
Building
Arduino Projects
for the Internet
of Things

Experiments with Real-World
Applications
—
A guidebook for the eager-to-learn
Arduino enthusiast
—
Adeel Javed

THE E XPER T ’S VOICE® IN ARDUINO

 Building Arduino
Projects for the

Internet of Things
 Experiments with Real-World

Applications

 Adeel Javed

Building Arduino Projects for the Internet of Things: Experiments with Real-World Applications

Adeel Javed
Lake Zurich, Illinois, USA

ISBN-13 (pbk): 978-1-4842-1939-3 ISBN-13 (electronic): 978-1-4842-1940-9
DOI 10.1007/978-1-4842-1940-9

Library of Congress Control Number: 2016943433

Copyright © 2016 by Adeel Javed

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: James Markham
Technical Reviewer: Jeff Tang
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

 To my wife Naila, for supporting me throughout the process.

v

Contents at a Glance

About the Author ... xv

About the Technical Reviewer .. xvi

Preface ... xix

 ■Part 1: Building Blocks ... 1

 ■Chapter 1: Arduino Basics .. 3

 ■Chapter 2: Internet Connectivity ... 15

 ■Chapter 3: Communication Protocols ... 35

 ■Part 2: Prototypes ... 49

 ■Chapter 4: Complex Flows: Node-RED .. 51

 ■Chapter 5: IoT Patterns: Realtime Clients 75

 ■Chapter 6: IoT Patterns: Remote Control 111

 ■Chapter 7: IoT Patterns: On-Demand Clients 139

 ■Chapter 8: IoT Patterns: Web Apps ... 177

 ■Chapter 9: IoT Patterns: Location Aware 195

 ■Chapter 10: IoT Patterns: Machine to Human 213

 ■Chapter 11: IoT Patterns: Machine to Machine 241

 ■Chapter 12: IoT Platforms ... 253

Index .. 279

vii

Contents

About the Author ... xv

About the Technical Reviewer .. xvi

Preface ... xix

 ■Part 1: Building Blocks ... 1

 ■Chapter 1: Arduino Basics .. 3

Learning Objectives ... 3

Hardware Requirements ... 3

Software Requirements ... 5

Toolbar .. 6

Status Window .. 7

Serial Monitor Window ... 7

Arduino Programming Language Reference ... 8

Arduino Code Execution .. 11

Summary ... 13

 ■Chapter 2: Internet Connectivity ... 15

Learning Objectives ... 15

Arduino Uno Wired Connectivity (Ethernet) ... 16

Hardware Required ... 16

Software Required .. 16

 ■ CONTENTS

viii

Circuit ... 16

Code (Arduino) .. 17

Final Product .. 20

Arduino Uno Wireless Connectivity (WiFi) .. 21

Hardware Required ... 21

Software Required .. 21

Circuit ... 21

Code (Arduino) .. 22

Final Product .. 26

Arduino Yún Wireless Connectivity (WiFi) .. 26

Hardware Required ... 26

Software Required .. 27

Wireless Setup .. 27

Code (Arduino) .. 32

Final Product .. 34

Summary ... 34

 ■Chapter 3: Communication Protocols ... 35

Learning Objectives ... 35

HTTP .. 35

Code (Arduino) .. 36

Final Product .. 40

MQTT ... 42

Intrusion Detection System .. 43

Remote Lighting Control ... 44

Code (Arduino) .. 45

Final Product .. 47

Summary ... 48

 ■ CONTENTS

ix

 ■Part 2: Prototypes ... 49

 ■Chapter 4: Complex Flows: Node-RED .. 51

Learning Objectives ... 53

Hardware Required ... 53

Software Required ... 54

Circuit .. 54

Node-RED Flow ... 56

Code (Arduino) ... 69

External Libraries.. 69

Internet Connectivity (Wireless) .. 70

Read Sensor Data ... 70

Data Publish ... 70

Standard Functions .. 72

Final Product ... 72

Summary ... 73

 ■Chapter 5: IoT Patterns: Realtime Clients 75

Learning Objectives ... 76

Hardware Required ... 76

Software Required ... 77

Circuit .. 77

Code (Arduino) ... 79

External Libraries.. 79

Internet Connectivity (Wireless) .. 79

Read Sensor Data ... 79

Data Publish ... 81

Standard Functions .. 83

 ■ CONTENTS

x

Code (Android) ... 83

Project Setup .. 84

Screen Layout ... 89

Screen Logic ... 94

MQTT Client .. 96

The Final Product .. 106

Summary ... 110

 ■Chapter 6: IoT Patterns: Remote Control 111

Learning Objectives ... 112

Hardware Required ... 112

Software Required ... 113

Circuit .. 113

Code (Android) ... 115

Project Setup .. 115

Screen Layout ... 121

Screen Logic ... 125

MQTT Client .. 126

Code (Arduino) ... 132

External Libraries.. 133

Internet Connectivity (Wireless) .. 133

Data Subscribe ... 133

Control Lights ... 134

Standard Functions .. 134

The Final Product .. 135

Summary ... 138

 ■ CONTENTS

xi

 ■Chapter 7: IoT Patterns: On-Demand Clients 139

Learning Objectives ... 140

Hardware Required ... 140

Software Required ... 141

Circuit .. 141

Database Table (MySQL) .. 144

Code (PHP) ... 144

Database Connection .. 145

Receive and Store Sensor Data .. 146

Get the Parking Spot Count .. 148

Code (Arduino) ... 149

External Libraries.. 149

Internet Connectivity (Wireless) .. 149

Read Sensor Data ... 150

Code (iOS) .. 153

Project Setup .. 153

Screen Layout ... 157

Screen Logic ... 165

The Final Product .. 171

Summary ... 175

 ■Chapter 8: IoT Patterns: Web Apps ... 177

Learning Objectives ... 177

Hardware Required ... 178

Software Required ... 178

Circuit .. 179

Database Table (MySQL) .. 181

Code (PHP) ... 182

 ■ CONTENTS

xii

Database Connection .. 182

Receive and Store Sensor Data .. 184

Dashboard .. 185

Code (Arduino) ... 189

External Libraries.. 189

Internet Connectivity (Wireless) .. 189

Read Sensor Data ... 189

Data Publish ... 190

Standard Functions .. 192

The Final Product .. 192

Summary ... 193

 ■Chapter 9: IoT Patterns: Location Aware 195

Learning Objectives ... 196

Hardware Required ... 196

Software Required ... 197

Circuit .. 197

Database Table (MySQL) .. 199

Code (PHP) ... 199

Database Connection .. 200

Receive and Store Sensor Data .. 201

Map ... 203

Code (Arduino) ... 206

External Libraries.. 206

Get GPS Coordinates ... 206

Data Publish ... 208

Standard Functions .. 209

The Final Product .. 210

Summary ... 211

 ■ CONTENTS

xiii

 ■Chapter 10: IoT Patterns: Machine to Human 213

Learning Objectives ... 214

Hardware Required ... 214

Software Required ... 215

Circuit .. 215

Code (Arduino) ... 217

External Libraries.. 217

Internet Connectivity (Wireless) .. 217

Read Sensor Data ... 217

Data Publish ... 219

Standard Functions .. 220

Effektif Workfl ow ... 221

Process Creation ... 221

Process Confi gurations ... 222

Node-RED Flow ... 230

The Final Product .. 236

Summary ... 239

 ■Chapter 11: IoT Patterns: Machine to Machine 241

Learning Objectives ... 242

Light Sensor Device .. 242

Code (Arduino) ... 242

Lighting Control Device ... 246

Code (Arduino) .. 246

The Final Product .. 249

Summary ... 251

 ■ CONTENTS

xiv

 ■Chapter 12: IoT Platforms ... 253

Learning Objectives ... 254

Hardware Required ... 254

Software Required ... 254

Circuit .. 255

Xively Setup ... 256

Zapier Setup .. 263

Xively Trigger ... 269

Code (Arduino) ... 271

External Libraries.. 271

Internet Connectivity (Wireless) .. 272

Read Sensor Data ... 272

Data Publish ... 272

Standard Functions .. 274

The Final Product .. 274

Summary ... 278

Index .. 279

xv

 About the Author

 Adeel Javed is a Solutions Architect with over 11 years of software development, design,
and systems-architect experience in enterprise-wide business process management
(BPM) and service-oriented architecture (SOA) solutions. He helps organizations from
diverse global-industry domains with process improvements and implementation
initiatives. Adeel Javed regularly writes about BPM, SOA, IoT, cloud, and all things
process-oriented on his blog, ProcessRamblings.com , as well as for other major industry
sites such as BPMLeader.com , BPTrends.com , and IBM developerWorks.

 In his time off, Adeel is an avid—and process-driven—Arduino enthusiast and device
developer.

xvii

 About the Technical
Reviewer

 Jeff Tang worked on enterprise and web app development for many years before
reinventing himself to focus on building great iOS and Android apps. He had Apple-featured,
top-selling iOS apps with millions of users and was recognized by Google as a Top
Android Market Developer. He’s the author of the Beginning Google Glass Development
book published by Apress in 2014. His current passion is in IoT and AI and he actually
received his master’s degree in AI.

xix

 Preface

 Analysts are forecasting that by the year 2020 there will be more than 50 billion connected
things (devices) and the total revenue from the Internet of things (IoT) will easily surpass
$1.5 trillion.

 The numbers look phenomenal, but what exactly is IoT? Is it simply things
connected to the Internet? Why do connected things matter?

 IoT is much more than things connected to the Internet. IoT is about making dumb
things smarter by giving them the ability to sense, communicate, and respond. We have five
senses—we can see, hear, taste, smell, and touch. Similarly if you add these sensors to things
they can do the same as well. For example, using a camera things can see, using a sound
detector things can hear, and using a speaker things can talk. There are so many other sensors
that things can use to do so much more than us. By connecting these things to the Internet,
they can communicate with us, with other things, and the next frontier where they can use
artificial intelligence to think as well. There are numerous applications of IoT, but here are a
couple of examples to further understand how IoT is being used to improve our lives:

• A wristband with the ability to monitor your vitals. If it finds anything
out of the ordinary, it can alert you and your doctor immediately.

• A security system that monitors the premises of your house for
any intrusions and alerts you and any security agencies.

 What This Book Covers
 This book is based on my personal experience of getting started with IoT. It is divided into
two logical sections. The first one teaches the basics of building IoT applications and the
second section follows a project-based approach. At the end of each chapter you will have
a working prototype of an IoT application.

 Part 1: Building Blocks
 Chapters 1 - 3 cover the building blocks of IoT:

• Chapter 1 , “Arduino Basics,” introduces the Arduino prototyping
platform, which is used throughout the book.

• Chapter 2 , “Internet Connectivity,” discusses the different options
available for connecting things to the Internet.

• Chapter 3 , “Communication Protocols,” teaches you what
communication protocols are and which ones are available for IoT.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1
http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_1
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

 ■ PREFACE

xx

 Part 2: Prototypes
 Chapters 4 - 12 use the information covered in Part 1 to build prototypes of IoT
applications.

• Chapter 4 , “Complex Flows: Node-RED,” introduces Node-RED,
which is a visual designer that helps reduce the amount of code
required for IoT applications.

• Chapter 5 , “IoT Patterns: Realtime Clients,” talks about
components required for building IoT applications that provide
data to users in real time and shows you how to build an intrusion
detection system as an example.

• Chapter 6 , “IoT Patterns: Remote Control,” discusses components
of IoT applications that can remotely control things, such as a
lighting control system.

• Chapter 7 , “IoT Patterns: On-Demand Clients,” shows you
different components involved in building an on-demand IoT
application. You’ll build a smarter parking system in this chapter.

• Chapter 8 , “IoT Patterns: Web Apps,” teaches you scenarios where
web clients are preferred and uses a temperature monitoring
system as an example.

• Chapter 9 , “IoT Patterns: Location-Aware Devices,” discusses
importance of location-aware devices. You’ll develop a livestock
tracking system as an example.

• Chapter 10 , “IoT Patterns: Machine to Human,” talks about
scenarios where human response is needed; you’ll build a waste
management system as an example.

• Chapter 11 , “IoT Patterns: Machine to Machine,” discusses
a pattern of IoT that is going to be very popular as things get
smarter. The example is an energy conservation system.

• Chapter 12 , “IoT Platforms,” wraps up the book by introducing
you to IoT platforms that help expedite entry into IoT. The
example in this chapter builds a soil moisture control system.

 What You Need for This Book
 IoT applications require hardware and software and can span different technologies, so
this book uses quite a few technologies. However, we have tried to keep them as simple
and minimal as possible.

http://dx.doi.org/10.1007/978-1-4842-1940-9_4
http://dx.doi.org/10.1007/978-1-4842-1940-9_12
http://dx.doi.org/10.1007/978-1-4842-1940-9_4
http://dx.doi.org/10.1007/978-1-4842-1940-9_5
http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_7
http://dx.doi.org/10.1007/978-1-4842-1940-9_8
http://dx.doi.org/10.1007/978-1-4842-1940-9_9
http://dx.doi.org/10.1007/978-1-4842-1940-9_10
http://dx.doi.org/10.1007/978-1-4842-1940-9_11
http://dx.doi.org/10.1007/978-1-4842-1940-9_12

 ■ PREFACE

xxi

 Required Hardware
 Read the complete instructions provided in each chapter because, based on your device,
you may or may not need additional components.

• Arduino Uno or Arduino Yún

• Ethernet shield

• WiFi (wireless) shield

• Breadboard

• Jumper cables (male-male, male-female)

• Light sensor

• Motion sensor (HC-SR501)

• LED

• 220Ω resistor

• Proximity sensor (Ultrasonic Rangemeter HC-SR04)

• Temperature sensor (TMP36)

• GPS module (NEO6MV2)

• Soil moisture sensor

 Software
• Arduino IDE

• Node-RED

• MQTT broker (book uses free and publicly available broker from
Eclipse Foundation)

• Android Studio

• Xcode/Swift

• PHP server

• MySQL server

• Text editor

• Effektif BPM (cloud-based, free account required)

• Xively (cloud-based, free account required)

• Zapier (cloud-based, free account required)

 ■ PREFACE

xxii

 To further help you, we have also created a web site at http://codifythings.com
dedicated to the book. The web site contains variations and enhancements to prototypes
developed in this book along with additional prototypes.

 Who This Book Is For
 This book is for hobbyists and professionals who want to enter the world of IoT.

 The material in this book requires some prior knowledge of Arduino or similar
devices and programming experience. We have used basic hardware components
and provided step-by-step instructions for building circuits. We kept the code simple,
readable, and minimal to help newbies understand concepts and develop useable
prototypes. Throughout the book, the code is consistent and, wherever needed, is
explained in detail.

http://codifythings.com/

 PART 1

 Building Blocks

3© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_1

 CHAPTER 1

 Arduino Basics

 Arduino is an open-source platform that’s composed of very simple and easy-to-use
hardware and software. In a nutshell your Arduino can read sensor data and control
components such as lights, motors, thermostats, and garage doors. It has mainly been
developed for prototyping purposes, so it is a great fit for this IoT beginner’s book.

 Learning Objectives
 At the end of this chapter, you will be able to:

• Use Arduino hardware

• Use the Arduino IDE

• Write, upload, and execute basic Arduino programs

 Hardware Requirements
 Arduino comes in various models (also known as boards). Each board has different
specifications. If your board does not come built-in with the features you are looking
for, then you always have an option to add a shield that supports required features.
In the Arduino world, a shield is very similar to a board, but it only supports specific
functionality such as the ability to connect to a WiFi network or the ability to control
servo motors. A shield acts as an add-on; that is, it is physically attached to the top of an
Arduino board. Once attached, the Arduino board becomes capable of handling shield
features as well.

 Figure 1-1 shows a diagram of Arduino Uno, while Figure 1-2 shows a diagram of an
 Ethernet shield .

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1940-9_1) contains supplementary material, which is
available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 1 ■ ARDUINO BASICS

4

 Figure 1-1. Arduino Uno

 Figure 1-2. Ethernet shield

 The following list summarizes some of the important parts of the board that have
been used in projects throughout the book.

 ■ Note Parts will vary based on the Arduino board you choose.

CHAPTER 1 ■ ARDUINO BASICS

5

• Digital pins: In total there are 14 digital pins on Arduino Uno.
Digital pins can be both INPUT and OUTPUT, but their state can
only be HIGH or LOW. HIGH means there is current while LOW
means no current. An example of digital pin usage is turning an
LED light on or off. To turn it on, the digital pin should be set to
HIGH and to turn it off the digital pin should be set to LOW .

• Analog pins: Arduino Uno supports six analog pins, A0 through
A5. Unlike digital pins, the readings of analog pins can range
from 0 to 1023. A good example of a sensor that provides analog
readings is a soil moisture sensor. The range helps identify how
much moisture is left in the soil.

• USB connector: A USB connector lets you connect Arduino to the
computer, power the board, upload code, and receive logs on a
serial monitor.

• Battery power: IoT applications that need to be placed in remote
locations will need their own power source. You can use the
 battery power connector to power the board.

 This book uses Arduino Uno for all projects. Arduino Uno is categorized as an
entry-level board most suited for beginners. Even though the book uses Arduino Uno,
you are not required to use it; you can choose any of the Arduino boards to complete
projects in this book. Since this book is about the Internet of things, Internet connectivity
is an important requirement. Whichever Arduino board you decide to use, just make
sure that it supports Internet connectivity in some form. The Arduino board should
either come with a built-in Internet connectivity option or you should have the required
Internet connectivity shield.

 ■ Note Arduino Uno does not come with built-in Internet connectivity support, so in the
book both Ethernet and WiFi shields have been used. On the other hand, a more advanced
model of Arduino called Yún does support built-in Ethernet and WiFi connectivity. Chapter 2
discusses Internet connectivity in more detail.

 Software Requirements
 Arduino provides a C-like language for programming Arduino boards. You will be using
the Arduino IDE for writing code and uploading it to an Arduino board. You can install
the latest version of Arduino IDE from https://www.arduino.cc/en/Main/Software .

 Once Arduino IDE has been installed on your machine, open it and, as shown in
Figure 1-3 , it will load with default code.

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
https://www.arduino.cc/en/Main/Software

CHAPTER 1 ■ ARDUINO BASICS

6

 There are three components of Arduino IDE that are referenced in every chapter of
this book.

• Toolbar

• Status window

• Serial Monitor window

 Toolbar
 The toolbar on top of the IDE, as shown in Figure 1-4 , provides easy access to frequently
used options .

 Figure 1-3. Default view of Arduino IDE

 Figure 1-4. Arduino IDE toolbar

CHAPTER 1 ■ ARDUINO BASICS

7

 Figure 1-5. Arduino IDE Status window

• Verify/Compile: This is the first button from the left (the tick mark).
Click this button to verify and compile your code for correctness.
You can view the results in the Status window at the bottom .

• Upload: This is the second button from left (right-pointing
arrow). If your Arduino board is connected to your machine
that is running the Arduino IDE, this will upload the code on the
Arduino board. You can view the deployment results in the Status
window at the bottom.

• New/Open/Save: The next three buttons, as their names suggest,
let you open a new code window, open an existing code file, or
save the currently open code. Arduino code files have an *.ino
extension.

• Serial/Monitor: The last button on the right lets you open the
Serial Monitor window.

 Status Window
 When you verify the code or upload it to a board, the Status window shown in Figure 1-5
lists all the results. Any errors that occur during code verification or uploading will be
shown in the Status window .

 Serial Monitor Window
 The Serial Monitor window shown in Figure 1-6 prints all log messages generated by
the Serial.print() and Serial.println() functions in the code. In order to print any
messages on the Serial Monitor window, you first need to initialize the message in the
code (discussed later) .

CHAPTER 1 ■ ARDUINO BASICS

8

 Arduino Programming Language Reference
 The Arduino programming language has quite a few constructs. However, this chapter
provides the basics that have been used throughout the projects in this book; see Table 1-1 .

 Figure 1-6. Log messages on the Serial Monitor window

 Table 1-1. Language Reference

 Code Construct Description

 int Integer values, such as 123

 float Decimal values, such as 1.15

 char[] String values, such as "Arduino"

 HIGH Digital pin with current

 LOW Digital pin with no current

 INPUT Pin can only be read

 OUTPUT Pin can only be set

 A0 – A7 Constants for analog pins; varies by board

 0 – 13 Value for digital pins; varies by board

 analogRead() Returns analog pin value (0 – 1023)

 analogWrite(...) Sets analog pin value

 digitalRead() Returns digital pin value (HIGH or LOW)

(continued)

CHAPTER 1 ■ ARDUINO BASICS

9

 Code Construct Description

 digitalWrite(...) Sets digital pin value (HIGH or LOW)

 Serial.begin() Initializes serial monitor

 Serial.print() Logs message on serial monitor

 Serial.println() Logs message on serial monitor with new line

 delay(ms) Adds a wait in processing

 setup() Standard Arduino function called once

 loop() Standard Arduino function called repeatedly

 if Checks for a true/false condition

 if ... else Checks for a true/false condition; if false goes to else

 // Single-line comment

 /* */ Multiline comment

 #define Defines a constant

 #include Includes an external library

Table 1-1. (continued)

 You can explore the complete language at https://www.arduino.cc/en/Reference .
 The Arduino IDE provides a very simple and clean interface to write code. Normally

you would structure your code in three parts:

• External libraries: Includes all required libraries. A library is a
fully developed and tested piece of code that you can include and
use in your code. For instance, if you wanted to communicate
over the Internet using an Ethernet connection, instead of writing
all of that code from scratch, you could simply import and include
the Ethernet library using #include <Ethernet.h> .

• Constants and variables : Defines all constants and variables
that will be used to read and manipulate data. Constants do not
change, so you can, for instance, use them for port numbers on
the board. Variables can change, so they can be used for reading
sensor data .

• Functions : Provides implementation of all custom and standard
functions. A function encapsulates a specific functionality. It is
recommended to put your code in functions, especially when you
are looking to reuse that piece of code. Functions help avoid code
duplication.

 Listing 1-1 provides an example of code that is structured according to points
discussed previously.

https://www.arduino.cc/en/Reference

CHAPTER 1 ■ ARDUINO BASICS

10

 Listing 1-1. Recommended Code Structure

 /*
 * External Libraries
 */

 #include <SPI.h>

 /*
 * Constants & Variables
 */

 char message[] = “Hello Internet of Things”; // Single line comment

 /*
 * Custom & Standard Functions
 */

 void printMessage()
 {
 Serial.println(message);
 }

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);
 }

 void loop()
 {
 printMessage();
 delay(5000);
 }

 Listing 1-1 consists of three functions. It has two standard Arduino functions,
called setup() and loop() , which are automatically called by Arduino once the code
is uploaded. They therefore must be present for the code to run. The third is a custom
function called printMessage() that simply prints a message to the Serial Monitor
window shown in Figure 1-6 .

 The setup() function is called only once. Initializations are done in this function
including serial monitor initialization using code Serial.begin(9600) . The loop()
function, as the name suggests, runs in a continuous loop. Any post-initialization
processing such as reading sensor data can be done in this function. The loop() function
calls printMessage() function and then waits 5,000 milliseconds before repeating.

CHAPTER 1 ■ ARDUINO BASICS

11

 Arduino Code Execution
 Start your Arduino IDE and either type the code provided in Listing 1-1 or download it
from book’s site and open it. Click on the Verify button to compile and check the code.

 Next, using the USB cable that came with your Arduino, connect your Arduino to the
computer that is running Arduino IDE.

 Once Arduino is connected to your computer, as shown in Figure 1-7 , click on
Tools ➤ Board and select Arduino Uno (or whichever board you are using). This informs
Arduino IDE about the board where the code will be uploaded.

 Figure 1-7. Select the Arduino board

CHAPTER 1 ■ ARDUINO BASICS

12

 Finally, click on the Upload button and open the Serial Monitor window. Make sure
the value selected in the Serial Monitor dropdown is the same as the value set in the
 Serial.begin() function. In this case, it is 9600 in the code, so 9600 baud needs to be
selected in the Serial Monitor dropdown. Otherwise, you will not be able to see the log
messages.

 As shown in Figure 1-9 , you will start seeing log messages in the Serial Monitor
window at an interval of 5,000 milliseconds.

 Figure 1-9. Log messages from the code in the Serial Monitor window

 You will also need to select what port to use for code upload. As shown in Figure 1-8
from Tools ➤ Port, select the USB port that connects Arduino to your computer.

 Figure 1-8. Select the Arduino port

CHAPTER 1 ■ ARDUINO BASICS

13

 Summary
 In this chapter you learned the basics of Arduino hardware and software. You also learned
the common code constructs of the Arduino programming language, which will be used
throughout this book.

 This chapter in no way is a complete reference of Arduino; it only provides the basics
required to complete all the projects in this book. To learn more about Arduino, visit the
official web site at https://www.arduino.cc .

https://www.arduino.cc/

15© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_2

 CHAPTER 2

 Internet Connectivity

 All IoT devices require a mechanism to send or receive data. There are numerous options
available for connecting devices to the Internet, including wired and wireless options,
Bluetooth, cellular networks, and many more. The option you choose depends on various
factors, such as:

• Scale and size of the network where the application will run

• Amount of data that needs to be processed and transferred

• Physical location of the device

 Table 2-1 lists some of the Internet connectivity options with an example of where
they have been used.

 Table 2-1. Internet Connectivity Options for IoT Devices

 Option Example

 Wired (Ethernet) Food storage temperature monitoring

 Wireless (WiFi) Soil moisture sensor

 Bluetooth Key tracker

 Cellular data Wildlife tracker

 RFID (Radio Frequency Identification) Inventory management

 Learning Objectives
 At the end of this chapter, you will be able to:

• Attach an Ethernet shield to Arduino and write Ethernet
connectivity code

• Attach a WiFi shield to Arduino and write WiFi connectivity code

• Set up Arduino Yún to connect to WiFi

CHAPTER 2 ■ INTERNET CONNECTIVITY

16

 Arduino Uno Wired Connectivity (Ethernet)
 In this section, you are going to attach an Ethernet shield to your Arduino Uno and write
code to connect it to the Internet using Ethernet .

 ■ Note If you are using a model of Arduino that comes with built-in Ethernet capabilities
such as Arduino Yún, then you do not need a separate Ethernet shield. Arduino Yún Internet
connectivity setup is discussed later in this chapter.

 Hardware Required
 Figure 2-1 provides a list of all hardware components required for connecting Arduino
Uno to the Internet using an Ethernet shield.

 Figure 2-1. Hardware required for wired Internet connectivity

 Software Required
 In order to write the Internet connectivity code, you need following software :

• Arduino IDE 1.6.4 or later version

 Circuit
 In this section, you are going to build the circuit required for Internet connectivity using
Ethernet.

 1. Make sure your Arduino is not connected to a power source,
such as a computer via USB or a battery.

CHAPTER 2 ■ INTERNET CONNECTIVITY

17

 2. Attach the Ethernet shield to the top of Arduino. All the pins
should align.

 3. Connect an Ethernet cable from Arduino to the LAN (Local
Area Network) port of your router. The router should already
be connected to the Internet.

 Once the Ethernet shield has been attached to Arduino, it should look similar to
Figure 2-2 .

 Figure 2-2. Ethernet shield attached to the top of Arduino Uno

 Code (Arduino)
 Now that your Arduino is physically connected to Ethernet, you are going to write the
code that will allow your Arduino to send and receive data over the Internet.

 Start Arduino IDE and type the code provided here or download it from the book's
site and open it. All the code goes into a single source file (*.ino), but in order to make it
easy to understand and reuse, it is divided into three sections .

• External libraries

• Internet connectivity (Ethernet)

• Standard functions

CHAPTER 2 ■ INTERNET CONNECTIVITY

18

 External Libraries
 First section of the code as provided in Listing 2-1 includes all external libraries required
to run the code. Since you are connecting to the Internet using Ethernet, the main
dependency of code is on <Ethernet.h> . Your Arduino IDE should already have the
Ethernet library installed, but for any reason it is missing, you can download it from:

• <Ethernet.h> : https://github.com/arduino/Arduino/tree/
master/libraries/Ethernet

 Listing 2-1. Code for Including External Dependencies

 #include <Ethernet.h>

 Internet Connectivity (Ethernet)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet.

 As provided in Listing 2-2 , first you need to define the MAC address in the mac[]
variable. For newer Ethernet shields, the MAC address might be printed on a sticker.

 You will also need to set a static IP address of Arduino for cases where it fails to get
a dynamic IP from DHCP (Dynamic Host Configuration Protocol). Make sure the IP
address you use is free, i.e., not currently in use by some other device on the network.

 Define the EthernetClient variable that will be used for connectivity.

 Listing 2-2. Constants and Variables for Connecting to the Internet Using Ethernet

 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
 IPAddress staticIP(10, 0, 0, 20);
 EthernetClient client;

 Listing 2-3 provides the code for the Ethernet connectivity setup. The
 connectToInternet() function first attempts to connect to Ethernet with DHCP. If DHCP
fails to assign a dynamic IP address to Arduino, it will attempt connection to Ethernet
with the static IP you defined.

 Listing 2-3. Code for Connecting to the Internet Using Ethernet

 void connectToInternet()
 {
 // Attempt to connect to Ethernet with DHCP
 if (Ethernet.begin(mac) == 0)
 {
 Serial.print("[ERROR] Failed to Configure Ethernet using DHCP");

https://github.com/arduino/Arduino/tree/master/libraries/Ethernet
https://github.com/arduino/Arduino/tree/master/libraries/Ethernet

CHAPTER 2 ■ INTERNET CONNECTIVITY

19

 // DHCP failed, attempt to connect to Ethernet with static IP
 Ethernet.begin(mac, staticIP);
 }

 // Delay to let Ethernet shield initialize

 delay(1000);

 // Connection successful
 Serial.println("[INFO] Connection Successful");
 Serial.print("");
 printConnectionInformation();
 Serial.println("---");
 Serial.println("");
 }

 Once Arduino has successfully connected to the Internet, the Ethernet
 printConnectionInformation() function , provided in Listing 2-4 , is called. This function
prints connection information such as IP address, subnet mask, gateway, and DNS to the
Serial Monitor window.

 Listing 2-4. Function to Display Connection Information

 void printConnectionInformation()
 {
 // Print Connection Information
 Serial.print("[INFO] IP Address: ");
 Serial.println(Ethernet.localIP());
 Serial.print("[INFO] Subnet Mask: ");
 Serial.println(Ethernet.subnetMask());
 Serial.print("[INFO] Gateway: ");
 Serial.println(Ethernet.gatewayIP());
 Serial.print("[INFO] DNS: ");
 Serial.println(Ethernet.dnsServerIP());
 }

 Standard Functions
 Finally, the code in this third and last section is provided in Listing 2-5 . It implements
Arduino’s standard setup() and loop() functions. For this project, you are simply
connecting Arduino to the Internet with no processing thereafter, so the loop() function
will remain empty .

CHAPTER 2 ■ INTERNET CONNECTIVITY

20

 Listing 2-5. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();
 }

 void loop()
 {
 // Do nothing
 }

 Your Arduino code is complete.

 Final Product
 To test the application, verify and upload the code to Arduino as discussed in Chapter 1 .
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages as shown in Figure 2-3 .

 Figure 2-3. Log messages from Arduino

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 2 ■ INTERNET CONNECTIVITY

21

 Arduino Uno Wireless Connectivity (WiFi)
 In this section, you are going to attach a Wireless shield to your Arduino Uno and write
code to connect it to the Internet using WiFi.

