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Foreword

System-level design is a key design technology to realize integrated systems of
various types, possibly integrated on a single die, i.e., Systems on Chips, or as-
sembled in a single package, i.e., Systems in Package. As technology advances and
systems become increasingly more complex, the use of high-level abstractions and
platform-based design becomes more and more a necessity. Indeed the productivity
of designers increases with the abstraction level, as demonstrated by practices in
both the software and hardware domains. The use of high-level models and plat-
forms allow designers to be productive, even when they have weaker specific skills
in circuit design technology.

Software plays a key role in embedded system design and is crucial for system
programmability and flexibility. The latter factor is extremely important for extend-
ing the life of components across different families of products. Compilation is the
crucial technology to achieve effective system operation on platforms, starting from
high-level programming constructs. The compiler technology has evolved tremen-
dously, especially in the domain of application-specific instruction set processor
design which is commonplace in embedded platforms.

Effective software compilation is the companion to hardware compilation, also
called high-level synthesis. Both share important objectives, like addressing real-
time constraints and system performance. The software and hardware design tech-
nologies show complementarities and find their most natural applications on
platform-based design.

Multi-media systems benefit largely from modular and flexible realizations rely-
ing on platforms. The market for these systems is rapidly expanding and its future
hinges in part on the industrial capability to deliver advanced systems with rapid
turn-around time. In this perspective, the technologies described in this book are
very significant for progress of science and technology and have direct impact on
applications ranging from entertainment to medical imaging, from terrestrial envi-
ronmental monitoring to defense.

Lausanne Giovanni De Micheli
November 25, 2008
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Preface

This book is the outcome of a recent international collaborative research project
aiming at developing both the hardware and software of a platform based SoC
(System-on-Chip) architecture for embedded multimedia systems. Since its incep-
tion a decade ago, SoC has captured the attentions of application specific integrated
circuit (ASIC) design houses, computer aided design (CAD) companies, and embed-
ded system developers. In particular, the immense popularity of killer multimedia
gadgets such as iPod, and iPhone has fueled unprecedented interests in developing
new generation multimedia SoC systems.

However, the high level of integration also brings great challenges to system
designers: Conventional component-oriented design methodologies can no longer
handle the ever increasing system complexity. Hardware and software are necessar-
ily becoming convergent and must be fully concurrent design endeavors. Hardware
engineers must understand higher level signal processing algorithms, functional
simulations, and design verifications. Software engineers, on the other hand, must
pay great attention to heterogeneous instruction set architectures, timing and power
constraints, and hardware-in-the-loop system level simulation and verifications. All
these point to a diverse body of knowledge, and skills that a competent SoC designer
must be equipped. Currently, such valuable knowledge sources are scattered in many
different text books, research papers, and other on-line sources. For someone who is
interested in gaining a comprehensive overview of issues related to the hardware and
software development of multimedia SoC, a highly integrated book is unavailable.

This book is written to serve this purpose. Based on a joint research project coor-
dinated by S. J. Chen at the National Taiwan University (NTU) in Taiwan, this book
is co-authored by key participants of a project entitled: Implementation of a Multi-
media SoC Platform for Scalable Power-Aware Custom Embedded Systems. In this
3-year research project, we focused on a novel SoC platform based on a Subword-
Parallel Single Instruction Multiple Data (SWP-SIMD) micro-architecture. Much
of the materials included in this monograph are drawn from outcomes of this re-
search project. A distinct feature of this book is to incorporate a very diverse list
of subjects and tied them together elegantly to the development of an SWP-SIMD
based SoC platform. Specifically, subject areas that covered include system level
design methodologies, H.264 video coding algorithms, sub-word parallel micro-
architecture design, SIMD vectorized compiler technology, and real time operating
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viii Preface

systems. Obviously, with limited space, it is impossible to engage in-depth discus-
sion of each subject area. Instead, the authors’ approach is to provide sufficient
detail so that readers may appreciate the significance of each topic and understand
the relations of a particular subject to other topics. Plenty of references are provided
so that interested readers may pursue further investigation using materials presented
in this book as a stepping stone. We understand that such an ambitious goal would
not be easy to reach. We hope our efforts will make some tangible contributions
toward promoting the SoC platform design and applications.

This book is written for engineers who are working in integrated circuit design
houses, in computer aided design tool companies, and embedded system design
companies; as well as graduate students who are pursuing a career in computer
engineering, multimedia system implementation and related field. We will be very
happy to hear readers’ feedback and comments.

Taipei, Taiwan Sao-Jie Chen
Taipei, Taiwan Guang-Huei Lin
Chia-Yi, Taiwan Pao-Ann Hsiung
Madison, Wisconsin Yu-Hen Hu
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Chapter 1
Introduction

What is embedded processing? One of the simplest definitions is that embedded
processing is not for general purpose. General purpose processors are the ones used
in desktop PCs and servers. Development tools for desktop processor are popular,
and there are millions of software developed for desktop processor. Thus, using
general purpose processor can reduce time-to-market. But this solution is not opti-
mized on some critical metrics including performance, cost, power, and size. Many
embedded multimedia systems are handheld systems, such as MP3 players, PDAs
and 3G phones. A single general purpose processor is unable to handle real-time
functions such as communication, camera, video, audio, touch screen, TV, and GPS
in time, or it will consume too much power.

Many embedded processors have worse performance on general applications,
but have much better performance on some specific applications than the general
purpose processors. The well-known examples are digital signal processor (DSP)
and network processor.

Embedded system devices normally embody the functionality they implemented.
In other words, they are designed to run a few codes with a predictable pattern. In
contrast, applications of a general purpose system are barely known in advance. A
traditional embedded system design flow is to select proper processor and peripheral
device controllers, then to spend most of the effort on developing software for this
system.

In 1965, Gordon Moore predicted that the number of transistors incorporated in
an IC would increase twofold every year. This was really an amazing prediction that
proved to be more accurate than Moore had believed. In the past few decades, the
scale of IC integration has been soaring high. It started from Small Scale Integration
(SSI) with around 100 transistors per IC in 1960s, up to Very Large Scale Integration
(VLSI) accommodating more than 10000 transistors per IC in 1980s. There is no
sign that such tendency would ever cease. In recent years, the integration scale has
only slightly slowed down to a factor of two for every eighteen months. The outburst
of IC complexity, as predicted by Moore’s Law, is driving the current semiconductor
industry to challenge another cutting edge revolution: System-on-Chip (SoC) with
the capacity of integrating more transistors in a single chip to form an entire elec-
tronic system. This concept is feasible thanks to the very exceptional manufacturing
advances that bring IC nanotechnology to fruition.

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
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2 1 Introduction

As Moore’s Law continues unencumbered into the nanometer era, process ge-
ometries have shrunken to 65 nm, chips are reaching the giga-gate scale. It brings the
possibility to integrate all processors and peripheral device controllers into a chip.

Traditional hardware–software partitioning is simply as: critical functions per-
formed by specific hardware and control-oriented functions by software. Here spe-
cific hardware is defined as an application specific integrated circuit (ASIC) which
is a special design dedicated for an application, and software means running a code
on a general purpose processor. In the last century, most embedded systems need
specific hardware to process multimedia applications, with the constraint of power
consumption or performance. In general, specific hardware is more power-efficient
than software for an application with the same performance. But specific hardware
is less flexible to adapt to new features.

In SoC era, time-in-market becomes as important as time-to-market. Any new
chip production needs to pay very high non-returnable engineering (NRE) cost
even if there is only a little modification from the previous version. By the same
reason, we wish that the chip can sustain longer and useable for more applications.
For example, in IP-based 4G wireless communication, we would like to design a
chip used for both WiMAX (Worldwide Interoperability for Microwave Access) and
LTE (Long Term Evolution), while these standards are not well-defined. The key to
applying a single integrated circuit to multiple applications for both time-to-market
and time-in-market is programmability.

An application specific instruction-set processor (ASIP) is a software-program-
mable processing-element tailored for this purpose. It provides efficient and
economic way for a particular application computation. An ASIP may add some
multimedia operations or encryption operations into its instruction-set to improve
performance with low cost-overhead.

To compete with the performance of ASIC, many parallelization techniques are
adapted into ASIP. These techniques include data level parallelism (DLP) in a single
instruction multiple data (SIMD) processor, instruction level parallelism (ILP) in a
very large instruction word(VLIW) processor, and thread level parallelism (TLP) in
a multi-threading processor. Armed with these parallelism mechanisms, multi-core
becomes more and more feasible and popular in embedded SoCs.

Therefore, a specialized parallel compiler becomes more important to optimize
an application on a specific multi-core processor. This kind of parallel compiler has
not only to translate high-level programming language instructions into the target
ASIP codes, but also to schedule these instructions to exploit the parallelization
capability of that ASIP.

Software needs to run on its target processor. While processor and compiler are
designing, software is unable to design until a prototype was developed. Without
verification by software, the processor is not guaranteed to meet system constraints,
thus the ASIP needs to be re-designed many times. To reduce the long cycle, both
developing software as early as possible and evaluating system constraints at a
higher system level become very important.

The fundamental building blocks of an SoC are its intellectual property (IP)
cores, which are reusable hardware blocks designed to perform a particular task



1 Introduction 3

of a given component. An IP core could either be a programmable component like a
processor, or a hardware entity with fixed behavior like an MPEG accelerator. Dif-
ferent IP cores are interconnected on an SoC by a communication structure, such as
a shared bus or network-on-chip (NoC), in order to establish communication among
them.

IP reuse drives the progress of system-level design. A reusable IP can be obtained
from the third-party IP provider. Typically IP providers would not release RTL de-
sign. The time spent to identify a third-party IP and integrate it into the designed
system places this approach at an unfavorable position compared to designing the
IP in-house. A higher level Transaction Level Modeling (TLM) description is more
feasible for IP providers to protect their design.

TLM is the current promotion methodology used for hardware/software co-
design before and after hardware/software partitioning. Before partitioning, TLM
could be used to create a point-to-point, addressless functional yet concurrent sys-
tem model, reusing IP behaviors from application engineers. After partitioning,
TLM automatically wraps the behavior in the address-mapped TLM model for em-
bedded software functional verification.

Most embedded systems are real-time, which time constraint is critical. A real-
time embedded operating system is required to serve memory allocation, periph-
eral I/O device system calls, inter-process communication, and priority-based task
scheduling.

PLX [1], developed by Professor Ruby Lee at Princeton University, is a na-
tive subword-parallel single instruction multiple data (SWP-SIMD) processor [2]
that supports high-performance, low-cost multimedia information processing, 3-D
graphical processing and permutation instructions for security operations. This book
intends to discuss many of the above mentioned hardware–software codesign issues
that we encountered in designing a PLX-based embedded multimedia SoC platform.

The book contents are organized as follows. Chapter 2 introduces traditional
platform-based hardware–software co-design and some multimedia algorithms that
require ASIP. Chapter 3 introduces some system level design techniques that we
used to design our SIMD PLX core. Chapter 4 introduces ASIP processor design
techniques and parallelization methodologies, such as DLP, ILP and TLP. Chapter 5
introduces parallel compiler techniques specifically tailored for PLX. Chapter 6
describes the design of PLX processor and its virtual platform TLM modeling.
Chapter 7 introduces real-time operating system OS development experience for
PLX. Finally, a conclusion is drawn in Chapter 8.



Chapter 2
Design Consideration

In this chapter, we briefly describe the basic concepts of a platform-based design,
system-level modeling techniques used in designing a platform, and some multime-
dia algorithms that require specific instruction set design in a processor core, such as
PLX, a native single-instruction multiple-data (SIMD) core developed by Professor
Ruby Lee at Princeton University [1].

2.1 Platform-Based Design

A platform is a library of components that can be assembled to generate a design.
This library not only contains computational blocks that carry out the appropriate
computation but also communication components that are used to interconnect the
functional components.

Platform-based design changes design flow from vertically-oriented into
horizontally-oriented. For information protection, a product is fully designed and
manufactured in an early industrial company. The increase of electronic design
complexity and the advances in technologies force designers to focus on their core
competence. The pressure for reducing time-to-market of electronics products in the
presence of exponentially increasing complexity has forced designers to adopt meth-
ods that favor component reuse. Furthermore, each organization that contributes a
component to the final product naturally strives for a position that allows it to make
continuous adjustments and accommodate last-minute engineering changes.

Each design should satisfy constraints on characteristics such as performance,
cost, power consumption, and weight. It brings a choice for designer to implement a
function as a hardware component or as a software code running on a programmable
component.

Platform-based design is a meet-in-the-middle process, where successive refine-
ments of specifications meet with abstractions of potential implementations that
are captured in the models of the elements of the platform. Figure 2.1 shows this
concept [3]. The comprehensive model includes the views of platforms from the
application and the implementation architecture perspectives that meet at the vertex
of the two cones.

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
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Hardware and software reuse is the key concept on platform-based design.
Reusing a reference platform is the only solution to time-to-market. Table 2.1 lists
some popular platforms. There are hundreds of embedded-system SoC platforms
on market for different applications. Prototyping is important to verify a newly
designed hardware in a platform. Some SoC platforms contains configurable field
programmable gate array (FPGA) which allow users to add their hardware, such as
Philip’s RSP (Rapid System Prototyping) and Altera’s Excalibur.

A platform should contain an architecture model and its associated design
methodology. The architecture model is a predefined architecture which consists of
various families of components such as processor, memory, function blocks, and
system bus/communications. The design methodology is constructed as an inte-
grated design flow with multiple levels at which component modeling, simulation
environment, and in-circuit emulator (ICE) are provided.

A platform is mostly provided by a processor vendor. Today the most widely used
platform for SoC is based on the ARM processor. Figure 2.2 shows an example.

The above platform contains a DSP to handle communication and image pro-
cessing, and a CPU (an ARM core) to handle peripheral function blocks and
general-purpose processing. The two processors share memory by a system bus
(ASB). Many of the following function blocks need these two processors to handle:
the Real-Time Clock (RTC) for scheduling; LCD/VGA Controllers for display;
Keyboard Controller (K/B), Digitizer and Joystick Controllers for human interface
input; Voice Codec for speaker and microphone; Baseband Codec connected to a ra-
dio front-end (RF); SPI interface for storage cards, Smartcard Controller for authen-
tication; USB/UART to communicate with other system; and a hardware accelerator
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Table 2.1 Popular platforms

Market Target application Platform name Manufacturer

Consumer Digital Camera Raptor II Conexant
PDA PXA240 Intel
PDA DragonBall Motorola
DVD R/W Dimension8600 LSI
Set Top Box Omega Sti5512 ST
Digital TV TL850 Teralogic
Digital Audio TMS320Daxx TI
MP3 Maverick Cirrus
DAB TMS320DRE200 TI
Home Plug Piranha Cogency
USB device PSoC Cypress
General CSoC Triscend
General Excalibur Altera
General SoC-Raptor Wipro
General PalmPak Palmchip
General RSP Philips
General PSA Improv

Wireless CDMA MSM3000 Qualcomm
GSM 2.5G SGOLD Infineon
GSM 2.5G OMAP710 TI
3G I300 Motorola
BlackBerry SoftFone+ ADI
802.11b/Bluetooth TrueRadio Mobilian
802.11a Tondelayo Systemonic
802.11a AP AR5001AP Atheros
Bluetooth Bluecore CSR
GPS Sifstar Sirf

RF KeyboardRemotelSIM PC
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Fig. 2.2 ARM-based wireless communication platform
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to assist image processing. All these blocks support real-time functions. All above
function blocks on the system are connected by a bus hierarchy. Each function block
that is using a bus will affect the performance of other function blocks on the bus.
Before access to the bus, each function block needs to get authentication from the
bus arbiter. Too many function blocks connected on a bus will make it unable to
work while most time are spent on authentication.

On a desktop PC, possible peripheral to integrate is unknown, thus Plug-and-
Play is required. System bus should be designed to satisfy the highest possible
bandwidth, thus it is over-designed for normal work-load. In embedded systems,
a Mix-and-Match methodology is used instead. At first a reference platform is se-
lected, which is mostly provided by the processor vendor. Then function blocks
are inserted or removed, and workloads are rescheduled by system level analysis.
If bandwidth constraint is not satisfied, modify either a function block or the bus
architecture and try again. For example, if the new function occupies too many
bandwidths to access a shared memory, adding a dedicated memory and a local
bus as shown in Fig. 2.3 can solve this problem.

Fig. 2.3 Mix-and-match
methodology

(a) Reference (b) Mix (c) Match

2.1.1 OMAP

OMAP (Open Multimedia Application Platform) is a series of dual-core processor
developed by TI for multimedia and wireless applications. OMAP1510 is built of
an ARM925 processor core, a TI TMS320C55x DSP core, a 192 KB share-memory
interface, and some peripherals for multimedia applications [4]. The ARM925 core
containing a 16 KB instruction cache and an 8 KB data cache can work up to
175 MHz. The TMS320C55 DSP core containing a 16 KB instruction cache and
an 8 KB data cache can work up to 200 MHz. It embeds 64 KB dual-port RAM and
96 KB single-port RAM, and a graphic accelerator with two multiply-accumulator
(MAC) units.

Running with the same clock frequency, power consumption of a DSP core
is higher than an ARM core. The DSP core is efficient to compute data-oriented
codes, and the ARM core is better on control-oriented codes. A typical 1024-point
FFT computation run on an ARM needs 1 mega cycles, but only 40 K cycles on
a DSP. Both the ARM and DSP software codes can be developed under a single
Code Composer Studio (CCS) environment, which helps to reduce the dual-core
programming complexity. TI offer abundant of Chip Support Library application
interface (CSLAPI) to low level programming effort.

The key technique used in the OMAP software architecture as shown in Fig. 2.4
is the DSP/BIOS Bridge. Both ARM and DSP are working under a single operating
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Fig. 2.4 OMAP software architecture

system (OS). Programmer can treat DSP as a device attached under Linux OS direc-
tory /dev. A high level multimedia API offers a unified interface to designer. High
computation operation is dispatched to DSP/BIOS Bridge by DSP API. DSP/BIOS
Bridge handles the scheduling and inter-core communication.

ARM and DSP use shared-memory message-passing architecture for communi-
cation. Message is packed as a mailbox, including command, data and flag. Both
cores can create more than one task, each of which will create a mailbox channel
under the /dev directory for communication. When a message is ready in shared-
memory, an interrupt will wake up the device driver to inform a corresponding task
to receive the message.

Following shows the implementation of an MP3 decoder as an example. MP3
(MPEG-1 layer-3) is an audio coding standard. MP3 stream is composed of many
frames. A single channel frame contains 2 granules and each granule has 576 16-bit
samples. The 576 samples are down-sampled into 32 sub-bands, where each sub-
band contains 18 samples. The down-sampling is a 5-iteration process. And in each
iteration, the samples are partitioned into two sub-bands respectively by low-pass
and high-pass filters. The 32 sub-bands are transformed into frequency domain by
Modified Discrete Cosine Transform (MDCT), and quantized by a psychoacoustic
model. Finally Huffman Entropy Encoding is applied to reduce bit rate.

Before implementing the decoder on OMAP, we have to analyze which parts
of MP3 decoding take most execution time and have to implement on a DSP. A
profiling tool, GNU gprof, is used to analyze the decoding C code on a desktop
PC and Fig. 2.5 shows a partial profiling report. By the profiling report, we know
that function IMDCT32 is the bottleneck.

We now compare two implementations on the OMAP platform. The first im-
plementation runs the whole C code by ARM925. The second uses DSP library to
implement IMDCT32 function. Figure 2.6 shows their resource utilization report.
The upper part gives the first implementation report, showing that its CPU utiliza-
tion rate is 40.0%. The lower part for the second implementation shows that its
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Flat profile: 

Each sample counts as 0.01 seconds. 
  %   cumulative   self              self     total 
 time   seconds   seconds    calls  us/call  us/call  name 
 38.64      0.34     0.34    14554    23.36    23.36  IMDCT32 
 14.77      0.47     0.13     2266    57.37    57.37  playingwiththread 
  6.82      0.53     0.06                             __libc_write 
  5.68      0.58     0.05    13104     3.82     6.11  layer3fixtostereo 
3.41 0.61 0.03 14554 2.06 2.06 extractlayer3

Fig. 2.5 Profiling report

1:24am  up  1:24,  1 user,  load average: 0.92, 1.67, 1.48 
17 processes: 15 sleeping, 2 running, 0 zombie, 0 stopped 
CPU states: 40.0% user,  3.7% system,  0.0% nice, 56.1% idle 
Mem:   30672K av,  11856K used,  18816K free,      0K shrd,      0K buff 
Swap:      0K av,      0K used,      0K free,                 8680K cached 

  1:30am  up  1:30,  1 user,  load average: 2.60, 1.90, 1.46 
17 processes: 13 sleeping, 4 running, 0 zombie, 0 stopped 
CPU states: 20.1% user, 79.8% system,  0.0% nice,  0.0% idle 
Mem:   30672K av,  11784K used,  18888K free,      0K shrd,      0K buff 
Swap:      0K av,      0K used,      0K free,                 8680K cached 

Fig. 2.6 Resource utilization

CPU utilization rate is 20.1%. As shown, using a DSP can share CPU loading, thus
improve performance for MP3 player application.

2.2 System Modeling

On platform-based design, the selection of platform is based on designer’s expe-
rience. It is a fast way to implement a system, but does not guarantee that it is
optimized.

At system level, we need to consider more about environment and user friendli-
ness. Does the product need to work at the Sahara Desert or the North Pole? What
human interface does a user prefer? If the bit error rate will become too high at
some environment, should we add error correction policy? All these questions and
solutions should be decided at system level before entering detailed design.

At system level, we need a model to describe function behavior of a system. This
level of modeling targets for a unified representation for hardware and software,
which contains the following features:

(1) It can describe high level system architecture.
(2) It is independent to the implementation of hardware and software.
(3) It supports refinement for hardware/software partitioning.
(4) It enables architecture exploration for hardware/software cross-fertilization.
(5) It supports co-simulation environment for communication. And
(6) It supports functional co-verification.
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Using a unified representation, we can identify system bottleneck, evaluate per-
formance, and calculate the cost of a hardware/software partitioning at early design
stage.

For different purposes, many modeling methods have been introduced. They will
be briefly introduced in the following subsections.

2.2.1 State-Oriented Models

The system temporal behavior of a machine can be represented as state transfer in
a finite state machine. The state number of a real machine is finite. Two models are
used to represent a finite state machine:

(1) Mealy machine: The output is determined by current state and input.
(2) Moore machine: The output is determined only by the state.

In circuit view, the input signals of a Moore machine are all buffered in internal
state registers, and mealy machine allows input signals to pass to output by combi-
nation of states.

Finite state machine behavior is represented by state transfer chart. Figure 2.7
shows a simple example of Mealy machine model. Each node represents a state.
Thus a 3-state machine requires 2 or 3 registers to implement the states, depending
on timing and cost constraints. The arc between two states represents a state transfer,
which is derived by an input signal which is attached on the arc. The output signal
is also attached on the arc, which can be a datapath computation.

The state transfer chart is not suitable to represent hierarchy and concurrency.
When two state machines are working concurrently, their state registers should be
combined together, and the state number will increase exponentially. The size of the
state transfer chart becomes soon explosive for a complex system.

Petri-net is a graphical and mathematical tool to provide a uniform environment
for modeling, formal analysis, and design of discrete event systems [5]. It was
named after Carl A. Petri who created the concept in 1962. Petri-net offers the ability
to represent concurrency. Petri-net can be used to model properties, such as process
synchronization, asynchronous events, concurrent operations, and conflicts or re-
source sharing. Petri-net is identified as a particular directed graph by three types
of objects: place, transition and directed arc. Place represented as a circle is used
for an operation. Transition is represented as a bar. Arc demonstrates state transfer

Fig. 2.7 Mealy finite state
machine

S1

S2 S3 

start 

r1/d1 

r2/d2 

r3/d3 

Input: start, r1, r2, r3
Output: d1: d = A + B

d2: d = A – B
d3: d = 0
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Fig. 2.8 Petri-nets of two
concurrent processes S1

S2 S3 

X

Y

Z 

< ≥

S4

S5

S6 do {
S1: if (X<Y)  
S2:    wait(Z=5); 
     else 
S3:    wait(Z=0); 
S4:} while(Y<100);
S5:end

S6: Z=0;
while(1) { 

S7:  Z=S2?Z++: 
            S3?Z--:Z; 
S8:  Y=Y+1; 
      } 

S7 

S8

and data node association. Data nodes, represented as rectangles and associated on
transition, are used for the event trigger point and data dependency, which combine
the control graph and data graph together. Decision branch modeled in Petri-net is
a single place input to multiple competing transitions. Figure 2.8 shows a Petri-net
example. It contains two concurrent processes, one has 5 states and another has 3
states. The two processes share variable Y and variable Z, they will affect each other.

2.2.2 Activity-Oriented Models

The activity-oriented model focuses on representing what tasks to do and their de-
pendences, but it lacks of temporal information. Flow chart is a widely-used activity-
oriented model. It is useful on control-oriented representation. Figure 2.9 shows an
example.

Control and Data Flow Graph (CDFG) [6] is a widely-used intermediate rep-
resentation in compiler. CDFG is the model for capturing design descriptions for
compiler and high-level synthesis which work well for traditional scheduling and
binding techniques.

CDFG retains high level information about code structures and semantics in
terms of control flow graph (CFG) and data flow graph (DFG), which are often
used in compilers. Control flow graphs (CFG) are used to handle code sequences.
Each node in a CFG represents a basic block. Data flow graphs (DFG) maintain the
data dependencies between operations. Control flow graph is transformed from the
control structures in a code, such as if-else and for-loop control statements,
for describing the code statement execution orders. Because of the sequential ingre-
dient of most software languages, like C and C++, building a control flow graph
from a sequential code is simply a direct mapping. Data flow graph is basically a

Fig. 2.9 Flow chart

START Z = 0 
A = 10

Z < 5 Print(A)

A = A + Z

Z = Z + 1 END 
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Fig. 2.10 CDFG S1: t=a+b; 
S2: u=a-b; 
S3: if(a<b) 
S4: v=t+c; 
else
{
S5: w=u+c; 
S6: v=w-d; 
}
S7: x=v+e; 
S8: y=f-e; 

1

2

3

5
6

7

8

4

data dependence graph which nodes are operations and edges are data dependence
relations. Figure 2.10(a) shows a code segment and Fig. 2.10(b) illustrates its control
and data flow graphs. The solid rectangles represent basic blocks. A dashed arrow
between basic blocks denotes a control flow and a solid arrow denote a data flow
between operations.

Hierarchical Task Graph (HTG) [7] is based on CDFG, maintaining the hier-
archical structuring of a code such as if-then-else blocks, for and while
loops. HTG extends the range of optimizations, especially beneficial to source-
to-source optimization and other coarse-grain transformations. HTG also enables
higher order manipulation, e.g., coarse-grain code restructuring and operation mov-
ing across large pieces of code. A design HTG is constructed by creating a com-
pound node corresponding to each control construct in the design. Figure 2.11 shows
the nested if-else statements in terms of nested HTG forms.

The following paragraphs list the formal definition of an HTG.
A hierarchical task graph HTG is a hierarchy of directed acyclic graphs GHTG

(VHTG, EHTG), where the vertices VHTG = {htgi |i = 1, 2, . . . , nhtgs} can be one of
the following three types.

(1) Single nodes represent nodes that have no sub-nodes and are used to encapsulate
basic blocks. Basic blocks are a sequential aggregation of operations that have
no control flow (branches) between them.

(2) Compound nodes are recursively defined as HTG, that is, they contain other
HTG nodes. They are used to represent structures like if-then-else blocks,
switch-case blocks or a series of HTG.

(3) Loop nodes are used to represent the types of loops (for, while-do,
do-while). Loop nodes consist of a loop head and a loop tail that are single
nodes and a loop body that is a compound node.

The edge set EHTG in GHTG represents the flow of control between HTG nodes.
An edge (htgi , htg j ) in EHTG, where htgi , htg j ∈ VHTG, signifies that htg j will be
executed after htgi has finished execution. Each node htgi in VHTG has two distin-
guished nodes, htgStart(i) and htgStop(i), belonging to VHTG such that there exists
a path from htgStart(i) to every node in htgi and a path from every node in htgi to
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Fig. 2.11 Compound if-else
statements in HTG form
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htgStop(i). The htgStart and htgStop nodes belonged to an HTG compound or loop
node are always single nodes.

Actually, when the dotted rectangles in Fig. 2.11 are removed, the HTG diagram
becomes a CDFG diagram. The basic blocks are shown by shaded boxes within the
HTG nodes (BB0 to BB10) and operations are denoted by circular nodes with an
operator symbol inside. Dashed lines denote control flow between HTG nodes. Solid
lines denote data flow between operations. A fork in the control flow is denoted by
a triangle (�) and a merge by an inverted triangle (∇).

Program Dependence Graph (PDG) [8] represents a code in its original design
concepts. PDG is another variant of the CDFG which relaxes the sequential flow
restrictions. Figure 2.12 demonstrates the characteristics of PDG.

The dotted lines denote the control flow dependences, e.g., the ENTRY node
must go to node (2), then node (3). The solid lines denote the data dependences,
e.g., node (4) depends on node (1), and node (9) depends on nodes (1) and (4).
There are two places worth notice in Fig. 2.12. Since the statements in lines (8) and
(9) are counterparts of nodes (8) and (9), it is obvious to see that the entry nodes (3)
and (4) respectively have a data dependence relation with nodes (8) and (9) because
of the solid lines. The second place is the introduction of relation nodes under node
(2) with two edges labeled T (True) and F (False), respectively. Relation nodes are
used when a new basic block is encountered, e.g., the nodes (3) and (4) create a
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Fig. 2.12 An example of
PDG

A =
(3)

B =
(1)

= B
(9)

= A
(8)

A =
(6)

P 
(2)

B =
(4)

ENTRY

true

false

new basic block. PDGs relieve the ordering property of CDFGs. There is no need to
add ordering information in CDFGs. However, PDGs still need various compilation
techniques to detect true data dependences. For instance, the data dependence edge
between nodes (1) and (4) is an output data dependence, where nodes (1) and (4)
write data to the same memory location, B.

System Dependence Graph (SDG) [9] is an extension of PDG. It is designed to
incorporate collections of procedures (with procedure calls) rather than just mono-
lithic program codes. Figure 2.13 depicts an SDG example. The straight medium-
bold edges represent the control dependences, e.g., the edges between the “ENTER
Main” node and its three child nodes. The light solid arcs represent flow dependen-
cies of the source code, e.g., the arcs from node “i:=1” to node “while i<11”.
The heavy-bold arcs represent transitive inter-procedural flow dependencies (cor-
responding to subordinate characteristics graph edges), e.g., the arcs from node
“�A(x):= sum” to node “sum := �′

A(x)”. Dashed arrows represent call edges,
linkage-entry edges, and linkage-exit edges.

2.3 Video Coding

H.264 advanced video coding (AVC) [10] is one of the latest international video
coding standards. This standard is developed by the ITU-T Video Coding Experts
Group and the ISO/IEC Moving Picture Experts Group. It can achieve higher coding
efficiency than previous standards. The advantages of this new video coding stan-
dard H.264/AVC are its higher quality, less storage, less bandwidth, more robust
transmission, easier random access, more kinds of manipulations and intelligent
processing.

H.264/AVC is developed for the next generation application. It aims at not only
video content compression but also video conferences, television broadcasting, and
internet streaming. It is designed to replace all the past video standards in almost
all kinds of applications. So, it defines different profiles to meet the various require-
ments in different applications. Baseline Profile is used in real-time communication
applications and conversational services which are important for low latency and
low bit stream size requirements. Main Profile is designed for the highest coding-
efficient storage to use in entertainment video applications, such as satellite broad-
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Enter Main

sum:=0 i:=1 while i<11

call A

δA(x):=sum δA(y):=i sum:=δíA(x) i:=δ’A(y)

Enter A

x:=δA(x) y:=δA(y) call Add

δAdd(a):=x δAdd(b):=y

x:=δ’
Add(a)  

call Inc δ’A(x):=x δ’A(y):=y

δInc(z):=y y:=δ’
Inc(z)

Enter Inc

z:=δInc(z) call Add δ’
Inc(z):=z  

δAdd(a):=z z:=δ’
Add(a)

Enter Add

a:=δAdd(a) a:=a+b δ’Add(a):=ab:=δAdd(b) δ’Add(b):=b

δAdd(b):=1

y:=δ’
Add(b)  

program Main 
 sum:=0; 
 i:=1; 
 while(i<11) do 
 call A(sum,i); 
 enddo 
end

Procedure
A(x,y)
 call Add(x,y); 
 call Inc(y); 
return;

procedure
Add(a,b)
  a:=a+b 
return;

procedure
Inc(z)
 call Add(z,1);
return;

Fig. 2.13 An example of SDG
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casting, cable modem, and DVD players for standard and high definition video, etc.
Extended Profile is defined for supporting services that operate at 50–1500 Kbps
and have two seconds or more latency.

A picture in an H.264 video sequence could be partitioned into slices. The mini-
mum number of slices in a picture is one. Slice is a collection of macroblocks which
are processed in the order of a raster scan. The luminance and chrominance format
defined in H.264 is YUV 4:2:2. So, a macroblock has one 16×16 luma (Y) sample
and two 8×8 chroma (Cb, Cr) samples. A macroblock is the basic processing unit
in H.264 coding process.

The video sequences in H.264 comprise 4 types of frames: I (Intra), P (Predic-
tion), B (Bi-directional), and S (Switched) frames. I frame is a basic component
in all H.264 profiles that uses intra coding to remove spatial redundancy. P frame
is also a basic frame in all profiles, but it uses inter prediction method to predict
its values from previous encoded P and I frames to remove temporal redundancy.
B frame is used in Main profile and Extended profile. It uses both forward and
backward motion compensations as inter prediction to achieve higher compression
rate than other frames. S frame is a new frame type introduced by H.264 only and
used in an Extended profile. This new frame is used for efficient switching between
two different bitstreams.

