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In memory of my parents



Then are you so certain that your roulette playing will get us
out of our difficulties?

F. Dostoevsky, “The Gambler”



Preface

This book is intended as an introductory graduate-level text on the application of
the Monte Carlo method to radiation transport problems. The target audience is
radiation medical physicists: students, faculty members, and researchers special-
izing in radiotherapy physics, medical imaging, or nuclear medicine. The book
should be of interest to clinicians as well, because Monte Carlo-based software,
no longer confined to the research environment, is gradually finding its way into
routine clinical practice.

The types of problems that are important in the field of medical physics
determined the material that was selected for the book. Rather than focusing on
the practical application of Monte Carlo techniques, however, the book focuses
on the fundamentals of the method: its mathematical foundations, the numerical
techniques on which it relies, its optimization strategies, and the statistical aspect
of its calculations. With this approach, most of the information is quite general,
and parts should be useful to a broad audience. More advanced topics are included
as well, such as the adjoint formulation of the transport problem, the transport
of charged particles in an external magnetic field, microdosimetry, elements of
stochastic transport theory, and grid-based solvers. Inclusion of these topics makes
the text more complete and extends the book into areas of recent significant
developments.

An important objective of this book is to introduce the basic concepts, termi-
nology, and formalism of radiation transport theory. This material, of course, is
necessary to understand how transport problems are solved with the Monte Carlo
method. It is also of significant interest in its own right because it is the basis for
methods other than Monte Carlo, analytical and numerical, that have been used
extensively in radiation medical physics. Several such methods are covered in the
book.

Our didactic approach reflects the view expressed by N. Metropolis and S. Ulam
in their seminal paper “The Monte Carlo method” (1949) that Monte Carlo is
a “statistical approach to the study of differential equations, or more generally,
of integro-differential equations.” The equation that we study in this book is the
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Boltzmann transport equation. For this reason, we dedicate an entire chapter to the
equation and its various forms. Only after the equation is explained do we introduce
algorithms for solving it.

The chapters and appendix of the book can be summarized as follows:

• Chapters 1 and 2 present a general introduction to the Monte Carlo method
with an emphasis on sampling techniques, an essential element of any Monte
Carlo algorithm. Sampling techniques are used to generate random numbers and
vectors that have distributions required by the algorithm.

• Chapter 3 begins with definitions of the fundamental quantities of radiation
transport theory, such as cross sections, free path, and fluence. Next is a rather
elementary introduction to the Boltzmann equation followed by examples of its
various forms. We conclude the chapter with more advanced topics: a general
algorithm for solving the Boltzmann equation with the Monte Carlo method and
the related topic of biasing techniques, which together form the mathematical
basis for algorithm optimization.

• Chapter 4 discusses three main components of a Monte Carlo algorithm for
radiation transport problems: generation of a particle trajectory, tallying, and
variance reduction. Tallying is the process of deriving a numerical estimate of
a quantity of interest from information contained in particle trajectories. Here,
and throughout the book, the word estimate is used instead of calculate because
Monte Carlo is a statistical method. This by no means implies poor accuracy of
the result. Variance reduction is a broad term referring to a variety of optimization
methods that reduce statistical uncertainties without introducing systematic error
or bias.

• Chapter 5 is dedicated to the transport of charged particles such as electrons,
protons, and heavy ions. Most Monte Carlo algorithms for charged particles rely
on multiple scattering models. We cover all the classic models for energy loss
fluctuations (energy straggling), angular distribution, and transverse and longi-
tudinal spatial displacements. This chapter also includes sections on transport in
magnetic fields and the charge exchange process, which is particularly important
near the end of a heavy ion track.

• In the last two chapters, Chaps. 6 and 7, we present two advanced topics: micro-
dosimetry with elements of stochastic transport theory and grid-based solvers
of the Boltzmann equation. The calculation of microdosimetric characteristics
is a problem fundamentally different from more conventional problems, such
as the dose calculation, because the Boltzmann equation is not applicable in
this case. For this reason, in this chapter, we introduce another equation, the
stochastic transport equation, and discuss algorithms for solving it. Grid-based
Boltzmann equation solvers are deterministic algorithms that present a viable
alternative to Monte Carlo. The best-known algorithm of this type is Acuros
(Vassiliev et al. 2010), which was translated into the clinic almost instantly,
for treatment planning for radiotherapy of cancer. The grid-based Boltzmann
equation solver, however, remains a relatively new technology and has the
potential for improvement and for use in new applications. In Chap. 7, we explain
step-by-step how an algorithm of this type works.
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• Appendix A provides a summary of the concepts and methods of probability
theory and statistics to help the reader better understand the material presented
in the book and the statistical nature of the Monte Carlo method. In Appendix B,
some of the mathematics used in the book is clarified.
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Chapter 1
Introduction

1.1 The Monte Carlo Method

The Monte Carlo method was the name suggested by Metropolis in the late 1940th
for a statistical approach to solving neutron diffusion and multiplication problems
that was being developed at that time at the Los Alamos Laboratory (Metropolis
1987). The approach was outlined in a letter sent by von Neumann to the leader
of the Theoretical Division, Richtmyer (Richtmyer and von Neumann 1947). The
letter stated that the principle of the statistical method was suggested by Ulam.
However, this was not the first known application of the method now known as
Monte Carlo to radiation transport. According to Sergè (2007) and Anderson (1986),
Fermi “invented” the method and used it to study moderation of neutrons more than
a decade earlier, in 1934, at the University of Rome. He, however, has not published
anything on the technique he used (Sergè 2007).

What exactly is the Monte Carlo method? Metropolis and Ulam (1949) described
the method as “a statistical approach to the study of differential equations, or
more generally, of integro-differential equations that occur in various branches of
the natural sciences.” Since then, the application of the Monte Carlo method has
been extended beyond differential and integro-differential equations, and beyond the
natural sciences. Clearly, Metropolis and Ulam viewed Monte Carlo as a numerical
method for solving mathematical problems, equations, including those that arise in
physics. This means that before applying the Monte Carlo method to a physical
problem, the problem should be formulated in mathematical terms, as an equation
or a system of equations.

The uniqueness of the Monte Carlo method is in its statistical approach. It relies
on statistical methods, such as sampling and inference. That does not mean that
the method is applicable only to problems that involve random events or processes.
Although, from the early days of Monte Carlo research, the method has been used
predominantly to study random phenomena. Radiation transport being an inherently
random process is a perfect example. In contrast to classical statistics, in the Monte
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Carlo method samples are generated by a computer algorithm rather than collected
from observations. With respect to statistical inference, in Monte Carlo algorithms
the solution of a mathematical problem is found as an estimate of a parameter
of a distribution, usually the mean, or, more generally, of a given function of
the parameter. Hence, in the Monte Carlo method, the numerical solution has a
statistical uncertainty, in addition to any systematic errors that the algorithm may
introduce. The statistical uncertainty is determined by the width of the distribution
of the estimate of the parameter. Uncertainties are reported as a confidence interval,
or simply as the standard deviation of the estimate. Statistical uncertainties normally
decrease with increasing sample size.

The general Monte Carlo schema for solving a physical problem can be outlined
as follows.

1. The problem is formulated in mathematical terms. This involves developing a
model of the phenomenon, which leads to an equation or system of equations for
the quantity of interest.

2. A statistical interpretation of the problem is formulated, where the quantity of
interest is expressed as a parameter of a distribution, for example the mean, or a
function thereof.

3. An algorithm for sampling the distribution is developed.
4. Estimators for the parameter and its statistical uncertainty are derived. These can

be as simple as the sample average and the sample variance. In radiation transport
calculations estimators are often called tallies.

5. The algorithm and the estimators are optimized to reduce the computing time
needed to achieve the desired level of statistical uncertainties. Methods for
achieving this goal without introducing systematic error, or a bias, are referred to
broadly as variance reduction methods.

6. A sample is generated, that is sufficiently large to achieve the desired level of
statistical uncertainty of the estimate of the parameter.

7. The parameter and its uncertainty are estimated using the sample.

Later in this chapter we provide a few simple examples that illustrate these
steps. For random phenomena, the statistical interpretation of the problem may
be immediately obvious. For example, to calculate the dose distribution from
a radiation source, we would sample initial parameters of a particle from the
distribution that characterizes the source, then generate a particle trajectory by
copying on a computer the actual process, and as we do so, we would tally the
dose this particle delivers. By generating a sufficiently large number of trajectories,
we would achieve the desired level of statistical uncertainties in the calculated
dose distribution. This approach is called analogous simulation. Its advantage is
the simplicity, and clear physical interpretation of each step of the algorithm. The
drawback is the lack of the flexibility necessary for optimizing the algorithm. Some
optimization techniques can still be applied, but without a mathematical formulation
of the problem, these techniques can only be based on intuitive arguments and
therefore are unlikely to maximize the performance of the algorithm, and may even
be erroneous.
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1.2 The Monte Carlo Method in Radiation Medical Physics

The use of the Monte Carlo method in research and for solving applied problems
of radiation medical physics has increased over the past two-three decades at a rate
that can, perhaps, be described as unprecedented. The number of published papers
on the subject has been increasing (Rogers 2006; Seco and Verhaegen 2013) at a rate
much exceeding the rate of growth of all records in scientific literature databases,
such as Medline (Larsen and von Ins 2010). Although the number of publications
is a poor metric, because “it completely ignores the scientific impact of each paper”
(Stallings et al. 2013), the vast number of papers does reflect the multitude and wide
range of problems solved with the Monte Carlo method, and the persistently high
level of activity in this area.

The interest in Monte Carlo techniques has grown from the need for accurate
numerical methods for solving a variety of radiation transport problems that arise
in radiation therapy, medical imaging, and nuclear medicine. These problems range
from calculating parameters characterizing the performance of an ion chamber, to
the calculation of patient dose distributions for radiotherapy treatment planning,
or doses to patients and personnel from imaging devices, such as a computed
tomography scanner. For a review of the practical applications of the Monte Carlo
method in radiation therapy, we refer to the recently published book edited by
Seco and Verhaegen (2013). We add that with the rapid progress in hadron therapy,
interest has been increasing in understanding biological effects of radiation, where
the Monte Carlo method has also proven to be an indispensable tool (Nikjoo et al.
2008).

Treatment planning for radiotherapy of cancer is a good example of the com-
plexity of computational problems encountered in modern medical physics. It
requires the calculation of three-dimensional (3D) dose distributions in a volume
that includes the tumor and surrounding tissues at a spatial resolution of approxi-
mately 2–3 mm. Current radiotherapy treatment techniques are very sophisticated.
Photon beam therapy, for example, uses multiple beams that target the tumor
from different directions, selected so as to avoid, when possible, irradiating vital
organs. The intensity of each beam has a complex pattern of spatial and temporal
variations, optimized to produce the best possible dose distribution and achieve
the treatment objectives. Beam intensity is modulated by beam modifying devices,
following the instructions generated by treatment planning software. One such
device is the multileaf collimator, which dynamically blocks parts of the beam
during treatment. Before reaching the patient, the beam undergoes scattering in
several beam modulating and beam collimating devices, resulting in a complex
angular, spatial and energy distribution of photons and secondary particles, mostly
electrons. Radiation transport in the heterogeneous anatomy of the patient also
poses a challenge, because radiation beams penetrate different materials: soft tissue,
lung, bone, air cavities, etc. Regardless of the complexity of the problem, the
American Association of Physicists in Medicine (AAPM) (AAPM Report 85,
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2004) recommends that the patient dose calculation error should not exceed 2 %.
Requirements on the computing time are also rather stringent. In routine treatment
planning, calculation of a patient dose distribution cannot take longer than a few
minutes. The reason is that achieving an optimal 3D dose distribution requires
multiple iterations, performed either interactively or by optimization software, with
the dose distribution recalculated at each iteration. Another difficulty is that patients
cannot be completely immobilized during treatment delivery. For example, due to
the respiratory motion, lung tumors constantly move. It is not unusual to see the
range of tumor motion exceeding 1 cm. To achieve a high accuracy of the dose
distribution in this case, dose calculations have to be performed separately for
several, usually ten, 3D snapshots of the anatomy of the patient acquired at different
phases of the respiratory cycle. The calculations are then combined to calculate the
total dose delivered to the patient. While this procedure is not yet standard in clinical
practice, it is quite common in the research setting.

The required level of accuracy of the computed dose can certainly be achieved
with the use of the Monte Carlo method. Furthermore, having a solid mathematical
basis, the method is highly reliable: large errors are unlikely, if calculations are
set up correctly. In addition, the method is relatively simple, at least conceptually,
which simplifies the entire process, from learning the technique, to software testing,
to interpretation of numerical results. Finally, the progress made in the solving
problems faced in the field of radiation medical physics using the Monte Carlo
technique would not have been possible, at least not on the present scale, without
the development of user-friendly software, which has made access to this powerful
method much easier. The following software systems have been used extensively in
radiation medical physics:

• EGS, “Electron-Gamma Shower” (Ford and Nelson 1978; Nelson et al. 1985;
Kawrakow et al. 2013).

• BEAM (Rogers et al. 1995), a graphic user interface for EGS, designed specifi-
cally for modeling medical accelerators.

• GEANT, “Generation of Events ANd Tracks” (Brun et al. 1978; Agostinelli et al.
2003; Allison et al. 2006).

• Geant4-DNA (Incerti et al. 2010; Bernal et al. 2015), an extension of the general
purpose toolkit Geant4 to very low energies, for modeling radiation damage on a
microscopic scale.

• MCNP, “Monte Carlo N-Particle” (Hendricks and Briesmeister 1991; Brown
2003).

• PENELOPE, “PENetration and Energy LOss of Positrons and Electrons” (Baro
et al. 1995; Salvat et al. 2011; Salvat 2015).
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Fig. 1.1 Estimation of �

1.3 Estimation of �

It is very common for books on the Monte Carlo method to discuss the statistical
experimental method for estimating � , first described by de Buffon (1777). This
book is not an exception. Our purpose, however, is only to illustrate with this
example the general schema of the Monte Carlo method presented above.

The earliest description of the method in English that we are aware of was given
by Hall (1873). The idea of the method is as follows. Parallel lines separated by a
distance D are drawn on a planar surface. We assume that the number and the length
of lines are infinite. A straight line segment of length L is randomly placed on the
planar surface (Fig. 1.1). The probability p that this segment intersects a parallel line
is (Hall 1873)

p D 2L

�D
: (1.1)

The probability p can be estimated experimentally. In the experiment described
by Hall (1873), a fine steel wire was thrown on a wooden planar surface on which
were drawn equidistant parallel lines. If the wire was thrown N(total) times, and it
intersected a parallel line N(intersect) times, then the estimate of the probability of
intersection in one trial is:

p .experimental/ D N .intersect/

N .total/
: (1.2)

If we replace the exact probability p in Eq. (1.1) with its approximate value found
experimentally, Eq. (1.2), and then solve the equation for � , we find an estimator for
� , O‚� :

� � O‚� D 2L

p .experimental/D
: (1.3)
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This simple example has all the elements of the general Monte Carlo schema.
The statistical interpretation of the problem is that the quantity of interest, � , is
expressed as a function of p. The observed N(intersect) has a binomial distribution
(see Appendix A). Hence, � is expressed as a function of parameter p of the
binomial distribution. The distribution is sampled experimentally by throwing a thin
steel wire on a planar surface on which parallel lines are drawn and counting the
number of times the wire intersects a line. We have also derived an estimator of � .
It is given by Eq. (1.3). This estimator, however, has a serious flaw. If after N(total)
trials, the wire has never intersected any of the lines, then N(intersect) D 0, and we
have division by zero in Eq. (1.3). However small the probability of this occurrence
may be, it is not exactly zero, it is a finite number. It is not a small number, if the
lines are well separated, D � L. This shows that estimators are an important part of
a Monte Carlo algorithm and their possible deficiencies should not be overlooked.
In our example, the problem is that the estimate of � is biased, which means that the
expectation of O‚� is not equal to � . In fact, the expectation is infinite. The variance
of the estimate is also infinite, which makes analysis of uncertainties nontrivial.

Finally, the optimization parameter of this problem is the ratio L=D. In general,
the optimization parameter should be chosen to minimize the variance of the
estimate for a given number of trials. In our case the variance does not exist,
therefore another measure of the width of the distribution of the estimate has to
be minimized. Alternatively, the estimator can be modified so that the expectation
and variance of the estimate both are finite. For this particular problem, however,
using a non-Monte Carlo algorithm is a much better strategy. A historical review by
Glaisher (1873), in the same issue of “Messenger of Mathematics” where the paper
by Hall was published, gives a good insight into the methods for calculating � .

1.4 Calculation of Volumes

Problem

Calculate volume V , Fig. 1.2.

Statistical Interpretation of the Problem

If a random point has a uniform distribution in a volume VB (bounding volume)
such that V � VB, (the entire volume V is inside VB), then the probability p of this
point falling within V is equal to the ratio of the volumes, p D V=VB. If N is the
total number of random points uniformly distributed in VB, and NV is the number
of points that fall within V , then the distribution of NV is the binomial distribution
with parameter p. Hence, again, the quantity of interest is expressed as function of
parameter p of the binomial distribution, V D pVB.
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Fig. 1.2 Calculation of
volumes. The bounding
volume VB is the rectangle

V

x

y

Sampling of the Distribution

To sample a random number NV , we generate N random points with a uniform
distribution in VB and count the number of points NV that fall within V . To simplify
the sampling of a uniform distribution, a rectangular VB is used in two dimensions,
and an orthotope (“box”) is used for higher dimensionalities. Sampling techniques
are discussed in detail in the next chapter.

Estimator

For a sufficiently large N, we have p � NV=N. Thus, the estimator of V is O‚V D
VBNV=N. This time the estimate is unbiased, i.e., Ef O‚Vg D V , where Ef:g denotes
the expectation.

Optimization

The optimization parameter for this problem is VB. We, however, prefer to work with
a dimensionless parameter, x D V=VB, 0 � x � 1. We need to find the variance of
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the estimate as a function of x, and then find a value of x that minimizes the variance.
Here we can use the formula for the variance of a binomial distribution

Var

�
VB

N
NV

�
D V2

B

N2
Var fNVg D V2

N

�
1

x
� 1

�
: (1.4)

Thus, to minimize the variance we need to maximize x, by choosing the smallest
VB. At this point we can also find the fractional uncertainty

1

V

s
V2

N

�
1

x
� 1

�
D 1p

N

r
1

x
� 1: (1.5)

The inverse square root of the sample size N is very common for fractional
uncertainties in Monte Carlo calculations.

Algorithm

1. Generate N random points uniformly distributed within the bounding volume,
N � 1.

2. Count the number of points NV that fall within volume V , Fig. 1.2.
3. Calculate the volume: V � VBNV=N.
4. Calculate the uncertainty using Eq. (1.4), Eq. (1.5), or the sample variance

[Appendix A, Eq. (A.58)].

1.5 Calculation of Integrals

Problem

Calculate the integral

I D
Z b

a
f .x/ dx I a > b: (1.6)

Statistical Interpretation

Let g.x/ be an arbitrary function that satisfies conditions A and B

A:
Z b

a
g .x/ dx D 1 : (1.7)
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B: g .x/ � 0I for 8 x 2 Œa; b� : (1.8)

We also set g.x/ D 0 for x outside the integration interval, Œa; b�. Then g.x/ can be
interpreted as a probability density function of a random variable � , and the integral
can be interpreted as the expectation value

Z b

a
f .x/ dx D

Z b

a
g .x/

f .x/

g .x/
dx D E

�
f .�/

g .�/

�
: (1.9)

Again, � is a random number with distribution g .x/.

Sampling the Distribution

We need to sample � from distribution g.x/. Given that g.x/ can be any function that
satisfies conditions A and B, it should be chosen so that the sampling algorithm
is simple and fast. The easiest to sample distribution is a uniform distribution
in interval Œa; b�. In that case g.x/ is a constant. However, we have not yet
discussed optimization of the algorithm, which, as shown below, introduces another
requirement that must be considered when choosing g.x/.

Estimator

According to Eq. (1.9), we need to estimate an expectation value. We can use for
that purpose the sample average

I � O‚I D 1

N

NX
iD1

f .�i/

g .�i/
; (1.10)

provided that g.x/ is chosen so that the ratio f .x/=g.x/ is finite for all x 2 Œa; b�.

Optimization

Here we present the importance sampling optimization technique. We need to find
a function g.x/ that satisfies conditions A and B, and minimizes the variance of the
ratio f .�/=g.�/. The variance is

Var

�
f .�/

g .�/

�
D
Z b

a
g .x/

�
f .x/

g .x/

�2
dx �

�Z b

a
g .x/

f .x/

g .x/
dx

�2
: (1.11)
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In the second integral, g.x/ is cancelled out, which means that we need to minimize
the first integral

Z b

a
g .x/

�
f .x/

g .x/

�2
dx : (1.12)

To find the minimum of this integral, we write an expression for the variance of the
ratio jf .�/j=g.�/

Var

� jf .�/ j
g .�/

�
D
Z b

a
g .x/

�
f .x/

g .x/

�2
dx �

�Z b

a
jf .x/ jdx

�2
: (1.13)

Given that the variance must be nonnegative, Eq. (1.13) shows that the minimal
possible value of the integral in Eq. (1.12) is

�Z b

a
jf .x/ jdx

�2
: (1.14)

This minimum is achieved, if we choose

g .x/ D jf .x/ jR b
a jf .x/ jdx

: (1.15)

To prove that the minimum is reached, insert Eq. (1.15) into Eq. (1.12). It can also
be shown that with g.x/ given by Eq. (1.15), the variance in Eq. (1.11) remains
nonnegative. Thus, the variance of the ratio f .�/=g.�/ and therefore statistical
uncertainty of the calculated integral are minimal, if we chose g.x/ given by
Eq. (1.15). If the integrand is positive, i.e., f .x/ D jf .x/j for all x 2 Œa; b�, this
choice produces a result with a zero variance. However, to implement this zero-
variance algorithm one needs to know the integral I, because it is present in the
denominator in Eq. (1.15). Thus, a more practical approach is to choose, if possible,
a simple g.x/ similar to the expression on the right-hand side of Eq. (1.15).

Algorithm Groundwork

Implementation of Monte Carlo algorithms often requires some preparatory work
or analysis. We refer to this step as “groundwork.”

In case of the algorithm for calculating an integral, at this step we choose
a function g .x/. The function must be normalized and nonnegative (conditions
A and B). It also should be such that sampling from distribution g.x/ is simple
and fast, and the ratio f .x/=g.x/ is finite. For maximum algorithm efficiency g.x/
should be similar to the right-hand side of Eq. (1.15). If the integrand function
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f .x/ has singularities, it is recommended that they are included in g .x/, so that
the ratio f .x/ =g .x/ does not have singularities. Once a function g.x/ is selected, the
algorithm can be finalized.

Algorithm

1. Generate a sample f�1; �2; : : : ; �Ng, where the distribution of �i is g .x/; N � 1

2. Calculate the sample average of the ratio f .�/ =g .�/:

1

N

NX
iD1

f .�i/

g .�i/
: (1.16)

3. Output the result

I D
Z b

a
f .x/ dx � 1

N

NX
iD1

f .�i/

g .�i/
: (1.17)

If the uncertainty of the result is needed, then the standard deviation of the sample
average is also calculated.

Example 1

Calculate the integral

I D
Z 1

0

f .x/ dx D
Z 1

0

p
x exp .�x/dx: (1.18)

We choose

g .x/ D exp .�x/; x � 0; (1.19)

and ensure that conditions A and B are satisfied:

A:
Z 1

0

exp .�x/dx D 1: (1.20)

B: exp .�x/ > 0: (1.21)
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We also check that

f .x/

g .x/
D p

x is finite for 8 x 2 Œ0;1/ : (1.22)

Algorithm

1. Generate a sample f�1; �2; : : : ; �Ng, where distribution of �i is exp .�x/; N � 1.
2. Calculate the sample average of the ratio f .�/ =g .�/:

1

N

NX
iD1

p
�i: (1.23)

3. Output the result

I � 1

N

NX
iD1

p
�i: (1.24)

Example 2

Calculate the integral

I D
Z 1

0

f .x/ dx D
Z 1

0

1p
x

exp .�x/dx: (1.25)

The integrand has a singularity, 1=
p

x, at x ! 0. We choose a function g.x/ with
the same asymptotic behavior for small x

g .x/ D 1

2
p

x
I 0 < x � 1: (1.26)

Then we must verify that conditions A and B are satisfied

A:
Z 1

0

1

2
p

x
dx D 1: (1.27)

B:
1

2
p

x
� 0I for 8 x 2 .0; 1� : (1.28)
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We also note that

f .x/

g .x/
D 2 � exp .�x/ is finite for 8 x 2 Œ0; 1� : (1.29)

Algorithm

1. Generate a sample f�1; �2; : : : ; �Ng, where distribution of �i is 2=
p

x, 0 < x � 1;
N � 1.

2. Calculate the sample average of the ratio f .�/ =g .�/:

1

N

NX
iD1

2 � exp .��i/: (1.30)

3. Output the result

I � 1

N

NX
iD1

2 � exp .��i/: (1.31)

In all the algorithms that we have discussed so far, there is a step where we
generate random numbers or random points that have a certain required distribution.
In the next chapter we discuss a variety of methods for performing this task.
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Chapter 2
Sampling Techniques

2.1 Sampling a Uniform Distribution

Let us start with a uniform one-dimensional distribution. For a random number
uniformly distributed within (0, 1) we use a special notation, � . In all algorithms
we will have a step: generate � . The main tool for generating � is a pseudorandom
number generator that is a computer program based on a deterministic algorithm.
The multiplicative congruential algorithm (Lehmer 1951) is the simplest algorithm
for generating uniformly distributed pseudorandom numbers.

Algorithm

1. �iC1 D a�i mod m.
2. �iC1 D �iC1

m :

The algorithm generates a sequence of pseudorandom numbers, �1; �2; : : : ; �N . The
algorithm has three parameters that must be initialized before the algorithm can
be executed: a, m, and �0. All three parameters are positive integers; a is called
the multiplier, m is the modulus, and �0 is the seed. The parameters are chosen
such that the sequence �1; : : : ; �N satisfies statistical tests for randomness. Another
requirement affecting the choice of the parameters is that the generator must have
a very long period. Because the range of an integer variable is finite, eventually
the generator returns to one of its previous states, and starts repeating exactly the
same sequence of pseudorandom numbers. In other words, it has a finite period.
Fortunately, modern algorithms achieve such long periods that reaching the end of
a sequence before a calculation is completed would be unusual. Random number
generators have been covered extensively in the literature. For further reading on
this topic, we refer to Fishman (1996).

© Springer International Publishing Switzerland 2017
O.N. Vassiliev, Monte Carlo Methods for Radiation Transport, Biological
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Most software packages provide an option for generating a seed �0 randomly,
using for example a computer’s clock. Alternatively, �0 can be set by the user. The
latter method allows the user to perform calculations with exactly the same random
sequence, which is very convenient for software testing. Assuming that we have
tools for generating random numbers uniformly distributed within the interval .0; 1/,
we will now discuss how these numbers can be used to generate other distributions.

Problem

Generate a random number � distributed uniformly in an interval .a; b/, b > a.

Algorithm

1. Generate � .
2. � D .b � a/� C a.

Problem

Place a uniformly distributed point within a three-dimensional rectangular box. The
box spans from xa to xb in the x-direction, from ya to yb in the y-direction, and from
za to zb in the z-direction.

Algorithm

1. Generate � .
2. � D .xb � xa/� C xa.
3. Generate � .
4. � D .yb � ya/� C ya.
5. Generate � .
6. � D .zb � za/� C za.

Here, .�; �; �/ are the .x; y; z/ coordinates of the point. Note that the algorithm uses
three different and statistically independent gammas, generated at steps 1, 3, and 5.
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2.2 The Inversion Method for Sampling
Continuous Distributions

Problem

Generate a random number � that has a continuous distribution f .x/.

Algorithm Groundwork

Find the cumulative distribution function (CDF):

F .x/ D
Z x

�1
f .x/ dx: (2.1)

Algorithm

1. Generate � .
2. Solve equation � D F .�/ for � .

In other words,

� D F�1.�/: (2.2)

Figure 2.1 illustrates the algorithm.

Fig. 2.1 Inversion method
for a continuous distribution

0

1

γ

ξ
X

F(x)
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Proof

Let us show that the algorithm, indeed, produces a random number � with distribu-
tion F.x/. By definition, F.x/ D Pf� � xg D [using Eq. (2.2)] D PfF�1.�/ � xg D
(because F.x/ is monotonic) D PfF

�
F�1.�/

	 � F.x/g D (using the definition of an
inverse function)D Pf� � F.x/g D (because � is uniformly distributed between 0
and 1, and 0 � F.x/ � 1 for any x) D F.x/. This proves that the algorithm samples
� correctly. ut

Example 1. Sampling a Chord-Length Distribution

This is an example from microdosimetry (see Chap. 6). A parallel beam of heavy
charged particles, protons, for example, is incident on a sphere of unit diameter.
Each particle entering the sphere travels a random path � (chord) within it.
Assuming that the particles travel along a straight line, and do not stop within the
sphere, the chord-length distribution is given by this simple formula

f .x/ D
(
2x; if 0 � x � 1I
0; otherwise:

(2.3)

Write an algorithm for sampling the chord length � .

Algorithm Groundwork

First, we find the CDF:

1. For x < 0:

F .x/ D
Z x

�1
0 dx0 D 0: (2.4)

2. For x > 1:

F .x/ D
Z 0

�1
0 dx0 C

Z 1

0

2x0 dx0 C
Z x

1

0 dx0 D 1: (2.5)

3. For 0 � x � 1:

F .x/ D
Z x

0

2x0 dx0 D x2: (2.6)

Then, we find the inverse of the CDF as in Eq. (2.2). The result is � D p
� .
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Algorithm

1. Generate � .
2. � D p

� .

Example 2: Sampling a Free Path

Neutral particles, such as photons, travel along a straight line between points of
interaction with matter. The distance between interactions is called a free path. It is
distributed exponentially (see Sect. 3.1):

f .x/ D
(
	 exp .�	x/; if x � 0I
0; if x < 0;

(2.7)

where 	 is the macroscopic total cross section (cm�1) and x is the distance (cm).
Write an algorithm for sampling the free path � .

Algorithm Groundwork

Again, first we need to find the CDF. For x < 0, we have F .x/ D 0, and for x � 0:

F .x/ D
Z x

0

	 exp

�	x0� dx0 D 1 � exp .�	x/: (2.8)

Then, we solve Eq. (2.2) and find that in this case:

� D � 1
	

ln .1 � �/: (2.9)

Because 1 � � and � have exactly the same distribution, we can slightly simplify
the above formula:

� D � 1
	

ln �: (2.10)

Algorithm

1. Generate � .
2. � D � .1=	/ ln � .
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Fig. 2.2 Inversion of the
CDF for one roll of a die
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2.3 The Inversion Method for Sampling
Discrete Distributions

The CDF inversion method is also applicable to discrete random variables. However,
in this case the probability density f .x/ does not exist. Regardless, the CDF can
always be found. For discrete random numbers the CDF is a stepwise-constant
function. For example, the CDF for one roll of a die is shown in Fig. 2.2. This figure
also shows how CDF inversion is performed in this case. Then, the algorithm for
sampling a discrete random number � is:

Algorithm (See Fig. 2.2)

1. Generate � .
2. Find where the dashed � -line intersects the green line, F.x/.
3. From the intersect point, draw a vertical line and determine where it intersects

the abscissa.
4. � is the point of intersection with the abscissa.

Figure 2.3 shows the flow chart for a generic algorithm based on the CDF
inversion method for an arbitrary discrete distribution with the sample space
fx1; x2; : : :g, and respective probabilities P1;P2; : : :.

For some important distributions a recurrence relation exists for the probabilities:
PkC1 D r .k/Pk, where r .k/ is a known, usually simple, function. This simplifies
the calculation of Pk in the second box of the flow chart.

Examples

Binomial and Poisson distributions. For a binomial distribution:

r .k/ D n � k

k C 1

p

1 � p
; (2.11)
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Fig. 2.3 A generic algorithm
for sampling discrete
distributions

k=k+1;

sample γ; δ=γ; k=1;

calculate Pk; δ=δ–Pk;

ξ=xk; exit;δ≤0

no

yes

and for a Poisson distribution:

r .k/ D 


k C 1
: (2.12)

Here n, p, and 
 are parameters of the distributions.

2.4 Simple Rejection Method

The CDF inversion method is, in principle, applicable to any distribution, contin-
uous or discrete. However, it is not necessarily the fastest or simplest. The simple
rejection method is a good alternative that offers a very straightforward algorithm
that, depending on the properties of the distribution, may or may not be more
efficient than the CDF inversion method.

Algorithm Groundwork

Find the minimum bounding box for the probability density function (the red box
in Fig. 2.4). If the box is infinite in any direction then, strictly speaking, this method
does not work. In that case, the method can be used only approximately. If, for
example, a tail of the distribution extends to infinity, the tail can be truncated.
However, in this situation, we would recommend applying another sampling
technique, either the inversion method or Neumann’s method that is discussed in
the next section.
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Fig. 2.4 Simple rejection method

Algorithm

1. Place a random point uniformly within the bounding box.
2. If the .x; y/ coordinates of the point are .�; �/, and � < f .�/, that is, the point

falls below the f .x/ curve (see Fig. 2.4), then the point is accepted (go to step 3);
otherwise, go back to step 1.

3. Output � .

The efficiency of the algorithm, defined as the probability of accepting a point, is
equal to the ratio of the area under the f .x/ curve to the area of the bounding box,
that is, 1/{area of the box}.

Proof

By definition,

F.x/ D Pf� � xg: (2.13)

For this algorithm, the probability in the above equation is conditional, the condition
being that the point was accepted. Then,

Pf� � xj acceptedg D Pf� � x and acceptedg
Pfacceptedg : (2.14)
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Using a total probability formula:

Pf� � xj acceptedg D
Z xmax

xmin

dx0
Z ymax

0

dy0

	 p .x0; y0/Pf� � x and acceptedjx0; y0g
Pfacceptedg ;

(2.15)

where the integral is over the bounding box, p.x0; y0/ is the probability density
of the uniform distribution of the point location within the box. It is equal to
1/{area of the box} and therefore cancels out with P{accepted}. Finally, Pf� �
x and acceptedjx0; y0g D 1, if x0 � x and y0 � f .x0/; it is zero otherwise.
Then, the integral in Eq. (2.15) becomes

Pf� � xj acceptedg D
Z x

xmin

dx0
Z f .x0/

0

dy0 D
Z x

xmin

dx0f


x0� D F .x/ : (2.16)

ut

Example

Write an algorithm for sampling a random number � from the distribution:

f .x/ D 3

4



1 � x2

� I �1 � x � 1 : (2.17)

The bounding box is: �1 � x � 1 and 0 � y � 3=4; the efficiency is 1/{box area}
= 2/3.

Algorithm

1. Sample � uniformly within Œ�1; 1�.
2. Sample � uniformly within Œ0; 3=4�.
3. If � > .3=4/.1� �2/, then the point is rejected, go back to step 1. Else, the point

is accepted; output � .
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2.5 Neumann’s Method

Neumann’s method is also a rejection algorithm. However, it offers much more
flexibility than simple rejection.

Algorithm Groundwork

Choose a probability distribution g.x/ that is:

(a) similar to f .x/.
(b) simple, such that it is easy to sample from distribution g.x/; and
(c) a number C � 1 exists such that Cg.x/ � f .x/ for any x. Choose g.x/ with the

smallest C.

Algorithm

1. Sample � from distribution g.x/.
2. Generate � .
3. If � � f .�/=ŒCg.�/�, then output � and exit. Else, go back to step 1.

If we choose g.x/ D Const, then this algorithm is no different from simple rejection.
If, on the other hand, we choose g.x/ D f .x/, then C D 1 and steps 2 and 3 are not
needed. The efficiency of the algorithm is defined as the probability of accepting a
� , that is, Pf� � f .�/=ŒCg.�/�g. First, let us show that the efficiency is equal to 1=C.
We start with a total probability equation:

Pf� � f .�/=ŒCg.�/�g D
Z 1

�1
g .x/ dx

Z 1

0

dt Pf� � f .�/=ŒCg.�/�jx; tg: (2.18)

We notice that Pf� � f .�/=ŒCg.�/�jx; tg D 1, if t � f .x/=ŒCg.x/�, and 0 otherwise.
Then, the integral can be calculated easily:

Pf� � f .�/=ŒCg.�/�g D
Z 1

�1
g .x/ dx

Z f .x/=ŒCg.x/�

0

dt D 1

C
: (2.19)

ut
Next, we prove that the algorithm samples � from distribution F.x/.
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Fig. 2.5 Neumann’s method

Proof

The proof is very similar to the proof of the simple rejection algorithm. The only
difference is that at step 1, � is sampled from distribution g.x/ instead of from a
uniform distribution. Then, obviously

F .x/ D Pf� � xj acceptedg D C
Z x

�1
g


x0� dx0

Z f .x0/=ŒCg.x0/�

0

dt

D
Z x

�1
f


x0� dx0 D F .x/ ; (2.20)

where we used P.accepted/ D 1=C. ut

Example

Write an algorithm for sampling a random number � from a distribution (Fig. 2.5):

f .x/ D 3

4



1 � x2

� I �1 � x � 1 : (2.21)

.
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Algorithm Groundwork

Choose

g.x/ D 2

� .1C x2/
: (2.22)

In this case C D 3�=8 and the efficiency is approximately 0.85. Distribution g.x/
can be sampled by the CDF inversion method. The sampling formula is

� D tan

�
�

2

�
� � 1

2

��
: (2.23)

Algorithm (See Fig. 2.5)

1. Sample � from distribution g.x/ using Eq. (2.23).
2. Generate � .
3. If � � 1 � �4, then output � and exit. Else, go back to step 1.

2.6 Transformation of Random Variables

It may be possible to transform a random variable � into another variable � D g.�/
that has a distribution that is easier to sample. Then, to sample � one would, first,
sample � and then perform the inverse transformation � D g�1.�/.

If f� .x/ is the distribution of � , then the distribution of � can be found as follows:

f� .y/ D f� .x/

ˇ̌̌
ˇdx

dy

ˇ̌̌
ˇ D f� .x/

jdg .x/ =dxj : (2.24)

The right-hand side should be expressed as a function of y using x D g�1.y/.
This method is also applicable to multidimensional variables. If � is an n-

dimensional variable, and the transformation to another random variable is given
by a set of functions gi: �i D gi.�1; : : : ; �n/, i D 1; : : : ; n, then the distribution of
the transformed variable is

f�1;:::;�n .y1; : : : ; yn/ D f�1;:::;�n .x1; : : : ; xn/

ˇ̌̌
ˇdet

�
@xi

@yj

� ˇ̌̌
ˇ ; i; j D 1; 2; : : : ; n; (2.25)

where the last term on the right-hand side of the equation is the Jacobian.
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Example

Sample distribution

f� .x/ D 2x e�x2 ; x � 0: (2.26)

Instead, we will sample � D �2. The distribution of � according to Eq. (2.24) is

f� .y/ D f� .x/
1

2x
D e�y: (2.27)

Algorithm

1. Sample � from distribution e�y, y � 0. Use the CDF inversion method.
2. Output � D p

�.

2.7 Sampling a Sum of Distributions

Problem

Sample distribution f .x/ D p1f1 .x/C p2f2 .x/, where

p1 � 0I p2 � 0I f1 .x/ � 0I f2 .x/ � 0I (2.28)

p1 C p2 D 1I (2.29)
Z C1

�1
f1 .x/ dx D

Z C1

�1
f2 .x/ dx D 1: (2.30)

Algorithm

1. Generate � .
2. If � < p1, then sample � from distribution f1 .x/. Else, sample � from distribution

f2 .x/.

This algorithm can be generalized to a sum with any number of terms, including
infinite sums:

f .x/ D
1X

iD1
pifi .x/ : (2.31)
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Algorithm

1. Sample a channel number i from the discrete distribution given by probabilities
fp1; p2; : : :g.

2. Sample � from distribution fi .x/.

The algorithm follows from the observation that the right-hand side of Eq. (2.31)
is the total probability equation, where fi.x/ is the conditional distribution given that
event i has occurred.

Example

Sample states of all particles after the interaction of a photon with an atom.
We have three channels:

1. Photoelectric absorption.

– the photon is absorbed
– a photoelectron is ejected
– the atom is ionized

2. Compton scattering.

– the photon momentum changes
– a Compton electron is ejected
– the atom is ionized

3. Pair production

– the photon disappears
– an electron and a positron are produced.

If x is the photon state before interaction, and x1; x2; : : : are states of all particles
after the interaction, then we need to sample a distribution given by:

f .x ! x1; x2; : : :/ D p1 .x/ f1 .x ! x1; x2; : : :/C p2 .x/ f2 .x ! x1; x2; : : :/

C p3 .x/ f3 .x ! x1; x2; : : :/ : (2.32)

The algorithm is obvious. First, we sample the channel number: 1, 2, or 3. Or,
in other words, we sample the type of interaction. Once the type of interaction is
determined, we sample the parameters of particles after the interaction using the
distribution function for the selected interaction type.
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2.8 Compton Scattering

Example

Sample the scattering angle and energy of a photon after Compton scattering. We
consider a simple model where the photon interacts with a free electron at rest.
In this case, the differential scattering cross section is given by the Klein–Nishina
formula (Butcher and Messel 1960; Attix 2004). In this model, the probability
distribution of photon energy after scattering can be written as

f


E0� D A

�
E0

E
C E

E0 � sin2 �

�
; (2.33)

where E and E0 are the photon energies before and after the interaction, respectively,
� is the photon scattering angle, and A is the normalization constant. The initial
photon energy, E, is given. The energy E0 after the interaction is random, and we
need to sample it. The scattering angle � can be found as a function of E and E0
from

E0 D E

1C E .1 � cos �/
; (2.34)

where the energies are in the units of electron rest energy, E D energy/mec2. The
minimum and maximum E0 can be found from Eq. (2.34) by setting � D � and
� D 0, respectively:

E0
min D E

1C 2E
I E0

max D E: (2.35)

We chose this example because Compton scattering is an important process and
the sampling algorithm is nontrivial. It uses three techniques we introduced above:
the CDF inversion, Neumann’s method, and sampling a sum of two distributions.
The earliest formulation of the algorithm that we were able to find was given by
Butcher and Messel (1960). The algorithm is also described in the documentation
for an early version of the EGS software system (Ford and Nelson 1978).

Algorithm Groundwork

First, we rewrite Eq. (2.33) in a slightly different form:

f


E0� D A

�
E0

E
C E

E0

� 
1 � sin2 �

E0=E C E=E0

!
; (2.36)
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and then

f


E0� D A .˛1 C ˛2/

�
˛1

˛1 C ˛2
f1


E0�C ˛2

˛1 C ˛2
f2


E0��

 
1 � sin2 �

E0=E C E=E0

!
;

(2.37)

where

f1


E0� D A1E

0I f2


E0� D A2

E0 ; (2.38)

and the normalization constants A1 and A2 can be found from:

A1

Z E0
max

E0
min

E0dE0 D A2

Z E0
max

E0
min

dE0

E0 D 1: (2.39)

By comparing Eqs. (2.36) and (2.37), it can be determined that

˛1 D 1

A1E
I ˛2 D E

A2
: (2.40)

Equation (2.37) is a basis for the implementation of the Neumann’s method. To this
end, we choose

g


E0� D ˛1

˛1 C ˛2
f1


E0�C ˛2

˛1 C ˛2
f2


E0� ; (2.41)

and

C D A .˛1 C ˛2/ : (2.42)

It can be seen from Eq. (2.37) that with these choices the condition

Cg


E0� � f



E0� (2.43)

is satisfied.

Algorithm Overview

1. Sample � from distribution g .E0/. Because g .E0/ is a sum of two distributions, it
is sampled using the technique described in Sect. 2.7. Distributions, f1 and f2 are
sampled using the inversion of the CDF method.

2. Generate � .
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3. If � < f .�/ =ŒCg .�/�, then go to step 4. Else, go to step 1. Here f .�/ =ŒCg .�/� D
1 � sin2 �=.�=E C E=�/, where sin � is calculated from Eq. (2.34).

4. Output E0 D � , and the scattering angle � that was calculated at step 3.

Algorithm

1. Generate � .
2. If � < ˛1=.˛1 C ˛2/ then sample � from distribution f1:

� D
q


E0
min

�2 C 2�=A1: (2.44)

Else, sample � from distribution f2:

� D E0
min exp

�
�

A2

�
: (2.45)

Of course, before Eq. (2.44) or Eq. (2.45) is used, a new � is generated.
3. Calculate, using Eq. (2.34)

sin2 � D 1 �
�
1 � 1

�
C 1

E

�2
: (2.46)

4. Generate � .
5. If � < 1� sin2 �=.�=E C E=�/, then output E0 D � and � , and exit. Else, go back

to step 1.

2.9 Superposition Method

Problem

Sample a probability distribution defined as an integral:

f .x/ D
Z C1

�1
h .x; t/ dt: (2.47)
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Algorithm Groundwork

Choose a normalized and simple-to-sample distribution g .t/, and rewrite the
integral as

Z C1

�1
h .x; t/ dt D

Z C1

�1
g .t/

h .x; t/

g .t/
dt: (2.48)

The integral on the right-hand side is a form of the total probability equation. Then
the ratio h=g can be interpreted as a conditional probability distribution, that is, the
distribution of x given t:

h .x; t/

g .t/
D f .xj t/ : (2.49)

Hence, the algorithm is:

Algorithm

1. Sample � from distribution g .t/.
2. Sample � from distribution f .xj �/.

Example

Write an algorithm based on the superposition technique for sampling distribution:

f .x/ D A
Z 1

0

t exp Œ�t .x C t/� dtI x � 0I A > 0: (2.50)

Algorithm Groundwork

From the normalization condition
Z 1

0

f .x/ dx D 1; (2.51)

we find that

A D 2p
�
; (2.52)
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and write the integrand as a product of two distributions:

At exp Œ�t .x C t/� D Œt exp .�tx/� �
�
2p
�

exp

�t2

��
: (2.53)

It is important to verify that both of these distributions are normalized:

Z 1

0

t exp .�tx/dx D 2p
�

Z 1

0

exp

�t2

�
dt D 1: (2.54)

Algorithm

1. Sample � from the distribution .2=
p
�/ exp .�t2/, t � 0. This is simply the

positive half of a normal distribution. Sampling of the normal distribution is
discussed in the next section.

2. Sample � from distribution � exp .��x/, x � 0. This the exponential distribution.
It can be sampled by the inversion method.

3. Output � .

2.10 Sampling a Normal Distribution

We will use notation N



; 	2

�
for a normal distribution with parameters 
, and 	2:

f .x/ D 1p
2�	2

exp

"
� .x � 
/2

2	2

#
: (2.55)

The general approach to sampling N.
; 	2/ is, first, to sample the standard
distribution, N .0; 1/ and then perform a simple transformation of the random
number as shown below.

Algorithm

1. Sample ı from distribution N .0; 1/.
2. Output � D 	ı C 
.



34 2 Sampling Techniques

Proof

The following shows that the above algorithm indeed produces a random vari-
able with distribution N.
; 	2/. We will use Eq. (2.24) for the distribution of a
transformed random variable. In the following, fı .x/ denotes the distribution of ı,
which is N.0; 1/, and f� .y/ is the distribution of the transformed variable � . The
transformation is � D 	ı C 
.

f� .y/ D fı .x/

ˇ̌̌
ˇdx

dy

ˇ̌̌
ˇ D fı .x/

1

	
D fı

�y � 

	

 1
	

D 1p
2�	2

exp

"
� .y � 
/2

2	2

#
:

(2.56)

ut
We can additionally show that the first two moments of � are correct:

E.�/ D E.	ı C 
/ D 	E.ı/C E.
/ D 	 � 0C 
 D 
:

Var.�/ D Var.	ı C 
/ D 	2Var.ı/C Var.
/ D 	2 � 1C 0 D 	2:
(2.57)

Next, we need to address the problem of sampling the standard normal distribu-
tion, N .0; 1/.

Method 1

An approximate method based on the Central Limit Theorem (Ermakov and
Mikhailov 1976).

Algorithm Groundwork

Choose a positive number n. A larger n produces a more accurate distribution,
but the algorithm is slower. n D 12 has been recommended in the literature for
applications where the tails of the distribution are not important.

Algorithm

1. Generate �1; �2 � � � �n.
2. Calculate and output �:
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� D
r
12

n

nX
iD1

�
�i � 1

2

�
: (2.58)

By applying the technique we used in Eq. (2.57), it is easy to show that Var .�/ D 1

and E .�/ D 0.

Method 2

This method is based on the transformation of random variables in two dimensions.
Instead of one random number, we sample two independent variables, �1 and
�2, each having distribution N .0; 1/. The joint probability distribution of the two
variables is:

f .x; y/ D 1p
2�

exp

�
�x2

2

�
1p
2�

exp

�
�y2

2

�
: (2.59)

Next, we introduce new variables,  and �, defined as

x D  cos�I y D  sin�; (2.60)

and transform the joint distribution accordingly

f .x; y/ dxdy D 1

2�
exp

�
�

2

2

�
 d d� D d�

2�
exp

�
�

2

2

�
d

�
2

2

�
: (2.61)

This result means that the joint distribution of � and 2=2 is a product of a uniform
distribution and an exponential distribution:

f

�
2

2
; �

�
D 1

2�
exp

�
�

2

2

�
: (2.62)

Algorithm Overview

1. Sample � uniformly in the interval 0 to 2� .
2. Sample 2=2 from the exponential distribution.
3. Transform the variables from 2=2 and � back to x and y.
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Algorithm

1. Generate � .
2. � D 2�� .
3. Generate another � .
4. � D � ln � , the CDF inversion method for the exponential distribution, where
� D 2=2:

5.  D p
2�.

6. �1 D  cos�.
7. �2 D  sin�.

The downside to the above algorithm is having to calculate the sine and the cosine.
This can be avoided. Let us consider a geometric interpretation of the algorithm, as
shown in Fig. 2.6:

1. Sample from the distribution, isotropic in two dimensions, a direction that is
defined by angle �. This corresponds to steps 1 and 2 in the above algorithm.

2. From the origin, draw a straight line in that direction. It is shown in blue in
Fig. 2.6.

3. Sample , and place a point on the line, at distance  from the origin (blue dot in
Fig. 2.6). This corresponds to steps 3–5 in the algorithm.

4. Find the projections �1 and �2 of that point on x and y axes, that is, the x and y
coordinates of the dot. This is accomplished in steps 6 and 7.

Note that we do not actually need to know the angle �. We only used it to find the x
and y projections of the blue dot. Furthermore, there is another way of sampling an
isotropic direction in two dimensions. Namely, if a point has a uniform distribution
within a circle, then the line connecting the point and the origin is isotropically
distributed. Equation (2.65) derived later in this chapter proves this statement.

Hence, we have Method 3 (Fig. 2.7) for sampling the normal distribution N.0; 1/.

Fig. 2.6 Sampling a normal
distribution. Method 2.
Geometric interpretation of
the algorithm

y

xξ1

ξ2

ρ

ϕ
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Fig. 2.7 Sampling normal
distribution. Method 3 y

xξ1

ξ2

η2

η1

ρ

ϕα

Algorithm

1. Generate �1 and �2.
2. Sample a point with coordinates .�1; �2/ within a 2-by-2 square centered at the

origin: �1 D 2�1 � 1, �2 D 2�2 � 1.
3. Calculate ˛2 D �21 C �22.
4. If ˛2 > 1, then point .�1; �2/ is outside the unit circle. Try again, go to step 1.
5. Else, the point is within the circle.
6. Generate �3.
7. Calculate  D p�2 ln �3 (here we sample 2=2 from the exponential distribu-

tion).
8. Find x and y projections of the blue dot: �1 D �1=˛, �2 D �2=˛.

2.11 Random Points and Directions

Placing a Random Point Uniformly Within a Circle

The circle radius is R. It is centered at the origin of the coordinate system.

Method 1: Rejection

Algorithm

1. Generate �1 and �2.
2. Place a point within a 2R by 2R square: �1 D R.2�1 � 1), �2 D R.2�2 � 1/. Here

R is the radius of the circle.
3. If �21 C �22 > R2, then the point is outside the circle; go to step 1.
4. Else, output coordinates .�1; �2/ of the point.
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Method 2: CDF Inversion

Algorithm Groundwork

The uniform distribution of a point within a circle in terms of x and y is a constant
within the circle:

f .x; y/ D 1

�R2
I if x2 C y2 < R2: (2.63)

The same distribution in polar coordinates is independent of � and is linear in :

f .; �/ D 

�R2
I if  < R: (2.64)

We have left out the derivation of Eq. (2.64) because it is very similar to the
derivation of Eq. (2.62). This result means that � and  are independent. Their
respective distributions are

f .�/ D 1

2�
I and f ./ D 2

R2
: (2.65)

Then, the algorithm states

1. Generate � .
2. � D 2�� .
3. Generate another � .
4.  D R

p
� (the CDF inversion method for f ./).

5. �1 D  cos�, �2 D  sin� (x and y coordinates of the point).

Placing a Random Point Uniformly Within a Sphere

The sphere radius is R. It is centered at the origin of the coordinate system.

Method 1: Rejection

This algorithm is very similar to placing a point within a circle.

Method 2: The CDF Inversion Method

Algorithm Groundwork

In terms of x, y, and z, the uniform distribution within a sphere is a constant:
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f .x; y; z/ D 1

.4�=3/R3
I if x2 C y2 C z2 < R2: (2.66)

In spherical coordinates, the same distribution can be written in the following form:

f .r; �; �/ D 3r2

R3
sin �

2

1

2�
I if r < R: (2.67)

Here, we again used the rule for transforming random variables, this time from
three-dimensional Cartesian coordinates to spherical coordinates. This result means
that r, � , and � are independent, with their respective distributions:

f .r/ D 3r2

R3
I f .�/ D sin �

2
I f .�/ D 1

2�
: (2.68)

Distributions f .r/ and f .�/ are easy to sample. Instead of � , it is much easier to
sample 
 D cos � , where 
 2 Œ�1; 1�. Using Eq. (2.24), we find that

f .
/ D 1

2
: (2.69)

In other words, 
 is distributed uniformly in Œ�1; 1�.

Algorithm

1. Generate � .
2. r D R�1=3 (CDF inversion method for f .r/).
3. Generate another � .
4. 
 D 2� � 1 (
 is sampled uniformly in Œ�1; 1�).
5. Generate yet another � .
6. � D 2�� .
7. �1 D r sin � cos�; �2 D r sin � sin�; �3 D r cos � ; where cos � D 
,

sin � D p
1 � 
2, and �1, �2, �3 are the x, y, and z coordinates of the point.

Sampling a Direction from Isotropic Distribution

A unit vector E� D f�x; �y; �zg defines a direction in three dimensions. “Isotropic”
means that, for any solid angle d!,

Pf E� 2 d!g D d!

4�
: (2.70)

A solid angle is an area on a unit sphere (r D 1), which in spherical coordinates, is
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d! D sin �d�d� D d
d�: (2.71)

This means that 
 and � are independent and uniformly distributed, in Œ�1; 1�
and Œ0; 2�/, respectively. Then, to sample E� isotropically, the following obvious
algorithm can be used:

Algorithm

1. Generate � .
2. 
 D 2� � 1.
3. Generate � .
4. � D 2�� .
5. Calculate the components of vector E�: �x D p

1 � 
2 cos�I �y Dp
1 � 
2 sin�I �z D 
.

Placing a Random Point Uniformly on a Spherical Surface

The sphere radius is R. It is centered at the origin of the coordinate system.

Algorithm

1. Sample an isotropic vector E� D f�x; �y; �zg, as described above.
2. Calculate x,y, and z coordinates of the point: �1 D �xR; �2 D �yR; �3 D �zR;

where R is the radius of the sphere.

2.12 Sampling a Joint Distribution

Problem

Sample two random numbers that are not statistically independent.

