

A Practical Introduction
to Hardware/Software Codesign

Patrick R. Schaumont

A Practical Introduction
to Hardware/Software
Codesign

ABC

Dr. Patrick R. Schaumont
Virginia Tech
Bradley Dept. Electrical & Computer Engineering
Whittemore Hall 302
24061 Blacksburg VA
USA
schaum@vt.edu

ISBN 978-1-4419-5999-7 e-ISBN 978-1-4419-6000-9
DOI 10.1007/978-1-4419-6000-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010935198

c� Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

The most important day is today.

Preface

This is a practical book for computer engineers who want to understand or
implement hardware/software systems. It focuses on problems that require one
to combine hardware design with software design – such problems can be solved
with hardware/software codesign. When used properly, hardware/software code-
sign works better than hardware design or software design alone: it can improve the
overall performance of digital systems, and it can shorten their design time.

Hardware/software codesign can help a designer to make trade-offs between the
flexibility and the performance of a digital system. To achieve this, a designer needs
to combine two radically different ways of design: the sequential way of decom-
position in time, using software, with the parallel way of decomposition in space,
using hardware.

Intended Audience

This book assumes that you have a basic understanding of hardware that you are fa-
miliar with standard digital hardware components such as registers, logic gates, and
components such as multiplexers and arithmetic operators. The book also assumes
that you know how to write a program in C. These topics are usually covered in
an introductory course on computer engineering or in a combination of courses on
digital design and software engineering.

The book is suited for advanced undergraduate students and beginning graduate
students. I believe the book will also be useful for researchers from other (non-
computer engineering) fields, who have a need for hardware/software codesign. For
example, I often work with cryptographers who have no formal training in hard-
ware design but still want to obtain dedicated architectures for highly specialized
algorithms. In my experience, it is very rewarding to explain codesign ideas to a
cryptographer (or any other domain expert, for that matter).

A key learning objective of the book is to provide a hands-on, practical intro-
duction to design that combines sequential decomposition (software) and spatial
decomposition (hardware). There is a surprisingly large mental gap between these
two approaches to design. In fact, undergraduate courses tend to emphasize only one
way of thinking at a time. Undergraduates will take a course on programming (for

vii

viii Preface

a stored-program computer) or a digital hardware design course. Considering how
dramatic the changes to the computer architecture landscape have been in recent
years (multicore, system-on-chip, ultra-low power computing, . . .), it’s becoming
essential to look beyond these boundaries.

Organization

The book puts equal emphasis on design methods and modeling (design languages).
Design modeling helps a designer to think about a design problem and to capture a
solution for the problem. Design methods are systematic transformations that con-
vert design models into implementations. There are four parts in this book: Basic
Concepts, the Design Space of Custom Architectures, Hardware/Software Inter-
faces, and Applications.

Figure 1 illustrates how everything fits together. The first part of the book intro-
duces modeling techniques concepts, required to understand how software can be
converted into hardware and vice versa. The second part of the book describes the
design space of custom architectures, starting at fully dedicated, high-performance

Part I
Basic Concepts

Chapter 1
The Nature of Hardware

and Software
Hardware Software

Chapter 2
Dataflow Modeling

and Implementation

Chapter 3
Analysis of Control Flow

and Data Flow
Control / Data Flow

Analysis

Dataflow Models
(HW / SW Model)

Part II
The Design Space

of Custom
Architectures

(from dedicated
to flexible)

FSMD

Microprogramming

RISC Cores

Chapter 4
Finite State Machine

with Datapath
Chapter 5

Microprogrammed
Architectures

Chapter 6
General-purpose

Embedded Cores

Dedicated

1

3

4

6

Minimum
Suggested Coverage

System-on-ChipChapter 7
System-on-Chip

Part III
Hardware-Software

Intefaces

Chapter 8
On-Chip Busses

Chapter 9
Hardware-Software

Interfaces

Chapter 10
Control Shell Design

CPUHW

Part IV
Applications

Chapter 11
Trivium

Crypto-Coprocessor

Chapter 12
Cordic

Crypto-Coprocessor

Flexible

CPUHW
Trivium
CORDIC

8051
Microblaze
ARM

Mem-Mapped
Port-Mapped
ASIP

8

9

11

Fig. 1 Outline of the book

Preface ix

hardware implementations, and gradually evolving into flexible system-on-chip
(SoC) architectures. The third part of the book goes into the details of hardware/
software interface design. The final part of the book shows two application case
studies.

Basic Concepts: The first chapter covers the fundamental properties of hard-
ware and software and discusses the motivation for hardware/software codesign
(Chap. 1). Chapter 2 describes Dataflow models, a modeling technique that can tar-
get hardware as well as software. Chapter 3 introduces control-flow and data-flow
as the common underlying properties of hardware and software. By analyzing the
control dependencies and the data dependencies of a C program, a designer obtains
insight into possible hardware implementations of that C program.

The Design Space of Custom Architectures: The second part is a tour along the vast
design space of flexible, customized architectures. A review of four architectures
shows how hardware gradually evolves into software. The Finite State Machine with
Datapath (FSMD) of Chap. 4 is the starting point. FSMD models are the equiva-
lent of hardware modeling at the register-transfer level (RTL). Chapter 5 introduces
micro-programmed architectures. These are still very much like RTL machines,
but they have a flexible controller, which allows them to be reprogrammed with
software. Chapter 6 reviews general-purpose embedded RISC cores. These pro-
cessors are the heart of typical contemporary hardware/software systems. Finally,
Chap. 7 ties the general-purpose embedded core back to the FSMD in the context
of a System-on-Chip architecture (SoC). The SoC sets the stage for the hardware/
software codesign problems that are addressed in the third part.

Hardware/Software Interfaces: The third part describes the link between hardware
and software in the SoC architecture, in three chapters. Chapter 8 discusses a typical
on-chip bus structure and explains how it can efficiently move information be-
tween hardware and software. Chapter 9 presents three different locations in the
SoC architecture where a designer could attach custom hardware. This includes
the memory-mapped interface, the coprocessor interface, and the custom proces-
sor datapath. Finally, Chap. 10 shows how a designer can take an arbitrary hardware
module and attach it to one of the three hardware/software interfaces described in
Chap. 9.

Applications: The final part gives two sample applications of hardware–software
codesign and shows how the different techniques and hardware–software inter-
faces can be used in actual design. Chapter 11 presents a crypto-coprocessor, while
Chap. 12 describes a CORDIC coprocessor, including a prototype and an FPGA
board.

There are several subjects which are not mentioned or discussed in the book. As
an introductory discussion on a complex subject, I tried to find a balance between
detail and complexity. For example, I did not include a discussion of advanced con-
cepts in software concurrency, such as threads, and software architectures, such as
operating systems and drivers. I also did not discuss software interrupts, or advanced
system operation concepts such as Direct Memory Access.

x Preface

I assume that the reader will go through all the chapters in sequence. The
minimum suggested coverage which will still provide the reader an understandable
introduction in hardware–software codesign includes Chaps. 1, 3, 4, 6, 8, 9, and 11.

Making it practical

The book emphasizes ideas and design methods, in combination with hands-on,
practical experiments. The book therefore discusses detailed examples throughout
the chapters, and it includes an entire section (Applications) to discuss the overall
design process. The hardware descriptions are made in GEZEL, an open-source
cycle-accurate hardware modeling language. The GEZEL website, which distributes
the tools, examples, and other documentation, is at

http://rijndael.ece.vt.edu/gezel2

There are several reasons why I choose not to use a mainstream HDL such as
VHDL, Verilog, or SystemC.

� A first reason is reduced modeling overhead. Although models are crucial for
embedded system construction, detailed modeling issues often distract the read-
ers’ attention from the key issues. For example, modeling the clock signal in
hardware requires a lot of additional effort, and it is not essential when doing
single-clock synchronous design (which covers the majority of digital hardware
design today).

� A second reason is that GEZEL comes with support for cosimulation built-in.
GEZEL models can be cosimulated with different processor simulation models,
including ARM, 8051, and others. GEZEL includes a library-block modeling
mechanism that enables one to define new cosimulation interfaces with other
simulation engines.

� A third reason is conciseness. This is a practical book with many design exam-
ples. Listings are unavoidable, but they need to be short. Of the 78 captioned
listings in this book, 64 of them fit on a single page. Chapter 4 further illus-
trates the point of conciseness with a single design example in GEZEL, VHDL,
Verilog, and SystemC side-by-side.

� A fourth reason is the path to implementation. GEZEL models can be translated
(automatically) to VHDL. These models can be synthesized using standard HDL
logic synthesis tools.

I use the material in this book in a class on hardware/software codesign. The
class hosts senior-level undergraduate students, as well as first-year graduate-level
students. For the seniors, this class ties many different elements of computer en-
gineering together: computer architectures, software engineering, hardware design,
debugging, and testing. For the graduate students, it is a refresher and a starting
point of their graduate researcher careers in computer engineering.

In the class on codesign, the GEZEL experiments connect to an FPGA back-end
and an FPGA prototyping kit. These experiments are implemented as homework.

Preface xi

Modeling assignments in GEZEL alternate with integration assignments on FPGA.
Through the use of the GEZEL backend support, students even avoid writing of
VHDL code, but directly switch from cosimulation to FPGA implementation. At
the end of the course, there is a ‘contest’. The students receive a reference imple-
mentation in C that runs on their FPGA prototyping kit. They need to accelerate this
reference as much as possible using codesign techniques.

Acknowledgments I would like to express my sincere thanks to the many people who have con-
tributed to this effort. First and foremost, my family, who asked every other week, for two years,
with the same enthusiasm, how far along I was. A baby could be delivered for less. Second,
throughout my career I have met many outstanding engineers, and this book reflects these in-
teractions. For example, Wei Qin developed the SimIT-ARM instruction-set simulator and helped
with the integration of GEZEL and this simulator. Ingrid Verbauwhede has shaped many of the
ideas and the design philosophies of this book. Frank Vahid is my example in educational writing
excellence. Jan Madsen first introduced me to the idea that hardware/software codesign makes a
lot of sense as an undergraduate computer engineering topic. And the list is far longer still.

I hope you enjoy this topic and I truly wish this material helps you to go out and do some
fantastic things in hardware/software codesign. I apologize for any mistakes left in the book – and
of course I appreciate your feedback.

Blacksburg Patrick Schaumont
July 2010 schaum@vt.edu

Contents

Part I Basic Concepts

1 The Nature of Hardware and Software . 3
1.1 Introducing Hardware/Software Codesign .. 3

1.1.1 Hardware .. 3
1.1.2 Software .. 5
1.1.3 Hardware and Software . 8
1.1.4 Defining Hardware/Software Codesign . 11

1.2 The Quest for Energy Efficiency . 13
1.2.1 Relative Performance .. 13
1.2.2 Energy Efficiency .. 14

1.3 The Driving Factors in Hardware/Software Codesign 15
1.4 The Hardware–Software Codesign Space . 17

1.4.1 The Platform Design Space . 18
1.4.2 Application Mapping .. 19

1.5 The Dualism of Hardware Design and Software Design 20
1.6 More on Modeling . 23

1.6.1 Abstraction Levels . 23
1.7 Concurrency and Parallelism . 25
1.8 Summary.. 28
1.9 Further Reading . 28
1.10 Problems .. 29

2 Data Flow Modeling and Implementation . 33
2.1 The Need for Concurrent Models: An Example . 33

2.1.1 Tokens, Actors, and Queues. 37
2.1.2 Firing Rates, Firing Rules, and Schedules. 38
2.1.3 Synchronous Data Flow Graphs . 39
2.1.4 SDF Graphs are Determinate . 39

2.2 Analyzing Synchronous Data Flow Graphs . 40
2.2.1 Deriving Periodic Admissible Sequential Schedules 41
2.2.2 Example: Euclid’s Algorithm as an SDF Graph 44

xiii

xiv Contents

2.3 Control Flow Modeling and the Limitations of Data Flow Models . . 45
2.3.1 Emulating Control Flow with SDF Semantics 46
2.3.2 Extending SDF Semantics . 46

2.4 Software Implementation of Data Flow . 48
2.4.1 Converting Queues and Actors into Software 48
2.4.2 Sequential Targets with Dynamic Schedule 51
2.4.3 Sequential Targets with Static Schedule . 57

2.5 Hardware Implementation of Data Flow . 61
2.5.1 Single-Rate SDF Graphs . 61
2.5.2 Pipelining . 62
2.5.3 Multirate Expansion . 64

2.6 Summary.. 66
2.7 Further Reading . 66
2.8 Problems .. 67

3 Analysis of Control Flow and Data Flow. 71
3.1 Data and Control Edges of a C Program . 71
3.2 Implementing Data and Control Edges. 73
3.3 Contruction of the Control Flow Graph .. 75
3.4 Construction of the Data Flow Graph . 77
3.5 Application: Translating C to Hardware . 81

3.5.1 Designing the Datapath. 82
3.5.2 Designing the Controller . 82

3.6 Single-Assignment Programs .. 85
3.7 Summary.. 88
3.8 Further Reading . 88
3.9 Problems .. 89

Part II The Design Space of Custom Architectures

4 Finite State Machine with Datapath . 95
4.1 Cycle-Based Bit-Parallel Hardware . 95

4.1.1 Wires and Registers. 96
4.1.2 Precision and Sign . 98
4.1.3 Hardware Mapping of Expressions . 99

4.2 Hardware Modules .102
4.3 Finite State Machines .104
4.4 Finite State Machines with Datapath .. .107

4.4.1 Modeling .. .107
4.4.2 An FSMD is Not Unique .111
4.4.3 Implementation .113

4.5 Simulation and RTL Synthesis of FSMD .115
4.5.1 Simulation .115
4.5.2 Code Generation and Synthesis .117

4.6 Proper FSMD .117

Contents xv

4.7 Language Mapping for FSMD by Example. .119
4.7.1 GCD in GEZEL.. .119
4.7.2 GCD in Verilog .120
4.7.3 GCD in VHDL. .122
4.7.4 GCD in SystemC .124

4.8 Summary.. .126
4.9 Further Reading .126
4.10 Problems .. .127

5 Microprogrammed Architectures .133
5.1 Limitations of Finite State Machines .133

5.1.1 State Explosion .133
5.1.2 Exception Handling .134
5.1.3 Runtime Flexibility .135

5.2 Microprogrammed Control .136
5.3 Microinstruction Encoding .137

5.3.1 Jump Field .137
5.3.2 Command Field .139

5.4 The Microprogrammed Datapath .141
5.4.1 Datapath Architecture .141
5.4.2 Writing Microprograms .142

5.5 Implementing a Microprogrammed Machine .144
5.5.1 Microinstruction Word Definition .144

5.6 Microprogram Interpreters .151
5.7 Microprogram Pipelining .155

5.7.1 Microinstruction Register .156
5.7.2 Datapath Condition-Code Register .157
5.7.3 Pipelined Next-Address Logic .158

5.8 Picoblaze: A Contemporary Microprogram Controller.158
5.9 Summary.. .160
5.10 Further Reading .160
5.11 Problems .. .161

6 General-Purpose Embedded Cores .165
6.1 Processors. .165

6.1.1 The Toolchain of a Typical Microprocessor166
6.1.2 From C to Assembly Instructions .. .167
6.1.3 Simulating a C Program Executing on a Microprocessor . .170

6.2 The RISC Pipeline .173
6.2.1 Control Hazards .174
6.2.2 Data Hazards .176
6.2.3 Structural Hazards .177

6.3 Program Organization .. .178
6.3.1 Data Types .179
6.3.2 Variables in the Memory Hierarchy .180

xvi Contents

6.3.3 Function Calls .183
6.3.4 Program Layout. .186

6.4 Analyzing the Quality of Compiled Code. .190
6.4.1 Analysis Based on Static Assembly Code190
6.4.2 Analysis Based on Execution of Object Code.194

6.5 Summary.. .198
6.6 Further Reading .198
6.7 Problems .. .199

7 System On Chip .205
7.1 The System-on-Chip Concept .205

7.1.1 The Cast of Players .206
7.1.2 SoC Interfaces for Custom Hardware .207

7.2 Four Design Principles in SoC Architecture .209
7.2.1 Heterogeneous and Distributed Data Processing209
7.2.2 Heterogeneous and Distributed Communications210
7.2.3 Heterogeneous and Distributed Storage .211
7.2.4 Hierarchical Control .214

7.3 Example: Portable Multimedia System .215
7.4 SoC Modeling in GEZEL .. .217

7.4.1 An SoC with a StrongARM Core .218
7.4.2 Ping-Pong Buffer with an 8051 .. .221

7.5 Summary.. .225
7.6 Further Reading .225
7.7 Problems .. .226

Part III Hardware/Software Interfaces

8 On-Chip Busses .231
8.1 Connecting Hardware and Software .231
8.2 On-Chip Bus Systems .232

8.2.1 Some Existing On-Chip Bus Systems .232
8.2.2 Bus Elements .233
8.2.3 Bus Signals .234
8.2.4 Bus Timing Diagram .235

8.3 Bus Transfers .237
8.3.1 Simple Read and Write Transfers .237
8.3.2 Transfer Sizing and Endianess .238
8.3.3 Improved Bus Transfers .242

8.4 Multimaster Bus Systems .245
8.4.1 Bus Priority .246
8.4.2 Bus Locking .248

8.5 On-Chip Networks .250
8.6 Summary.. .253
8.7 Further Reading .254
8.8 Problems .. .254

Contents xvii

9 Hardware/Software Interfaces .259
9.1 The Hardware/Software Interface .259
9.2 Synchronization Schemes .260

9.2.1 Synchronization Concepts. .260
9.2.2 Semaphore .262
9.2.3 One-Way and Two-Way Handshake .265
9.2.4 Blocking and Nonblocking Data-Transfer.267

9.3 Memory-Mapped Interfaces .268
9.3.1 The Memory-Mapped Register .268
9.3.2 Mailboxes .271
9.3.3 First-In First-Out Queues. .272
9.3.4 Slave and Master Handshakes .273
9.3.5 Shared Memory .. .274
9.3.6 GEZEL Modeling of Memory-Mapped Interfaces275

9.4 Coprocessor Interfaces .279
9.4.1 Tight and Loose Coupling.. .281
9.4.2 The Fast Simplex Link .282
9.4.3 The LEON-3 Floating Point Coprocessor Interface284

9.5 Custom-Instruction Interfaces .286
9.5.1 ASIP Design Flow .287
9.5.2 Example: Endianess Byte-Ordering Processor288
9.5.3 Finding Good ASIP Instructions .. .293

9.6 Summary.. .297
9.7 Further Reading .297
9.8 Problems .. .298

10 Coprocessor Control Shell Design .303
10.1 The Coprocessor Control Shell .303

10.1.1 Functions of the Coprocessor Control Shell.303
10.1.2 Layout of the Coprocessor Control Shell .305
10.1.3 Communication-Constrained vs.

Computation-Constrained Coprocessors .306
10.2 Data Design. .308

10.2.1 Flexible Addressing Mechanisms. .308
10.2.2 Multiplexing and Masking .308

10.3 Control Design .310
10.3.1 Hierarchical Control .311
10.3.2 Control of Internal Pipelining .313

10.4 Programmer’s Model = Control Design + Data Design317
10.4.1 Address Map .317
10.4.2 Instruction Set .318

10.5 Example: AES Encryption Coprocessor .319
10.5.1 Control Shell Operation .320
10.5.2 Programmer’s Model .320
10.5.3 Software Driver Design .323

xviii Contents

10.5.4 Control Shell Design .324
10.5.5 System Performance Evaluation .327

10.6 Summary.. .329
10.7 Further Reading .329
10.8 Problems .. .330

Part IV Applications

11 Trivium Crypto-Coprocessor .. .337
11.1 The Trivium Stream Cipher Algorithm .337

11.1.1 Stream Ciphers. .337
11.1.2 Trivium .. .339
11.1.3 Hardware Mapping of Trivium .340
11.1.4 A Hardware Testbench for Trivium.. .344

11.2 Trivium for 8-bit Platforms .344
11.2.1 Overall Design of the 8051 Coprocessor .345
11.2.2 Hardware Platform of the 8051 Coprocessor.346
11.2.3 Software Driver for 8051 .. .350

11.3 Trivium for 32-bit Platforms .354
11.3.1 Hardware Platform Using Memory-mapped Interfaces.355
11.3.2 Software Driver Using Memory-mapped Interfaces358
11.3.3 Hardware Platform Using a Custom-Instruction

Interface .. .362
11.3.4 Software Driver for a Custom-Instruction Interface364

11.4 Summary.. .366
11.5 Further Reading .367
11.6 Problems .. .367

12 CORDIC Coprocessor .369
12.1 The Coordinate Rotation Digital Computer Algorithm369

12.1.1 The Algorithm .369
12.1.2 Reference Implementation in C .371

12.2 A Hardware Coprocessor for CORDIC .373
12.2.1 A CORDIC Kernel in Hardware .373
12.2.2 A Control Shell for Fast-Simplex-Link Coprocessors376

12.3 An FPGA Prototype of the CORDIC Coprocessor379
12.4 Handling Large Amounts of Rotations .382
12.5 Summary.. .387
12.6 Further Reading .387
12.7 Problems .. .388

References .389

Index .393

Part I
Basic Concepts

This part introduces important concepts in hardware–software codesign. We
compare and contrast the two classic ‘mindsets of design’: the hardware mind-
set and the software mindset, and we point out that hardware/software codesign is
more than just glueing hardware and software components together; instead, it’s
about finding the correct balance between flexibility and performance in a design.
The trade-off between parallel and sequential implementations is another funda-
mental idea for a codesigner; we will discuss a concurrent system model (data-flow)
that can be converted into hardware (parallel) as well as into software (sequen-
tial). We will also discuss the analysis of C programs in terms of control-flow and
data-flow.

Chapter 1
The Nature of Hardware and Software

Abstract Hardware/software codesign is the activity of partitioning an application
into a flexible part (software) and a fixed part (hardware). The flexible part in-
cludes C programs, configuration data, parameter settings, bitstreams, and so forth.
The fixed part consists of programmable components such as microprocessors and
coprocessors. There are several technological and economical reasons for imple-
menting electronic systems in this fashion, and we will discuss them upfront in this
chapter. Next, we consider the design space of programmable components: what
distinguishes one component from the other, and how do we select one in a given
hardware–software codesign. A key observation is that there is a trade-off between
flexibility and efficiency. A third part in this chapter will define the abstraction lev-
els for hardware and software for the purpose of this book. And finally, we will also
define three terms that play a vital role in this book, namely the terms concurrent,
parallel, and sequential.

1.1 Introducing Hardware/Software Codesign

This chapter describes the main motivators for hardware/software codesign. How-
ever, hardware and software may mean very different things to different people.
Therefore, we start by providing a simple definition of each. This will help to put
readers from different backgrounds on the same line. This section will also provide
a small example of hardware/software codesign and define several key terms, which
are used later.

1.1.1 Hardware

In this book, we will model hardware by means of single-clock synchronous digital
circuits created using word-level combinational logic and flip-flops.

These circuits can be modeled with building blocks such as registers, adders, and
multiplexers. Cycle-based hardware modeling is often called register-transfer-level

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 1, c� Springer Science+Business Media, LLC 2010

3

4 1 The Nature of Hardware and Software

(RTL) modeling because the behavior of a circuit can be thought of as a sequence
of transfers between registers, with logical and arithmetic operations performed on
the signals during the transfers.

Figure 1.1a gives an example of a hardware module captured in RTL. A register
can be incremented or cleared depending on the value of the control signal rst. The
register is updated on the up-going edges of a clock signal clk. The wordlength
of the register is 8 bit. Even though the connections in this figure are drawn as
single lines, each line represents a bundle of 8 wires. Figure 1.1a uses graphics to
capture the circuit; in this book, we will be using a hardware description language
(HDL) called GEZEL. Figure 1.1b shows the equivalent description of this circuit
in GEZEL language. Chapter 4 will describe GEZEL modeling in detail.

Figure 1.1c illustrates the behavior of the circuit using a timing diagram. In such
a diagram, time runs from left to right, and the relationships between signals of the
circuit are shown vertically. In this case, the register is cleared on clock edge 2, and
it is incremented on clock edge 3, 4, and 5. Before clock edge 2, the value of the

0

+

1

1

0

clk

rst

q

a

b

8

dp count(in rst: ns(1)) {
reg c : ns(8);
always {

q = c;

c

1 2 3 4 5

clk

rst

q 0 × 0 0 × 1 0 × 2 0 × 3

q = c;

c = rst ? 0 : c + 1;
}

}

c

Fig. 1.1 (a) Hardware schematic for a counter, (b) GEZEL model of this counter, (c) Timing
Diagram

1.1 Introducing Hardware/Software Codesign 5

register is assumed to be unknown, and the timing diagram indicates q’s value as a
shaded area. We will be using timing diagrams to describe the low-level behavior of
hardware–software interfaces, as well as on-chip buses.