 ■ Note If you are using a model of Arduino that comes with built-in wireless capabilities
such as Arduino Yún, then you do not need a separate Wireless shield. Arduino Yún Internet
connectivity setup is discussed later in this chapter.

 Hardware Required
 Figure 2-4 provides a list of all hardware components required for connecting Arduino
Uno to the Internet using a Wireless shield.

 Figure 2-4. Hardware required for wireless Internet connectivity

 Software Required
 In order to write the Internet connectivity code, you will need following software:

• Arduino IDE 1.6.4 or later version

 Circuit
 In this section you are going to build the circuit required for Internet connectivity using WiFi.

 1. Make sure your Arduino is not connected to a power source,
such as a computer via USB or a battery.

 2. Attach the WiFi shield (a.k.a., wireless shield) to the top of
your Arduino. All the pins should align.

CHAPTER 2 ■ INTERNET CONNECTIVITY

22

 Once the wireless shield has been attached to Arduino, it should look similar to
Figure 2-5 .

 Figure 2-5. WiFi shield attached to the top of Arduino Uno

 Code (Arduino)
 Now that your Arduino is capable of connecting to a wireless network, you are going to
write the code that will allow your Arduino to send and receive data over the Internet.

 Start your Arduino IDE and type the following code or download it from book’s site
and open it. All the code goes into a single source file (*.ino), but in order to make it easy
to understand and reuse, it has been divided into three sections .

• External libraries

• Internet connectivity (wireless)

• Standard functions

 External Libraries
 The first section of the code, as provided in Listing 2-6 , includes all external libraries
required to run the code. Since you are connecting to the Internet wirelessly, the main
dependency of code is on <WiFi.h> . Your Arduino IDE should already have WiFi library
installed, but for any reason it is missing, you can download it from:

• <WiFi.h>: https://github.com/arduino/Arduino/tree/
master/libraries/WiFi

https://github.com/arduino/Arduino/tree/master/libraries/WiFi
https://github.com/arduino/Arduino/tree/master/libraries/WiFi

CHAPTER 2 ■ INTERNET CONNECTIVITY

23

 Listing 2-6. External Libraries

 #include <SPI.h>
 #include <WiFi.h>

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet .

 To connect Arduino to your wireless router, set the ssid and password (pass) of your
wireless network, as provided in Listing 2-7 . Also create a WiFiClient variable that will be
used for Internet connectivity.

 Listing 2-7. Constants and Variables for Connecting to the Internet Using WiFi

 char ssid[] = " YOUR_SSID ";
 char pass[] = " YOUR_PASSWORD ";

 int keyIndex = 0;
 int status = WL_IDLE_STATUS;

 WiFiClient client;

 Listing 2-8 provides code for wireless connectivity setup. The connectToInternet()
function first checks if the WiFi shield is attached. Next, the code keeps attempting
to connect to the wireless network. The loop and the function end once Arduino
successfully connects to the wireless network.

 Listing 2-8. Code for Connecting to the Internet Using WiFi

 void connectToInternet()
 {
 status = WiFi.status();

 // Check for the presence of the shield
 if (status == WL_NO_SHIELD)
 {
 Serial.println("[ERROR] WiFi Shield Not Present");
 // Do nothing
 while (true);
 }

 // Attempt to connect to WPA/WPA2 Wifi network
 while (status != WL_CONNECTED)
 {
 Serial.print("[INFO] Attempting Connection - WPA SSID: ");
 Serial.println(ssid);

 status = WiFi.begin(ssid, pass);
 }

CHAPTER 2 ■ INTERNET CONNECTIVITY

24

 // Connection successful
 Serial.print("[INFO] Connection Successful");
 Serial.print("");
 printConnectionInformation();
 Serial.println("---");
 Serial.println("");
 }

 Once Arduino has successfully connected to the wireless network, the
 printConnectionInformation() function provided in Listing 2-9 is called. It prints the
SSID, the router’s MAC address, the Signal Strength (RSSI), Arduino’s IP address, and
Arduino’s MAC address, all on the Serial Monitor window.

 Listing 2-9. Function to Display Connection Information

 void printConnectionInformation()
 {
 // Print Network SSID
 Serial.print("[INFO] SSID: ");
 Serial.println(WiFi.SSID());

 // Print Router's MAC address
 byte bssid[6];
 WiFi.BSSID(bssid);
 Serial.print("[INFO] BSSID: ");
 Serial.print(bssid[5], HEX);
 Serial.print(":");
 Serial.print(bssid[4], HEX);
 Serial.print(":");
 Serial.print(bssid[3], HEX);
 Serial.print(":");
 Serial.print(bssid[2], HEX);
 Serial.print(":");
 Serial.print(bssid[1], HEX);
 Serial.print(":");
 Serial.println(bssid[0], HEX);

 // Print received signal strength
 long rssi = WiFi.RSSI();
 Serial.print("[INFO] Signal Strength (RSSI): ");
 Serial.println(rssi);

 // Print encryption type
 byte encryption = WiFi.encryptionType();
 Serial.print("[INFO] Encryption Type: ");
 Serial.println(encryption, HEX);

CHAPTER 2 ■ INTERNET CONNECTIVITY

25

 // Print WiFi Shield's IP address
 IPAddress ip = WiFi.localIP();
 Serial.print("[INFO] IP Address: ");
 Serial.println(ip);

 // Print MAC address
 byte mac[6];
 WiFi.macAddress(mac);
 Serial.print("[INFO] MAC Address: ");
 Serial.print(mac[5], HEX);
 Serial.print(":");
 Serial.print(mac[4], HEX);
 Serial.print(":");
 Serial.print(mac[3], HEX);
 Serial.print(":");
 Serial.print(mac[2], HEX);
 Serial.print(":");
 Serial.print(mac[1], HEX);
 Serial.print(":");
 Serial.println(mac[0], HEX);
 }

 Standard Functions
 Finally, the code in the third and last section, as provided in Listing 2-10 , implements
Arduino’s standard setup() and loop() functions. For this project, all you are doing is
connecting Arduino to the Internet and there is no processing thereafter, so the loop()
function will remain empty.

 Listing 2-10. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to Internet
 connectToInternet();
 }

 void loop()
 {
 // Do nothing
 }

 Your Arduino code is now complete.

CHAPTER 2 ■ INTERNET CONNECTIVITY

26

 Final Product
 To test the application, verify and upload the code to Arduino as discussed in Chapter 1 .
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
log messages as shown in Figure 2-6 .

 Figure 2-6. Log messages from Arduino

 Arduino Yún Wireless Connectivity (WiFi)
 Yún is a more advanced model of Arduino that has been developed for the Internet of
things. For beginners, Arduino Yún may be a little complex as compared to Arduino Uno,
but it comes with built-in Ethernet and wireless capabilities so you do not need to buy
additional shields.

 As mentioned in Chapter 1 , this book uses Arduino Uno throughout. This section is
only provided as a reference for readers who already have an Arduino Yún and still want
to follow the real-life prototypes developed in this book. Even though Arduino Yún is
not referenced in rest of the book, the code download contains Arduino Yún-compatible
code as well.

 Hardware Required
 You do not need any additional hardware to connect Arduino Yún to the Internet, so
Figure 2-7 only includes a diagram of Arduino Yún.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1
http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 2 ■ INTERNET CONNECTIVITY

27

 Software Required
 In order to write the Internet connectivity code you will need following software:

• Arduino IDE 1.6.4 or later version

 Wireless Setup
 Unlike Arduino Uno, where you need to attach a wireless or Ethernet shield, Arduino Yún
comes with a built-in Ethernet and wireless connectivity capability. Arduino Yún acts as
a hotspot by directly connecting to your wired or wireless network. So, you do not need to
write the Internet connectivity code; instead, you just need to set up your Arduino Yún to
connect to your network. This section discusses the wireless setup for Arduino Yún.

 1. Connect Arduino Yún to your computer with a Micro USB cable.

 2. Arduino Yún acts as a hotspot as well, so from your
computer’s WiFi, search for Arduino Yún. Depending on
where you purchased your Arduino Yún, it might appear as
 ArduinoYunXXXXXXXXXXXX or LininoXXXXXXXXXXXX in your
computer’s available WiFi connections. As shown in
Figure 2-8 , connect to Arduino Yún wirelessly.

 Figure 2-7. Arduino Yún

 Figure 2-8. Select Arduino Yún from wireless networks

CHAPTER 2 ■ INTERNET CONNECTIVITY

28

 3. Once it’s connected, open a web browser on your computer
and enter http://arduino.local (if this does not work then
enter the default IP http://192.168.240.1). As shown in
Figure 2-9 , a login screen for your Arduino Yún should open.

 Figure 2-9. Arduino Yún login screen

 Figure 2-10. Enter the password and log in

 4. If this is the first time you are accessing your Arduino Yún, then
enter the default password arduino (if this does not work, try
 doghunter ; otherwise check the manufacturer’s documentation).
Click the Log In button as shown in Figure 2-10 .

http://arduino.local/

CHAPTER 2 ■ INTERNET CONNECTIVITY

29

 5. Upon successful login you will be redirected to the
configuration page of your Arduino Yún, as shown in
Figure 2-11 . Click on the Configure button .

 Figure 2-11. Arduino Yún default configuration

 6. As shown in Figure 2-12 , you can change the Board Name,
Password, and Timezone of your Arduino Yún. Under the
Wireless Parameters section, select the wireless network you
commonly use from the Detected Wireless Networks list.
Select the security type and enter network Password . Once
you are done, click the Configure & Restart button.

CHAPTER 2 ■ INTERNET CONNECTIVITY

30

 7. Arduino Yún will restart with updated settings, as shown in
Figure 2-13 .

 Figure 2-12. Arduino Yún wireless configuration

 Figure 2-13. Arduino Yún restarting

CHAPTER 2 ■ INTERNET CONNECTIVITY

31

 8. As shown in Figure 2-14 , during restart Arduino Yún will
display a message for you to connect to the commonly used
wireless network. Once restarted, you will be able to access
your Arduino Yún using an IP assigned by your wireless
router. If you are unable to find the assigned IP, follow rest of
the steps and upload the code provided in a later section that
prints connection information.

 Figure 2-14. Arduino Yún restart complete

 Figure 2-15. Select the Arduino Yún board

 9. Open Arduino IDE while Arduino Yún is still connected via
Micro USB to your computer. As shown in Figure 2-15 from
Tools ➤ Board, select Arduino Yún.

CHAPTER 2 ■ INTERNET CONNECTIVITY

32

 10. As shown in Figure 2-16 , from Tools ➤ Port, select the port
that says Arduino Yún.

 Figure 2-16. Select the Arduino Yún port

 Code (Arduino)
 Now that your Arduino Yún is connected to a wireless network, you are going to write
the code that will allow your Arduino to send and receive data over the Internet. Since
Arduino Yún is already connected to the Internet, this is where the code will vary slightly.
Instead of adding code to connect, you will simply use the library <Bridge.h> to use the
wireless connection.

 Start your Arduino IDE and either type the following code or download it from our
site and open it. All the code goes into a single source file (*.ino), but in order to make it
easy to understand and reuse it has been divided into three sections.

• External libraries

• Internet connectivity (Wireless)

• Read sensor data

 External Libraries
 The first section of the code as provided in Listing 2-11 includes all external libraries
required to run the code. For Arduino Yún, <Bridge.h> lets you access the already
established Internet connection. You are also going to use <Process.h> to print the
connection information. Your Arduino IDE has both these libraries installed.

 Listing 2-11. External Libraries

 #include <Bridge.h>
 #include <Process.h>

CHAPTER 2 ■ INTERNET CONNECTIVITY

33

 Internet Connectivity (Wireless)
 The second section of the code, which is provided in Listing 2-12 , defines the functions
that are going to be used for displaying connection information.

 Since Arduino is already connected to the wireless network, the
 printConnectionInformation() function is called. It prints the wireless connection
information.

 Listing 2-12. Function to Display Connection Information

 void printConnectionInformation()
 {
 // Initialize a new process
 Process wifiCheck;

 // Run Command

 wifiCheck.runShellCommand("/usr/bin/pretty-wifi-info.lua");

 // Print Connection Information
 while (wifiCheck.available() > 0)
 {
 char c = wifiCheck.read();
 Serial.print(c);
 }

 Serial.println("---");
 Serial.println("");
 }

 Standard Functions
 Finally, the code in third and last section, provided in Listing 2-13 , implements Arduino’s
standard setup() and loop() functions . For this project, all you are doing is printing
the Internet connection information and there is no processing thereafter, so the loop()
function will remain empty.

 One main difference in this code versus the Arduino Uno code is that you need to
initialize the bridge using Bridge.begin() . This basically lets you access the Arduino Yún
Internet connection.

 Listing 2-13. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Do nothing until serial monitor is opened
 while (!Serial);

CHAPTER 2 ■ INTERNET CONNECTIVITY

34

 // Contact the Linux processor
 Bridge.begin();

 // Connect Arduino to Internet
 printConnectionInformation();
 }

 void loop()
 {
 // Do nothing
 }

 Your Arduino code is now complete.

 Final Product
 To test the application, verify and upload the code to Arduino, as discussed in Chapter 1 .
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
 log messages as shown in Figure 2-17 .

 Figure 2-17. Log messages from Arduino

 Summary
 In this chapter you developed code to connect Arduino Uno to the Internet using both
Ethernet shield and WiFi shield. You also looked at the wireless setup for Arduino Yún
and the code needed to access the Internet connection.

 For any of your future projects that require Internet connectivity using Ethernet or WiFi,
you can use the code provided in this chapter as a base and then add your own code to it.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

35© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_3

 CHAPTER 3

 Communication Protocols

 In Chapter 2 , you connected Arduino to the Internet using Ethernet and WiFi respectively.
This chapter looks at two protocols used for sending and receiving data. A protocol is an
agreed-upon structured format that is used for network communication. It defines what
should be sent and received and what actions should be taken.

 Learning Objectives
 At the end of this chapter, you will be able to:

• Understand the basics of the HTTP protocol

• Send an HTTP request to the server

• Understand the basics of the MQTT protocol

• Publish and subscribe to an MQTT broker

 HTTP
 The web uses Hyper Text Transfer Protocol (HTTP) as its underlying protocol. HTTP
supports multiple methods of data transmission, but in this project you are going to write
code for the two more popular methods, GET and POST . The GET and POST methods do
the same job and their code is very similar, but there is a slight variation in their request
formats. GET has a limit on how much data it can transmit compared to POST , which
has no such limitations. POST is also considered safer compared to GET . Based on your
requirements, you can decide which one works better for you. Figure 3-1 shows a
high-level interaction between a device and an HTTP server.

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

36

 ■ Note For hardware and software requirements and circuit instructions, refer to the
“Arduino Uno Wireless Connectivity (WiFi)” section in Chapter 2 .

 Code (Arduino)
 Next you are going to write the code for connecting Arduino to the Internet using WiFi
and sending test data to a server using HTTP.

 Start Arduino IDE and type the following code or download it from book’s site
and open it. All the code goes into a single source file (*.ino) in the same sequence as
provided here, but in order to make it easy to understand and reuse, it has been divided
into four sections.

• External libraries

• Internet connectivity (wireless)

• Data publish (HTTP)

• Standard functions

 External Libraries
 The first section of the code includes all external libraries required to run the code. Code
in this section is the same as Listing 2-6 .

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet . Use the code from Listings 2-7 , 2-8 , and 2-9
(Chapter 2) here.

 Figure 3-1. Hyper Text Transfer Protocol (HTTP)

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par57
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par60
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par62
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par64
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

37

 Data Publish
 The third section of the code defines variables, constants, and functions that are going to
be used for sending data to the server using HTTP.

 As provided in Listing 3-1 , you first define the address and port of server that
Arduino will connect to and send data. For the purposes of this project, you can publish
it to www.httpbin.org , which is an openly available test server that simply echoes all the
request information along with some additional information. In future projects, you will
use servers that process the request data.

 Listing 3-1. Variables to Define the HTTP Server

 char server[] = {"www.httpbin.org"};
 int port = 80;

 The doHttpGet() function provided in Listing 3-2 encapsulates all the details of
preparing the request for the GET method, connecting to the server and sending request.

 Attempt to connect to the server using client.connect(server, port) in an IF
condition. If the connection is successful, then prepare the request.

 In a request that uses the GET method, data is sent as part of the URL in a name/
value pair format, for example, http://www.httpbin.org/get?temperatureSensor=
85&metric=F . The example shows that two parameters will be sent, the first is the
 temperatureSensor with a value of 85 and the second is metric with a value of F .

 Finally, transmit the HTTP request to the server using the client.println()
method. This method will send the commands to the server over the network and then
receive any response from the server.

 Listing 3-2. HTTP GET Request

 void doHttpGet()
 {
 // Prepare data or parameters that need to be posted to server
 String requestData = "requestVar=test";

 // Check if a connection to server:port was made
 if (client.connect(server, port))
 {
 Serial.println("[INFO] Server Connected - HTTP GET Started");

 // Make HTTP GET request
 client.println("GET /get?" + requestData + " HTTP/1.1");
 client.println("Host: " + String(server));
 client.println("Connection: close");
 client.println();
 Serial.println("[INFO] HTTP GET Completed");
 }

http://www.httpbin.org/
http://www.httpbin.org/get?temperatureSensor=85&metric=F
http://www.httpbin.org/get?temperatureSensor=85&metric=F

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

38

 else
 {
 Serial.println("[ERROR] Connection Failed");
 }

 Serial.println("---");
 }

 This code is for sending an HTTP GET request, but as mentioned earlier, it has a
length limitation, so if you want to avoid this limitation then use HTTP POST instead.

 The doHttpPost () function provided in Listing 3-3 encapsulates all the details of
preparing request for the POST method, connecting to the server, and sending the request.

 Attempt to connect to the server using client.connect(server, port) in an
 IF condition. So far, the code is similar to the HTTP GET request. If the connection is
successful, then prepare the request.

 In a request that uses the POST method, data is also sent in name/value pair format,
but it is part of the request. As you can see in Listing 3-3 , sending an HTTP POST request
requires additional header information.

 Finally, transmit the HTTP request to the server using the client.println()
method. This method will send the commands to the server over the network and then
receive any response from the server.

 Listing 3-3. HTTP POST Request

 void doHttpPost()
 {
 // Prepare data or parameters that need to be posted to server
 String requestData = "requestData={\"requestVar:test\"}";

 // Check if a connection to server:port was made
 if (client.connect(server, port))
 {
 Serial.println("[INFO] Server Connected - HTTP POST Started");

 // Make HTTP POST request
 client.println("POST /post HTTP/1.1");
 client.println("Host: " + String(server));
 client.println("User-Agent: Arduino/1.0");
 client.println("Connection: close");
 client.println("Content-Type: application/x-www-form-urlencoded;");
 client.print("Content-Length: ");
 client.println(requestData.length());
 client.println();
 client.println(requestData);

 Serial.println("[INFO] HTTP POST Completed");
 }

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

39

 else
 {
 // Connection to server:port failed
 Serial.println("[ERROR] Connection Failed");
 }

 Serial.println("---");
 }

 That is pretty much it for publishing data from your Arduino to a server.

 Standard Functions
 The code in the fourth and final section implements Arduino’s standard setup() and
loop() functions.

 As Listing 3-4 shows, the setup() function initializes the serial port, connects to
Internet, and then makes either the HTTP GET request by calling doHttpGet() or the
HTTP POST request by calling the doHttpPost() function .

 Listing 3-4. Code for Standard Arduino Functions—setup()

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();

 // Make HTTP GET request
 doHttpGet();
 }

 Since in this project you are not doing any server-side processing with the data that
is being sent from sensor, you will add code to read response from the server to loop()
function. The test server that you are using simply echoes all the request information in
the response, so you are just going to read the response and print it to the Serial Monitor
window.

 As provided in Listing 3-5 , check if there are any bytes available to be read from
 WiFiClient , read all the available bytes, and print them to the Serial Monitor window.
Once all the bytes have been read and printed, stop the client .

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

40

 Listing 3-5. Code for Standard Arduino Functions—loop()

 void loop()
 {
 if (client.available())
 {
 Serial.println("[INFO] HTTP Response");
 }

 // Read available incoming bytes from the server and print
 while (client.available())
 {
 char c = client.read();
 Serial.write(c);
 }

 // If the server:port has disconnected, then stop the client
 if (!client.connected())
 {
 Serial.println();
 Serial.println("[INFO] Disconnecting From Server");
 client.stop();
 }
 }

 Your Arduino code is complete.

 Final Product
 To test the application, verify and upload the code as discussed in Chapter 1 . Once the
code has been uploaded, open the Serial Monitor window. You will start seeing log
messages similar to ones shown in Figure 3-2 for HTTP GET and in Figure 3-3 for HTTP
 POST .

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

41

 Figure 3-2. HTTP request: GET method

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

42

 MQTT
 MQTT is a lightweight machine-to-machine protocol. It follows the publisher-subscriber
model, whereby a publisher publishes data to a server (a.k.a., a broker) and subscribers
receive the data. Publishers and subscribers do not know each other; they connect to
the broker, which makes this communication asynchronous. The broker notifies all
subscribers that relevant data has been published using the concept of topics. A topic
is similar to a newsfeed, in that you subscribe to certain topics you want to receive
news about. Publishers and subscribers could be sensors, machines, and mobile apps.
Figure 3-4 provides a high-level overview of the MQTT protocol.

 Figure 3-3. HTTP request: POST method

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

43

 Understanding MQTT is important for building IoT applications, so let’s take a look
at a few scenarios that will help you understand MQTT.

 Intrusion Detection System
 A simple version of an intrusion detection system is shown in Figure 3-5 . It will consist of
three components—the motion sensors that detect intrusions and publish data, a mobile
app that receives this data and alerts the app user, and the component, which is a topic
on an MQTT broker.

 Figure 3-4. The MQTT protocol

 Figure 3-5. Components of the intrusion detection system

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

44

 The sensor will act as a publisher and publish a new message to the codifythings/
intrusionDetected topic on the MQTT broker as soon as an intrusion is detected. The
MQTT broker will add this message to the topic. The mobile app will be a subscriber of
the codifythings/intrusionDetected topic. Whenever a new message is published to the
topic, it will get notified. This will result in the mobile app creating a notification for the app
user. You will build this system in Chapter 6 .

 Remote Lighting Control
 Another great usage of MQTT is developing mobile apps that act as remote controls for
various types of devices, such as a lighting control app. As shown in Figure 3-6 , a remote
control app will also consist of three components, but compared to the previous example
the order of first two components is reversed. That means the first component is a
mobile app that lets the user switch the lights on or off, the second component is a device
connected to lights, and the third component is a topic on an MQTT broker.

 Figure 3-6. Components of the remote lighting control

 Mobile app users interact with the app to turn the lights on or off, whatever selection
is made the mobile app will publish a new message to the codifythings/lightsControl
topic on the MQTT broker. The MQTT broker will add this message to the topic. The
device that is connected to the physical lights will be a subscriber of the codifythings/
lightsControl topic. Whenever a new message is published to the topic it will get
notified; the device as a result will turn the lights on or off. You will build this remote
control in Chapter 8 .

 ■ Note For hardware and software requirements and circuit instructions, refer to the
“Arduino Uno Wireless Connectivity (WiFi)” section in Chapter 2 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_8
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

45

 Code (Arduino)
 Next you are going to write the code for connecting Arduino to the Internet using WiFi
and publishing it to a server using MQTT.

 Start your Arduino IDE and type the following code or download it from book’s site
and open it. All the code goes into a single source file (*.ino) in the same sequence as
provided here, but in order to make it easy to understand and reuse, it has been divided
into four sections.

• External libraries

• Internet connectivity (wireless)

• Data publish (MQTT)

• Data subscribe (MQTT)

 External Libraries
 The first section of code is provided in Listing 3-6 . It includes all the external libraries
required to run the code. This sketch has two main dependencies. For Internet
connectivity, you need to include <WiFi.h> (assuming you are using WiFi shield) and, for
MQTT broker communication, you need to include <PubSubClient.h> . You can install
the <PubSubClient.h> library from:

• <PubSubClient.h> : https://github.com/knolleary/
pubsubclient/releases/tag/v2.3

 Listing 3-6. External Libraries

 #include <SPI.h>
 #include <WiFi.h>
 #include <PubSubClient.h>

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are
going to be used for connecting to the Internet . Use the code from Listings 2-7 , 2-8 ,
and Listing 2-9 from Chapter 2 here.

 Data Publish/Subscribe MQTT
 The third section of the code defines variables, constants, and functions that are going
to be used for publishing and subscribing to an MQTT broker. The code publishes and
 subscribes to same topic.

 Define the address and port (default is 1883) of the MQTT broker that you want
Arduino to connect to, as shown in Listing 3-7 . The topic variable defines which topic
on the broker data will be published and subscribed. If you do not have an MQTT broker

https://github.com/knolleary/pubsubclient/releases/tag/v2.3
https://github.com/knolleary/pubsubclient/releases/tag/v2.3
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par60
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par62
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par64
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

46

installed on your machine, you can use the openly available MQTT broker from Eclipse
Foundation (iot.eclipse.org) or Mosquitto (test.mosquitto.org).

 Listing 3-7. MQTT Setup

 // IP address of the MQTT broker
 char server[] = { "iot.eclipse.org" };
 int port = 1883
 char topic[] = { "codifythings/testMessage" };

 As shown in Listing 3-8 , initialize the MQTT client. The callback() function
encapsulates all the details of receiving payload from broker.

 Listing 3-8. MQTT Initialization and Callback Function

 PubSubClient pubSubClient(server, 1883, callback, client);

 void callback(char* topic, byte* payload, unsigned int length)
 {
 // Print payload
 String payloadContent = String((char *)payload);
 Serial.println("[INFO] Payload: " + payloadContent);
 }

 Standard Functions
 Finally, the code in this last section is provided in Listing 3-9 . It implements Arduino’s
standard setup() and loop() functions .

 In the setup() function, the code initializes the serial port and connects to the
Internet. If the MQTT broker is connected, it will subscribe to the codifythings/
testMessage topic. Once successfully subscribed, the code publishes a new message to
the codifythings/testMessage topic. The code subscribes to same topic to which it is
publishing. Therefore, as soon as a message is published, the callback() function will be
called. The loop() function simply waits for new messages from the MQTT broker.

 Listing 3-9. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

47

 //Connect MQTT Broker
 Serial.println("[INFO] Connecting to MQTT Broker");
 if (pubSubClient.connect("arduinoClient"))
 {
 Serial.println("[INFO] Connection to MQTT Broker Successful");

 pubSubClient.subscribe(topic);
 Serial.println("[INFO] Successfully Subscribed to MQTT Topic ");

 Serial.println("[INFO] Publishing to MQTT Broker");
 pubSubClient.publish(topic, "Test Message");
 }
 else
 {
 Serial.println("[INFO] Connection to MQTT Broker Failed");
 }
 }

 void loop()
 {
 // Wait for messages from MQTT broker
 pubSubClient.loop();
 }

 Your Arduino code is complete.

 Final Product
 To test the application, verify and upload the code as discussed in Chapter 1 . Once the
code has been deployed, open the Serial Monitor window. You will start seeing log
messages from Arduino as shown in Figure 3-7 .

 Figure 3-7. MQTT: Publish/subscribe log messages

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 3 ■ COMMUNICATION PROTOCOLS

48

 Summary
 In this chapter, you learned about HTTP and MQTT, two very important, popular, and
lightweight communication protocols used in IoT applications. These protocols are
device agnostic, so they can be used for communication with any type of device or server.
You will use both these protocols extensively in the next chapters.

 PART 2

 Prototypes

51© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_4

 CHAPTER 4

 Complex Flows: Node-RED

 Now that you understand the basics of Arduino, including the different connectivity
options available and the communication protocols, you are going to use that knowledge
to prototype IoT applications.

 This chapter starts with a hypothetical scenario. Imagine that you are responsible
for monitoring noise levels around an animal sanctuary. Whenever noise levels cross
a certain threshold, you are required to send an SMS to the supervisor and log noise
information in a database for future trends analysis. Let’s look at what will it take to
implement this IoT application:

• Connect a sound sensor to Arduino

• Write code that sends an HTTP request to a server whenever
noise levels exceed a threshold

• Create a service on a server that receives HTTP requests

• Write a service to send an SMS to the supervisor

• Write a service to store sensor data in a database

 Looking at these tasks, you can see that a lot of code needs to be developed to
create this application. Most IoT applications require implementation of tasks such as
HTTP request/response, MQTT publish/subscribe, e-mails, SMS, tweets, and storing/
loading data. Engineers at IBM faced this same issue. Every time they had to create a
new prototype they were required to code the flow and tasks from scratch, even though
they were repetitive. So, they developed Node-RED, which is an excellent drag-and-drop
toolkit of reusable code that does these tasks and many more.

 Node-RED is an event-processing engine that helps IoT developers avoid reinventing
the wheel. You still need to write code but the amount of code required is significantly
reduced. Figure 4-1 shows the Node-RED development environment .

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

52

 As you can see, a Node-RED flow is made of nodes. Each node encapsulates a
reusable piece of code that performs a certain task. To create a flow, you simply drag
nodes from palette on the left and drop them on your flow designer. You can find a lot of
nodes pre-built and openly available for use. A flow starts after receiving an input. There
are quite a few standard input sources available, such as HTTP, MQTT, and TCP. A flow
ends with an output task such as a HTTP response, an MQTT publish, a tweet, etc. A flow
is not limited to one input/output node; it can start or end with multiple nodes. Nodes in
between input and output usually transform or manipulate data, for example, converting
an HTTP request into an e-mail body.

 You are going to build a simple project in order to get more acquainted with Node-
RED. The idea of this project is to tweet whenever it is sunny outside. Figure 4-2 displays
all the components that will be used to design this system. The first component is an
Arduino device with a light sensor attached to it. The second component is a Node-RED
flow that is started by Arduino. The final component is Twitter, as your Node-RED flow
will tweet a message whenever a certain threshold is crossed.

 Figure 4-1. Node-RED development environment

 Figure 4-2. Components of the light sensor tweet system

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

53

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read light sensor data from Arduino

• Build a Node-RED flow that receives an HTTP request and tweets
a message

• Send sensor data in an HTTP request to start a Node-RED flow

 Hardware Required
 Figure 4-3 provides a list of all hardware components required for building the light
sensor tweet system.

 Figure 4-3. Hardware required for light sensor tweet system

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

54

 Software Required
 In order to develop the light sensor tweet system, you need following software :

• Arduino IDE 1.6.4 or later version

• Node-RED 0.13.2 or later version

 Circuit
 In this section you are going to build the circuit required for the light sensor tweet system.
This circuit uses an analog light intensity sensor, which returns values between 0 and
1023. Higher values mean higher intensity of light.

 1. Make sure your Arduino is not connected to a power source,
such as a computer via a USB or a battery.

 2. Attach a WiFi shield to the top of Arduino. All the pins should
align.

 3. Using jumper cables, connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 ■ Tip It is a good practice to use red jumper cables for power (+/VNC/5V/3.3V) and black
jumper cables for ground (-/GND).

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the light sensor.

 5. To read the light sensor values, you need to connect a jumper
cable from the analog read port of light sensor to the A0
(analog) port of your Arduino. Your code will use this port to
read the light’s intensity value.

