 6-1. This layout file acts as a container for other sublayout files.
Asyou can see in Listing 6-1, content_main is included in the activity main.xml layout file.

Listing 6-1. Default Text View of activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout xmlns:android="http://

schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:fitsSystemWindows="true"
tools:context="com.codifythings.lightingcontrolsystem.MainActivity">

<android.support.design.widget.AppBarLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:theme="@style/AppTheme.AppBarOverlay">

<android.support.v7.widget.Toolbar

android:id="@+id/toolbar"
android:layout_width="match_parent"

122

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

android:layout_height="?attr/actionBarSize"
android:background="?attr/colorPrimary"
app:popupTheme="@style/AppTheme.PopupOverlay" />

</android.support.design.widget.AppBarLayout>
<include layout="@layout/content_main" />

<android.support.design.widget.FloatingActionButton
android:id="@+id/fab"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="bottom|end"
android:layout_margin="@dimen/fab_margin"
android:src="@android:drawable/ic_dialog_email" />

</android.support.design.widget.CoordinatorLayout>

The activity main.xml file adds a toolbar and a floating action button on the
view. None of these widgets is required in this app, so you can remove those two. After
removing the toolbar and floating action button, activitiy main.xml should look
similar to Listing 6-2.

Listing 6-2. activity_main.xml Without Toolbar and Floating Action Button

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout xmlns:android="http://

schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match_parent"
android:layout_height="match_parent"
android:fitsSystemWindows="true"
tools:context="com.codifythings.lightingcontrolsystem.MainActivity">

<include layout="@layout/content_main" />
</android.support.design.widget.CoordinatorLayout>

It is recommended to add custom content in the content_main.xml file. Listing 6-3
shows the default code of content_main.xml.

Listing 6-3. Default Text View of content_main.xml

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"

123

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

android:paddingBottom="@dimen/activity vertical margin"
android:paddingleft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
app:layout_behavior="@string/appbar_scrolling view behavior"
tools:context="com.codifythings.lightingcontrolsystem.MainActivity
tools:showIn="@layout/activity main">

<TextView
android:layout_width="wrap content"”
android:layout_height="wrap_content"
android:text="Hello World!" />
</Relativelayout>

You can start by first removing the existing TextView element for Hello World shown
in Listing 6-4.

Listing 6-4. Remove Default Element from content_main.xml

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!" />

Next, add the ImageView element provided in Listing 6-5 to content_main.xml; this
will display an image of a light bulb.

Listing 6-5. Add ImageView Element to content_main.xml

<ImageView
android:id="@+id/light_icon"
android:src="@drawable/light icon"
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
/>

The element references an image called 1ight_icon, so you need to provide an
image named 1ight_icon.pngin the App » Res » Drawable folder, as shown in
Figure 6-13. You can upload your image or download the same that has been used in the
example from https://openclipart.org/detail/220988/1ight-bulb-on-off.

124

https://openclipart.org/detail/220988/light-bulb-on-off

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

® 0 Copy
Copy file /Users/adeeljaved/..olSystem/app/src/main/res/drawable/light_icon.png

New name: |light_icon.png |

To directory: ment/android-apps/LightingControlSystem/app/src/main/res/drawable v | D
Use ~Space for path completion

@ | Cancel | [OK |

Figure 6-13. Dialog box for adding an image to an app

Your app’s screen layout is ready, and it should look similar to Figure 6-14.

& activity_mainxml x
Palene B 1 [L- Hinexusd- [Tj- (DNoActionBar ~ MainActvity- - /{23 Component Tree T E |8
g HE [{7_.';'.‘\ U Q'Emmn
FrameLayout ¥ % CustomView - android. support.design.widge
[Lineartayou (Horizontah 3/ inchude - @layout/content_main
|k | LinearLayout (Vertical)
|| TableLayout
=7 TableRow
| || GridLayout
1] RelatveLayout
(2] widgets
A Plain TextView
A Large Text
A Medium Text
A Small Text
* Button
* Small Button
(®) RadeoButton
| CheckBox
= Switch
. ToggleButton
& imageButton
B Imageview
== ProgressBar (Large)
== ProgressBar (Normal
== ProgressBar (Small)
== ProgressBar (Horizontal)
o SeekBar
* RatingBar

Properties el el g

MNothing to show

Figure 6-14. Final screen layout of app

Screen Logic

Next you are going to make the screen interactive so that app users can tap on the light
bulb icon to turn the lights on or off. This app does not display if the lights are currently
on or off; instead, it simply switches the state from on to off and from off to on.

Open the MainActivity. java file from the App » Java » com.codifythings.
lightingcontrolsystem package. By default, there will be three methods auto-generated
by Android Studio as shown in Listing 6-6.

125

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

Listing 6-6. Default Code for MainActivity.java

public class MainActivity extends ActionBarActivity
{
@0verride
protected void onCreate(Bundle savedInstanceState) { ... }

@0verride
public boolean onCreateOptionsMenu(Menu menu) { ... }

@0verride
public boolean onOptionsItemSelected(MenuItem item) { ... }

Since you removed toolbar and floating action button from activity main.xml, you
need to remove the reference in the onCreate method as well.

You want the light bulb icon to be interactive so that when an app user taps on the
icon, a message is published to the MQTT broker. To accomplish this, you need to update
the onCreate() method, as shown in Listing 6-7. You are going to register an onClick()
listener which will be called whenever someone taps on the light bulb icon. For now the
implementation of onClick() is empty and will be updated later.

Listing 6-7. Screen Tap/Click Listener Code

@0verride
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

ImageView lightIcon = (ImageView) findViewById(R.id.light_icon);
lightIcon.setOnClickListener(new View.OnClickListener()

{

@0verride
public void onClick(View v)
{
//TODO - add action
}
D;
}
MQTT Client

The final piece of this app is the MQTT client that will connect to an MQTT server and
publish to the codifythings/lightcontrol topic.

In order to communicate with an MQTT broker, your app requires an MQTT library
that can be download from https://eclipse.org/paho/clients/java/.

126

https://eclipse.org/paho/clients/java/

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

Once you have downloaded the library, switch the view of Android Studio from
Android to Project, as shown in Figure 6-15.

' Android ¥

Packages
Scratches
Android
Project Files
Problems
Production
Tests

Figure 6-15. Switch perspective from Android to Project

Expand LightingControlSystem » App and paste the MQTT library in the 1ibs
folder. Figure 6-16 shows the 1ibs folder where all libraries need to be pasted.

[Project ~ O & | B
v [LightingControlSystem (~/Development/loT_Code
» [.gradle
» [.idea
v [Zapp
» [Jbuild New > |
[llibs I
> [src 36 Cut 38X
5] .gitignore []! Copy R8C
Il app.iml Copy Path € 38C
** build.gradle Copy as Plain Text
l=| proguard-rules.pro Copy Reference {38C

> Clbuid

Figure 6-16. Import library to resolve dependencies

127

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

Figure 6-17 shows the dialog box that will be presented when you paste the
MQTT library.

® @ Copy
Copy file /Users/adeeljaved/..ystem/app/libs/org.eclipse.paho.client.mqttv3. jar

New name: org.eclipse.paho.client.mqttv3.jar

To directory: adeeljaved/Development/android-apps/LightingControlSystem/app/libs = [
Use ~Space for path completion

; Cancel | 06
Figure 6-17. Import MQTT library
As shown in Figure 6-18, right-click on the newly added library and click on the Add

As Library option.

Local History >
() Synchronize 'org.eclipse.paho.client. mqttv3.jar'

Reveal in Finder

i Compare With... 2D
Compare File with Editor

Add As Library...
Figure 6-18. Add imported files as libraries

As shown in Figure 6-19, select App from the Add to Module option. Click OK and
switch back to Android view.

@® ©® Create Library

-~

Add to module: | [iapp +

' Cancel | = OK

Figure 6-19. Add libraries to the app module

128

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

Next you are going to write code to communicate with the MQTT broker. As shown in
Figure 6-20, right-click on the top-level package (in the example, it is com. codifythings.
lightingcontrolsystem) and choose New » Java Class.

v Diwp New > O Java Class

¥ [Imanifests = Android resource file

= AndroidManifest.xml % Cut #X) Android resource directory
o iy [Copy ®C File
v B comicodifythings. d Copy Path ©#C 1 package
€ & MainActivity Copy as Plain Text 2. lemana Accat

Figure 6-20. Add a new class

Enter MQTTClient in the Name field and click OK, as shown in Figure 6-21.

® 0 Create New Class

Name: MQTTClient | 14

Kind: ¢ Class . :
Cancel | | OK

Figure 6-21. Enter new class name
Android Studio will generate an empty class with the default code shown in Listing 6-8.

Listing 6-8. Default Code for MQTTClient.java

public class MQTTClient
{

}

Next you are going to add code to the MQTTClient that will connect and publish
to an MQTT broker whenever the user taps on the app screen. Listing 6-9 provides the
complete implementation of the MQTTClient class.

Listing 6-9. Complete Code of MQTTClient.java

package com.codifythings.lightingcontrolsystem;
import android.util.log;

import org.eclipse.paho.client.mqttv3.MqttClient;

import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
import org.eclipse.paho.client.mgttv3.MqttException;

import org.eclipse.paho.client.mqttv3.MqttMessage;

import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

129

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

public class MQTTClient {
private static final String TAG = "MQTTClient";
private String mqgttBroker = "tcp://iot.eclipse.org:1883";
private String mqgttTopic = "codifythings/lightcontrol";
private String deviceld = "androidClient";
private String messageContent = "SWITCH";

public void publishToMQTT() throws MgttException {
// Request clean session in the connection options.
Log.1i(TAG, "Setting Connection Options");
MgttConnectOptions options = new MqttConnectOptions();
options.setCleanSession(true);

// Attempt a connection to MQTT broker using the values

// of connection variables.

Log.i(TAG, "Creating New Client");

MgttClient client = new MqttClient(mqttBroker, deviceld,
new MemoryPersistence());

client.connect(options);

// Publish message to topic
Log.1i(TAG, "Publishing to Topic");
MgttMessage mqttMessage =
new MgttMessage(messageContent.getBytes());
mgttMessage.setQos(2);
client.publish(mqttTopic, mqttMessage);
Log.i(TAG, "Publishing Complete");

Log.i(TAG, "Disconnecting from MQTT");
client.disconnect();

In Listing 6-9, the variable TAG will be used while logging so that you can identify
your apps messages in the log

The mqttBroker, mqttTopic, and deviceld variables define the MQTT broker your
app will connect to, the topic that your app will publish to, and the device ID that will
show up on the server when your app successfully connects. If you do not have an MQTT
broker installed on your machine, you can use the openly available MQTT broker from
the Eclipse Foundation.

In this project, you are only switching the state of a single light, such as from on to off
and vice versa. You are not controlling multiple lights or multiple appliances; therefore,
you do not need to create specific commands for all actions. You are going to publish the
following message whenever the user taps on the app screen.

The code for connecting and publishing to an MQTT broker goes in the
publishToMQTT() method. Initialize a new MqttClient and connect to the iot.eclipse.
org:1883 server with a clean session. Create an MgttMessage object and publish it to the

130

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

MQTT broker when the user taps on the app screen. Finally, disconnect the app from the
MQTT broker, as you do not need an active connection throughout.

Now that the MQTT connectivity and publish code is ready, you are going to go back
to the MainActivity class and update the onCreate() method. Earlier you had added
a listener to the light icon that would be called whenever a user taps on the app screen.
You are going to provide the missing implementation of the listener. You are just going
to initialize a new MQTTClient object and call its pub1ishToMQTT() method inside the
listener. Listing 6-10 provides the complete code of the MainActivity class within the
onCreate() method highlighted.

Listing 6-10. Complete Code of MainActivity.java

package com.codifythings.lightingcontrolsystem;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;
import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.ImageView;

public class MainActivity extends AppCompatActivity {
private static final String TAG = "MainActivity";

@0verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

ImageView lightIcon = (ImageView) findViewById(R.id.light icon);
lightIcon.setOnClickListener(new View.OnClickListener() {
@verride
public void onClick(View v) {
try {
new MOTTClient().publishToMOTT();
} catch (Exception ex) {
Log.e(TAG, ex.getMessage());

}
};
}

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it

131

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

//is present.
getMenuInflater().inflate(R.menu.menu_main, menu);
return true;

}

@0verride

public boolean onOptionsItemSelected(MenuItem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();

//noinspection SimplifiableIfStatement

if (id == R.id.action_settings) {
return true;

}

return super.onOptionsItemSelected(item);

Finally, you need to update AndroidManifest.xml under the App » Manifests folder.
Your app needs to access the Internet for connecting to the MQTT broker, so you need to
add Internet permissions in AndroidManifest.xml as well. Listing 6-11 provides the code
that needs to be updated in AndroidManifest.xml.

Listing 6-11. Add App Permissions in AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

Code (Arduino)

Next, you are going to write code for connecting Arduino to the Internet using WiFi,
subscribing to an MQTT broker, and controlling the attached LED.

Start your Arduino IDE and either type the code provided here or download it from
the site and open it. All the code goes into a single source file (*.1no), but in order to
make it easy to understand and reuse, it has been divided into five sections.

e External libraries

e Internet connectivity (WiFi)
e MQTT (subscribe)

e Control LED

e Standard functions

132

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

External Libraries

The first section of code includes all the external libraries required to run the code.
This sketch has two main dependencies—for Internet connectivity, you need to
include the <WiFi.h> (assuming you are using a WiFi shield) and for the MQTT broker
communication, you need to include <PubSubClient.h>.

Listing 6-12 provides the first section of the code with all the required libraries.

Listing 6-12. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>
#include <PubSubClient.h>

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(in Chapter 2) here.

Data Subscribe

The third section of the code defines variables, constants, and functions that are going
to be used for connecting to an MQTT broker and callback when a new message arrives
(for details, see Chapter 3).

This is the same code that you saw in Chapter 3. You do not need to make any
changes for the code to work, but it is recommended that you customize some of the
code so that your messages do not get mixed up with someone else who is using the same
values. All values that can be changed have been highlighted in bold in Listing 6-13. If you
are using your own MQTT server, make sure to change the server and port values. The
two recommended changes include the value of the topic variable and the name of client
that you need to pass while connecting to the MQTT broker.

Whenever a new message is received, the callback() function is called. It extracts
payload and calls the turnLightsOnOff() function.

Listing 6-13. Code for Subscribing to an MQTT Broker

// IP address of the MQTT broker

char server[] = {"iot.eclipse.org"};

int port = 1883;

char topic[] = {"codifythings/lightcontrol"};

PubSubClient pubSubClient(server, port, callback, client);

133

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

void callback(char* topic, byte* payload, unsigned int length)
{
// Print payload
String payloadContent = String((char *)payload);
Serial.println("[INFO] Payload: " + payloadContent);

// Turn lights on/off
turnLightsOn0ff();

Control Lights

The fourth section of the code defines variables, constants, and functions that are going
to be used for controlling the LED.

The code provided in Listing 6-14 checks if the LED is already on or off and simply
switches the state of the LED. If the value of the digital port 3 is HIGH, that means LED is
on. In that case, it'’s changed to LOW, which turns the LED off.

Listing 6-14. Code for Controlling LED Light
int ledPin = 3;

void turnLightsOnOff()

{
// Check if lights are currently on or off
if(digitalRead(ledPin) == LOW)

//Turn lights on
Serial.println("[INFO] Turning lights on");
digitalWrite(ledPin, HIGH);

else
{
// Turn lights off
Serial.printIn("[INFO] Turning lights off");
digitalWrite(ledPin, LOW);
}
}

Standard Functions

Finally, the code in the fifth and final section is shown in Listing 6-15. It implements
Arduino’s standard setup() and loop() functions.

In the setup() function, the code initializes the serial port, connects to the Internet,
and subscribes to the MQTT topic.

The MQTT broker has already been initialized and subscribed, so in loop()
function, you only need to wait for new messages from the MQTT broker.

134

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

Listing 6-15. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

// Set LED pin mode
pinMode(ledPin, OUTPUT);

//Connect MQTT Broker
Serial.println("[INFO] Connecting to MQTT Broker");
if (pubSubClient.connect("arduinoClient"))

{

Serial.println("[INFO] Connection to MQTT Broker Successful");
pubSubClient.subscribe(topic);

}

else

{

Serial.printIn("[INFO] Connection to MQTT Broker Failed");

}
}

void loop()

// Wait for messages from MQTT broker
pubSubClient.loop();

}

Your Arduino code is now complete.

The Final Product

To test the application, verify and upload the Arduino code as discussed in Chapter 1.
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages similar to ones shown in Figure 6-22.

135

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

L JON /dev/cu.usbmodem1411 (Arduino Uno)

[send |

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 9@:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -53

[INFO] Encryption Type: 4

[INFO] IP Address: 10.0.90.13

[INFO] MAC Address: 78:(4:E:2:94:BD

[INFO] Connecting to MQTT Broker

[INFO] Connection to MQTT Broker Successfull
[INFO] Successfully Subscribed to MQTT Topic
[INFO] Payload: SWITCH

[INFO] Turning lights on

[INFO] Payload: SWITCH

[INFO] Turning lights off

™ Autoscroll | Nolineending | | 9600 baud 2]

Figure 6-22. Log messages from Lighting Control System

In your Android Studio, deploy and run the app on your Android device by choosing
Run » Run ‘App’ from the menu bar, as shown in Figure 6-23.

MY Tools VvCS Window Help

» Run 'app' “R
#x Debug 'app' D

» Run... e 7|

§« Debug... AXD

[» Edit Configurations...

Figure 6-23. Deploy and run the app from Android Studio

136

CHAPTER 6 ' I0T PATTERNS: REMOTE CONTROL

If you have an Android device connected to your computer, Android Studio will
prompt you to either use your existing running device or launch a new emulator to run

the app. As shown in Figure 6-24, select the emulator or device that you want to test your
app on and click OK.

® @ Choose Device
(*) Choose a running device

Device Serial Number State Compatible

Motorola DROID RAZR Android 4.1.2 (AP 16) 0A3C0C120200500E lonline ~~ fves |

Launch emulator

Android virtual device Nexus 5 APl 22 x86

Use same device for future launches

Figure 6-24. Select the device to deploy and run the app

Open the device where your app was deployed. If your app is not already running,
locate your app and run it. Figure 6-25 shows the default view of your app.

137

CHAPTER 6 ' 10T PATTERNS: REMOTE CONTROL

Lighting Control System

Figure 6-25. The default view of the Android app

Tap on the screen and check the LED attached to your Arduino. Its state should
change every time you tap.

Summary

In this chapter you learned about the remote control pattern of IoT applications. This
pattern lets users control their devices remotely using handheld or web-based interfaces.
You also built an Android app that acts as a remote control for your Arduino device.

As mentioned in Chapter 5, an Android app is just one example. Remote controls can
be made from many different types such as iOS, wearables, and web-based apps.

138

http://dx.doi.org/10.1007/978-1-4842-1940-9_5

CHAPTER 7

loT Patterns:
On-Demand Clients

Compared to realtime IoT patterns that provide end users with data instantaneously,
on-demand patterns provide end users with data only when it’s requested. IoT
applications built using this pattern get information by directly accessing the device
or by getting it from a pre-stored location. On-demand patterns are useful when your
application is not actively looking for data and only accesses it when needed.

In this chapter, you are going to build an example of this pattern, called a smarter
parking system. Figure 7-1 shows a high-level diagram of all components involved in
building this system. The first component is an Arduino device that monitors the status
of parking spots with a proximity sensor and publishes it to a server using an HTTP
request. The second component is a server with services to store parking spot data and an
interface service that provides the number of open parking spots. The final component is
an i0S app that accesses open parking spot data and displays it to users when requested.

1 4
i i
] i
| 1
1 1
1 1
i I
] i
] i
1 i
< | 1 ;
Device 1 HTTP Server I Mobile App
Figure 7-1. Components of the smarter parking system
© Adeel Javed 2016 139

A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_7

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Since this is just an example to help you better understand the pattern, it’s purposely
simple. You are going to check the status of only a single parking spot. The project can be
easily scaled for multiple parking spots.

Learning Objectives

At the end of this chapter, you will be able to:
e Read data from a proximity sensor
e Send sensor data to a server using HTTP

e Display sensor data in an i0S app using HTTP

Hardware Required

Figure 7-2 provides a list of all hardware components required for building this smarter
parking system.

n: % \-U-—-NQ‘) -0

exmm Arduino .
1

Ultrasonic Rangemeter (HC-5R04)

Arduino
Jumper Cables

T s e s EEEEE TEEEE SEEEE e
L I I

Breadboard WiFi Shield
fritzing

Figure 7-2. Hardware required for the smarter parking system

140

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Software Required

In order to develop the smarter parking system, you need the following software:

Circuit

Arduino IDE 1.6.4 or later

PHP server (installed or hosted)
MySQL server (installed or hosted)
Text editor

Xcode

In this section, you are going to build the circuit required for the smarter parking system.
This circuit uses an ultrasonic proximity sensor to detect objects. The sensor sends an
ultrasonic burst, which reflects from objects in front of it. The circuit reads the echo that is
used to calculate the distance to nearest object.

1.

Make sure Arduino is not connected to a power source, such
as to a computer via a USB or a battery.

Attach a WiFi shield to the top of the Arduino. All the pins
should align.

Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the proximity
Sensor.

To trigger an ultrasonic burst, connect a jumper cable from
the TRIG pin of the sensor to the digital port 2 of Arduino.
Your code will set the value of this port to LOW, HIGH, and
LOW in order to trigger the burst.

To read the echo, connect a jumper cable from the ECHO pin of
the sensor to the digital port 3 of Arduino. Your code will read
values from this port to calculate distance of the object.

141

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Your circuit is now complete and should look similar to Figures 7-3 and 7-4.