The single-clock synchronous model cannot express every possible hardware cir-
cuit. For example, it cannot model events at a time resolution smaller than a clock
cycle. As a result, there are many forms of hardware that cannot be captured with
it, including asynchronous hardware, dynamic logic, multiphase clocked hardware,
and hardware with latches. However, single-clock synchronous hardware will be
sufficient to explain the key concepts of hardware–software codesign for this book.
The single-clock model is a very convenient abstraction for a designer who maps
behavior (e.g., an algorithm) into discrete steps of one clock cycle. It enables this
designer to envision how the hardware implementation of a particular algorithm
should look like.

1.1.2 Software

Hardware/software codesign deals with hardware/software interfaces. The low-level
construction details of software are important, because they can directly affect the
performance and implementation cost of the interface. Hence, the book will consider
important software implementation aspects such as the various sections of memory
(global, stack, heap), the different kinds of memory (registers, caches, RAM, and
ROM), and the techniques to control their use from within a high-level programming
language such as C.

We will model software as single-thread sequential programs, written in C or
assembly. Programs will be shown as listings, for example, Listing 1.1 and Listing
1.2. Most of the discussions in this book will be processor-independent, and they
will assume 32-bit architectures (ARM, Microblaze) as well as 8-bit architectures
(8051, Picoblaze).

The choice for single-thread sequential C is simply because it matches so well to
the actual execution model of a typical microprocessor. For example, the sequential
execution of C programs corresponds to the sequential instruction fetch-and-execute
cycle of microprocessors. The variables of C are stored in a single, shared-memory

Listing 1.1 C example
1
2 int max;
3
4 int findmax(int a[10]) {
5 unsigned i;
6 max = a[0];
7 for (i=1; i<10; i++)
8 if (a[i] > max) max = a[i];
9 }

6 1 The Nature of Hardware and Software

Listing 1.2 ARM assembly example
.text

findmax:
ldr r2, .L10
ldr r3, [r0, #0]
str r3, [r2, #0]
mov ip, #1

.L7:
ldr r1, [r0, ip, asl #2]
ldr r3, [r2, #0]
add ip, ip, #1
cmp r1, r3
strgt r1, [r2, #0]
cmp ip, #9
movhi pc, lr
b .L7

.L11:
.align 2

.L10:
.word max

space, corresponding to the memory attached to the microprocessor. There is a close
connection between the storage concepts of a microprocessor (registers, stack) and
the storage types supported in C (register int, local variables). Furthermore,
common datatypes in C (char, int) directly map onto microprocessor variables
(byte, word). A detailed understanding of C execution is closely related to a detailed
understanding of the microprocessor activity at a lower abstraction level.

Of course, there are many forms of software that do not fit the model of a
single-thread sequential C program. Multi-threaded software, for example, creates
the illusion of concurrency and lets users execute multiple programs at once. Other
forms of software, such as object-oriented software and functional programming,
substitute the simple machine model of the microprocessor with a more sophisti-
cated one. Such more advanced forms of software are crucial to master complex
software applications. However, the link between execution of these more sophisti-
cated forms of software and microprocessor activity is less obvious. Therefore, we
will focus on the most simple form of C.

The material in this book does not follow any particular assembly language.
It assumes that the reader is familiar with the concepts of assembly. The book
emphasizes the relationship between C and assembly code. A hardware/software
codesigner often needs to handle optimization problems that can only be solved at
the level of assembly coding. In that case, the designer needs to be able to link the
software, as captured in C, with the program executing on the processor, as rep-
resented by assembly code. Most C compilers offer the possibility to generate an
assembly listing of the generated code, and we will make use of that feature. Listing
1.2 for example, was generated out of 1.1.

We will put some emphasis on being able to link the statements of a C program
to the assembly instructions. This is easier than you would think. As an example,

1.1 Introducing Hardware/Software Codesign 7

int max;

int findmax(int a[10]) {
unsigned i;
max = a[0];
for (i=1; i<10; i++)
if (a[i] > max) max = a[i];

}

.text
findmax: ldr r2, .L10
.L10 ldr r3,

str r3,
mov ip, #1

.L7: ldr r1, [r0, ip, asl #2]
ldr r3, [r2, #0]
add ip, ip, #1
cmp r1, r3
strgt r1,
cmp ip, #9
movhi pc, lr
b. .L7

.L11: .align 2.
L10: .word max

[r2, #0]

[r2, #0]
[r0, #0]

Fig. 1.2 Mapping C to Assembly

let’s compare Listing 1.1 and Listing 1.2. An ideal starting point when matching a C
program to an assembly program is to look for similar structures: loops in C will be
reflected as branches in assembly; if-then-else statements in C will be reflected as
conditional branches in assembly. Even if you’re unfamiliar with the assembly from
a microprocessor, you can often derive such structures easily.

Figure 1.2 gives an example for the programs in Listing 1.1 and Listing 1.2. The
for-loop in C is marked with a label and a branch instruction. All the assembly
instructions in between the branch and the label are part of the body of the loop.
Once the loop structure is identified, it is easy to derive the rest of the code, as the
following examples show.

� The if-statement in C requires the evaluation of a greater-than condition. In
assembly, an equivalent cmp (compare) instruction can be found. This allows
you to conclude that the operands r1 and r3 of the compare instruction must
contain a[i] and max of the C program. Both of these variables are stored in
memory; a[i] because it’s an indexed variable, and max because it’s a global
variable. Indeed, looking at the preceding instruction in the C program, you can
see that both r1 and r3 are defined with ldr (load-register) instructions, which
require an address.

� The address for r1 equals [r0, ip, asl #2], which stands for the expres-
sion (r0 + ip) << 2. This may not be obvious if this is the first time you
are looking at ARM assembly; but it’s something you will remember quickly. In
fact, the format of this expression is easy to explain. The register ip contains
the loop counter, since ip is incremented once within the loop body, and the
value of ip is compared with the loop boundary value of 9. The register r0 is
the base address of a[], the location in memory where a[0] is stored. The
shift-over-2 is needed because a[] is an array of integers. Microprocessors use
byte-addressable memory, which means that each integer requires 4 byte address
locations.

� Finally, the conditional assignment of the max variable in C is not imple-
mented using conditional branch instructions in assembly. Instead, a strgt

8 1 The Nature of Hardware and Software

(store-if-greater) instruction is used. This is a predicated instruction, an instruc-
tion that executes only when a given conditional flag is true.

The bottom line of this analysis is that, with a minimal amount of effort, you
are able to understand a great deal on the behavior of a microprocessor simply by
comparing C programs with equivalent assembly programs. In Chap. 6, you will see
how you can use the same approach to evaluate the quality of the assembly code
generated by a compiler out of C code.

1.1.3 Hardware and Software

The objective of this book is to discuss the combination of hardware design and
software design in all its forms. Hardware as well as software can be modeled using
RTL programs and C programs, respectively. A term model merely indicates they
are not the actual implementation, but only a representation of it. An RTL program
is a model of a network of logic gates; a C program is a model of a binary image of
microprocessor instructions. It is not common to talk about C programs as models;
in fact, software designers think of C programs as actual implementations. In this
book, we will therefore refer to hardware models and C or assembly programs.

Models are an essential part of the design process. They are a formal represen-
tation of a designers’ intent, and they are used as input for simulation tools and
implementation tools. In hardware/software codesign, we are working with models
that are partly written as C programs, and partly as RTL programs. We will discuss
this idea by means of a simple example.

Figure 1.3 shows an 8051 microcontroller and an attached coprocessor. The co-
processor is attached to the 8051 microcontroller through two 8-bit ports P0 and P1.
A C program executes on the 8051 microcontroller, and this program contains in-
structions to write data to these two ports. When a given, predefined value appears
on port P0, the coprocessor will make a copy of the value present on port P1 into
an internal register.

P0
8

8

Coprocessor

decoder

8051 Microcontroller
C Program

void main() {
..
P1 = 25;
P0 = 3;
..

"3"

P1
8..

} "25"

Software Hardware

Fig. 1.3 A codesign model

1.1 Introducing Hardware/Software Codesign 9

Listing 1.3 8051 driver program
1 #include <8051.h>
2
3 enum {ins_idle, ins_hello};
4
5 void sayhello(char d) {
6 P1 = d;
7 P0 = ins_hello;
8 P0 = ins_idle;
9 }

10
11 void terminate() {
12 // special command to stop simulator
13 P3 = 0x55;
14 }
15
16 void main() {
17 sayhello(3);
18 sayhello(2);
19 sayhello(1);
20 terminate();
21 }

This very simple design can be addressed using hardware/software codesign;
it includes the design of a hardware model and the design of a C program. The
hardware model contains the 8051 processor, the coprocessor, and the connections
between them. During execution, the 8051 processor will execute a software pro-
gram written in C. Listing 1.3 shows that C program. Listing 1.4 shows an RTL
hardware model for this design, written in the GEZEL language.

The C driver sends three values to port P1. Each time, it also cycles the value on
port P0 between ins hello and ins idle, which are encoded as value 1 and 0,
respectively.

The hardware model in Listing 1.4 is slightly longer. It includes both the mi-
crocontroller and the coprocessor. The coprocessor is on lines 1–18. This particular
hardware model is a combination of a finite state machine (lines 10–18) and a datap-
ath (lines 1–8). This modeling method is called FSMD (for finite-state-machine with
datapath), and we will discuss FSMD in detail in Chap. 4. This FSMD is quite easy
to understand. The datapath contains several instructions: decode and hello. The
FSM controller selects, each clock cycle, which of those instructions to execute. For
example, lines 14–15 shows the following control statement.

@s1 if (insreg == 1) then (hello, decode) -> s2;
else (decode) -> s1;

This means: when the value of insreg is 1 and the FSM controller current state
is s1, the datapath will execute instructions hello and decode, and the FSM
controller next-state is s2. When the value of insreg would be 0, the datapath
will execute only instruction decode and the FSM controller next-state is s1. The

10 1 The Nature of Hardware and Software

Listing 1.4 GEZEL model for 8051 platform
1 dp hello_decoder(in ins : ns(8);
2 in din : ns(8)) {
3 reg insreg : ns(8);
4 reg dinreg : ns(8);
5 sfg decode { insreg = ins;
6 dinreg = din; }
7 sfg hello { $display($cycle, " Hello! You gave me ", dinreg); }
8 }
9

10 fsm fhello_decoder(hello_decoder) {
11 initial s0;
12 state s1, s2;
13 @s0 (decode) -> s1;
14 @s1 if (insreg == 1) then (hello, decode) -> s2;
15 else (decode) -> s1;
16 @s2 if (insreg == 0) then (decode) -> s1;
17 else (decode) -> s2;
18 }
19
20 ipblock my8051 {
21 iptype "i8051system";
22 ipparm "exec=driver.ihx";
23 ipparm "verbose=1";
24 ipparm "period=1";
25 }
26
27 ipblock my8051_ins(out data : ns(8)) {
28 iptype "i8051systemsource";
29 ipparm "core=my8051";
30 ipparm "port=P0";
31 }
32
33 ipblock my8051_datain(out data : ns(8)) {
34 iptype "i8051systemsource";
35 ipparm "core=my8051";
36 ipparm "port=P1";
37 }
38
39 dp sys {
40 sig ins, din : ns(8);
41 use my8051;
42 use my8051_ins(ins);
43 use my8051_datain(din);
44 use hello_decoder(ins, din);
45 }
46
47 system S {
48 sys;
49 }

1.1 Introducing Hardware/Software Codesign 11

overall coprocessor behavior is like this: when the ins input changes from 0 to 1,
then the din input will be printed in the next clock cycle.

The 8051 microcontroller is captured in Listing 1.4 as well. However, the
internals of the microcontroller are not shown; only the hardware interfaces rel-
evant to the coprocessor are included. The 8051 microcontroller is captured with
three ipblock (GEZEL library modules), on lines 20–37. The first ipblock
is an i8051system. It represents the 8051 microcontroller core, and it in-
dicates the name of the compiled C program that will execute on this core
(driver.ihx on line 22). The other two ipblock are two 8051 output ports
(i8051systemsource), one to model port P0, and the other to model port P1.

Finally, the coprocessor and the 8051 ports are wired together in a top-level
module, shown in lines 39–49. We can now simulate the entire model, including
hardware and software, as follows. First, the 8051 C program is compiled to a binary
executable. Next, the GEZEL simulator will combine the hardware model and the
8051 binary executable in a cosimulation. The output of the simulation model is
shown below.

> sdcc driver.c
> /opt/gezel/bin/gplatform hello.fdl
i8051system: loading executable [driver.ihx]
9662 Hello! You gave me 3/3
9806 Hello! You gave me 2/2
9950 Hello! You gave me 1/1
Total Cycles: 10044

You can notice that the model produces output on cycles 9662, 9806, and 9950,
while the complete C program executes in 10044 cycles. The evaluation and anal-
ysis of cycle-accurate behavior is a very important aspect of codesign, and we will
address it throughout the book.

1.1.4 Defining Hardware/Software Codesign

The previous example motivates the following traditional definition of hardware/-
software codesign.

Hardware/Software codesign is the design of cooperating hardware compo-
nents and software components in a single design effort.

For example, if you would design the architecture of a processor and at the same
time develop a program that could run on that processor, then you would be using
hardware/software codesign. However, this definition does not tell precisely what
software and hardware mean. In the previous example, the software was a C pro-
gram, and the hardware was an 8051 microcontroller with a coprocessor. In reality,
there are many forms of hardware and software, and the distinction between them
can easily become blurred. Consider the following examples.

12 1 The Nature of Hardware and Software

� A Field Programmable gate Array (FPGA) is a hardware circuit that can be
reconfigured to a user-specified netlist of digital gates. The program for an FPGA
is a ‘bitstream’, and it is used to configure the netlist topology. Writing ‘software’
for an FPGA really looks like hardware development – even though it is software.

� A soft-core is a processor implemented in the bitstream of an FPGA. However,
the soft-core itself can execute a C program as well. Thus, software can execute
on top of other ‘software’.

� A Digital-Signal Processor (DSP) is a processor with a specialized instruction-
set, optimized for signal-processing applications. Writing efficient programs for
a DSP requires detailed knowledge of these specialized instructions. Very of-
ten, this means writing assembly code, or making use of a specialized software
library. Hence, there is a strong connection between the efficiency of the software
and the capabilities of the hardware.

� An Application-Specific Instruction-set Processor (ASIP) is a processor with
a customizable instruction set. The hardware of such a processor can be ex-
tended, and these hardware extensions can be encapsulated as new instructions
for the processor. Thus, an ASIP designer will develop a hardware implementa-
tion for these custom instructions and subsequently write software that uses those
instructions.

� The CELL processor, used in the Playstation-3, contains one control processor
and 8 slave-processors, interconnected through a high-speed on-chip network.
The software for a CELL is a set of 9 concurrent communicating programs,
along with configuration instructions for the on-chip network. To maximize
performance, programmers have to develop CELL software by describing simul-
taneously the computations and the communication activities in each processor.

These examples illustrate a few of the many forms of hardware and software that
designers use today. A common characteristic of all these examples is that creating
the ‘software’ requires intimate familiarity the ‘hardware’. In addition, hardware
includes much more than RTL models: it also includes specialized processor in-
structions, the FPGA fabric, multicore architectures, and more. Let us define the
application as the overall function of a design, including hardware as well as soft-
ware. This allows to define hardware/software codesign as follows:

Hardware/Software codesign is the partitioning and design of an application
in terms of fixed and flexible components.

Notice that we use the term ‘fixed’ instead of hardware, and ‘flexible’ instead
of software. In the remainder of this chapter, we will discuss the big picture of
hardware/software codesign. This will clarify the choice of these terms.

1.2 The Quest for Energy Efficiency 13

1.2 The Quest for Energy Efficiency

Choosing between implementing a design in hardware or implementing it in
software may seem like a no-brainer. Indeed, from a designers’ point-of-view, the
easiest approach is to write software, for example in C. Software is easy and flexible,
software compilers are fast, there are large amounts of source code available, and
all you need to start development is a nimble personal computer. Furthermore, why
go through the effort of designing a hardware architecture when there is already one
available (namely, the RISC processor)?

1.2.1 Relative Performance

Proponents of hardware implementation will argue that performance is a big plus
of hardware over software. Specialized hardware architectures have a larger amount
of parallelism than software architectures. We can measure this as follows: Relative
performance means the amount of useful work done per clock cycle. Under this
metric, highly parallel implementations are at an advantage because they do many
things at the same time.

Figure 1.4 illustrates various cryptographic implementations in software and
hardware that have been proposed over the past few years (2003–2008). These
are all designs proposed for embedded applications, where the trade-off between
hardware and software is crucial. As demonstrated by the graph, hardware crypto-
architectures have, on the average, a higher relative performance compared to
embedded processors.

3000

4000

5000

6000

AES-128

GRAIN-128

TRIVIUM-128TinyXTEA-64

AES-128

4500

6000

7500

9000

HW
[gates]

SW
[bytes]

AES-128

LEX-128

SALSA20-128

SKIPJACK-80

HardwareSoftware

0

1000

2000

0.001

PRESENT-80

DES-64

0

1500

3000

0.01 0.1 1 10 100

IDEA-128
RC5-64

Performance [bits / cycle]

Fig. 1.4 Cryptography on small embedded platforms

14 1 The Nature of Hardware and Software

However, relative performance may not be a sufficient argument to motivate the
use of a dedicated hardware implementation. Consider for example a specialized
Application-Specific Integrated Circuit (ASIC) versus a high-end (workstation-
class) processor. The hardware inside of the ASIC can execute many operations
in parallel, but the processor runs at a much higher clock frequency. Furthermore,
modern processors are very effective in completing multiple operations per clock
cycle. As a result, an optimized software program on top of a high-end processor
may outperform a quick-and-dirty hardware design job on an ASIC. Thus, the abso-
lute performance of software may very well be higher than the absolute performance
of hardware. In contrast to relative performance, the absolute performance needs to
take clock frequency into account.

1.2.2 Energy Efficiency

There is another metric which is independent from clock frequency, and which can
be applied to all architectures. That metric is energy-efficiency: the amount of useful
work done per unit of energy.

Figure 1.5 shows the example of a particular encryption application (AES) for
different target platforms (Refer to Further Reading for source references). The flex-
ibility of these platforms varies from very high on the left to very low on the right.
The platforms include: Java on top of a Java Virtual machine on top of an embedded
processor; C on top of an embedded processor; optimized assembly-code on top of
a Pentium-III processor; Verilog code on top of a Virtex-II FPGA; and an ASIC
implementation using 0.18 micron CMOS standard cells. The logarithmic Y-axis

102

101

100

10–1

10–2

Gb
J

Virtex2
FPGA

Asm
Pentium-III

C
Sparc

10–3

10–4

10–5

10–6
Java
KVM
Sparc

0.18 μm
CMOS

Fig. 1.5 Energy efficiency

1.3 The Driving Factors in Hardware/Software Codesign 15

shows the amount of gigabits that can be encrypted on each of these platforms using
a single Joule of energy. Keep in mind that the application is the same for all these
architectures and consists of encrypting bits. As indicated by the figure, the energy-
efficiency varies over many orders of magnitude. If these architectures are being
used in hand-held devices, where energy is a scarce resource, obviously there is a
strong motivation to use a less flexible, more specialized architecture. For the same
reason, you will never find a high-end workstation processor in a cell phone.

1.3 The Driving Factors in Hardware/Software Codesign

As pointed out in the previous section, energy-efficiency and relative performance
are important factors to prefer a (fixed, parallel) hardware implementation over a
(flexible, sequential) software implementation. The complete picture, however, is
much more complicated. In the design of modern electronic systems, many trade-
offs have to be made, often between conflicting objectives. Figure 1.6 shows that
some factors argue for more software while other factors argue for more hardware.
The following are arguments in favor of increasing the amount of on-chip dedicated
hardware.

� Performance: The classic argument in favor of dedicated hardware design has
been increased performance: more work done per clock cycle. That is still one
of the major factors. Increased performance is obtained by reducing the flexi-
bility of an application or by specializing the architecture that the application is
mapped onto. In both cases, this implies the implementation of dedicated hard-
ware components.

� Energy Efficiency: Almost every electronic consumer product today carries a
battery (iPod, PDA, mobile phone, Bluetooth device, ..). This makes these prod-
ucts energy-constrained. At the same time, such consumer appliances are used
for similar applications as traditional high-performance personal computers. In
order to become sufficiently energy-efficient, consumer devices are implemented
using a combination of embedded software and dedicated hardware components.
Thus, a well-known use of hardware–software codesign is to trade function-
specialization and energy-efficiency by moving (part of) the flexible software
of a design into fixed hardware.

Implement
more in Software

Implement
more in Hardware

Manage Design Complexity
Reduce Design Cost

Stick to Design Schedule
Handle Deep Submicron

Improve Performance
Improve Energy Efficiency
Reduce Power Density

Fig. 1.6 Driving factors in hardware/software codesign

16 1 The Nature of Hardware and Software

� Power Densities of modern high-end processors are such that their performance
can no longer be increased by making them run faster. Instead, there is a broad
and fundamental shift toward parallel computer architectures. However, at this
moment, there is no dominant parallel computer architecture that has shown to
cover all applications. Some of the candidates may include symmetric multipro-
cessors attached to the same memory; FPGAs used as accelerator engines for
classic processors; Multicore and many-core architectures such as Graphics Pro-
cessing Engines with general-purpose compute capabilities. The bottom line is
that the software designer will not be able to ‘ignore’ or ‘abstract’ the computer
architecture in the coming years. This architecture-awareness comes natural with
hardware–software codesign.

The following arguments, on the other hand, argue for flexibility and thus for
increasing the amount of on-chip software.

� Design Complexity: Today, it is common to integrate multiple microprocessors
together with all related peripherals and hardware components on a single chip.
This approach has been touted system-on-chip (SoC). Modern SoC are extremely
complex. The conception of such a component is impossible without a detailed
planning and design phase. Extensive simulations are required to test the de-
sign upfront, before committing to a costly implementation phase. Since software
bugs are easier to address than hardware bugs, there is a tendency to increase the
amount of software.

� Design Cost: New chips are very expensive to design. As a result, hardware
designers make chips programmable so that these chips can be reused over mul-
tiple products or product generations. The SoC is a good example of this trend.
However, ‘programmability’ can be found in many different forms other than
embedded processors: reconfigurable systems are based on the same idea of
reuse-through-reprogramming.

� Shrinking Design Schedules: Each new generation of technology tends to re-
place the older one more quickly. In addition, each of these new technologies
is exponentially more complex than the previous generation. For a design engi-
neer, this means that each new product generation brings more work that needs
to be completed in a shorter period of time. Shrinking design schedules require
engineering teams to work on multiple tasks at once: hardware and software are
developed concurrently. A software development team will start software devel-
opment as soon as the characteristics of the hardware platform are established,
even before an actual hardware prototype is available.

� Deep-Submicron Effects: Designing new hardware from-scratch in high-end
silicon processes is difficult due to second-order effects in the implementation.
For example, each new generation of silicon technology has an increased vari-
ability and a decreased reliability. Programmable, flexible technologies make the
hardware design process simpler, more straightforward, and easier to control. In
addition, programmable technologies can be created to take the effects of varia-
tions into account.

1.4 The Hardware–Software Codesign Space 17

Finding the correct balance between all these factors is obviously a very complex
problem. In this book, we do not claim to look for an optimal solution that considers
all of them. Instead, our primary cost factors will be: performance versus resource
cost. Adding hardware to a software solution may increase the performance of the
overall application, but it will also require more resources. In terms of the balance
of Fig. 1.6, this means that we will balance Design Cost versus Performance.

1.4 The Hardware–Software Codesign Space

The trade-offs discussed in the previous section need to be made in the context
of a design space. For a given application, there are many different possible solu-
tions. The collection of all these implementations is called the hardware–software
codesign space. Figure 1.7 gives a symbolic representation of this design space and
indicates the main design activities in this design space.

On top is the application, and a designer will map this application onto a plat-
form. A platform is a collection of programmable components. Figure 1.7 illustrates
several different platforms. Mapping an application onto a platform means writing
software for that platform, and if needed, customizing the hardware of the platform.
The format of the software varies according to the components of the platform.