 Your circuit is now complete and it should look similar to Figures 4-4 and 4-5 .

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

55

 Figure 4-4. Circuit diagram of the light sensor tweet system

 Figure 4-5. Actual circuit of the light sensor tweet system

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

56

 Node-RED Flow

 ■ Note This book does not cover the installation of the Node-RED server. You can find
installation instructions at Node-RED’s official web site (http://nodered.org/docs/
getting-started/installation.html).

 In this section you are going to develop a flow in Node-RED that will perform the
following tasks :

• Receive an HTTP request sent from the light sensor

• Prepare a tweet using data sent by the light sensor

• Tweet the message

• Send an HTTP response

 Start your Node-RED server using the node-red command in a terminal window .
Figure 4-6 shows the log messages you will see once the Node-RED server starts.

 Figure 4-6. Startup logs of Node-RED

 In Figure 4-6 , the log message Server now running at http://127.0.0.1:1880
contains the exact URL of the Node-RED server.

http://nodered.org/docs/getting-started/installation.html
http://nodered.org/docs/getting-started/installation.html

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

57

 ■ Note The Node-RED server URL in logs http://127.0.0.1:1880 is the IP of your
local computer and cannot be accessed by Arduino. You will need to replace the local IP
 127.0.0.1 with the network IP of your machine. The IP of the Node-RED server used in this
book was 10.0.0.6 , so the URL you will see is http://10.0.0.6:1880 .

 Enter the Node-RED server URL in a browser to access the designer. The designer
opens up with an empty flow tab called Flow 1. Figure 4-7 shows the default view of the
Node-RED designer.

 Figure 4-7. Default view of the Node-RED designer

 On the left side of designer, as shown in Figure 4-7 , is a palette with all available
nodes. Nodes are grouped into various categories, such as input, output, function, etc.
Figure 4-8 shows the list of input nodes that comes with default installation of Node-RED,
and Figure 4-9 shows the list of output nodes in the default installation.

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

58

 Figure 4-8. Input nodes in the default installation of Node-RED

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

59

 On the right side of the designer, as shown in Figure 4-7 , are the Info and Debug
tabs. The Info tab displays documentation about the currently selected node in the Node
palette or Flow tab. The Debug tab displays log messages and errors generated from the
flow during execution.

 Finally, the Deploy button on the top-right of the designer, as shown in Figure 4-7 ,
lets you deploy and activate your flow changes to the server.

 Now let’s start creating the flow. If this is your first flow in Node-RED, you can use
Flow 1 to create your flow. If you have already created some flows and want to create a
new one, click on the plus (+) button on top-right side to add a new flow. Double-click
the flow tab name to open the properties dialog box shown in Figure 4-10 . Call the new
flow Light Sensor Tweet Flow and then click OK to save your changes.

 Figure 4-9. Output nodes in the default installation of Node-RED

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

60

 Drag and drop the http request input node from the palette in the Flow tab. Your flow
should look similar to Figure 4-11 .

 Figure 4-11. HTTP request node

 Figure 4-12. HTTP request node properties dialog box

 Figure 4-10. Flow properties dialog box

 Double-click the http node to open the properties dialog box, as shown in Figure 4-12 .
Set the method to GET, which specifies that the HTTP request will be sent by the client
(in this case, the light sensor) using a GET method. As discussed in Chapter 3 , the structure
of the request varies based on the method you select. You saw the Arduino code for the GET
and POST methods in Chapter 3 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

61

 Set the URL property to /lightSensorTweet . This URL will be prepended by the
Node-RED server and port. The Node-RED server used in this project is available at
 10.0.0.6:1880 , so Arduino will send data to 10.0.0.6:1880/lightSensorTweet .

 Finally, each node can be given a custom name that describes the task it performs.
Call this node Receive HTTP Request .

 Click OK to make the updates.
 Data coming from the device using HTTP is in string format, so you need to convert

it into a number. Drag and drop a function node and place it in the Flow tab after the
Receive HTTP Request node. A function node lets you write code to manipulate payload.
Your flow should look similar to Figure 4-13 at this point.

 Figure 4-13. Function node

 Double-click the function node to open the properties dialog, as shown in
Figure 4-14 . Change the name to Convert to Number . Update the code inside function
as provided in Listing 4-1 . Click OK to save your changes. Connect your Receive HTTP
Request and Convert to Number nodes.

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

62

 Listing 4-1. Code for Converting a String to a Number

 msg.payload.requestVar = parseInt(msg.payload.requestVar);
 return msg;

 At this point, your light sensor will send readings every few seconds whether it’s
sunny or not. So within the Node-RED flow, you need to add a rule to check if the sensor
value has crossed a certain threshold and only tweet when that threshold has been
crossed.

 Figure 4-14. Function node properties dialog box

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

63

 You can add this threshold check within Arduino code as well, but consider a real-
life implementation of this same project. Instead of tweeting you can also use same logic
to build an application that conserves energy by opening window blinds and turning
lights inside the house off if it is sunny outside. If you hard-code such checks in Arduino
code, then individual users might not be able to set their light preferences, because they
cannot directly update the code. Taking such logic away from sensors will enable you to
build something that can be customized by individual users.

 Drag and drop a switch node from the function category and place it in the Flow tab
after the Convert to Number node. Your flow should look similar to Figure 4-15 at this
point.

 Figure 4-15. Switch node

 A switch node lets you follow a certain path in the flow based on a condition.
Double-click the switch node to open its properties dialog box and set the conditions
shown in Figure 4-16 .

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

64

 Change the name to Check Threshold . By default, there will be only one path, so
click on the + Rule button to add a new path. If the sensor value is greater than 750, it will
follow path 1; otherwise, it will follow path 2. Path 2 will not check any conditions, so you
can change it to otherwise from the dropdown.

 Node-RED keeps all input information in msg.payload . You will be sending the
sensor value in requestVar from Arduino, which is why the condition checks msg.
payload.requestVar .

 Connect your Convert to Number and Check Threshold nodes.
 You are going to use the sensor value to create a tweet message. Drag and drop a function

node on to the flow diagram. Place it after the Check Threshold node, as shown in Figure 4-17 .

 Figure 4-16. Switch node properties dialog box

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

65

 Double-click the function node to open the properties dialog box, as shown in
Figure 4-18 . Name it Set Tweet Message . Update the code inside the function node, as
shown in Listing 4-2 . Click OK to save your changes.

 Figure 4-17. Function node

 Figure 4-18. Function node properties dialog box

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

66

 Listing 4-2. Code for Creating the Tweet

 msg.payload = "Sunny Outside! " + msg.payload.requestVar + " #IoT";
 return msg;

 Connect the Set Tweet Message node to the first path of the Check Threshold switch
node. This connection will make sure that whenever a light sensor value crosses the
threshold of 750, the flow follows path 1 that tweets.

 Next, drag and drop a Tweet node on to the flow diagram after the Set Tweet Message
node, as shown in Figure 4-19 .

 Figure 4-19. Tweet node

 For Node-RED to be able to tweet, you need to configure your Twitter credentials.
Double-click the twitter out node to open the properties dialog box shown in Figure 4-20 .
If you already have your Twitter credentials configured in Node-RED, select them from
the Twitter dropdown. Otherwise, select the Add New Twitter- Credentials option from
the dropdown and click on the Edit/Pencil icon to start the configuration steps.

 Figure 4-20. Add new Twitter credentials

 Figure 4-21 shows the next dialog box that appears. Click on the Click Here to
 Authenticate with Twitter button.

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

67

 On the next screen , shown in Figure 4-22 , enter your Twitter username and password
and click the Authorize App button to grant Node-RED access to your Twitter account.

 Figure 4-22. Authorize Node-RED to use your Twitter account

 Figure 4-21. Authenticate the Twitter account

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

68

 Once the authorization process is complete, click on the Add button in the dialog
box shown in Figure 4-23 .

 Figure 4-23. Add the authorized Twitter account to the flow

 Figure 4-24. Select the authorized Twitter credentials

 Figure 4-24 shows the dialog box that you will be presented with next; it’s the same
dialog box where you started the Twitter configuration process. Click OK to complete the
Twitter configuration.

 Connect the Tweet node to the Set Tweet Message node .
 Finally, add an HTTP response node to your flow under the Twitter node. Your flow

should look similar to Figure 4-25 .

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

69

 The HTTP response node will simply send msg.payload back to the client in the
JSON format. Change the name of this node to Send HTTP Response .

 Connect the Send HTTP Response node to the second path of the Check Threshold
switch node and also to the Set Tweet Message. Your final flow should look similar to
Figure 4-26 .

 Figure 4-25. HTTP response node

 Figure 4-26. Completed Node-RED flow

 Code (Arduino)
 Next, you are going to write code for connecting Arduino to the Internet using WiFi,
reading light sensor data, and sending it to the Node-RED server as an HTTP request.

 Start your Arduino IDE and either type the code provided here or download it from
book’s site and open it. All the code goes into a single source file (*.ino), but in order to
make it easy to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• HTTP (GET)

• Standard functions

 External Libraries
 The first section of the code, as provided in Listing 4-3 , includes all the external libraries
required to run the code. Since you are connecting to the Internet wirelessly, the main
dependency of code is on <WiFi.h> .

 Listing 4-3. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

70

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants and functions that are going
to be used for connecting to the Internet . Use the code from Listings 2-7 , 2-8 , and 2-9
(Chapter 2) here.

 Read Sensor Data
 The third section of the code is provided in Listing 4-4 . It defines variables, constants, and
functions that are going to be used for reading sensor data.

 The readSensorData() function reads data from Analog Pin A0, and the result is
between 0 and 1023. The greater the value returned, the brighter the light source. The
light sensor value is assigned to the lightValue variable.

 Listing 4-4. Code for the Reading Light Sensor Data

 int lightValue;

 void readSensorData()
 {
 //Read Light Sensor Value
 lightValue = analogRead(A0);

 Serial.print("[INFO] Light Sensor Reading: ");
 Serial.println(lightValue);
 }

 Data Publish
 The fourth section of the code is provided in Listing 4-5 . It defines variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET that you developed in
Chapter 3 .

 The main modification in this code is its ability to open and close a connection to
the server repeatedly. Apart from that, make sure to change the server and port values to
your Node-RED server’s values. The other changes include passing a lightValue variable
in the request and invoking the /lightSensorTweet URL.

 Listing 4-5. Code for Starting the Node-RED Flow Using HTTP Request

 //IP address of the HTTP server
 char server[] = { "10.0.0.6" };
 int port = 1880 ;

 unsigned long lastConnectionTime s= 0;
 const unsigned long postingInterval = 10L * 1000L;

http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par60
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par62
http://dx.doi.org/10.1007/978-1-4842-1940-9_2# Par64
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

71

 void doHttpGet()
 {
 // Read all incoming data (if any)
 while (client.available())
 {
 char c = client.read();
 Serial.write(c);
 }

 Serial.println();
 Serial.println("---");
 if (millis() - lastConnectionTime > postingInterval)
 {
 client.stop();

 //Read sensor data

 readSensorData();

 // Prepare data or parameters that need to be posted to server
 String requestData = "requestVar=" + String(lightValue);

 Serial.println("[INFO] Connecting to Server");

 // Check if a connection to server:port was made
 if (client.connect(server, port))
 {
 Serial.println("[INFO] Server Connected - HTTP GET Started");

 // Make HTTP GET request
 client.println("GET /lightSensorTweet?" + requestData + " HTTP/1.1");
 client.println("Host: " + String(server));
 client.println("Connection: close");
 client.println();

 lastConnectionTime = millis();

 Serial.println("[INFO] HTTP GET Completed");
 }
 else
 {
 // Connection to server:port failed
 Serial.println("[ERROR] Connection failed");
 }
 }
 }

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

72

 Standard Functions
 Finally, the code in the fifth and last section is provided in Listing 4-6 . It implements
Arduino’s standard setup() and loop() functions .

 The setup() function initializes the serial port and connects to the Internet. While
it’s in the loop() function, it calls doHttpGet() at an interval of 5,000 milliseconds. The
 doHttpGet() function reads the sensor data and sends this sensor value to Node-RED in
an HTTP request.

 Listing 4-6. Code for the Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();
 }

 void loop()
 {
 // Make HTTP GET request
 doHttpGet();

 delay(5000);

 }

 Your Arduino code is now complete.

 Final Product
 To test the application, make sure your Node-RED server is up and running with the flow
 deployed .

 Also verify and upload the Arduino code, as discussed in Chapter 1 . Once the code
has been uploaded, open the Serial Monitor window. You will start seeing log messages
similar to the ones shown in Figure 4-27 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 4 ■ COMPLEX FLOWS: NODE-RED

73

 Figure 4-27. Log messages from the light sensor tweet system

 Figure 4-28. Tweet from the light sensor tweet system

 Arduino will be continuously sending data to the server, so as soon as you put the
sensor in bright light, the Node-RED flow condition will become true and a tweet will
be sent. This is shown in Figure 4-28 . There is no condition to send this once, so the
application will keep sending tweets unless the sensor is moved away from bright light or
turned off.

 Summary
 In this chapter you learned about Node-RED and developed a simple flow that is initiated
by Arduino. This flow publishes a tweet whenever a certain threshold value is crossed.

 You can utilize hundreds of readily available nodes in Node-RED to expedite your
IoT application development.

75© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_5

 CHAPTER 5

 IoT Patterns: Realtime Clients

 An important pattern of IoT is the ability to sense data and make it available to users in
realtime, such as with home monitoring solutions, perimeter security applications, and
inventory alerts.

 In this chapter, you are going to build an example of this pattern, an intrusion
detection system . Figure 5-1 shows components of an intrusion detection system. The
first component is an Arduino device that has a motion sensor attached to it. The second
component is an MQTT broker. You will use the publish-subscribe model of MQTT for
sending intrusion detection notifications in realtime (for details, see Chapter 3). The final
component of your IoT application is an Android app that subscribes to the MQTT broker
and shows an alert notification to users whenever Arduino detects an intrusion and
publishes a message to the MQTT broker.

 Figure 5-1. Components of the intrusion detection system

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

76

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read motion sensor data from Arduino

• Publish sensor data to an MQTT broker

• Build an Android app that subscribes to an MQTT broker

• Display a notification in the app whenever a new message is
published to the MQTT broker

 Hardware Required
 Figure 5-2 provides a list of all hardware components required for building the intrusion
detection system.

 Figure 5-2. Hardware required for the intrusion detection system

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

77

 Software Required
 In order to develop the intrusion detection system, you need the following software :

• Arduino IDE 1.6.4 or later version

• Android Studio 1.5.1 or later

 Circuit
 In this section, you are going to build the circuit required for the intrusion detection
system. This circuit uses an HC-SR501 motion sensor to detect intrusions.

 1. Make sure your Arduino is not connected to a power source,
such as to a computer via a USB or a battery.

 2. Attach a WiFi shield to the top of Arduino. All the pins
should align.

 3. Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the motion sensor.

 5. To read motion sensor values, you need to connect a jumper
cable from signal port of the motion sensor (usually the
middle port) to digital port 3 of your Arduino. You can use
other digital ports as well, but if you do, make sure to change
the Arduino code appropriately.

 Your circuit is now complete and it should look similar to Figures 5-3 and 5-4 .

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

78

 Figure 5-3. Circuit diagram of the intrusion detection system

 Figure 5-4. Actual circuit of the intrusion detection system

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

79

 Code (Arduino)
 Next you are going to write code for connecting Arduino to the Internet using WiFi,
reading motion sensor data, and publishing it to an MQTT broker.

 Start your Arduino IDE and type the code provided here or download it from book’s
site and open it. All the code goes into a single source file (*.ino), but in order to make it
easy to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• MQTT (publish)

• Standard functions

 External Libraries
 The first section of code is provided in Listing 5-1 . It includes all external libraries
required to run the code. This sketch has two main dependencies. For Internet
connectivity, you need to include the <WiFi.h> (assuming you are using a WiFi shield)
and for MQTT broker communication, you need to include <PubSubClient.h> .

 Listing 5-1. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <PubSubClient.h>

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(from Chapter 2) here.

 Read Sensor Data
 The third section of code is shown in Listing 5-2 . It defines variables, constants, and
functions that are going to be used for reading the sensor data.

 Listing 5-2. Variables for Reading Motion Sensor Data

 int calibrationTime = 30;
 long unsigned int lowIn;
 long unsigned int pause = 5000;
 boolean lockLow = true;
 boolean takeLowTime;
 int pirPin = 3;

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

80

 Listing 5-3 provides the code for the calibrateSensor() function , which waits for
the motion sensor to calibrate properly. The sensor can take between 5 and 15 seconds
to calibrate, so the code allows 30 seconds for sensor to calibrate. Once calibration is
complete, the motion sensor is active and can start detection. If you do not give it enough
time to calibrate, the motion sensor might return incorrect readings.

 Listing 5-3. Function to Calibrate the Motion Sensor

 void calibrateSensor()
 {
 pinMode(pirPin, INPUT);
 digitalWrite(pirPin, LOW);

 Serial.println("[INFO] Calibrating Sensor ");

 for(int i = 0; i < calibrationTime; i++)
 {
 Serial.print(".");
 delay(1000);
 }

 Serial.println("");
 Serial.println("[INFO] Calibration Complete");
 Serial.println("[INFO] Sensor Active");
 delay(50);
 }

 The readSensorData() function in Listing 5-4 reads data from Digital Pin 3 and the
result is either HIGH or LOW . HIGH means motion was detected and LOW means there was no
motion or the motion stopped. The additional condition if(lockLow) is there to avoid
publishing too many messages to the MQTT broker for the same motion.

 Listing 5-4. Code for Reading Motion Sensor Data

 void readSensorData()
 {
 if(digitalRead(pirPin) == HIGH)
 {
 if(lockLow)
 {
 lockLow = false;
 Serial.print("[INFO] Activity Detected @ ");
 Serial.print(millis()/1000);
 Serial.print(" secs");
 Serial.println("");

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

81

 // Publish sensor data to MQTT broker
 publishSensorData();

 delay(50);

 }

 takeLowTime = true;
 }

 if(digitalRead(pirPin) == LOW)
 {
 if(takeLowTime)
 {
 lowIn = millis();
 takeLowTime = false;
 }

 if(!lockLow && millis() - lowIn > pause)
 {
 lockLow = true;

 Serial.print("[INFO] Activity Ended @ "); //output
 Serial.print((millis() - pause)/1000);
 Serial.print(" secs");
 Serial.println("");

 delay(50);
 }
 }
 }

 Data Publish
 The fourth section of the code defines variables, constants, and functions that are going
to be used for publishing the data to an MQTT broker.

 This is the same code that you saw in Chapter 3 . You do not need to make any
changes for the code to work, but it is recommended that you customize some of the
messages so that they do not get mixed up with someone else using the same values.
All values that can be changed have been highlighted in bold in Listing 5-5 . If you are
using your own MQTT server, make sure to change the server and port values. The two
recommended changes include value of the topic variable and the name of the client
that you need to pass while connecting to the MQTT broker.

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

82

 Listing 5-5. Code for Publishing an MQTT Message

 // IP address of the MQTT broker
 char server[] = { "iot.eclipse.org" };
 int port = 1883 ;
 char topic[] = { " codifythings/intrusiondetection" };

 void callback(char* topic, byte* payload, unsigned int length)
 {
 //Handle message arrived
 }

 PubSubClient pubSubClient(server, port, 0, client);

 void publishSensorData()
 {
 // Connect MQTT Broker
 Serial.println("[INFO] Connecting to MQTT Broker");

 if (pubSubClient.connect("arduinoIoTClient"))
 {
 Serial.println("[INFO] Connection to MQTT Broker Successful");
 }
 else
 {
 Serial.println("[INFO] Connection to MQTT Broker Failed");
 }

 // Publish to MQTT Topic
 if (pubSubClient.connected())
 {
 Serial.println("[INFO] Publishing to MQTT Broker");
 pubSubClient.publish(topic, "Intrusion Detected");
 Serial.println("[INFO] Publish to MQTT Broker Complete");
 }
 else
 {
 Serial.println("[ERROR] Publish to MQTT Broker Failed");
 }

 pubSubClient.disconnect();
 }

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

83

 Standard Functions
 The code in the fifth and final section implements Arduino’s standard setup() and
 loop() functions .

 In the setup() function, you initialize the serial port, connect to the Internet, and
calibrate the sensor for correct readings, as shown in Listing 5-6 .

 Listing 5-6. Code for Standard Arduino Function—setup()

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();

 // Calibrate motion sensor
 calibrateSensor();
 }

 In the loop() function, you only need to call the readSensorData() function , as
shown in Listing 5-7 .

 Listing 5-7. Code for Standard Arduino Function—loop()

 void loop()
 {
 //Read sensor data
 readSensorData();
 }

 Your Arduino code is now complete.

 Code (Android)
 This section provides instructions for developing an Android app that will fulfill the
following two requirements:

• Display a notification in realtime whenever motion is detected by
the sensor

• Create a simple screen where app users can see when last motion
was detected

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

84

 Project Setup
 In this section, you are going to create a new project in Android Studio to develop an
app. Android Studio is the official IDE for Android platform development and can be
downloaded from http://developer.android.com/sdk/index.html .

 Start Android Studio and create a new Android Studio project.
 If you are on the Quick Start screen, as shown in Figure 5-5 , click on the Start a New

Android Studio Project option to create a new project.

 Figure 5-5. Create new project from the Quick Start screen

http://developer.android.com/sdk/index.html

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

85

 Figure 5-7 shows the new project configuration screen. Enter a name for the new
project, for example, Intrusion Detection System . Enter your company or personal
domain name. This will be used by Android Studio to define the package hierarchy of the
Java code. Click Next.

 Figure 5-6. Create new project from the Android Studio menu bar

 Figure 5-7. New project configuration

 If you are already in Android Studio, as shown in Figure 5-6 , choose File ➤ New ➤
New Project to create a new Android Studio project .

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

86

 ■ Note As a norm, package hierarchy is the domain name in reverse. Therefore,
 codifythings.com becomes com.codifythings.<packagename> .

 For this project, you are only going to run your app on an Android phone or tablet, so
select Phone and Tablet for the target platform, as shown in Figure 5-8 .

 Figure 5-8. Android device selection screen

 Your app requires a screen to display the time when the last intrusion was detected.
To accomplish this, you need to create an activity. From the activity template selection
screen, select Blank Activity; see Figure 5-9 . Click Next.

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

87

 Leave the default values for Activity Name, Layout Name, Title, and Menu Resource
Name, as shown in Figure 5-10 . The rest of the chapter will reference them with these
same names .

 Figure 5-9. Activity template selection screen

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

88

 Click Finish. Android Studio will create quite a few folders and files , as shown in
Figure 5-11 . These are the most important ones:

• app > manifests > AndroidManifest.xml —A mandatory file
required by the system that contains application information,
such as required permissions, screens and services, etc. Most of
the elements in this file are system-generated, but you can update
it manually as well.

• app > java > *.* - package-hierarchy —Contains all Java
code and unit tests.

• app > res > layout > *.xml —Contains layout XMLs for all
screens. Determines how each screen will look, fonts, colors,
position, etc. You can access any layout XML in Java using the
auto-generated Java class R, such as R.layout.activity_main .
To access an individual element in layout XML, you can use the
syntax R.id.updated_field .

 Figure 5-10. Activity customization screen

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

89

 Screen Layout
 To start designing the screen layout , click on activity_main.xml in the App ➤ Res ➤
Layout folder. This will open the Main Activity screen. The default screen in Design view
will look like Figure 5-12 .

 Figure 5-11. Default folders generated by Android Studio

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

90

 There are two options to customize screen layout. You can either use the drag-and-
drop feature in Design view or manually edit the XML file in Text view. We are going to
directly edit the XML in Text view.

 Switch to Text view and you will be able to see the screen layout in XML, as shown
in Listing 5-8 . This layout file acts as a container for other sub-layout files. As you can
see in Listing 5-8 , content_main is included in the activity_main.xml layout file.

 Listing 5-8. Default Text View of activity_main.xml

 < <?xml version="1.0" encoding="utf-8"?>
 <android.support.design.widget.CoordinatorLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="com.codifythings.intrusiondetectionsystem.MainActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"

 Figure 5-12. Default development view of Android Studio

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

91

 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>

 <include layout="@layout/content_main" />

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 android:src="@android:drawable/ic_dialog_email" />

 </android.support.design.widget.CoordinatorLayout>

 The activity_main.xml file adds a toolbar and a floating action button on the
view. None of these widgets is required in this app, so you will remove those two. After
removing the toolbar and floating action button , activitiy_main.xml should look
similar to Listing 5-9 .

 Listing 5-9. activity_main.xml Without the Toolbar and Floating Action Button

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.design.widget.CoordinatorLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="com.codifythings.intrusiondetectionsystem.MainActivity">

 <include layout="@layout/content_main" />

 </android.support.design.widget.CoordinatorLayout>

 It is recommended to add custom content in the content_main.xml file. Listing 5-10
shows the default code of content_main.xml .

 Listing 5-10. Default Text View of content_main.xml

 <?xml version="1.0" encoding="utf-8"?>
 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

92

 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.codifythings.intrusiondetectionsystem.MainActivity"
 tools:showIn="@layout/activity_main">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />
 </RelativeLayout>

 You are going to start by first removing the existing TextView element for Hello
World shown in Listing 5-11 .

 Listing 5-11. Remove Default Element from content_main.xml

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 Next, add the ImageView element provided in Listing 5-12 to content_main.xml . This
will display an intruder image.

 Listing 5-12. Add an ImageView element to content_main.xml

 <ImageView
 android:id="@+id/intrusion_icon"
 android:src="@drawable/intrusion_icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 />

 The element references an image called intrusion_icon , so you need to paste an
 image named intrusion_icon. png to the App ➤ Res ➤ Drawable folder, as shown in
Figure 5-13 . You can upload your own image or download the one in the example from
 https://openclipart.org/detail/212125/walking .

https://openclipart.org/detail/212125/walking

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

93

 As provided in Listing 5-13 , add a second element TextView . This will display the
time when the last motion was detected.

 Listing 5-13. Add a TextView Element to content_main.xml

 <TextView
 android:id="@+id/updated_field"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_below="@+id/intrusion_icon"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:textSize="20sp"
 android:textColor="#000000"
 android:text="Intrusion Detected @ "
 />

 Your app’s screen layout is ready, and it should look similar to Figure 5-14 .

 Figure 5-13. Dialog box for adding an image to an app

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

94

 Screen Logic
 Next you are going to add logic to the screen that will make it dynamic and create a
notification when a new message is received from the sensor.

 Open the MainActivity.java file from the App ➤ Java ➤ com.codifythings.
intrusiondetectionsystem package. By default, there will be three methods auto-
generated by Android Studio, as shown in Listing 5-14 .

 Listing 5-14. Default Code for MainActivity.java

 public class MainActivity extends AppCompatActivity {
 {
 @Override
 protected void onCreate(Bundle savedInstanceState) { ... }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) { ... }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) { ... }
 }

 Figure 5-14. Final screen layout of app

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

95

 For now you are going to add two new methods. The first method is provided in
Listing 5-15 . It’s updateView(...) and will update the screen with new messages from the
sensor.

 Listing 5-15. Add the updateView(...) Method to MainActivity.java

 public void updateView(String sensorMessage) {
 try {
 SharedPreferences sharedPref = getSharedPreferences(
 "com.codifythings.motionsensorapp.PREFERENCE_FILE_KEY",
 Context.MODE_PRIVATE);

 if (sensorMessage == null || sensorMessage == "") {
 sensorMessage = sharedPref.getString("lastSensorMessage",
 "No Activity Detected");
 }

 final String tempSensorMessage = sensorMessage;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 TextView updatedField = (TextView)
 findViewById(R.id.updated_field);
 updatedField.setText(tempSensorMessage);
 }
 });

 SharedPreferences.Editor editor = sharedPref.edit();
 editor.putString("lastSensorMessage", sensorMessage);
 editor.commit();
 } catch (Exception ex) {
 Log.e(TAG, ex.getMessage());
 }
 }

 The second method is provided in Listing 5-16 . It is createNotification(...) and
will create a realtime notification on a phone or tablet to alert the users.

 Listing 5-16. Add the createNotification(...) Method to MainActivity.java

 public void createNotification(String notificationTitle,
 String notificationMessage) {
 NotificationCompat.Builder mBuilder =
 new NotificationCompat.Builder(getApplicationContext())
 .setSmallIcon(R.drawable.notification_template_icon_bg)
 .setContentTitle(notificationTitle)
 .setContentText(notificationMessage);

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

96

 // Creates an explicit intent for an Activity in your app
 Intent resultIntent = new Intent(getApplicationContext(),
 MainActivity.class);

 // The stack builder object will contain an artificial back
 // stack for the started Activity. This ensures that navigating
 // backward from the Activity leads out of your application to the
 // Home screen.
 TaskStackBuilder stackBuilder =
 TaskStackBuilder.create(getApplicationContext());

 // Adds the back stack for the Intent (but not the Intent itself)
 stackBuilder.addParentStack(MainActivity.class);

 // Adds the Intent that starts the Activity to the top of the stack
 stackBuilder.addNextIntent(resultIntent);

 PendingIntent resultPendingIntent =
 stackBuilder.getPendingIntent(0,
 PendingIntent.FLAG_UPDATE_CURRENT);

 mBuilder.setContentIntent(resultPendingIntent);

 NotificationManager mNotificationManager = (NotificationManager)

 getSystemService(Context.NOTIFICATION_SERVICE);

 // mId allows you to update the notification later on.
 mNotificationManager.notify(100, mBuilder.build());
 }

 MQTT Client
 The final piece of your app is the MQTT client . It will connect to an MQTT server and
subscribe to the codifythings/intrusiondetection topic.

 In order to communicate with an MQTT broker, your app requires MQTT libraries.
Therefore, download the following two libraries:

• MQTT client library: https://eclipse.org/paho/clients/java/

• Android service library: https://eclipse.org/paho/clients/
android/

 Once you have downloaded both JAR files, switch the view of Android Studio from
Android to Project , as shown in Figure 5-15 .

https://eclipse.org/paho/clients/java/
https://eclipse.org/paho/clients/android/
https://eclipse.org/paho/clients/android/

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

97

 Figure 5-16. Import library to resolve dependencies

 Expand IntrusionDetectionSystem ➤ App and paste both libraries into the libs
folder. Figure 5-16 shows the libs folder where both libraries need to be pasted.

 Figure 5-15. Switch the perspective from Android to Project

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

98

 Figure 5-17 shows the dialog box that will be presented when you paste the
MQTT library.

 Figure 5-18 shows the dialog box that will be presented when you paste the Android
 Service library .

 As shown in Figure 5-19 , right-click on the newly added libraries and click on the
Add As Library option. You can do this for both libraries individually or select both and
then add them as libraries.

 Figure 5-17. Import MQTT library

 Figure 5-18. Import Android Service library

 Figure 5-19. Add the imported files as libraries

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

99

 As shown in Figure 5-20 , select App from the Add to Module option . Click OK and
switch back to the Android view.

 Figure 5-20. Add libraries to app module

 Next you are going to write code to communicate with the MQTT broker. As shown in
Figure 5-21 , right-click on the top-level package (in the example, it is com.codifythings.
intrusiondetectionsystem) and choose New ➤ Java Class.

 Enter MQTTClient in the Name field and click OK, as shown in Figure 5-22 .