R) LR
. LR) ..
LR) LR) ..
.. R) .
.. LR) LR ..
.. e "s s e ..
LR) L)
.. e " s ..
.. LR LR) ..
.. LR Y ..
.. LR) LR ..
.. R R ..
LR LR
.. s s e ..
.
R L)
.. e "e e ..
.. LR LR) ..
.. e s .
.. R L) ..
.. e " s e ..
LI) “ e
.. R " s e ..
.. LR) " ..
.. e " ..
.. LR) ..
.. e e ..
R)
L LR

fritzing

Figure 7-3. Circuit diagram of the smarter parking system

142

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Figure 7-4. Actual circuit of the smarter parking system

143

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Database Table (MySQL)

Before you can send HTTP requests from Arduino, you need to build a service that will
receive the data.

The data received from Arduino needs to be stored so that your iOS app can access
and display this information to users. Data storage requirements for this project are
relatively simple. You just need to create a two-column table that can store the count of
open parking spots and a timestamp to track when it was last updated.

This book uses MySQL as the database. Create a new table called PARKING_SPOTS_DATA
using the SQL script provided in Listing 7-1. Run this script in an existing database or
create a new one. The first column will contain a count of parking spots and the second
column will be an auto-generated timestamp. In addition to create table sql,
Listing 7-1 also contains an insert statement. This statement initializes the count of
parking spots, which will then be updated as data is received from the sensors.

Listing 7-1. Create and Initialize Table SQL

CREATE TABLE “PARKING SPOTS DATA™ (
“PARKING SPOTS COUNT™ int(211) NOT NULL,
"TIMESTAMP™ timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP

)

INSERT INTO “PARKING SPOTS DATA™ (*PARKING SPOTS COUNT™) VALUES (1)
Figure 7-5 shows structure of the PARKING_SPOTS_DATA table.
|
=H] PARKING_SPOTS_DATA
~—{jj Columns
—i}, New

i PARKING_SPOTS_COUNT
__§j TIMESTAMP

Figure 7-5. PARKING_SPOTS_DATA table structure

Code (PHP)

Now that the database table is ready, you need to build two services. The first service will
receive the Arduino sensor data in an HTTP request and accordingly update the open
parking spots count to the database. The second service will act as an interface for the iOS
app—it will return data in a format that the iOS app can parse and display.

This project uses PHP for building the data storage and the interface services. PHP
is a simple and open source server-side processing language that can process HTTP
requests and send HTTP responses.

Create a new folder called smartparking in the public/root folder of your PHP
server. All of the PHP source code for this project will go in the smartparking folder.

144

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Start a text editor of your choice.

Note All the PHP code was developed using Brackets, which is an open source text
editor. Visit http://brackets.io/ for more information.

Database Connection

Both PHP scripts for data storage and interface need to connect to the database. As
shown in Figure 7-6, create a new file called util-dbconn.php in the smartparking folder.
This file will be used by both scripts instead of repeating the code.

L —————

Create a New File
New File Name:
util-dbconn.php

(ex: file.txt, file.html, file.php)

New file will be created in
"I/public_html}bookapps/smartparking

| Cancel |

Figure 7-6. Common database connectivity file called util-dbconn.php

Open the file in a text editor and copy or type the code from Listing 7-2. As you
can see, there is not much code in this file. The four variables $servername, $username,
$password, and $dbname contain the connection information. Create a new connection by
passing these four variables and storing the connection reference in the $mysqli variable.
The IF condition in the code simply checks for errors during the connection attempt
and prints them if there were any.

Listing 7-2. Common Database Connectivity Code util-dbconn.php

<?php
$servername = "SERVER_NAME";
$dbname = "DB_NAME";
$username = "DB_USERNAME";
$password = "DB_PASSWORD" ;

145

http://brackets.io/

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

//0pen a new connection to MySQL server
$mysqli = new mysqli($servername, $username, $password, $dbname);

//0utput connection errors
if ($mysqli->connect_error)

die("[ERROR] Connection Failed: " . $mysqli->connect error);

2>

Receive and Store Sensor Data

As shown in Figure 7-7, you can create a new file called update. php within the smartparking
folder. This script will perform two tasks—it will first fetch information from the HTTP
request and then it will update the open parking spot count in the database.

e P——p——————

Create a New File
New File Name:
updated.php

(ex: file.txt, file.html, file.php)

New file will be created in:
"r‘}pubIic_htm],’bookapps!srnartparking

Create New File

Figure 7-7. File to receive and update stored data called update.php

Open the newly created file in a text editor and copy or type the code provided
in Listing 7-3. As mentioned in the previous step, in order to store data, a database
connection needs to be established, and you created util-dbconn.php to perform that
task, so in this file you need to include util-dbconn.php. The util-dbconn.php provides
access to the $mysqli variable, which contains the connection reference and will be used
to run the SQL queries.

The example in this book is hosted at http://bookapps.codifythings.com/
smartparking, and Arduino will be sending open parking spot data to update.php
using an HTTP GET method. As discussed in Chapter 2, HTTP GET uses a query string
to send request data. So, the complete URL with the query string that Arduino will

146

http://bookapps.codifythings.com/tempmonitor
http://bookapps.codifythings.com/tempmonitor
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

be using becomes http://bookapps.codifythings.com/smartparking/update.
php?parkingUpdate=0PEN. Your PHP code will need to extract parkingUpdate from the
query string usinga $_GET['parkingUpdate'] statement.

Since you are only checking status of a single parking spot, the default value of
$currentParkingCount in the code is set as 1, which is the same value with which the
database was initialized. If you were monitoring multiple parking spots, you would simply
add to or subtract from the count based on the data from the proximity sensor. For this
project, the code simply sets the value as 1 whenever Arduino sends OPEN as a value of
the parkingUpdate parameter and sets the value to 0 if Arduino sends OCCUPIED as the
parameter value.

To update this count in the database table, prepare an UPDATE SQL statement in the
$sql variable. You just need to pass the $currentParkingCount value and the TIMESTAMP
value will be auto-generated.

Finally, execute the UPDATE SQL statement using $mysqli->query($sql) and check
the $result variable for success or failure.

Listing 7-3. Code to Receive and Update Stored Data in update.php
<?php

include('util-dbconn.php');

$parkingUpdate = $_GET['parkingUpdate'];

echo "[DEBUG] Parking Update: " . $parkingUpdate . "\n";

$currentParkingCount = 1;

if($parkingUpdate == "OPEN")
{

$currentParkingCount = 1;
}
else
{

$currentParkingCount = 0;
}

$sql = "UPDATE "~PARKING_ SPOTS_DATA™ SET PARKING SPOTS_COUNT =
$currentParkingCount";

if (!$result = $mysqli->query($sql))
{

echo "[Error] " . mysqli error() . "\n";
exit();
}

$mysqli->close();
echo "[DEBUG] Updated Parking Spots Counter Successfully\n";
>

147

http://bookapps.codifythings.com/smartparking/update.php?parkingUpdate=ADD
http://bookapps.codifythings.com/smartparking/update.php?parkingUpdate=ADD

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Get the Parking Spot Count

Your app is not going to directly query the database for the parking spot count; instead
you are going to create a PHP service that returns the information over HTTP. As shown
in Figure 7-8, you should create a new file called getcount.php in the smartparking
folder. Once the iOS app calls the http://bookapps.codifythings.com/smartparking/
getcount.php URL, the PHP service will return the open parking spots count from the
database in JSON format as part of the HTTP response.

Koo ————————

Create a New File
New File Name:
getcount.php

(ex: file.txt, file.html, file.php)

New file will be created in:
-‘;/pumic_html,fbookapos,lsmartparking

Figure 7-8. File for interface to database is getcount.php

Listing 7-4 provides the complete code for getcount.php, so copy or write the code
in getcount.php. The code requires access to the database so include util-dbconn.php,
create a new SELECT sql statement, and execute it using $mysqli->query($sql). Check
if any results were returned and pass all the results in JSON format as part of the HTTP
response.

Listing 7-4. Code for Interface to Database in getcount.php

<?php
include('util-dbconn.php');

$sql = "SELECT PARKING_SPOTS_COUNT FROM ~PARKING SPOTS DATA™";
$result = $mysqli->query($sql);
$resultCount = $result->num_rows;

if ($resultCount > 0)
{

$row = $result->fetch assoc();
print(json_encode($row));

148

http://bookapps.codifythings.com/smartparking/getcount.php
http://bookapps.codifythings.com/smartparking/getcount.php

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

else

{

echo "0 results";

}
$mysqli->close();
>

Code (Arduino)

The second component of this project is the Arduino code. This code connects Arduino
to the Internet using WiFi, checks if parking spot is open or not, and publishes this
information to a server.

Start your Arduino IDE and either type the code provided or download it from book’s
site and open it. All the code goes into a single source file (*.1no), but in order to make it
easy to understand and reuse, it has been divided into five sections.

e External libraries

e Internet connectivity (WiFi)
e Read sensor data

e HTTP (publish)

e Standard functions

External Libraries

The first section of code, as provided in Listing 7-5, includes all external libraries required
to run the code. Since you are connecting to the Internet wirelessly, the main dependency
of the code is on <WiFi.h>.

Listing 7-5. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(in Chapter 2) here.

149

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Read Sensor Data

The third section of the code, as provided in Listing 7-6, defines the variables, constants,
and functions that are going to be used for reading sensor data.

The calibrateSensor() function waits for the proximity sensor to calibrate properly.
Once calibration is complete, the proximity sensor is active and can start detection. If you
do not give it enough time to calibrate, the proximity sensor might return incorrect readings.

The readSensorData() function generates a burst to detect if the parking spot is
empty. It triggers a burst on Digital Pin 2 by sending alternate signals—LOW, HIGH, and
LOW again. Then it reads the echo from Digital Pin 3, which provides a distance of the
closest object. Finally, it checks if the echo value is less than the threshold. If it is, that
means an object is occupying the parking spot. Since this is just a prototype, the echo value
of 500 has been used, so when you use this sensor in real life you will need to adjust the
value by doing a few tests. If the parking spot is occupied, it calls publishSensorData(...)
with a OCCUPIED parameter; otherwise, it sends OPEN in the parameter.

Listing 7-6. Code for Detecting if Parking Spot Is Empty

int calibrationTime = 30;
#define TRIGPIN 2 // Pin to send trigger pulse
#define ECHOPIN 3 // Pin to receive echo pulse

void calibrateSensor()

{
//Give sensor some time to calibrate
Serial.println("[INFO] Calibrating Sensor ");

for(int i = 0; i1 < calibrationTime; i++)
{

Serial.print(".");

delay(1000);

Serial.println("");
Serial.println("[INFO] Calibration Complete");
Serial.println("[INFO] Sensor Active");

delay(50);
}

void readSensorData()

{
// Generating a burst to check for objects
digitalWrite(TRIGPIN, LOW);
delayMicroseconds(10);
digitalWrite(TRIGPIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGPIN, LOW);

150

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

// Distance Calculation
float distance = pulseIn(ECHOPIN, HIGH);

Serial.println("[INFO] Object Distance: " + String(distance));

if(distance < 500)

{
Serial.printIn("[INFO] Parking Spot Occupied");

// Publish sensor data to server
publishSensorData("0OCCUPIED");
}

else

{
Serial.println("[INFO] Parking Spot Open");

// Publish sensor data to server
publishSensorData("OPEN");
}
}

Data Publish

The fourth section of the code, as provided in Listing 7-7, defines the variables, constants,

and functions that are going to be used for creating and sending an HTTP request to the

server. This code is a slightly modified version of the HTTP GET developed in Chapter 3.
The main modification in this code is its ability to open and close a connection to

the server repeatedly. Apart from that make sure to change the server and port values

to your PHP server’s values. Make sure to change the server, port, and requestData

variables and the URL values.

Listing 7-7. Code for Sending an HTTP Request

//IP address of the server
char server[] = {"bookapps.codifythings.com"};
int port = 8o;

unsigned long lastConnectionTime = 0;
const unsigned long postingInterval = 10L * 1000L;
void publishSensorData(String updateParkingSpot)

{
// Read all incoming data (if any)

while (client.available())
{

151

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

char ¢ = client.read();
Serial.write(c);

}

if (millis() - lastConnectionTime > postingInterval)
client.stop();

Serial.printIn("[INFO] Connecting to Server");

String requestData = "parkingUpdate=" + updateParkingSpot;
// Prepare data or parameters that need to be posted to server
if (client.connect(server, port))

{
Serial.println("[INFO] Server Connected - HTTP GET Started");

// Make HTTP request:

client.println("GET /smartparking/update.php?” + requestData +
HTTP/1.1");

client.println("Host: " + String(server));

client.println("Connection: close");

client.println();

lastConnectionTime = millis();

Serial.println("[INFO] HTTP GET Completed");
}

else
{
// Connection to server:port failed
Serial.println("[ERROR] Connection Failed");
}
}

Serial.printIn("---------mm oo m e ");
}

Standard Functions

The fifth and final code section is shown in Listing 7-8. It implements Arduino’s standard
setup() and loop() functions.

The setup() function initializes the serial port, sets the pin modes for the trigger and
echo pins, connects to the Internet, and calibrates the proximity sensor.

The loop() function needs to call readSensorData() at regular intervals as it
internally calls the publishSensorData() function.

152

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Listing 7-8. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Set pin mode
pinMode (ECHOPIN, INPUT);
pinMode(TRIGPIN, OUTPUT);

// Connect Arduino to internet
connectToInternet();

// Calibrate sensor
calibrateSensor();

}
void loop()

// Read sensor data
readSensorData();

delay(5000);

Your Arduino code is now complete.

Code (i0S)

The final component of your IoT application is an iOS app that will show the number of
open parking spots to the user. The app will fetch the count of open parking spots from
the PHP service whenever the user taps on the Refresh button.

Project Setup

In this section, you are going to set up your Xcode project for the iOS app. You can
download Xcode from https://developer.apple.com/xcode/download/. Xcode can
also be downloaded directly from the Mac App Store. Developing and testing iOS apps in
Xcode is free. You can use built-in simulators to test your apps. In order to test your apps
on an iOS device or publish them to the App Store, you need a paid developer account
(https://developer.apple.com/programs/). This chapter uses built-in emulator for
testing, so you do not need a paid developed account to complete this chapter.

Start Xcode from Applications and, as shown in Figure 7-9, click on Create a New
Xcode Project.

153

https://developer.apple.com/xcode/download/
https://developer.apple.com/programs/

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

No Recent Projects

Welcome to Xcode

Get started with a playground
Explore new ideas quickly and easily.

Check out an existing project
Start working on something from an SCM repository.

i

Create a new Xcode project

#*%| start building a new iPhone, iPad or Mac application.
Sh

ow this window when Xcode launches Open another project...

Figure 7-9. Create new Xcode project

Select Single View Application for the project, as shown in Figure 7-10. Screen
requirements for this app are very simple and the Single View Application template
accomplishes them. If you are interested in building more complicated applications, you
can use one of the other templates that Xcode provides. Click on Next.

154

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Choose a template for your new project:

i0s
Application - s60 1 —
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application
Application
Framework & Library %-
0s X
Application Game
Framework & Library

System Plug-in
Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Figure 7-10. Template selection screen

Fill out the details of your project as shown in Figure 7-11. You need to provide
the Product Name, Organization Name, and Organization Identifier. The Organization
Identifier can be your company or personal domain name, which is used for creating the
Bundle Identifier. This project will be developed using Swift, so select that option from
the Language dropdown. If you want your application to run on all types of iOS devices,
then select Universal. Uncheck all other options as they are not required for this project.
Click Next.

155

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Choose options for your new project:

Product Name:
Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

Smart Parking|
CodifyThings

com.codifythings

com.codifythings.Smart-Parking

Swift

Universal

Use Core Data
Include Unit Tests
Include Ul Tests

Figure 7-11. New project configuration

Previous

Select the location on your machine where you want to save the project and click
Create. Xcode will create quite a few folders and files, as shown in Figure 7-12. The
following are the most important ones:

e Smart Parking > Main.storyboard: This file provides a
main entry point for your app and is used for designing the

visual interface.

e Smart Parking > ViewController.swift: This file contains all

the Swift code for making your app dynamic and interactive.

e Smart Parking > Assets.xcassets: This file contains all assets

to be used by the app (images).

e Smart Parking > Info.plist: This file contains important
information about the runtime of the app.

156

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

v 2] Smart Parking
¥ | |Smart Parking

» AppDelegate.swift
»| ViewController.swift
Main.storyboard M
[55] Assets.xcassets
LaunchScreen.storyboard
Info.plist
¥ | | Products

r/* Smart Parking.app

Figure 7-12. Default files generated by Xcode

Screen Layout

To start designing the layout of the screen, click on Main.storyboard under the main Smart
Parking folder. This will open the default storyboard, as shown in Figure 7-13. Storyboard
is where you drag and drop different widgets to create a user interface of your application.

ene » iy Srant Parsing |) Prose § Fvaned rurvereg Souant Parkiny o0 Prone b AP |

B | ¢ | [N s Prning) S Pacing }) i moroses)) s = ——— eu
= rer—] kol
U
Top Layout Guite L]
Borom Layout e

Wode | Soase To Fa B
Semate Unapecied B

] 0
B 7wt Pesgaerten vmarncnan £ Unes neiacnon Craed
B Mustis Touen
$harvboe3 Doy Poust —

Backgmurd | £ Whae Cor B
Tt W Detsr

Orswng) Ooegue toseden
) Cisars Geaphics Comtyat
e Butiews
B Astormers Subnest
Srecnng [} oz

1=
— gt
St B e e ety

arbian A Intertics Deszer

Labg Lkt Avwacy sasa smeusc o

=] Any Aoy B jof el

Figure 7-13. Default development view of Xcode

All widgets are available in the Object Library on the bottom-right side of the
storyboard. Figure 7-14 shows the Object Library from where you can drag and drop
widgets on storyboard.

157

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

D @ &

View Controller - A controller that
manages a view.

Storyboard Reference - Provices
a placeholder for a view controller in
an external storyboard.

Navigation Controller - A
(controller that manages navigation
through a hierarchy of views.

Figure 7-14. Object library with user interface widgets

This application needs three widgets on the screen—the first one is an optional
ImageView to display image of a car, the second is a Label to display open parking spots,
and the third is a button that users can click to recheck open parking spots.

Drag these widgets from the Object Library on to the storyboard; do not worry about
alignment or size of widgets right now. Your screen should look similar to Figure 7-15.

Label

Button

Figure 7-15. Screen with required widgets

158

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Since the first widget is an ImageView, you need to set an image in properties.
You need to import an image in Assets.xcassets. As shown in Figure 7-16, select
Assets.xcassets and right-click to see the menu, then select Import. You can either
provide your own image or use the same that has been used in the example from
https://openclipart.org/detail/122965/car-pictogram. Select an image and click
on Open.

B R Q A € (== 8| < [smart Parking Smart Parking | [Assets.xcassets | No Selection
v [& Smart Parking Appicon
L Smart Parking
. AppDelegate.swift
« ViewControllor.swift

Main, stor rd M
New image S
LaunchScreen.storyboard New Data Set
App Icons & Launch Images »
Info.plist
» [Products New Watch Complication

New Apple TV Image Stack

New Folder

MNew Sprite Atlas
Game Center > —
No Selection
Import...
Import From Project...

Figure 7-16. Import an image asset

Once imported, the image becomes available in the application, as shown in
Figure 7-17.

peced ParkedCar
£] ParkecCar =]

G

Universal

Figure 7-17. Available/imported assets

Now that the image is available in the assets, you need to set this image in the
ImageView widget that you added on the storyboard. Switch back to Main.storyboard
and select ImageView from the storyboard. As shown in Figure 7-18, from the Attribute
Inspector on the right, choose ParkedCar (or the name of your image) in the Image and
Highlighted dropdowns. You can always set two different images when the image is
highlighted versus normal scenarios.

159

https://openclipart.org/detail/122965/car-pictogram

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Seman Parking Smart Parking | [} Main_.. boars | [Main.. Base) | [view. Scene Vg, irgilier Vigw PareaCar T 0

]

Multils Toueh

Figure 7-18. ImageView properties

Once the ImageView properties have been set, the image will become visible on the
storyboard as well. Your ImageView should look similar to Figure 7-19 (or the image that
you selected).

Label

Button

Figure 7-19. ImageView with newly imported image

160

CHAPTER 7

I0T PATTERNS: ON-DEMAND CLIENTS

Just like with ImageView, you need to update the properties of the Label and Button

as well.

Select Label and, from the Attribute Inspector, change the Text property to Open
Parking Spots: 0, as shown in Figure 7-20.

< [sman Paring Smart Pariing | [} Main_. yboarg

v [B View Cantraller Scons

v Viaw Cs
Top Lay:

oliar
Guide

Bottom Layout Guide

ParksoCar

Figure 7-20. Label properties

B main . Bass)

B view... Scenn

iew Coetraber) | view L] Lanel 1 ¢ 0
Label
= Text Piain H
Dpon Parking Soete: 0
Coke EEEN Defaut <]
Fort System 17.0 i)l
Aigrmert

Lines

Benvar [Enabied

Basoire

Line Breais

Autoarek

Highighted
Snadow

Sradow Oftset

MHighlightod
Angr Dasolmos
Truncate Ta
Fixed Font Size
Tighten Lester Spacing
— Oofat
[— N2
-

Morzora

‘o Do

Vertical

Next, select Button and, from the Attribute Inspector, change the Title property to
Click to Refresh, as shown in Figure 7-21.