'Software'

Application

HDL / C

C/ASM

C / HDL

C

Platform
Selection

Platform
Programming

Application
Mapping

'Hardware'
(Platform)

Max Flexibility
Min Efficiency

Min Flexibility
Max Efficiency

RISC

FPGA
DSP

General
Purpose

Domain
Specific

Application
Specific

ASIP ASIC

HDL

Fig. 1.7 The hardware–software codesign space

18 1 The Nature of Hardware and Software

For example, a RISC processor may be programmed in C, while an FPGA could
be programmed starting from a HDL program. In this section, we will describe
the platform design space and we will discuss how an application is mapped onto
a platform.

1.4.1 The Platform Design Space

A specification is a description of the desired application. A new application could
be for example a novel way of encoding audio in a more economical format than
current encoding methods. Often, applications start out as informal ideas, uncoupled
from the actual implementation. Designers then write C programs to render their
ideas in detail. In that case, the specification is a C program. The C program is not
yet the final implementation, it is only a description of what the application should
do. Very often, a specification is just a piece of English text, typically resulting in
ambiguity and open questions.

The objective of the design process is to implement the application on a target
platform. In hardware–software codesign, we are interested in using programmable
components. Figure 1.7 illustrates several examples: A RISC microprocessor, a
FPGA, a DSP, an ASIP, and finally an ASIC. The ASIC is normally not consid-
ered as a programmable component, but is included in this list to reflect a boundary
in the codesign space.

Software as well as hardware have a very different meaning depending on the
platform.

� In the case of a RISC processor, software is written in C, while the hardware is a
general-purpose processor.

� In the case of a FPGA, software is written in a HDL. When the FPGA contains
a soft-core processor, as discussed above, we will also write additional platform
software in C.

� A DSP uses a combination of C and assembly code for software. The hardware
is a specalized processor architecture, adapted to signal processing operations.

� An ASIP is a processor that can be specialized to a particular application domain,
for example, by adding new instructions and by extending the processor datap-
ath. The ‘software’ of an ASIP thus can contain C code as well as a hardware
description of the processor extensions.

� Finally, in the case of an ASIC, the application is written in HDL, which is then
converted into a hardcoded netlist. In contrast to other platforms, ASICs are non-
programmable. In an ASIC, the application and the platform have merged to a
single entity.

Figure 1.7 also shows a domain-specific platform. General-purpose platforms,
such as RISC and FPGA, are able to support a broad range of applications.
Application-specific platforms, such as the ASIC, are optimized to execute a sin-
gle application. In between general-purpose and application-specific architectures,

1.4 The Hardware–Software Codesign Space 19

there is a class called domain-specific platforms. These platforms are optimized to
execute a particular range of applications, also called an application domain. Signal-
processing, cryptography, networking, are all examples of domains. A domain may
have sub-domains. For example, even though signal-processing is considered to be
a domain, one could further distinguish voice-signal processing from video-signal
processing and devise optimized platforms for each of these cases. The DSP and
the ASIP are two examples of domain-specific platforms.

1.4.2 Application Mapping

Each of the above platforms in Fig. 1.7 presents a trade-off between application
flexibility and platform efficiency. The wedge-shape of Fig. 1.7 expresses this idea,
and it can be explained as follows.

Flexibility means how well the platform can be adapted to different applications.
Flexibility in platforms is desired because it allows designers to make changes to the
application after the platform is fabricated. Very flexible platforms, such as RISC
and FPGA, are programmed with general-purpose languages. When a platform
becomes more specialized, the programming tends to become more specialized as
well. We visualize this by drawing the application closer to the platform. This ex-
presses that the software becomes more specific to the hardware.

Different platforms may also provide different levels of efficiency. Efficiency can
either relate to absolute performance (i.e., time-efficiency) or to the efficiency in
using energy to implement computations. For a given application, a specialized
platform tends to be more efficient than a general platform because its hardware
components are optimized for that application. We can visualize this by moving the
platform closer to the application in the case of specialized platforms.

The effect of flexibility-efficiency trade-off on the source code of software can
be illustrated with a small example. Consider the execution of the dot-product on a
DSP processor such as TI’s C64x. In C, the dot-product is a vector operation that
can be expressed in single compact loop:

sum=0;
for (i=0; i<N; i++)

sum += m[i]*n[i];

Listing 1.5 shows the body of the loop, optimized as assembly code for the TI
C64x DSP processor. We only point out why this assembly code is architecture spe-
cific. The TI C64x is a highly parallel processor that has two multiply-accumulate
units. It can compute two loop iterations of the C loop at the same time. In Listing
1.5, several instructions are preceded by ||. Those instructions will be executing in
parallel with the previous instructions. Even though Listing 1.5 spans 9 lines, it con-
sists of only three instructions. Moreover, the program will complete with only half
the amount of iterations of the C program. Thus, Listing 1.5 is more efficient than
the original C program, but it is also optimized for a single specialized architecture.
A gain in efficiency was obtained at the cost of flexibility (or portability).

20 1 The Nature of Hardware and Software

Listing 1.5 dot product in C64x DSP processor
LDDW .D2T2 *B_n++,B_reg1:B_reg0

|| LDDW .D1T1 *A_m++,A_reg1:A_reg0

DOTP2 .M2X A_reg0,B_reg0,B_prod
|| DOTP2 .M1X A_reg1,B_reg1,A_prod

SPKERNEL 4, 0
|| ADD .L2 B_sum,B_prod,B_sum
|| ADD .L1 A_sum,A_prod,A_sum

Platform Programming is the task of mapping software onto hardware. When
standard programming languages are used, a compiler (for C) or a synthesis tool
(for HDL) will do this job for us. However, many platforms are not just simple com-
ponents. In that case, the application contains multiple pieces of software, possibly
in different programming languages. For example, the platform may consist of a
RISC processor and a specialized hardware coprocessor. In the case of a RISC with
a coprocessor for example, the software consists of C (for the RISC) as well as ded-
icated coprocessor instruction-sequences (for the coprocessor). Thus, while Fig. 1.5
suggests that platform programming is just a matter of using automated tools and
compilers, the reality may be more complicated.

An interesting, but very difficult question is how one can select a platform for a
given specification, and how one can map an application onto a selected platform.
Of these two questions, the first one is the hardest. Designers typically answer it
based on their previous experience with similar applications. The second question
is also very challenging, but it is possible to answer it in a more systematic fasion,
using a design methodology. A design method is a systematic sequence of steps to
convert a specification into an implementation. Design methods cover many aspects
of application mapping, such as optimization of memory usage, design performance,
resource usage, precision and resolution of data types, and so on. A design method
is a canned sequence of design steps. You can learn it in the context of one design,
and next apply this design knowledge in the context of another design.

1.5 The Dualism of Hardware Design and Software Design

In the previous sections, we discussed the driving forces in hardware/software
codesign, as well as its design space. Clearly, there are compelling reasons for
hardware–software codesign, and there is a significant design space available. A key
challenge in hardware–software codesign is that a designer needs to combine two
radically different design paradigms. In fact, hardware and software are each other’s
dual in many respects. In this section, we examine these fundamental differences.
Table 1.1 provides a synopsis.

1.5 The Dualism of Hardware Design and Software Design 21

Table 1.1 The dualism of hardware and software design

Hardware Software

Design paradigm Decomposition in space Decomposition in time
Resource cost Area (# of gates) Time (# of instructions)
Constrained by Time (clock cycle period) Area (CPU instruction set)

Flexibility Must be designed-in Implicit
Parallelism Implicit Must be designed-in

Modeling Model ¤ Implementation Model � Implementation
Reuse Uncommon Common

� Design Paradigm:
In a hardware model, circuit elements operate in parallel. Thus, by using more
circuit elements, more work can be done within a single clock cycle. Software, on
the other hand, operates sequentially. By using more operations, a software pro-
gram will take more time to complete. Thus, a hardware designer solves problems
by spatial decomposition, while a software designer solves problems by temporal
decomposition.

� Resource Cost:
The dualism in decomposition methods leads a similar dual resource cost. De-
composition in space, as used by a hardware designer, means that more gates
are required for when a more complex design needs to be implemented. Decom-
position in time, as used by a software designer, implies that a more complex
design will take more instructions to complete. Therefore, the resource cost for
hardware is circuit area, while the resource cost for software is execution time.

� Design Constraints:
There is a similar dualism in terms of design constraints. A hardware designer
is constrained by the clock cycle period of a design. A software designer, on
the other hand, is limited by the capabilities of the processor instruction set and
the memory space available with the processor. Thus, the design constraints for
hardware are in terms of a time budget, while the design constraints for software
are fixed by the CPU. So, a hardware designer invests circuit area to maintain
control over execution time, and a software designer invests execution time for
an almost constant circuit area.

� Flexibility:
Software excels over hardware in the support of application flexibility. Flexi-
bility is the ease by which the application can be modified or adapted after the
target architecture for that application is manufactured. In software, flexibility
is essentially free. In hardware on the other hand, flexibility is not trivial. Hard-
ware flexibility requires that circuit elements can be easily reused for different
activities or functions in a design. A hardware designer has to think carefully
about such reuse: flexibility needs to be designed into the circuit by means of
multiplexers and additional control signals!

22 1 The Nature of Hardware and Software

� Parallelism:
A dual of flexibility can be found in the ease with which parallel implementations
can be created. Parallelism is the most obvious approach to improving perfor-
mance. For hardware, parallelism comes for free as part of the design paradigm.
For software, on the other hand, parallelism is a major challenge. If only a single
processor is available, software can only implement concurrency, which requires
the use of special programming constructs such as threads. When multiple pro-
cessors are available, a truly parallel software implementation can be made, but
interprocessor communication and synchronization become a challenge.

� Modeling:
In software, modeling and implementation are very close. Indeed, when a de-
signer writes a C program, the compilation of that program for the appropriate
target processor will also result in the implementation of the program! In hard-
ware, the model and the implementation of a design are distinct concepts.
Initially, a hardware design is modeled using a HDL. Such a hardware description
can be simulated, but it is not an implementation of the actual circuit. Hardware
designers use a hardware description language, and their programs are models
which are later transformed to implementation. Software designers use a software
programming language, and their programs are an implementation by itself.

� Reuse:
Finally, hardware and software are also quite different when it comes to Intel-
lectual Property Reuse or IP-reuse. The idea of IP-reuse is that a component of
a larger circuit or a program can be packaged, and later reused in the context
of a different design. In software, IP-reuse has known dramatic changes in re-
cent years due to open source software and the proliferation of open platforms.
When designing a complex program these days, designers will start from a set
of standard libraries that are well-documented and available on a wide range of
platforms. For hardware design, IP-reuse is – to put it bluntly – still in its infancy.
Hardware Designers are only starting to define standard exchange mechanisms.
IP-reuse of hardware has a long way to go compared to the state of reuse in
software.

This summary comparison indicates that in many aspects, hardware design and
software design use dual concepts. Hence, being able to effectively transition from
one world of design to the other is an important asset to your skills as a computer en-
gineer. You can try to combine the best of both worlds. Complex control processing?
Use a software core. Hard-real-time processing requirement? Add some hardware.
In this book, we will focus on this dualism and transition from concepts in hardware
design to concepts in software design and back. Our objective is not only to excel
as a hardware designer or a software designer; our objective is to excel as a system
designer.

1.6 More on Modeling 23

1.6 More on Modeling

As discussed earlier, we will use single-clock synchronous hardware and
single-thread sequential software to discuss hardware–software codesign. Yet,
even for these simple cases, there are many different approaches to describe these
models, at different abstraction levels.

1.6.1 Abstraction Levels

We will differentiate the abstraction levels based on their time-granularity. A smaller
time-granularity typically implies that activities are expressed in more detail. There
are five abstraction levels commonly used by computer engineers for the design of
electronic hardware–software systems. Starting at the lowest abstraction level, we
enumerate the five levels. Figure 1.8 illustrates the hierarchy among these abstrac-
tion levels.

1. Continuous Time: At the lowest abstraction level, we describe operations as
continuous actions. For example, electric networks can be described as systems
of interacting differential equations. Solving these equations leads to an estimate
for voltages and currents in these electric networks. This is a very detailed level,
useful to analyze analog effects. However, this level of abstraction is not used to
describe typical hardware–software systems.

2. Discrete-event: At the next abstraction level, we lump activity at discrete points
in time called events. Those events can be possibly irregularly spaced. For ex-
ample, when the inputs of a digital combinatorial circuit change, the effect of
those changes will ripple from inputs to outputs, toggling nets at intermediate
circuit nodes as they change. The changes on those nodes will be delayed by one
or more gate propagation-delays. Discrete-event simulation is very popular to
model hardware at low abstraction level. It gets rid of the differential equations
and the complexity of continuous-time simulation, yet it captures all relevant in-
formation such as glitches and clock cycle edges. Discrete-event simulation is
also used to model systems at high abstraction level, to simulate abstract event
with irregular spacing in time. For example, discrete-event simulation can be
used to model customer queues at a bank. In the context of hardware–software
system design however, discrete-event modeling refers to a low abstraction level.

3. Cycle-accurate: Single-clock synchronous hardware circuits have the important
property that all interesting things happen at regularly spaced intervals, namely at
the clock edge. This abstraction is important enough to merit its own abstraction
level, and it is called cycle-accurate modeling. A cycle-accurate model does not
capture propagation delays or glitches. All activities that fall ‘in between’ clock
edges are concentrated at the clock edge itself. As a result, activities happen
either immediately (for combinatorial circuits for example), or else after an inte-
gral number of clock cycles (for sequential circuits). The cycle-accurate level is

24 1 The Nature of Hardware and Software

(event_7)

time (ns)0

event_1 event_3 event_4 event_7

event_2 event_5

event_6

events

cycle-1 clock cycles
(event_1)
(event_2)
(event_3)

cycle-2
(event_4)
(event_5)
(event_6)
(event_7)

Continuous
Time

Discrete
Event

Cycle
Accurate

mov r0,#5 ldr r1,[r0] add r2,r1,#3 mov r3,#0 instructions

transactions

(cycle_1)
(cycle_2)

(cycle_2)
(cycle_3)
(cycle_4)

(cycle_4)
(cycle_5)
(cycle_6)

(cycle_5)
(cycle_6)

ldr r1,[r0]
add r2,r1,#3
mov r3,#0

str r3,[r2]
cmp r1,r3
ble 0x500
nop

Instruction
Accurate

Transaction
Accurate

this book

10 20 30 40 50 60

write_memload_mem

Fig. 1.8 Abstraction levels for hardware–software codesign models

very important for hardware–software system modeling and very often serves as
the ‘golden reference’ for a hardware–software implementation. Cycle-accurate
modeling will be used extensively throughout this book.

4. Instruction-accurate: RTL models are great but may be too slow for com-
plex systems. For example, your laptop has a processor that probably clocks
over 1 GHz (one billion cycles). Assuming that you could write a C func-
tion that expresses a single clock cycle of processing, you would have to call
that function one billion times to simulate just a single second of processing.
Clearly, further abstraction can be useful to build leaner and faster models. The
instruction-accurate modeling level expresses activities in steps of one micropro-
cessor instruction. Each instruction lumps together several cycles of processing.
Instruction-accurate simulators are used to verify complex software systems,
such as complete operating systems. Instruction-accurate simulators count time

1.7 Concurrency and Parallelism 25

in terms of an instruction count, but not a cycle count. Thus, this abstraction level
may not show you the real-time performance of a model – unless you are able to
map instructions back to clock cycles.

5. Transaction-accurate: For very complex systems, even instruction-accurate
models may be too slow or require too much modeling effort. For these mod-
els, yet another abstraction level is introduced: the transaction-accurate level.
In this type of model, the behavior is expressed in terms of the interactions be-
tween the components of a system. These interactions are called transactions.
For example, one could model a system with a disk drive and a user application
(as discussed earlier), and create a simulation that focuses on the commands ex-
changed between the disk drive and the user application. A transaction-accurate
model allows considerable simplification of the disk drive and the user applica-
tion. Indeed, in between two transactions, millions of instructions can be lumped
together and simulated as a single, atomic function call. Transaction-accurate
models are important in the exploratory phases of a design, where a designer is
interested in defining the overall characteristics of a design without going through
the effort of developing detailed models.

In summary, there are five abstraction levels that are commonly used for
hardware–software modeling: transaction-accurate, instruction-accurate, cycle-
accurate, event-driven, and continuous-time. We are most interested in the
instruction-accurate and cycle-accurate levels.

1.7 Concurrency and Parallelism

Concurrency and parallelism are terms that often occur in the context of hardware–
software codesign. They mean very different things. Concurrency is the ability
to execute simultaneous operations because these operations are completely inde-
pendent. Parallelism is the ability to execute simultaneous operations because the
operations can run on different processors or circuit elements. Thus, concurrency
relates to an application model, while parallelism relates to the implementation of
that model.

Hardware is always parallel. Software on the other hand can be sequential, con-
current, or parallel. Sequential and concurrent software requires a single processor,
parallel software requires multiple processors. The software running on your laptop
(email, WWW, word processing, and so on) is concurrent. The software running on
the 65536-processor IBM Blue Gene/L is parallel.

An important incentive for a software designer to use hardware–software code-
sign is the ability it provides to create a parallel implementation. Making efficient
use of the parallelism in the architecture implies that you also have a specification
available that contains enough concurrency.

There is a well-known law in supercomputing, called Amdahl’s law, that states
that the maximal speedup for any application that contains q % sequential code is
1 / (q/100). For example, if your application is 33% of its runtime executing like

26 1 The Nature of Hardware and Software

a sequential process, the maximal speedup is 3. So given enough hardware, you
can make the parallel part of the application run arbitrarily fast. The sequential part
however still has to run step by step and does not benefit from parallelism. Hence,
the speedup cannot be higher than 3. Thus, you see that we don’t only need to
have parallel platforms, we also need a way to write parallel programs to run on
those platforms. This is not obvious. C programs for example are sequential, and so
are typical instruction-set architectures.

Surprisingly, even algorithms that seem sequential at first can be executed (and
specified) in a parallel fashion. The following examples are discussed by Hillis and
Steele. They describe the ‘Connection Machine’ (CM), a massively parallel proces-
sor. The CM contains a network of processors, each with their own local memory,
and each processor in the network is connected to each other processor. The original
CM machine contained 65536 processors, each of them with 4Kbits of local mem-
ory. Interestingly, while the CM dates from the 1980s, multiprocessor architectures
recently regained a lot of interest with the modern design community. Figure 1.9
illustrates an 8-node CM.

The question relevant to our discussion is: how hard is it to write programs for
such a CM? Of course you can write individual C programs for each node in the net-
work, but that is not easy, nor is it very scalable. Remember that the original CM had
64K nodes! Yet, as Hillis and Steele have shown, it is possible to express algorithms
in a concurrent fashion, such that they can map to a CM. Consider taking the sum of
an array of numbers, illustrated in Fig. 1.10. To take the sum, we distribute the array
over the CM processors so that each processor holds one number. We can now take
the sum over the entire array in log.n/ steps (n being the number of processors) as
follows. We perform 2i parallel additions per time step, for i going from log.n�1/

down to 0. For example, the sum of 8 numbers can be computed in three time steps
on a CM machine. In the following figure, time steps run vertically and each pro-
cessor is drawn left to right. The communication activities between the processors
are represented by means of arrows.

Fig. 1.9 Eight node
connection machine (CM)

1

2

37

8

4

5

6

1.7 Concurrency and Parallelism 27

sum(5, 6) sum(7, 8)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

sum(1..8)

1 2 3 4 5 6 7 8

sum(1, 2) sum(3, 4)

sum(1..4) sum(5..8)

Fig. 1.10 Parallel sum

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

sum(1..2) sum(1..3) sum(1..4) sum(1..5) sum(1..6) sum(1..7) sum(1..8)

Fig. 1.11 Parallel partial sum

Compare the same algorithm running on a sequential processor. In that case, the
array of numbers would be stored in a single memory and the processor needs to
iterate over each element, requiring a minimum of 8 time steps! You can also see
that the parallel sum still wastes a lot of potential computing power. We have in
total 3 � 8 D 24 computation time-steps available, and we are only using 7 of them.
One extension of this algorithm is to evaluate all partial sums (i.e., the sum of the
first two, three, four, etc numbers). A parallel algorithm that performs this in 3 time-
steps, using 17 computation time-steps, is shown in Fig. 1.11.

For hardware–software codesign, the importance of concurrent specifications is
the following. If you develop a concurrent specification, you will be able to make
use of a parallel implementation. In contrast, if you restrict yourself to a sequential
specification from the start, it will be much harder to make use of parallel hardware.
Consequently, do not settle for a sequential language (such as C) as a universal
specification mechanism. The use of C is excellent to make an executable, functional

28 1 The Nature of Hardware and Software

model of what you want to build. But other concurrent specification mechanisms
(such as data-flow, which we will discuss in the next chapter) may be better suited
as a starting point for parallel implementation than C.

1.8 Summary

Thanks to Moore’s law, chip companies are able to offer us an ever growing selection
of programmable components. In this introductory chapter, we have defined hard-
ware/software codesign as the partitioning and design of an application in terms of
fixed and flexible parts. The flexible parts run as programs on those programmable
components. Traditional microprocessors are only one of the many options, and we
briefly described other components including FPGAs, DSPs and ASIPs. Platform
selection is the job of determining which programmable component (or combina-
tion of components) is the best choice for a given application. Application mapping
is the effort of transforming a specification into a program. Platform programming
is the effort of converting an application program into low-level instructions for
each programmable component. We also discussed the modeling abstraction lev-
els for hardware and software, and we highlighted cycle-based synchronous RTL
for hardware, and single-thread C for software as the golden level for this book.
Finally, we also made careful distinction between a parallel implementation and a
concurrent program.

1.9 Further Reading

Many authors have pointed out the advantages of dedicated hardware solutions when
it comes to Energy Efficiency. A very comprehensive coverage of the problem can
be found in Rabaey (2009).

Figure 1.4 is based on results published between 2003 and 2008 by various
authors including Good and Benaissa (2007), Bogdanov et al. (2007), Satoh and
Morioka (2003), Leander et al. (2007), Kaps (2008), Meiser et al. (2007), Ganesan
et al. (2003), and Karlof et al. (2004).

Further discussion on the driving forces that require chips to become pro-
grammable is found in Keutzer et al. (2000). A very nice and accessible discussion
of what that means for the hardware designer is given in Vahid (2003).

Hardware–software codesign, as a research area, is at least two decades old.
Some of the early works are collected in Micheli et al. (2001), and a retrospec-
tive of the main research problems is found in Wolf (2003). Conferences such as
the International Conference on Hardware/Software Codesign and System Synthe-
sis (CODESCISSS) cover the latest evolutions in the field.

Hardware/software codesign, as an educational topic, is still evolving. A key
challenge seems to be to find a good common ground to jointly discuss hardware

1.10 Problems 29

and software. Interesting ideas can be found, for example in Madsen et al. (2002)
and Vahid (2007b).

Despite its age, the paper on data-parallel algorithms by Hillis and Steel is still a
great read Hillis and Steele (1986).

1.10 Problems

1.1. Use the World Wide Web to find a data sheet for the following components.
What class of components are they (RISC/FPGA/DSP/ASIP/ASIC)? How does one
write software for each of them? What tools are used to write that software?

� TMS320DM6437
� EP3C25
� Xtensa LX2
� ADSP-BF526
� XC5VFX100T

1.2. Develop a sorting algorithm for an 8-node CM, which can handle up to 16 num-
bers. Show that an N-node CM can complete the sorting task in a time propertional
to N.

1.3. A single-input, single-output program running on an ARM processor needs
to be rewritten such that it will run on three parallel ARM processors. As shown
in Fig. 1.12, each ARM has its own, independent data- and instruction memory.
For this particular program, it turns out that it can be easily rewritten as a sequence
of three functions fA, fB, and fC which are also single-input, single-output. Each of
these three functions can be executed on a separate ARM processor so that we get
an arrangement as shown below. The sub-functions fA, fB, and fC contain 40, 20,
and 40%, respectively of the instructions of the original program. You can ignore
the time needed for communication of variables (out, in, t1, and t2 are integers).

f

in out

ARM

fA

in

ARM

fB

ARM

fC

ARM

out

CLK1 CLK2

BUS

in
out

BUS

in
out

t2t1

Fig. 1.12 Multiprocessor system for Problem 1.3

30 1 The Nature of Hardware and Software

(a) Assume that all ARMs have the same clock frequency (CLK1DCLK2). Find
the maximal speedup that the parallel system offers over the single-ARM sys-
tem. For example, a speedup of 2 would mean that the parallel system could
process two times as much input data as the single-ARM system in the same
amount of time.