2.3.1 H.264 Coding Process

A typical H.264 coding process is shown in Fig. 2.14. When encoding a picture,
we first split the picture into 16×16 macroblocks (MBs). Each of the 16×16 MBs
is a basic process unit in the encoding scheme. Once a MB is encoded, the encoder
will predict what the MB should be. The MB data is divided by a prediction value.
Then the residual data is processed by transform (T) and quantization (Q). After
quantization, the data can be encoded by an entropy encoder to compress the data
size and sent to the decoder. To be consistent with the decoder, prediction is done by
referring to a reconstructed picture, not the original picture. The reconstruction is
built from the quantization data by inverse quantization and inverse transformation,
and adding the prediction value to recover the picture. Based on this reconstructed
picture, the encoder can further do prediction for the next MB from performing intra
prediction for the MB in the same frame, or motion estimation from the past decoded
pictures. Thus the encoding process can be completed in such a loop process.

The decoding process is similar to the reconstruction process, but adding an en-
tropy decoding stage before inverse quantization.

2.3.2 Motion Estimation

Motion Estimation finds the best matching candidate block between a current mac-
roblock and its reference frames in a search window. It can efficiently reduce the
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Fig. 2.14 H.264 coding process

temporal redundancies. With motion estimation, we can promote the bit rate effec-
tively by transferring the motion vectors of a MB. Thus, motion estimation is one
of the most important functions in many video coding standards. In H.264/AVC,
the standard supports multiple reference frames in order to find the objects which
appear suddenly. Besides, it also supports variable block sizes coding in matching
blocks. Although these two functions indeed increase the coding gain, both of them
will greatly increase the computational complexity with the comparison of previ-
ous standards which only support one or two reference frames and only one fixed
MB size.

The selected frames for prediction are indicated by a reference index which is
associated with the frame index in the buffer. The process of encoding which is
based on the values predicted to form the best matching candidate block is called
motion compensation. When the best matching candidate block is found, it will be
used to form a reference frame to be pasted on the current frame. Then, a vector
called motion vector can be drawn from the reference frame.

If an encoder wants to transfer a block data in Frame t, there are two ways to get
it. (1) Let the encoder transfer all pixels of this block to decoder. (2) Since there is
not much difference between Frame t and Frame t-1, and the data of Frame t-1 had
already reconstructed by a decoder and is stored in the buffer, we can take Frame
t-1 as a reference and exploit the data of Frame t-1 in the decoder buffer. Thus, we
just need some information, the motion vector, to construct the Frame t.

There are many criteria used to judge the best matching block. One of the most
widely used criteria is sum of absolute differences (SAD). The function of SAD is
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shown as:

SAD(m, n) =
N−1∑

i=0

N−1∑

j=0

|C(i, j) − R(i + m, j + n)|,

where (m, n) is the distance of the candidate block corresponding to coding block C
at position (i, j), and N is the macroblock size. H.264/AVC defines the maximum of
(m, n) as search range for different levels. The motion vector MV is defined as:

MV = arg min
(m,n) ∈ search range

SAD(m, n).

H.264/AVC supports seven block size modes (16×16, 16×8, 8×16, 8×8, 8×4,
4×8, and 4×4). And H.264/AVC allows 10 reference frames in each single direction
(forward/backward). This property is different from the prior standard like MEPG-2,
which used only one previous picture to compensate.

A 16×16 macroblock is a basic process unit in a coding loop. In the inter predic-
tion, we will test if a macroblock is suitable to be predicted in 16×16, 16×8, 8×16,
or 8×8 size. If the most suitable size is 8×8, it can be further segmented into 8×4,
4×8, or 4×4 blocks for motion estimation. By the variable block sizes, we must
compute up to 41 modes of motion vectors, as shown in Fig. 2.15.

Most prior standards allow half-sample motion vector accuracy at most. H.264
improves on this by adding quarter-sample motion vector accuracy. With this pre-
cise accuracy, the quality will be improved effectively. After integer pixel motion
estimation is done. The neighbor pixels will be used to interpolate the half pixels
and quarter pixels values, and then do the same ME operations to find out the best
matching motion vector.

The motion vector mentioned above is defined for luma motion vector. And the
motion vector of the chroma parts can be derived from the luma one. Since the
size of a luma vector resolution is twice as large as the chroma vector, the chroma
vector can be obtained by dividing the corresponding luma vector by two. Since
the accuracy of the luma motion vectors is 1/4 sample pixel, and the chroma is half
resolution of luma, thus the chroma motion vector accuracy is 1/8 sample pixel.
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Fig. 2.15 Variable block size and segmented macroblock
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To get best MV, we should evaluate all distances (m, n) and 41 modes. The com-
putation effort is very high. Many speedup implementations for motion estimation
had been introduced.

In hardware implementation, the goal is to compute 41 motion vectors concur-
rently. Figure 2.16 is an 1-D implementation example [11]. Another 2-D systolic
array implementation can be found in [12, 13]. In the 1-D architecture, the current
data are fed to each processing element (PE) by 16 registers, and the reference data 0
and data 1 are separately fed to each PE. Thus, the SAD value of 16 4×4 blocks can
be computed concurrently by the 16 PEs. The reference data which motion vector
(0,0) needs are not the same with the motion vector (15,0). Thus, the reference data
input to each PE needs to be well scheduled. It is implemented using two SRAMs
with two broadcasting buses.

Figure 2.17 shows the schedule of data input for each PE, where C represents
the current data, R represents the reference data, and vectors (0, 0) to (31, 15) rep-
resent their corresponding positions. For every PE, C(0, 0) to C(15, 15) are needed
to compare the difference of every pixel in a 16×16 current macroblock. On the
contrast, the reference data of different motion vectors are not the same. For PE00,
the required reference data are R(0, 0) to R(15, 15) to calculate motion vector (0, 0).
For PE01, the required reference data are R(1, 0) to R(16, 15) to calculate motion
vector (1, 0). We can see that many of the required reference data are the same
when motion vectors (0, 0) and (1, 0) are calculated, such that we can first feed
R(0, 0) to R(15, 0) in Ref data 0 at the first 16 clocks. When R(0, 1) in Ref data 0 is
required by PE00 at the 17th clock, R(16, 0) is fed to Ref data 1 which is required
by other PEs at the same time. In such schedule, we can compute 16 motion vectors
concurrently. Every PE completely receives data in successive cycles. If the search
range is [−8,+7], we can set the PE00 to compute (−8,−8) to (−8,+7), PE01 to

D D D
D

+

+

+

DFF00~07

DFF08~13

PE 00 PE 01 PE 15

Select Drive Mux

Compare DFF00~12

SRAM

Current
data

Ref data Current data

Fig. 2.16 1-D motion estimation architecture
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Fig. 2.17 Schedule of data input for each PE

compute (−7,−8) to (−7,+7), PE02 to compute (−6,−8) to (−6,+7), and so on,
and finally PE15 to compute (+7,−8) to (+7,+7). The motion vectors, which are
computed by the same PE, are just different in Vy but the same in Vx. After the
SAD of a specific motion vector is computed individually by each PE, the outputs
of PEs should be compared for selecting the minimum one as the result of motion
estimation. In this architecture, the comparison is implemented by 13 DFFs. The
SAD values of larger block size can be composed of the 16 4×4 blocks.

In software implementation, the purpose is to reduce search point. That will get
a sub-optimal solution. It is a trade-off between computation time and compression
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rate. Many algorithms had been introduced, including three-step search, diamond
search, modified spiral search, etc.

Figure 2.18 shows the concept of a three-step search. For a search range of
±6, the first step searches nine (m, n) points, for m, n = {0, 4,−4}, then selects
the point (m1, n1) which SAD is minimum. The second step searches the other
nine (m1 + a, n1 + b) points, for a, b = {0, 2,−2} and selects the point (m2, n2)
which SAD is minimum. The third step searches the nine (m2 + c, n2 + d) points,
for c, d = {0, 1,−1}, and the point (m3, n3) which SAD is minimum will be
the solution. Compared to the total 169 points, 85% of the computation time is
saved.

Fig. 2.18 Three-step search
First step block

Second step block

Third step block

Min SAD block

2.3.3 Intra Prediction

Intra prediction is used to reduce spatial redundancies. H.264 intra coding uses
values of neighbor blocks in a current picture frame to encode a coding block. It is
the major reason that makes H.264 intra coding have the highest coding efficiency
than any other existing video coding standards. There are two intra prediction types
for luminance samples, INTRA 4×4 and INTRA 16×16, and one intra prediction
type defined for chrominance samples, INTRA CHROMA.

In the INTRA 4×4 prediction type, nine prediction modes are defined. One of
them is the DC mode representing the mean of neighboring pixels. Others describe
the eight possible prediction directions. Each 4×4 block of a luminance sample in a
MB can choose one of the nine modes. In Fig. 2.19, the luminance samples labeled
as a to p in the prediction block are calculated based on the neighboring samples
labeled as A to L and Q. The neighboring samples come from previously coded
blocks. And they will be partitioned into four subgroups. Upper-side neighboring
samples include A, B, C and D. Left-side samples include I, J, K and L. Upper-left
side has only a Q sample. Upper-right side samples include E, F, G and H. If some
of these neighboring samples are not available, the prediction mode using these
samples will be skipped.

An illustration of nine prediction modes in INTRA 4×4 is presented in Fig. 2.20.
Mode 0 is predicted from upper neighboring samples. Mode 1 is predicted from left
boundary samples. Modes 3 and 7 will be calculated when the upper and upper-right
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Fig. 2.19 INTRA 4×4
prediction neighbors A B C D
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neighboring samples are available. Modes 4, 5 and 6 are interpolated from the upper,
upper-left, and left neighboring samples. Mode 8 is a candidate of INTRA 4×4 pre-
diction mode when the left-side neighboring samples are available. DC prediction
mode takes the average value of the available neighboring samples on the upper and
left sides. If both the upper and left sides neighboring samples are not available, DC
prediction will be given a prediction value of 128.

An illustration of four prediction modes in INTRA 16×16 is presented in
Fig. 2.21. Mode 0 in INTRA 16×16 is used for vertical prediction. Mode 1 is for

Mode 0: Vertical

0 1

43 5

6 7 8

Mode 1: Horizontal Mode 2: DC

Mode 3: Diagonal Down Left Mode 4: Diagonal Down Right Mode 5: Vertical Right

Mode 6: Horizontal Down Mode 7: Vertical Left Mode 6: Horizontal Up

  

Fig. 2.20 INTRA 4×4 prediction modes
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Mode 0 : Vertical Mode 1 : Horizontal

Mode 2 : DC Mode 3 : Plane

Fig. 2.21 INTRA 16×16 prediction modes

horizontal prediction. Mode 2 is for DC prediction. And Mode 3 predicts by the
average value of H and V neighboring samples.

The two chrominance components, Cb and Cr, use the same prediction mode.
The INTRA CHROMA prediction type is like INTRA 16×16, but with a block
size of 8×8.

2.3.4 Transform and Quantization

In H.264, transform and quantization operations are designed for low hardware
implementation cost. Shift, addition and subtraction are major operations adopted
in H.264. And multiplication operations only appear in quantization and de-quanti-
zation stages. The division operation with high hardware implementation cost is
avoided in this standard.

H.264 adopts a DCT-like integer transform instead of standards DCT transform
commonly used in previously approved video coding standards. The proposed trans-
form has an inverse transform fully defined in integer arithmetic and do not have
data drift problem caused by floating-point arithmetic and rounding process. The
formula of integer forward transform can be written as following equation where ⊗
denotes element-by-element multiplication.
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This equation could be divided into two parts. The first part is a butterfly-based
matrix multiplication in which matrix C contains coefficients of ±1 and ±2 only. A
multiplication by ±2 can be implemented as a left shift and an addition/subtraction.
So, the matrix multiplication does not really need a multiplier. The second part
operation is to scale the result of the first part operation. There are only three scal-
ing factors in E forw which can be absorbed by quantization operation. So the final
definition of forward transform in H.264 is only the first part of this equation.

The inverse transform is described in the following equation. The scaling matrix
Einv can also be merged into the de-quantization operation. The final proposed in-
verse transform is X ′ = Ci Y ′CT

i and the operations in inverse transform need only
right shift and addition/subtraction.
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Table 2.2 Quantization table

QP 0 1 2 3 4 5 6 7 8
Qstep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625
QP 11 12 18 24 30 36 42 48 51
Qstep 2.25 2.5 5 10 20 40 80 160 224

Quantization operation in H.264 uses scaling quantization step sizes. The quan-
tization step is specified by assigning a quantization parameter, QP. Table 2.2 lists
the relationship between QP and quantization step Qstep.

The quantization step will double when QP is increased by six. The quantization
combines the quantization steps and scaling factors in E forw, it can be divided into
three groups related to the scaling factors in E forw. indexed by position indexes i
and j, and each group has only 6 possible values.

In INTRA 16×16 and INTRA CHROMA prediction types of H.264, a hierarchi-
cal coding scheme has to be adopted. DC coefficients will be further compressed us-
ing a second stage transform. Residual data of coding blocks will be processed by a
DCT-like transform. Then groups DC coefficients of each DCT-like are transformed
into a new block, and the second stage transform and quantization applied on it.
After reconstructing DC coefficients by de-quantization and inverse transformation,
reconstructed DC coefficients and AC coefficients will be combined and input into
an inverse DCT-like transform.

In a region with smooth variation texture, INTRA 16×16 will be taken to achieve
a higher compression ratio. The DC coefficients in a DCT-like transform of residual
data still have a significant correlation between sixteen 4×4 blocks in a MB. H.264
groups the DC coefficients into a 4×4 block, and applies the second stage transform
on it to further improve compression efficiency. A 4×4 Hadamard transform is se-
lected. Since Hadamard transform uses orthogonal matrix, the inverse transform has
the same formula as the forward transform.

2.3.5 De-Blocking Filter

Due to the smallest encoding is a 4×4 block, the decoded macroblock may have
some distortion with neighbor blocks. A deblocking filter is applied to smooth the
edge difference and improve the appearance of the images. Filtering is applied to 8
edges of a luma 16×16 macroblock and 4 edges of a chroma macroblock as shown
in Fig. 2.22.

For the boundary which is filtered, the pixels in both directions which are vertical
to the boundary will be modified. The filtering rule is defined by the quantization
parameter QP, coding mode, and pixel difference across the boundary. With differ-
ent QPs, the thresholds used to adjust are different. According to the coding mode
which is inter or intra, and to the difference across the filtering bound.
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Fig. 2.22 Filtered edges of
16×16 luma and 8×8 chroma
macroblock

2.3.6 Entropy Encoding

H.264 provides two entropy coding modes: Context-based Adaptive Binary Arith-
metic Coding (CABAC) and Context-based Adaptive Variable-Length Coding
(CAVLC). If the coding mode is CABAC, encoder first converts the coefficients
into binary symbols and then performs arithmetic coding to compress the bitstream.
For a 4×4 DCT block, the coefficients are first scanned in zigzag order and ana-
lyzed whether they are Significant or Last. Significant means that the coefficient is
non-zero and Last means if the coefficient is the last non-zero coefficient. Only the
coefficients before the last non-zero coefficients need to be encoded. The non-zero
coefficients are further analyzed for their level and sign. If the level is too high,
the coefficient will coded by Exp-Golomb code. If the coding mode is CAVLC,
the number of coefficients and trailing ones (T1s) are first coded. T1s ranges from
0 to 3. Except T1s, the other coefficients are coded as normal. After coding the
T1s, the sign of T1s are encoded in reverse order. Then it turns to code the normal
coefficients. Finally, the run zeros number and run before are coded in reverse order.

2.4 Image Processing

Cameras have become popular in our lives. Transferring photos by a 3G phone is
our daily work. Gesture recognition is hot in entertainment machines such as the
Wii, and even is more useful for healthcare. For example, using a camera to detect
a coming car or stairs will help elders and the blind walk safely.

The input from a single or multiple cameras to a computer vision system forms
video streams. The system analyzes the video content by separating the foreground
from the background, detecting and tracking the objects, and performing some anal-
ysis. The analysis results make the scenario in interest more clear such that the
operator can easily process it.

Computer vision is a compute-intensive application. A complete computer vision
that can recognize many faces and trace objects needs heavy computation which
requires high performance processor. Only simpler application such as detecting a
moving object is affordable by portable devices. Commonly used computer vision
algorithms are filtering, feature extraction, probability-based tracking, and motion
analysis [14].
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Fig. 2.23 Filters with Gaussian and Semi-Gaussian coefficients

A picture may be corrupted by noise. The “salt and pepper” noise often occurs
when environment is dusty. Wiener filter or Median filter should be applied before
processing a picture image, and the filter selection will depend on the noise type. A
Gaussian filter is a low-pass filter that averages neighbor pixels by using the coef-
ficients of a Gaussian distribution equation as shown in Fig. 2.23(a). The Gaussian
distribution equation is listed as follows, and it requires floating point computation.

G(x, y) = 1

2π�2
e− x2+y2

2�2

A semi-Gaussian smooth filter [15] is typically used for fixed-point applications.
As shown in Fig. 2.23(b), it is the quantized version of a Gaussian filter that needs
shift and multiplication operations only.

Contract stretching filter improves object contract. It applies a non-linear trans-
form on each pixel such that the low luminance pixels become lower and high lumi-
nance pixels become higher. Sharpness filter extracts object border by a high-pass
filter, and adds the filtered image onto the original image to emphasis object border.
The two filters help further analysis easier.

Image features including edges, color regions, textures, and contours. Edge
detection is the fundamental step in computer vision to extract an object from an
image. An abrupt change in a color intensive image occurs at an ideal steep edge,
as shown in Fig. 2.24(a). However, in most of the practical applications, it is not the
case, due to several factors such as the nature of the scene, reflectance, noise, and
blurring. Thus, an edge is thought of having a nonlinear change that could be abrupt
as well as slow in the gray level, as shown in Fig. 2.24(b). Therefore, some pixels
in the image can be classified as edge pixels by measuring their strength. Here, we
assume that the change is measured from the center of pixel P(i) to the center of
pixel P(i − k). The edge height, he, is defined as the absolute difference between
the gray levels of P(i) and P(i − k). The width of an edge We is defined as the
number of pixels through which the change takes place.
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Fig. 2.24 Linear edge and non-linear edge

Absolute Difference Mask (ADM) edge detector is one efficient method to extract
edges from an image [16]. It can extract an image edge and record its direction at
the same time. The mask is shown in Fig. 2.25. The mask is centered at the pixel
of interest, P(i, j), to determine its edge strength. The edge strength of P(i, j) is
measured in four directions, and the largest strength value will be assigned to the
pixel. These four directions are: the Nd negative diagonal direction assigned with
a direction value of 1, the V vertical direction assigned with a direction value of 2,
the Pd positive diagonal direction assigned with a direction value of 3, and the H
horizontal direction assigned with a direction value of 4. Both edge strength and
direction can thus be found in parallel.

Once the edge direction is found at pixel P(i, j), it will be recorded with the
edge strength of that pixel. The edge strength and direction information will be used
in the ADM edge detection and localization processes. The steps to find both the

Fig. 2.25 Absolute difference
mask
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edge strength and the edge direction are shown as follows. The direction of an edge
having the smallest absolute difference is chosen as the edge direction, dire.

(1) Prepare inputs to find the absolute differences for P(i, j):

Vu = Vu(1) + Vu(2), Vl = Vl(1) + Vl(2),

HR = HL (1) + HR(2), HL = HL (1) + HL (2),

Pdu = Pdu(1) + Pdu(2), Pdl = Pdl (1) + Pdl (2),

Ndu = Ndu(1) + Ndu(2), Ndl = Ndl(1) + Ndl (2),

where Vu : Vertical edge upper part, Vl : Vertical edge lower part, HR : Horizontal
edge right part, HL : Horizontal edge left part, Pdu : Positive diagonal edge upper
part, Pdl : Positive diagonal edge lower part, Ndu : Negative diagonal edge upper
part, and Ndl : Negative diagonal edge lower part.

(2) Calculate all absolute differences for P(i, j):

V = |Vu − Vl |, H = |HR − HL |,
Pd = |Pdu − Pdl |, Nd = |Ndu − Ndl |.

(3) Determine edge strength and direction: (Se: Edge Strength, dire: Edge direction):

Se = max{V, H, Pd, Nd}/2,

dire = dir (min{V, H, Pd, Nd}).

Most application needs to locate an object, especially an incoming vehicle. There
are some methods specified to detect incoming vehicles: using symmetry features
captured by single camera [17], using the shadow, entropy, and symmetry features
captured by single camera [18], using evolutionary Gabor filter optimization for
vehicle detection [19], and using rectangular patch and tracking to detect vehicle
[20]. Symmetry is a simple but efficient way, while most interesting objects are
rectangle or with some symmetric. Figure 2.26 is an example. The right picture is

Fig. 2.26 Symmetric feature
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the horizontal edges of left picture. It is easy to see there are two sets of horizontal
parallel lines that represent the two cars.

In order to track an object, knowledge about what the object looks like is needed.
Such knowledge is described by the statistical distribution of the region of interest.
Estimation-Maximization (EM) algorithm is used to train model parameter. Assume
there are M objects which can be modeled as:

y = fm(x) = am,0 + am,1x + am,2x2 + · · · , 1 ≤ m ≤ M

Then we have to determine which pixel belong to which object, and all parame-
ters am,i . The residual error of each pixel k on each object m are computed as:

rm,k = fm(xk) − yk

The “E-step” in the EM algorithm assumes that the parameters are given when we
calculate the probability. Initially all parameters are randomly assigned. The proba-
bility of a point k belonging to an object m over Gaussian probability distribution is
given as:

P(k|m) = pm,k/(p1,k + p2,k + . . . + pM,k), pm,k = exp(−rm,k
2/�n)

The M-step of EM algorithm takes the probability, and re-estimates the parame-
ters using weighted least-squares. That is, the following weighted error function on
the model parameters is minimized:

Em = � P(k|m)rm,k
2

The E-step and M-step are repeated until they converge to a solution.
Object motion is an important feature. The theorem described in Section 2.3.2 is

usable. But it needs a lot of computation. A simpler way is only to compute edges
motion. While the pixel number of edges is much fewer than a picture, it gets good
speed improvement. By edge motion, we can also know about how an object is
rotated and its velocity.

Object distance is detected by stereo estimation. It needs two cameras work as
human eyes. By lens focus length, camera distance and object location difference in
two images, the distance can be calculated.

All the above image processing algorithms need similar calculations as video
processing, such as filtering and transform operations composed of multiplications
and additions.

2.5 Cryptography

Digital Video Broadcasting (DVB) system supports Video-on-Demand. Content
provider only allows an authorized user to watch this video. The DVB common
interface (DVB-CI) standardizes a conditional access module (CAM) for DVB
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receiver to adapt content with kind of cryptography. Equipped with a PCMCIA card
attached on DVB-CI, the receiver can send the video stream into the card, and get a
decrypted stream which will be sent to the MPEG demultiplexer.

Many cryptographic algorithms had been introduced. They can be divided into
two categories: public-key and symmetric-key.

In public-key cryptosystem, the keys to encrypt and decrypt a context are differ-
ent. To use it, a member needs a smartcard as the electronic identifier. The smart card
generates a pair of keys from a random number. A private key is stored in the card,
and a public key released to public domain. Anyone who wishes to send a message
to this member can encrypt the message by the public key. Only the smartcard with
the provided private key can decrypt this message. Public-key cryptographic is based
on a complex arithmetic which needs very intensive computation, thus public-key
is only used on authorization. RSA is one example of the most popular public-key
algorithms.

Symmetric-key cryptosystem uses the same key to encrypt and decrypt message.
Thus it needs a public-key cryptosystem to exchange the key. Data Encryption
Standard (DES) and Advanced Encryption Standard (AES) are two examples of
such standard in use. We will discuss briefly these three standards in the following
subsections.

2.5.1 RSA

RSA algorithm was described in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman at MIT. The derivation of RSA is based on the following number theorems.

1. Prime number Theorem
Gauss conjectured the prime number theorem in 1793. He defined a new function
π (x) to denote that the number of primes does not exceed x , where x is a positive
number. The theorem is described as follows:

The ratio of π (x) to x/ ln(x) approaches one as x grows without bound. That is:

lim
x→∞

π (x)
x

ln x

= 1

The prime number theorem reveals two things for us:

(1) If we randomly write two numbers, the one with more digital numbers is
with the less probability to be a prime.

(2) The number of big prime numbers is more than the number of small prime
numbers.

2. Euler Theorem
If m is a positive integer and a is an integer with (a, m) = 1, then

a�(m) ≡ 1(mod m)
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Here �(m) is an Euler function which is defined to be the number of positive
integers not exceeding m and being relatively prime to m.

3. Fermat’s Little Theorem
If p is prime and a is a positive integer, p is not a factor of a, then

a p−1 ≡ 1(mod p)

Fermat’s Little theorem is a special case of Euler theorem, we can get the mod-
ular exponentiation answer quickly when we apply this theorem.

The RSA cipher algorithm can be divided into the following eight steps.

(1) Select two large prime numbers p and q and compute N = p × q.
(2) Compute �(N ) = (p − 1)(q − 1).
(3) Select an odd integer e such that e and ψ(N ) are coprime.
(4) Compute d, d × e = k ×�(N )+1 ≡ 1(mod �(N )) => d = e−1 × (mod �(N )).
(5) Publish the pair P = (e, N ) as an RSA public key.
(6) Keep secret the pair S = (d, N ) as an RSA secret key.
(7) Encrypt ciphertext C = Me(mod N ), where M = plaintext. And
(8) Decrypt Cd (mod N ) = Me×d (mod N ) = Mk×�(N )+1(mod N ) = M(mod N ).

The RSA cipher system security is based on the difficulty to find the factor for a
large N. Typically N is 1024-bit long today. The choice of p and q should be strong
prime to ensure the security.

To computation of modulo exponential C = Me(mod N ) is to recursively apply
modulo multiplication, as follows:

C=M;
for(i=log2e-1; i>=0; i--) {

C=C×C(mode N);
if (ei) C=C×M(mod N); //ei=bit i of e

}

The modulo multiplication requires large number division which is a high cost
computation. Peter Montgomery introduced an efficient algorithm to reduce the cost
[21]. The algorithm is described as follows to compute the equation Z = A×B×2−k

(mod N):

Z=0;
for(i=0; i<k; i++) {

if (Z+ai×B is even) Z=(Z+ai×B)/2; //ai=bit i of A
else Z=(Z+ai×B+N)/2;

}

Here k is bits of A. While N is odd number, the divided-by-2 in both if and
else paths will not lose bit. Above algorithm computes:
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Z = (a02−k+. . .+ak−12−1)×B+t×N = A×B×2−k+t×N ≡ A×B×2−k(mod N )

Here t is a number derived by even test. Apply Montgomery’s algorithm into
modulo exponential computation, the 2k factor should be adjusted, as shown in the
following:

(A × 2k)∗(B × 2k) × 2−k(mod N ) = A × B × 2k(mod N )

The modulo exponential algorithm can thus be changed as follows:

C=Mk=M×22k ×2−k (mod N);
for(i=log2e-1; i>=0; i--) {

C=C×C×2−k(mode N);
if (ei) C=C×Mk×2−k(mod N); //ei=bit i of e

}
C=C×2−k(mod N)

2.5.2 DES

Data Encryption Standard (DES) is defined by Federal Information Processing Stan-
dard (FIPS) for United States in 1976 [22]. Its algorithm is shown in Fig. 2.27, where
the plaintext is decomposed into many 64-bit blocks and the key size is 56-bit. The
algorithm is composed of many permutation, substitution and exclusive-or operations.
If bit-level permutation uses wire connection, the hardware implementation cost is
low. But since it needs many shift operations in software implementation, without the
support of hardware permutation instructions, its running speed is very slow.

2.5.3 AES

Advanced Encryption Standard (AES) becomes new FIPS standard in 2001 [23].
AES operations are not regular integer, they are computed on 8-bit Galois Field
GF(28). The basis polynomial is f(x) = x8 + x4 + x3 + x + 1, or hex number
f(2) = 0x11B while x = 2. If a 8-bit value v is multiplied with 3 in GF(28), its
behavior is shown as the following code, where � and ⊕ respectively represent
multiplication and addition in GF(28).

w = v�21 = (v&0x80)?((v<<1) mod f(2)) : (v<<1)
= (v&0x80)?((v<<1) xor 0x11B) : (v<<1)

v�3 = v�(21⊕20) = (v�21)⊕(v�20) = w xor v

The hardware implementation of GF(28) operation is only bit test and exclusive-
or without carry propagation, so its delay is low. Its software implementation is
more complex than regular integer, most implementations use lookup table instead
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Fig. 2.27 DES encryption flow

of direct computation. The use of GF(28) provides a simple but good non-linearity
representation that increases the difficulty to attack by algebraic analysis.

Typical AES block size is 128 bits, formed as a 4×4 byte array. Its key size
can be chosen from 128, 192 or 256 bits. The AES algorithm is composed of 5
functions, SubBytes, ShiftRows, MixColumns, AddRoundKey, and
KeyExpansion. The KeyExpansion function expands original key for each
round by a recursive substitution. AddRoundKey function combines the 4×4 array
with substituted round key. The SubBytes function substitutes each byte in the
4×4 array. The substitution is defined as an S-box which is derived from the multi-
plicative inverse over GF(28). The ShiftRows function cyclically shifts the bytes
in each row by a certain offset. The MixColumns function combines the four bytes
of each column using an invertible linear transformation. Each column is treated
as a polynomial over GF(28) and is then multiplied modulo x4 + 1 with a fixed
polynomial c(x) = 3x3 + x2 + x + 2 (Fig. 2.28).

AddRoundKey 

SubBytes 

ShiftRows 

MixColumns 

KeyExpansion

Last
Round 

ciphertext 

plaintext 

Fig. 2.28 AES encryption flow
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2.6 Digital Communication

Software Defined Radio (SDR) offers a programmable and dynamically reconfig-
urable method of reusing hardware to implement the physical layer processing for
multiple communications systems.

A wireless communication system is partitioned into three parts according to
its signal frequency. The Radio Frequency (RF) part processes the carrier wave
frequency. Various licensed/un-licensed bands have been used for different applica-
tions, such as 1.8 GHz for GSM, 2.4 GHz for 802.11b, and so on. The Intermediate
Frequency (IF) part processes on lower frequency. The Baseband part process on
digital data, it connects to IF through ADC/DAC.

The major components of a baseband include modulation/demodulation, equal-
ization, and clock/data recovery. By the increasing DSP ability, many baseband
functions can now be implemented in DSP software. In low-IF system such as
Bluetooth, some IF functions can even be moved to DSP.

By IF selection, a wireless RF front-end receiver can be built using one of the fol-
lowing three architectures: super-heterodyne, low-IF or zero-IF. Figure 2.29 shows
these architectures.

The Low Noise Amplifier (LNA) as shown in Fig. 2.29 boosts the weak channel
above the noise floor of the mixer. The mixer shifts center frequency by multiplying
a sinusoid wave which is generated by a Local Oscillator (LO). In super-heterodyne,
�LO = �RF − �IF. In low-IF, �LO = �RF – (a small value). In zero-IF, �LO = �RF.
A mixer can up-convert (or down-convert) a signal by performing the following
equation:

cos �RF × cos �LO = (cos(�RF + �LO) + cos(�RF − �LO))/2.
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Fig. 2.29 Receiver front-end architectures
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The later item represents the signal we wish, and prior item is a high frequency
signal that should be removed by low-pass filter. The image signal whose frequency
is �RF −2�IF will be shifted to −�IF. It is the same frequency with 180◦ phase shift,
that will affect the IF signal, so it should be filtered out before entering mixer.

Why do we need an intermediate frequency IF? The main reason is the DC
offset and flicker noise of the local oscillator LO. A signal is composed of two
components I and Q which are generated by respectively mixing the LO wave with
two orthogonal cosine and sine waves. The LO DC offset and flicker noise will
make the two mixers in Fig. 2.29(b) mismatch and get imbalanced I and Q values.
The super-heterodyne architecture avoids LO non-ideality effect, but needs better
analog circuit design knowledge. Low-IF is a trade-off solution that selects a low
intermediate frequency which can do IF mixing by digital circuit.

Each standard defines abundant of modulation methods. Modulation can be per-
formed on frequency, amplitude (r), phase (θ ), or their combination. In Fig. 2.29(b),
the demodulation stage shows a QPSK example. Four legal positions are defined at
r = 1 and � = ±45◦ and ±135◦. The demodulation stage should decide the received
I/Q values belong to which position, and adjust receiver parameters to reduce the
phase shift.

The purpose of modulation is to reduce signal frequency but have the bit rate
remain the same. Radio wave propagates on air. It will be absorbed by particles in
air that causes fading effect and non-linear channel frequency response. It may be
reflected by building which causes multi-path effect. Other waves can be received by
same antenna. When transmitter or receiver is moving, Doppler Effect is involved.
Also the spreading power of previous symbol will affect it as the Inter-Symbol-
Interference (ISI) problem. Figure 2.30(a) shows the waveform of a non-modulated
signal; it has large distortion by above effects. Figure 2.30(b) is modulated by ASK,
each symbol carries 2 bits. The signal frequency is reduced to half, so it is better on
channel frequency response. But it has 4 legal voltage positions, the noise margin is
reduced.