< [sman Paring Smart Pariing [} Main_. yboard

v [B View Cantraller Scons

v Vigw Controlior
Top Layout Guide

ParkeoCar
L | Open Parking Spots: 0
| Button

rat Flnsponder

Btoryboard Eniry Point Op...
8 oo
Buttom
Geoo

Figure 7-21. Button properties

B Main. (Base)

B View...r Scens

Wiew Contrenier | [View |8 Button m O 0
Button
B Troe | System B
Stute Config Defaut B
te Pain]

Drawing

Ciick to Fleéresh

ooow -

System 15.0
= Oefaut
=3 Defaun

[]= [}~
Hesght
Reverses On Hignight

wdth

Shows Towch On Highlght

@ Highlighted Adjusts Image
10 Disabled Adunts Image
Line Break | Truncate Middie

Eage

~met

Cornent B
1= o
Lot Too

161

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

You are almost done with the screen layout. The final steps involve aligning the
widgets. As shown in Figure 7-22, select all three widgets.

£ B sman Parking Smar...rking | [Main....card | [j Main...Base) | [view...cene View...troller View || B Click to Refrosh

v [View Controller Scene —
v () View Controbier » B
| Top Layout Guide
Bottom Layout Guide
v || View
ParkedCar
L | Open Parking Spots: 0
B | Click to Refresh
0 First Responder
[E Exin

Storyboard Entry Point

&

2i..sho
0 oo

= O Any nAny E8 & o] haf

Figure 7-22. Align widgets

Figure 7-23 provides a magnified version of alignment and constrains the menu
visible on the bottom-right side of storyboard.

B3 I& o] taf

Figure 7-23. Alignment and constraints menu

162

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

While all three widgets are selected, click on the Stack (@) button. This will stack
all selected widgets together in a vertical fashion, as shown in Figure 7-24.

L4 [& smart Parking Sma...rking) [l Main...card) [§§ Main...ase) | B View...cene View...roller View Stack View
v [view controlier Scene Qo
T G
v View Controller o =

Top Layout Guide
_| Bottom Layout Guide
v View
70 First Rlesponder
[E Exit

Storyboard Entry Point

Open Parking Spots: 0
Click to Refresh

Figure 7-24. Vertically stacked widgets

To complete screen alignment, you need to add some constraints to the widgets so
that, even when they run on different devices, their behavior is consistent. As shown in
Figure 7-24, make sure you have the Stack View selected in the View Controller. Drag the
Stack View into center of the screen so that the horizontal and vertical alignment guides
are visible, as shown in Figure 7-25.

163

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

B < B Smart Paring Smant Parking | [Main storyboard | [Main storyoard Base) | [View Controier Scene Vigw Cortrolier Ven

v [E] View Controlier Seene
v () Viow Convatier » B
Top Layout Guide 3
— Battom Layout Guide
v [lview
Stack View
T Forst Rosponder
E et

Storyboard Entry Point

Open Parking Spots: 0

1y

(5] Any ~Any 2B ol s

Figure 7-25. Center-aligned widgets

While Stack View is selected from the alignment and constraints menu shown in
Figure 7-24, click on the Resolve Auto Layout Issues (I- A.I) button. Select Add Missing
Constraints for Selected Views, as shown in Figure 7-26.

Update Frames X ¥#=
Add Missing Constraints

Reset to Suggested Constraints X {38=
Clear Constraints

Update Frames

Add Missing Constraints
Reset to Suggested Constraints
Clear Constraints

Figure 7-26. Add missing constraints

164

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Your screen layout is ready and should look similar to Figure 7-27.

£ Senart Pariing Smart Pasiing | [Main storytoard | [l Maie storybos Base) | [View Controlier Scene Vigw Controlier View Stack View

» B

Open Parking Spots: 0

[Any nAny BB ol bl

Figure 7-27. Final screen layout of app

Screen Logic

Next you are going to add some logic that will make the screen interactive. Whenever the
user taps on the Click to Refresh button, the app will check the server for open parking
spot information.

Open the ViewController.swift file side by side with the storyboard. As shown
in Listing 7-9, by default there will be two functions, called viewDidLoad() and
didReceiveMemoryWarning(), that were auto-generated by the system. You are not going
to make any changes to these functions.

Listing 7-9. Default Code for ViewController.swift
import UIKit
class ViewController: UIViewController {
override func viewDidlLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view, typically
// from a nib.

165

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

In order to update the values of the open parking spots on the screen, you need a
reference of the Open Parking Spots: 0label in your ViewController.swift file. Xcode
provides a very easy way to do this, as shown in Figure 7-28. You simply drag and drop the
label from the storyboard on the ViewController. swift file. Make sure you keep the Ctrl
button on the keyboard pressed.

B 5. B Stack View || L| Open Parking Spots: 0 Actomatic . VewGontisler swilt | No Seection

o r Vi CEIY insert Outiet of Outiet Collection

dRece iveMerarysarningl] {
dAece veMensrysarningl)

Jpen Parking Spots«C

Figure 7-28. Drag and drop label from storyboard

When you drop the label on the code, Xcode will display a popup to enter the
name of this property. As shown in Figure 7-29, enter a name and make sure you leave
Connection set to Outlet. Click Connect to add a new property to ViewController.swift.

Connection | Outlet
Object View Controller
Name parkingSpots|

Type UlLabel -
Storage | Weak

Cancel Connect

Figure 7-29. Outlet properties

166

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Similarly drag and drop the Click to Refresh button from the storyboard on the
ViewController.swift file, as shown in Figure 7-30.

B smaet Paring h h B Sanck View |8 Cliok 1o Relresh Automatic | [l ViewControlerswint WiawCantroler

rt UIKit

a8 ViewController: UIViewController {

var parkingSpets: UILabell

Tenc vl
per.viewbidload()

gidRece iveMenorywarningl] {
dReced aGr nirgl}

Open Parking Spais: 0

Figure 7-30. Drag and drop button from storyboard

As shown in Figure 7-31, from the properties popup, select Action from Connection
as you need to add code to respond whenever the user taps on the button. In the Name
field, enter refreshParkingSpotsCount and click Connect.

Connection | Action
Object View Controller

Name | refreshParkingSpotsCour

Type AnyObiject -
Event | Touch Up Inside

Arguments | Sender

Cancel Connect

Figure 7-31. Action properties

167

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS
At this point, your ViewController.swift should look similar to Listing 7-10.

Listing 7-10. Action Code in ViewController.swift
import U]IKit
class ViewController: UIViewController {

@IBOutlet weak var parkingSpots: UILabel!

@IBAction func refreshParkingSpotsCount(sender: AnyObject) {

}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically
// from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

Now you are going to add code that needs to execute in response to a Button clicked
action. Add all the code in the refreshParkingSpotsCount(sender: AnyObject) function.

The code provided in Listing 7-11 first sends a request to the URL http://bookapps.
codifythings.com/smartparking/getcount.php. The PHP response service that you
wrote earlier sends the parking spots count in JSON format back to the client. The
next piece of code parses this JSON response and extracts the count value using the
PARKING_SPOTS_COUNT key. Finally, it updates the parkingSpots label with an updated
count of open parking spots.

Listing 7-11. Complete Code for ViewController
import UIKit
class ViewController: UIViewController {
@IBOutlet weak var parkingSpots: UILabel!
@IBAction func refreshParkingSpotsCount(sender: AnyObject) {

let url = NSURL(string: "http://bookapps.codifythings.com/
smartparking/getcount.php")

let request = NSURLRequest(URL: url!)

NSURLConnection.sendAsynchronousRequest(request, queue:
NSOperationQueue.mainQueue()) {(response, data, error) in

168

http://bookapps.codifythings.com/smartparking/getcount.php
http://bookapps.codifythings.com/smartparking/getcount.php

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

let jsonResponse: NSDictionary!=(try! NSJISONSerialization.
JSONObjectWithData(data!, options: NSISONReadingOptions.MutableContainers))

as! NSDictionary

self.parkingSpots.text = "Open Parking Spots: " +
String(jsonResponse["PARKING SPOTS COUNT"]!)

}

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.

}

override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()

// Dispose of any resources that can be recreated.

Before your iOS app can make any Internet calls, you need to add a property in
Info.plist. As shown in Figure 7-32, click on the + on the top-level parent Information

Property List.

B R Q B 8| <

B Smart Parking | [Senan Pariing
v [Smant Parking Ky Type
w [Smart Parking ¥ Ielormation Property List o
3 AcpDelegeie.swit Localization nathv development r... 5
Exgcutabie file
+ ViwControfer swift U]
Bundie identifier
Main storyboard U]

InfoDictionary vrsion
Bundie name

Dundie 05 Type code
Bundie versions string, short
Bundie creator 05 Type code

[Assots xcassets
LaunchScroen storyboard

» [Products

Bundie version
Apphication requires PrRane e,
Lounch screen intgrface fie base
Main storyboard fie base name

» Roguired device capabiinion

» Supported interface orientations

* Supponied interface oredtations .. 5 A

Figure 7-32. Info.plist properties list

Info.plist | No Selection £ »

Vaue

on
SEXECUTABLE_NAME)
SPRODUCT BUNDLE IDENTIFIER)
&0

SPRODUCT_NAME)

APPL

10

wnr

1

¥ES

LounchSereen

Main

169

CHAPTER 7

|0T PATTERNS: ON-DEMAND CLIENTS

A new property will be added to the list. As shown in Figure 7-33, select App
Transport Security Settings.

89 < > | [B Sman Parking) [7] Smart Parking) [ij Info.plist) No Selection
Key Type Value
¥ Information Property List © Dictionary (17 items)
| App Transport Security Settings | @ @ String o
> [ransport Security Settings 4 Dictionary (0 items)
Application can be killed imme... 4 String en
Application Category 5 String $(EXECUTABLE_NAME)
Application does not run in ba... 4 String $(PRODUCT_BUNDLE_IDENTIFIER)
Application fonts resource path 4 String 6.0
Application has localized displ... 5 String $(PRODUCT_NAME)
Application is agent (UIElement) 4 String APPL
Application is background only 4 String 1.0
Application is visible in Classic 4 String 7777
Application prefers Carbon env... | 4 String 1
Application requires thona envir.. 4 Boolean YES
Launch screen interface file base... § String LaunchScreen
Main storyboard file base name 4 String Main
» Required device capabilities 5 Amay (1 item)
» Supported interface orientations 4 Aray (3 items)
» Supported interface orientations (... 4 Array (4 items)

Figure 7-33. Select the App Transport Security Settings property

170

CHAPTER 7

I0T PATTERNS: ON-DEMAND CLIENTS

Click on + in the newly added property of App Transport Security Settings, as shown
in Figure 7-34. This will add a child property. Select the Allow Arbitrary Loads property

from the list and change its value from NO to YES.

o8| ¢ [& smart Parking) [7] Smart Parking ' i Info.plist) No Selection
Key Typ Value
¥ Information Property List Diction (17 items)
v App Transport Security Settings Dictionary (1 item)
| Allow Arbitrary Loads A©© Boolean 25 YES
» Application Category (0 items)
Localization native developmentr... en

Executable file
Bundle identifier
InfoDictionary version
Bundle name
Bundle OS Type code
Bundle versions string, short
Bundle creator OS Type code
Bundle version
Application requires iPhone envir...
Launch screen interface file base...
Main storyboard file base name

» Required device capabilities

» Supported interface orientations

» Supported interface orientations (...

AF AP AP AP AP AP AP AP AP AP AP AP AP AP AP 4ap odb

S$(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)
6.0
$(PRODUCT_NAME)
APPL

1.0

777

1

YES

LaunchScreen

Main

(1 item)

(3 items)

(4 items)

Figure 7-34. Select the Allow Arbitrary Loads property

This completes the implementation of your iOS app.

The Final Product

To test the application, make sure your MySQL and PHP servers are up and running with

the code deployed.

Also verify and upload the Arduino code as discussed in Chapter 1. Make sure
initially there is no object in front of your proximity sensor. Once the code has been
uploaded, open the Serial Monitor window. You will start seeing log messages similar to

the ones shown in Figure 7-35.

171

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

[XoN] /dev/cu.usbmodem1411 (Arduino Uno)

Send |

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 90:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -S5

[INFO] Encryption Type: 4

[INFO] IP Address: 10.0.9.13

[INFO] MAC Address: 78:C4:

[INFO] Calibration Complete

[INFO] Sensor Active

[INFO] Object Distance: 3722.00

[INFO] Parking Spot Open

[INFO] Connecting to Server

[INFO] Server Connected - HTTP GET Started
[INFO] HTTP GET Completed

[INFO] Object Distance: 3752.00

[INFO] Parking Spot Open

HTTP/1.1 200 OK

Server: nginx

Date: Sun, @6 Mar 2016 @1:10:52 GMT
Content-Type: text/html; charset=UTF-8
Transfer-Encoding: chunked

Connection: close

Host-Header: 192fc2e7e58345beb82310492d6aB024
X-Proxy-Cache: MISS

50
[DEBUG] Parking Update: OPEN
[DEBUG] Updated Parking Spots Counter Successfully

Autoscroll | Nolineending | | 9600 baud 2|

Figure 7-35. Log messages from the smarter parking system

Next, open your iOS app in Xcode. Click on the Play button from menu visible on
top-left side of storyboard shown in Figure 7-36 to launch your app in a simulator.

> W ¢\ Smart Parking) i§ iPhone 6

Figure 7-36. Screen simulation menu

172

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

Once the app launches, click on the Click to Refresh button to fetch the latest count of
the open parking spots. Figure 7-37 shows how the screen will look in the simulator. The
screen will show 1 because you have not placed any object in front of the proximity sensor.

iPhone 4s - iPhone 4s / i0S 9.1 (13B137)

Open Parking Spots: 1

Click to Refresh

Figure 7-37. App screen in simulator with one open spot

173

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

As shown in Figure 7-38, place an object in front of your proximity sensor.

Figure 7-38. Object in front of proximity sensor

174

CHAPTER 7 * 10T PATTERNS: ON-DEMAND CLIENTS

As soon as your Arduino sends the next HTTP request to the server, the count will
change. Click the Refresh button on your iOS app. As shown in Figure 7-39, it will show no
open spots.

iPhone 4s - iPhone 4s /i0S 9.1 (13B137)

Open Parking Spots: O
Click to Refresh

Figure 7-39. App screen in simulator with no open spots

Summary

In this chapter, you learned about the on-demand pattern of IoT applications. This
pattern is a good fit if your users are not required to be fed data and instead are provided
the latest data only when they request it. The smarter parking system that you built in this
chapter is a good example of this pattern, because users are only concerned with open
parking spot information when they are looking for a parking spot; otherwise, they are
not concerned.

175

CHAPTER 8

loT Patterns: Web Apps

As most of our day-to-day tasks and interactions move to mobile devices, web
applications will still have a place. In the IoT space, they will mainly be used for
monitoring and controlling large-scale implementations.

In this chapter, you are going to build a temperature monitoring system. Figure 8-1
shows a high-level diagram of all components involved in this system. The first component
is an Arduino device that gathers temperature data and publishes it to a server using an
HTTP request. The second component is a server that receives temperature data and
stores it in a database. The final component accesses temperature data from the server
and presents it to users in a web-based analytics dashboard. This web-based analytics
dashboard is going to reside in the server as well.

] i
i i
i i
] 1
] 1
:‘ M ﬁ | |
-q 7 i i
i]
] i
| |
1]
Device i HTTP Server 1 Web App
Figure 8-1. Components of the temperature monitoring system
Learning Objectives
At the end of this chapter, you will be able to:
e Read data from a temperature sensor
e Publish sensor data to a server
e Display sensor data in a web-based dashboard
© Adeel Javed 2016 177

A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_8

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Hardware Required

Figure 8-2 provides a list of all hardware components required for building this
temperature monitoring system.

kxmm Arduino

f

Temperature Sensor (TMP36)

Arduino
Jumper Cables

Fe s e e SEEEE FEEER FEEEE TR
TEes e e sEEEE FEEEE BEEEE wEEEw

R
R

Breadboard WiFi Shield

fritzing

Figure 8-2. Hardware required for the temperature monitoring system

Software Required

In order to develop the temperature monitoring system, you need the following software:
e Arduino IDE 1.6.4 or later
e PHP server (installed or hosted)
e MySQL server (installed or hosted)

e Text editor

178

Circuit

CHAPTER 8 ' 10T PATTERNS: WEB APPS

In this section, you are going to build the circuit required for the temperature monitoring
system. This circuit uses a low-cost and easy-to-use TMP36 temperature sensor. The
sensor returns its values in voltage, which is converted into Celsius and Fahrenheit.

1.

Make sure Arduino is not connected to a power source, such
as to a computer via USB or a battery.

Attach a WiFi shield to the top of the Arduino. All the pins
should align.

Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the temperature
sensor. The left pin of the sensor is the power (+) and the right
pin is the ground (-).

To read values from the temperature sensor, you will need to
connect a jumper cable from the analog voltage port (middle pin)
of the temperature sensor to the A0 (Analog) port of Arduino.
Your code will read the voltage from this port to calculate the
temperature in Celsius and Fahrenheit.

Your circuit is now complete and should look similar to Figures 8-3 and 8-4.

179

|0T PATTERNS: WEB APPS

CHAPTER 8

" 0 00
s s 0
. s 0
L B
LR
. s 00

" " 00

L
LA B
L
LR
LI B
LR B
. s 0
LI B

LR L B
L
LI I
L I)
T)
LR
LR
LI)

fritzing

Figure 8-3. Circuit diagram of the temperature monitoring system

180

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Figure 8-4. Actual circuit of the temperature monitoring system

Database Table (MySQL)

As discussed in the previous chapter, before you can send HTTP requests from Arduino,
you need to build a service that will receive data.

This chapter also uses MySQL as a database. The application needs a very simple
three-column table. So create a new table called TEMPERATURE_MONITORING DATA using the
SQL script provided in Listing 8-1. Run this script in an existing database or create a new one.

The first column will be an auto-generated ID, the second column will be an
auto-generated timestamp, and the third column will be used to store the temperature
readings.

Listing 8-1. Create Table SQL

CREATE TABLE ~TEMPERATURE_MONITORING DATA'
(
ID” int(11) NOT NULL AUTO_INCREMENT,
“TIMESTAMP™ timestamp NOT NULL DEFAULT CURRENT TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,
“TEMPERATURE™ double NOT NULL,
PRIMARY KEY (*ID")

181

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Figure 8-5 shows the structure of the TEMPERATURE_MONITORING_DATA table.

=H J TEMPERATURE_MONITORING_DATA
~—{j Columns

—iif, New

—ill 1D

1l TEMPERATURE

—{il TIMESTAMP
+— - | Indexes

Figure 8-5. TEMPERATURE_MONITORING_DATA table structure

Code (PHP)

Now that the database table is ready, you need to build two services. The first service
will receive the Arduino sensor data and store it in the newly created database table. The
second service will show historical sensor data in a dashboard.

This project also uses PHP for building data storage and interface services.

Create a new folder called tempmonitor in the public/root folder of your PHP
server. All of the PHP source code for this project will go in this tempmonitor folder.

Start a text editor of your choice.

Note All the PHP code was developed using Brackets, which is an open source text
editor. See http://brackets.io/ for more information.

Database Connection

The PHP scripts for storing and displaying data will need to connect to the database. As
shown in Figure 8-6, create a new file called util-dbconn.php in the tempmonitor folder.
This file will be used by both scripts instead of repeating the code.

182

http://brackets.io/

CHAPTER 8 ' 10T PATTERNS: WEB APPS

X New File

Create a New File
New File Name:
util-dbconn.php

(ex: file.txt, file.html, file.php)

New file will be created in:
"f /public_html/bookapps/tempmonitor

| Cancel |

Figure 8-6. Common database connectivity file called util-dbconn.php

Open the file in a text editor and copy or type code from Listing 8-2. As you can
see, there is not much code in this file. The four variables $servername, $username,
$password, and $dbname contain the connection information. Create a new connection by
passing these four variables and store the connection reference in the $mysqli variable.
The IF condition in the code simply checks for errors during the connection attempt
and prints them if there were any.

Listing 8-2. Common Database Connectivity Code util-dbconn.php

<?php
$servername = "SERVER_NAME";
$dbname = "DB_NAME";
$username = "DB_USERNAME";
$password = "DB_PASSWORD";

//0pen a new connection to MySOL server
$mysqli = new mysqli($servername, $username, $password, $dbname);

//0utput connection errors
if ($mysqli->connect_error)

die("[ERROR] Connection Failed: " . $mysqli->connect error);

2>

183

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Receive and Store Sensor Data

As shown in Figure 8-7, create a new file called add. php in the tempmonitor folder. This
script will perform two tasks—first it will fetch information from the HTTP request and
then it will insert this information as a new row in the database table.

L P—————

Create a New File
New File Name:

add.php

(ex: file.txt, file.html, file.php)

New file will be created in:
l"r‘/pub]'u:__ htmi/bookapps/tempmonitor

iCreate New Flleil Cancel I

Figure 8-7. File to receive and store data in add.php

Open the newly created file in a text editor and copy or type the code provided
in Listing 8-3. As mentioned in the previous step, in order to store data, a database
connection needs to be established. You created util-dbconn.php to perform that task,
so in this file you need to include util-dbconn.php. The util-dbconn.php file provides
access to the $mysqli variable, which contains connection references and will be used to
run the SQL queries.

The example in this book is hosted at http://bookapps.codifythings.com/
tempmonitor, and Arduino will be sending temperature data to add. php using an HTTP
GET method. As discussed in Chapter 2, HTTP GET uses a query string to send request
data. So, the complete URL with the query string that Arduino will be using becomes
http://bookapps.codifythings.com/tempmonitor/add.php?temperature=79.5.

Your PHP code will need to extract temperature values from the query string using the
$_GET['temperature'] statement.

Now you need to store this temperature value in the database table as a new row.
Prepare an INSERT SQL statement in $sql variable. You just need to pass the temperature
value, as ID and TIMESTAMP are both auto-generated, so the database will take care of that
for you.