(b) For the parallel system of three ARM described above, we can reduce the
power consumption by reducing their clock frequency CLK and their operat-
ing voltage V. Assume that both these quantities scale linearly (i.e., Reducing
the Voltage V by half implies that the clock frequency must be reduced by
half as well). We will scale down the voltage/clock of the parallel system such
that the scaled-down parallel system has the same performance as the origi-
nal, single-ARM sequential system. Find the ratio of the power consumption
of the original sequential system to the power consumption of the scaled-down,
parallel system (i.e., find the power-savings factor of the parallel system). You
only need to consider dynamic power consumption. Recall that Dynamic Power
Consumption is proportional to voltage and clock frequency.

1.4. Describe a possible implementation for each of the following C statements in
hardware. You can assume that all variables are integers and that each of them is
stored in a register.

(a) a D a C 1;
(b) if (a > 20) a D 20;
(c) while (a < 20) a D a C 1;

1.5. The function in Listing 1.6 implements a CORDIC algorithm. It evaluates the
cosine of a number with integer arithmetic and using only additions, subtractions,

Listing 1.6 Listing for Problem 1.5.
int cordic_cos(int target) {

int X, Y, T, current;
unsigned step;
X = AG_CONST;
Y = 0;
current = 0;
for(step=0; step < 20; step++) {
if (target > current) {

T = X - (Y >> step);
Y = (X >> step) + Y;
X = T;
current += angles[step];

} else {
T = X + (Y >> step);
Y = -(X >> step) + Y;
X = T;
current -= angles[step];

}
}
return X;

}

1.10 Problems 31

and comparisons. The angles[] variable is an array of constants. Answer each of
the following questions. Motivate your answer.

� Do you think it is possible to implement this function on any architecture within
1,000 clock cycles?

� Do you think it is possible to implement this function on any architecture within
1,000 �s?

� Do you think it is possible to implement this function on any architecture within
1 clock cycle?

� Do you think it is possible to implement this function on any architecture within
1 �s?

Chapter 2
Data Flow Modeling and Implementation

Abstract In this chapter, we will learn how to create data flow models, and how to
implement those models in hardware and software. Unlike C programs, data flow
models are concurrent: they can express activities that happen simultaneously. This
property makes data flow well suited for a parallel hardware implementation as well
as a sequential software implementation.

2.1 The Need for Concurrent Models: An Example

By nature, hardware is parallel and software is sequential. As a result, software mod-
els (C programs) are not very well suited to capture hardware implementations, and
vice versa, hardware models (RTL programs) are not a good abstraction to describe
software. However, designers frequently encounter situations in which they cannot
predict if the best solution for a design problem is a hardware implementation or a
software implementation. Trying to do both (writing a full C program as well as a
full RTL program) is not on option; it requires the designers to work twice as hard.

In signal processing, this problem is well known. Signal processing domain
experts are used to describe complex systems, such as digital radios and radar pro-
cessing units, using block diagrams. A block diagram is a high-level representation
of the target system as a collection of smaller functions. A block diagram does
not specify if a component should be hardware or software; it only shows a chain
of signal processing algorithms and the data samples to send to each other. We are
specifically interested in digital signal processing systems. Such systems represent
signals as streams of discrete samples rather than continuous signal shapes.

Figure 2.1a shows the block diagram for a simple digital signal processing sys-
tem. It’s a pulse-amplitude modulation (PAM) system, and it is used to transmit
digital information over bandwidth-limited channels. A PAM signal is created from
binary data in two steps. First, each word in the file needs to be mapped to PAM
symbols, which are just pulses of different heights. An entire file of words will thus
be converted to a stream of symbols or pulses. Next, the stream of pulses needs to
be converted to a smooth shape using pulse-shaping. Pulse-shaping ensures that the
bandwidth of the resulting PAM signal bandwidth does not exceed the PAM symbol

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 2, c� Springer Science+Business Media, LLC 2010

33

34 2 Data Flow Modeling and Implementation

map pulse-shape digital-to-
analog

1

1 word to 16 symbols
2 bit per symbol

1 symbol to 128 samples

204816

1 sample to 1 value

symbol1

symbol3

symbol4

pulse-shape
output

a

level +3

level +1

symbol period

symbol2

time

128 samples
per symbol

b

level –1

level – 3

Fig. 2.1 (a) Pulse-amplitude modulation (PAM) system (b) Operation of the pulse-shaping unit

rate. For example, if a window of 1,000 Hz transmission bandwidth is available, then
we can transmit 1,000 PAM symbols per second. In a digital signal processing sys-
tem, a smooth curve is achieved by oversampling: calculating many closely-spaced
discrete samples. The output of the pulse-shaping unit produces many samples for
each input symbol pulse, but it is still a stream of discrete samples. The final module
in the block diagram is the digital-to-analog module, which will convert the stream
of discrete samples into a continuous signal.

Figure 2.1a shows a PAM-4 system, which uses four different symbols. Since
there are four different symbols, each PAM symbol holds 2 bits of source infor-
mation. A 32-bit word from a binary file thus needs 16 PAM-4 symbols. The first
block in the PAM transmission system makes the conversion of a single word to a
sequence of sixteen PAM-4 symbols. Figure 2.1b shows that each PAM-4 symbol is
mapped to a pulse with four possible signal levels: f�3;�1; 1; 3g. Once the PAM-4
signals are available, they are shaped to a smooth curve using a pulse-shape filter.
The input of this filter is a stream of symbol pulses, while the output is a stream
of samples at a much higher rate. In this case, we generate 128 samples for each
symbol.

Figure 2.1b illustrates the operation of the pulse-shape filter. The smooth curve at
the output of the pulse-shape filter connects the top of each pulse. This is achieved
by an interpolation technique, which extends the influence of a single symbol pulse
over many symbol periods. The figure illustrates two such interpolation curves, one
for symbol2 and the other for symbol3. The pulse-shape filter will produce 128
samples for each symbol entered into the pulse-shape filter.

Now let us consider the construction of a simulation model for this system. We
focus on capturing its functionality, and start with a C program as shown in Listing
2.1. We ignore the implementation details of the function calls right now and only
focus on the overall structure of the program.

2.1 The Need for Concurrent Models: An Example 35

Listing 2.1 C example
1 extern int read_from_file();
2 extern int map_to_symbol(int, int);
3 extern int pulse_shape(int, int);
4 extern void send_to_da(int);
5
6 int main() {
7 int word, symbol, sample;
8 int i, j;
9 while (1) {

10 word = read_from_file();
11 for (i=0; i<16; i++) {
12 symbol = map_to_symbol(word, i);
13 for (j=0; j<128; j++)
14 sample = pulse_shape(symbol, j);
15 send_to_da(sample);
16 }
17 }
18 }

1 16 1 128 11

FileSource Map PulseShape DA

Fig. 2.2 Dataflow model for the PAM system

The program in Listing 2.1 is fine as a system simulation. However, as a model
for the implementation, this C program is too strict, since it enforces a sequen-
tial execution of all functions. If we observe Fig. 2.1a carefully, we can see that
the block diagram does not require a sequential execution of the symbol mapping
function and the pulse shaping function. The block diagram only specifies the flow
of data in the system but not the execution order of the functions. The distinc-
tion is subtle but important. For example, in Fig. 2.1a, it is possible that the map
module and the pulse-shape module work in parallel, each on a different sym-
bol. In Listing 2.1 on the other hand, the map to symbol() function and the
pulse shape() function will always execute sequentially. In hardware–software
codesign, the implementation target could be either parallel or else sequential.
The program in Listing 2.1 favors a sequential implementation, but it does not
encourage a parallel implementation in the same manner as a block diagram.

In this chapter we will discuss a modeling technique, called Data Flow, which
avoids this problem. Data Flow models closely resemble block diagrams. The
PAM-4 system, as a Data Flow model, is shown in Fig. 2.2. In this case, the dif-
ferent functions of the system are mapped as individual entities or actors such as
FileSource, Map, PulseShape, and DA. These actors are linked through com-
munication channels or queues. The numbers at the input and output of each actor
indicate the relative rate of communications. For example, there are 16 samples

36 2 Data Flow Modeling and Implementation

produced by Map for each input sample. Each actor is an independent unit. It
continuously checks its input for the availability of data, and as soon as data ap-
pear, calculates the corresponding output, and sends the result to the next actor in
the chain. In the remainder of this chapter, we will discuss the precise construction
details of dataflow diagrams. For now, we only point out the major differences of
this modeling style compared to modeling in C.

� The strongest point of Data Flow models, and the main reason why signal pro-
cessing engineers love to use them, is that a Data Flow model is a concurrent
model. Indeed, the actors in Fig. 2.2 operate and execute as individual concurrent
entities. A concurrent model can be mapped to a parallel or a sequential imple-
mentation, and so they can model hardware targets as well as software targets.

� Data Flow models are distributed, and there is no need for central controller or
‘conductor’ in the system to keep the individual system components in pace. In
Fig. 2.2, there is no central controller that tells the actors when to operate; each
actor can determine for itself when it is time to work.

� Data Flow models are modular. We can develop a design library of data flow
components and then use that library in a plug-and-play fashion to construct data
flow systems.

� Data Flow systems are easy to analyze, and properties such as deadlock and sta-
bility can be evaluated based on inspection of the model. This is an important
advantage, which is not at all obvious for C programs or hardware circuit de-
scriptions. In fact, a designer typically does not know if a C program will work
or not until the program runs.

Data Flow has been around for a surprisingly long time, yet it has been largely
overshadowed by the stored-program (Von Neumann) computing model. Data Flow
concepts have been explored since the early sixties. By 1974, Jack Dennis had de-
veloped a language for modeling data flow and described data flow using graphs,
similar to our discussion in this chapter. In the 1970s and 1980s, an active research
community was building not only data flow-inspired programming languages and
tools but also computer architectures that implement data flow computing mod-
els. Today, data flow remains very popular to describe signal processing systems.
For example, commercial tools such as Simulink R� are based on the ideas of data
flow. An interesting example of an academic environment is the Ptolemy project at
UC Berkeley (http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm). The Ptolemy
design environment can be used for many different types of system specification, in-
cluding data flow. The examples on the website can be run inside of a web browser
as Java applets.

In the following sections, we will consider the elements that make up a data flow
model, and we will discuss a technique for formal analysis of data flow models
called Synchronous Data Flow (SDF) graphs. After that, we look into systematic
conversion of SDF graphs into a hardware or software implementation.

2.1 The Need for Concurrent Models: An Example 37

2.1.1 Tokens, Actors, and Queues

Figure 2.3 shows the data flow model of a simple addition.

� Actors contain the actual operations. Actors have a bounded behavior (meaning
that they have a precise beginning and ending), and they iterate that behavior
from start to completion. One such iteration is called an actor firing. In the ex-
ample above, each actor firing would execute a single addition.

� Tokens carry information from one actor to the other. A token has a value, such
as ‘1’, ‘4’, ‘5’, and ‘8’ in Fig. 2.2.

� Queues are unidirectional communication links that transport tokens from one
actor to the other. Data Flow queues have an infinite amount of storage so that
tokens will never get lost in a queue. Data Flow queues are first-in first-out. In
Fig. 2.3, there are two tokens in the upper queue, one with value ‘1’ and one with
value ‘4’. The ‘4’ token was entered first into the queue, the ‘1’ token was entered
after that. When the ‘add’ actor will read a token from that queue, the actor will
first read the token with value ‘4’ and then the token with value ‘1’ (Fig. 2.4).

Fig. 2.3 Data flow model
of an addition

add

1 4

5 8

= actor = queue = token

add

1 4

5 8

add

1

5

12
fire!

add

1

5

add
12

fire!
126

Fig. 2.4 Actor firing moves a data flow model through markings

38 2 Data Flow Modeling and Implementation

When a data flow model executes, the actors will read tokens from their input
queues, transform the values of the input tokens into output values, and generate
new tokens on their output queues. Each single execution of an actor is called the
firing of that actor. Data flow execution then is expressed as a sequence of (possibly
concurrent) actor firings.

Conceptually, data flow models are untimed. The firing of an actor takes zero
time, even though any real implementation of an actor will require a certain amount
of time. Untimed means that time is irrelevant for data flow models: the execution
is guided only by the presence of data. An actor will never fire if there is no input
data, but instead it will wait until data becomes available at its inputs.

A graph with tokens is called a marking of a data flow model. When a data flow
model executes, the graph goes through a series of markings that drive data from
the inputs of the data flow model to the outputs. Each marking corresponds to a
different state of the system, and the execution of a data flow model is determined
by the order in which each marking appears. To an external observer, this marking
(i.e., the distribution of the tokens on the queues) is the only observable state in the
system. This has a subtle side-effect: the behavior of an actor cannot contain internal
state variables. A work-around is to express state variables as tokens.

2.1.2 Firing Rates, Firing Rules, and Schedules

When should an actor fire? The conditions under which an actor fires are called the
firing rule of that actor. Simple actors such as the add actor can fire when there is a
single token on each of its queues. A firing rule thus involves testing the number of
tokens present on the input queues. The required number of tokens can be symboli-
cally indicated next to the actor input. Similarly, the amount of tokens that an actor
produces per firing can be written next to the actor output. These numbers are called
the token consumption rate (at the actor inputs) and token production rate (at the
actor outputs). The production/consumption rates of the add actor therefore could
be written like as shown in Figs. 2.5 or 2.6.

Data Flow actors may also consume more then one token per actor firing. When
they do, we have a multirate data flow model. For example, the actor in Fig. 2.7 has
a consumption rate of 2 and a production rate of 1. It will consume two tokens per
firing from its input, add them together, and produces the result at the output.

Fig. 2.5 Data flow actor with
production/consumption rates

add

1

1

1

2.1 The Need for Concurrent Models: An Example 39

Fig. 2.6 Can this model
do any useful computations?

add

1

1
4

1

10

1

add2
21 4 1

fire! add2
2 1 5

Fig. 2.7 Example of a multi-rate data flow model

2.1.3 Synchronous Data Flow Graphs

When the number of tokens consumed/produced per actor firing is a fixed and con-
stant value, the resulting class of systems are called synchronous data flow graphs
or SDF graphs. The term synchronous means that the token production and con-
sumption rates are known, fixed numbers. The SDF semantics are not universal. For
example, not every C program can be translated to an equivalent SDF graph.

On the other hand, SDF graphs can be formally analyzed. By considering the
structure of an SDF graph, and the production and consumption rates on the actor
inputs and outputs, we can predict if the graph can result in a working, stable im-
plementation or not. This means that the schedule of an SDF graph, if it exists, can
be predicted completely beforehand. We will discuss a technique that allows one to
find such a schedule automatically.

2.1.4 SDF Graphs are Determinate

Assuming that each SDF actor implements a deterministic function, then the entire
SDF graph is determinate. This means that the results computed in an SDF graph
will always be the same, regardless of the actual firing order of the actors. Figure 2.8
illustrates this property. This graph contains actors with unit production/consump-
tion rates. One actor adds tokens, the second actor increments the value of tokens.
As we start firing actors, tokens are transported through the graph. After the first
firing, an interesting situation occurs: both the add actor as well as the plus1 actor
can fire. Going down at the left side, we assume that the plus1 actor fires first. Going
down at the right side, we assume that the add actor fires first. However, regardless
of this choice, the graph eventually converges to the situation shown at the bottom.

Why is this property so important? Assume for a moment that the add actor
and the plus1 actor execute on two different processors, a slow one and a fast one.
Depending upon which actor runs on the fast processor, the SDF execution will

40 2 Data Flow Modeling and Implementation

add

1 4

5 8

plus1

add

1

12

5

plus1

add

1

13

5

plus1 add
12

plus1
6

add
13

plus1
7

Fig. 2.8 SDF graphs are determinate

come down through the left or the right path in the above figure. Thanks to the
determinate property of SDF, it doesn’t matter which processor runs on what actor:
the results will be always the same. In other words, no matter what technology we
are using to implement actors, the system will work as specified as long as we im-
plement the firing rules correctly. Determinate behavior is vital in many embedded
applications, especially in applications that involve risk.

2.2 Analyzing Synchronous Data Flow Graphs

An admissible schedule for an SDF graph is one that can run forever without dead-
lock or without storing an infinite amount of tokens on one of the communication
queues. A deadlock situation occurs if, at a given moment, it is no longer possible
to fire any actor.

2.2 Analyzing Synchronous Data Flow Graphs 41

2 1
21

Fig. 2.9 Which SDF graph will deadlock, and which is unstable?

Here are two SDF graphs where these two problems are apparent. Consider-
ing Fig. 2.9, which graph will deadlock, and which graph will result in an infinite
amount of tokens?

Is it possible to create a systematic method that can show the absence of deadlock
or token build-up for an arbitrary SDF topology? It turns out that this is the case.
We will study the method of Lee to create so-called Periodic Admissible Sequential
Schedules (PASS). A PASS is defined as follows:

� A schedule is the order in which the actors must fire.
� An admissible schedule is a firing order that will not cause deadlock or token-

build-up.
� Finally, a periodic admissible schedule is a schedule that can continue forever,

because it is periodic (meaning that after some time, the same marking sequence
will start). We will consider Periodic Admissible Sequential Schedules, or PASSs
for short. Such a schedule requires only a single actor to fire at a time. A PASS
would be used, for example, to execute an SDF model on top of a microprocessor.

2.2.1 Deriving Periodic Admissible Sequential Schedules

We can create a PASS for an SDF graph (and test if one exists) with the following
four steps.

1. Create the topology matrix G of the SDF graph
2. Verify the rank of the matrix to be one less than the number of nodes in the graph
3. Determine a firing vector
4. Try firing each actor in a round robin fashion, until it reaches the firing count as

specified in the firing vector

We will demonstrate each of these steps using the example of the three-node SDF
graph shown in Fig. 2.10.

Step 1. Create a topology matrix for this graph. This topology matrix has as many
rows as there are graph edges (FIFO queues) and as many columns as there are graph
nodes. The entry .i; j / of this matrix will be positive if the node j produces tokens
into graph edge i . The entry .i; j / will be negative if the node j consumes tokens
from graph edge i . For the above graph, we thus can create the following topology

42 2 Data Flow Modeling and Implementation

Fig. 2.10 Example SDF
graph for PASS construction

11A

B

2

4

1

C
1

2

matrix. Note that G does not have to be square – it depends on the amount of queues
and actors in the system.

G D
2
4

2 �4 0

1 0 �2

0 1 �1

3
5
 edge.A; B/

 edge.A; C /

 edge.B; C /

(2.1)

Step 2. The condition for a PASS to exist is that the rank of G has to be one
less than the number of nodes in the graph. The proof of this theorem is beyond
the scope of this book but can be consulted in Lee and Messerschmitt (1987). The
rank of a matrix is the number of independent equations in G. It can be verified
that there are only two independent equations in G. For example, multiply the first
column with �2 and the second column with �1, and add those two together to find
the third column. Since there are three nodes in the graph and the rank of G is 2, a
PASS is possible.

Step 2 verifies that tokens cannot accumulate on any of the edges of the graph.
We can find the resulting number of tokens by choosing a firing vector and making
a matrix multiplication. For example, assume that A fires two times, and B and C

each fire zero times. This yields the following firing vector:

q D
2
4

2

0

0

3
5 (2.2)

The residual tokens left on the edges after these firings are two tokens on
edge.A; B/ and a token on edge.A; C /:

b D Gq D
2
4

2 �4 0

1 0 �2

0 1 �1

3
5

2
4

2

0

0

3
5 D

2
4

2

1

0

3
5 (2.3)

Step 3. Determine a periodic firing vector. The firing vector indicated above is
not a good choice to obtain a PASS: each time this firing vector executes, it adds

2.2 Analyzing Synchronous Data Flow Graphs 43

three tokens to the system. Instead, we are interested in firing vectors that leave
no additional tokens on the queues. In other words, the result must equal the zero-
vector.

GqPASS D 0 (2.4)

Since the rank of G is less than the number of nodes, this system has an infinite
number of solutions. Intuitively, this is what we should expect. Assume a firing
vector .a; b; c/ would be a solution that can yield a PASS, then also .2a; 2b; 2c/ will
be a solution, and so is .3a; 3b; 3c/, and so on. You just need to find the simplest
one. One possible solution that yields a PASS is to fire A twice, and B and C each
once:

qPASS D
2
4

2

1

1

3
5 (2.5)

The existence of a PASS firing vector does not guarantee that a PASS will also
exist. For example, just by changing the direction of the .A; C / edge, you would still
find the same qPASS, but the resulting graph is deadlocked since all nodes are waiting
for each other. Therefore, there is still a fourth step: construction of a valid PASS.

Step 4. Construct a PASS. We now try to fire each node up to the number of times
specified in qPASS. Each node which has the adequate number of tokens on its input
queues will fire when tried. If we find that we can fire no more nodes, and the firing
count of each node is less than the number specified in qPASS, the resulting graph is
deadlocked.

We apply this on the original graph and using the firing vector .AD 2; BD 1;

C D 1/. First we try to fire A, which leaves two tokens on .A; B/ and one on
.A; C /. Next, we try to fire B – which has insufficient tokens to fire. We also try
to fire C but again have insufficient tokens. This completes our first round through
– A has fired already one time. In the second round, we can fire A again (since it
has fired less than 2 times), followed by B and C . At the end of the second round,
all nodes have reached the firing count specified in the PASS firing vector, and the
algorithm completes. The PASS we are looking for is .A; A; B; C /.

The same algorithm, when applied to the deadlocked graph in Fig. 2.11, will
immediately abort after the first iteration, because no node was able to fire.

Fig. 2.11 A deadlocked
graph

1A

B

2

4

1

C
1

2

44 2 Data Flow Modeling and Implementation

Note that the determinate property of SDF graphs implies that we can try to fire
actors in any order of our choosing. So, instead of trying the order .A; B; C / we can
also try .B; C; A/. In some SDF graphs (but not in the one discussed above), this
may lead to additional PASS solutions.

2.2.2 Example: Euclid’s Algorithm as an SDF Graph

The graph in Fig. 2.12 evaluates the greatest common divisor of two numbers
a and b. The sort actor reads two numbers, sorts them, and copies them to the output.
The diff actor subtracts the smallest number from the largest one, as long as they are
different. If we run this system for a while, we see that the value of the token flowing
around converges to the greatest common divisor of the two numbers a and b. For
example, assume

.a0; b0/ D .16; 12/ (2.6)

then we see the following sequence of token values.

.a1; b1/ D .4; 12/; .a2; b2/ D .8; 4/; .a3; b3/ D .4; 4/; : : : (2.7)

ai and bi are the token values upon iteration i of the PASS. Since this sequence
converges to the tuple .4; 4/, we conclude that the greatest common divisor of 12
and 16 is 4.

We will now derive a PASS for this system. The topology matrix G for this graph
is shown below. The columns, left to right, correspond to each node from the SDF
graph, left to right.

11 11

initial token
value = a

out1 = (a > b) ? a : b;
out2 = (a > b) > b : a;

sort

diff

1

sort

1 1 1

initial token
value = b

out1 = (a !=b) ? a – b : a;
out2 = b;

diff

Fig. 2.12 Euclid’s greatest common divisor as an SDF graph

2.3 Control Flow Modeling and the Limitations of Data Flow Models 45

G D

2
664

C1 �1

C1 �1

�1 C1

�1 C1

3
775

 edge.sort; diff /

 edge.sort; diff /

 edge.diff; sort /

 edge.diff; sort /

(2.8)

One can determine that the rank of this matrix is one, since the columns com-
plement each other. Since there are two actors in the graph, we conclude that the
condition for PASS (i.e., rank(G)D nodes�1) is fulfilled. A valid firing vector for
this system is one in which each actor fires exactly once per iteration.

qPASS D
�

1

1

�
(2.9)

A working schedule for this firing vector would be to fire each of the actors in the
graph in sequence, using the order (sort, diff). Note that in the graph as shown, there
is only a single, strictly sequential schedule possible. For now, we will also ignore
the stopping condition (i.e., detecting that a and b are equal and that the system can
terminate).

This completes our discussion of PASS. SDF has very powerful properties, which
allow a designer to predict critical system behavior upfront (such as determinism,
deadlock, storage requirements). Yet SDF is not a universal specification mecha-
nism; it is not a good replacement for any possible hardware/software system. The
next part will further elaborate some of the difficulties of data flow modeling.