Orthogonal Frequency Division Modulation (OFDM) is a way to increase band-
width. It is widely used in 3G and newer communication standards. OFDM uses
many overlapped orthogonal sub-carriers to carry more bits in one symbol. The
waveform is combined as shown in the following equation. IFFT (Inverse Fast
Fourier Transform) is used to generate waveform, and FFT used to demodulate a
received signal.

s(t) = �dk exp(− j�k t), k = 0 to N − 1, �k = 2	k/N T

In addition to ISI, OFDM has to overcome the inter-channel interference (ICI)
problem. Figure 2.31 shows the spectrum of a single signal channel and OFDM
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Fig. 2.31 OFDM spectrum

(a) Single channel (b) OFDM Multiple channel 

multi-channel. To combat ICI, the cyclic prefix is attached on original symbol to
use as the guard interval to maintain orthogonal.

To solve transmission channel non-idealities, baseband needs to perform some
digital Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filtering.

Equalizer inverses the fading effect and channel frequency response. Most com-
munication protocol provides a preamble sequence for receiver to detect channel
characteristic to decide the equalizer parameter before data transmission.

Match filter finds the best sampling point with best signal-to-noise ratio (SNR).
Facing the multi-path effect, a wave will be received multiple times with different
delays. Match filter samples a symbol at multiple phases, and outputs the one with
the best SNR.

Clock Data Recovery (CDR) adjusts Local Oscillator frequency drift by detecting
symbol transition edge. The frequency drift will cause the I/Q rotation in a fixed rate.
CDR can apply a rotate computation on I/Q to opposite direction to compensate the
frequency.

To reduce ISI effect, transmitter reshapes a square impulse to a smooth one by
Nyquest Filter. Two filter coefficients are popular. One is Gaussian distribution co-
efficient, another is raised cosine filter.

When a channel is not guaranteed to be good enough, some received bits may be
in error. Communication protocol requires a method to detect this error and correct
it. When a channel is really bad, re-transmission will never succeed, or it will violate
real-time constraint, then an error correction coding with redundant information is
needed. There are two information coding theories, block coding and convolution
coding.

Block coding processes information in block. Hamming code is the most popular
in use. For an n-bit data, log2 n + 1 bits are appended to the data for error detection
and correction.

Convolution coding distributes information into a continuous sequence.
Figure 2.32 shows a generic form. The input sequence is latched into 6 stages, and

Fig. 2.32 Convolution coding
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summarized by two equations to get 1/2 code rate. Other structures can get 2/3 or
3/4 code rates. Convolution coding has better coding gain than block coding in the
same code rate. The most widely used convolution coding is Viterbi algorithm which
is an elegant method for performing maximum likelihood.

2.7 Multimedia Instruction Set Design

Above sections had discussed most interesting multimedia applications. We summa-
rize with some special features from these applications to show the need of building
specific instructions in an SIMD processor.

The first feature is low data precision and large data parallelism. Image pixels are
typically stored with an 8-bit precision and audio samples stored with a 16-bit preci-
sion. The ADC used in Fig. 2.29 needs mostly a 10-bit precision. AES is computed
on an 8-bit Galois Field GF(28). Only RSA requires larger bits of precision.

All multimedia applications contain large data parallelism. In video coding, SAD
operations are applied to every macroblocks with different search distances (m, n).
Transform, Quantization and De-blocking filter basically use matrix operations. In
linear algebra, row or column elements of a matrix can be processed concurrently.
Image processing mostly consists of matrix operations, which can thus be paral-
lelized. In AES, SubByte operation can be parallelized on all bytes, ShiftRow
can be parallelized in row-major order, and MixColumn parallelized in column-
major order. In digital communication, I and Q components composed as a vector
could be computed simultaneously. In OFDM, data can be extracted from all sub-
channels in parallel.

The low data precision and large data parallelism features induce the idea of
subword-parallel, single instruction multiple data (SWP-SIMD) design. A tradi-
tional SIMD processor uses many ALUs to compute multiple data in a single in-
struction. While multimedia data resolution is low, these multiple data can be packed
into a single register and computed in a single 64-bit or 128-bit ALU.

Fixed-point multiplication operation is common in multimedia algorithms, such
as DCT in video coding and filters in digital communication. Fixed-point multipli-
cation needs a right shift after multiplication to keep the most-significant bit.

Permutation is frequently used in multimedia algorithms. In DCT or FFT, data
are often re-arranged in a so-called butterfly order. DES is based on complex permu-
tation. In an SWP-SIMD processor, since these data are in a register, re-arranging
them by a left/right shifter is very difficult. In general, a 64-bit register can have
64! = 1089 kinds of permutations. Fortunately, most applications use only a limited
subset of permutations. Thus, in PLX, we have only to implement PERM, a config-
urable permutation instruction unit, with an 8-bit palette argument that allows us to
select a required PERM instruction from the 256 pre-defined permutations.

Performances in video coding and image processing are limited by their memory
latency. For example, an H.264 code using five reference frames needs to buffer five
pictures in memory. When using image recognition to track a feature in a series of
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pictures, the picture size is often too large to put in an on-chip memory; thus, an
external memory is required. Today external memory speed is much slower than
processor speed. Memory latency dominates the performance in these applications.
Techniques that can reduce memory latency are often used in a multimedia proces-
sor. These techniques include caching, perspective preload, and multi-threading.

Floating point unit is another difficult choice. A floating point processing unit
takes a large chip area and consumes more power than an integer processing unit.
For example, 3-D graphics needs a floating point processing unit to compute ob-
ject rotation. In video coding, image processing and digital communication, since
data precision is limited by human sensors’ sensitivity and channel quality, a small
amount of precision loss is acceptable. That is why we can perform the counter-part
multimedia operations using an integer processing unit to save cost and power.

PLX [1] has been developed by Professor Ruby Lee at Princeton University. The
main feature of PLX is that it is a native subword-parallel single instruction multiple
data (SWP-SIMD) processor [2]. Its vector function unit supports 8/16/32/64 sub-
word widths, and its scalar function unit is the 64-bit subword subset in a vector unit.
A typical multimedia code contains many scalar operations, such as loop counter or
memory index. A native SWP-SIMD can execute scalar and vector operations in the
same core to reduce scalar-vector communication overhead. Thus, it is very suitable
to be used in the above discussed video and image processing, cryptography, and
communication applications.

In this book, we will depict the hardware/software codesign methodology and
tools applied in the development of PLX, the designs of a parallel compiler, a profil-
ing tool, and an OS kernel for PLX. Details of these tools or processor designs will
be discussed in the following chapters.



Chapter 3
System Level Design

The goal of a system-level design methodology is to decrease design cost and design
time. Firstly, the complexity of a modern system does not allow us to describe its
implementations directly. Furthermore, it is difficult to create derivative implemen-
tations with different functions or different architectures, because functions and ar-
chitectures cannot be extracted easily from implementations for reuse. Therefore
a separation of function, architecture and implementation is necessary when de-
signing a system. Design activities are needed to combine different functions and
architectures for an implementation to decrease design time and design cost.

To be able to separate function, architecture and implementation in a system
design flow, different abstraction levels need to be defined. The idea is to gradually
confront designers with implementation details such as timing and data representa-
tions. Abstraction levels are used to describe the functionality of the target design by
mathematical equations and/or algorithms. It then goes through behavior synthesis
processes to generate register transfer level (RTL) circuit (Fig. 3.1).
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3.1 Abstraction Levels

A design can be described on different levels of abstraction. Raise the abstraction
level is always a trade-off between the speed and accuracy of a potential simulation
model. Function level only captures the algorithm regardless of the implementation
details, an algorithmic model has a huge advantage in its high simulation speed. On
the other end, RTL simulation accuracy is fidelity to real implementation. But it is
too expensive to pay due to its lengthy simulation time.

3.1.1 Algorithm Level

The motivation for introducing this algorithmic level of abstraction is to quickly
obtain a function to determine what the system is supposed to do, without making
architecture assumptions. Hence there is the potential to reuse functions either to
create derivative functions, or to synthesize different implementations with different
architectures.

Algorithm Level contains two main subjects: algorithm specification and data
communication.

In the algorithm specification, an executable functional specification of the algo-
rithm is created. It may be a C/C++ or Matlab code. This executable specification
is used to check the validity of the algorithm. The simulation in this design step is
sequential, which has no timing information and uses a single thread of control. The
simulation speed is high due to lack of timing and architecture details.

Profiling techniques are used to obtain an initial estimate of the computational
load of the different functions and the amount of data transfer between them.

Code inspection is used to estimate the amount of flexibility required for each of
the functions. The results of both, code inspection and profiling, are used as input
for a task and, in a later stage, for hardware/software partitioning.

By the executable algorithm specification, a golden reference model is generated
for verification throughout the whole flow.

With the design constraints and requirements and a suitable architecture tem-
plate in mind and the results from the previous algorithm design step, the system
is partitioned into tasks that perform functions and channels through which data
are communicated between these tasks. With a multi-threaded simulation tool, the
communication load on the channels and the computation load on the tasks can be
analyzed. If necessary, the system can be repartitioned to meet the constraints and
requirements.

3.1.2 Architecture Level

The motivation of this architecture level is to quickly find an efficient architecture
implementation. Efficiency can be defined in terms of power, timing, area, etc. To
be able to quickly evaluate the efficiency of alternative implementations, we want
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to avoid the effort of making them in detail. For example the decision to base an
implementation on a message-passing or a shared-memory architecture leads to two
alternative implementations.

Transaction Level Modeling (TLM) is developed for architecture level design
and exploration. Literally a transaction is the exchange of goods, services or funds;
or a communicative action or activity involving two parties or things that recip-
rocally affect or influence each other. Both meanings have two ingredients, ex-
change/communication and goods/influence. In an electronic system the goods or
influence can be considered as the computation or the effect of the computation.
There are many discussions regarding TLM over the years, here we use only def-
initions, terminologies and libraries developed by the OSCI TLM Working Group
(TLM WG) [24].

Although TLM includes computation and communication, OSCI TLM 1.0 and
2.0 discuss only the communication part. In the physical form, a transaction is a
payload, the data structure that passed between modules. By definitions from TLM
WG, we have following four abstraction levels (or called modeling styles):

(1) Un-Timed (UT): A modeling style in which there is no explicit mention of time
or cycles, but includes concurrency and sequence of operations. In the absence
of any explicit notion of time as such, the sequencing of operations across mul-
tiple concurrent threads must be accomplished using synchronization primitives
such as events, mutexes and blocking FIFOs. Some users adopt the practice of
inserting random delays into untimed descriptions in order to test the robustness
of their protocols, but this practice does not change the basic characteristics of
the modeling style.

(2) Loosely Timed (LT): A modeling style that represents minimal timing infor-
mation sufficient only to support features necessary to boot an operating sys-
tem and to manage multiple threads in the absence of explicit synchronization
between those threads. A loosely timed model may include timer models and
a notional arbitration interval or execution slot length. Some users adopt the
practice of inserting random delays into loosely timed descriptions in order to
test the robustness of their protocols, but this practice does not change the basic
characteristics of the modeling style.

(3) Approximately Timed (AT): A modeling style for which there exists a one-to-one
mapping between the externally observable states of the model and the states of
some corresponding detailed reference model such that the mapping preserves
the sequence of state transitions but not their precise timing. The degree of
timing accuracy is undefined.

(4) Cycle Accurate (CA): A modeling style in which it is possible to predict the
state of the model in any given cycle at the external boundary of the model
and thus to establish a one-to-one correspondence between the states of the
model and the externally observable states of a corresponding RTL model in
each cycle, but which is not required to explicitly re-evaluate the state of the
entire model in every cycle or to explicitly represent the state of every boundary
pin or internal register. This term is only applicable to models that have a notion
of cycles.
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3.1.3 Behavior Level

All abstraction level above RTL can be called behavior level. Here we specify that
architecture is implemented and interface is pin-accurate. This abstraction level cap-
tures the details of the interfaces and the input/output (I/O) functionality including
a full or partial specification/modeling of their timing. The communication among
blocks is carried out by signals.

The behavior level introduces some freedom in how operations and I/O are sched-
uled by only partially constraining the cycle-by-cycle behavior of I/O. Registers are
not explicitly defined, but instead are determined by synthesis. Storage requirements
are dependent on how operations are scheduled: registers are used to store values
that are used one or more cycles after the cycle in which they are generated. Storage
of arrays may be mapped to memories or to registers. The specification of behavior
is in the form of an implicit-state machine rather than the explicit-state machine gen-
erally used for RTL. In an implicit-state machine, there is no explicit state variable
that is used to select what behavior is executed next. Instead, the behavior consists
of a process that is sensitive to signal events. The process uses language constructs
such as loop, if-then-else and case to specify conditional behavior and
wait statements to specify cycle timing among sets of output assignments.

The behavior level description is able to be synthesized into RTL design by the
technique of behavioral synthesis or high-level synthesis. The verification method-
ology of the generated specifications against the behavioral specification is more
complex than the RTL level since the cycle-by-cycle behavior may be changed by
high-level synthesis.

The untimed and timed TLM are models tailored for distinct purposes. The ulti-
mate goal is to create a unique platform that simulates two different models accord-
ing to user needs. The untimed TLM is an architectural model targeted specifically at
early functional software development and functional verification where timing an-
notations are not compulsory conditions. The high simulation speed is the objective
of this model. Since the untimed TLM serves primarily programmers, it is hence
given another name as programmer view (PV).

On the other hand, the timed TLM is a micro-architectural model containing
essential time annotations for behavioral and communication specifications. It is
relatively a less abstract model located lower in the SoC design flow. The focus
of timed TLM is the simulation accuracy required by real-time embedded software
development and architecture analysis. Hence, the timed TLM is also known as
programmer view plus timing (PVT).

Thus, the behavior level has following abstract levels:

(1) Communicating Processes (CP)

� Behavior is partitioned into parallel processes.
� Communication is implemented by point-to-point.

(2) Communicating Processes + Timing (CPT)

� CP model annotated by timing information.
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(3) Programmer View (PV)

� Behavior model is register accurate at the low-level
� Programmer API
� Point-to-point communication are refined to bus or NoC models
� Sequenced, but untimed model of computation

(4) Programmer View + Timing (PVT)

� PV + timing annotations (cycle estimates)
� Refined communication model
� Communicating processes are mapped onto HW blocks

(5) Cycle Callable (CC)

� System behavior model with cycle true timing, no pin-level details

(6) Register Transfer (RT)

� Synthesizable model, with pin-level details

RTL is widely used and was traditionally written in HDL languages. At this
abstraction level, finite states and registers used for state transfer are determined.
The verification methodology of the output from RTL synthesis against the refer-
ence RTL specification is well defined for both the combinational and sequential
hardware. For instance, IEEE Std 1076-2004 defines this for VHDL.

3.2 Algorithm Level Verification

There are more than 70% of errors in a design found to be functional. A design
has to be functionally correct and fully implemented as stated in the specification.
As modern design is getting more and more complex, the testbench for the design
and properties/assertions of the design grow bigger and more complex at the same
time. This implies those testbenches, properties and assertions manually written in
advance are error-prone, as long as there is something done manually. The ambigu-
ities introduced by abstraction which is said to be an important concept to deal with
the increased complexity depreciate the values of a high-level design language.

At the moment all existing methods are still using a certain degree of human
intervention to deal with practical tricky problems, we realize that a couple of things
are required to ensure fewer bugs in a design. First, fewer things, no matter test
pattern generation or properties/assertions writing done manually in each step of
the design flow, are critical. Second, a high-level definition/language with fewer
ambiguities is needed. Last, in the case we need to verify a losable implementation
which most multimedia application is, we expect that a verifier can tell how much
precision was lost in a losable implementation.

In this section, we propose a methodology where neither testbenches, nor as-
sertions/properties writing are needed to verify and tell the degree of error that an
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implementation will cause. The specification defined in mathematic expressions is
used as golden model and thus eliminates the need of human interventions in the de-
sign flow. An implementation is translated into a form of mathematic expression and
then the equivalence between the implementation and the golden model is checked
by Mathematica. If there is something different between the two expressions, the
error can be easily calculated since both of them are just mathematic expressions.

This novel methodology incorporates the technologies of reverse engineering,
theorem proving and the advantage of unambiguous mathematical expressions. As
one problem can be solved by a code or a digital hardware implementation, it can
be modeled mathematically and verified by our proposed methodology. Of course,
the error caused by an implementation of a certain specification/algorithm can then
be predicted by the mathematical expressions derived by taking the advantage of
the precision of mathematical expressions. To precisely estimate the error of an
implementation is what we are going to do next.

The SAD algorithm implemented on our designed SIMD PLX platform is shown
to be verified by the proposed methodology. An SIMD platform provides higher
computing power by executing multiple data simultaneously, but this feature is mak-
ing the design and verification harder. We aim at helping designers with an efficient
methodology for verifying and evaluating the performance of our SIMD PLX plat-
form design. Using Mathematica, a computer algebra system (CAS), and reverse
engineering techniques, the correctness and errors accumulated in running multi-
media applications on this PLX platform can be precisely evaluated, which would
not be easily done without human interventions before. The proposed methodology
can be easily automated and adapted to other platforms.

While a system is being developed, the designer always needs to know as soon as
possible whether the designing embedded software or hardware faithfully achieves
the design goal. However, the designer cannot be free from time-consuming proper-
ties/assertions writing nor from stimuli or test pattern generation, no matter a formal
verifier [25] (which uses a CAS as formal verifier) or a simulation methodology is
going to be applied. Especially when we would like to know how the error of a los-
able multimedia implementation is, we have to deal with running high order logic
(HOL) with a theorem prover [26, 27] or calculating it manually. Thus, a simple
and efficient methodology able to verify the function and evaluate the errors of an
implementation is desirable.

In the following subsections, we will first introduce the techniques and then use
an algorithm to show the detail of our verification and error prediction methodology.

3.2.1 Algebraic Simulation

Some operations in an implementation which move or arrange data only without
mathematic operations can be easily verified by algebraic simulation. The process
is illustrated by an assembly code which performs a matrix transpose on PLX. Every
data rearrangement and memory operation is modeled directly into a Mathematica
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instruction. For example, the instruction load.sw.Rd, Rs1, imm13 loads sw
sub-words in memory addresses starting at “offset” with Rs1 = offset, sw = 4
(or 8) and is modeled as follows in Mathematica:

R[1,1],R[1,2],R[1,3],R[1,4]=
Table[a[1,j],j,1,4]

Moreover, the transpose of a 4×4 matrix in PLX assembly code as shown in
Fig. 3.2 can be modeled in Mathematica as shown in Fig. 3.3.

mix.2.l Rt1, R1, R2 
mix.2.r Rt2, R1, R2 
mix.2.l R1, R3, R4 
mix.2.r R2, R3, R4 

mix.1.r R3, Rt1, R1 
mix.1.l R1, Rt1, R1 
mix.1.r R4, Rt2, R2 
mix.1.l R2, Rt2, R2 

Fig. 3.2 A 4×4 Matrix transpose in PLX assembly

{R[1,1],R[1,2],R[1,3],R[1,4]} = 
{R[3,1],R[3,2],R[3,3],R[3,4],R[4,1],R[4,2],R[4
,3],R[4,4]} [[{1,5,3,7}]] 

{R[2,1],R[2,2],R[2,3],R[2,4]} = 
{R[3,1],R[3,2],R[3,3],R[3,4],R[4,1],R[4,2],R[4
,3],R[4,4]} [[{2,6,4,8}]] 

{R[3,1],R[3,2],R[3,3],R[3,4]} = 
{R[5,1],R[5,2],R[5,3],R[5,4],R[1,1],R[1,2],R[1
,3],R[1,4]} [[{3,4,7,8}]] 

{R[1,1],R[1,2],R[1,3],R[1,4]} = 
{R[5,1],R[5,2],R[5,3],R[5,4],R[1,1],R[1,2],R[1
,3],R[1,4]} [[{1,2,5,6}]] 

{R[4,1],R[4,2],R[4,3],R[4,4]} = 
{R[6,1],R[6,2],R[6,3],R[6,4],R[2,1],R[2,2],R[2
,3],R[2,4]} [[{3,4,7,8}]] 

{R[2,1],R[2,2],R[2,3],R[2,4]} = 
{R[6,1],R[6,2],R[6,3],R[6,4],R[2,1],R[2,2],R[2
,3],R[2,4]} [[{1,2,5,6}]] 

Fig. 3.3 Matrix transpose modeled in Mathematica

The result of this Mathematica code is shown in Fig. 3.4, where the matrix has
obviously been transposed. This algebraic simulation example shows how variables
are represented symbolically and reveals how operations are applied on variables
and instructions executed in Mathematica.

R1 = {a[1,1],a[2,1],a[3,1],a[4,1]} 

R2 = {a[1,2],a[2,2],a[3,2],a[4,2]} 

R3 = {a[1,3],a[2,3],a[3,3],a[4,3]} 
R4 = {a[1,4],a[2,4],a[3,4],a[4,4]}

Fig. 3.4 Result of matrix transpose
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3.2.2 Algebraic Analysis

For those implementations that perform complex for-loops and/or while-
loops, all conventional simulation methodologies are not suitable. Instead, an al-
gebraic analysis is called for. In the following, algebraic analysis of an assembly
implementation of the Sum-of-Absolute-Differences (SAD) algorithm on a PLX
platform is illustrated.

The SAD is a criterion used in block-based matching motion estimation algo-
rithms to gauge the similarity between a given macroblock in the current frame and
a corresponding macroblock in a reconstructed reference frame. The displacement
between these two macroblocks is used to find a motion vector candidate. For a
K×L macroblock, one has:

S AD (m, n) =
K−1∑

i=0

L−1∑

j=0

|C(i, j) − R(m + i, n + j)|,

where C(i, j) is the luminance value of a current frame pixel and R(i, j) is the lumi-
nance value of a reference frame pixel. Argument (m, n) is the displacement between
these two blocks.

First, the SAD assembly code listed in Fig. 3.5 is parsed and translated by running
the symbolic verification algorithm as shown in Fig. 3.6. Mathematical expressions
are derived after the loops and subroutine calls.

The initial values and upper bounds derived by loop unwinding are replaced by
the real values specified in the code as:

Table [For[j=1; b[m,n]=0, j<4,
For [i=1, i<4,

b[m,n]=b[m,n]+Abs[C[i,j]-R[m+i,n+j]];
i++]; j++]; b[m,n], {m,1,16}, {n,1,16}]

This derived expression is compared to the very original design goal:

Table[SAD[m,n] =
∑4

i=1

∑4
j=1 Abs[C[i,j]-R[m+i,n+j]],

b[m,n], {m,1,16}, {n,1,16}]

If the obtained comparison result is true, the design correctness is verified.
Since loops and subroutines are analytic unwound [28], the algorithm complexity is
O(number of instructions).

3.2.3 Error Evaluation

Once an implementation is found to be “losable,” the range of errors will become
a matter of concern. The maximum possible absolute/relative error is easy to figure
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Asembly codes Extracted expression
ME_8bitsat proc 
;//unsigned char *R21=cur; 
;//unsigned char *R22=ref; 
;//unsigned char *R23=sad; 

 loadi.z.0 R12,0 
 loadi.z.0 R13,0 
loc_me_8s_1: 
 loadi.z.0 R7,0 
 loadi.z.0 R8,0 
 loadi.z.0 R14,0 
loc_me_8s_2: 
 load.8.update R3,R21,0 
 addi    R21,R21,8 
 load.8.update R4,R21,0 
 addi    R21,R21,width-8 
  : 
 psub.1.u R18,R3,R5 
 psub.1.u R19,R5,R3 
 padd.1.u R18,R18,R19 
 padd.1.u R7,R7,R18 

 addi      R14,R14,1 
 cmpi.eq R14,4,P1,P2 
P2 jmp    loc_me_8s_2 
 Add_4byte_u R11,R7 

 deposit R12,R11,0,8 
 extract R11,R11,40,8 

 deposit R12,R11,8,8 
  : 
 store.4 R12,R23,0 

 addi   R23,R23,4 
 addi   R13,R13,1 
 cmpi.eq R13,4,P3,P4 
P4 jmp   loc_me_8s_1 
 jmp.reg  R31 

S=0 

t=0 

R3[j]=cur[i,j]| j=0~7
j=j + 8 
R4[0~7]=cur[i,8~15] 
j=j + width-8 ,,=> i=i+1 
 : 
R18[j]=cur[i,j]-ref[i,j]| j=0~7
R19[j]=ref[I,j]-cur[i,j]| j=0~7
R18[j]=|cur[i,j]-
ref[i,j]| j=0~7
R7[j] = SUM|cur[i,j]-ref[i,j]

    | j=0~7,t=0~3,,i=t+4s
t++ 
end of for(t=0;t<4;t++) 

R11[0]=SUM(SUM|cur[i,j]-
ref[i,j]|)| i=(0~3)+4s, j=0~3

R12[0]=R11[0] 
R11[0]=SUM(SUM|cur[i,j]-

ref[i,j]|)| i=(0~3)+4s, j=4~7
R12[1]=R11[0] 
:

[R23+4s+k]<-SUM(SUM|cur[i,j]-
ref[i,j]|)| i=(0~3)+4s,
j=(0~3)+4k, k=0~3,, s=0~3

R23=R23 + 4s 
s++ 
end of for(s=0;s<4;s++) 

return

Fig. 3.5 An implementation of SAD on the PLX platform
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Open an implementation; 
Tabulate and match memory address with variable names; 
Allocate memory spaces for saving the expression of registers; 
while (!end_of_program) 

 switch (read a instruction) 
 { 
 case “call (a subroutine)”: 
  return address is pushed into stack; 
  deal parameters by respective types of parameter passing policies; 
  break; 
 case “an immediate value or variable name is written to a register”: 
  record the value or the name;  
  break; 
 case “a register is used as a variable”: 
  retrieve the name of the variable; 
  interpret the mathematic expression;  
 case “a register is used as a counter of a control flow”: 
  make sure there is an increase/decrease, a comparison and a jump; 
 case “jump”: 
  jump right before the increase/decrease and comparison (no operation inside)  

→ a delay loop, output delay time; 
  jump somewhere before the register is loaded or after this jump 

→ a conditional branch; 

 and comparison  
→ a loop,  

  The register/memory address used to accumulate or product is extracted; 
  // Extract (1) how many terms to be summed/multiplied and (2) array index. 
  // Replace array index with proper term number. 
  Translate the summation or product in a form of for-loop, Σ or ∏ respectively; 
  break; 

 case: “a register is used as an index”: 
  load the name or the value pointed by the register; 
  break; 
 case: “values are wrote to a memory address”: 
  output the variable name of the address;  
  output the respective mathematical expressions resulting the values; 
  break; 
 } 

// Now the expressions are extracted and part of them may not be good  
// for Mathematica to operate. 
while (!end_of_extracted_expression) 

 if (pre-defined macro in the extracted mathematical expressions) 
  translate pre-defined macro into proper Mathematica compliant statements; 

if (!Call_Mathematica(extracted_expressions)) // if it is not equivalent with specification, 
 Call Error_prediction(extracted_expressions); 

jump somewhere after the register is loaded and before the increase/decrease

Fig. 3.6 Symbolic verification and error prediction algorithm
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out by setting all the input variables to their maximum and minimum values re-
spectively. To model the error behavior, probability theory and relative axioms are
applied.

Let functions f(x1, x2, . . ., xi ) and fDUV (x1, x2, . . ., xi ) respectively be the ex-
pected operation without error and the operation carried out by an implementation
with possible errors.

Definition 1. Functions f(x1, x2, . . ., xi ) and fDUV(x1, x2, . . ., xi ) are equivalent if
and only if:

∀xi , xi ∈ {the range of the input variables}
⇒ f(x1, x2, . . . , xi ) = fDUV(x1, x2, . . . , xi )

The above equation is the ultimate goal of verification by simulation. Simulation
is trustworthy since it authentically reflects the operations carried out by the design
implementation. All the combinations of input variable values are subject to check
even if “mostly” these all combinations are unachievable. Once every single value in
the input variable ranges of functions fDUV and f have been checked and we observe
the same result as specified in the design specification or golden model, these two
functions are verified to be equivalent.

Lemma 1. Functions f(x1, x2, . . ., xi) and fDUV(x1, x2, . . ., xi) are equivalent if and
only if:

∀xi , xi ∈ {the range of the input variables}
⇒ fDUV(x1, x2, . . . , xi ) − f(x1, x2, . . . , xi ) = 0

Lemma 2. Obviously, the error eDU V caused by the operations of an implementa-
tion is:

∃xi , xi ∈ {the range of the input variables}
eDU V (x1, x2, . . . , xi )

= fDUV(x1, x2, . . . , xi ) − f(x1, x2, . . . , xi ) �= 0

Theorem 1. If and only if the error, eDU V , caused by the operations of an implemen-
tation is 0 for all values in the range of a given input variable, the implementation
(design under verification) is equivalent with specification.

∀xi , xi ∈ {the range of the input variables}
eDU V (x1, x2, . . . , xi ) = fDUV(x1, x2, . . . , xi ) − f(x1, x2, . . . , xi ) = 0

or

∑

x1,x2,...,xi

(eDU V (x1, x2, . . . , xi ))
2 = 0
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Assume there is at least one error, eDU V (x1, x2, . . . , xi ) �= 0, and the probability
of this error eDU V (x1, x2, . . . , xi ) is p(x1,x2,...,xi ). Then the total probability of errors
of an implementation is: P[eDU V ] = ∑

eDU V (x1,x2,...,xi )�=0
p (x1, x2, . . . , xi ).

The error caused by ONE combination of different values within its range of
an input variable is easy to calculate. Also it is easy to calculate if there are errors
for all input value combinations. The reason is that every single value of the input
variables/registers can be expressed as one term in a series form. Thus, above com-
putations can be used to check the equivalency and calculate errors discretely as a
digital computer does, and the result obtained is mathematically precise without the
interferences of discontinuous points.

Here we show how to calculate the probability of errors occurred in a design
implementation. Generally the input variables are assumed to have the same uniform
distribution over the interval [0, a−1]. The constant “a” is 256 for an 8-bit sub-word.
Given a derived expression,

∑3
i=1 Abs[C[i] – R[i]], the result will saturate if it is

larger than 255. Thus, its fDUV is expressed as:

fDUV=
∑3

i=1Abs[C[i]-R[i]](1-UnitStep[
∑3

i=1Abs[C[i]-R[i]]-

(a-1)])+(a-1)UnitStep[
∑3

i=1Abs[C[i]-R[i]]-(a-1)],

where “UnitStep[t]” is the unit step function. Then the probability of errors
occurring is:

P[fDUV > a− 1] =
∑a−1

C[1]=0

∑a−1
R[1]=0

∑a−1
C[2]=0

∑a−1
R[2]=0

∑a−1
C[3]=0

∑a−1
R[3]=0

(UnitStep[
∑3

i=1 Abs[C[i]− R[i]]− (a− 1)])/a6

= 3a
∑a−1

i=1 [2(a-i) × 2
∑i

j=1 j] +
∑a−1

k=1 2(a-k)
∑a−k−1

i=1 [2(a− i)
∑i+k

j=1 2j]

+
∑a−1

k=1 2(a− k)
∑a−1

i=a−k [2(a− i)
∑a−1

j=1 2j]

= a(a− 1)(a+ 1)(12− 22a+ 42a2 + 43a3)/(90a6) ≈ 47.959%

Since Mathematic 4.0 does not handle unit step function perfectly, the summa-
tion of unit step function in the above equation is done manually.

3.3 Transaction Level Modeling

Transaction Level Modeling (TLM) is intended for early SoC exploration in the
design flow at a relatively lightweight development effort. It is a transaction-based
abstraction level residing between the bit-true cycle-accurate model and the untimed
algorithmic model. It is performed after function partitioning.

In a digital electronic system, every single component is composed of a finite
set of states and a series of concurrent behavior. In TLM notion, components are
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modeled as modules with a set of concurrent processes that calculate and represent
their behavior. These modules exchange communication in the form of transactions
through an abstract channel. Depending on the accuracy level required by the cor-
responding simulation, a channel could be a simple router, an abstract bus model, a
network-on-chip model, or some other structure. TLM interfaces are implemented
within channels to encapsulate communication protocols. Modules and channels are
bound to each other by means of communication ports to establish communication.
Once they are bound together, data can be exchanged between them to perform the
expected system behavior. A process simply needs to access these interfaces through
module ports [29–31].

TLM defines a transaction as the data transfer or synchronization between two
modules at an instant determined by the hardware/software system specification.
The definition of transaction can be refined as a bus-protocol aware structure.

The term transaction denotes the set of data being exchanged. A master or
initiator is a module that initiates transactions in a system, while a slave or tar-
get is a module that receives and serves transactional requests. Any consecutive
transactions may have various sizes of data transfer. This variable size corresponds
to the amount of data being exchanged between two occurrences of system syn-
chronization. System synchronization is an explicit action between at least two
modules that need to coordinate or manage some behavior distributed over them.
Such co-operation of different modules is vital to assure the predictable system
behavior.

To ensure a proper system functional behavior in TLM SoC simulation, there
are two essential points that deserve attention in the modeling process. First, all the
data transactions must be blocking, i.e., the thread that initiates the transaction will
resume its execution only if the current transaction is completed. Second, all the
occurrences of the system synchronization must be potential re-scheduling points
in a simulation environment in order to guarantee an accurate simulation of the
concurrency. The system synchronization could be modeled by specific means such
as event, signal, and interrupt; or by data-exchanges such as polling. If any of these
potential system synchronizations causes a call to the simulation kernel, it enables
the scheduler to activate other modules. Hence, the simulated system will behave
correctly in line with its functional concurrency.