Example

See Fig. 2.8. When an incident particle ionizes a molecule, a secondary electron
is ejected. Its energy and ejection angle (� ) are random variables. They are not
independent.
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Fig. 2.8 Angular
distributions of electrons
ejected with energies 10, 102,
and 196 eV from a water
molecule by 500 eV electrons.
The probability distributions
f .
jw/ were derived from the
experimental doubly
differential cross sections
reported by Opal et al. (1972)
(solid circles). Here 
 is the
cosine of the scattering angle
� , and w is the energy of the
ejected electron. The lines are
drawn only to guide the eye

Algorithm Groundwork

The joint distribution of two random variables � and � is given by f�;�.x; y/. Using
the formula for conditional probability, we can rewrite it as

f�;�.x; y/ D f� .x/f�.yj� D x/; (2.72)

where f� .x/ is the distribution of � . It can be found by integrating the joint
distribution

f� .x/ D
Z C1

�1
f�;�.x; y/dy: (2.73)

Distribution f�.yj� D x/ is the conditional distribution of � for a given value of �:

f�.yj� D x/ D f�;�.x; y/

f� .x/
: (2.74)

Algorithm

Equation (2.72) suggests the following algorithm:

1. Sample � from distribution f� .x/.
2. Sample � from the conditional distribution f�.yj� D x/.

When simulating an ionization event, usually, the energy of the ejected electron is
sampled first, then its ejection angle is sampled.
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Fig. 2.9 Particle-scattering
event
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ϕ
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2.13 Simulating a Particle-Scattering Event

The parameters characterizing a particle scattering event are shown in Fig. 2.9. In
this figure, E� is the particle direction before the collision, E�0 is its direction after
the collision, � is the scattering angle (polar angle), � is the azimuthal angle.

Algorithm

1. Sample the particle energy after scattering, E0. Its distribution is given by the
singly differential cross section.

2. Sample the scattering angle � ; its distribution is derived from the doubly
differential cross section for a given E0.

3. Sample the azimuthal angle �, usually uniformly, in Œ0; 2�/.
4. Given E�, � and �, calculate the particle direction after collision, E�0 D f�0

x;

�0
y; �

0
zg.

Step 4 is simple if E� is parallel to one of the axes, for example the z-axis, that is,
E� D f0; 0; 1g. In that case,

�0
x D sin � cos�: (2.75)

�0
y D sin � sin�: (2.76)

�0
z D cos �: (2.77)

For an arbitrary E� D f�x; �y; �zg, the formulae are:

�0
x D �x cos � � sin �p

1 ��2
z



�x�z cos� C�y sin�

� I (2.78)

�0
y D �y cos � � sin �p

1 ��2
z



�y�z cos� ��x sin�

� I (2.79)
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�0
z D �z cos � C

q
1 ��2

z sin � cos�: (2.80)

A derivation of the above equations can be found, for example, in Haghihat (2015).
Sampling � and then calculating sin� and cos� is inefficient. Instead, sin�

and cos� can be sampled directly, without having to sample � first. In Sect. 2.10,
we have already introduced this technique for sampling normal distributions using
Method 3.

Here is the algorithm for sampling cos� and sin�:

Algorithm

1. Sample � .
2. �1 D 1 � 2� .
3. Sample another � .
4. �2 D 1 � 2� .
5. ˛ D �21 C �22.
6. If ˛ > 1, go to step 1.
7. Output cos� D �1=

p
˛, and sin� D �2=

p
˛.

The probability of rejection at step 6 (˛ > 1) is 1 � �=4.

2.14 Algorithm Testing

In this section we discuss methods for testing software developed for generating
random numbers with a given distribution f .x/. The hypothesis we put to the test is
that the software indeed generates random numbers with distribution f .x/.

2.14.1 Histograms

The first method is qualitative. The code is run to generate a large sample
f�1; �2; : : : ; �Ng, N � 1. These data are represented graphically as a histogram.
On the same graph, for comparison, distribution f .x/ is plotted. If the code works
correctly the line representing f .x/ passes through the centers of the histogram
bars at their tops, as can be seen in Fig. 2.10. For this test, the histogram must be
normalized, so that the total area under the histogram is equal to 1, Thus

X
i

hi�xi D 1; (2.81)

where �xi is the histogram bin width and hi is its height.
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Fig. 2.10 A histogram
compared with a probability
density function f .x/
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Histogram bins should be defined so that they cover all possible values of the
random value. The check

X
i

ni D N; (2.82)

should be performed, where ni is the number of random values that fell within the
i-th bin, and N is the sample size. The height of the bar, hi, is calculated as follows:

hi D ni

N�xi
: (2.83)

Then, the histogram is correctly normalized:

X
i

hi�xi D
X

i

�
ni

N�xi

�
�xi D 1

N

X
i

ni D 1: (2.84)

If distribution f .x/ has a singularity, then a separate very small bin around the
singular point should be included. And, if f .x/ has a discontinuity, a bin boundary
should be placed exactly at the point of discontinuity.

Example

Annihilation photons have an initial energy close to the rest energy of an electron:
E� � mec2 � 511 keV. In a photon beam produced by a medical accelerator
annihilation photons present only a small fraction of the total fluence. However, in
the histogram estimate of the fluence spectrum, they produce a distinct spike, shown
in Fig. 2.11, provided that a narrow bin is designed around 511 keV. The spectrum
shown in Fig. 2.11 was generated with the Monte Carlo method using an accelerator
model developed by Cho et al. (2005).
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Fig. 2.11 Fluence spectrum of a 6-MV photon beam from a medical accelerator. The spike at
511 keV is due to annihilation photons. The bin width is 7.5 keV at 511 keV and 50 keV elsewhere

2.14.2 The �2 Test

The �2 test is a quantitative pass/fail test. To perform it, follow this step-by-step
procedure:

1. Start by dividing the x-axis into intervals: 1; 2; : : : ; k, as shown in Fig. 2.12.
Intervals can be infinite. For example, Bin # 6 spans from 2 to infinity.

2. Assuming that the distribution of the random variable � is f .x/, calculate
probabilities pi of � falling within each interval. This requires calculating the
integrals

pi D
Z bi

ai

f .x/ dxI i D 1; 2; : : : ; k; (2.85)

where ai and bi are the lower and upper boundaries of interval i, respectively, and
values of pi are called the predicted, or expected, probabilities.

3. Then, run the code to generate a large sample: �1; �2 : : : ; �N , N � 1. For each
interval, find ni, the number of random numbers in the sample that fell within
interval i.
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Fig. 2.12 �2 test

4. Calculate the “observed” probabilities

�i D ni

N
I i D 1; 2; : : : ; k (2.86)

and “the observed” �2

�2 .observed/ D
kX

iD1

.�i � pi/
2

pi
: (2.87)

It should be possible to generate a very large sample and thus ensure that all �i

are approximately normally distributed. That requires that each ni is much greater
than 1. Then, the above sum is �2-distributed (see Appendix A). If, additionally,
the number of intervals k is sufficiently large, it can be assumed that the above
sum is normally distributed.

5. Using the �2 distribution or, if applicable, the normal distribution, calculate the
probability of observing a �2 that is equal or greater than �2 .observed/, using

Pf�2 � �2 .observed/g D
Z 1

�2.observed/
p�2 .x/ dx; (2.88)

where p�2 is the appropriate distribution of �2 (probability density).
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6. If the above probability is small, for example less than 0.05 or 0.001, the
hypothesis is rejected. This means that if we assume that the code works
correctly, then �2 .observed/ is unrealistically large and there is a good chance
that the code samples some other distribution, not the desired distribution f .x/.

2.14.3 The Likelihood Ratio Test

We present the likelihood ratio test in a qualitative form, which suffices for our
purposes, owing to the sensitivity of the test to algorithm errors.

Note 1. Distribution f .x/ and all its parameters are known exactly. We will write it
f .xj�0/, where �0 are the exact parameters.

Note 2. f .xj�/ denotes exactly the same distribution (the same functional form),
except it was calculated with the exact parameters (�0) replaced by their maximum
likelihood estimates � .

To perform the test:

1. Run the code, generating a large sample f�1; �2; : : : ; �Ng, N � 1.
2. Use the sample to estimate the parameters of the distribution f .x/.
3. Calculate the likelihood ratio vector:

�i D
iY

jD1

f


�jj�0

�
f


�jj�

� I i D 1; 2; : : : ;N: (2.89)

4. Plot �i as a function of i. If the code works correctly, �i will fluctuate around 1.
If it does not, �i will be diverging.

Example

Testing a code that samples the normal distribution N.1; 1/, Fig. 2.13.
In Fig. 2.13, the red line shows the likelihood ratio for a code intended to sample

the normal distribution N.1; 1/; it does so almost correctly, except for a 1 % error in
the standard deviation. The blue line shows a similar result, but this time with a 1 %
error in the mean of the distribution. The black line shows the result for the code
working correctly.
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Fig. 2.13 The likelihood ratio test for a code sampling normal distribution N.1; 1/. The black line
shows the likelihood ratio for a correct code, the blue line indicates the code with a 1 % error in
the mean, and the red line represents a 1 % error in the standard deviation
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Chapter 3
The Boltzmann Equation

3.1 Definitions

Phase Coordinates

The phase coordinate of a particle is its position and momentum: .Er; Ep /. It is a
six-dimensional variable,



x; y; z; px; py; pz

�
, a point in a six-dimensional phase

space. In this book, instead of momentum Ep we will mostly use two variables:
particle energy E and a unit vector: E� D Ep=jEp j, that defines the direction of particle
travel. This increases the number of variables to seven:



x; y; z; �x; �y; �z;E

�
.

However, the dimensionality remains six, that is, only six variables are independent
because E� is a unit vector:

�2
x C�2

y C�2
z D 1: (3.1)

We will use the following notations for phase coordinates: .Er; E�;E/, or simply
x. That is, f .x/ is the same as f .Er; E�;E/. Additionally, the particle state can be
characterized by internal degrees of freedom, which usually are discrete variables,
for example, the charge state for charged particles (CC ion versus C2C), polarization
for photons, and, most commonly, particle type (� , e�, eC, p, n, : : :).

Source Function

The source function S.x/ fully describes the radiation source: the spatial .Er/, angular
. E�/, and energy .E/ distributions of particles emitted by the source. In the Monte
Carlo method, it is convenient to normalize the source function per one particle:

© Springer International Publishing Switzerland 2017
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Z
S .x/ dx D 1; (3.2)

so that S .x/ could be interpreted as the probability distribution function of x.

Total Cross Section

The concept of cross sections can be understood in a classical model of interaction:
an atom is a sphere, and a particle interacts with the atom if it enters the sphere.
Then, the probability of interaction is proportional to the cross-sectional area of
the sphere, �R2. Accordingly, the units for cross section are cm2. Cross sections
measured in cm2 are sometimes referred to as microscopic. In this book, however,
we will never use these units. Instead, we will use the so-called macroscopic cross
sections defined as follows:

	 (macroscopic) = microscopic cross section 	 number of atoms per cm3.

In that case, the units for 	 are cm2	 cm�3 = 1/cm. The following are examples that
clarify the meaning of the macroscopic cross section 	 :

1. The probability of a particle interacting as it travels distance dl is:

P .dl/ D 	dl: (3.3)

This equation is, in fact, the definition of the macroscopic cross section.
2. The probability of a particle traveling distance l without interactions is:

P fn D 0g D exp .�	 l/; (3.4)

where n is the number of interactions.

Proof of Eq. (3.4). Let P.l/ be the probability of a particle traveling distance l
without interactions. Then the probability that it travels without an interaction
distance l C dl is a product of two probabilities: P.l/ and the probability that it
travels distance dl without interactions:

P .l C dl/ D P .l/ .1 � 	dl/ : (3.5)

This leads us to a simple differential equation. Solving it with the boundary
condition P.0/ D 1 produces Eq. (3.4). ut

The distance l a particle travels between two consecutive interactions is called the
free path. Note that Eq. (3.4) is valid only if the particle travels in a homogeneous
material. Generally, cross sections may change along the particle track, that is,
	 D 	.Er /. A solution for this general case is given below, in Eq. (3.11).
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3. The probability density of free path is:

f .l/ D 	 exp .�	 l/: (3.6)

Proof of Eq. (3.6).

f .l/ D d

dl
F .l/ D d

dl
Œ1 � P .l/� D 	 exp .�	 l/; (3.7)

where F.l/ is the cumulative distribution function. ut
4. The mean free path:

hli D
Z 1

0

l � f .l/ dl D 1

	
: (3.8)

In other words, 	 is the probability of an interaction per unit path length. If this
means the probability of any interaction, then 	 is called the total cross section and is
sometimes written as 	tot. If, on the other hand, we are concerned with a particular
type of interaction, then 	 is called the partial cross section, or, if the process in
question is, for example, absorption, it is called the absorption cross section. The
total cross section is the sum of all partial cross sections.

Optical Distance

The definition of optical distance implies that between two consecutive interaction
points the particle travels along a straight line. The equation of a straight line that is
parallel to E� and passes through point Er0, Fig. 3.1, can be written as follows:

Fig. 3.1 To the definition of
optical distance

z

x

y

r0

t

Ω
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Er .t/ D Er0 C E�tI t 2 .�1;C1/ : (3.9)

Then, the optical distance between points Er1 and Er2 D Er1 C E�l is defined as an
integral along a straight line connecting the two points:

�

 Er1; Er2

� D
Z l

0

	
�
Er1 C E�t


dt: (3.10)

In a heterogeneous medium, Eq. (3.4) takes the form:

P fn D 0g D exp
��� 
 Er1; Er2

�	
: (3.11)

It can be derived by integrating Eq. (3.5) without assuming a constant 	 .

Differential Cross Sections

Speaking generally, differential cross sections define the probability of an interac-
tion with a certain outcome. For example, for the doubly differential cross section
the following is the probability that a particle with parameters . E�;E/ undergoes an
interaction as it travels distance dl and its direction after the interaction is within the
solid angle d E� 0 and its energy is within dE 0:

	s

�
Er; E� ! E� 0;E ! E 0 dld E� 0dE 0: (3.12)

The total cross section is the integral of the differential cross section:

	s

Er;E� D

Z
d E�0

Z
dE0	s

�
Er; E� ! E�0;E ! E0 : (3.13)

In the above equation, the cross section 	s on the left-hand side is independent of
the particle direction E� before the interaction. It is usually assumed that the material
properties are isotropic and, therefore, the interaction probability does not depend on
the direction of particle travel. If the number of particles after the collision is more
than one, including when it is random, then Eq. (3.12) instead of the probability
defines the average number of particles with parameters within d E�0 and dE0.

Transport Cross Section

It is also often assumed that the differential scattering cross section is a function of
the cosine of scattering angle cos �0 
 
0 D . E� � E�0/. Then, the transport cross
section is defined as follows:
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	tr

Er;E� 


Z
d E�0	s

�
Er; E� � E�0;E

 �
1 � E� � E�0


; (3.14)

where

	s

�
Er; E� � E�0;E


D
Z

dE0	s

�
Er; E� � E�0;E ! E0 : (3.15)

Transport cross section is an important quantity. For example, in neutron transport,
if the diffusion approximation is applicable, the transport cross section defines the
diffusion coefficient.

Fluence: Definition 1

Fluence ˆ.Er; E�;E/ is the average number of particles with energy E crossing a unit
area of a surface located at point Er and oriented normally to E�.

Figure 3.2 illustrates this definition. Here surface dA is centered at point Er and
oriented normally to E�. Then, according to the definition the number of particles
dN crossing dA is

dN
�
Er; E�;E


D ˆ

�
Er; E�;E


dA : (3.16)

Here dN can be either the number of particles crossing the surface per source
particle, or per unit time. This depends on how the source function S.x/ is
normalized, per one particle, or per one particle per unit time. If the surface is not
normal to E�, then fluence is multiplied by the cosine of the angle between E� and
normal vector to the surface, En, Fig. 3.3:

Fig. 3.2 To definition 1 of
fluence
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Fig. 3.3 To definition 1 of
fluence

dA dA

ΩΩ

n

Fig. 3.4 To definition 2 of
fluence

dA

L

Ω

dN
�
Er; E�;E


D ˆ

�
Er; E�;E


j E� � EnjdA: (3.17)

Here we take the absolute value of the cosine, because fluence is nonnegative, and
because in doing so we eliminate the ambiguity associated with choosing one of the
two possible direction of the normal.

There is an alternative way to define fluence. Let n.Er; E�;E/ be the number
density, i.e., the number of particles with parameters . E�;E/ per unit volume, and
L be the distance traveled by a particle with parameters . E�;E/, Fig. 3.4. Then, only
particles within the shaded volume will reach the surface area dA leading to:

dN
�
Er; E�;E


D n

�
Er; E�;E


LdA ; (3.18)

and, comparing with Eq. (3.16),

ˆ
�
Er; E�;E


D n

�
Er; E�;E


L : (3.19)

Note, all the quantities in the above two equations, dN, n and L, are average. It
is important to understand that fluence characterizes the average properties of a
radiation field. In the right-hand side of Eq. (3.19), we have the number of particles
per volume times the distance one particle travels. This brings us to the next
definition.

Fluence: Definition 2

Fluence ˆ.x/ is the total distance traveled by particles with phase coordinate x,
per unit volume. Here total distance means it is a sum of distances traveled by all
individual particles.
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There is yet another definition of fluence. Let us now find the number of particles
entering a small sphere. The sphere is so small that the fluence at all points within
the sphere is approximately the same. For particles entering the sphere we have:
. E� � En/ < 0, as can be seen in Fig. 3.6. Then, the number of particles entering the
sphere is an integral over the surface of the sphere, but only over those parts where
. E� � En/ < 0:

N
�
Er; E�;E


D �

I
� E��En


<0

ˆ
�
Er; E�;E

 � E� � En


dA: (3.20)

Given that fluence is approximately constant within the sphere, the integral can be
calculated:

N
�
Er; E�;E


D �ˆ

�
Er; E�;E

 I
� E��En


<0

� E� � En


dA D ˆ
�
Er; E�;E


�R2; (3.21)

where �R2 is the cross-sectional area of the sphere. This is because j E� � EnjdA is the
area projected by dA on a plane normal to E�.

Up to this point, we have considered particles traveling in a direction E�. The
number of particles traveling in any direction and entering the sphere is an integral
over all directions:

N

Er;E� D

Z
N
�
Er; E�;E


d E� D ˆ


Er;E��R2; (3.22)

where

ˆ

Er;E� D

Z
ˆ
�
Er; E�;E


d E� (3.23)

is the fluence spectrum. Still, we are counting only particles with energy E. To
include all energies, we integrate over E:

N

Er; all energies; all directions

� D ˆ

Er ��R2; (3.24)

where

ˆ

Er � D

Z
ˆ

Er;E� dE (3.25)

is the total fluence. Thus, we have one more definition, one that is well known. It is
exactly how fluence is defined in ICRU 60 (1998).
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Fluence: Definition 3

The fluence, ˆ, is the quotient of dN by da, where dN is the number of particles
incident on a sphere of cross-sectional area da, thus

ˆ D dN

da
: (3.26)

Unit: m�2.
The fluence defined above (Definition 3) is used rarely in this book. We will refer

to this fluence as the total fluence. Throughout this book, “fluence” means fluence
as a function of phase coordinates, e.g., ˆ.Er; E�;E/. We also avoid using the term
differential fluence, as it may suggest calculating derivatives, which is incorrect.
Instead, we prefer such terms as fluence distribution, e.g., angular or in energy, or
fluence energy spectrum.

Collision Density

Given that fluence is defined as the distance traveled by particles (definition 2) and
	 is the probability of an interaction per unit path length, the product 	ˆ is the
average number of collisions. It is called the collision density and denoted F. More
specifically:

F .x/ dx D 	

Er;E�ˆ.x/ dx (3.27)

is the average number of collisions in phase space volume dx.

Detector Response Function

“Detector” is a mathematical concept that may or may not represent an actual
physical device. The radiation field is characterized by fluence ˆ.x/, and quantities
of interest (“observables”) J are linear functionals of ˆ.x/:

J D
Z
ˆ.x/D .x/ dx; (3.28)

where D .x/ is called the detector response function. The meaning of D.x/ can be
inferred from definition 2 of fluence and the above integral: D .x/ is the contribution
to an observable from a unit path length of a particle with a phase coordinate x.
Quantity J is also referred to as the detector reading in field ˆ.x/. .
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Example 1

The observable J is the ionization density, that is, the average number of ionizations
in a volume V , per unit volume. In this case

D .x/ D
(
1
V 	i


Er;E� ; Er 2 VI
0; Er … VI (3.29)

where 	i is the ionization cross section and

J.V/ D 1

V

Z
V

dEr
Z

d E�
Z

dE 	i

Er;E�ˆ �Er; E�;E


: (3.30)

Example 2

The observable J is the absorbed dose at a point Er. Vassiliev et al. (2010) used the
following expression for electron dose:

J

Er � 
 Dose


Er � D
Z 1

0

dE
Z
4�

d E�	
e
ED


Er;E�


ˆe
�
Er; E�;E


: (3.31)

Here, 	ED is called the energy deposition cross section,  is the mass density, and
ˆe is electron fluence. If ˇ


Er;E� is the electron stopping power, defined as energy
lost by an electron per unit path length, and we can assume that energy lost is equal
to energy deposited, then

	ED D ˇ

Er;E� : (3.32)

Hence, D.x/ D ˇ=.

Adjoint Function

Alternatively, observables can be represented as the following functional:

J D
Z

S .x/ˆC .x/ dx ; (3.33)

where S is the source function and ˆC is called the adjoint function. By definition,
which is consistent with Eq. (3.33), ˆC.x/ is the average contribution to an
observable from a particle originating at a phase point x. ˆC .x/ is also called the
importance function.
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In this book, for brevity, we will often use the inner product notations for integrals
over the phase space, for example:

J D .ˆ;D/ D .S; ˆC/: (3.34)

3.2 Introduction to the Boltzmann Equation

Balance Equation in One Dimension

We start with a very simple case of a one-dimensional steady flow of particles,
Fig. 3.5. Steady means that fluence at any given point does not change with time.
Hence, we are concerned only with its spatial variations. For the number of particles
in a small volume �V we can now write an obvious equation of balance:

{number of particles entering �V} C {particles produced by a source within �V}

D {number of particles leaving �V}:

In this model we have two reasons why the number of particles in �V can change:
(1) particles enter and leave the volume through its surface, and (2) particles are
produced by a source within �V . Using definition 1 of fluence the above balance
equation can be written in terms of fluence and source function:

ˆ.x/A C S .x/�xA D ˆ.x C�x/A; (3.35)

where A is the cross-sectional area of the beam. Dividing both sides of the equation
by A�x and taking the limit �x ! 0 brings us to a one-dimensional form of the
balance equation:

dˆ.x/

dx
D S .x/ : (3.36)

Fig. 3.5 Balance equation in
one dimension

Φ (x + Δx)Φ (x)

x + Δxx
x

ΔV
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The derivative in the left-hand side of the equation is a one-dimensional form of the
streaming operator. It accounts for particles entering and leaving the volume through
its surface.

Balance Equation in Three Dimensions

This equation is very similar to the continuity equation in fluid mechanics. The
difference is that the continuity equation expresses mass conservation and is written
in terms of the fluid velocity and mass density. Here, however, we are concerned
with conservation of the number of particles and write the balance equation in terms
of fluence. We can start with exactly the same equation as in the one-dimensional
case:

{number of particles entering �V} C {particles produced by a source within �V}

D {number of particles leaving �V}:

This time, however, to account for particles entering and leaving the volume,
we need to integrate over its surface, �.�V/. If En is an outward-pointing unit
vector normal to the surface � , then to find the number of particles entering the
volume we will integrate over the surface � only where . E� � En/ < 0, Fig. 3.6.
Conversely, for particles leaving the volume we will integrate only where . E��En/ > 0.
Furthermore, now particles can in principle travel in any direction. We account for
this by including the directional dependence of fluence. Again using definition 1 of
fluence, we then arrive at an integral form of the balance equation:

�
I
�W
� E��En


<0

ˆ
�
Er; E�;E

 � E� � En


dA C
Z
�V

S
�
Er; E�;E


dV

D
I
�W
� E��En


>0

ˆ
�
Er; E�;E

 � E� � En


dA:

(3.37)

Fig. 3.6 Balance equation in
three dimensions
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Ω

n

Ω
→

n

ΔV
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These two surface integrals can be combined into one and then, using the divergence
theorem, transformed into a volume integral:

I
�W
� E��En


<0

ˆ
�
Er; E�;E

 � E� � En


dA C
I
�W
� E��En


>0

ˆ
�
Er; E�;E

 � E� � En


dA

D
I
�

ˆ
�
Er; E�;E

 � E� � En


dA D
Z
�V

div
h E�ˆ

�
Er; E�;E

i
dV

D
Z
�V

� E� � Er

ˆ
�
Er; E�;E


dV: (3.38)

where

� E� � Er


D �x
@

@x
C�y

@

@y
C�z

@

@z
:

Then, we insert this result into Eq. (3.37), divide the both sides of Eq. (3.37) by �V
and take the limit �V ! 0:

� E� � Er

ˆ
�
Er; E�;E


D S

�
Er; E�;E


: (3.39)

Now, in three dimensions, the streaming operator has the form . E� � Er/. It was
implied in the above derivation that particles did not interact with matter. If they
did, then particle energies and directions would change. Some particles would also
be absorbed. None of these processes has been accounted for. Then, we can call
Eq. (3.39) the balance equation for a free flow of particles. Next, we will derive a
more general balance equation that accounts for particle interactions.

A Simple Form of the Boltzmann Equation

Let us consider the same volume �V as in the previous section, but now we will
count only particles with a certain momentum Ep. Then, compared with the free flow
equation we need to add two processes: loss and gain of particles with momentum
Ep caused by scattering within �V:

{number of particles with momentum Ep entering �V}

C {particles with momentum Ep produced by a source within �V}

C {particles with momentum Ep produced within �V by scattering}

D {particles with momentum Ep leaving �V}

C {particles with momentum Ep lost due to scattering within �V}:
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Particles are lost due to scattering because the momentum changes. If a particle
within �V had momentum Ep and underwent scattering, Ep ! Ep 0, then we must
subtract the particle, because now it has a “wrong” momentum Ep 0. If instead of
scattering the particle is absorbed, this of course will also result in particle loss. To
find the total number of particles lost in these two processes, we need to integrate the
collision density 	ˆ over �V . Because 	 is the total cross section, it includes both
scattering and absorption and therefore does account for both processes. Scattering
can also add particles. This happens when a particle within �V , with a “wrong”
momentum Ep 0, undergoes scattering Ep 0 ! Ep. The collision density for this process
is 	s.Ep 0 ! Ep /ˆ.Ep 0/. We, again, need to integrate it over �V , but also over Ep 0. The
latter integral is needed because it co-adds probabilities of Ep 0 ! Ep scattering for all
possible Ep 0.

Adding all the parts together, dividing both sides of the equation by �V and
taking limit �V ! 0, we arrive at the Boltzmann equation:

� E� � Er

ˆ
�
Er; E�;E


C 	


Er;E�ˆ �Er; E�;E


D S
�
Er; E�;E


C
Z

dE 0
Z

d E� 0	s

�
Er; E� 0;E 0 ! E�;E


ˆ
�
Er; E� 0;E 0 :

(3.40)

The first term in the left-hand side of the equation accounts for particle travel,
because we derived it by counting particles entering and leaving volume�V through
its surface. For this reason, . E� � Er/ is called the streaming operator. The next term,
	ˆ, is the collision density. It is referred to as the removal operator. It accounts
for the loss of particles with momentum corresponding to . E�;E/ in all types of
interaction: scattering, absorption, and any interactions that result in momentum
change. In the right-hand side, the source function S characterizes the spatial,
angular, and energy distributions of the radiation source. Finally, the last term is
called the collision integral. It has the same sign as the source function and is also
called the scattering source.

To summarize, the Boltzmann equation is a balance equation. It expresses
conservation of the number of particles in phase space. The equation is linear,
integro-differential. The linearity is an important property that results from the
underlying assumptions that particles do not interact one with another and that
material properties, such as the cross sections, do not change when fluence changes.
The equation can be conveniently written in an operator form:

OLˆ D S; (3.41)

where

OL D
� E� � Er


C 	 � OKs: (3.42)
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and

OKsˆ D
Z

dE 0
Z

d E� 0	s

�
Er; E� 0;E 0 ! E�;E


ˆ
�
Er; E� 0;E 0 : (3.43)

3.3 Adjoint Transport Equation

The adjoint equation is an equation for the adjoint function ˆC.x/. In this section
we will derive it using a rather formal technique that relies on the rules for adjoint
operators summarized in the Appendix B. We start with Eq. (3.34):

J D .ˆ;D/ D 

S; ˆC� ; (3.44)

and then transform its last part:



S; ˆC� D

� OLˆ;ˆC D
�
ˆ; OLCˆC : (3.45)

In this transformation, we first used the Boltzmann equation (S D OLˆ) and then the
definition of an adjoint operator. Comparing the last part of Eq. (3.45) with the first
half of Eq. (3.44), we can see that

OLCˆC D D: (3.46)

At this point, we do not know the explicit form of the operator OLC. What we have
determined so far is that it is adjoint to operator OL. Fortunately, we have just derived
OL, Eq. (3.42), and finding an adjoint operator in this case is straightforward (see
Appendix B), so we can go directly to the result:

OLC D �
� E� � Er


C 	 � OKC

s ; (3.47)

where OKC
s is identical to the integral defining OKs, Eq. (3.43), except that it has a

transposed kernel, 	s.Er; E�;E ! E� 0;E 0 /. Finally, for completeness we present the
adjoint equation in a more explicit form:

�
� E� � Er


ˆC �Er; E�;E


C 	


Er;E�ˆC �Er; E�;E


D D
�
Er; E�;E


C
Z

dE 0
Z

d E� 0	s

�
Er; E�;E ! E� 0;E 0 ˆC �Er; E� 0;E 0 :

(3.48)
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3.4 Overview of the Formalism

In the most general terms, the problem can be formulated as follows: for a given
source S.x/ and detector D.x/, calculate the detector reading, J. The solution
depends on the geometry and material properties of objects surrounding the source
and detector. As a practical matter, only a finite volume V around the source and
detector can be included in calculations. We will call this volume the computational
domain. The surface � defining that volume should be drawn so as to minimize
the computational domain for faster calculations. On the other hand, drawing
� too close to the source or detector may introduce systematic errors, typically
underestimation of J through the elimination of particles scattered back towards the
detector by objects outside � . In general, � should be drawn so that a particle that
has left V has a negligible probability of reaching the detector.

Once the boundary � is defined, the boundary conditions can be formulated. For
a convex surface � , the standard boundary condition for fluence is that the fluence
incident on � from outside is zero. This means that there are no sources outside �
and that particles that have left V do not scatter back and reenter the volume. For
the adjoint function, the boundary condition is that the adjoint function is zero for
particles leaving V . In other words, a particle that has left V will never reach the
detector and contribute to its reading J. These boundary conditions are sometimes
referred to as vacuum boundary conditions. To solve this general problem, we can
use one of the two methods:

Boltzmann Equation

OLˆ D SI J D .ˆ;D/ I ˆ
�
Er; E�;E


D 0; if Er 2 � and

� E� � En�

< 0: (3.49)

Adjoint Transport Equation

OLCˆ D DI J D 

S; ˆC� I ˆC �Er; E�;E


D 0; ifEr 2 � and

� E� � En�

> 0: (3.50)

Here, En� is a unit vector, normal to � and pointing outwards, Fig. 3.6. It can be seen
in Fig. 3.6 that the condition . E� � En�/ < 0 identifies particles entering the volume
and that . E� � En�/ > 0 identifies particles leaving it.

There is an apparent similarity between this general formalism and that of
quantum mechanics. Let us take the second formula in Eq. (3.50) and replace S
with OLˆ. This brings us to an expression for the observable J
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J D 

ˆC; S

� D
�
ˆC; OLˆ


(3.51)

that is very similar to the expression for the mean value of an observable O in
quantum mechanics:

hOi D h j OOj i D
Z
 � .x/ OO .x/ dx: (3.52)

Here,  and  � are the wave function and its complex conjugate, OO is the operator
corresponding to observable O.

The two methods given by Eqs. (3.49) and (3.50) can be combined into a unified
formalism. We start by splitting the integral over Er in the second formula of
Eq. (3.50) into two integrals, one over an arbitrary volume V and the other over
its complement NV:

J D 

S; ˆC�

V C 

S; ˆC� NV : (3.53)

Then, we will leave the first integral as is, and transform the second integral
into an expression similar to .ˆ;D/. That would be elementary, if we integrated
over an infinite volume. In that case, we would have .S; ˆC/ D .ˆ;D/. With a
finite integration volume, however, the streaming operator adds an integral over the
volume surface. In the integral over NV we replace S with OLˆ:



S; ˆC� NV D

� OLˆ;ˆC
NV D

�
. E� � r/ˆC 	ˆ � OKsˆ;ˆ

C
NV : (3.54)

Integration over Er does not affect the removal and scattering operators and for this
part we can use the definition of an adjoint operator:

�
	ˆ � OKsˆ;ˆ

C
NV D

�
ˆ; 	ˆC � OKC

s ˆ
C

NV : (3.55)

As for the streaming operator, first we use a differentiation identity:

�
. E� � r/ˆ;ˆC

NV D
�
. E� � r/ˆˆC; 1


NV �

�
ˆ; . E� � r/ˆC

NV : (3.56)

Then we add the last term in the above equation to the right-hand side of Eq. (3.55):

�
�
ˆ; . E� � r/ˆC

NV C
�
ˆ; 	ˆC � OKC

s ˆ
C

NV D
�
ˆ; OLCˆC

NV D .ˆ;D/ NV ;
(3.57)

where we used Eq. (3.47) for LC and then the adjoint equation, Eq. (3.46). In the
right-hand side of Eq. (3.56), we transform the remaining volume integral into a
surface integral using the divergence theorem:
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�
. E� � r/ˆˆC; 1


NV D

Z
d E�

Z
dE
I
�. NV/

d�
� E� � En�


ˆ
�
Er; E�;E


ˆC �Er; E�;E


;

(3.58)
where �. NV/ is the surface of volume NV and En� is the outward pointing normal to
�. NV/. The direction of the normal En� needs clarification. If, for example, V is a
sphere, then NV is everything outside the sphere. The two volumes share the same
bounding surface, that is, �.V/ D �. NV/. However, for any given point on this shared
surface the outward directions for V and NV are opposite, that is, En�.V/ D �En�. NV/.

Finally, after combining Eqs. (3.53), (3.57), and (3.58) we arrive at a represen-
tation for detector reading J that unifies the two methods defined by Eqs. (3.49)
and (3.50):

J D 

S; ˆC�

V C .ˆ;D/ NV

C
Z

d E�
Z

dE
I
�. NV/

d�
� E� � En�


ˆ
�
Er; E�;E


ˆC �Er; E�;E


:

(3.59)

The above equation transforms into the adjoint representation, J D .S; ˆC/,
when volume V is infinite, and the boundary �. NV/ of the complementary volume is
at infinity, where both ˆ and ˆC are zero. Alternatively, if V D 0, then Eq. (3.59)
becomes J D .ˆ;D/. In this case the surface integral is zero, because the surface
�. NV/ vanishes.

3.5 The Lagrangian Form of the Boltzmann Equation

In Sect. 3.2, when we derived the Boltzmann equation, we noted strong parallels
with fluid mechanics. In this section, we rely on terminology adapted from fluid
mechanics to introduce another form of the Boltzmann equation, that we will call the
Lagrangian form. This didactic approach and the terminology that we use, although
unconventional, offer an accurate description of the meaning of the equation, and
a clearer perspective. Unconventional does not mean new. For example, Wienke
(1982) in a paper on an electron transport code derived a transport equation that he
described as Lagrangian.

We derived the Boltzmann equation in a static, laboratory frame. From this
equation, for an arbitrary point Er in space, or a point in phase space, .Er; E�;E/,
we can, in principle, find the fluence. This approach to studying a field, in this
case the fluence field ˆ.x/, corresponds to the Eulerian description of fluid flow.
An alternative description of fluid flow is called Lagrangian (Granger 1995). In the
Lagrangian formalism, the reference frame is associated with or, in other words,
“attached” to a fluid parcel. In radiation transport, it is more convenient to fix the
frame to an individual particle than to fix the frame to a parcel. To put it simply, in
the Eulerian approach, we choose an arbitrary point, and then calculate the fluence at
that point. In the Lagrangian approach, we follow the particle’s path and study how
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the fluence changes along this path. In Monte Carlo algorithms, we also usually
follow the particle’s path as we generate, step-by-step, the particle trajectory. This
makes the Lagrangian description particularly useful in the context of Monte Carlo
simulation of radiation transport.

To derive the Lagrangian form of the Boltzmann equation we consider a particle
that after traveling a distance t has arrived at a point Er D Er.t/. From this point,
the particle travels a small distance �t in direction E�. If no interactions, scattering
or absorption, occur as the particle travels the distance �t, then it arrives at point
Er C E��t. This expression implies a straight-line trajectory and therefore is valid
only in the limit �t ! 0. We will omit all the sources, including the collisional
source (i.e., the collision integral), and the particle energy, E. This means that we
will derive only the left-hand side of the Boltzmann equation. Then, the derivation
is simple:

ˆ
�
Er C E��t I t C�t


� ˆ


Er I t
�C�t

� E� � Er

ˆ

Er I t

�C�t
@

@t
ˆ

Er I t

� I

ˆ
�
Er C E��t I t C�t


� ˆ


Er I t
�
.1 � 	�t/ I .�t ! 0/I

) @

@t
ˆ

Er; t�C

� E� � Er

ˆ

Er; t�C 	ˆ


Er; t� D 0:

(3.60)
The first line in Eq. (3.60) is the Taylor series expansion of the fluence. It is valid
whether or not the particle actually arrives at point Er C E��t. The second line
accounts for the possibility of particle loss, which occurs with the probability
	�t. In the last line, the first two lines are combined and the limit �t ! 0 is
taken. Comparing this result with the left-hand side of the Boltzmann equation,
Eq. (3.40), we can see that in the Lagrangian form, the equation has an extra
term in the left-hand side, the derivative @ˆ=@t. To account for the collisional
and external sources, we would have to add them, in an appropriate form, to the
right-hand side of the second equation in Eq. (3.60). This would produce exactly
the same expression in the right-hand side of the Lagrangian form as we had in
the original form of the Boltzmann equation, Eq. (3.40). A complete derivation of
the Lagrangian transport equation is given in Wienke (1974, 1982). An essentially
the same equation, although not described as Lagrangian, was derived by a different
method by Kolchuzhkin and Uchaikin (1978).

Finally, in fluid mechanics each fluid parcel is usually labeled so as to distinguish
it from other parcels. We will label the particle by its point of origin in the phase
space, .Er0; E�0;E0/. Also, because we are interested in a solution only for t > 0, we
can leave out the source function S. Then, the Boltzmann equation in the Lagrangian
form is:
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@

@t
ˆ
�
Er; E�;E; tjEr0; E�0;E0


C
� E� � Er


ˆ
�
Er; E�;E; tjEr0; E�0;E0



C 	

Er;E�ˆ �Er; E�;E; tjEr0; E�0;E0



D
Z

dE 0
Z

d E� 0	s

�
Er; E� 0;E 0 ! E�;E


ˆ
�
Er; E� 0;E 0; tjEr0; E�0;E0


:

(3.61)
Equation (3.61) is the basis of multiple scattering models used for generating

trajectories of charged particles in condensed history algorithms. This topic is
discussed in Chap. 5.

3.6 The Boltzmann Equation for Multiplying Systems

For simplicity, we consider a system that has only two types of interactions. The
first type is scattering, during which the particle momentum changes from Ep 0 to
Ep, and no secondary particles are produced. The cross section of this process is
	1.Ep 0 ! Ep/. The second type is particle multiplication, during which the momentum
of the incident particle changes, and a secondary particle of the same type as the
incident particle is produced. The cross section of this process is 	2.Ep 0 ! Ep1; Ep2/,
where Ep1 and Ep2 are the momenta of the two particles emerging from the collision.
In the case of electron transport, an example of the first process is excitation, and an
example of the second process is ionization. The Boltzmann equation for this simple
multiplying system is the same as Eq. (3.40), except for an additional collision
integral that accounts for the second interaction type:

� E� � r

ˆ

Ep �C 	ˆ


Ep � �
Z

dEp 0	1

Ep 0 ! Ep �ˆ 
Ep 0�

�
Z

dEp 0 ˆ

Ep 0� Z dEp 00 �	2 
Ep 0 ! Ep; Ep 00�C 	2


Ep 0 ! Ep 00; Ep �	 D S

Ep � :

(3.62)
Here, for brevity, we omitted the variable Er, and switched from the usual variables
. E�;E/ to momentum Ep. The meaning of the additional collision integral is obvious.
The first term in the square brackets accounts for collisions that result in the first of
the two particles emerging with momentum Ep. The second term accounts for those
collisions from which the second particle emerges with momentum Ep. This equation
can be simplified by integrating over Ep 00

Z
dEp 00 �	2 
Ep 0 ! Ep; Ep 00�C 	2


Ep 0 ! Ep 00; Ep �	 D Q	2

Ep 0 ! Ep � : (3.63)
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3.7 Adjoint Transport Equation for Multiplying Systems

The adjoint transport equation for nonmultiplying systems was derived in Sect. 3.3.
To extend it to the simplified multiplying system that we introduced in the preceding
section, we need to find the operator adjoint to the scattering operator in the second
collision integral in Eq. (3.62). To do so, we consider the following integral:

I D
�
ˆC; OK2ˆ





Z

dEp ˆC 
Ep �
Z

dEp 0 ˆ

Ep 0� Z dEp 00 �	2 
Ep 0 ! Ep; Ep 00�C 	2


Ep 0 ! Ep 00; Ep �	 :
(3.64)

Next, we rename the integration variables Ep ! Ep 0, Ep 0 ! Ep, and change the order of
integration

I D
Z

dEp ˆ

Ep �

Z
dEp 0 ˆC 
Ep 0� Z dEp 00 �	2 
Ep ! Ep 0; Ep 00�C 	2


Ep ! Ep 00; Ep 0 �	 :
(3.65)

Finally, we move ˆC within the square brackets, and in the integral involving the
last term in the square brackets, rename variables: Ep 0 ! Ep 00 and Ep 00 ! Ep 0:

I D
Z

dEp ˆ

Ep �

Z
dEp 0

Z
dEp 00	2


Ep ! Ep 0; Ep 00� �ˆC 
Ep 0�CˆC 
Ep 00�	

D
�
ˆ; OKC

2 ˆ
C :

(3.66)

The last two integrals in Eq. (3.66) represent the adjoint collision integral for the
process described by the cross section 	2. The adjoint collision integral for the cross
section 	1 is the same as the collision integral OKC

s derived in Sect. 3.3. Hence, the
adjoint transport equation for the multiplying system is

�
� E� � r


ˆC 
Ep �C 	ˆC 
Ep � �

Z
dEp 0	1


Ep ! Ep 0 �ˆC 
Ep 0�

�
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00� �ˆC 
Ep 0�CˆC 
Ep 00�	 D D


Ep � :
(3.67)

The left-hand side of this equation defines the adjoint operator OLC.
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3.8 The Boltzmann Equation in the Presence
of an External Magnetic Field

The method we used in Sect. 3.2 to derive the Boltzmann equation was based on
a consideration of the balance of particles in a small volume in phase space. In the
presence of an external magnetic field, this method remains valid, but becomes much
less intuitive. In this section we present a more formal method based on fundamental
equations of nonequilibrium statistical mechanics.

Let us consider a system composed of N particles, N � 1. The state of the system
is characterized by the phase coordinate of the system x D fEr1; : : : ; ErN I Ep1; : : : ; EpNg,
where .Eri; Epi/ are the phase coordinates of individual particles. The state x of the
system is a random quantity. Its probability density function, FN.x; t/, is called the
phase space distribution function. In disequilibrium, it is a function of time t. It
satisfies the Liouville equation (Balescu 1975). For our system it has the following
form:

dFN

dt
D @FN

@t
C

NX
iD1

�
@FN

@xi

dxi

dt
C @FN

@yi

dyi

dt
C @FN

@zi

dzi

dt

�

C
NX

iD1

�
@FN

@pix

dpix

dt
C @FN

@piy

dpiy

dt
C @FN

@piz

dpiz

dt

�

D @FN

@t
C

NX
iD1

h�
Evi � Er.i/

r


FN C

�Efi � Er.i/
p


FN

i
D 0;

(3.68)

where Efi is the force exerted on the i-th particle by external fields and by other
particles, and Evi is the particle velocity. The equation means simply that the
distribution function is constant along the phase trajectories (Liouville’s theorem).
Next, we derive from Eq. (3.68) the first equation of the Bogoliubov–Born–Green–
Kirkwood–Yvon (BBGKY) hierarchy (Balescu 1975). We introduce two reduced
distribution functions:

F1

Er1; Ep1� 


Z
dEr2 : : :

Z
dErN

Z
dEp2 : : :

Z
dEpN FN


Er1; : : : ErN I Ep1; : : : EpN
�
;

(3.69)
and

F2

Er1; Er2I Ep1; Ep2

� 

Z

dEr3 : : :
Z

dErN

Z
dEp3 : : :

Z
dEpN FN


Er1; : : : ErN I Ep1; : : : EpN
�
:

(3.70)

Then, we integrate Eq. (3.68) over the phase coordinates of particles 2; 3; : : :N.
We will perform the integration one term at a time:
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Z
dEr2 : : :

Z
dErN

Z
dEp2 : : :

Z
dEpN

@FN

@t
D @F1

@t
: (3.71)

Z
dEr2 : : :

Z
dErN

Z
dEp2 : : :

Z
dEpN

�
Evi � Er.i/

r


FN D

8<
:
�

Ev1 � Er.1/
r


F1I if i D 1I

0I if i > 1:

(3.72)

For i > 1, the integral in Eq. (3.72) is equal to zero, because by applying the
divergence theorem it can be transformed into a surface integral. We place this
surface at infinity, where the distribution function is zero.

In the next term, we separate force Efi into two forces:

Efi D Efi;ex

Eri; Epi

�C
NX

jD1
.j¤i/

Efij

jEri � Erjj

�
; (3.73)

where Efi;ex is the force of an external field. It depends on the location Eri of the particle
and its momentum (or velocity) in the case of a magnetic field. In the second term,
Efij is the force exerted on particle i by particle j. This force depends on the distance
jEri � Erjj between the two particles, assuming here that the force is that of Coulomb
interaction between charged particles. The integral of the term with the external
force is similar to the integral in Eq. (3.72), except that the divergence theorem is
now applied in momentum space:

Z
dEr2 : : :

Z
dErN

Z
dEp2 : : :

Z
dEpN

�Efi;ex � Er.i/
p


FN

D
8<
:
�Ef1;ex � Er.1/

p


F1; if i D 1I

0I if i > 1:

(3.74)

Similarly, the integral with force fij is nonzero only for i D 1:

Z
dEr2 : : :

Z
dErN

Z
dEp2 : : :

Z
dEpN

�Efij � Er.i/
p


FN

D
8<
:
R

dErj
R

dEpj

�Ef1j � Er.1/
p


F2

Er1; ErjI Ep1; Epj

�
; if i D 1I

0; if i > 1:

(3.75)

For all j D 1; 2 : : : i � 1; i C 1; : : :N the integral is the same. Hence, integrating the
sum over j in Eq. (3.73) will produce N � 1 integrals of this form. After combining
Eqs. (3.71)–(3.75), we arrive at the following form of the first equation of the
BBGKY hierarchy:



3.8 The Boltzmann Equation in the Presence of an External Magnetic Field 71

@F1

Er1; Ep1�
@t

C
�Ef1;ex


Er1; Ep1� � Er.1/
p


F1

Er1; Ep1�C

�
Ev1 � Er.1/

r


F1

Er1; Ep1�

C .N � 1/
Z

dEr2
Z

dEp2
�Ef12


jEr1 � Er2j
� � Er.1/

p


F2

Er1; Er2I Ep1; Ep2

� D 0:

(3.76)
The integral term in this equation accounts for interactions between particles. The

key approximation for simplifying this integral is the molecular chaos hypothesis,
which assumes statistical independence of particles. This approximation leads to the
well-known Boltzmann kinetic equation for dilute gases. This equation is nonlinear,
because the particles, in this case gas molecules, interact one with another. The
integral can be written in terms of the interaction cross section. When this approach
is applied to radiation transport, a further simplification can be made that the
particles do not interact one with another. They interact with matter, and do so
in such a way that changes in the material properties caused by the interactions,
such as ionizations of individual atoms, have only a negligible effect on radiation
transport. This makes the Boltzmann equation linear. These derivations are lengthy,
and we will omit them. Our focus is on including an external magnetic field, which
is represented in Eq. (3.76) by the force f1;ex. As for the integral term, after the above
simplifications are made, it will produce the removal operator and the same collision
integral as in Eq. (3.40).

To simplify Eq. (3.76) and bring it into a form similar to Eq. (3.40), we will
(a) consider a steady state form of the equation, and set the derivative @F1=@t
to zero; (b) omit the subscript “1”; (c) assume a uniform magnetic field, so that
f1;ex.Er1; Ep1/ D f1;ex.Ep1/; (d) write Eq. (3.19) (definition 2 of fluence) as ˆ.Er1; Ep1/ D
nF1.Er1; Ep1/v1�t, and then use it to replace F1 with the fluence; the average number
density n and �t will ultimately cancel out; (e) use Ev D v E�; (f) replace the integral
term with the removal operator and the collision integral; and (g) add the source
function S. Then, Eq. (3.76) takes the following form:

�Efex

Ep � � Erp

 �1
v
ˆ

Er; Ep �

�
C
� E� � Err


ˆ

Er; Ep �C 	


Er;E�ˆ 
Er; Ep �

D S

Er; Ep �C

Z
dEp 0	s


Er; Ep 0 ! Ep �ˆ 
Er; Ep 0� :
(3.77)

Thus, when an external force is present, a new term must be added to the
Boltzmann equation. The term has a form similar to the streaming operator. It can be
described as a streaming operator in the momentum space. The force of a magnetic
field EB on a particle of charge q and velocity Ev is given by the Lorentz formula
(Jackson 1999)

Efex

Ep � D q Ev 	 EB: (3.78)

The force of an electric field will not be considered. The electric field EE is set to
zero.
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Our approach has been based on the Liouville equation. On the other hand,
we previously emphasized the similarity between the Boltzmann equation and the
continuity equation. The Liouville equation, however, is not exactly equivalent to
the continuity equation. Let us examine the difference between the two equations.
In three dimensions the steady state continuity equation, in our notation, is:

Err � �Ev F1

Er �	 D @

@x

�
F1

Er � dx

dt

�
C @
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�
F1
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�
F1
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dt

�
D 0:

(3.79)
Extending this equation to six-dimensional phase space is straightforward:

@
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�
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(3.80)
Written in terms of the fluence, this result is similar to the left-hand side of
Eq. (3.77):

� E� � Err


ˆ

Er; Ep �C Erp �

�
Efex

Ep � 1

v
ˆ

Er; Ep �

�
D 0; (3.81)

except that, Eq. (3.81) has a different form of the term accounting for the external
force. To evaluate the difference, we can use a vector identity (Jackson 1999):

Er � 
 Ea � D Ea � Er C  Er � Ea (3.82)

Then, the difference between the external force terms in Eqs. (3.81) and (3.77) is

Erp �
�

Efex

Ep � 1

v
ˆ

Er; Ep �

�
�
�Efex


Ep � � Erp

 1
v
ˆ

Er; Ep � D 1

v
ˆ

Er; Ep � � Erp � Efex


Ep � :
(3.83)

Then, we insert the expression for Lorentz force into the right-hand side of
Eq. (3.83), and use another vector identity (Jackson 1999):

Er �
h
Ea 	 Eb

i
D Eb �

h Er 	 Ea
i

� Ea �
h Er 	 Eb

i
: (3.84)

This yields:

� Erp � Efex

Ep � D q

� Erp �
h
Ev 	 EB

i
D q

�EB �
h Erp 	 Ev

i
� q

�
Ev �
h Erp 	 EB

i
D 0:

(3.85)
The expression Œ Erp 	 Ev � is identically zero, and Œ Erp 	 EB � is also zero, because
the magnetic field does not depend on momentum. This shows the equivalency of
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the Liouville equation and the continuity equation when only a magnetic field is
present. In more general language, the two equations are equivalent, if the system
in question satisfies the Hamiltonian equations of motion (Landau and Lifshitz
1969). A relevant example of a non-Hamiltonian system is such a system of charged
particles where the radiative damping force is not negligible (Polyakov 1988).

3.9 Simplified Forms of the Boltzmann Equation

3.9.1 Unscattered Fluence

The unscattered fluence ˆ0 is an important quantity. It is present in the right-hand
side of the integral form of the Boltzmann equation, Eq. (3.191). In grid-based
algorithms (Chap. 7), the first step is usually calculation of unscattered fluence.
To derive an equation for ˆ0, in the Boltzmann equation, Eq. (3.40), we set the
scattering cross section 	s to zero:

� E� � Er

ˆ0

�
Er; E�;E


C 	


Er;E�ˆ0
�
Er; E�;E


D S

�
Er; E�;E


: (3.86)

This equation can be solved analytically. For the boundary � of the computational
domain, we will use the following boundary condition:

ˆ0

�
Er; E�;E


D ˆ�

�
Er; E�;E


; if Er 2 � and

� E� � En�

< 0: (3.87)

where En� is an outward-pointing normal to � . This is a slightly more general form
of the boundary conditions than the vacuum condition we introduced earlier in
Eq. (3.49). It means that there is a fluence ˆ� of particles incident from outside
on � , implying that not all radiation sources are located within the computational
domain. Setting ˆ� D 0 in Eq. (3.87) produces the standard vacuum boundary
conditions.

The streaming operator can be considered as a directional derivative with respect
to direction E�, which can be written in the following form:

� E� � Er

ˆ0

�
Er � E�t; E�;E


D � @

@t
ˆ0

�
Er � E�t; E�;E


: (3.88)

This equation is written for all points on a straight line defined by the equation
Er � E�t, including point Er when t D 0. This transforms Eq. (3.86) into a differential
equation in terms of variable t:

� @

@t
ˆ0 .t/C 	 .t/ˆ0 .t/ D S .t/ : (3.89)



74 3 The Boltzmann Equation

with the boundary condition:

ˆ0 .tmax/ D ˆ�

�
Er � E�tmax; E�;E


: (3.90)

where tmax is the distance from Er to surface � in the direction opposite to E�. We will
solve this differential equation using the method of undetermined coefficients. We
will seek a solution in the following form:

ˆ0 .t/ D A .t/ exp

�Z t

0

	


t 0� dt 0

�
: (3.91)

We found this form by solving Eq. (3.89) with its right-hand side, S.t/, set to zero.
To determine coefficient A.t/, we substitute Eq. (3.91) in Eq. (3.89), which leads to:

@

@t
A .t/ D �S .t/ exp

�
�
Z t

0

	


t 0� dt 0

�
: (3.92)

Next, we integrate this equation from tmax to t:

A .t/ D A .tmax/C
Z tmax

t
S


t 00� exp

"
�
Z t 00

0

	


t 0� dt 0

#
dt 00: (3.93)

From Eqs. (3.90) and (3.91) we find

A .tmax/ D ˆ�

�
Er � E�tmax; E�;E


exp

�
�
Z tmax

0

	


t 0� dt 0

�
: (3.94)

Finally, we substitute Eqs. (3.93) and (3.94) in Eqs. (3.91), set t D 0, and arrive at
the solution:

ˆ0

�
Er; E�;E


D ˆ�

�
Er � E�tmax; E�;E


exp

�
�
Z tmax

0

	
�
Er � E�t 0;E


dt 0
�

C
Z tmax

0

S
�
Er � E�t 00; E�;E


exp

"
�
Z t 00

0

	
�
Er � E�t 0;E


dt 0
#

dt 00:

(3.95)

Note that the integrals in square brackets are optical distances. For example,

Z t 00

0

	
�
Er � E�t 0; E�;E


dt 0 D �

�
Er; Er 0; E�;E


; (3.96)

where Er 0 D Er � E�t 00.
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Example 1

A point mono-directional source in an infinite homogeneous medium (tmax D 1,
	.t;E/ D 	.E/), and ˆ� D 0. The source function is a product of two ı-functions
and an energy distribution function, SE.E/:

S
�
Er; E�;E


D ı


Er � Er0
�
ı
� E� � E�0


SE .E/ : (3.97)

We choose the coordinate system so that the z-axis is parallel to E�0. Then,
E�0 D .0; 0; 1/, and Eq. (3.95) becomes:

ˆ0

�
Er; E�;E


D
Z 1

0

ı .x � x0/ ı .y � y0/ ı


z � t 00 � z0

�
exp

��	 .E/ t 00	dt 00

	 ı
� E� � E�0


SE .E/ :

(3.98)
After integrating over t 00 we arrive at the final result. For z � z0 we have:

ˆ0

�
Er; E�;E


D ı .x � x0/ ı .y � y0/ exp Œ�	 .E/ .z � z0/�ı

� E� � E�0


SE .E/ :

(3.99)
For z < z0 the unscattered fluence is zero. For z > z0 this solution is a narrow
monodirectional beam (x D x0, y D y0, E� D E�0) attenuated exponentially with
increasing distance from the source.