2.3 Control Flow Modeling and the Limitations
of Data Flow Models

SDF systems are distributed, data-driven systems. They execute whenever there is
data to process, and remain idle when there is nothing to do. However, SDF seems
to have trouble to model control-related aspects. Control appears in many different
forms in system design, for example:

� Stopping and Restarting. As we saw in the Euclid example (Fig. 2.12), an
SDF model never terminates; it just keeps running. Stopping and restarting is
a control-flow property that cannot be addressed well with SDF graphs.

� Mode-Switching. When a cell-phone switches from one standard to the other,
the processing (which may be modeled as an SDF graph) needs to be reconfig-
ured. However, the topology of an SDF graph is fixed and cannot be modified at
runtime.

� Exceptions. When catastrophic events happen, processing may suddenly need to
be altered. SDF cannot model exceptions that affect the entire graph topology.
For example, once a token enters a queue, the only way of removing it is to read
the token out of the queue. It is not possible to suddenly ‘empty’ the queue on a
global, exceptional condition.

46 2 Data Flow Modeling and Implementation

� Run-Time Conditions. A simple if-then-else statement (choice between two
activities depending on an external condition) is troublesome for SDF. An SDF
node cannot simply ‘disappear’ or become inactive – it is always there. Moreover,
we cannot generate conditional tokens, as this would violate SDF rules which re-
quire fixed production/consumption rates. Thus, SDF cannot model conditional
execution such as required for if-then-else statements.

There are two solutions to the problem of control flow modeling in SDF. The
first one is to try using SDF anyhow, but emulate control flow at the cost of some
modeling overhead. The second one is to extend the semantics of SDF. We give a
short example of each strategy.

2.3.1 Emulating Control Flow with SDF Semantics

Figure 2.13 shows an example of an if-then-else statement, SDF-style. Each of the
actors in the above graph is an SDF actors. The last one is a selector-actor, which
will transmit either the A or B input to the output depending on the value of the
input condition. Note that when Sel fires, it will consume a token from each input,
so both A and B have to run for each input token. So this is not really an if-then-
else in the same sense as in C programming. The approach taken by this graph is to
implement both the if-leg and the else-leg and afterwards transmit only the required
result. This approach is sometimes taken when there is sufficient parallelism in the
underlying implementation. For example, in hardware design, the equivalent of the
Sel node would be a multiplexer (Fig. 2.14).

2.3.2 Extending SDF Semantics

Researchers have also proposed extensions on SDF models. One of these models is
called BDF, or Boolean Data Flow Buck (1993). The idea of BDF is to make the
production and consumption rate of a token dependent on the value of an external

Fig. 2.13 Emulating
if-then-else conditions in SDF

Fork

A

Sel

c (condition)

input

B

2.3 Control Flow Modeling and the Limitations of Data Flow Models 47

Fig. 2.14 Implementing
if-then-else using boolean
data flow

A
pp

input

Fork

condition

if (condition)
then p = 1
else p = 0

Fc

B

Sc

1-p1-p

control token. In the above graph, the condition token is distributed over a fork to a
conditional fork and a conditional merge node. These conditional nodes are BDF.

� The conditional fork will fire when there is an input token and a condition token.
Depending on the value of the condition token, it will produce an output on
the upper or the lower queue. We used a conditional production rate p to indi-
cate this. It is impossible to determine the value of p upfront – this can only be
done at runtime.

� The conditional merge will fire when there is a condition token. If there is, it will
accept a token from the upper input or the lower input, depending on the value
of the condition. Again, we need to introduce a conditional consumption rate.

The overall effect is that either node A or else node B will fire, but never both.
Even a simple extension on SDF already takes jeopardizes the basic properties
which we have enumerated above. For example, a consequence of using BDF in-
stead of SDF is that we now have data flow graphs that are only conditionally
admissible. Moreover, the topology matrix now will include symbolic values (p),
and becomes harder to analyze. For 5 conditions, we would have to either a ma-
trix with 5 symbols, or else enumerate all possible condition values and analyze 32
different matrices (each of which can have a different series of markings). In other
words, while BDF can help solving some of practical cases of control, it quickly
becomes impractical for analysis.

Besides BDF, researchers have also proposed other flavors of control-oriented
data flow models, such as Dynamic Data Flow (DDF) which allows variable pro-
duction and consumption rates, and Cyclo-Static Data Flow (CSDF) which allows
a fixed, iterative variation on production and consumption rates. All of these exten-
sions break down the elegance of SDF graphs to some extent. SDF remains a very
popular technique for Digital Signal Processing applications. But the use of BDF,
DDF, and the like has been limited.

48 2 Data Flow Modeling and Implementation

2.4 Software Implementation of Data Flow

In this section, we will consider the implementation of SDF graphs in software.

2.4.1 Converting Queues and Actors into Software

Figure 2.15 demonstrates several different approaches to map dataflow into soft-
ware. A first distinction will be made between mapping dataflow to multiprocessor
systems and to single-processor systems. Our first concern is the implementation of
dataflow graphs on single-processor systems. Such implementations require a se-
quential scheduling of dataflow actors. There are two methods to implement such a
sequential schedule.

� We can do this using a dynamic schedule, which means that the software proces-
sor will evaluate, during execution of the SDF graph, the order in which actors
should execute. This can be implemented in several ways. Essentially, it implies
that the CPU will test the actors’ firing rule at runtime to evaluate which actor
can run. Dynamic scheduling of an SDF system can be done using a single-thread
executive, or else using multithreading.

� We can also use a static schedule, which means that we will determine upfront
exactly in what order the actors need to run (fire). This can be implemented us-
ing a single-threaded executive. However, because the static schedule fixes the
execution order of the actors, there is an additional important optimization op-
portunity: we can inline the entire dataflow graph in a single function.

Software Mapping
of SDF

Sequential
(on a single CPU)

Parallel
(on multiple CPU)

• Processor Networks

Using a Dynamic
Schedule

Using a Static
Schedule

• Single-thread executive
• Multithreading

• Single-thread executive
• Inlined

Fig. 2.15 Overview of possible approaches to map dataflow into software

2.4 Software Implementation of Data Flow 49

Before studying the various means to implement SDF schedules, let us first recall
the essential features of SDF graphs. SDF graphs represent concurrent systems and
use actors which communicate over FIFO queues. The firing only depends on the
availability of data (tokens) in the FIFO queues, and it can be described with the fir-
ing rule for that actor. The amount of tokens produced/consumed per firing at the
output/input of an actor is specified by production rate/consumption rate for that
output/input. When implementing an SDF graph in software, we have to map all
elements of the SDF graph in software: actors, queues, and firing rules. Eventually,
the implementation will always need to follow the rules of dataflow.

2.4.1.1 FIFO Queues

An SDF system requires, in principle, infinitely large FIFO queues. In practice how-
ever, you will not implement infinite FIFO queues, but instead create a queue with
a limited number of positions and overflow detection. Another approach is to create
a FIFO that grows dynamically in length – for example, by doubling the amount of
memory allocated for it, each time the FIFO overflows. Note also that if we know
a PASS, we can create a static schedule and determine the maximum number of
tokens on each queue, and then appropriately choose the size of each queue. Here
is a software object Q (in C) which could model such a FIFO of limited length
(Fig. 2.16).

The typical software interface of a FIFO queue has two parameters and three
methods.

� The number of elements N that can be stored by the queue. (parameter)
� The data type element of a queue elements. (parameter)
� A method to put elements into the queue.
� A method to get elements from the queue.
� A method to test the number of elements in the queue.

The storage organization can be done with a standard data structure such as a
circular queue. A circular queue is a data structure consisting of an array of memory

element & Q.get()

N

void Q.put(element &)

unsigned Q.getsize()

Fig. 2.16 A software queue

50 2 Data Flow Modeling and Implementation

locations, a write-pointer, and a read-pointer. These pointers map relative queue
addresses to array addresses using modulo addressing as illustrated in the figure
below. The head of the queue is at Rptr. Element I of the queue is at (RptrCI)
mod array size. The tail of the queue is at (Wptr�1) mod array size. Figure 2.17
illustrates the operation of a 2-element circular queue.

2.4.1.2 Actors

A data flow actor can be captured as a function, with some additional support to in-
terface with the FIFO queues (Fig. 2.18). Designers will often differentiate between
the internal activities of an actor and the input–output behavior. The behavior cor-
responding to actor firing can be implemented as a simple C function. The logic

Wptr Rptr

Queue

Initialization

Rptr

Queue

After 'put(5)'

Wptr

Rptr

Queue

After 'put(6)'

Wptr

Rptr

Queue

'put(2)'? No!
Queue is Full

Wptr

5 5

6

5

6

Queue Queue Queue

Wptr

Rptr

After 'get()'
(return 5)

6

Wptr

Rptr

After 'put(2)'

6

2

Wptr

Rptr

After 'get()'
(return 6)

2

etc

Fig. 2.17 Operation of the circular queue

read

work

write

! firing_rule

firing_rule

getSize()

Actor Function

FIFO
Queue

FIFO
Queue

FIFO
Queue

FIFO
Queue

run()

Fig. 2.18 Software implementation of the dataflow actor

2.4 Software Implementation of Data Flow 51

around this function tests the firing rule and manipulates the input queues and the
output queues. One can think of this logic as a small controller on top of the actor
function.

The local controller of an actor goes through three states. In the read state, it
remains idle until a token arrives at an input queue. The actor then proceeds to the
work state. The controller reads one token from the input queue, extracts the value
of that token, and runs the function. This yields the value of the output token of
the actor. Finally, the output value can be entered into the output queue, which is
done while the actor controller transitions through the write state.

However we must take care that the firing rule is implemented correctly. When
an SDF actor fires, it has to read all input queues and it has to write into all output
queues according to the specified production and consumption rates.

We can now implement the actor in C. As mentioned before, we will implement
all the actors as C functions. The following struct collects all the inputs and outputs
of an actor.

typedef struct actorio {
fifo_t *in1;
fifo_t *in2;
fifo_t *out1;
fifo_t *out2;

} actorio_t;

We can use that struct to model actors as functions, for example:

void sort_actor(actorio_t *g) {
int r1, r2;
if ((fifo_size(g->in1) > 0) &&

(fifo_size(g->in2) > 0)) {
r1 = get_fifo(g->in1);
r2 = get_fifo(g->in2);
put_fifo(g->out1, (r1 > r2) ? r1 : r2);
put_fifo(g->out2, (r1 > r2) ? r2 : r1);

}
}

Finally, the actor io and queue objects can be instantiated in the main program,
and the actor functions can be called using a system scheduler.

2.4.2 Sequential Targets with Dynamic Schedule

A software implementation of SDF is obtained by combining several different actor
descriptions, by interconnecting those actors using FIFO queues, and by executing
the actors through a system schedule. In a dynamic system schedule, the firing rules
of the actors will be tested at runtime; the system scheduling code consists of the
firing rules, as well as the order in which the firing rules are tested.

52 2 Data Flow Modeling and Implementation

Listing 2.2 FIFO object in C
#define MAXFIFO 1024

typedef struct fifo {
int data[MAXFIFO]; // array
unsigned wptr; // write pointer
unsigned rptr; // read pointer

} fifo_t;

void init_fifo(fifo_t *F) {
F->wptr = F->rptr = 0;

}

void put_fifo(fifo_t *F, int d) {
if (((F->wptr + 1) % MAXFIFO) != F->rptr) {
F->data[F->wptr] = d;
F->wptr = (F->wptr + 1) % MAXFIFO;
assert(fifo_size(F) <= 10);

}
}

int get_fifo(fifo_t *F) {
int r;
if (F->rptr != F->wptr) {
r = F->data[F->rptr];
F->rptr = (F->rptr + 1) % MAXFIFO;
return r;

}
return -1;

}

unsigned fifo_size(fifo_t *F) {
if (F->wptr >= F->rptr)
return F->wptr - F->rptr;

else
return MAXFIFO - (F->rptr - F->wptr) + 1;

}

int main() {
fifo_t F1;
init_fifo(&F1); // resets wptr, rptr;
put_fifo(&F1, 5); // enter 5
put_fifo(&F1, 6); // enter 6
printf("%d %d\n", fifo_size(&F1), get_fifo(&F1));// prints: 2 5
printf("%d\n", fifo_size(&F1)); // prints: 1

}

2.4 Software Implementation of Data Flow 53

2.4.2.1 Single-Thread Dynamic Schedules

Following the FIFO and actor modeling in C, as discussed in Sect. 2.4.1, we can
implement a system schedule as a function that instantiates all actors and queues,
and next calls the actors in a round-robing fashion.

void main() {
fifo_t F1, F2, F3, F4;
actorio_t sort_io;
..
sort_io.in1 = &F1;
sort_io.in2 = &F2;
sort_io.out1 = &F3;
sort_io.out2 = &F4;
while (1) {
sort_actor(&sort_io);
// .. call other actors

}
}

The interesting question, of course, is: what is the most appropriate call order of
the actors in the system schedule? First, note that it is impossible to call the actors
in the ‘wrong’ order, because each of them still has a firing rule that protects them
from running when there is no data available. Consider the example in Fig. 2.19.
Even though snk will be often called as often as src, the firing rule of snk will
only allow that actor to run when there is sufficient data available. In Fig. 2.19a, this
means that the snk actor will only fire every other time the main function calls
it. However, while this technique of dynamic scheduling will prevent actors from
running prematurely, it is still possible that some actors run too often, resulting in
the number of tokens on the interconnection queues slowly growing. This happens,
for example, in Fig. 2.19b. In this case, the src actor will produce two tokens each
time the main function calls it, but the snk actor will only read one of these tokens
per firing.

The problem of the system schedule in Fig. 2.19b is the firing rate provided by the
system schedule differs from the required firing rate for a PASS. Indeed, the PASS
for this system would be (src, snk, snk). The dynamic system schedule,

SRC SNK
1 2

SRC SNK
12

a

b

void main() {
..
while (1) {
src_actor(&src_io);
snk_actor(&snk_io);

}
}

System Schedule

Fig. 2.19 (a) A graph which will simulate fine under a single rate system schedule, (b) a graph
which will cause extra tokens under a single rate system schedule

54 2 Data Flow Modeling and Implementation

given by the code below, cannot make the firing rate of SNK higher than that of
SRC. This problem can be addressed in several ways.

� Solution 1: We could adjust the system schedule to reflect the firing rate
predicted by the PASS. Thus, the code for the system scheduler becomes:

void main() {
..
while (1) {

src_actor(&src_io);
snk_actor(&snk_io);
snk_actor(&snk_io);

}
}

This solution is not very elegant, because it destroys the idea of having a dynamic
scheduler. If we have to obtain the PASS firing rate first, we may as well forget
about using a dynamic schedule.

� Solution 2: We could adjust the code for the snk actor to continue execution as
long as there are tokens present. Thus, the code for the snk actor becomes:

void snk_actor(actorio_t *g) {
int r1, r2;
while ((fifo_size(g->in1) > 0)) {

r1 = get_fifo(g->in1);
... // do processing

}
}

This is a better solution as the previous one, because it keeps the advantages of a
dynamic system schedule.

2.4.2.2 MultiThread Dynamic Schedules

The actor functions, as described above, are captured as real functions. They exit
completely in between invocations. As a result, actors cannot maintain state in local
variables, but have to use global variables instead. We will discuss a solution based
on multithreaded programming, in which each actor lives in a separate thread.

A multithreaded C program is a program that has two concurrent threads of exe-
cution. For example, in a program with two functions, one thread could be executing
the first function, while the other thread could be executing the second function.
Since there is only a single processor to execute this program, we need to switch
the processor back and forth between the two threads of control. This is done by a
scheduler – similar to a scheduler used for scheduling actors, a thread scheduler will
switch between threads.

We will illustrate the use of cooperative multithreading. In this model, the threads
of control indicate at which point they release control back to the scheduler. The
scheduler then decides which thread can run next.

Figure 2.20 shows an example with two threads. Initially, the user has provided
the starting point of each thread using create(). Assume that the upper thread

2.4 Software Implementation of Data Flow 55

C program

scheduler

create()
1
2

3
thread 1

yield()

3
4

thread 2

thread 1

thread 2

create()

yield()

Fig. 2.20 Example of cooperative multithreading

(thread1) is running and arrives at a yield() point. This is a point where the
thread returns control to the scheduler. The scheduler maintains a list of threads
under its control, and therefore knows that the lower thread (thread2) is ready
to run. So it allows thread2 to run until that thread, too, comes at a yield point.
Now the scheduler sees that each thread had a chance to run, so it goes back the first
thread. The first thread then will continue just after the yield point.

We thus see that two functions are enough to build a threading system:
create() and yield(). The scheduler can apply different strategies to se-
lect each thread, but the simplest one is to let each thread run in turn – this is called
a ‘round-robin’ scheduling strategy. We will look at the functions in a coopera-
tive multithreading library called quickthreads. The quickthreads API (Application
Programmers’ Interface) consists of four function calls.

� stp init() initializes the theading system.
� stp create(stp userf t *F, void *G) creates a thread that will

start execution with user function F. The function will be called with a single
argument G. The thread will terminate when that function completes, or when
the thread aborts.

� stp yield() releases control over the thread to the scheduler.
� stp abort() terminates a thread so that it will be no more scheduled.

Listing 2.3 is a small program that uses the QuickThread library.
This program creates two threads (line 21–22), one which starts at function hello,

and another which starts at function world. Function hello (line 3–9) is a loop that
will print “hello” three times, and yield after each iteration. After the third time, the
function will return, which also terminates the thread. Function world (line 11–17)
is a loop that will print “world” five times, and yield at the end of each iteration.
When all threads are finished, the main function will terminate. We compile and run
the program as follows.

56 2 Data Flow Modeling and Implementation

Listing 2.3 Example of QuickThreads
#include "../qt/stp.h"
#include <stdio.h>

void hello(void *null) {
int n = 3;
while (n-- > 0) {
printf("hello\n");
stp_yield();

}
}

void world(void *null) {
int n = 5;
while (n-- > 0) {
printf("world\n");
stp_yield();

}
}

int main(int argc, char **argv) {
stp_init();
stp_create(hello, 0);
stp_create(world, 0);
stp_start();
return 0;

}

>gcc -c ex1.c -o ex1../qt/libstp.a ../qt/libqt.a
./ex1
hello
world
hello
world
hello
world
world
world

Indeed the printing of hello and world are interleaved for the first three iterations,
and then the world thread runs through completion.

We can now use this multithreading system to create a multithread version of the
SDF scheduler. Here is the example of a sort actor, implemented using the coopera-
tive threading model.

void sort_actor(actorio_t *g) {
int r1, r2;
while (1) {
if ((fifo_size(g->in1) > 0) &&

(fifo_size(g->in2) > 0)) {
r1 = get_fifo(g->in1);
r2 = get_fifo(g->in2);
put_fifo(g->out1, (r1 > r2) ? r1 : r2);

2.4 Software Implementation of Data Flow 57

put_fifo(g->out2, (r1 > r2) ? r2 : r1);
}
stp_yield();

}
}

The system scheduler now will call threads rather than actors:

void main() {
fifo_t F1, F2, F3, F4;
actorio_t sort_io;
..
sort_io.in1 = &F1;
sort_io.in2 = &F2;
sort_io.out1 = &F3;
sort_io.out2 = &F4; // connect queues
stp_create(sort_actor, &sort_io); // create thread
stp_start(); // start system schedule

}

Similar to what is discussed before, the execution rate of the actor code must
be equal to the PASS firing rate in order to avoid unbounded growth of tokens in
the system. A typical cooperative multithreading system uses round-robin schedul-
ing: all actor threads in the system need to run() after one actor thread calls
yield(). Therefore, Solution 1 (as discussed before under the single-thread execu-
tive method) cannot work. Instead, we need Solution 2, and allow an actor thread to
fire several times before it yields:

void sort_actor(actorio_t *g) {
int r1, r2;
while (1) {
while ((fifo_size(g->in1) > 0) &&

(fifo_size(g->in2) > 0)) {
r1 = get_fifo(g->in1);
r2 = get_fifo(g->in2);
put_fifo(g->out1, (r1 > r2) ? r1 : r2);
put_fifo(g->out2, (r1 > r2) ? r2 : r1);

}
stp_yield();
}

}

2.4.3 Sequential Targets with Static Schedule

When we have completed the PASS analysis for an SDF graph, we know at least
one solution for a feasible sequential schedule. We can use this to optimize the
implementation in several ways:

� First, since we know the exact sequential schedule, we are able to remove the fir-
ing rules of the actors. This will yield a small performance advantage. Of course,
we can no longer use such actors with dynamic schedulers.

58 2 Data Flow Modeling and Implementation

� Next, we can also investigate the optimal interleaving of the actors such that the
storage requirements for the queues are reduced. This is illustrated below.

� Finally, we can create a fully inlined version of the SDF graph, by exploiting our
knowledge on the static, periodic behavior of the system as much as possible. We
will see that this not only allows us to get rid of the queues but also allows us to
create a fully inlined version of the entire SDF system.

Consider the example in Fig. 2.18. From this SDF topology, we know that the
relative firing rates of A, B, and C must be 4, 2, and 1 to yield a PASS. The right side
of the code shows an example implementation of this PASS. The A, B, C actors are
called in accordance with their PASS rate. Due to this particular interleaving, it is
easy to see that in a steady state condition, the queue AB will carry four tokens max-
imum, while the queue BC will contain two tokens maximum. This is not the most
optimal interleaving. By calling the actors in the sequence (A,A,B,A,A,B,C),
the maximum amount of tokens on any queue is reduced to two. Finding an optimal
interleaving in an SDF graph is an optimization problem. While an in-depth discus-
sion of this optimization problem is beyond the scope of this book, it is important
to keep in mind that the solution determined using PASS is not necessarily optimal
(Fig. 2.21).

Implementing a truly static schedule means that we will no longer test firing rules
when calling actors. In fact, when we call an actor, we will have to guarantee that
the required input tokens are available. In a system with a static schedule, all SDF-
related operations get a fixed execution order: the actor firings and the sequences
of put and get operations on the FIFO queues. This provides the opportunity to
optimize the resulting SDF system.

We will discuss optimization of single-thread SDF systems with a static schedule
using an example we discussed before – the GCD. From our earlier analysis, we
know that a valid PASS fires each node a single time. Listing 2.4 is a description for
each of the actors (sort, diff).

These actors are interconnected in the main program by means of queues. The
main program also executes the PASS in the form of a while loop (Listing 2.5).

1
A B

2
C

21

4 2 1

while(1) {
// call A four times
A(); A(); A(); A();

// call B two times
B(); B();

4 2 1
// call C one time
C();

}PASS firing rates

Fig. 2.21 System schedule for a multirate SDF graph

2.4 Software Implementation of Data Flow 59

Listing 2.4 Actors for Euclid’s Algorithm
void sort_actor(actorio_t *g) {

int r1, r2;
if ((fifo_size(g->in1) > 0) &&
(fifo_size(g->in2) > 0)) {
r1 = get_fifo(g->in1);
r2 = get_fifo(g->in2);
put_fifo(g->out1, (r1 > r2) ? r1 : r2);
put_fifo(g->out2, (r1 > r2) ? r2 : r1);

}
}

void diff_actor(actorio_t *g) {
int r1, r2;
if ((fifo_size(g->in1) > 0) &&
(fifo_size(g->in2) > 0)) {
r1 = get_fifo(g->in1);
r2 = get_fifo(g->in2);
put_fifo(g->out1, (r1 != r2) ? r1 - r2 : r1);
put_fifo(g->out2, r2);

}
}

Listing 2.5 System Schedule for Euclid’s Algorithm
void main() {

fifo_t F1, F2, F3, F4;
actorio_t sort_io, diff_io;
sort_io.in1 = &F1;
sort_io.in2 = &F2;
sort_io.out1 = &F3;
sort_io.out2 = &F4;
diff_io.in1 = &F3;
diff_io.in2 = &F4;
diff_io.out1 = &F1;
diff_io.out2 = &F2;

// initial tokens
put_fifo(&F1, 16);
put_fifo(&F1, 12);

// system schedule
while (1) {
sort_actor(&sort_io);
diff_actor(&diff_io);

}
}

The optimizations are as follows:

1. Because the firing order of actors can be completely fixed, the access order on
queues can be completely fixed as well. This latter fact will allow the queues
themselves to be optimized out and replaced with fixed variables. Indeed, assume

60 2 Data Flow Modeling and Implementation

Listing 2.6 Optimized System Schedule for Euclid’s Algorithm
void main() {

int f1, f2, f3, f4;

// initial token
f1 = 16;
f2 = 12;

// system schedule
while (1) {

// code for actor 1
f3 = (f1 > f2) ? f1 : f2;
f4 = (f1 > f2) ? f2 : f2;

// code for actor 2
f1 = (f3 != f4) ? f3 - f4;
f2 = f4;

}
}

for example that we have determined that the access sequence on a particular
FIFO queue will always be as follows:

loop {
...
F1.put(value1);
F1.put(value2);
...
.. = F1.get();
.. = F1.get();

}

In this case, only two positions of FIFO F1 are occupied at a time. Hence, FIFO
F1 can be replaced by two single variables.

loop {
...
r1 = value1;
r2 = value2;
...
.. = r1;
.. = r2;

}

2. As a second optimization, we can inline actor code inside of the main program
and the main scheduling loop. In combination with the above optimization, this
will allow to drop the firing rules and to collapse an entire dataflow graph in a
single function.