The essence of working out an appropriate model at transactional level lies in
the good sense of deciding where and when to implement system synchronization.
If too many synchronized points are inserted, the model will tend to be too close
to cycle-accurate or RTL models that will not help to gain much simulation speed.
Contrarily, if too few synchronized points are implemented, the model may run the
risk of having incorrect system execution.

An untimed communication process can be generalized as listed in the following
steps [31]:

(1) Activate or resume a process.
(2) Read input data for control flow and data processing.
(3) Computation.
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(4) Write output data if there is any of them.
(5) Return to Step 2 if more computation is required.
(6) Synchronization:

(a) if it is “emit-synchronization,” return to Step 2;
(b) if it is “receive-synchronization,” the process will be suspended.

System synchronization is very often implemented by an interrupt signal. In the
untimed view, an interrupt is however an impulsive system event without any per-
sistence. It is therefore inappropriate to model it using a signal. Instead, a dedicated
TLM synchronization protocol with the following features is employed:

(1) Immediate propagation of interrupts from an initiator to a target;
(2) Notice of potential IP internal state change, i.e. status register update.

A video decoder decodes 30 frames per second. Sometimes, an untimed TLM
inserts functional delay to implement implicit synchronization points for specific
timing information. For example, the decoder module can be enabled every 1/30
second by the system timer. From the angle of computational model, such implicit
timings bring additional constraints to the execution order of processes in the sim-
ulation, and thus reduce the set of possible process interleaves. As a result, the
untimed model inserted with functional delay is created as an intermediate level
between the purely untimed TLM and the timed TLM.

To develop a timed model at the transactional level, considerations must be given
to the time consumption of two aspects: computation and communication.

The computational delay is the time amount required to perform specific cal-
culations in characterizing a given system behavior or function; whereas the com-
munication delay is the total time consumed in accessing and transferring data or
information. The various physical constraints that could bring a significant im-
pact on the system timing behavior such as bus size, bus throughput, or memory
size, must also be taken into account during the timed TLM development. Timed
TLM is able to model in two approaches: annotated model and standalone timed
model.

An annotated model inserts delay into an untimed model. These annotated delays
are the timing information on the micro-architecture level, which make the anno-
tated model distinct from the untimed TLM model inserted with functional delay at
architecture level.

A standalone timed model denotes a detached model incorporated with the timing
information. It is high-level analytical timing models without functional informa-
tion. They can be built as traffic generators, which model the channel or interconnect
traffic with some timing information.

The annotation approach is well suited if the structure of the untimed model
already matches the structure of a micro-architectural model, where annotations will
be simple wait statements related to the computation time of a specific functionality.
The standalone timed model is suitable when the structure of the algorithm is very
different from the structure of the micro-architecture.
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Fig. 3.7 Inter-execution of untimed and timed models

The working concept of the timed TLM can be pictured as an inter-execution
of untimed TLM and standalone timed TLM models. Figure 3.7 illustrates the
simulation timelines representing the activities of a process execution in the timed
TLM [31].

The functional behavior of the untimed model is executed until it reaches a syn-
chronization point. The execution is then passed to the standalone timed model. The
timing model will start simulating the delays associated to the functional parts that
have just been executed earlier. Meanwhile, time delays of communications and
computations are simulated in the timing model as well. Once all of the relevant
delays are simulated, the untimed model will resume its execution until the end of
its simulation.

3.4 System Level Development Tools

SystemC and SystemVerilog are executable and integrating languages used to com-
plete a platform design from system level to gate level. StstemVerilog deals with
RTL and below, and SystemC deals with those above RTL [32].

SystemVerilog is an extension to the hardware description language Verilog. This
was a high-level language specifically oriented to system modeling and verification.
It supports linking to externally defined C functions but not the C++ coding styles.
Since it was an extension to Verilog, SystemVerilog could naturally handle clock-
based modeling without much difficulty. However, it reaches some limitations in
the transactional level modeling. The most obvious problem is that SystemVerilog
is too close to a hardware-based modeling language. It lacks certain capabilities to
handle some aspects of higher-level modeling, for instance, abstract data types are
not well supported.
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3.4.1 SystemC

In 1999, Coware and Synopsys propose a set of C++ open source class library
for hardware modeling. As shown in Fig. 3.8, the essence of SystemC lies in the
availability of hardware primitives together with a simulation kernel.
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Fig. 3.8 SystemC versions and scopes

With such features, SystemC is able to support multiple abstraction levels and re-
finement capabilities ranging from high-level functional models to low level timed,
cycle-accurate, and RTL models. SystemC holds all of the C++ operator overload-
ing and pointer capabilities. Therefore, software engineers should feel very comfort-
able to work with SystemC where the job is mostly done in C++. Since it is a C++
based approach, SystemC offers debugging abilities using classical debuggers.

The SystemC class library includes datatypes, cores and channels. Datatypes
contain logic vectors, bit vectors, arbitrary precision integers, fixed point numbers,
C++ built-in types, and user-defined types. Cores contain modules, processes, in-
terfaces, ports, events and event-driven simulation. Elementary channels contain
signal, timer, mutex, semaphore, FIFO, etc.

SystemC provides a number of datatypes that are useful for hardware design.
These datatypes are implemented in C++ classes. The sc int and sc uint
support for finite precision signed/unsigned signals; sc fixed and sc ufixed
support for fixed-point signals; sc logic supports for 4-level logic values (0, 1,
x and z).
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A SystemC module represents an individual identifiable hardware element. A
module definition defines the port-level interface of a module, its internal storage
elements and its behavior. The synthesizable subset supports modules declared as a
class or as a struct. In addition, specialization of modules using templates is
supported. The module definition can use either the SC MODULE macro or a deriva-
tion from sc module class. A module member contains signals, sub-modules,
constructors and processes.

A module constructor is declared by SC CTORmacro. Submodule instantiations,
port mappings, and process statements are located in the module constructor.

Ports represent the externally visible interfaces to a module and are used to trans-
fer data into and out of the module.

A process is declared by SC METHOD or SC CTHREAD. The SC METHOD must
not contain any wait statement or any invocation of a function which may directly or
indirectly cause the execution of a wait statement. Consequently, it must not contain
any loop which is not unrollable. A method is triggered by a signal switching event,
denoted in a sensitive list. The SC CTHREAD must be an infinite loop to prevent
execution reaching the end of the process. Each unbounded loop must contain at
least one explicit wait() in each control path.

Following shows a simple SystemC example:

SC MODULE(ALU)
{//ports
sc in clk clk;
sc in<sc uint<1> > op;
sc in<sc uint<32> > a, b;
sc out<sc uint<32> > z;

//internal signals
sc signal<sc unit<32> > z1, z2;
//sub-modules
ADDER ∗func1;
MULTIPLIER ∗func2;
//process
void execute() { z.write(op.read()?z1:z2); }
//construct

SC CTOR(ALU)
{

func1=new ADDER("func1");
func1->a(a); func1->b(b); func1->z(z1);
func2=new MULTIPLIER("func2");
func2->a(a); func2->b(b); func2->z(z2);

SC METHOD(execute);
sensitive pos<<clk;

}
}
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3.4.2 LISA

The Language for Instruction Set Architectures (LISA) is an architecture descrip-
tion language (ADL) specific for embedded processor development. LISA has been
developed at the Institute for Integrated Signal Processing Systems at the RWTH
Aachen University and is commercialized by Coware Inc [33–36].

At architecture level, a design process contains the following 4 tasks:

(1) Architecture Exploration: Select an architecture for the target application. This
task is composed of three main works. First is hardware/software partitioning.
The critical portions of the application that require hardware support is deter-
mined by profiling. Second, decide the embedded processor instruction-set by
the partitioning and profiling results. Third, fine-tune the micro-architecture of
the processor. This phase is an iterative optimization process which is repeated
until a sufficient fit between the selected architecture and the application is ob-
tained.

(2) Architecture Implementation: Implement the processor architecture description
into RTL.

(3) Software Application Design: An Instruction Set Simulator (ISS) and a compiler
are developed.

(4) System Integration and Verification: An approximate-timed or cycle-accurate
hardware/software co-simulation is required.

In ASIP design, the key to success is to have sufficient exploration of the archi-
tectural design space. The LISA language allows engineers to implement changes
to the architecture model quickly, as the level of abstraction is higher than RTL. The
LISA model of the target architecture is used to automatically generate software
tools such as instruction encoding generator, C-compiler, assembler, linker, simu-
lator and profiler. These software tools are used to identify hot spots and to jointly
profile the architecture and the application. Both are optimized according to the
profiling results, e.g., throughput, clock cycles or execution count of instructions.
This exploration loop can be repeated until the design goals are met. With LISA,
a highly efficient design space exploration is ensured, as the ASIP model can be
modified easily and the software tools are re-generated within a negligible amount
of time.

The knowledge about the physical characteristics of the architecture is important
at an early design stage already. For example, the information about clock speed sub-
stantially influences the number of pipeline stages or even the pipeline organization
in general. Ignoring physical parameters in the design space exploration phase leads
to suboptimal solutions or long redesign cycles. The automatic ASIP implementa-
tion from LISA provides important feedback about the physical characteristics of
the architecture.

In LISA, the instruction-set is defined by a directed acyclic graph. Information
about the exclusiveness of operations is provided inherently by the graph structure.

A LISA model basically consists of two parts: the specification of the resources
of the target architecture and the description of the instruction-set, behavior, and
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timing. The first one is captured in the resource section, while the latter one is
described by the LISA operation graph.

The resource section defines the resources of the ASIP such as storage elements,
functional units, and pipelines. All storage elements are declared with a global scope
by specifying a data-type, identifier and optionally a resource-type. The memory is
specified by the keyword RAM. The size is defined by the number of blocks the
memory consists of and the bit size of each block. The pipeline definition comprises
the pipeline name, an ordered list of pipeline stage names and the pipeline register
elements between pipeline stages. Functional units are declared by the keyword
UNIT followed by a unique name and a set of LISA operations. The RTL hardware
model structure can be derived explicitly from the specification of the pipeline and
implicitly from the global scope of the defined resources. The following code shows
a LISA resource section example.

RESOURCE {
RAM int datamem {
SIZE(65536);
BLOCKSIZE(32,32);
FLAGS(R|W);

};
PROGRAM COUNTER unsigned short PC;
REGISTER int RegF[0..31];
PIN IN int ins;
PIN OUT int outs;
PIPELINE pipe = {FE; DE; IS; OP; EX; WB};
PIPELINE REGISTER IN pipe {int op1, op2, result;};
UNIT Fetch {fetch;};
UNIT Bypass {bypass fifo;};
UNIT MemAccess {data mem read;};
UNIT Alu {ADDI, SUBI, MOVI, MOVM, CMPI;};
UNIT WriteBack {writereg;};

}

The instruction-set architecture is defined by a directed acyclic, operation graph.
The nodes of this graph are LISA operations. Each node may contain information
about the assembly syntax, the binary encoding of the instruction-set, the behavior
and timing of the architecture. Generally, this information is specified independently
by coding section, syntax section, behavior section, and activation section.

The LISA coding section is utilized to generate the corresponding decode logic.
The bit pattern of a terminal coding element can be compared directly with the
instruction word. The bit patterns represented by a non-terminal coding element are
derived from the corresponding sub-graph.

The syntax section covers the assembly syntax of the instruction-set and is
comparable to the coding section. The non-terminal syntax elements represent the
mnemonics of the instruction-set.
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The behavior section covers the state update functions of the architecture. They
are described using C-programming language. Following code shows an example of
behavior description.

OPERATION load operand {
BEHAVIOR{

opreg = instr.Extract(18,10);
if (opreg == last resultreg) operand = alu result;
else operand = RegF[opreg];
pipe reg = operand;

}
}

The activation section describes the temporal relation between LISA operations.
It is a set of activation elements used to schedule the operations of an instruction
for execution. By the scheduling spatial and temporal relation, the pipelining micro-
architecture of the instruction-set can be explored, and the first hardware representa-
tion obtained. During exploration, the exclusiveness of resource conflict is analyzed.
For example, if the program-counter increase operation and memory-address gener-
ation operation in a memory load instruction do not use the same control signal, the
two operations can be put in the same pipeline stage.

LISA uses behavioral synthesis to map the architecture description into RTL. The
process is shown in Fig. 3.9.

The structuring process maps the entities in a resource section into registers,
memories or pipes. The functional-mapping process maps functional units into
an HDL process, such as Verilog always-block or SystemC method. The
interconnect-mapping process converts paths into signals, including multiplexer and
wires.
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Fig. 3.9 LISA behavior synthesis process
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On mapping into RTL, optimization of area, time and energy is what a de-
signer concerns on. The optimization can be obtained from the explicit architectural
information specified in the LISA model. Each kind of optimization requires an
appropriate abstraction level and suitable data-structures to retain the architectural
information.

The behavior description can be represented by CFG and DFG. The first simplifi-
cation, which removes unnecessary multiplexers, duplicated operators, and constant
inputs, is performed on DFG by methods of constant propagation, multiplexer sim-
plification, structural simplification and merging identical nodes.

The resource sharing optimization reduces the chip area but increases critical
path delay, thus it is a trade-off by constraints. An example is sharing addition and
subtraction operations on a single adder by insert 2’s complement logic and mul-
tiplexer on input port. At abstraction level, the physical information is unknown.
LISA uses virtual gate to estimate area and timing. For example it assumes that
adder uses carry-propagation and multiplier uses Booth model.

The problem of finding the minimum number of required hardware resources
can be solved with the help of compatibility graphs and conflict graphs. Using a
compatibility graph, all nodes of a fully connected subgraph called clique can be
mapped on a single resource. Instead, if using a conflict graph, all nodes of a com-
pletely unconnected subgraph can be shared. To achieve minimal resource usage, the
minimal number of such subgraphs has to be found. In graph theory, this problem
is known as the clique covering problem for compatibility graphs and as the graph
coloring problem for conflict graphs. The graph coloring problem stems from the
goal of using the minimum number of colors for coloring the different countries on
a map without using the same color for neighboring countries. Translated to conflict
graphs, the vertices represent the different countries while edges connect pairs of
neighboring countries.

After the instruction-set decoder is generated, LISA toolset can be used to gen-
erate some software tools, including C-compiler, assembler and simulator.

LISATek relies on CoSy Express which is derived from the CoSy compiler devel-
opment system from Associated Compiler Experts (ACE) [37]. CoSy is the profes-
sional, easy-targetable and highly flexible compiler development system in creating
high-quality, high-performance compilers for a broad spectrum of microcontrollers
to CISC, RISC, DSP and VLIW processor architectures.

CoSy’s modular design, surrounding a generic and extensible intermediate rep-
resentation (IR), offers numerous configuration possibilities both at the IR level and
the backend for machine code generation. CoSy generates compilers from so-called
Code Generator Description (CGD) files. A CGD model consists mainly of the fol-
lowing three components:

(1) Available target processor resources like registers or functional units.
(2) A description of mapping rules, specifying how C/C++ language constructs

are mapped to assembly instructions.
(3) A scheduler table describing instruction latencies and resource usage.
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Apart from that, some further information like function calling conventions, C
data type sizes, and alignment are required. The CGD description is generated from
the LISA description model.

To handle the enormous complexity, system level simulation is absolutely neces-
sary for both performance evaluation as well as verification in the system context.
The earlier design errors or performance shortcomings are detected in the design
flow, the lower the cost for redesign cycles becomes. The automatically generated
LISA processor simulators can be integrated into various system simulation environ-
ments, such as CoWare convergenSC or Synopsys CoCentric System studio. Thus,
modules provided by different design teams or even third parties can be combined
easily.

Verification is an essential part of any processor design. Moving from one ab-
straction level down to another one the designer is required to add additional im-
plementation details for optimizations. LISATek approach reduces the verification
effort by automating large parts of the design flow from a high-level functional pro-
cessor model down to the lower level of a synthesizable hardware implementation.



Chapter 4
Embedded Processor Design

Today’s growth in markets for consumer electronics, wireless electronics, and hand-
held computing requires cost-efficient solutions that supply high performance com-
puting, energy efficiency, and programmability. General-purpose processors are
poorly suited to meet the requirements of energy efficiency and competitive cost.
ASICs are unable to provide sufficient programmability. As the result, a variety
of Application Specific Instruction-set Processors (ASIP) is emerging to meet the
requirement.

To compete with ASIC, an ASIP requires better performance/power efficiency
than a general purpose processor. To achieve this target, an ASIP must require more
parallelism in various levels, such as data level parallelism (DLP), instruction level
parallelism (ILP), and thread level parallelism (TLP) that will be depicted in this
chapter.

4.1 Specific Instruction-Set

The earliest specific instruction-set example is floating-point. Floating-point oper-
ation hardware is much more complex than integer operation. Early designed pro-
cessors can only do integer operations, and implement floating-point operation by
software emulation. Most scientific algorithms require floating-point, but emulation
implementation is too slow for them. Thus, scientific requirement drives processor
to integrate floating-point operations.

Most multimedia applications use fixed-point operations. Due to the limitations
of human eye and ear sensitivity, some precision loss on image pixels and audio
samples is acceptable. For example in a DCT algorithm, using 12-bit fixed-point to
represent a cosine value is good enough for most image quality requirements. Fixed-
point operation can be simply an integer arithmetic operation and a shift operation.
In typical integer addition and multiplication operations, since the most-significant
bits (MSB) are truncated when the result has an overflow, the following shift op-
eration will get a wrong value. Thus for multimedia applications, the fixed-point
operation applied should be able to preserve MSB.

Multiply-Accumulate (MAC) is a key operation in Finite Impulse Response
(FIR) filter function. Some DSP processors implement MAC with automatic looping

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
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and index increase, which can process �(a[i] × b[i]) as a single operation. Since
MAC is composed of multiplication and addition operations, it is always the longest
path in an ALU. In a RISC architecture that requires all instructions to be executed
in one cycle, MAC becomes the bottleneck. Recent design utilizes VLIW wide-issue
capability to implement MAC and remove the long critical path.

Division operation requires subtraction and shift operations for each divider bit,
thus the path delay for a 32-bit division is extremely high. Many general purpose
processors use floating-point unit to compute integer division. Rare fixed-point em-
bedded processor supports division operation. In that case, a compiler is used to
convert division into a loop with subtraction and shift operations to reduce hardware
cost.

Saturation arithmetic is useful for multimedia applications. When two image
pixels or audio samples are mixed, their intensions are added. By typical integer
addition, mixed white pixel will become light gray when its MSB is truncated. To
avoid the wrong result, software should check all pixels and keep the mixed inten-
sion as a maximum white value when overflow occurs, which is very heavy work.
The saturation arithmetic instructions are thus implemented in hardware to saturate
the overflow/underflow result to an upper/lower bound to reduce the error.

Permutation operations are helpful in many algorithms. Datatype conversion is
the basic permutation operation in all processor. Reverse and butterfly ordering is
widely used in FIR and FFT. Many symmetric-key cryptographic algorithms such
as DES and AES are based on complex permutation. The selection of permutation
instructions to implement is very different between embedded processors.

4.2 Data Level Parallelism

Vector supercomputer was developed in the 1960s to increase the scientific com-
putation speed. Since scientific program codes contain many one-dimensional vec-
tor and two-dimensional matrix operations, using a vector processor can perform
these operations simultaneously to improve performance. A vector processor is also
called a single-instruction multiple-data (SIMD) machine because it can apply one
instruction on many data elements. Such kind of parallelism is often called data
level parallelism (DLP).

4.2.1 SIMD

Two main vector processing techniques will be introduced in this section. One uses
processor array; ILLIAC-IV [38] is a representative example; Another uses auto-
matic looping; a good example is Cray-1 [39].

ILLIAC-IV has 256 processing elements (PEs), which are partitioned into four
groups; each group contains sixty-four PEs and one control unit (CU). The sixty-four
PEs are structured as an 8×8 array as shown in Fig. 4.1. Each PE can communicate
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to its four neighbors by a data routing network. A PE contains a 64-bit ALU and
a 2048-word memory, each PE can only access its own local memory. CU decodes
instructions and executes conditional test and branch instructions, and can access
the whole memory array.

Assume that we want to run the following code:

for(I=1;I<=64;I=I+1) C[I]=A[I]+B[I];

To parallel process the code, data in memory should be distributed over PEs, such
that each PE owns one data element. ILLIAC-IV uses 3 instructions to perform this
code: the first instruction parallel loads data elements of A into PE accumulators,
the second instruction adds the data elements of B to the accumulators, and the third
instruction stores the contents of each accumulator into memory C. Arrangement
of data in memory becomes a primary consideration for efficiency. If array A is
allocated in a single PE, the loop should process sequentially by memory access
limitation. It occurs on a two-dimension array in which row dimension is distributed
over PEs, but the operation works on the column dimension.

Cray-1 has independent scalar and vector function units. As shown in Fig. 4.2,
eight vector registers are used for vector operations, and memory (data) elements
are loaded into vector registers before execution. Each vector register has sixty-
fourwords. The vector function unit is a 64-bit integer ALU with a smart data for-
ward path.

Using Cray-1, the above-mentioned sample code can be translated into two
vector memory load instructions: one vector addition instruction and one vector
store instruction. Data elements of A are loaded from memory into vector regis-
ter word by word. When the first element of B is loaded, it is forwarded to the
vector function unit accompanied with the first element of A from the vector reg-
ister and the vector addition can start execution without waiting B fully loaded.
That is, memory load and addition operations work in pipeline. The vector function
unit continuously generates sixty-four addition results in sixty-four cycles. While
it processes word by word, data in memory do not need special organization, and
the performance for row vector and column vector is the same, which is a benefit
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compared to the processor array architecture. Compared to a scalar processor, since
each instruction is only fetched and decoded once, the sixty-four loop iterations can
be automatically performed by the vector function unit, which saves the branch over-
head, the main waste on processor execution. Thus, the efficiency of MOPS/Watt of
a vector processor is much better than a scalar processor.

4.2.2 SWP-SIMD

Multimedia applications mostly perform low-precision data, such as 16-bit audio
samples and 8-bit video pixels. Today the ALU word size in a processor is mostly
sixty-four bits. It is a waste to compute 16-bit data using a 64-bit ALU. If the 64-bit
ALU can compute four 16-bit data simultaneously, its throughput can be higher. In-
struction set architecture (ISA) with this feature is called a subword-parallel single
instruction multiple data (SWP-SIMD) processor [2]. It works as an SIMD vector
machine, but performs in a single register. Many low-precision data are packed into
a superword which occupies a register, and each element is called subword which
only occupies part of a register. This feature is also called multimedia extension for
it is specified for multimedia applications. MAX-1 is the first SWP-SIMD ISA for
HP PA-RISC processor [40], introduced in January 1994. Other famous examples
are MMX/SSE for Intel IA-32/64 [41, 42], VMX/AltiVec for IBM PowerPC [43],
3DNow! for AMD K6 [44], VIS for SUN SPARC [45], and MDMX for MIPS
processors [46].

PLX [1] is an SWP-SIMD ISA developed by Professor Ruby Lee at Princeton
University. The main feature of PLX is that it is native to SWP-SIMD. Its vector
function unit supports 8/16/32/64 subword widths, and its scalar function unit is
just the 64-bit subword subset in the vector unit. A typical multimedia code contains
many scalar operations, such as loop counter or memory index, which disable vector
pipeline to execute smoothly. A native SWP-SIMD can execute scalar and vector
operations in the same core to reduce scalar-vector communication overhead.

Power-aware is a benefit obtained from the SWP-SIMD feature. The term power-
aware is often ascribed to any system which design has been sensitive to energy
consideration; its connotation in recent work has been shown in [47]:

(1) The system allows its clients to adjust the expected quality and also the tolerable
latency/throughput constraints.

(2) When such adjustments are made, the energy consumption is expected to vary
accordingly i.e., higher energy dissipation is tolerated by clients for higher qual-
ity (or lower latency) and vice-versa.

There are many topics to work on power/performance trade-offs. On the circuit
level, since the CMOS power consumption is proportional to voltage square, the
core and bus buffer supply voltages usually have to be reduced to save power. On
the logic level, gated clock when datapath is not working can reduce unnecessary
logic switching power. On the system level, the supply power of a non-active core
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can be turned off. The disadvantage is its requiring a long stable time to turn on
again, which may cause real-time request failure.

On the algorithm level, datapath width adjustment can get the most power budget.
For example, if a program performing only 8-bit operations with a value range of
−128 to +127 is implemented in a 32-bit ALU, the register switching of bits 8 to 31
are meaningless and the power is thus wasted. Most applications contain variables
of different widths. An MPEG-2 video decoder [48], for example, contains fifty
1-bit Boolean variables, nine 8-bit char variables, thirty-nine 16-bits short variables,
seventeen 24-bit variables, and eighty-two 32-bit variables. If implemented in a
16-bit datapath, the 24-bit and 32-bit operations cannot be completed in one cycle
and the performance will be degraded, but the power spent on fewer bit operations is
saved by the reduction of meaningless switching. This example showed that when
the datapath width is larger than 28 bits, the performance increases little, but the
power and area are still increased linearly, so the best power-efficient design occurs
at 28 bits.

Most processor-based system design is unable to change the datapath width, or
they need to change instruction set architecture to adjust datapath width [49], which
needs extra cost for decoding the second instruction set. PLX’s native subword-
parallelism design extends the flexibility to change datapath width during software
execution, which can improve the computation power efficiency.

Figure 4.3 demonstrates the subword parallel processing concept. Eight 8-bit data
are packed into one 64-bit word. They are processed by one padd instruction, taking
only one cycle. With the appropriate subword boundaries, this technique results in
the parallel processing of subwords. The degree of parallelism is within an instruc-
tion and depends upon the size of the subword.

Figure 4.4 shows a logic level power-aware concept. Figure 4.4(a) is a 4-bit
Wallace-tree pipeline adder. The maximum delay (T) is two half-adder delays at
stage 4. The highest performance is 1/T operations per second. When the system
requires only half of the performance, the clock frequency can reduce to 1/2T, and
the power consumption is also reduced to half. Now the clock cycle 2T is much
larger than the maximum delay, T. Figure 4.4(b) changes the pipeline registers of
Stage 1 and Stage 3 into buffers, the critical path delay is one full-adder plus two
half-adders plus register setup time, it is a little lower than 2T. The combinational
logic propagation power is increased because it is more complex, but register power

Fig. 4.3 Subword-parallel
execution
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is reduced. Using well-designed combinational logic, the total power consumption
can be reduced greatly. Figure 4.4(c) extends the adder to support subword parallel.
Compared to Fig. 4.4(a), it uses 4 extra adders, but can compute four 1-bit additions
in one stage, two 2-bit additions in two stages, or one 4-bit addition in 4 stages.
When data precision is low, higher stages can be gated to save power.

Adjusting the pipeline structure dynamically will increase the complexity of
data dependence detection. An instruction containing read-after-write (RAW) de-
pendence is caused by the use of a previous instruction result in one of the operands.
In a pipeline structure, the previous result is not written into a register file when this
instruction is executing. To solve this kind of dependence, the result has to directly
be forwarded to the ALU operand port. On a dynamic pipeline architecture, the
result may have to be forwarded from any of the four other previous stages to avoid
RAW conflict, which increases the pipeline control complexity.

Another subword-parallel ALU design is for high-performance purposes.
Figure 4.5 shows a 64-bit wide carry-select adder structure, where all the sub-
word 8-bit adders are designed to complete an addition in one clock cycle. At the
beginning, two pairs of 8-bit subword additions are computed in each 8-bit ALU,
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one with a carry-in of 0 and the other with a carry-in of 1. Then these two obtained
results are respectively stored in the two registers waiting for the select control signal
to select an addition result to output. In such way, we can have eight 8-bit precision
addition operations done in one cycle. For a 16-bit precision addition, the four mul-
tiplexer control signals “16” are high and the other “32” and “64” control signals
are low, such that the carry-out of an even byte can pass through the multiplexer
and serve as the select control signal to select the result of an odd byte, we can thus
have four 16-bit subword addition results generated at one clock cycle. For a 64-bit
precision addition, all the multiplexer control signals are high, and we can have
one 64-bit full-bword addition result generated, which datapath delay is the longest,
equal to the delay of one 8-bit adder plus those of the fourteen multiplexers. In
such design, all instructions are required to be completed in one cycle, making the
pipeline control simpler.

No register on this architecture is able to turn off, but we can reduce power supply
for lower data precision. When no 64-bit data exist in the whole application, the
actual critical path delay is the 8-bit adder delay plus six multiplexer delays, which
is about 80% of the 64-bit datapath. By CMOS theory, the supply voltage can be
reduced to get a 36% power reduction.

4.3 Instruction Level Parallelism

The SIMD and SWP-SIMD processors perform a large amount of data in one cycle.
But not all algorithms contain data level parallelism. To improve performance, a
processor should be able to execute many instructions in one cycle, which is called
instruction level parallelism (ILP).

4.3.1 SuperScalar

Cray’s CDC 6600, built in 1965, is the first superscalar processor to achieve instruc-
tion level parallelism (ILP) by dispatching straightforward instructions into multiple
functional units simultaneously and executing them in one cycle.

A scalar ALU contains many arithmetic components such as adder, multiplier
and Boolean logics. But only one component is able to work at a time. An ILP
processor allows many components to work in parallel and sometimes duplicate
ALUs with often used components to increase parallelism. An issue-logic is used
to dispatch instructions into ALUs. The actual parallelism is limited by operation
dependence. Two dependent operations cannot be issued simultaneously.

Parallelism can be improved by two techniques. Dependence removal removes
false dependences by variable rename and scalar expansion. Rescheduling moves in-
dependent operations out of dependent operations to have more operations executed
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in parallel. The rescheduling method is also called out-of-order execution, because
the operation execution order is different to that in the given code.

Superscalar processor implements the above two techniques by hardware. Per-
forming dependence removal needs a large renaming buffer. Performing out-of-
order execution needs an efficient instruction fetch buffer to get enough operations
to issue, and a retire logic to remove the executed operations.

Intel Pentium 4 [50] is a superscalar processor, which micro-architecture is
shown in Fig. 4.6. Its CISC instructions are decoded into RISC-like micro-operations
(
op). The low latency trace cache can deliver up to three 
ops per cycle for out-of-
order execution. The three ALUs can work in parallel. Two of them can only process
simple operations but have double throughput. The 128-entry renaming buffer works
as a register file for RISC-like 
ops. The register renamer maps the eight logical
IA32 registers such as EAX onto the 128 physical registers.
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4.3.2 VLIW

Very Long Instruction Word (VLIW) processor implements dependence removal and
operation rescheduling by a compiler. The hardware cost of implementing these two
techniques in a superscalar processor is high; it is not affordable for portable devices.
Since operation dependences can be determined in a program code, it can be opti-
mized by a compiler to save hardware cost. The disadvantage is that software needs
re-compilation when processor micro-architecture is changed. It is not accessible
for general purpose desktop processor; it is only feasible for embedded processor.
A compiled instruction contains many operations like a long horizontal microcode.
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Typically a VLIW instruction is a pack of many scalar instructions, which brings its
name VLIW.

TI TMS320C6 DSP is a VLIW processor [51]. It contains 8 execution units and is
partitioned into two clusters. Each cluster contains four execution units named as M,
L, S, and D. Multiplication operations can only be executed in the M units. Logic,
shift and memory operations can only be executed in the L, S, or D unit. Arithmetic
operations can be executed in the L, S, and D units. At most 8 operations can be
executed in parallel.

Figure 4.7 shows a generic VLIW datapath architecture. In designing VLIW pro-
cessor, the first challenge is fan-out. When 8 ALUs are working, each ALU needs to
get two operands from a register file and write one result into the register file, thus
the register file requires 16 read ports and 8 write ports. Figure 4.8 shows a register
file structure. When the number of access ports doubled, the routing area is squared.
That is, the register file will dominate chip cost in both area and speed, which is not
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what we want. This problem is similar to the load/store unit design, where allowing
many ALUs to access memory will increase cache complexity.

The bypass logic is another problem. On a pipelining RISC architecture, ALU
result is buffered in a temporal result register before it is written into the register file.
To avoid blocking on continuous read-after-write dependent instructions, a bypass
logic is used to forward ALU result in a previous instruction to the ALU input port
or operand register in a current instruction. Figure 4.9 shows the bypass logic on a
2-issue VLIW processor. Each ALU result needs to be forwarded to all ALU input
ports and operand registers, thus the eight ALUs need thirty-two paths. A large
fan-out induces a long wire delay.

To reduce the fan-out problem, a many-issue VLIW processor is usually clustered
as shown in Fig. 4.7, where a register file and ALU are partitioned into clusters.
The communication between clusters is implemented on special instructions that
perform on a specific ALU. Only one load/store access is allowed to a cluster to
reduce memory complexity.

Control flow handling is more important for VLIW processor design. A control
flow induces a conditional branch, which may cause instruction stream change. On
a VLIW processor, when two ALUs generate different branches, which will be the
next instruction to execute?

A simple way is to avoid packing multiple branch operations in one cycle, but
it will degrade performance. The popular solution is using predication execution,
or so-called if-conversion. This technique changes control flow into data flow by
introducing a condition expression to be the third operand of the operation. Then
the instruction stream can be in one line, which will be described in Section 5.1.4
in more detail. The implementation of predication requires extra flags to store the
comparison result, which will be passed to ALU as the third operand.

On a pipelining architecture, branch induces pipeline re-fill that wastes compu-
tation power. On a VLIW processor, a pipeline stage contains many operations,
thus the waste becomes higher. A solution is using unbundled branch technique.