Example 2

A point, isotropically emitting source in an infinite homogeneous medium (tmax D
1, 	.t;E/ D 	.E/), and ˆ� D 0. In this case the source function is:

S
�
Er; E�;E


D ı


Er � Er0
� 1
4�

SE .E/ : (3.100)

We will place the origin of the coordinate system at the location of the source, so that
Er0 D .0; 0; 0/. In this case, to calculate the integral in Eq. (3.95) we will use Eq. (B4)
of Appendix B, which transforms a line integral over t into a volume integral over
Er 0, where Er 0 D Er � E�t00. We note that the optical distance in the exponent is 	 t00, and
we need to express t in terms of the integration variable Er 0:

E�t00 D Er � Er 0 ) t00 D E� 
Er � Er 0� : (3.101)
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It follows then that

ˆ0

�
Er; E�;E


D
Z 1

0
S
�
Er � E�t 00; E�;E


exp

��	 .E/ t 00	dt 00

D
Z

S
�
Er 0; E�;E


exp

h
�	 .E/ E� � 
Er � Er 0�iı

 
E� � Er � Er 0

jEr � Er 0j

!
dEr 0

jEr � Er 0j2
:

(3.102)

We can now substitute here the source function, Eq. (3.100). Integration over Er 0
results in replacing Er 0 with Er0 D .0; 0; 0/:

ˆ0

�
Er; E�;E


D exp

h
�	 .E/ E� � Er

i
ı

�
E� � Er

r

�
1

r2
1

4�
SE .E/ : (3.103)

Because of the ı-function, in the exponent we can replace E� with Er=r, thus having
in the exponent the optical distance 	r:

ˆ0

�
Er; E�;E


D exp Œ�	 .E/ r �

4�r2
ı

�
E� � Er

r

�
SE .E/ : (3.104)

This simple example introduces the inverse square factor 1=r2 for fluence
attenuation with distance from the source. This formula justifies the inverse square
correction widely used in dose calculations in radiotherapy. It should be noted that
the inverse square approximation is valid when the following four conditions are
met: (1) the size of the source is much smaller than the distance to the point of
interest, then the source can be approximated by a point source; (2) the angular
distribution of the source is isotropic; (3) the exponential factor can be neglected,
that is, 	r � 1; and (4) scattered fluence can be neglected.

3.9.2 The Boltzmann Equation in Planar Geometry

If the source function and all cross sections depend on only one spatial variable, z
for example, and are independent of x and y, and the medium is infinite in the .x; y/
plane, then the fluence is also independent of x and y. This simplifies the streaming
operator:

� E� � r

ˆ
�

z; E�;E


D 

@

@z
ˆ
�

z; E�;E

; (3.105)

where 
 D �z D cos � , and � is the polar angle, that is, the angle between E�
and the z-axis. It is usually assumed that the source and the differential scattering
cross sections have azimuthal symmetry. Then the fluence is a function of only one
angular variable, 
, and does not depend on the azimuthal angle �. The scattering
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cross section under these approximations can be written as

	s

�
Er; E� 0 ! E�;E 0 ! E


D 	s

�
z; E� 0 � E�;E 0 ! E


; (3.106)

where E� 0 � E� is the cosine of the scattering angle, which can be expressed in terms
of the angular variables of the particle before, .
0; �0/, and after, .
; �/, scattering:

E� 0 � E� D 
0
C
p
.1 � 
0 2/ .1 � 
2/ cos



�0 � ��: (3.107)

Taking the above comments into consideration, the Boltzmann equation in planar
geometry can be written as follows:



@

@z
ˆ.z; 
;E/C 	 .z;E/ˆ .z; 
;E/

D S .z; 
;E/C
Z

d E� 0
Z

dE 0	s

�
z; E� 0 � E�;E 0 ! E


ˆ


z; 
0;E0� :

(3.108)
Thus, planar geometry offers a significant simplification, decreasing the dimen-

sionality of the problem from six variables .Er; E�;E/ to three .z; 
;E/. Similar
improvements can be achieved in problems with spherical and cylindrical symme-
tries.

3.9.3 Energy Degradation Equation

For an important class of problems, the Boltzmann equation can be simplified even
further. Let us consider an infinite homogeneous medium with an infinite source
with a spatially uniform distribution of activity. In this case all cross sections, the
source function and fluence are independent of x, y, and z. Then, the streaming
operator is zero and the Boltzmann equation, Eq. (3.40), becomes:

	 .E/ˆ
� E�;E


D S

� E�;E


C
Z

dE 0
Z

d E� 0	s

� E� 0 � E�;E 0 ! E

ˆ
� E� 0;E 0 :

(3.109)
This equation can be easily integrated over E�. The collision integral is first
integrated over E�:

Z
	s

� E� 0 � E�;E 0 ! E


d E� D 	s


E 0 ! E

�
; (3.110)

and then over E� 0:
Z
ˆ
� E� 0;E 0 d E� 0 D ˆ



E 0� : (3.111)
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Integrating the rest of Eq. (3.109) is straightforward. The resultant equation is called
the energy degradation equation:

	 .E/ˆ .E/ D S .E/C
Z

dE 0	s


E 0 ! E

�
ˆ


E 0� : (3.112)

One important application of Eq. (3.112) is electron transport under the con-
ditions of electron equilibrium. If electrons are produced in photon collisions, a
volume Veq may exist that is much larger than the electron range and thus can be
considered as infinite for electrons. On the other hand, for photons the volume is
small, so that photon fluence is approximately constant throughout the volume. The
latter means that the source of electrons is spatially uniform throughout Veq. In that
case the solution, ˆ.E/, of Eq. (3.112) is called the electron energy degradation
spectrum, equilibrium spectrum, or slowing down spectrum. Equation (3.112) is
also referred to as the equilibrium equation.

3.9.4 Continuous Slowing Down Approximation

An important characteristic of charged particle transport is a very large number of
inelastic collisions per unit path length. However, the energy lost in one collision
is small, on the order of 10 eV. For comparison, the kinetic energy of electrons
in external beam radiotherapy can be as high as a few megaelectron volts. For an
electron of such a high energy, losing energy in discrete events, about 10 eV per
event, is not very different from losing energy continuously. Of course, the energy
spectrum of ı-electrons is very broad and it does extend to low energies. This simply
means that the continuous slowing down approximation can be applied only to those
electrons and other charged particles whose kinetic energy is much greater than the
energy lost in one collision.

Because this approximation concerns only energy loss, we will derive it using the
collision integral in the form given in the energy degradation equation, Eq. (3.112).
This does not mean that the continuous slowing down approximation can be used
only under equilibrium conditions. We start by noting that 	s.E 0 ! E/ is a function
of two variables, E 0, and E. These two variables are inconvenient for our derivation,
so we replace one of them with the energy lost in one collision �E D E 0 � E, and
write the scattering cross section in the collision integral as

	s


E 0 ! E

� D 	s .E C�E; �E/ : (3.113)

Function 	.E 0; �E/ for charged particles decreases rapidly when its second argu-
ment increases. In fact, this is the reason why the energy lost in one collision
tends to be small. On the other hand, variations of �E have a small effect on
the first argument, and therefore do not cause 	s to change significantly, because
�E � E. The latter arguments also apply to ˆ.E 0/. Thus we can use a Taylor
series expansion:
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	.E 0; �E/ˆ.E 0/ � 	.E; �E/ˆ.E/C @

@E
Œ	.E; �E/ˆ.E/��E: (3.114)

Now, we substitute the right-hand side of this equation in the collision integral:

Z 1

E
dE 0	s



E 0 ! E

�
ˆ


E 0�

�
Z 1

0

	s.E; �E/ˆ.E/d .�E/C @

@E

Z 1

0

Œ	s.E; �E/ˆ.E/� .�E/ d .�E/

D 	s.E/ˆ.E/C @

@E
Œˇ.E/ˆ.E/� :

(3.115)
where

ˇ .E/ D
Z 1

0

	s.E; �E/ .�E/ d .�E/ (3.116)

is the stopping power, that is, the average energy lost by a charged particle per unit
path length

ˇ .E/ D �dE

dx
(3.117)

The units for ˇ are MeV/cm, keV/�m, or eV/nm.

Range of a Charged Particle

Let us consider a charged particle that starts at point x D 0with initial energy E0 and
travels along a straight line in the positive x direction. Knowing the rate of energy
loss, ˇ.E/, we can find the distance xmax the particle travels before coming to a stop
at a point xmax where its energy, E.xmax/, is zero. To do so, we need to solve the
differential equation, Eq. (3.117), with the boundary condition:

x .E0/ D 0: (3.118)

The solution is straightforward. By integrating Eq. (3.117) from an arbitrary E to
E0, we have

x .E0/ � x .E/ D �
Z E0

E

dE 0

ˇ .E 0/
: (3.119)

Then, we set E D 0, and note that x.0/ D xmax. Then, the range R.E0/ is

R .E0/ D xmax D
Z E0

0

dE 0

ˇ .E 0/
: (3.120)
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Energy Lost Over a Finite Path Length

Problem Find the energy lost by a charged particle as it travels a distance�R, if its
initial energy was E1. The solution can be found using the function R.E/ defined by
Eq. (3.120) and its inverse R�1. If E2 is the particle energy after it travels distance
�R, then obviously

R .E1/ D �R C R .E2/ : (3.121)

Given that R.E/ is a monotonic function, this equation can be solved for E2:

E2 D
(

R�1 ŒR .E1/ ��R� I �R < R .E1/

0I �R � R .E1/
(3.122)

Then, for the energy lost we have:

�E D E1 � E2 D
(

E1 � R�1 ŒR .E1/ ��R� I �R < R .E1/

E1I �R � R .E1/
(3.123)

If �R is so small that it can be assumed that the particle travels the distance with a
constant stopping power, then

�E D ˇ .E1/�R: (3.124)

Solution of the Energy Degradation Equation

Let us use the continuous slowing down approximation to solve the energy
degradation equation, Eq. (3.112). For simplicity, we will consider a monoenergetic
source, S.E/ D ı.E�E0/, and assume that only one process is possible—scattering.
The assumption is well justified for electrons. It means that 	.E/ D 	s.E/. The
energy degradation equation with the collision integral written in the continuous
slowing down approximation, Eq. (3.115), has the following form:

	 .E/ˆ .E/ D ı .E � E0/C 	s.E/ˆ.E/C @

@E
Œˇ.E/ˆ.E/� : (3.125)

The collision densities 	ˆ and 	sˆ cancel out. The remaining terms are integrated
over energy from an arbitrary energy E to infinity. Assuming, naturally, that fluence
at infinite energy is zero, we arrive at this simple solution:

ˆ.E/ D
(
1=ˇ .E/; E < E0I
0; E > E0I

(3.126)
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Comparing this result with Eq. (3.120) leads to an important observation: the inte-
gral of fluence over energy is equal to the particle range. This finding remains valid
without the continuous slowing down approximation. It follows from definition 2 of
fluence (Sect. 3.1).

3.9.5 Continuous Slowing Down Approximation
for Soft Collisions

To apply the continuous slowing down approximation, it is required that the energy
lost in a collision be much less than the kinetic energy of the particle. For energetic
charged particles, this requirement is met for most collisions. Still, with some
probability a large energy loss in a collision is possible. This paragraph offers a more
rigorous method for applying the continuous slowing down approximation. The
idea is that all collisions are divided into soft and hard collisions, depending on the
energy lost. A threshold energy�Et is introduced, defined so that for collisions with
energy loss less than�Et the continuous slowing down approximation is applicable.
Such collisions are called soft, and collisions with energy loss exceeding �Et are
called hard or catastrophic.

To demonstrate this technique, we will consider a simplified collision integral
with energy variables only:

Z 1

E
	s


E 0 ! E

�
ˆ


E 0� dE 0

D
Z EC�Et

E
	s


E 0 ! E

�
ˆ


E 0� dE 0 C

Z 1

EC�Et

	s


E 0 ! E

�
ˆ


E 0� dE 0:

(3.127)
The second integral accounts for collisions with energy loss exceeding�Et. We will
leave it unchanged. If the incident particle interacts with atomic electrons and �Et

is much greater than the binding energy of those electrons, modeling of such hard
collisions can be simplified. For example, it may be possible to completely neglect
the binding energy and simulate hard collisions as collisions with free electrons. The
first integral accounts for soft collisions. We will simplify it using the continuous
slowing down approximation, similar to how it was done in Eq. (3.115) except that
in Eq. (3.115) integration extends to infinity but now the upper integration limit is
E C�Et.

Z EC�Et

E
	s


E 0 ! E

�
ˆ


E 0� dE 0 D 	< .E/ˆ .E/C @

@E
Œˇ<.E/ˆ.E/� ; (3.128)
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where

	< .E/ D
Z �Et

0

	s .E; �E/ d .�E/ (3.129)

is the total cross section for soft collisions, and

ˇ< .E/ D
Z �Et

0

	s .E; �E/ .�E/ d .�E/ (3.130)

is the restricted stopping power, that is, the average energy lost in soft collisions per
unit path length. The representation of the collision integral given by Eqs. (3.128)–
(3.130) justifies a technique used in condensed history algorithms for charged
particle transport. In this technique, each hard collision is simulated explicitly,
and when a charged particle travels between hard collisions it continuously loses
energy at a rate given by the restricted stopping power ˇ<.E/. Condensed history
algorithms are discussed in detail in Chap. 5.

3.9.6 Fokker-Planck Approximation

This section and the next introduce two of the most basic approximations for
calculating angular distributions: the Fokker-Planck and PN approximations. The
Fokker-Planck approximation is based on the assumption that scattering angles are
small. It is used for charged particles in both Monte Carlo programs and grid-
based Boltzmann solvers (Chap. 7). This method does not produce accurate results
at large scattering angles. A good way of using the method is to apply it only to soft
collisions, using another method for hard collisions as discussed in the preceding
subsection.

Authors previously described the Boltzmann equation in Fokker-Planck approx-
imation, for example, Kolchuzhkin and Uchaikin (1978) and Pomraning (1992).
The derivation of the equation by Kolchuzhkin and Uchaikin (1978) is more
straightforward. Therefore, we use their method.

Conceptually, the Fokker-Planck approximation is similar to the continuous
slowing down approximation. It is also based on a Taylor series expansion of the
collision integral but with expansion in terms of angular variables. For simplicity,
we leave out energy variables, although some researchers consider the continuous
slowing down approximation and the next term or terms of the expansion in energy
to be part of the Fokker-Planck model.
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Collision Integral in a Small-Angle Approximation

We start by applying a small-angle approximation to the collision integral

Z
d E� 0	s

�
Er; E� 0 � E�


ˆ
�
Er; E� 0

D
Z 2�

0

d� 0
Z �

0

sin � 0d� 0	s

�
Er; E� 0 � E�


ˆ

Er; � 0; � 0�

�
Z 2�

0

d� 0
Z 1

0

� 0d� 0	s

�
Er; E� 0 � E�


ˆ

Er; � 0; � 0� ;

(3.131)

where we extend the upper integration limit in � 0 from � to 1, because in the
small angle approximation, scattering to large angles close to � can be neglected.
We further note that

E� 0 � E� D cos � cos � 0 C sin � sin � 0 cos


� � � 0�

�
�
1 � �2

2

��
1 � � 0 2

2

�
C �� 0 cos



� � � 0�

� 1 � �2

2
� � 0 2

2
C �� 0 cos



� � � 0� ;

(3.132)

and, on the other hand, that E� 0 � E� D cos �0 � 1 � �20 =2, where �0 is the scattering
angle. Using this in Eq. (3.132), we find that

�0 �
p
�2 C � 0 2 � 2�� 0 cos .� � � 0/: (3.133)

Taylor Series Expansion of the Collision Integral

Let Eu be a two-dimensional vector of length � . Its two components are ux D � cos�
and uy D � sin�. Thus, we can see in Eq. (3.133) that �0 � ˇ̌Eu 0 � Eu ˇ̌.

The last integral in Eq. (3.131) can be considered as an integral in polar
coordinates, in which � 0 is the radial variable. We then can rewrite the integral
in terms of the Cartesian variables ux and uy;

Z 2�

0

d� 0
Z 1

0

� 0d� 0	s

�
Er; E� 0 � E�


ˆ

Er; � 0; � 0�

D
Z 1

�1
du 0

x

Z 1

�1
du 0

y 	s

Er; ˇ̌Eu 0 � Eu ˇ̌�ˆ 
Er; Eu 0� :

(3.134)

The substitution Ew D Eu 0 � Eu brings the integral to a form convenient for a Taylor
series expansion:
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Z 1

�1
dwx

Z 1

�1
dwy 	s


Er; ˇ̌Ew ˇ̌�ˆ 
Er; Eu C Ew � : (3.135)

In the series we retain all of the terms up to quadratic terms:
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2
:

(3.136)
Next, we insert Eq. (3.136) in the collision integral, Eq. (3.135). The last three terms
in the first line of Eq. (3.136) are linear in wx, wy or both (wxwy). Therefore, the
integral of these three terms is zero. We will integrate the remaining three terms one
at time. The first integral produces the total scattering cross section, 	s


Er �:
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dwx

Z 1

�1
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The second integral is
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(3.138)

where h�20 i is the mean square scattering angle. Integration of the last term is very
similar
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(3.139)

As a side note, we point out that in the small scattering angle approximation, the
product 	sh�20 i is closely related to the transport cross section, 	tr:
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(3.140)

where we used cos w � 1�w2=2. In some publications, the same quantity is referred
to as the momentum transfer coefficient and is denoted as ˛.

Collision Integral in Fokker-Planck Approximation

It follows then that in the Fokker-Planck approximation, the collision integral is
replaced by a differential operator:
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(3.141)

The differential operator on the right-hand side of Eq. (3.141) is the Laplacian in two
dimensions. It can be expressed in polar coordinates (Arfken et al. 2013), with � as
the radial variable. This yields another form of the Fokker-Planck approximation:
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(3.142)

Finally, the above result can also be written in terms of 
 D cos � instead of
� . To do so, in Eq. (3.142) we replace �@� with sin �@� D �@
, which is the
approximation we made in Eq. (3.131), and then, similarly, use �2 � sin2 � D
1 � 
2. Thus, we obtain
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3.9.7 PN Approximation in Planar Geometry

The Fokker-Planck approximation is based on the assumption of small scattering
angles, and is normally used for charged particles, because in this case scattering is
very forward-peaked. The PN approximation works best in the opposite situation,
when the angular distribution of scattered particles is broad. The best case for
PN approximation would be isotropic scattering. Let us start with the Boltzmann
equation in planar geometry, Eq. (3.108), with the collision integral written in terms
of the angular variables � and 
 D cos � . For brevity we will leave out energy
variables:
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(3.144)

where 
0 D E� 0 � E� is cosine of the scattering angle. Then, we expand the angular
dependence of fluence into Legendre series:
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/ ; (3.145)

where Pk are the Legendre polynomials, and

ˆk D 2k C 1
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/ d
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Similarly:

	s .z; 
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nD0
	n .z/Pn .
0/ ; (3.147)

and

S .z; 
/ D
1X

nD0
Sn .z/Pn .
/ : (3.148)

As a side note, we point out that for isotropic scattering, 	s does not depend on 
0,
and it can be shown that all Legendre coefficients 	n are zero, except 	0.

Next, we substitute Eqs. (3.146) and (3.147) in the collision integral and trans-
form it using the addition theorem:
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(3.149)
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where Pm
n are the associated Legendre polynomials. Equation (3.149) is a form of

the perhaps better known addition theorem for spherical harmonics (Arfken et al.
2013), where the spherical harmonics are written explicitly in terms of the associated
Legendre polynomials. The sum in the above equation will be hereafter omitted,
because the integral of cos Œm.� � �0/� over �0 is zero for all integer nonzero m. The
collision integral is transformed as follows:
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(3.150)

Next, we integrate over 
0 and use the orthogonality of the polynomials:
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ınk: (3.151)

Then, ınk eliminates the sum over k, and integration over �0 produces a factor 2� .
This brings us to a simplified form of the collision integral:
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After all the above modifications, Eq. (3.144) becomes:
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�
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(3.153)

The idea of the PN method is as follows. The above equation is transformed into a
system of N C1 equations for fluence coefficientsˆk. To derive the first equation of
the system, both sides of the above equation are multiplied by P0.
/ and integrated
over 
, from �1 to 1. The second equation is derived in the same fashion, using
P1.
/, and so on. For the last equation, PN.
/ is used. For all terms, except the
streaming operator, the integration is simple owing to the orthogonality of Legendre
polynomials. In the streaming operator, integral
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Ikn D
Z 1

�1
d
 Pk .
/
 Pn .
/ : (3.154)

needs to be calculated. This integral is zero, except for two cases: case 1, where
n D k C 1, and

Ikn D 2 .k C 1/

.2k C 1/ .2k C 3/
; (3.155)

and case 2, where n D k � 1 � 0, and

Ikn D 2k

.2k � 1/ .2k C 1/
: (3.156)

As a result, when Eq. (3.153) is multiplied by Pk.
/ and integrated over 
, the
resultant equation includes ˆk�1 (if k � 1), ˆk and ˆkC1. It follows then that the
last equation, where k D N, includes ˆNC1. This makes the number of unknowns
(ˆ0, ˆ1, : : :, ˆNC1) greater than the number of equations, N C 1. For this reason, to
make a unique solution possible, in the last equation we set ˆNC1 to zero.

P1 Approximation

We will now demonstrate this method for the simple case of N D 1. In this case, we
have a system of two equations. To derive the first equation, we multiply Eq. (3.153)
by P0.
/ D 1 and integrate it over 
. In this case (k D 0), from the streaming
operator we only have one nonzero term:

I01 D 2

3
; (3.157)

and the first equation is:
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Similarly, to derive the second equation, we multiply Eq. (3.153) by P1.
/ D 
,
and integrate over 
. In this case (k D 1), the streaming operator produces two
nonzero terms:

I12 D 4

15
; and I10 D 2

3
: (3.159)

We can, however, leave out I12, because it is associated with ˆ2, which in P1
approximation we must set to zero. The second equation is then as follows:
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We now have a system of two first-order linear differential equations for the
coefficients ˆ0, and ˆ1, Eqs. (3.158) and (3.160). These equations are relatively
simple. Once the solution is found the fluence can be calculated:

ˆ.z; 
/ � ˆ0 .z/P0 .
/Cˆ1 .z/P1 .
/ D ˆ0 .z/Cˆ1 .z/ 
: (3.161)

P1 approximation is also known as the diffusion approximation. Only to clarify
the connection of P1 approximation to the diffusion equation, we will make a
few further simplifications. We will assume that there is only one interaction type,
scattering, so that 	s D 	 , and that the material is uniform. That is, cross sections
do not depend on z. We will also assume that the source is isotropic. In that case,
S1 D 0. First, in Eq. (3.158) we have:
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This means that the collision integral in Eq. (3.158), 4�	0ˆ0, cancels out with the
removal operator 	ˆ0, and we have
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Similarly, in Eq. (3.160) we have
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This result combined with 	ˆ1 on the left-hand side of Eq. (3.160) produces the
transport cross section:
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(3.165)

Recalling that for an isotropic source, S1 D 0, we write Eq. (3.160) as follows:

@

@z
ˆ0 .z/C 	trˆ1 .z/ D 0: (3.166)

Finally, from the two equations, Eqs. (3.163) and (3.166), we derive an equation
for ˆ0. By taking derivative @=@z of Eq. (3.166) we find @ˆ1=@z, and insert this
derivative in Eq. (3.163). Then, the final equation is:
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1

3	tr

@2ˆ0 .z/

@z2
C S0 .z/ D 0: (3.167)

It formally coincides with the steady-state diffusion equation, with the diffusion
coefficient 1=.3	tr/.

3.10 Fredholm Integral Equation of the Second Kind

The Boltzmann equation can also be written in the form of an integral equation, and
it will be so derived in the next section. At this point, we will only identify the type
of the equation as the Fredholm integral equation of the second kind. In this section,
this type of equation and solution methods are presented in a general form, without
introducing any elements specific to radiation transport. Our intention is to make the
material of this section applicable to a broader class of problems than just radiation
transport.

The Fredholm equation of the second kind has the following general form:

� .x/ D
Z

k


x0 ! x

�
�


x0� dx0 C f .x/ ; (3.168)

where x generally is a multidimensional variable, function f .x/ and the kernel
k .x0 ! x/ are known, and �.x/ is unknown. For brevity it is sometimes convenient
to write the equation in an operator form:

� D OK� C f : (3.169)

Our purpose is to calculate a linear functional of the solution �:

J D
Z
� .x/ h .x/ dx D .�; h/ ; (3.170)

where h.x/ is a given function. The standard method for solving the equation is the
following iterative algorithm:

�i D OK�i�1 C f I i D 1; 2; : : : I �0 D f I (3.171)

which is equivalent to calculating the sum:

� D
1X

iD0
OKif : (3.172)

referred to as the Neumann series.
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The Monte Carlo algorithm for solving Eq. (3.168) is ultimately based on the
Neumann series. This will be evident from the proof of the algorithm. But first, we
need to introduce the algorithm.

Algorithm Groundwork

Choose an arbitrary Markov process. It is defined by the distribution of the initial
state � .x/ and transition probability p .x0 ! x/. Both functions must be nonnegative
and normalized:Z

� .x/ dx D 1I
Z

p


x0 ! x

�
dx D ps



x0� I 0 � ps



x0� � 1;

(3.173)

where ps.x0/ is the “survival probability,” that is, the probability that the Markov
chain is not terminated at state x0, and the system transitions to the next state. An
additional requirement these functions must satisfy is that for all possible x and x0
both ratios

f .x/

� .x/
and

k .x0 ! x/

p .x0 ! x/
(3.174)

are finite.

Algorithm

1. Generate a Markov chain: fx0; x1; : : : ; x�g by sampling x0 from distribution
�.x0/, and sampling the next state from distribution p.x0 ! x/. Before moving to
the next state, a random number is drawn to determine whether or not the chain
is terminated at its current state, x0. The probability of the chain terminated at x0
is 1 � ps.x0/.

2. Calculate multiplicative weights for each step:

Q0 D f .x0/

� .x0/
I Q1 D Q0� k .x0 ! x1/

p .x0 ! x1/
I � � � Q� D Q��1� k .x��1 ! x�/

p .x��1 ! x�/
: (3.175)

3. Calculate the sum:

� D
�X

nD0
Qnh .xn/ ; (3.176)

where x� is the last state of the chain.
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4. Repeat (1)–(3), generate a sample f�1; �2; : : : ; �Ng. The sample size N should be
large enough so that the expectation Ef�g could be estimated within acceptably
small uncertainties.

5. Estimate the functional:

J D .�; h/ D Ef�g � 1

N

NX
iD1

�i: (3.177)

For this algorithm to work, it is required that operator OK is small in a certain
sense. In radiation transport, this means that particles must disappear from the
system, for example, through absorption.

Proof

We now prove that the algorithm produces an unbiased estimate of the functional
.�; h/:

E f�g D E

(
�X

nD0
Qnh .xn/

)
D .�; h/ : (3.178)

A rigorous proof was given by Ermakov (1978). Our proof is much simplified. First,
we note that the sum in the above equation has a random number of terms because
the length �C 1 of the Markov chain is random. This complicates calculation of the
expectation value, because the expectation of such a sum is not equal to the sum of
expectations of the individual terms in the sum. We therefore extend the upper limit
of the sum to infinity by introducing a factor �n, such that �n D 1, if n � � and
�n D 0, otherwise. Then,

E
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�nQnh .xn/

)
D

1X
nD0

E f�nQnh .xn/g : (3.179)

To calculate the expectation of an individual term in the sum, we use the total
probability formula:

E f�nQnh .xn/g

D
Z

dx0

Z
dx1 : : :

Z
dxn p .x0; x1; : : : ; xn/E f�nQnh .xn/ jx0; x1; : : : ; xng :

(3.180)
Here, p.x0; x1; : : : ; xn/ is the joint probability density of the first n C 1 states of
the Markov chain. It is a conditional distribution, the condition being that the
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chain length is at least n. For this reason, in the following expression transition
probabilities are divided by the respective probabilities of survival ps:

p .x0; x1; : : : ; xn/ D � .x0/
nY

iD1

p .xi�1 ! xi/

ps .xi�1/
: (3.181)

It can also be verified that p.x0; x1; : : : ; xn/ given above is correctly normalized, that
is, the integral of p over x0; x1; : : : ; xn is equal to 1. As for the conditional expectation
value, we have

E f�nQnh .xn/ jx0; x1; : : : ; xng D Qnh .xn/E f�njx0; x1; : : : ; xng : (3.182)

Given that �n is either one or zero, its expectation is equal to the probability of
�n D 1. The latter is the probability of the system surviving all transitions starting
from the initial state x0 and reaching xn: x0 ! x1, : : :, xn�1 ! xn:

E f�njx0; x1; : : : ; xng D
n�1Y
kD0

ps .xk/ : (3.183)

Now we can insert Eqs. (3.181)–(3.183) and the definition of Qn, Eq. (3.175), into
the integral in Eq. (3.180):
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(3.184)
To verify that the very last step in the above derivation is indeed correct, the last line
in the above equation may be written for a few small values of n: n D 0, n D 1, etc.
We also notice that OKnf is a term in the Neumann series, Eq. (3.172). Then,

E f�g D
1X

nD0
E f�nQnh .xn/g D

1X
nD0

� OKnf ; h


D .�; h/ : (3.185)

This proves that � defined by Eqs. (3.175)–(3.176) is indeed an unbiased estimate of
the functional .�; h/ of solution � of the Fredholm integral equation of the second
kind. ut
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Fig. 3.7 Derivation of the
Boltzmann equation in an
integral form
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3.11 The Boltzmann Equation in an Integral Form

The Boltzmann equation can be written in an integral form. Its derivation can be
performed formally by integrating the integro-differential form of the equation,
Eq. (3.40), along a straight line leading to a point Er from the boundary of the
computational domain � , in direction E�. We, instead, offer a more heuristic
derivation that provides a better insight into the underlying physics.

For brevity, we will exclude particle energy from consideration, until the very last
equation. Fluence ˆ.Er; E�/ at a point Er we represent as a sum of unscattered fluence
ˆ0.Er; E�/ and fluence of particles that after scattering at a point Er 0 reach Er without
any more scattering, Fig. 3.7. Integration over all possible locations Er 0 is implied.

Next, we note that when calculating fluence ˆ.Er; E�/ we need to count only
those particles that travel in direction E� when they reach Er. This means that when
integrating over Er 0 we only need to integrate along the dashed line in Fig. 3.7. That
is, we integrate from Er to the boundary of the computational domain � , along a
straight line, in the direction opposite to E�. The number of interactions at Er 0 is given
by the collision density 	ˆ, except that we count only those collisions that produce
particles traveling in direction E�. For this reason, in the expression for collision
density below we use the differential cross section:

	s

�
Er 0; E� 0 ! E�


ˆ
�
Er 0; E� 0 : (3.186)

This gives us the number of particles that were traveling in direction E� 0 and
scattered at Er 0 exactly in the direction of point Er. To account for all E� 0 ! E�
scattering events, we will need to integrate over all E� 0. A fraction of these scattered
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particles will reach Er without any further scattering. The size of this fraction is
subject to exponential attenuation and is given by this factor:

exp
��� 
Er; Er 0�	; (3.187)

where �.Er; Er 0/ is the optical distance between points Er and Er 0.
As we have already mentioned, we need to integrate along the dashed line in

Fig. 3.7. The equation of the line is

Er 0 .t/ D Er � E�t: (3.188)

The limits of integration are from t D 0 to t D tmax, where tmax is the distance from
Er to the point where the line reaches the boundary � of the computational domain.
Adding the two components of fluence, unscattered and scattered, we arrive at the
following form of the Boltzmann equation:
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Er � E�t; E� 0 :

(3.189)
The final step is the transformation of the line integral into a volume integral. For
that purpose, we use the following identity (see Appendix B):
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Z
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In the final equation, for completeness we include the particle energy:
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(3.191)

It should be clear from the derivation that the optical distance �.Er; Er 0;E/ is
calculated for energy E, which is the particle energy after it interacted at point
Er 0. It is equal to the particle energy when it arrives at point Er, before the next
interaction. The result, Eq. (3.191), is a type of integral equation known as the
Fredholm equation of the second kind and can be written in the following general
form:

ˆ.x/ D ˆ0 .x/C
Z
ˆ


x 0� k



x 0 ! x

�
dx 0: (3.192)
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The derivation of the adjoint integral equation is similar. It has the same form as the
integral equation for the fluence, except that the kernel of the integral operator is
transposed:

ˆC .x/ D ˆC
0 .x/C

Z
k


x ! x 0�ˆC 
x 0� dx 0: (3.193)

3.12 The Boltzmann Equation as a Basis
for Biasing Techniques

We have shown that the Boltzmann equation in its integral form is a Fredholm
equation of the second kind. We have also introduced a Monte Carlo algorithm for
solving equations of exactly that type. Thus, we now have a general Monte Carlo
algorithm for solving problems of radiation transport.

To apply this general method to a specific problem, we need to choose a Markov
process. We can choose a process that is a copy, or more realistically, a close model
of the actual physical process, for example, propagation of X-rays in a material. The
advantage of this choice is that the algorithm will be very intuitive.

On the other hand, we do not have to copy the actual process. We can pick an
almost arbitrary Markov process. Choosing a process that is not an exact copy of
the actual process is an optimization technique called biasing. Processes, or particle
trajectories generated on a computer, are different or “biased” compared with real
ones, but the final result, the solution, such as the particle fluence, is unbiased.
Biasing of trajectories is exactly compensated for by weights Qn, Eq. (3.175).

3.12.1 Source Biasing

To introduce source biasing, we start with the adjoint representation of detector
reading

J D 

S; ˆC� D

Z
dEr
Z

d E�
Z

dE S
�
Er; E�;E


ˆC �Er; E�;E


: (3.194)

The definitions of the source function and adjoint function (Sect. 3.1) offer a
statistical interpretation of the above integral. In this representation, J is the
expectation of ˆC.Er; E�;E/, where the distribution of phase coordinates .Er; E�;E/
is S.Er; E�;E/. To calculate this integral, we would sample .Er; E�;E/ from distribution
S.Er; E�;E/ and then calculate the contribution to detector reading from a particle that
started with .Er; E�;E/. We do not need to specify at this point how this contribution
would be calculated. It is implied, of course, it would be done by generating the rest
of the particle trajectory.
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Now, let us introduce in Eq. (3.194) an arbitrarily biased source function, QS:

J D
Z

dEr
Z

d E�
Z

dE QS
�
Er; E�;E


w
�
Er; E�;E


ˆC �Er; E�;E


: (3.195)

This introduces a variable, w D S=QS, called the particle weight or more specifically
its starting weight. This new representation for J has a slightly different statistical
interpretation. The initial phase coordinates of the particle, .Er; E�;E/, are now
sampled from the biased distribution QS.Er; E�;E/, and its contribution to detector
reading ˆC.Er; E�;E/ is multiplied by the weight w.Er; E�;E/. The weight is assigned
to the particle as soon as its initial phase coordinate is known. If particle i starts
with coordinates .Eri; E�i;Ei), then its weight is: wi D S.Eri; E�i;Ei/=QS.Eri; E�i;Ei/. The
weight does not change as the particle travels and interacts, unless other, additional
biasing techniques are applied. If the particle produces secondary particles, those
particles inherit the weight. If, for example, the code counts the number of particles
crossing a certain surface, and no biasing techniques are used, then the count
increases by one when a particle crosses the surface. If source biasing is used, then
the count increases by wi.

Example 1

A large source with a spatially uniform activity, isotropically emitting particles with
a polyenergetic spectrum, and a small detector at some distance from the source.
Problem: too many particles never reach the detector.

To address this problem, we can bias the spatial or angular distribution of the
source, or its energy spectrum. When biasing the spatial distribution, the activity of
the source should be increased in the area close to the detector. Particles starting in
that area will have a better chance of reaching the detector. They will have a weight
w < 1. It is generally recommended that the biased source be similar to the original
source, so that the weights do not fluctuate too much.

The angular distribution should be biased so as to increase the number of particles
emitted by the source in the direction of the detector. An example is in Fig. 3.8,
which shows two angular distribution functions: the original isotropic distribution
(blue line) and a biased distribution (purple line). The two distributions are shown as
a function of 
 D cos � , where direction � D 0 points at the center of the detector.
Particles that start at angles corresponding to the part of the purple line that is above
the blue line will have a weight w < 1.

Biasing the energy spectrum may also be beneficial. Here are two examples
where it might work.
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Fig. 3.8 Biasing the angular
distribution of the source.
Shown are the original
unbiased distribution (blue
line) and a biased distribution
(purple line); 
 D cos � ,
where � D 0 is the direction
towards the detector

11– 0

f(μ)

μ

Example 2

Too many particles are absorbed before they can reach the detector, and we are
counting particles entering the detector volume through its surface. Then, we can
bias the source spectrum so as to increase the number of high-energy particles.
If cross sections decrease with increasing energy, as is often the case, fewer particles
will be absorbed as they travel from the source to the detector.

Example 3

We are counting ionization collisions within a detector. Most particles reach the
detector, but too many cross the detector volume without interactions. Then we
can increase the number of low-energy particles in the biased spectrum. If, the
cross sections, again, decrease with increasing energy, this biasing will increase
the collision density and therefore increase the number of ionizations within the
detector. In the next chapter we present a better method for addressing this problem.
In this method a particle entering a volume interacts within it with a probability
defined by the user. The method is called forced interactions. It does not introduce
any systematic error.

3.12.2 Trajectory Biasing

This section presents a general method for optimization of Monte Carlo algorithms
for solving the Boltzmann equation. It is based on the method we introduced in
Sect. 3.10 for solving Fredholm integral equations of the second kind. We will
show how a correct, unbiased solution of the Boltzmann equation can be obtained
with an algorithm based on simulation of an almost arbitrary Markov process.
The method does not require copying the actual process of particle transport. The
correct solution is obtained using particle trajectories that are biased, different in a
statistical sense, from real particle trajectories. To reiterate, particle trajectories are
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biased, but the solution calculated using these trajectories is unbiased. Allowing
an algorithm developer to use almost any Markov process without introducing
any systematic errors offers virtually unlimited flexibility in designing an optimal
algorithm. The priority is certainly minimizing statistical uncertainties without
increasing the computing time or introducing other sources of error. Techniques
aimed at achieving these goals are called variance reduction. Many, or perhaps most,
popular variance reduction techniques are ultimately just special cases of the method
presented in this section. We will return to this point in the next section where we
discuss in detail some of those techniques.

First, we switch from fluence to collision density: F .x/ D 	ˆ .x/, where 	 is
the total cross section, which is a function of Er and E. The integral equation for the
collision density F.x/ can be easily derived from Eq. (3.192):

F .x/ D F1 .x/C
Z

kF


x0 ! x

�
F


x 0� dx0; (3.196)

where, F1 D 	ˆ0, is called the first collision density, and

kF


x0 ! x

� D k


x0 ! x

�
	 .x/ =	



x0� : (3.197)

Our purpose is to calculate the functional:

J D .ˆ;D/ D
�

F;
D

	

�
; (3.198)

where D D D.x/ is the detector response function defined in Sect. 3.1. To calculate
the functional we use the general algorithm for solving Fredholm equations
presented in Sect. 3.10. The main component of the algorithm is the unbiased
estimate � of the functional J, defined by Eq. (3.176). In the case of the equation
for the collision density it has the form:

� D
�X

nD0
Qn

D .xn/

	 .xn/
: (3.199)

This estimate belongs to the so-called collision-type estimates. This and several
other types are discussed in Sect. 4.3.

This general algorithm produces the correct solution with an almost arbitrary
Markov chain. In practice, however, for solving problems of radiation transport
Markov processes are used that are similar to the physical process of particle
propagation in matter. Hence, the technique can be described as trajectory biasing:
particle trajectories are generated, but they are different in a statistical sense from
trajectories of real particles. In this section we demonstrate using a simple example
how this technique is applied. More examples are given in Sect. 4.4, where variance
reduction techniques are discussed.
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Problem

Using real, unbiased trajectories generated in water, calculate detector reading J,
for example, dose distribution in another material. In practice, a large number
of trajectories in water are generated, stored on a disk, and then used as needed
to calculate J in other materials. An obvious benefit of this method is that
trajectories are generated only once. It works best if the other materials are not
very different from water in terms of particle interaction parameters. Alternatively,
particle trajectories are not saved to disk, instead, as particle trajectories in water
are generated, J is calculated in water, and simultaneously in a number of other
materials. This method may save computing time because there is no need to
generate particle trajectories in any material other than water.

We do not bias the source here, we focus on biasing trajectories. We assume for
simplicity that all materials are homogeneous.

First, we show that for unbiased trajectories the transition probability p.xi !
xiC1/ coincides with the kernel of the integral equation kF.xi ! xiC1/. To do so,
we derive an algorithm for sampling transition xi ! xiC1, when the transition
probability is equal to kF.xi ! xiC1/.

Proof

Within the assumptions we made for this problem, it follows from Eq. (3.191) that

kF .xi ! xiC1/ D 	 .EiC1/ exp
��	 .EiC1/ � jEri � EriC1j

	

	
	s

� E�i � E�iC1;Ei ! EiC1


	 .Ei/
ı

�
E�iC1 � EriC1 � Eri

jEriC1 � Erij
�

1

jEriC1 � Erij2 :

(3.200)
We interpret the above expression as the conditional probability distribution of xiC1
given xi. That is, for any given xi we will use the above function kF to sample xiC1.
The formula simplifies somewhat if instead of sampling EriC1 we sample ER D EriC1 �
Eri. We will also write ER D R E�R. Then,

kF.xi ! xiC1/ D 	 .EiC1/ exp Œ�	 .EiC1/R �

	
	s

� E�i � E�iC1;Ei ! EiC1


	 .Ei/
ı
� E�iC1 � E�R

 1

R2
:

(3.201)

The above expression is a product of probabilities. First, we consider the factor
	s.: : :/=	 . It is the distribution of E�iC1 and EiC1, except it is not normalized to 1:
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1

	 .Ei/

Z
d E�iC1

Z
dEiC1	s

� E�i � E�iC1;Ei ! EiC1


D 	s .Ei/

	 .Ei/
D Ps .Ei/ � 1;

(3.202)
where Ps is the probability of a particle surviving step xi ! xiC1. Then, before
making this step, we draw a random number � to determine whether or not the
particle survives this step. If it does, we sample its new energy, EiC1, and direction,
E�iC1, from the now normalized distribution:

f
� E�iC1;EiC1j E�i;Ei


D
	s

� E�i � E�iC1;Ei ! EiC1


Ps .Ei/ 	 .Ei/
: (3.203)

Next, to sample vector ER, we sample its length R and direction E�R. To do so, we
note the following relation between distribution of a vector f .ER/ and distribution of
its length, f .R/:

f
�ER


dER D f .R/R2dRd E�R: (3.204)

This eliminates factor 1=R2 from Eq. (3.201), and we can sample R, which is the
distance to the next point of the Markov chain, from the exponential distribution:

f .R/ D 	 .EiC1/ exp Œ�	 .EiC1/R�: (3.205)

The last term in Eq. (3.201) that we have not considered yet is the delta function
ı. E�iC1 � E�R/. It simply means that the direction E�R of particle travel from point Eri

to the next point, must be E�iC1, which we had sampled earlier from the distribution
given by Eq. (3.203).

The sampling procedure that we have just described is identical to generating an
unbiased particle trajectory: (1) at point Eri a type of particle interaction, absorption
or scattering, is sampled; (2) if it is scattering, a new particle energy, EiC1, and
direction E�iC1 are sampled according to the differential scattering cross section;
(3) from point Eri, the particle travels in direction E�iC1; (4) a distance R to the next
interaction point (free path) is sampled from the exponential distribution. ut

It follows that in the above described algorithm, the ratio k.xi ! xiC1/=p.xi !
xiC1/, needed to calculate the weight QiC1 in Eq. (3.175), is equal to one. In that
case, to make all the weights Qn equal to one, the initial weight Q0 must also be
equal to one. To achieve that, according to Eqs. (3.175) and (3.196), the initial phase
coordinate x0 must be sampled from distribution

F1 .x0/ D 	 .E0/ˆ0 .x0/ D 	 .E0/
Z 1

0

dt S
�
Er0 � E�0t; E�0;E0


exp Œ�	 .E0/ t�;

(3.206)
where we used Eq. (3.95) for the unscattered fluence ˆ0. To derive an algorithm for
sampling the initial phase coordinate x0 from the distribution given by Eq. (3.206),
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we first, transform the line integral in Eq. (3.206) into a volume integral using
Eq. (3.190), and then follow the method that we used above to derive the algorithm
for sampling transition xi ! xiC1. This produces the following algorithm for
sampling from distribution F1.x0/.

Algorithm

1. Sample Er 0 D Er0 � E�0t from the source distribution, S.Er 0/.
2. Sample E�0, E0 from the source distribution S.Er 0; E�0, E0/.
3. Sample free path t from the exponential distribution 	.E0/ exp Œ�	.E0/t�.
4. Calculate Er0 D Er 0 C E�0t.

This algorithm is no different than sampling the first step of an unbiased particle
trajectory. We can therefore conclude that all weights Qn are equal to one, if the
algorithm copies the actual particle transport process.

In the context of the problem, unbiased trajectories would be those generated
in the other material, not water. However, what we have are trajectories in water.
We consider them as biased. The only difference between biased and unbiased
processes are the cross sections. We mark biased cross sections with a tilde, e.g.,
Q	 . The transition probability for this biased process has exactly the same form as
kF.xi ! xiC1/ in Eq. (3.200), but with biased cross sections:

p .xi ! xiC1/ D Q	 .EiC1/ exp
��Q	 .EiC1/ � jEri � EriC1j

	

	
Q	s

� E�i � E�iC1;Ei ! EiC1


Q	 .Ei/
ı

�
E�iC1 � EriC1 � Eri

jEriC1 � Erij
�

1

jEriC1 � Erij2 :

(3.207)

Then, from Eq. (3.175) the weight for transition from xi to xiC1 is calculated as
follows:

QiC1 D Qi
kF .xi ! xiC1/
p .xi ! xiC1/

D Qi
	 .EiC1/
Q	 .EiC1/

exp fŒ Q	 .EiC1/ � 	 .EiC1/�RiC1g
	s

� E�i � E�iC1;Ei ! EiC1


Q	s

� E�i � E�iC1;Ei ! EiC1
 Q	 .Ei/

	 .Ei/
:

(3.208)
where RiC1 is the free path, that is the distance between Eri and EriC1. The initial
weight, for i D 0, is

Q0 D F1 .x0/
QF1 .x0/

D 	 .E0/

Q	 .E0/
ˆ0 .x0/
Q̂
0 .x0/

; (3.209)
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where ˆ0.x0/ and Q̂
0.x0/ are, respectively, the unbiased and biased unscattered

fluences at point Er0, in direction E�0, from a particle that started from the source
with energy E0.

To summarize: particle trajectories fx0; : : : x�g are generated only in water. To
calculate detector reading J in another material, the estimate � given by Eq. (3.176)
is used with the weights calculated according to Eqs. (3.208) and (3.209). This
produces an unbiased result, that is, Ef�g D J.

Exercise: Optimization of Shielding Calculations

A one-dimensional problem. Particles are incident normally on a one meter thick
wall. The cross sections are: total 	 D 0:1 cm�1; scattering 	s D 0:05 cm�1; and
absorption 	A D 0:05 cm�1. Assume that scattering does not change any properties
of the particle, the particle continues traveling in the same direction (this is called
delta scattering).

1. Calculate analytically the number of particles that exit the wall, per incident
particle. In other words, find the probability of an incident particle penetrating
the wall.

2. Write a Monte Carlo code that estimates the above quantity and calculates
statistical uncertainty of the estimate. Sample the free path from exponential
distribution with parameter 	 , move the particle to the collision point, and sample
the type of interaction using the cross-sectional data. If it is absorption, terminate
particle history. The history is also terminated when the particle exits the wall.

3. Run the Monte Carlo code and compare the result with the analytical solution.
4. Write another Monte Carlo code that uses trajectory biasing in an attempt to

reduce statistical uncertainties. Reduce the density of the wall. More specifically,
reduce all cross sections by a factor ı (we call it the dilution coefficient). To
compensate for the bias, the multiplicative weights Qn need to be calculated,
Eq. (3.208). Do not bias the source.

5. Run the second Monte Carlo code for several different dilution coefficients. Make
sure that you always get a result consistent with your analytical solution. Each
time calculate statistical uncertainties. Find a ı that minimizes the uncertainties.
A graph of the standard deviation versus ı may help. Do not use very large or
small ı.

6. Compare the CPU times, calculate and compare algorithm efficiencies
[Eq. (4.39)].

7. Note that the weights do not need to be calculated for every particle and at every
step. Instead, they can be calculated only for those particles that exit the wall and
only when they do so.

8. When calculating the weights, carefully consider the last step, where the free
path exceeds the distance to the wall boundary.
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Chapter 4
Particle Trajectories, Tallies,
and Variance Reduction

4.1 Planning Monte Carlo Calculations

Defining the Source

A source function defines probability distributions of all parameters of all emitted
particles. The parameters include phase coordinates and internal degrees of freedom,
of which at least the type of particles must be specified. If more than one type of
particles is emitted, then a discrete distribution of particle types must be specified.
A real source may emit more than one particle at a time, and the number of particles
can be random. A launch of several particles at a time can be easily implemented
in a Monte Carlo code. However, for most standard problems, such as calculations
of dose distributions, such implementation is not necessary, and particles can be
simulated one at a time. The final result, because of linearity of the Boltzmann
equation, can be rescaled to account for the actual total number of particles of
each type emitted by a source. The types of problems where the results cannot be
simply scaled by the number of source particles are calculations of fluctuations and
correlations of radiation fields, see for example Wang and Vassiliev (2014). In those
cases, it may be necessary to simulate a simultaneous launch of several particles.
However, such a simulation can be avoided in some cases where special “rescaling”
methods have been developed. An example of the “rescaling” methods is provided
later by Eq. (6.3) in Chap. 6. An additional complication for problems concerning
fluctuations and correlations is that correlations between particles emitted by the
source, if they are present, need to be accounted for.

Spatial, angular, and energy distributions of a source must be defined. The source
can be located at a point, occupy a volume, or spread on a surface. For surface
and volume sources, a spatial distribution of their activities must be specified. The
simplest form of a spatial distribution is uniform. For example, for radioisotope
brachytherapy sources the activities may be uniform on a seed surface or in the
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seed volume, depending on the design. In terms of angular distribution a source
can be isotropic, mono-directional (usually for a narrow beam), or a parallel beam,
either collimated or infinite in the lateral direction. The types of source energy
spectra include mono-energetic, discrete, and continuous. These distributions can
be specified by formulas or tables.

Parameters of a particle emitted by a source, such as its initial position Er0,
direction E�0, and energy E0, are not necessarily statistically independent. If there
is indeed a correlation between any of particle’s initial parameters, methods for
sampling joint distributions should be used to model the source (Sect. 2.12).

Time-Varying Systems

In some problems, properties of systems change with time during irradiation. Usu-
ally the changes are in the geometry and material properties. Important examples
in radiotherapy are changes in patient anatomy caused by respiratory motion, and
modulation of incident fluence achieved through a complex sequence of changes in
the shape of beam aperture, beam direction, and in some techniques beam intensity.
In most cases, temporal variations in an irradiated system do not pose a problem,
because an individual particle traverses the system much faster than any significant
changes can occur in the system. Then, particle trajectories can be generated in a
static geometry representing a snapshot of the system at a certain moment of time.
Accordingly, for radiation transport calculations temporal evolution of a system is
approximated by a series of snapshots closely spaced in time. For each snapshot,
a large number of particle trajectories are generated so as to achieve an acceptably
small overall uncertainty. For example, patient dose calculations that account for
respiratory motion are often performed separately for each of the ten phases of a
respiratory cycle. Then, the combined dose, delivered over a course of treatment is
calculated. The latter task is nontrivial and requires special methods that are beyond
the scope of this book. For those problems that do require temporal information on
particle trajectories, some standard Monte Carlo software can generate timestamps
for particle events, such as interactions. If it is also needed to sample temporal
patterns of particle production by a source, a simple model that can be used for
the purpose is the Poisson process. In this model, the next particle starts after a
random time interval �t that is exponentially distributed. The average of �t is the
only parameter of the distribution, and it can be calculated from the source activity.

Defining the Geometry and Materials

When defining the geometry, two important question are, as to what objects need
to be included in simulations and how large a simulation volume (i.e., the computa-
tional domain) should be. Standard boundary conditions require that trajectories of
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those particles that have left the simulation volume are terminated. However, making
a simulation volume too small may introduce significant systematic errors because
of the loss of particles that may have a good chance of scattering towards and
reaching the detector. On the other hand, making the volume too big slows down the
calculations, because computing time is wasted on tracking particles that never reach
the detector. If electric or magnetic fields are present, they affect transport of charged
particles and therefore need to be specified. Some of the standard Monte Carlo
software are capable of generating particle trajectories in electric and magnetic
fields.

Defining the Physics

Planning Monte Carlo calculations requires answering several important questions
concerning the physics of a particular problem under consideration. For example,
which particle types need to be tracked? If the source emits photons, is it
necessary to track delta electrons and positrons? And, if electrons are tracked,
can bremsstrahlung photons be neglected? Some interaction types leave the atom
in an excited state. In that case, is it necessary to model de-excitation processes,
such as production of fluorescence photons and Auger electrons? For each particle
type, the energy range should be defined. What is the maximum energy a particle
can have? The maximum particle energy does not necessarily coincide with the
maximum source energy. Particles can gain energy from nuclear reactions, or
through acceleration by an external electric field, if it is present. As for the
minimum energy, it is a standard practice to define for charged particles the so-
called tracking cut-offs. When particle energy falls below the cut-off energy, the
particle trajectory is terminated. The choice of a tracking cut-off is determined
by the residual range of particles. That is, the distance that particles with kinetic
energy equal to the cut-off energy would travel in a given material. If, for example,
a three-dimensional dose distribution is calculated with a spatial resolution of 2 mm,
terminating particles with the residual range of 0.1 mm could be a good choice
for the tracking cut-off. A similar concept is the so-called production threshold.
In fact, numerical values of the tracking cut-offs and production thresholds often
coincide. Their meaning, however, is different. In those interactions that produce
secondary particles, only those particles are produced and tracked that have an
energy exceeding the production threshold. Finally, for each particle type a list of
interaction types should be created. And, for each interaction type a physics model
has to be chosen, cross sections and all model parameters have to be determined
for each material present in the simulation volume, and for all energies, from the
tracking cut-off and production threshold, to the maximum energy.
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Choosing Tallies

Another question that needs to be answered is as to what quantities are calculated
and how. Solving problems of radiation transport with Monte Carlo simulations has
two parts: generating particle trajectories and collecting information from particle
tracks to estimate quantities of interest. The second part is called tallying. Tallies
are discussed in detail in Sect. 4.3. At this point we will only mention that there are
several types of tallies that can be used to estimate the same quantity, and a decision
needs to be made as to which tallies to be used in the particular problem.

When calculating a three-dimensional dose distribution an important parameter
is the spatial resolution of a dose grid. With a finer resolution achieving lower
statistical uncertainties takes more computing time. On the other hand, with a
coarse grid, some details of the dose distribution may be lost. For radiotherapy dose
calculations a good resolution would be 1–4 mm, which is comparable to, or slightly
more coarse than the spatial resolution of a computed tomography image of patient
anatomy. An optimal grid would have a variable resolution, with a finer resolution
where large dose gradients are expected and a coarse resolution elsewhere.