Finally, execute the INSERT SQL statement using $mysqli->query($sql) and check
the $result variable for success or failure.

184

http://bookapps.codifythings.com/tempmonitor
http://bookapps.codifythings.com/tempmonitor
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://bookapps.codifythings.com/tempmonitor/add.php?temperature=79.5

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Listing 8-3. Code to Receive and Store Data in add.php

<?php

>

include('util-dbconn.php');

$temperature = $_GET['temperature'];

echo "[DEBUG] Temperature Sensor Data: " . $temperature . "\n";

$sql = "INSERT INTO "TEMPERATURE_MONITORING DATA™ (" TEMPERATURE™) VALUES
($temperature)”;

if (!$result = $mysqli->query($sql))
{

echo "[Error] " . mysqli_error() . "\n";

exit();
}

$mysqli->close();

echo "[DEBUG] New Temperature Sensor Data Added Successfully\n";

Dashboard

All the data that is being captured by the sensor and stored in database is not visible to
anyone. So next, you are going to build an analytics dashboard that will load the last 30
entries from the database and display them in a bar chart format. As shown in Figure 8-8,
create a new file called index.php in the tempmonitor folder.

X New File

Create a New File
New File Name:

index.php

(ex: file.txt, file.html, file.php)

New file will be created in:
-‘f/pubiic_htmi;’bookapps{tempmonitor

Figure 8-8. The file for analytics dashboard is index.php

185

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Listing 8-4 provides the structure of the index. php file. The structure is standard
HTML, so in the <head> tag you are going to load data from database table, load
dependencies and initialize the chart. The <body> tag will simply display the chart.

Listing 8-4. Code Structure for Analytics Dashboard in index.php

<html>
<head>
<title>...</title>
<?php
?>
<script src="..." />
<script>
// chart customization code
</script>
</head>
<body>
// chart display
</body>
</html>

Listing 8-5 provides the complete code for index.php, so copy or write the code
in index. php. For developing the bar chart, you will be using Dojo, which is a very
popular JavaScript toolkit. You do not need to download or install any code. The toolkit is
accessible over the Internet so your script tag just needs to point to //ajax.googleapis.
com/ajax/1libs/dojo/1.10.4/dojo/dojo. js as its source.

To populate the chart, you first need to load data from the database in an array
variable called chartData. In the <script> tag, add the PHP code for loading data from
a database table. Include util-dbconn.php because a database connection needs to be
established, and then prepare a SELECT SQL statement. Execute the query and prepare an
array from the results. The final format of the array should be similar to var chartData =
[vala, val2, Vval3].

To use Dojo toolkit resources, you need to load all the dependencies using
require(). For chart development, the two most important dependencies are the chart
resource dojox/charting/Chart and a theme dojox/charting/themes/PlotKit/orange.
The remaining dependencies are included for customizing the chart.

Inside function(Chart, theme){...}, create a new chart, set its theme, customize
its plot area and x/y axis, add a chartData series to the chart. Finally, render the chart.

The <body> tag has the code to display a title on top of the page and chart created earlier.

186

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Listing 8-5. Complete Code for the Analytics Dashboard in index.php

<html lang="en">
<head>
<title>Temperature Monitoring System - Dashboard</title>

<script src="//ajax.googleapis.com/ajax/1ibs/dojo/1.10.4/dojo/dojo.js"
data-dojo-config="async: true"></script>

<script>
<?php
include('util-dbconn.php');

$sql = "SELECT * FROM (SELECT * FROM
“TEMPERATURE_MONITORING_DATA®
ORDER BY ID DESC LIMIT 30) sub ORDER BY id ASC";
$result = $mysqli->query($sql);
$resultCount = $result->num rows;

if ($resultCount > 0)
{

$currentRow = 0;

echo "var chartData = [";
// output data of each row
while($row = $result->fetch assoc())

{
$currentRow = $currentRow + 1;

echo $row["TEMPERATURE"];

if($currentRow < $resultCount)

{
}

echo ",";

}

echo "];";

}

else

{
}

echo "0 results";

$mysqli->close();

2>

187

CHAPTER 8

</head>

|0T PATTERNS: WEB APPS

require([
"dojox/charting/Chart",
"dojox/charting/themes/PlotKit/orange",
"dojox/charting/plot2d/Columns”,
"dojox/charting/plot2d/Markers"”,
"dojox/charting/axis2d/Default",
"dojo/domReady!"

], function(Chart, theme) {

1)

</script>

chart.

chart.

chart.

chart.

chart.

chart.

var chart = new Chart("chartNode");

setTheme(theme);

addPlot("default", {type: "Columns",
gap: 5 , labels: true,
labelStyle: "outside"});

addAxis("x", {title: "Readings (#)",
titleOrientation: "away"});
addAxis("y", {title: "Temperature (F)",
titleOrientation: "axis" , min: o,
max: 270, vertical: true, fixLower:
"major",
fixUpper: "major" });

addSeries("TemperatureData",chartData);

rendex();

<body style="background-color: #FSEEE6">

<div style="align: center;">

Temperature Monitoring System - Dashboard
</div>

</body>
</html>

188

<div id="chartNode" style="width: 100%; height: 50%; margin-top: 50px;">
</div>

<script type="text/javascript">

init();

</script>

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Code (Arduino)

The final component of this project is the Arduino code for connecting to the Internet
using WiFi, reading data from the temperature sensor, and publishing it to a server.

Start your Arduino IDE and either type the code provided here or download it from
book’s site and open it. All the code goes into a single source file (*.ino), but in order to
make it easy to understand and reuse, it has been divided into five sections.

e Externallibraries

e Internet connectivity (WiFi)
e Read sensor data

e HTTP (publish)

e Standard functions

External Libraries

The first section of code, as provided in Listing 8-6, includes all the external libraries
required to run the code. Since you are connecting to the Internet wirelessly, the main
dependency of code is on <WiFi.h>.

Listing 8-6. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>

Internet Connectivity (Wireless)

The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(in Chapter 2) here.

Read Sensor Data

The third section of code, as provided in Listing 8-7, defines the variables, constants, and
functions that are going to be used for reading sensor data.

The readSensorData() function reads data from Analog Pin A0 and the result is
between 0 and 1023. The greater the value returned, the higher the temperature. The
sensor value does not directly provide the temperature in Celsius or Fahrenheit, so a
formula, as highlighted in Listing 8-7, is used to convert the sensor value into the required
formats.

189

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Listing 8-7. Code for Reading Temperatures
int TEMP_SENSOR_PIN = A0;

float temperatureC = 0.0;
float temperatureF = 0.0;

void readSensorData()
{
//Read Temperature Sensor Value
int temperatureSensorValue = analogRead(TEMP_SENSOR_PIN);

float voltage = temperatureSensorValue * 5.0 / 1024;

//Converting reading to Celsius
temperatureC = (voltage - 0.5) * 100;

//Converting reading to Fahrenheit
temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;

//Log Sensor Data on Serial Monitor
Serial.print("[INFO] Temperature Sensor Reading (F): ");
Serial.println(temperatureF);

Data Publish

The fourth section of code as provided in Listing 8-8 defines the variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET that you developed in
Chapter 3.

The main modification in this code is its ability to open and close a connection to

the server repeatedly. Apart from that, make sure to change the server and port values to

your PHP server’s values, requestData variables and the URL values.

Listing 8-8. Code for Sending an HTTP Request

//IP address of the server
char server[] = {"bookapps.codifythings.com"};
int port = 80;

unsigned long lastConnectionTime = 0;
const unsigned long postingInterval = 10L * 1000L;

190

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 8 ' 10T PATTERNS: WEB APPS

void transmitSensorData()
{
// Read all incoming data (if any)
while (client.available())
{
char ¢ = client.read();
Serial.write(c);

}

if (millis() - lastConnectionTime > postingInterval)
client.stop();

Serial.printIn("[INFO] Connecting to Server");

String requestData = "temperature=" + String(temperaturef);
// Prepare data or parameters that need to be posted to server
if (client.connect(server, port))

{
Serial.println("[INFO] Server Connected - HTTP GET Started");

// Make a HTTP request:
client.println("GET /tempmonitor/add.php?" + requestData +

" HTTP/1.1");
client.println("Host: " + String(server));
client.println("Connection: close");

client.println();
lastConnectionTime = millis();

Serial.println("[INFO] HTTP GET Completed");
}

else

{

// Connection to server:port failed
Serial.println("[ERROR] Connection Failed");
}
}

Serial.printIn("---------mmm s ");

191

CHAPTER 8 ' 10T PATTERNS: WEB APPS

Standard Functions

The code in the last section is provided in Listing 8-9. It implements Arduino’s standard
setup() and loop() functions.

The setup() function initializes the serial port and connects to the Internet.

The loop() function calls readSensorData() for reading temperature data and then
publishes the data to the server using HTTP by calling transmitSensorData() at regular
intervals.

Listing 8-9. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

//Connect Arduino to internet
connectToInternet();

}

void loop()

// Read sensor data
readSensorData();

// Transmit sensor data
transmitSensorData();

// Delay
delay(6000);

Your Arduino code is now complete.

The Final Product

To test the application, make sure your MySQL and PHP servers are up and running with
the code deployed.

Also verify and upload the Arduino code as discussed in Chapter 1. Once the code
has been uploaded, open the Serial Monitor window. You will start seeing log messages
similar to ones shown in Figure 8-9.

192

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 8 ' 10T PATTERNS: WEB APPS

[NN /dev/cu.usbmodem1411 (Arduino Uno)

| Send |

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 9@:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -53

[INFO] Encryption Type: 4

[INFO] IP Address: 10.0.0.13

[INFO] MAC Address: 78:C4:E:2:94:BD

[INFO] Temperature Sensor Reading (F):3p.67
[INFO] Connecting to Server

[INFO] Server Connected - HTTP POST Started
[INFO] Data: temperature=39.67
[INFO] HTTP POST Completed

Autoscroll | Nolineending | | 9600 baud =

Figure 8-9. Log messages from the temperature monitoring system

Let your Arduino run for a couple of minutes so that enough data is sent to
the server. Check your dashboard by accessing the project URL, in this case it was
http://bookapps.codifythings.com/tempmonitor. Your dashboard should look similar
to Figure 8-10.

L C | DoOKEDES COTMTNNGS COM/ bempman 1nr -

Tem; Monitoring System - Dashb

Temperature (F}

M3 M3 M M M M M M3 M M4 W s MI WS WS WS mS S mA M) B W3 M3 M B B m M W W
Readngs (#)

Figure 8-10. Dashboard of the temperature monitoring system

Summary

In this chapter, you learned about building custom web apps. Web apps are being
extensively used for monitoring IoT applications and large-scale implementations,
as well as for creating dashboards.

193

http://bookapps.codifythings.com/tempmonitor

CHAPTER 9

loT Patterns: Location Away

Location-aware devices are going to be one of the largest contributors of savings from
an IoT implementation. The IoT pattern is seen in various types of scenarios, including
optimal route planning, endangered wildlife tracking, and pinpointing crash locations.
In this chapter, you are going to build a livestock tracking system. Figure 9-1 shows a
high-level diagram of all the components involved in this system. The first component is
an Arduino device that captures the current coordinates and publishes them to a server
using an HTTP request. The second component is a server that receives GPS coordinates
and stores them in a database. The final component is a web page that shows stored GPS
coordinates on a map. This web page resides on the server as well.

Device HTTP Server

Web App

Figure 9-1. The components of livestock tracking system

For the purposes of this project, you are going to be tracking only one animal.

© Adeel Javed 2016 195
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_9

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

Learning Objectives
At the end of this chapter, you will be able to:
e Read GPS coordinates
e Publish GPS coordinates to a server

e Display GPS coordinates in a map

Hardware Required

Figure 9-2 provides a list of all the hardware components required for building the
livestock tracking system.

e OCY(UNOI T S

gemm Arduing’

GPS Module (NEOBMVZ)

Arduino
Jumper Cables

Breadboard WiFi Shield

fritzing

Figure 9-2. Hardware required for the livestock tracking system

196

CHAPTER 9 IOT PATTERNS: LOCATION AWARE

Software Required

In order to develop this livestock tracking system, you need the following software:

Arduino IDE 1.6.4 or later
PHP server (installed or hosted)
MySQL server (installed or hosted)

Text editor

Circuit
In this section, you are going to build the circuit required for the livestock tracking system.

This circuit uses the NEO6MV2 GPS module for getting current latitude and longitude
data. The GPS module has a positional accuracy of 5 meters.

1.

Make sure Arduino is not connected to a power source, such
as to a computer via USB or a battery.

Attach a WiFi shield to the top of the Arduino. All the pins
should align.

Use jumper cables to connect the power (3.3V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the GPS.

To read the GPS data, you will need to connect a jumper
cable from the RX (Receive) port of the GPS to Digital Port 3
of Arduino. Your code will use data from this port to find the
latitude and longitude information.

Similar to Step 5, you also need to connect a jumper cable
from the TX (Transmit) port of the GPS to Digital Port 2 of
Arduino. Your code will use data from this port to find the
latitude and longitude information.

Note

Other GPS modules might have different power requirements and circuits. Check

the datasheet of your GPS module to confirm its requirements.

Your circuit is now complete and should look similar to Figures 9-3 and 9-4.

197

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

..
.

.. ..
..
.
..

LR I I I I
L I I I B
LR I I I I I B A
..
..
L I I I B
LR I A I

..
.. .. L
..
.. .. T ..
.
.. R
.. CRCRC) . - ..
.. LR
R . 0
LR . .

fritzing

Figure 9-3. Circuit diagram of the livestock tracking system

Figure 9-4. Actual circuit of the livestock tracking system

198

CHAPTER 9 IOT PATTERNS: LOCATION AWARE

Database Table (MySQL)

As discussed in the previous two chapters, before you can send HTTP requests from
Arduino, you need to build a service that will receive the data.

The livestock tracking system will be displaying the latest GPS coordinates on a map,
so you need to create a database table that will store those GPS coordinates.

This chapter also uses MySQL as the database. Even though you are only going to
track a single device, the table structure will be the same as if you were tracking multiple
devices. So create a new table called GPS_TRACKER_DATA using the SQL script provided in
Listing 9-1. Run this script in an existing database or create a new one.

The first column will store the ID of the animal/device sending the coordinates;
the second column will store the latitude; the third column will store longitude; and the
fourth column will contain an auto-generated timestamp.

Listing 9-1. Create Table SQL

CREATE TABLE "GPS_TRACKER DATA®

(
“CLIENT ID™ varchar(40) NOT NULL,

“LATITUDE™ varchar(40) NOT NULL,

“LONGITUDE™ varchar(40) NOT NULL,

“LAST_UPDATED™ timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
ON UPDATE CURRENT_TIMESTAMP,

PRIMARY KEY ("CLIENT ID")

Figure 9-5 shows the structure of the GPS_TRACKER_DATA table.

GPS_TRACKER_DATA
Columns
[, New
| CLIENT_ID
| LAST_UPDATED
| LATITUDE
| LONGITUDE
+- | Indexes

l}

Figure 9-5. GPS_TRACKER_DATA table structure

Code (PHP)

Now that the database table is ready, you need to build two services. The first service that
will receive the GPS coordinates and store them in the newly created database table. The
second service will show the stored GPS coordinates on a map.

199

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

This project also uses PHP for building the storage and user interface services.

Create a new folder called gpstracker in the public/root folder of your PHP server.
All of the PHP source code for this project will go in this gpstracker folder.

Start the text editor of your choice.

Note All the PHP code was developed using Brackets, which is an open source text
editor. See http://brackets.io/ for more information.

Database Connection

Both PHP scripts for storing and displaying data will need to connect to the database. As
shown in Figure 9-6, create a new file called util-dbconn.php in the gpstracker folder.
This file will be used by both scripts instead of repeating the code.

Lo JO—TTp—————

Create a New File
New File Name:
util-dbconn.php

(ex: file.txt, file.html, file.php)

New file will be created in:
-‘f}pub|ic__html/bookapps!gpstracker

Figure 9-6. Common database connectivity file called util-dbconn.php

Open the file in a text editor and copy or type code from Listing 9-2. As you can
see, there is not much code in this file. The four variables $servername, $username,
$password, and $dbname contain connection information. Create a new connection by
passing these four variables and store the connection reference in the $mysqli variable.
The IF condition in the code simply checks for errors during the connection attempt
and prints them if there are any.

Listing 9-2. Common Database Connectivity Code util-dbconn.php

<?php
$servername = "SERVER_NAME";
$dbname = "DB_NAME";
$username = "DB_USERNAME";

200

http://brackets.io/

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE
$password = "DB_PASSWORD";

//0pen a new connection to MySQL server
$mysqli = new mysqli($servername, $username, $password, $dbname);

//0utput connection errors
if ($mysqli->connect_error)

die("[ERROR] Connection Failed: " . $mysqli->connect error);

2>

Receive and Store Sensor Data

As shown in Figure 9-7, create a new file called update.php in the gpstracker folder. This
script will perform two tasks—first it will fetch information from an HTTP request and
then it will update this information in the database table.

Open the newly created file in a text editor and copy or type the code provided

L P——p—————

Create a New File
New File Name:
update.php

(ex: file.txt, file.html, file.php)

New file will be created in:
l‘.f /public_html/bookapps/gpstracker

| Cancel |

Figure 9-7. File to receive and add/update data in update.php

in Listing 9-3. As mentioned in the previous step, in order to store data, a database
connection needs to be established. You created util-dbconn.php to perform that task,
so in this file you need to include util-dbconn.php. The util-dbconn.php file provides
access to the $mysqli variable, which contains connection references and will be used to
run the SQL queries.

The example in this book is hosted at http://bookapps.codifythings.com/
gpstracker/, and Arduino will be sending GPS coordinates to update.php using an HTTP
GET method. As discussed in Chapter 2, HTTP GET uses a query string to send request
data. So, the complete URL with the query string that Arduino will be using becomes
http://bookapps.codifythings.com/gpstracker/update.php?clientID=Sheep1&lat

201

http://bookapps.codifythings.com/gpstracker/
http://bookapps.codifythings.com/gpstracker/
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://bookapps.codifythings.com/gpstracker/update.php?clientID=Sheep1&latitude=41.83

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

itude=41.83&longitude=-87.68. Your PHP code will need to extract client ID and GPS
coordinates from the query string using $ GET['parameterName'] statement.

Now you need to store these GPS coordinates in the database table, either in an
existing row or by inserting them in a new row. Prepare an INSERT OR UPDATE SQL
statement in the $sql variable. You will need to pass the CLIENT_ID, LATITUDE, and
LONGITUDE values in the SQL query while TIMESTAMP will be auto-generated by the
database.

Finally, execute the INSERT OR UPDATE SQL statement using $mysqli->query($sql)
and check the $result variable for success or failure.

Listing 9-3. Code to Receive and Add/Update Data in update.php

<?php
include('util-dbconn.php');

$clientID = $ GET['clientID'];
$latitude = $ GET['latitude'];
$longitude = $ GET['longitude'];

$sql = "INSERT INTO "GPS_TRACKER DATA™ (CLIENT ID, LATITUDE, LONGITUDE)
VALUES('$clientID', $latitude, $longitude) ";

$sql = $sql . "ON DUPLICATE KEY UPDATE CLIENT ID='$clientID’',
LATITUDE=$latitude, LONGITUDE=$longitude";

echo $sql;

if (!$result = $mysqli->query($sql))

{
echo "[Error] " . mysqli error() . "\n";
exit();

}

$mysqli->close();
echo "[DEBUG] Updated GPS Coordinates Successfully\n";

>

202

http://bookapps.codifythings.com/gpstracker/update.php?clientID=Sheep1&latitude=41.83

CHAPTER 9 IOT PATTERNS: LOCATION AWARE

Map

All the GPS coordinates being stored in the database are not visible to anyone yet. Next,
you are going to build a web page that will display all coordinates on a map. As shown in
Figure 9-8, create a new file called index.php in the gpstracker folder.

[——————

Create a New File
New File Name:

index.php

(ex: file.txt, file.html, file.php)

New file will be created in:
"z‘ /public_html/bookapps/gpstracker

Cancel

Figure 9-8. The file for displaying a map is index.php

Listing 9-4 provides the complete code for index.php, so copy or write the code in
index.php. This code uses the Google Maps API for creating a map and displaying all the
coordinates. You do not need to download or install any code; the API is accessible over
the Internet so your script tag just needs to point to http://maps.googleapis.com/
maps/api/js?sensor=false as its source.

To populate the map, you first need to load data from the database in the location
array variable. Add your PHP code for loading data from a database table inside the
init() JavaScript function. Include util-dbconn.php because the database connection
needs to be established first, and then prepare a SELECT SQL statement. Execute the
query and prepare a locations array from the results.

After the PHP code and inside the init() function, initialize a new map. Set its zoom
level, default coordinates, and map type. Next read the array in a loop and mark all the
coordinates on the map.

The <body> tag has the code to display a title on top of the page and map created earlier.