 Figure 5-21. Add a new class

 Figure 5-22. Enter new class name

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

100

 Android Studio will generate an empty class file with the default code , as shown in
Listing 5-17 .

 Listing 5-17. Default Code for MQTTClient.java

 public class MQTTClient
 {
 ...
 }

 Next you are going to add code to the MQTTClient that will connect and subscribe to an
MQTT broker, and whenever a new message is received to the subscribed topic, code will
update the app’s user interface. Listing 5-18 provides the complete code for MQTTClient .

 Listing 5-18. Complete Code of MQTTClient.java

 package com.codifythings.intrusiondetectionsystem;

 import android.util.Log;

 import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;
 import org.eclipse.paho.client.mqttv3.MqttCallback;
 import org.eclipse.paho.client.mqttv3.MqttClient;
 import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
 import org.eclipse.paho.client.mqttv3.MqttException;
 import org.eclipse.paho.client.mqttv3.MqttMessage;
 import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

 import java.text.DateFormat;
 import java.util.Date;

 public class MQTTClient {
 private static final String TAG = "MQTTClient";
 private String mqttBroker = "tcp://iot.eclipse.org:1883";
 private String mqttTopic = "codifythings/intrusiondetection";
 private String deviceId = "androidClient";

 // Variables to store reference to the user interface activity.
 private MainActivity activity = null;

 public MQTTClient(MainActivity activity) {
 this.activity = activity;
 }

 public void connectToMQTT() throws MqttException {
 // Request clean session in the connection options.
 Log.i(TAG, "Setting Connection Options");
 MqttConnectOptions options = new MqttConnectOptions();
 options.setCleanSession(true);

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

101

 // Attempt a connection to MQTT broker using the values of
 // connection variables.
 Log.i(TAG, "Creating New Client");
 MqttClient client = new MqttClient(mqttBroker, deviceId, new
 MemoryPersistence());
 client.connect(options);

 // Set callback method name that will be invoked when a new message
 // is posted to topic, MqttEventCallback class is defined later in
 // the code.
 Log.i(TAG, "Subscribing to Topic");
 client.setCallback(new MqttEventCallback());

 // Subscribe to topic "codifythings/intrusiondetection", whenever a
 // new message is published to this topic
 // MqttEventCallback.messageArrived will be called.
 client.subscribe(mqttTopic, 0);
 }

 // Implementation of the MqttCallback.messageArrived method, which is
 // invoked whenever a new message is published to the topic
 // "codifythings/intrusiondetection".
 private class MqttEventCallback implements MqttCallback {
 @ Override
 public void connectionLost(Throwable arg0) {
 // Do nothing
 }

 @Override
 public void deliveryComplete(IMqttDeliveryToken arg0) {
 // Do nothing
 }

 @Override
 public void messageArrived(String topic, final MqttMessage msg)
 throws Exception {
 Log.i(TAG, "New Message Arrived from Topic - " + topic);

 try {
 // Append the payload message "Intrusion Detected"
 // with "@ Current Time".
 DateFormat df = DateFormat.getDateTimeInstance();
 String sensorMessage = new String(msg.getPayload()) + " @ "
 + df.format(new Date());

 // User is not going to be on the screen all the time,
 // so create a notification.
 activity.createNotification("Intrusion Detection System",
 sensorMessage);

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

102

 // Update the screen with newly received message.
 activity.updateView(sensorMessage);
 } catch (Exception ex) {
 Log.e(TAG, ex.getMessage());
 }
 }
 }
 }

 In Listing 5-18 , variable TAG will be used while logging so that you can identify your
app’s messages in the log .

 The mqttBroker , mqttTopic , and deviceId variables define the MQTT broker your
app will connect to, the topic that your app is subscribing to, and the device ID that will
show up on the server when your app successfully connects.

 The activity variable is defined to store a reference of user interface activity so that
you can directly make updates.

 The code for connecting and subscribing to the MQTT broker goes in the
 connectToMQTT() method . Initialize a new MqttClient and connect it to the iot.
eclipse.org:1883 server with a clean session. You need to execute your code whenever
a new message is published to the codifythings/intrusiondetection queue, so first
set the callback method by providing a new instance of MqttEventCallback and then
subscribe to the topic codifythings/intrusiondetection .

 Once you subscribe to a topic and set a callback method , the MQTT library will
always call your MqttCallback.messageArrived method. So now you need to provide
implementation that specifies what to do when a new message has arrived.

 Your app has two requirements. It needs to create a new notification for users and
to update the screen with the latest time the activity was detected. You have already
implemented these two methods in the MainActivity class, so you are going to use the
activity reference and call the createNotification and updateView methods .

 Both the screen and MQTT client are now ready, but you have not yet added the
code in the MainActivity class that actually starts the MQTTClient whenever the app
is created. So update the onCreate() method of the MainActivity class to update the
screen with an empty string and start the MQTTClient . Since you removed toolbar and
floating action button from activity_main.xml , you will need to remove the reference in
the onCreate method as well. The final code for MainActivity is provided in Listing 5-19 ,
with the changes in the onCreate() method highlighted.

 Listing 5-19. Complete Code of MainActivity.java

 package com.codifythings.intrusiondetectionsystem;

 import android.app.NotificationManager;
 import android.app.PendingIntent;
 import android.app.TaskStackBuilder;
 import android.content.Context;
 import android.content.Intent;
 import android.content.SharedPreferences;
 import android.os.Bundle;

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

103

 import android.support.v4.app.NotificationCompat;
 import android.support.v7.app.AppCompatActivity;
 import android.util.Log;
 import android.view.Menu;
 import android.view.MenuItem;
 import android.widget.TextView;

 public class MainActivity extends AppCompatActivity {
 private static final String TAG = "MainActivity";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 updateView("");

 try
 {
 MQTTClient client = new MQTTClient(this);
 client.connectToMQTT();
 }
 catch(Exception ex)
 {
 Log.e(TAG, ex.getMessage());
 }
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it
 // is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

104

 return super.onOptionsItemSelected(item);

 }

 //Custom function that renders view
 public void updateView(String sensorMessage) {
 try {
 SharedPreferences sharedPref = getSharedPreferences(
 "com.codifythings.motionsensorapp.PREFERENCE_FILE_KEY",
 Context.MODE_PRIVATE);

 if (sensorMessage == null || sensorMessage == "") {
 sensorMessage = sharedPref.getString("lastSensorMessage",
 "No Activity Detected");
 }

 final String tempSensorMessage = sensorMessage;

 runOnUiThread(new Runnable() {
 @Override
 public void run() {

 TextView updatedField = (TextView)
 findViewById(R.id.updated_field);
 updatedField.setText(tempSensorMessage);
 }
 });

 SharedPreferences.Editor editor = sharedPref.edit();
 editor.putString("lastSensorMessage", sensorMessage);
 editor.commit();
 } catch (Exception ex) {
 Log.e(TAG, ex.getMessage());
 }
 }

 public void createNotification(String notificationTitle,
 String notificationMessage) {
 NotificationCompat.Builder mBuilder =
 new NotificationCompat.Builder(getApplicationContext())
 .setSmallIcon(R.drawable.notification_template_icon_bg)
 .setContentTitle(notificationTitle)
 .setContentText(notificationMessage);

 // Creates an explicit intent for an Activity in your app
 Intent resultIntent = new Intent(getApplicationContext(),
 MainActivity.class);

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

105

 // The stack builder object will contain an artificial back
 // stack for the started Activity. This ensures that navigating
 // backward from the Activity leads out of your application to the
 // Home screen.
 TaskStackBuilder stackBuilder =
 TaskStackBuilder.create(getApplicationContext());

 // Adds the back stack for the Intent (but not the Intent itself)
 stackBuilder.addParentStack(MainActivity.class);
 // Adds the Intent that starts the Activity to the top of the stack
 stackBuilder.addNextIntent(resultIntent);

 PendingIntent resultPendingIntent =
 stackBuilder.getPendingIntent(0,
 PendingIntent.FLAG_UPDATE_CURRENT);

 mBuilder.setContentIntent(resultPendingIntent);

 NotificationManager mNotificationManager = (NotificationManager)

 getSystemService(Context.NOTIFICATION_SERVICE);

 // mId allows you to update the notification later on.
 mNotificationManager.notify(100, mBuilder.build());
 }
 }

 Finally, you need to update AndroidManifest.xml under the App ➤ Manifests folder.
Your app uses MqttService in the backend, so you need to add a reference to the service.
Your app also needs to access the Internet for connecting to the MQTT broker, so add the
Internet permissions in AndroidManifest.xml as well. Listing 5-20 provides the code that
needs to be added to AndroidManifest.xml .

 Listing 5-20. Add App Permissions in AndroidManifest.xml

 <!-- MQTT Service -->
 <service android:name="org.eclipse.paho.android.service.MqttService" >
 </service>

 <uses-permission android:name="android.permission.INTERNET" />

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

106

 In Android Studio, deploy and run the app on your Android device by choosing Run ➤
Run ‘App’ from the menu bar, as shown in Figure 5-24 .

 Figure 5-23. Log messages from the intrusion detection system

 Figure 5-24. Deploy and run the app from Android Studio

 The Final Product
 To test the application, verify and upload the Arduino code, as discussed in Chapter 1 .
Once the code has been uploaded, open the Serial Monitor window . You will start seeing
log messages similar to ones shown in Figure 5-23 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

107

 Figure 5-25. Select the device to deploy and run app

 If you have an Android device connected to your computer, Android Studio will
prompt you to use your existing running device or launch a new emulator to run the app.
As shown in Figure 5-25 , select the emulator or device that you want to test your app on
and click OK.

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

108

 Figure 5-26. Default view of the Android app

 Open the device where your app was deployed. If your app is not already running,
locate your app on the device and run it. Figure 5-26 shows the default view of your app.

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

109

 Figure 5-27. Intrusion notification from the Android app

 Make some movement in front of your motion sensor. As soon as the sensor detects
the motion, a message will be published to the MQTT broker and your app will display a
notification, as shown in Figure 5-27 .

CHAPTER 5 ■ IOT PATTERNS: REALTIME CLIENTS

110

 Summary
 In this chapter, you learned about realtime clients, a very important pattern of IoT
applications. You developed an intrusion detection system with an Android app as a
client to illustrate this pattern.

 The Android app is just one example and clients can be of many different types,
including iOS, wearables, web-based apps, etc.

 Figure 5-28. Intrusion details in Android app

 Click on the notification to open the app screen. It will display the last time an
intrusion was detected, as shown in Figure 5-28 .

111© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_6

 CHAPTER 6

 IoT Patterns: Remote Control

 Remote control is currently one of the most popular IoT patterns. Examples of this
pattern can be found in IoT applications that let you remotely control things such as
lights, thermostats, and garage doors using handheld devices or computers. It has mainly
been used for home automation applications so far.

 In this chapter, you are going to build a lighting control system. Figure 6-1 shows
components of a lighting control system. The first component is an Android app that lets
users control lights. It publishes messages to an MQTT broker whenever the user taps
on the app screen. The second component is an MQTT broker, and the final component
of this IoT application is an Arduino device that turns lights on or off based on messages
received from the MQTT broker.

 Figure 6-1. Components of the lighting control system

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

112

 Learning Objectives
 At the end of this chapter, you will be able to:

• Write code to turn LEDs connected to Arduino on or off

• Subscribe Arduino to an MQTT broker

• Build an Android app that publishes to an MQTT broker

 Hardware Required
 Figure 6-2 provides a list of all hardware components required for building this lighting
control system.

 Figure 6-2. Hardware required for this lighting control system

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

113

 Software Required
 In order to develop this lighting control system, you need the following software:

• Arduino IDE 1.6.4 or later

• Android Studio 1.5.1 or later

 Circuit
 In this section, you are going to build the circuit required for the lighting control system.

 1. Make sure your Arduino is not connected to a power source,
such as to a computer via a USB or a battery.

 2. Attach a WiFi shield to the top of the Arduino. All the pins
should align.

 3. Unlike previous circuits, you do not want to power your
breadboard all the time, instead you want to control it. So
use a jumper cable to connect digital port 3 of your Arduino
to power (+) port on the breadboard. You will use this port to
turn the LED on and off.

 4. Use jumper cables to connect the ground (GND) port on
Arduino to the ground (-) port on the breadboard.

 5. Attach an LED to your breadboard.

 6. Use the jumper cable to connect the power (+) port of the
breadboard to the power (+) port of the LED.

 7. Attach a 220Ω resistor between the ground (-) port of the
breadboard and the ground (-) port of the LED.

 Your circuit is now complete and should look similar to Figures 6-3 and 6-4 .

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

114

 Figure 6-3. Circuit diagram of the lighting control system

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

115

 Code (Android)
 This section provides instructions for developing an Android app that will allow users to
tap on the screen to turn the lights on and off.

 Project Setup
 In this section, you are going to create a new project in Android Studio to develop an app.

 Start Android Studio and create a new Android Studio project.
 If you are on the Quick Start screen, as shown in Figure 6-5 , then click on Start a New

Android Studio Project to create a new project.

 Figure 6-4. Actual circuit of the lighting control system

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

116

 If you are already in Android Studio, as shown in Figure 6-6 , choose File ➤ New ➤
New Project to create a new Android Studio project.

 Figure 6-5. Create a new project from the Quick Start screen

 Figure 6-6. Create new project from the Android Studio menu bar

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

117

 Figure 6-7 shows the new project configuration screen. Enter the name for the new
project as Lighting Control System . Enter your company or personal domain name,
as this will be used by Android Studio to define the package hierarchy of the Java code.
Click Next.

 Figure 6-7. New project configuration

 ■ Note As a norm, package hierarchy is the domain name in reverse, so codifythings.com
becomes com.codifythings.<packagename> .

 For this project, you are only going to run your app on an Android phone or tablet.
As shown in Figure 6-8 , check Phone and Tablet as the target platform and click Next .

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

118

 Your app requires a screen where users can tap to turn lights on or off. To accomplish
this, you need to create an activity. So, from the Activity Template selection screen ,
choose Blank Activity, as shown in Figure 6-9 . Click Next.

 Figure 6-8. Android device selection screen

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

119

 Leave the default values for Activity Name, Layout Name, Title, and Menu
Resource Name, as shown in Figure 6-10 . The rest of the chapter references them with
these same names .

 Figure 6-9. Activity template selection screen

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

120

 Click on Finish. Android Studio will create quite a few folders and files , as shown in
Figure 6-11 . These are the most important ones:

• app > manifests > AndroidManifest.xml : A mandatory file
required by the system that contains application information such
as required permissions, screens and services, etc. Most of the
elements in this file are system-generated, but you can update it
manually as well.

• app > java > *.* - package-hierarchy : This folder contains
all Java code and unit tests.

• app > res > layout > *.xml : This folder contains layout XMLs
for all screens, including how each screen will look, fonts, colors,
position, etc. You can access any layout XML in Java using the
auto-generated Java class R , such as R.layout.activity_main . To
access an individual element in layout XML, you can use syntax
 R.id.updated_field .

 Figure 6-10. Activity customization screen

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

121

 Screen Layout
 To start designing the layout of the screen, click on the activity_main.xml file in the
App ➤ Res ➤ Layout folder, which will open the Main Activity screen. The default screen
in Design view will look like Figure 6-12 .

 Figure 6-11. Default folders generated by Android Studio

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

122

 There are two options to customize screen layout—you can either use the drag-and-drop
feature in Design view or manually edit the XML file in Text view. We are going to directly edit
the XML in the Text view.

 Switch from Design view to Text view and you will be able to see the screen layout in
XML, as shown in Listing 6-1 . This layout file acts as a container for other sublayout files.
As you can see in Listing 6-1 , content_main is included in the activity_main.xml layout file .

 Listing 6-1. Default Text View of activity_main.xml

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.design.widget.CoordinatorLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="com.codifythings.lightingcontrolsystem.MainActivity">

 <android.support.design.widget.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:theme="@style/AppTheme.AppBarOverlay">

 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"

 Figure 6-12. Default development view of Android Studio

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

123

 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />

 </android.support.design.widget.AppBarLayout>

 <include layout="@layout/content_main" />

 <android.support.design.widget.FloatingActionButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 android:src="@android:drawable/ic_dialog_email" />

 </android.support.design.widget.CoordinatorLayout>

 The activity_main.xml file adds a toolbar and a floating action button on the
view. None of these widgets is required in this app, so you can remove those two. After
removing the toolbar and floating action button, activitiy_main.xml should look
similar to Listing 6-2 .

 Listing 6-2. activity_main.xml Without Toolbar and Floating Action Button

 <?xml version="1.0" encoding="utf-8"?>
 <android.support.design.widget.CoordinatorLayout xmlns:android="http://
schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context="com.codifythings.lightingcontrolsystem.MainActivity">

 <include layout="@layout/content_main" />

 </android.support.design.widget.CoordinatorLayout>

 It is recommended to add custom content in the content_main.xml file. Listing 6-3
shows the default code of content_main.xml .

 Listing 6-3. Default Text View of content_main.xml

 <?xml version="1.0" encoding="utf-8"?>
 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

124

 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context="com.codifythings.lightingcontrolsystem.MainActivity"
 tools:showIn="@layout/activity_main">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />
 </RelativeLayout>

 You can start by first removing the existing TextView element for Hello World shown
in Listing 6-4 .

 Listing 6-4. Remove Default Element from content_main.xml

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

 Next, add the ImageView element provided in Listing 6-5 to content_main.xml ; this
will display an image of a light bulb.

 Listing 6-5. Add ImageView Element to content_main.xml

 <ImageView
 android:id="@+id/light_icon"
 android:src="@drawable/light_icon"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 />

 The element references an image called light_icon , so you need to provide an
image named light_icon. png in the App ➤ Res ➤ Drawable folder, as shown in
Figure 6-13 . You can upload your image or download the same that has been used in the
example from https://openclipart.org/detail/220988/light-bulb-on-off .

https://openclipart.org/detail/220988/light-bulb-on-off

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

125

 Your app’s screen layout is ready, and it should look similar to Figure 6-14 .

 Figure 6-13. Dialog box for adding an image to an app

 Figure 6-14. Final screen layout of app

 Screen Logic
 Next you are going to make the screen interactive so that app users can tap on the light
bulb icon to turn the lights on or off. This app does not display if the lights are currently
on or off; instead, it simply switches the state from on to off and from off to on.

 Open the MainActivity.java file from the App ➤ Java ➤ com.codifythings.
lightingcontrolsystem package. By default, there will be three methods auto-generated
by Android Studio as shown in Listing 6-6 .

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

126

 Listing 6-6. Default Code for MainActivity.java

 public class MainActivity extends ActionBarActivity
 {
 @Override
 protected void onCreate(Bundle savedInstanceState) { ... }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) { ... }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) { ... }
 }

 Since you removed toolbar and floating action button from activity_main.xml , you
need to remove the reference in the onCreate method as well.

 You want the light bulb icon to be interactive so that when an app user taps on the
icon, a message is published to the MQTT broker. To accomplish this, you need to update
the onCreate() method , as shown in Listing 6-7 . You are going to register an onClick()
listener which will be called whenever someone taps on the light bulb icon. For now the
implementation of onClick() is empty and will be updated later.

 Listing 6-7. Screen Tap/Click Listener Code

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 ImageView lightIcon = (ImageView) findViewById(R.id.light_icon);
 lightIcon.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 //TODO - add action
 }
 });
 }

 MQTT Client
 The final piece of this app is the MQTT client that will connect to an MQTT server and
publish to the codifythings/lightcontrol topic.

 In order to communicate with an MQTT broker, your app requires an MQTT library
that can be download from https://eclipse.org/paho/clients/java/ .

https://eclipse.org/paho/clients/java/

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

127

 Once you have downloaded the library, switch the view of Android Studio from
Android to Project, as shown in Figure 6-15 .

 Figure 6-15. Switch perspective from Android to Project

 Figure 6-16. Import library to resolve dependencies

 Expand LightingControlSystem ➤ App and paste the MQTT library in the libs
folder. Figure 6-16 shows the libs folder where all libraries need to be pasted .

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

128

 Figure 6-17 shows the dialog box that will be presented when you paste the
MQTT library .

 Figure 6-17. Import MQTT library

 Figure 6-18. Add imported files as libraries

 As shown in Figure 6-18 , right-click on the newly added library and click on the Add
As Library option.

 As shown in Figure 6-19 , select App from the Add to Module option . Click OK and
switch back to Android view.

 Figure 6-19. Add libraries to the app module

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

129

 Next you are going to write code to communicate with the MQTT broker. As shown in
Figure 6-20 , right-click on the top-level package (in the example, it is com.codifythings.
lightingcontrolsystem) and choose New ➤ Java Class .

 Figure 6-21. Enter new class name

 Figure 6-20. Add a new class

 Enter MQTTClient in the Name field and click OK, as shown in Figure 6-21 .

 Android Studio will generate an empty class with the default code shown in Listing 6-8 .

 Listing 6-8. Default Code for MQTTClient.java

 public class MQTTClient
 {
 ...
 }

 Next you are going to add code to the MQTTClient that will connect and publish
to an MQTT broker whenever the user taps on the app screen. Listing 6-9 provides the
 complete implementation of the MQTTClient class.

 Listing 6-9. Complete Code of MQTTClient.java

 package com.codifythings.lightingcontrolsystem;
 import android.util.Log;

 import org.eclipse.paho.client.mqttv3.MqttClient;
 import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
 import org.eclipse.paho.client.mqttv3.MqttException;
 import org.eclipse.paho.client.mqttv3.MqttMessage;
 import org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

130

 public class MQTTClient {
 private static final String TAG = "MQTTClient";
 private String mqttBroker = "tcp://iot.eclipse.org:1883";
 private String mqttTopic = "codifythings/lightcontrol";
 private String deviceId = "androidClient";
 private String messageContent = "SWITCH";

 public void publishToMQTT() throws MqttException {
 // Request clean session in the connection options.
 Log.i(TAG, "Setting Connection Options");
 MqttConnectOptions options = new MqttConnectOptions();
 options.setCleanSession(true);

 // Attempt a connection to MQTT broker using the values
 // of connection variables.
 Log.i(TAG, "Creating New Client");
 MqttClient client = new MqttClient(mqttBroker, deviceId,
 new MemoryPersistence());
 client.connect(options);

 // Publish message to topic
 Log.i(TAG, "Publishing to Topic");
 MqttMessage mqttMessage =
 new MqttMessage(messageContent.getBytes());
 mqttMessage.setQos(2);
 client.publish(mqttTopic, mqttMessage);
 Log.i(TAG, "Publishing Complete");

 Log.i(TAG, "Disconnecting from MQTT");
 client.disconnect();
 }
 }

 In Listing 6-9 , the variable TAG will be used while logging so that you can identify
your apps messages in the log.

 The mqttBroker , mqttTopic , and deviceId variables define the MQTT broker your
app will connect to, the topic that your app will publish to, and the device ID that will
show up on the server when your app successfully connects. If you do not have an MQTT
broker installed on your machine, you can use the openly available MQTT broker from
the Eclipse Foundation.

 In this project, you are only switching the state of a single light, such as from on to off
and vice versa. You are not controlling multiple lights or multiple appliances; therefore,
you do not need to create specific commands for all actions. You are going to publish the
following message whenever the user taps on the app screen.

 The code for connecting and publishing to an MQTT broker goes in the
 publishToMQTT() method . Initialize a new MqttClient and connect to the iot.eclipse.
org:1883 server with a clean session. Create an MqttMessage object and publish it to the

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

131

MQTT broker when the user taps on the app screen. Finally, disconnect the app from the
MQTT broker, as you do not need an active connection throughout.

 Now that the MQTT connectivity and publish code is ready, you are going to go back
to the MainActivity class and update the onCreate() method. Earlier you had added
a listener to the light icon that would be called whenever a user taps on the app screen.
You are going to provide the missing implementation of the listener. You are just going
to initialize a new MQTTClient object and call its publishToMQTT() method inside the
listener. Listing 6-10 provides the complete code of the MainActivity class within the
 onCreate() method highlighted.

 Listing 6-10. Complete Code of MainActivity.java

 package com.codifythings.lightingcontrolsystem;

 import android.os.Bundle;
 import android.support.v7.app.AppCompatActivity;
 import android.util.Log;
 import android.view.Menu;
 import android.view.MenuItem;
 import android.view.View;
 import android.widget.ImageView;

 public class MainActivity extends AppCompatActivity {

 private static final String TAG = "MainActivity";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 ImageView lightIcon = (ImageView) findViewById(R.id.light_icon);
 lightIcon.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 new MQTTClient().publishToMQTT();
 } catch (Exception ex) {
 Log.e(TAG, ex.getMessage());
 }
 }
 });
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

132

 //is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

 return super.onOptionsItemSelected(item);
 }
 }

 Finally, you need to update AndroidManifest.xml under the App ➤ Manifests folder.
Your app needs to access the Internet for connecting to the MQTT broker, so you need to
add Internet permissions in AndroidManifest.xml as well. Listing 6-11 provides the code
that needs to be updated in AndroidManifest.xml .

 Listing 6-11. Add App Permissions in AndroidManifest.xml

 <uses-permission android:name="android.permission.INTERNET" />

 Code (Arduino)
 Next, you are going to write code for connecting Arduino to the Internet using WiFi,
subscribing to an MQTT broker, and controlling the attached LED.

 Start your Arduino IDE and either type the code provided here or download it from
the site and open it. All the code goes into a single source file (*.ino), but in order to
make it easy to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• MQTT (subscribe)

• Control LED

• Standard functions

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

133

 External Libraries
 The first section of code includes all the external libraries required to run the code.
This sketch has two main dependencies—for Internet connectivity, you need to
include the <WiFi.h> (assuming you are using a WiFi shield) and for the MQTT broker
communication, you need to include <PubSubClient.h> .

 Listing 6-12 provides the first section of the code with all the required libraries.

 Listing 6-12. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <PubSubClient.h>

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7 , 2-8 , and 2-9
(in Chapter 2) here.

 Data Subscribe
 The third section of the code defines variables, constants, and functions that are going
to be used for connecting to an MQTT broker and callback when a new message arrives
(for details, see Chapter 3).

 This is the same code that you saw in Chapter 3 . You do not need to make any
changes for the code to work, but it is recommended that you customize some of the
code so that your messages do not get mixed up with someone else who is using the same
values. All values that can be changed have been highlighted in bold in Listing 6-13 . If you
are using your own MQTT server, make sure to change the server and port values. The
two recommended changes include the value of the topic variable and the name of client
that you need to pass while connecting to the MQTT broker .

 Whenever a new message is received, the callback() function is called. It extracts
 payload and calls the turnLightsOnOff() function.

 Listing 6-13. Code for Subscribing to an MQTT Broker

 // IP address of the MQTT broker
 char server[] = {" iot.eclipse.org "};
 int port = 1883 ;
 char topic[] = {" codifythings/lightcontrol "};

 PubSubClient pubSubClient(server, port, callback, client);

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

134

 void callback(char* topic, byte* payload, unsigned int length)
 {
 // Print payload
 String payloadContent = String((char *)payload);
 Serial.println("[INFO] Payload: " + payloadContent);

 // Turn lights on/off
 turnLightsOnOff();
 }

 Control Lights
 The fourth section of the code defines variables, constants, and functions that are going
to be used for controlling the LED.

 The code provided in Listing 6-14 checks if the LED is already on or off and simply
switches the state of the LED. If the value of the digital port 3 is HIGH, that means LED is
on. In that case, it’s changed to LOW, which turns the LED off.

 Listing 6-14. Code for Controlling LED Light

 int ledPin = 3;

 void turnLightsOnOff()
 {
 // Check if lights are currently on or off
 if(digitalRead(ledPin) == LOW)
 {
 //Turn lights on
 Serial.println("[INFO] Turning lights on");
 digitalWrite(ledPin, HIGH);
 }
 else
 {
 // Turn lights off
 Serial.println("[INFO] Turning lights off");
 digitalWrite(ledPin, LOW);
 }
 }

 Standard Functions
 Finally, the code in the fifth and final section is shown in Listing 6-15 . It implements
Arduino’s standard setup() and loop() functions.

 In the setup() function, the code initializes the serial port, connects to the Internet,
and subscribes to the MQTT topic.

 The MQTT broker has already been initialized and subscribed, so in loop()
function, you only need to wait for new messages from the MQTT broker.

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

135

 Listing 6-15. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();

 // Set LED pin mode
 pinMode(ledPin, OUTPUT);

 //Connect MQTT Broker
 Serial.println("[INFO] Connecting to MQTT Broker");
 if (pubSubClient.connect("arduinoClient"))
 {
 Serial.println("[INFO] Connection to MQTT Broker Successful");
 pubSubClient.subscribe(topic);
 }
 else
 {
 Serial.println("[INFO] Connection to MQTT Broker Failed");
 }
 }

 void loop()
 {
 // Wait for messages from MQTT broker
 pubSubClient.loop();
 }

 Your Arduino code is now complete.

 The Final Product
 To test the application, verify and upload the Arduino code as discussed in Chapter 1 .
Once the code has been uploaded, open the Serial Monitor window. You will start seeing
 log messages similar to ones shown in Figure 6-22 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

136

 In your Android Studio, deploy and run the app on your Android device by choosing
Run ➤ Run ‘App’ from the menu bar, as shown in Figure 6-23 .

 Figure 6-22. Log messages from Lighting Control System

 Figure 6-23. Deploy and run the app from Android Studio

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

137

 If you have an Android device connected to your computer, Android Studio will
prompt you to either use your existing running device or launch a new emulator to run
the app. As shown in Figure 6-24 , select the emulator or device that you want to test your
app on and click OK.

 Figure 6-24. Select the device to deploy and run the app

 Open the device where your app was deployed. If your app is not already running,
locate your app and run it. Figure 6-25 shows the default view of your app.

CHAPTER 6 ■ IOT PATTERNS: REMOTE CONTROL

138

 Tap on the screen and check the LED attached to your Arduino. Its state should
change every time you tap .

 Summary
 In this chapter you learned about the remote control pattern of IoT applications. This
pattern lets users control their devices remotely using handheld or web-based interfaces.
You also built an Android app that acts as a remote control for your Arduino device.

 As mentioned in Chapter 5 , an Android app is just one example. Remote controls can
be made from many different types such as iOS, wearables, and web-based apps.

 Figure 6-25. The default view of the Android app

http://dx.doi.org/10.1007/978-1-4842-1940-9_5

139© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_7

 CHAPTER 7

 IoT Patterns:
On-Demand Clients

 Compared to realtime IoT patterns that provide end users with data instantaneously,
on-demand patterns provide end users with data only when it’s requested. IoT
applications built using this pattern get information by directly accessing the device
or by getting it from a pre-stored location. On-demand patterns are useful when your
application is not actively looking for data and only accesses it when needed.

 In this chapter, you are going to build an example of this pattern, called a smarter
parking system . Figure 7-1 shows a high-level diagram of all components involved in
building this system. The first component is an Arduino device that monitors the status
of parking spots with a proximity sensor and publishes it to a server using an HTTP
request. The second component is a server with services to store parking spot data and an
interface service that provides the number of open parking spots. The final component is
an iOS app that accesses open parking spot data and displays it to users when requested.

 Figure 7-1. Components of the smarter parking system

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

140

 Since this is just an example to help you better understand the pattern, it’s purposely
simple. You are going to check the status of only a single parking spot. The project can be
easily scaled for multiple parking spots.