Other Considerations

The term variance reduction refers to a group of methods that reduce statistical
uncertainties without introducing a bias, or systematic errors, to the solution. These
methods are discussed in Sect. 4.4. A decision has to be made on what variance
reduction methods will be used and how exactly. The latter includes choosing
optimal parameters for the selected methods. A related question is calculating and
reporting statistical uncertainties. It is important to have a plan that clarifies how
statistical uncertainties will be calculated and reported. It should also be estimated in
advance what level of statistical uncertainties can be achieved and what computing
resources, especially the computing time, will be required. Another item to consider
is what data will be included in the output files and how often will they be written
to disk. Monte Carlo calculations often run for many hours and days. For this
reason it is a common practice to periodically save intermediate results to disk. This
saved data should include all information needed to restart the code and continue
calculations in case they were terminated, accidentally or on purpose, before their
full completion.
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4.2 Neutral Particles

We start with neutral particles, because simulation of neutral particles transport is
much simpler than that of charged particles. The entire next chapter is dedicated to
simulation of charged particle transport.

4.2.1 Starting a Trajectory

The initial phase coordinates of the primary particle are sampled from the distribu-
tion given by the source function S.Er; E�;E/. Often, but not always, Er, E�, and E can
be sampled independently from one another, that is, S.Er; E�;E/ D S.Er /S. E�/S.E/.
If that is not the case, methods for sampling from joint distributions must be used.
These methods were introduced in Sect. 2.12. Once the source emits a particle,
the trajectory is generated until the particle is absorbed, leaves the computational
domain, or its energy falls below the tracking cut-off. If secondary and higher
generation particles are produced, they are handled in the same manner.

An important source type is the so-called phase space source. In the first
calculation a scoring surface is defined and phase coordinates of all particles
reaching that surface are saved in a “phase space file.” In all subsequent calculations
particle trajectories start at this scoring plane, with their initial phase coordinates
read from the file. This method is intended for those problems where the first part
of the system, closest to the source, is the same for all calculations and the rest
of the system changes from one calculation to another. In that case, significant
computing time can be saved, because there is no need to perform simulation in
the first part of the system for every new configuration of the varying part of the
system. A good example where this technique has been used is a simulation of
radiation transport in a medical accelerator. For photon beam treatments, at a given
nominal beam energy, for example 6 MV, the upper part of the accelerator is always
the same. It is comprised of components, such as a bremsstrahlung target, a primary
collimator, and a flattening filter that remain at fixed positions. The lower part of the
accelerator beam line has movable parts, such as movable collimators (jaws) and a
multileaf collimator, that define a beam aperture, and in some techniques, a fluence
modulation pattern. Then, the surface defining the location of the phase space source
can be a plane, normal to the beam, and located immediately below the flattening
filter.
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4.2.2 Stepping to the Next Collision Point

Homogeneous Medium

The distance l between two consecutive interaction points, or collisions, is called
the free path. In a homogeneous medium it is exponentially distributed:

fl .t/ D 	 exp .�	 t/; (4.1)

where 	 is the total cross section (cm�1) and t is the distance (cm). An exponential
distribution can be sampled using the inversion method (Sect. 2.2). The sampling
formula is:

l D � 1
	

ln �; (4.2)

where � is uniformly distributed between 0 and 1. Once the free path is sampled,
the point of the next interaction Er 0 can be found. If the particle started from point Er
in direction E�, and the free path is l, then:

Er 0 D Er C E�l; (4.3)

or, in a componentwise form:

x0 D x C�xlI y0 D y C�ylI z0 D z C�zl: (4.4)

Next, a check needs to be performed as to whether or not point Er 0 lies within the
computational volume. If it does not, then the history of the particle is terminated,
and the next particle starts. Otherwise, the particle is moved to point Er 0, an
interaction at this point is simulated, and, if the particle survives the interaction,
then the next free path is sampled.

Heterogeneous Medium. General Theory

The probability of a free path exceeding distance t is (see Sect. 3.1):

Pfl > tg D exp
��� 
Er; Er 0�	 (4.5)

where

�

Er; Er 0� D

Z t

0

	
�
Er C E�t0


dt0I (4.6)
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is the optical distance. Then, the cumulative distribution function (CDF) of the free
path is

F .t/ D 1 � exp
��� 
Er; Er 0�	: (4.7)

To sample a free path using the inversion method we first sample a � and then find
l by solving the following equation:

F .l/ D �: (4.8)

Voxelized Heterogeneous Medium

If the medium is heterogeneous, the algorithm can be simplified by dividing the
computational volume into small volumes, the so-called voxels, and assuming that
within each voxel the medium is homogeneous.

Let us consider a particle crossing an interface between two voxels, each
containing a different material, Fig. 4.1. The particle starts in material 1. First we
sample its free path l1 in material 1 assuming in this step that the material is infinite.
If the sampled free path is less than the distance to the nearest voxel boundary in the
direction of particle travel, E�, this simply brings the particle to a new collision point
that is inside voxel 1. If the free path exceeds the distance to the boundary then we
find free path l2 in material 2 by solving the equation

1 � exp
��� 
Er; Er 0�	 D 1 � �: (4.9)

Here, on the right-hand side, we wrote 1 � � instead of � to simplify slightly the
algorithm. This does not introduce any error because � and 1 � � have exactly the
same distribution. To calculate the optical distance � we note that in the voxelized
geometry 	 is a piecewise constant function of Er. In this example, 	.Er / D 	1 when
the particle is in voxel 1 and 	.Er / D 	2 when it is in voxel 2. After calculating the
optical distance � , and taking the logarithm of both sides of Eq. (4.9), we have:

Fig. 4.1 Boundary crossing
1 2

1

2
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� 	1l1 � 	2l2 D ln �; (4.10)

where l1 and l2 are the distances the particle travels in voxels 1 and 2. Distance l1 is
already known, it is the distance from the starting point Er to the boundary of voxel
1 in the direction E� the particle traveled. Distance l2 is the free path in voxel 2. It is
found by solving Eq. (4.10):

l2 D � 1

	2
ln � � 	1

	2
l1: (4.11)

Next, a check must be performed as to whether or not the particle traveling distance
l2 reaches the next boundary, for example, between voxels 2 and 3. If it does, .�	3l3/
is added to the left-hand side of Eq. (4.10) and l2 is replaced by the distance the
particles traveled within voxel 2. Then, this modified equation is solved for l3. If the
particle reaches yet another boundary, this procedure is repeated.

Maximum Cross-Section Method

This method works best when for any given energy, differences in cross sections
between different materials are small. This method does not require a voxelized
geometry.

Algorithm Groundwork

Find the maximum cross section 	max.E/, i.e., a cross section that for any point Er in
the computational domain satisfies:

	max .E/ � 	

Er;E� : (4.12)

Note, that 	max is a function of energy E, but it does not depend on Er. For brevity we
leave energy E out.

Algorithm Overview

The free path l is sampled from an exponential distribution

fl .t/ D 	max exp .�	maxt/: (4.13)

This step is no different from sampling the free path in a homogeneous medium.
On average, the free path sampled from this distribution is shorter than the real one,
and the number of interactions is higher. This bias, however, is compensated exactly
by performing the following. Once the particle arrives at the new interaction point,
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a random number is drawn to determine whether this interaction is real or it is a
ı-scattering. By definition, in ı-scattering neither particle energy nor its direction
changes. This is a fictitious interaction that is equivalent to no interaction occurring
at all. The probability of ı-scattering is given below (step 5 of the algorithm). To
summarize, there will be more interactions than in reality, but there will be no bias,
because only a fraction will be real interactions, and the rest will be ı-scattering.

Algorithm

1. Sample free path l from distribution 	max exp .�	maxl/.
2. Move the particle to the next point of interaction at Er 0 D Er C E� l.
3. If Er 0 is outside the computational domain, terminate the particle history.
4. Otherwise, determine what material is at point Er 0, find the cross section for this

material, 	

Er 0�.

5. Calculate the probability of ı-scattering, Pı D �
	max � 	 
Er 0�	 =	max.

6. Sample the type of interaction, ı-scattering or real. Generate a � . If � < Pı , then
it is a ı-scattering, otherwise it is a real interaction.

7. If it is a ı-scattering, nothing happens, go to step 1, and sample the next free path.
8. If it is a real interaction, simulate it. The particle momentum may change, or it

may be absorbed, and secondary particles may be produced. Proceed depending
on the outcome of the interaction.

Proof

We now prove that the above algorithm produces a distribution of path length
between real collisions that satisfies Eq. (4.5). The probability of a particle traveling
a distance t C dt without interactions is the product of the probability of traveling a
distance t without interactions and the probability of zero interactions within dt:

P .l > t C dt/ D P .l > t/P .n D 0jdt/ ; (4.14)

where n is the number or real interactions. In the algorithm, the free path is sampled
using the maximum cross section and at the collision point either a real interaction
or a ı-scattering takes place. As the particle travels a distance dt the probability of
a collision, which may or may not be real, is 	maxdt. Accordingly, the probability of
no collisions is 1 � 	maxdt. If a collision does occur within dt, the probability that
it is not a real one is Pı . If no collisions occur then, obviously, the probability of a
real interaction is zero. This brings us to a total probability equation given by:

P .n D 0jdt/ D 	maxdt � Pı C .1 � 	maxdt/ � 1; (4.15)
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where

Pı D 	max � 	.Er 0/
	max

I Er 0 D Er C E�t; (4.16)

as we defined earlier. We now substitute Eqs. (4.15) and (4.16) in Eq. (4.14) to arrive
at a simple differential equation for P.l > t/:

d

dt
P .l > t/ D �	 
Er 0�P .l > t/ : (4.17)

Solving this equation with the boundary condition P.l > 0/ D 1 produces
Eq. (4.5). ut

4.2.3 Interaction

After the free path is sampled and the particle has moved to a new interaction point,
the type of interaction is sampled. The type of interaction is a discrete random
number. If the total number of interaction types is k, then the distribution of this
random number is given by probabilities: p1, p2, : : :, pk. The probability pi, is the
ratio of the cross section for interaction of type i to the total cross section:

pi D 	i

	
I i D 1; 2; : : : ; kI (4.18)

	 D 	1 C 	2 C � � � C 	k: (4.19)

This brings us to the standard problem of sampling a discrete random number. We
have addressed it in Sect. 2.3.

Example

Gamma radiation (photons). The three main types of interaction are:

1. Photoelectric absorption. The photon disappears, a photoelectron is produced,
and, as a result of atomic de-excitation, Auger electrons or fluorescent photons
are emitted.

2. Compton scattering. The photon is scattered and a Compton electron is produced.
3. Pair production. It occurs only when photon energy exceeds 2mec2 D
1:022MeV. The photon disappears, an electron and a positron are produced.
The positron soon annihilates producing two photons.
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From the simulation viewpoint, interactions can be classified into the following
four types based on what happens to the primary particle:

1. Absorption. Particle history is terminated.
2. Scattering. Particle momentum changes. If particle energy falls below the

tracking cut-off, its history is terminated. Otherwise, the particle, now with a
new momentum, travels to the next interaction point.

3. Conversion. The primary particle disappears and a new particle, or particles, of a
different type, are produced.

4. Multiplication. After the collision, two or more particles of the same type as
the primary particle emerge. According to the quantum identity principle it is
impossible to determine which of the emerged particles, if any, is the primary
particle. For simulation purposes a common convention is that the most energetic
particle is the primary particle.

When a particle history is terminated, it is recommended to run an end-of-history
procedure. For example, in dose calculations it can process the residual energy of
the particle so as to ensure energy conservation. Any of the above interaction types
can in principle produce secondary particles. Moreover, after a particle interacts
with an atom, its electron shell or nucleus may undergo a transition to an excited
state. De-excitation may produce energetic particles, for example photons and
electrons, capable of ionizing the medium. If secondary particles are produced, their
parameters are stored in computer memory. Usually a stack-type array is used for
that purpose. The list of stored quantities should normally include: particle type,
weight, x, y, and z of its origin, and initial energy and direction, E�. Here, the
weight does not refer to the particle mass. It is an additional particle parameter
used in variance reduction techniques. Also, after a particle history is terminated,
an initial phase coordinate of the next particle is generated. To this end, the stack is
checked for particles that have not been simulated yet. If such particles are found,
the initial phase coordinate is read from the stack. If more than one particles are
present, parameters of the particle with the minimum energy should be read first.
This strategy is called the lexicographic scheme. Only after histories of all particles
from the stack have been simulated, a new particle can be emitted by the source.

4.3 Tallies

So far in this chapter, we have been mostly concerned with generating particle
trajectories. However, trajectories themselves are rarely the purpose of calculations.
As we mentioned in Chap. 3, our purpose, in most general terms is the calculation of
a detector reading J, for example dose or fluence at a given point, or more often, their
spatial distributions. The process of extracting information from generated particle
tracks to estimate an observable J is called tallying, and the estimators are called
tallies. In this section we introduce several basic tallies.
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4.3.1 Surface Crossing Tally

In Sect. 3.1, when we introduced Definition 1 of fluence, we wrote

dN
�
Er; E�;E


D ˆ

�
Er; E�;E

 ˇ̌̌ E� � En
ˇ̌̌
dA: (4.20)

The meaning of this equation is illustrated in Fig. (3.3). If we solve this equation for
fluence

ˆ
�
Er; E�;E


D 1

j E� � Enj
dN

dA
I j E� � Enj D j cos � j D j
j; (4.21)

we can see that to estimate fluence of particles traveling in direction E�, we need
to calculate the average number of particles per unit area of the surface and divide
the result by the absolute value of the cosine of the angle between the direction the
particle travels E� and normal En to the surface.

Then, to calculate fluence at a point Er, we place at this point a small flat
surface �A, generate particle trajectories, and calculate fluence using the following
equation:

ˆ D 1

�A

�X
iD1

1

j
ij ; (4.22)

where the summation is over all particles that crossed the surface. If we count all
particles that crossed the surface, then the result is an estimate of the total fluence. If
we count only particles traveling in a certain direction, or with a certain energy, then
the result is the angular or energy distribution of fluence, respectively. Practically,
however, we can only count particles whose vector E� is within a finite solid angle
�! and whose energy E is within a finite energy interval �E. Equation (4.22)
defines the surface crossing tally for fluence. To tally any other observable J, the 1 in
the numerator should be replaced by the corresponding detector response function
D.xi/.

4.3.2 Boundary Crossing Tally

Surface tallies estimate fluence or other quantities on a surface. The boundary
crossing tally, on the other hand, is intended for calculating quantities averaged
over a finite, usually small, volume �V . The word boundary here refers to the
boundary � of the volume �V . As usual, the tally is a sum. Contributions to the
sum are calculated when a particle crosses the boundary, either entering or leaving
the volume �V of interest.
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Boundary crossing tally is particularly useful for dose, or energy deposition
calculations. If a particle enters the volume �V with energy E and leaves it with
energy E0, then the energy Q deposited in �V is E � E0. If the particle does not
exit the volume, then Q D E. If one particle enters, but several exit, then we need
to subtract the total energy of all exiting particles, Q D E � P�

iD1 E0
i . Dose is the

average deposited energy Q divided by the mass of material in �V . Note, that this
is not the dose at a point, but the dose averaged over �V . Obviously, to calculate
the average Q, we need to generate trajectories of many particles, calculate energy
deposited by each particle, and then take the average of all the deposits. The latter
includes zero deposits for those particles that never reached the volume, or traversed
it without inelastic interactions. The described procedure is the boundary crossing
tally for dose or energy deposited. When a spatial dose distribution is calculated,
usually, the entire computational domain, or a large portion of it, is divided into a
large number of small volumes called voxels, and for each voxel a separate dose
tally is calculated.

4.3.3 Collision Tally

Let us consider a small volume�V . The average number of collisions in it, N.�V/,
is proportional to the collision density 	ˆ:

N .�V/ D 	ˆ�V: (4.23)

Then, the fluence averaged over �V can be estimated using the equation

ˆ D 1

�V

�X
iD1

1

	i
; (4.24)

where the summation is over all collisions in�V , and 	i is the total cross section of a
particle undergoing i-th collision. The cross section is calculated for particle energy
immediately before the collision. This formula defines the collision tally for fluence.
Fluence on the left-hand side of the above equation could be the total fluence, or
fluence differential in angle or energy, depending on what filters are applied when
collisions are counted.

Energy Q deposited in a volume �V can also be calculated as a sum over
collisions. The tally is obvious and given by:

Q .�V/ D
�X

iD1
�i; (4.25)

where �i is the energy deposited in i-th collision. It is calculated as the difference
between the particle energy before the collision and after collision, and the total
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energy of all particles produced in the collision. In ionization collisions, for
example, �i can be approximated by the ionization potential of the electron shell
involved in the interaction. This approximation, however, is not applicable when
ionization is followed by atomic de-excitation through fluorescence, emission of
Auger electrons, or other similar channels.

4.3.4 Track End Tally

This tally is invoked when particle trajectories are terminated. Its applications are
limited. We will give two examples.

Dose Calculation

If particle energy falls below the tracking cut-off, the trajectory is terminated. At
this point, the particle still has a certain amount of energy that must be included
in dose tally. In boundary crossing tally this residual energy is accounted for
automatically. For other tallies, this is not always the case, depending on tally type
and its implementation. Track end tally must be calculated, if no other tally accounts
for the residual energy. The same considerations also apply to particle absorption.

Ion Implantation Profiles

Ion implantation is an important technology used in semiconductor device fabri-
cation. Spatial distribution of concentration of implanted ions largely determines
properties of a semiconductor. This distribution is conveniently characterized by
depth and lateral ion implantation profiles. If these profiles are calculated with
Monte Carlo simulations, then the track end tally must be used. This is because
in this case we need to register the location, usually a voxel, where the ion stops.

4.3.5 Path Length Tally

According to Definition 2 of fluence (Sect. 3.1), fluence ˆ.x/ is the total distance
per unit volume traveled by particles with phase coordinate x. Directly from this
definition, it follows yet another method for estimating fluence, in which it is
averaged over a small volume �V . This tally, called the path length tally, is defined
by the following equation:
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ˆ D 1

�V

�X
iD1

li ; (4.26)

where the summation is over all free paths of all particles that entered �V , and li is
the part of a free path that belongs to �V .

Example: Electron Slowing Down Spectrum

The slowing down spectrum ˆ.E/ is a solution of the energy degradation equation
that we introduced in Sect. 3.9.3, Eq. (3.112). The Monte Carlo algorithm for solving
the equation is based on the use of path length tally. In this case, the fluence depends
only on electron energy and is spatially uniform. This means that we do not need to
track particle coordinates, or its direction of travel, and hence we can leave out the
volume �V .

Algorithm Groundwork

Determine the minimum and maximum possible electron energies, Emin and Emax.
Normally, Emin is equal to the tracking cut-off, and Emax is the maximum energy of
the electron source. Divide the entire energy range, from Emin to Emax, into energy
bins�Ei, i D 1; 2; : : : ; k. Boundaries of the energy bins should be equally spaced on
a logarithmic scale. Initialize the histogram array by setting hi D 0, i D 1; 2; : : : ; k.

Algorithm

It is written for an event-by-event technique, because these calculations are rela-
tively fast, hence there is no need to use condensed history methods. The following
are the calculations performed at one step of an electron trajectory.

1. Sample electron energy E0 immediately after an interaction. If this is the first
step, sample E0 from the energy distribution of the source. If E0 falls below the
tracking cut-off, terminate the history.

2. Sample free path l using the total cross section at energy E0, 	.E0/.
3. Find the energy bin �Ej to which energy E0 belongs, E0 2 �Ej.
4. Add the sampled free path length l to the corresponding histogram bin: hj D

hj C l.
5. Simulate an interaction, make the next step.

After a sufficiently large number of histories have been generated, simulations
are terminated, and the histogram estimate, ˆi, of the slowing down spectrum is
calculated
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ˆi D hi

N�Ei
; i D 1; 2; : : : ; k; (4.27)

where N is the number of histories. The units for the calculated fluence spectrum
are length over energy, e.g., nm/eV. It is normalized per source particle, and its
integral over energy is equal to the total path length of the primary electron and all
the secondary and higher generation electrons it produced. The number of electrons
produced by the primary electron is very large, and they tend to have low energies.
For this reason, statistical uncertainties at the low energy end of the slowing down
spectrum are much lower than those at the high energy end. This property can
be used to speed up the calculations. For example, first a relatively small number
of histories can be run with the minimal cut off energy, until a good accuracy
for the low energy part of the spectrum is achieved. Then, the cut-off energy can
be increased, and a larger number of histories are run to obtain the rest of the
spectrum. Of course, with a higher cut off energy, computing time per history will
be much lower. Finally, the results of these two calculations can be combined with
appropriate weights. Alternatively, a floating cut off can be used. For example, after
each batch of histories, the uncertainties are evaluated and, depending on the result,
the cut off is moved up or down on the energy scale. To convert the histogram
into fluence spectrum correctly, this approach will require counting and storing the
number of histories, separately for each energy bin.

4.3.6 Adjoint Function Tally

The adjoint function ˆC .x/ was defined in Sect. 3.1 as the average contribution to
an observable J from a particle originating at a phase point x. If, for example, fluence
is the observable, then ˆC .x/ is the fluence from a particle originated at x. Let us
consider the following problem.

Problem

For a source S.x/, calculate the fluence ˆ�A across a planar surface �A. The
medium is homogeneous, and the total cross section is 	.E/.

We have already introduced several tally types for this type of problems. Here
we introduce one more. It uses the unscattered adjoint function, ˆC

0 .x/, that often
can be found analytically. Figure 4.2 illustrates how this new tally is used. From the
definition of ˆC, we have:

ˆ�A D
Z

dx0S .x0/ˆ
C .x0/ ; (4.28)
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Fig. 4.2 Adjoint function tally

whereˆC .x0/ is the contribution to the fluenceˆ�A from particles that started with
a phase coordinate x0. Then, to estimate the integral in Eq. (4.28) we need to sample
x0 from the distribution S.x0/, and then calculate ˆC .x0/. For the latter calculation,
we could use the Monte Carlo method, and for example the surface tally. But there
is another way of using the Monte Carlo method for this calculation. At the first step
of the trajectory, we apply the total probability equation

ˆC .x0/ D P0 .x0/ˆ
C
0 .x0/C Œ1 � P0 .x0/� ˆ

C .x0jcollision/ ; (4.29)

where P0.x0/ is the probability that a particle starting from x0 reaches the surface
�A unscattered, and ˆC.x0jcollision/ is the adjoint function for a particle that also
started at point x0, but interacted at least once before reaching surface �A. The first
term on the right-hand side can be calculated analytically, yielding

P0 .x0/ˆ
C
0 .x0/ D exp Œ�	 .E0/ l0�

1

�Aj
0j I 
0 D
� E�0 � En


; (4.30)

where En is the normal to the surface �A. The result does not depend on which of
the two normal directions was chosen, because here the absolute value of the cosine
is taken. To calculate the second term on the right-hand side of Eq. (4.29), we move
the particle to the first interaction point, sample its phase coordinate, x1, after the
interaction, and then repeat exactly the same steps as for point x0. This will add
another analytical term, this time P0.x1/ˆ

C
0 .x1/. We continue these steps until the

last interaction point, the point number �. This procedure produces the following
estimate for fluence (see Fig. 4.2):
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ˆ�A D
��1X
iD0

P0 .xi/ˆ
C
0 .xi/ D

��1X
iD0

exp Œ�	 .Ei/ li�
1

�Aj
ij : (4.31)

This equation defines the adjoint function tally for fluence. Note that the last point
of the trajectory, point �, does not contribute to the sum, because it is the last point,
after reaching it the particle will not contribute to fluence.

Adjoint function tally is similar to collision tally in that it is a sum over particle
collisions. There are, however, significant differences. First, contributions to the
tally from a collision are different. Second, the adjoint function tally uses particle
phase coordinate after the collision, whereas collision tally uses particle energy
before the collision. Finally, adjoint function tally includes a contribution from x0
(at the source) and excludes that from x� (the last point). It is vice versa for collision
tally.

4.3.7 Other Tallies

In this section, we overview a few other, frequently used, but more specialized
tallies.

Voxel Tally

In this technique, the computational domain is divided into small cuboids, called
voxels. For each voxel a material must be defined. In a heterogeneous medium,
there could be more than one material in a voxel, and the density in a voxel could be
nonuniform. If the voxel is sufficiently small, variations in material properties within
a voxel can be neglected, and a uniform material can be assigned to each voxel.
This involves averaging material properties over the voxel volume, and introduces
systematic errors.

This technique is often used for calculations of patient dose distributions in
external beam radiotherapy. In this case, the anatomical information is presented
in the form of a computed tomography (CT) image of the patient. Other imaging
modalities can also be used in the treatment planning process. They usually provide
complementary information, helping in locating the tumor, or measuring the extent
of its motion. To perform Monte Carlo calculations, the CT image has to be
converted into a voxelized phantom. An important step in the conversion procedure
is translating the image data into material properties. More specifically, in the CT
image anatomical information is given in the Hounsfield units (HU). For Monte
Carlo calculations an algorithm that for any given HU number outputs the material
chemical composition and its density is required. In this technique, voxels not only
define the geometry and materials, but also are usually used to tally the dose.
Then, choosing the voxel size is an optimization problem of finding a balance



4.3 Tallies 123

between statistical uncertainties and systematic errors caused by voxelization of the
geometry. For patient dose calculations the voxel size is typically between 2 and
4 mm, and is uniform throughout the phantom. This type of calculation should be
performed for research purposes only, and not for planning or guiding any actual
treatments.

Before a Monte Carlo system can be used for patient dose calculations, at
least some basic tests must be performed. They should include calculation of dose
distributions in a water phantom and comparing the results with measurements. In
external beam radiotherapy, the dose distributions are characterized by depth dose
curves and lateral profiles. The depth dose is simply dose as a function of depth. It is
normally measured on the central axis of the beam and for a range of field sizes. The
lateral dose profile is the dose as function of distance from the central axis of the
beam, measured in a plane normal to the central axis. Dose profiles are measured at
several depths and for a range of field sizes.

Examples of measured depth dose curves and lateral profiles are shown in
Figs. 4.3 and 4.4, respectively. An important property of depth dose curves is a
steep dose gradient at the depths of up to 1–3 cm depending on beam energy. Dose
calculations in this, so-called build-up region, require a voxel size of 2 mm or less
in the depth direction. The voxel size can be gradually increased beyond this region,
but it should not exceed 4–5 mm. The optimal voxel size in the lateral direction
depends on dose variation in that direction. The latter can be seen in the lateral
dose profiles. In a conventional accelerator, a flattening filter is placed in the beam
line to achieve a more uniform fluence profile. In this case, the voxel size in the
lateral direction can be as large as 1 	 1 cm, except near the beam edges, where
dose gradient is high. In more recent accelerator models, the flattening filter can
be removed to produce the so-called flattening filter free (FFF) beams. The effect
of removing the flattening filter on lateral profiles can be seen in Fig. 4.4. For FFF
beams, the lateral size of the voxels should be reduced. In this case the degree of

Fig. 4.3 Measured depth
dose dependence for
10� 10 cm photon beams
(Vassiliev et al. 2006): 6 MV
with a flattening filter (dashed
line), 6 MV FFF (solid line),
4 MV with a filter (circles).
©Institute of Physics and
Engineering in Medicine.
Reproduced by permission of
IOP Publishing. All rights
reserved
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Fig. 4.4 Measured lateral dose profiles (Vassiliev et al. 2006): 6 MV photon beams with (two
upper curves) and without (two lower curves) a flattening filter. The field size is 40 � 40 cm. The
depths are 1.4 cm (no filter, solid line), 1.5 cm (with filter, solid line), and 20 cm (with and without
filter, dashed lines); x is the distance from the central axis, x50 is the distance where the dose
(with the filter) drops to 50 % of dose on the central axis. ©Institute of Physics and Engineering in
Medicine. Reproduced by permission of IOP Publishing. All rights reserved

beam non-flatness increases with increasing beam energy, and voxels sizes should
be adjusted accordingly. In lateral dose profiles, there is a very steep dose gradient
in the penumbra area, i.e., in the area around the point x50, where the dose drops to
50 % of the dose on the central axis. In the penumbra region, the voxel size in the
lateral direction should not be larger than 1–2 mm. It can be gradually increased
away from this region, perhaps up to about 5 mm provided that the profile is
sufficiently flat. It should be kept in mind that the location of the penumbra changes
with depth, because the beams are divergent. The voxel size in the depth direction
for lateral profiles should not exceed 2–4 mm.

Mesh Tallies

In the voxel tally method the material geometry and tallies are defined on the same
spatial grid. This is not always an optimal configuration. For example, tallies may
require a higher spatial resolution grid than the grid needed for defining materials.
In the mesh tally method, the material geometry and tallies are defined on two
generally different grids. Neither grid has to be rectangular. A mesh for tallying dose
can be, for example, cylindrical or spherical. A mesh tally can define either surface
or volume tally types. A downside of using mesh tallies for dose calculations is that,
in this case, one needs to know the mass of matter in each volume defined by the
mesh tally, but because materials are defined on a different spatial grid, a volume
defined by the mesh tally may contain several different materials.
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Current Tally

The current j is sometimes also referred to as the “planar fluence.” It does not appear
anywhere in the formalism presented in this book. It, however, has been mentioned
in the literature (Lewis and Miller 1993), and the tally has been implemented in
some standard Monte Carlo software. The current tally is similar to the surface tally
for fluence, Eq. (4.22), except that it does not include the cosine:

j D 1

�A

NX
iD1

1: (4.32)

Here the sum is over all particles crossing the surface �A. The tally gives the net
number of particles crossing the surface, per unit area. It is highly unlikely that this
tally will be needed for radiotherapy applications. It certainly cannot be used as a
substitute for fluence tally. One example where the current tally may by appropriate
is in problems involving charged particles, electrons for example, and the quantity
that needs to be calculated is the electric current across a surface. Current can also be
defined as a vector Ej that is parallel to E�. It can also be a signed scalar, i.e., negative
or positive depending on the direction from which the particle reaches the surface,
or the particle charge.

Pulse Height Tally

It is similar to the boundary crossing estimator of deposited energy. The difference
is that the deposited energy estimator outputs the average energy deposited in a
volume �V , whereas pulse height tally outputs a histogram. The entire range of
possible energy deposits is divided into energy bins. When the energy deposited
by an individual particle (referred to as “pulse height”) is determined, and it falls
within an energy bin j, the number of counts in bin j is incremented by 1. Variance
reduction techniques (Sect. 4.4) generally cannot be used for this tally type, because
the Boltzmann equation is not applicable to fluctuational characteristics, such as
pulse height distributions.

4.4 Variance Reduction

4.4.1 Algorithm Efficiency

The general Monte Carlo process involves the following steps:

1. Generate a large number, N, of particle histories.
2. Each history produces an estimate �i of a quantity of interest, such as the dose in

a voxel.
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3. Estimate the expectation of �i using the sample average

Ef�g D 1

N

NX
iD1

�i: (4.33)

Because N � 1, the sample average is usually normally distributed, according
to the central limit theorem. There are, however, exceptions where the theorem
is not applicable, for example when the variance of �i is infinite.

4. Estimate the variance of the sample average:

Var

(
1

N

NX
iD1

�i

)
D Varf�ig

N
: (4.34)

5. Choose a confidence level p, find a confidence interval. For example, if p D 0:95,
then the confidence intervals is (Appendix A)

"
1

N

NX
iD1

�i � 1:96
p

Varf�igp
N

I 1

N

NX
iD1

�i C 1:96
p

Varf�igp
N

#
: (4.35)

In other words, at the confidence level of 0.95 the uncertainty is approximately 2
standard deviations.

The above scheme is, of course, simplified, and deviations from it are possible. From
the above equation, the uncertainty is

ı D 1:96
p

Varf�igp
N

: (4.36)

The sample size or the number of histories Nı needed to achieve a given level of
uncertainties is then

Nı D 1:962Varf�ig
ı2

: (4.37)

Accordingly, the total CPU time T needed to achieve an uncertainty level ı is

T D tNı D t � Varf�ig
ı2

1:962; (4.38)

where t is the average CPU time needed to generate one �i, i.e., time per history.
Then, an efficient algorithm will have a small value of the product t � Varf�g, and

the efficiency � of a Monte Carlo algorithm can be defined as

� D .t � Varf�ig/�1 : (4.39)
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Normally, Varf�ig is not known, but it can be replaced by the sample variance s2.
Ideally, we would like to reduce both t and Varf�ig. In reality, the focus is on
achieving a significant reduction in Varf�ig that does not slow down calculations
too much, so that the product t � Varf�ig is reduced.

If, after an algorithm modification, the above goal is achieved, and the expecta-
tion Ef�g remains exactly the same, i.e., no systematic errors are introduced, then
the technique is referred to as variance reduction.

4.4.2 Particle Splitting

There are two similar methods of particle splitting. In method 1, when a particle
undergoes an interaction that produces one or more secondary particles, the number
of secondary particles is artificially increased by a factor of n, as compared with the
real process. All the secondary particles are sampled from the same distribution, and
each new particle has a different (random) momentum. To compensate for the bias
in the number of secondary particles, each particle is assigned a weight of 1=n. For
example, in a medical accelerator, an electron is incident on a tungsten target and
produces bremsstrahlung photons, as shown in Fig. 4.5. These photons deliver the
treatment dose. If in a collision the electron produces one photon, in a Monte Carlo
algorithm we can, instead, produce for example five, each with a weight of 1/5. The
benefit is that there are more photons produced per incident electron. This saves the
CPU time, because simulation of electron trajectories is relatively slow, but the dose
to a patient is delivered mostly by photons.

In a variation of this technique, all five bremsstrahlung photons would have
exactly the same momentum. This saves some time, because instead of five times,
the photon momentum is sampled once. The downside is that the trajectories of the
five photons are correlated, especially near the point of origin.

In method 2, a particle is split into n > 1 identical particles as it enters a volume.
All daughter particles originate at the point of entry on the volume boundary and
have the same momentum as the parent particle. To compensate for the bias, each
of the n particles is assigned a weight of 1=n.

Fig. 4.5 Particle splitting e– e–

Target

γ weight = 1 γ weight = 1/5

γ γ
γ γ

γ

γ
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The purpose of particle splitting is to increase the number of particles that are
more likely to contribute to detector reading, and not of those particles that have little
chance of reaching it. Particle splitting does not necessarily improve the algorithm
efficiency, because of the additional CPU time needed to generate trajectories of
extra particles. For this reason particle splitting should be limited to a relatively
small volume, perhaps around the detector. It would also help, if trajectories of extra
particles were terminated when they travel far enough from the detector. However,
simply terminating particle histories at a certain distance from the detector would
introduce a systematic error. The Russian roulette technique presented in the next
subsection achieves the same result, i.e., termination of particle histories where it is
needed, but with the bias compensated exactly by particle weights.

4.4.3 Russian Roulette

A Russian roulette technique is, in a sense, the opposite of particle splitting. Its
purpose is to kill particles that are unlikely to contribute to detector reading, which
obviously saves computing time. Similarly to particle splitting, Russian roulette can
be played at a collision point, when secondary particles are produced, or when a
particles enters a volume. In either case, a survival probability ps < 1 must be
specified for each particle. Then a random number � uniformly distributed in .0; 1/
is generated, and if � > ps, then the particle history is terminated. Otherwise, the
particle survives and its weight increases by the factor of 1=ps.

The particle splitting technique and Russian roulette can be used to limit
fluctuations of particle weights when particle trajectories are biased. In a technique
called weight window, weights are restricted to a user defined range (“window”)
from wmin to wmax. Particles with weights lower than wmin are eliminated using
Russian roulette. In this case a low weight particle is either killed or, if it survives, its
weight increases. Similarly, particles with weights exceeding wmax are split, which
results in weight reduction.

4.4.4 Forced Collisions

If we need to increase the average number of interactions in a certain volume V , we
can artificially increase interaction cross sections in this volume, and compensate for
the bias by weights Qn defined in Sect. 3.10. The forced interactions technique offers
an alternative approach. In this approach a particle entering the volume interacts
within it at least once with the probability pc (collision probability) defined by the
user.
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Fig. 4.6 Forced interactions

V
s

Let us consider a simple case of a homogeneous material. The free path length is
distributed exponentially between zero and infinity:

p .l/ D 	 exp .�	 l/I l � 0: (4.40)

We then introduce a biased distribution Qp.l/, where the exponential distribution is
modified so that the particle interacts within the volume with probability pc. We will
assume that when l D 0 the particle is on the surface of the volume, entering it, and
that s is the projected chord length of the particle within volume V , as shown in
Fig. 4.6. The biased distribution is

Qp .l/ D pcf1 .l/C .1 � pc/ f2 .l/ I 0 < pc < 1; (4.41)

where

f1 .l/ D
(

A1 exp .�	 l/; 0 � l < sI
0; l � s and l < 0I (4.42)

and

f2 .l/ D
(

A2 exp .�	 l/; l � sI
0; l < s:

(4.43)

To sample from the biased distribution Qp.l/we can use the algorithm for sampling
a sum of distributions that we discussed in Sect. 2.7. According to this algorithm,
we sample with probability pc from distribution f1.l/ and with probability 1 � pc

from distribution f2.l/. Distribution f1.l/ is defined so that it is zero everywhere
except within volume V . Hence, with probability pc the interaction occurs within V .
Similarly, with probability 1 � pc the interaction point occurs beyond point l D s,
that is outside V .

The normalization constants A1 and A2 can be found from

Z 1

0

dl f1 .l/ D
Z 1

0

dl f2 .l/ D 1; (4.44)
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resulting in

A1 D 	

1 � exp .�	s/
I A2 D 	 exp .	s/: (4.45)

Because we are biasing the particle trajectory, specifically the distribution of free
path, we need to calculate the weight and assign it to the particle. For each particle
the weight is calculated only once, because only one step of the particle trajectory
is biased, that is the step that begins on the volume surface, when the particle enters
the volume. According to Eq. (3.175) that defines the weight, the weight is equal
to the ratio of the kernel kF.x0 ! x/ to the transition probability of the Markov
process p.x0 ! x/. Our transition probability coincides with the kernel, except
that the exponent of the form given by Eq. (4.40) is now replaced by Qp.l/ given
by Eqs. (4.41)–(4.43). Hence, the particle weight is

w .l/ D p .l/

Qp .l/ D
(
Œ1 � exp .�	s/� =pc ; l < sI
exp .�	s/= .1 � pc/ ; l � s:

(4.46)

The weight is not defined for pc D 1 and pc D 0. This brings us to the following
simple algorithm.

Algorithm

1. Generate a � (i.e., a random number uniformly distributed in (0,1)).
2. If � < pc, then sample free path l from the distribution f1 .l/. This will place the

interaction point within V . Else, sample free path l from distribution f2 .l/.
3. Multiply particle weight by w, given by Eq. (4.46).

Distributions f1.l/ and f2.l/ can be sampled by the inversion method. The
sampling formula for f1.l/ is

l D � 1
	

ln Œ1 � � C � exp .�	s/�; (4.47)

and for distribution f2.l/ the formula is

l D � 1
	

ln � C s: (4.48)

In an alternative, and more common version of the forced collisions technique, at
the surface of the volume, the particle is split in two: one particle interacts within the
volume (distribution f1.l/), and the other particle starts at a point l > s outside the
volume (distribution f2.l/). The bias is compensated by weights (see, for example,
Abe et al. 2011). We have presented a more general version of the technique
where the user can adjust the frequency of collisions in the volume of interest by
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choosing an appropriate value of the collision probability pc. In other words, pc is
an optimization parameter that can be adjusted to maximize the performance of a
Monte Carlo code. With pc D 1=2 our version of the technique is equivalent in
statistical sense to this particle splitting algorithm. The difference is that instead of
splitting each particle entering the volume, in our algorithm on average half of all
particles (if pc D 1=2) is forced to interact within the volume and the other half
traverses the volume without an interaction.

4.4.5 Exponential Transform

This is yet another trajectory biasing technique. Some authors consider it standard
for deep penetration problems, such as shielding calculations. In this technique the
real total cross section, 	 , is replaced by a modified cross section Q	 , which is a
function of the polar angle � , see Fig. 4.7.

This function is such that the modified cross section is small for particles
traveling at small � , i.e., for particles aimed at the detector. For particles traveling
away from the detector, � > �=2, the cross section is large. A popular choice for
the modified cross section is:

Q	 D 	 � a � cos � D 	 � a � 
: (4.49)

The parameter a is called the stretching parameter. It is subject to constraint
0 < a < 	min that ensures the positivity of Q	 . The parameter can be a function
of energy, but here we will present the formalism for a constant a. Adaptation to an
energy dependent a is straightforward. The formalism is an example of the general
trajectory biasing method introduced in Sect. 3.12.2. To implement this method, all
we need is to find the weights Qn that compensate for the trajectory bias. To do so,
we will use Eqs. (3.208)–(3.209), but we now rewrite them with the modified cross
section given by Eq. (4.49):

Fig. 4.7 Exponential
transform

z

θ

Ω
→
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QiC1 D Qi
	 .EiC1/
Q	 .EiC1/

exp fŒ Q	 .EiC1/ � 	 .EiC1/� liC1g Q	 .Ei/

	 .Ei/

D Qi
	 .EiC1/
Q	 .EiC1/

exp .�a
iC1liC1/
Q	 .Ei/

	 .Ei/
: (4.50)

Q0 D 	 .E0/

Q	 .E0/
ˆ0 .x0/
Q̂
0 .x0/

D 	 .E0/

Q	 .E0/ exp .�a
0l0/: (4.51)

Because we did not bias the scattering cross sections, the ratio of differential
scattering cross sections 	s.� � � /= Q	s.� � � / that is present in Eq. (3.208) is now equal
to 1.

Notice that
iC1liC1 D ziC1�zi, where ziC1 and zi are z-coordinates of the particle
at the respective points of its trajectory. This leads to a significant simplification and
saving of computing time. If a particle starts at z D 0, then its weight at the collision
point k is simply

Qk .x0; x1; : : : ; xk/ D 	 .Ek/

Q	 .Ek/
exp .�azk/: (4.52)

Hence, there is no need to calculate the weight for each particle at every step.
Instead, the weight is calculated only for those particles that reach the detector and
only when they do so. Interestingly enough, the weight does not explicitly depend
on particle prior history, it is determined only by particle parameters at the current
collision point.

4.4.6 Using Symmetry

The material included in this section was originally published in Kolchuzhkin
and Vassiliev (1986). ©1986 Plenum Publishing Corporation. With permission of
Springer.

In this technique particle trajectories are not biased. Instead, the source S.x/
is transformed into a point monodirectional source, and the detector D.x/ is
modified so that the detector reading J remains exactly the same as it was in the
original formulation of the problem. Algorithm efficiency improves because the
modified detector is larger than the original and, therefore, more particles reach it.
Additionally, sampling of the source distribution is simplified. Here, the formalism
is presented for the maximum symmetry case. It is assumed that the medium is
infinite and homogeneous. To apply the formalism to other symmetry types, the
transformation operators used below, translation and rotation, need to be replaced
by operators corresponding to the specific symmetry type. The formalism was
developed by Kolchuzhkin and Vassiliev (1986).

Because the Boltzmann equation is linear, its solution can be expressed in terms
of the Green’s function G.Er; E�;E j Er 0; E� 0;E 0/:
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ˆ
�
Er; E�;E


D
Z

dEr 0
Z

d E� 0
Z

dE 0G.Er; E�;E j Er 0; E� 0;E 0/S
�
Er 0; E� 0;E 0 :

(4.53)
The Green’s function G.Er; E�;E j Er 0; E� 0;E 0/ is the fluence at point .Er; E�;E/ from
a particle that originated at point .Er 0; E� 0;E 0/. Accordingly, the equation for an
observable takes the form

J D
Z

dEr
Z

d E�
Z

dE
Z

dEr 0
Z

d E� 0
Z

dE 0D
�
Er; E�;E



	G.Er; E�;E j Er 0; E� 0;E 0/S
�
Er 0; E� 0;E 0 : (4.54)

In a homogeneous infinite medium, the Green’s function is invariant with respect to
translations and rotations. Therefore,

G.Er; E�;E j Er 0; E� 0;E 0/ D G.Er � Er 0; E�;E j E0; E� 0;E 0/; (4.55)

and

G.Er�Er 0; E�;EjE0; E� 0;E 0/ D G. OR
Œ E�0; E�0�


Er � Er 0� ; OR
Œ E�0; E�0� E�;EjE0; E�0;E

0/; (4.56)

where OR
Œ E�0; E�0� is the rotation operator in which vector E�0 is superimposed on vector

E�0 directed along the z-axis. If .� 0; �0/ are the polar and azimuthal angles of vector
E�0, then the corresponding rotation matrix is

OR
Œ E�0; E�0� D

0
@ cos � 0 0 � sin � 0

0 1 0

sin � 0 0 cos � 0

1
A
0
@ cos�0 sin�0 0

� sin�0 cos�0 0
0 0 1

1
A

D
0
@ cos � 0 cos�0 cos � 0 sin�0 � sin � 0

� sin�0 cos�0 0

sin � 0 cos�0 sin � 0 sin�0 cos � 0

1
A : (4.57)

The two matrices in the upper half of the equation represent two rotations: first,
E�0 was rotated about the z-axis by angle ��0, and then it was rotated about the y-
axis by angle �� 0. The matrix in the lower part of the equation is the product of the
two matrices.

Next, we insert Eqs. (4.55) and (4.56) into Eq. (4.54), and replace the integration
variables Er and E� with new variables:

Er 00 D OR
Œ E�0; E�0�


Er � Er 0� I E� 00 D OR
Œ E�0; E�0� E�: (4.58)

The Jacobian of this transformation of variables (translation and rotation) is equal
to 1. The inverse transformation is



134 4 Particle Trajectories, Tallies, and Variance Reduction

Er D Er 0 C OR�1
Œ E�0; E�0�Er

00I E� D OR�1
Œ E�0; E�0�

E� 00; (4.59)

where OR�1 denotes the inverse operator. Then, the integral becomes

J D
Z

dEr 00
Z

d E� 00
Z

dE
Z

dE 0 QD
�
Er 00; E� 00;E;E 0G

�
Er 00; E� 00;E j E0; E�0;E

0 ;
(4.60)

where

QD
�
Er 00; E� 00;E;E 0 D

Z
dEr 0

Z
d E� 0D

�
Er 0 C OR�1

Œ E�0; E�0�Er
00; OR�1

Œ E�0; E�0�
E� 00;E



	S
�
Er 0; E� 0;E 0 (4.61)

is the modified detector response function.
If in the source S, and detector D, angular and spatial dependence can be

separated from the energy dependence, i.e.

S
�
Er; E�;E


D SE .E/ S

�
Er; E�


I (4.62)

D
�
Er; E�;E


D DE .E/D

�
Er; E�


; (4.63)

then

QD
�
Er; E�;E;E 0 D DE .E/ SE



E 0� QD

�
Er; E�


; (4.64)

where

QD
�
Er; E�


D
Z

dEr 0
Z

d E� 0D
�
Er 0 C OR�1

Œ E�0; E�0�Er; OR�1
Œ E�0; E�0�

E�


S
�
Er 0; E� 0 : (4.65)

Inserting Eqs. (4.64) and (4.65) into Eq. (4.60) produces the following representa-
tion for the detector reading J:

J D
Z

dEr
Z

d E�
Z

dE
Z

dE 0DE .E/ QD
�
Er; E�


G
�
Er; E�;E j E0; E�0;E

0 SE


E0� :
(4.66)

This representation is the basis of our formalism for using symmetry of a problem
to improve efficiency of Monte Carlo algorithms. Comparing this result with the
original representation in Eq. (4.54), it can be seen that in a homogeneous infinite
medium, the readings of a detector with sensitivity function DE.E/D.Er; E�/, in the
radiation field from a source SE.E/S.Er; E�/ are equal to the readings of detector
DE.E/ QD.Er; E�/, in the radiation field of a point monodirectional source with energy
spectrum SE.E/. This formalism is applicable to other symmetry types. In that case,
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the derivation of the modified detector response function should follow the same
steps as we have just presented, starting with an appropriate form of Eqs. (4.55)
and (4.56).

Example

The readings of a point isotropic detector located at point Er �

D
�
Er; E�


D ı


Er � Er �� (4.67)

in the field of a planar isotropic source located at z D 0

S
�
Er; E�


D 1

4�
ı .z/ (4.68)

is equal to the reading of a detector

QD
�
Er; E�


D
(
1
2r ; if r > jz�j
0; otherwise

(4.69)

in the field of the point monodirectional source

Sı
�
Er; E�


D ı


Er � ı � E� � E�0


: (4.70)

Proof

In this example we ignore any energy dependence. All we need to do is to find
the modified detector response function for the detector and the source given by
Eqs. (4.67) and (4.68). To do so, we will use Eq. (4.65) which in this case has the
following form:

QD
�
Er; E�


D
Z

dEr 0
Z

d E� 0ı
�
Er 0 C OR�1

Œ E�0; E�0�Er � Er � 1

4�
ı


z0� : (4.71)

Operator OR�1
Œ E�0; E�0� only rotates the vector Er and does not change its length. Hence, we

can write OR�1
Œ E�0; E�0�Er D r E� 00, and then replace the integration variable E� 0 with E� 00.

We also change the order of integration to obtain:

QD
�
Er; E�


D 1

4�

Z
d E� 00

Z
dEr 0ı

�
Er 0 C r E� 00 � Er � ı 
z0� : (4.72)
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We can now integrate over x0, y0, and z0. The integration limits for each of the three
variables are from �1 to C1. The result is:

QD
�
Er; E�


D 1

4�

Z
d E� 00ı



r� 00

z � z�� D 1

4�

Z 2�

0

d� 00
Z 1

�1
d
 00ı



r
 00 � z�� :

(4.73)
Finally, in the second integral we replace the integration variable 
00 with t D r
00,
and arrive at the expected result:

QD
�
Er; E�


D 1

2r

Z r

�r
dt ı



t � z�� D

(
1
2r ; if r > jz�j;
0; otherwise:

(4.74)

ut
This example shows how simple this technique can be. In the above proof, for

example, we did not have to write the rotation matrix, or its inverse. Solving with
Monte Carlo this problem in its original formulation, with an infinite planar source
and a point detector, would be very challenging. In an algorithm copying the real
process, particle trajectories would start at random positions on an infinite plane,
and only a very small fraction of them reaching a small volume around the detector
location Er � would contribute to the tally. Using symmetry of the problem results
in a much more efficient algorithm. In the modified algorithm, all particles start at
the origin and contribute to the tally each time they undergo a collision at a point
outside a sphere of radius jz�j centered at the origin. Finally, it would be difficult,
if possible, to derive the modified detector response function QD, Eq. (4.74), solely
from intuitive arguments, without using our formalism.

4.4.7 Correlated Sampling

Problem

For an observable J we need to calculate the difference �J D J2 � J1 between
two problems very similar in terms of the geometry, materials, sources, etc. If
calculated with Monte Carlo, J2 and J1 are random numbers. If these two numbers
are calculated independently, in separate calculations, then the variance of the
difference �J is approximately twice that of either J1 or J2, i.e.:

Varf�Jg D VarfJ1g C VarfJ2g � 2VarfJ1g: (4.75)

Then, if the difference �J is small, chances are, it cannot be estimated with a good
accuracy.
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Method

The idea of using correlated sampling comes from this equation

Varf�Jg D VarfJ1g C VarfJ2g � 2 Cov .J1; J2/ : (4.76)

It is applicable when J1 and J2 are not statistically independent. It can be seen that
Varf�Jg can be reduced if J1 and J2 are correlated and the covariance is positive.
Given that the two problems are similar, the correlation is likely to be positive,
in which case Cov.J1; J2/ > 0.

Algorithm

Correlation is achieved by calculating J1 and J2 on exactly the same trajectories.
For example, trajectories are generated in a setup representing problem 1. Then all
weights Qn are equal to one when J1 is calculated. The weights for J2, however, need
to be calculated because trajectories generated in the setup of problem 1 are biased,
if used for solving problem 2. Trajectory biasing and calculations of the weights
were discussed in Sect. 3.12.2. In that formalism the detector reading J is calculated
as the expectation value of a random value � that is calculated as the following sum:

� D
�X

nD0
Qnh .xn/ : (4.77)

To apply this formalism to calculate J1 and J2 on trajectories generated in the setup
of problem 1, we will need to estimate the expectation values of these two random
variables

�.1/ D
�X

nD0
h .xn/ I �.2/ D

�X
nD0

Qnh .xn/ : (4.78)

It is important that the random states x0; x1; : : : x� of a Markov chain in the two sums
are exactly the same. Accordingly, to calculate the difference �J, we will need to
tally the following sum:

�� D �.2/ � �.1/ D
�X

nD0
.Qn � 1/h .xn/ : (4.79)
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4.5 Approximate Acceleration Techniques

Algorithm acceleration techniques are very common in Monte Carlo software.
In fact, software not using at least one of the techniques presented in this section
would be highly unusual. These techniques cannot be described as variance
reduction, because they introduce systematic errors. These errors usually can be
made as small as needed for a particular problem.

Condensed History Algorithms

Condensed history algorithms are very effective for solving problems involving
charged particles. We discuss these algorithms in depth in the next chapter.

Range Rejection

This technique is usually used for electrons. In a voxelized geometry, when an
electron is produced, its maximum range is calculated. If the range is smaller than
the distance to the nearest voxel boundary, then its history is terminated. This
introduces a systematic error, because this electron could produce a bremsstrahlung
photon but its history was terminated before it could do so. Moreover, electron range
is random and the actual range may exceed the calculated maximum range with
some probability. This technique can also be used when geometry is not voxelized.
In this case, electron trajectory is terminated, if the electron or its progenies cannot
reach the detector, or contribute negligibly to detector reading.

Transport Cut-Offs and Production Thresholds

Transport cut-offs and production thresholds were discussed in Sect. 4.1. They are
unavoidable in algorithms for transport of charged particles because in this case
trajectories are essentially infinite. For example, an electron undergoes inelastic
collisions and loses its kinetic energy, but it does not stop completely, nor is
it absorbed. It is eventually thermalized and continues to move, now with the
kinetic energy corresponding to the thermal energy of surrounding medium. The
performance of algorithms for dose calculations from photon and electron sources
is very sensitive to electron transport cut-offs and production thresholds. Cross
sections for the production of secondary electrons are such that a large number
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of low energy delta electrons is produced. If these cut-off and threshold energies
are set too low, an avalanche of low energy electrons is produced, slowing down
calculations significantly.

Kerma Approximation

In kerma approximation it is assumed that the energy transferred by neutral particles
to matter is deposited locally, i.e., at the point of interaction, and that the absorbed
dose is equal to kerma. This approximation is not generally applicable to photon
beams in the megaelectron-volt range. However, therapeutic photon beams are
polyenergetic and have a significant low-energy component. Then, for photons
below a certain threshold energy, kerma approximation can be used, and secondary
electrons produced by low energy photons do not need to be simulated.

We have named only a few acceleration techniques, chosen somewhat arbitrarily.
Improving performance of Monte Carlo software has been a focus of extensive
research in radiotherapy physics driven by the demand for fast and accurate software
that can be used routinely for treatment planning. Abundant literature is available
for more insight into approximate acceleration techniques.
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Chapter 5
Transport of Charged Particles

5.1 Overview

Charged particles that play an important role in radiotherapy include electrons,
positrons, protons, and carbon ions. Other ions with relatively small atomic numbers
are presently being considered as possible alternatives to proton and carbon-ion
beams. Charged heavy recoils can also be produced in nuclear reactions. This
effect can be significant and should be accounted for in dose calculations for
hadrontherapy.

The most accurate Monte Carlo technique for charged particles involves event-
by-event algorithms (see Chap. 6), where all interactions are simulated explicitly,
and particles travel along a straight line with a constant energy between successive
interactions. In other words, the same general algorithm is used for charged particles
and neutral particles.

The drawback of this approach is the slowness of the algorithms due to the
interaction cross sections being typically orders of magnitude larger for charged
particles than for neutral particles. This is illustrated in Fig. 5.1 which shows tracks
for three 10-MeV protons in water (Wang and Vassiliev 2014). Each dot in the figure
represents an inelastic collision, either an ionization or an excitation. The tracks
were generated with the Geant4-DNA software (Incerti et al. 2010; Bernal et al.
2015). The figure shows that the free path is of the order of only a few nanometers.