Listing 9-4. Code Structure for Map in index.php

<html lang="en">

<head>
<title>Livestock Tracking System</title>

<script type="text/javascript" src="http://maps.googleapis.com/maps/api/
js?sensor=false"></script>

203

http://maps.googleapis.com/maps/api/js?sensor=false
http://maps.googleapis.com/maps/api/js?sensor=false

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

<script>
function init()

{
<?php
include('util-dbconn.php');

$sql = "SELECT * FROM “GPS_TRACKER DATA™";
$result = $mysqli->query($sql);
$resultCount = $result->num_rows;

$zoomLatitude = "";

$zoomLongitude = "";
echo "var locations = [";

if ($resultCount > 0)
{

$currentRow = 0;

while($row = $result->fetch assoc())

{

$currentRow = $currentRow + 1;
$clientID=$row["CLIENT ID"];
$latitude=$row["LATITUDE"];
$longitude=$row["LONGITUDE"];

if($currentRow == 1)

{
$zoomLatitude = $latitude;

$zoomLongitude = $longitude;

}
echo "["".$clientID."",".$latitude.",".$longitude."]";

if($currentRow < $resultCount)

{
}

echo ",";

}

echO ||];u;

echo "var latitude = '$zoomLatitude';";

echo "var longitude = '$zoomLongitude';";

204

CHAPTER 9 10T PATTERNS: LOCATION AWARE
$mysqli->close();
>

map = new google.maps.Map(document.getElementById('map'),
{

zoom: 10,

center: new google.maps.LlatLng(latitude,
longitude),

mapTypeld: google.maps.MapTypeld.ROADMAP

1)

var infowindow = new google.maps.InfoWindow();
var marker, i;

for (i = 0; i < locations.length; i++)

{
marker = new google.maps.Marker ({
position: new
google.maps.LatLng(locations[i][1],
locations[i][2]),map: map});
google.maps.event.addListener(marker, 'click',
(function(marker, i)
{
return function()

{
infowindow.setContent(locations[i][0]);
infowindow.open(map, marker);

})(marker, i));
}
}
</script>
</head>

<body style="background-color: #9bcc59">

<div style="align: center;">Livestock
Tracking System</div>

<div id="map" style="width: 100%; height: 50%; margin-top: 50px;"></div>

<script type="text/javascript">
init();

</script>

</body>

</html>

205

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

Code (Arduino)

The final component of this project is the Arduino code for connecting to the Internet
using WiFi, getting the current GPS coordinates, and publishing them to a server.

Start your Arduino IDE and either type the code provided here or download it from
the site and open it. All the code goes into a single source file (*.1no), but in order to
make it easy to understand and reuse, it has been divided into five sections.

e Externallibraries

e Internet connectivity (WiFi)
e Read GPS coordinates

e HTTP (publish)

e Standard functions

External Libraries

The first section of code, as provided in Listing 9-5, includes all the external libraries
required to run the code. This sketch has multiple dependencies—for Internet
connectivity, you need to include the <WiFi.h>, for communication with the GPS module,
you need to include <SoftwareSerial.h>, and for reading the GPS coordinates, you need
to include <TinyGPS.h>. You can download <TinyGPS.h> from https://github.com/
mikalhart/TinyGPS/releases/tag/vi3.

Listing 9-5. Code for Including External Dependencies

#include <SPI.h>

#include <WiFi.h>

#include <TinyGPS.h>
#tinclude <SoftwareSerial.h>

Internet Connectivity (Wireless)

The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8,
and 2-9 (Chapter 2) here.

Get GPS Coordinates

The third section of the code, as provided in Listing 9-6, defines the variables, constants,
and functions that are going to be used for reading the GPS coordinates.

Once the GPS module is connected to Arduino and it is powered on, it will look for
a satellite and start sending data on serial ports D2 and D3 to Arduino. This data won’t
make much sense, so in order to find the latitude and longitude information, you will use

206

https://github.com/mikalhart/TinyGPS/releases/tag/v13
https://github.com/mikalhart/TinyGPS/releases/tag/v13
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 9 IOT PATTERNS: LOCATION AWARE

TinyGPS library. This library parses data coming from the GPS module and provides an
easy way to retrieve the required information. So initialize a variable of the TinyGPS library.
The getGPSCoordinates() function reads the GPS data from serial ports D2 and

D3. The GPS module might take a few seconds to find a satellite, so the latitude and
longitude values returned might not be valid. If 1atitude and longitude are equal to
TinyGPS::GPS_INVALID_F_ANGLE, that means the coordinates are invalid, so until the
code receives valid coordinates, it keeps printing Searching for Satellite on the serial
monitor. Once the valid coordinates are received, the transmitSensorData(latitude,
longitude) function is called.

Listing 9-6. Code for Reading GPS Coordinates

TinyGPS gps;
SoftwareSerial ss(2, 3); // GPS TX = Arduino D2, GPS RX = Arduino D3

static void smartdelay(unsigned long ms)

{

unsigned long start = millis();
do

{
while (ss.available())

gps.encode(ss.read());
} while (millis() - start < ms);

}

void getGPSCoordinates()
{

float latitude;
float longitude;
unsigned long age = 0;

gps.f get position(8latitude, &longitude, 8age);
smartdelay(10000);

// Transmit sensor data
if(latitude != TinyGPS::GPS_INVALID F_ANGLE &&

longitude != TinyGPS::GPS_INVALID F_ANGLE)
{

transmitSensorData(latitude, longitude);

}

else

{
Serial.printIn("[INFO] Searching for Satellite");

}
}

207

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

Data Publish

The fourth section of code, as provided in Listing 9-7, defines the variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET that you developed in
Chapter 3.

The main modification in this code is its ability to open and close a connection to
the server repeatedly. Apart from that, make sure to change the server and port values to
your PHP server’s values, requestData variables and the URL values.

Listing 9-7. HTTP Publish

//IP address of the server
char server[] = {"bookapps.codifythings.com"};
int port = 80;

unsigned long lastConnectionTime = 0;
const unsigned long postingInterval = 10L * 1000L;

void transmitSensorData(float latitude, float longitude)

{
// Read all incoming data (if any)

while (client.available())
{

char ¢ = client.read();

}

if (millis() - lastConnectionTime > postingInterval)
client.stop();
Serial.println("[INFO] Connecting to Server");

String requestData = "clientID=Sheepi&latitude=" + String(latitude)
+ "&longitude=" + String(longitude);
Serial.printIn("[INFO] Query String: " + requestData);

// Prepare data or parameters that need to be posted to server
if (client.connect(server, port))

{
Serial.println("[INFO] Server Connected - HTTP GET Started");

// Make a HTTP request:
client.println("GET /gpstracker/update.php?” + requestData +
" HTTP/1.1");

client.println("Host: " + String(server));

208

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 9 IOT PATTERNS: LOCATION AWARE

client.println("Connection: close");
client.println();

lastConnectionTime = millis();

Serial.println("[INFO] HTTP GET Completed");
}

else

{
// Connection to server:port failed
Serial.println("[ERROR] Connection Failed");

}
}

Serial.println("-------mmmm s ");

Standard Functions

The final code section is provided in Listing 9-8. It implements Arduino’s standard
setup() and loop() functions.

The setup() function initializes the serial port. Note that the baud rate is 115200,
which is different from what you have been using so far. The reason for difference will be
clear when you look at the next line of code: ss.begin(9600). This statement initializes
communication with the GPS module on serial ports D2 and D3 (ss is the instance of
SoftwareSerial library that you initialized in Listing 9-6). The GPS module used in this
project communicates at 9600 baud rate by default, therefore 115200 was used for serial
monitor logs. The GPS module that you are using might have a different default baud rate,
so make sure to check the manufacturer’s datasheet to find the correct one. Next, connect
to the Internet using WiFi.

The loop() function just needs to call the getGPSCoordinates() function. It reads
the GPS coordinates and, at regular intervals, calls the transmitSensorData() function to
publish the GPS coordinates to the server.

Listing 9-8. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(115200);

// Initialize serial port for GPS data
ss.begin(9600);

//Connect Arduino to internet
connectToInternet();

209

CHAPTER 9 " 10T PATTERNS: LOCATION AWARE

void loop()
{

// Get GPS Coordinates
getGPSCoordinates();

}

Your Arduino code is now complete.

The Final Product

To test the application, make sure your MySQL and PHP servers are up and running with
the code deployed.

Also verify and upload the Arduino code as discussed in Chapter 1. Once the code
has been uploaded, open the Serial Monitor window. You will start seeing log messages
similar to ones shown in Figure 9-9.

[N] /devicu.usbmodem1411 (Arduine Uno)
Send

}[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 90:(7:92:46:92:50
[INFO] Signal Strength (RSSI): -51
[INFO] Encryption Type: 4
[INFO] IP Address: 10.0.0.13
[INFO] MAC Address: 78:(4:E£:2:94:BD
[INFO] Connecting to Server
[INFO] Query String: clientID=Sheeplilaotitude=41.83&longitude=-87.68
[INFO] Server Connected - HTTP GET Started
[INFO] HTTP GET Completed
[INFO] Connecting to Server
[INFO] Query String: clientID=Sheeplilatitude=41.835longitude=-87.68
[INFO] Server Connected - HTTP GET Started
[INFO] HTTP GET Completed

Autoscroll No line ending = 115200 baud =

Figure 9-9. Log messages from the livestock tracking system

210

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 9 IOT PATTERNS: LOCATION AWARE

Once the GPS has initialized, which might take a few seconds, it will publish the
current coordinates to the server. Check your web app by accessing the project URL; in
this case it was http://bookapps.codifythings.com/gpstracker. Your web app should
look similar to Figure 9-10.

L cH Bockanps. Codiythings.com/grstracke:

=]

Chicago

‘Wheaton = wr

i 5 Lhchgan Cory

Figure 9-10. The final version of the livestock tracking system

Summary

In this chapter you learned about location-aware things. They have many great uses, and,
when combined with other sensors, they can improve so many aspects of our lives, such
as emergency response, maintenance and optimized routing, and more.

You developed an IoT application that published livestock tracking data to a server
where this information was displayed on a map. You can improve quite a few other
applications that you developed in previous chapters by making them location-aware,
including:

e Theintrusion detection system from Chapter 5. When an
intrusion is detected, you can send alerts to the security company
with the exact coordinates so that they can send someone to
investigate.

e The smart parking system from Chapter 7. You can provide exact
coordinates of a parking spot so that drivers looking for parking
spots can enter the coordinates in their GPS for directions.

Not all scenarios will need a purpose-built GPS module. Smartphones are location-
aware as well and can be used for building IoT applications. For scenarios such as
livestock tracking, you need to attach purpose-built GPS modules, but for other scenarios,
such as a car mileage tracker, you have the option to use smartphones as well.

211

http://dx.doi.org/10.1007/978-1-4842-1940-9_5
http://dx.doi.org/10.1007/978-1-4842-1940-9_7
http://bookapps.codifythings.com/gpstracker

CHAPTER 10

loT Patterns: Machine
to Human

Due to regulatory requirements or lack of technology, there will be scenarios where
human intervention is required to respond to sensor-generated alerts.

In this chapter, you are going to build a simple waste management system to
elaborate this use case. Figure 10-1 shows a high-level diagram of all components
involved in this system. The first component is an Arduino device that monitors garbage
levels with a proximity sensor and publishes a message to an MQTT broker. The second
component is a Node-RED flow that subscribes to an MQTT broker. The final component
is a workflow that is initiated whenever the garbage levels are high and a pickup needs to
be scheduled.

Human Process

&+ ©

Device MQTT Broker + Node-RED

Figure 10-1. Components of the waste management system

© Adeel Javed 2016 213
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_10

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

Learning Objectives

At the end of this chapter, you will be able to:
e Read data from a proximity sensor
e Publish message to an MQTT broker
e Build a workflow in Effektif (renamed to Signavio Workflow)

e Create a Node-RED flow and initiate it from Arduino

Hardware Required

Figure 10-2 provides a list of all hardware components required for building the waste
management system.

TX - ¢
rxmm Arduino

Ultrasonic Rangemeter (HC-5R04)

Arduino
Jumper Cables

T s e s EEEEE TEEEE SEEEE e
L I I I

I]
R I I
L T
I I S
R

sewe sewe " ser see e

Breadboard WiFi Shield

fritzing

Figure 10-2. Hardware required for the waste management system

214

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Software Required

In order to develop this waste management system, you need the following software:
e Arduino IDE 1.6.4 or later
e Effektif (hosted)
e Node-RED 0.13.2 or later

In this section, you are going to build the circuit required for the waste management
system. This circuit uses an ultrasonic proximity sensor to detect objects, as illustrated
in Chapter 7. The sensor is attached to the top of a garbage can and sends an ultrasonic

burst that reflects off of the garbage in the can. The circuit reads the echo, which is used to
calculate the level of garbage.

1. Make sure Arduino is not connected to a power source, such
as to a computer via a USB or a battery.

2. Attach a WiFi shield to the top of the Arduino. All the pins
should align.

3. Usejumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the proximity
Sensor.

5. To trigger an ultrasonic burst, connect a jumper cable from
the TRIG pin of the sensor to Digital Port 2 of Arduino. Your
code will set the value of this port to LOW, HIGH, and then
LOW in order to trigger the burst.

6. Toread the echo, connect a jumper cable from the ECHO pin
of the sensor to Digital Port 3 of Arduino. Your code will read
the values from this port to calculate the level of garbage in
the can.

Your circuit is now complete and should look similar to Figures 10-3 and 10-4.

215

http://dx.doi.org/10.1007/978-1-4842-1940-9_7

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

R) LR
. LR) ..
LR) LR ..
.. R) .
- - s “ s ..
.. e "s s e ..
LR) LRI
.. e LR ..
.. LR LR) ..
.. LR LR ..
.. LR) LR ..
.. R R ..
LR LR
.. s LR ..
.
R LR
.. e LR ..
.. LR LR) ..
.. e s .
.. R L) ..
.. e R ..
LI) “ e
.. R LR e
.. LR) " ..
.. e LR ..
.. LR) ..
.. e LR ..
R LR
R LR

fritzing

Figure 10-3. Circuit diagram of the waste management system

Figure 10-4. Actual circuit of the waste management system

216

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Code (Arduino)

Next you are going to write the code for the first component of this application. This code
will connect Arduino to the Internet using WiFi, read the proximity sensor data to get
garbage levels, and publish that information to an MQTT broker.

Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*. ino), but in order to make it easy
to understand and reuse, it has been divided into five sections.

e External libraries

e Internet connectivity (WiFi)
e Read sensor data

e MQTT (publish)

e Standard functions

External Libraries

The first section of code, as provided in Listing 10-1, includes all the external libraries
required to run the code. This sketch has two main dependencies—for Internet
connectivity, you need to include <WiFi.h> (assuming you are using a WiFi shield) and
for MQTT broker communication, you need to include <PubSubClient.h>.

Listing 10-1. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>
#include <PubSubClient.h>

Internet Connectivity (Wireless)

The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (Chapter 2) here.

Read Sensor Data

The third section of code, as provided in Listing 10-2, defines the variables, constants, and
functions that are going to be used for reading the sensor data.

The calibrateSensor() function waits for the proximity sensor to calibrate properly.
Once the calibration is complete, the proximity sensor is active and can start detecting.
If you do not give it enough time to calibrate, the proximity sensor might return incorrect
readings.

217

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

The readSensorData() function generates a burst to detect garbage level in the can.
It triggers a burst on Digital Pin 2 by sending alternate signals—LOW, HIGH, and LOW
again. Then it reads the echo from Digital Pin 3, which provides the distance between the
sensor and the garbage. Finally, it checks if the distance is less than a threshold, and if it
is, that means the garbage can is close to being full and a pickup needs to be scheduled.
Since this is just a prototype, the echo value of 700 has been used. When you use this
sensor in real life, you need to adjust the value by doing a few tests. If the garbage level is
above the threshold, then call publishSensorData(. . .) with HIGH.

Listing 10-2. Code for Detecting the Garbage Level

int calibrationTime = 30;
#define TRIGPIN 2 // Pin to send trigger pulse
#define ECHOPIN 3 // Pin to receive echo pulse

void calibrateSensor()

{

//Give sensor some time to calibrate
Serial.println("[INFO] Calibrating Sensor ");

for(int i = 0; 1 < calibrationTime; i++)
{

Serial.print(".");

delay(1000);

}

Serial.println("");
Serial.println("[INFO] Calibration Complete");
Serial.println("[INFO] Sensor Active");

delay(50);

}

void readSensorData()

{

// Generating a burst to check for objects
digitalWrite(TRIGPIN, LOW);
delayMicroseconds(10);
digitalWrite(TRIGPIN, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGPIN, LOW);

// Distance Calculation
float distance = pulseIn(ECHOPIN, HIGH);

Serial.println("[INFO] Garbage Level: " + String(distance));

218

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

if(distance < 700)

{
Serial.printIn("[INFO] Garbage Level High");

// Publish sensor data to server
publishSensorData("HIGH");
}
}

Data Publish

The fourth section of code, provided in Listing 10-3, defines the variables, constants, and
functions that are going to be used for publishing data to an MQTT broker.

This code is a slightly modified version of MQTT publish that you developed in Chapter 3.
You do not need to make any changes for the code to work, but it is recommended that you
customize some of the messages so that they do not get mixed up with someone else using
the same values. All values that can be changed have been highlighted in bold in Listing 10-3.
If you are using your own MQTT server, make sure to change the server and port values.
The two recommended changes include the value of the topic variable and the name of
client that you need to pass while connecting to the MQTT broker.

Listing 10-3. Code for Publishing Messages to an MQTT Broker

// IP address of the MQTT broker

char server[] = {"iot.eclipse.org"};

int port = 1883;

char topic[] = {"codifythings/garbagelevel"};

void callback(char* topic, byte* payload, unsigned int length)
{

//Handle message arrived

}
PubSubClient pubSubClient(server, port, 0, client);

void publishSensorData(String garbagelLevel)

{
// Connect MQTT Broker

Serial.println("[INFO] Connecting to MQTT Broker");

if (pubSubClient.connect("arduinoIoTClient"))

{
Serial.printIn("[INFO] Connection to MQTT Broker Successful");

}

else

{

Serial.println("[INFO] Connection to MQTT Broker Failed");
}

219

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

// Publish to MQTT Topic
if (pubSubClient.connected())

Serial.println("[INFO] Publishing to MQTT Broker");
pubSubClient.publish(topic, "Garbage level is HICH, schedule pickup");
Serial.println("[INFO] Publish to MQTT Broker Complete");

else

{
Serial.println("[ERROR] Publish to MQTT Broker Failed");

}

pubSubClient.disconnect();

Standard Functions

The final code section is shown in Listing 10-4. It implements Arduino’s standard setup()
and loop() functions.

The setup() function initializes the serial port, sets the pin modes for the trigger and
echo pins, connects to the Internet, and calibrates the proximity sensor.

The loop() function simply needs to call readSensorData() at regular intervals.

Listing 10-4. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Set pin mode
pinMode (ECHOPIN, INPUT);
pinMode(TRIGPIN, OUTPUT);

// Connect Arduino to internet
connectToInternet();

// Calibrate sensor
calibrateSensor();

220

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

void loop()
{

// Read sensor data
readSensorData();

// Delay
delay(5000);

Your Arduino code is now complete.

Effektif Workflow

Effektif is a cloud-based platform that lets you automate routine workflows and processes
into applications within minutes. For the purposes of this project, you can sign up for
their free 30-day trial membership. You are going to define a very simple single step
workflow that allows a person to enter a garbage pickup schedule.

Effektif is just one example of a workflow and process management solution; you can use
one of the many other solutions available as well.

Process Creation

Log in using your credentials at https://app.effektif.com/. Once you are logged in,
choose Processes from the menu shown in Figure 10-5.

w¥ EFFENTIF Tasks Cases Processes Examples J BT
Figure 10-5. Effektif menu

This will take you to list of all existing processes and give you the option to create a
new one. Figure 10-6 shows the screen where you will see all existing processes.

¥ eFFexTIF Tasks Cases Processes Examples Adeel Javed
+ Create new process
@ Import BPMN

Figure 10-6. List of existing processes

221

https://app.effektif.com/

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

From the Processes tab shown in Figure 10-6, click on the Create New Process
button. As shown in Figure 10-7, enter Schedule Garbage Pickup asthe process name.
Press Enter to create process and move to next screen.

5% eFFexTIF Tasks Cases Processes Examples m Adeel Javed ~

Figure 10-7. New process name

Process Configurations

Next you need to configure the newly created process. Figure 10-8 shows the process
configuration screen, which is where you can define all aspects of your process, including:

e Trigger: Select how the process can be started

e Actions: Specify what human and system actions will happen in
the process and their orders

e Details: Choose who will be involved in the process

e Versions: View a list of all versions of processes published till date

Schedule Garbage Pickup

Q@ Publish to run this process

Trigger Actions Details Versions

After this process has been published, cases con be created manuolly.

Ifyou chaose to use one of the triggers listed below, new cases will be started automatically on certain events. Learn mare

= When a form is submitted =2 When an email arrives A Signavio
Figure 10-8. Process configuration screen

First you are going to select a trigger for your process. For this project, you are going
to select e-mail as a trigger. As shown in Figure 10-9 under the Triggers tab, click on When
an Email Arrives as the trigger option. Once you select an e-mail trigger, Effektif provides
an auto-generated e-mail address. Any person or a system can send an e-mail to this
auto-generated address and a new instance of process will be started in Effektif.

222

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Schedule Garbage Pickup

[+] Publish to run this process. — se

Trigger Actions Details Versions
When an email arrives Removethistrigger (3

Anyone can start this process by sending an email.

This process can be started by sending an email to:
process-56dcBed662f8a02¢3dc8c24c@mail effektif.com

This emuail address con olso be odded to your mailing list like support@example.com.

Figure 10-9. Process trigger options

Next you will create and configure the one-step scheduling process. As shown in
Figure 10-10, the Actions tab lets you choose type of tasks you want the process to do.

Schedule Garbage Pickup

[+] Publish to run this process
Trigger Actions. Details Versions
«d Send Email @ JavaSeript ¢ Salesforce
a User task
bax Box A Signavio & GoogleDrive
Start % Exclusive gateway : Parallel gateway O &

Figure 10-10. Process actions

From the Actions tab shown in Figure 10-10, click on User Task to create an action
that a person needs to perform.