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read data from a proximity sensor

• Send sensor data to a server using HTTP

• Display sensor data in an iOS app using HTTP

 Hardware Required
 Figure 7-2 provides a list of all hardware components required for building this smarter
parking system.

 Figure 7-2. Hardware required for the smarter parking system

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

141

 Software Required
 In order to develop the smarter parking system, you need the following software:

• Arduino IDE 1.6.4 or later

• PHP server (installed or hosted)

• MySQL server (installed or hosted)

• Text editor

• Xcode

 Circuit
 In this section, you are going to build the circuit required for the smarter parking system.
This circuit uses an ultrasonic proximity sensor to detect objects. The sensor sends an
ultrasonic burst, which reflects from objects in front of it. The circuit reads the echo that is
used to calculate the distance to nearest object.

 1. Make sure Arduino is not connected to a power source, such
as to a computer via a USB or a battery.

 2. Attach a WiFi shield to the top of the Arduino. All the pins
should align.

 3. Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the proximity
sensor.

 5. To trigger an ultrasonic burst, connect a jumper cable from
the TRIG pin of the sensor to the digital port 2 of Arduino.
Your code will set the value of this port to LOW, HIGH, and
LOW in order to trigger the burst.

 6. To read the echo, connect a jumper cable from the ECHO pin of
the sensor to the digital port 3 of Arduino. Your code will read
values from this port to calculate distance of the object.

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

142

 Figure 7-3. Circuit diagram of the smarter parking system

 Your circuit is now complete and should look similar to Figures 7-3 and 7-4 .

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

143

 Figure 7-4. Actual circuit of the smarter parking system

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

144

 Database Table (MySQL)
 Before you can send HTTP requests from Arduino, you need to build a service that will
receive the data.

 The data received from Arduino needs to be stored so that your iOS app can access
and display this information to users. Data storage requirements for this project are
relatively simple. You just need to create a two-column table that can store the count of
open parking spots and a timestamp to track when it was last updated.

 This book uses MySQL as the database. Create a new table called PARKING_SPOTS_DATA
using the SQL script provided in Listing 7-1 . Run this script in an existing database or
create a new one. The first column will contain a count of parking spots and the second
column will be an auto-generated timestamp. In addition to create table sql ,
Listing 7-1 also contains an insert statement. This statement initializes the count of
parking spots, which will then be updated as data is received from the sensors.

 Listing 7-1. Create and Initialize Table SQL

 CREATE TABLE `PARKING_SPOTS_DATA` (
 `PARKING_SPOTS_COUNT` int(11) NOT NULL,
 `TIMESTAMP` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
)

 INSERT INTO `PARKING_SPOTS_DATA`(`PARKING_SPOTS_COUNT`) VALUES (1)

 Figure 7-5 shows structure of the PARKING_SPOTS_DATA table.

 Figure 7-5. PARKING_SPOTS_DATA table structure

 Code (PHP)
 Now that the database table is ready, you need to build two services. The first service will
receive the Arduino sensor data in an HTTP request and accordingly update the open
parking spots count to the database. The second service will act as an interface for the iOS
app—it will return data in a format that the iOS app can parse and display.

 This project uses PHP for building the data storage and the interface services. PHP
is a simple and open source server-side processing language that can process HTTP
requests and send HTTP responses .

 Create a new folder called smartparking in the public/root folder of your PHP
server. All of the PHP source code for this project will go in the smartparking folder.

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

145

 Start a text editor of your choice.

 ■ Note All the PHP code was developed using Brackets, which is an open source text
editor. Visit http://brackets.io/ for more information.

 Database Connection
 Both PHP scripts for data storage and interface need to connect to the database. As
shown in Figure 7-6 , create a new file called util-dbconn.php in the smartparking folder.
This file will be used by both scripts instead of repeating the code.

 Figure 7-6. Common database connectivity file called util-dbconn.php

 Open the file in a text editor and copy or type the code from Listing 7-2 . As you
can see, there is not much code in this file. The four variables $servername , $username ,
 $password , and $dbname contain the connection information. Create a new connection by
passing these four variables and storing the connection reference in the $mysqli variable.

 The IF condition in the code simply checks for errors during the connection attempt
and prints them if there were any.

 Listing 7-2. Common Database Connectivity Code util-dbconn.php

 <?php
 $servername = "SERVER_NAME" ;
 $dbname = "DB_NAME" ;
 $username = "DB_USERNAME" ;
 $password = "DB_PASSWORD" ;

http://brackets.io/

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

146

 //Open a new connection to MySQL server
 $mysqli = new mysqli($servername, $username, $password, $dbname);

 //Output connection errors
 if ($mysqli->connect_error)
 {
 die("[ERROR] Connection Failed: " . $mysqli->connect_error);
 }
 ?>

 Receive and Store Sensor Data
 As shown in Figure 7-7 , you can create a new file called update.php within the smartparking
folder. This script will perform two tasks—it will first fetch information from the HTTP
request and then it will update the open parking spot count in the database.

 Figure 7-7. File to receive and update stored data called update.php

 Open the newly created file in a text editor and copy or type the code provided
in Listing 7-3 . As mentioned in the previous step, in order to store data, a database
connection needs to be established, and you created util-dbconn.php to perform that
task, so in this file you need to include util-dbconn.php . The util-dbconn.php provides
access to the $mysqli variable, which contains the connection reference and will be used
to run the SQL queries.

 The example in this book is hosted at http://bookapps.codifythings.com/
 smartparking , and Arduino will be sending open parking spot data to update.php
using an HTTP GET method. As discussed in Chapter 2 , HTTP GET uses a query string
to send request data. So, the complete URL with the query string that Arduino will

http://bookapps.codifythings.com/tempmonitor
http://bookapps.codifythings.com/tempmonitor
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

147

be using becomes http://bookapps.codifythings.com/smartparking/update.
php?parkingUpdate= OPEN . Your PHP code will need to extract parkingUpdate from the
query string using a $_GET['parkingUpdate'] statement.

 Since you are only checking status of a single parking spot, the default value of
 $currentParkingCount in the code is set as 1 , which is the same value with which the
database was initialized. If you were monitoring multiple parking spots, you would simply
add to or subtract from the count based on the data from the proximity sensor. For this
project, the code simply sets the value as 1 whenever Arduino sends OPEN as a value of
the parkingUpdate parameter and sets the value to 0 if Arduino sends OCCUPIED as the
parameter value.

 To update this count in the database table, prepare an UPDATE SQL statement in the
 $sql variable. You just need to pass the $currentParkingCount value and the TIMESTAMP
value will be auto-generated.

 Finally, execute the UPDATE SQL statement using $mysqli->query($sql) and check
the $result variable for success or failure.

 Listing 7-3. Code to Receive and Update Stored Data in update.php

 <?php
 include('util-dbconn.php');

 $parkingUpdate = $_GET['parkingUpdate'];

 echo "[DEBUG] Parking Update: " . $parkingUpdate . "\n";

 $currentParkingCount = 1;

 if($parkingUpdate == "OPEN")
 {
 $currentParkingCount = 1;
 }
 else
 {
 $currentParkingCount = 0;
 }

 $sql = "UPDATE `PARKING_SPOTS_DATA` SET PARKING_SPOTS_COUNT =
$currentParkingCount";

 if (!$result = $mysqli->query($sql))
 {
 echo "[Error] " . mysqli_error() . "\n";
 exit();
 }

 $mysqli->close();

 echo "[DEBUG] Updated Parking Spots Counter Successfully\n";

 ?>

http://bookapps.codifythings.com/smartparking/update.php?parkingUpdate=ADD
http://bookapps.codifythings.com/smartparking/update.php?parkingUpdate=ADD

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

148

 Get the Parking Spot Count
 Your app is not going to directly query the database for the parking spot count; instead
you are going to create a PHP service that returns the information over HTTP. As shown
in Figure 7-8 , you should create a new file called getcount.php in the smartparking
folder. Once the iOS app calls the http://bookapps.codifythings.com/smartparking/
getcount.php URL, the PHP service will return the open parking spots count from the
database in JSON format as part of the HTTP response.

 Figure 7-8. File for interface to database is getcount.php

 Listing 7-4 provides the complete code for getcount.php , so copy or write the code
in getcount.php . The code requires access to the database so include util-dbconn.php ,
create a new SELECT sql statement, and execute it using $mysqli->query($sql) . Check
if any results were returned and pass all the results in JSON format as part of the HTTP
response.

 Listing 7-4. Code for Interface to Database in getcount.php

 <?php
 include('util-dbconn.php');

 $sql = "SELECT PARKING_SPOTS_COUNT FROM `PARKING_SPOTS_DATA`";
 $result = $mysqli->query($sql);
 $resultCount = $result->num_rows;

 if ($resultCount > 0)
 {
 $row = $result->fetch_assoc();
 print(json_encode($row));
 }

http://bookapps.codifythings.com/smartparking/getcount.php
http://bookapps.codifythings.com/smartparking/getcount.php

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

149

 else
 {
 echo "0 results";
 }
 $mysqli->close();
 ?>

 Code (Arduino)
 The second component of this project is the Arduino code. This code connects Arduino
to the Internet using WiFi, checks if parking spot is open or not, and publishes this
information to a server.

 Start your Arduino IDE and either type the code provided or download it from book’s
site and open it. All the code goes into a single source file (*.ino), but in order to make it
easy to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• HTTP (publish)

• Standard functions

 External Libraries
 The first section of code, as provided in Listing 7-5 , includes all external libraries required
to run the code. Since you are connecting to the Internet wirelessly, the main dependency
of the code is on <WiFi.h> .

 Listing 7-5. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and 2-9
(in Chapter 2) here.

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

150

 Read Sensor Data
 The third section of the code, as provided in Listing 7-6 , defines the variables, constants,
and functions that are going to be used for reading sensor data.

 The calibrateSensor() function waits for the proximity sensor to calibrate properly.
Once calibration is complete, the proximity sensor is active and can start detection. If you
do not give it enough time to calibrate, the proximity sensor might return incorrect readings.

 The readSensorData() function generates a burst to detect if the parking spot is
empty. It triggers a burst on Digital Pin 2 by sending alternate signals—LOW, HIGH, and
LOW again. Then it reads the echo from Digital Pin 3 , which provides a distance of the
closest object. Finally, it checks if the echo value is less than the threshold. If it is, that
means an object is occupying the parking spot. Since this is just a prototype, the echo value
of 500 has been used, so when you use this sensor in real life you will need to adjust the
value by doing a few tests. If the parking spot is occupied, it calls publishSensorData(...)
with a OCCUPIED parameter; otherwise, it sends OPEN in the parameter.

 Listing 7-6. Code for Detecting if Parking Spot Is Empty

 int calibrationTime = 30;
 #define TRIGPIN 2 // Pin to send trigger pulse
 #define ECHOPIN 3 // Pin to receive echo pulse

 void calibrateSensor()
 {
 //Give sensor some time to calibrate
 Serial.println("[INFO] Calibrating Sensor ");

 for(int i = 0; i < calibrationTime; i++)
 {
 Serial.print(".");
 delay(1000);
 }

 Serial.println("");
 Serial.println("[INFO] Calibration Complete");
 Serial.println("[INFO] Sensor Active");

 delay(50);
 }

 void readSensorData()
 {
 // Generating a burst to check for objects
 digitalWrite(TRIGPIN, LOW);
 delayMicroseconds(10);
 digitalWrite(TRIGPIN, HIGH);
 delayMicroseconds(10);
 digitalWrite(TRIGPIN, LOW);

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

151

 // Distance Calculation
 float distance = pulseIn(ECHOPIN, HIGH);

 Serial.println("[INFO] Object Distance: " + String(distance));

 if(distance < 500)
 {
 Serial.println("[INFO] Parking Spot Occupied");

 // Publish sensor data to server
 publishSensorData("OCCUPIED");
 }
 else
 {
 Serial.println("[INFO] Parking Spot Open");

 // Publish sensor data to server
 publishSensorData("OPEN");
 }
 }

 Data Publish
 The fourth section of the code, as provided in Listing 7-7 , defines the variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET developed in Chapter 3 .

 The main modification in this code is its ability to open and close a connection to
the server repeatedly. Apart from that make sure to change the server and port values
to your PHP server’s values. Make sure to change the server , port , and requestData
variables and the URL values.

 Listing 7-7. Code for Sending an HTTP Request

 //IP address of the server
 char server[] = { "bookapps.codifythings.com" };
 int port = 80 ;

 unsigned long lastConnectionTime = 0;

 const unsigned long postingInterval = 10L * 1000L;

 void publishSensorData(String updateParkingSpot)
 {
 // Read all incoming data (if any)
 while (client.available())
 {

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

152

 char c = client.read();
 Serial.write(c);
 }

 if (millis() - lastConnectionTime > postingInterval)
 {
 client.stop();

 Serial.println("[INFO] Connecting to Server");

 String requestData = "parkingUpdate=" + updateParkingSpot;

 // Prepare data or parameters that need to be posted to server
 if (client.connect(server, port))
 {
 Serial.println("[INFO] Server Connected - HTTP GET Started");

 // Make HTTP request:
 client.println("GET /smartparking/update.php?" + requestData + "
HTTP/1.1");
 client.println("Host: " + String(server));
 client.println("Connection: close");
 client.println();

 lastConnectionTime = millis();

 Serial.println("[INFO] HTTP GET Completed");
 }
 else
 {
 // Connection to server:port failed
 Serial.println("[ERROR] Connection Failed");
 }
 }

 Serial.println("---");
 }

 Standard Functions
 The fifth and final code section is shown in Listing 7-8 . It implements Arduino’s standard
 setup() and loop() functions.

 The setup() function initializes the serial port, sets the pin modes for the trigger and
echo pins, connects to the Internet, and calibrates the proximity sensor.

 The loop() function needs to call readSensorData() at regular intervals as it
internally calls the publishSensorData() function.

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

153

 Listing 7-8. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Set pin mode
 pinMode(ECHOPIN, INPUT);
 pinMode(TRIGPIN, OUTPUT);

 // Connect Arduino to internet

 connectToInternet();

 // Calibrate sensor
 calibrateSensor();
 }

 void loop()
 {
 // Read sensor data
 readSensorData();

 delay(5000);

 }

 Your Arduino code is now complete.

 Code (iOS)
 The final component of your IoT application is an iOS app that will show the number of
open parking spots to the user. The app will fetch the count of open parking spots from
the PHP service whenever the user taps on the Refresh button .

 Project Setup
 In this section, you are going to set up your Xcode project for the iOS app. You can
download Xcode from https://developer.apple.com/xcode/download/ . Xcode can
also be downloaded directly from the Mac App Store. Developing and testing iOS apps in
Xcode is free. You can use built-in simulators to test your apps. In order to test your apps
on an iOS device or publish them to the App Store, you need a paid developer account
(https://developer.apple.com/programs/). This chapter uses built-in emulator for
testing, so you do not need a paid developed account to complete this chapter.

 Start Xcode from Applications and, as shown in Figure 7-9 , click on Create a New
 Xcode Project .

https://developer.apple.com/xcode/download/
https://developer.apple.com/programs/

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

154

 Select Single View Application for the project, as shown in Figure 7-10 . Screen
requirements for this app are very simple and the Single View Application template
accomplishes them. If you are interested in building more complicated applications, you
can use one of the other templates that Xcode provides. Click on Next.

 Figure 7-9. Create new Xcode project

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

155

 Figure 7-10. Template selection screen

 Fill out the details of your project as shown in Figure 7-11 . You need to provide
the Product Name, Organization Name, and Organization Identifier. The Organization
Identifier can be your company or personal domain name, which is used for creating the
Bundle Identifier. This project will be developed using Swift, so select that option from
the Language dropdown. If you want your application to run on all types of iOS devices,
then select Universal. Uncheck all other options as they are not required for this project.
Click Next .

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

156

 Figure 7-11. New project configuration

 Select the location on your machine where you want to save the project and click
 Cre a te . Xcode will create quite a few folders and files , as shown in Figure 7-12 . The
following are the most important ones:

• Smart Parking > Main.storyboard : This file provides a
main entry point for your app and is used for designing the
visual interface.

• Smart Parking > ViewController.swift : This file contains all
the Swift code for making your app dynamic and interactive.

• Smart Parking > Assets.xcassets : This file contains all assets
to be used by the app (images).

• Smart Parking > Info.plist : This file contains important
information about the runtime of the app.

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

157

 Figure 7-12. Default files generated by Xcode

 Screen Layout
 To start designing the layout of the screen, click on Main.storyboard under the main Smart
Parking folder. This will open the default storyboard, as shown in Figure 7-13 . Storyboard
is where you drag and drop different widgets to create a user interface of your application.

 Figure 7-13. Default development view of Xcode

 All widgets are available in the Object Library on the bottom-right side of the
storyboard. Figure 7-14 shows the Object Library from where you can drag and drop
widgets on storyboard.

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

158

 Figure 7-14. Object library with user interface widgets

 This application needs three widgets on the screen—the first one is an optional
ImageView to display image of a car, the second is a Label to display open parking spots,
and the third is a button that users can click to recheck open parking spots.

 Drag these widgets from the Object Library on to the storyboard; do not worry about
alignment or size of widgets right now. Your screen should look similar to Figure 7-15 .

 Figure 7-15. Screen with required widgets

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

159

 Since the first widget is an ImageView, you need to set an image in properties.
You need to import an image in Assets.xcassets . As shown in Figure 7-16 , select
 Assets.xcassets and right-click to see the menu, then select Import. You can either
provide your own image or use the same that has been used in the example from
 https://openclipart.org/detail/122965/car-pictogram . Select an image and click
on Open.

 Figure 7-16. Import an image asset

 Figure 7-17. Available/imported assets

 Once imported, the image becomes available in the application, as shown in
Figure 7-17 .

 Now that the image is available in the assets, you need to set this image in the
 ImageView widget that you added on the storyboard. Switch back to Main.storyboard
and select ImageView from the storyboard. As shown in Figure 7-18 , from the Attribute
Inspector on the right, choose ParkedCar (or the name of your image) in the Image and
Highlighted dropdowns. You can always set two different images when the image is
highlighted versus normal scenarios .

https://openclipart.org/detail/122965/car-pictogram

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

160

 Once the ImageView properties have been set, the image will become visible on the
storyboard as well. Your ImageView should look similar to Figure 7-19 (or the image that
you selected).

 Figure 7-18. ImageView properties

 Figure 7-19. ImageView with newly imported image

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

161

 Next, select Button and, from the Attribute Inspector, change the Title property to
 Click to Refresh , as shown in Figure 7-21 .

 Just like with ImageView, you need to update the properties of the Label and Button
as well.

 Select Label and, from the Attribute Inspector, change the Text property to Open
Parking Spots: 0 , as shown in Figure 7-20 .

 Figure 7-20. Label properties

 Figure 7-21. Button properties

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

162

 You are almost done with the screen layout. The final steps involve aligning the
widgets. As shown in Figure 7-22 , select all three widgets.

 Figure 7-22. Align widgets

 Figure 7-23 provides a magnified version of alignment and constrains the menu
visible on the bottom-right side of storyboard.

 Figure 7-23. Alignment and constraints menu

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

163

 While all three widgets are selected, click on the Stack () button. This will stack
all selected widgets together in a vertical fashion, as shown in Figure 7-24 .

 To complete screen alignment, you need to add some constraints to the widgets so
that, even when they run on different devices, their behavior is consistent. As shown in
Figure 7-24 , make sure you have the Stack View selected in the View Controller. Drag the
Stack View into center of the screen so that the horizontal and vertical alignment guides
are visible, as shown in Figure 7-25 .

 Figure 7-24. Vertically stacked widgets

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

164

 While Stack View is selected from the alignment and constraints menu shown in

Figure 7-24 , click on the Resolve Auto Layout Issues () button. Select Add Missing

Constraints for Selected Views, as shown in Figure 7-26 .

 Figure 7-26. Add missing constraints

 Figure 7-25. Center-aligned widgets

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

165

 Your screen layout is ready and should look similar to Figure 7-27 .

 Figure 7-27. Final screen layout of app

 Screen Logic
 Next you are going to add some logic that will make the screen interactive. Whenever the
user taps on the Click to Refresh button, the app will check the server for open parking
spot information.

 Open the ViewController.swift file side by side with the storyboard. As shown
in Listing 7-9 , by default there will be two functions, called viewDidLoad() and
 didReceiveMemoryWarning() , that were auto-generated by the system. You are not going
to make any changes to these functions.

 Listing 7-9. Default Code for ViewController.swift

 import UIKit

 class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
 // from a nib.
 }

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

166

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 }
 In order to update the values of the open parking spots on the screen, you need a

reference of the Open Parking Spots: 0 label in your ViewController.swift file. Xcode
provides a very easy way to do this, as shown in Figure 7-28 . You simply drag and drop the
label from the storyboard on the ViewController.swift file. Make sure you keep the Ctrl
button on the keyboard pressed .

 Figure 7-28. Drag and drop label from storyboard

 Figure 7-29. Outlet properties

 When you drop the label on the code, Xcode will display a popup to enter the
name of this property. As shown in Figure 7-29 , enter a name and make sure you leave
Connection set to Outlet. Click Connect to add a new property to ViewController.swift .

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

167

 Similarly drag and drop the Click to Refresh button from the storyboard on the
 ViewController.swift file, as shown in Figure 7-30 .

 As shown in Figure 7-31 , from the properties popup, select Action from Connection
as you need to add code to respond whenever the user taps on the button. In the Name
field, enter refreshParkingSpotsCount and click Connect.

 Figure 7-30. Drag and drop button from storyboard

 Figure 7-31. Action properties

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

168

 At this point, your ViewController.swift should look similar to Listing 7-10 .

 Listing 7-10. Action Code in ViewController.swift

 import U]IKit

 class ViewController: UIViewController {

 @IBOutlet weak var parkingSpots: UILabel!

 @IBAction func refreshParkingSpotsCount(sender: AnyObject) {

 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically
 // from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 }

 Now you are going to add code that needs to execute in response to a Button clicked
action. Add all the code in the refreshParkingSpotsCount(sender: AnyObject) function.

 The code provided in Listing 7-11 first sends a request to the URL http://bookapps.
codifythings.com/smartparking/getcount.php . The PHP response service that you
wrote earlier sends the parking spots count in JSON format back to the client. The
next piece of code parses this JSON response and extracts the count value using the
 PARKING_SPOTS_COUNT key. Finally, it updates the parkingSpots label with an updated
count of open parking spots.

 Listing 7-11. Complete Code for ViewController

 import UIKit

 class ViewController: UIViewController {

 @IBOutlet weak var parkingSpots: UILabel!

 @IBAction func refreshParkingSpotsCount(sender: AnyObject) {

 let url = NSURL(string: "http://bookapps.codifythings.com/
smartparking/getcount.php")
 let request = NSURLRequest(URL: url!)
 NSURLConnection.sendAsynchronousRequest(request, queue:
NSOperationQueue.mainQueue()) {(response, data, error) in

http://bookapps.codifythings.com/smartparking/getcount.php
http://bookapps.codifythings.com/smartparking/getcount.php

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

169

 let jsonResponse: NSDictionary!=(try! NSJSONSerialization.
JSONObjectWithData(data!, options: NSJSONReadingOptions.MutableContainers))
as! NSDictionary

 self.parkingSpots.text = "Open Parking Spots: " +
String(jsonResponse["PARKING_SPOTS_COUNT"]!)
 }
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 }

 Before your iOS app can make any Internet calls, you need to add a property in
 Info.plist . As shown in Figure 7-32 , click on the + on the top-level parent Information
Property List .

 Figure 7-32. Info.plist properties list

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

170

 A new property will be added to the list. As shown in Figure 7-33 , select App
Transport Security Settings.

 Figure 7-33. Select the App Transport Security Settings property

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

171

 Click on + in the newly added property of App Transport Security Settings, as shown
in Figure 7-34 . This will add a child property. Select the Allow Arbitrary Loads property
from the list and change its value from NO to YES .

 Figure 7-34. Select the Allow Arbitrary Loads property

 This completes the implementation of your iOS app.

 The Final Product
 To test the application, make sure your MySQL and PHP servers are up and running with
the code deployed.

 Also verify and upload the Arduino code as discussed in Chapter 1 . Make sure
initially there is no object in front of your proximity sensor. Once the code has been
uploaded, open the Serial Monitor window . You will start seeing log messages similar to
the ones shown in Figure 7-35 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

172

 Next, open your iOS app in Xcode. Click on the Play button from menu visible on
top-left side of storyboard shown in Figure 7-36 to launch your app in a simulator.

 Figure 7-35. Log messages from the smarter parking system

 Figure 7-36. Screen simulation menu

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

173

 Once the app launches, click on the Click to Refresh button to fetch the latest count of
the open parking spots. Figure 7-37 shows how the screen will look in the simulator . The
screen will show 1 because you have not placed any object in front of the proximity sensor .

 Figure 7-37. App screen in simulator with one open spot

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

174

 As shown in Figure 7-38 , place an object in front of your proximity sensor.

 Figure 7-38. Object in front of proximity sensor

CHAPTER 7 ■ IOT PATTERNS: ON-DEMAND CLIENTS

175

 As soon as your Arduino sends the next HTTP request to the server, the count will
change. Click the Refresh button on your iOS app. As shown in Figure 7-39 , it will show no
open spots .

 Summary
 In this chapter, you learned about the on-demand pattern of IoT applications. This
pattern is a good fit if your users are not required to be fed data and instead are provided
the latest data only when they request it. The smarter parking system that you built in this
chapter is a good example of this pattern, because users are only concerned with open
parking spot information when they are looking for a parking spot; otherwise, they are
not concerned.

 Figure 7-39. App screen in simulator with no open spots

177© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_8

 CHAPTER 8

 IoT Patterns: Web Apps

 As most of our day-to-day tasks and interactions move to mobile devices, web
applications will still have a place. In the IoT space, they will mainly be used for
monitoring and controlling large-scale implementations.

 In this chapter, you are going to build a temperature monitoring system . Figure 8-1
shows a high-level diagram of all components involved in this system. The first component
is an Arduino device that gathers temperature data and publishes it to a server using an
HTTP request. The second component is a server that receives temperature data and
stores it in a database. The final component accesses temperature data from the server
and presents it to users in a web-based analytics dashboard. This web-based analytics
dashboard is going to reside in the server as well.

 Figure 8-1. Components of the temperature monitoring system

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read data from a temperature sensor

• Publish sensor data to a server

• Display sensor data in a web-based dashboard

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

178

 Hardware Required
 Figure 8-2 provides a list of all hardware components required for building this
temperature monitoring system.

 Software Required
 In order to develop the temperature monitoring system, you need the following software:

• Arduino IDE 1.6.4 or later

• PHP server (installed or hosted)

• MySQL server (installed or hosted)

• Text editor

 Figure 8-2. Hardware required for the temperature monitoring system

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

179

 Circuit
 In this section, you are going to build the circuit required for the temperature monitoring
system. This circuit uses a low-cost and easy-to-use TMP36 temperature sensor. The
sensor returns its values in voltage, which is converted into Celsius and Fahrenheit.

 1. Make sure Arduino is not connected to a power source, such
as to a computer via USB or a battery.

 2. Attach a WiFi shield to the top of the Arduino. All the pins
should align.

 3. Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the temperature
sensor. The left pin of the sensor is the power (+) and the right
pin is the ground (-).

 5. To read values from the temperature sensor, you will need to
connect a jumper cable from the analog voltage port (middle pin)
of the temperature sensor to the A0 (Analog) port of Arduino.
Your code will read the voltage from this port to calculate the
temperature in Celsius and Fahrenheit.

 Your circuit is now complete and should look similar to Figures 8-3 and 8-4 .

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

180

 Figure 8-3. Circuit diagram of the temperature monitoring system

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

181

 Database Table (MySQL)
 As discussed in the previous chapter, before you can send HTTP requests from Arduino,
you need to build a service that will receive data.

 This chapter also uses MySQL as a database. The application needs a very simple
three-column table. So create a new table called TEMPERATURE_MONITORING_DATA using the
SQL script provided in Listing 8-1 . Run this script in an existing database or create a new one.

 The first column will be an auto-generated ID, the second column will be an
auto-generated timestamp, and the third column will be used to store the temperature
readings.

 Listing 8-1. Create Table SQL

 CREATE TABLE `TEMPERATURE_MONITORING_DATA`
 (
 `ID` int(11) NOT NULL AUTO_INCREMENT,
 ̀TIMESTAMP` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP,

 `TEMPERATURE` double NOT NULL,
 PRIMARY KEY (`ID`)
)

 Figure 8-4. Actual circuit of the temperature monitoring system

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

182

 Figure 8-5 shows the structure of the TEMPERATURE_MONITORING_DATA table.

 Figure 8-5. TEMPERATURE_MONITORING_DATA table structure

 Code (PHP)
 Now that the database table is ready, you need to build two services. The first service
will receive the Arduino sensor data and store it in the newly created database table. The
second service will show historical sensor data in a dashboard.

 This project also uses PHP for building data storage and interface services.
 Create a new folder called tempmonitor in the public/root folder of your PHP

server. All of the PHP source code for this project will go in this tempmonitor folder.
 Start a text editor of your choice.

 ■ Note All the PHP code was developed using Brackets, which is an open source text
editor. See http://brackets.io/ for more information.

 Database Connection
 The PHP scripts for storing and displaying data will need to connect to the database. As
shown in Figure 8-6 , create a new file called util-dbconn.php in the tempmonitor folder.
This file will be used by both scripts instead of repeating the code.

http://brackets.io/

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

183

 Figure 8-6. Common database connectivity file called util-dbconn.php

 Open the file in a text editor and copy or type code from Listing 8-2 . As you can
see, there is not much code in this file. The four variables $servername , $username ,
 $password , and $dbname contain the connection information. Create a new connection by
passing these four variables and store the connection reference in the $mysqli variable .

 The IF condition in the code simply checks for errors during the connection attempt
and prints them if there were any.

 Listing 8-2. Common Database Connectivity Code util-dbconn.php

 <?php
 $servername = "SERVER_NAME";
 $dbname = "DB_NAME";
 $username = "DB_USERNAME";
 $password = "DB_PASSWORD";

 //Open a new connection to MySQL server
 $mysqli = new mysqli($servername, $username, $password, $dbname);

 //Output connection errors
 if ($mysqli->connect_error)
 {
 die("[ERROR] Connection Failed: " . $mysqli->connect_error);
 }
 ?>

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

184

 Receive and Store Sensor Data
 As shown in Figure 8-7 , create a new file called add.php in the tempmonitor folder. This
script will perform two tasks—first it will fetch information from the HTTP request and
then it will insert this information as a new row in the database table.

 Open the newly created file in a text editor and copy or type the code provided
in Listing 8-3 . As mentioned in the previous step, in order to store data, a database
connection needs to be established. You created util-dbconn.php to perform that task,
so in this file you need to include util-dbconn.php . The util-dbconn.php file provides
access to the $mysqli variable, which contains connection references and will be used to
run the SQL queries.

 The example in this book is hosted at http://bookapps.codifythings.com/
tempmonitor , and Arduino will be sending temperature data to add.php using an HTTP
 GET method. As discussed in Chapter 2 , HTTP GET uses a query string to send request
data. So, the complete URL with the query string that Arduino will be using becomes
 http://bookapps.codifythings.com/tempmonitor/add.php?temperature=79.5 .
Your PHP code will need to extract temperature values from the query string using the
 $_GET['temperature'] statement.