When we apply these optimizations to the Euclid example, each queue (F1, F2,
F3, and F4) will contain no more than a single token, which means that each queue
can be replaced by a single integer (Listing 2.6).

2.5 Hardware Implementation of Data Flow 61

In the above example, we can expect the runtime to decrease significantly. We
have dropped testing of the firing rules, FIFO manipulations, and function bound-
aries. This is possible because we have determined a valid PASS for the initial data
flow system, and we have chosen a fixed schedule to implement that PASS.

2.5 Hardware Implementation of Data Flow

We can implement SDF actors also as dedicated hardware engines. While we could
map FIFO queues and actor firing rules directly in hardware, we are especially in-
terested in simple, optimized implementations. The use of hardware FIFOs (that
require handshake synchronization protocols) will be covered later when we dis-
cuss advanced hardware/software interfaces.

2.5.1 Single-Rate SDF Graphs

As an optimized implementation, consider simplest case, in which there is a direct,
one-to-one mapping from SDF graphs to hardware elements. Each actor then trans-
lates to a single combinational hardware module, and each FIFO queue translates to
wires or registers. Figure 2.22 illustrates how this works out for the Euclid example.

We create the following implementation:

1. Map each queue to a wire.
2. Map each queue containing a token to a register. The initial value of the register

must equal the initial value of the token.

compare

1
0

compare

sub

SORT DIFF

1

0

REGISTER

SORT DIFF

Fig. 2.22 Hardware implementation of Euclid’s algorithm

62 2 Data Flow Modeling and Implementation

Fig. 2.23 SDF graph
of a simple moving-average
application

c0 c1 c2

+

in
x0x1x2

+

out
Longest C

om
binational

Path for H
ardw

are M
apping

3. Map each actor to a combinational circuit, which completes a firing within a
clock cycle. Both the sort and diff actors require no more than a comparator
module, a few multiplexers, and a subtractor.

Does this circuit work? Yes, it does. The circuit evaluates a single iteration
through a PASS per clock cycle.

Is this translation procedure general so that it would work for any SDF graph?
No, it is not. The translation procedure is restricted to the following SDF graphs.

� We need a single-rate SDF graph, which has a PASS firing vector with all ones
in it.

� All actors need to be implemented using combinational logic.

In addition, the above method may result in circuits with a very long combina-
tional path. In the circuit above for example, the maximal operating clock frequency
is determined by the combined delay of the sort circuit and the diff circuit. Still, the
concept of this transformation is useful, in particular when it is used with the trans-
formations which will be discussed next (Fig. 2.23).

2.5.2 Pipelining

Pipelining of SDF graphs helps to break long combinational paths that may exist in
circuits. Consider the example shown below.

This is a data flow specification of a digital filter. It evaluates a weighted sum of
samples of an input stream, with the sum defined as out D x0:c2Cx1:c1Cx2:x0. It
can be seen from this graph that the critical path is equal to a constant multiplication
(with c0 or c1) and two additions. We would like to ‘push down’ initial tokens into
the adder tree. With the rules of data flow execution, this is easy. Consider a few
subsequent markings of the graph. We let the in actor produce additional tokens, and
then let the c0, c1, c2 and add actors fire so that additional tokens start to appear on

2.5 Hardware Implementation of Data Flow 63

Fig. 2.24 Pipelining the
moving-average filter by
inserting additional tokens (1) c0 c1 c2

+

in

x1x2x3

c2x0

c1x1c0x2

+

out

Fig. 2.25 Pipelining the
moving-average filter by
inserting additional tokens (2)

c0 c1 c2

+

in

x2x3x4

c1x2c0x3 c2x1

+

+

out

c2x0C0x2+c1x1

queues that have no such tokens. For example, assume that the in actor produces a
single additional token x3. Then the resulting graph looks as follows (Fig. 2.24):

In this graph, the longest combinational path is reduced to only two additions.
By letting the in actor produce another token, we will be able to reduce the longest
combinational path to a single addition (Fig. 2.25).

The resulting SDF graph can be implemented as in Fig. 2.26.
Remember that it is not possible to introduce arbitrary initial tokens in a graph

without following the rules for actor firing – doing so will almost certainly change
the behavior of the system. This change in behavior is obvious in the case of feed-
back loops, such as shown in the accumulator circuit in Fig. 2.27. Using a single
token in the feedback loop of an add actor will accumulate all input samples. Using
two tokens in the feedback loop will accumulate the odd samples and even samples
separately. When pipelining a SDF graph, make sure to follow the normal steps for
data flow marking (i.e., do not introduce any initial token unless it can be obtained
by a sequence of firings from actors).

64 2 Data Flow Modeling and Implementation

Fig. 2.26 Hardware
implementation of the
moving-average filter

c0 c1 c2

+

in

+

out

ADD ADD
!=

IN IN

accumulator double-accumulator
for odd / even samples

Fig. 2.27 Loops in SDF graphs cannot be pipelined

2.5.3 Multirate Expansion

Another interesting transformation concerns multirate data flow graphs. It is pos-
sible to transform such graphs systematically to single-rate SDF graphs. These
single-rate SDF graphs can then be directly mapped into hardware circuits. We go
through the following steps to convert a multirate graph to a single-rate graph.

1. Determine the PASS firing rates of each actor.
2. Duplicate each actor the number of times indicated by its firing rate. For example,

given an actor A with a firing rate of 2, we create A0 and A1. These actors are
identical.

3. Convert each multirate actor input/output to multiple single-rate input/outputs.
For example, if an actor input has a consumption rate of 3, we replace it with
three single-rate inputs.

2.5 Hardware Implementation of Data Flow 65

4. Reintroduce the queues in the data flow system to connect all actors. Since we
are building a PASS system, the total number of actor inputs will be equal to the
total number of actor outputs.

5. Reintroduce the initial tokens in the system, distributing them sequentially over
the single-rate queues.

Consider the following example of a multirate SDF graph. Actor A produces
three tokens per firing, actor B consumes two tokens per firing. Their resulting firing
rates are two and three, respectively (Fig. 2.28).

After completing steps 1–5 discussed above, we obtain the following SDF graph.
The actors have duplicated according to their firing rates, and all multirate I/O were
converted to single-rate I/O. The initial tokens are distributed over the queues con-
necting A and B. The distribution of tokens follows the sequence of queues between
A and B (i.e., follows the order a, b, etc..) (Fig. 2.29).

The resulting single-rate graph can now be mapped directly into a hardware cir-
cuit. This circuit will have two inputs (IN0, IN1) and three outputs (OUT0, OUT1,
OUT2). This corresponds to the original specification: the inputs are being con-
sumed at rate 2, and the outputs are being produced at rate three.

BAIN OUT
3 211 1 1

PASS
Firing Rate

2 2 3 3

Fig. 2.28 Multi-rate data flow-graph

IN0 A0 B0 OUT0

B1 OUT1

a

b

c

IN1 A1 B2 OUT2

d

e

f

Fig. 2.29 Multi-rate SDF graph expanded to single-rate

66 2 Data Flow Modeling and Implementation

2.6 Summary

Data Flow models express concurrent systems in such a way that the models can
map into hardware as well as into software. Data Flow models consist of actors
which communicate by means of tokens which flow over queues from one actor
to the other. A data flow model can precisely and formally express the activities
of a concurrent system. An interesting class of data flow systems are SDF models.
In such models, all actors can produce or consume a fixed amount of tokens per
iteration (or invocation).

By concerting a given SDF graph to a topology matrix, it is possible to derive
stability properties of a data flow system (deadlock and limited number of tokens)
automatically. A stable data flow system can be executed using a periodic admissible
sequential schedule (PASS), a fixed period sequence of actor firings.

We also discussed how a data flow model can be automatically converted into
sequential software or parallel hardware. For a sequential software implementation,
we can use either threads or else static scheduling of C functions to capture the
concurrent behavior of a data flow system. For hardware, a simple one-to-one con-
version technique exists to translate single-rate SDF graphs into hardware. Several
optimization techniques, such as pipelining and multirate expansion, can deal with
graphs which are difficult or impossible to map as single-rate SDF graphs.

Data Flow modeling remains an important and easy-to-understand technique.
Data Flow models are useful in signal-processing applications, in which the infinite
streams of signal samples are captured as token streams and the signal processing
functions as actors.

2.7 Further Reading

Dataflow analysis and implementation have been well researched over the past few
decades, and Dataflow enjoys a rich body of literature.

In the early seventies, dataflow has been considered as a replacement for tra-
ditional instruction-fetch machines. Actual data-flow computers were built that
operate very much according to the SDF principles discussed here. Those early
years of dataflow have been documented very well at a retrospective conference
called Dataflow to Synthesis Retrospective. The conference honored Arvind, one
of dataflows’ pioneers, and the online proceedings include a talk by Jack Dennis
Dennis (2007).

In the eighties, dataflow garnered attention because of its ability to describe
signal processing problems well. For example, Lee and Messerschmitt described
SDF scheduling mechanisms Lee and Messerschmitt (1987). Parhi and Messer-
schmitt discussed unfolding transformations of SDF graphs Parhi and Messer-
schmitt (1989). Interestingly, and perhaps not unexpected, digital signal processors
became a commodity around the same time. This work eventually gave rise to the
Ptolemy environment Eker et al. (2003). Despite these successes, dataflow never
became truly dominant compared to existing control-oriented paradigms.

2.8 Problems 67

However, dataflow excels in the description of streaming processing, and there-
fore remains very popular for signal processing applications. In particular, the recent
trend toward multiprocessors has spurred a new interest in streaming applications.
System specification is done in a dataflow-variant or language, and an automatic
design environment maps this to a multiprocessor target. Some of the recent work
in this area includes StreamIt (which maps to an IBM Cell Processor) Thies (2008)
and Brook (which maps to a Graphics Processor) Stanford Graphics Lab (2003).

2.8 Problems

2.1. Consider the single-rate SDF graph in Fig. 2.30. The graph contains three types
of actors. The fork actor reads one token and produces two copies of the input token,
one on each output. The add actor adds up two tokens, producing a single token that
holds the sum of the input token. The snk actor is a token-sink which records the
sequence of tokens appearing at its input. A single initial token, with value 1, is
placed in this graph. Find the value of tokens that is produced into the snk actor.
Find a short-hand notation for this sequence of numbers.

2.2. The Fibonacci Number series F is defined by F(0)D 0, F(1)D 1, F(i)D F
(i-1)C F(i-2) when i is greater than 1. By changing the marking of the SDF graph
in Fig. 2.27, it is possible to generate the Fibonacci series into the snk actor. Find
the location and the initial value of the actors you will add.

2.3. Consider the SDF graph in Fig. 2.31. Transform that graph such that it will
produce the same sequence of tokens twice as fast. To implement this, replace the
snk actor with snk2, an actor which requires two tokens on two different inputs in
order to fire. Next make additional transformations to the graph and its marking so
that it will produce this double-rate sequence into snk2.

2.4. Data Flow actors cannot contain state variables. Yet, we can ‘simulate’ state
variables with tokens. Using only an adder actor, show how you can implement an
accumulator that will obtain the sum of an infinite series of input tokens.

2.5. For the SDF graph of Fig. 2.32, find a condition between x and y for a PASS to
exist.

Fig. 2.30 SDF graph
for Problem 2.1

fork add fork

snk

Token Value = 1

68 2 Data Flow Modeling and Implementation

fork add fork

snk snk2

Token Value = 1

Fig. 2.31 SDF graph for Problem 2.3

Fig. 2.32 SDF graph
for Problem 2.5 A B C

x 2 1 y

11

Fig. 2.33 SDF graph
for Problem 2.6

sort

1 1
a max(a, b)

1
1

b min(a, b)

2.6. Given the 2-input sorting actor shown in Fig. 2.33. Using this actor, create a
SDF graph of a sorting network with 4 inputs and 4 outputs.

2.7. Using an accumulator actor, as derived in Problem 2.4, implement the follow-
ing C program as a SDF graph. The graph reads a single input token in and produces
a single output token out, corresponding to the return value of the function.

int graph(int in) {
int i, j, k = 0;
for (i=0; i<10; i++)
for (j=0; j<10; j++)

k = k + j * (i + in);
return k;

}

2.8. Assume a C function with only expressions on scalar variables (no pointers)
and for-loops. Show that such a C function can be translated to a SDF graph if
and only if the loop-bound expressions are manifest, that is, they only depend on
compile-time constant values and loop counters.

2.8 Problems 69

count snk

diff

2

1

1
2 1

2

1

11

1

initial value = 0

diff

1

1 2

1

1 11
joinsplit

Fig. 2.34 SDF graph for Problem 2.9

2.9. Using a PASS analysis, find a stable firing rate for each actor of the SDF graph
in Fig. 2.34. The 5 actors in this graph have the following functionality. count incre-
ments a token at the input, and produces a copy of the incremented value on each
of its outputs. split reads two tokens at the input and distributes these tokens over
each output. diff reads two tokens at the input and produces the difference of these
tokens (first minus last) at the output. join reads a token on each input and produces
a merged stream. join is the complement of split. snk prints the input token.

2.10. Using the quickthreads API defined earlier, create a data flow simulation for
the SDF graph shown in Fig. 2.34.

2.11. Optimize the SDF graph shown in Fig. 2.34 to a single C function by im-
plementing the schedule at compile-time and by optimizing the FIFO queues into
single variables.

2.12. Convert the SDF graph in Fig. 2.34 to a single-clock hardware implemen-
tation. Perform first a multirate expansion. You can assume that the snk actor is
implemented as a system-level output port.

Chapter 3
Analysis of Control Flow and Data Flow

Abstract In this chapter, we analyze the control flow and dataflow of a C program.
Understanding these properties helps a designer to understand the relationship be-
tween a C program and an equivalent hardware implementation of that C program.
Control edges and data edges reflect relationships between the operations of the C
program, and we distinguish control edges from data edges. A control edge speci-
fies the execution order of these operations. A data edge specifies that data produced
by one operation is consumed by the second. By representing the operations of the
C program as nodes of a graph, control edges and data edges define a structure
called a Control Flow Graph (CFG) and a Data Flow Graph (DFG), respectively.
For a hardware–software codesigner, the distinction between control edges and data
edges is of great importance. Data edges will appear in any implementation target –
hardware or software – of the algorithm. Control edges, on the other hand, may be
removed when the algorithm executes on an architecture with sufficient implemen-
tation parallelism.

3.1 Data and Control Edges of a C Program

In the previous chapter, we discussed the data flow model of computation. Funda-
mental to this model is the decomposition of a system into individual nodes (actors),
which communicates through unidirectional, point-to-point channels (queues). The
resulting system model is represented as a graph. Such a data flow system is able
to express concurrent computations that map easily into hardware as well as into
software. So, the data flow model of computation illustrates how we can build sys-
tem models that are equally well suited for hardware implementation as well as for
software implementation.

Our objective in this chapter is to think of a C program in a similar target-
independent fashion. For a software designer, a C program is always software. For a
hardware–software codesigner however, a C program may be hardware or software,
depending on the requirements and needs of the application. Obviously, one cannot
make a direct conversion of C into hardware – a major roadblock is that hardware
is parallel by nature, while C is sequential. But we can look at a C program as a

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 3, c� Springer Science+Business Media, LLC 2010

71

72 3 Analysis of Control Flow and Data Flow

high-level description of the behavior of an implementation, without deciding on
the exact nature of the implementation. At that point, we become interested in an-
alyzing the C program in terms of its fundamental building blocks. These building
blocks are the operations of the C program and the relations between them.

We define two types of relationships between the operations of a C program:
data edges and control edges. At first glance, data edges and control edges are quite
similar.

A data edge is a relation between two operations, such that data which is
produced by one operation is consumed by the other.

A control edge is a relation between two operations, such that one opera-
tion has to execute after the other.

This looks similar, but it’s not identical. Consider for example the following C
function, which finds the maximum of two variables.

int max(int a, b) {
int r;
if (a > b)
r = a;

else
r = b;

return r;
}

This function contains two assignment statements and an if-then-else branch.
For the purpose of this analysis, we will equate statements in C with ‘operations’.
In addition, we define the entry and exit points of the function as two additional
operations. Therefore, the max function contains five operations:

int max(int a, b) { // operation 1 - enter the function
int r;
if (a > b) // operation 2 - if-then-else
r = a; // operation 3

else
r = b; // operation 4

return r; // operation 5 - return max
}

To find the control edges in this function, we need to find what chains of opera-
tions can execute, based on the usual C semantics. For example, the operation 2 will
always execute after operation 1. Therefore, there is a control edge from operation 1
to operation 2. An if-then-else statement introduces two control edges, one for each
of the possible outcomes of the if-then-else test. If a > b is true, then operation
3 will follow operation 2, otherwise operation 4 will follow operation 2. Therefore,
there is a control edge from operation 2 to each of operations 3 and 4. Finally, op-
eration 5 will follow either execution of operation 3 or 4. There is a control edge
from each of operations 3 and 4 to operation 5. Summing up, finding control edges

3.2 Implementing Data and Control Edges 73

corresponds to finding the possible execution paths in the C program, and linking
up the operations in these execution paths with edges.

To find the data edges in this function, we examine the data production/ con-
sumption patterns of each operation.

int max(int a, b) { // operation 1 - produce a, b
int r;
if (a > b) // operation 2 - consume a, b
r = a; // operation 3 - consume a and (a>b),

// produce r
else
r = b; // operation 4 - consume b and (a>b),

// produce r
return r; // operation 5 - consume r

}

The data edges are defined between operations of corresponding production/con-
sumption. For example, operation 1 defines the value of a and b. Several operations
will make use of those values. The value of a is used by operations 2 and 3. There-
fore, there is a data edge from operation 1 to operation 2, as well as a data edge from
operation 1 to operation 3. The same goes for the value of b, which is produced in
operation 1 and consumed in operation 2 and operation 4. There is a data edge for b
from operations 1 to 2, as well as from operations 1 to 4.

Control statements in C may produce data edges as well. In this case, the if-then-
else statement evaluates a flag, and the value of that flag is needed before subsequent
operations can execute. For example, operation 3 will only execute when the condi-
tional expression (a>b) is true. We can think of a boolean flag carrying the value
of (a>b) from operations 2 to 3. Similarly, operation 4 will only execute when the
conditional expression (a>b) is false. There is a boolean flag carrying the value of
(a>b) from operations 2 to 4.

The data edges and control edges of the operations from the max function can
now be arranged in a graph, where each operation represents a node. The result is
shown in Fig. 3.1, and it represents the control flow graph (CFG) and the data flow
graph (DFG) for the program. In contrast to control edges, data edges are valid for
a specific variable. Therefore, data edges are labeled with that variable.

We will now explore the properties of control edges and data edges more care-
fully and evaluate how the CFG and DFG can be created systematically for a more
complicated C program.

3.2 Implementing Data and Control Edges

In the context of hardware–software codesign, the implementation target of a C
program may be either hardware or software. The data edges and control edges of
the C program give important clues on the implementation alternatives for that C
program.

74 3 Analysis of Control Flow and Data Flow

1 1int max(int a, b)

2

3 4

5

2

3 4

5

b
a

r r

if (a > b)

r = a r = b

return r;

(a>b)

a, b

Control Edges Data Edges

Fig. 3.1 Control edges and data edges of a simple C program

� A data edge reflects a requirement on the flow of information. If you change the
flow of information, you change the meaning of the algorithm. For this reason, a
data edge is a fundamental property of the behavior expressed in that C program.

� A control edge, on the other hand, is a consequence of the execution semantics
of the program language, but it is not fundamental to the behavior expressed in
that C program.

In hardware–software codesign, we are looking to design the architecture that fits
best to a given algorithm. Even though we may start from a C program, the eventual
target of this program may not be a processor. It may be a processor with a copro-
cessor, or a full hardware implementation. One question then inevitably arises: what
are the important parts of a C program that will be present in any implementation
of that program? The answer to this question is given by the control edges and data
edges of the program, and is summarized as follows:

A data edge must always be implemented regardless of the underlying
architecture.

A control edge may be removed if the underlying architecture can handle
the resulting concurrency.

In other words, control edges can be removed by providing enough parallelism
in the underlying architecture. For example, even though the semantics of C assume
sequential execution, modern microprocessors are able to run multiple instructions
in parallel, even when they would belong to two different sequential C statements.
These microprocessors are able to modify the control edges of the flow of instruc-
tions at runtime, without breaking the data edges within that instruction flow.

3.3 Contruction of the Control Flow Graph 75

a b c

adder

1

2

1

2

a, b

c

v1

Control Edges Data Edges Hardware Implementation

v2

v1

adder3

4

3

4

v2

Fig. 3.2 Hardware implementation of a chained addition

Here is another example. The following function adds up three numbers using
multiple operations.

int sum(int a, b, c) { // operation 1
int v1;
v1 = a + b; // operation 2
v2 = v1 + c; // operation 3
return v2; // operation 4

}

It is straightforward to draw a fully parallel hardware implementation of this
function. This implementation is shown, together with the DFG and CFG of the
function, in Fig. 3.2. The similarity between the set of data edges and the intercon-
nection pattern of the hardware is obvious. The control edges, however, carry no
meaning for the hardware implementation, since hardware is parallel. The structure
shown on the right of Fig. 3.2 will complete the addition in a single clock cycle.

In the next chapter, we will develop a systematic method to derive the CFG and
the DFG of C programs. As an application, we will then use these data structures to
convert C programs into a hardware implementation.

3.3 Contruction of the Control Flow Graph

A C program can be systematically converted into an intermediate representation
called a CFG. A CFG is a graph that contains all the control edges of a program.
Each node in the graph represents a single operation (or C statement). Each edge
of the graph indicates a control edge, i.e., an execution order for the two operations
connected by that edge.

76 3 Analysis of Control Flow and Data Flow

for(i = 0; i < 20; i++) {
 // body of the loop
}

1 2 3

entry

2

1

3

exit body

Fig. 3.3 Control flow graph (CFG) of a for loop

Since C executes sequentially, this conversion is straightforward. However, some
cases require further attention. Control statements (such as loops) may require mul-
tiple operations. In addition, when decision-making is involved, multiple control
edges may originate from a single operation.

Consider the for loop in C, as illustrated next.

for (i=0; i < 20; i++) {
// body of the loop

}

This statement includes four distinct parts: the loop initialization, the loop con-
dition, the loop-counter increment operation, and the body of the loop. The for
loop thus contributes three operations to the CFG, as shown in Fig. 3.3. The dashed
nodes in this figure (entry, exit, body) represent other parts of the C program
and may contain a complete single-entry, single-exit CFG.

The do-while loop and the while-do loop are similar iterative structures.
We can draw a template for each of them, including the if-then-else statement.
This is illustrated in Fig. 3.4.

As an example, let’s create the CFG of the following C function. This function
calculates the Greatest Common Divisor (GCD) using Euclid’s algorithm.

int gcd(int a, int b) {
while (a != b) {
if (a > b)

a = a - b;
else

b = b - a;
}
return a;

}

To construct the CFG of this program, we convert each statement to one or more
operations in the CFG, and next connect the operations using control edges. The
result of this conversion is shown in Fig. 3.5.

In a CFG it is useful to define a control path, a path between two nodes in
the CFG. For example, each nonterminating iteration of the while loop of the

3.4 Construction of the Data Flow Graph 77

entry

1

if (a < b) {
 // true branch
} else {
 // False branch
}

1

while (a < b) {
 // loop body
}

1 do {
 // loop body

(a<b)

1

entry

1

entry

body

true false

exit

exit body
1

exit

} while

Fig. 3.4 CFG of if-then-else, while-do, do-while

1: int gcd(int a, int b) {
2: while(a != b) {
3: if(a > b)
4: a = a - b;
 else
5: b = b - a;
 }
6: return a;
 }

1

2

3

6

4 5

Fig. 3.5 CFG of the CGD program

C program will follow either the path 2-3-4-2 or else 2-3-5-2. Control paths will be
important in the construction of the DFG, which is discussed next.