As shown in Figure 10-11, enter the title of this task as Schedule Garbage Pickup.
You will also need to specify Assignment information, such as whether a single user
or a group of users can perform this task. These candidates can be defined in the My
Organization screen under Profile. For simplicity, select the name that you used when
creating your Effektif account.

223

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

&
Schedule
Gasbage Fickup

[¢]

& Schedule Garbage Pickup o

General Form Reminders Access Rights

Select the assignee for this task or specify a group of candidates

Adeel Javed *

If you want to use a customized name for your tasks, you can use the task
name template. In there you can reference form fields from the process.

Figure 10-11. Action type and assignment

Next you are going to configure how the screen is going to look. This is a simple
point-and-click activity. Click on the Form tab.

There are two ways to add fields to a screen—you can either create new fields
using one of the provided controls or you can use an existing field (system generated or
previously defined). Figure 10-12 shows list of controls currently available in Effektif.

224

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

E Text

. Yes/No Checkbox
Choice

Number

n Link

ﬂ Email address
H Date/Time

‘& Money

n File

E User

Figure 10-12. List of available controls

Figure 10-13 shows a list of existing fields that can be reused. Since you selected
e-mail as trigger option, the trigger e-mail fields become available in the list.

225

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

Trigger email /1D

@

Trigger email / From

®

ail addresses

Trigger email / From name

Trigger email / To

Trigger email / CC

C

® ® ®

Trigger email / Reply to

Trigger email / Subject

Figure 10-13. List of existing fields

For this process, you will be using new and existing fields. Since the process is being
triggered by an e-mail, you need to display some information from the e-mail. Select
Trigger Email/Subject and Trigger Email/Body from Add a Field list. These will be added
to your form. Change their names to Title and Description, respectively.

You also need to add a new Date/Time field for someone to enter the garbage pickup
date/time. As shown in Figure 10-14, select Date/Time from Add a Field list, set its name
to Pickup Data/Time, and make it a mandatory field.

226

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Pickup Date/Time

(m 4

Pickup Date/Time |

Date/time
Description
Initial value

Read only
) Mandatory

Allow entering multiple values

Figure 10-14. Add a new field on the form

You can rearrange the order of all the fields on the form and change their properties
to make them more understandable. The final screen layout of your action should look
similar to Figure 10-15.

Title
Description Vo ¢ & | Ppescription)

Pickup Date/Time (m Description

Figure 10-15. Final form layout

Next click on the Reminders tab and, as shown in Figure 10-16, you have the option
to define different types of reminders for the task. For now you can leave them as-is for all
types of reminders.

e Due date: When is the task due?

e Reminder: When should a reminder be sent to the user that the
task is getting delayed?

e Continue reminding every: Until when should the system keep
sending reminders?

e Escalation: If the user still does not take action, to whom should
the task be reassigned or delegated?

227

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

Schedule
Garbage Pickup o
& Sehedule Garbage Pickup O -
General Form Reminders Access Rights

- Reninders

Ficmation Due date (7 days -

Reminder (7 days e

Figure 10-16. Task reminders

The Schedule Garbage Pickup action is fully configured, so now you need to define
the flow. From the Actions tab, select the Start action to add it in the flow right before the
Schedule Garbage Pickup action, as shown in Figure 10-17.

Schedule
Garbage Pickup

Figure 10-17. Start action added to flow

Connect the Start action to the Schedule Garbage Pickup action, as shown in
Figure 10-18.

Schedule
Garbage Pickup

Figure 10-18. Connect the Start and Schedule Garbage Pickup actions

Next, select the Schedule Garbage Pickup action and, from the available options,
click on End action, as shown in Figure 10-19.

228

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Figure 10-19. Connect Start and Schedule Pickup activities

A new End action will be added to the flow, right after Schedule Pickup action, as
shown in Figure 10-20. This will make sure that the process ends once a user enters the
pickup date/time on the form.

O

Figure 10-20. Connect Schedule Pickup and End activities

Schedule
Garbage Pickup

The final step is to make the process available. To do this, switch to the Versions tab,
as shown in Figure 10-21.

Schedule Garbage Pickup

@ Publishto run this process. s

Trigger Actions Details Versions

There are currently no published versions of this process
Figure 10-21. Publish process changes

Next, click on the Publish Changes button and a new version of the process will
immediately show up in Versions list, as shown in Figure 10-22.

229

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

Schedule Garbage Pickup
Q Publish changes e
" iniialversion Sartnewcase O

Figure 10-22. Process versions

This completes configuration of your process.

Node-RED Flow

The final component of your IoT application is a Node-RED flow that will subscribe to
an MQTT topic that Arduino is publishing messages to and then kick off the process in
Effektif.

Start the Node-RED server and designer, as explained in Chapter 4. As shown in
Figure 10-23, click on the + to create a new flow.

Figure 10-23. Create a new Node-RED flow

Double-click the flow tab name to open the properties dialog box. As shown in
Figure 10-24, rename the flow Waste Management Systemand click OK to save your
changes.

230

http://dx.doi.org/10.1007/978-1-4842-1940-9_4

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Rename flow b 3

¥ Name Waste Management System

Delete ‘ Ok ‘ Cancel

Figure 10-24. Rename flow sheet

Drag and drop the mqtt input node from palette in the flow tab; your flow should
look similar to Figure 10-25.

et

Figure 10-25. MQTT subscribe node

Double-click the mqtt node to open the properties dialog box, as shown in
Figure 10-26. You need to configure a new MQTT broker, select Add New mqtt-Broker...
from the Broker field and click on the Pencil icon.

Edit mqgtt in node

Q@ Broker | Add new magtt-broker... AW
= Topic ‘ Topic
¥ Name Name
Ok Cancel

Figure 10-26. MQTT node properties

231

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

The MQTT configuration dialog box will open, as shown in Figure 10-27. You need
to configure the same MQTT broker where Arduino is publishing messages, which in this
case is the publicly available broker from Eclipse Foundation. Enter iot.eclipse.orgin
the Broker field, 1883 in the Port field, and nodeRedClient in the Client ID field. Click Add
to add the newly configured MQTT broker.

Add new mqtt-broker config node

Q@ Broker iot.eclipse.org Port 1883
9 Client ID nodeRedClient
& Username

& Password

Add Cancel

Figure 10-27. MQTT broker configuration

Now that you have configured the MQTT broker, you will need to enter a topic
that your mqtt node should subscribe. Since Arduino is publishing to codifythings/
garbagelevel, you need to enter the same in the Topic field. Update the name to Receive
MQTT Messages, as shown in Figure 10-28, and click OK to save the changes.

232

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Edit mqtt in node

@ Broker nodeRedClient@iot.eclipse.org:1{ 3 ¢
= Topic codifythings/garbagelevel
¥ Name Receive MQTT Messages
Ok Cancel

Figure 10-28. MQTT broker topic

Drag and drop an email node from the social palette and place it in the flow tab after
the Receive MQTT Messages node. Your flow should look similar to Figure 10-29 at this
point.

[Receive MQTT MessagesE) l

Figure 10-29. Email node

An email node lets you send an e-mail message to the provided address. Double-
click the email node to open the properties dialog box shown in Figure 10-30.

233

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

Edit e-mail node

= To

Q@ Server

3 Port

& Userid

& Password

¥ Name

email@address.com
smtp.gmail.com

465

Name

Ok Cancel

Figure 10-30. E-mail node properties

Update the email node properties as shown in Figure 10-31. In the To field, enter the
e-mail address that was auto-generated by Effketif BPM. In the Server, Port, Userid, and
Password fields, provide information about the the SMTP server that Node-RED can use
to send this e-mail. By default, the email node has Gmail properties. Update the Name to
Send Email/Start New Process option. Click OK to save your changes.

234

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Edit e-mail node

= To

Q@ Server

X Port

& Userid

& Password

¥ Name

process-56412de0e4b066c8288ac68f@mail
smtp.gmail.com

465

codifythings@gmail.com

Send Email / Start New Process

‘ Ok ‘ Cancel

Figure 10-31. Updated email node properties

You have added all the required nodes, so you can now connect the Receive MQTT
Messages node to the Send Email/Start New Process node. This completes your Node-
RED flow and it should look similar to Figure 10-32. Click on the Deploy button to make

this flow available.

[Receive MQTTMessagasE)—(é Send Email / Start New Process j

Figure 10-32. Final Node-RED flow

235

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

The Final Product

To test the application, verify and upload the Arduino code as discussed in Chapter 1.
Place your proximity sensor on top of a trash can or an empty cardboard box, as shown in
Figures 10-33 and 10-34. Make sure there is no garbage in the can initially.

Figure 10-33. Circuit of the waste management system

236

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Figure 10-34. Close-up of the waste management system circuit

Once the code has been uploaded, open the Serial Monitor window. You will start
seeing log messages similar to ones shown in Figure 10-35.

237

CHAPTER 10 © 10T PATTERNS: MACHINE TO HUMAN

o] [@] /dev/cu.usbmodem1411 (Arduino Uno)
' _Send

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 9@:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -6@

[INFO] Encryption Type: 4

[(INFO] IP Address: 10.9.0.13

[INFO] MAC Address: 78:C4:E:2:94:BD

[INFO] Colibration Complete

[INFO] Sensor Active

[INFO] Garbage Level: 3580.00

[INFO] Garboge Level: 3608.00

[INFO] Garbage Level: 1654.00

[INFO] Garbage Level: 1021.00

[INFO] Gorboge Level: 758.0@

[INFO] Gorbage Level: 563.0@

[INFO] Garboge Level High

[INFO] Connecting to MQTT Broker
[INFO] Connection to MQTT Broker Successfull
[INFO] Publishing to MQTT Broker
[INFO] Publish to MQTT Broker Complete

E‘I Autoscroll Nl:l_line ending : 9600 baud _:
Figure 10-35. Log messages from the waste management system

Your Node-RED server should be up and running and the waste management system
flow should be deployed. The final component is the Effektif process, and you should
have already published that in previous steps.

Start adding stuff to your garbage can/box, and as soon as it reaches a certain level
(set at 700 in Arduino code), a message will be published to the MQTT broker. Your Node-
RED flow is listening to the MQTT broker for new messages and, as soon as it receives
anew one, an e-mail will be sent out that starts the Effektif process. Log in to Effektif
using your credentials and, as shown in Figure 10-36, you should see a new task for the
Schedule Garbage Pickup process available under the Tasks tab.

¥ eFFexTF Tasks Cases Processes Examples Adeel Javed

Inbox All tasks

= Schedule Garbage Pickup

- Schedule Garbage Pickup

Figure 10-36. New task available in Effektif

238

CHAPTER 10 0T PATTERNS: MACHINE TO HUMAN

Click on the task link to see the details. As you can see in Figure 10-37, Title contains
the MQTT topic name and Description contains the message that was sent by Arduino.
Enter a pickup date/time and click Done. This will complete the process and the task will
be removed from your Tasks list.

@} schedule Garbage Pickup

Schedule Garbage Pickup #2

—
M - @0 -
(= Show all tasks in this case {E’j
Schedule Garbage Pickup you can use Maredown o tht.
Al Upload a document x|
L2 Adeel Joved ¥ Due Tomormow ®
3.0[m Show only thistask comments documents forms al

Title codifythings\garbagelevel
Description Garbage level is HIGH, schedule pickup

Pickup Date/Time (m]

Subject codifythings\garbagelevel

Garbage level is HIGH, schedule pickup

Figure 10-37. Task details in Effektif

This completes the end-to-end testing of this project.

Summary

In this chapter, you learned about the IoT pattern that will be used when a human
response is required to device generated alerts.

The project you developed was one example where Arduino sends alerts and a
process is started in response to them.

Initiating a process is just one way to respond. Processes provide you with a more
streamlined and structured response, but depending on the requirement, you can always
use e-mail, SMS, etc.

Due to regulatory requirements or lack of response technology, human intervention
will continue to be a requirement for some IoT applications. As IoT progresses, the
amount of human intervention will be reduced as well.

239

CHAPTER 11

loT Patterns: Machine to
Machine

As IoT technology evolves and machines become smarter and more capable, the need for
human intervention will reduce. Machines will be able to autonomously respond to alerts
generated by other machines.

In this chapter, you are going to build an energy conservation system that will
show how two machines can communicate. Figure 11-1 shows a high-level diagram of
all components involved in this system. The first component is an Arduino device that
monitors light brightness levels and sends an alert whenever the levels are low. The
second component is an MQTT broker that helps avoid point-to-point communication.
Multiple devices can communicate with each other without knowing each other’s
identities.

fi il
i 1
i 1
I i
! U
RO Y | i ﬁ n_
- ﬁ 1 | W U v
1 1
1 1
I I
. | 1 g
Device] MQTT Broker i Device
Figure 11-1. Components of an energy conservation system
© Adeel Javed 2016 241

A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_11

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

The final component is another Arduino device that controls lights. If the light sensor
publishes a message to the MQTT broker that light brightness level is LOW, the device
will automatically turn the lights on. In real life, this system could be utilized to turn
street lights on or off only when they are required instead of doing it at scheduled times,
regardless of how bright it is.

Learning Objectives

At the end of this chapter, you will be able to:
e Read data from a light sensor
e Publish messages to an MQTT broker
e Control LEDs
e Subscribe Arduino to an MQTT broker

Light Sensor Device

The first component of your IoT application is an Arduino device that will monitor the
light brightness levels and publish a message when they are low.

Note You already built this circuit in Chapter 4, so for the hardware and software
requirements and circuit instructions, refer back to Chapter 4. Changes are in Arduino
code only, which in this case publishes a message to an MQTT broker instead of starting
a Node-RED flow.

Code (Arduino)

Next you are going to write code for connecting Arduino to the Internet using WiFi,
reading light sensor data, and publishing it to an MQTT broker.

Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.1no), but in order to make it easy
to understand and reuse, it has been divided into five sections:

e External libraries

e Internet connectivity (WiFi)
e Read sensor data

e MQTT (publish)

e Standard functions

242

http://dx.doi.org/10.1007/978-1-4842-1940-9_4
http://dx.doi.org/10.1007/978-1-4842-1940-9_4

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

External Libraries

The first section of the code, as provided in Listing 11-1, includes all the external
libraries required to run the code. This sketch has two main dependencies—for Internet
connectivity you need to include <WiFi.h> (assuming you are using a WiFi shield), and
for MQTT broker communication, you need to include <PubSubClient.h>.

Listing 11-1. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>
#include <PubSubClient.h>

Internet Connectivity (Wireless)

The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (in Chapter 2) here.

Read Sensor Data

The third section of code, as provided in Listing 11-2, defines the variables, constants, and
functions that are going to be used for reading the sensor data.

The readSensorData() function reads the data from Analog Pin A0; the result is
between 0 and 1023. The greater the value returned, the brighter the light source. The
light sensor value is assigned to the 1ightValue variable. Based on the lightValue
variable, the corresponding LOW or HIGH value is passed as a parameter to the
publishSensorData() function.

Listing 11-2. Code for Reading the Light Sensor Data
int lightvalue;
void readSensorData()

{
//Read Light Sensor Value

lightValue = analogRead(A0);

Serial.print("[INFO] Light Sensor Reading: ");
Serial.println(lightValue);

if(1lightvalue < 500)

publishSensorData("LOW");
}

243

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

else

{
publishSensorData("HICH");

Serial.printIn("---------mmm s m e "Y;
}

Data Publish

The fourth section of the code defines the variables, constants, and functions that are
going to be used for publishing data to an MQTT broker (for details, see Chapter 3).

This code is similar to what you saw in Chapter 3. There are a few changes that you
need to make. All the changes are highlighted in bold in Listing 11-3. Make sure to change
the server, port, and topic variables and the name of client that you need to pass while
connecting to the MQTT broker. The other main change includes an IF/ELSE condition
that publishes different messages based on the lightLevel parameter passed by the
readSensorData() function.

Listing 11-3. Code for Publishing an MQTT Message

// IP address of the MQTT broker

char server[] = {"iot.eclipse.org"};

int port = 1883;

char topic[] = {"codifythings/lightlevel”};

void callback(char* topic, byte* payload, unsigned int length)
{

//Handle message arrived

}

PubSubClient pubSubClient(server, port, 0, client);

void publishSensorData(String lightLevel)
{

// Connect MQTT Broker
Serial.println("[INFO] Connecting to MQTT Broker");

if (pubSubClient.connect("arduinoIoTClient"))

Serial.printIln("[INFO] Connection to MQTT Broker Successful");

}

else

{
Serial.printIln("[INFO] Connection to MQTT Broker Failed");

}

244

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

// Publish to MQTT Topic
if (pubSubClient.connected())

Serial.println("[INFO] Publishing to MQTT Broker");
if(lightLevel == "LOW")

Serial.println("[INFO] Light Level is LOW");
pubSubClient.publish(topic, "LOW");
}

else

{
Serial.println("[INFO] Light Level is HIGH");

pubSubClient.publish(topic, "HIGH");
}

Serial.printIn("[INFO] Publish to MQTT Broker Complete");

else

{
Serial.println("[ERROR] Publish to MQTT Broker Failed");

}

pubSubClient.disconnect();

Standard Functions

The final section is provided in Listing 11-4. It implements Arduino’s standard setup ()
and loop() functions.

The setup() function initializes the serial port and connects to the Internet.
The loop() function calls readSensorData() only, as it internally calls the
publishSensorData() function when light levels are low.

Listing 11-4. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

}

245

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

void loop()
{

// Read sensor data
readSensorData();

// Delay
delay(5000);

Your Arduino code for the light sensor device is now complete.

Lighting Control Device

The other component of your IoT application is an Arduino device that will the control
lights—it will turn them on or off depending on the messages received from the MQTT
broker. The circuit and code for this device is basically the same as the circuit and device
that you developed in Chapter 6.

Note You already built this circuit in Chapter 6, so for hardware and software requirements
and circuit instructions, refer to Chapter 6. Changes are in Arduino code only, which in this case
uses a different logic to publish a message to MQTT broker.

Code (Arduino)

Next you are going to write code for connecting Arduino to the Internet using WiFi,
subscribing to an MQTT broker, and controlling the attached LED.

Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.1no), but in order to make it easy
to understand and reuse, it has been divided into five sections:

e External libraries

e Internet connectivity (WiFi)
e MQTT (subscribe)

e Control LED

e Standard functions

External Libraries

The first section of code, as provided in Listing 11-5, includes all the external libraries
required to run the code. This sketch has two main dependencies—for Internet
connectivity you need to include <WiFi.h> (assuming you are using a WiFi shield) and for
the MQTT broker communication, you need to include <PubSubClient.h>.

246

http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_6

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

Listing 11-5. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>
#include <PubSubClient.h>

Internet Connectivity (Wireless)

The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (in Chapter 2) here.

Data Subscribe

The third section of code defines the variables, constants, and functions that are going to
be used for connecting to an MQTT broker and callback when a new message arrives (for
details, see Chapter 3).

This code is similar to what you saw in Chapter 3. There are only few changes that
you need to make for the code to work. All changes have been highlighted in bold in
Listing 11-6. Make sure to change the server, port, and topic variable values to your
MQTT server’s values.

Whenever a new message is received, the callback(...) function is called. It
extracts the payload and calls the turnLightsOnOff() function. One addition to this code
is the IF/ELSE condition, which checks for the value of the payloadContent and if it is
LOW, sends ON as the parameter to the turnLightsOnOff(...) function. Otherwise, OFF is
sent as the parameter.

Listing 11-6. Code for Subscribing to an MQTT Broker

// IP address of the MQTT broker

char server[] = {"iot.eclipse.org"};

int port = 1883;

char topic[] = {"codifythings/lightlevel"};

PubSubClient pubSubClient(server, port, callback, client);

void callback(char* topic, byte* payload, unsigned int length)

{
// Print payload

String payloadContent = String((char *)payload);
Serial.println("[INFO] Payload: " + payloadContent);

if(payloadContent.substring(0,3) == "LOW")

// Turn lights on/off
turnLightsOn0ff("ON");

}

247

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

else
{
// Turn lights on/off
turnLightsOnOff("OFF");
}
}

Control Lights

The fourth section of code, as provided in Listing 11-7, defines the variables, constants,
and functions that are going to be used for controlling the LED.
This code switches the state of the LED based on the value of the action parameter.

Listing 11-7. Code for Controlling the LED
int ledPin = 3;

void turnLightsOnOff(String action)
{
// Check if lights are currently on or off
if(action == "ON")
{
//Turn lights on
Serial.println("[INFO] Turning lights on");
digitalWrite(ledPin, HIGH);
}
else
{
// Turn lights off
Serial.printIn("[INFO] Turning lights off");
digitalWrite(ledPin, LOW);
}
}

Standard Functions

The final code section is provided in Listing 11-8. It implements Arduino’s standard
setup() and loop() functions.

The setup() function initializes the serial port, connects to the internet, and
subscribes to the MQTT topic.

The MQTT broker has already been initialized and subscribed, so in 1oop()
function, you only need to wait for new messages from the MQTT broker.

248

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

Listing 11-8. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

// Set LED pin mode
pinMode(ledPin, OUTPUT);

//Connect MQTT Broker

Serial.println("[INFO] Connecting to MQTT Broker");

if (pubSubClient.connect("arduinoClient"))

{
Serial.println("[INFO] Connection to MQTT Broker Successful");
pubSubClient.subscribe(topic);

}

else

{
Serial.printIn("[INFO] Connection to MQTT Broker Failed");

}

}

void loop()

// Wait for messages from MQTT broker
pubSubClient.loop();

}

Your Arduino code for the lighting control device is now complete.

The Final Product

To test the application, make sure both your devices—the light sensor device and the
lighting control device—are powered on and the code has already been deployed (see
Chapter 1 for the deployment process).

Open the Serial Monitor window for both of your devices. Figure 11-2 shows the
Serial Monitor window with log messages generated from the light sensor device. As soon
as you move this device from bright light to a dark area, it will publish a message to the
MQTT broker.