 Now you need to store this temperature value in the database table as a new row.
Prepare an INSERT SQL statement in $sql variable. You just need to pass the temperature
value, as ID and TIMESTAMP are both auto-generated, so the database will take care of that
for you.

 Finally, execute the INSERT SQL statement using $mysqli->query($sql) and check
the $result variable for success or failure .

 Figure 8-7. File to receive and store data in add. php

http://bookapps.codifythings.com/tempmonitor
http://bookapps.codifythings.com/tempmonitor
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://bookapps.codifythings.com/tempmonitor/add.php?temperature=79.5

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

185

 Listing 8-3. Code to Receive and Store Data in add.php

 <?php
 include('util-dbconn.php');

 $temperature = $_GET['temperature'];
 echo "[DEBUG] Temperature Sensor Data: " . $temperature . "\n";
 $sql = "INSERT INTO `TEMPERATURE_MONITORING_DATA`(`TEMPERATURE`) VALUES

($temperature)";

 if (!$result = $mysqli->query($sql))
 {
 echo "[Error] " . mysqli_error() . "\n";
 exit();
 }

 $mysqli->close();

 echo "[DEBUG] New Temperature Sensor Data Added Successfully\n";

 ?>

 Dashboard
 All the data that is being captured by the sensor and stored in database is not visible to
anyone. So next, you are going to build an analytics dashboard that will load the last 30
entries from the database and display them in a bar chart format. As shown in Figure 8-8 ,
create a new file called index.php in the tempmonitor folder.

 Figure 8-8. The file for analytics dashboard is index.php

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

186

 Listing 8-4 provides the structure of the index.php file. The structure is standard
HTML, so in the <head> tag you are going to load data from database table, load
dependencies and initialize the chart. The <body> tag will simply display the chart.

 Listing 8-4. Code Structure for Analytics Dashboard in index.php

 <html>
 <head>
 <title>...</title>

 <?php
 ?>

 <script src="..." />

 <script>
 // chart customization code
 </script>
 </head>

 <body>
 // chart display
 </body>
 </html>

 Listing 8-5 provides the complete code for index.php , so copy or write the code
in index.php . For developing the bar chart, you will be using Dojo, which is a very
popular JavaScript toolkit. You do not need to download or install any code. The toolkit is
accessible over the Internet so your script tag just needs to point to //ajax.googleapis.
com/ajax/libs/dojo/1.10.4/dojo/dojo.js as its source .

 To populate the chart, you first need to load data from the database in an array
variable called chartData . In the <script> tag, add the PHP code for loading data from
a database table. Include util-dbconn.php because a database connection needs to be
established, and then prepare a SELECT SQL statement. Execute the query and prepare an
array from the results. The final format of the array should be similar to var chartData =
[Val1, Val2, Val3] .

 To use Dojo toolkit resources, you need to load all the dependencies using
 require() . For chart development, the two most important dependencies are the chart
resource dojox/charting/Chart and a theme dojox/charting/themes/PlotKit/orange .
The remaining dependencies are included for customizing the chart.

 Inside function(Chart, theme){...} , create a new chart, set its theme, customize
its plot area and x/y axis, add a chartData series to the chart. Finally, render the chart.

 The <body> tag has the code to display a title on top of the page and chart created earlier.

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

187

 Listing 8-5. Complete Code for the Analytics Dashboard in index.php

 <html lang="en">

 <head>

 <title>Temperature Monitoring System - Dashboard</title>

 <script src="//ajax.googleapis.com/ajax/libs/dojo/1.10.4/dojo/dojo.js"
 data-dojo-config="async: true"></script>

 <script>
 <?php
 include('util-dbconn.php');

 $sql = "SELECT * FROM (SELECT * FROM
 `TEMPERATURE_MONITORING_DATA`
 ORDER BY ID DESC LIMIT 30) sub ORDER BY id ASC";
 $result = $mysqli->query($sql);
 $resultCount = $result->num_rows;

 if ($resultCount > 0)
 {
 $currentRow = 0;
 echo "var chartData = [";
 // output data of each row
 while($row = $result->fetch_assoc())
 {
 $currentRow = $currentRow + 1;

 echo $row["TEMPERATURE"];

 if($currentRow < $resultCount)
 {
 echo ",";
 }
 }
 echo "];";
 }
 else
 {
 echo "0 results";
 }

 $mysqli->close();

 ?>

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

188

 require([
 "dojox/charting/Chart",
 "dojox/charting/themes/PlotKit/orange",
 "dojox/charting/plot2d/Columns",
 "dojox/charting/plot2d/Markers",
 "dojox/charting/axis2d/Default",
 "dojo/domReady!"
], function(Chart, theme) {
 var chart = new Chart("chartNode");

 chart.setTheme(theme);

 chart.addPlot("default", {type: "Columns",
 gap: 5 , labels: true,
 labelStyle: "outside"});

 chart.addAxis("x", {title: "Readings (#)",
 titleOrientation: "away"});
 chart.addAxis("y", {title: "Temperature (F)",
 titleOrientation: "axis" , min: 0,
 max: 270, vertical: true, fixLower:

"major",
 fixUpper: "major" });

 chart.addSeries("TemperatureData",chartData);

 chart.render();
 });
 </script>
 </head>

 <body style="background-color: #F5EEE6">
 <div style="align: center;">

 Temperature Monitoring System – Dashboard
 </div>
 <div id="chartNode" style="width: 100%; height: 50%; margin-top: 50px;">

</div>

 <script type="text/javascript">
 init();
 </script>
 </body>
 </html>

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

189

 Code (Arduino)
 The final component of this project is the Arduino code for connecting to the Internet
using WiFi, reading data from the temperature sensor, and publishing it to a server.

 Start your Arduino IDE and either type the code provided here or download it from
book’s site and open it. All the code goes into a single source file (*.ino), but in order to
make it easy to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• HTTP (publish)

• Standard functions

 External Libraries
 The first section of code, as provided in Listing 8-6 , includes all the external libraries
required to run the code. Since you are connecting to the Internet wirelessly, the main
dependency of code is on <WiFi.h> .

 Listing 8-6. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>

 Internet Connectivity (Wireless)
 The second section of the code defines variables, constants, and functions that are going
to be used for connecting to the Internet. Use the code from Listings 2-7 , 2-8 , and 2-9
(in Chapter 2) here.

 Read Sensor Data
 The third section of code, as provided in Listing 8-7 , defines the variables, constants, and
functions that are going to be used for reading sensor data.

 The readSensorData() function reads data from Analog Pin A0 and the result is
between 0 and 1023 . The greater the value returned, the higher the temperature. The
sensor value does not directly provide the temperature in Celsius or Fahrenheit, so a
formula, as highlighted in Listing 8-7 , is used to convert the sensor value into the required
formats.

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

190

 Listing 8-7. Code for Reading Temperatures

 int TEMP_SENSOR_PIN = A0;

 float temperatureC = 0.0;
 float temperatureF = 0.0;

 void readSensorData()
 {
 //Read Temperature Sensor Value
 int temperatureSensorValue = analogRead(TEMP_SENSOR_PIN);

 float voltage = temperatureSensorValue * 5.0 / 1024;

 //Converting reading to Celsius
 temperatureC = (voltage - 0.5) * 100;

 //Converting reading to Fahrenheit
 temperatureF = (temperatureC * 9.0 / 5.0) + 32.0;

 //Log Sensor Data on Serial Monitor
 Serial.print("[INFO] Temperature Sensor Reading (F): ");
 Serial.println(temperatureF);
 }

 Data Publish
 The fourth section of code as provided in Listing 8-8 defines the variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET that you developed in
Chapter 3 .

 The main modification in this code is its ability to open and close a connection to
the server repeatedly. Apart from that, make sure to change the server and port values to
your PHP server’s values, requestData variables and the URL values.

 Listing 8-8. Code for Sending an HTTP Request

 //IP address of the server
 char server[] = {"bookapps.codifythings.com"};
 int port = 80;

 unsigned long lastConnectionTime = 0;
 const unsigned long postingInterval = 10L * 1000L;

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

191

 void transmitSensorData()
 {
 // Read all incoming data (if any)
 while (client.available())
 {
 char c = client.read();
 Serial.write(c);
 }

 if (millis() - lastConnectionTime > postingInterval)
 {
 client.stop();

 Serial.println("[INFO] Connecting to Server");

 String requestData = "temperature=" + String(temperatureF);

 // Prepare data or parameters that need to be posted to server
 if (client.connect(server, port))
 {
 Serial.println("[INFO] Server Connected - HTTP GET Started");

 // Make a HTTP request:
 client.println("GET /tempmonitor/add.php?" + requestData +
 " HTTP/1.1");
 client.println("Host: " + String(server));
 client.println("Connection: close");
 client.println();

 lastConnectionTime = millis();

 Serial.println("[INFO] HTTP GET Completed");
 }
 else
 {
 // Connection to server:port failed
 Serial.println("[ERROR] Connection Failed");
 }
 }

 Serial.println("---");

 }

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

192

 Standard Functions
 The code in the last section is provided in Listing 8-9 . It implements Arduino’s standard
 setup() and loop() functions.

 The setup() function initializes the serial port and connects to the Internet.
 The loop() function calls readSensorData() for reading temperature data and then

publishes the data to the server using HTTP by calling transmitSensorData() at regular
intervals.

 Listing 8-9. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 //Connect Arduino to internet
 connectToInternet();
 }

 void loop()
 {
 // Read sensor data
 readSensorData();

 // Transmit sensor data
 transmitSensorData();

 // Delay
 delay(6000);
 }

 Your Arduino code is now complete.

 The Final Product
 To test the application, make sure your MySQL and PHP servers are up and running with
the code deployed.

 Also verify and upload the Arduino code as discussed in Chapter 1 . Once the code
has been uploaded, open the Serial Monitor window. You will start seeing log messages
similar to ones shown in Figure 8-9 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 8 ■ IOT PATTERNS: WEB APPS

193

 Figure 8-9. Log messages from the temperature monitoring system

 Figure 8-10. Dashboard of the temperature monitoring system

 Let your Arduino run for a couple of minutes so that enough data is sent to
the server. Check your dashboard by accessing the project URL, in this case it was
 http://bookapps.codifythings.com/tempmonitor . Your dashboard should look similar
to Figure 8-10 .

 Summary
 In this chapter, you learned about building custom web apps. Web apps are being
extensively used for monitoring IoT applications and large-scale implementations,
as well as for creating dashboards.

http://bookapps.codifythings.com/tempmonitor

195© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_9

 CHAPTER 9

 IoT Patterns: Location Aware

 Location-aware devices are going to be one of the largest contributors of savings from
an IoT implementation. The IoT pattern is seen in various types of scenarios, including
optimal route planning, endangered wildlife tracking, and pinpointing crash locations.

 In this chapter, you are going to build a livestock tracking system . Figure 9-1 shows a
high-level diagram of all the components involved in this system. The first component is
an Arduino device that captures the current coordinates and publishes them to a server
using an HTTP request. The second component is a server that receives GPS coordinates
and stores them in a database. The final component is a web page that shows stored GPS
coordinates on a map. This web page resides on the server as well.

 Figure 9-1. The components of livestock tracking system

 For the purposes of this project, you are going to be tracking only one animal.

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

196

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read GPS coordinates

• Publish GPS coordinates to a server

• Display GPS coordinates in a map

 Hardware Required
 Figure 9-2 provides a list of all the hardware components required for building the
livestock tracking system.

 Figure 9-2. Hardware required for the livestock tracking system

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

197

 Software Required
 In order to develop this livestock tracking system, you need the following software:

• Arduino IDE 1.6.4 or later

• PHP server (installed or hosted)

• MySQL server (installed or hosted)

• Text editor

 Circuit
 In this section, you are going to build the circuit required for the livestock tracking system.
This circuit uses the NEO6MV2 GPS module for getting current latitude and longitude
data. The GPS module has a positional accuracy of 5 meters.

 1. Make sure Arduino is not connected to a power source, such
as to a computer via USB or a battery.

 2. Attach a WiFi shield to the top of the Arduino. All the pins
should align.

 3. Use jumper cables to connect the power (3.3V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the GPS.

 5. To read the GPS data, you will need to connect a jumper
cable from the RX (Receive) port of the GPS to Digital Port 3
of Arduino. Your code will use data from this port to find the
latitude and longitude information.

 6. Similar to Step 5, you also need to connect a jumper cable
from the TX (Transmit) port of the GPS to Digital Port 2 of
Arduino. Your code will use data from this port to find the
latitude and longitude information.

 ■ Note Other GPS modules might have different power requirements and circuits. Check
the datasheet of your GPS module to confirm its requirements.

 Your circuit is now complete and should look similar to Figures 9-3 and 9-4 .

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

198

 Figure 9-3. Circuit diagram of the livestock tracking system

 Figure 9-4. Actual circuit of the livestock tracking system

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

199

 Database Table (MySQL)
 As discussed in the previous two chapters, before you can send HTTP requests from
Arduino, you need to build a service that will receive the data.

 The livestock tracking system will be displaying the latest GPS coordinates on a map,
so you need to create a database table that will store those GPS coordinates.

 This chapter also uses MySQL as the database. Even though you are only going to
track a single device, the table structure will be the same as if you were tracking multiple
devices. So create a new table called GPS_TRACKER_DATA using the SQL script provided in
Listing 9-1 . Run this script in an existing database or create a new one.

 The first column will store the ID of the animal/device sending the coordinates;
the second column will store the latitude; the third column will store longitude; and the
fourth column will contain an auto-generated timestamp.

 Listing 9-1. Create Table SQL

 CREATE TABLE `GPS_TRACKER_DATA`
 (
 `CLIENT_ID` varchar(40) NOT NULL,
 `LATITUDE` varchar(40) NOT NULL,
 `LONGITUDE` varchar(40) NOT NULL,
 `LAST_UPDATED` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`CLIENT_ID`)
)

 Figure 9-5 shows the structure of the GPS_TRACKER_DATA table.

 Code (PHP)
 Now that the database table is ready, you need to build two services. The first service that
will receive the GPS coordinates and store them in the newly created database table. The
second service will show the stored GPS coordinates on a map.

 Figure 9-5. GPS_TRACKER_DATA table structure

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

200

 This project also uses PHP for building the storage and user interface services.
 Create a new folder called gpstracker in the public/root folder of your PHP server.

All of the PHP source code for this project will go in this gpstracker folder.
 Start the text editor of your choice.

 ■ Note All the PHP code was developed using Brackets, which is an open source text
editor. See http://brackets.io/ for more information.

 Database Connection
 Both PHP scripts for storing and displaying data will need to connect to the database. As
shown in Figure 9-6 , create a new file called util-dbconn.php in the gpstracker folder.
This file will be used by both scripts instead of repeating the code.

 Open the file in a text editor and copy or type code from Listing 9-2 . As you can
see, there is not much code in this file. The four variables $servername , $username ,
 $password , and $dbname contain connection information. Create a new connection by
passing these four variables and store the connection reference in the $mysqli variable.

 The IF condition in the code simply checks for errors during the connection attempt
and prints them if there are any.

 Listing 9-2. Common Database Connectivity Code util-dbconn.php

 <?php
 $servername = "SERVER_NAME";
 $dbname = "DB_NAME";
 $username = "DB_USERNAME";

 Figure 9-6. Common database connectivity file called util-dbconn.php

http://brackets.io/

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

201

 $password = "DB_PASSWORD";

 //Open a new connection to MySQL server
 $mysqli = new mysqli($servername, $username, $password, $dbname);

 //Output connection errors
 if ($mysqli->connect_error)
 {
 die("[ERROR] Connection Failed: " . $mysqli->connect_error);
 }
 ?>

 Receive and Store Sensor Data
 As shown in Figure 9-7 , create a new file called update.php in the gpstracker folder. This
script will perform two tasks—first it will fetch information from an HTTP request and
then it will update this information in the database table.

 Open the newly created file in a text editor and copy or type the code provided

in Listing 9-3 . As mentioned in the previous step, in order to store data, a database
connection needs to be established. You created util-dbconn.php to perform that task,
so in this file you need to include util-dbconn.php . The util-dbconn.php file provides
access to the $mysqli variable, which contains connection references and will be used to
run the SQL queries.

 The example in this book is hosted at http://bookapps.codifythings.com/
gpstracker/ , and Arduino will be sending GPS coordinates to update.php using an HTTP
 GET method. As discussed in Chapter 2 , HTTP GET uses a query string to send request
data. So, the complete URL with the query string that Arduino will be using becomes
 http://bookapps.codifythings.com/gpstracker/update.php?clientID=Sheep1&lat

 Figure 9-7. File to receive and add/update data in update.php

http://bookapps.codifythings.com/gpstracker/
http://bookapps.codifythings.com/gpstracker/
http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://bookapps.codifythings.com/gpstracker/update.php?clientID=Sheep1&latitude=41.83

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

202

itude=41.83 &longitude=-87.68 . Your PHP code will need to extract client ID and GPS
coordinates from the query string using $_GET['parameterName'] statement .

 Now you need to store these GPS coordinates in the database table, either in an
existing row or by inserting them in a new row. Prepare an INSERT OR UPDATE SQL
statement in the $sql variable. You will need to pass the CLIENT_ID , LATITUDE , and
 LONGITUDE values in the SQL query while TIMESTAMP will be auto-generated by the
database.

 Finally, execute the INSERT OR UPDATE SQL statement using $mysqli->query($sql)
and check the $result variable for success or failure.

 Listing 9-3. Code to Receive and Add/Update Data in update.php

 <?php
 include('util-dbconn.php');

 $clientID = $_GET['clientID'];
 $latitude = $_GET['latitude'];
 $longitude = $_GET['longitude'];

 $sql = "INSERT INTO `GPS_TRACKER_DATA` (CLIENT_ID, LATITUDE, LONGITUDE)
VALUES('$clientID', $latitude, $longitude) ";
 $sql = $sql . "ON DUPLICATE KEY UPDATE CLIENT_ID='$clientID',
LATITUDE=$latitude, LONGITUDE=$longitude";

 echo $sql;

 if (!$result = $mysqli->query($sql))
 {
 echo "[Error] " . mysqli_error() . "\n";
 exit();
 }

 $mysqli->close();

 echo "[DEBUG] Updated GPS Coordinates Successfully\n";

 ?>

http://bookapps.codifythings.com/gpstracker/update.php?clientID=Sheep1&latitude=41.83

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

203

 Map
 All the GPS coordinates being stored in the database are not visible to anyone yet. Next,
you are going to build a web page that will display all coordinates on a map. As shown in
Figure 9-8 , create a new file called index.php in the gpstracker folder.

 Figure 9-8. The file for displaying a map is index.php

 Listing 9-4 provides the complete code for index.php , so copy or write the code in
 index.php . This code uses the Google Maps API for creating a map and displaying all the
coordinates. You do not need to download or install any code; the API is accessible over
the Internet so your script tag just needs to point to http://maps.googleapis.com/
maps/api/js?sensor=false as its source.

 To populate the map, you first need to load data from the database in the location
array variable. Add your PHP code for loading data from a database table inside the
 init() JavaScript function. Include util-dbconn.php because the database connection
needs to be established first, and then prepare a SELECT SQL statement. Execute the
query and prepare a locations array from the results.

 After the PHP code and inside the init() function, initialize a new map. Set its zoom
level, default coordinates, and map type. Next read the array in a loop and mark all the
coordinates on the map.

 The <body> tag has the code to display a title on top of the page and map created earlier.

 Listing 9-4. Code Structure for Map in index.php

 <html lang="en">

 <head>
 <title>Livestock Tracking System</title>

 <script type="text/javascript" src="http://maps.googleapis.com/maps/api/
js?sensor=false"></script>

http://maps.googleapis.com/maps/api/js?sensor=false
http://maps.googleapis.com/maps/api/js?sensor=false

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

204

 <script>
 function init()
 {
 <?php
 include('util-dbconn.php');

 $sql = "SELECT * FROM `GPS_TRACKER_DATA`";
 $result = $mysqli->query($sql);
 $resultCount = $result->num_rows;

 $zoomLatitude = "";
 $zoomLongitude = "";

 echo "var locations = [";

 if ($resultCount > 0)
 {
 $currentRow = 0;

 while($row = $result->fetch_assoc())
 {
 $currentRow = $currentRow + 1;
 $clientID=$row["CLIENT_ID"];
 $latitude=$row["LATITUDE"];
 $longitude=$row["LONGITUDE"];

 if($currentRow == 1)
 {
 $zoomLatitude = $latitude;
 $zoomLongitude = $longitude;
 }

 echo "['".$clientID."',".$latitude.",".$longitude."]";

 if($currentRow < $resultCount)
 {
 echo ",";
 }
 }
 }

 echo "];";

 echo "var latitude = '$zoomLatitude';";
 echo "var longitude = '$zoomLongitude';";

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

205

 $mysqli->close();

 ?>

 map = new google.maps.Map(document.getElementById('map'),
 {
 zoom: 10,
 center: new google.maps.LatLng(latitude,
 longitude),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 });

 var infowindow = new google.maps.InfoWindow();

 var marker, i;

 for (i = 0; i < locations.length; i++)
 {
 marker = new google.maps.Marker({
 position: new
 google.maps.LatLng(locations[i][1],
 locations[i][2]),map: map});

 google.maps.event.addListener(marker, 'click',
 (function(marker, i)
 {
 return function()
 {
 infowindow.setContent(locations[i][0]);
 infowindow.open(map, marker);
 }
 })(marker, i));
 }
 }
 </script>
 </head>

 <body style="background-color: #9bcc59">
 <div style="align: center;">Livestock
Tracking System</div>
 <div id="map" style="width: 100%; height: 50%; margin-top: 50px;"></div>

 <script type="text/javascript">
 init();
 </script>
 </body>
 </html>

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

206

 Code (Arduino)
 The final component of this project is the Arduino code for connecting to the Internet
using WiFi, getting the current GPS coordinates, and publishing them to a server.

 Start your Arduino IDE and either type the code provided here or download it from
the site and open it. All the code goes into a single source file (*.ino), but in order to
make it easy to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read GPS coordinates

• HTTP (publish)

• Standard functions

 External Libraries
 The first section of code, as provided in Listing 9-5 , includes all the external libraries
required to run the code. This sketch has multiple dependencies—for Internet
connectivity, you need to include the <WiFi.h> , for communication with the GPS module,
you need to include <SoftwareSerial.h> , and for reading the GPS coordinates, you need
to include <TinyGPS.h> . You can download <TinyGPS.h> from https://github.com/
mikalhart/TinyGPS/releases/tag/v13 .

 Listing 9-5. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <TinyGPS.h>
 #include <SoftwareSerial.h>

 Internet Connectivity (Wireless)
 The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8 ,
and 2-9 (Chapter 2) here.

 Get GPS Coordinates
 The third section of the code, as provided in Listing 9-6 , defines the variables, constants,
and functions that are going to be used for reading the GPS coordinates.

 Once the GPS module is connected to Arduino and it is powered on, it will look for
a satellite and start sending data on serial ports D2 and D3 to Arduino. This data won’t
make much sense, so in order to find the latitude and longitude information, you will use

https://github.com/mikalhart/TinyGPS/releases/tag/v13
https://github.com/mikalhart/TinyGPS/releases/tag/v13
http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

207

 TinyGPS library. This library parses data coming from the GPS module and provides an
easy way to retrieve the required information. So initialize a variable of the TinyGPS library.

 The getGPSCoordinates() function reads the GPS data from serial ports D2 and
D3. The GPS module might take a few seconds to find a satellite, so the latitude and
longitude values returned might not be valid. If latitude and longitude are equal to
 TinyGPS::GPS_INVALID_F_ANGLE , that means the coordinates are invalid, so until the
code receives valid coordinates, it keeps printing Searching for Satellite on the serial
monitor. Once the valid coordinates are received, the transmitSensorData(latitude,
longitude) function is called.

 Listing 9-6. Code for Reading GPS Coordinates

 TinyGPS gps;
 SoftwareSerial ss(2, 3); // GPS TX = Arduino D2, GPS RX = Arduino D3

 static void smartdelay(unsigned long ms)
 {
 unsigned long start = millis();
 do
 {
 while (ss.available())
 gps.encode(ss.read());
 } while (millis() - start < ms);
 }

 void getGPSCoordinates()
 {
 float latitude;
 float longitude;
 unsigned long age = 0;

 gps.f_get_position(&latitude, &longitude, &age);

 smartdelay(10000);

 // Transmit sensor data
 if(latitude != TinyGPS::GPS_INVALID_F_ANGLE &&
 longitude != TinyGPS::GPS_INVALID_F_ANGLE)
 {
 transmitSensorData(latitude, longitude);
 }
 else
 {
 Serial.println("[INFO] Searching for Satellite");
 }
 }

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

208

 Data Publish
 The fourth section of code, as provided in Listing 9-7 , defines the variables, constants,
and functions that are going to be used for creating and sending an HTTP request to the
server. This code is a slightly modified version of the HTTP GET that you developed in
Chapter 3 .

 The main modification in this code is its ability to open and close a connection to
the server repeatedly. Apart from that, make sure to change the server and port values to
your PHP server’s values, requestData variables and the URL values.

 Listing 9-7. HTTP Publish

 //IP address of the server
 char server[] = {"bookapps.codifythings.com"};
 int port = 80;

 unsigned long lastConnectionTime = 0;
 const unsigned long postingInterval = 10L * 1000L;

 void transmitSensorData(float latitude, float longitude)
 {
 // Read all incoming data (if any)
 while (client.available())
 {
 char c = client.read();
 }

 if (millis() - lastConnectionTime > postingInterval)
 {
 client.stop();

 Serial.println("[INFO] Connecting to Server");

 String requestData = "clientID=Sheep1&latitude=" + String(latitude)
 + "&longitude=" + String(longitude);
 Serial.println("[INFO] Query String: " + requestData);

 // Prepare data or parameters that need to be posted to server
 if (client.connect(server, port))
 {
 Serial.println("[INFO] Server Connected - HTTP GET Started");

 // Make a HTTP request:
 client.println("GET /gpstracker/update.php?" + requestData +
 " HTTP/1.1");
 client.println("Host: " + String(server));

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

209

 client.println("Connection: close");
 client.println();

 lastConnectionTime = millis();

 Serial.println("[INFO] HTTP GET Completed");
 }
 else
 {
 // Connection to server:port failed
 Serial.println("[ERROR] Connection Failed");
 }
 }

 Serial.println("---");

 }

 Standard Functions
 The final code section is provided in Listing 9-8 . It implements Arduino’s standard
 setup() and loop() functions.

 The setup() function initializes the serial port. Note that the baud rate is 115200 ,
which is different from what you have been using so far. The reason for difference will be
clear when you look at the next line of code: ss.begin(9600) . This statement initializes
communication with the GPS module on serial ports D2 and D3 (ss is the instance of
SoftwareSerial library that you initialized in Listing 9-6). The GPS module used in this
project communicates at 9600 baud rate by default, therefore 115200 was used for serial
monitor logs. The GPS module that you are using might have a different default baud rate,
so make sure to check the manufacturer’s datasheet to find the correct one. Next, connect
to the Internet using WiFi.

 The loop() function just needs to call the getGPSCoordinates() function. It reads
the GPS coordinates and, at regular intervals, calls the transmitSensorData() function to
publish the GPS coordinates to the server.

 Listing 9-8. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(115200);

 // Initialize serial port for GPS data
 ss.begin(9600);

 //Connect Arduino to internet
 connectToInternet();
 }

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

210

 void loop()
 {
 // Get GPS Coordinates
 getGPSCoordinates();
 }

 Your Arduino code is now complete.

 The Final Product
 To test the application, make sure your MySQL and PHP servers are up and running with
the code deployed.

 Also verify and upload the Arduino code as discussed in Chapter 1 . Once the code
has been uploaded, open the Serial Monitor window. You will start seeing log messages
similar to ones shown in Figure 9-9 .

 Figure 9-9. Log messages from the livestock tracking system

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 9 ■ IOT PATTERNS: LOCATION AWARE

211

 Summary
 In this chapter you learned about location-aware things. They have many great uses, and,
when combined with other sensors, they can improve so many aspects of our lives, such
as emergency response, maintenance and optimized routing, and more.

 You developed an IoT application that published livestock tracking data to a server
where this information was displayed on a map. You can improve quite a few other
applications that you developed in previous chapters by making them location-aware,
including:

• The intrusion detection system from Chapter 5 . When an
intrusion is detected, you can send alerts to the security company
with the exact coordinates so that they can send someone to
investigate.

• The smart parking system from Chapter 7 . You can provide exact
coordinates of a parking spot so that drivers looking for parking
spots can enter the coordinates in their GPS for directions.

 Not all scenarios will need a purpose-built GPS module. Smartphones are location-
aware as well and can be used for building IoT applications. For scenarios such as
livestock tracking, you need to attach purpose-built GPS modules, but for other scenarios,
such as a car mileage tracker, you have the option to use smartphones as well.

 Figure 9-10. The final version of the livestock tracking system

 Once the GPS has initialized, which might take a few seconds, it will publish the
current coordinates to the server. Check your web app by accessing the project URL; in
this case it was http://bookapps.codifythings.com/gpstracker . Your web app should
look similar to Figure 9-10 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_5
http://dx.doi.org/10.1007/978-1-4842-1940-9_7
http://bookapps.codifythings.com/gpstracker

213© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_10

 CHAPTER 10

 IoT Patterns: Machine
to Human

 Due to regulatory requirements or lack of technology, there will be scenarios where
human intervention is required to respond to sensor-generated alerts.

 In this chapter, you are going to build a simple waste management system to
elaborate this use case. Figure 10-1 shows a high-level diagram of all components
involved in this system. The first component is an Arduino device that monitors garbage
levels with a proximity sensor and publishes a message to an MQTT broker. The second
component is a Node-RED flow that subscribes to an MQTT broker. The final component
is a workflow that is initiated whenever the garbage levels are high and a pickup needs to
be scheduled.

 Figure 10-1. Components of the waste management system

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

214

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read data from a proximity sensor

• Publish message to an MQTT broker

• Build a workflow in Effektif (renamed to Signavio Workflow)

• Create a Node-RED flow and initiate it from Arduino

 Hardware Required
 Figure 10-2 provides a list of all hardware components required for building the waste
management system.

 Figure 10-2. Hardware required for the waste management system

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

215

 Software Required
 In order to develop this waste management system, you need the following software :

• Arduino IDE 1.6.4 or later

• Effektif (hosted)

• Node-RED 0.13.2 or later

 Circuit
 In this section, you are going to build the circuit required for the waste management
system. This circuit uses an ultrasonic proximity sensor to detect objects, as illustrated
in Chapter 7 . The sensor is attached to the top of a garbage can and sends an ultrasonic
burst that reflects off of the garbage in the can. The circuit reads the echo, which is used to
calculate the level of garbage .

 1. Make sure Arduino is not connected to a power source, such
as to a computer via a USB or a battery.

 2. Attach a WiFi shield to the top of the Arduino. All the pins
should align.

 3. Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the proximity
sensor.

 5. To trigger an ultrasonic burst, connect a jumper cable from
the TRIG pin of the sensor to Digital Port 2 of Arduino. Your
code will set the value of this port to LOW, HIGH, and then
LOW in order to trigger the burst.

 6. To read the echo, connect a jumper cable from the ECHO pin
of the sensor to Digital Port 3 of Arduino. Your code will read
the values from this port to calculate the level of garbage in
the can.