S1 loadi R1,1         | loadi R2,2 
S2 add   R3,R2,3   | nop 
S3 sub   R4,R1,R3 | nop 
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Fig. 4.9 Bypass path in a 2-issue VLIW
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S1: bool P1=(R1==R2)
S2~S4: independent instructions 
S5: if (P1) PC=loc1 
…
loc1:
S6: ADD R3,R4,R5 

S1: CMP  R1,R2,P1 
S5: P1 JMP  loc1 
S2: … 
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Fig. 4.10 Unbundled branch

Figure 4.10 shows this technique. Figure 4.10(a) is a traditional RISC code. After
the branch instruction S5 executed, the pipeline has to be cleared and refilled by S6.
Figure 4.10(b) is a code using unbundled branch. At T = 5, when the comparison
operation in S1 is executed, if the register P1 is set, the code will jump to the target,
where S6 is just beginning its instruction fetch stage (IF), but note that many other
pipeline stages in S2–S4 are not cleared. If they are independent instructions, S2∼S4
in the pipeline can continue their executions without wasting time. Then, when S5
reaches T = 9, the program counter (PC) is set for S6 execution. That is, unbundled
branch technique needs to insert independent instructions by the compiler and the
number of instructions inserted depends on the depth of the pipeline stages.

4.3.3 NISC

No Instruction Set Computing (NISC) processors [52] are the successor of VLIW
processors with a much simpler hardware. In contrast to the VLIW instruction
words being mapped to the microcode level, the NISC instruction words are directly
mapped to the datapath control words. It provides more flexibility and opportunities
for both horizontal and vertical controls of the operations in the processor datapath.
The NISC instruction word size is larger than VLIW, which does not favor off-chip
memory bandwidth, but is feasible for SoC.

Complex Instruction Set Computing (CISC) was necessary in an early age. Since
the memory capacity was small at that time, designers tried to improve code den-
sity by constructing complex instructions doing compound functions at one time.
Each complex instruction took several clock cycles, and datapath control words for
each clock cycle were stored in a much faster micro program memory (
PM). The
concept of micro programming allowed emulation of any instruction set and con-
struction of specialized instructions, while speeding up the execution. An old 8086
code can be executed on a Pentium 4 processor as shown in Fig. 4.6 to get a 1000X
speedup without any modification.
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The design philosophy of Reduced Instruction Set Computing (RISC) emerged
in the early 1980s [53]. All instructions in a RISC are simple and can be executed
in one clock cycle. This allows datapath to be efficiently pipelined. The 
PM was
replaced with a decoding stage that follows the instruction fetch from program mem-
ory (PM). Since instructions are simpler, a RISC needs more code for the same work
and the size of the program memory is larger.

RISC is defined as a processor with most of these characteristics [54]:

(1) Instructions are conceptually simple;
(2) Instructions are of uniform length;
(3) Instructions use one (or very few) instruction format(s);
(4) Instructions use one (or very few) addressing mode(s);
(5) The instruction set is orthogonal;
(6) The architecture is a load-and-store architecture;
(7) All instructions are register-to-register operations;
(8) Almost all instructions execute in one clock cycle;
(9) It has a large number of general-purpose registers; and

(10) The architecture has hard-wired control unit.

The idea of utilizing RISC technology for a CISC processor is brought from
the Intel P6 processor project at early 1990s while the debate of RISC/CISC was
still boiling. Most RISC technology benefits can be imported into a CISC design
by using the simplified philosophy listed as follows: (1) build hardware in which
almost all of the operations are simple and fundamental operations, (2) operands are
simple data kept in registers or fetched from/to memory by the load/store operations.
Intel breaks the lengthy CISC instructions into simpler micro-operations that more
closely resemble RISC instructions. The micro-operations are then fed into a core
that takes advantage of the latest RISC innovations.

Both CISC and RISC spend more logics to maintain incoming instruction stream,
especially the branch prediction. A branch operation needs to refill pipeline stages
before execution unit. A general code contains 1/7 branch operation. Thus, deep
pipeline architecture will waste much time on branching. To achieve higher clock
speed involves pipelining the micro-architecture to finer granularity. Since a branch
limits the performance of pipelining, it forces more powerful branch prediction de-
velopment. It is the main reason that the power-performance efficiency of a software
implementation is lower than the specific hardware implementation.

The NISC instruction word is directly sent to the datapath which does not own
any pipeline stage, thus its branch overhead is ignorable. With its simplified pro-
cessor architecture, a NISC datapath can be deeply pipelined and duplicated to
get vertical and horizontal parallelism. The components on the datapath not only
consist of computation units, but also registers and memories. It allows NISC
to process very complex operations in a cycle. Most of the power in a NISC is
spent on computation in the datapath, thus its power-performance efficiency is
close to a specific hardware implementation, but keeping better software flexibility
(Fig. 4.11).
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Fig. 4.11 Processor architectures

4.4 Thread Level Parallelism

Multitask OS improves CPU utilization by thread level parallelism (TLP), where
a task is decomposed into many threads that can be executed concurrently. Using
multi-threading, most I/O latency can be overlapped with other threads, greatly im-
proving the system performance.

4.4.1 Multi-Threading

In general, a work spends much time on waiting peripheral I/O response. Since
peripheral I/O communication is much slower than the CPU speed, direct memory
access (DMA) is often used to handle peripheral I/O communication. When a CPU
wishes to send a message to peripheral I/O, it puts data in memory and calls DMA
to transfer the data. After transmission, DMA will generate an interrupt to inform
the CPU. During transmission, the CPU is idling.

Threads are a way for a code to split itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. Assume that an OS has picked a thread to
execute once. Sometimes, when this thread is waiting for I/O, or when it has been
run for such a long time that a timer interrupt occurs, OS will save its program status
in memory and pick another thread to execute. By multi-threading, I/O latency is
overlapped with other threads under execution.

Memory stall is the major barrier in processor performance. Video and image ap-
plications are memory-dominant. That is, much time is spent on waiting for memory
response. Multitask OS cannot switch thread execution when memory stall occurs,
because thread switching requires it to save its status into memory, which causes
access conflict in the memory.

Simultaneous multi-threading (SMT) [55], or hyper-threading [56] techniques
were proposed to solve memory latency problem through hardware-supported TLP.
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For example, a two-thread SMT processor has two program status words (register
file, ALU flag and program counter) and two instruction fetch buffers. These two
instruction streams are alive simultaneously. The issue stage selects one instruction
to issue into ALU from the two instruction streams once every time. Only when both
instruction streams are stalled by memory waiting, ALU is kept busy. Multi-task OS
picks two threads for the two instruction streams at once. When a thread needs to
wait for I/O, OS saves its program status word into memory and picks a third thread
for this instruction stream. From the view of OS, SMT works as a shared-memory
multi-processor.

4.4.2 Multi-Processor

A multi-processor core used in an embedded system is now very common. As shown
in Fig. 2.2, most embedded system contains at least a general purpose processor and
a DSP. In these systems, each processor is a standalone design, run on its own task
scheduler, or even on its own OS.

There are two multi-processor architectures, message-passing and shared-
memory, distinguished by their communication method.

In a message-passing architecture, each processor is working alone. Each mem-
ory and peripheral I/O is controlled by only one processor. Processors are connected
by a type of communication channel or network. Communications between proces-
sors are explicitly described in software. In a shared-memory architecture, at least
one memory is accessible by two processors. All components are connected by bus;
every processor can be a bus master. Communications between processors can be
explicit or implicit.

The choice of architecture depends on performance profiling. A memory can only
serve one processor at a time. When two processors access to the shared memory
simultaneously, one processor should be stalled by bus arbiter. If only some data
are shared by two processors, message-passing architecture will have much better
performance than shared memory. On the other hand, if a lot of data is shared,
such as a big picture, a single memory used to store this picture can save cost and
communication time.

In the shared-memory architecture, an important problem that hardware needs to
solve is cache coherence. A high performance processor always needs a cache to
buffer recently-used memory items to reduce memory latency. On a shared-memory
multi-processor, a memory location may have multiple copies in these caches. If
one processor modifies the memory content, but the result is still in its cache and
not written into memory yet, other processors that read the content in this memory
location will get a wrong and not up-to-date value. There are two methods to solve
this problem. One method sets the shared-memory address area as non-cacheable:
processors only cache its local memory. Another method is invalidation: whenever a
processor writes to shared memory, all other processors should invalidate the content
in their cache and reload it from shared memory when they need to refer to the value.
The invalidation can be implemented by the following strategy: every processor is
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always monitored on the bus; when a write transition is issued by other processor,
the relative cache is set invalid.

Multi-processor can be heterogeneous having different types of processors in-
side, or homogeneous with identical processors. Programming for a heterogeneous
multi-processor system is difficult. Even by the toolset such as OMAP as described
in Section 2.1.1, many things, such as task partitioning, have to be done manually.

In SoC, more and more embedded systems use homogeneous multi-processors.
On a homogeneous shared-memory multi-processor, a single OS can schedule tasks
like an SMT processor. The purpose of using a heterogeneous multi-processor is
to handle different types of operations. ASIP breaks the barrier by extending its
instruction-set with specific instructions. Thus, an ASIP can process both DSP ap-
plication and control-oriented application well. Intel XScale and PLX are processors
designed for this purpose. XScale is based on ARM processor and adds many fea-
tures for multimedia. For example, it has saturation arithmetic instructions, MAC
instructions, and 40-bit accumulator for long-tap FIR.

In a multi-processor system, inter-processor communication bandwidth domi-
nates system performance. Many communication models had been introduced for
high-end multi-processor supercomputers, such as Hypercube, mesh, or linear array.

4.4.3 Massively Parallel

3-D graphics require massively parallel computing. A 3-D object is modeled by
many small triangles (or polygons). When this object rotates, all the triangles will
rotate by the same angle. 3-D graphics need to compute thousands of polygon op-
erations in parallel. Some high-performance massively-parallel processors had been
introduced for gaming machines.

General Purpose Graphic Processing Unit (GPGPU) [57] is a successful massi-
vely-parallel processor. It is widely used in desktop PC to accelerate graphic compu-
tation. Like ILLIAC-IV, it is composed of many simple processing units optimized
for data processing, and shares a control unit to maintain control flow. All inter-
processor communications are handled by a compiler on a banked shared mem-
ory. Figure 4.12 shows the nVIDIA GeForce 8800 architecture [58] as an example
GPGPU.

GeForce 8800 is composed of eight Texture Processor Clusters (TPC). Each TPC
contains a texture memory which is a global memory shared by the two Streaming
Multiprocessors (SM). Each SM contains eight Streaming Processing Units (SPs)
and two Special Function Units (SFUs). A control unit contains a cache and a dis-
patcher to issue operations to these units. An SM contains a large amount of 8192
registers. Compiler dispatches these registers to threads such that context switch
effort is minimized. GeForce 8800 can execute 12288 threads simultaneously.

As shown in Fig. 4.13, the MIT RAW processor is an early implementation
of Network-on-Chip (NoC) [59] and the Intel 80-core tera-flops research chip is
another recent example [60]. RAW processor is built of replicating tiles; each con-
tains a MIPS R4000-like general purpose processor and a programmable router.
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Processor networks are used in supercomputers. In off-chip networks, the num-
ber of links is determined by the pin-out limitation. Many network topologies such
as hyper-cube or star-network have been introduced considering the interconnec-
tion cost and broadcast efficiency trade-off. In an on-chip network, this limitation
is absent. The topology choice is determined by the wiring physics, because in the
nano-meter era, wire delay will exceed gate delay. A long link will take many cycles
to transfer. In the shared-bus architecture as shown in Fig. 2.2, the clock skews be-
tween a shared memory and the processing units are unable to balance. A 2-D mesh
architecture with shorter interconnection that only propagates data to its neighbor
in one cycle becomes necessary for a high-performance many-processor system.
On a mesh-based NoC, synchronization cost between two far-away processors is
high. Streaming or systolic array programming is more suitable for such mesh-based
NoCs [61]. On a mesh-based many-processor system, networking strategy becomes
the key factor in system performance rather than processor core. NoC is becoming
an important research topic for future tera-scale chips.



Chapter 5
Parallel Compiler

Parallel processing had been developed in 1960s on some high-speed vector pro-
cessors such as ILLIAC-IV and Cray-1 to increase the scientific computation speed.
Since scientific codes contain many one-dimension vector and two-dimension ma-
trix operations, using a vector processor can perform these operations simultane-
ously on its processing elements. Since then, many parallel compilation techniques
have been developed. Some of the parallelization techniques related to the design of
a compiler for our PLX processor will be presented in this chapter.

5.1 Vectorization

A vector is represented as A[begin: end: stride]. The array index is ex-
tended to 3 literals to represent the vector operation performing on element begin,
begin+stride, begin+2∗stride, . . ., end. When stride is 1, it can be
omitted. For example, the following code:

for(I=1; I<=64; I++)C[I]=A[I+1]+B[2∗I−1]

can be represented as a vector addition

C[1:64] = A[2:65] + B[1:127:2]

In addition to scientific computation, people wish to utilize the vector ability in
more fields. To optimize a general algorithm into vector needs in-depth analysis.
Vectorization technique for sequential code has been widely studied in 1970s. Vec-
torization technique transforms nested loops into vector by dependence analysis,
dependence reduction, and performance improvement.

5.1.1 Dependence Analysis

If there is no semantic difference between executing a loop in a sequential order and
executing it as a vector operation, this loop is able to parallelize. A counter example
is shown in the following code

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
DOI 10.1007/978-1-4020-9623-5 5, C© Springer Science+Business Media B.V. 2009
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for(I=1; I<=64; I++)A[I+1] = A[I]+B[I];

On executing the code as a sequential loop, we have the following result:
A[3]new = A[2]new + B[2]old = A[1]old + B[1]old + B[2]old. On executing it as a vec-
tor operation: A[2:65:1] = A[1:64:1]+ B[1:64:1], the result will become A[3]new =
A[2]old + B[2]old, which is different to the result obtained by executing it as a
sequential loop; thus the loop is unable to parallelize.

In above example, the operand of the second iteration uses the result of the first
iteration A[2]new. In other words, the execution of the second iteration is dependent
on the first iteration. Two statements can be executed in parallel only when there is
no dependence between them. The statements of the first iteration and the second
iteration are dependent, so they cannot be executed in parallel as a vector.

Dependence can be classified into the following four types [62]:

(1) Flow dependence, or Read after Write (RAW) dependence. If one operand of
the second statement is the result of the first statement, the second operation
should wait until the first statement finishes.

(2) Anti dependence, or Write after Read (WAR) dependence. If the second state-
ment overwrites one operand of the first statement, the second statement cannot
execute earlier than the first statement to avoid change of operand value.

(3) Output dependence, or Write after Write (WAW) dependence. If two statements
write to the same destination, they cannot execute simultaneously to avoid hav-
ing an ambiguous result.

(4) Input dependence, or Read after Read (RAR) dependence. When two state-
ments use the same operand, they are said having input dependence.

Input dependence is not an actual dependence because the statement execution
is not dependent on each other. Input dependence is used to group the statements
closer such that we can reuse the same operand from the register to save memory
load time.

The anti and output dependences can be removed by variable rename technique,
thus they are also called false dependences, and only the flow dependence is called
a true dependence.

Therefore, the loop-carried flow dependence actually limits vectorization. To
precisely determine the loop-carried flow dependence, we can analyze the ar-
ray index relationship of the statements in a loop [63]. Consider the generalized
expression:

for(I=1; I<=N; I++)A[a+b∗I]= f (A[c+d∗I])+g(I);

Where g(I) do not use array A. Relative to the above example, a = 1, b = 1,
c = 0, d = 1, g(I)=B[I] and f (A[x]) = A[x]. To analyze a loop-carried flow
dependence is to check whether the result A[a + b∗x] is used as an operand A[c +
d∗y] at later iteration. The loop-carried flow dependence exists if and only if there
exist integers x and y, 1 ≤ x < y ≤ N , such that a + b∗x = c + d∗y.
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By number theorem, the equation a + b∗x = c + d∗y has integer solution x, y if
and only if a − c is multiple of GCD(b, d), or GCD(b, d)|(a − c), where GCD is the
Greatest Common Divisor. From the above example, GCD(b, d) = GCD(1, 1) = 1,
a − c = 1 − 0 = 1, GCD(b, d)|(a − c) is true.

For a loop that contains many statements, we should check whether the statement
result is used as operand by any other statement at later iteration or not, that is, we
should check the GCD(b, d)|(a − c) for all statement pairs.

The single loop dependence check can be extended to nested loop. For example,
given the following sample code:

for(K=1; K<=L; K++)

for(J=1; J<=M; J++)

for(I=1; I<=N; I++)A[a0+a1
∗I+a2

∗J+a3
∗K]= f (A[b0+b1

∗I+b2
∗J+b3

∗K]);

the dependence checking is performed from the innermost loop to the outmost
loop. At a specific outer loop J = x2 and K = x3, the innermost loop con-
tains loop-carried dependence if and only if there exist 1≤x1≤N, 1≤x2≤M, and
1≤x3<y3≤L, such that a0+a∗

1 x1+a∗
2 x2+a∗

3 x3 = b0+b∗
1 x1+b∗

2 x2+b∗
3 y3, or (a1 −

b1)∗x1 + (a2 − b2)∗x2 + a∗
3 x3 − b∗

3 y3 = b0 − a0. The integer solution exists when
GCD(a1 − b1, a2 − b2, a3, b3)|(b0 − a0). Similarly, the dependence check equation
for the second loop is GCD(a1−b1, a2, b2, a3, b3)|(b0−a0), and GCD(a1, b1, a2, b2,

a3, b3)|(b0 − a0) for the outmost loop.

5.1.2 Loop Normalization

By number theorem, the above GCD test for dependence analysis works only when
the loop index begins from 1, ends at a number N, and increases by 1. General loop
that does not satisfy this constraint needs to normalize.

Given the following code:

P=10;

for(J=0; J<100; J=J+2)A[P++]=A[2∗ J ]+J ;

by performing analysis on the loop argument, we can replace the loop index J to a
new index K, that is, J = 2∗K − 2, and change the loop index dependent variable P
to P = K + 9. The loop is transformed into:

for(K=1; K<=50; K++)A[K+9]=A[4∗K−4]+(2∗K−2);

Now this loop is normalized and dependence check can be performed.
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5.1.3 Loop Transformation

Consider the following code:

for(J=1; J<=M; J++)

for(I=1; I<=N; I++)A[I][J]=A[I−1][J];

This code fills the whole array with row 0 in an order of column by column, and
the inner loop contains loop-carried dependence. If the code is transformed into:

for(I=1; I<=N; I++)

for(J=1; J<=M; J++)A[I][J]=A[I−1][J];

By exchanging the two loops, the new code works row by row. The two results
are the same but the later row-wise order can work more efficiently in a vector
machine.

Loop transformation procedure sequentially selects a pair of loops which is legal
to apply a transformation, and check its dependence by GCD test as described above.
If more than one solution is available, the performance or data locality gain is used
to help decision making.

Loop transformation is the key technology to improve parallelism and data local-
ity. Many transformations had been introduced [64, 65]. For example, loop skewing
helps on systolic array algorithms to utilize memory; loop interchange and reversal
helps on linear algebra that contains dense matrices.

5.1.4 Dependence Removal

Instruction Level Parallelism can be improved by removing false dependence. The
techniques include variable rename, scalar expansion, node splitting and control
flow conversion. The following code is used to explain.

for(I=1; I<=N; I++) {
S1: v=A[I]+B[I];
S2: v=v∗C[I];
S3: C[I+1]=v+I
S4: D[I]=D[I−1]+D[I+1] + 2;
S5: if(E[I]>F[I])
S6: R[I]=E[I]−F[I];
S7: elseR[I]=E[I]+F[I];

}
S1 and S2 are outputs dependent on variable v that restricts S1 vectorization. If

variables v from the result in S2 and the operand in S3 are renamed to w, the output
dependence is removed. This technique is called variable rename. The lifetime of
a local variable starts from its value settled, thus renaming it as a new variable will
not cause semantic differences.
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S1 contains loop-carried output dependence to itself on variable v; this depen-
dence disables S1 to vectorize. Renaming variable v to v[I] removes this depen-
dence. This technique is called scalar expansion for it expands a scalar variable into
an array. The disadvantage is that it needs to allocate more memory.

S4 contains a loop-carried flow-dependence, where D[1] is modified at the sec-
ond iteration and then loaded at the second iteration by D[I−1]. S4 contains 2 ad-
ditions, one is vectorizable. The non flow-dependent part D[I+1]+2 can be lift to
a new statement, and store its result on a new variable T [I−1], then use T [I−1] to
replace the non flow-dependent part in the original statement. After that, the new
statement becomes vectorizable. This technique is called node splitting. The index
I−1 of the new variable T is aligned to the flow dependence part D[I−1] such that
the data shift which is required for ILLIAC-IV array architecture can be performed
in parallel.

S6 and S7 have control dependence on S5. The program counter (PC) value set
by S5 conditional branch operation is the address of S6 or S7, which will depend
on the S5 comparison operation result. It causes the program counter value become
ambiguous when all iterations of S5 are executed simultaneously. In other words, S5
has loop-carried output dependence on program counter. To avoid program counter
ambiguity, conditional branch operation should be removed. In ILLIAC-IV, each PE
contains a mode register that can disable the current instruction execution. When a
PE is disabled, the relative result keeps no change. The conditional branch execution
can be changed to execute all statements with proper vector mask. A new Boolean
array is added to store the S5 comparison result. The Boolean array (1-bit for each
element) is sent to the mode register or vector mask register when S6 vector exe-
cuting, and its complement is sent when S7 vector is executing. The execution with
mask expression works as a three-operand one-result operation, the three operands
are the original two ALU operands plus the vector mask; such control flow conver-
sion [66] technique changes control dependence into data dependence.

The result after dependence removal is shown in the following code:

for(I=1; I<=N; I++) {
S1: v[I]=A[I]+B[I];
S2: w=v[I]∗C[I];
S3: C[I+1]=w+I;
S4a: T [I−1]=D[I+1]+2;
S4b: D[I]=D[I−1]+T [I−1];
S5: V M[I]=(E[I] > F[I]);
S6: R[I]=(V M[I])?(E[I]−F[I]);
S7: R[I]=(∼ V M[I])?(E[I]+F[I]);

}

5.1.5 Strongly Connected Components

Above transformation can be performed more efficiently by applying graph theorem
on the dependence graph.
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Fig. 5.1 Dependence graphs:
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As defined, a dependence graph [67] is a directed graph, whose nodes represent
code statements, and arcs are dependences. Figure 5.1 shows the dependence graph
of the example in Section 5.1.4.

On a directed graph, a strongly connected components (SCC) is defined as: for
every pair of nodes u and v if there is a path from u to v and a path from v to u. An
SCC can be found by using depth-first search technique [68].

In geometric view, an SCC contains nodes that form a circle. A circle in a de-
pendence graph means that there are loop-carried dependences on these statements,
which are not vectorizable. A single-tone SCC is defined as an SCC having only one
node and no arc to itself; thus, it is vectorizable.

5.1.6 Loop Distribution

If we treat an SCC as a single supernode, the arcs in a dependence graph will have all
a forward direction. The loop can be partitioned into many sub-loops on a forward-
only path that will not make a semantic difference. All SCCs have to be changed
into independent loops, and the original loop headers have to be distributed to these
new loops. A single-tone SCC can be directly transformed into a vector. The result
of the above example then becomes:

S1: v[1:N]=A[1:N]+B[1:N];
for(I=1; I<=N; I++) {

S2: w=v[I]∗C[I];
S3: C[I+1]=w+I;

}
S4a: T [0:N−1:1]=D[2:N+1:1]+2;
S4b: for(I=1; I<=N; I++)D[I]=D[I−1]+T [I−1];
S5: V M[1:N]=(E[1:N] > F[1:N]);
S6: R[1:N]=(V M[1:N])?(E[1:N]−F[1:N]);
S7: R[1:N]=(∼V M[1:N])?(E[1:N]+F[1:N]);
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5.2 Simdization

A subword-parallel SIMD processor has more restrictions than a vector machine.
For example, a subword-parallel SIMD core is restricted on memory access. Given
the following code:

for(I=1; I<=64; I++)C[I][I]=A[I][I]+1;

The memory items are discontinuous. To process above example, PLX has to load
the discontinuous memory items A[0][0] and A[1][1] by different load instructions,
and pack them into one register to process addition instruction together. While mem-
ory access latency is very long, the addition of A[0][0] can finish when waiting
A[1][1] to be loaded in a sequential execution scalar processor. Packing the opera-
tions would not improve performance, but increase the pack/unpack overhead.

When vector items are continuous, subwords can be loaded together by one load
instruction, and memory access count can be reduced. It induces extra effort to han-
dle neighboring data in a subword-parallel SIMD mode.

5.2.1 Control Flow Conversion

Control flow conversion that converts if-else control into execution with mask is in-
troduced in Section 5.1.4. Implement an execution with mask needs three read ports
on a register file and three operand ports on an ALU for the extra mask operand,
and the register file write port needs to be byte writable; thus, the hardware cost is
increased. While mostly control flow will not become the performance bottleneck,
increasing hardware cost is not worthy.

A multiplexer behavior, such as R=X?A:B, can be implemented using an
AND-OR logic as R=(X&A)|(∼ X&B). The S6 and S7 statements in the example
of Section 5.1.4 can be changed to:

S6: R[I]=(V M[I]&(E[I]−F[I]))|(∼V M[I]&R[I]);

S7: R[I]=(∼V M[I]&(E[I]+F[I]))|(V M[I]&R[I]);

The two statements can be further optimized as:

R[I]=(V M[I]&(E[I]−F[I]))|(∼V M[I]&(E[I]+F[I]));

The new statement only contains basic logic operations that can execute on a
2-operand ALU. But VM[I] is one-bit length and E[I] − F[I] are subwords. Before
its execution, VM[I] has to expand into a subword size for the bitwise AND/OR op-
eration. This expansion is performed by the subword-parallel comparison operation
in S5. Subword-parallel ALU sets every bit in the related subword to 1 (as an integer
value −1) when the comparison result is true, and sets to 0 when the comparison is
false.
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5.2.2 Memory Alignment

For cost and power consideration, most RISC processor requires all memory ac-
cesses to be aligned, that is, the data loaded from memory cannot cross the 64-bit
boundary if the processor is of 64-bit length. An across-boundary access should be
split by a compiler.

Memory alignment becomes more critical when using an SWP-SIMD processor
on multimedia applications, where we are asked to pack the memory components
into one superword to access together. Although each component does not cross the
boundary, the packed one may cross. For example on processing an RGB24 format
picture, the packed element is 24-bit (8-bit for each of the Red, Green and Blue
components), the third element will cross the 64-bit boundary. Another example is
Motion Estimation. This algorithm shifts a search window one pixel at each itera-
tion, making most reference frame accesses misaligned.

Current technology handles misaligned vectors as a stream [69]. Registers are
used for each vector as a stream buffer. Vector elements are collected in the registers
and shifted to proper aligned position. Figure 5.2 shows the concept. Assume that
the data precision is 16-bit, a vector begins from w1, and the vector length is 4.
Loading 64-bit from w1 will cross the 64-bit boundary. To avoid the misalignment
problem, Vload instruction loads two words from w0 and w4, and use Vpermute
instruction to combine the loaded words. The second word is kept in a stream regis-
ter for the following vector.

Operands of a vector equation may have different stream shifts. As the following
example shows:

C[2:66] = A[1:65] + B[3:67];

Using the above policy, both streams A and B have to left shift 1 and 3 positions
respectively, and the addition result has to right shift two positions. If they have to
be aligned to stream C, stream A has to right shift one position and stream B left
shift one position, saving one shift operation.

By above discussion, many policies are possible to handle the stream shift.

(1) Zero Shift: It is the same as Fig. 5.2. This policy shifts each misaligned load
stream with an offset of zero, and shifts the store stream from offset zero to the
alignment of the store address.

Fig. 5.2 Load vector by
streaming
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(2) Eager Shift: This policy shifts each load stream directly to the alignment of the
store stream.

(3) Lazy Shift: This policy pushes the shift towards the root of the expression tree
as close as possible. And

(4) Dominant Shift: This policy shifts to the most frequent alignment position in
equation.

5.2.3 Permutation Optimization

Data length conversion can also be handled in streams [70]. When the variables in a
statement have different precisions, the load streams have to be unpacked with the
largest precision, and the result has to be packed with the same precision as the store
variable.

While the subwords of an SIMD instruction are packed into a register, each sub-
word cannot be easily moved alone. In order to unpack four 16-bit subwords in a
register with a 32-bit precision, the first subword should right shift 16 bits and the
second subword right shift 32 bits to combine into a new register; the third subword
is left shifted 16-bit and combined with the forth subword. Totally, 3 shift and 2
combine operations are needed, without including the sign extension.

Many multimedia algorithms themselves contain permutation, such as butterfly-
order on FFT, or average/difference of two audio channels on MP3. Efficiently han-
dling permutation is not easy. Figure 5.3 shows two implementations of a simple
example in MP3 encoder, which calculates the average and difference of the left
and right channel samples.

The left channel is the even parts of the audio sample array, and the right chan-
nel is its odd parts. The results should also be interleaved into a one-dimension
array. Figure 5.3(a) first left shifts samples to a stream aligned on the right channel,
then calculates its average and difference, and packs them into the result register.
Figure 5.3(b) loads double samples into two registers, packs their even and odd
parts, calculates their average and difference, and packs the even and odd results
into result register. The first method uses 5 registers and 5 operations to get 4 result
samples; the second implementation uses 7 registers and 8 operations to get 8 result
samples. The throughput of the second implementation is higher, but it needs more
registers, a tradeoff in optimization. Optimizing a code with the fewest permutation
instructions can be formulated as a multi-cut problem which is NP-hard [71].

Fig. 5.3 Interleaved
average/difference
implementations
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5.2.4 Subword Fusion

General software contains many non-vector operations. Packing them into a super-
word to process together may increase performance. When addition and subtrac-
tion operations are adjacent, negating the subtraction operand and adding them in
subword-parallel can improve performance.

MIT University first introduced the concept of fusioning these operations [72].
They used a heuristic-based two-cluster partitioning algorithm. Instructions are par-
titioned into scalar and vector parts. One instruction is moved from the scalar part
to the vector part once, and the vector part is re-packed to find the minimum cost.
The cost contains pack/unpack overhead.

Vienna University extends the fusion on addition/subtraction pair to increase
SIMD utilization [73]. They use depth-first search based sorting method with
chronological backtracking to discover SIMD style parallelism in a scalar code
block, aiming to reduce the overall instruction count. The addition/subtraction pair
finding is considered as reducing number of source operands.

5.2.5 Matrix Transpose

Most processors store array elements in row-wise. Column vector items are not
continuous in memory. They should be loaded independently and packed together.
Packing four column elements into a superword needs four non-sequential memory
load and three pack operations, which is a large overhead relative to the small
code size. To speedup, we can load a 4×4 array from memory into 4 registers, which
only needs 4 memory loads. Then transpose the array to get 4 column vectors. Trans-
position can be efficiently obtained by eight PLX permutation instructions as shown
in Fig. 5.4. The first stage exchanges the odd subwords in an even row and the even
subwords in an odd row by using two permutation instructions. The second stage
exchanges double words of row0/row2 and row1/row3, each takes two permutation
instructions.

Fig. 5.4 Matrix transpose in
SWP-SIMD (a) even/odd word (b) double word (c) result

5.2.6 Reduction

An extra effort to parallelize multimedia application is to convert summation. Con-
sider the code:

for(I=1; I<=N; I++)s=s+ f (A[I]),
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which contains loop-carried dependence on variable s, vectorization can do nothing.
While summation is often used in multimedia, it greatly affects the performance.
While SWP-SIMD vector length is short, the loop is able to be partitioned into
partial summations such that we can sequentially summarize these partial results at
the final stage [74], as shown in the following code:

psum[0:VL−1]=0;

for(I=1; I<=N/VL; I++)psum[0:VL−1]+= f (A[I:I+VL−1];

for(I=0; I<VL; I++)s+=psum[I];

5.2.7 Loop Unrolling

The vector length of a subword-parallel SIMD processor is short; it can be only 4
or 8 depending on data precision. While a loop iteration count is usually larger than
the short vector length, the loop has to be unrolled to fit the short vector length. The
example in Section 5.1.4 can be implemented in either one of the following two
ways (only the first S1, S3 and S3 statements are shown here):

S1: for(I=1; I<=N; I+=VL) v[I:I+VL−1]=A[I:I+VL−1]+B[I:I+VL−1];
for(I=1; I<=N; I++) {

S2: w=v[I]∗C[I];
S3: C[I+1]=w+I;

}

Or

for(I=1; I<=N; I+=VL) {
S1: v[0 : VL−1]=A[I:I+VL−1]+B[I:I+VL−1];

for(J=0; J<VL; J++){
S2: w=v[J]∗C[I+J];
S3: C[I+1+J]=w+I+J;

}
}

The first implementation unrolls the loop after loop distribution, and the second
implementation unrolls the loop before loop distribution. The second implementa-
tion allocates v in a register file, which saves the memory access time for v. As
semi-conductor technology progresses, the register access time is much faster than
the memory one; thus, the performance difference of the two implementations be-
comes significant.

The second implementation is not always better than the first implementation
when it causes data cache swap. If a loop contains many array variables that cannot
all fit in a data cache, the partial data of array A that were preloaded in cache (which
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amount is larger than the vector length) at S1 will be replaced, so it will waste more
time to reload array A from the main memory at each iteration. This will overcome
the gain of register reuse.

The optimal solution for loop distribution is to group all SCCs that are connected
by dependence in one loop, but cannot be too large to cause cache swap. The opti-
mization has to compromise between cache strategy and register allocation.

Memory access latency usually affects performance greatly. Software pipelining
[75] can be applied to further improve memory access efficiency. With software
pipelining, we can reschedule ALU instructions to fill the time when memory load is
waiting. By considering memory sequential/ non-sequential accesses and hardware
pipeline architecture, and using software pipelining, the performance can improve
34% [76].