249

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

[JON /dev/cu.usbmodem1411 (Arduino Uno)

| Send |

[INFO] Light Sensor Reading: 1023

[INFO] Connecting to MQTT Broker

[INFO] Connection to MQTT Broker Successfull
[INFO] Publishing to MQTT Broker

[INFO] Light Level is HIGH

[INFO] Publish to MQTT Broker Complete
[INFO] Light Sensor Reading: 28@

[INFO] Connecting to MQTT Broker

[INFO] Connection to MQTT Broker Successfull
[INFO] Publishing to MQTT Broker

[INFO] Light Level is LOW

[INFO] Publish to MQTT Broker Complete
[INFO] Light Sensor Reading: 311

[INFO] Connecting to MQTT Broker

[INFO] Connection to MQTT Broker Successfull
[INFO] Publishing to MQTT Broker

[INFO] Light Level is LOW

[INFO] Publish to MQTT Broker Complete

Autoscroll | Nolineending | | 9600 baud :

Figure 11-2. Log messages from the light sensor device

Figure 11-3 shows the Serial Monitor window with log messages generated from
the lighting control device. As soon as the light sensor device publishes a message, the
lighting control device will turn the LED ON. If you move the light sensor device back into
a brighter area, the lighting control device will turn the LED OFFE.

| NON /dev/cu.usbmodem1411 (Arduino Uno)

| Send |

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 9@:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -51

[INFO] Encryption Type: 4

[INFO] IP Address: 10.0.0.13

[INFO] MAC Address: 78:C4:E:2:94:BD

[INFO] Connecting to MQTT Broker

[INFO] Connection to MQTT Broker Successfull
[INFO] Payload: LOWel

[INFO] Turning lights on

[INFO] Payload: HIGHL

[INFO] Turning lights off

Autoscroll | Nolineending %/ | 9600 baud s

Figure 11-3. Log messages from the lighting control device

250

CHAPTER 11 I 10T PATTERNS: MACHINE TO MACHINE

Summary

In this chapter you learned how to make multiple devices communicate with each

other using an MQTT broker. Brokers such as MQTT remove the need for direct
communication. A device publishes a message that can be received by all devices or
systems that are interested in that message and respond accordingly. The machine-to-
machine pattern definitely provides maximum benefits in the IoT space. The next frontier
within this area is of course developing Al (artificial intelligence) devices that can learn
and adapt to an ever-changing environment.

251

CHAPTER 12

loT Platforms

IoT platforms provide developers with the ability to develop, deploy, and manage their
IoT applications from one central location in a secure manner. IoT platforms expedite
the development process by providing required tools in a cloud-based environment,
which means developers do not spend time on setups. A good IoT platform would ideally
include most of the tools that we have covered in the previous 11 chapters, such as MQTT
brokers, HTTP servers, REST API support, databases to store sensor data, Node-RED for
complex orchestrations, device location, secure communications, reporting, analytics,
and easy-to-use tools for building web and mobile apps.

This chapter covers a popular IoT platform called Xively. You are going to build a
soil moisture control system that sends out an e-mail alert whenever the moisture level
of the soil falls below a certain threshold. Figure 12-1 shows a high-level diagram of
all components involved in this system. The first component is an Arduino device that
monitors the soil moisture level and publishes a message to Xively. The second and third
components reside on the Xively platform. With some basic configuration, the platform
will be able to receive, store, and display data sent by the sensor.

¢

Device Xively Server Xively Platform

Figure 12-1. Components of the soil moisture control system

© Adeel Javed 2016 253
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_12

CHAPTER 12 I 10T PLATFORMS

Learning Objectives

At the end of this chapter, you will be able to:
e Read soil moisture sensor data
e Setup Xively to receive moisture sensor data
e Setup a trigger in Xively to send an e-mail using a Zapier task

e Write code to read the moisture sensor data and publish it to
Xively

Hardware Required

Figure 12-2 provides a list of all hardware components required for building the soil
moisture control system.

Jumper Cables

Soil Moisture Sensor

Breadboard Arduing WiFi Shield

fritzing

Figure 12-2. Hardware required for the soil moisture control system

Software Required

In order to develop this soil moisture control system, you need following software:
e Arduino IDE 1.6.4 or later
e Xively (hosted)
e Zapier (hosted)

254

Circuit

CHAPTER 12 I 10T PLATFORMS

In this section, you are going to build the circuit required for the soil moisture control
system. This circuit uses a soil moisture sensor to detect the amount of moisture in the soil.

1.

Make sure your Arduino is not connected to a power source,
such as to a computer via a USB or a battery.

Attach a WiFi shield to the top of the Arduino.

Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the moisture
Sensor.

To read the moisture sensor values, you need to connect a
jumper cable from the analog port of the moisture sensor
to the A0 (Analog) port of your Arduino. Your code will read
the moisture level from this port. The sensor returns a value
between 0 and 1023. Higher values correspond to lower soil
moisture levels.

Your circuit is now complete and should look similar to Figures 12-3 and 12-4.

>
-

fritzing

Figure 12-3. Circuit diagram of the soil moisture control system

255

CHAPTER 12 I 10T PLATFORMS

Figure 12-4. Actual circuit of the soil moisture control system

Xively Setup

As mentioned earlier, Xively is a popular IoT platform. To use Xively, you first need to set
up a free account at https://personal.xively.com/.

Once your account is setup, log in to Xively. Upon login, you will be redirected to
your account dashboard. Click on DEVELOP from the menu bar on top, as shown in
Figure 12-5.

.
x-lvely DEVELOP MANAGE SETTINGS DEVELOPER CENTER ™ LOGOUT O\ - 1 processramablings

Figure 12-5. Xively account dashboard

Add a new development device, as shown in Figure 12-6, by clicking on the + Add
Device link.

256

https://personal.xively.com/

CHAPTER 12 I 10T PLATFORMS

<> Development Devices

Prototype, experiment, research. more

4= Add Device

Figure 12-6. Add a new development device

On the device setup screen, enter a device name and device description, as provided
in Figure 12-7. Keep the privacy of your device set to Private Device. Click on Add Device
to complete this step.

257

CHAPTER 12 I 10T PLATFORMS

<> Add Device

The Xively Developer Workbench will help you to get your devices,
applications and services talking to each other through Xively. The first
step is to create a development device. Begin by providing some basic
information:

Arduino Moisture Sensor

Senses soil moisture levels and notifies via email if soil moisture level
goes below a certain threshold.

" Add Device Cancel

Figure 12-7. Device setup

Xively will automatically generate a unique API key and a Feed ID, and both of
these are required in the Arduino code. You can find the Feed ID on top-right side of the
dashboard (see Figure 12-8).

258

Arduino Moisture Sensor ~

Private Device

Product ID Ydied4uTIEQOIESaCH
Product Secret Obcdecd 74

Serlal Number EGEW344WITPG
Activation Code 650d01adb3b2lad) 2

Figure 12-8. Feed ID

CHAPTER 12 I 10T PLATFORMS

N725577605

Activated) Deactivate

81 THI0-2015 163633

Feed ID 1725577605
Feed URL hitt
API Endpoint

As mentioned earlier, Xively automatically generates an API key, but you have
the option to add your own key as well. In this project you are going to use the auto-
generated API key. You can locate the API key in the API Keys section of the dashboard

(see Figure 12-9).

API Keys

Auto-generated Arduino Mositure Sensor device

key for feed 40606841

b9TZ10zKedy8jx0zbi6O3LfYBrK3p3m8HSoUuift54JXGbCu

permissions READ,UPDATE,CREATE,DELETE

private accesss

Z Edit ") Regenerate

I+ Add Key

Figure 12-9. API keys (auto-generated and custom-generated)

Next you are going to create a channel. A channel will map directly to a sensor, that
is, data from a sensor will be received and stored by a channel. As shown in Figure 12-10,
click on the Add Channel button from the Channels section.

259

CHAPTER 12 I 10T PLATFORMS

Channels Lsst updated a few seconds ago N Graphs

= Add Channel

Figure 12-10. Add channel

Enter the values of your channel, as shown in Figure 12-11. Channel ID is the only
required field, and as you will see in later sections, it is also used in the Arduino code
for sending sensor data. If you have multiple channels, then Tags will help you search.
The Units and Symbol fields will be used while displaying data. Current Value is also
used while displaying data as your graph starts from this point. Click on Save Channel to
complete the channel’s setup.

Channels 1. updated 8 minutes ago N Graphs

Add Channelpp required

SoilMoistureSensor1

Tags Use a comma to separate tags. Units Symbol
moisture Voltage \")
Current Value
0

Figure 12-11. New channel setup

Once you save your channel settings, Xively is ready to receive the sensor data.
Figure 12-12 shows the section where each sensor’s data will be displayed.

260

CHAPTER 12 I 10T PLATFORMS

Channels Last updated 4 minutes ago N Graphs
SoilMoistureSensor1 Q
mositure Last updated a few seconds ago

No datapoints found for this channel

(® 6 hours averaged datapoints
Z Edit @ Delete
</« Add Channel
Figure 12-12. SoilMoistureSensorl channel

If the location of the device is important, you can set that from the Location section
as well, as shown in Figure 12-13. In this project, you are not going to be changing it from
code, so this will be just static that will show up on the dashboard.

Location
I" Add location

Figure 12-13. Add location

Click on Add Location and, as shown in Figure 12-14, enter the location name
and address where your sensor is physically located. Location data is always useful for
maintenance purposes. Click Save.

261

CHAPTER 12 I 10T PLATFORMS

Location

Q, Rockford IL

v Save

Figure 12-14. Set device location

Figure 12-15 shows how the location information will be displayed on the dashboard.

262

CHAPTER 12 I 10T PLATFORMS

L]

-
Location /
Map Satellit o ¢ 1
ap atellite 2 I|' e 4 @. 3
] \ e B\q -
~ = T Nhitman o, - c <
Sehool N School St WA, - (37) Ao 2 Bre
3 >
B3] = z
fanl
=) [E= /i
;:‘}' Rural
Presion St
" Rockford
E State St
pr R] Ist Ave >
Morgan St il Chatles Sy
: @ 2 e +
Main S\ X ©
Montague >t ~ 4 -
® " =
G le & A
oogie o :
= Map data ©2016 Google Terms of Use Report a map error

Location Name Corn Field 1

Latitude 4227131
Longitude -89.0939952
Elevation

Figure 12-15. Device location

For now, there are no more setups needed in Xively.

Zapier Setup

Xively supports triggering external tasks; for example, if the value of a channel crosses
a certain threshold, you can execute your own task. Xively uses HTTP POST to trigger an
external task. All the data will be submitted to the recipient using the HTTP POST method
(see Chapter 3 for more details about HTTP POST).

Xively data is available over HTTP and can be used for developing custom
dashboards and generating alerts. A few of the IoT applications that you developed in
Chapters 7, 8, and 9 had HTTP components. You will lose advantage of using an IoT
platform if you end up writing custom code. For generating triggers in Xively, you can
avoid all the coding by simply using a Zapier task. Zapier is a web-based tool that lets
you automate if/then tasks. You create a task (a.k.a., a Zap) that requires a trigger and a
corresponding action.

263

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_7
http://dx.doi.org/10.1007/978-1-4842-1940-9_8
http://dx.doi.org/10.1007/978-1-4842-1940-9_9

CHAPTER 12 I 10T PLATFORMS

Note You can also trigger a Zapier task from Arduino using the HTTP POST method
discussed in Chapter 3.

To set up a Zap, you first need to set up a free Zapier account. Once you have
completed account setup process, log in to Zapier at https://zapier.com/. Upon login,
you will be redirected to your account dashboard. As shown in Figure 12-16, under the
My Zaps tab, click on the Make a New Zap button to start the Zap creation process.

MY ZAPS

Make a New Zap
or Explore Zaps

Figure 12-16. My Zaps (list of all zaps)

As shown in Figure 12-17, Step 1 requires you to choose a Trigger app and an
Action app.

1 Choose a trigger and action
Need inspiration? X or ex

Choose a Trigger app... . b Choose an Action app..

WHEN THIS . DO THIS
HAPCENS ... _;\

Figure 12-17. Select Zap trigger and action

Select Webhooks by Zapier from the Trigger app dropdown and select Catch Hook
from the dropdown below it. This tells Zapier that whenever a certain URL is called, this
Zap will be triggered. You will see the generated URL later. Figure 12-18 shows the trigger
selection.

264

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
https://zapier.com/

CHAPTER 12 I 10T PLATFORMS

1 Choose a trigger and action

Need inspiration? X t or x
Webhooks by Zapier LIRS Choose an Action app.

Catch Hook

WHEN THIS v DO THIS
K HAPPENS ... _/7\

Figure 12-18. Zap trigger

You have to send out an e-mail when this task is called, so from Action app
dropdown, select Email by Zapier and select Send Outbound Email from the dropdown
below it, as shown in Figure 12-19.

1 Choose a trigger and action

Need inspiration? X t or
" | Webhooks by Zapier v b &2 | Email by Zapier
Catch Hook . Send Outbound Email
WHEN THIS v DO THIS _]\
HAPCENS ...

Figure 12-19. Zap action

In Step 2, Zapier will generate a custom webhook URL that Xively will call.
Figure 12-20 shows the custom webhook URL generated by Zapier. Click Continue to
proceed to the next step.

21 Selecta Webhooks by Zapier account

We've generated a custom webhook URL for you to send requests to. L¢

Use this:

https://zapier.com/hooks/catch/31261k/ Copy to clipboard

Figure 12-20. Custom webhook URL

265

CHAPTER 12 I 10T PLATFORMS

Since you selected Email by Zapier as your action, Step 3 does not require any input
from you, as shown in Figure 12-21. You are all set, so click on Continue. If you selected
some other e-mail mechanism, such as Gmail, then Zapier would have required you to
set up a Gmail account.

3 Selecta @ Email by Zapier account

You're all set. Carry on!

Figure 12-21. E-mail account setup

As shown in Figure 12-22, Step 4 allows you to filter requests coming through
webhook. You can simply skip this step, as you want all Xively requests to come. Click
on Continue.

4 | Filter Webhooks by Zapier triggers
Only trigger a "Catch Hook" from Webhooks by Zapier when...
Pick off a Child Key
By default, Zapier gives you the entire payload of the webhook. If this specified, Zapier will only
grab the child key from the object sent to Zapier. For example, given {"contact": {"name":

"Mike"}} ,specify contact toonlytriggeron {"name": "Mike"} .Traverse more deeply
nested children by using dot-separated syntax).

Add filters based on other Webhooks by Zapier fields to only allow some items.

+ Add a custom filter

Figure 12-22. Webhook filter

266

CHAPTER 12 I 10T PLATFORMS

In Step 5, you need to provide details about the e-mail alert, such as who it should
go to, what should be the subject, and what should be the body text. When Xively calls
the webhook URL, it will send some data in an HTTP POST request as well. You can use
that data in Zapier wherever you see the Insert Fields option. Figure 12-23 shows the
e-mail settings.

5 | Match up || Webhooks by Zapier Hook to (=] Email by Zapier Outbound Email

To
Can be a comma separated list of emails.

processramblings@gmail.com Insert fields
Subject

Alert - Soil Moisture Levels Low Insert fields

Body (HTML or Plain)

You can place HTML in here and we will send it as is. If this is plain text, we will try to convert it to
some very basic HTML for greater client compatibility
Hi, Insert fields

Soil moisture levels in Corn Field 1 are low, please take necessary
actions.
Soil Moisture Reading:

Thanks!

Figure 12-23. E-mail settings

For illustration purposes, this project uses the moisture sensor value and inserts
it into the e-mail body. As shown in Figure 12-24, when you click on the Insert Fields
button, it will show a list of all the variables that can be inserted. Initially, you might not
see any data, so you can come back to this step after the Xively trigger has been set up and
you have sent a couple of test requests. Zapier will automatically start showing a list of all
the request variables.

267

CHAPTER 12 I 10T PLATFORMS

Body (HTML or Plain) (requred)

You can place HTML in here and we will send it as is. If this is plain text, we will try to convert it to
some very basic HTML for greater client compatibility.

Hi, Insert = fields

Soil moisture levels in Corn Field 1 are low, please take necessary
actions.
Soil Moisture Reading:

Thanks!
Body Triggering Datastream Value Value 329.00

Body Triggering Datastream ID SollMoistureSensor]
Attachment s

Afile object to be attache Body Timestamp 2015-10-12T19:34:13.078988Z

attached. Please note, if 1
techniques (like Gmail or
Body Triggering Datastream At 2015-10-12719:34:12.9868487

Body Environment Title Arduino Moisture Sensor

Body Triggering Datastream Units Symbol V
Body Threshold Value 700

From Name

Body Type |t
This will be your "display

Mailgun, IMAP, Mandrill o Body Triggering Datastream Units Label Voltage
Body Environment Feed httpu/apixively.comiv2/feeds/1725577605

Body Environment Description
Figure 12-24. Request variables

Figure 12-25 shows the final e-mail message once the request variable has been
inserted.

Body (HTML or Plain) (requred)

You can place HTML in here and we will send it as is. If this is plain text, we will try to convert it to
some very basic HTML for greater client compatibility.

Hi, Insert ~ fields

Soil moisture levels in Corn Field 1 are low, please take necessary
actions.

Soil Moisture Reading: (Body Triggering Datastream Value Value

Thanks!

Figure 12-25. E-mail body with request variable

268

CHAPTER 12 I 10T PLATFORMS

You can skip Step 6, and in Step 7 enter a name for Zap. Click Turn Zap On as shown
in Figure 12-26.

7 © Name and turn this Zap on

This Zap is instant. It will trigger immediately when we receive a new Webhooks by
Zapier Hook.

Name this Zap:

Arduino Moisture Sensor Alert

Figure 12-26. Zap name and turn Zap on

This completes the setup in Zapier. Now you just need to set up a trigger in Xively
that will call the custom webhook URL generated by Zapier.

Xively Trigger

Log in to Xively and go to the Triggers section of device setup. Click on the Add Trigger
button. As shown in Figure 12-27, select a condition when trigger should be fired; in this
caseitis IF SoilMoistureSensor1 > 850 THEN CALL HTTP POST URL.In the HTTP
POST URL field, paste the custom webhook URL that was generated by Zapier. Click Save
Trigger to enable the trigger.

269

CHAPTER 12 I 10T PLATFORMS

Triggers

https://zapier.com/hooks/catch/31z261k/

v Save Trigger

Figure 12-27. Xively trigger setup

As shown in Figure 12-28, you can quickly test your trigger by clicking on Send Test
Trigger. It calls the custom webhook URL that you provided in the HTTP POST URL field.

270

CHAPTER 12 I 10T PLATFORMS

Triggers

SoilMoistureSenso <700 HTTP POST
r
HTTP POST URL https://zapier.com/hooks/catch/31z61k/
Z Edit (@) Send Test Trigger @ Delete
<\~ Add Trigger

Figure 12-28. Test trigger

Code (Arduino)

Next you are going to write the code for connecting Arduino to the Internet using WiFi,
reading soil moisture sensor data, and publishing it to a Xively channel.

Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.ino), but in order to make it easy
to understand and reuse, it has been divided into five sections.

e External libraries

e Internet connectivity (WiFi)
e Read sensor data

e Xively (publish)

e Standard functions

External Libraries

The first section of code, as provided in Listing 12-1, includes all the external libraries
required to run the code. This sketch has multiple dependencies—for Internet
connectivity you need to include the <WiFi.h> (assuming you are using a WiFi shield)
and for Xively connectivity, you need to include <HttpClient.h> and <Xively.h>.You
can download <Xively.h> from https://github.com/xively/xively arduino.

271

https://github.com/xively/xively_arduino

CHAPTER 12 I 10T PLATFORMS

Listing 12-1. Code for Including External Dependencies

#include <SPI.h>
#include <WiFi.h>
#include <HttpClient.h>;
#include <Xively.h>;

Internet Connectivity (Wireless)

The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (Chapter 2) here.

Read Sensor Data

The third section of the code is provided in Listing 12-2. It defines the variables,
constants, and functions that are going to be used for reading the sensor data.

The readSensorData() function reads data from Analog Pin A0 and the result is
between 0 and 1023. Higher values correspond to lower soil moisture levels.

Listing 12-2. Code for Reading Soil Moisture Sensor Value

int MOISTURE_SENSOR PIN = A0;
float moistureSensorValue = 0.0;

void readSensorData()
{
//Read Moisture Sensor Value
moistureSensorValue = analogRead(MOISTURE_SENSOR PIN);

//Display Readings
Serial.print("[INFO] Moisture Sensor Reading: ");
Serial.println(moistureSensorValue);

Data Publish

The fourth section of the code defines the variables, constants, and functions that are
going to be used for publishing sensor data to the Xively channel.

In order to communicate with Xively, you need to provide the Feed ID and API key
that were generated after you completed device setup in Xively. Both of these keys are
unique to you. You will also need to provide the exact channel name that you entered in
Xively. If the API key or Feed ID are incorrect, your device will not be able to connect with
your Xively account, and if the channel name is incorrect, the data will not show up in the
correct graph on the Xively dashboard. All these values have been highlighted in the code
(see Listing 12-3).

272

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 12 I 10T PLATFORMS

If you have multiple sensors and want to send data to Xively for all of them, you
can simply set up multiple channels in Xively. In Arduino code you need to specify the
channel name in a similar way that you defined moistureSensorChannel. All these
channel names need to be passed to the datastreams array.

The XivelyFeed variable feed passes data for all the channels with a number that
specifies how many datastreams are contained in the feed. In this case, there is only one
datastream, so the value will be 1.

Next you define a XivelyClient variable using the WiFiClient. It will be used to
actually create a connection and pass the feed.