 Your circuit is now complete and should look similar to Figures 10-3 and 10-4 .

http://dx.doi.org/10.1007/978-1-4842-1940-9_7

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

216

 Figure 10-3. Circuit diagram of the waste management system

 Figure 10-4. Actual circuit of the waste management system

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

217

 Code (Arduino)
 Next you are going to write the code for the first component of this application. This code
will connect Arduino to the Internet using WiFi, read the proximity sensor data to get
garbage levels, and publish that information to an MQTT broker.

 Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.ino), but in order to make it easy
to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• MQTT (publish)

• Standard functions

 External Libraries
 The first section of code, as provided in Listing 10-1 , includes all the external libraries
required to run the code. This sketch has two main dependencies—for Internet
connectivity, you need to include <WiFi.h> (assuming you are using a WiFi shield) and
for MQTT broker communication, you need to include <PubSubClient.h> .

 Listing 10-1. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <PubSubClient.h>

 Internet Connectivity (Wireless)
 The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (Chapter 2) here.

 Read Sensor Data
 The third section of code, as provided in Listing 10-2 , defines the variables, constants, and
functions that are going to be used for reading the sensor data.

 The calibrateSensor() function waits for the proximity sensor to calibrate properly.
Once the calibration is complete, the proximity sensor is active and can start detecting.
If you do not give it enough time to calibrate, the proximity sensor might return incorrect
readings.

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

218

 The readSensorData() function generates a burst to detect garbage level in the can.
It triggers a burst on Digital Pin 2 by sending alternate signals—LOW, HIGH, and LOW
again. Then it reads the echo from Digital Pin 3, which provides the distance between the
sensor and the garbage. Finally, it checks if the distance is less than a threshold, and if it
is, that means the garbage can is close to being full and a pickup needs to be scheduled.
Since this is just a prototype, the echo value of 700 has been used. When you use this
sensor in real life, you need to adjust the value by doing a few tests. If the garbage level is
above the threshold, then call publishSensorData(...) with HIGH .

 Listing 10-2. Code for Detecting the Garbage Level

 int calibrationTime = 30;
 #define TRIGPIN 2 // Pin to send trigger pulse
 #define ECHOPIN 3 // Pin to receive echo pulse

 void calibrateSensor()
 {
 //Give sensor some time to calibrate
 Serial.println("[INFO] Calibrating Sensor ");

 for(int i = 0; i < calibrationTime; i++)
 {
 Serial.print(".");
 delay(1000);
 }

 Serial.println("");
 Serial.println("[INFO] Calibration Complete");
 Serial.println("[INFO] Sensor Active");

 delay(50);

 }

 void readSensorData()
 {
 // Generating a burst to check for objects
 digitalWrite(TRIGPIN, LOW);
 delayMicroseconds(10);
 digitalWrite(TRIGPIN, HIGH);
 delayMicroseconds(10);
 digitalWrite(TRIGPIN, LOW);

 // Distance Calculation
 float distance = pulseIn(ECHOPIN, HIGH);

 Serial.println("[INFO] Garbage Level: " + String(distance));

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

219

 if(distance < 700)
 {
 Serial.println("[INFO] Garbage Level High");

 // Publish sensor data to server
 publishSensorData("HIGH");
 }
 }

 Data Publish
 The fourth section of code, provided in Listing 10-3 , defines the variables, constants, and
functions that are going to be used for publishing data to an MQTT broker.

 This code is a slightly modified version of MQTT publish that you developed in Chapter 3 .
You do not need to make any changes for the code to work, but it is recommended that you
customize some of the messages so that they do not get mixed up with someone else using
the same values. All values that can be changed have been highlighted in bold in Listing 10-3 .
If you are using your own MQTT server, make sure to change the server and port values.
The two recommended changes include the value of the topic variable and the name of
client that you need to pass while connecting to the MQTT broker.

 Listing 10-3. Code for Publishing Messages to an MQTT Broker

 // IP address of the MQTT broker
 char server[] = {"iot.eclipse.org"};
 int port = 1883;
 char topic[] = {"codifythings/garbagelevel"};

 void callback(char* topic, byte* payload, unsigned int length)
 {
 //Handle message arrived
 }

 PubSubClient pubSubClient(server, port, 0, client);

 void publishSensorData(String garbageLevel)
 {
 // Connect MQTT Broker
 Serial.println("[INFO] Connecting to MQTT Broker");

 if (pubSubClient.connect("arduinoIoTClient"))
 {
 Serial.println("[INFO] Connection to MQTT Broker Successful");
 }
 else
 {
 Serial.println("[INFO] Connection to MQTT Broker Failed");
 }

http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

220

 // Publish to MQTT Topic
 if (pubSubClient.connected())
 {
 Serial.println("[INFO] Publishing to MQTT Broker");
 pubSubClient.publish(topic, "Garbage level is HIGH, schedule pickup");
 Serial.println("[INFO] Publish to MQTT Broker Complete");
 }
 else
 {
 Serial.println("[ERROR] Publish to MQTT Broker Failed");
 }

 pubSubClient.disconnect();

 }

 Standard Functions
 The final code section is shown in Listing 10-4 . It implements Arduino’s standard setup()
and loop() functions.

 The setup() function initializes the serial port, sets the pin modes for the trigger and
echo pins, connects to the Internet, and calibrates the proximity sensor.

 The loop() function simply needs to call readSensorData() at regular intervals.

 Listing 10-4. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Set pin mode
 pinMode(ECHOPIN, INPUT);
 pinMode(TRIGPIN, OUTPUT);

 // Connect Arduino to internet
 connectToInternet();

 // Calibrate sensor
 calibrateSensor();
 }

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

221

 void loop()
 {
 // Read sensor data
 readSensorData();

 // Delay
 delay(5000);
 }

 Your Arduino code is now complete.

 Effektif Workflow
 Effektif is a cloud-based platform that lets you automate routine workflows and processes
into applications within minutes. For the purposes of this project, you can sign up for
their free 30-day trial membership. You are going to define a very simple single step
workflow that allows a person to enter a garbage pickup schedule.

 Effektif is just one example of a workflow and process management solution ; you can use
one of the many other solutions available as well.

 Process Creation
 Log in using your credentials at https://app.effektif.com/ . Once you are logged in,
choose Processes from the menu shown in Figure 10-5 .

 Figure 10-5. Effektif menu

 Figure 10-6. List of existing processes

 This will take you to list of all existing processes and give you the option to create a
new one. Figure 10-6 shows the screen where you will see all existing processes.

https://app.effektif.com/

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

222

 From the Processes tab shown in Figure 10-6 , click on the Create New Process
button. As shown in Figure 10-7 , enter Schedule Garbage Pickup as the process name.
Press Enter to create process and move to next screen.

 Figure 10-7. New process name

 Figure 10-8. Process configuration screen

 Process Configurations
 Next you need to configure the newly created process. Figure 10-8 shows the process
configuration screen, which is where you can define all aspects of your process, including:

• Trigger: Select how the process can be started

• Actions: Specify what human and system actions will happen in
the process and their orders

• Details: Choose who will be involved in the process

• Versions: View a list of all versions of processes published till date

 First you are going to select a trigger for your process. For this project, you are going
to select e-mail as a trigger. As shown in Figure 10-9 under the Triggers tab, click on When
an Email Arrives as the trigger option. Once you select an e-mail trigger, Effektif provides
an auto-generated e-mail address. Any person or a system can send an e-mail to this
auto-generated address and a new instance of process will be started in Effektif.

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

223

 Next you will create and configure the one-step scheduling process. As shown in
Figure 10-10 , the Actions tab lets you choose type of tasks you want the process to do.

 Figure 10-9. Process trigger options

 Figure 10-10. Process actions

 From the Actions tab shown in Figure 10-10 , click on User Task to create an action
that a person needs to perform.

 As shown in Figure 10-11 , enter the title of this task as Schedule Garbage Pickup .
You will also need to specify Assignment information, such as whether a single user
or a group of users can perform this task. These candidates can be defined in the My
Organization screen under Profile. For simplicity, select the name that you used when
creating your Effektif account.

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

224

 Next you are going to configure how the screen is going to look. This is a simple
point-and-click activity. Click on the Form tab.

 There are two ways to add fields to a screen—you can either create new fields
using one of the provided controls or you can use an existing field (system generated or
previously defined). Figure 10-12 shows list of controls currently available in Effektif.

 Figure 10-11. Action type and assignment

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

225

 Figure 10-13 shows a list of existing fields that can be reused. Since you selected
e-mail as trigger option, the trigger e-mail fields become available in the list.

 Figure 10-12. List of available controls

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

226

 For this process, you will be using new and existing fields. Since the process is being
triggered by an e-mail, you need to display some information from the e-mail. Select
Trigger Email/Subject and Trigger Email/Body from Add a Field list. These will be added
to your form. Change their names to Title and Description , respectively.

 You also need to add a new Date/Time field for someone to enter the garbage pickup
date/time. As shown in Figure 10-14 , select Date/Time from Add a Field list, set its name
to Pickup Data/Time , and make it a mandatory field.

 Figure 10-13. List of existing fields

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

227

 You can rearrange the order of all the fields on the form and change their properties
to make them more understandable. The final screen layout of your action should look
similar to Figure 10-15 .

 Figure 10-14. Add a new field on the form

 Figure 10-15. Final form layout

 Next click on the Reminders tab and, as shown in Figure 10-16 , you have the option
to define different types of reminders for the task. For now you can leave them as-is for all
types of reminders.

• Due date: When is the task due?

• Reminder: When should a reminder be sent to the user that the
task is getting delayed?

• Continue reminding every: Until when should the system keep
sending reminders?

• Escalation: If the user still does not take action, to whom should
the task be reassigned or delegated?

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

228

 The Schedule Garbage Pickup action is fully configured, so now you need to define
the flow. From the Actions tab, select the Start action to add it in the flow right before the
Schedule Garbage Pickup action, as shown in Figure 10-17 .

 Figure 10-17. Start action added to flow

 Figure 10-18. Connect the Start and Schedule Garbage Pickup actions

 Figure 10-16. Task reminders

 Connect the Start action to the Schedule Garbage Pickup action, as shown in
Figure 10-18 .

 Next, select the Schedule Garbage Pickup action and, from the available options,
click on End action, as shown in Figure 10-19 .

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

229

 A new End action will be added to the flow, right after Schedule Pickup action, as
shown in Figure 10-20 . This will make sure that the process ends once a user enters the
pickup date/time on the form.

 Figure 10-19. Connect Start and Schedule Pickup activities

 Figure 10-20. Connect Schedule Pickup and End activities

 The final step is to make the process available. To do this, switch to the Versions tab ,
as shown in Figure 10-21 .

 Figure 10-21. Publish process changes

 Next, click on the Publish Changes button and a new version of the process will
immediately show up in Versions list, as shown in Figure 10-22 .

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

230

 This completes configuration of your process.

 Node-RED Flow
 The final component of your IoT application is a Node-RED flow that will subscribe to
an MQTT topic that Arduino is publishing messages to and then kick off the process in
Effektif.

 Start the Node-RED server and designer, as explained in Chapter 4 . As shown in
Figure 10-23 , click on the + to create a new flow .

 Figure 10-22. Process versions

 Figure 10-23. Create a new Node-RED flow

 Double-click the flow tab name to open the properties dialog box. As shown in
Figure 10-24 , rename the flow Waste Management System and click OK to save your
changes.

http://dx.doi.org/10.1007/978-1-4842-1940-9_4

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

231

 Drag and drop the mqtt input node from palette in the flow tab; your flow should
look similar to Figure 10-25 .

 Figure 10-24. Rename flow sheet

 Figure 10-25. MQTT subscribe node

 Double-click the mqtt node to open the properties dialog box, as shown in
Figure 10-26 . You need to configure a new MQTT broker, select Add New mqtt-Broker…
from the Broker field and click on the Pencil icon.

 Figure 10-26. MQTT node properties

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

232

 The MQTT configuration dialog box will open, as shown in Figure 10-27 . You need
to configure the same MQTT broker where Arduino is publishing messages, which in this
case is the publicly available broker from Eclipse Foundation. Enter iot.eclipse.org in
the Broker field, 1883 in the Port field, and nodeRedClient in the Client ID field. Click Add
to add the newly configured MQTT broker.

 Figure 10-27. MQTT broker configuration

 Now that you have configured the MQTT broker , you will need to enter a topic
that your mqtt node should subscribe. Since Arduino is publishing to codifythings/
garbagelevel , you need to enter the same in the Topic field. Update the name to Receive
MQTT Messages , as shown in Figure 10-28 , and click OK to save the changes.

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

233

 Drag and drop an email node from the social palette and place it in the flow tab after
the Receive MQTT Messages node. Your flow should look similar to Figure 10-29 at this
point.

 Figure 10-28. MQTT broker topic

 Figure 10-29. Email node

 An email node lets you send an e-mail message to the provided address. Double-
click the email node to open the properties dialog box shown in Figure 10-30 .

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

234

 Update the email node properties as shown in Figure 10-31 . In the To field, enter the
e-mail address that was auto-generated by Effketif BPM. In the Server, Port, Userid, and
Password fields, provide information about the the SMTP server that Node-RED can use
to send this e-mail. By default, the email node has Gmail properties. Update the Name to
Send Email/Start New Process option. Click OK to save your changes.

 Figure 10-30. E-mail node properties

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

235

 You have added all the required nodes, so you can now connect the Receive MQTT
Messages node to the Send Email/Start New Process node. This completes your Node-
RED flow and it should look similar to Figure 10-32 . Click on the Deploy button to make
this flow available.

 Figure 10-31. Updated email node properties

 Figure 10-32. Final Node-RED flow

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

236

 Figure 10-33. Circuit of the waste management system

 The Final Product
 To test the application, verify and upload the Arduino code as discussed in Chapter 1 .
Place your proximity sensor on top of a trash can or an empty cardboard box , as shown in
Figures 10-33 and 10-34 . Make sure there is no garbage in the can initially.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

237

 Once the code has been uploaded, open the Serial Monitor window. You will start
 seeing log messages similar to ones shown in Figure 10-35 .

 Figure 10-34. Close-up of the waste management system circuit

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

238

 Your Node-RED server should be up and running and the waste management system
flow should be deployed. The final component is the Effektif process, and you should
have already published that in previous steps.

 Start adding stuff to your garbage can/box, and as soon as it reaches a certain level
(set at 700 in Arduino code), a message will be published to the MQTT broker. Your Node-
RED flow is listening to the MQTT broker for new messages and, as soon as it receives
a new one, an e-mail will be sent out that starts the Effektif process. Log in to Effektif
using your credentials and, as shown in Figure 10-36 , you should see a new task for the
Schedule Garbage Pickup process available under the Tasks tab .

 Figure 10-35. Log messages from the waste management system

 Figure 10-36. New task available in Effektif

CHAPTER 10 ■ IOT PATTERNS: MACHINE TO HUMAN

239

 Click on the task link to see the details. As you can see in Figure 10-37 , Title contains
the MQTT topic name and Description contains the message that was sent by Arduino.
Enter a pickup date/time and click Done. This will complete the process and the task will
be removed from your Tasks list.

 Figure 10-37. Task details in Effektif

 This completes the end-to-end testing of this project.

 Summary
 In this chapter, you learned about the IoT pattern that will be used when a human
response is required to device generated alerts.

 The project you developed was one example where Arduino sends alerts and a
process is started in response to them.

 Initiating a process is just one way to respond. Processes provide you with a more
streamlined and structured response, but depending on the requirement, you can always
use e-mail, SMS, etc.

 Due to regulatory requirements or lack of response technology, human intervention
will continue to be a requirement for some IoT applications. As IoT progresses, the
amount of human intervention will be reduced as well.

241© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_11

 CHAPTER 11

 IoT Patterns: Machine to
Machine

 As IoT technology evolves and machines become smarter and more capable, the need for
human intervention will reduce. Machines will be able to autonomously respond to alerts
generated by other machines.

 In this chapter, you are going to build an energy conservation system that will
show how two machines can communicate. Figure 11-1 shows a high-level diagram of
all components involved in this system. The first component is an Arduino device that
monitors light brightness levels and sends an alert whenever the levels are low. The
second component is an MQTT broker that helps avoid point-to-point communication.
Multiple devices can communicate with each other without knowing each other’s
identities.

 Figure 11-1. Components of an energy conservation system

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

242

 The final component is another Arduino device that controls lights. If the light sensor
publishes a message to the MQTT broker that light brightness level is LOW, the device
will automatically turn the lights on. In real life, this system could be utilized to turn
street lights on or off only when they are required instead of doing it at scheduled times,
regardless of how bright it is.

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read data from a light sensor

• Publish messages to an MQTT broker

• Control LEDs

• Subscribe Arduino to an MQTT broker

 Light Sensor Device
 The first component of your IoT application is an Arduino device that will monitor the
light brightness levels and publish a message when they are low.

 ■ Note You already built this circuit in Chapter 4 , so for the hardware and software
requirements and circuit instructions, refer back to Chapter 4 . Changes are in Arduino
code only, which in this case publishes a message to an MQTT broker instead of starting
a Node-RED flow.

 Code (Arduino)
 Next you are going to write code for connecting Arduino to the Internet using WiFi,
reading light sensor data, and publishing it to an MQTT broker.

 Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.ino), but in order to make it easy
to understand and reuse, it has been divided into five sections:

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• MQTT (publish)

• Standard functions

http://dx.doi.org/10.1007/978-1-4842-1940-9_4
http://dx.doi.org/10.1007/978-1-4842-1940-9_4

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

243

 External Libraries
 The first section of the code, as provided in Listing 11-1 , includes all the external
libraries required to run the code. This sketch has two main dependencies—for Internet
connectivity you need to include <WiFi.h> (assuming you are using a WiFi shield), and
for MQTT broker communication, you need to include <PubSubClient.h> .

 Listing 11-1. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <PubSubClient.h>

 Internet Connectivity (Wireless)
 The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (in Chapter 2) here.

 Read Sensor Data
 The third section of code, as provided in Listing 11-2 , defines the variables, constants, and
functions that are going to be used for reading the sensor data.

 The readSensorData() function reads the data from Analog Pin A0 ; the result is
between 0 and 1023 . The greater the value returned, the brighter the light source. The
light sensor value is assigned to the lightValue variable. Based on the lightValue
variable, the corresponding LOW or HIGH value is passed as a parameter to the
 publishSensorData() function .

 Listing 11-2. Code for Reading the Light Sensor Data

 int lightValue;

 void readSensorData()
 {
 //Read Light Sensor Value
 lightValue = analogRead(A0);

 Serial.print("[INFO] Light Sensor Reading: ");
 Serial.println(lightValue);

 if(lightValue < 500)
 {
 publishSensorData("LOW");
 }

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

244

 else
 {
 publishSensorData("HIGH");
 }
 Serial.println("---");
 }

 Data Publish
 The fourth section of the code defines the variables, constants, and functions that are
going to be used for publishing data to an MQTT broker (for details, see Chapter 3).

 This code is similar to what you saw in Chapter 3 . There are a few changes that you
need to make. All the changes are highlighted in bold in Listing 11-3 . Make sure to change
the server , port , and topic variables and the name of client that you need to pass while
connecting to the MQTT broker. The other main change includes an IF/ELSE condition
that publishes different messages based on the lightLevel parameter passed by the
 readSensorData() function .

 Listing 11-3. Code for Publishing an MQTT Message

 // IP address of the MQTT broker
 char server[] = {"iot.eclipse.org"};
 int port = 1883;
 char topic[] = {"codifythings/lightlevel"};

 void callback(char* topic, byte* payload, unsigned int length)
 {
 //Handle message arrived
 }

 PubSubClient pubSubClient(server, port, 0, client);

 void publishSensorData(String lightLevel)
 {
 // Connect MQTT Broker
 Serial.println("[INFO] Connecting to MQTT Broker");

 if (pubSubClient.connect("arduinoIoTClient"))
 {
 Serial.println("[INFO] Connection to MQTT Broker Successful");
 }
 else
 {
 Serial.println("[INFO] Connection to MQTT Broker Failed");
 }

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

245

 // Publish to MQTT Topic
 if (pubSubClient.connected())
 {
 Serial.println("[INFO] Publishing to MQTT Broker");
 if(lightLevel == "LOW")
 {
 Serial.println("[INFO] Light Level is LOW");
 pubSubClient.publish(topic, "LOW");
 }
 else
 {
 Serial.println("[INFO] Light Level is HIGH");
 pubSubClient.publish(topic, "HIGH");
 }

 Serial.println("[INFO] Publish to MQTT Broker Complete");
 }
 else
 {
 Serial.println("[ERROR] Publish to MQTT Broker Failed");
 }

 pubSubClient.disconnect();

 }

 Standard Functions
 The final section is provided in Listing 11-4 . It implements Arduino’s standard setup()
and loop() functions.

 The setup() function initializes the serial port and connects to the Internet.
The loop() function calls readSensorData() only, as it internally calls the
 publishSensorData() function when light levels are low.

 Listing 11-4. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();
 }

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

246

 void loop()
 {
 // Read sensor data
 readSensorData();

 // Delay
 delay(5000);
 }

 Your Arduino code for the light sensor device is now complete.

 Lighting Control Device
 The other component of your IoT application is an Arduino device that will the control
lights—it will turn them on or off depending on the messages received from the MQTT
broker. The circuit and code for this device is basically the same as the circuit and device
that you developed in Chapter 6 .

 ■ Note You already built this circuit in Chapter 6 , so for hardware and software requirements
and circuit instructions, refer to Chapter 6 . Changes are in Arduino code only, which in this case
uses a different logic to publish a message to MQTT broker.

 Code (Arduino)
 Next you are going to write code for connecting Arduino to the Internet using WiFi,
subscribing to an MQTT broker, and controlling the attached LED .

 Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.ino), but in order to make it easy
to understand and reuse, it has been divided into five sections:

• External libraries

• Internet connectivity (WiFi)

• MQTT (subscribe)

• Control LED

• Standard functions

 External Libraries
 The first section of code, as provided in Listing 11-5 , includes all the external libraries
required to run the code. This sketch has two main dependencies—for Internet
connectivity you need to include <WiFi.h> (assuming you are using a WiFi shield) and for
the MQTT broker communication, you need to include <PubSubClient.h> .

http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_6
http://dx.doi.org/10.1007/978-1-4842-1940-9_6

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

247

 Listing 11-5. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <PubSubClient.h>

 Internet Connectivity (Wireless)
 The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7, 2-8, and
2-9 (in Chapter 2) here.

 Data Subscribe
 The third section of code defines the variables, constants, and functions that are going to
be used for connecting to an MQTT broker and callback when a new message arrives (for
details, see Chapter 3).

 This code is similar to what you saw in Chapter 3 . There are only few changes that
you need to make for the code to work. All changes have been highlighted in bold in
Listing 11-6 . Make sure to change the server , port , and topic variable values to your
MQTT server’s values.

 Whenever a new message is received, the callback(...) function is called. It
extracts the payload and calls the turnLightsOnOff() function. One addition to this code
is the IF/ELSE condition, which checks for the value of the payloadContent and if it is
LOW, sends ON as the parameter to the turnLightsOnOff(...) function. Otherwise, OFF is
sent as the parameter.

 Listing 11-6. Code for Subscribing to an MQTT Broker

 // IP address of the MQTT broker
 char server[] = {"iot.eclipse.org"};
 int port = 1883;
 char topic[] = {"codifythings/lightlevel"};

 PubSubClient pubSubClient(server, port, callback, client);

 void callback(char* topic, byte* payload, unsigned int length)
 {
 // Print payload
 String payloadContent = String((char *)payload);
 Serial.println("[INFO] Payload: " + payloadContent);

 if(payloadContent.substring(0,3) == "LOW")
 {
 // Turn lights on/off
 turnLightsOnOff("ON");
 }

http://dx.doi.org/10.1007/978-1-4842-1940-9_2
http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_3

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

248

 else
 {
 // Turn lights on/off
 turnLightsOnOff("OFF");
 }
 }

 Control Lights
 The fourth section of code, as provided in Listing 11-7 , defines the variables, constants,
and functions that are going to be used for controlling the LED.

 This code switches the state of the LED based on the value of the action parameter.

 Listing 11-7. Code for Controlling the LED

 int ledPin = 3;

 void turnLightsOnOff(String action)
 {
 // Check if lights are currently on or off
 if(action == "ON")
 {
 //Turn lights on
 Serial.println("[INFO] Turning lights on");
 digitalWrite(ledPin, HIGH);
 }
 else
 {
 // Turn lights off
 Serial.println("[INFO] Turning lights off");
 digitalWrite(ledPin, LOW);
 }
 }

 Standard Functions
 The final code section is provided in Listing 11-8 . It implements Arduino’s standard
 setup() and loop() functions.

 The setup() function initializes the serial port, connects to the internet, and
subscribes to the MQTT topic.

 The MQTT broker has already been initialized and subscribed, so in loop()
function, you only need to wait for new messages from the MQTT broker.

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

249

 Listing 11-8. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();

 // Set LED pin mode
 pinMode(ledPin, OUTPUT);

 //Connect MQTT Broker
 Serial.println("[INFO] Connecting to MQTT Broker");
 if (pubSubClient.connect("arduinoClient"))
 {
 Serial.println("[INFO] Connection to MQTT Broker Successful");
 pubSubClient.subscribe(topic);
 }
 else
 {
 Serial.println("[INFO] Connection to MQTT Broker Failed");
 }
 }

 void loop()
 {
 // Wait for messages from MQTT broker
 pubSubClient.loop();
 }

 Your Arduino code for the lighting control device is now complete.

 The Final Product
 To test the application, make sure both your devices—the light sensor device and the
lighting control device—are powered on and the code has already been deployed (see
Chapter 1 for the deployment process).

 Open the Serial Monitor window for both of your devices. Figure 11-2 shows the
Serial Monitor window with log messages generated from the light sensor device. As soon
as you move this device from bright light to a dark area, it will publish a message to the
MQTT broker.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

250

 Figure 11-3 shows the Serial Monitor window with log messages generated from
the lighting control device. As soon as the light sensor device publishes a message, the
lighting control device will turn the LED ON. If you move the light sensor device back into
a brighter area, the lighting control device will turn the LED OFF.

 Figure 11-3. Log messages from the lighting control device

 Figure 11-2. Log messages from the light sensor device

CHAPTER 11 ■ IOT PATTERNS: MACHINE TO MACHINE

251

 Summary
 In this chapter you learned how to make multiple devices communicate with each
other using an MQTT broker. Brokers such as MQTT remove the need for direct
communication. A device publishes a message that can be received by all devices or
systems that are interested in that message and respond accordingly. The machine-to-
machine pattern definitely provides maximum benefits in the IoT space. The next frontier
within this area is of course developing AI (artificial intelligence) devices that can learn
and adapt to an ever-changing environment.

253© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9_12

 CHAPTER 12

 IoT Platforms

 IoT platforms provide developers with the ability to develop, deploy, and manage their
IoT applications from one central location in a secure manner. IoT platforms expedite
the development process by providing required tools in a cloud-based environment,
which means developers do not spend time on setups. A good IoT platform would ideally
include most of the tools that we have covered in the previous 11 chapters, such as MQTT
brokers, HTTP servers, REST API support, databases to store sensor data, Node-RED for
complex orchestrations, device location, secure communications, reporting, analytics,
and easy-to-use tools for building web and mobile apps.

 This chapter covers a popular IoT platform called Xively. You are going to build a
 soil moisture control system that sends out an e-mail alert whenever the moisture level
of the soil falls below a certain threshold. Figure 12-1 shows a high-level diagram of
all components involved in this system. The first component is an Arduino device that
monitors the soil moisture level and publishes a message to Xively. The second and third
components reside on the Xively platform. With some basic configuration, the platform
will be able to receive, store, and display data sent by the sensor.

 Figure 12-1. Components of the soil moisture control system

CHAPTER 12 ■ IOT PLATFORMS

254

 Learning Objectives
 At the end of this chapter, you will be able to:

• Read soil moisture sensor data

• Set up Xively to receive moisture sensor data

• Set up a trigger in Xively to send an e-mail using a Zapier task

• Write code to read the moisture sensor data and publish it to
Xively

 Hardware Required
 Figure 12-2 provides a list of all hardware components required for building the soil
moisture control system.

 Figure 12-2. Hardware required for the soil moisture control system

 Software Required
 In order to develop this soil moisture control system, you need following software:

• Arduino IDE 1.6.4 or later

• Xively (hosted)

• Zapier (hosted)

CHAPTER 12 ■ IOT PLATFORMS

255

 Circuit
 In this section, you are going to build the circuit required for the soil moisture control
system. This circuit uses a soil moisture sensor to detect the amount of moisture in the soil.

 1. Make sure your Arduino is not connected to a power source,
such as to a computer via a USB or a battery.

 2. Attach a WiFi shield to the top of the Arduino.

 3. Use jumper cables to connect the power (5V) and ground
(GND) ports on Arduino to the power (+) and ground (-) ports
on the breadboard.

 4. Now that your breadboard has a power source, use jumper
cables to connect the power (+) and ground (-) ports of your
breadboard to the power and ground ports of the moisture
sensor.

 5. To read the moisture sensor values, you need to connect a
jumper cable from the analog port of the moisture sensor
to the A0 (Analog) port of your Arduino. Your code will read
the moisture level from this port. The sensor returns a value
between 0 and 1023. Higher values correspond to lower soil
moisture levels.

 Your circuit is now complete and should look similar to Figures 12-3 and 12-4 .

 Figure 12-3. Circuit diagram of the soil moisture control system

CHAPTER 12 ■ IOT PLATFORMS

256

 Xively Setup
 As mentioned earlier, Xively is a popular IoT platform. To use Xively, you first need to set
up a free account at https://personal.xively.com/ .

 Once your account is setup, log in to Xively. Upon login, you will be redirected to
your account dashboard. Click on DEVELOP from the menu bar on top, as shown in
Figure 12-5 .

 Figure 12-4. Actual circuit of the soil moisture control system

 Figure 12-5. Xively account dashboard

 Add a new development device, as shown in Figure 12-6 , by clicking on the + Add
Device link.

https://personal.xively.com/

CHAPTER 12 ■ IOT PLATFORMS

257

 On the device setup screen, enter a device name and device description, as provided
in Figure 12-7 . Keep the privacy of your device set to Private Device. Click on Add Device
to complete this step.

 Figure 12-6. Add a new development device

CHAPTER 12 ■ IOT PLATFORMS

258

 Xively will automatically generate a unique API key and a Feed ID, and both of
these are required in the Arduino code. You can find the Feed ID on top-right side of the
dashboard (see Figure 12-8).

 Figure 12-7. Device setup

CHAPTER 12 ■ IOT PLATFORMS

259

 As mentioned earlier, Xively automatically generates an API key, but you have
the option to add your own key as well. In this project you are going to use the auto-
generated API key. You can locate the API key in the API Keys section of the dashboard
(see Figure 12-9).

 Figure 12-8. Feed ID

 Figure 12-9. API keys (auto-generated and custom-generated)

 Next you are going to create a channel. A channel will map directly to a sensor, that
is, data from a sensor will be received and stored by a channel. As shown in Figure 12-10 ,
click on the Add Channel button from the Channels section.