The standard solution to this problem is to use condensed history algorithms.
In a first instance, let us consider only electrons. All interactions are classified
as “catastrophic” or “soft,” depending on the energy �E lost by an electron in
a collision. If �E exceeds a threshold energy Ec, the collision is classified as
catastrophic, and otherwise, as soft. The choice of threshold energy Ec depends
on the desired level of accuracy. Choosing Ec D 0 maximizes the accuracy, but
forces the algorithm to proceed “event-by-event.” All catastrophic collisions are
simulated explicitly. Multiple soft collisions are accounted for approximately by
using a multiple scattering theory. Multiple scattering theories predict probability
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Fig. 5.1 Tracks of 10 MeV protons at a dose of approximately 2 Gy (Wang and Vassiliev 2014).
Each dot represents an inelastic collision, ionization or excitation. Proton tracks are shown in blue,
and delta electron tracks are in red. Used with permission

distributions of particle parameters after the particle has traveled a given distance.
Such theories are applicable only to small distances. For this reason the electron
trajectory between catastrophic collisions is generated step-by-step. The step size
in a condensed history algorithm is an important parameter, chosen to optimize the
balance between computing speed and accuracy. Examples of upper constraints on
the step size are the energy lost by a particle and the magnitude of its lateral or
angular deflection. The optimal step size depends on the particle energy and material
properties. Several multiple scattering theories are introduced in this chapter.

Overview of a Typical Algorithm

1. Sample the initial phase coordinate of an electron, from the source distribution
if it is emitted by the source or from differential cross sections, if it is a delta
electron produced in a collision.

2. Sample a free path (distance) to a catastrophic collision.
3. Compare the free path to the step size.
4. If the free path is less then the step size, then:

(a) Move the particle to the point of collision. An important difference from
neutral particles is that, as an electron travels to the point of a catastrophic
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collision, its parameters change in soft collisions. To sample the parameters
of an electron when it arrives at the point of collision, multiple scattering
theory is applied.

(b) Simulate the catastrophic collision.
(c) If secondary electrons are produced with energies exceeding Ec, their

trajectories will need to be simulated. Simulations should start with the
lowest energy particle. Parameters for all the other particles are saved to the
computer memory.

(d) If secondary electrons with energies below Ec are produced, they do not need
to be tracked, but the energy transferred to them must be accounted for.

5. If the free path exceeds the step size, then advance the particle position by a
distance equal to the step size. Sample the particle parameters at the end of the
step using multiple scattering theory. Make the next step, keeping in mind that
the distance to the next catastrophic collision has already been sampled.

5.2 Energy Loss Models

5.2.1 The Continuous Slowing Down Approximation

We introduced the continuous slowing down approximation (CSDA) in Sect. 3.9.4.
In this approximation a charged particles loses its energy continuously, according to
the following formula:

dE D �ˇ .E/ dt; (5.1)

where ˇ .E/ is the stopping power, and dt is the distance traveled. Equation (5.1),
in fact, defines the stopping power and can be solved to find the energy lost by
a charged particle as it travels a given finite distance. The details are given in
Sect. 3.9.4. In condensed history algorithms, in this equation the restricted stopping
power ˇ<.E/ [defined in Eq. (3.130)] must be used. It accounts for energy losses
only in soft collisions. Catastrophic collisions are simulated separately as discrete
events. The main limitation of the CSDA is the assumption that the energy lost
is not random. Radiation transport, however, is an inherently random process and
energy loss fluctuations are always present. These fluctuations are called “energy
straggling.” They are important, and most Monte Carlo codes implement an energy
straggling model. In some electron transport algorithms, however, fluctuations of
energy loss in soft collisions are neglected to simplify the code and improve
computing speed. In such cases energy straggling is partially accounted for through
the sampling of catastrophic collisions. The three models of energy straggling
presented in this section are relatively easy to implement and will not slow down
computation significantly. They offer either an analytical solution or a solution that
can be tabulated in a form convenient for sampling.
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5.2.2 The Gaussian Model of Energy Straggling

The Gaussian model is a straightforward extension of the CSDA. In Sect. 3.9.4 we
derived the collision integral within the CSDA, using a Taylor expansion of the
product 	s.E 0; �E/ˆ.E 0/, Eq. (3.115). The expansion retained only the first two
terms. The Gaussian model is derived by simply including the third term, quadratic
in �E, in this expansion:

	s.E
0; �E/ˆ.E0/ � 	s.E; �E/ˆ.E/C @

@E
Œ	s.E; �E/ˆ.E/��E

C @2

@E2
Œ	s.E; �E/ˆ.E/�

.�E/2

2
: (5.2)

This obviously improves the accuracy, as compared to the CSDA. We now use
this result to derive a form of the Boltzmann equation. We then solve it to find the
energy distribution of charged particles after they have traveled a given distance,
t. In the context of condensed history algorithms, t is the step size. In doing so,
we follow the methods developed by Landau (1944), and Vavilov (1957). First, we
substitute Eq. (5.2) in the collision integral and integrate over �E. This step is very
similar to Eq. (3.115):

Z 1

E
dE 0	s



E 0 ! E

�
ˆ


E 0� �

Z 1

0

	s.E; �E/ˆ .E/ d .�E/

C @

@E

Z 1

0

Œ	s.E; �E/ˆ .E/� .�E/ d .�E/

C @2

@E2

Z 1

0

Œ	s.E; �E/ˆ .E/�
.�E/2

2
d.�E/

D 	s.E/ˆ .E/C @

@E
Œˇ.E/ˆ.E/�

C1

2

@2

@E2
Œ� .E/ˆ .E/� ;

(5.3)

where �.E/ is the mean square stopping power:

� .E/ D
Z 1

0

	s.E; �E/ .�E/2 d .�E/ : (5.4)

We assume that interaction parameters 	s, ˇ, and � are all energy independent.
A practical implication of this assumption is that it introduces an upper constraint
on the step size. This constraint is usually expressed in terms of the energy lost.
We now use this simplified form of the collision integral in the Boltzmann equation
expressed in the Lagrangian form, Eq. (3.61), because the equation is written in
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terms of the distance t traveled by the particle. We leave out the angular variables in
order to focus on energy losses, and, for brevity, the initial phase coordinate of the
particle .Er0; E�0;E0/. We also integrate the Boltzmann equation with respect to the
spatial variables .x; y; z/. This integration eliminates the streaming operator . E� � Er/
because by applying the Gauss–Ostrogradsky theorem (Appendix B) this integral
can be transformed into a surface integral. We place the surface at infinity, where
the fluence is zero. Finally, to simplify the algebra, we use 	 D 	s. The resulting
form of the Boltzmann equation is as follows:

@

@t
ˆ.t;E/ D ˇ

@

@E
ˆ.t;E/C �

2

@2

@E2
ˆ .t;E/ : (5.5)

A relatively simple method for solving Eq. (5.5) is based on the bilateral Laplace
transform in energy. In this case, it is more convenient to use the variable Q D E0�E
instead of E. Note the difference between variables�E and Q.�E is the energy lost
in one collision, whereas Q is the total energy lost by the particle as it travels a given
distance. Replacing E with Q does not change Eq. (5.5) except for the sign of the
first derivative:

@

@E
ˆ.t;E/ D � @

@Q
ˆ.t;Q/ (5.6)

The initial condition for this equation is that at t D 0 the energy loss Q is zero:

ˆ.0;Q/ D ı .Q/ : (5.7)

Because Eq. (5.5) is a second-order differential equation with respect to Q, two
boundary conditions for ˆ.t;Q/ are also needed. These conditions are:

ˆ.t;˙1/ D
�
@

@Q
ˆ.t;Q/

�
QD˙1

D 0: (5.8)

The Laplace transformation of Eq. (5.5) with respect to Q is straightforward [see
Abramowitz and Stegan (1964)]. We therefore proceed directly to the equation for
the Laplace transform of the fluence, ˆ.t; p/:

@

@t
ˆ.t; p/ D �ˇpˆ.t; p/C �

2
p2ˆ .t; p/ : (5.9)

The solution for the Laplace transform is then

ˆ.t; p/ D exp
h�

�ˇp C �

2
p2


t
i
; (5.10)

where we applied the boundary condition for the Laplace transform, ˆ.0; p/ D 1,
that follows from Eq. (5.7).
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The remaining task is to perform the inverse Laplace transform by calculating
the following integral:

ˆ.t;Q/ D 1

2� i

Z Ci1

�i1
epQˆ.t; p/ dp D 1

2� i

Z Ci1

�i1
exp

h
pQ C

�
�ˇp C �

2
p2


t
i
dp:

(5.11)

We first rewrite the exponent as follows:

pQ � ˇpt C �

2
p2t D

 
Q � ˇtp
2� t

C p

r
� t

2

!2
� .Q � ˇt/2

2� t
: (5.12)

The integral then becomes:

ˆ.t;Q/ D exp

"
� .Q � ˇt/2

2� t

#
1

2� i

Z Ci1

�i1
exp
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2� t

C p

r
� t

2

!2
dp: (5.13)

This is further simplified by the substitution:

w D 1

i

 
Q � ˇtp
2� t

C p

r
� t

2

!
; (5.14)

leading to

ˆ.t;Q/ D exp

"
� .Q � ˇt/2

2� t

#
1

2�

s
2

� t

Z C1

�1
e�w2dw: (5.15)

The remaining integral over w equals
p
� , and the final result is the normal

distribution:

ˆ.t;Q/ D 1p
2�� t

exp

"
� .Q � ˇt/2

2� t

#
: (5.16)

According to this result, the average energy lost is ˇt, which is consistent with
the continuous slowing down approximation, assuming that the stopping power
ˇ was constant while the particle traveled over the distance t. The width of the
distribution increases with increasing t. The standard deviation is

p
� t. The limit

� ! 0 produces a delta function: ˆ.t;Q/ D ı.Q � ˇt/. Similarly, the limit t ! 0

yields ˆ.t;Q/ D ı.Q/, consistent with the initial condition Eq. (5.7), as expected.
This result is applicable only to short travel distances, where Q � E0. Also,

because Q must be positive, the probability of a negative Q should be small.
Equation (5.16) suggests a connection to the central limit theorem. Indeed, the total
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energy loss Q is the sum of energies lost in individual inelastic collisions. This
observation implies a lower bound on the step size z, it should be sufficiently large
that the average number of inelastic collisions is much greater than one.

5.2.3 The Landau Model

In this model introduced by Landau (1944), the differential scattering cross section
	s.E 0 ! E/ is approximated by the Rutherford formula (Rutherford 1911; Nikjoo
et al. 2008). A limitation of the formula is that it describes the scattering of a
charged particle on a free target particle. Here, however, we are primarily concerned
with energy losses in inelastic interactions with atomic electrons. Hence, the target
particle is not free but bound to an atom. For this reason, in this model, the
Rutherford formula is applied only to collisions where the energy loss �E is much
greater than the binding energy of atomic electrons.

We start with the Boltzmann equation in a form similar to Eq. (5.5), but with the
collision integral written exactly:

@

@t
ˆ.t;E/C 	 .t;E/ D

Z 1

0

	s .t;E C�E; �E/ˆ .t;E C�E/ d.�E/: (5.17)

We apply this equation to particles traveling distances sufficiently small to justify the
assumption that the total energy Q the particle loses over these distances is much less
than its initial energy E0. We can then assume that 	s.E C�E; �E/ � 	s.E0;�E/
and, for brevity, leave out E0. The next step is the same as in the previous section.
We assume that 	.t;E/ D 	s.t;E/ D 	s.E/ � 	s.E0/, and that the fluence at t D 0

is monoenergetic, and we switch from the variable E to Q D E0�E. Then, Eq. (5.17)
becomes:

@

@t
ˆ.t;Q/C 	sˆ.t;Q/ D

Z 1

0

	s .�E/ˆ .t;Q ��E/ d.�E/: (5.18)

We write Q��E as the fluence argument in the collision integral because it accounts
for particles that, prior to a collision, had lost an energy Q � �E, and then, in
the collision lose a further �E, thus contributing to the fluence ˆ.Q/ of particles
losing a total energy Q. Here, following Landau (1944), we set the upper limit of
integration to infinity, because ˆ.t;Q/ D 0 when Q < 0.

We next apply the Laplace transform, with respect to Q, to both sides of
Eq. (5.18), which yields an equation for the Laplace transform of the fluence,
ˆ.t; p/:

@

@t
ˆ.t; p/C 	sˆ.t; p/ D

Z 1

0

	s .�E/ˆ .t; p/ e�p�Ed.�E/I t > 0; (5.19)
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where we used the property that a shift in the argument of a function (e.g., ˆ.Q �
�E/ in the present case) translates as an exponent in the Laplace transform (Arfken
et al. 2013). From Eq. (5.19) we find:

ˆ.t; p/ D exp

�
t
Z 1

0

	s .�E/ e�p�Ed.�E/ � 	st

�

D exp

�
�t
Z 1

0

	s .�E/


1 � e�p�E

�
d.�E/

�
: (5.20)

The solution ˆ.t;Q/ of Eq. (5.18) can, in principle, be found by calculating the
inverse Laplace transform of Eq. (5.20). However, to simplify the right-hand side of
Eq. (5.20), we further assume that there exists an energy �1 that is much greater than
the average binding energy of the atomic electrons, while being sufficiently small
to justify the approximation exp .�p�E/ � 1 � p�E, when �E < �1. We then
split the integral in Eq. (5.20) into two parts: one with �E < �1 and the other with
�E > �1. The first part is simple:

Z �1

0

	s .�E/


1 � e�p�E

�
d.�E/ �

Z �1

0

	s .�E/ p�Ed.�E/ D pˇ<; (5.21)

where ˇ< is the restricted stopping power, i.e., the stopping power due to collisions
with energy transfers less than �1. In the second part (�E > �1) we use the
Rutherford formula for the scattering cross section (Rutherford 1911; Nikjoo et al.
2008):

	s .�E/ D A

.�E/2
: (5.22)

The coefficient A depends on the charge and energy of the incident particle, as well
as on the material properties. The integral for �E > �1 is then integrated by parts
twice, which reduces it to an integral representation of the Euler constant � :

� D �
Z 1

0

e�x ln xdx � 0:5772: (5.23)

The integration is performed as follows:
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D A

�1
.1 � e�p�1 / � Ap ln .�1p/e

�p�1

CAp
Z 1

�1p
ln x e�xdx: (5.24)

Finally, recalling that �1 is small, we write the last formula in asymptotic form,
keeping only the terms that do not vanish in the limit �1p ! 0:

Z 1

�1

	s.�E/


1 � e�p�E

�
d.�E/ � Ap Œ1 � ln .�1p/ � �� : (5.25)

This last step is somewhat heuristic and warrants an analysis of uncertainties. We
defer such a discussion to the next section, where this result can be compared to a
more general energy straggling model.

The fluence spectrum is now found by performing the inverse Laplace transform:

ˆ.t;Q/ D 1

2� i

Z cCi1

c�i1
ˆ.t; p/ epQdp: (5.26)

This integration cannot be done analytically. However, the solution can be expressed
in terms of a universal function �.�/ of a dimensionless argument �. Using
Eqs. (5.20), (5.21), (5.25), and substitution u D Apt, the solution can be represented
in the following form

ˆ.t;Q/ D � .�/

tA
; (5.27)

where

� .�/ D 1

2� i

Z cCi1

c�i1
exp .u ln u C �u/du; (5.28)

and

� D Q

tA
� ˇ<

A
� 1 � ln

tA

�1
C �: (5.29)

The integral in Eq. (5.28) can be transformed into a form that is more convenient
for calculations. First, we integrate along the imaginary axis by setting c D 0 in the
integral limits. Then, we split the integral into a sum of two parts: an integral from
�i1 to 0 and from 0 to Ci1. In the first integral we substitute u D �iy, and in the
second, u D iy. Using the property of the logarithm

ln .˙iy/ D ln y ˙ i
�

2
; (5.30)
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Fig. 5.2 The function �.�/
of the Landau model of
energy straggling, Eq. (5.31)
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the two integrals can then be combined to give the following representation of the
function �:

� .�/ D 1

�

Z 1

0

e�.�=2/y cos .y ln y C �y/dy: (5.31)

A graph of �.�/ is shown in Fig. 5.2.

5.2.4 The Vavilov Model

This model developed by Vavilov (1957) is more general than the two previous
models. We will show that both the Gaussian and the Landau models are in fact
special cases of the Vavilov model.

We start by inserting the Laplace transform of fluenceˆ.t; p/ given by Eq. (5.20)
into the formula for inverse transform, Eq. (5.26):

ˆ.t;Q/ D 1
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c�i1
exp

(
pQ � t

Z .�E/max

0

	s .�E/


1 � e�p�E

�
d.�E/

)
dp:

(5.32)

The difference between this equation and the corresponding equation in the Landau
model is that the infinite upper integration limit in the exponent is replaced
by .�E/max, the maximum energy that can be transferred in a single collision.
Assuming that the incident particle is much heavier than the target electron, we have

.�E/max D 2mev
2

1 � v2=c2
; (5.33)
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where v is the particle velocity and c is the speed of light. Another difference—
indeed an improvement—is that the Rutherford formula is written in a relativistic
form:

	s .�E/ D A

.�E/2

�
1 �

�v
c

2 �E

.�E/max

�
; (5.34)

As indicated in the preceding section, the Rutherford formula applies only
when the energy transfer is much greater than the binding energy of atomic
electrons. Vavilov (1957) proposed an elegant method for addressing this limitation,
modifying the exponent in the integral in Eq. (5.32) as follows:

f: : :g D p .Q � ˇt/ � t
Z .�E/max

0

	s .�E/


1 � e�p�E � p�E

�
d.�E/; (5.35)

where ˇ is the total stopping power defined in Eq. (3.116). This simple modification
eliminates the divergence of the integral over �E in Eq. (5.32) at �E ! 0. It also
reduces the contribution to the integral from collisions with a small �E relative to
collisions with large �E, which justifies the use of the Rutherford formula. We can
now insert Eq. (5.34) into Eq. (5.35) and calculate the integral. The integration is
rather lengthy, but we will explain every step. We start by splitting the integral into
two parts, I1 and I2:

Z .�E/max

0

A

.�E/2

�
1 �

�v
c

2 �E

.�E/max

� 

1 � e�p�E � p�E

�
d.�E/ D I1 � I2;

(5.36)

where

I1 D
Z .�E/max

0

A

.�E/2


1 � e�p�E � p�E

�
d.�E/; (5.37)

and

I2 D
Z .�E/max

0

A

.�E/2

�v
c

2 �E

.�E/max



1 � e�p�E � p�E

�
d.�E/: (5.38)

Then, we integrate I1 by parts:

I1 D �A

.�E/max

h
1 � e�p.�E/max � p .�E/max

i
� Ap

Z .�E/max

0

1 � e�p�E

�E
d.�E/ :

(5.39)

The remaining integral can be expressed in terms of the Euler constant � , Eq. (5.23),
and the exponential integral Ei, defined as follows (Arfken et al. 2013):

Ei .x/ D �
Z 1

�x

e�w

w
dw: (5.40)
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To achieve this, we again, split the integral into two:

Z .�E/max

0

: : : d.�E/ D lim
T!C1

�Z T

0

: : : d.�E/ �
Z T

.�E/max

: : : d .�E/

�
: (5.41)

The first integral in the brackets is integrated by parts, with the integration variable
changed to w D p�E:

Z pT

0

1 � e�w

w
dw D ln .pT/



1 � e�pT

� �
Z pT

0

ln w e�wdw: (5.42)

The second integral is simply:

Z pT

p.�E/max

1 � e�w

w
dw D ln .pT/ � ln Œp .�E/max� �

Z pT

p.�E/max

e�w

w
dw: (5.43)

Subtracting Eq. (5.43) from Eq. (5.42) and taking the limit T ! C1, we obtain

Z .�E/max

0

1 � e�p�E

�E
d .�E/ D � C ln Œp .�E/max� � Ei Œ�p .�E/max� ; (5.44)

where � is the Euler constant, see Eq. (5.23). The integral I2 is simple. A part of it
is integrated analytically and the rest reduces to the same integral as above:

I2 D A

.�E/max

�v
c

2 ( Z .�E/max

0

1 � e�p�E

�E
d.�E/ � p .�E/max

)
: (5.45)

We next enter I1 and I2 into Eq. (5.35), and then into the inverse trans-
form formula, Eq. (5.32), where we change the integration variable from p to
q D p.�E/max. This yields a rather complicated expression for the Laplace
transform of the fluence:

ˆ.t;Q/ D exp
�
k


1C �v2=c2

�	
2� i .�E/max

	
Z cCi1

c�i1
exp

�
q�1 C k

��
q C

�v
c

2�
.ln q � Ei .�q// � e�q

��
dq;

(5.46)

where

�1 D Q � ˇt

.�E/max
� k

�
1C

�v
c

2 � �
�
; (5.47)
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and

k D At

.�E/max
: (5.48)

To make sense of this result, let us first consider two extreme cases: k � 1 and
k � 1. We will show that in the first case, the result coincides with the Landau
distribution, and in the second case, with the normal distribution.

Recalling that the Landau model is nonrelativistic, we set v=c to zero and then
replace the integration variable q with u D kq. This new integration variable is
similar to the integration variable in the Landau model, Eq. (5.28). The exponent in
Eq. (5.46) then becomes:

�u

k

 Q � ˇt

.�E/max
� u .1 � �/C u ln

u

k
� uEi

�
�u

k


� ke�u=k: (5.49)

In the limit k ! 0 the last two terms cancel out, because of the asymptotic behavior
of the exponent integral for large arguments (Abramowitz and Stegan 1964):

Ei .x/ � ex

x
: (5.50)

Comparing Eq. (5.49) with the exponent in the Landau model, Eq. (5.28), we can
see that we will achieve the desired result, that is Landau’s distribution, if we can
show that

�u

k

 Q � ˇt

.�E/max
� u .1 � �/ � u ln k D �u: (5.51)

To do so, we note that the total stopping power ˇ on the left-hand side of Eq. (5.51)
is the sum of the stopping powers from soft and hard collisions, ˇ D ˇ< C ˇ>. The
latter contribution is easily calculated:

ˇ> D
Z .�E/max

�1

A

.�E/2
.�E/ d .�E/ D A ln

�
.�E/max

�1

�
: (5.52)

Using this result, and recalling the definitions of �, Eq. (5.29), and k, Eq. (5.48), the
proof of Eq. (5.51) is straightforward.

To summarize, we have shown that the Vavilov distribution coincides with the
Landau distribution, if the particles are nonrelativistic, and k is small. The parameter
k is proportional to the distance traveled, t, and hence the Landau distribution applies
for small travel distances where the condition k � 1 is satisfied.

The Gaussian model can be recovered for a large step size, t, i.e., when k � 1.
To show this, we will calculate the integral on the right-hand side of Eq. (5.35),
using a different method than above. We will use the nonrelativistic form of the
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Rutherford formula, Eq. (5.22), and a Taylor series expansion of the exponent
(ey D P1

nD0 yn=nŠ):

Z .�E/max

0
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1 � e�p�E � p�E
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1
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n�1

n � 1 : (5.53)

Let us retain only the first two terms in the sum, n D 2; 3, and insert the above result
in Eq. (5.35). The equation then takes the form

f: : :g D p .Q � ˇt/C 1

2
A .�E/max tp2 � 1

12
A .�E/2max tp3: (5.54)

To find the energy loss spectrum ˆ.t;Q/, we need to perform the inverse Laplace
transform, as given by Eq. (5.32). This can be done analytically (Vavilov 1957).
We, however, will discuss the result given by Eq. (5.54) only qualitatively. If in
Eq. (5.54) we retain only terms linear in p, then the spectrum will be a delta function,
ˆ.t;Q/ / ı.Q � ˇt/. If we retain only terms linear and quadratic in p, then the
spectrum will be Gaussian, as in Eq. (5.16). Including also the term cubic in p, will
add asymmetry to the Gaussian curve. As the step size t, increases, the maximum of
the energy distribution, Qmax shifts towards higher values, so that the ratio Qmax=.ˇt/
remains approximately constant. Keeping this in mind, we change the integration
variable in the inverse transform integral in Eq. (5.32) from p to w D pQ, and then
write Eq. (5.54) as

f: : :g D w � w

�
ˇt
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�
C w2
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2ˇ
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ˇt
� w3

A .�E/2max

12ˇ
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Q

�3
1

ˇ2t2
:

(5.55)

For a sufficiently large step size, t, the last term in Eq. (5.55) becomes negligible,
and the energy loss distribution ˆ.t;Q/, indeed, becomes Gaussian.

In conclusion, when k � 1, we can use the Landau model, and when k � 1, the
Gaussian model. When neither model applies, the full version of the Vavilov model
should then be used.

The energy loss distribution in this full model is given by Eq. (5.46), which can
be transformed into a more convenient form for calculations. The integration must
be performed along the imaginary axis. However, this can be avoided by splitting the
integral into two parts as shown below, and substituting q D iy1 in the first integral,
and q D �iy2 in the second. Both y1 and y2 are real:
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Z Ci1

�i1
: : : dq D

Z Ci1

0

: : : dq C
Z 0

�i1
: : : dq D i

Z 1

0

: : : dy1 C i
Z 1

0

: : : dy2:

(5.56)
The corresponding transformation of the integrand is straightforward, if we use
Eq. (5.30) for the logarithm, and also recall that

Ei .˙iy/ D Ci .y/˙ i
h
Si .y/ � �

2

i
; (5.57)

where Ci.y/ and Si.y/ are the cosine and sine integrals, respectively. Using
Eqs. (5.30), (5.56), and (5.57) we can rewrite Eq. (5.46) somewhat more simply

ˆ.t;Q/ D exp
�
k


1C �v2=c2

�	
� .�E/max

Z 1

0

ekf1.y/ cos Œ�1y C kf2 .y/�dy; (5.58)

where

f1 .y/ D
�v

c

2
Œln y � Ci .y/� � ySi .y/ � cos y; (5.59)

and

f2 .y/ D y Œln y � Ci .y/�C
�v

c

2
Si .y/C sin y: (5.60)

The integral in Eq. (5.58) can be calculated numerically. For nonrelativistic
particles (v=c D 0) it can be tabulated as a function of k and �1. Figure 5.3
illustrates the overall behavior of the full Vavilov solution. It shows distributions of
energy loss as a function of �1, calculated using Eq. (5.58) for a 100 MeV proton and
k D 0.2, 0.4, 0.6, 0.8, and 1. In the figure the fluence is multiplied by At, making

Fig. 5.3 Vavilov’s
distribution given by
Eq. (5.58) for a 100 MeV
proton and a range of k values
as indicated
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this result also applicable to other charged particles traveling with the same velocity
as a 100 MeV proton. It can be seen that as k increases the distribution becomes
more symmetric, resembling a normal distribution. At small k, as expected, its shape
becomes similar to Landau’s distribution shown in Fig. 5.2. However, it should be
noted that the axes in Figs. 5.2 and 5.3 are different.

5.3 Models for the Angular Distribution

5.3.1 The Fokker–Planck Approximation

The Fokker–Planck form of the collision integral in the Boltzmann equation
was derived in Sect. 3.9.6, Eqs. (3.141)–(3.143). In this section we will solve the
equation, after making additional approximations. We will assume that the medium
is homogeneous, and as the particle travels, its energy loss is negligible and angular
deflection is small. The last two conditions can be satisfied by limiting the step size.
As for the homogeneity, a standard method for modeling a heterogeneous material
is to approximate it using a voxelized geometry. While the particle is located within
a particular voxel, it travels in a homogeneous medium. If all these conditions are
reasonably met, the Fokker–Planck approximation provides a very simple algorithm
for sampling angular distributions.

We start with the Boltzmann equation in the Lagrangian form, Eq. (3.61). For
brevity we will omit energy variables, and the initial phase coordinate of the particle
.Er0; E�0;E0/. We will also assume that the only process is scattering, so that 	 D 	s.
Then, the equation is

@

@t
ˆ
�
Er; E�; t


C
� E� � Er


ˆ
�
Er; E�; t


C 	sˆ

�
Er; E�; t



D
Z

d E� 0	s

� E� 0 � E�

ˆ
�
Er; E� 0; t


: (5.61)

Next, we integrate Eq. (5.61) over Er. This integration eliminates the streaming
operator, . E� � Er/ˆ, and replaces the fluence ˆ.Er; E�; t/ with ˆ. E�; t/. The former
fluence is the angular distribution of a particle that has traveled distance t and is
located at point Er, the latter is the angular distribution of a particle that has traveled
distance t, irrespective of its location. We will use the Fokker–Planck approximation
in the form given by Eq. (3.141) for the collision integral. The collision density
	sˆ in the left-hand side of Eq. (5.61) cancels out, because it is also present in the
Fokker–Planck formula for the collision integral.

This transforms the Boltzmann equation into a differential equation which has
the form of the diffusion equation in two dimensions

@

@t
ˆ


ux; uy; t

� D 1

4
	sh�20 i

 
@2

@u2x
C @2

@u2y

!
ˆ


ux; uy; t

�
: (5.62)



5.3 Models for the Angular Distribution 157

It describes diffusion in the angular space .ux; uy/, and instead of time in this
equation we have distance t traveled by the particle. The diffusion coefficient is

Ddiff: D 1

4
	sh�20 i: (5.63)

We consider a particle that started at point t D 0. At this point the angular
distribution was a delta-function

ˆ


ux; uy; 0

� D ı .ux/ ı


uy
�
: (5.64)

The above equation is the initial condition for the diffusion equation. The boundary
condition is that at infinity .ux ! ˙1; uy ! ˙1/ the fluence is zero. The
diffusion equation and its solution are well known. With the above boundary
conditions, the solution can be found by using a simple method based on two-
dimensional Laplace transform, L2 (Abramowitz and Stegan 1964; Aghili and
Moghaddam 2011). Because the range of each of the two variables ux and uy is
.�1;C1/, we will use the bilateral (two-sided) form of the transform (LePage
2010). The properties of the two-dimensional bilateral Laplace transform are similar
to those of the one-dimensional unilateral (one-sided) Laplace transform that we
used earlier in this book, in Sect. 5.2.3. Furthermore, the method for solving the
differential equation, Eq. (5.62), that we present below is very similar to the method
we used in Sect. 5.2.2, Eqs.(5.9)–(5.16). The initial condition for the Laplace
transform of the fluence ˆ.px; py; 0/ follows from Eq. (5.64)

ˆ


px; py; 0

� 
 L2
˚
ˆ


ux; uy; 0

�� D 1: (5.65)

The Laplace transform of Eq. (5.62) is
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ˆ
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�
: (5.66)

This equation with the initial condition given by Eq. (5.65) is easily integrated,
giving a simple expression for the Laplace transform of the fluence

ˆ


px; py; t

� D exp

�
1

4
	sh�20 it 
p2x C p2y

��
(5.67)

We can now find the fluence ˆ.ux; uy; t/ by performing the inverse transform L�1
2

(LePage 2010; Aghili and Moghaddam 2011):
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��
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(5.68)



158 5 Transport of Charged Particles

The above two-dimensional integral can obviously be rewritten as a product of two
one-dimensional integrals over px and py. Each of the two integrals is calculated
using the same technique that we used to calculate the integral in Eq. (5.11). The
result is

ˆ


ux; uy; t

� D 1

�	sh�20 it exp

"
�


u2x C u2y

�
	sh�20 it

#
: (5.69)

This is a two-dimensional normal distribution. Finally, for generating a particle
trajectory, the angular variables .�; �/ are more convenient than .ux; uy/. In terms of
� and � the solution is

ˆ.�; �; t/ D 1

�	sh�20 it exp

�
� �2

	sh�20 it
�
: (5.70)

The solution does not depend explicitly on the azimuthal angle �. In other words
it has an azimuthal symmetry. This form of the solution satisfies two obvious
conditions. It is normalized as follows

Z 2�

0

d�
Z 1

0

�d�ˆ .t; �/ D 1; (5.71)

and the width of the angular distribution,
q
	sh�20 it=2, tends to zero when t ! 0. We

need to remind why in the above integral we have the factor � . The factor appeared
in the collision integral in Eq. (3.131) when we applied a small angle approximation
to the integral over 
 D cos �

d
 D � sin �d� � ��d�: (5.72)

We have also replaced the upper integration limit � with infinity because, in a small
angle approximation, the number of particles scattered to large angles close to �
can be assumed to be negligible, which is again consistent with Eq. (3.131).

We can now see that, in the Fokker–Planck approximation, the angular distri-
bution is normal. However, this is a two-dimensional distribution. Hence, sampling
the polar angle � from a one-dimensional normal distribution would be an error. The
correct interpretation is that angle � is the length of a two-dimensional vector Eu. The
two components of the vector, ux and uy, are independent random variables, because
the distribution in Eq. (5.69) can be written as a product of two one-dimensional
distributions. Each component is normally distributed in one dimension. Methods
for sampling the length of a vector were discussed in Chap. 2. The azimuthal angle
� is distributed uniformly in Œ0; 2�/.

Our result, obviously, simplifies the sampling of angular distributions in Monte
Carlo algorithms. The only information about scattering cross sections needed to
implement this algorithm is the product 	sh�20 i. As we noted in Sect. 3.9.6, [see
Eq. (3.140)], this product is closely related to the transport cross section 	tr.
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5.3.2 The Molière Theory

The Molière model (Molière 1947; Molière 1948; Bethe 1953) is more accurate than
the Fokker–Planck approximation and is relatively easy to implement in a Monte
Carlo code. The angular distribution in this model is approximated by the sum of
three universal functions that do not explicitly depend on the step size and can be
tabulated in a form convenient for sampling the scattering angle. The limitations
are the small scattering angle approximation and neglected energy losses. The latter
set an upper limit on the step size. There is also a lower limit on the step size: the
width of the angular distribution at the end of a step should be much greater than
that following a single collision. Our derivation of the model is rather lengthy, as
we explain every step and the underlying approximations in detail. It is based on
applying the Fourier–Bessel transform to a small-angle version of the Boltzmann
equation.

We begin with the Lagrangian form of the Boltzmann equation, Eq. (3.61),
integrated over Er. Given that the fluence at infinity is zero, this integration eliminates
the streaming operator. We assume an azimuthal symmetry and neglect energy
losses. The equation then can be written in the following form:

@
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/ D S .t; 
/C

Z
d E� 0	s
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ˆ


t; 
0� : (5.73)

Here t is the distance traveled by the particle. We also assume, for simplicity, that
cross sections do not depend on t, and that scattering is the only interaction type,
meaning that 	s D 	 . We then switch variables from 
 D cos � to � and apply the
small angle approximation, Eq. (5.72), to the collision integral:

Z
d E� 0 : : : D

Z 2�
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d� 0
Z 1

�1
d
 0 : : : �

Z 2�
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d� 0
Z 1

0

� 0d� 0 : : : ; (5.74)

where we extended the upper integration limit in � 0 from � to 1, because in the
small angle approximation, scattering to large angles close to � can be neglected.
We further note that

E� 0 � E� D cos � cos � 0 C sin � sin � 0 cos


� � � 0�
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1 � �2

2
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1 � � 0 2
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� � � 0�

� 1 � �2

2
� � 0 2

2
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� � � 0� ; (5.75)
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and, on the other hand,

E� 0 � E� 
 
0 D cos �0 � 1 � �20
2
; (5.76)

where �0 is the scattering angle. Combining Eqs. (5.75) and (5.76), we find that

�0 D
p
�2 C � 0 2 � 2�� 0 cos .� � � 0/: (5.77)

As for the source function, we choose a monodirectional point source, parallel to
the z axis:

S .t; �/ D 1

2��
ı .t/ ı .�/ : (5.78)

It is normalized as follows:

Z 1
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dt
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d�
Z 1

0

�d� S .t; �/ D 1: (5.79)

This transforms Eq. (5.73) into the Boltzmann equation in the small-angle approxi-
mation. For t > 0, where the source function is zero, we have
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t; � 0� : (5.80)

This is yet another integro-differential equation. We have previously used several
solution methods. Here we introduce one more, the Fourier–Bessel transform. The
reason for choosing this transform is the weighting factor � 0 in the collision integral
in Eq. (5.80). A product of two Bessel functions J0 integrated with this weighting
satisfies the so-called closure equation (Arfken et al. 1985):

Z 1
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�d� J0 .��/ J0


� 0�

� D 1

� 0 ı


� � � 0� : (5.81)

The closure equation plays the role of the orthogonality condition in other trans-
forms, such as the Legendre transform. The Fourier–Bessel transform [or the Hankel
transform (Poularikas 2010)] of the fluence according to the transform definition is
as follows:

ˆ.t; �/ D
Z 1

0

�d� J0 .��/ˆ .t; �/ : (5.82)
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It follows from Eqs. (5.81) and (5.82) that:

ˆ.t; �/ D
Z 1

0

�d� J0 .��/ˆ .t; �/ ; (5.83)

which defines the inverse transform.
We now apply the Fourier–Bessel transform to Eq. (5.80). The transform of the

left-hand side is elementary. That of the collision integral involves several steps,
but the final result is simple. The transform of the collision integral is given by the
following integral:
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t; � 0� : (5.84)

To simplify, we replace the differential scattering cross section 	s.�0/ with its
inverse transform representation:

	s .�0/ D
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� 0d� 0 J0
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� 0� ; (5.85)

and then use the addition theorem (Macdonald 1900):
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(5.86)

which is valid for �0 defined by Eq. (5.77). When we integrate the above sum over �
from 0 to 2� , the integral of the cosine is zero for any k � 1, and therefore we can
leave out the sum. Next, we insert Eqs. (5.85) and (5.86) into the collision integral,
Eq. (5.84):
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t; � 0� (5.87)

The integral over � produces a delta function, ı.� � � 0/=� 0, because of the closure
equation. This eliminates the integral over � 0. Finally, the remaining integral, over
� 0, is nothing but the transformˆ.t; �/ of the fluence. Together with the transformed
left-hand side of Eq. (5.80) this produces a simple differential equation for the
fluence transform:
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ˆ.t; �/C 	sˆ.t; �/ D 2�	s .�/ˆ .t; �/ : (5.88)
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Given that the total cross section 	s is an integral of the differential cross section
over � and � , we can write the solution of the above equation as follows:

ˆ.t; �/ D 1

2�
exp

�
�2� t

Z 1

0

�d� Œ1 � J0 .��/� 	s .�/

�
: (5.89)

The multiplier (1=2�) in front of the exponent in Eq. (5.89) was chosen so that the
solution in the limit t ! 0 was consistent with the Fourier–Bessel transform of the
source function, Eq. (5.78).

The two remaining steps are choosing an appropriate scattering cross section and
performing the inverse Fourier–Bessel transform. The cross section in this model
is given by the Rutherford formula corrected for screening of the nucleus by the
atomic electrons. Examples of screening corrections can be found, for example, in
Nikjoo et al. (2008). In this formalism, however, we do not need to choose a specific
form of the screening correction, because ultimately screening is characterized by a
single parameter. Hence, we write the cross section in the following general form:

	s .�/ D A
q .�/

�4
; (5.90)

where q.�/ accounts for screening. Screening is important only for relatively large
impact parameters, corresponding to small scattering angles comparable to (Bethe,
1953):

�0 D �=2�

0:885 a0 Z�1=3 ; (5.91)

where � is the de Broglie wavelength of the incident particle, a0 the Bohr radius, and
Z the atomic number of the atom. The expression in the denominator is the Fermi
radius of the atom. For angles much greater than �0, screening is negligible, and
q.�/ D 1.

Before we can perform the inverse transform, we simplify the integral in the
exponent, Eq. (5.89). First, we split it into two integrals, one from an angle k to
infinity and the other from zero, to k. The angle k is chosen so that, on one hand,
it is much greater than �0 (in which case, q.�/ D 1 in the first integral), and
on the other hand, it is sufficiently small to ensure that �� � 1 in the second
integral. We will show that the latter condition is satisfied when k � �c, where the
parameter �c characterizes the width of the angular distributionˆ.t; �/. Then, angle
k can satisfy both requirements only when �0 � �c. Given that �0 characterizes
a single scattering event, the latter condition requires that the average number of
collisions the particle undergoes as it travels a distance t is much greater than one.
The number of collisions, however, cannot be too large, because we neglect particle
energy losses. The latter condition sets an upper bound on the step size t.

We now show that �� � 1 is satisfied in the second integral (integral over �
from 0 to k) when k � �c. First, we note that �� � 1 is satisfied when �k � 1.
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Second, we note that � can in principle be any positive number. Then, following the
terminology of Bethe (1953) we consider only “important values” of �, that is, only
those values that contribute significantly to the integral in Eq. (5.83) (the inverse
transform). These are largely determined by the inverse fluence transform ˆ.t; �/.
To estimate what “important values” are, we approximate the angular distribution
by a normal distribution:

ˆ.t; �/ D exp

"
�
�
�

�c

�2#
; (5.92)

where �c D �c.t/ is a parameter characterizing the width of the distribution. For this
distribution we can find the Fourier–Bessel transform analytically:

ˆ.t; �/ D
Z 1

0

�d� J0 .��/ exp

"
�
�
�

�c

�2#
: (5.93)

The substitution w D �� transforms this integral into a known integral (Gradshteyn
and Ryzhik 1980):

Z 1

0

wdw e�aw2J0 .w/ D 1

2a
exp

�
� 1

4a

�
; (5.94)

leading to:

ˆ.t; �/ D �2c
2

exp

"
�
�
��c

2

�2#
: (5.95)

This result shows that important values of � are of the order of 1=�c or less. Then,
in �k � 1 we can replace � by approximately the largest of its important values
� D 1=�c, which brings us to the condition k � �c. With this condition satisfied,
we can assume that the argument of the Bessel function in the integral from 0 to k
is small, and approximate it using the first two terms of the Taylor series:

Z k

0

�d� Œ1 � J0 .��/�
q .�/

�4
�
Z k

0

�d�
1

4
�2�2

q .�/

�4
D �2

4

Z k

0

d�
q .�/

�

 �2

4
I2 .k/ ;

(5.96)
where we introduced an obvious notation I2.k/ for the integral. In the above equation
and further in this section we use identities involving Bessel functions J0 and J1 that
can be found in Abramowitz and Stegan (1964).

A property that we will use later is that for sufficiently large k (k � �0), the
difference I2.k/ � ln k is independent of k:

@

@k

�Z k

0

q .�/

�
d� � ln k

�
D q .k/

k
� 1

k
! 0: (5.97)
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In the integral from k to infinity we neglect screening entirely, and set q.�/ D 1.
The following algebra may seem complicated, but is in fact a sequence of three
integrations by parts, yielding the known integral given by Eq. (5.94). First, we
change the integration variable from � to w D �� :

Z 1

k
�d� Œ1�J0.��/�

1

�4
D �2

Z 1

k�

dw

w3
Œ1 � J0 .w/� : (5.98)

We then do the first integration by parts:
Z 1

k�

dw

w3
Œ1 � J0 .w/� D 1 � J0 .k�/

2k2�2
C 1

2

Z 1

k�

dw

w2
J1 .w/ ; (5.99)

where we used dJ0.w/=dw D �J1.w/. The second integration by parts follows:

1

2

Z 1

k�

dw

w2
J1 .w/ D J1 .k�/

4k�
C 1

4

Z 1

k�

dw

w
J0 .w/ : (5.100)

where we used dJ1.w/=dw D J0.w/ � J1.w/=w. The final integration then gives

1

4

Z 1

k�

dw

w
J0 .w/ D �1

4
ln .k�/ J0 .k�/C 1

4

Z 1

k�
dw ln .w/ J1 .w/ : (5.101)

Next, we insert Eqs. (5.99)–(5.101) back into Eq. (5.98) and write the result
assuming that k� is small. This is because we are still concerned only with important
� values. More specifically, we retain only the terms that are nonvanishing in the
limit k� ! 0. We can then use:

Z 1

k�
dw ln .w/ J1 .w/ �

Z 1

0

dw ln .w/ J1 .w/ D ln 2 � �; (5.102)

where � is the Euler constant. This integral can be found in Gradshteyn and Ryzhik
(1980). Also, for small w we use J1.w/ � w=2. Then, the final result for the
integral is:

Z 1

k�

dw

w3
Œ1 � J0 .w/� � 1

4
Œ1 � ln .k�/C ln 2 � �� : (5.103)

To find the transform of the fluence, we insert Eqs. (5.96) and (5.103) back into
Eq. (5.89), which gives

ˆ.t; �/ D 1

2�
exp

n
��
2

At�2 ŒI2 .k/C 1 � ln .k�/C ln 2 � ��
o
: (5.104)
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Before performing the inverse transform, we introduce some notations, starting with

�2c D �At: (5.105)

It will be shown below that �2c characterizes the width of the angular distribution
of the fluence. The next quantity, �a, is defined so as to be k-independent for
sufficiently large k by virtue of Eq. (5.97):

� ln�a D I2 .k/ � ln k C 1

2
: (5.106)

The last three quantities, b, B, and u, are introduced only for convenience and are
defined as follows:

b D ln

�
�2c
�2a

�
C 1 � 2�: (5.107)

b D B � ln B: (5.108)

u D �c�
p

B: (5.109)

In this notation, Eq. (5.104) takes a simple form:

ˆ.t; �/ D 1

2�
exp

�
�u2

4
C u2

4B
ln

�
u2

4

��
: (5.110)

Finally, to find the fluence, we need to perform the inverse transform, Eq. (5.83):

ˆ.t; �/ D 1

2��2cB

Z 1

0

udu J0

�
�

�c

p
B

u

�
exp

�
�u2

4
C u2

4B
ln

�
u2

4

��
; (5.111)

where we switched the integration variable from � to u. This integral can be
calculated numerically and tabulated as a function of two parameters: B and
�=�c

p
B. This table can be in the form of the cumulative distribution, making the

sampling of the scattering angle � straightforward. Practically, however, a different
method that has been used is based on the expansion of the second half of the
exponent into a series:

ˆ.t; �/ D 1

2��2cB

1X
nD0

1

Bn
f .n/

�
�

�c

p
B

�
; (5.112)

where

f .n/ .#/ D 1

nŠ

Z 1

0

udu J0 .#u/ exp

�
�u2

4

��
u2

4
ln

�
u2

4

��n

: (5.113)
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Consider the first term in the sum, n D 0:

ˆ0 .t; �/ D 1

2��2cB

Z 1

0

udu J0

�
�

�c

p
B

u

�
exp

�
�u2

4

�
: (5.114)

Through the substitution w D �u=�cB the above integral takes a form that can be
integrated analytically, Eq. (5.94), leading, yet again, to the normal distribution:

ˆ0 .t; �/ D 1

�B�2c
exp

�
� �2

B�2c

�
: (5.115)

Higher order functions f .n/, with n D 1; 2 : : :, are not as simple. Fortunately, the
first three terms of the sum in Eq. (5.112), with n D 0; 1; 2, yield an accuracy of the
angular distribution of about 1 % or better for any angle, and tables of f .0/, f .1/, and
f .2/ are available in the literature (Bethe 1953).

5.3.3 The Goudsmit–Saunderson Distribution

This method was introduced by Goudsmit and Saunderson (1940a, 1940b). In con-
trast to the Fokker–Planck and the Molière models, it does not rely on a small
angle approximation. This method yields more accurate angular distributions, albeit
usually at the expense of increased computing time. For simplicity, we will derive it
in a form that neglects energy losses.

The method is relatively straightforward on the whole. First, the angular depen-
dence of the scattering cross section is represented as a Legendre series. Then, the
angular distribution after multiple scatterings is found analytically, as an infinite
sum. This solution is exact, in principle. However, in a numerical implementation,
only a finite number of terms can be retained in the sum.

We start with the same form of the Boltzmann equation as in the preceding
section, Eq. (5.73). We neglect energy losses and assume that the medium is
homogeneous and scattering is the only process, that is 	.z/ D 	s. This time,
however, we do not assume small scattering angles. The Boltzmann equation then
takes the following form.

@

@t
ˆ.t; 
/C	sˆ.t; 
/ D S .t; 
/C

Z 2�

0

d� 0
Z 1

�1
d
 0	s .
0/ˆ



t; 
 0� ; (5.116)

where 
0 D . E� 0 � E�/ is the cosine of the scattering angle. The source is located at
t D 0 and emits particles in the positive z direction, cos � D 
 D 1:

S .t; 
/ D 1

2�
ı .t/ ı .
 � 1/ : (5.117)
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The collision integral is simplified using a Legendre series expansion of the
angular dependence of the scattering cross section 	s.
0/. The algebra is exactly
the same as in Sect. 3.9.7, and the result is given by Eq. (3.152). Then, for t > 0,
the Boltzmann equation can be written in the following form, which can be solved
analytically:

@

@t
ˆ.t; 
/C 	sˆ.t; 
/ D

1X
nD0

4�

2n C 1
Pn .
/ 	nˆn .t/ : (5.118)

To find the solution, in a similar fashion to Sect. 3.9.7, we multiply this equation
by Pk.
/.2k C 1/=2 and integrate over 
 from �1 to 1. The left-hand side
produces Legendre coefficients of the fluence, ˆk, and the collision integral is
further simplified using the orthogonality of Legendre polynomials, Eq. (3.151). The
result is a simple differential equation for ˆk:

@

@t
ˆk .t/C 	sˆk .t/ D 4�

2k C 1
	kˆk .t/ ; k D 0; 1; 2 : : : (5.119)

The solution of this equation is the exponent:

ˆk .t/ D Ak exp .�Q	kt/; (5.120)

where

Q	k D 	s � 4�

2k C 1
	k D 2�

Z 1

�1
d
 	s .
/ Œ1 � Pk .
/� : (5.121)

In the literature, Q	k is often replaced by a closely related quantity Qk D Q	k=	 . To
find the integration constants Ak, we note that when the distance t approaches zero
from the right, the angular distribution ˆ.t; 
/ must approach that of the source
function S.t; 
/. The Legendre coefficients behave in the same way, that is:

Ak D lim
t!0Cˆk .t/ D 2k C 1

2

Z 1

�1
d


1

2�
ı .
 � 1/Pk .
/ D 2k C 1

4�
: (5.122)

If the Legendre coefficients Q	k are known, the fluence can be calculated by
performing the inverse Fourier–Legendre transform:

ˆ.t; 
/ D
1X

kD0
ˆk .t/Pk .
/ D

1X
kD0

2k C 1

4�
exp .�Q	kt/Pk .
/ : (5.123)

As can be easily verified, this solution remains normalized for any t � 0:

Z 2�

0

d�
Z 1

�1
d
 ˆ .t; 
/ D 1: (5.124)
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To derive this result we multiplied Eq. (5.123) by P0 D 1, then performed the
integration where we used the orthogonality property of the Legendre polynomials.
The integration result included Q	0, which is zero according to its definition in
Eq. (5.121). The fluence remains normalized because scattering was the only
process included in the model.

Moments of the angular distribution h
k.t/i (k D 1; 2; : : :) are easily calculated
using the orthogonality property of the Legendre polynomials, for example

h
 .t/i D hP1 .
/i D
Z 1

�1
d�
Z 1

�1
d
 ˆ .t; 
/P1 .
/

D
1X

kD0

2k C 1

2
exp .�Q	kt/

Z 1

�1
d
 Pk .
/P1 .
/ D exp .�Q	1t/: (5.125)

Similarly,

h
2 .t/i D
�
2

3
P2 .
/C 1

3

�
D 2

3
exp .�Q	2t/C 1

3
: (5.126)

The Goudsmit–Saunderson solution was found by assuming that the step size t
is so small that any changes in Q	k can be neglected. If these changes need to be
accounted for, then the differential equation for the Legendre coefficients of the
fluence ˆk.t/, Eq. (5.119), can be solved without assuming constant cross sections.
In that case Q	k is a function of the distance traveled by the particle, Q	k D Q	k.t/, and
in the solution the product Q	kt in the exponent is replaced by an integral of Q	k.t/ over
the length of the step, that is from 0 to t. This integration can account, for example,
for material inhomogeneity and/or energy losses. In the latter case the continuous
slowing down approximation can be used to determine particle energy as a function
of the distance it has traveled.

Only in a few special cases (e.g., isotropic scattering) can the sum in Eq. (5.123)
be calculated analytically. In numerical calculations the sum must be terminated at
a finite k D kmax. To achieve good accuracy when scattering is strongly forward-
peaked, which is the case for charged particles, a large kmax is required, kmax � 1.

5.4 Spatial Distribution

In this section we calculate the first two moments of the spatial distribution of the
fluence for a charged particle that has traveled distance t. The methodology that
we use was developed by Lewis (1950). An important application of these results
is in the evaluation of the spatial accuracy of condensed history algorithms. In
such algorithms, the continuous trajectory of a charged particle is approximated
by steps of finite size. Choosing the step size is an important aspect of algorithm
optimization. From the results presented in this section, uncertainties in the spatial
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distribution can be readily estimated as functions of the step size. Uncertainties
in the angular and energy distributions should also be evaluated using one of the
multiple scattering theories presented in this chapter.

5.4.1 Longitudinal Displacement

We start with a simplified version of the Lagrangian form of the transport equation,
Eq. (3.61). For brevity we leave out the source function, the initial phase coordinates
of the particle, Er0, E�0, E0, and its energy E. We also assume that the material is
homogeneous, and that 	 D 	s:
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@t
ˆ
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Er; E�; t


C
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ˆ
�
Er; E�; t


C 	sˆ

�
Er; E�; t



D
Z

d E� 0	s

� E� � E� 0ˆ �Er; E� 0; t

: (5.127)

For simplicity we also neglect energy losses. However, in this formalism, energy
losses can be accounted for using the continuous slowing down approximation. This
is explained later in this section.

We seek a solution in the following form [some authors call it the Laplace series
(Arfken et al. 2013)]:
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Er; E�; t
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1X
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; (5.128)

where

ˆl;m

Er; t� D

Z
d E� Y�
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� E�

ˆ
�
Er; E�; t


; (5.129)

and Yl;m and Y�
l;m are the spherical harmonic and its complex conjugate. To derive

the equation for the coefficients ˆl;m.Er; t/ we multiply Eq. (5.127) by Y�
l;m.

E�/ and

integrate over E�. The integration of the first and last terms on the left-hand side of
the equation is elementary. The streaming operator is integrated as follows:
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D X
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Er; t�i � EQl;m;l0;m0 ; (5.130)
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where we introduced the notation:

EQl;m;l0;m0 

Z

d E� Y�
l;m

� E�
 E� Yl0;m0

� E�

: (5.131)

As for the collision integral in Eq. (5.127), we write the Legendre series for the
scattering cross section, 	s:

	s

� E� � E� 0 D
1X

nD0
	nPn

� E� � E� 0 ; (5.132)

and then apply the addition theorem (Arfken et al. 2013)
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Y�
n;k

� E� 0 (5.133)

to replace the Legendre polynomials Pn with spherical harmonics. Then we insert
Eqs. (5.132) and (5.133) into the collision integral, multiply the integral by Y�

l;m.
E�/,

and integrate over E�:
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:

(5.134)

When we integrate over E� we can use the orthogonality property of spherical
harmonics:

Z
d E� Y�

l0;m0

� E�


Yl;m

� E�


D ıl;l0ım;m0 : (5.135)

This eliminates the two sums. The remaining integral, over E� 0, is simply ˆl;m.Er; t/.
With this result for the collision integral and with the formula for the streaming
operator, Eq. (5.130), the equation for the spherical coefficients of the fluence ˆl;m

takes the form:
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h Erˆl0;m0


Er; t�i � EQl;m;l0;m0 C 	sˆl;m.Er; t/ D 4�

2l C 1
	lˆl;m.Er; t/:

(5.136)

Finally, we combine the expression on the right-hand side with 	sˆl;m using Q	l

defined in Eq. (5.121):
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ˆl;m.Er; t/C

X
l0;m0

h Erˆl0;m0


Er; t�i � EQl;m;l0;m0 C Q	lˆl;m.Er; t/ D 0: (5.137)
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Equation (5.137) is the main equation of the formalism. Next, we consider the
longitudinal and transverse distributions separately.