All of these are one time setups and the repetitive code is inside the transmitData()
function. The transmitData() function sets the latest moistureSensorValue in
datastreams[0] and then sends the feed to Xively. If the status code returned from Xively
in the ret variable is 200, that means your feed was successfully sent to Xively.

Listing 12-3. Code for Publishing Data to Xively

// API Key - required for data upload
char xivelyKey[] = "YOUR_API_KEY";

#define xivelyFeed FEED_ID // Feed ID
char moistureSensorChannel[] = "SoilMoistureSensor1i"; //Channel Name

// Datastream/Channel IDs
XivelyDatastream datastreams[] =

{

XivelyDatastream(moistureSensorChannel,
strlen(moistureSensorChannel),
DATASTREAM_FLOAT),

};

// Create Feed

XivelyFeed feed(xivelyFeed, datastreams, 1); // Number of Channels
// in Datastream

XivelyClient xivelyclient(client);

void transmitData()

{

//Set Xively Datastream
datastreams[0].setFloat(moistureSensorValue);

//Transmit Data to Xively
Serial.println("[INFO] Transmitting Data to Xively");

int ret = xivelyclient.put(feed, xivelyKey);

Serial.print("[INFO] Xively Response (xivelyclient.put): ");

273

CHAPTER 12 I 10T PLATFORMS

Serial.println(ret);
Serial.printIn("--------mmmmmmmmm oo Rk
}

Standard Functions

The final code section is provided in Listing 12-4. It implements Arduino’s standard
setup() and loop() functions.

The setup() function initializes the serial port and connects to the Internet. The
loop() function first reads the soil moisture sensor by calling readSensorData() and
then transmits these values to Xively in a feed by calling transmitData(). For each
iteration, you can add a delay depending on your requirements.

Listing 12-4. Code for Standard Arduino Functions

void setup()

// Initialize serial port
Serial.begin(9600);

// Connect Arduino to internet
connectToInternet();

}

void loop()
readSensorData();
transmitData();
//Delay

delay(6000);

Your Arduino code is now complete.

The Final Product

To test the application, verify and upload the Arduino code as discussed in Chapter 1.
Either insert your soil moisture sensor in the dry soil or simply dip it in water as shown
in Figure 12-29.

Note Do not fully submerge the circuit or sensor in water or soil. Make sure the
wiring does not get wet. For exact instructions about your soil moisture sensor, read the
manufacturer’s product specifications and directions.

274

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 12 I 10T PLATFORMS

Figure 12-29. Final circuit with sensor submerged in water

Once the code has been uploaded, open the Serial Monitor window. You will start
seeing log messages similar to ones shown in Figure 12-30.

[O] /dev/cu.usbmodem1411 (Arduino Uno)

' | | Send |

[INFO] Traonsmitting Data to Xively

[INFO] Attempting Connection - WPA SSID: HOME-9252
[INFO] Connection Successful [INFO] SSID: HOME-9252
[INFO] BSSID: 90:(7:92:46:92:50

[INFO] Signal Strength (RSSI): -51

[INFO] Encryption Type: 4

[INFO] IP Address: 10.0.0.13

[INFO] MAC Address: 78:C4:E:2:94:BD

[INFO] Moisture Sensor Reading: 969
[INFO] Traonsmitting Data to Xively
[INFO] Xively Response (xivelyclient.put): 20@

Figure 12-30. Log messages from the soil moisture control

275

CHAPTER 12 I 10T PLATFORMS

As soon as you see the Xively response 200 in your serial logs, log in to the Xively
dashboard and take a look at the Request Log section, as shown in Figure 12-31. The
history of your sensor data feed will start showing up in this section.

Request Log Il Pause
200 PUT feed 19:31:41 UTC
200 PUT feed 19:31:32 UTC
200 PUT feed 19:31:23 UTC
200 PUT feed 19:31:14 UTC
200 PUT feed 19:30:44 UTC

Figure 12-31. Request log of the soil moisture sensor

Click on any of the requests and you will be able to see the exact request that was
sent from the sensor to Xively (see Figure 12-32).

Request Response

URL lapiiv2ifeeds/ 1725577605 json
Methed PUT

At

REQUEST HEADERS

Version HTTPA.O
Host apl xively.com

X-Request-Start 1444678301725250

User-Agent Xively-Arduino-LIbM.0
X-Apikey XPBIxSg3sZSIGBL2IeH3j03kWEBNFTTIMwnd2igYLwwizmmXZ
Origin

REQUEST BODY

{
"wversion®: "1.0.8",
"“datostreams™: [
{
"id": "SoilMoistureSensorl”,
“current_value®: "968.00"
}
]
}

Figure 12-32. Request details

276

CHAPTER 12 I 10T PLATFORMS

Next take a look at the graph in the Channels section, as shown in Figure 12-33. Your
sensor data will start populating a graph over a period of time.

Channels vLsst updated in a few seconds N Graphs

SoilMoistureSensor1 31 9.0(:\)‘r

moisture Last updated a few seconds ago
- 1K

500

139 40 41 42 43

< ® 5 minutes raw datapoints

Z Edit @ Delete

<}~ Add Channel

Figure 12-33. Sensor data view

Finally, ensure that your Xively trigger sends out an e-mail alert:

e Ifyou were testing the moisture sensor using water, then take the
sensor out. The reading should immediately go up, indicating that
the moisture levels have dropped. Your Xively trigger will fire and
Zapier will send out an e-mail alert.

e Similarly, if you are testing the moisture sensor using actual soil,
take your sensor out of the wet soil. This will result in an e-mail
alert as well.

Figure 12-34 shows an e-mail alert generated by Xively/Zapier.

277

CHAPTER 12 I 10T PLATFORMS

Alert - Soil Moisture Levels Low inbox x

no-reply. 98fxb@zapiermail.com 3:41 PM (4 minutes ago) -
to me -
Hi,

Soil moisture levels in Com Field 1 are low, please take necessary actions.
Soil Moisture Reading: 969.00

Thanks!

Visit this link to stop these emails: hitp./fzprioTdDU

Figure 12-34. Alert e-mail

Summary

In this chapter, you learned about IoT platforms and their advantages. You developed an
IoT application that published sensor data to Xively, which is one of the more popular IoT
platforms available on the market.

There are more than 100 small-, medium-, and large-scale IoT platforms currently
available. Table 12-1 lists a few of the major IoT platforms with links to access them. All of
these platforms either provide a free trial or cut-down versions for personal use.

Table 12-1. Major IoT Platforms

Platform Example

IBM Internet of Things Foundation/ http://www.ibm.com/internet-of-things/
IBM Bluemix

Intel IoT https://software.intel.com/en-us/iot/home
Microsoft Azure IoT https://www.azureiotsuite.com/

Amazon AWS IoT https://aws.amazon.com/iot/

Thingworx http://www.thingworx.com/

Xively https://xively.com/

There is a lot of material available that can help you determine which one is the best
for your needs. IoT platforms are expediting the entry of so many people into the world of
IoT. As IoT matures, these platforms are going to become more sophisticated and further
simplify IoT application development.

278

http://www.ibm.com/internet-of-things/
https://software.intel.com/en-us/iot/home
https://www.azureiotsuite.com/
https://aws.amazon.com/iot/
http://www.thingworx.com/
https://xively.com/

Index

A B

Arduino, 3
hardware requirements

battery power, 5

boards, 3

digital and analog pins, 5
Ethernet shield, 3
summarization, 4-5

USB connector, 5

objectives, 3
programming language

code execution, 11-12
code structure, 10
constants and variables, 9
external libraries, 9
functions, 9

log messages, 12
reference, 8-9

serial monitor window, 12
setup() function, 10
structure code, 9

software requirements

C

defult view, 5-6

serial monitor window, 7-8
status window, 7

toolbar, 6-7

Communication protocols
HTTP

data publication, 37-39
external libraries, 36
GET method, 40-41
interaction, 35
Internet connectivity
(Wireless), 36

© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9

POST method, 40, 42
source code, 36
standard functions, 39-40
MQTT
data publishes and
subscribes, 45-46
external libraries, 45
Internet connectivity, 45
intrusion detection system, 43
log messages, 47
remote controls, 44
source code, 45
standard functions, 46-47
objectives, 35
connectTolnternet() function, 18

D

doHttpPost() function, 39

E,.FG
Effektif workflow, 221
action type and
assignment, 223-224
configurations screen, 222
connection option, 229
controls, 224-225
date/time from, 226-227
existing fields, 226
form layout, 227
process creation
existing processes, 221
menu bar, 221
processes tab, 222
process management solution, 221
Schedule Garbage Pickup action, 228
task reminders, 228

279

INDEX

Effektif workflow (cont.)
versions completion, 230
versions tab, 229
Energy conservation system
componenets, 241
lighting control device
control lights, 248
data subscribe, 247
external libraries, 246
Internet connectivity
(Wireless), 247
source code, 246
standard function, 248-249
light sensor device
data publication, 244
external libraries, 243
Internet connectivity
(Wireless), 243
publishSensorData() function, 243
read sensor data, 243
readSensorData()
function, 243-244
source code, 242
standard functions, 245
log messages, 249-250
objectives, 242

H

Hyper Text Transfer Protocol (HTTP)
GET method, 40-41
interaction, 35
node-RED flow
response node, 68
threshold switch node, 69
POST method, 40, 42
source code, 36
data publication, 37-39
external libraries, 36
Internet, 36
standard functions, 39

I,LJ, K

Internet connectivity

Ethernet. See Wired connectivity
(Ethernet)

HTTP, 36

intrusion detection system
(Wireless), 79

IoT devices, 15

280

lighting control system, 133
livestock tracking
system (Wireless), 206
MQTT, 45
objectives, 15
options, 15
smarter parking system (Wireless), 149
waste management system
(Wireless), 217
WiFi. See Wireless connectivity
(WiFi)

Internet Connectivity (Wireless), 45
Intrusion detection system, 43

circuit, 77-78
code (Android), 83
components, 75
hardware components requirement, 76
MQTT client
AndroidManifest.xml, 105
Android Project, 97
callback method, 102
class creation, 99
code completion, 100-102
connectToMQTT() method, 102
default code, 100
dialog box, 98
libraries, 96
module option, 99
onCreate() method, 102-105
resolve dependencies, 97
top-level package, 99
objectives, 76
project setup
Activity template, 86-87
Android device screen, 86
configuration, 85-86
customization screen, 87-88
default folders, 89
folders and files details, 88
menu bar, 85
quick start screen, 84
screen layout
activity_main.xml, 90
content_main.xml, 91, 93
default development view, 89-90
image icon, 92
ImageView element, 92
screen layout, 94
TextView element, 92
toolbar and floating
action button, 91

screen logic

createNotification(...) method, 95

MainActivity.java file, 94
updateView(...) method, 95
serial monitor window
default view, 108
deployment and
running app, 106
details, 110
device selection, 107
intrusion notification, 109
log messages, 106
software requirement, 77
source code
calibrateSensor() function, 80
data publication, 81-82
external libraries, 79
Internet connectivity
(Wireless), 79
readSensorData()
function, 79-80, 83
sections, 79
standard functions, 83

L

Lighting control system

circuit
diagram, 113-115
requirement, 113

code (Arduino)
control lights, 134
data requirements, 133
external libraries, 133
Internet connectivity

(Wireless), 133

sections, 132
standard functions, 134-135

component, 111

hardware components, 112

MQTT client, 126
app permissions, 132
class adding, 129
complete code, 129-130
default code, 129
import library-resolve

dependencies, 127

libraries, 128
module option, 128
name field adding, 129
onCreate() method, 131

INDEX

publishToMQTT() method, 130
switch perspective, 127
objectives, 112
project creation
customization screen, 119-120
device selection screen, 117-118
folders and files
creation, 120-121
menu bar, 116
project configuration, 117
Quick Start screen, 115
template selection screen, 118-119
screen layout
custom content, 123
default development, 121-122
dialog box, 125
final layout, 125
ImageView element, 124
layout file, 122
TextView element, 124
toolbar and floating action
button, 123
screen logic
default code, 126
onCreate() method, 126
Serial Monitor window
default view, 137-138
deploy and run app, 136
device selection, 137
log messages, 135-136
software requirement, 113

light sensor tweet system, 52
Livestock tracking system

circuit, 197-198
code (PHP)
database connection, 200
gpstracker, 199
map, 203-205
receive and store sensor
data, 201-202
components, 195
database table (MySQL), 199
final version, 211
hardware components, 196
log messages, 210
software requirements, 197
source code, 206
data publication, 208
external libraries, 206
getGPSCoordinates()
function, 207

281

IN

DEX

Livestock tracking system (cont.)

GPS coordinates, 206

Internet connectivity
(Wireless), 206

standard functions, 209

MQTT protocols

intrusion detection system, 43
AndroidManifest.xml, 105
Android project, 96
callback method, 102
class creation, 99
code completion, 100-102
connectToMQTT() method, 102
createNotification and

updateView methods, 102
default code, 100
dialog box, 98
imported files, 98
libraries, 96
module option, 99
onCreate() method, 102-105
resolve dependencies, 97
service library, 98
top-level package, 99

remote controls, 44

source code
callback() function, 46
data publishes and subscribes, 45
external libraries, 45
Internet, 45
sections, 45
setup() and loop() functions, 46
standard functions, 46

N, O

Node-RED

282

circuit
circuit diagram, 54-55
light sensor tween system, 54
components, 52
development environment, 51
flow
default view, 57
function node, 61-62, 65
HTTP node, 69
HTTP request node, 60
input nodes, 57-58

output nodes, 57, 59
properties dialog box, 59-60
switch node, 63-64
tasks, 56
terminal window, 56
tweet node, 66
Twitter credentials, 66-68
hardware components
requirement, 53
IoT applications, 51
light sensor tweet system, 52
log messages, 72
objectives, 53
software requirement, 54
source code
data publication, 70-71
external libraries, 69
Internet connectivity, 70
read sensor data, 70
sections, 69
standard functions, 72
Node-RED flow
deploy button, 235
flow creation, 230
MQTT
broker node, 232-233
configuration, 232
Email node, 233
input node, 231
node properties, 231
rename flow sheet, 231
updated email node
properties, 234-235

PQ

printConnectionInformation()
function, 19
publishToMQTT() method, 130

R

readSensorData() function, 70
Remote lighting controls, 44

S

Smarter parking system, 139
circuit
diagram, 142-143
requirements, 141

code (PHP)
database connection, 145
data storage, 144
interface/database, 148-149
parking spots count, 148
receive and update
stored data, 146-147
SQL statement, 147
components of, 139
database table (MySQL), 144
hardware components, 140
objectives, 140
Serial Monitor window
log messages, 171
open spots app, 175
proximity sensor, 174
screen simulation menu, 172
simulator app, 173
software requirement, 141
source code
calibrateSensor() function, 150
code (i0S), 153
data publication, 151-152
external libraries, 149
Internet connectivity
(Wireless), 149
read sensor data, 150-151
readSensorData()
function, 150
sections, 149
standard functions, 152-153
Xcode. See Xcode project
Soil moisture control system

circuit requirement, 255-256, 274-275

components, 253
hardware components, 254
log messages, 275
objectives, 254
software requirements, 254
source code
data publication, 272
external libraries, 271
Internet connectivity
(Wireless), 272
readSensorData()
function, 272
sections, 271
standard setup() and loop()
functions, 274
transmitData() function, 273
Xively. See Xively project

INDEX

UV

Temperature monitoring system

circuit, 179-181
code (PHP)
dashboard, 185-188
database connection, 182-183
receive and store
sensor data, 184
components, 177
dashboard, 193
database table (MySQL), 181-182
hardware components, 178
I messages, 193
log messages, 192
objectives, 177
software requirements, 178
source code, 189
data publication, 190
external libraries, 189
Internet connectivity
(Wireless), 189
read sensor data, 189
standard functions, 192

Tweet system

flow diagram, 66

function node, 65

log messages, 73

message node, 68

Twitter
authentication, 66-67
authorization process, 68
authorize app button, 67
credentials, 66

w

Waste management system

cardboard box, 236
circuit requirements, 215-216, 236
Close-up, 237
components, 213
details (Effwkkif), 239
Effektif. See Effektif workflow
hardware components, 214
log messages, 237-238
Node-RED flow, 230
deploy button, 235
Email node properties, 234
flow creation, 230
MQTT subscribe node, 231-233

283

INDEX

Waste management system (cont.)

rename flow sheet, 231
updated email node
properties, 235
objectives, 214
software requirements, 215
source code, 217
calibrateSensor() function, 217
data publication, 219-220
external libraries, 217
Internet connectivity
(Wireless), 217
read sensor data, 217-218
readSensorData()
function, 217-218
standard functions, 220-221
tasks tab, 238

Wired connectivity (Ethernet)

circuit, 16-17

code (Arduino)
external libraries, 17
Internet connectivity, 18-19
standard function, 19-20
types, 17

hardware components, 16

log messages, 20

software requirement, 16

Wireless connectivity (WiFi)

Arduino Uno
circuit, 21-22
code (Arduino), 22

connectTolnternet() function, 23

external libraries, 22

hardware components
requirement, 21

Internet connectivity, 23-24

log messages, 26

printConnectionInformation()
function, 24

software requirement, 21

standard functions, 25

Arduino Yiun

board selection, 31

configuration, 29-30

external libraries, 32

hardware requirement, 26-27

internet connectivity, 33

login screen, 28

log messages, 34

password screen, 28

port selection, 32

284

printConnectionInformation()
function, 33
restart button, 30
setup() and loop()
functions, 27, 33
software requirement, 27
source code, 32
standard functions, 33
wireless networks, 27

XY

Xcode project

configuration, 155-156
creation, 153
folders and files creation, 156-157
screen layout
alignment and constraints
menu, 162
alignment screen, 163-164
align widgets, 162
button properties, 161
constraints menu, 164
default development view, 157
image selection, 159
ImageView properties, 159-160
import assests, 159
label properties, 161
screen layout, 165
user interface widgets, 158
widgets, 158, 163
screen logic
action properties, 167-168
arbitrary loads properties, 171
complete code, 168
didReceiveMemoryWarning()
function, 165
drag and drop label, 166
Info.plist properties list, 169
outlet properties, 166
storyboard, 167
transport security
properties, 170
viewDidLoad() function, 165
template selection screen, 155

Xively project

account dashboard, 256
API keys, 259

channel adding, 259
channel’s setup, 260
development device, 257

device location, 263
device setup, 258
Feed ID, 258-259
location adding, 261
request details, 276
sensor data view, 277
set device location, 261-262
SoilMoistureSensorl channel, 261
triggers
e-mail message, 277-278
setup, 269-270
test trigger, 270-271
Zapier. See Zapier setup

INDEX

V4

Zapier setup
action selection, 264-265
custom webhook URL, 265
E-mail account setup, 266
e-mail message, 266-268
HTTP POST method, 263
request variables, 267-268
trigger selection, , 264
Webhook filter, 266
Zap creation process, 264
Zap name, 269

285

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Part 1: Building Blocks
	Chapter 1: Arduino Basics
	Learning Objectives
	Hardware Requirements
	Software Requirements
	Toolbar
	Status Window
	Serial Monitor Window

	Arduino Programming Language Reference
	Arduino Code Execution

	Summary

	Chapter 2: Internet Connectivity
	Learning Objectives
	Arduino Uno Wired Connectivity (Ethernet)
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Ethernet)
	Standard Functions

	Final Product

	Arduino Uno Wireless Connectivity (WiFi)
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Standard Functions

	Final Product

	Arduino Yún Wireless Connectivity (WiFi)
	Hardware Required
	Software Required
	Wireless Setup
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Standard Functions

	Final Product

	Summary

	Chapter 3: Communication Protocols
	Learning Objectives
	HTTP
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Publish
	Standard Functions

	Final Product

	MQTT
	Intrusion Detection System
	Remote Lighting Control
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Publish/Subscribe MQTT
	Standard Functions

	Final Product

	Summary

	Part 2: Prototypes
	Chapter 4: Complex Flows: Node-RED
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Node-RED Flow
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Final Product
	Summary

	Chapter 5: IoT Patterns: Realtime Clients
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Code (Android)
	Project Setup
	Screen Layout
	Screen Logic
	MQTT Client

	The Final Product
	Summary

	Chapter 6: IoT Patterns: Remote Control
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Code (Android)
	Project Setup
	Screen Layout
	Screen Logic
	MQTT Client

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Subscribe
	Control Lights
	Standard Functions

	The Final Product
	Summary

	Chapter 7: IoT Patterns: On-Demand Clients
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Database Table (MySQL)
	Code (PHP)
	Database Connection
	Receive and Store Sensor Data
	Get the Parking Spot Count

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Code (iOS)
	Project Setup
	Screen Layout
	Screen Logic

	The Final Product
	Summary

	Chapter 8: IoT Patterns: Web Apps
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Database Table (MySQL)
	Code (PHP)
	Database Connection
	Receive and Store Sensor Data
	Dashboard

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	The Final Product
	Summary

	Chapter 9: IoT Patterns: Location Aware
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Database Table (MySQL)
	Code (PHP)
	Database Connection
	Receive and Store Sensor Data
	Map

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)

	Get GPS Coordinates
	Data Publish
	Standard Functions

	The Final Product
	Summary

	Chapter 10: IoT Patterns: Machine to Human
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Effektif Workflow
	Process Creation
	Process Configurations

	Node-RED Flow
	The Final Product
	Summary

	Chapter 11: IoT Patterns: Machine to Machine
	Learning Objectives
	Light Sensor Device
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Lighting Control Device
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Subscribe
	Control Lights
	Standard Functions

	The Final Product
	Summary

	Chapter 12: IoT Platforms
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Xively Setup
	Zapier Setup
	Xively Trigger
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	The Final Product
	Summary

	Index