CHAPTER 12 ■ IOT PLATFORMS

260

 Enter the values of your channel, as shown in Figure 12-11 . Channel ID is the only
required field, and as you will see in later sections, it is also used in the Arduino code
for sending sensor data. If you have multiple channels, then Tags will help you search.
The Units and Symbol fields will be used while displaying data. Current Value is also
used while displaying data as your graph starts from this point. Click on Save Channel to
complete the channel’s setup .

 Figure 12-11. New channel setup

 Once you save your channel settings, Xively is ready to receive the sensor data.
Figure 12-12 shows the section where each sensor’s data will be displayed.

 Figure 12-10. Add channel

CHAPTER 12 ■ IOT PLATFORMS

261

 If the location of the device is important, you can set that from the Location section
as well, as shown in Figure 12-13 . In this project, you are not going to be changing it from
code, so this will be just static that will show up on the dashboard.

 Figure 12-12. SoilMoistureSensor1 channel

 Figure 12-13. Add location

 Click on Add Location and, as shown in Figure 12-14 , enter the location name
and address where your sensor is physically located. Location data is always useful for
maintenance purposes. Click Save .

CHAPTER 12 ■ IOT PLATFORMS

262

 Figure 12-15 shows how the location information will be displayed on the dashboard.

 Figure 12-14. Set device location

CHAPTER 12 ■ IOT PLATFORMS

263

 For now, there are no more setups needed in Xively.

 Zapier Setup
 Xively supports triggering external tasks; for example, if the value of a channel crosses
a certain threshold, you can execute your own task. Xively uses HTTP POST to trigger an
external task. All the data will be submitted to the recipient using the HTTP POST method
(see Chapter 3 for more details about HTTP POST).

 Xively data is available over HTTP and can be used for developing custom
dashboards and generating alerts. A few of the IoT applications that you developed in
Chapters 7 , 8 , and 9 had HTTP components. You will lose advantage of using an IoT
platform if you end up writing custom code. For generating triggers in Xively, you can
avoid all the coding by simply using a Zapier task. Zapier is a web-based tool that lets
you automate if/then tasks. You create a task (a.k.a., a Zap) that requires a trigger and a
corresponding action.

 Figure 12-15. Device location

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
http://dx.doi.org/10.1007/978-1-4842-1940-9_7
http://dx.doi.org/10.1007/978-1-4842-1940-9_8
http://dx.doi.org/10.1007/978-1-4842-1940-9_9

CHAPTER 12 ■ IOT PLATFORMS

264

 ■ Note You can also trigger a Zapier task from Arduino using the HTTP POST method
discussed in Chapter 3 .

 To set up a Zap, you first need to set up a free Zapier account. Once you have
completed account setup process, log in to Zapier at https://zapier.com/ . Upon login,
you will be redirected to your account dashboard. As shown in Figure 12-16 , under the
My Zaps tab, click on the Make a New Zap button to start the Zap creation process .

 Figure 12-17. Select Zap trigger and action

 Figure 12-16. My Zaps (list of all zaps)

 As shown in Figure 12-17 , Step 1 requires you to choose a Trigger app and an
Action app.

 Select Webhooks by Zapier from the Trigger app dropdown and select Catch Hook
from the dropdown below it. This tells Zapier that whenever a certain URL is called, this
Zap will be triggered. You will see the generated URL later. Figure 12-18 shows the trigger
selection.

http://dx.doi.org/10.1007/978-1-4842-1940-9_3
https://zapier.com/

CHAPTER 12 ■ IOT PLATFORMS

265

 You have to send out an e-mail when this task is called, so from Action app
dropdown, select Email by Zapier and select Send Outbound Email from the dropdown
below it, as shown in Figure 12-19 .

 Figure 12-18. Zap trigger

 Figure 12-19. Zap action

 Figure 12-20. Custom webhook URL

 In Step 2, Zapier will generate a custom webhook URL that Xively will call.
Figure 12-20 shows the custom webhook URL generated by Zapier. Click Continue to
proceed to the next step.

CHAPTER 12 ■ IOT PLATFORMS

266

 Since you selected Email by Zapier as your action, Step 3 does not require any input
from you, as shown in Figure 12-21 . You are all set, so click on Continue. If you selected
some other e-mail mechanism, such as Gmail, then Zapier would have required you to
set up a Gmail account .

 Figure 12-21. E-mail account setup

 Figure 12-22. Webhook filter

 As shown in Figure 12-22 , Step 4 allows you to filter requests coming through
webhook. You can simply skip this step, as you want all Xively requests to come. Click
on Continue.

CHAPTER 12 ■ IOT PLATFORMS

267

 In Step 5, you need to provide details about the e-mail alert, such as who it should
go to, what should be the subject, and what should be the body text. When Xively calls
the webhook URL, it will send some data in an HTTP POST request as well. You can use
that data in Zapier wherever you see the Insert Fields option. Figure 12-23 shows the
 e-mail settings .

 Figure 12-23. E-mail settings

 For illustration purposes, this project uses the moisture sensor value and inserts
it into the e-mail body. As shown in Figure 12-24 , when you click on the Insert Fields
button, it will show a list of all the variables that can be inserted. Initially, you might not
see any data, so you can come back to this step after the Xively trigger has been set up and
you have sent a couple of test requests. Zapier will automatically start showing a list of all
the request variables .

CHAPTER 12 ■ IOT PLATFORMS

268

 Figure 12-25 shows the final e-mail message once the request variable has been
inserted.

 Figure 12-24. Request variables

 Figure 12-25. E-mail body with request variable

CHAPTER 12 ■ IOT PLATFORMS

269

 You can skip Step 6, and in Step 7 enter a name for Zap. Click Turn Zap On as shown
in Figure 12-26 .

 Figure 12-26. Zap name and turn Zap on

 This completes the setup in Zapier. Now you just need to set up a trigger in Xively
that will call the custom webhook URL generated by Zapier.

 Xively Trigger
 Log in to Xively and go to the Triggers section of device setup. Click on the Add Trigger
button. As shown in Figure 12-27 , select a condition when trigger should be fired; in this
case it is IF SoilMoistureSensor1 > 850 THEN CALL HTTP POST URL . In the HTTP
POST URL field, paste the custom webhook URL that was generated by Zapier. Click Save
Trigger to enable the trigger.

CHAPTER 12 ■ IOT PLATFORMS

270

 Figure 12-27. Xively trigger setup

 As shown in Figure 12-28 , you can quickly test your trigger by clicking on Send Test
Trigger . It calls the custom webhook URL that you provided in the HTTP POST URL field.

CHAPTER 12 ■ IOT PLATFORMS

271

 Figure 12-28. Test trigger

 Code (Arduino)
 Next you are going to write the code for connecting Arduino to the Internet using WiFi,
reading soil moisture sensor data, and publishing it to a Xively channel.

 Start your Arduino IDE and type the code provided here or download it from the site
and open it. All the code goes into a single source file (*.ino), but in order to make it easy
to understand and reuse, it has been divided into five sections.

• External libraries

• Internet connectivity (WiFi)

• Read sensor data

• Xively (publish)

• Standard functions

 External Libraries
 The first section of code, as provided in Listing 12-1 , includes all the external libraries
required to run the code. This sketch has multiple dependencies—for Internet
connectivity you need to include the <WiFi.h> (assuming you are using a WiFi shield)
and for Xively connectivity, you need to include <HttpClient.h> and <Xively.h> . You
can download <Xively.h> from https://github.com/xively/xively_arduino .

https://github.com/xively/xively_arduino

CHAPTER 12 ■ IOT PLATFORMS

272

 Listing 12-1. Code for Including External Dependencies

 #include <SPI.h>
 #include <WiFi.h>
 #include <HttpClient.h>;
 #include <Xively.h>;

 Internet Connectivity (Wireless)
 The second section of the code defines the variables, constants, and functions that are
going to be used for connecting to the Internet. Use the code from Listings 2-7 , 2-8 , and
 2-9 (Chapter 2) here.

 Read Sensor Data
 The third section of the code is provided in Listing 12-2 . It defines the variables,
constants, and functions that are going to be used for reading the sensor data.

 The readSensorData() function reads data from Analog Pin A0 and the result is
between 0 and 1023. Higher values correspond to lower soil moisture levels.

 Listing 12-2. Code for Reading Soil Moisture Sensor Value

 int MOISTURE_SENSOR_PIN = A0;
 float moistureSensorValue = 0.0;

 void readSensorData()
 {
 //Read Moisture Sensor Value
 moistureSensorValue = analogRead(MOISTURE_SENSOR_PIN);

 //Display Readings
 Serial.print("[INFO] Moisture Sensor Reading: ");
 Serial.println(moistureSensorValue);
 }

 Data Publish
 The fourth section of the code defines the variables, constants, and functions that are
going to be used for publishing sensor data to the Xively channel.

 In order to communicate with Xively, you need to provide the Feed ID and API key
that were generated after you completed device setup in Xively. Both of these keys are
unique to you. You will also need to provide the exact channel name that you entered in
Xively. If the API key or Feed ID are incorrect, your device will not be able to connect with
your Xively account, and if the channel name is incorrect, the data will not show up in the
correct graph on the Xively dashboard. All these values have been highlighted in the code
(see Listing 12-3).

http://dx.doi.org/10.1007/978-1-4842-1940-9_2

CHAPTER 12 ■ IOT PLATFORMS

273

 If you have multiple sensors and want to send data to Xively for all of them, you
can simply set up multiple channels in Xively. In Arduino code you need to specify the
channel name in a similar way that you defined moistureSensorChannel . All these
channel names need to be passed to the datastreams array.

 The XivelyFeed variable feed passes data for all the channels with a number that
specifies how many datastreams are contained in the feed. In this case, there is only one
 datastream , so the value will be 1.

 Next you define a XivelyClient variable using the WiFiClient . It will be used to
actually create a connection and pass the feed.

 All of these are one time setups and the repetitive code is inside the transmitData()
function. The transmitData() function sets the latest moistureSensorValue in
 datastreams[0] and then sends the feed to Xively. If the status code returned from Xively
in the ret variable is 200 , that means your feed was successfully sent to Xively.

 Listing 12-3. Code for Publishing Data to Xively

 // API Key - required for data upload
 char xivelyKey[] = "YOUR_API_KEY";

 #define xivelyFeed FEED_ID // Feed ID

 char moistureSensorChannel[] = "SoilMoistureSensor1"; //Channel Name

 // Datastream/Channel IDs
 XivelyDatastream datastreams[] =
 {
 XivelyDatastream(moistureSensorChannel,
 strlen(moistureSensorChannel),
 DATASTREAM_FLOAT),
 };

 // Create Feed
 XivelyFeed feed(xivelyFeed, datastreams, 1); // Number of Channels
 // in Datastream

 XivelyClient xivelyclient(client);

 void transmitData()
 {
 //Set Xively Datastream
 datastreams[0].setFloat(moistureSensorValue);

 //Transmit Data to Xively
 Serial.println("[INFO] Transmitting Data to Xively");

 int ret = xivelyclient.put(feed, xivelyKey);

 Serial.print("[INFO] Xively Response (xivelyclient.put): ");

CHAPTER 12 ■ IOT PLATFORMS

274

 Serial.println(ret);
 Serial.println("---");
 }

 Standard Functions
 The final code section is provided in Listing 12-4 . It implements Arduino’s standard
 setup() and loop() functions .

 The setup() function initializes the serial port and connects to the Internet. The
 loop() function first reads the soil moisture sensor by calling readSensorData() and
then transmits these values to Xively in a feed by calling transmitData() . For each
iteration, you can add a delay depending on your requirements.

 Listing 12-4. Code for Standard Arduino Functions

 void setup()
 {
 // Initialize serial port
 Serial.begin(9600);

 // Connect Arduino to internet
 connectToInternet();
 }

 void loop()
 {
 readSensorData();

 transmitData();

 //Delay
 delay(6000);
 }

 Your Arduino code is now complete.

 The Final Product
 To test the application, verify and upload the Arduino code as discussed in Chapter 1 .
Either insert your soil moisture sensor in the dry soil or simply dip it in water as shown
in Figure 12-29 .

 ■ Note Do not fully submerge the circuit or sensor in water or soil. Make sure the
wiring does not get wet. For exact instructions about your soil moisture sensor, read the
manufacturer’s product specifications and directions.

http://dx.doi.org/10.1007/978-1-4842-1940-9_1

CHAPTER 12 ■ IOT PLATFORMS

275

 Once the code has been uploaded, open the Serial Monitor window. You will start
seeing log messages similar to ones shown in Figure 12-30 .

 Figure 12-30. Log messages from the soil moisture control

 Figure 12-29. Final circuit with sensor submerged in water

CHAPTER 12 ■ IOT PLATFORMS

276

 As soon as you see the Xively response 200 in your serial logs, log in to the Xively
dashboard and take a look at the Request Log section, as shown in Figure 12-31 . The
history of your sensor data feed will start showing up in this section.

 Figure 12-32. Request details

 Figure 12-31. Request log of the soil moisture sensor

 Click on any of the requests and you will be able to see the exact request that was
sent from the sensor to Xively (see Figure 12-32).

CHAPTER 12 ■ IOT PLATFORMS

277

 Next take a look at the graph in the Channels section, as shown in Figure 12-33 . Your
sensor data will start populating a graph over a period of time .

 Figure 12-33. Sensor data view

 Finally, ensure that your Xively trigger sends out an e-mail alert:

• If you were testing the moisture sensor using water, then take the
sensor out. The reading should immediately go up, indicating that
the moisture levels have dropped. Your Xively trigger will fire and
Zapier will send out an e-mail alert.

• Similarly, if you are testing the moisture sensor using actual soil,
take your sensor out of the wet soil. This will result in an e-mail
alert as well.

 Figure 12-34 shows an e-mail alert generated by Xively/Zapier.

CHAPTER 12 ■ IOT PLATFORMS

278

 Figure 12-34. Alert e- mail

 Summary
 In this chapter, you learned about IoT platforms and their advantages. You developed an
IoT application that published sensor data to Xively, which is one of the more popular IoT
platforms available on the market.

 There are more than 100 small-, medium-, and large-scale IoT platforms currently
available. Table 12-1 lists a few of the major IoT platforms with links to access them. All of
these platforms either provide a free trial or cut-down versions for personal use.

 Table 12-1. Major IoT Platforms

 Platform Example

 IBM Internet of Things Foundation/
 IBM Bluemix

 http://www.ibm.com/internet-of-things/

 Intel IoT https://software.intel.com/en-us/iot/home

 Microsoft Azure IoT https://www.azureiotsuite.com/

 Amazon AWS IoT https://aws.amazon.com/iot/

 Thingworx http://www.thingworx.com/

 Xively https://xively.com/

 There is a lot of material available that can help you determine which one is the best
for your needs. IoT platforms are expediting the entry of so many people into the world of
IoT. As IoT matures, these platforms are going to become more sophisticated and further
simplify IoT application development.

http://www.ibm.com/internet-of-things/
https://software.intel.com/en-us/iot/home
https://www.azureiotsuite.com/
https://aws.amazon.com/iot/
http://www.thingworx.com/
https://xively.com/

279© Adeel Javed 2016
A. Javed, Building Arduino Projects for the Internet of Things,
DOI 10.1007/978-1-4842-1940-9

 A, B
 Arduino , 3

 hardware requirements
 battery power , 5
 boards , 3
 digital and analog pins , 5
 Ethernet shield , 3
 summarization , 4–5
 USB connector , 5

 objectives , 3
 programming language

 code execution , 11–12
 code structure , 10
 constants and variables , 9
 external libraries , 9
 functions , 9
 log messages , 12
 reference , 8–9
 serial monitor window , 12
 setup() function , 10
 structure code , 9

 software requirements
 defult view , 5–6
 serial monitor window , 7–8
 status window , 7
 toolbar , 6–7

 C
 Communication protocols

 HTTP
 data publication , 37–39
 external libraries , 36
 GET method , 40–41
 interaction , 35
 Internet connectivity

(Wireless) , 36

 POST method , 40, 42
 source code , 36
 standard functions , 39–40

 MQTT
 data publishes and

subscribes , 45–46
 external libraries , 45
 Internet connectivity , 45
 intrusion detection system , 43
 log messages , 47
 remote controls , 44
 source code , 45
 standard functions , 46–47

 objectives , 35
 connectToInternet() function , 18

 D
 doHttpPost() function , 39

 E, F, G
 Eff ektif workfl ow , 221

 action type and
assignment , 223–224

 confi gurations screen , 222
 connection option , 229
 controls , 224–225
 date/time from , 226–227
 existing fi elds , 226
 form layout , 227
 process creation

 existing processes , 221
 menu bar , 221
 processes tab , 222

 process management solution , 221
 Schedule Garbage Pickup action , 228
 task reminders , 228

 Index

■ INDEX

280

 versions completion , 230
 versions tab , 229

 Energy conservation system
 componenets , 241
 lighting control device

 control lights , 248
 data subscribe , 247
 external libraries , 246
 Internet connectivity

(Wireless) , 247
 source code , 246
 standard function , 248–249

 light sensor device
 data publication , 244
 external libraries , 243
 Internet connectivity

(Wireless) , 243
 publishSensorData() function , 243
 read sensor data , 243
 readSensorData()

function , 243–244
 source code , 242
 standard functions , 245

 log messages , 249–250
 objectives , 242

 H
 Hyper Text Transfer Protocol (HTTP)

 GET method , 40–41
 interaction , 35
 node-RED fl ow

 response node , 68
 threshold switch node , 69

 POST method , 40, 42
 source code , 36

 data publication , 37–39
 external libraries , 36
 Internet , 36
 standard functions , 39

 I, J, K
 Internet connectivity

 Ethernet. See Wired connectivity
(Ethernet)

 HTTP , 36
 intrusion detection system

(Wireless) , 79
 IoT devices , 15

 lighting control system , 133
 livestock tracking

system (Wireless) , 206
 MQTT , 45
 objectives , 15
 options , 15
 smarter parking system (Wireless) , 149
 waste management system

(Wireless) , 217
 WiFi. See Wireless connectivity

(WiFi)
 Internet Connectivity (Wireless) , 45
 Intrusion detection system , 43

 circuit , 77–78
 code (Android) , 83
 components , 75
 hardware components requirement , 76
 MQTT client

 AndroidManifest.xml , 105
 Android Project , 97
 callback method , 102
 class creation , 99
 code completion , 100–102
 connectToMQTT() method , 102
 default code , 100
 dialog box , 98
 libraries , 96
 module option , 99
 onCreate() method , 102–105
 resolve dependencies , 97
 top-level package , 99

 objectives , 76
 project setup

 Activity template , 86–87
 Android device screen , 86
 confi guration , 85–86
 customization screen , 87–88
 default folders , 89
 folders and fi les details , 88
 menu bar , 85
 quick start screen , 84

 screen layout
 activity_main.xml , 90
 content_main.xml , 91, 93
 default development view , 89–90
 image icon , 92
 ImageView element , 92
 screen layout , 94
 TextView element , 92
 toolbar and fl oating

action button , 91

Eff ektif workfl ow (cont.)

■ INDEX

281

 screen logic
 createNotifi cation(…) method , 95
 MainActivity.java fi le , 94
 updateView(…) method , 95

 serial monitor window
 default view , 108
 deployment and

running app , 106
 details , 110
 device selection , 107
 intrusion notifi cation , 109
 log messages , 106

 software requirement , 77
 source code

 calibrateSensor() function , 80
 data publication , 81–82
 external libraries , 79
 Internet connectivity

(Wireless) , 79
 readSensorData()

function , 79–80, 83
 sections , 79
 standard functions , 83

 L
 Lighting control system

 circuit
 diagram , 113–115
 requirement , 113

 code (Arduino)
 control lights , 134
 data requirements , 133
 external libraries , 133
 Internet connectivity

(Wireless) , 133
 sections , 132
 standard functions , 134–135

 component , 111
 hardware components , 112
 MQTT client , 126

 app permissions , 132
 class adding , 129
 complete code , 129–130
 default code , 129
 import library-resolve

dependencies , 127
 libraries , 128
 module option , 128
 name fi eld adding , 129
 onCreate() method , 131

 publishToMQTT() method , 130
 switch perspective , 127

 objectives , 112
 project creation

 customization screen , 119–120
 device selection screen , 117–118
 folders and fi les

creation , 120–121
 menu bar , 116
 project confi guration , 117
 Quick Start screen , 115
 template selection screen , 118–119

 screen layout
 custom content , 123
 default development , 121–122
 dialog box , 125
 fi nal layout , 125
 ImageView element , 124
 layout fi le , 122
 TextView element , 124
 toolbar and fl oating action

button , 123
 screen logic

 default code , 126
 onCreate() method , 126

 Serial Monitor window
 default view , 137–138
 deploy and run app , 136
 device selection , 137
 log messages , 135–136

 software requirement , 113
 light sensor tweet system , 52
 Livestock tracking system

 circuit , 197–198
 code (PHP)

 database connection , 200
 gpstracker , 199
 map , 203–205
 receive and store sensor

data , 201–202
 components , 195
 database table (MySQL) , 199
 fi nal version , 211
 hardware components , 196
 log messages , 210
 software requirements , 197
 source code , 206

 data publication , 208
 external libraries , 206
 getGPSCoordinates()

function , 207

■ INDEX

282

 GPS coordinates , 206
 Internet connectivity

(Wireless) , 206
 standard functions , 209

 M
 MQTT protocols

 intrusion detection system , 43
 AndroidManifest.xml , 105
 Android project , 96
 callback method , 102
 class creation , 99
 code completion , 100–102
 connectToMQTT() method , 102
 createNotifi cation and

updateView methods , 102
 default code , 100
 dialog box , 98
 imported fi les , 98
 libraries , 96
 module option , 99
 onCreate() method , 102–105
 resolve dependencies , 97
 service library , 98
 top-level package , 99

 remote controls , 44
 source code

 callback() function , 46
 data publishes and subscribes , 45
 external libraries , 45
 Internet , 45
 sections , 45
 setup() and loop() functions , 46
 standard functions , 46

 N, O
 Node-RED

 circuit
 circuit diagram , 54–55
 light sensor tween system , 54

 components , 52
 development environment , 51
 fl ow

 default view , 57
 function node , 61–62, 65
 HTTP node , 69
 HTTP request node , 60
 input nodes , 57–58

 output nodes , 57, 59
 properties dialog box , 59–60
 switch node , 63–64
 tasks , 56
 terminal window , 56
 tweet node , 66
 Twitter credentials , 66–68

 hardware components
requirement , 53

 IoT applications , 51
 light sensor tweet system , 52
 log messages , 72
 objectives , 53
 software requirement , 54
 source code

 data publication , 70–71
 external libraries , 69
 Internet connectivity , 70
 read sensor data , 70
 sections , 69

 standard functions , 72
 Node-RED fl ow

 deploy button , 235
 fl ow creation , 230
 MQTT

 broker node , 232–233
 confi guration , 232
 Email node , 233
 input node , 231
 node properties , 231

 rename fl ow sheet , 231
 updated email node

properties , 234–235

 P, Q
 printConnectionInformation()

function , 19
 publishToMQTT() method , 130

 R
 readSensorData() function , 70
 Remote lighting controls , 44

 S
 Smarter parking system , 139

 circuit
 diagram , 142–143
 requirements , 141

Livestock tracking system (cont.)

■ INDEX

283

 code (PHP)
 database connection , 145
 data storage , 144
 interface/database , 148–149
 parking spots count , 148
 receive and update

stored data , 146–147
 SQL statement , 147

 components of , 139
 database table (MySQL) , 144
 hardware components , 140
 objectives , 140
 Serial Monitor window

 log messages , 171
 open spots app , 175
 proximity sensor , 174
 screen simulation menu , 172
 simulator app , 173

 software requirement , 141
 source code

 calibrateSensor() function , 150
 code (iOS) , 153
 data publication , 151–152
 external libraries , 149
 Internet connectivity

(Wireless) , 149
 read sensor data , 150–151
 readSensorData()

function , 150
 sections , 149
 standard functions , 152–153

 Xcode. See Xcode project
 Soil moisture control system

 circuit requirement , 255–256, 274–275
 components , 253
 hardware components , 254
 log messages , 275
 objectives , 254
 software requirements , 254
 source code

 data publication , 272
 external libraries , 271
 Internet connectivity

(Wireless) , 272
 readSensorData()

function , 272
 sections , 271
 standard setup() and loop()

functions , 274
 transmitData() function , 273

 Xively. See Xively project

 T, U, V
 Temperature monitoring system

 circuit , 179–181
 code (PHP)

 dashboard , 185–188
 database connection , 182–183
 receive and store

sensor data , 184
 components , 177
 dashboard , 193
 database table (MySQL) , 181–182
 hardware components , 178
 l messages , 193
 log messages , 192
 objectives , 177
 software requirements , 178
 source code , 189

 data publication , 190
 external libraries , 189
 Internet connectivity

(Wireless) , 189
 read sensor data , 189
 standard functions , 192

 Tweet system
 fl ow diagram , 66
 function node , 65
 log messages , 73
 message node , 68
 Twitter

 authentication , 66–67
 authorization process , 68
 authorize app button , 67
 credentials , 66

 W
 Waste management system

 cardboard box , 236
 circuit requirements , 215–216, 236
 Close-up , 237
 components , 213
 details (Eff wkkif) , 239
 Eff ektif. See Eff ektif workfl ow
 hardware components , 214
 log messages , 237–238
 Node-RED fl ow , 230

 deploy button , 235
 Email node properties , 234
 fl ow creation , 230
 MQTT subscribe node , 231–233

■ INDEX

284

 rename fl ow sheet , 231
 updated email node

properties , 235
 objectives , 214
 software requirements , 215
 source code , 217

 calibrateSensor() function , 217
 data publication , 219–220
 external libraries , 217
 Internet connectivity

(Wireless) , 217
 read sensor data , 217–218
 readSensorData()

function , 217–218
 standard functions , 220–221

 tasks tab , 238
 Wired connectivity (Ethernet)

 circuit , 16–17
 code (Arduino)

 external libraries , 17
 Internet connectivity , 18–19
 standard function , 19–20
 types , 17

 hardware components , 16
 log messages , 20
 software requirement , 16

 Wireless connectivity (WiFi)
 Arduino Uno

 circuit , 21–22
 code (Arduino) , 22
 connectToInternet() function , 23
 external libraries , 22
 hardware components

requirement , 21
 Internet connectivity , 23–24
 log messages , 26
 printConnectionInformation()

function , 24
 software requirement , 21
 standard functions , 25

 Arduino Yún
 board selection , 31
 confi guration , 29–30
 external libraries , 32
 hardware requirement , 26–27
 internet connectivity , 33
 login screen , 28
 log messages , 34
 password screen , 28
 port selection , 32

 printConnectionInformation()
function , 33

 restart button , 30
 setup() and loop()

functions , 27, 33
 software requirement , 27
 source code , 32
 standard functions , 33
 wireless networks , 27

 X, Y
 Xcode project

 confi guration , 155–156
 creation , 153
 folders and fi les creation , 156–157
 screen layout

 alignment and constraints
menu , 162

 alignment screen , 163–164
 align widgets , 162
 button properties , 161
 constraints menu , 164
 default development view , 157
 image selection , 159
 ImageView properties , 159–160
 import assests , 159
 label properties , 161
 screen layout , 165
 user interface widgets , 158
 widgets , 158, 163

 screen logic
 action properties , 167–168
 arbitrary loads properties , 171
 complete code , 168
 didReceiveMemoryWarning()

function , 165
 drag and drop label , 166
 Info.plist properties list , 169
 outlet properties , 166
 storyboard , 167
 transport security

properties , 170
 viewDidLoad() function , 165

 template selection screen , 155
 Xively project

 account dashboard , 256
 API keys , 259
 channel adding , 259
 channel’s setup , 260
 development device , 257

Waste management system (cont.)

■ INDEX

285

 device location , 263
 device setup , 258
 Feed ID , 258–259
 location adding , 261
 request details , 276
 sensor data view , 277
 set device location , 261–262
 SoilMoistureSensor1 channel , 261
 triggers

 e-mail message , 277–278
 setup , 269–270
 test trigger , 270–271

 Zapier. See Zapier setup

 Z
 Zapier setup

 action selection , 264–265
 custom webhook URL , 265
 E-mail account setup , 266
 e-mail message , 266–268
 HTTP POST method , 263
 request variables , 267–268
 trigger selection, , 264
 Webhook fi lter , 266
 Zap creation process , 264
 Zap name , 269

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Part 1: Building Blocks
	Chapter 1: Arduino Basics
	Learning Objectives
	Hardware Requirements
	Software Requirements
	Toolbar
	Status Window
	Serial Monitor Window

	Arduino Programming Language Reference
	Arduino Code Execution

	Summary

	Chapter 2: Internet Connectivity
	Learning Objectives
	Arduino Uno Wired Connectivity (Ethernet)
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Ethernet)
	Standard Functions

	Final Product

	Arduino Uno Wireless Connectivity (WiFi)
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Standard Functions

	Final Product

	Arduino Yún Wireless Connectivity (WiFi)
	Hardware Required
	Software Required
	Wireless Setup
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Standard Functions

	Final Product

	Summary

	Chapter 3: Communication Protocols
	Learning Objectives
	HTTP
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Publish
	Standard Functions

	Final Product

	MQTT
	Intrusion Detection System
	Remote Lighting Control
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Publish/Subscribe MQTT
	Standard Functions

	Final Product

	Summary

	Part 2: Prototypes
	Chapter 4: Complex Flows: Node-RED
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Node-RED Flow
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Final Product
	Summary

	Chapter 5: IoT Patterns: Realtime Clients
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Code (Android)
	Project Setup
	Screen Layout
	Screen Logic
	MQTT Client

	The Final Product
	Summary

	Chapter 6: IoT Patterns: Remote Control
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Code (Android)
	Project Setup
	Screen Layout
	Screen Logic
	MQTT Client

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Subscribe
	Control Lights
	Standard Functions

	The Final Product
	Summary

	Chapter 7: IoT Patterns: On-Demand Clients
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Database Table (MySQL)
	Code (PHP)
	Database Connection
	Receive and Store Sensor Data
	Get the Parking Spot Count

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Code (iOS)
	Project Setup
	Screen Layout
	Screen Logic

	The Final Product
	Summary

	Chapter 8: IoT Patterns: Web Apps
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Database Table (MySQL)
	Code (PHP)
	Database Connection
	Receive and Store Sensor Data
	Dashboard

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	The Final Product
	Summary

	Chapter 9: IoT Patterns: Location Aware
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Database Table (MySQL)
	Code (PHP)
	Database Connection
	Receive and Store Sensor Data
	Map

	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)

	Get GPS Coordinates
	Data Publish
	Standard Functions

	The Final Product
	Summary

	Chapter 10: IoT Patterns: Machine to Human
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Effektif Workflow
	Process Creation
	Process Configurations

	Node-RED Flow
	The Final Product
	Summary

	Chapter 11: IoT Patterns: Machine to Machine
	Learning Objectives
	Light Sensor Device
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	Lighting Control Device
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Data Subscribe
	Control Lights
	Standard Functions

	The Final Product
	Summary

	Chapter 12: IoT Platforms
	Learning Objectives
	Hardware Required
	Software Required
	Circuit
	Xively Setup
	Zapier Setup
	Xively Trigger
	Code (Arduino)
	External Libraries
	Internet Connectivity (Wireless)
	Read Sensor Data
	Data Publish
	Standard Functions

	The Final Product
	Summary

	Index