To derive the equation for the longitudinal distribution, we integrate Eq. (5.137)
over x and y. This integration eliminates the derivatives @=@x and @=@y in the square
brackets, as the fluence is zero for infinite x and y. This integration yields the
following equation:
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ˆl;m.z; t/C

X
l0;m0

�
@

@z
ˆl0;m0 .z; t/

�
.Ql;m;l0;m0/z C Q	lˆl;m.z; t/ D 0: (5.138)

Given that the direction of the z axis coincides with the initial particle direction,
E�0, we can assume azimuthal symmetry. In this case, the fluence ˆ is a function of
the cosine 
 of the polar angle, and does not depend on the azimuthal angle �. We
then need to find the solution ˆl;m only for m D 0. For all m ¤ 0, the coefficients
ˆl;m are zero:
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Similarly, the matrix .Ql;m;l0;m0/z is simplified, because for m D 0 we have
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(5.140)

where we used �z D 
. We thus only need to find

.Ql;0;l0;0/z D
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2l C 1
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d
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/
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/ : (5.141)

For any l � 1 this integral has only two nonzero values, when l0 D l � 1, and
l0 D l C 1, see Eqs. (3.154)–(3.156):

.Ql;0;l�1;0/z D lp
4l2 � 1 
 ˛lI (5.142)

.Ql;0;lC1;0/z D l C 1q
4 .l C 1/2 � 1


 ˛lC1: (5.143)
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For l D 0, there is only one nonzero value, when l0 D 1:

.Q0;0;1;0/z D 1p
3


 ˛0: (5.144)

With these results we can now write Eq. (5.138) for m D 0 and l � 1:
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Œˆl�1;0 .z; t/ ˛l CˆlC1;0 .z; t/ ˛lC1�C Q	lˆl;0.z; t/ D 0: (5.145)

The equation for l D 0 is the same, apart from the first term in the square brackets
being zero, and Q	0 is also zero. To solve Eq. (5.145), we apply boundary conditions:

lim
t!0Cˆ.z; 
; t/ D ı .z/

2�
ı .
 � 1/ ; (5.146)

expressing that the facts that the particle started in the direction of z-axis (
 D 1),
and that at t D 0 the particle z-coordinate was zero, and the fluence was normalized:
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The boundary conditions for the coefficients ˆl;0 follow from the above boundary
conditions for the fluence and from Eq. (5.129):
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(5.148)

where we used Pl.1/ D 1. The moments of the longitudinal distribution are by
definition:
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Comparing the above integrals with
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we find that, to calculate these moments, only the coefficients ˆ0;0 are needed:

hzn .t/i D
R C1

�1 dz zn ˆ0;0 .z; t/R C1
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where we introduced the notation

H.n/
l .t/ D

Z C1

�1
dz zn ˆl;0 .z; t/ :

We calculate hzn .t/i for n D 1; 2 later in this section.

5.4.2 Transverse Displacement

As in the preceding section, we derive the equation for the transverse distribution by,
again, integrating Eq. (5.137), but this time over y and z. The integration technique is
essentially the same and need not be repeated. The result is the following equation:

@

@t
ˆl;m.x; t/C

X
l0;m0

�
@

@x
ˆl0;m0 .x; t/

�
.Ql;m;l0;m0/x C Q	lˆl;m.x; t/ D 0: (5.152)

The main difference between this equation and Eq. (5.138) for the longitudinal
distribution is that the matrix .Q : : :/z is replaced with .Q : : :/x, where

.Ql;m;l0;m0/x D
Z

d E� Y�
l;m

� E�

�xYl0;m0

� E�


D
s
2l C 1

4�

.l � m/Š

.l C m/Š

	
s
2l0 C 1

4�

.l0 � m0/Š

.l0 C m0/Š

Z 2�

0

d� ei.m0�m/� cos�

Z 1

�1
d
 Pm

l .
/
p
1 � 
2Pm

l0
0 .
/ (5.153)

Here we used �x D sin � cos�. To find this matrix, we first calculate the integral
over �:

Z 2�

0

d� ei.m0�m/� cos� D �; if m0 D m ˙ 1: (5.154)
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The integral is zero for all other values of m0. Then, we only need to consider
m0 D m C 1 and m0 D m � 1. To calculate the integral over 
 for m0 D m C 1,
we use a recurrence relation for the associated Legendre polynomials (Arfken et al.
2013):

p
1 � 
2PmC1

l0 .
/

D 1

2l0 C 1

�

l0 � m

� 

l0 � m C 1

�
Pm

l0C1 � 

l0 C m

� 

l0 C m C 1

�
Pm

l0�1
	
;

(5.155)

and the orthogonality condition:

Z 1

�1
d
 Pm

l .
/Pm
k .
/ D 2 .l C m/Š

.2l C 1/ .l � m/Š
ıl;k: (5.156)

We insert Eq. (5.155) into Eq. (5.153), apply the orthogonality condition, and find
the matrix elements for m0 D m C 1:

.Ql;m;l0;mC1/x D 1

2

r
.l � m � 1/ .l � m/

4l2 � 1 ıl;l0C1

�1
2

s
.l C m C 1/ .l C m C 2/

.2l C 1/ .2l C 3/
ıl;l0�1: (5.157)

For m0 D m � 1 we perform the same procedure, albeit with a different recurrence
relation:

p
1 � 
2Pm�1

l0 .
/ D 1

2l0 C 1

�
Pm

l0�1 .
/ � Pm
l0C1 .
/

	
: (5.158)

The result is the matrix elements for m0 D m � 1:

.Ql;m;l0;m�1/x D 1

2

s
.l � m C 2/ .l � m C 1/

.2l C 1/ .2l C 3/
ıl;l0�1

�1
2

r
.l C m � 1/ .l C m/

4l2 � 1 ıl;l0C1: (5.159)

The boundary condition for the fluence is

lim
t!0Cˆ.x; 
; t/ D 1

2�
ı .x/ ı .
 � 1/ : (5.160)
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The boundary condition for Eq. (5.152) follows from the above condition for fluence
and Eq. (5.129), which defines the coefficients ˆl;m:

lim
t!0Cˆl;m .x; t/ D ı .x/ ım;0

r
2l C 1

4�
: (5.161)

Finally, the moments of the transverse distribution are calculated by this formula:

hxn .t/i D
R C1

�1 dx xn ˆ0;0 .x; t/R C1
�1 dxˆ0;0 .x; t/


 h.n/0;0 .t/

h.0/0;0 .t/
; (5.162)

where we defined

h.n/l;m .t/ D
Z C1

�1
dx xn ˆl;m .x; t/ :

Owing to the azimuthal symmetry of the problem, we also have

hyn .t/i D hxn .t/i; (5.163)

and for the mean-square radial displacement

h2 .t/i D hx2 .t/C y2 .t/i D 2hx2 .t/i: (5.164)

5.4.3 Moments of the Longitudinal Distribution

In this section we calculate the first two moments of the longitudinal spatial
distribution using Eq. (5.151). To find the denominator in Eq. (5.151), H.0/

0 , we
set l D 0 in Eq. (5.145), and integrate the equation over z, from �1 to C1.
The integration eliminates the term with the derivative @=@z, because the fluence
at infinity is zero. Also, for l D 0, we have Q	l D 0 [see Eq. (5.121)]. This leads to

@

@t

Z C1

�1
dzˆ0;0 .z; t/ D 0: (5.165)

Then, by applying the boundary condition, Eq. (5.148), we find:

H.0/
0 .t/ 


Z C1

�1
dzˆ0;0 .z; t/ D

Z C1

�1
dzˆ0;0 .z; 0/ D 1p

4�
: (5.166)
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To find the numerator, H.n/
0 , for n D 1 and n D 2, we set l D 0 in Eq. (5.145),

then multiply the equation by z and z2, respectively, and, again, integrate over z. For
n D 1 we have:

@

@t

Z C1

�1
dz zˆ0;0 .z; t/C

Z C1

�1
dz z

@

@z
ˆ1;0 .z; t/ ˛1 D 0: (5.167)

Next, we integrate the second term by parts:

@

@t
H.1/
0 .t/ D ˛1H

.0/
1 .t/ : (5.168)

This introduces a new unknown, H.0/
1 . To find it, we set l D 1 in Eq. (5.145), and

integrate the equation over z. The term with the derivative @=@z vanishes, resulting
in a simple differential equation:

@

@t
H.0/
1 .t/C Q	1H.0/

1 .t/ D 0: (5.169)

After applying the boundary condition Eq. (5.148), we obtain the solution

H.0/
1 .t/ D

r
3

4�
exp .�Q	1t/: (5.170)

Inserting this result and ˛1 D 1=
p
3 [see Eq. (5.142)] into Eq. (5.168):

@

@t
H.1/
0 .t/ D 1p

4�
exp .�Q	1t/: (5.171)

We then integrate, apply the boundary condition H.1/
0 .0/ D 0 that follows from

Eq. (5.148), and obtain

H.1/
0 .t/ D 1p

4� Q	1
Œ1 � exp .�Q	1t/� : (5.172)

Finally, we insert H.0/
0 .t/ and H.1/

0 .t/ into Eq. (5.151), and find the average longitu-
dinal displacement:

hz .t/i D 1

Q	1 Œ1 � exp .�Q	1t/� : (5.173)

To find H.2/
0 .t/, required to calculate hz2i, we follow a similar procedure. We

write Eq. (5.145) for l D 0, multiply the equation by z2, and integrate it over z:

@

@t
H.2/
0 .t/C ˛1

Z C1

�1
dz z2

@

@z
ˆ1;0 .z; t/ D 0: (5.174)
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We then integrate the second term by parts:

@

@t
H.2/
0 .t/ D 2˛1H

.1/
1 .t/ (5.175)

This introduces an unknown, H.1/
1 . To find it we write Eq. (5.145) for l D 1, multiply

the equation by z, and integrate it over z:

@

@t
H.1/
1 .t/C

Z C1

�1
dz z

@

@z
Œˆ0;0 .z; t/ ˛1 Cˆ2;0 .z; t/ ˛2�C Q	1H.1/

1 .t/ D 0;

(5.176)
We then integrate the second term by parts, which yields:

@

@t
H.1/
1 .t/C Q	1H.1/

1 .t/ D H.0/
0 .t/ ˛1 C H.0/

2 .t/ ˛2: (5.177)

This introduces yet another unknown, H.0/
2 . Its derivation is very similar to that of

H.0/
1 , so we simply state the result:

H.0/
2 .t/ D

r
5

4�
exp .�Q	2t/: (5.178)

We insert this result and H.0/
0 , given by Eq. (5.166), and ˛1 D 1=

p
3, ˛2 D 2=

p
15,

into the right-hand side of Eq. (5.177):

@

@t
H.1/
1 .t/C Q	1H.1/

1 .t/ D 1p
12�

C 1p
3�

exp .�Q	2t/: (5.179)

This equation is solved straightforwardly using the method of undetermined coeffi-
cients. The solution is sought in the following form:

H.1/
1 .t/ D C .t/ exp .�Q	1t/; (5.180)

where C.t/ is an unknown function that satisfies the boundary condition

C .0/ D H.1/
1 .0/ D 0: (5.181)

The solution is:

H.1/
1 .t/ D 1 � e�Q	1t

p
12� Q	1

� e�Q	2t � e�Q	1t

p
3� . Q	2 � Q	1/

: (5.182)

We insert this result in the right-hand side of Eq. (5.175) for H.2/
0 .t/, and integrate the

equation with the boundary condition H.2/
0 .0/ D 0. This gives us a solution H.2/

0 .t/.
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We then insert the solution in Eq. (5.151) and thus find the second moment of the
longitudinal distribution:

hz2 .t/i D 2

3

t

Q	1

 
1 � 1 � e�Q	1t

Q	1t

!
C 4

3

1

Q	1 � Q	2

 
1 � e�Q	2t

Q	2 � 1 � e�Q	1t

Q	1

!

(5.183)

It can be verified that both the first and the second moments of the longitudinal
distribution, Eqs. (5.173) and (5.183) satisfy the obvious condition

lim
t!0

hzn.t/i D 0I n D 1; 2: (5.184)

The above calculations neglected energy losses, but these can be accounted for
by using the continuous slowing down approximation. In this case, the particle
energy is a function of the distance t it has traveled, and so are the coefficients Q	l,
(for l > 0). In this case, the differential equations that we discussed in this section
can still be solved, because the main equation of the formalism, Eq. (5.145), is
linear first-order. For low-order moments (n D 1; 2) the solution remains relatively
straightforward.

5.4.4 Moments of the Transverse Distribution

Owing to the azimuthal symmetry, the average displacement of the particle trajec-
tory in the direction of x-axis, hx.t/i, is zero assuming that the particle started in the
z direction. To find hx2.t/i, according to Eq. (5.162), we need h.0/0;0 and h.2/0;0. We start

by finding the former, but derive a more general result, h.0/l;m. To do so, we integrate
Eq. (5.152) over x from �1 to C1. The term with the derivative @=@x vanishes,
because the fluence at infinity is zero. The resulting equation is:

@

@t
h.0/l;m .t/C Q	lh

.0/
l;m .t/ D 0: (5.185)

The boundary condition for this equation follows from Eq. (5.161):

h.0/l;m .0/ D ım;0

r
2l C 1

4�
: (5.186)

The solution is then:

h.0/l;m .t/ D ım;0

r
2l C 1

4�
exp .�Q	lt/: (5.187)
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To find h.2/0;0, we write Eq. (5.152) for l D m D 0, multiply the equation by x2 and
integrate over x:

@

@t
h.2/0;0 .t/C

X
l0;m0

Z C1

�1
dx x2

�
@

@x
ˆl0;m0 .x; t/

�
.Q0;0;l0;m0/x D 0: (5.188)

We then integrate the second term by parts. We also note that, according to
Eqs. (5.157) and (5.159), the matrix .Q0;0;l0;m0/x has only two nonzero elements, at
l0 D 1, m0 D ˙1. This simplifies Eq. (5.188)

@

@t
h.2/0;0 .t/ D 2

X
m0D�1;1

h.1/
1;m0 .t/ .Q0;0;1;m0/x ; (5.189)

but introduces a new unknown, h.1/
1;m0 , m0 D ˙1. To find it, we write Eq. (5.152) for

l D 1, and m D ˙1, then multiply the equation by x, and integrate it over x:

@

@t
h.1/1;m .t/C Q	1h.1/1;m .t/ D

X
l0;m0

h.0/l0;m0 .t/ .Q1;m;l0;m0/x I m D �1; 1: (5.190)

Only two terms in the sum on the right-hand side of this equation are nonzero:
m0 D 0 [see Eq. (5.187)] and l0 D l ˙ 1 D 0; 2 [see Eqs. (5.157) and (5.159)].
The function h.0/l0;m0 is already known from Eq. (5.187). We find the four coefficients,
.Q1;m;0;0/x and .Q1;m;2;0/x, m D ˙1 from Eqs. (5.157) and (5.159). This yields two
differential equations:

@

@t
h.1/1;˙1 .t/C Q	1h.1/1;˙1 .t/ D � 1p

24�
Œ1 � exp .� Q	2t/� ; (5.191)

with the boundary condition that follows from Eq. (5.161):

h.1/1;˙1 .0/ D 0: (5.192)

We have solved this type of equation previously, see Eq. (5.179). In this case, the
solution is

h.1/1;˙1 .t/ D �1p
24�

"
1 � e�Q	1t

Q	1 � e�Q	2t � e�Q	1t

Q	1 � Q	2

#
: (5.193)

We can now insert this result into Eq. (5.189) for h.2/0;0. Then, after calculating the
two coefficients .Q0;0;1;˙1/x using Eqs. (5.157) and (5.159), we have

@

@t
h.2/0;0 .t/ D 4p

6
h.1/1;�1 .t/ ; (5.194)
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where we used h.1/1;1.t/ D �h.1/1;�1.t/, which is obvious from Eq. (5.193). Next, we

insert the expression for h.1/1;�1.t/ given in Eq. (5.193) in the right-hand side of
Eq. (5.194), and integrate the equation with the boundary condition

h.2/0;0 .0/ D 0: (5.195)

The integration gives us the solution h.2/0;0.t/. Earlier we also found h.0/0;0, Eq. (5.187),
which is independent of t because Q	0 D 0. We insert these two quantities into
Eq. (5.162), and thus find the second moment of the transverse distribution:

hx2 .t/i D 2

3

t

Q	1

 
1 � 1 � e�Q	1t

Q	1t

!
C 2

3

1

Q	1 � Q	2

 
1 � e�Q	1t

Q	1 � 1 � e�Q	2t

Q	2

!
:

(5.196)

5.4.5 Estimation of Spatial Errors Due to the Finite Step Size

In condensed history algorithms the step size is a key optimization parameter. In
this section we show how to apply the formalism presented above to estimate errors
in the spatial distribution of particles as a function of the steps size. We discuss two
examples: a very simple basic algorithm, and a much improved algorithm proposed
by Larsen (1992).

The Basic Algorithm

In the simplest algorithm, a particle initially departing from the point Ern in the
direction E�n, travels a distance t (step size) to arrive at the point:

ErnC1 D Ern C t E�n: (5.197)

Assuming that E�n is parallel to the z-axis, and xn D yn D zn D 0, this algorithm
yields

hziB D tI (5.198)

hz2iB D t2I (5.199)

hx2iB D 0; (5.200)

where the subscript B refers to the basic algorithm. We now compare these
values with the corresponding exact results hzi, hz2i, and hx2i, given by
Eqs. (5.173), (5.183), and (5.196). In doing so, we assume that the step size t is
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small. More specifically, we assume that Q	lt � 1 for l D 1; 2, use Taylor series
expansions for the exponents and retain only the first nonvanishing term in the final
result. The errors are then:

hziB � hzi
t

� 1

2
Q	1tI (5.201)

hz2iB � hz2i
t2

� 1

3
Q	1t C 2

9
Q	2t: (5.202)

hx2iB � hx2i
t2

� �1
9

Q	2t: (5.203)

These results are qualitatively predictable. By assuming that the particle travels the
distance t along a straight line, the basic algorithm overestimates the longitudinal
displacement and underestimates the transverse displacement. The errors decrease
with decreasing step size.

Knowing the magnitude of the errors, we can modify the algorithm so as to
reduce them. An obvious approach is to replace the straight line by a more realistic
trajectory. One of the simplest trajectory modifications is to divide t into two straight
segments. One such algorithm introduced by Larsen (1992) is presented below as
an example.

Larsen’s Algorithm

In this algorithm, a particle initially at point Ern travels a distance t to arrive
at the point ErnC1. However, halfway between the two points, after traveling the
distance t=2, the particle direction and energy change by scattering. Let the particle
parameters at this intermediary point be denoted by the subscript n C 1=2. The
algorithm is as follows. For completeness, we here include the particle energy.

Algorithm

1. Using the continuous slowing down approximation (CSDA) calculate the particle
energy EnC1=2 after it has covered distance t=2 in the first half of the step.

2. Using the differential scattering cross section for energy EnC1=2, sample a new

direction E�nC1=2. The scattering angle is sampled using a multiple scattering
model, for a particle that has traveled a distance t.

3. Find the particle position at the end of the step:

ErnC1 D Ern C t

2
E�n C t

2
E�nC1=2: (5.204)

This means that the particle travels the first half of the step in the direction
E�n, and the second half, in the direction E�nC1=2.
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4. Using the CSDA, calculate the particle energy EnC1 after it has covered the
remaining distance t=2 of the step.

5. The direction of the particle trajectory at the end of the step is the same as the
direction sampled at the midpoint: E�nC1 D E�nC1=2.

Let us now estimate the errors for Larsen’s algorithm. We follow the same
procedure used for the basic algorithm, neglecting energy losses. The average
longitudinal displacement in this model is

hziL

t
D 1

2
C 1

2
h
 .t/i; (5.205)

where the subscript L denotes Larsen’s algorithm. It is important to note that the
scattering angle � is sampled from the distribution for a particle that has traveled the
distance t, and not t=2. The average cosine, h
.t/i is given by Eq. (5.125). Assuming
that the step size is small, and using Taylor series expansions for the exponents, we
find the error in the average longitudinal displacement for this algorithm:

hziL � hzi
t

� 1

12
Q	21 t2: (5.206)

This error is much smaller than that for the basic algorithm, provided that the step
size is chosen so that Q	1t � 1. The error in the second moment hz2i is also lower:

hz2iL D
�� t

2
C t

2


2�

D t2

4

�
1C 2h
 .t/i C h
2 .t/i	 ; (5.207)

where we can use Eq. (5.126) for h
2 .t/i. The error estimate is then

hz2iL � hz2i
t2

� �1
6

Q	1t C 1

18
Q	2t; (5.208)

which is smaller than the error of the basic algorithm for any values of the two small
parameters Q	1t and Q	2t.

Given that the longitudinal displacement estimate has improved, we expect that
the transverse displacement estimate is also improved. In the Larsen’s model, we
have

hx2iL D
�� t

2
sin � cos�

2�
D t2

8

�
1 � h
2 .t/i	 : (5.209)

Here we used the fact that � and � are independent random variables. Also, given
that the latter is uniformly distributed, the average of cos2 � is 1/2. Following
the same procedure as for the longitudinal moments, we find that the error in the
transverse distribution is approximately
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hx2iL � hx2i
t2

� � 1

36
Q	2t: (5.210)

This is four times smaller than the error of the basic algorithm.
The entire above analysis assumed a homogeneous material. Heterogeneities

add a further level of complexity to condensed history algorithms. In a voxelized
heterogeneous geometry, uncertainties associated with boundary crossings can be
limited by reducing the step size when the particle approaches a boundary. The best
results are then achieved by switching to the event-by-event algorithm when the
particle is close to a boundary. In that case the exact boundary crossing algorithm
introduced in Sect. 4.2.2 for neutral particles can be used.

5.5 Heavy Charged Particles in Condensed Matter: Charge
Exchange

If a heavy charged particle has some of its electronic shells filled, for example,
a carbon ion C4C, then through interaction with matter it may lose some of the
electrons and transition to another ionized state (e.g., C4C ! C5C) or become fully
ionized (C4C ! C6C). Alternatively, free electrons in the medium can bind to the
ion and thus reduce its charge (e.g., C4C ! C3C). These two opposite processes,
electron loss and capture, are called charge exchange. This process is particularly
important at low energies, near the track end.

Definitions

• The charge state i of an ion is the difference of its atomic number Z1 and the
number of electrons in bound states of the ion.

• The charge state distribution, ˆi, is the fraction of ions in charge state i; ˆi is the
fluence normalized so that

P
iˆi D 1.

• The fractional charge q, mean charge Ni, and the width d of the charge state
distribution are defined by the following equations:

q D i

Z1
: (5.211)

Ni D
X

i

iˆi: (5.212)

d D
sX

i



i � Ni�2 ˆi: (5.213)
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Equation for Charge State Distribution

As particles travel in matter, their charge state distribution changes as a function
of penetration depth, x. Evolution of charge state distribution is described by the
following equation (Bridwell et al. 1986)

dˆi

dx
D
X
i0¤i

.	i0iˆi0 � 	ii0ˆi/ ; (5.214)

where 	i0i is the cross section for transition from charge state i0 to charge state
i. At a certain depth, an equilibrium charge state distribution is reached that is
independent of the initial charge states of the ions at x D 0. The equilibrium depth,
x1, is determined by the charge exchange cross sections. Baron (1979) reported the
following simple estimate for x1 derived as a fit to experimental data for solids,
mostly carbon:

x1 D 5:9C 22:4E � 1:13E2; (5.215)

where the depth x1 is in units of �g/cm2 and ion energy E is in units of
MeV/nucleon. The experimental data was limited to E . 10 MeV/nucleon. In gases,
x1 tends to be lower than that in solids (Zaikov et al. 1984). From Eq. (5.215) it can
be estimated that the equilibrium depth is of the order of micrometers. Hence, most
ion beam experiments are performed under charge state equilibrium conditions. An
exception is experiments where ions scattered by the surface layer of the target are
registered. Further, we consider only equilibrium conditions. In this case, evolution
of the charge state distribution is driven only by slowing down of the ions.

Slow Ions

In this context, ions with velocity v1 that is much lower than the Fermi velocity
vF of the target material are categorized as “slow.” For hydrocarbon targets, for
example, the Fermi velocity can be approximated by the Bohr velocity v0 � 2:2 	
108 cm/s (Sabin and Brandas 2004). This is the velocity of an ion with kinetic energy
of 25 keV/nucleon.

At these low velocities the main factor determining the charge state of an ion
is screening of the ion charge by electrons of the target (Echenique et al. 1988).
Bargmann (1952) has shown that the number of bound states nbl with angular
momentum l in a central field V.r/ is limited according to the following inequality:

.2l C 1/ nbl <

Z 1

0

dr rjV.r/j (5.216)
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Using the screened Coulomb potential for V.r/, Rogers et al. (1970) found that
the number of stable bound states is approximately

n� D 0:5829C 0:4993 aZ1; (5.217)

where a is the screening length in atomic units. It can be estimated using the free
electron gas model. In this model the screening length is determined by the electron
density ne of the target, and can be expressed in terms of the radius rs of a sphere
that contains one electron on average as (Kaneko 1986)

a D
� �
12

1=3
r1=2s I rs D

�
4

3
�ne

��1=3
: (5.218)

Simple calculations show that in most solids helium ions can have no more than
one bound electron (Kaneko 1986). A proton cannot bind an electron in solids with
rs < 1:7 (in atomic units).

Ions of High and Intermediate Energies

Ions in this category have a velocity exceeding the Fermi velocity of the target
material, i.e., v1 & vF. At these velocities, Bohr’s criterion is applicable. According
to the criterion (Datz et al. 1975; Gervasoni and Cruz-Jimenez 1996), ions traveling
with velocity v1 in condensed matter lose all those electrons whose orbital velocities
are less than v1. In a hydrogen-like ion, the orbital velocity of K-shell electrons is
v0Z1, where v0 is the Bohr velocity. Then, ions traveling at velocities v1 > v0Z1 are
fully stripped of electrons, and the fractional charge is q=1 (Datz et al. 1975).

For ion velocities comparable to the Fermi velocity vF of the target material, a
refined version of Bohr’s criterion has been proposed (Kreussler et al. 1981; Brandt
and Kitagawa 1982): ions traveling with velocity v1 in condensed matter lose all
those electrons whose orbital velocities are less than the relative velocity vr of the
ions with respect to electrons of the medium. Assuming that all electrons in the
medium have the same velocity ve and an isotropic distribution of their directions,
the average relative velocity is (Kreussler et al. 1981):

Nvr D ve

6

"�
v1

ve
C 1

�3
�
ˇ̌̌
ˇv1ve

� 1
ˇ̌̌
ˇ
3
#
ve

v1
: (5.219)

A more realistic model for the distribution of electron velocity is the free
electron gas model. In this model, electron velocity Eve (velocity vector) is distributed
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uniformly in a sphere of a radius equal to the Fermi velocity of the material, vF. In
this model, averaging over the electron velocity distribution yields

Nvr D
8<
:
v1

h
1C 1

5
.vF=v1/

2
i
; if v1 � vFI

3
4
vF

h
1C 2

3
.v1=vF/

2 � 1
15
.v1=vF/

4
i
; if v1 < vF:

(5.220)

Transition Effects

A charge state distribution of ions when the ions travel in condensed matter does not
necessarily remain the same after they exit into air or vacuum, where they are usually
detected. Two reasons for changes in charge state distributions at the transition point
have been suggested in the literature:

• As a result of the interaction with the Coulomb field of the ion, a free electron
in the medium may acquire the same velocity as the ion and escort it for some
distance. This process is called electron capture into continuum. Once the ion
exits into air, the captured electron may transition into a bound state because
screening of the ion charge by electrons of the medium suddenly drops (Datz
et al. 1975).

• An ion traveling in condensed matter constantly interacts with the medium,
which brings its electron shell to an excited state, for significant periods of time.
When the ion exits condensed matter, de-excitation processes begin, that may
result in the emission of an Auger electron (Kaneko 1986; Shima et al. 1988).

5.6 Transport of Charged Particles in Magnetic Fields

Particle Trajectory in Vacuum

In the presence of a magnetic field EB a particle with charge q, traveling with velocity
Ev is subject to the Lorentz force (Jackson 1999):

EFL D qEv 	 EB: (5.221)

Accordingly, the equation of motion is

dEp
dt

D qEv 	 EB (5.222)

To replace the particle momentum Ep with velocity v, we use the relativistic formula

Ep D E

c2
Ev; (5.223)
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where E is the total energy of the particle, including the rest energy. In a magnetic
field, the particle energy is constant, if no other forces are applied. With the notation

E!B 
 qc2

E
EB (5.224)

the equation of motion takes a simpler form

dEv
dt

D Ev 	 E!B: (5.225)

The quantity j E!Bj is called the gyration or precession frequency. Its units are rad/s.
The initial condition for this differential equation is

Ev .0/ D Ev0: (5.226)

The magnetic field generally is a function of time t and position Er. In this case, the
equation of motion can be solved numerically using one of the standard techniques,
such as the Runge–Kutta method. Here, we present an analytical solution for a
spatially uniform and time-independent magnetic field. We will not consider electric
fields. The electric field is set to zero.

We choose the coordinate system so that the z-axis is parallel to the magnetic
field EB. In that case !Bx D !By D 0, !Bz D !B, and the equation of motion in
componentwise form is

dvx

dt
D vy!B:

dvy

dt
D �vx!B:

dvz

dt
D 0:

(5.227)

Because neither the particle energy E nor magnetic field EB change with time, the
gyration vector E!B is constant. Then, the solution of the above system of equations
satisfying the boundary condition Eq. (5.226) is

vx D v0x cos .!Bt/C v0y sin .!Bt/:

vy D �v0x sin .!Bt/C v0y cos .!Bt/:

vz D v0z:

(5.228)

The first two equations are the equation of a circle in the .vx; vy/ plane. The length
jEvj of the velocity vector is conserved.
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To find the particle trajectory, Er.t/, we integrate Eq. (5.228) with the initial
condition

Er .0/ D Er0: (5.229)

The solution is the equation of a helix in parametric form

x D x0 C v0y

!B
C v0x

!B
sin .!Bt/ � v0y

!B
cos .!Bt/:

y D y0 � v0x

!B
C v0x

!B
cos .!Bt/C v0y

!B
sin .!Bt/:

z D z0 C v0zt:

(5.230)

The radius of the helix is

RB D 1

!B

q
v20x C v20y: (5.231)

For example, for electrons in a 1.5 T magnetic field, the helix radius is 3.4 mm and
10 mm at electron kinetic energies of 1 MeV and 4 MeV, respectively (Raaijmakers
et al. 2007).

Event-by-Event Algorithms

In event-by-event algorithms a charged particle does not interact with matter as it
travels a distance l between two consecutive collisions called the free path. Then,
in a magnetic field, the distance l is traveled along a helical trajectory defined by
Eq. (5.230). At the end of the free path, an interaction is simulated and, unless the
particle is absorbed, the next free path is sampled. The particle trajectory continues
along a different helix, because the particle momentum changes in the collision.
The boundary crossing algorithm does not change in a magnetic field, except that
the distance to the boundary is calculated using the equation of the helical trajectory
instead of the equation of a straight line. Alternatively, the step size can be limited so
that the particle travels a distance l in small steps�l, with each step being a straight
line segment approximating the helix. This approach introduces an error and should
only be used when an analytical solution of the equation of motion cannot be found.

Condensed History Algorithms

Developing an algorithm should start with choosing an appropriate form of the
Boltzmann equation. The Boltzmann equation in the presence of external magnetic
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fields was discussed in Chap. 3. It was derived recently by St. Aubin et al. (2015,
2016) and Bouchard and Bielajew (2015). These studies were motivated by the
recent advances in MRI-guided radiotherapy, because clinical implementation of
this new technology requires dose calculations in the presence of magnetic fields.
However, a Monte Carlo algorithm for solving this form of the Boltzmann equation
has not been developed yet. St. Aubin et al. (2015, 2016) did not use the Monte
Carlo method. Instead, they took an entirely different approach. They developed an
algorithm and solved the equation with a grid-based solver, which is a deterministic
method that we discuss in Chap. 7. Bouchard and Bielajew (2015) discussed general
implications of having the Lorentz force term in the equation, but did not offer an
algorithm for solving it.

The Monte Carlo algorithm that has been used for transport of charged particles
in magnetic fields is a combination of the mechanistic approach for modeling
a helical particle trajectory in a magnetic field that we described above, with
the statistical approach that uses multiple scattering models. The algorithm was
introduced in Jenkins et al. (1988). A good description of the algorithm is also given
in Salvat et al. (2011), Keyvanloo et al. (2012), and Yang and Bednarz (2013).

In condensed history algorithms the concept of a free path is not applicable.
Instead, as we have discussed in this chapter, the trajectory of a charged particle
is generated step-by-step, with each step accounting for multiple interactions. The
principal difficulty of using algorithms of this type in magnetic fields is that particle
momentum changes continuously and neither particle energy nor the direction of
its velocity are known at each point of the trajectory. They are sampled only at the
end of the step. The Lorentz force, of course, depends both on particle energy and
direction it is traveling.

To account for all scattering that a particle undergoes as it travels the step length,
we add to the equation of motion Eq. (5.222) a force EF

dEp
dt

D qEv 	 EB C EF .v/ : (5.232)

The force accounts for energy losses and deflections resulting from particle
interactions with matter. It is a macroscopic force, representing the average effect of
all interactions of the particle with atoms along its path. The force is not explicitly
known. We only know through multiple scattering theories, its net effect on the
distribution of particle momentum at the end of the step.

We rewrite Eq. (5.232) using

Ep D mEvp
1 � v2=c2


 m� .v/ Ev: (5.233)

to eliminate the momentum from the equation:

m
d

dt

�
� .v/ Ev 	 D qEv 	 EB C EF .v/ : (5.234)
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Then, we choose a sufficiently small step size l so that when integrating
Eq. (5.234) we can assume that the right-hand side of the equation and �.v/ are
constant:

m� .v0/
dEv
dt

D qEv0 	 EB C EF .v0/ : (5.235)

Here Ev0 is the initial velocity, i.e., the particle velocity at the beginning of the step,
at t D 0. We can easily integrate this equation and find the change of the particle
velocity at the end of the step:

�Ev .l/ 
 Ev .t/ � Ev0 D Ev0 	 E!B .v0/ t C
EF .v0/ t

m� .v0/
: (5.236)

Finally, as a matter of convenience, we express the right-hand side in terms of
the step length, instead of time t. To do so, we use the obvious formula

t D
Z l

0

dl0

v .l0/
� l

v0
: (5.237)

Furthermore, we prefer to use the directional vector E� rather than velocity Ev. Hence,
we write the final result as

� E�.l/ D �Ev .l/
v0

D E�0 	 E!B .v0/
l

v0
C

EF .v0/ l

m� .v0/ v20

 � E�L .l/C� E�F .l/ :

(5.238)

Still, the force EF.v0/ remains unknown. The meaning of Eq. (5.238) is that
the magnetic field simply adds deflection � E�L .l/ to the particle trajectory. This
observation justifies the following algorithm. First, a step is made as if the magnetic
field was not present. The particle energy and deflection � E�F .l/ at the end of the
step are sampled using one of the standard multiple scattering models. Then the
deflection caused by the magnetic field � E�L .l/ is added. The magnetic field does
not change the particle energy. Because Eq. (5.238) does not preserve vector length,
the directional vector E� has to be renormalized before starting the next step:

E�.l/ D
E�0 C� E�.l/

j E�0 C� E�.l/ j
(5.239)

As we discussed in this chapter, multiple scattering models impose restrictions
on the step size l. The algorithm in a magnetic field that we have just presented,
introduces additional restrictions. First, the velocity change should be small, i.e.,

j�Ev .l/ j
v0

� 1: (5.240)

Alternatively, the above requirement can be expressed in terms of energy loss.
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Second, even though we assumed that the magnetic field was constant, the
algorithm is also applicable to spatially nonuniform fields. In that case we require
that the change of the magnetic field over a step length is small. For any point Er on
the particle path l the following inequality must be satisfied

jEB 
Er � � EB0j
jEB0j

� 1; (5.241)

where EB0 is the magnetic field at the beginning of the step.
Third, the deflection caused by the magnetic field must be small, i.e.

ˇ̌̌
� E�L

ˇ̌̌
D
ˇ̌̌
ˇ E�0 	 E!B .v0/

l

v0

ˇ̌̌
ˇ � 1: (5.242)

This is because we used an approximate solution of the equation of motion to find
� E�L.

These additional constraints are rather restrictive and may slow down calcula-
tions significantly, especially in strong magnetic fields. Kirkby et al. (2010), for
example, reported the maximum step sizes of 0.2, 0.02, and 0.01 cm for electrons in
magnetic fields of 0.2 T, 1.5 T, and 3.0 T, respectively.
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Chapter 6
Microdosimetry. Elements of Stochastic
Transport Theory

6.1 Beyond the Boltzmann Equation

So far, in this book, we have been mostly concerned with calculation of macroscopic
characteristics of radiation fields, such as dose distributions on a spatial scale on
the order of  1 mm. However, absorbed dose does not always serve as a good
predictor of biological effects of radiation, including the outcome of a radiation
treatment. It is well known that depending on the type of radiation, the same dose to
the same biological system can have very different biological sequelae. The effects
can be different even for the same dose and same radiation type, but with two beams
having different energy spectra. Understanding and quantifying these differences is
becoming increasingly important, owing largely to the rapid expansion of hadron
therapy.

The physical mechanisms underlying different biological responses to radiation
are related to the properties of dose distributions on a microscopic scale that is
comparable to the size of subcellular structures, ranging from the cell nucleus to
the DNA helix. The relevant scale is from a few nanometers to a few micrometers.
Strictly speaking, the absorbed dose, by definition, is a macroscopic quantity and
on this microscopic scale, the energy deposited by radiation should be used instead.
The deposited energy is a stochastic quantity. Its microscopic spatial distribution is
extremely heterogeneous and is best described in statistical terms. Microdosimetry
offers an established formalism that is well suited for that purpose.

The calculation of the statistical characteristics of radiation fields poses a chal-
lenge for Monte Carlo simulations. The fundamental difficulty is that the Boltzmann
equation is not applicable to fluctuational characteristics of radiation fields. It is an
equation for fluence. By solving the Boltzmann equation we can find, for example,
the average energy deposited in a volume. If, on the other hand, we are interested in
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the variance of the deposited energy, solving the Boltzmann equation will not give
us the answer. It simply does not contain this type of information. One approach to
circumvent this problem is by using intuitive algorithms. Several such algorithms
are presented in this chapter. The Monte Carlo method is an inherently statistical
method, and as we generate particle trajectories, we can certainly calculate not only
the average deposited energy, but also the variance of that quantity. However, we
cannot use powerful variance reduction techniques and other numerical techniques
that ultimately are based on the properties of the Boltzmann equation. This is a
serious drawback of the intuitive approach, considering further complicating factors
associated with this numerical problem. These additional factors will be discussed
below.

Clearly, for efficiently solving this category of problems, there is a need to devise
methods beyond the Boltzmann equation. In this section we introduce an approach,
the fluctuation detector (FD) method, which is based on the principles of stochastic
radiation transport theory. The theory dates back to the mid-sixties. It was developed
primarily for studying fluctuational aspects of neutron transport (Bell 1965; Saito
and Otsuka 1965). A form of the stochastic transport equation will be presented
later in this chapter. It is a nonlinear integro-differential equation, somewhat similar
to the adjoint transport equation [Sect. 3.3, Eq. (3.48)].

6.2 Event-by-Event Monte Carlo Algorithms

Monte Carlo simulations have been used extensively for the analysis of microscopic
patterns of energy deposition, as well as for the modeling of biological effects
on the cellular level, such as DNA damage. In this type of calculations best
results are achieved with the so-called event-by-event algorithms, also known as
track structure algorithms. In event-by-event algorithms, all interactions such as
ionizations, excitations, and elastic scattering, are simulated explicitly. This is in
contrast to condensed history algorithms in which the step size exceeds the mean
free path, and at the end of the step the net result of multiple collisions is simulated.
The advantage of event-by-event algorithms is that they provide maximal spatial
resolution of microscopic energy deposition patterns, or track structure. They are
typically designed so that very low tracking cut-off can be used, on the order of
10 eV for electrons, which is comparable to the ionization threshold. Unavoidably,
event-by-event algorithms are slow. Fortunately, for many applications it suffices
to model only a relatively short track segment, for example a track segment just
exceeding the size of the cell nucleus. Algorithms of this type were reviewed by
Nikjoo et al. (2006). We will add to the list an important new code Geant4-DNA
(Incerti et al. 2010; Bernal et al. 2015), that was not available at the time of the
review.

A major challenge for event-by-event algorithms are large uncertainties that exist
in particle interaction parameters, such as the cross sections and the stopping power,
at low energies. Mostly for this reason, the software is usually written for one
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material, water. Earlier software used interaction data for water vapor, scaled to the
density of liquid water. However, it is now well understood that at low energies,
the phase effects are not negligible. Interaction parameters for liquid water are
significantly different from those derived by density scaling of parameters for water
vapor, see for example Turner et al. (1982). Thus research in this area has shifted
more towards developing interaction models and simulation algorithms for liquid
water.

Another complication associated with low energies is modeling processes that
are neglected or not explicitly modeled in radiotherapy dose calculations. Examples
of such processes are excitation of molecular vibrational degrees of freedom, charge
exchange processes for heavy charged particles (see Sect. 5.5), and emission of
Auger electrons following ionization of inner shells. In tissue and in water, the
energy of Auger electrons is on the order of a few hundred electron volts, which
is higher than the typical tracking cut-off in event-by-event algorithms.

Some of the more advanced software systems are not limited to radiation
transport. They may include the simulation of radiolysis, the production of radical
species, their diffusion and their interactions with each other and with DNA
molecules, and the formation of DNA damage. Some of these systems include
sophisticated models of the DNA geometry, and some are interfaced with molecular
dynamics software.

6.3 Microdosimetry

As mentioned above, microscopic distributions of deposited energy should be
described in statistical terms. In this section we present a well-established frame-
work that is well suited for that purpose. The framework includes a set of physical
quantities, methods for their measurements and calculations, and a formalism for
translating physical data into estimates of expected biological effects. The frame-
work forms the basis of what we would describe as classical microdosimetry. In a
more general sense, microdosimetry is a very broad field that includes a variety of
approaches towards studying radiation effects. The foundations of microdosimetry
were presented in a series of papers published in the mid-fifties by H. Rossi and
W. Rosenzweig. The most important contribution was the development of a device
for measuring probability distributions of energy deposited in micrometer-sized
volumes (Rossi and Rosenzweig 1955). This device is now known as the Rossi
counter or the proportional counter. The foundations of microdosimetry and its
applications are discussed in depth in Rossi and Zaider (1996) and ICRU 36 (1983).
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6.3.1 Definitions

Microdosimetry

Microdosimetry is defined, rather formally, by Rossi and Zaider (1996), as the
systematic study and quantification of the spatial and temporal distributions of
absorbed energy in irradiated matter.

Deposited Energy, �

The exact meaning of � may depend on the application, radiobiological model,
and the method of measurement. In condensed matter, for example, the situation is
complicated by the fact that the energy is delocalized through collective excitations,
or quasiparticles, such as plasmons. Therefore, we will leave this term open to
interpretation and will refrain from offering a rigorous definition.

The Sensitive Volume

The sensitive volume (SV) is the volume of interest. The term was originally
intended to represent the cell nucleus. A typical SV in classical microdosimetry
is a sphere of a tissue equivalent material, 1�m in diameter. More recently, interest
has apparently shifted to the nanoscale, with SVs representing DNA molecules.

The Probability Distribution of Deposited Energy, �

The probability distribution of the total energy deposited in the SV by all particles
emitted by a source, � D �1 C �2 C : : : C �� , depends on the total delivered dose,
D. We will denote this distribution by f .qjD/. This distribution has a singularity at
q D 0, because the probability of zero energy deposited, � D 0 is finite:

P .� D 0jD/ D 1 � P .� > 0jD/ D 1 �
Z 1

0C
f .qjD/ dq; (6.1)

where 0C means that the point q D 0 is not included in the integral. For nanoscale
SVs at therapeutic doses, P.� > 0jD/ � 1. For example, for proton beams with
energies in the 10– 100 MeV range, at the dose of 2 Gy, for a 10 nm SV, P.� > 0jD/
is in the range from approximately 2:6 	 10�4 to 3:3 	 10�4 (Wang and Vassiliev
2014).
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The Single Event Distribution of Deposited Energy, �

The single event distribution f1.q/ is the probability distribution of energy deposited
in one energy deposition event. An example of an energy deposition event is a single
charged particle entering the SV and depositing energy via one or more inelastic
interactions that occur within the SV. Another example is two electrons produced
by the same parent particle entering the same SV and both depositing energy. One
reason why this should be considered a single event, instead of two separate events,
is that the two particles reach the SV almost simultaneously, and a proportional
counter registers this as a single event. Another reason is that we would prefer that
f1.q/ described interaction with the SV of the entire track produced by the source
particle, including all daughter particles, as opposed to interactions with the SV of
individual particles within this track.

The single event distribution is normalized
Z 1

0

f1 .q/ dq D 1: (6.2)

The point q D 0 is now included in the integral. This point, q D 0, is no longer
singular and the function f1.q/ is continuous as q tends to zero from the right.

The two distributions, f .qjD/ and f1.q/, are related. At any given dose D, the
number of energy deposition events is random and can be greater than one, or it can
be zero. Given that we associate each event with the entire track from a single source
particle, the distribution Pk of the number of energy deposition events is Poisson.
For the same reason, we can assume that events are statistically independent, or
equivalently, energy deposits �i from individual events are mutually independent
random variables. We also note that the total energy � deposited in all events is the
sum of energies �i deposited in individual events, and that the distribution of a sum
of random variables is the convolution of individual distributions of the summands
(see Appendix A). It follows then that

f .qjD/ D P0ı.q/C
1X

kD1
Pkf �k

1 .q/ D
1X

kD0

NNk

kŠ
e� NNf �k

1 .q/ ; (6.3)

where NN D NN .D/ is the average number of energy deposition events at dose D, �k
is the k-fold convolution, and f �0

1 .q/ 
 ı.q/. In what follows, we will provide a
simple formula for calculating NN.D/. Usually, the single event distribution, f1.q/, is
measured or calculated first, and then f .qjD/ is derived from the above equation.
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The Specific Energy, z

The specific energy is the quotient of � by the mass m of the material within the SV:

z D �

m
: (6.4)

The units of specific energy are J/kg, or Gy. It can be considered as a stochastic
equivalent of the absorbed dose.

The Lineal Energy, y

The lineal energy is the quotient of the deposited energy � by the mean chord length
Nl of the SV:

y D �

Nl : (6.5)

The units of lineal energy are eV/nm, or keV/�m. It can be considered as a stochastic
equivalent of the linear energy transfer (LET). The mean chord length in the above
definition is not meant to represent the average actual path length of particles
traversing the SV. It is a purely geometric concept. It is the mean chord length
produced in the SV by uniformly and isotropically distributed infinite straight lines.
This geometric model is a good approximation of a spatially uniform and isotropic
fluence of heavy charged particles, if particle trajectories are almost straight, their
ranges are much greater than the size of the SV, and, on the other hand, if the SV
is sufficiently large to justify neglecting transport of delta electrons produced by the
particles.

For this geometric model, the Cauchy theorem (Kellerer 1971) states that for a
convex SV, the mean chord length is equal to

Nl D 4V

S
; (6.6)

where V is the volume of the SV, and S is its surface area. For example, for a
spherical SV of radius R

Nl D 4

3
R: (6.7)

The actual, physical chord length of charged particles traversing the SV would
be more meaningful in the context of radiobiological modeling, see for example
Vassiliev (1995). The downside is that the physical chord length cannot be readily
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measured, in any case not by the proportional counter. Still, the physical chord
length is a useful quantity that can be calculated by the Monte Carlo method.

The Frequency Mean Lineal Energy, NyF, and the Frequency Mean Specific
Energy, NzF

The frequency mean lineal and specific energies are the first moments of the single
event distributions of lineal and specific energy, f1.y/ and f1.z/, respectively:

NyF D
Z 1

0

yf1 .y/ dy: (6.8)

NzF D
Z 1

0

zf1 .z/ dz: (6.9)

The average number of events, NN.D/ in Eq. (6.3), is

NN .D/ D D

NzF
; (6.10)

because D is the mean total energy from all energy deposition events divided by the
mass of the SV, and NzF is the same but for one event.

The Dose-Weighted Single Event Distributions, d.y/ and d.z/

The dose-weighted distributions of lineal and specific energy are defined as

d .y/ D y

NyF
f1 .y/ : (6.11)

d .z/ D z

NzF
f1 .z/ : (6.12)

The Dose Mean Lineal Energy, NyD, and the Dose Mean Specific Energy, NyD

The dose weighted mean lineal and specific energies are the first moments of the
dose weighted distributions of linear and specific energy, d.y/ and d.z/, respectively

NyD D
Z 1

0

y d .y/ dy: (6.13)

NzD D
Z 1

0

z d .z/ dz: (6.14)
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6.3.2 Application to Radiobiology

The application of the microdosimetric approach to radiobiology is a very broad
field. In this section, we give only a minimal introduction to the subject matter. For
further reading, we refer to Rossi and Zaider (1996) and ICRU 36 (1983).

A general formalism for applying the microdosimetric approach to modeling
biological effects is based on the following formula (Kellerer and Rossi 1972)

Biological effect .D/ D
Z 1

0

B .z/ f .zjD/ dz; (6.15)

where B.z/ is the biological response function. It can be determined from a model
of a biological effect, or it can be found by fitting the above formula to biological
data for a set of different distributions f .zjD/.

The Theory of Dual Radiation Action (TDRA) by Kellerer and Rossi (1972)
provides a classical example of the biological response function. The theory
postulates that B.z/ is a quadratic function

B .z/ D kz2: (6.16)

In another example (Zaider and Zaider 1985), the biological response function
B.z/ was found by fitting a low dose version of Eq. (6.15) to experimental yields
of chromosome aberrations in human lymphocytes for a range of radiation sources,
from sparse radiations to several neutron sources and alpha emitters.

It follows from the above postulate of the TDRA that

Biological effect .D/ D k .NzD C D/D: (6.17)

A derivation of the above result is given in Kellerer and Rossi (1972). Here, we
will give a different proof, where we introduce a general technique for dealing
with convolutions. It is based on the following property of the Laplace transform
L (Arfken et al. 2013):

L Œf .z/ � g .z/� D L Œf .z/�L Œg .z/� : (6.18)

According to the TDRA, the biological effect is proportional to the second
moment of distribution f .zjD/:

Biological effect .D/ D
Z 1

0

kz2f .zjD/ dz D khz2 .D/i: (6.19)

To calculate hz2i, we will use the following obvious formula:

hz2i D
�
@2

@2p
he�pzi

�
pD0

: (6.20)
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This means that instead of the average of z2, we need to find the average of the
exponent:

he�pzi D
Z 1

0

e�pzf .zjD/ dz D e� NN
1X

kD0

NNk

kŠ

Z 1

0

e�pzf �k
1 .z/ dz: (6.21)

The last integral in the above equation is nothing but a Laplace transform of a k-fold
convolution of the single event distribution f1.z/. In that case, according to Eq. (6.18)

Z 1

0

e�pzf �k
1 .z/ dz D L �f1 .z/�k	 D f k

1 .p/ ; (6.22)

where f1.p/ is the Laplace transform of f1.q/. We now replace in Eq. (6.21) the
integral by the right-hand side of Eq. (6.22). Then, we can see that the sum is the
Taylor series expansion of an exponent:

he�pzi D e� NN
1X

kD0

NNk

kŠ
f k
1 .p/ D e� NNe NNf1.p/: (6.23)

The second derivative of the average of the exponent then can be easily found as

@2

@2p
he�pzi D e� NNe NNf1.p/

(
NN @

2f1 .p/

@2p
C
�

NN @f1 .p/

@p

�2)
: (6.24)

To calculate the derivatives, we note that by the definition of the Laplace transform

f1 .p/ D
Z 1

0

e�pzf1 .z/ dz: (6.25)

From this, it can be seen that:

Œf1 .p/�pD0 D 1: (6.26)�
@f1 .p/

@p

�
pD0

D
Z 1

0

.�z/ f1 .z/ dz D �NzF: (6.27)

�
@2f1 .p/

@2p

�
pD0

D
Z 1

0

z2f1 .z/ dz 
 hz2iF: (6.28)

Finally, we set p D 0 in Eq. (6.24), and insert in the right-hand side Eqs. (6.26)–
(6.28)

hz2i D
�
@2

@2p
he�pzi

�
pD0

D NNhz2iF C NN2 .�NzF/
2 D DNzD C D2; (6.29)
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where in the last step we used Eq. (6.10), and

hz2iF D NzDNzF; (6.30)

which follows from Eqs. (6.12) and (6.14). This proves Eq. (6.17). ut
The dose mean specific energy NzD, as well as the dose mean lineal energy NyD,

are often used as parameters of radiation quality. According to Eq. (6.17), in the low
dose limit (D � NzD) the relative biological effectiveness (RBE) is proportional to
NzD or, alternatively, to NyD. The latter parameter seems to be preferred in this context,
because of its similarity to another popular parameter of radiation quality, the linear
energy transfer (LET).

6.4 Intuitive Algorithms

The very small size of a typical SV poses serious challenges for Monte Carlo
calculations. First, as we indicated earlier, a high spatial resolution of the track
structure is required. For this reason, an event-by-event algorithm should be used
for obtaining the best results. For micrometer sized SVs, accurate results can be
achieved by using a carefully designed condensed history algorithm. In any case,
algorithms achieving high spatial resolution are inherently slow. Another challenge
associated with the small SV size is a small probability of a particle emitted by the
source to reach the SV. In fact, the probability is so small that algorithms simply
tracking particles from the source to the SV, without any variance reduction, are
prohibitively slow, except for a few special cases. Making the problem even more
difficult, standard variance reduction techniques generally cannot be used, because
the Boltzmann equation does not apply to fluctuational characteristics of radiation
fields, such as the microdosimetric spectrum, f1 .q/. For quantities of this nature, a
stochastic transport equation must be used. An example of an equation of this type,
and a Monte Carlo algorithm for solving it, are presented later in this section.

6.4.1 A Symmetry-Based Method

The most common approach to calculating microdosimetric characteristic by using
the Monte Carlo method relies on the assumption of translational symmetry of
the system on a scale exceeding the size of a particle track. It implies an infinite
homogeneous medium, a spatially uniform source and fluence. The source could be
spatially uniform in three dimensions, for example, when a spatially uniform fluence
of photons is the source of delta electrons. The source could be uniform in a plane,
representing, for example, a parallel beam of protons.
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This method is most straightforward. It was described by Charlton et al. (1985),
Nikjoo et al. (1989, 1997), and Palajova et al. (2006). In this method, first, a
bounding volume VB is determined, such that for a given particle energy it contains
with a margin all particle tracks that start from the origin. The volume can be a
cylinder for heavy charged particles (Charlton et al. 1985), or a sphere for electrons
(Nikjoo et al. 1989). Then, a particle track is generated, and for all energy deposition
events (inelastic collisions) the coordinates (xi, yi, zi) of interaction points and the
energies �i (i D 1; 2; � � � ;N) deposited at the point of interaction are recorded. Next,
a large number of SVs are placed randomly within VB, and energies deposited in
each SV are tallied. The procedure is repeated for a large number of tracks, until
statistical uncertainties are reduced to the desired level.

For electrons, the algorithm becomes increasingly inefficient with increasing
particle energy, because of an increasing track size and an increasing number of SVs
with zero energy deposits. Algorithms have been developed for placing SVs closer
to the track and for accelerating the search for interaction points that contribute to
energy deposited in the SV (Nikjoo et al. 1991; Fitzsimons et al. 1998).

6.4.2 Sampling Over Individual Transfers

Another technique relying on translational symmetry is called sampling over
individual transfers (Kellerer and Chmelevsky 1975). First, a particle track is
generated in an infinite homogeneous medium and, similar to the method described
above, coordinates of inelastic collisions (xi, yi, zi) and respective energy deposits,
�i, are recorded. Next, an energy deposition point i on this track is selected at
random, with the selection probability proportional to the energy deposit at this
point, �i. For the next step of the algorithm it is assumed that the SV is a sphere of
radius R. In that case, next, the center of the SV is placed randomly within a sphere
of radius R centered at the selected point i. Here, “randomly” means sampled from
a uniform distribution. Then, the total energy � deposited in all inelastic collisions
within this randomly placed SV is tallied. Then another interaction point is selected
randomly and a new location of the center of the SV is sampled, following the same
procedure as above. The selection of an interaction point and placing of the SV
are repeated a number of times. This number for any given track, should not be
too large to avoid oversampling, which reduces the algorithm efficiency. Finally, all
of the above steps, starting from generating the next track, are repeated until the
uncertainties are reduced to the desired level. This method produces an estimate of
the dose weighted distribution d.z/, because the algorithm for placing the SV favors
locations of higher energy deposits, so that the probability of a location resulting in
the total energy deposit � is proportional to � (Kellerer and Chmelevsky 1975).