3.4 Construction of the Data Flow Graph

A C program can be systematically converted into a data structure called a DFG.
A DFG is a graph that reflects all the data edges of a program. Each node in the graph
represents a single operation (or C statement). Each edge of the graph indicates a
data edge, i.e., a production/consumption relationship between two operations in the
program.

78 3 Analysis of Control Flow and Data Flow

Obviously, the CFG and the DFG will contain the same set of nodes. Only the
edges will be different. While it is possible, in principle, to directly derive the DFG
from a C program, it is easier to create the CFG first and then to derive the DFG out
of it. The trick is to trace control paths and at the same time identify corresponding
read- and write operations of variables.

Let us assume initially that we will analyze programs without array expressions
and pointers, and extend our conclusions later to those cases as well. The procedure
to recover the data edges related to assignment statements is as follows:

1. In the CFG, select a node where a variable is used as an operand in an expression.
Mark that node as a read-node.

2. Find the CFG nodes that assign that variable. Mark those nodes as write-nodes.
3. If there exists a direct control path from a write-node into a read-node that does

not pass through another write-node, then you have identified a data edge. The
data edge originates at the write-node and ends at the read-node.

4. Repeat the previous steps for all variable-read nodes.

This procedure identifies all data edges related to assignment statements, but not
those originating from conditional expressions in control flow statements. However,
these data edges are easy to find: they originate from the condition evaluation and
affect all the operations whose execution depends on that condition.

Let us derive the DFG of the GCD program given in Fig. 3.5. According to the
procedure, we pick a node where a variable is read. For example, node 5 in the CFG
reads variables a and b.

b = b - a;

Concentrate on the b operand first. We need to find all nodes that write into b.
If the CFG is available, we can start by tracing precedessor nodes of this node until
we hit one that writes into b. The predecessors of node 5 include: node 3, node 2,
node 1, node 4, and node 5. Both nodes 1 and nodes 5 write into b. In addition,
there is a path from node 1 to node 5 (e.g., 1-2-3-5), and there is also a path from
node 5 to node 5 (e.g., 5-2-3-5). In each of these paths, no other nodes write into Ab
apart from the final node 5. In this case, this path is called a direct path. A data edge
connects the start and end node of a direct path. Thus, there is a data edge for b from
node 1 to node 5 and from node 5 to node 5. Starting from the same read-node 5,
we can also find all predecessors that define the value of operand a. In this case, we
find that node 1 and node 4 write into a, and that there is a direct path from node
1 to node 5, as well as from node 4 to node 5. Therefore, there is a data edge for a
from node 1 to node 5, and from node 4 to node 5.

To complete the set of data edges into node 5, we also need to identify all con-
ditional expressions that affect the outcome of node 5. Considering the control
statements in this function, we see that node 5 depends on the condition evaluated
in node 3 (a > b) as well as the condition evaluated in node 2 (a != b). There is
a data edge from each of node 2 and node 3 to node 5, carrying the outcome of this
condition. The collection of all data edges into node 5 can now be annotated into
the DFG, resulting in the partial DFG of Fig. 3.6.

3.4 Construction of the Data Flow Graph 79

Fig. 3.6 Incoming data
edges for node 5 in the CGD
program

1

2

3

6

a, b

(a! = b)

4 5
a

b

(a > b)

1

2
6

a

a, b

a, b

3

4 5
b

a

a

a b

a b
a, b

a

b

Fig. 3.7 Data edges for all nodes in the greatest common divisor (GCD) program, apart from
edges carrying condition variables

We can repeat this procedure for each other node of the graph in order to con-
struct the complete DFG. The result of this analysis is shown in Fig. 3.7. This graph
does not contain the data edges originating from conditional expressions.

How do we draw a DFG of a program with pointers and arrays? There are several
approaches to solve this, and they depend on the requirements of the analysis and
the amount of effort we are able to invest in the analysis.

First, observe that an indexed variable is not really different from a scalar variable
as long as we can exactly determine the value of the index during the data-flow
analysis. Similarly, data edges resulting from pointers are easy to find if we can

80 3 Analysis of Control Flow and Data Flow

1

2a

2b exit

1: int L[3] = {10, 20, 30};

2: for (int i=1; i<3; i++)
3: L[i] = L[i] + L[i-1];

3

2c

2a 2b 2c

Fig. 3.8 CFG for a simple loop with an indexed variable

exactly determine the value of the pointer. However, in practice, this may be hard.
An indexed variable may have an index expression that combines multiple loop
counters or even a variable which is unknown at compile time.

We may be able to relax the analysis requirements and simplify the data-flow
analysis. In many applications, the upper bound and lower bound of an index ex-
pression are known. In that case, we may consider any write operation into the
range of indices as a single write, and any read operation into the range of indices
as a single read. For cases when an entire range of indices would map into a single
memory (a single register file, or a single-port RAM memory), this type of data-flow
analysis may be adequate.

We illustrate this approach using the following example. The CFG of this loop is
shown in Fig. 3.8.

int L[3] = {10, 20, 30};
for (int i=1; i<3; i++)

L[i] = L[i] + L[i-1];

To create the DFG of this program, proceed as before. Find all nodes that read
from a variable, and find the nodes that write into that variable over a direct path in
the CFG. As discussed above, we can handle the analysis of the indexed variable L
in two different ways: In the first approach, we look upon L as a single monolithic
variable, such that a read from any location from L is treated as part of the same
data edge. In the second approach, we distinguish individual locations of L, such
that each location of L may contribute to a different data edge. The first approach is
illustrated in Fig. 3.9a, while the second approach is illustrated in Fig. 3.9b.

When the individual locations of L cannot be distinguished by a data edge, ad-
ditional information is needed to extract the entry of interest. For this reason, node
3 in Fig. 3.9a has an additional data edge to provide the loop counter i. Thus, in

3.5 Application: Translating C to Hardware 81

1

2a

2b

i

1

2a

2b

i
i

32c

i

i

L

L

L[1], L[2]

32c

i

i L[0], L[1]

i

a b

Fig. 3.9 DFG for a simple loop with an indexed variable: (a) Treating the indexed variable as a
single variable; (b) treating the indexed variable as a collection of variables

Fig. 3.9a, reading entry L[i] means: read all the entries of L and then select one
using i. In Fig. 3.9b, reading entry L[i] means three different read operations, one
for each value of i.

Index analysis on arbitrary C programs quickly becomes very hard to solve. Yet,
hardware–software codesigners often only have a C program to start their design
with. Insight into the data-flow of a complex C program is essential for a successful
hardware–software codesign.

This concludes an introduction to control-flow and data-flow analysis of C pro-
grams. The next section shows an application for the techniques we have covered
so far. By deriving the CFG and the DFG, we are to translate simple C programs
systematically into hardware. This technique is by no means a universal one; its
purpose is to clarify the meaning of control edges and data edges.

3.5 Application: Translating C to Hardware

A nice application of data-flow and control-flow analysis of a C program is the
systematic translation of C into hardware. In the general case, this is a very complex
problem. A given C program can be mapped into hardware in many different ways.
Instead, our objective is to illustrate how data-edges and control-edges can be used
in one possible translation strategy. We will focus on a simplified version, which
includes the following restrictions for the input programs.

� We translate only scalar C code (no pointers and no arrays).
� We implement each C statement in a single clock cycle.

82 3 Analysis of Control Flow and Data Flow

3.5.1 Designing the Datapath

Given a C program, we first create the CFG and the DFG. Next, we use the data
edges and control edges to implement the hardware. The data edges will help us
define the connectivity in the datapath. The control edges will help us define the
control signals used by the datapath. The data edges show us how to interconnect
the datapath components. With the CFG and DFG available, the following rules will
define the implementation of the hardware datapath.

1. Find the C expression embedded in each node of the CFG, and create an equiv-
alent combinational circuit to implement the expression. For example, if a node
in the CFG corresponds to the C statement a = b - a;, then the C expres-
sion embedded in that statement is b - a. The combinational circuit required
to implement this expression is a subtractor. Conditional expressions generate
datapath elements, too. The outputs of these expressions become the flags used
by the hardware controller of this datapath.

2. Each variable in the C program is translated into a register with a multiplexer
in front of it. The multiplexer is needed when multiple sources may update the
register. By default, the register will update itself. The selection signals of the
multiplexer will be driven by the controller.

3. The datapath circuit and the register variables are connected based on the nodes
and data edges in the DFG. Each assignment operation connects a combinational
circuit with a register. Each data edge connects a register with the input of a
combinational circuit. Finally, we also connect the system-inputs and system-
outputs to inputs of datapath circuits and register outputs, respectively.

The GCD program can now be converted into a hardware implementation as
shown in Fig. 3.10. We need two registers in this datapath for each of the variables
a and b. The conditional expressions for the if and while statement need an
equality-comparator and a bigger-than comparator. The subtractions b-a and a-b
are implemented using a subtractor. The connectivity of the components is defined
by the data edges of the DFG.

The resulting datapath has two data inputs (in a and in b) and one data output
(out a). The circuit requires two control variables (upd a and upd b) to operate,
and it produces two flags (flag while and flag if). The control variables and
the flags are used by the controller of this datapath.

3.5.2 Designing the Controller

How do we create the controller for this datapath such that it implements the GCD
algorithm? This control information is present in the C program and is captured
in the CFG. In fact, we can translate the CFG almost straight into hardware by
considering it to be a finite state machine (FSM) specification.

3.5 Application: Translating C to Hardware 83

1: int gcd(int a, int b) {
2: while (a != b) {
3: if (a > b)
4: a = a - b;
 else
5: b = b - a;
 }
6: return a;
 }

in_a

– –

in_b

upd_a
upd_b

a b

!=

>

flag_while

flag_if
out_a

Fig. 3.10 Hardware implementation of GCD datapath

s1

s2

s3

s6

_ / run1

flag_while / _

! flag_while / _

_ / run4

s4 s5

! flag_if / _flag_if / _

_ / run5

Fig. 3.11 Control specification for the GCD datapath

A FSM specification for the GCD algorithm is shown in Fig. 3.11. The corre-
spondence with the CFG is obvious. Each of the transitions in this FSM takes
1 clock cycle to complete. The activities of the FSM are expressed as condition/
command tuples. For example, / run1 means that during this clock cycle, the

84 3 Analysis of Control Flow and Data Flow

value of the condition flags is a don’t-care, while the command for the datapath is
the symbol run1. Similarly, flag while / means that this transition is condi-
tional on flag while being true, and that the command for the datapath is a hold
operation. A hold operation is one which does not change the state of the datapath,
including registers. The command set for this FSM includes (, run1, run4,
run5). Each of these symbols represents the execution of a particular node of the
CFG. The datapath control signals can be created by additional decoding of these
command signals. In this case of the GCD, the datapath control signals consist of
the selection signals of the datapath multiplexers.

A possible implementation of the GCD controller is shown in Fig. 3.12. Each
clock cycle, the controller generates a new command based on the current state
and the value of flag while and flag if. The commands run1, run4, and
run5 are decoded into upd a and upd b. The table in Fig. 3.12 indicates how
each command maps into these control signals. The resulting ensemble of datapath
and FSM, as illustrated in Fig. 3.12 is called a Finite State Machine with Datapath
(FSMD). This concept is central to custom hardware design, and we will discuss
design and modeling of FSMD in further detail in Chap. 4.

The operation of this hardware design is illustrated with an example in Table 3.1.
Each row of the table corresponds to 1 clock cycle. It takes 8 clock cycles to evaluate
the GCD of 6 and 4.

In conclusion, this example shows an application of data-flow and control-flow
analysis of a C program. It illustrates that the control-flow and data-flow can lie at
the basis of hardware design as well as software design. There are many suboptimal

state

Next-state Logic

flag_while

flag_if

command
{_, run1, run4, run5}Datapath

in_a in_b

flag_while
flag_if

upd_a upd_a

out_a

upd_a
upd_b

upd_bupd_ainstruction

_
run1
run4
run5

a
a_in
a - b
a

b
b_in
b - a
b

Lookup Table

Fig. 3.12 Controller implementation for the GCD datapath

3.6 Single-Assignment Programs 85

Table 3.1 Operation of the hardware to evaluate GCD(4,6)

Cycle a b State flag if flag while Next State upd a upd b

1 s1 – – s2 in a in b
2 6 4 s2 1 1 s3 a b
3 6 4 s3 1 1 s4 a b
4 6 4 s4 1 1 s2 a-b b
5 2 4 s2 0 1 s3 a b
6 2 4 s3 0 1 s5 a b
7 2 4 s5 0 1 s2 a b-a
8 2 2 s2 0 0 s6 a b
9 2 2 s6 – – s6 a b

elements left. First, we did not address the use of arrays and pointers. Second, the re-
sulting implementation in hardware is not very impressive: the resulting parallelism
is limited to a single C statement per clock cycle, and operations cannot be shared
over operator implementations. For instance, two subtractors are implemented in
hardware in Fig. 3.10, but only one is used at any particular clock cycle.

3.6 Single-Assignment Programs

Converting C programs into hardware at one cycle per C-statement is not very im-
pressive, in particular because most microprocessors can already do that. Can we
do any better than this? That is, can we create a translation strategy that will allow
the execution of multiple C statements per clock cycle? To answer this question, we
need to understand the limitations of our current translation strategy, as described
in Sect. 3.5. In our current approach, each C statement takes a single clock cycle
to execute because each variable is mapped into a register. Information takes a full
clock cycle to propagate from the input of a register to the output. Therefore, each
variable assignment takes a full clock cycle to take effect; it takes a full clock cycle
before the value of a variable assignment is available at the correponding register
output. Thus, it seems that the mapping of each variable into a register, which by
itself seemed a sensible decision, also introduces a performance bottleneck. If we
want to run at a faster pace than one statement per clock cycle, we will need to revise
this variable-to-register mapping strategy.

The above observation triggers another question, namely: how did it help us
to map each variable into a register ? Consider that each variable may be assigned
in multiple C statements, while the same variable may also be used as an operand
in multiple C expressions. By allocating a register for each variable, we concentrate
all the assignments in one location, ready to be used for all expressions that may re-
quire the resulting value. Thus, it is as if the register concentrates all the data edges
for a given variable to flow through a single, global storage location. This makes
assignment statements easy to manage, but it hurts performance.

86 3 Analysis of Control Flow and Data Flow

We can do better than that. It is possible to formulate a C program in a form called
a single-assignment program. The key property of a single-assignment program is
exactly what its name refers: each variable in that program is assigned only a single
time within a single lexical instance of the program. In order to convert a C pro-
gram into a single-assignment program, we may need to introduce extra variables,
as illustrated by the following example. Assume we have a C snippet that looks as
follows:

a = a + 1;
a = a * 3;
a = a - 2;

This section of code contains three assignments on a. Using our previous strat-
egy, we would need 3 clock cycles to execute this fragment. Instead, we can rewrite
this program so that each variable is assigned only a single time. This requires the
introduction of additional variables.

a2 = a1 + 1;
a3 = a2 * 3;
a4 = a3 - 2;

The difference with the previous program is that each assignment is matched by
a single read operation. In other words, the single-assignment form of the program
indicates the data edges of the program in the source code: assigning a given variable
indicates the start of data edges, while reading the same variable indicates the end
of the data edge.

After a program is in single-assignment form, we can apply a better register-
assignment strategy. For instance, in the example above, the cycle count may be
reduced by mapping a2 and a3 to a wire, while keeping a4 in a register. This
would group the three C statements in a single clock cycle.

In converting normal C programs to single-assignment form, care must be taken
that all assignments are taken into account. In particular, when variables are assigned
under different control conditions or in different levels of a loop nesting structure,
the single-assignment form may become ambiguous. Consider the following exam-
ple: a loop which makes the sum of the numbers 1–5.

a = 0;
for (i = 1; i < 6; i++)

a = a + i;

In the single-assignment form, the assignments to a can be made unique, but it
remains unclear what version of a should be read inside of the loop.

a1 = 0;
for (i = 1; i < 6; i++)

a2 = a + i; // which version of a to read?

The answer is that both a1 and a2 are valid solutions for this program: it really
depends on the iteration within the loop. When we first enter the loop, we would
write:

a2 = a1 + 1;

3.6 Single-Assignment Programs 87

After the first loop iteration, we would write instead:

a2 = a2 + i; // when i > 1

To resolve this ambiguity, single-assignment programs use a merge function and
operation that can merge multiple data edges into one. We can introduce a new vari-
able a3 to hold the result of the merge function, and now formulate the program
into single-assignment form as follows:

a1 = 0;
for (i = 1; i < 6; i++) {

a3 = merge(a2, a1);
a2 = a3 + i;

The hardware implementation of the merge function would be a multiplexer,
under control of an appropriate selection signal. In this case, (i==0) would be
an appropriate selection signal. The above translation rules can be used to more
complicated programs as well. For example, the GCD program can be converted as
follows:

int gcd(int a, int b) {
while (a != b) {
if (a > b)

a = a - b;
else

b = b - a;
}
return a;

}

The equivalent single-assignment form of the GCD is shown below. The condi-
tional expression in the while statement uses variables from either the function
input or else the body of the loop. For this reason, the conditional expression uses
the merge function as an operand.

int gcd(int a1, int b1) {
while (merge(a1, a2) != merge(b1, b2)) {
a3 = merge(a1, a2);
b3 = merge(b1, b2);
if (a3 > b3)

a2 = a3 - b3;
else

b2 = b3 - a3;
}
return a2;

}

Note that a single assignment program by itself is not sufficient to have an ef-
ficient hardware implementation (or an implementation that performs better than a
single statement per clock cycle). We have only provided a hint to how we may be
able to obtain eventually a better implementation.

88 3 Analysis of Control Flow and Data Flow

There are algorithms to derive the single-assignment form of a program
automatically. Software compilers use these representations, called static single-
assignment form, extensively to implement advanced code optimizations.

3.7 Summary

In this chapter we discussed the data flow and control flow properties of a C
program. These properties can be modeled into two graph structures, called the
DFG (data flow graph) and CFG (control flow graph). The DFG and CFG can be
derived systematically starting from the C source. The data flow and control flow
of a program help the designer to understand the implementation alternatives for
that program. We showed that data flow is preserved over different implementa-
tions in hardware and software, while control flow may change drastically. Indeed,
a sequential or a parallel implementation of a given algorithm may have a very dif-
ferent control flow. We used this insight to define a simple mechanism to translate
C programs into hardware.

3.8 Further Reading

The material discussed in this chapter will be found, in expanded form, in a textbook
on compiler construction such as Muchnick (1997) or Appel (1997). In particular,
these books provide further details on the analysis available on the CFG and DFG.

High-level synthesis is a research area that investigates the automated mapping of
programs written in C and other high-level languages into lower-level architectures.
In contrast to compilers, which target a processor with a fixed architecture, high-
level synthesis does support some freedom in the target architecture. High-level
synthesis has advantages and limitations; proponents and opponents. Refer to Gupta
et al. (2004) to see what can be done; read Edwards (2006) as a reminder of the
pitfalls.

During our discussion on the mapping of C programs into hardware, we did
explicitly rule out pointers and arrays. In high-level synthesis, the design problems
related to implementation of memory elements are collected under the term memory
management. This includes for example the systematic mapping of array variables
into memory elements, and the efficient conversion of indexed expressions into
memory addresses. Refer to Verbauwhede (1994) for an introduction to memory
management issues.

The original work on Static Single Assignment (SSA) was by Cytron Cytron
et al. (1991). A discussion on how the SSA form can assist in the translation of C
software into hardware may be found in Kastner et al. (2003).

3.9 Problems 89

3.9 Problems

3.1. Do the following for the C program in Listing 3.1.

Listing 3.1 Program for Problem 3.1

int addall(int a, int b, int c, int d) {
a = a + b;
a = a + c;
a = a + d;
return a;

}

(a) Derive and draw the CFG and the DFG.
(b) The length of a path in a graph is defined as the number of edges in that path.

Find the longest path in the DFG and give an interpretation for that quantity.
(c) Rewrite the program in Listing 3.1 so that the maximal path length in the DFG

decreases. Assume that you can do only a single arithmetic operation per C
statement. Draw the resulting DFG.

3.2. Draw the CFG and the DFG of the program in Listing 3.2. Include all control
dependencies in the CFG. Include the data dependencies for the variables a and b in
the DDG.

Listing 3.2 Program for Problem 3.2

int count(int a, int b) {
while (a < b)
a = a * 2;

return a + b;
}

3.3. Design a datapath in hardware for the program shown in Listing 3.3. Allocate
registers and operators. Indicate control inputs required by the datapath, and condi-
tion flags generated by the datapath.

Listing 3.3 Program for Problem 3.3

unsigned char mysqrt(unsigned int N) {
unsigned int x,j;
x = 0;
for(j= 1<<7; j != 0; j>>=1) {
x = x + j;
if(x*x > N)

x = x - j;
}
return x;

}

3.4. A well-structured C program is a program that only contains the following
control statements: if-then-else, while, do-while, and for. Consider the four CFG
in Fig. 3.13. Which of these CFG does correspond to a well-structured C program?
Note that a single node in the CFG may contain more than a single statement, but it
will never contain more than a single decision point.

90 3 Analysis of Control Flow and Data Flow

START

1

2

START

1

2

START

1

2 3

a b dc
START

1

2

3

4

STOP

3

4

STOP

4 STOP3

4

STOP

Fig. 3.13 CFG for Problem 3.4: (a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

3.5. Draw the DFG for the program in Listing 3.4. Assume all elements of the array
a[] to be stored in a single resource.

Listing 3.4 Program for Problem 3.5

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int findmax() {
int max, i;

max = a[0];
for (i=1; i<10; i++)
if (max < a[i])

max = a[i];

return max;
}

3.6. Design a hardware implementation (datapath and controller) for the program
in Listing 3.4. Assuming that the elements of array a[] are all stored in a memory
with a single read port. Figure 3.14 illustrates such a memory. The time to lookup
an element is very short; thus, you can think of this memory as a combinational
element.

3.7. Convert the program in Listing 3.3 to single-assignment form. Compare the
location of the merge() functions with the solution of Problem 3.3. Using the SSA
form of the program, optimize the solution so that each iteration of the for-loop
will take no more than a single clock cycle to complete.

3.9 Problems 91

Fig. 3.14 A single-port
read-only memory, used to
solve Problem 3.6

Lookup
Table

Memory
n a[n]

3.8. This problem requires access to a GNU Compiler (gcc) version 4.0 or above.
Start by writing up the listing of Problem 3.3 in a file can call the file mysqrt.c.

(a) Compile this function using the following command line.

gcc -c -fdump-tree-cfg mysqrt.c

The compiler generates an object file mysqrt.o, as well as a file with debug
information. Under gcc 4.0.2, the name of that file is mysqrt.c.t13.
cfg. Open mysqrt.c.t13.cfg in a text editor. This is a textual represen-
tation of a CFG as produced by the GCC compiler. Compare this CFG to one
you would draw by hand. In particular, comment on the following two obser-
vations: (1) Nodes in a CFG can be grouped together when they all belong to a
single path of the CFG with a single exit point. (2) goto and if-then-else
are adequate to capture all control statements in C (such as for, while, and
so on).

(b) Compile this function using the following command line. O2 turns on the com-
piler optimizer so that GCC will try to produce better code.

gcc -c -O2 -fdump-tree-ssa mysqrt.c

The compiler generates an object file and a file with debug information. Under
gcc 4.0.2, the name of that file is mysqrt.c.t16.ssa.
Open mysqrt.c.t16.ssa in a text editor. This is a textual representation of
the SSA as produced by the GCC compiler. Find the merge functions in this
file and compare the number and location of these functions in the CFG. Did
you find the same number of merge functions in Problem 3.7? Do they have
the same location?

Part II
The Design Space of Custom Architectures

This second part of this book describes a range of custom architectures, which have
varying degrees of complexity and flexibility. Starting from very simple cycle-based
hardware models, we gradually add control structures to increase their flexibility.
This leads the discussion into FSMD (Finite State Machine with Datapath), micro-
programmed architectures, general-purpose embedded cores, and finally system-on-
chip architectures. An over-arching theme, besides flexibility, is the trade-off of that
flexibility with performance. This trade-off helps designers to navigate the design
space of custom architectures.