5.3 ILP Scheduling

Instruction level parallelism (ILP) scheduling assigns operations into a 2-D slot of
spatial and time dimension. ILP scheduling can be divided into cyclic and acyclic
scheduling methods. Cyclic scheduling works on loop and acyclic scheduling works
on a basic block code region.

5.3.1 Software Pipelining

Figure 5.5 shows one cyclic scheduling method called as software pipelining.
Assume that this machine is a 3-issue VLIW. A loop of iterations 0 to n −1 contains
6 operations from A to F. Operation A is loop-carried dependent to B, so A1 can
be executed in parallel with C0 at the earliest time slot. There are two schedules
as shown in Fig. 5.5(a), where the first ALU executes iterations 0, 3, etc; the sec-
ond ALU executes iterations 1, 4, etc; and the third ALU executes iterations 2, 5,
etc. In Fig. 5.5(b), the first ALU executes all A and B operations; the second ALU
executes all C and D operations; and the third ALU executes all E and F operations.
Schedule (a) has better data locality which is necessary for clustering architecture,
but schedule (b) optimizes different functions on the 3-issue ALU.

Fig. 5.5 Software pipelining
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In general, data dependences exist in various types. A data may be referenced k
iterations later where k is not 1. Then the software pipelining cannot be as simple
as above example. Sometimes it requires using a heuristic method, such as modulo
scheduling, to schedule.

5.3.2 Basic Block Extension

Acyclic scheduling works on a basic block code region. A basic block, as described
in Section 2.2.2 on CDFG discussion, has a single entrance at its head and an exit
at its tail in a control flow graph. No backward arc is inside a basic block. The
code formation is a heuristic process, it selects instructions with data dependence
constraint and resource usage conflict, to target optimization of code size or power
consumption.

A larger code region has more instructions to select and get better efficiency. The
key technique of acyclic scheduling is to enlarge code region. A basic technique is
loop unrolling. It removes the backward arc in control flow graph, thus the basic
block is extended to contain n times of operations.

Tail duplication is another technique to extend basic block. As shown in Fig. 5.6,
the control flow graph is partitioned into 4 basic blocks by an if-else decision.
Duplicating BB4 and moving them into the if-else region will reduce the basic
block number to 3, but BB2 and BB3 are enlarged.

Fig. 5.6 Basic block tail
duplication
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5.3.3 Speculation

Control flow always limits the instruction stream to fill ILP wide spatial slot. Some-
times if we know by profiling that a branch has a higher probability to execute, it
must be executed in parallel with a current basic block. The speculation technique
will bring this branch ahead before the check point to improve parallelism, and the
execution will be recovered if speculation result is negative.

Preload is a frequently used speculation method. A memory load is able to exe-
cute whenever the load/store unit is not in use. If the control flow branches to
another path, the loaded data is just waste but will not affect the result. In moving
more instructions before branch, more registers are required to store these temporary
results, which reduce the number of available registers in the original basic block.
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5.4 Threading

Multitask OS scheduling is maintained on two levels: process and thread. A process
is a standalone program. Killing a process during scheduling will not affect other
processes. Process has its own heap and stacks memory, file handler, and so on.
Synchronization between processes is seldom. Thread is a piece of process execu-
tion stream. Threads are not independent, killing a single thread may cause process
execution failed. Each thread has its own stack, but the heap memory and file handler
are shared with others.

Threaded programming offers software portability for parallelization. On a serial
machine, threads can work concurrently by time sharing; on a massively parallel
machine, threads can work in parallel simultaneously. The difference of scheduling
is taken care by OS. To achieve portability, a standard to handle threads is necessary.

5.4.1 Profiling and Analysis

In a general code, 90% of the execution time is spent on 10% of the code. Profiling is
used to tell the programmer where the performance bottleneck is. The result of pro-
filing is some statistical information on a code, such as execution time, subroutine
call statistics, operations used, and memory access time.

Static profiling works by analyzing the representation of a program code without
executing it. The non runtime environment gives the possibility to go into greater
detail in the analysis but also places restrictions on it. Non deterministic properties,
such as recursion, dynamic data structures and non bound loops, in a code region
cannot be estimated without running data from the input, which in turn requires
dynamic profiling.

Dynamic profiling on the other hand executes a code with a given testbench in-
stead of analyzing it. During execution the profiler gathers a code which is being
executed and whatever properties of the execution are deemed interesting. The dy-
namic profiling cannot give the engineer as profound information on the code as the
static profiling does, but it can in detail report what happens during execution of the
code with a well-defined set of inputs.

In order to discover parallelism, data dependence is one of the most important
characteristics in a code. A code can often be clustered by its spurious dependences;
for example, the accesses of two memory objects may be conflicting, if the objects
cannot be proved independent. A single spurious dependence can prevent multiple
opportunities for parallel execution. Analysis clarifies the code picture either by
finding precise data dependences or by removing spurious ones to improve paral-
lelism [77].

The chief obstacle to discovering opportunities to parallelize a multimedia appli-
cation is identifying dependences between pointer references. A high-quality pointer
analysis is essential in determining the relationship between pointer references.
However, there are many coding constructs and programming practices that veil
the true picture of memory usage from pointer analysis. For some of these cases,
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like recursive data structures and arrays, more specialized analyses such as shape
analysis and array analysis will be very helpful in clarifying the picture.

Pointer analysis determines what objects a memory reference can possibly
access. Heap-sensitive pointer analysis finds whether the allocation function for
a particular type of dynamically-allocated memory object is frequently reused to
allocate multiple objects. Such kind of code reuse is a must to distinguish objects
that share a static allocation site. Field-sensitive pointer analysis will group together
all of the objects pointed to by a structure. This prevents the compiler from distin-
guishing objects through those pointers. This case appears regularly since multime-
dia programs commonly manipulate multiple data channels, and programmers use
structures to organize data hierarchically.

Array analysis can indicate whether or not the pointers really refer to the same
memory location, when two pointers are known to refer to the same object. This
form of analysis conveys information about which loop iteration carries a data
dependency. Array analysis can also determine whether different loops access the
disjoint subsets of a given object. Finally, array analysis can be used to derive the
data correlation between iterations of separate loops.

One important aspect of multimedia applications is that they often have a range
of supported sample rates, sizes, or resolutions and use many symbolic variables
in the interest of code reuse. Dimensions determined at runtime create non-affine
expressions and variable loop bounds, which stymie many simple array disambigua-
tion tests. In these cases, value constraints analysis can be obtained or computed to
assist the array disambiguation.

Value constraint analysis finds the information about the possible range or other
constraints on a value, it can be critical in evaluating symbolic tests. Many variables
in a code have a relatively small set of values during the majority of code execution,
restricted by control flow tests or written constants.

Value relationship inference helps to know the relationship between the values of
different variables. Often, one variable is used to compute the value of several other
variables. When related variables appear in an index expression, symbolic analyses
typically lose precision unless they know the relationship between the variables.
These relationships are found by tracking values back through def-use relation-
ships to find common terms. This requires inter-procedural expression computa-
tion through memory objects, often dynamically-allocated, to find the relationships
between values [78].

5.4.2 Pthread

IEEE standard 1003.1c specifies POSIX (Portable Operating System Interface for
Unix) as threaded API in 1995. A thread implementation that follows this standard
is referred to as Pthread.

The POSIX Pthread function API can be classified into three classes. The first
class works directly on threads, including thread creating, detaching, joining, etc.
These are adjoined by thread attribute functions that set or modify attributes of
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the threads, (joinable, scheduling etc). The second class works on mutual exclusive
(mutex) context switch creating, destroying, locking and unlocking. These are sup-
plemented by mutex attribute functions that set or modify attributes associated with
mutexes. The third class works on condition variables creating, destroying, waiting
and signaling. These are accompanied by condition variable attribute functions that
modify or set attributes in condition variables.

The pthread create API registers a thread function in the OS scheduling
list. On success, a unique identifier is associated with this thread. And attributes
used to describe stack size and schedule policy are created.

The pthread join API waits for the thread specified by the unique identifier
to finish.

In shared-memory inter-thread communication, ensuring the shared data correct-
ness is the most important effort on thread synchronization. Pthread defines some
APIs for mutex.

When a communication buffer is created in a shared memory, a
pthread mutex init API should be called to initialize a handler for the buffer.
The producer should lock the handler by using a pthread mutex lock before
the data is put into the buffer. If this handler is already locked by other thread, the
pthread mutex lock will enter a sleep state until the handler is unlocked. The
consumer should lock the handler before checking the buffer status. If a lock is
successful but the buffer is empty, it means that the producer is not ready to put
data. The consumer should unlock the handler and go sleep. The producer should
call a pthread mutex unlock to wakeup the consumer.

A special locking strategy is recursive mutex. A recursive mutex allows a single
thread to lock a mutex multiple times. Each lock increases the handler lock counter,
and each unlock decreases it. Any other thread can lock the handler only when the
lock counter is zero. A recursive mutex is often used in a recursive function, such as
a binary search.

A condition variable is a data used for synchronizing threads. This variable
allows a thread to block itself until a specified data reaches a predefined state.
The pthread cond wait API waits another thread to set the condition variable
by the pthread cond signal. A thread is idle when waiting for a condition
variable; the hardware should generate interrupt to wake this thread up when the
pthread cond signal is executed.

A conditional variable is used to support the multi-read lock strategy. In some ap-
plications, a data is read by many consumers; for example in matrix multiplication,
an element is propagated to all threads that will be operating on this element with a
row or column to generate a result. Using mutex, all threads should get this element
in sequence. When a thread wishes to write data to a buffer, it should make sure that
no reader is using this buffer. When a consumer locks the buffer, the lock counter is
increased. When the buffer is unlocked, the consumer broadcasts a condition vari-
able. The producer is woken up by this condition variable, and checks whether the
lock counter is zero.

Mutex is a special message-passing type of communication method that passes
messages through a shared-memory. There are various methods to implement
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message-passing in a communication channel, it can be a first-in first-out (FIFO)
buffer, a serial bus, or a network. The message passing interface (MPI) standardizes
these APIs, by hiding the communication protocol under library implementation.

The basic MPI routines are MPI Send, MPI Recv and MPI Bcast, which
are respectively used to send a message to a destination, receive a message from a
source, and broadcast a message to others in the group.

5.4.3 Structuring

Structuring the threads of a task helps to maximize concurrency and minimize
synchronization effort. Some structure patterns [79] used to parallelize a code are
presented in the following.

The basic structure is parallel threading. Typically parallel threads are decom-
posed from independent loop. When each iteration of a loop depends on different
data, they can be separated into threads and executed in parallel via loop distribution
as shown in Fig. 5.7(a).

When one loop produces a data that will be consumed by a following loop, and
each iteration of the following loop only depends upon a limited and known number
of iterations of the previous loop and does not overwrite the first loop’s input data,
it is possible to execute part of the two loops in parallel as long as the real data
dependences are respected. Figure 5.7(b) shows such an example.

The second structure is divide and conquer. Recursive algorithms such as binary
search is an example of divide and conquer, which main thread creates two child
threads to search the two parts of an input data base. Each child thread also creates
two child threads until the search range is small enough.

The third structure is decomposition from data; Figure 5.8 shows an example.
This algorithm has five tasks, ABCDE. Tasks ABC process the even and odd parts
of an input data. Task D computes the high and low sub-bands of each C’s results.
Task E summarizes task D’s results. This machine has four processors; thus keeping
four threads alive is the most efficient way. The input data is decomposed into four
parts, even-higher, even-lower, odd-higher and odd-lower. The main thread creates
four child threads to process the four parts simultaneously. Main thread is suspended
by pthread join, so only four threads are alive. The pthread join after task
C guarantees that all data used in task D are all ready.

The fourth structure is pipelining. This kind of structure can be derived by
using thesoftware pipelining technique as depicted in Fig. 5.5. Load balance is

Fig. 5.7 Loop parallelism
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Fig. 5.8 Data decomposition
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a challenge in pipelining structure; it is restricted by loop-carried dependence.
Figure 5.9 demonstrates an example. Figure 5.9(a) shows the data dependency graph
of a loop body, where a loop-carried dependence is represented by a backward arc.
Due to the existence of this arc, the graph has to be partitioned into three partial
functions: A, B and C. Figure 5.9(b) shows that the iterations of all functions are
partitioned into threads. Since function B should be processed in sequence, the
threading needs more synchronization. Thread B0 should wait for threads A1 and
B0 to finish by a pthread join before it can run.

Structuring the sequential function B into parallel threads only increases thread
handling effort without improving performance. The pipelining structure is shown
in Fig. 5.9(c). The loop body is partitioned into three sub-loops for functions A, B
and C by loop distribution, and assigned into three threads. Condition variable is
used to synchronize. Iteration B1 waits for A1 to send the shared data using an MPI
or a condition variable signal. Iteration B1 does not need to wait for B0 because
they are executed sequentially. Now, the local variables of each function are not
necessary to be expanded into parallel threads, so the threading cost is lower.

Most threading structures are used to decompose a large input data such that
all threads can perform the same computation on different data areas. The data is
often a multi-dimension array that can be decomposed into multi-dimension grids.
Programmers typically prefer to use a Single Program Multiple Data (SPMD) cod-
ing style that allow using threads to run the same code in order to save instruction
cache loading cost. Each thread needs a mechanism to distinguish its data grid. On

Fig. 5.9 Pipeline thread
structure
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int a[3][4], sum; 
main()
{ pthread_t threaded[12]; 
   sum=0; 

for(int i=0;i<12;i++){ 
pthread_create(&threaded[i],NULL,child_thread,
(void *)i); 

}
   for(int i=0;i<12;i++)pthread_join(threaded[i],NULL);
}
void * child_thread(void *param) 
{
    int x=(int)param % 4; 
    int y=(int)param / 4; 
    sum+=a[y][x]; 
}

Fig. 5.10 SPMD code example

thread creating, a parameter is put on its stack header as an argument; thread can
use this parameter to identify its grid location. Figure 5.10 shows a simple SPMD
example. The main thread passes a loop-index argument to the child thread,
and the child thread will use this argument to identify the location of a 3 × 4
array.

5.4.4 OpenMP

The structure of a threaded code is different to a sequential code. An algorithm is
usually described in a sequential format, such as a linear or binary search algorithm.
Programmer should manually reconstruct it into threads. Some compilers support
directives to automatically maintain threads. These directives are added within a se-
quential code to indicate compiler to handle thread and shared data. A compiler not
recognizing these directives can compile this code in its original sequential format,

int a[3][4], x, y,sum; 
main()
{#progma omp parallel num_threads(12) private(x, y)\

shared (a) reduction(+: sum) 
    { sum=0; 

for(int i=0;i<12;i++) { 
                x=i % 4; 
                y=i / 4; 
                sum+=a[y][x]; 

       } 
   } 
}

Fig. 5.11 OpenMP code of SPMD
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so programmer only needs to maintain a code for both sequential and parallel for-
mats. The recent directive standard is OpenMP.

The OpenMP directive starts by adding a keyword “#progma omp” on a
structure block. The code in Fig. 5.11 shows an OpenMP version of the SPMD
code listed in Fig. 5.10. It was declared to structure this loop body into twelve
threads, where variables x and y are local variables to each thread and array a is a
shared variable. Modifying a shared variable will generate mutex automatically. The
reduction function indicates that the shared variable sum gathers a summation.
Instead of a sequential mutex, OpenMP groups threads to generate a partial summa-
tion to improve performance.

5.5 Compiler Technique

In this section, we delineate the various phases of a standard compiler and three
kinds of popular intermediate representations used for optimization.

The main phases of a standard compiler can be divided into front-end, interme-
diate code generator, and back-end phases as depicted in Fig. 5.12 [80]. A compiler
is a program that can read a source code written in a language, typically a high-level
language like C or Fortran, and translate it into an equivalent code in another lan-
guage, an assembly language usually. The compilation process can be divided into
three phases: front-end, middle-end, and back-end. The front-end, usually called
the analysis part, breaks up the source code into constituent pieces and imposes a
grammatical structure on them. The front-end also collects information about the
source code and stores it in a data structure called symbol-table. Figure 5.12 can
be further divided into seven sub-phases. The font-end consists of four sub-phases:
lexical analyzer, syntax analyzer, semantic analyzer, and intermediate code genera-
tor. The back-end, usually called the synthesis part, constructs a desired target code
from the intermediate representation (IR) and the information in the symbol-table.
The back-end consists of three sub-phases: machine-independent code optimizer,
code generator, and machine-dependent code optimizer.
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Fig. 5.12 Main phases of a compiler

5.5.1 Lexical Analysis

Lexical analysis, also called scanning or lexing, is the first phase of a compiler. It
interacts with the source code and the syntax analyzer as shown in Fig. 5.13. The
lexical analyzer reads a stream of characters from the source code statements and
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Fig. 5.13 Communication
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groups the characters into tokens, and then passes these tokens to a syntax analyzer.
Both lexical analyzer and syntax analyzer work together in a producer-consumer
relationship. The syntax analyzer calls a lexical analyzer to get tokens and the lexical
analyzer provides tokens. A token consists of keyword, operators, identifiers, literal
strings, punctuation symbols, and so forth. A lexeme is a sequence of characters
matched by a given pattern associate with a token. The rule describes a set of lex-
emes for a particular token is called pattern. For each lexeme, the lexical analyzer
produces a token consisting of two parts: token name and attribute value.

For example, suppose that a source code contains the following assignment
statement:

pos=init + rate∗100;

where “pos”, “=”, “init”, “+”, “rate”, “∗”, “100”, and “;” are all lexemes. Their
corresponding tokens shown in the form <token name, attribute value> are <ID,
pos>, <=, >, <ID, init>, < +, >, <ID, rate>, <∗, >, <INT-LIT, 100> and <;,
>. As we can see, tokens “=”, “+”, “∗” and “;” have just a token name without an
attribute value. After lexical analysis, the assignment statement is transferred to a
sequence of tokens: <ID, pos>, <=, >, <ID, init>, < +, >, <ID, rate>, <∗, >,
<INT-LIT, 100> and <;, >.

5.5.2 Syntax Analysis

Syntax analysis also called parsing is the second phase of a compiler. A syntax
analyzer uses the tokens produced by the lexical analyzer to create a tree-like IR
called abstract syntax tree (AST) that depicts the grammatical structure of a token
stream.

The syntax of a programming language can be specified by a context-free gram-
mar or a Backus-Naur Form (BNF) notation. Figure 5.14 shows a representative, but
very limited grammar scheme for translating expressions and statements to construct
a syntax tree, which we will discuss later. All the nonterminals in a grammar have
an attribute n, which represents a node in a syntax tree.

The parsing methods typically used in compilers can be classified into top-down
and bottom-up. The top-down method builds a parse tree from the top (root) and
derives its leaves to the bottom, while the bottom-up method starts from the leaves
and reduces to the root. Both the top-down and bottom-up parse trees should be
identical if the grammar is unambiguous. For example, the parse tree of the state-
ment “pos = init + rate ∗ 100;” is illustrated in Fig. 5.15.
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stmt  expr “;” { return expr.n; } 
expr  rel “=” expr1 { stmt.n = new Eval(expr1.n); } 

rel  rel < add { rel.n = new Rel(‘<’, rel1.n, add.n); } 

add  add “+” term { add.n = new Op(‘+’, add1.n, term.n); } 

term  Term “*” factor { term.n = new Op(‘*’, term1.n, factor.n); } 

factor  id { factor.n = id.n; } 

rel

add

Fig. 5.14 Grammar for simple arithmetic expressions

Fig. 5.15 Parse tree for
“pos = init + rate ∗ 100;”

stmt 

expr ;

rel

add

term

factor

id

pos

= 

add

expr

add

+ term

term

factor

id

term * factor

numfactor

id 100

rateinit

A parse tree or a concrete syntax tree is a tree IR that represents the hierarchical
syntactic structure of a source code. In a parse tree, interior nodes represent non-
terminals of the grammar while leaf nodes represent terminals. In Fig. 5.15, stmt,
expr, rel, add, term, factor, id and num are nonterminals that are
helpers to represent programming constructs. Leaf nodes are lexemes such as pos,
init, rate, “100”, “;”, “+”, “∗” and “=”.

5.5.3 Abstract Syntax

An abstract syntax tree (AST) is distinct from a parse tree [80, 81]. As mentioned
above, in an AST, the interior nodes represent programming constructs; while in a
parse tree, the interior nodes represent nonterminals of a grammar. An AST captures
the essential structure of an input in a tree form, while omitting unnecessary syn-
tactic details. An AST is distinguished from a parse tree by dropping the tree nodes
in a parse thee that represent punctuation marks, such as the semicolon nodes that
terminate statements and the comma nodes that separate function arguments. An
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Fig. 5.16 AST for “pos =
init + rate ∗ 100;”
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AST also omits tree nodes that represent unary productions in the grammar. Such
information is directly represented in an AST by the structure of the tree.

Figure 5.16 depicts an AST for “pos = init + rate ∗ 100;”. An AST provides a
more clear view in comparison to a syntax tree as shown in Fig. 5.15. As mentioned
above, an AST omits those unnecessary syntactic details and punctuation marks.

5.5.4 Semantic Analysis

The semantic analysis uses AST and the information in the symbol-table to check
a source code for semantic error. The main tasks of this phase are listed as follows.
First, type checking checks whether the types of two source operands match with
each other or with the type of their operator. For example, there is a type mismatch
error such as x > “a” while x is defined as an integer variable. Second, it also gathers
the type information saved in the symbol-table for the subsequent passes, such as the
intermediate-code generation pass. Third, it is likely to perform type conversion or
coercion when the two operands of an operator have different types such as integer
and floating-point.

Figure 5.17 illustrates an AST for “pos = init + rate ∗ 100;” after semantic
analysis. We assume that pos, init and rate are declared as floating point variables.
In such situation, semantics analysis should be coercion transformed from integer
“100” to floating point such as “100.0”.

Fig. 5.17 AST after semantic
analysis
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5.5.5 Symbol-Table Management

Symbol-table is a database in a compiler, which contains information on subroutines
and variables [80, 82]. A symbol-table is indexed by a key field, typically a subrou-
tine or variable name, and a record field. The record field is an entry in the database
that includes the subroutine or variable name, its type, its position in storage, its
scope and so on. Symbol-table usually needs to support multiple declarations of the
same identifier within a code.

A symbol-table should support some functions to maintain its database. The
maintenance functions in a symbol-table are procedures used to: insert new entry in
the table, find a subroutine or variable, delete a subroutine or variable, and so forth.

An appropriate symbol-table manager must have the following four character-
istics. First: speed. Look up or insert an identifier into a symbol-table must be as
fast as possible. Second: convenience of maintenance. The data type is undoubtedly
the most complex data structure in a compiler. It must be well organized for pro-
grammers to use other than the compiler writer. Third: flexibility. For example, a
good symbol-table infrastructure must not be fixed size with limited identifier num-
ber while the input C language contains an arbitrary variable declaration number.
Fourth: duplicate entries must be supported. Many programming languages support
multiple variable declarations in different scopes with the same name.

5.5.6 Intermediate Representation

The intermediate representation (IR) plays an important role in the process of com-
pilation. An IR serves as a bridge between the source code programming language
and the target assembly language. Therefore, an IR can be seen as a model assembly
language, optimized for a nonexistent, but ideal, computer called a virtual machine.
An appropriate IR has the following two characteristics. First: flexibility. A good IR
should be easy to produce and to be translated into a target machine code. A retar-
getable compilersuch as GCC provides several front-ends for different source code
programming languages and several back-ends for different target machines [83].
A retargetable compiler can improve compiler reusability. When adapting a retar-
getable compiler to a new source language, we just need to develop a new front-end
for this source language instead of the whole compiler. Similarly, when adapting
it to a new target machine code, we just need to develop a new back-end. Second:
ease of optimization. Machine-independent optimization passes exploit the IR to
optimize thereby improve the resultant target assembly code.

IRs can be divided into following two categories: Trees that include ASTs and
DAGs, and linear representations such as three address code (3AC). An AST depicts
the hierarchical structure of a source code. On the other hand, a DAG is a tree
structure but more succinct, which gives the compiler more important clue regard-
ing the generation of efficient code by identifying common sub-expressions in an
expression or among expressions. With regard to the three address code IR; each
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instruction has no more than three operands and one operator that can be described
as quadruples: two sources, an operator and a result as shown as follows:

x = y op z,

where x, y and z are variables while op represents any operator e.g., arithmetic
operator.

5.5.7 Code Optimization

The term optimization in compiler design refers to the attempts that a compiler
wants to make a code more efficient than its previous version. In modern times,
the optimization of a code performed by a compiler has become more and more
important and of course difficult to develop. Implemented on a multi-core machine,
a compiler has to face the problem of multiprocessor parallelism.

Compiler optimization must meet the following design objectives [80]. First, the
optimization must be correct, that is, must preserve the meaning of the source code.
It goes without saying that the first goal is the most important. Second, the opti-
mization must improve the performance of a code. The definition of performance
may include execution time and power consumption. Third, the compilation time
must be kept reasonable. We need to keep the compilation time short to support
a rapid development and debugging cycles. Fourth, the engineering effort required
must be manageable. A compiler is a complex system, therefore we must keep the
system simple to assure that the engineering and maintenance costs of the compiler
are manageable.

Code optimization usually can be performed on the IR. It can be divided into
two categories. One is machine-independent optimization; the other is machine-
dependent optimization. Machine-independent optimization means code transfor-
mations that improve the IR without taking into account of any target machine. On
the contrary, machine-dependent optimization applies transformations according to
the target machine.

There are several machine-independent optimization techniques as listed in the
following. Control flow analysis technique identifies the flow path of a whole code.
Data-flow analysis technique is a technique for gathering information about the use
circumstance of variables. Copy propagation technique is the process of replacing
the occurrences of targets in direct assignments with their values. Constant fold-
ing is the process of simplifying constant expressions at compile time. Common
subexpression elimination technique is the process that searches for instances of
identical expressions, and analyzes whether it is worthwhile replacing them with a
single variable holding the computed value. Dead code elimination technique is the
process used to reduce code size by removing code which does not affect the code.

Machine-dependent optimization technique such as instruction scheduling is a
process used to improve instruction-level parallelism, which improves the perfor-
mance of a machine with instruction pipelines. Register allocation is the process of
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multiplexing a large number of target code variables onto a small number of CPU
registers. Vectorization technique is the process of converting a computer code from
a scalar implementation, which performs one operation on a pair of operands at a
time, to a vectorized code where a single instruction can perform the same operation
on multiple pairs of vector operands.

5.5.8 Code Generation

Acode generator takes an input IR produced by the front-end along with its relevant
symbol-table information, and maps it into a semantically equivalent target lan-
guage.

Code generation includes three primarily tasks: instruction selection, register
allocation and assignment, and instruction ordering. Instruction selection is the task
that transforms an intermediate representation of a source code into a target code.
Typically, instruction selection is implemented with a backward dynamic program-
ming algorithm which computes the optimal group for each point starting from the
end of the code. In addition, it can be implemented with a greedy algorithm that
chooses a local optimum at each step. Register allocation and assignment is the
task of multiplexing a large number of target code variables onto a small number
of CPU registers. Since the number of variables in a typical code is much larger
than the number of available registers in a processor, the contents of some variables
have to be spilled into memory locations. However the register efficiency is far
from memory. On the other hand, the cost of such spilling should be minimized
by spilling the least frequently used variables first, but it is not easy to know which
variables have been used the least. For this reason, the goal of register allocation
and assignment is to keep as many operands as possible in registers to maximize
the execution speed of a software code. Register allocation is an NP-complete prob-
lem. In this area, there are abundant of research subjects to mention. Instruction
ordering is the task used to increase instruction-level parallelism by rearranging the
order of instructions to avoid pipeline stalls. Though it can improve performance
on machines with instruction pipelines, instruction ordering is still an NP complete
problem.

5.6 Compiler Infrastructures

The heavy vectorization and SIMDization efforts involve many compilation tech-
niques. Instead of designing their own compiler, people prefer to use an existing
compiler infrastructure to help on their work. In this section, we survey four public
domain compiler infrastructures: LCC, GCC, SUIF, and IMPACT. Note that in this
section (and also in the whole book), we use the word “code” to represent an appli-
cation program or a segment of program given as an example throughout this book,
and the word “program” to represent a program in the compiler infrastrutures.
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5.6.1 LCC Compiler Infrastructure

LCC stands for Local C compiler or Little C compiler [84]. It is a small free retar-
getable compiler for the ANSI C programming language. LCC uses well established
compiler techniques similar to any other compiler. One of the benefits of LCC is its
being very compact in size. The total source code size of LCC is around 20000 lines.
It is much smaller than many other open-source compilers. The front-end performs
lexical, syntactic, and semantic analyses, and some machine-independent optimiza-
tions. Both the lexical analyzer and the recursive-descent parser are written by the
authors from scratch, which makes it more efficient than a Lex- or a Yacc-based
implementation. Its scanner and parser translate a C code into syntax trees. Then,
the syntax trees are translated into LCC intermediate representations (IRs) in the
form of direct acyclic graphs (DAGs). The DAGs will be dismantled into trees to
ease code generation. Then code generation and register allocation are performed on
the trees. The code generator matches an IR tree in a code with the fragment patterns
of individual instructions and picks the best matches according to the overall tiling
cost of the tree. The algorithm can generate an optimal matching for IR trees in
linear complexity. Register allocation in LCC uses simple labeling method instead
of graph coloring. Considering simplicity, LCC does not perform extensive code
optimization in its back-end; the quality of its output code is poorer. The output
code quality of LCC, in terms of code size and execution speed, is inferior to that of
GCC by an average of 10%. The lack of optimizations in LCC can be partially made
up by the post-pass optimizations. Theoretically, this approach complicates future
changes for a standardized language like ANSI C, and there have been few lexical
or syntactic errors. Indeed, since less than 15% of the LCC program statements is
concerned on parsing, the error rate in that code is negligible. Despite its theoretical
prominence, parsing is a relatively minor component in LCC as in other compilers;
semantic analysis, optimization, and code generation are the major components and
account for most of the code and thus most of the errors. The target-independent
front-end and a target-dependent back-end are packaged in a single code, tightly
coupled by a compact, efficient interface. The interface consists of a few shared data
structures, seventeen functions, and a 36-operator DAG language. Retargeting LCC
requires rewriting these three back-end components. In practice, new back-ends are
implemented by writing new rules and editing copies of an existing configuration
and set of interface functions.

5.6.2 GCC Compiler Infrastructure

GNU Compiler Collection (GCC) is a set of programming language compilers pro-
duced by the GNU Project [85]. GCC has been ported to more kinds of proces-
sors and operating systems than any other compiler. GCC is often the compiler of
choice for developing software that is required to execute on a plethora of hardware.
Differences in native compilers lead to difficulties in developing code that can be
compiled correctly by all these compilers and in building scripts that will run for
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all the platforms. In GCC, the same parser can be used for all platforms, so if the
code can be compiled by a compiler on a platform, chances are high that it can
be compiled by others on different platforms. GCC’s external interface is generally
standard for a UNIX compiler. Users invoke a driver program named gcc, which
interprets command arguments, decides which language compilers to use for each
input file, runs the assembler on their output, and then possibly runs the linker to
produce a complete executable binary. Each of the language compiled is a separate
program that takes in a source code and produces an assembly code. All have a
common internal structure. A per-language front-end parses the source code in that
language, and produces an abstract syntax tree and a back-end that converts the trees
to GCC’s Register Transfer Language (RTL). After compiler optimizations, static
code analysis techniques, and a compiler directive which attempts to discover some
buffer overflows, are applied to the code. Finally, assembly language is produced.

Figure 5.18 illustrates an overview of GCC which can be divided into three main
components: front-end, middle-end and back-end. There are two C-like machine-
independent IRs: GENERIC and GIMPLE, and one LISP-like machine-dependent
IR: Register Transfer Language (RTL).

GENERIC representation is the main interface between a front-end and the rest
of the compiler. Once the source code is parsed and validated, the front-end con-
verts the parsed results into GENERIC, a high-level tree representation where all
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Fig. 5.18 An overview of GCC
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the language specific features are explicitly represented. GIMPLE, a three address
representation, is a simplified version of GENERIC used to facilitate the job of
optimization via restricted grammar.

RTL will contain more detailed machine-dependent information and may vary
from one processor to another. RTL is designed to abstract hardware features such as
register classes, memory addressing modes and code generation mappings between
the back-end and the target processor, which are defined in a machine description
(MD) file. In the GCC compilation process, the optimizations can be divided into
three categories: interprocedural optimizer and Single Static Assignment (SSA) op-
timizer operate on GIMPLE IR while RTL optimizer operates on RTL IR. Intropro-
cedural optimizer includes inlining and constant propagation,etc. The SSA optimizer
includes vectorization, various loop optimizations, and traditional scalar optimiza-
tions such as dead code elimination, etc. RTL optimizer includes register allocation,
instruction recombination, and so forth, which are machine-dependent. Notice that
the different phases are sequenced by the Call Graph and Pass Managers. The Call
Graph Manager builds a call graph for the compilation unit and decides in which
order to process each function. On the other hand, the Pass Manager is responsi-
ble for sequencing individual transformations and handling pre- and post-cleanup
actions as needed by each pass.

5.6.3 SUIF Compiler Infrastructure

The Stanford University Intermediate Format (SUIF) [86–88] system is a compiler
infrastructure designed to support experimental research. The compiler research
community is in need for compiler infrastructures on which new technology can be
implemented and evaluated. Since independently developing a new compiler infras-
tructure is prohibitively expensive, compiler researchers would benefit greatly from
sharing investment in infrastructure development. Thus, the emphasis of the SUIF
compiler system is to maximize code reuse by providing useful abstractions and
frameworks for research on compiler techniques, it is powerful, modular, flexible,
clearly documented and complete enough to compile large benchmark programs.