The assumption of translational symmetry, common to the two methods, limits
the category of problems that can be solved by using these methods. Another
drawback is that generating and then analyzing entire tracks become increasingly
time consuming with increasing particle energy.
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6.4.3 Algorithm Based on Caswell’s Analytical Method

Caswell (1966) developed an analytical method for calculating probability distribu-
tions of energy deposited in a spherical cavity by charged recoils, produced when
a material is irradiated by neutrons. The method was formulated in the continuous
slowing down approximation (CSDA). However, the underlying physical model of
the method is very general and the method does not have to be limited to the CSDA
transport model. It, in fact, can serve as a basis for a Monte Carlo algorithm.

In the Caswell method, all charged particles depositing energy in the SV are
divided into two groups: particles that originated within the SV, and particles that
originated outside the SV and entered it through its surface. Caswell classified all
particles that originated within the SV either as “starters,” if they exited the SV, or
as “insiders,” if they did not exit the SV. Similarly, particles that entered the SV
through its surface and then exited were classified as “crossers,” and those particles
that stopped within the SV, as “stoppers.” Because the SV is very small, it can be
assumed that both the source function S and the fluence ˆ are constant within the
SV and on its surface, � . Thus, in this method, the small SV size is not an obstacle,
on the contrary, it helps simplify the algorithm.

The average number of particles entering the SV is the product ˆA, where ˆ
is the total fluence and A is the cross-sectional area of the SV. This follows from
definition 3 of fluence (Chap. 3). This, of course, is the fluence of charged particles.
The number of particles originated within the SV is the product of the source
function S and volume V of the SV. Here, S is the source function S.x/ integrated
over energies and directions. The source function and fluence are not independent
but rather, are related through the Boltzmann equation, OLˆ.x/ D S.x/. If the source
function is normalized to one particle, the fluence must be normalized accordingly.
If charged particles are produced via interactions of neutral particles, the source
function is the collision density of neutral particles that accounts only for those
collisions that produce charged particles. The energy distribution of “crossers” and
“stoppers,” when they enter the SV, is given by the fluence spectrum ˆ.E/. The
distribution of the initial energy of “starters” and “insiders” is given by the source
spectrum S.E/.

A Monte Carlo algorithm that follows from the above considerations can be
summarized as follows. For now, we present it in a rather intuitive manner, without
any further justification. We will return to this matter in the next subsection, after
we introduce a more rigorous formalism.

Overview of the Algorithm

1. Randomly choose the particle’s initial position within the volume V or on its
surface � . The respective probabilities are proportional to S � V and ˆ � A. As a
side note, we mention that the ratio of the probabilities is .ˆ�A/=.S�V/. Recalling
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that ˆ is the total range of the particle, and that V=A is the mean chord length of
the SV, we find that the ratio of the probabilities is proportional to the ratio of the
particle track length to the mean chord length.

2. If the particle starts within V , sample its initial energy from the source spectrum,
S.E/, and its initial location Er0 uniformly within V . The latter distribution is
uniform because we assumed above that the source function is constant within
V . As for its initial direction E�0, in the case of a spherical SV, it can be sampled
isotropically, or all particles can start in the same direction, for example, parallel
to the z axis.

3. If the particle starts on � , sample its initial energy from the fluence spectrum
ˆ.E/. Then, either sample its initial direction E�0 isotropically, or set it parallel
to the z axis. Then, sample the initial location of the particle Er0 on the surface
� . The distribution of Er0 on the surface � is not uniform. The initial point Er0 is
sampled on � so that the distribution of its projection in the direction E�0, on the
cross-sectional area A of the SV, is uniform, where A is oriented normally to E�0.
This distribution is identical to that of a parallel beam of protons incident on the
SV. In the original formulation of this approach (Caswell 1966), only particles
entering the SV, but not exiting, are considered at this step. In other words, if for
a point Er0 direction E�0 points away from the SV, the particle is discarded.

4. Generate a particle trajectory, and tally the energy deposited by the particle in
the SV.

An advantage of this algorithm is that all particles reach the SV. Although, some
particles may still traverse the SV without interaction, and thus deposit no energy.
The downside is that the fluence spectrum ˆ.E/ at the SV location needs to be
pre-calculated. In some important situations, this is a simple problem that requires
solving only the energy degradation equation [see Sect. 3.9.3, Eq. (3.112)]. This is
the case, for example, when the incident radiation consists of photons, and electronic
equilibrium is established in the SV proximity. More generally, in this approach, the
problem is separated into two problems that can be solved independently and, if
appropriate, by using different numerical tools. The first problem is calculating the
fluence spectrum ˆ.E/ at the SV location. This is a standard problem of radiation
transport on a macroscopic scale, from a source to a detector. The second problem is
calculating microdosimetric distributions from a source located in the SV and on its
surface. This latter problem requires a high spatial resolution of the track structure,
but only in the immediate vicinity of the SV.

Using the above algorithm with a more accurate transport model than the CSDA,
for example an event-by-event Monte Carlo code, requires two corrections. First,
we need to account for the possibility that a particle that left the SV, is scattered
back towards the SV and reenters it. Second, we need to account for statistical
correlations between particles entering the SV. These correlations exist because of
the possibility of two or more daughter particles produced by the same primary
particle entering the SV. The fluence spectrum ˆ.E/ provides no information on
inter-particle correlations, and therefore in the above Monte Carlo algorithm parti-
cles starting at the SV surface have to be considered as independent. The assumption
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of independence introduces errors into the calculated microdosimetric distribution
f1.z/ and its moments hzni, for all n, except n D 1. In the next subsection, we will
present a formalism that fully accounts for correlations and for reentering particles.

Alternatively, a simple modification of the above algorithm can be used to reduce
these systematic errors. The SV can be placed at the center of a larger sphere.
Then, all trajectories will start within the larger sphere or on its surface, in the
same manner as described above. Of course, the energy that is deposited only in
the SV, will be tallied. This modification of the algorithm is feasible because both
particle correlations and the probability of back scattering into the SV decrease
rapidly with increasing the distance from the SV. The downside of this modification
is the reduced probability of a particle entering the SV.

6.5 Fluctuation Detector Method

The fluctuation detector method (FD) is based on the stochastic theory of particle
transport. In the FD method, a form of the stochastic transport equation is solved by
using the Monte Carlo method. The method was introduced in the TRION event-by-
event code (Lappa et al. 1993). The FD method has two alternative implementations,
FD-1 and FD-2 (Sects. 6.5.2 and 6.5.3).The algorithm presented in the preceding
section is in fact a simplified version of the FD-2 implementation.

To derive the stochastic transport equation and formulate the algorithm, we use
the Boltzmann equation and the adjoint transport equation for multiplying systems
that were derived in Sects. 3.6 and 3.7. We have to consider multiplying systems,
because correlations between particles entering the SV exist only in multiplying
systems, where the particle emitted by the source produces secondary and higher
generation particles.

6.5.1 Equation for the Distribution of Deposited Energy

We will now derive an equation for the distribution f .q/ of energy � deposited in the
SV. The distribution f .q/ is normalized to one source particle and satisfies

Z 1

0

f .q/ dq D 1: (6.31)

The moments of the distribution are defined as

h�ni D
Z 1

0

qnf .q/ dqI n D 1; 2 : : : (6.32)
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As a matter of convenience, we define the zeroth moment so that the point q D 0 is
not included in the integral:

h�0i D
Z 1

0C
f .q/ dq: (6.33)

This simply means that h�0i is the probability of an individual particle and/or its
progenies depositing energy, � > 0, in the SV.

We start with an obvious equation

f .q/ D
Z

S .x/ f .qjx/ dx; (6.34)

where f .qjx/ is the distribution of energy deposited in the SV by a particle that
originated at the phase space point x D .Er; E�;E/. To derive an equation for
the conditional distribution f .qjx/, let us consider a particle with an initial phase
coordinate x traveling a small distance l. With the probability 	 l the particle will
undergo an interaction, and with the probability 1 � 	 l it will travel the distance
without interactions. Then,

f .qjx/ D .1 � 	 l/ f .qj x; no collisions/C 	 lf .qj x; collision/ : (6.35)

If no collisions occur, then the particle simply moves from point Er to point Er C E�l:

f .qj x; no collisions/ D f
�

qj Er C E�l; E�;E

: (6.36)

Then, we can combine the two terms in Eq. (6.35), and take the limit l ! 0:

lim
l!0

1

l
Œf .qjx/ � .1 � 	 l/ f .qj x; no collisions/� D �

� E� � r


f .qjx/C 	 f .qjx/ :
(6.37)

Similarly to Sects. 3.6 and 3.7 where the transport equations for a multiplying
systems were introduced, here we consider a system that has only two types of
interactions. The first type is scattering, during which the particle momentum
changes from Ep to Ep 0, and no secondary particles are produced. The cross section
of this process is 	1.Ep ! Ep 0/. The second type is particle multiplication, during
which the momentum of the incident particle changes, and a secondary particle of
the same type as the incident particle is produced. The cross section of this process
is 	2.Ep ! Ep 0; Ep 00/, where Ep 0 and Ep 00 are the momenta of the two particles emerging
from the collision. Then we can split the remaining term in Eq. (6.35) into two parts
corresponding to the two types of collisions:
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	 f .qj x collision/ D
Z

dEp 0	1

Ep ! Ep 0� f

�
q � �.1/0 jEr; Ep 0C

Z
dEp 0

Z
dEp 00	2


Ep ! Ep 0; Ep 00� f2
�

q � �.2/0 jEr; Ep 0; Ep 00 :
(6.38)

If a collision occurs within the SV (Er 2 V) we need to account for the energy
deposited at Er during the collision itself. This energy is the difference between
the energy of the particle before the collision and the total energy of all particles
emerging from it. Therefore, we introduce the two variables �.1/0 and �.2/0 . These are
equal to zero if the collision point Er is outside the SV (Er … V), and otherwise (Er 2 V)
are equal to the energy deposited in a collision of type 1 and 2, respectively. Here,
for brevity, we did not include particle absorption; another reason not to include it
was because energy is deposited mostly by charged particles, for example electrons.

The two integrals in Eq. (6.38) are the total probability equations describ-
ing possible outcomes of the two types of collisions. Accordingly, the function
f2


qjEr; Ep 0; Ep 00� is the probability distribution of the total energy � deposited in the

SV by two particles (and their progenies), that emerge with momenta Ep 0 and Ep 00
from a collision at point Er. The total energy deposit from two tracks is the sum of
the energies deposited by the individual tracks: � D �1 C �2. The distribution of the
sum is a convolution of individual distributions. Hence,

f2


qjEr; Ep 0; Ep 00� D f



qjEr; Ep 0� � f



qjEr; Ep 00� : (6.39)

Taking the limit l ! 0 in Eq. (6.35) and using Eqs. (6.37)– (6.39) we obtain
an equation for the conditional distribution f .qjx/. This equation is a form of the
stochastic transport equation:

�
� E� � r


f .qjx/C 	 f .qjx/ D

Z
dEp 0	1


Ep ! Ep 0� f
�

q � �.1/0 jEr; Ep 0

C
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00� f

�
q � �.2/0 jEr; Ep 0 � f

�
q � �.2/0 jEr; Ep 00 :

(6.40)

The standard boundary condition for this equation is similar to the vacuum
boundary condition for the adjoint function, that we specified in Sect. 3.4. If K is the
surface defining the boundary of the computational domain and EnK is the outward
pointing normal to K, the boundary condition for f .qjx/ is

f


qjEr; Ep � D ı .q/ ; if Er 2 K; and

� E� � EnK


> 0: (6.41)

It means that a particle starting on the surface of the computational domain, in an
outward direction, . E� � EnK/ > 0, deposits zero energy in the SV.
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6.5.2 Method FD-1

There are two versions of the FD method. Version FD-2 is equivalent to the
algorithm based on the Caswell method, except that it is applicable to more accurate
transport models than the CSDA. Version FD-1 is less intuitive, but is easier to
implement because, in contrast to FD-2, it does not require the source spectrum,
S.E/.

To derive the FD-1 algorithm, we first transform the integral in Eq. (6.34) as
follows, where we use the inner product notation .f ; g/ for integrals over x:

f .q/ D .S .x/ ; f .qjx// D
� OLˆ.x/ ; f .qjx/



D
�
ˆ.x/ ; OLCf .qjx/



 .ˆ .x/ ;F .qjx// : (6.42)

In the above equation, we first used the Boltzmann equation, S D OLˆ, and then the
definition of an adjoint operator (see Appendix B). In the last step, we introduced the
notation OLCf 
 F. Comparing Eq. (6.42) with Eq. (3.28) that defines the detector
response function D.x/, we observe that the function F.qjx/ can also be interpreted
as a detector response function. This new detector “measures” fluctuations in
radiation fields. The latter observation provided the name for the method.

A similar expression for the moments h�ni of the distribution is derived by
multiplying Eq. (6.42) by qn (n D 0; 1; 2; : : :) and then integrating it over q:

h�ni D 

ˆ.x/ ;F.n/ .x/

�
; (6.43)

where, obviously,

F.n/ .x/ D
( R1

0
dq qnF .qjx/ ; n D 1; 2; : : : IR1

0C dq F .qjx/ ; n D 0:
(6.44)

An important difference between detector response functions D and F is that
the former is usually given, whereas the latter has to be calculated. The FD-
1 method includes a Monte Carlo algorithm for calculating F. Although, in a
simplified transport model, it may be possible to calculate F analytically. To derive
an algorithm for calculating F, we have to use the explicit form of the adjoint
operator OLC. It is given by the left-hand side of the adjoint transport equation for
multiplying systems, Eq. (3.67). Hence,

F .qjx/ D OLCf .qjx/ D �
� E� � r


f


qjEr; Ep �C 	 f



qjEr; Ep �

�
Z

dEp 0	1

Ep ! Ep 0 � f



qjEr; Ep 0 �

�
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00� �f 
qjEr; Ep 0 �C f



qjEr; Ep 00 �	 : (6.45)



212 6 Microdosimetry. Elements of Stochastic Transport Theory

We notice that the first two terms on the right-hand side of Eq. (6.51) both are present
in the stochastic equation for f .qjx/, Eq. (6.40). Then, we can replace these two
terms with the integrals from the right-hand side of Eq. (6.40). This allows us to
simplify the expression for F:

F .qjx/ D
Z

dEp 0	1

Ep ! Ep 0 � f

�
q � �.1/0 jEr; Ep 0  �

Z
dEp 0	1


Ep ! Ep 0 � f


qjEr; Ep 0 �

C
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00� f

�
q � �.2/0 jEr; Ep 0 � f

�
q � �.2/0 jEr; Ep 00

�
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00� �f 
qjEr; Ep 0 �C f



qjEr; Ep 00 �	

D
Z

dEp 0	1

Ep ! Ep 0 � hf �q � �.1/0 jEr; Ep 0  � f



qjEr; Ep 0 �i

C
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00�

	
h
f
�

q � �.2/0 jEr; Ep 0 � f
�

q � �.2/0 jEr; Ep 00 � f


qjEr; Ep 0 � � f



qjEr; Ep 00 �i :

(6.46)

The convolution was introduced in Eq. (6.39) only for the sake of deriving a
closed equation for the conditional distribution f .qjx/. Replacing the convolution
with distribution f2 results in an expression for F that has an obvious statistical
interpretation that helps us design a Monte Carlo algorithm for calculating F
and F.n/.

F .qjx/ D
Z

dEp 0	1

Ep ! Ep 0 � hf �q � �.1/0 jEr; Ep 0  � f



qjEr; Ep 0 �i

C
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00�

	
h
f2
�

q � �.2/0 jEr; Ep 0; Ep 00 � f


qjEr; Ep 0 � � f



qjEr; Ep 00 �i : (6.47)

To derive a formula for the functions F.n/.x/, we multiply Eq. (6.47) by qn and
then integrate it over q. To make the statistical interpretation of the result more
obvious, we will express it in terms of conditional expectations. To do so, we
introduce random variables �1 and �2 that denote the energy deposited in the SV
by particles starting from point Er with momenta Ep 0 and Ep 00, respectively. Then,

F.n/ .x/ D
Z

dEp 0	1

Ep ! Ep 0� hE n��.1/0 C �1

n jEr; Ep 0o � E
˚
�n
1 jEr; Ep 0�i

C
Z

dEp 0
Z

dEp 00	2

Ep ! Ep 0; Ep 00�

	
h
E
n�
�
.2/
0 C �1 C �2

n jEr; Ep 0; Ep 00o � E
˚
�n
1 jEr; Ep 0� � E

˚
�n
2 jEr; Ep 00�i ;

(6.48)
where E f�jAg denotes the expectation of � under condition A.



6.5 Fluctuation Detector Method 213

To make the algorithm even more obvious, we note that the differential cross
sections 	1.Ep ! Ep 0/ and 	2.Ep ! Ep 0; Ep 00/ can be expressed in terms of the total
cross sections 	1.Ep /, 	2.Ep /, 	.Ep / D 	1.Ep /C 	1.Ep /, and the respective distribution
functions of the momenta, g1.Ep 0jEp / and g2.Ep 0; Ep 00jEp /:

	1

Ep ! Ep 0� D 	


Ep � 	1

Ep �

	

Ep � g1.Ep 0jEp /: (6.49)

	2

Ep ! Ep 0; Ep 00� D 	


Ep � 	2

Ep �

	

Ep � g2.Ep 0; Ep 00jEp /: (6.50)

Later in this section, we will make additional approximations and present a more
practical version of the algorithm. At this point we give only an overview of the
algorithm in the most general form and, for simplicity, we do so only for F.n/.x/.

Algorithm Overview

1. Simulate an interaction at point Er of an incident particle with momentum Ep.
The interaction type 1 or 2 is chosen at random. The probability of type 1 is
	1.Ep /=	.Ep / and that of type 2 is 	2.Ep /=	.Ep /.

2. If Er 2 V , determine �.1/0 or �.2/0 , depending on the type of the interaction. If Er … V ,

set �.1/0 D �
.2/
0 D 0.

3. Generate the trajectories of all particles produced in the interaction and their
progenies.

4. If only one particle was produced in the collision, tally the energy �1 its entire
track deposits in the SV. If two particles were produced, then separately tally the
energies �1 and �2 that are deposited in the SV by each of the two tracks.

5. If the interaction type was 1, calculate

� D
�
�
.1/
0 C �1

n � �n
1: (6.51)

Otherwise, calculate

� D
�
�
.2/
0 C �1 C �2

n � �n
1 � �n

2: (6.52)

6. Repeat steps 1–5 many times. Generate a sample f�1; �2; : : : �Ng, N � 1.
7. Estimate the detector response function

F.n/ .x/ � 	

Ep �
N

NX
iD1

�i: (6.53)

From Eqs. (6.51) and (6.52) two important observations can be made.
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1. If Er … V , then � D 0 in Eq. (6.51). This means that for points outside the SV,
there is no need to simulate interactions of type 1.

2. If Er … V , and two particles were produced in the interaction, but only one reached
the SV, that is �1 > 0 and �.2/0 D �2 D 0. In this case, in Eq. (6.52), we have
� D 0.

These two properties are crucial for the feasibility of the FD method. If point
Er is outside the SV, then the estimator � is not zero only when the tracks of both
particles reach the SV and deposit energy, �1 > 0 and �2 > 0. The probability
of this happening decreases rapidly with increasing the distance from the SV. One
reason for this is purely geometrical. Given the very small size of a typical SV,
the probability that even one particle reaches it rapidly diminishes with distance.
Another reason is the finite range of charged particles. The latter is particularly
important for delta electrons that tend to have a low energy. All of the above implies
that F.n/ decreases rapidly with increasing the distance from the SV.

Then, a distance�Rmax from the surface of the SV can be found, such that setting
F.n/.x/ D 0 for points beyond �Rmax does not introduce significant errors. In this
case, it is convenient to separate the integration over Er in Eq. (6.43) into an integral
over V (the SV) and an extension volume QV:

h�ni D 

ˆ.x/ ;F.n/ .x/

�
V C 


ˆ.x/ ;F.n/ .x/
�

QV ; (6.54)

Assuming that the SV is a sphere, QV is a spherical shell of thickness �Rmax around
it. The two integrals can be calculated by using the Monte Carlo method, by first
sampling a point Er in V or QV , respectively, and then calculating F.n/.x/ following the
algorithm we outlined above. In this case generating only one � for each sampled
Er will suffice. The algorithm can be simplified further, if the SV and the extension
volume are sufficiently small, so that the fluence can be approximated by a constant
in the volume V [ QV . In this case,

h�ni D
Z

dE
Z

d E�ˆ
� E�;E

 �Z
V

dEr F.n/
�
Er; E�;E


C
Z

QV
dEr F.n/

�
Er; E�;E

�
:

(6.55)

For a spherical SV and a spherical shell QV , the two integrals in the square brackets
are independent of the direction E�. Then, the result simplifies even further:

h�ni D
Z

dE ˆ.E/

�Z
V

dEr F.n/

Er;E�C

Z
QV

dEr F.n/

Er;E�

�
; (6.56)

where ˆ.E/ is the fluence spectrum in V [ QV , and functions F.n/ are calculated for
an arbitrary direction E�. Finally, by using the following notation

G.n/ .E/ D
Z

V
dEr F.n/


Er;E�C
Z

QV
dEr F.n/


Er;E� 
 G.n/
V .E/C G.n/

QV .E/ ; (6.57)
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the moments of deposited energy can be written as a one-dimensional integral:

h�ni D
Z
ˆ.E/G.n/ .E/ dE (6.58)

The functions G.n/.E/ depend on the particle type and the size of the SV.
They can be conveniently tabulated. If G.n/.E/ are pretabulated, the calculation of
fluctuational characteristics of energy deposition is not different from the standard
problem of calculating linear functionals of a solution of the Boltzmann equation.
This simplicity is, perhaps, misleading, because we actually solve a form of the
stochastic transport equation, Eq. (6.40). The overall strategy of the FD method
consists of breaking the problem in two parts. The first part is calculation of the
detector response functions G.n/.E/. This part involves radiation transport only in
the vicinity of the SV and, therefore, it can be completed with an event-by-event
algorithm, despite the slow speed of algorithms of this type. The second part is
calculating the fluence at the SV location and its functional given by Eq. (6.58). This
is the standard problem of radiation transport, for which all the powerful methods
and optimization techniques for solving the Boltzmann equation can be employed.
Under the condition of electronic equilibrium, the fluence spectrum of electrons can
be found by solving the energy degradation equation [Sect. 3.9.3, Eq. (3.112)]. The
latter is a one-dimensional integral equation that can be solved fast by using the
Monte Carlo algorithm that was described in Sect. 4.3.5.

We can now present an algorithm for calculating G.n/.E/. We start with G.n/
V .E/.

Algorithm Groundwork

Determine the size of the computational domain. Its boundary K should be placed
at such a distance from the SV that particles reaching it would have a negligible
probability of scattering back and entering the SV.

Algorithm

1. Place a point Er at a random location within the SV. The distribution of Er is
uniform.

2. Randomly choose the interaction type. The probability of choosing a type 1
interaction is 	1.E/=	.E/ and that of choosing type 2 interaction is 	2.E/=	.E/.

3. Simulate the chosen interaction type, at point Er, of an incident particle with
energy E traveling parallel to the z axis in the positive direction.

4. Determine the energy deposited in the SV from the interaction itself, �.1/0 or �.2/0 ,
depending on the type of the interaction.
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5. Generate trajectories of all particles produced in the interaction and their
progenies. Particle trajectories are terminated when they reach the boundary K of
the computational domain or when their energy falls below the tracking cut-off.

6. If only one particle was produced in the collision, tally the energy �1 its entire
track deposits in the SV. If two particles were produced, then separately tally the
energies �1 and �2 deposited in the SV by each of the two tracks.

7. If the interaction was type 1, calculate

� D
�
�
.1/
0 C �1

n � �n
1: (6.59)

Otherwise, calculate

� D
�
�
.2/
0 C �1 C �2

n � �n
1 � �n

2: (6.60)

8. Repeat steps 1–7 many times. Generate a sample f�1; �2; : : : �Ng, N � 1.
9. Estimate the detector response function as

G.n/
V .E/ � 	 .E/

V

N

NX
iD1

�i: (6.61)

Calculation of function the G.n/
QV .E/ follows the same steps, except:

1. The point of interaction Er is placed in the extension volume, QV .
2. Only type 2 interactions are simulated.
3. Accordingly, Eq,(6.59) is not used.
4. In Eq. (6.61) the SV volume is replaced by the extension volume:

G.n/
QV .E/ � 	 .E/

QV
N

NX
iD1

�i: (6.62)

Calculation of the distribution of deposited energy, f .q/, follows the same steps
as calculation of the moments h�ni, except that Eqs. (6.58)–(6.61) have to be
modified, as described below. First, Eq. (6.58) is replaced by

f .q/ D
Z
ˆ.E/G .qjE/ dE: (6.63)

Further, we have to approximate the distribution f .q/ by a histogram fj (j D
1; 2; : : : ; k) and, accordingly, replace G.qjE/ with G.j;E/. The latter is, again,
calculated as a sum G.j;E/ D GV.j;E/ C G QV.j;E/. Then, we need to define the
boundaries of the energy deposition bins: q0; q1; : : : qk, bin widths �qj D qj � qj�1,
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and an indicator function Ij.�/ that returns 1 if � belongs to the energy bin j, and
returns 0, otherwise. Then, to calculate GV.j;E/ we replace Eqs. (6.59)–(6.61) with
the following:

�j D Ij

�
�
.1/
0 C �1


� Ij .�1/ : (6.64)

�j D Ij

�
�
.2/
0 C �1 C �2


� Ij .�1/ � Ij .�2/ : (6.65)

GV .j;E/ � 	 .E/V

N�qj

NX
iD1



�j
�

i I j D 1; 2; : : : ; k: (6.66)

In the corresponding formula for G QV.j;E/, volume V on the right-hand side of
Eq. (6.66) is replaced by QV .

6.5.3 Method FD-2

In Eq. (6.34) the distribution of deposited energy f .q/ is written as an integral over
the phase space. We split this integral into two integrals, one over the volume V of
the SV, and the other over the complement volume NV:

f .q/ D .S .x/ ; f .qjx//V C .S .x/ ; f .qjx// NV : (6.67)

This equation is equivalent to Eq. (3.53), except that instead of the adjoint
function ˆC, we now have the conditional distribution f .qjx/. Next, we perform
the same transformation of the above formula, as the one that was performed in
Sect. 3.4. We leave the integral over V as is, and transform the integral over NV into
an expression similar to .ˆ.x/;F.qjx//. The algebra is exactly the same as that in
Sect. 3.4, so we can omit the details and proceed directly to the result

f .q/ D .S .x/ ; f .qjx//V C .ˆ .x/ ;F .qjx// NV

C
Z

d E�
Z

dE
I
�. NV/

d�
� E� � En�


ˆ
�
Er; E�;E


f
�

qjEr; E�;E

: (6.68)

This equation is the same as Eq. (3.59), except that it is written in terms of the
fluctuational characteristics, f .qjx/ and F.qjx/ instead of the adjoint functionˆC.x/
and the detector response function D.x/. Next, we simplify the three terms in this
equation, one at a time. We assume that the SV is a sphere. To simplify the first
term, we further assume that the source function is constant in V:

fS .q/ 
 .S .x/ ; f .qjx//V D
Z

d E�
Z

dE S
� E�;E

 Z
V

dEr f
�

qjEr; E�;E

: (6.69)
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Owing to the spherical symmetry, the last integral is the same for all directions, E�.
Then,

fS .q/ D
Z

dE S .E/
Z

V
dEr f

�
qjEr; E�0;E




Z

dE S .E/GS .qjE/ ; (6.70)

where S.E/ is the source spectrum in V , E�0 is an arbitrary direction, for example,
the direction of the z-axis, and GS is the response function corresponding to the
source term. For the distribution moments, we have

h�niS D
Z

dE S .E/
Z

V
dEr E

n
�njEr; E�0;E

o


Z

dE S .E/G.n/
S .E/ ; (6.71)

Function G.n/
S .E/ can be calculated by using Monte Carlo method. The algorithm is

described in what follows.

Algorithm

1. Place a point Er at a random location in V . The distribution of Er is uniform.
2. Generate a track of a particle that starts at the point Er with energy E, in the

direction E�0, which is the positive direction of the z axis.
3. Tally the energy � this particle and all its progenies deposit in the SV.
4. Repeat steps 1–3 many times. Generate a sample f�1; �2; : : : ; �N ; g, N � 1.
5. Estimate the response function

G.n/
S .E/ � V

N

NX
iD1

�n
i : (6.72)

In the second term in Eq. (6.68), we can replace the complement volume NV with
the extension volume QV , because, as we have discussed, F.qjx/ decreases rapidly
with increasing the distance from the SV and becomes negligible outside QV:

f NV .q/ 
 .ˆ .x/ ;F .qjx// NV � .ˆ .x/ ;F .qjx// QV : (6.73)

This term was considered in the FD-1 method, and the algorithm has already been
presented. This term is calculated using particle trajectories that originate outside
the SV.

Finally, the last term in Eq. (6.68) involves integration over the surface � of the
complement volume NV . This surface, of course, coincides with the surface of the
SV. The outward pointing normal to the surface �. NV/, En� , points into the SV, at its
center. This means that for particles entering the SV, we have . E� � En�/ > 0, and for
particles leaving the SV, we have . E� � En�/ < 0.
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Again, we assume that the SV is sufficiently small, so that the fluence can be
approximated by a constant, this time for all points on the surface � . This allows to
simplify the integral, first by removing the fluence from the surface integral

f� .q/ 

Z

d E�
Z

dE ˆ
� E�;E

 I
�. NV/

d�
� E� � En�


f
�

qjEr; E�;E

; (6.74)

and then separating the surface integral into two parts, corresponding to the vector
E� pointing in and out of the SV.

f� .q/ D
Z

d E�
Z

dE ˆ
� E�;E



	
�I

in
d� j E� � En� jf

�
qjEr; E�;E


�
I

out
d� j E� � En� jf

�
qjEr; E�;E

�
:

(6.75)

Here, ˆ. E�;E/ is the fluence on the surface � . Owing to the spherical symmetry,
each of the two surface integrals is independent of E�. It follows then that

f� .q/ D
Z

dE ˆ.E/

	
�I

in
d� j E�0 � En� jf

�
qjEr; E�0;E


�
I

out
d� j E�0 � En� jf

�
qjEr; E�0;E

�



Z

dE ˆ.E/ ŒGin .qjE/ � Gout .qjE/� ; (6.76)

where E�0 is an arbitrarily chosen direction, and Gin and Gout are the response
functions. Similarly, for the moments of distribution, we have

h�ni� D
Z

dE ˆ.E/

	
�I

in
d� j E�0 � En� jE

n
�njEr; E�0;E

o
�
I

out
d� j E�0 � En� jE

n
�njEr; E�0;E

o�



Z

dE ˆ.E/
h
G.n/

in .E/ � G.n/
out .E/

i
: (6.77)

The response functions Gin.qjE/, Gout.qjE/, G.n/
in .E/ and G.n/

out.E/ can be calcu-
lated by using the Monte Carlo method. Before presenting the algorithm, we note
that d�j E�0 � En� j is the projection of the surface area d� onto a plane normal to the
direction E�0. Therefore,
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I
�. NV/

d� j E�0 � En� j D A; (6.78)

where A is the cross-sectional area of the SV. Furthermore, to calculate the surface
integrals in Eq. (6.77) we need to place a point Er randomly on the surface � . If we
do so using a uniform over the surface distribution, in this case over a half of
the spherical surface (when calculating either the “in” or “out” integral), then the
expectation values will have to be weighted by j E�0 � En�.Er /j, where En�.Er / is the
normal to the surface at point Er. The weight is not needed, if we sample point Er from
a distribution proportional to j E�0 � En� j. This distribution is such that the projection of
a point Er on the cross-sectional area normal to E�0 is uniformly distributed over the
cross-sectional area. In other words, this distribution is the same as that of a parallel
beam of particles traveling in the direction E�0.

We now present an algorithm for calculating G.n/
in .E/. Algorithms for the other

three response functions are similar. We place the origin of the coordinate system
at the center of the SV, and choose the direction E�0 to be the same as the positive
direction of the z-axis. We also need to define the boundary K of the computational
domain.

Algorithm

1. Place a point Er at a random location on that part of the SV surface � , for which
z < 0. This part is a hemisphere. For this hemisphere, the direction E�0 is “in.”
A particle starting from this hemisphere enters the SV. The distribution of Er is
proportional to j E�0 � En�.Er /j.

2. Generate a track of a particle that starts from point Er, in the direction E�0, with
energy E. Terminate the particle trajectory when it leaves the computational
domain.

3. Tally the energy � this particle and all its progenies deposit in the SV.
4. Repeat steps 1–3 many times. Generate a sample f�1; �2; : : : ; �Ng, N � 1.
5. Estimate the response function

G.n/
in .E/ � A

N

NX
iD1

�n
i : (6.79)

The algorithm for calculating G.n/
out.E/ is the same, except particle trajectories

start on the other hemisphere, for which z > 0. These particles start in the direction
away from the SV. Algorithms for calculating Gin.qjE/ and Gout.qjE/ are different
from the above only in that the sample f�1; �2; : : : ; �Ng is used for estimating the
distributions of �, that is, for generating a histogram, instead of estimating the
momenta.
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The FD-2 method is indeed very similar to the algorithm based on the Caswell
approach (Sect. 6.4.3). There are, however, differences. The FD-2 method has two
terms that are not included in the Caswell method. These terms are f NV , Eq. (6.73),
and Gout, Eqs. (6.76)–(6.77). The first of the two terms corrects the result for possible
correlations between particles entering the SV. As we discussed earlier, to calculate
this term, we start trajectories from collisions that produce at least two particles, and
it is nonzero only when both particles directly, or through their progenies, deposit
energy in the SV. The second term Gout accounts for contribution from particles that
backscattered into the SV after they leave it. These two terms typically are small
corrections, and they were not needed in the original formulation of the Caswell
method that used the CSDA transport model. However, when a more accurate
transport model is used, such as the event-by-event Monte Carlo algorithm, these
corrections are no longer negligible.

6.6 The Effect of Energy Straggling
on Microdosimetric Spectra

Exercise

Consider a parallel beam of hypothetical heavy charged particles incident on a small
spherical SV. The particles travel along straight lines without deflections. The mean
free path between inelastic interactions is 10 nm. In each interaction, the particles
deposit 10 eV at the point of interaction. The particle properties do not change as it
loses energy, nor does it produce any secondary particles.

1. Calculate the stopping power of these particles. Compare it with the stopping
power of protons in the tissue. Estimate the proton energy.

2. Calculate analytically the microdosimetric spectrum f1.q/. Use the CSDA
approximation, assuming a constant stopping power. The chord length
distribution is given in Sect. 2.2, Eq. (2.3).

3. Write a Monte Carlo event-by-event code based on the described transport model.

Algorithm Overview

We assume that the SV is a sphere centered at the origin, its radius is R, and the
particles travel in the positive z direction.

(a) Start a particle trajectory at z D �R, just outside the sphere. Sample its
initial x and y as coordinates of a point uniformly distributed within a circle
of radius R.
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(b) Generate a particle trajectory. The free path is sampled from the exponential
distribution, Eq. (2.7). The trajectory is terminated when the particles leaves
the SV.

(c) Tally the energy � the particle deposits in the SV. The contribution to � from
each inelastic collision within the SV is 10 eV.

(d) Repeat steps (a)–(c) many times. Generate a sample f�1; �2; : : : ; �N ; g,
N � 1.

(e) Use the sample to make a histogram (see Sect. 2.14.1). Compare the his-
togram with the analytical distribution f1.q/.

4. Perform the above calculations for R=100, 1000, and 10,000 nm.
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Chapter 7
Grid Based Boltzmann Equation Solvers

7.1 Beyond the Monte Carlo method

The Monte Carlo method is not the only method for solving the Boltzmann transport
equation. Furthermore, the popular belief that Monte Carlo is the most accurate
method for solving problems of radiation transport is simply not correct. Non-
stochastic or deterministic methods for solving the Boltzmann equation achieve
the same level of accuracy as Monte Carlo algorithms. After all, both the Monte
Carlo method and deterministic methods solve the same equation. In both methods
a numerical solution converges to the exact solution. In Monte Carlo algorithms
the convergence is stochastic. Increasing the number of histories brings a numerical
Monte Carlo solution closer to the exact solution only in probability (Dudewicz
and Mishra 1988, Appendix A). Monte Carlo algorithms may also have systematic
errors associated with condensed history models, tracking cutoffs, etc. These can
be reduced or eliminated, to achieve the desired overall accuracy. In deterministic
algorithms, bringing a numerical solution closer to the exact solution involves
increasing the resolution of computing grids and increasing the number of iterations
in iterative procedures.

Deterministic algorithms were developed primarily for solving problems of
neutron transport (Lewis and Miller 1993). These methods are often referred to
as discrete ordinates methods, after a method for discretizing angular variables
common to algorithms of this type. However, this terminology is somewhat mis-
leading. You will see in this chapter that angular discretization is just one of several
techniques used in a deterministic algorithm to find the solution. Furthermore,
discrete ordinates is not the only method for discretizing the angular variables.
For example, St. Aubin et al. (2016), developed an algorithm in which the discrete
ordinates method was not used at all, instead the finite elements method was applied
to both spatial and angular variables. For these reasons, when deterministic algo-
rithms for solving the Boltzmann equation were introduced for dose calculations
in radiotherapy, a more general terminology was adopted. Acurosr was the first

© Springer International Publishing Switzerland 2017
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algorithm of this type to be implemented in a commercial treatment planning
system. When it was first introduced (Vassiliev et al. 2010), it was described as
a grid based Boltzmann equation solver. Following the terminology of that paper,
we will use the abbreviation GBBS for this type of deterministic solver.

Early experience with Acurosr in a clinical setting has been consistently
positive, see for example, Bush et al. (2011), Hoffmann et al. (2012), Kan et al.
(2012, 2013), Kroon et al. (2013), and Tsuruta et al. (2014). These results suggest
that this deterministic approach has the potential to advance dose calculation
algorithms for treatment planning in radiotherapy. Further evidence of that potential
is a new algorithm for solving the Boltzmann equation in the presence of external
magnetic fields developed by St. Aubin et al. (2015) and (2016). This algorithm is
applicable to dose calculations for MRI-guided radiotherapy systems.

This justifies, we think, including this topic in a Monte Carlo book. It will give
readers a better perspective. We will present the material in a rather simplified and
concise manner. For a more comprehensive introduction to deterministic methods,
we refer to the classic book by Lewis and Miller (1993).

For simplicity we will assume that there is only one type of particle, and no
secondary particles are produced. We will not consider any condensed history
models, even though these may be necessary for electron transport in radiotherapy
applications. Finally, as in the Monte Carlo method, multiple options are available
in the GBBS method for designing an optimal algorithm. In this chapter, we will
give precedence to simpler options.

7.2 Discretize, Discretize, Discretize

Discretization of the phase space is an important step in designing a GBBS
algorithm. In this section we will consider discretization methods separately for
the energy, angular, and spatial variables.

7.2.1 Discretization of Energy: The Multigroup Approximation

The method for discretizing the particle energy is called multigroup approximation.
First, we need to determine the range of energies in which we are interested. Often
it is the interval from the maximum energy of the source to the tracking cut off
energy. Then, we divide this energy range into smaller intervals, with the interval
boundaries fE0;E1; : : : ;EGg, and interval widths�Eg D Eg�1�Eg, g D 1; 2; : : : ;G.
The common convention is that E0 is the maximum energy, Eg�1 > Eg, and EG is
the minimum energy. The energy interval from Eg�1 to Eg is referred to as energy
group g. The parameter G defines the total number of energy groups. Choosing a
larger G improves the accuracy of the algorithm, but increases the computing time.
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Next, we choose the form of the Boltzmann equation corresponding to the physical
problem that we need to solve. We choose the simple form given by Eq. (3.40):

� E� � Er

ˆ
�
Er; E�;E


C 	


Er;E�ˆ �Er; E�;E


D S
�
Er; E�;E


C
Z

dE 0
Z

d E� 0	s

�
Er; E� 0;E 0 ! E�;E


ˆ
�
Er; E� 0;E 0 : (7.1)

Then, in the collision integral we replace the integral over E 0 with the sum of
integrals over all energy groups:

Z
dE 0 : : : D
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Z Eg0�1

Eg0

dE 0 : : : (7.2)

Next, we integrate Eq. (7.1) over energy group g, that is from Eg to Eg�1. The
integration is straightforward. It brings us to the following form of the Boltzmann
equation in the multigroup approximation:
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where we introduced the notations
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Implicit in these definitions is the assumption that the ratioˆ.Er; E�;E/ = ˆg.Er; E�/
is independent of Er and E�. This assumption is known as the energy separability
approximation and can be expressed as follows

ˆ
�
Er; E�;E


� f .E/ Q̂ g

�
Er; E�


I Eg < E � Eg�1: (7.8)

Another important observation is that the coefficients 	g.Er/ and 	s.Er; E�� E� 0; g0 !
g/, according to their definitions, are functionals of the fluence spectrum, f .E/.
The latter, of course, is not known until the Boltzmann equation is solved. This
difficulty is resolved by using an approximate fluence spectrum in Eqs. (7.6) and
(7.7). For example, the fluence spectrum can be approximated by a piecewise
constant function:

f .E/ � 1

�Eg
; Eg < E � Eg�1: (7.9)

Uncertainties associated with this approximation can be reduced to an acceptable
level by reducing the widths �Eg of the energy groups. The group cross section
	g.Er / can be pre-tabulated, for each material in the problem. The scattering cross

section 	s. E� � E� 0; g0 ! g/ is more difficult to tabulate because of its angular
dependence. This will become an easier task after we use a spherical harmonics
expansion to simplify the collision integral.

7.2.2 Spherical Harmonics Series for the Collision Integral

Before discretizing the angular variables, we will transform the collision integral
into a more convenient form. First, we approximate the angular dependence of the
fluence by a spherical harmonics expansion:

ˆg

�
Er; E�


�

LX
lD0
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mD�l

ˆm
gl


Er � Ym
l

� E�

; (7.10)

where Ym
l .

E�/ is a spherical harmonic and L is an algorithm parameter. Increasing L
improves the accuracy, at the expense of an increased computing time. The spherical
harmonics are orthogonal (Arfken et al. 2013):

Z
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� E�
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D ıll0ımm0 ; (7.11)
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where ‘�’ denotes the complex conjugate. From Eq. (7.11) we obtain the expression
for the coefficients of the expansion

ˆm
gl


Er � D
Z

d E� Ym�
l

� E�

ˆg

�
Er; E�


: (7.12)

The fluence is generally a function of two angular variables, because a direction
in three dimensions is defined by two angles, such as the polar angle � and the
azimuthal angle � in the spherical coordinate system. In contrast, the scattering
cross section usually depends on only one angle, the scattering angle, or, in our
notation its cosine, E� � E� 0. This implies azimuthally symmetric scattering, an
approximation that is unlikely to be challenged in the context of radiotherapy
applications. Hence, for the angular dependence of the scattering cross section,
instead of spherical harmonics, we can use the simpler Legendre series
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where Pl. E� � E� 0/ is a Legendre polynomial. Legendre polynomials are also
orthogonal (Arfken et al. 2013):
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and the formula for the coefficients of the expansion that follows from the
orthogonality condition is:
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Next, we insert Eqs. (7.10) and (7.13) into the collision integral in Eq. (7.3). The
collision integral becomes
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Then, we use the addition theorem (Arfken et al. 2013)
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to replace the Legendre polynomial with spherical harmonics and simplify the
integral:
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At the last step in Eq. (7.18), in the integral over E� 0, we used the orthogonality of
spherical harmonics, Eq. (7.11). Finally, as we insert this result into Eq. (7.16), the
factor ıll0 eliminates the sum over l0. This brings us to a form of the Boltzmann
equation in which the collision integral is approximated by a finite sum:
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The coefficients 	sl

Er; g0 ! g

�
defining the doubly differential scattering cross

sections can be tabulated. The table is three dimensional, and the indices are: l,
g0, and g.

7.2.3 Discretization of Angular Variables: The Discrete
Ordinates Method

The most common technique for discretizing the angular variables is the discrete
ordinates method. It is also the simplest. In this technique the solution, ˆg.Er; E�/, is

calculated only for a finite discrete set of directions E�ij D .
i; �j/, i D 1; 2; : : : ; n
,

j D 1; 2; : : : ; n� . The discrete directions E�ij are chosen to optimize numerical

integration of two-dimensional integrals over E�, such as the integral in Eq. (7.12).
As an example of a quadrature that works well in the context of the Boltzmann
equation, we will describe the Chebyshev-Legendre quadrature. The use of this
quadrature in discrete ordinate algorithms is discussed by Walters (1987). The idea
of the integration method is that in a two-dimensional integral, integration over
one variable is performed using the Gauss-Chebyshev quadrature and integration
over the other variable is performed using the Gauss-Legendre quadrature. Both
quadratures are covered in most textbooks on numerical methods. The numerical
data needed for the implementation of both quadratures, as well as the integration
errors, can be found, for example, in Abramowitz and Stegan (1964).



7.2 Discretize, Discretize, Discretize 231

Problem

Calculate the following integral:

I D
Z

d E� f
� E�

: (7.20)

Solution

We express the integral in terms of the angular variables 
 D cos � and �:

I D
Z 1
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d
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d� f .
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We break the second integral into two integrals, from 0 to � and from � to 2� and
use the substitution � D cos�. Consequently, we will have d� D �d�=

p
1 � �2 in

the first integral (0 � � < �), and d� D d�=
p
1 � �2, in the second integral(� �

� < 2�). This produces two identical integrals, and the result is
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In the case of one-dimensional integrals, the Gauss-Legendre quadrature is
applied as follows:

Z 1
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d
 f .
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X
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w.L/i f .
i/: (7.23)

The abscissas 
i are the zeros of Legendre polynomials. Tables of the abscissas
and the weights w.L/i are available in the literature, for example in Abramowitz
and Stegan (1964). Similarly, the Gauss-Chebyshev quadrature for one-dimensional
integrals is given by
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jD1

w.C/j f .�j/: (7.24)

In this case

�j D cos
.2j � 1/ �
2n�

; (7.25)
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and

w.C/j D �

n�
: (7.26)

The Gauss-Chebyshev quadrature should not be confused with Chebyshev’s equal
weight integration formula.

Finally, combination of the two one-dimensional quadratures in the two-
dimensional integral produce the following result
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where E�ij 
 .
i; �j/. If n
 D n� , the quadrature is called the square Legendre-
Chebyshev quadrature.

In the discrete ordinates method, the Boltzmann equation is simply written and
solved for each of the discrete directions, E�ij:
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with a two-dimensional quadrature, such as the Chebyshev-Legendre quadrature,
which is used to calculate the coefficients ˆm

g0l:
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For each energy group g, we have a system of n
 	 n� equations. The equations are

coupled, because the equation for any discrete direction E�ij contains fluences for
all the other directions, in the sum in Eq. (7.29). These equations are differential,
because of the operator r in the streaming operator. We will now discuss one of the
standard numerical methods for solving differential equations, the finite elements
method. Applying this method to Eq. (7.28) will transform the system of partial
differential equations, into an even larger system of linear algebraic equations.
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7.2.4 Discretization of Spatial Variables: The Finite
Elements Method

The first step is defining the computational grid for the spatial variables, x, y and z.
This process is similar to that of voxelizing a phantom for Monte Carlo calculations.
The resolution of the grid should be higher where large gradients of the solution are
expected, near the beam edges, in high density gradient regions, and so on. Here
we will consider a tetrahedral grid. Each tetrahedron of the grid represents a finite
element. As an example, a part of a tetrahedral mesh superimposed on the head
anatomy is shown in Fig.7.1.

Let us consider one tetrahedron. It has four vertices located at points Erk0 , k0 D
1; 2; 3; 4. They are also referred to as the nodes. With each of the four vertices we
will associate a basis function hk.x; y; z/, k D 1; 2; 3; 4. The basis functions satisfy
the following conditions:

hk

Erk0

� D ıkk0 I k D 1; 2; 3; 4I k0 D 1; 2; 3; 4: (7.30)

It means, for example, that the basis function h3 has the value of 1 on node 3 and
is zero on all the other nodes. We will use linear basis functions

hk .x; y; z/ D akx C bky C ckz C dkI k D 1; 2; 3; 4; (7.31)

Fig. 7.1 Tetrahedral grid
superimposed on head
anatomy, (Vassiliev et al.
2008). Used with permission
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where the coefficients, ak, bk, ck, and dk, can be found by solving the system of
equation given by Eq. (7.30). Within the tetrahedron, we will seek a solution of the
Boltzmann equation, Eq. (7.28), in the following form:

ˆg

�
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D
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kD1
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Er �ˆgk

� E�ij


: (7.32)

It follows from Eq. (7.30) that the coefficients ˆgk. E�ij/ are nothing but the

fluence at the nodes of the grid, that is, at the vertices of the tetrahedron:ˆgk. E�ij/ D
ˆg.Erk; E�ij/. Then, Eq. (7.32) is simply a formula for linear interpolation in three
dimensions. Our next task is to derive an equation for the unknown coefficients
ˆgk. E�ij/. For that purpose we will use the Galerkin method.

7.3 The Galerkin Method

First, we will present the Galerkin method in a general form. Then, we will apply
the method to the discretized Boltzmann equation, Eq. (7.28).

Let us consider the following equation for an unknown function ˆ.x/:

OLˆ.x/ D S .x/ ; (7.33)

where OL is an arbitrary linear operator, the source function S.x/ is given, and x
is a multidimensional variable. We need to find a solution ˆ.x/. If our numerical
solution is Q̂ .x/, then the residual R.x/ is defined as follows:

R .x/ D OL Q̂ .x/ � S .x/ : (7.34)

If we were able to solve the problem exactly, then the residual would be equal to
zero for all x. We, however, will set a more modest goal of finding an approximate
solution Q̂ .x/ that in “some sense” minimizes the residual. In the Galerkin method,
to achieve this goal, the following N conditions have to be satisfied:

Z
R .x/ hk .x/ dx D 0I k D 1; 2; : : : ;N: (7.35)

The functions hk.x/ are referred to as the weighting functions. We, however, will use
here the basis functions that we introduced in the preceding section. For this reason
we used notations hk for the weighting functions. These N conditions are described
in the literature as the orthogonality of the residual to a set of weighting functions,
h1; : : : ; hN .

We need to clarify in what sense satisfying the orthogonality condition minimizes
the residual. To do so, we will approximate the residual by a linear combination of
basis functions:
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R .x/ �
NX

kD1
akhk .x/ ; (7.36)

where ak are unknown coefficients. To find the coefficients, we will perform a least
squares fit by minimizing the following integral:

Z "
R .x/ �

NX
kD1

akhk .x/

#2
dx: (7.37)

To find the minimum, we take the derivatives @=@ak0 (k0 D 1; 2; : : : ;N) of this
integral and require that they are all equal to zero. This produces the following
system of N linear algebraic equations for coefficients ak :

Z
R .x/ hk0 .x/ dx D

NX
kD1

ak

Z
hk0 .x/ hk .x/ dx: (7.38)

If the residual R.x/ is orthogonal to the set of basis functions hk, then the left-
hand side of the equation is equal to zero for all k0. That, in turn, means that all
coefficients ak are also equal to zero, provided that the matrix

Z
hk0 .x/ hk .x/ dx: (7.39)

is not singular, in other words, that its determinant is not zero. With all coefficients
ak equal to zero, the approximate expression for the residual given by Eq. (7.36) is
also equal to zero for all x. This means that, if the orthogonality conditions Eq. (7.35)
are satisfied, then the least squares fit to the residual is zero for all x.

Before applying the Galerkin method to the Boltzmann equation, we recall that
for each tetrahedron, each discrete direction E�ij, and each energy group g we need to

find four coefficients ˆgk. E�ij/, k D 1; 2; 3; 4. These coefficients are the fluences at
the four vertices of the tetrahedron. This means that we need to transform Eq. (7.28)
for each set of indices .i; j; g/ into a system of four equations. We achieve this by
multiplying Eq. (7.28) by basis functions h1, h2, h3, and h4, one at a time, and
then integrating the equation over the volume of the tetrahedron. This procedure
is equivalent to satisfying the orthogonality condition for the residual. That is, R.x/
is orthogonal to the set of four functions: h1, h2, h3, h4. Integration will eliminate
the derivatives in the streaming operator, after we apply the divergence theorem to
this term, which ultimately will yield a large system of linear algebraic equations.
We will demonstrate this technique for one tetrahedron and one basis function, h1.

We multiply Eq. (7.28) by h1.x/ and integrate the result over the volume V of the
tetrahedron. We will integrate one term of the equation at a time, starting with the
simplest term, the removal operator:



236 7 Grid Based Boltzmann Equation Solvers

Z
V

dEr h1

Er � 	g


Er �ˆg

�
Er; E�ij


D 	g

Z
V

dEr h1

Er �

4X
kD1

hk

Er �ˆgk

� E�ij



D 	g

4X
kD1

ˆgk

� E�ij

 Z
V

dEr h1

Er � hk


Er � 
 	g

4X
kD1

ˆgk

� E�ij


H.V/
1k : (7.40)

We assumed above that the material within the finite element is homogeneous.
In that case the cross section is constant within the integration volume, V . Then,
we inserted Eq. (7.32) for ˆg, and introduced the notation H.V/

1k for the integral of
the product of two basis functions.

Integration of the source term is very similar, so we present only the result:
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Er � Sg

�
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� E�ij


H.V/
1k : (7.41)

We need to mention only that like the fluence, the source function was approximated
by a sum, as in Eq. (7.32).

Similarly, we integrate the collision integral:
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Finally, we integrate the most difficult part, the streaming operator:
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In the first integral on the right-hand side, we apply the divergence theorem
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;

(7.44)

where �.V/ is the total surface area of the tetrahedron, that is, the area of all four
faces, and En� D En�.Er / is the outward pointing normal to � , at point Er on the
surface. The integral over the surface of the tetrahedron, �.V/, is equal to the sum
of integrals over the four faces, �s, s D 1; 2; 3; 4:
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Finally, we yet again approximate the fluence by a sum, as in Eq. (7.32):
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where we introduced the notation H.s/
1k for the integral over face s of the product

of two basis functions. Integration over tetrahedron faces should be performed
carefully. If continuity of the fluence across the surface of a finite element is not
required, which is the case in discontinuous finite element algorithms, the fluence
may have two different values on the two sides of each face of the tetrahedron. For
example, if tetrahedron 1 shares face s with tetrahedron 2, then we can identify one
side of surface s as side s1 that belongs to tetrahedron 1, and the other, as side s2.
Then, when writing an equation for tetrahedron 1, the conventional approach is that
for all directions E�ij pointing into tetrahedron 1 ( E�ij � En�s < 0), for points on surface
s, the fluence on side s2 of the surface is used. In that case, the fluence on s2 is called
the incoming fluence. Conversely, if ( E�ij � En�s > 0), then the fluence on side s1 is
used.