The SUIF system design is twofold. One is the modularity of the subsystem
which allows different components to be combined easily. One or more modules
developed by a programmer under this mode can be combined with a driver to pro-
duce a standalone program. A compiler can be a series of standalone programs that
read and write a SUIF file, or it is a program that dynamically imports and applies
a series of different modules to the program in memory. Second is the extensibility
of the program representation which allows creating new instructions to capture
new program construct semantics or new program analysis. They have predefined
an object hierarchy to capture the program semantics, and users are able to further
refine these abstractions for their needs. Thus, a SUIF program will always contain
the same basic information but may contain different subsets of nodes represented
with refined program semantics.
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Fig. 5.19 SUIF system
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As shown in Fig. 5.19, currently the SUIF system supports the front-end for four
high-level languages, i.e., Fortran 77, C, C++, and Java. The back-end generates
three kinds of target codes, i.e., C code, Alpha assembly code, and x86 assembly
code. Each assembly code can be assembled by the target machine’s assembler to
produce a machine code. Besides, the system also provides various off-the-shelf
analysis and optimization passes and relevant development tools.

The SUIF System has a simple and modular architecture which is comprised
from three parts i.e., kernel, modules and executable. The SUIF kernel implements
a set of basic functions found to be useful across all compilation passes, a number of
modules loaded dynamically under user control, and driver that controls the system
operation.

The kernel consists of two layers, the iokernel and the suifkernel. The ioker-
nel implements a persistent object system that is independent of the applications in
writing compilers. Reflection is supported in the objects in this system by explicitly
keeping their compositions in data structures known as Meta objects. The suifkernel
performs three major functions and defines the intermediate representation. Firstly,
this representation supports both high-level program and restructuring transforms
as well as low-level analyses and optimizations. Secondly, it provides functions to
access and manipulate the intermediate representation. Hiding the low-level details
of the implementation makes the system easier to use and helps maintain compati-
bility if the representation is changed. Thirdly, it structures the interface between
compiler passes. SUIF passes are separate programs that communicate via files
which structure the interfaces between compiler passes. The format of this file is
the same for all stages of compilation. The system supports experimentation by
allowing user-defined data in annotations.

The major components in the SUIF compiler system are structured as mod-
ules, each of which is a C++ class identified by a unique module name. A dy-
namically linked library (dll) contains one or more modules. The dll includes an
initL<dllname> function, invoked at the time the library is loaded, which reg-
isters all the modules within the library in the SuifEnv. The system comes with a
number of basic modules, as well as some tools to help user construct their own
modules. Modules can be a set of nodes in the intermediate representation. The
infrastructure includes a set of basicnodes that represent a number of basic pro-
gramming constructs, and a set of suifnodes that capture standard programming
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constructs in a standard language, such as C and Fortran. Users can easily define
new program representations using hoof (a high-level specification language) or a
set of nodes in a program analysis pass. The infrastructure comes with a number
of basic modules such as loading and printing a SUIF program. User can easily
define new passes by deriving them from the basic pass modules and supplying
the specific processing functions. The Module Subsystem, a part of the SuifEnv, is
the central repository that keeps a list of all known modules in the system. The
Module Subsystem has two important functions: it registers modules when a library
is loaded, and it invokes modules by passing to them all the relevant parameters.

A module can be either a set of IR nodes or a compiler pass. The Pass class
is derived from the Module class, and the Pipelineable Pass is derived from the
Pass class. The user can define new passes by simply sub-classing these classes and
specifying only the functions to be applied to the various components in a program
representation.

The standard method is to apply a pass to all the procedures in a SUIF program
before applying another procedure. Pipelineable passes, however, allow the freedom
to apply the passes in a pipelined fashion. That is, the driver can operate on a proce-
dure at a time; it can apply a series of different passes on the same procedure before
applying them to another procedure. Pipelining the passes improves the locality of
the compiler which can be important for large codes.

To create a compiler or a standalone pass, the user needs to supply a “main” pro-
gram that creates the SuifEnv, imports the relevant modules, loads a SUIF program,
applies a series of transformations on the program, and eventually writes out the
information.

Extensibility in SUIF is provided by an extensible class hierarchy. The SUIF
compiler is built from a set of discrete executables or passes, where each pass com-
municates with other passes via a file system. Internally, SUIF represents a code as
an object-based hierarchy of symbol tables and lists of abstract syntax trees (ASTs).
Each expression tree represents one code statement encoded in a post-order tree
structure. A pass communicates information to a subsequent pass in two ways: code
transformation and annotations. Annotations are markers that can be attached to
almost all objects in an intermediate form, instructions and symbol table entries
being the most common targets. Annotations contain lists of simple data items, such
as strings and integers, or SUIF objects, such as symbols and types. More complex
structured annotations, containing full C structures, can also be created. These an-
notations can be read and re-written by a pass to obtain or expand on previously
determined information.

Communication through the file system results in slower compile times, but it
permits the compilation sequence to be varied and custom passes inserted with little
effort.

The SUIF system characteristics make it quick and easy for a SUIF compiler
writer to develop a flexible and modular compiler system and to build modules that
can inter-operate with modules developed independently by other research groups.
The interface of the suifdriver program that we developed is demonstration of the
flexibility and modularity provided by the SUIF compiler framework. The suifdriver
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accepts a simple scripting language that defined compiler passes that should be ap-
plied to some SUIF programs in a file. The SUIF imports the intermediate repre-
sentation (IR) formats defined in the basicnodes and suifnodes modules, which are
used by the compiler pass (mypass) in a dynamic linked library called mylibrary.
The library contains a registration function that the suifdriver can invoke to import
the library. Once a module is registered, the suifdriver will accept the module name
as additional commands in the rest of the compilation session. In the above ses-
sion, the user then loads in a SUIF program generated from some other compiler
passes. The user pass will work on any SUIF program, which includes information
encapsulated by the basicnodes and suifnode IR. That is, the SUIF program may
have been generated by using a superset of IR nodes; the user pass will still work
by simply importing the pass and loading the extended SUIF program into the same
environment without any recompilation.

Machine SUIF is a flexible and extensible infrastructure for constructing com-
piler back-ends. With it, we can readily construct and manipulate machine-level
intermediate forms, and emit an assembly language, a binary object or C code. The
system comes with back-ends for the Alpha and x86 architectures. One can easily
add new machine targets and develop profile-driven optimizations. Though Machine
SUIF is built on top of the Stanford SUIF system, the analyses and optimizations
within Machine SUIF are not SUIF specific. By rewriting the implementation on
an extensible interface layer, we can easily port the Machine-SUIF code base to
another compilation environment. This interface is referred as an Optimization Pro-
gramming Interface (OPI). OPI allows us to write optimizations and analyses that
are parameterized with respect to both a target and an underlying environment. We
use this capability to share optimization passes between Machine SUIF for dynamic
code optimization.

Machine SUIF is designed with three primary goals in mind. First and foremost,
Machine SUIF has to be easy to use, especially if we want to do something simple,
and straightforward to retarget such that we could use it in architectural investi-
gations. Second, it has to support the modular development of sophisticated opti-
mizations. The idea is to allow the ability to contribute passes and benefit from the
efforts of others. Finally, it has to be built in a manner that permits reuse of existing
optimizations directly in an optimization environment with significantly different
constraints.

Machine SUIF is aimed at providing a framework for machine-dependent opti-
mizations. It provides an intermediate representation related to SUIF, but is aimed
at capturing low-level machine details rather than high-level program constructs.
Machine SUIF like SUIF can be partitioned into two sections: the support library
and a set of passes that make use of the library. At the present time, the only passes
available with the machine SUIF distribution are code generators which map the
SUIF intermediate representation of a code to the machine SUIF representation,
and a machine language printer for translating the machine SUIF intermediate form
to ASCII assembly language less suitable for the target machine’s native assembler.
Any number of optimization and scheduling passes could be inserted between code
generation and ASCII generation.



5.6 Compiler Infrastructures 113

Translation of the SUIF representation of a code into a machine SUIF represen-
tation is straightforward. SUIF represents a code as a list of expression trees with
the nodes of each expression tree made up of symbol table entries and RISC like
instructions. Since previous SUIF passes have propagated all information needed
for code generation to the nodes at which that information is needed, the appropri-
ate instruction sequence is determined solely by a recursive post-order decent down
each expression tree.

5.6.4 IMPACT Compiler Infrastructure

In 2002, the University of Illinois released the IMPACT (Illinois Microarchitecture
Project utilizing Advanced Compiler Technology) compiler into the open-source do-
main as part of GELATO [89].

The IMPACT-I C compiler provides a platform for studying new code optimiza-
tion techniques for multiple-instruction-issue architectures [90]. It performs several
code transformations that enlarge the scope of static scheduling, including function
inline expansion, instruction placement, loop unrolling, loop peeling, and branch
expansion. The compiler also performs several code transformations that reduce
the depth of critical paths, including induction variable expansion, register renam-
ing, global variable register allocation, operation combining, operation folding, and
memory disambiguation. Using a profiler, one can measure the execution count of
every operation and collect branch statistics. Compile-time decisions are based on a
composite of 20 profiles. It derive the best and the worst case execution time of each
superblock, assuming ideal cache. The worst case is due to long operation latencies
that protrude from one superblock to another superblock.

OpenIMPACT [91] moves IMPACT from research to general use. To allow each
source file be compiled standalone as a general compiler does, OpenIMPACT em-
beds IR in object files and libraries for further global optimization. Due to its
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Fig. 5.20 IMPACT compiler flow
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heritage as a research compiler, OpenIMPACT is designed to achieve maximal out-
put code performance with little concern for compiler time and compiler memory
usage (Fig. 5.20).

OpenIMPACT encompasses many of the advanced compilation techniques de-
veloped by the IMPACT research team, including

(1) programmatic logic analysis,
(2) predicated compilation,
(3) interprocedural pointer analysis,
(4) instruction-level parallelism optimizations,
(5) profile-based optimization, and
(6) speculative hyperblock acyclic and modulo scheduling.



Chapter 6
Implementation of H.264 on PLX

In this chapter, we will demonstrate our experiences in implementing H.264 encoder
on a PLX-based platform from system level design, virtual prototyping, to ASIP
design.

6.1 Instruction Set Decision for H.264

Most computation of H.264 is spent on Motion Estimation as described in
Section 2.3.2. Its kernel operation is a Sum of Absolute Differences (SAD):

SAD (m, n) =
N−1∑

i=0

N−1∑

j=0

| C(i, j) − R(i + m, j + n)|

A 16×16 macroblock contains 256 pixels, and each video pixel is stored as an
8-bit data. Since the SAD computation requires a 16-bit resolution, the 8-bit pixel
value has to be expanded into a 16-bit one before performing subtraction. Using a
128-bit SWP-SIMD ALU, we can compute eight pixels at a time.

But SAD is a losable operation, we only wish to know which SAD is minimum
in search range. Thus, its resolution if reduced into 8-bit is still working, and its
computation speed will be doubled.

The 16×16 macroblock is composed of sixteen 4×4 sub-blocks as shown in
Fig. 2.15. If the pixel value is right shifted into a 4-bit resolution, the SAD of the
4×4 sub-blocks can remain in an 8-bit resolution. When the pixel values vary in
a very large range, their lower 4 bits are ignorable. In such case, this 4-bit shift
solution becomes a feasible one.

Another solution is using saturation operation as described in Section 4.1. While
our goal is to find the minimum one, if the minimal SAD never exceeds 254, satu-
rating a large SAD value into 255 will not destroy the selection.

Table 6.1 lists the PSNR of reconstructed frames using the above mentioned 3
resolution methods on two sequences. The results are obtained by running sim-
ulation on our PLX-H.264 virtual prototype platform (as shown in Fig. 6.2). As
shown in the table, the sequence Stefan has fast moving, and sequence Weather has

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
DOI 10.1007/978-1-4020-9623-5 6, C© Springer Science+Business Media B.V. 2009
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Table 6.1 PSNR in SAD with 3 different resolutions

PSNR Stefan Weather

Frame 16bit 8bit-sat 4bit-shift 16bit 8bit-sat 4bit-shift

1 37.35942 37.35031 37.20614 37.52711 37.52356 37.44326
2 37.29617 37.28674 37.03496 37.71939 37.71754 37.59165
3 37.25709 37.23658 36.94312 37.80259 37.80131 37.65876
4 37.07474 37.07342 36.72818 37.81671 37.81664 37.65552
5 36.99427 36.99151 36.60071 37.81785 37.81560 37.66196
6 36.91317 36.91058 36.50841 37.79967 37.79784 37.63698
7 36.92029 36.88299 36.45134 37.76962 37.76885 37.61353
8 36.88774 36.87031 36.35291 37.74985 37.74801 37.57269
9 36.81931 36.80784 36.33460 37.73409 37.72860 37.53180

Average 37.05802 37.04559 36.68449 37.74854 37.74644 37.59624

little moving. From the results shown on the two sequences, the 8-bit saturation
method is only a little bit worse than the 16-bit method. As revealed by the simula-
tion results, we implemented the 8-bit saturation operation into our PLX processor
instruction set.

6.2 Hardware/Software Partitioning

After the instruction set is defined, we can evaluate the performance upper bound
of some kernel functions by assuming that every instruction takes only one cycle
without considering the memory latency. Some kernel functions in H.264, such as
Motion Estimation, Transformation, Quantization, De-block filter and Entropy En-
coding, have been described in Section 2.3. While a parallel compiler is not ready,
these algorithms are coded in assembly language for performance simulation.

Using a 128-bit SWP-SIMD processor, a row (16 pixels) of macroblock elements
can be loaded into a register at once. Utilizing the SWP-SIMD feature, the sixteen
4×4 sub-blocks will be computed in an order as shown in Fig. 6.1, which operates
on four 4×4 sub-block elements in parallel. The matrix transpose operations as
described in Section 5.2.5 are used to re-organize the data flow in the SWP-SIMD
PLX core. All the 41 motion vector variations can be composed by the obtained 16
results. The PLX assembly code was shown in Fig. 3.5, which takes 273 cycles for
calculating the SADs for a given displacement (m, n).

Using a 3-step search method with a search range of 16, we need 6825 cycles to
find the best motion vector for a macroblock. If the processor works at 100MHz, it
spends 0.6% of the computation resources for a 176×144 QCIF image if only one
reference frame is used. If the image size is 1024×768 and uses 5 reference frames,
the motion estimation operations will occupy 100% of the computation resource.

The remaining kernel functions in total only take 7700 cycles, or 23% of the
computation resources for a 1024×768 image. Most of them are spent on entropy
encoding because it is unable to parallelize in the SWP-SIMD PLX core.
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Fig. 6.1 SAD calculation in a 128-bit SWP-SIMD

By simple evaluation, we know that H.264 encoder can be implemented on a sin-
gle PLX processor if the required image size is small. But for higher image quality,
another core dedicated for motion estimation computing is required. It could be an
ASIC or a dual-core PLX.

Energy consumption is the most critical constraint for a portable consumer elec-
tronic device. Instead of increasing clock frequency, improving parallelism with a
little area overhead is more power efficient. Since H.264 is a memory-dominant ap-
plication, simultaneous multi-threading (SMT) is good to hide memory latency. En-
tropy encoding and many non-kernel functions cannot fully utilize the SWP-SIMD
feature, because PLX integrates scalar and vector operations in a single core; thus
performing a 32-bit scalar function using 128-bit registers is a waste. VLIW is an
alternative way to reduce such kind of waste.

6.3 Untimed Virtual Prototype

After the PLX instruction set architecture (ISA) is decided, we wish to involve into
hardware and software design detail as soon as possible. Before the PLX processor
design is completed, a hardware prototype served as a software development plat-
form as described in Section 2.1 is not available yet. Virtual prototype offers the
ability for developing software in an early stage. A virtual prototype means that it
is not a real target design, but it can simulate the behavior of the target design using
a higher abstraction level TLM modeling method, as described in Sections 3.1 and
3.3. A untimed TLM modeling that provides the architecture designers with an PLX
instruction set simulator (ISS) for them to focus on the Programmer View (PV) of
a design will be presented in this section. Also a timed TLM modeling concerning
on the PV plus Timing (PVT) view on the peripheral I/O devices that can be used to
model system input/output functions will be depicted in next section.

To design a compiler which can automatically optimize code for SWP-SIMD,
VLIW and multi-threading is still a challenge. The first PLX compiler is implemented
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by LCC infrastructure as described in Section 5.6.1, which implements PLX in-
struction set into LCC backend without considering any of the DLP, ILP and TLP
optimizations. Software team can use it to develop RTOS and user interface. A pro-
totype of such kind of OS development will be described in Chapter 7.

In designing a virtual prototype platform, an important concern is able to refine
the design under development. Eventually, the software developed on this virtual
prototype platform should be able to port to real product directly. Thus, we need to
emulate peripheral operations on the system.

In order to emulate the H.264 encoder operations, we need four basic peripheral
devices: a camera to capture an image, an LCD to display the image, a Storage to
store the recorded video, and a Communication interface to transfer the image to
other devices. The system architecture of our virtual prototype platform is shown in
Fig. 6.2.

In most products, Camera and LCD are implemented on a shared memory ar-
chitecture. The Camera module gets pixels from CMOS image sensor in a fixed
rate and stores the image in a pre-defined memory location. The LCD module reads
pixel values from the pre-defined memory location and converts them into a format
compliant to the LCD control protocol. In our virtual platform, the memory space
that PLX can access is mapping to a memory array during simulator initialization.
In the simulator, we created two threads to emulate the above behavior. The Cam-
era Thread gets an image from a system interface and puts the image data into the
pre-defined memory location. Windows handle the Camera device by a DirectShow
filter, which can be accessed by an application through a system defined interface
(IBaseFilter in following sample code). After that, the LCD Thread gets the
bitmap stored in this memory location and put them into a window device context
(hdc in the following LCD Thread code), then, our virtual prototype platform will
display the context on a window. These two threads are woken up by a system timer
to emulate the fixed-frame-rate behavior.

There are many communication physical layers available in the world, including
Ethernet, wireless-LAN or IEEE-1394. Each has its own protocol. To implement a
communication protocol needs a lot of man-power. At the early design stage, it is
better to implement the communication protocol using a message-passing API. A
unified Send and Receive API was defined, and OS developers can refine this

PLX
ISS

LCD
Thread

Comm
ISR

A Computer

Camera
Thread

H.264
Accelerator

Storage
ISR

Fig. 6.2 A PLX-H.264 virtual prototype platform
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implementation to satisfy their need. We implemented this message-passing API on
an interrupt service routine (ISR). When software needs to Send or Receive a
message, its data buffer location and length are put in respective registers and the
associated ISR is called by a trap instruction with an interrupt vector. In our virtual
prototype, the data buffer location and length registers are re-directed to a system
network socket.

The storage interface is also implemented by ISR. The FileRead and
FileWrite APIs respectively get and put a data with its buffer location and length
stored in registers, and call a corresponding ISR by invoking the trap instruction. In
our virtual prototype implementation, these registers are re-directed to a FileRead
and a FileWrite system calls.

The virtual H.264 accelerator ME PROC is also implemented by ISR. This ma-
jor 1-D motion estimation component in the H.264 virtual accelerator hardware is
written according to the real hardware design as shown in Fig. 2.16. It computes all
the 41 motion vectors for different macroblock combinations in an image. PLX is in
charge to send information on the current frame location, reference frame location,
motion vector location and image size to the ME accelerator through an on-chip bus.
After the accelerator is started, it becomes the second bus master which will occupy
bus bandwidth to load pixels from memory. In our virtual prototype implementation,
the ISR is re-directed to a C code subroutine ME PROC, and the bus hand-shaking
is left to the timed TLM model that will be presented in next section.

The SystemC code of this untimed virtual prototype is listed as follows.

typedef union {
unsigned char b[16];
unsigned short w[8];
unsigned long d[4];
unsigned int64 l[2];

} B128;
class PLX {
public:

B128 R[32];
bool predflag[8];
int PC;
bool halt;
unsigned char ∗ram;
BITMAPINFO bm;
ISampleCaptureGraphBuilder ∗pCapture;
IGraphBuilder ∗pFg;
IBaseFilter ∗pVideo;
IAMStreamConfig ∗pVSC;
void init(int argc, char ∗argv[]);
void ALU(void);

} plx;

void main(int argc, char ∗argv[])
{
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MSG msg;
plx.bm.bmiHeader.biSize=sizeof(BITMAPINFOHEADER);
plx.bm.bmiHeader.biWidth=352;
plx.bm.bmiHeader.biHeight=-288;
InitThread(LCD Proc);
InitCamera();
InitThread(Camera Proc);
plx.init(argc, argv); //Load code and testge into RAM
do {
plx.ALU();

} while(!plx.halt);
}

void PLX::init(int argc, char ∗argv[])
{

memset(R,0,sizeof(R));
memset(predflag,0,sizeof(predflag));
predflag[0]=1;
ram=new unsigned char[16384∗1024]; //16MB ram

}

void PLX::ALU(void)
{

unsigned long op=∗(unsigned long ∗)(ram+PC+CODEstart);
unsigned char p=op>>29;
unsigned char opc=(op>>23)&0x3F;
unsigned char Rd=(op>>18)&0x1F;
unsigned char Rs1=(op>>13)&0x1F;
unsigned char Rs2=(op>>8)&0x1F;
int i;
DWORD nn;
if (!predflag[p]) return;
switch(opc) {
case HALT: halt=1; break;
case IDLE: context switch(); break;
case JMP: PC=op&0x7FFFFF; break;
case MREAD: R[Rd].l[0]=∗( int64 ∗)(ram+R[Rs1].d[0]);
case MWRITEB: ∗(char ∗)(ram+R[Rs1].d[0])=R[Rd].b[0];
case MWRITEW: ∗(short ∗)(ram+R[Rs1].d[0])=R[Rd].w[0];
case MWRITED: ∗(long ∗)(ram+R[Rs1].d[0])=R[Rd].d[0];
case MWRITEL: ∗( int64 ∗)(ram+R[Rs1].d[0])=R[Rd].l[0];
case PADD:

switch(op&3){
case 0: for(i=0;i<16;i++)

R[Rd].b[i]=R[Rs1].b[i]+R[Rs2].b[i]; break;
case 1: for(i=0;i<8;i++)

R[Rd].w[i]=R[Rs1].w[i]+R[Rs2].w[i]; break;
case 2: for(i=0;i<4;i++)

R[Rd].d[i]=R[Rs1].d[i]+R[Rs2].d[i]; break;
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}
case TRAP:

switch(op&0xFFFF) {
case COMM ISR:
switch(R[1].w[0]) {

case C OPEN:R[2].d[0]=socket(AF INET,SOCK STREAM,0);
bind(R[2].d[0], R[3].d[0]);
break;

case C RECV: recv(R[2].d[0],ram+R[3].d[0],
R[4].d[0]); break;

case C SEND: send(R[2].d[0],ram+R[3].d[0],
R[4].d[0]); break;

}
break;

case STORAGE ISR:
switch(R[1].w[0]) {
case F OPEN: R[2].d[0]=(DWORD)fopen((char ∗)ram+

R[3].d[0], (char ∗)ram+R[4].d[0]); break;
case F READ: fread(ram+R[3].d[0],R[4].d[0],1,

(FILE ∗)R[2].d[0]); break;
case F WRITE: fwrite(ram+R[3].d[0],R[4].d[0],1,

(FILE ∗)R[2].d[0]); break;
}

case ME ISR: ME PROC(ram+R[3].d[0],ram+R[4].d[0],
ram+R[5].d[0], R[6].w[0],R[6].w[1]);
break;

}
}

}

void ME PROC(unsigned char ∗cur, unsigned char ∗ref,
unsigned char ∗mv, short wx, short wy)

{
for(int y=0;y<wy;y+=16) {

for(int x=0;x<wx;x+=16) {
... //compute all MV

}
}

}

LRESULT CALLBACK LCD Thread(HWND hWnd, UINT message)
{
PAINTSTRUCT ps;
HDC hdc;
switch (message)
{
case WM TIMER:

if (wParam==Timer ID) {
hdc=GetDC(hWnd);
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SetDIBitsToDevice(hdc,0,0,352,288,0,0,0,288,
plx.ram+LCDstart,&plx.bm,DIB RGB COLORS);

ReleaseDC(hWnd,hdc);
}
return 0;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}
}

void InitCamera()
{
CoCreateInstance(CLSID FilterGraph, NULL, CLSCTX INPROC,

IID IGraphBuilder, &plx.pFg);
BindToObject(0, 0, IID IBaseFilter, &plx.pVideo);
plx.pFg->AddFilter(plx.pVideo);
plx.pCapture->SetFiltergraph(plx.pFg);

}

LRESULT CALLBACK Camera Thread(HWND hWnd, UINT message)
{
PAINTSTRUCT ps;
HDC hdc;
AM MEDIA TYPE ∗pmt;
switch (message)
{
case WM TIMER:

plx.pCapture->FindInterface(&PIN CATEGORY CAPTURE,
&MEDIATYPE Video, plx.pVideo,

IID IAMStreamConfig, &plx.pVSC);
plx.pVSC->GetFormat(&pmt);
memcpy(ram+CameraStart,(BITMAPINFO)(pmt-> pbFormat));
return 0;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}
}

6.4 Timed SystemC Modeling

In above untimed TLM implementation, the PLX processor is idle while ME PROC
is executing. In a multi-threading processor, OS will issue another thread when one
thread is idle. At such circumstance, H.264 accelerator will be a bus master to access
memory.

Another important part is on cache performance. H.264 is memory-critical appli-
cation, where memory bandwidth dominates system performance. A system level
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model considering memory interface detail can help hardware designers to design a
cache system in a more accurate way.

Thus, we need to upgrade the simulator to an Approximately Timed TLM level
(i.e., PV plus Timing view) using SystemC. In this level of abstraction, the mem-
ory read/write instructions and bus timing are cycle accurate, other instructions are
ideal single cycle execution, and cache replacement strategy is also cycle accurate
to exactly reflect memory latency.

In the H264 module ME PROC, motion vectors (MEs) are computed and saved
into RAM when this function is called. Memory request is issued in a pre-defined
rate to emulate the bus bandwidth competition, but the detailed memory access
information is not used in running ME simulation to reduce the simulator design
complexity.

The SystemC code of this timed TLM model is listed as follows.

void sc main(int argc, char ∗argv[])
{

sc clock clk("CLOCK",clockcycle,0.5,1);
PLX plx("PLX");
plx.clk(clk);
plx.init(argc, argv); //Load code and testge into RAM
do {

sc start(clk,clockcycle);
} while(!plx.halt);

}

SC MODULE(PLX)
{

sc in clk clk;
sc signal<sc uint<32> > rom addr, rom rdata;
sc signal<sc uint<1> > rom req, rom ready;
sc signal<sc uint<32> > ram addr, ram size;
sc signal<sc uint<64> > ram wdata, ram rdata;
sc signal<sc uint<1> > ram req, ram ready;
sc signal<sc uint<32> > ic addr, ic rdata;
sc signal<sc uint<1> > ic req, ic ready;
sc signal<sc uint<32> > dc addr, dc size;
sc signal<sc uint<64> > dc wdata, dc rdata;
sc signal<sc uint<1> > dc req, dc wrire, dc ready;
sc signal<sc uint<32> > h264 addr, h264 size;
sc signal<sc uint<64> > h264 wdata, h264 rdata;
sc signal<sc uint<1> > h264 req, h264 wrire, h264 ready;
sc signal<sc uint<8> > intreq;
B128 R[32];
bool predflag[8];
int PC;
bool halt;
unsigned char ∗ram;
BITMAPINFO bm;
int icachests;
int dcachests;
int h264sts;
int arbitersts;
unsigned int64 dcacheram[ROWS][COLS];
unsigned dcachetag[ROWS];
bool dcachedirty[ROWS][COLS];
unsigned long icacheram[ROWS][COLS∗2];
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unsigned icachetag[ROWS];
void init(int argc, char ∗argv[]);
void ALU(void);
void ICACHE();
void DCACHE();
void H264();
void ARBITER();

SC CTOR(TOP)
{
plx->clk(clk);
icache->clk(clk);
...
icachests=IDLE;
dcachests=IDLE;
h264sts=IDLE;
arbitersts=IDLE;

}
}

void PLX::DCACHE()
{

switch(dcachests) {
case IDLE:
if (ram req.read()) {

if (hit(ram addr.read(),&row,&col))
dcachests.write(READY);

else if (alldirty()) dcachests.write(SELDIRTY);
else dcachests.write(MISS);

}
break;
case READY:
if (ram write.read()) {
dcacheram[row][col]=ram wdata.read();
dcachedirty[row][col]=true;

} else ram rdata.write(dcacheram[row][col]);
if (ram req.read()) {

if (hit(ram addr.read(),&row,&col))
dcachests.write(READY);

else if (alldirty()) dcachests.write(SELDIRTY);
else {row=LRU nondirty(); dcachests.write(MISS);}

}
break;
case SELDIRTY:
row=LRU dirty();
cols=0;
dcachetag[row]=rom addr.read()/COLS/WORDS;
dcachests.write(WRITEBACK);
break;

case WRITEBACK:
dc req.write(1);
dc addr.write(dcachetag[row]∗COLS∗WORDS);
dc write.write(1);
dcachests.write(WAITW);
break;

case WAITW:
if (dc ready.read()) {
dc wdata.write(dcacheram[row][col]);
dcachedirty[row][col]=0;
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col++;
dc addr.write((dcachetag[row]∗COLS+col)∗WORDS);
if (col==COLS) {
if (ram write.read()) dcachests.write(READY);
else dcachests.write(MISS);

}
}
break;
case MISS:
dc req.write(1);
dc addr.write(dcachetag[row]∗COLS∗WORDS);

dc write.write(0);
dcachests.write(WAITM);
break;

case WAITM:
if (dc ready.read()) {

dcacheram[row][col]=dc rdata.read();
col++;
if (col==COLS) dcachests.write(READY);
else dc addr.write((dcachetag[row]∗COLS+col)∗WORDS);

}
break;

}
}

void PLX::H264()
{

switch(h264sts) {
case IDLE:

if (ram req.read()&&ram write.read()) {
switch(ram addr.read()) {
case REG CUR: cur.write(ram wdata.read());
case REG REF: ref.write(ram wdata.read());
case REG REF: mv.write(ram wdata.read());
case REG WX: wx.write(ram wdata.read());
case REG WY: wy.write(ram wdata.read());
case REG CTRL: if (ram wdata.read()&1) {

ME PROC(cur,ref,mvs,wx,wy);
for(i=0;i<N;i++) ram[mv+i]=mvs[i];
cnt=0;
h264sts.write(RUN);

}
break;

}
break;

case RUN:
if (cnt&DORAM) {
h264 req.write(1);
h264 addr.write(ref.read())

h264sts.write(WAIT);
}
if (++cnt >= MAXCNT) {
intreq.write(ISR H264END);
h264sts.write(IDLE);

}
break;

case WAIT:
if (h264 ready.read()) h264sts.write(RUN);

}
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void PLX::ALU(void)
{

if (ram req.read()) {
if (ram ready.read()) {

if (!ram write.read()) R[readRd]=ram rdata.read();
ram req.write(0);

} else return;
} else if (intreq.read()!=0) { //Check interrupt

op=(TRAP<<23) | (intreq.read());
intreq.write(0);

} else if (rom ready.read()) {
op=rom rdata.read();
PC=PC+4;

} else return;
unsigned char p=op>>29;
unsigned char opc=(op>>23)&0x3F;
unsigned char Rd=(op>>18)&0x1F;
unsigned char Rs1=(op>>13)&0x1F;
unsigned char Rs2=(op>>8)&0x1F;
if (!predflag[p]) return;
switch(opc) {
case MREAD: ram req.write(1);

ram write.write(0);
ram addr.write(R[Rs1].d[0]);
readRd=Rd;
break;

case WRITEB: ram req.write(1);
ram write.write(1);
ram addr.write(R[Rs1].d[0]);
ram wdata.write(R[Rd].l[0]);
break;

case TRAP:
switch(op&0xFFFF) {
case COMM ISR:
break;

case STORAGE ISR:
switch(R[1].w[0]) {
case F OPEN: R[2].d[0]=(DWORD)fopen((char ∗)ram+

R[3].d[0], (char ∗)ram+R[4].d[0]); break;
case F READ: fread(ram+R[3].d[0],R[4].d[0],1,

(FILE ∗)R[2].d[0]); break;
case F WRITE: fwrite(ram+R[3].d[0],R[4].d[0],1,

(FILE ∗)R[2].d[0]); break;
}
case ME ISR: ME PROC(ram+R[3].d[0],ram+R[4].d[0],

ram+R[5].d[0], R[6].w[0],R[6].w[1]);
break;

}
}

}

void PLX::Arbiter(void) {
switch(grant) {
case 0:
if (dc req) grant=GRANT DC;
else if (ic req) grant=GRANT IC;
else if (h264 req) grant=GRANT H264);
break;

case GRANT DC:
if (!dc req|| timeout) {grant=0; dc ready=0;}
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else {dc rdata=∗( int64 ∗)&ram[dc addr];
dc ready=1;}
break;

...
}

6.5 PLX Chip Design

The PLX processor is designed to run at 100 MHz in 0.18 
m TSMC process.
A Wallace-tree 32-bit multiplier is designed to work on 100 MHz without extra
pipelining buffer. Since all instructions have to be executed in one cycle, a standard
RISC architecture is adopted.

The PLX processor design is shown in Fig. 6.3, which owns a 6-stage pipeline
RISC architecture. The IFETCH unit contains two instruction buffers (IBUFF) for
the two threads to work simultaneously. The DECODE unit decodes the last two
instructions stored in IBUFFs. The ISSUE unit selects these two decoded instruc-
tions, calculates their operand addresses, and generates the ALU control signals.
The OPERAND unit fetches operands from the register file that contains 64 128-bit
registers. The Control Program Status Register (CPSR) inside the register file con-
tains a system timer, an interrupt return address, a cache invalidation control, and
issue mode control flags. The execution unit contains ALU and Load/Store unit. The
Load/Store unit sends memory request to DCACHE or other on-chip IP through the
Advance High-performance Bus (AHB).

The 128-bit ALU is composed of four 32-bit datapath-adjustable ALUs and a
shuffle unit for the inter-subword permutation operations. It is able to configure as
SIMD or VLIW mode by setting the two control bits in the instruction code.

In the SIMD mode, one instruction is fetched from the IBUFF in every cycle, and
duplicated into the four 32-bit datapath-adjustable ALUs. In the VLIW mode, the
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ISSUE unit fetches four decoded instructions from the IBUFF and dispatches them
into the four 32-bit datapath-adjustable ALUs.

Two bits in the PLX instruction word are allocated to support VLIW. The
SCALAR bit indicates that the instruction requires only a 32-bit ALU. The ILP bit
indicates that the instruction is to be executed in parallel with a previous instruction.
Only the instructions with both SCALAR and ILP bits on are combined into a VLIW
instruction by the ISSUE unit.

When both threads are enabled by the OS, the ISSUE stage fetches the codes
from the two IBUFF units in an interleaving way. Each thread can only access the
thirty-two 128-bit registers. In such a way, the designed PLX processor can be used
to support simultaneous multi-threading (SMT).



Chapter 7
Real-Time Operating System for PLX

PLX, as described in Sections 4.2.2 and 6.5, is a processor with wordsize scalable,
fully subword-parallel (native SIMD) instruction set architecture that supports high-
performance, low-cost multimedia information processing, 3-D graphical process-
ing and permutation instructions for security operation. Several development tools,
such as the parallel compiler mentioned in Chapter 5, the assembler, and the instruc-
tion set simulator (ISS), are available to help users in developing their applications
on the PLX virtual platform. However, it lacks an operating system (OS).

Applications, such as wireless security or multimedia, are often quite compli-
cated to design and implement. Without an OS, application designers have to handle
and synchronize the data communication among tasks and take care of hardware
resource conflicts. This may lead to inefficient designs and error-prone implemen-
tations as application designers cannot focus on the main functionality of their ap-
plications. An operating system is thus required to support application designers in
efficiently and conveniently using the PLX processor to accelerate their applications.

In this chapter, we will illustrate how we developed, from scratch, a real-time
operating system (RTOS) for the PLX processor. The main goal of the RTOS is to
design and implement a free, open-source, working and efficient RTOS, targeted
specifically for native SIMD ISA configurable processors, such as the PLX. The
RTOS also considers performance, power, and portability issues.

The RTOS consists of several components as shown in Fig. 7.1 that cooperate
with each other to execute application tasks. We will now describe each component
of the RTOS. The first component, also the most important one, is the scheduler
which is capable of multiprogram scheduling. Multiple tasks can be scheduled to
efficiently use the PLX processor such that when a task is doing I/O, other tasks can
be scheduled to run on the RTOS. We designed a simple scheduler as described in
Section 7.1.

The second component is the dispatcher, which accepts requests from the sched-
uler and performs context switch between the current task and the next task as
decided by the scheduler.

The third component is a memory manager, which is capable of memory place-
ment, memory allocation and deallocation, and shared memory management for
communication among tasks. Besides, the RTOS also supports the use of memory-
mapped I/O (MMIO) method between the CPU and peripheral devices.

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
DOI 10.1007/978-1-4020-9623-5 7, C© Springer Science+Business Media B.V. 2009
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Fig. 7.1 RTOS components
and relations
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The fourth component comprises a locator and a loader. The locator is responsi-
ble for address translation from logical to physical, that is, it calculates the physical
address for the global or static variables. The translated physical addresses constitute
the input for the loader. The loader is in charge of reading a code from external RAM
and initializing the code execution environment by executing the startup code. The
initialization includes assigning values to the static or global variables and deter-
mining the start addresses of the stack and the heap.

The fifth component is the System Calls, which include the communication and
synchronization primitives, e.g., the semaphores in a shared memory, which are used
for communicating among tasks and for protecting the critical regions or shared
data, respectively.

The last component includes two specific system calls: interrupt service routines
(ISRs) and I/O device drivers. Currently, we have implemented a key ISR and a
timer ISR in the RTOS. The key ISR is for inserting a new task, and the timer ISR
is for counting down the time quantum for the current task. The other components,
including the system calls other than memory management and I/O device drivers,
will be implemented in the future.

In this chapter, we will describe in details the design and implementation of an
RTOS for PLX. The remaining sections are organized as follows. In Section 7.1, we
discuss the scheduler. In Section 7.2, we demonstrate the memory placement to see
where the kernel, tasks, and memory-mapped I/O are arranged, and several system
calls for memory allocation and deallocation are also detailed in this section. The
system calls for shared memory which are based on the memory allocation are also
described in this section. The content of Section 7.3 includes the implementation of
communication and synchronization primitives. In Section 7.4, we introduce how
our RTOS can address several issues such as real-time constraints, in multimedia
applications. In Section 7.5, we introduce the toolchain that can help users to de-
velop their applications on our RTOS for PLX. Section 7.6 contains the experimental
results.
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7.1 PRRP Scheduler

The design of a scheduler for PLX has gone through different implementation
stages. From the beginning, we used a simple scheduler called Single Stack Tasker
(SST) [92], which was developed in C language; however, this scheduler does not
support multiprogramming and was only used to check if our toolchain flow is feasi-
ble. This scheduler was designed for general-purpose non real-time applications. In
the second version, we implemented a Priority-based, Round-Robin, and Preemp-
tive (PRRP) scheduler. The main goal of the new scheduler was to support not only
multiprogramming, but also time-sharing. With the capability of multiprogramming,
the real-time operating system can increase the utilization of the processor, and the
integration of time-sharing among tasks reduces the response time for each task.

Before we go into the details on the scheduler, we first roughly define the term,
task. A task comprises user code, data, heap, and stack pointers that form a context.
These context data are all stored in specific sections of the main memory. We parti-
tion the main memory into several regions comprising the kernel and the user tasks.
The memory layout of the kernel and the user tasks will be detailed in Section 7.2.

Several data structures are also defined and implemented in the kernel for the
scheduler to control the execution flow of the tasks. As shown in Fig. 7.2, a Task
Index List (TIL) is an array of pointers each of which points to the start address of a
task structure in the main memory. A task structure contains the private data, such
as register values before being suspended, priority value, and some flags of a task.
A Current Task Index (CTI) data structure is used to store the address of a currently
running task as its name shows. The Round-Robin Index List (RRIL) is a list of
pointers each of which points to the physical start address of the highest priority
tasks. This list can be seen as a round-robin (RR) queue. When the RR timer times
out, we directly shift the CTI to the next entry in the RRIL, where the tasks with the
same priority are equally served.

The scheduling algorithm is shown in Fig. 7.3. In the beginning, we initialize
the current priority to the minimum one in our system, and the current task index
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begin

cur_priority ← MIN_PRIORITY ;

cur_index ← -1;

i = 0;

foreach i < MAX_TASK do

if TIL[i] = NULL then

continue;

endif

if cur_ priority < Priority(TIL[i]) then

cur_index ← i;

cur_priority ← Priority(TIL[i]);

endif

i++;

endfor

if cur_index = -1 then

RunIdletask();

else

if TIL[cur_index] = Current_Task_Index then

Continue_Current_Task();

else

Context_Switch(Current_Task_Index, TIL[cur_index]);

Current_Task_Index ← TIL[cur_index];

endif

endif

end

Fig. 7.3 PRRP scheduling algorithm in RTOS for PLX

is assigned to −1. In the for loop, we search on the TIL array and see if there is
any task with higher priority than the current task. If a task with a higher priority
exists, we set the current priority to the higher one and exit the for loop. After
leaving the for loop, we immediately check whether the value of current index is
still −1; if it is, we run the idle task which is a kernel task and contains an infinite
loop performing some dummy instructions. If the current index is not −1, we check
whether the selected task is the current task; otherwise, if the condition holds, we
continue executing the current task, or just invoke the context switch procedure to
swap out the current task and, then, execute the one with higher priority. The RR
algorithm serves only the tasks with the same priority, which is actually the highest
in the system. Each task is equally served to run on the processor until its time
quantum is totally consumed. There are three points in time at which the scheduler
is invoked, including when a new task arrives, when a task is terminated, and when
the time quantum of the current task runs out. The context switch is only invoked
at two points in time. One is when there is a new task with a priority higher than
that of the current task, and the other is when the time quantum of the current task
is totally consumed.
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7.2 Memory Management

The design and implementation of memory management consist of two main parts:
memory layout and heap management. The memory layout describes the memory
space allocation for the RTOS kernel, the user tasks, and the boot sector.

As shown in Fig. 7.4, in the memory layout, we partitioned the main memory
into several regions. The default size of the main memory is 8 MB. The region of the
boot sector occupies 512 bytes and the size of the kernel context is 2 MB. The kernel
context comprises the interrupt vector, kernel code, kernel data, kernel heap, kernel
stack, and the system call code. The size of the kernel stack in a user task supports at
least 256 recursive function calls, which is standard in C language. Correspondingly,
the size of the interrupt vector supports 256 ISRs. In our implementation, at most
five tasks can be simultaneously inserted into the main memory for execution and
scheduling. The context of a user task comprises the code, data, heap and stack, and
the size of the context is 775 KB.

The main goal of the heap management is to provide the kernel or user tasks with
the capability of dynamic allocation of memory. In our implementation, we adapt
the buddy memory allocation technique [93] to manage the heap of kernel and user
tasks. Compared to the memory allocation technique used in conventional operating
systems, the buddy memory allocation technique is easy to implement and can work
well without using the memory management unit (MMU) not supported by the PLX
processor. This capability makes our RTOS for PLX much easier to port to other
target platforms.
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Fig. 7.4 Memory layout in RTOS for PLX
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Besides the above advantages, the buddy memory allocation technique has lit-
tle external fragmentation, and the overhead of compacting memory is very small.
However, the disadvantage of the adopted technique is a moderate amount of inter-
nal fragmentation. For example, when a request of nine memory blocks is required,
then the buddy memory allocation technique allocates sixteen memory blocks to
satisfy the request. Seven memory blocks are, thus, wasted. The number of allocated
blocks must be a multiple of 2. The size of an allocated basic memory block is 512
bytes. The allocated blocks for each request have to be continuous; thus, it is conve-
nient for the user to access the allocated memory in an integral and continuous way.

7.3 Communication and Synchronization Primitives

Being a multi-tasking system, an application may be divided into several tasks that
collaborate to accomplish the functions of the applications. Thus, in our RTOS we
provide some task communication primitives. Sharing resources among tasks can
be dangerous in a multi-tasking and time-sharing system, when there is no synchro-
nization primitive to serialize these cooperative tasks which concurrently access
the same shared resources, in particular, when the shared memory is used for data
exchange or communication.

The implementation of shared memory primitives is based on heap manage-
ment. When the system call for creating a shared memory is invoked, the kernel
allocates the memory blocks via our buddy memory allocation system, and the
shared memory blocks are allocated with a kernel heap. Each shared memory is
assigned a key by the user. When the key does not exist in our system, the ker-
nel creates a proper size of memory blocks for sharing and associates the key to
the shared memory. If the key does exist, that means there exists a shared mem-
ory with the same key associated to it, and the kernel returns the start address of
the existing shared memory. The tasks which communicate via the same shared
memory can get the shared start address through the same key related to the shared
memory.

In our implementation the kernel keeps some important data structures to track
the use of a shared memory. The data structure contains the key associated to the
shared memory and the start address of the shared memory blocks. When all tasks
release their shared memory, the kernel also returns the allocated memory to the
buddy memory allocation system.

Communication or data exchange among tasks through a shared memory is
widely used in most operating systems. However, concurrent accesses to shared
resources could result in data inconsistency in the shared memory. In order to cope
with this problem, each task has to be synchronized to access the shared data. Thus,
a synchronization primitive is also provided by our RTOS for PLX.

The semaphore, a classic synchronization primitive, is often applied to protect
variables or abstract data types. Using a semaphore to limit access to shared re-
sources in a multi-tasking system is pervasively used in the OS kernel and user
tasks. A task can access a shared resource only through a semaphore as follows.
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When a task enters its critical section (CS), no other tasks can enter this critical
section. The shared resources that can be accessed only in the critical section are
thus protected. The mutex is a shared variable of a semaphore, each task tries to
lock the mutex before it enters the CS, and when a task leaves the CS, the task
unlocks the mutex. It is universally acknowledged that the mutex itself is also a
contention among the tasks using the same semaphore. In our implementation of
semaphore, when a task tries to lock the mutex, the kernel masks all the interrupts
in PLX in order to prevent the preemption of the task; hence, the lock operation to
the mutex is performed atomically.

There are two types of semaphores, namely binary semaphore and counting
semaphore. In the binary semaphore the value of the mutex can only be zero or
one, but in the counting semaphore the value of the mutex can be any integer. We
only implement the binary semaphore in our RTOS because it is simple and the
counting semaphore can be easily implemented using the binary semaphore.

7.4 Multimedia Applications in RTOS for PLX

The design of the PLX processor has provided not only general-purpose instructions
for the normal applications, but also multimedia extension instructions for the mul-
timedia applications to speedup their performance. However, without appropriate
scheduling among the applications, it may lead to bad throughput or may not meet
the required constraints of some particular applications. In a general-purpose operat-
ing system [94], the strategies of a scheduler are often to support multiple objectives
such as fast response time for interactive applications and high throughput for batch
applications. Though the general-purpose scheduler can meet the requirements of
most applications, its inherent capability of supporting particular applications may
not be sufficient enough for some special objectives, such as meeting real-time con-
straints.

Today multimedia applications are pervasively seen in personal computers and
embedded systems, such as handheld devices. Multimedia data is often stored in a
file system and can be transmitted through the network. Some multimedia services,
such as digital multimedia on demands, continuously transmit multimedia data from
servers to clients. The transmission of multimedia data is called streaming. Soft
real-time streaming delivers a portion of multimedia data on the network to be
played back at a client, while maintaining a desired quality of service (QoS). A
typical example of QoS is, when a client requests a video stream from a server, it is
desired that the video must be continuously displayed at 24–30 frames per second
on average. To meet the soft real-time constraints of multimedia streaming, not only
must the bandwidth of the network be enough for downstreaming, but the server also
has to provide sufficient throughput to satisfy the multiple requests from multiple
clients.

Most multimedia data streaming on the network is compressed from raw data
through a compression procedure. The reduced size of the compressed data is
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suitable for network streaming. However, most of the compression procedures are
computing-intensive, such as the H.264 data encoding process [95] as shown in
Fig. 2.15; thus, with the inherent capability of the PLX processor, the provided mul-
timedia extension instructions can meet the requirements of computing-intensive
applications. However as mentioned before, without a proper scheduler, it is diffi-
cult to guarantee the QoS of multimedia streaming. As discussed in Section 7.1, the
algorithm of our PRRP scheduler selects the task with the highest priority to execute,
and if there is more than one ready task with the higher priority, the RR algorithm
is used to schedule those tasks using FIFO. When an application needs to meet real-
time constraints, we can assign a high priority to the tasks of that application, for
example as shown in Fig. 2.15, DCT, IDCT, Quantization, and Entropy encoder are
assigned a high priority, such that the application can gain more computation time
from the system and increase its throughput to the targets. Due to the RR schedul-
ing algorithm, the response time of a high priority task in different applications is
also shortened. As a result, clients can retrieve a part of their respective multimedia
data simultaneously within a small time quantum, hence, the requirement of soft
real-time QoS constraints is satisfied by our RTOS through the PRRP scheduling.

There may also be data dependencies among tasks in an application. The data
compression flow of H.264 illustrates that the tasks, DCT and Quant, have data
dependency, meaning that these two tasks need to communicate. The inter-task com-
munication and data consistency can be achieved through the communication and
synchronization primitives implemented in our RTOS as described in Section 7.3.

7.5 Application Development Environment

To develop an application based on the RTOS for PLX requires several design tools.
In this section, we introduce the following development tools and the simulation
environment for building applications based on our RTOS for PLX.

(1) LCC Compiler,
(2) PLX Assembler,
(3) Parser/Locator/Loader,
(4) GNU make,
(5) Linux Distribution, and
(6) PLX Instruction Set Simulator.

Using the above tools, we show how to build the overall development environ-
ment and the toolchain. The main development environment includes the compiler,
the assembler, the platform simulator as shown in Fig. 7.5, and the parser and locator
as shown in Fig. 7.1. In Fig. 7.5, The PLX v1.1 LCC compiler was developed by
the PALM group of Princeton University led by Professor Ruby Lee. The PLX v1.2
ASM assembler and the SystemC-based PLX v1.2 instruction set simulator (ISS), as
described in Sections 6.3 and 6.4, were developed by the research group at National
Taiwan University led by Professor Sao-Jie Chen. Dotted lines represent the input,
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Fig. 7.5 Toolchain flow for
application development on
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and solid lines represent the main toolchain flow. The C code can be input to the PLX
v1.1 LCC compiler, which generates PLX assembly code that is taken as input for
the PLX v1.2 ASM assembler. The output of the PLX v1.2 ASM includes three files,
namely kernel.bin, kernel.lst, and kernel.hex, which are used for
simulation, debugging, and downloading, respectively.

7.5.1 Compilers

The compiler used for compiling user-written C codes is the little C compiler
(LCC) [84], which is a lightweight compiler modified from the well-known GCC
compiler and a retargetable compiler for Standard C. Several architectures, such as
ALPHA, SPARC, MIPS R3000, and Intel x86 have been supported by LCC. The
PALM group also modified the LCC to support the PLX processor. After compila-
tion, the LCC produces the corresponding PLX assembly code. However, the LCC
compiler was developed for the PLX v1.1 ISA. Before compiling an application
using LCC, several constraints listed below must be followed.

(1) Applications must be written in ISO-C.
(2) Multiple include files are not supported, so all prototypes must be integrated

into a single include file.
(3) Floating point operations are not supported, thus only fixed-point integer oper-

ations can be used in user-given C code. And
(4) I/O related standard C library is currently not supported; only the printf

function can be used.

Users who want to use LCC must first setup a Unix-like operating system as the
execution environment. To install the LCC compiler, the source file for LCC can be
downloaded from [96]. The readme file from the archive contains an installation
guide.

7.5.2 Parser, Locator, Loader, and Startup Code

The second component of the toolchain consists of a parser, a locator, and a loader.
The main functions of these tools include parsing and locating PLX assembly code
and loading machine code into memory. Locating involves the assignment of the
proper physical memory addresses to symbols according to the memory layout as
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Fig. 7.6 Toolchain
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shown in Fig. 7.4. Parsing tries to alleviate the version incompatibilities between
the LCC compiler and the PLX assembler as shown in Fig. 7.6. The assembly code
generated by LCC v1.1 cannot be directly fed into the PLX v1.2 assembler because
of the following reasons.

(1) No memory allocation scheme for data is supported by the PLX v1.2 assembler.
(2) The trap and lea instructions are not supported by the PLX v1.2 assembler.
(3) Floating point instructions are not supported by the LCC v1.1 compiler and the

PLX v1.2 assembler.

Figure 7.7 shows the relations of the parser, the loader, the locator, and the startup
code. The parser takes charge of identifying the global and static variable offsets in
code segment and data segment, as well as, recording all initial values of variables
stored in the header of binary code. The locator computes and assigns the physical
address of the main memory to the global or static variables in the code segment
according to the memory layout and parser’s offset information. Besides the above
functions, the locator also prepends the startup code for each task to initialize their
execution environment, such as the setting of the address of the frame pointer, the
stack pointer and the initial value of static or global variables. Finally, the loader
loads the binary file from the external SRAM into main memory and gives the
control to the startup code.

The input file of the parser is called kernel, which is generated by the LCC
compiler, and the output file is kernel.asm which satisfies the PLX assembler
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input requirements. The input of the locator is the output file from the parser, namely
kernel.asm, and the output file is an updated assembly code with a startup code.

The functionalities of the startup code include the following.

(1) To initialize the global and static variables by copying the values stored in the
external SRAM,

(2) To clear all the uninitialized data (bss) section to zero,
(3) To assign the stack and frame pointers for each task, and
(4) To invoke the main function of the user task.

After the main function is invoked, the user tasks start executing.

7.5.3 PLX Platform Simulator

Currently, our RTOS for PLX is developed and tested on the instruction set simulator
developed by the research group at National Taiwan University. The PLX platform
simulator works on the Microsoft Windows operating system and is implemented
using the SystemC library. SystemC is based on the C++ language and can be seen
as a combination of hardware description language (Verilog) and software program-
ming language. With the capability of transaction-level modeling and behavioral
modeling, SystemC is also a powerful system description language. The design of
the PLX platform simulator integrates several memory blocks including SRAM,
embedded SRAM, external SRAM, D-cache, and I-cache. Our memory layout is
based on a SRAM block of size 8 MB. The simulator also provides timers and key
interrupts that are used by the RTOS.

With appropriate commands to execute the simulator, we can assign the exe-
cutable files or data files to the designated addresses of some memory blocks. For ex-
ample, with the command, code.bin@ICACHE:0 test.yuv@SRAM:0x10,
the simulator loads code.bin into 0x00000000 of I-cache and test.yuv into
0x30000010 of SRAM. The locator automatically generates the commands for the
users to startup the simulator and to load the tasks and data to the proper addresses.

7.6 Experimental Results

In our experiments, we used two application examples to demonstrate the creation
of applications and to verify our RTOS environment. The first example is a discrete
transform application that is used in several popular encoding/decoding image and
video standards such as JPEG and H.264. The second example is a more complex
application consisting of a simplified H.264 encoding/decoding system. We chose
these two applications because PLX is designed for multimedia application and
these two represent the core and the state-of-the-art in multimedia applications.

The first application consists of two tasks namely Discrete Cosine Transform
(DCT) and Inverse Discrete Cosine Transform (IDCT), which are pervasively used
in multimedia and digital image processing, such JPEG and H.264 video encoding
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Fig. 7.8 Test flow using DCT
and IDCT

DCT IDCT 

Input Pixel Output Pixel

Transformed Data
(Shared Memory)

Equal? 

and decoding (refer to Section 2.3.4 for detail). The test flow is depicted in Fig. 7.8.
The input to the DCT task consists of image pixel data. The output data of the DCT
task consists of transformed data, which is then given as input data for the IDCT
task. For verification, we compare the output data of the IDCT with the original
pixel data to see if they are the same.

The 4 × 4 DCT is responsible for the transformation of the integer image data
from the space domain to the frequency domain. In contrast to DCT, the 4 × 4 IDCT
computes the inverse transform. Thus, the data in IDCT is transformed from the
frequency domain to the space domain.

Before we start to compile the above two tasks, the LCC compiler for PLX has to
be installed, which can be downloaded from [96]. The instructions in the readme
file can be used to install the LCC compiler. After installing the LCC compiler, sev-
eral built-in examples can be found at the following path: PLXROOT/PLX-1.1/
benchmarks. Each example is contained in the directory, whose name is prefixed
with “lcc.” You may compile these examples via the command, run-bench
-c lcc.examples, to check if your compiler is successfully installed. Two new
projects will be created in the benchmarks directory including lcc.dct and
lcc.idct.

To compile these projects, two commands, run-bench -c lcc.dct and
run-bench -c lcc.idct, must be issued. After compiling the projects, the
LCC compiler generates two directories with the corresponding names of the
projects in the directory, PLXROOT/PLX-1.1/build, where each project has
a file named kernel. In order to distinguish from other applications, we rename
the files with the same name, kernel, to kernel dct and kernel idct
corresponding to the two projects.

In the next step, we perform the static memory allocation for the codes. To
invoke the locator and to use the file, kernel, as the input, the following com-
mand must be issued, ./locator kernel. The locator generates three files
for each of the projects, including kernel.asm, kernel data.out, and
kernel.arg. The main purposes of these three files are described below. How-
ever, in our example, we use the two commands, ./locator kernel dct and
./locator kernel idct, and the generated files are kernel dct.asm,
kernel dct data.out, kernel dct.arg, kernel idct.asm,
kernel idct data.out, and kernel idct.arg.
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Corresponding to the two projects, lcc.dct and lcc.idct, the generated
contents of the arg files are listed as follows:

// filename: kernel dct.arg
kernel dct.bin@EXTSRAM:0 kernel dct data.out@EXTSRAM:0x4B000

// filename: kernel idct.arg
kernel idct.bin@EXTSRAM:0x70810
kernel idct data.out@EXTSRAM:0xBB810

� kernel.asm: In this assembly file, all incompatibilities between the LCC com-
piler and the assembler have been removed, and the assembly code is thus com-
patible to the PLX v1.2 instruction set architecture.

� kernel data.out: This binary file contains the loading information and the
initial values of the global and static variables in kernel.asm. The loading
information occupies totally 16 bytes and consists of the following fields: text,
data, block started by symbol (bss), and reserved field. Each field occupies 4
bytes. This loading information will be added in the head of the binary executable
file.

� kernel.arg: This file contains the parameter information for issuing com-
mands to the PLX simulator. The simulator locates the text, data, bss, and initial
information to the proper locations as specified in the command line.

In the last step, we use the PLX assembler to assemble the kernel dct.asm
and kernel idct.asm to get the binary files, namely kernel dct.bin and
kernel idct.bin. The code, data, bss, and initial variable values corresponding
to a task are placed in the external SRAM (XRAM). A dynamic loader is used here
to load the content of a context into the proper address of the main memory. The
dynamic loader in default is located at the address 0x0, which in memory layout is
the start address of boot sector. Hence, we give the command to invoke the PLX ISS
as follows:

‘‘\PLX platform Dynload.bin@SRAM:0x0
kernel dct.bin@EXRAM:0 kernel dct data.out@XRAM:0x4B000
kernel idct.bin@XRAM:0x70810 kernel idct data.out@XRAM:0xBB810’’.

Figure 7.9 shows the main purpose of the command line for the simulator, that
is, to load the loader, dct and idct codes, and the loading information of dct
and idct to the specifically physical addresses in the designated memory block.
When we want to start executing a task, we press a designated key to invoke the
key interrupt service routine and the dynamic loader starts to load the content of
that task from the XRAM to the main memory; subsequently, the scheduler starts to
schedule the loaded task.

The two-dimensional matrix input of DCT is shown in Fig. 7.10(a), and the two-
dimensional matrix output of DCT is shown in Fig. 7.10(b) which is also the input
of IDCT.
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Fig. 7.9 Start addresses for
binary files in the DCT/IDCT
example
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Fig. 7.10 Two-dimensional
matrix input/output of DCT
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We allocate a block of shared memory from the heap of the kernel for commu-
nication between the two tasks. After implementing the two tasks, DCT and IDCT,
we placed them into the external memory using the simulation command. The loca-
tor and loader were used to locate and load these two codes. The RTOS scheduler
successfully scheduled the two tasks in the system to run on the ISS. Finally, we
compared the output data of IDCT with the original data and found that they were
the same.

The H.264/AVC Video Coding Standard specifies an integer DCT-like 4 × 4
transform designed to be computed using only additions, subtractions and shifts
on data unit. Using PLX subword parallelism instructions, like padd, psub, and
pshift, we can tremendously reduce the complexity of computation. The same
concept is also implemented in the Inverse DCT. According to the description of
H.264/MPEG4 Part 10 White paper [97], H.264 uses a scalar quantization which
includes large array computations. In an SIMD architecture, we can use a single
PLX instruction, such as pmul.odd and pmul.even, to accomplish the multiple
multiplications on multiple data units.

We grouped the four jobs, namely DCT, Quantization [98,99], Inverse DCT, and
Inverse Quantization, into two tasks, one of which executes the DCT and Quantiza-
tion, and the other executes Inverse DCT and Inverse Quantization. In Fig. 7.11(a),
we illustrate a segment of the code for the DCT. In the 64-bit PLX processor, the
four 64-bit registers, Rc, Rh, Ri, and Rd, are used to temporally store the data
of 4 × 4 matrix, and the three operator, padd, psub, and pshifti, are used to
compute on the four registers. For example, the instruction, padd.2.s Re, Rc,
Rd, is used to concurrently add the 2-byte data of Rc and Rd, and the parallel
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Fig. 7.11 Segment of
multimedia extension
instructions for (a) DCT and
(b) Quantization

padd.2.s    Re,Rc,Rd 
padd.2.s    Rj,Rh,Ri 
psub.2.s    Rf,Rc,Rd 
psub.2.s    Rk,Rh,Ri 
pshifti.2.l Rg,Rf,1 
pshifti.2.l Rl,Rk,1 
padd.2.s    Rm,Re,Rj 
padd.2.s    Rn,Rk,Rg 
psub.2.s    Ro,Re,Rj 
psub.2.s    Rp,Rf,Rl

pmul.odd  R4,L1,R1 
pmul.even  R5,L1,R1 
pmul.odd  R6,L2,R2 
pmul.even  R7,L2,R2 
mix.2.l   R3,R1,R2 
pmul.odd  R8,L3,R3 
pmul.even  R9,L3,R3 
mix.2.r   R3,R2,R1 
pmul.odd  R10,L4,R3 
pmul.even  R11,L4,R3

result is stored in the Re register. The instruction, psub.2.s Rf, Rc, Rd, is
similar to padd.2.s, and it subtracts 2-byte data of Rc and Rd and stores the
result in Rf. The instruction, pshifti.2.1 Rg, Rf, 1, is to shift 1-bit to each
2-byte data of Rf to the left and stores the result in Rg.

In Fig. 7.11(b), we illustrate a segment of the code for Quantization. The regis-
ters, L1, L2, L3 and L4, are used to store the results of DCT, and the registers,
R1, R2, R3 and R4, are used to store the multiplication factors. Due to the fact
that n-bit multiplication will result in a 2n-bit output, in PLX processor architecture,
the designer divides the instruction of a multiplication into even and odd multiplica-
tions. For example, the instruction, pmul.odd R4, L1, R1, is to multiply the
field of odd index in L1 and R1 and the result is subsequently stored in R4.

In contrast to the multiplication instruction of x86 architecture, the performance
of PLX subword parallel operation is about 2 times faster than the multiplication
instruction of x86. We used a raw image as the input for this example and retrieved
the output, and then, we displayed the output image to see if the image is similar to
the original one. The result shows that this example worked correctly.

As a consequence, with the two successful examples, we verified the parser, lo-
cater, loader, scheduler, and dispatcher of our RTOS, and also illustrated the capa-
bility of the PLX virtual prototype platform.



Chapter 8
Conclusion

We had designed a PLX-based embedded system for H.264 application. The system
design was started with knowledge obtained from many multimedia applications.
By analyzing multimedia applications as shown in Chapter 2, we decided that the
processor needs an SWP-SIMD instruction set to process multimedia applications in
a data level parallelism way. By performance analysis in Section 4.1, we know that
a native SWP-SIMD PLX processor can handle low-resolution picture for low-cost
product, but high-resolution picture needs specific motion-estimation hardware or
ASIP. An un-timed virtual prototype platform and approximate-time transaction-
level SystemC modeling as presented in Chapter 6 were built to develop compiler
and OS in early design stage before PLX RTL circuit design is ready. Chapter 7
demonstrated our experiences in using this virtual prototype platform to develop a
real-time OS for PLX.

The RTOS implementation comprises: (1) a priority-based, round-robin, preemp-
tive PRRP scheduler that is capable of multi-programing; (2) a dispatcher that is
responsible for context switch between two tasks; (3) a memory manager that allow
tasks to allocate or deallocate memory blocks from the heap, and to create shared
memory for communication; (4) a loader that reads codes from the external RAM
and initializes the execution environment for the tasks; (5) a locator that is respon-
sible for calculating the physical address for global or static variables; and (6) the
ISRs which handle the key interrupt and timer interrupt.

With the support of multimedia extension instructions of the PLX ISS and
priority-based scheduling, we can assign higher priorities to the application tasks
that are constrained by time. Consequently, our scheduler is suitable for the multi-
media applications to meet their real-time constraints easily, performing on PLX.

Besides the main components of the RTOS, we also introduced a toolchain for
RTOS development, which comprises an LCC C compiler, an assembler, and a
parser that fixes the incompatibilities between the compiler and the assembler. These
tools can also help users to design their own applications to run on the RTOS for
PLX. The SystemC-based ISS for PLX generates the debug information in a log
file, which can be used by users to debug their applications.

In the future, we will design the I/O device drivers for more peripherals, such as
the hard disk and the network interface, which will provide application developers
with a more powerful environment for different applications.

S.-J. Chen et al., Hardware Software Co-Design of a Multimedia SOC Platform,
DOI 10.1007/978-1-4020-9623-5 8, C© Springer Science+Business Media B.V. 2009
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146 8 Conclusion

For the cost/power efficiency and programmability purposes, a system-on-chip
embedded with an application-specific instruction set processor is necessary at the
nano-meter era. A complicated hardware-in-the-loop design flow induces heavy
work on system-level hardware/software codesign engineers who have to develop
system level models, a multi-level parallelized processor, a parallel compiler, and a
real-time OS for a many-core SoC. This book tried to give an overall introduction
to materials on all these knowledge domains. The experiences gained in the imple-
mentation of a PLX processor and toolochain design show that we can use these
system-level design and verification tools to shorten the design cycle. We hope that
our success story will encourage readers to develop their own SoCs with an in-house
single-core or multi-core processor inside.
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