We, however, have not yet finished with the streaming operator. There is a second
integral in Eq. (7.43). In this case, the algebra is simple:
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H
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1k ; (7.47)

where we introduced an obvious notation H.ij/
1k for the integral. Combining

Eqs. (7.40)–(7.42), (7.46), and (7.47) we arrive at a discretized form of the
Boltzmann equation, where the spatial derivatives have been eliminated by applying
the Galerkin method:
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To obtain four equations needed to find the fluences ˆgk. E�ij/ at all four vertices
of the tetrahedron, we have to repeat this exercise for the other three basis functions
h2, h3, and h4. The result, however, is predictable: we will get the same equation
but with the subscript “1” replaced with 2, 3, and 4, respectively. To obtain a closed
system of equations, we also need to express the coefficients ˆm

g0lk on the right-hand

side in terms of the fluences ˆgk. E�ij/. To do so, we will use Eq. (7.29) written for a

point Er D Erk, keeping in mind that ˆg.Erk; E�ij/ D ˆgk. E�ij/:
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:

(7.49)

In Eqs. (7.48) and (7.49) we now replace the subscript 1 with k0 D 1; 2; 3; 4 and
combine them in one equation that can be written in a matrix form:
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k0 D 1; 2; 3; 4I g D 1; 2; : : : ;GI i D 1; 2; : : : ; n
I j D 1; 2; : : : ; n�;

(7.50)

or in an operator form

OAˆ D S C OKˆ: (7.51)

Definitions of the matrices Agkk0. E�ij/, Sgk0. E�ij/, and Kkk0i0j0.g0 ! g; E�i0j0 � E�ij/ are
obvious from a comparison of Eq. (7.50) with Eqs. (7.48) and (7.49). The operators
OA and OK are defined by the respective matrices, and ˆ and S are matrices of size

G 	 4 	 n
 	 n� if only one tetrahedron is considered. This equation maintains the
overall structure of the original, non-discretized Boltzmann equation.
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The same procedure as above is followed when the equations are derived for
a system comprised of many finite elements. It yields a large system of linear

algebraic equations for the fluence coefficients ˆgk

� E�ij


. In principle, the system

can be solved by any of the standard numerical methods for this type of problems.
The solution must satisfy boundary conditions. In the case of standard boundary
conditions, Eq. (3.49), the incoming fluence is equal to zero on the tetrahedron faces
forming the boundary of the computational domain. A very common approach to
solving the system is described in the next section. It consists of a loop over energy
groups (the outer loop) and an iterative procedure called source iterations (the inner
loop).

7.4 Algorithm

7.4.1 The Loop Over Energy Groups

The scattering integral in the multigroup form of the Boltzmann equation, Eq. (7.3),
contains a sum over all energy groups, g0 D 1; : : : ;G. It can be seen, then, that
to solve the equation for group g one needs to know the fluences for all the other
energy groups. While this does not make the problem intractable, the algorithm can
be simplified significantly if 	s.Er; E� � E� 0; g0 ! g/ D 0, for any g < g0. Because
energy groups are numbered so that Eg > Eg0 , if g < g0, this condition means that
particles cannot gain energy in collisions. After a collision, the particle either stays
in the same energy group (small or zero energy loss), or it transitions to a group of
lower energy. The latter process is called down-scatter. There are, of course, some
processes where the particle can gain energy, from a nuclear reaction or from an
external electric field. These will not be considered here, as we aim to limit the
discussion to the simplest algorithms.

Then, we can start with the equation for energy group 1. Because this group
represents the highest energy, no particles will be down-scattered to this group, and
the equation will not contain fluences for any energy groups other than group 1.
This equation can be solved for fluenceˆ1, where the subscript indicates the energy
group number (g D 1). Once we have found ˆ1, we can proceed to the equation for
group 2. In this equation, the collision integral will include one down-scatter term
representing particles scattering from group 1 to group 2. This term will contain
the product 	s.1 ! 2/ˆ1, which is the collision density for scattering from group
1 down to group 2. The collision integral will also include the in-group scattering
term, which has the form 	s.2 ! 2/ˆ2. Because the equation does not include
fluences for any other groups, and at this step ˆ1 is already known, we can now
solve the equation for fluence ˆ2. The next equation, for group 3, will have two
down-scatter terms, 	s.1 ! 3/ˆ1 and 	s.2 ! 3/ˆ2, in addition to the in-group
scattering term, 	s.3 ! 3/ˆ3. We can solve the equation for ˆ3, because at this
step ˆ1 and ˆ2 are known. We then proceed to the next energy group, and so on,
until we find the solution for the last energy groupˆG. The flow chart of the process
is shown in Fig. 7.2.
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Fig. 7.2 The loop over
energy groups. The subscript
indicates the energy group
number

Start with equation for g = 1

Solve equation for Φg

Exit
yes

no

Insert Φg ′  ( g ′= 1,2, ...g) in the
down-scatter terms g ′

g =  g + 1

Last group?

g + 1
in equation for group g + 1

7.4.2 Source Iterations

In the second box of the flow chart in Fig. 7.2, the Boltzmann equation is solved
for the group fluence ˆg. The solution is found through an iterative procedure
called source iterations. The flow chart of this iterative algorithm is shown in
Fig. 7.3. In the first step, the unscattered fluence ˆ0 is calculated. We discussed
calculation of the unscattered fluence in Sect. 3.9.1. This step involves calculation
of the optical distances between the source and the nodes of the tetrahedral mesh.
After the unscattered fluence ˆ0 is found, it is inserted into the collision integral. In
other words, the collision integral OKˆ is approximated by OKˆ0. Then the collision
integral is added to the source function S on the right-hand side of the Boltzmann
equation. Consequently, the right-hand side of the equation is known, and all the
unknowns are in the left-hand side. In the discrete ordinates method (see Eqs. (7.28)
and (7.29)), the left-hand side of the equation contains an unknown fluence only
for one discrete direction, ˆ. E�ij/. The fluences for all the other directions ˆ. E�i0j0/

that were originally present on the right-hand side of the equation, because it uses
the quadrature given by Eq. (7.29), have been calculated in the preceding source
iteration step. This simplifies the algorithm substantially, because the equation can
now be solved for one discrete direction at a time.

After a new solution is found (fluence ˆiC1 in box 3, where the subscript
indicates the iteration number), it is inserted into the collision integral to replace the
fluence from the preceding iteration, and then we need to solve the same equation
with an updated right-hand side. These steps are repeated until a desired level of
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accuracy is achieved for all nodes within a volume of interest. The accuracy can be
estimated by comparing the results of a few, at least three, consecutive iterations to
reduce the risk of false convergence.

7.5 Electron-Photon Fields

Electron-photon fields are particularly important for radiation therapy. To calculate a
dose distribution from a photon or electron beam, we need the electron fluence, ˆe.
However, in a photon beam electrons are produced in photon collisions. Hence, to
find the electron source, we need to know the photon fluenceˆ� . On the other hand,
in both photon and electron beams photons can be produced in electron collisions.
To find this source of photons, we need to know the electron fluence,ˆe. This means
that we need to solve a system of two Boltzmann equations, one for the photon
fluence and the other for the electron fluence. The equations are coupled, because
the equation for ˆ� includes the source of photons produced in electron collisions,
the collisional source. This source has the following form (see, for example, Lorence
et al. (1985)):

Se�

�
Er; E�;E


D
Z

d E� 0
Z

dE 0 	s;e�

�
Er; E� 0;E 0 ! E�;E


ˆe

�
Er; E� 0;E 0 ;

(7.52)

where 	s;e� is the double differential cross section for electron collisions producing
photons. Similarly, the equation for ˆe includes the source of electrons produced in
photon collisions:
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(7.53)

Fig. 7.3 Source iterations.
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The system can be solved through an iterative procedure, such as source iterations
on the collisional source, where at each step the equation for particles of type A
is solved using the fluence of particles of type B found in the preceding iteration
step inserted into the collisional source, SBA. The partial coupling approximation
is often used to avoid this extra iteration loop. In applications to electron-photon
fields, the approximation can have one of two forms: (a) the production of electrons
in photon collisions is neglected (Lorence et al. 1985), or, conversely, (b) the
production of photons in electron collisions is neglected (Vassiliev et al. 2010).
The former is not applicable to dose calculations in radiotherapy. It would result
in unacceptable errors, especially near interfaces between different materials. The
latter form works well in calculations of patient dose distributions as was shown
by Vassiliev et al. (2010) and confirmed in a series of publications evaluating the
accuracy of the Acuros R� algorithm, for example, Bush et al. (2011), Hoffmann
et al. (2012), Kan et al. (2012), to name a few. However, in problems involving
high atomic number materials, photons produced in electron collisions, specifically,
the Bremsstrahlung radiation, generally cannot be neglected. An important example
where the partial coupling approximation, in either form, is not applicable is
electron-photon transport in the beamline of a medical accelerator. If photons
produced in electron collisions can be neglected, then the equation for the photon
fluence can be solved separately, because in this case it does not include the electron
fluence. Then, the photon fluence is inserted into the collisional source S�e in the
equation for the electron fluence, which can then be solved.

In problems where the photon energies exceed two electron rest energies, E� >
2mec2 � 1.022 MeV, a third type of particle, positrons, is produced in the pair
production process. This, in principle, requires that a third Boltzmann equation,
that for the positron fluence, be solved. This, however, can be avoided by replacing
positrons with electrons. That is, two electrons are produced in a pair production
event instead of an electron–positron pair. This is a good approximation, because
electrons and positrons are similar in terms of energy loss and scattering parameters,
and because the contribution to the dose from positrons is usually small.

The large interaction cross sections and very forward-peaked scattering of
electrons pose serious difficulties for GBBS algorithms. As in the Monte Carlo
method, achieving a high computing speed requires the use of multiple scattering
theories for electron transport. In Acurosr, for example, soft collisions are treated
in the continuous slowing down approximation (Vassiliev et al. 2010). We described
the modification of the collision integral on which this method is based in Sect. 3.9.5.
In AttilaTM, which is a more general purpose commercial software of this type, in
addition to the continuous slowing down model for energy loss, the Fokker-Planck
approximation (see Sect. 3.9.6) is applied to the angular variables to account for
Coulomb scattering (Gifford et al. 2006; Vassiliev et al. 2008). These approxi-
mations introduce in the Boltzmann equation additional differential operators with
derivatives in the energy and in angular variables.
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7.6 Algorithm in an External Magnetic Field

The Boltzmann equation in the presence of an external magnetic field was derived
in Sect. 3.8. It has the following form:
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� E� � Err


ˆ
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Er;E�ˆ 
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Er; Ep 0 ! Ep �ˆ 
Er; Ep 0� : (7.54)

Here, Efex is the force exerted on a charged particle by an external magnetic field. The
force is given by the Lorentz formula (Jackson 1999)

Efex

Ep � D q Ev 	 EB; (7.55)

where q is the particle charge, Ev is its velocity, and EB is the magnetic field. The force
of an electric field will not be considered. The electric field EE is set to zero.

We can now derive an algorithm for solving it. We will use an approach
introduced by St. Aubin et al. (2015) and focus only on the first term in the equation,
the term associated with the external force. We considered all the other terms of the
equation earlier in this chapter.

7.6.1 The Magnetic Force Term in Spherical Coordinates

Before we can proceed further, we need the gradient operator Erp g.Ep / written
in spherical coordinates, where g.Ep / is an arbitrary differentiable function. The
spherical coordinates are defined as follows:

px D p sin � cos� D p
p
1 � 
2 cos� D p�x I

py D p sin � sin� D p
p
1 � 
2 sin� D p�y I

pz D p cos � D p
 D p�z :

(7.56)

The gradient Erp g.Ep / is a vector:

Erp g D Eex
@g

@px
C Eey

@g

@py
C Eez

@g

@pz
: (7.57)

where Eex, Eey, and Eez are the Cartesian unit basis vectors. Our goal is to express
Erp g.Ep / in terms of the derivatives
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and find the derivatives
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This expression can be further simplified to
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Applying this result to the magnetic force term in the Boltzmann equation,
Eq. (7.54), and using .ŒEv 	 EB� � E�/ D 0, we derive the final form of the magnetic
force term
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7.6.2 Representation in Spherical Harmonics

The Boltzmann equation, Eq. (7.54), now has two derivatives with respect to the
angular variables 
 and �. The equation can still be solved by the finite elements
method applied this time to both the spatial coordinates x, y, z and the angular
variables 
 and �. This approach to the problem was developed by St. Aubin et al.
(2016) and produced excellent results. Here, however, we will present a simpler
method that was proposed in an earlier paper (St. Aubin et al. 2015). This method
is well suited for implementation in deterministic algorithms that use the discrete
ordinates method.

The idea of the method is that the angular derivatives can be calculated
analytically, if we expand the fluence in spherical harmonics, just as we did earlier
in this chapter, in Eq. (7.10):

@

@

ˆ
�
Er; E�


�

LX
lD0

lX
mD�l

ˆm
l


Er � @
@


Ym
l

� E�

;

@

@�
ˆ
�
Er; E�


�

LX
lD0

lX
mD�l

ˆm
l


Er � @
@�

Ym
l

� E�

:

(7.62)

The spherical harmonics are defined as follows (Arfken et al. 2013):
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where Pm
l is the associated Legendre polynomial and
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These spherical harmonics are complex valued functions. St. Aubin et al. (2015),
however, used real valued spherical harmonics that are more convenient for numer-
ical implementation. Here we chose the complex valued functions for consistency
with the rest of the book. Changing from complex valued to real valued spherical
harmonics in the formalism that we present below is straightforward.

The first of the two angular derivatives, @=@
, can be found in Abramowitz and
Stegan (1964):
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For l D m D 0 the derivative is zero. For m D ˙l, we have (Arfken et al. 2013)
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(7.66)
It is convenient to express the derivative in terms of spherical harmonics:

@

@

Ym

l

� E�


D Nl;meim� d

d

Pm

l .
/

D 1

1 � 
2
�

Nl;m

Nl�1;m
.l C m/ Ym

l�1
� E�


� 
lYm
l

� E�
�

I l � 1I jmj � l � 1:

(7.67)

For jmj D l, the result is

@

@

Y˙l

l

� E�


D Nl;˙le
˙il� d

d

P˙l

l .
/ D �
l

1 � 
2 Y˙l
l

� E�

: (7.68)

The other angular derivative, @=@�, is simple

@

@�
Ym

l

� E�


D Nl;mPm
l .
/

d

d�
eim� D imYm

l

� E�

: (7.69)

We can now insert the derivatives of the spherical harmonics as given by Eqs. (7.67)–
(7.69) into the sum in Eq. (7.62), and then insert the sums in the expression for the
magnetic force term, Eq. (7.61). The result is the following rather lengthy formula:

�Efex

Ep � � Erp

 �1
v
ˆ

Er; Ep �

�
� q

p .1 � 
2/
h E� 	 EB

i
z

	
LX

lD1

(
l�1X

mD�lC1
ˆm

l


Er �
�

Nl;m

Nl�1;m
.l C m/ Ym

l�1
� E�
�

�
lX

mD�l


lYm
l

� E�
)

C q

p .1 � 
2/
h E� 	

h E� 	 EB
ii

z

LX
lD0

lX
mD�l

imˆm
l


Er � Ym
l

� E�

: (7.70)

However, its overall structure is simple. It is the sum of the spherical harmonics mul-
tiplied by the expansion coefficients of the fluence, ˆm

l , and by known coefficients

that depend on the magnetic field strength EB and direction E�. We will leave this
result as shown, without further discretization in space and energy. These steps are
straightforward, and the general methodology was discussed earlier in this chapter.

The significance of the representation of the magnetic force term in spherical
harmonics is that it brings the term to a form similar to that of the collision integral
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in Eq. (7.19). Then, the magnetic force term can be formally considered as part
of the collision integral and therefore the Boltzmann equation in the presence of a
magnetic field can still be solved by an iterative procedure. However, St. Aubin et al.
(2015) have shown that combining the magnetic force term given by Eq. (7.70) with
the collision integral makes the source iterations algorithm unstable. For this reason
instead of source iterations, the authors (St. Aubin et al. 2015) ultimately chose
another method—a nonstationary Krylov subspace iterative technique GMRES
(Generalized Minimal Residual Algorithm) (Krylov 1931; Saad and Schultz 1986).

For completeness, we include the definition of real-valued spherical harmonics.
It differs from Eq. (7.63) only in that the exponent is replaced according to the
following rule (Arfken et al. 2013):

eim� !

8̂̂
<
ˆ̂:
1; m D 0;p
2 cos .m�/; m > 0;p
2 sin .jmj�/; m < 0:

(7.71)

Comparison with Monte Carlo

This deterministic GBBS algorithm achieves the same level of accuracy as a full
Monte Carlo algorithm, such as that implemented in the EGSnrc code system
(Kawrakow et al. 2013).

St. Aubin et al. (2015) calculated dose distributions for 6 MV photon beams
incident normally on a 30 cm cubic phantom comprising water, bone, and lung
slabs, in magnetic fields of up to 3 T. They used the discrete ordinates (DO) GBBS
algorithm described above and, for comparison, a full Monte Carlo code (Kawrakow
et al. 2013). The DO GBBS results agreed with Monte Carlo calculations within
2 %/ 2 mm gamma criterion for 99.8 % of points, and within 1 %/ 1 mm for 94.8 %
of points.

In Figs. 7.4 and 7.5 the depth dose on the central axis for a 10 	 10 cm2 calculated
with the GBBS algorithm is compared with the Monte Carlo results. In both figures
the magnetic field is 3 T. In Fig.7.4 the magnetic field is parallel to the beam.
In this case the effect of the magnetic field on the dose distribution is relatively
small. In contrast, in Fig.7.5 the magnetic field is perpendicular to the beam and the
dose distribution is quite different, especially near the interfaces between different
materials. For example, there is a distinct spike at the interface between bone and
lung, at the depth of 12 cm. It was largely caused by electrons produced the bone,
initially mostly in the forward direction, but forced by the magnetic field from the
lung back towards the bone surface. This effect also reduces the fluence of electron
reaching the water surface at 20 cm depth resulting in a pronounced dose minimum
around this depth.
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Fig. 7.4 Depth dose along the central axis for a 10 � 10 cm2 field, comparing Monte Carlo and
the discrete ordinates GBBS formalism in a 3 T magnetic field parallel to the radiation beam [J. St.
Aubin, private communication, 2016]. Used with permission

In that study limitations of the algorithm were also noted. In cases with low
density materials in strong magnetic fields, the Krylov iterative algorithm converged
too slowly, to a point where iterative stagnation occurred if the restart parameter was
chosen too small. For example, in a lung phantom, iterations converged for magnetic
field strengths of up to 6 T, and did not converge for magnetic fields stronger
than 6 T. This limitation has been eliminated in a new algorithm (St. Aubin et al.
2016). This new algorithm does not use the discrete ordinates method. Instead, the
authors developed a discontinuous finite-element space-angle approach to solving
the Boltzmann equation with magnetic fields. The new algorithm has been validated
against Geant4 Monte Carlo code (Allison et al. 2006), including dose calculations
in an air cavity, and at bone–air interface. The overall agreement between the new
GBBS algorithm and the Monte Carlo code was within 2 % / 2 mm gamma criterion
for 98.9 % points.
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Fig. 7.5 Depth dose along the central axis for a 10 � 10 cm2 field comparing Monte Carlo and
the discrete ordinates GBBS formalism in a 3 T magnetic field perpendicular to the radiation beam
[J. St. Aubin, private communication, 2016]. Used with permission
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Appendix A
Probabilities and Statistics Refresher

A.1 Probability

Event A is the outcome of an experiment (trial). Sample space S is a set of all the
possible outcomes of the experiment.

Example. If the trial is one roll of a die, then the sample space is f1; 2; 3; 4; 5; 6g.
The definition of the probability P .A/ of event A:

P .A/ D lim
N!1

n .A/

N
; (A.1)

where N is the number of trials and n .A/ is the number of times event A has
occurred. The properties of probability:

1. 0 � P .A/ � 1.
2. P .S/ D 1.
3. Additivity: if events A and B are mutually exclusive, that is A

T
B D ; (empty

set), then P .A
S

B/ D P .A/C P .B/.

A.2 Convergence in Probability

Definition (Dudewicz and Mishra 1988). We say Zn converges to Z in probability

(Zn
p! Z) if for every � > 0

lim
n!1 P fjZn � Zj > �g D 0:

Other convergence types are: (1) with probability one; (2) in mean square; (3) in
distribution.

© Springer International Publishing Switzerland 2017
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A.3 Conditional Probability

The probability P of event A, given that event B has occurred:

P .AjB/ D P .A
T

B/

P .B/
: (A.2)

A.4 Independent Events

Two events A and B are independent if P .AjB/ D P .A/. If A and B are independent,
then P .A

T
B/ D P .A/ � P .B/.

A.5 The Total Probability Theorem

Let fAig, i D 1; 2; : : : ; n, be a complete set of mutually exclusive events. This means
that P


Sn
iD1 Ai

� D 1 and Ai
T

Aj D ; for all i ¤ j. Thus, in a trial one event from
the set must occur, but any two events cannot occur. Then, for any event B:

P .B/ D
nX

iD1
P .Ai/P .BjAi/ : (A.3)

A.6 Probability Distribution of a Discrete Variable

If the sample space is countable, that is all possible outcomes can be enumerated:
A1;A2; : : : , then the probability distribution can be defined:

P .Ai/ 
 P .i/ 
 Pi I i D 1; 2; : : : (A.4)

A.7 Probability Distribution Function

If the outcome of a trial is a number � , then the probability function F� .x/ can be
defined:

F� .x/ 
 Pf� � xg: (A.5)

Random variable � may take a continuous range of values, a discrete set of values,
or a combination of both. Variable x is continuous. Subscript � is often omitted.
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The properties of the probability distribution function:

1.

F .x2/ � F .x1/ ; if x2 > x1I (A.6)

2.

lim
x!1 F .x/ D 1I (A.7)

3.

F .x/ � 0; for 8 x: (A.8)

A.8 Probability Density Function

If the derivative of the probability distribution function F.x/ exists, then the
probability density function f .x/ can be defined:

f� .x/ 
 dF�
dx
: (A.9)

It defines the probability of observing the random variable within a given interval:

Pf� 2 dxg D f� .x/ dx: (A.10)

P .a � � � b/ D
Z b

a
f� .x/ dx: (A.11)

A.9 Transformation of Random Variables
and Their Distributions

One-Dimensional Random Variables Given: random variable � has a probability
density f� .x/; random variable � (the transformed variable) is a known function of
� , � D g.�/. Problem: find the probability density of �. Solution:

f� .y/ D f� .x/

ˇ̌̌
ˇdx

dy

ˇ̌̌
ˇ D f� .x/

ˇ̌̌
ˇdg

dx

ˇ̌̌
ˇ
�1
: (A.12)

The result should be written using y rather than x. This can be done through the
substitution x D g�1.y/.
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Example.

f� .x/ D 2x exp

�x2

�
; x � 0: (A.13)

Find the distribution f�.y/, where � D �2. Solution

f� .y/ D 2x exp

�x2

� j2xj�1 D exp .�y/: (A.14)

Two-Dimensional Random Variables Given: two random variables .�1; �2/ that
have a joint probability density f�1;�2 .x1; x2/; two random variables .�1; �2/ (the
transformed variables) are known functions of .�1; �2/, �1 D g1.�1; �2/ and �2 D
g2.�1; �2/. Problem: find the joint probability density of .�1; �2/. Solution:

f�1;�2 .y1; y2/ D f�1;�2 .x1; x2/ jJj ; (A.15)

where J is the Jacobian:

J D
ˇ̌̌
ˇ@x1=@y1 @x1=@y2
@x2=@y1 @x2=@y2

ˇ̌̌
ˇ : (A.16)

To find the derivatives, we need to find the inverse transformation �1 D g�1
1 .�1; �2/

and �2 D g�1
2 .�1; �2/. Then

@xi

@yj
D @g�1

i

@yj
I i; j D 1; 2: (A.17)

The result should be written using .y1; y2/ rather than .x1; x2/. This can be done
through the substitutions x1 D g�1

1 .y1; y2/ and x2 D g�1
2 .y1; y2/.

Example. Transformation from Cartesian coordinates .x; y/ to polar coordinates
.; �/. The inverse transformation: x D  cos�, y D  sin�. First, we find the
Jacobian

J D
ˇ̌̌
ˇ@x=@ @x=@�
@y=@ @y=@�

ˇ̌̌
ˇ D : (A.18)

Then, we can find the distribution:

f .; �/ D f .x .; �/ ; y .; �// : (A.19)

For example, if f .x; y/ is a uniform distribution within a circle of radius R, that is

f .x; y/ D 1

�R2
; if x2 C y2 < R2: (A.20)
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then,

f .; �/ D 

�R2
; if  < R: (A.21)

Three-Dimensional Random Variables Given: three random variables (�1, �2,
�3) that have a joint probability density f�1;�2;�3 .x1; x2; x3/; three random variables
.�1; �2; �3/ (the transformed variables) are known functions of .�1; �2; �3/, �i D
gi.�1; �2; �3/, i D 1; 2; 3. Problem: find the joint probability density of .�1; �2; �3/.
The solution is similar to that in the two-dimensional case, except for the Jacobian
that is

J D
ˇ̌̌
ˇ̌̌@x1=@y1 @x1=@y2 @x1=@y3
@x2=@y1 @x2=@y2 @x2=@y3
@x3=@y1 @x3=@y2 @x3=@y3

ˇ̌̌
ˇ̌̌ : (A.22)

Example. Transformation from Cartesian coordinates .x; y; z/ to spherical coordi-
nates .; �; �/. The inverse transformation: x D r sin � cos�, y D r sin � sin�,
z D r cos � . First, we find the Jacobian

J D
ˇ̌̌
ˇ̌̌@x=@r @x=@� @x=@�
@y=@r @y=@� @y=@�
@z=@r @z=@� @z=@�

ˇ̌̌
ˇ̌̌ D r2 sin �: (A.23)

Then, we can find the distribution:

f .r; �; �/ D f .x .r; �; �/ ; y .r; �; �/ ; z .r; �; �// r2 sin �: (A.24)

For example, if f .x; y; z/ is a uniform distribution within a sphere of radius R, that is

f .x; y; z/ D 3

4�R3
; if x2 C y2 C z2 < R2; (A.25)

then,

f .r; �; �/ D 3r2 sin �

4�R3
; if r < R: (A.26)

The changing from � to 
 D cos � , simplifies the result above

f .r; 
; �/ D 3r2

4�R3
; if r < R: (A.27)
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A.10 Distribution of a Sum

If � and � are statistically independent random variables with distributions f� .x/ and
f�.x/, then the distribution of the sum � D � C � is given by

f� .x/ D
Z 1

�1
f�


x0� f�



x � x0� dx0 : (A.28)

The integral above is called the convolution and is denoted as (f� � f�/.x/.

A.11 The Expectation Value

For a continuous random variable � the definition is:

Ef�g 

Z C1

�1
xf .x/ dxI (A.29)

For a discrete variable:

Ef�g 

X

k

kPk: (A.30)

The expectation value is also referred to as the mean value.
The properties of the expectation value:

Ef�1 C �2g D Ef�1g C Ef�2g: (A.31)

EfC�g D CEf�gI where C is a constant: (A.32)

A.12 The Variance

The definition is:

Var .�/ 
 E


�2
� � ŒE .�/�2 D Ef� � E .�/g2I (A.33)

It is a measure of the dispersion of a random variable.
The properties of the variance:

Var .�1 C �2/ D Var .�1/C Var .�2/ I only if �1 and �2 are independent: (A.34)

Var .C�/ D C2Var .�/ I where C is a constant: (A.35)

Var .C/ D 0: (A.36)
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The standard deviation:

	 

p

Var .�/: (A.37)

Chebyshev’s theorem: for any real k

Pfj� � E .�/ j � k	g � 1

k2
: (A.38)

For example, if k D 2:

Pfj� � E .�/ j � 2	g � 1

4
: (A.39)

A.13 The Normal Distribution

f� .x/ D 1p
2�	2

exp

"
� .x � 
/2
2	2

#
: (A.40)

E .�/ D 
I Var .�/ D 	2: (A.41)

Pf
 � 	 < � < 
C 	g � 0:683: (A.42)

Pf
 � 2	 < � < 
C 2	g � 0:954: (A.43)

A.14 The Central Limit Theorem

If �1; �2; : : : ; �N are independent random numbers and each has an arbitrary distri-
bution with mean 
 and finite variance 	2, and

� D 1

N

NX
iD1

�i; (A.44)

then in the limit N ! 1, the distribution f� .x/ tends to a normal distribution with

� D 
 and 	� D 	=

p
N.

A.15 The Binomial Distribution

Bernoulli trials:
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1. Trials are independent events.
2. Each trial results in exactly one of the two mutually exclusive outcomes, called

success and failure.
3. The probability of success is constant from trial to trial.

The Bernoulli process, or the Bernoulli sequence, is a sequence of Bernoulli trials.
The binomial distribution is the distribution of number of successes k in n Bernoulli
trials:

P.kjn/ D
�

n
k

�
pk .1 � p/n�k I (A.45)

where 0 � k � n, p is the probability of “success” in one trial, and
�

n
k

�
D nŠ

kŠ .n � k/Š
(A.46)

is the binomial coefficient.

A.16 The Poisson Distribution

It is derived from the binomial distribution by taking the limit n ! 1, keeping the
average number of successes, np, constant.

Pk D 
k

kŠ
e�
I k D 0; 1; 2 : : : (A.47)

where 
 is a parameter of the distribution, 
 D E .k/ D Var .k/.

Example. The probability of k radioactive decays in 1 s is given by Eq. (A.47). In
this case 
 is the average number of decays per second (= activity in Bq).

A.17 The �2 Distribution

If �i .i D 1; 2; : : : ; r/ have normal distributions with the mean equal to 0, and the
variance equal to 1, then the sum

�2 D
rX

iD1
�2i (A.48)

is �2 distributed. Parameter of the distribution r is called the number of degrees of
freedom.
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f�2 .x/ D xr=2�1 exp .�x=2/

� .r=2/ 2r=2
: (A.49)

E


�2
� D r: (A.50)

Var


�2
� D 2r: (A.51)

A.18 Other Characteristics of a Distribution

The most probable value. It corresponds to the maximum of the distribution. It is
often, but not always, can be found by solving:

@f

@x
D 0: (A.52)

The median, x1=2.

1

2
D
Z x1=2

�1
f .x/ dxI (A.53)

The lower, x1=4, and upper, x3=4, quartiles.

1

4
D
Z x1=4

�1
f .x/ dxI 3

4
D
Z x3=4

�1
f .x/ dx: (A.54)

The quantile, xq.

q D
Z xq

�1
f .x/ dxI 0 < q < 1: (A.55)

The interquartile range (IQR) = x3=4 � x1=4.

A.19 Statistics

The statistic is a quantity, which is calculated from observed data. In the following
examples: f�1; �2; : : : �Ng is the observed data, or the sample, and N is the sample
size.
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The sample average.

N� D 1

N

NX
iD1

�i: (A.56)

The sample median.

�1=2 D

8̂<
:̂
� NC1

2
; if N is odd

1
2

�
� N
2

C � N
2 C1


; if N is even:

(A.57)

The sample in Eq. (A.57) is assumed to be sorted in the increasing order: �1 � �2 �
� � � � �N .

Sample quartiles and quantiles. The sample median as well as sample quartiles
and quantiles are examples of order statistics. Order statistics are defined by the
location of a random value in a sorted sample.

The sample variance, unbiased.

s2 D 1

N � 1
NX

iD1



�i � N��2 : (A.58)

A.20 Point Estimators

Hypothesis: � has a distribution f� .x; a; b; : : :/, where a; b; : : : are unknown
parameters.

Problem. Given: Sample f�1; �2 : : : �Ng. Estimate a; b; : : :.
For each parameter a; b; : : : an estimator that is a function of the sample

O‚a.x1; x2; : : : xN/, etc., should be designed. Good estimators are:

1. Unbiased, Ef O‚a.�1; �2; : : : �N/g D a.
2. Efficient, Varf O‚ag is minimal.
3. Robust. Unusually small or large values in the sample have limited influence on

the result. Other characteristics of robustness also exist, for example, see Hampel
(1986).
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A.21 The Maximum Likelihood Method

It is a method for deriving estimators that is based on the assumption that the
acquired sample is the most probable. For example, if the probability distribution
has two parameters, f .x; a; b/, then:

1. The likelihood function is written:

L .a; b/ D
NY

iD1
f .�i; a; b/: (A.59)

2. The derivatives are calculated and a system of two equations is written

@L

@a
D 0I @L

@b
D 0: (A.60)

3. The system is solved for a and b. Then the expression for a is the estimator for
a, O‚a .�1; �2; : : : �N/. Similarly, the expression for b is O‚b.

The algebra is often simpler if ln L is used instead of L. Moreover, the derivative
equal to 0 does not always give a maximum. Sometimes the derivative does not even
exist. The main advantage of this approach is that the most likelihood estimators are
asymptotically efficient.

Example. Estimate parameter 
 of the normal distribution.
First, we write the likelihood function:

ln L .
; 	/ D
NX

iD1
ln f .�i; 
; 	

2/; (A.61)

where f .�i; 
; 	
2/ is a normal distribution with parameters 
, 	2. Then we solve the

equation

@ ln L

@

D 0 (A.62)

for 
. The solution is:


 D 1

N

NX
iD1

�iI (A.63)

Then, estimator for 
 is the sample average

O‚
 D 1

N

NX
iD1

�i: (A.64)
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A.22 The Method of Moments

This is another method for deriving point estimators. It is a simpler alternative to
the most likelihood method. For example, if two parameters a and b need to be
estimated, then:

1. The two equations, for the first and second moments are written:
the sample mean = expectation (the first moment);
the sample variance = the variance of the distribution (the second moment).

2. The aforementioned system of equations is solved for a and b.
3. The expression for a is the estimator‚a. Similarly, the estimator for b is derived.

Example. Estimate parameter 
 of the normal distribution. The answer is

O‚
 D 1

N

NX
iD1

�i: (A.65)

A.23 Order Statistics as Estimators

The approach is based on the following property: as the sample size increases, the
sample quantile �q tends to the respective quantile of the distribution, xq.

If, for example, two parameters of a distribution, a and b, need to be estimated,
then:

1. Two quantile levels q1 and q2 are selected; for example, q1=1/4 and q2 D 3=4.
2. Two equations are written

�q1 D xq1 .a; b/ I �q2 D xq2 .a; b/ : (A.66)

3. The aforementioned system of the two equations is solved for a and b.
4. The expression for a is the estimator O‚a. Similarly the estimator for b is derived.

Example. Estimate parameter 
 of the normal distribution. The answer is

O‚
 D �1=2: (A.67)

To derive the estimator above, quantile level q D 1=2 was chosen.

A.24 Interval Estimates

The point estimator O‚a of parameter a produces an estimate that is likely to be close
to the true value of a. The purpose of interval estimation is to find an interval that
contains the true value of the parameter with a given probability p, for example
p D 0:95.
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Let random variable � have a distribution f .x; a/, where a is an unknown
parameter, and we have designed a point estimator O‚a. Next, we need to find the
distribution g.x; a/ of the estimate. The distribution is a function of still unknown
parameter a and the sample size N. The latter is omitted for brevity. For example,
if O‚a is the sample average and the sample size N is sufficiently large, g can be
approximated by a normal distribution.

To find the lower, L, and upper, U, boundaries of the interval, we define two
functions q1.a/, and q2.a/ by the following equations:

Z q1.a/

�1
g.x; a/dx D .1 � p/w I (A.68)

Z 1

q2.a/
g .x; a/ dx D .1 � p/.1 � w/ ; (A.69)

where w is any number satisfying 0 < w < 1. Parameter w is present because for
a given p multiple confidence intervals may exist. Then, the interval boundaries are
calculated as the inverse of the functions above:

L D q�1
2

� O‚a


I (A.70)

U D q�1
1

� O‚a


; (A.71)

where O‚a is the “observed” estimate, that is O‚a.�1; �2; : : : ; �N/.

Example. f .x; a/ is a normal distribution with parameters 
 and 	 . We denote this
distribution as N.
; 	2/. The unknown parameter is a D 
, and O‚
 is the sample
average. For simplicity, we assume that 	 is known. We choose p D 0:95 and
w D 1=2. Distribution g.x; 
/ is also normal, N.
, 	2N/, where 	2N D 	2=N.

Then, Eqs. (A.68) and (A.69) lead to

erf

�
q1 � 

	N

p
2

�
D �0:95; (A.72)

erf

�
q2 � 

	N

p
2

�
D 0:95; (A.73)

resulting in

q1 .
/ D 
 � 1:96 	N ; (A.74)

q2 .
/ D 
C 1:96 	N : (A.75)
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Finally, using Eqs. (A.70) and (A.71), we find the lower and upper boundaries of the
interval:

L D O‚
 � 1:96 	N I (A.76)

U D O‚
 C 1:96 	N : (A.77)

A.25 Markov Process

A random process is a sequence of random numbers, or states: �1; �2; : : : A Markov
process is a random process in which the future is independent of the past, given the
present:

Pf�n j �1; �2; : : : �n�1g D Pf�n j �n�1gI (A.78)

that is, the conditional distribution of �n given �1; �2 : : : ; �n�1 equals to the condi-
tional distribution of �n given only �n�1. Here, state �n�1 is “the present” and state
�n is “the future.”

A Markov chain is defined by the probability distribution of the initial state,
�.x0/, and the transition probability p .x ! x0/.

Note:
Z

p .x ! x0/dx0 
 0 � ps.x/ � 1I for 8x; (A.79)

where ps is called the survival probability.



Appendix B
Useful Mathematics

B.1 The Gauss-Ostrogradsky Theorem

The theorem is also known as the divergence theorem. First, we introduce the
notations. For vector field EA .x; y; z/:

divEA D
� Er � EA


D @Ax

@x
C @Ay

@y
C @Az

@z
; (B.1)

where Er is a vector with three components:

Er D
�
@

@x
;
@

@y
;
@

@z

�
: (B.2)

Theorem. For volume V with surface � and outward pointing normal to surface
En� :

Z
V

� Er � EA


dV D
I
�

�EA � En�


d� : (B.3)

B.2 Transforming a Line Integral into a Volume Integral

Here we prove the following identity:

Z
f

Er 0� ı

�
E� � Er � Er 0

jEr � Er 0j
�

dEr 0

jEr � Er 0j2 D
Z 1

0

f
�
Er � t E�


dt: (B.4)
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In the first integral we introduce a new integration variable ER D Er � Er 0. The integral
becomes:

Z
f
�
Er � ER


ı

 
E� �

ER
R

!
dER
R2
: (B.5)

Then we switch to the spherical coordinates:

dER D R2dRd E� 0I ER D R E� 0; (B.6)

where d E� 0 is the solid angle corresponding to the direction defined by unit vector
E� 0. As a result, we obtain

Z 1

0

dR
Z

d E� 0f
�
Er � R E� 0 ı � E� � E� 0 : (B.7)

The last step is the integration over E� 0 resulting in

Z 1

0

f
�
Er � R E�


dR: (B.8)

The denotation of integration variable t as R proves the identity.
ut

The proof for the integration over an infinite volume was given. The identity is
also applicable to any finite volume. In this case, the integration over t is from 0 to
tmax. E�/, which is the distance to the volume boundary from point Er along a straight
line, in the direction opposite to E�.

B.3 Adjoint Operators

Definition. Operator OAC is adjoint to operator OA if

�
g; OAf


D
�

f ; OACg

: (B.9)

Example 1. Linear integral operator with kernel k .x0 ! x/:

OKf D
Z

k


x0 ! x

�
f


x0� dx I (B.10)

We need to find adjoint operator OKC.
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�
g; OKf


D
Z

dx g .x/
Z

dx0 k


x0 ! x

�
f


x0�

D j change notations W x D x0 I x0 D x j

D
Z

dx0 g


x0� Z dx k



x ! x0� f .x/

D
Z

dx f .x/
Z

dx0 k


x ! x0� g



x0� D

�
f ; OKCg


; (B.11)

where

OKCg D
Z

dx0 k


x ! x0� g



x0� : (B.12)

Conclusion: OKC is the operator with the transposed kernel, k .x ! x0/.

Example 2. Matrix operator: the product of a matrix and a vector. In this case, it is
easy to show that the adjoint operator is the multiplication by the transposed matrix.

Example 3. The derivative .d=dx/. Let us find the adjoint operator, .d=dx/C.

�
g;

df

dx

�
D
Z C1

�1
g .x/

df .x/

dx
dx D j integrate by parts j D

D g .x/ f .x/ jC1�1 �
Z C1

�1
f .x/

dg .x/

dx
dx D g .x/ f .x/ jC1�1 �

�
f ;

dg

dx

�
: (B.13)

Here, we need to add the condition that functions f and g are zeros at �1 and at
C1. In this case:

.d=dx/C D � .d=dx/ : (B.14)

Example 4. A sum of operators. Obviously:

� OA C OB
C D OAC C OBC : (B.15)
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A, a, ˛
A (1) Area Eq.(3.16)

(2) normalization constant Eq. (2.33)

a Screening length Eq. (5.217)

B, b, ˇ
B Parameter of Molière distribution Eq. (5.108)

B.z/ Biological response function Eq. (6.15)
EB Magnetic field strength Eq. (3.78)

ˇ Stopping power Eq. (3.116)

ˇ< Restricted stopping power Eq. (3.130)

ˇ> Stopping power for hard collisions Eq. (5.52)

C, c
Ci.x/ Cosine integral Eq. (5.57)

c Speed of light Eq. (5.33)

D, d, �, ı
D Detector response function Eq. (3.28)
QD Modified detector response function Eq. (4.61)

d Width of charge state distribution Eq. (5.213)

d.y/ Dose-weighted single event distribution
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�Eg Width of energy group g p. 226

.�E/max Maximum energy transfer in one collision Eq. (5.33)

�xi Width of a histogram bin Eq. (2.81)

ı.x/ Delta function Eq. (3.97)

ıij Kronecker delta Eq. (3.151)

E, e, �
E Energy p. 49

E f�g Expectation value Eq. (A.29)

Eg Lower boundary of energy group g p. 226

Ei.x/ Exponential integral Eq. (5.40)

Eex;Eey;Eez Cartesian basis vectors Eq. (7.57)

� (1) Algorithm efficiency Eq. (4.39)

(2) Energy deposited in a sensitive volume p. 198

�i Energy deposited in a collision p. 205

�1; �2 Energy deposited in a sensitive volume by tracks of

particle 1 and 2 Eq. (6.48)

�
.1/
0 ; �

.2/
0 Energy deposited in a sensitive volume in a collision

resulting in one or two particles emerging from it Eq. (6.38)

F, f
F.x/;F� .x/ Cumulative distribution

function Eq. (A.5)

F.x/ Collision density Eq. (3.27)

F.qjx/ Response function of a

detector “measuring”

distribution of deposited

energy Eq. (6.47)
EF.Ev / Effective force of multiple

scattering Eq. (5.232)

F1.x/ First collision density Eq. (3.196)

F1.x; t/;F2.x; t/ Phase space distribution

function for one and two

particles Eqs. (3.69), (3.70)

F.n/.x/ Response function of a

detector “measuring"

moment n of distribution

of deposited energy Eq. (6.44)
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FN.x; t/ Phase space distribution

function for an N-particle

system Eq. (3.68)

f .x/; f� .x/ Probability density function Eq. (A.9)

f .�j�/ Conditional probability

density Eq. (2.49)

f .qjD/ Probability distribution of

deposited energy at a given

dose Eq. (6.1)

f .qjx/ Probability distribution of

deposited energy for a

particle that originated

at point x of phase space Eq. (6.34)

f1.q/ Single event probability

distribution of deposited

energy Eq. (6.2)

fS.q/; fQV .q/; f�.q/ Three components of

distribution of deposited

energy in method FD-2 Eqs. (6.70), (6.73), (6.76)
Efi Total force exerted on

ith particle Eq. (3.68)
Efi;ex External force exerted on ith

particle Eq. (3.73)
Efij Force exerted on particle i by

particle j Eq. (3.73)

G, g, � , �
G Total number of energy

groups p. 226

G.�j�/ Green’s function Eq. (4.53)

G.n/.E/;G.n/
V .E/;G.n/

QV
.E/ Detector response

functions in method

FD-1 Eq. (6.57)

G.n/
S .E/;G.n/

in .E/;G
.n/
out.E/ Detector response

functions in method

FD-2 Eqs. (6.71), (6.77)

g Energy group number p. 226

� Surface Eq. (3.37)



272 List of Notations

� (1) Random number

uniformly distributed

in (0,1) p. 15

(2) Mean square stopping

power Eq. (5.4)

(3) Euler constant Eq. (5.23)

(4) Lorentz factor Eq. (5.233)

H, h, �
H.s/

k0k Integral of a product of

basis functions hk0 and hk

over face s of a tetrahedron Eq. (7.46)

H.V/
k0k Integral of a product of

basis functions hk0 and hk

over the volume of a

tetrahedron Eq. (7.40)

hi Height of a histogram bar Eq. (2.81)

hk.Er / Basis function Eq. (7.30)

� Random variable p. 16

I, i
Ni Mean charge Eq. (5.212)

J, j
J (1) Detector reading,

observable Eq. (3.28)

(2) Jacobian Eq. (A.16)

J0; J1; Jk Bessel functions Eq. (5.81)

j Current Eq. (4.32)

K, k
K Boundary of the computational domain Eq. (6.41)
OK Integral operator Eq. (3.169)
OKs Scattering operator Eq. (3.43)
OKC

s Adjoint scattering operator Eq. (3.47)

k Parameter of Vavilov’s distribution Eq. (5.48)

k.� ! �/ Kernel of an integral operator Eq. (3.168)
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L.�/ Likelihood function Eq. (A.59)
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confidence interval Eqs. (A.70), (A.71)
OL Boltzmann operator Eq. (3.42)
OLC Adjoint Boltzmann operator Eq. (3.47)

L Laplace transform Eq. (6.18)

l (1) Distance, free path Eq. (3.6)

(2) angular momentum Eq. (5.216)
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� Parameter of Landau’s distribution Eq. (5.29)

�1 Parameter of Vavilov’s distribution Eq. (5.47)

�i Likelihood ratio Eq. (2.89)
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; 	2/ Normal distribution Eq. (A.40)
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n� Total number of bound states Eq. (5.217)

ne Electron density Eq. (5.218)

nbl Number of bound state with angular

momentum l Eq. (5.216)

n
; n� Number of quadrature points for

integrals over 
 and � Eq. (7.27)

En; En� Normal vector Fig. 3.3

� Number of states in a Markov chain Eq. (3.176)
Er; Err Differential operator, f@=@x; @=@y; @=@zg Eq. (B.2)
Erp Differential operator in momentum space

f@=@px; @=@py; @=@pzg Eq. (3.68)
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P f�j�g Conditional probability Eq. (A.2)

Pn Legendre polynomial Eq. (3.145)

Pm
l Associated Legendre polynomial Eq. (3.149)
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Ep Momentum p. 49

p.� ! �/ Transition probability of a Markov chain p. 264

ps.�/ Probability of survival for a Markov chain Eq. (A.79)

�.x/ Distribution of initial state of a Markov

chain p. 264

ˆ Fluence Eq. (3.16)

ˆC Adjoint function, importance function Eq. (3.33)

ˆ0 Unscattered fluence Eq. (3.86)

ˆg Fluence integrated over energy group g Eq. (7.4)

ˆi Charge state distribution of fluence p. 183

ˆn Legendre coefficient for fluence Eq. (3.146)

ˆ� Fluence on surface � Eq. (3.90)

ˆl;m Spherical harmonic coefficient for fluence Eq. (5.129)

ˆm
gl Spherical harmonic coefficient for fluence
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� Azimuthal angle Fig. 2.9

�.�/ Landau’s function Eq. (5.31)
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Q Total energy deposited or lost p. 147

Qi Multiplicative weight Eq. (3.175)
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q (1) Particle charge Eq. (3.78)

(2) fractional charge Eq. (5.211)
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(2) range Eq. (3.120)

R.x/ Residual Eq. (7.34)

RB Radius of a charged particle

trajectory in magnetic field Eq. (5.231)
ORŒE�0 ;E�0�

Rotation operator Eq. (4.57)

r (1) Radial coordinate in three dimensions Eq. (2.67)

(2) Number of degrees of freedom of �2

distribution Eq. (A.49)

Er Radius vector, particle position p. 49

Er0 Initial position Eq. (5.229)

rs Radius of a sphere that contains one

electron on average Eq. (5.218)

 (1) Radial coordinate in two dimensions Eq. (2.64)

(2) Mass density Eq. (3.31)
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S, s, 	
S (1) Source function Eq. (3.2)

(2) Surface area Eq. (6.6)
QS Biased source function Eq. (3.195)

Se� Collisional source of photons produced in

electron interactions Eq. (7.52)

S�e Collisional source of electrons produced in

photon interactions Eq. (7.53)

Sg Source function integrated over energy

group g Eq. (7.5)

Si.y/ Sine integral Eq. (5.57)

s2 Sample variance Eq. (A.58)

	 (1) Total cross section Eq. (3.3)

(2) Standard deviation Eq. (A.37)

Q	 Biased cross-section Eq. (3.207)

	< Cross section for soft collisions Eq. (3.129)

	1; 	2 Cross section for an interaction resulting in

1 or 2 particles emerging from it Eq. (3.62)

	ED Energy deposition cross section Eq. (3.31)

	g Cross section in energy groups formalism Eq. (7.6)

	i Ionization cross section Eq. (3.29)

	i0 i Cross section for transition from charge state i0

to charge state i Eq. (5.214)

Q	k Parameter of Goudsmit-Saunderson

distribution Eq. (5.121)

	max Maximum cross section Eq. (4.12)

	n Legendre coefficient for scattering

cross section Eq. (3.147)

	s Scattering cross section Eq. (3.12)

	s.g0 ! g/ Differential scattering cross section in energy

groups formalism Eq. (7.7)

	s;e� Scattering cross section for electron

interactions producing photons Eq. (7.52)

	s;�e Scattering cross section for photon

interactions producing electrons Eq. (7.53)

	sl.g0 ! g/ Legendre coefficient for differential scattering

cross section in energy groups formalism Eq. (7.15)

	tr Transport cross section Eq. (3.14)

T, t, � , ‚, �
t (1) Distance, step size p. 66

(2) time Eq. (5.222)

�.Er1;Er2/ Optical distance between points Er1 and Er2 Eq. (3.10)
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O‚a Estimator of parameter a p. 260

� Polar angle Fig. 2.9

h�20 i Mean square scattering angle Eq. (3.138)

V, v
V Volume p. 6
NV Complement volume Eq. (3.53)
QV Extension volume Eq. (6.54)

VB Bounding volume p. 6

V.r/ Interaction potential Eq. (5.216)

Var f�g Variance Eq. (A.33)

v Velocity Eq. (5.221)

v0 Bohr velocity p. 185

Ev0 Initial velocity Eq. (5.226)

v1 Ion velocity Eq. (5.219)

ve Velocity of orbital electron Eq. (5.219)

vF Fermi velocity Eq. (5.220)

Nvr Average relative velocity Eq. (5.219)

W, w, �, !
w (1) Energy of ejected electron Fig. 2.8

(2) weight Eq. (3.195)

w.C/j Weight in Chebyshev quadrature Eq. (7.24)

w.L/i Weight in Legendre quadrature Eq. (7.23)

! Solid angle Eq. (2.70)

!B Gyration/precession frequency Eq. (5.224)
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X, x, � , �
x1=2 Median Eq. (A.53)

x1=4; x3=4 Lower and upper quartiles Eq. (A.54)

x1 Equilibrium depth for charge

exchange processes Eq. (5.215)

xq Quantile Eq. (A.55)

� Random variable p. 16

�1=2 Sample median Eq. (A.57)
N� Sample average Eq. (A.56)

�2 Chi squared statistic Eq. (A.48)

�a; �c Parameters of Molière

distribution Eqs. (5.105), (5.106)
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Y, y
Yl;m. E�/;Y�

l;m. E�/ Spherical harmonic and its

complex conjugate Eqs. (5.128), (5.129)

y Lineal energy Eq. (6.5)

NyF Frequency mean lineal energy Eq. (6.8)

NyD Dose mean lineal energy Eq. (6.13)

Z, z, �
Z1 Atomic number of an ion Eq. (5.211)

z Specific energy Eq. (6.4)

NzF Frequency mean specific energy Eq. (6.9)

NzD Dose mean specific energy Eq. (6.14)

� Random variable p. 16
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Symbols
�2 distribution, 258
�2 test, 45

A
Acurosr, x, 225
Addition theorem, Bessel functions, 161
Adjoint function, 57
Adjoint operator, 266
Adjoint transport equation, 62
Annihilation photons, 44
Attila, 242
Average number of events, 201

B
Basis functions, 233
BBGKY hierarchy, 69
BEAM, 4
Bernoulli trials, 258
Biasing, 96
Binomial distribution, 258
Boltzmann equation, 61
Boltzmann equation, Lagrangian form, 66
Boundary conditions, 63

C
Calculation of integrals, 8
Calculation of volumes, 6
Caswell’s method, 206
Central limit theorem, 257
Chebyshev’s theorem, 257
Chebyshev-Legendre quadrature, 230

Chord-length distribution, 18
Closure equation, 160
Collision density, 56
Collision integral, 61
Compton scattering, 28, 29
Condensed history algorithm, 142
Continuous slowing down approximation, 78,

143
Convolution, 256
Cross section, differential, 52
Cross section, partial, 51
Cross section, total, 50
Current, 125

D
Detector reading, 56
Detector response function, 56
Diffusion approximation, 89
Discontinuous finite elements method, 237
Discrete ordinates method, 230
Distribution of a sum, 256
Distribution of deposited energy, 198
Distribution of ejected electrons, 41
Dose mean lineal energy, 201
Dose mean specific energy, 201
Dose weighted single event distribution, 201

E
EGS, 4
Energy degradation equation, 78
Energy separability approximation, 228
Energy straggling, 143
Energy straggling, Gaussian model, 144
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Energy straggling, Landau model, 147
Energy straggling, Vavilov model, 150
Energy, deposited, 198
Estimation of � , 5
Estimator efficient, 260
Estimator, unbiased, 260
Event-by-event algorithm, 141, 196
Expectation value, 256

F
Finite elements method, 233
Fluctuation detector method, 208
Fluence, 53, 54, 56
Fokker-Planck approximation, 156
Fourier-Bessel transform, 160
Fredholm equation, 90
Free path, 19, 50
Frequency mean lineal energy, 201
Frequency mean specific energy, 201

G
Galerkin method, 234
Gauss-Ostrogradsky theorem, 265
Geant4, 4
Geant4-DNA, 4
Goudsmit-Saunderson distribution, 166
Green’s function, 132
Grid-based Boltzmann equation solver

(GBBS), 226

H
Histogram, 43

I
Importance sampling, 9
Integral form of Boltzmann equation, 95
Interquartile range, 259
Interval estimates, 262
Inversion sampling method, 17, 20
Isotropic distribution, 39

J
Jacobian, 26, 254, 255
Joint distribution, 40

L
Likelihood ratio test, 47
Lineal energy, 200
Liouville equation, 69
Lorentz force, 71

M
Markov process, 264
Maximum likelihood method, 261
MCNP, 4
Mean chord length, 200
Mean free path, 51
Median, 259
Method FD-1, 211
Method FD-2, 217
Method of moments, 262
Microdosimetry, 195, 197
Molière theory, 159
Monte Carlo schema, 2
Most probable value, 259
Multigroup approximation, 226
Multiplicative congruential algorithm, 15

N
Neumann’s method, 24
Normal distribution, 33

O
Observable, 56
Optical distance, 51

P
PN approximation, 86
Pair production, 28
Partial coupling approximation, 242
Particle scattering, 42
PENELOPE, 4
Phase coordinate, 49
Photoelectric absorption, 28
Point estimator, 260
Poisson distribution, 258
Probability, 251
Probability density function, 253
Probability distribution function, 252
Probability distribution, discrete variable, 252
Probability, conditional, 252

Q
Quantile, 259
Quartile, 259

R
Range, 79
Removal operator, 61
Rutherford formula, 148
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S
Sample average, 260
Sample median, 260
Sample variance, 260
Sampling over individual transfers,

205
Seed of random number generator, 15
Sensitive volume, 198
Simple rejection method, 21
Single-event distribution, 199
Source function, 49
Source iterations, 240
Specific energy, 200
Spherical coordinates, 243
Spherical harmonics, real-valued, 247
Standard deviation, 257
Statistic, 259
Stochastic transport equation, 210
Stopping power, 57, 79, 143
Stopping power, restricted, 82
Streaming operator, 61
Sum of distributions, 27
Superposition method, 31

T
The normal distribution, 257
Theory of dual radiation action, 202
Total probability theorem, 252
Transformation of random variables, 26
Transport cross section, 52

U
Uniform distribution in a circle, 37
Uniform distribution in a sphere, 38
Uniform distribution in a three-dimensional

box, 16
Uniform distribution in one dimension, 16
Uniform distribution on a spherical surface, 40
Unscattered fluence, 73

V
Variance, 256

Z
Zero-variance algorithm, 10
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