Chapter 4
Finite State Machine with Datapath

Abstract In this chapter, we introduce an important building block for efficient
custom hardware design: the Finite State Machine with Datapath (FSMD). An
FSMD combines a controller, modeled as a finite state machine (FSM) and a data-
path. The datapath receives commands from the controller and performs operations
as a result of executing those commands. The controller uses the results of datapath
operations to make decisions and to steer control flow. The FSMD model will be
used throughout the remainder of the book as the reference model for the ‘hard-
ware’ part of hardware/software codesign. We will introduce a syntax for FSMD by
means of the GEZEL language. The cosimulation tools used in conjunction with this
book rely on the GEZEL language. We will discuss several alternate language map-
pings for the FSMD language in GEZEL, including VHDL, Verilog, and SystemC.
Thus, GEZEL is used as a generic shorthand modeling mechanism for FSMD. Fi-
nally, we will also describe a few formal properties of the FSMD model, and we
define a proper FSMD as one which leads to a race-free and deterministic hardware
implementation.

4.1 Cycle-Based Bit-Parallel Hardware

In this chapter, we develop a model to systematically describe custom hardware
consisting of a controller and a datapath. Together with the model, we will also
learn to capture hardware designs into a language, called GEZEL. This section and
the next one describe how to create datapath modules. Further sections will explain
the control model and the combination of control and datapath into an Finite State
Machine with Datapath (FSMD).

We will create cycle-based hardware models. In such models, the behavior of a
circuit is expressed in steps of a single clock cycle. This abstraction level is very
common in digital design, and it is captured with the term synchronous design. We
will design circuits with a single, global clock signal.

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 4, c� Springer Science+Business Media, LLC 2010

95

96 4 Finite State Machine with Datapath

4.1.1 Wires and Registers

We start by discussing the variables that are used to describe synchronous digital
hardware. The example in Listing 4.1 shows a 3-bit counter.

Listing 4.1 A 3-bit counter module
1 reg a : ns(3); // a 3-bit unsigned register
2 always {
3 a = a + 1; // each clock cycle, increment a
4 }

This fragment represents a 3-bit register, called a. Each clock cycle, the value of
a is incremented by one. Since a is a 3-bit value, the register will count from 0 to 7,
and then wrap around. The initial value of a is not specified by this code. However,
we will use the convention that the initial value of registers is zero.

Let us look a bit closer at the expression ‘a = a + 1’ and describe precisely
what it means. The right-hand side of this expression, a+1, reads the value of the
register a, and adds one to that value. The left-hand side of this expression assigns
that value to a, and thus writes into the register. Figure 4.1 gives an equivalent circuit
diagram for ‘a = a + 1’, and it illustrates a key feature of a register: the input
and the output of a register can have a different value. The input and the output are
each connected to a different bus of wires. The timing diagram in Fig. 4.1 illustrates
the circuits’ operation. Before the very first clock edge, the output of a is initialized
to its initial value of 0. At the very first clock edge, the register will be incremented,
which means that the value at the input of a is copied to the output of a.

Going back to Listing 4.1, we see that the always statement describes the ac-
tivities in the model as a result of updating the registers. As shown in the diagram,
this happens at the upgoing clock edge. This is the only time-related aspect of

Fig. 4.1 Equivalent
Hardware for the 3-bit
counter

a

1

Write into a
(reg input)

Read from a
(reg output)

3

0

clock

reg a output

reg a input 1

Initial Value

1 2

2 3

Cycle 1 Cycle 2

3

4.1 Cycle-Based Bit-Parallel Hardware 97

Listing 4.2 Another 3-bit counter module
1 reg a : ns(3); // a 3-bit unsigned register
2 sig b : ns(3); // a 3-bit unsigned signal
3 always {
4 b = a + 1;
5 a = b;
6 }

Listing 4.3 Yet another 3-bit counter module
1 reg a : ns(3); // a 3-bit unsigned register
2 sig b : ns(3); // a 3-bit unsigned signal
3 always {
4 a = b;
5 b = a + 1;
6 }

the model. The time required to execute a+1 is unspecified, and the expression
will be evaluated as soon as the output of the a register changes. Note also that
Listing 4.1 does not contain an explicit clock signal: the model executes simply
based on the semantics of a register variable.

Besides a register variable, there is another variable type, called a signal. A signal
has the same meaning as a wire or, in case of a multibit signal, as a bundle of wires.
Listing 4.2 illustrates how a signal is created and used. A signal instantly takes up
the value of the expression assigned to it. Thus, the value of b in Listing 4.2 will
instantly reflect the value of a+1. The circuit diagram corresponding to this program
looks identical to the diagram shown in Fig. 4.1. However, in this case, we have a
specific name for the value at the input of the register a, namely the signal b.

A signal has no memory. When a signal value is used on the right-hand side of
an expression, it will return the value assigned to the signal during that clock cycle.
This has a particular effect on the program shown in Listing 4.2: the lexical order of
expressions has no meaning. Only the data flow between reading/writing registers
and signals is important. For example, the program in Listing 4.3 has exactly the
same behavior as the program in Listing 4.2. One can think of the difference between
registers and signals also as follows: When a register is used as an operand in an
expression, it will return the value assigned to that register during the previous clock
cycle. When a signal is used as an operand in an expression, it will return the value
assigned to that signal during the current clock cycle. Thus, registers implement
communication across clock cycles, while signals implement communication within
a single clock cycle.

Because a signal has no memory, it cannot have an initial value. Therefore, the
value of a signal remains undefined when it is not assigned during a clock cycle. It
is illegal to use an undefined signal as an operand in an expression, and the GEZEL
simulator will flag this as a runtime error. Another case which is unsupported is the
use of signals in a circular definition, such as for example shown in Listing 4.4.
It is impossible to determine a stable value for a or b during any clock cycle. This
type of code will be rejected as well by the GEZEL simulator with a runtime er-
ror message. In Sect. 4.6, we define the rules for a properly formed FSMD more
precisely.

98 4 Finite State Machine with Datapath

Listing 4.4 A broken 3-bit counter module
1 sig a : ns(3);
2 sig b : ns(3);
3 always {
4 a = b;
5 b = a + 1; // this is not a valid GEZEL program!
6 }

4.1.2 Precision and Sign

In contrast to C, hardware registers and signals can have an arbitrary wordlength,
from a single bit up to any value. It is also possible to mix multiple wordlengths in
an expression. In addition, registers and signals can be unsigned or signed.

The wordlength and the sign of a register or signal are specified at the creation of
that register or signal. The following example creates a 4 bit unsigned register a and
a 3 bit signed signal b. The representation of b follows two’s complement format:
the weight of the most significant bit of b is negative.

reg a : ns(4); // unsigned 4-bit value
sig b : tc(3); // signed 3-bit value

In an expression, registers and signals of different wordlengths can be combined.
The rules that govern the precision of the resulting expression are as follows:

� The evaluation of an expression will never loose precision. All operands will
automatically adapt their precision to a compatible wordlength.

� Assigning the result of an expression, or casting an expression type, will adjust
the precision of the result.

As an example, the code shown in Listing 4.5 will store the value 12 in register a.
Walking step by step through this code, the precision of each expression is evaluated
as follows: First, the constant 3 needs to be assigned to b. A constant is always
represented with sufficient bits to capture it as a two’s complement number. In this
case, you can express the constant 3 as a 3-bit two’s complement number with the bit
pattern 011. When assigning this 3-bit value to b, the lower two bits will be copied,
and the bitpattern in b becomes 11. On line 5 of the code, we add the constant 9
to b. The bitpattern corresponding to the decimal constant 9 is 1001. To add the
bitpattern 11 and 1001 as unsigned numbers, we extend 11 to 0011 and perform
the addition to find 1100, or 12 in decimal. Finally, the bitpattern 1100 is assigned
to a, which can accommodate all bits of the result.

When the length of an operand is extended, the rules of sign extension will apply.
The additional bits beyond the position of the most significant bit are copies of the
sign bit, in the case of two’s complement numbers, or zeros, in the case of unsigned
numbers. In Listing 4.6, a is a 6-bit unsigned number, and b is a 2-bit signed number.
After assigning the constant 3 to b, the value of b will be -1, and the bit pattern
of b equals 11. The result of subtracting b and 3 is -4 in decimal, which is 100
as a bitpattern (with the msb counting as a sign bit). Finally, assigning -4 to a 6-bit

4.1 Cycle-Based Bit-Parallel Hardware 99

Listing 4.5 Adding up 4 bit and 2 bit
1 reg a : ns(4); // a 4-bit unsigned number
2 sig b : ns(2); // a 2-bit unsigned number
3 always {
4 b = 3; // assign 0b(011) to b
5 a = b + 9; // add 0b(11) and 0b(1010)
6 }

Listing 4.6 Subtracting 2 bit and 4 bit
1 reg a : ns(6); // a 6-bit unsigned number
2 sig b : tc(2); // a 2-bit signed number
3 always {
4 b = 3; // assign 0b(011) to b
5 a = b - 3; // subtract 0b(11) and 0b(011)
6 }

number will result in the bitpattern 111100 to be stored in a. Since a is an unsigned
number, the final result is the decimal number 60.

The effect of an assignment can also be obtained immediately by means of a
cast operation, expressed by writing the desired type between brackets in front of an
expression. For example, (tc(1)) 1 has the value -1, while (ns(3)) 15 has
the value 8.

4.1.3 Hardware Mapping of Expressions

For each expression involving signals and registers of a specified sign, and precision,
there is an equivalent hardware circuit. This correspondence is quite easy to derive,
once we know how each operator is mapped into hardware. We will discuss a list of
common operations and indicate how they map into hardware logic. A summary of
this discussion is shown in Table 4.1.

Arithmetic Operations. Addition (+), subtraction (-), and multiplication (*) are
commonly used in datapath hardware design. Division (/) and modulo (%) on the
other hand are uncommon because of the higher cost to implement these operations.
Left-shift (<<) and right-shift (>>) are used to implement multiplication/division
with powers of two. Constant-shifts are particularly advantageous for hardware im-
plementation since they translate to simple hardware wiring.

Bitwise Operations. All of the bitwise operations, including AND (&), OR (|),
XOR (ˆ), and NOT (�) have a direct equivalent to logic gates. Bitwise operations are
defined as bit-by-bit operations. The same precision rules as for all other operators
apply: when the operands of a bitwise operation are of unequal length, they will
be extended until they match. For example, if w is a word and u is a bit, then the
expression

w & (tc(1))

will AND each bit of w with the bit in u.

100 4 Finite State Machine with Datapath

Table 4.1 Operations in GEZEL and equivalent hardware implementation

Operation Operator Implementation Precedence

Addition + Adder 4

Subtraction - Subtractor 4

Unary Minus - Subtractor 7

Multiplication * Multiplier 5

Right-shift >> (variable) Variable-shifter 0

Left-shift << (variable) Variable-shifter 0

Constant Right-shift >> const Wiring 4

Constant Left-shift << const Wiring 4

Lookup Table A(n) Random logic 10

AND & AND-gate 2

OR | OR-gate 2

XOR ˆ XOR-gate 3

NOT � NOT-gate 8

Smaller-then < Subtractor 3

Bigger-then > Subtractor 3

Smaller-equal-then <= Subtractor 3

Bigger-equal-then >= Subtractor 3

Equal-to == Comparator 3

Not-equal-to != Comparator 3

Bit Selection [const] Wiring 9

Bit-vector Selection [const:const] Wiring 9

Bit Concatenation # Wiring 4

Type cast (type) Wiring 6

Precedence ordering () 11

Selection ? : Multiplexer 1

const is a constant number

Comparison Operations. All of the comparison operations return a single un-
signed bit (ns(1)). These operations use a subtractor to compare two numbers
and then use the sign/overflow flags of the result to evaluate the result of the com-
parison. Exact comparison (== or !=) can be done by matching the bitpattern of
each operand. In contrast to arithmetic operations, the comparison operations are
implemented differently for signed and unsigned numbers. Indeed, the bit pattern
111 is smaller than the pattern 001 for signed numbers, but the same pattern 111
is bigger than the pattern 001 for unsigned numbers.

Bitvector Operations. Single bits, or a vector of several bits, can be extracted out
of a word using the bit-selection operator.

reg a : ns(5);
reg b : ns(1);
reg c : ns(2);
always {

b = a[3]; // if a = 10111, then b = 0
c = a[4:2]; // if a = 10111, then a[4:2] = 101, so c = 01

}

4.1 Cycle-Based Bit-Parallel Hardware 101

The type of a bit-selection operation is unsigned, and just wide enough to hold
all the bits. The bits in a bit vector are counted from right to left, with bit 0 holding
the least significant bit. The opposite operation of bit-selection is bit-concatenation
(#), which sticks bits together in a larger word.

reg a : ns(5);
reg b : ns(1);
reg c : ns(2);
always {

a = c # b; // if b = 0, c = 11, then a = 00110
}

Selection. The ternary operator a ? b : c is the equivalent notation for a mul-
tiplexer. The result of the ternary operation will be b or c depending on the value
of a. The wordlength of the result will be long enough to accommodate the largest
word of either input of the multiplexer.

Indexed Storage. There is no array construction in GEZEL. However, it is possible
to capture lookup tables. Lookup tables can be mapped into random logic using logic
minimization.

lookup T : ns(12) = {0x223, 0x112, 0x990};
reg a : ns(12);

always {
a = T(2); // a = 0x990

}

Organization and Precedence. Finally, brackets may be used to group expressions
and change the evaluation order. The default evaluation order is determined by the
precedence of each operator. The precedence is shown as a number in Table 4.1,
where a higher number corresponds to a higher precedence, meaning that operator
will be evaluated before others.

Each expression involving registers, signals and the operations of Table 4.1, cor-
responds to a hardware datapath. A few examples are shown next. The first one, in
Listing 4.7, shows Euclid’s Greatest Common Divisor (GCD) algorithm. Two regis-
ters m and n are compared, and each clock cycle, the smallest one is subtracted from
the largest one. Note that Listing 4.7 does not show how m and n are initialized.

Describing datapaths with expressions results in compact hardware descriptions.
An excellent example are shift registers. Figure 4.2 illustrates a Linear Feedback
Shift Register, which is a shift register with a feedback loop created by XORing
bits within the shift register. The feedback pattern is specified by a polynomial,

Listing 4.7 Datapath to evaluate Greatest Common Divisor
1 reg m,n : ns(16);
2 always {
3 m = (m > n) ? (m - n) : m;
4 n = (n > n) ? (n - m) : m;
5 }

102 4 Finite State Machine with Datapath

Fig. 4.2 Linear feedback
shift register for
p.x/ D x4 C x3 C 1

load
seed 4

X1 X2 X3 X4

Listing 4.8 Linear Feedback Shift Register
1 reg shft : ns(4);
2 sig shft_new : ns(4);
3 sig load : ns(1);
4 sig seed : ns(4);
5 always {
6 shft_new = (shft << 1) | (shft[2] ˆ shft[3]);
7 shft = load ? seed : shft_new;
8 }

and the polynomial used for Fig. 4.2 is p.x/ D x4 C x3 C 1. LFSRs are used for
pseudorandom sequence generation. If a so-called maximum-length polynomial is
chosen, the resulting sequence of pseudorandom bits has a period of 2n � 1, where
n is the number of bits in the shift register. Thus, an LFSR is able to create a long
nonrepeating sequence of pseudorandom bits with a minimal amount of hardware.

The shift register used to implement the LFSR must always contain at least one
nonzero bit. It is easy to see in Fig. 4.2 that an all-zero pattern in the shift register
will only produce itself. Therefore, an LFSR must be initialized with a nonzero seed
value. The seed value is programmed using a multiplexer in front of each register.

Although the structure of Fig. 4.2 is quite complex to draw, it remains very com-
pact when written using word-level expressions. This is shown in Listing 4.8. Line
6 of the code represents the shift-and-feedback operation. Line 7 of the code repre-
sents the loading of the seed value into the LFSR register.

In summary, using two variable types (signals and registers), it is possible to de-
scribe synchronous hardware by means of expressions on those signals and registers.
Remember that the order in which expressions are written is irrelevant: they will all
execute within a single clock cycle. In the next section, we will group expressions
into modules and define input/output ports on those modules.

4.2 Hardware Modules

A hardware module defines a level of hierarchy for a hardware netlist. In order
to communicate across the levels of hierarchy, hardware modules define ports.
Figure 4.3 shows the 3-bit counter, encapsulated as a module. There is a single
input port, clr, which allows to synchronously clear the register. There is also a
3-bit output port c that holds the current count value. The equivalent description in

4.2 Hardware Modules 103

Fig. 4.3 3-bit counter
module

a1

0

3

clr

c

Listing 4.9 3-bit counter module with reset
1 dp count(in clr : ns(1);
2 out c : ns(3)) {
3 reg a : ns(3);
4 always {
5 a = clr ? 0 : a + 1;
6 c = a;
7 }
8 }

GEZEL language of this structure is shown in Listing 4.9. The always block is
included in a dp (datapath), which defines a list of in and out ports. There can
be as many input and output ports as needed, and they can be created in any or-
der. Registers and signals are local to a single module and invisible outside of the
module boundary. Input ports and output ports are equivalent to wires and there-
fore behave identical to signals. Input ports and output ports are subject to similar
requirements as signals: it is not allowed to assign an output port more than once
during a clock cycle, and each output must be assigned at least once during each
clock cycle. We will further investigate this while discussing the formal properties
of the FSMD model in Sect. 4.6.

After hardware is encapsulated inside of a module, the module itself can be used
as a component in another hardware design. This principle is called structural hi-
erarchy. As an example, Listing 4.10 shows how the 3-bit counter is included in a
testbench structure that clears the counter as soon as it reaches three. The module
is included by the use keyword, which also shows how ports should be connected
to local signals and registers. The equivalent hardware structure of Listing 4.10 is
shown in Fig. 4.4.

The countrun module in Listing 4.10 has no inputs nor outputs. Such mod-
ules have no practical value for implementation, but they are useful for testbenches.
The listing also illustrates the use of a $display statement, which is a simulator
directive to print the value of a signal or register. Several other directives will be
discussed in Sect. 4.5.

Once a module has been included inside of another one by means of the use
statement, it cannot be included again: each module can be used only once. How-
ever, it is easy to create a duplicate of an existing module by means of a cloning
statement. Listing 4.11 shows how to create 3-bit counters, count0, count1 and
count2.

104 4 Finite State Machine with Datapath

Listing 4.10 Encapsulated counter module
1 dp countrun {
2 sig clearit : ns(1);
3 sig cnt : ns(3);
4 use count(clearit, cnt);
5 always {
6 clearit = cnt[0] & cnt[1];
7 $display("cnt = ", cnt);
8 }
9 }

Fig. 4.4 Hardware
equivalent of Listing 4.10

clr c
c[0]
c[1]

count

countrun

3

Listing 4.11 Cloning of modules
1 dp count0(in clr : ns(1);
2 out c : ns(3)) {
3 reg a : ns(3);
4 always {
5 a = clr ? 0 : a + 1;
6 c = a;
7 }
8 }
9 dp count1 : count0

10 dp count2 : count0

4.3 Finite State Machines

We will next describe a control model for hardware circuits. As discussed before,
the expressions that are part of an always block are evaluated at each clock cycle,
and it is not possible to conditionally evaluate an expression. Even the selection
operator (c ? expr1 : expr2) will evaluate the true-part as well as the false-
part regardless of the condition value c. Assume that expr1 and expr2 would
contain an expensive operator, then we would need two copies of that operator to
implement c ? expr1 : expr2.

A control model, on the other hand, allows us to indicate what expressions should
execute during each clock cycle. Very simple control models will only select the se-
quence of expressions to execute over multiple clock cycles. More complex control
models will also allow decision making. Advanced control models also consider
issues such as exceptions, recursion, out-of-order execution, and so forth. In this

4.3 Finite State Machines 105

section, we describe a common control model for hardware description, called
Finite State Machine (FSM). An FSM can be used to describe sequencing and de-
cision making. In the next section, we will combine the FSM with expressions in a
datapath.

A FSM is a sequential digital machine which is characterized by

� A set of states
� A set of inputs and outputs
� A state transition function
� An output function

An FSM has a current state, equal to an element from the set of states. Each clock
cycle, the state transition function selects the next value for the current state, and
the output function selects the value on the output of the FSM. The state transition
function and the output function are commonly described in terms of a graph. In that
case, the set of states becomes the set of nodes of the graph, and the state transitions
become edges in the graph.

The operation of a FSM is best understood by means of an example. Suppose
we need to observe a (possibly infinite) sequence of bits, one at a time. We need
to determine at what point the sequence contains the pattern ‘110’. This problem is
perfectly suited for an FSM. We can distinguish three relevant states for the FSM, by
realizing that sequential observation of the input bits transforms this pattern recog-
nition problem into an incremental process.

1. State S0: We have not recognized any useful pattern.
2. State S1: We have recognized the pattern ‘1’.
3. State S2: We have recognized the pattern ‘11’.

When we consider each state and each possible input bit, we can derive all state
transitions, and thus derive the state transition function. The output function can
be implemented by defining a successful recognition as an input bit of ‘0’ when
the FSM is in state S2. This leads to the state transition graph (or state transition
diagram) shown in Fig. 4.5. The notation used for Fig. 4.5 is that of a Mealy FSM.
The output of a Mealy FSM is defined by the present state, as well as the input.

There is a different formulation of a FSM known as a Moore state machine. The
output of a Moore state machine is only dependent on the current state, and not
on the current input. Both forms, Mealy and Moore, are equivalent formulations of
FSM. A Mealy machine can be converted into an equivalent Moore machine using
a simple conversion procedure.

To convert the Mealy form into a Moore form, make a state transition table for
the Mealy FSM. This table contains the next-state of each state transition combined
with the relevant output. For example, in state S1 of Fig. 4.5, the input ‘1’ leads to
state S2 with output 0. Annotate this in the Table as: S2, 0. The entire diagram can
be translated this way, leading to Table 4.2.

Using the conversion table, an equivalent Moore FSM can be constructed. There
is one Moore state for each unique (next-state, output) pattern. From Table 4.2, we
can find 4 Moore states: (S0, 0), (S0, 1), (S1, 0), and (S2, 0). To find the Moore FSM

106 4 Finite State Machine with Datapath

in out

S2

1/0

0/1

S1S0

1/0

1/0

0/0

0/0

11100011010100000101100011 00010000100000000000010000

outputinput

Fig. 4.5 Mealy FSM of a recognizer for the pattern ‘110’

Table 4.2 Conversion
of Mealy to Moore FSM
for Fig. 4.5

Current-State Input D 0 Input D 1

S0 S0, 0 S1, 0
S1 S0, 0 S2, 0
S2 S0, 1 S2, 0

Table 4.3 Resulting moore
state transition table

Current-State Input D 0 Input D 1 Output

SA D S0, 0 SA SC 0
SB D S0, 1 SA SC 1
SC D S1, 0 SA SD 0
SD D S2, 0 SB SD 0

state transitions, we replicate the corresponding Mealy transitions for each Moore
state. There may be multiple Moore transitions for a single Mealy transition. For
example, Mealy state S0 is replicated into Moore states (S0, 0) and (S0, 1). Thus,
each of the state transitions out of S0 will be replicated two times. The resulting
Moore state transition table is shown in Table 4.3, while the resulting Moore FSM
graph is drawn in Fig. 4.6. A small ambiguity was removed from Fig. 4.6 by making
state SAD (S0, 0) the initial state of the Moore machine. That is, the Mealy machine
does not specify the initial value of the output. Since the Moore machine ties the
output to the current state, an initial output value must be assumed as well.

In summary, a FSM is a common control model for hardware design. We can
use it to model conditional execution of expressions. In that case, we will use the
outputs of the FSM to control the execution of expressions. Similarly, we will use
the inputs to feed runtime conditions into the FSM so that conditional sequencing
can be implemented. In the next section, we will use a modified form of a FSM,
called FSMD, which is the combination of an FSM and a datapath (modeled using
expressions).

4.4 Finite State Machines with Datapath 107

in out

SDSBSA
0

SC

1

0

1
0

1

0

1

Fig. 4.6 Moore FSM of a recognizer for the pattern ‘110’

4.4 Finite State Machines with Datapath

A FSM with Datapath combines a hardware control model (an FSM) with a
datapath. The datapath is described as cycle-based bit-parallel hardware using ex-
pressions, as discussed in Sect. 4.1. However, in contrast to datapaths using only
always blocks, FSMD datapaths define also one or more instructions: condition-
ally executed ‘always’ blocks.

4.4.1 Modeling

Listing 4.12 shows an example of a datapath with an always block and three in-
structions: inc, dec, and clr. The meaning of the always block is the same as
before: it contains expressions that will execute every clock cycle. In contrast to an
always block, instructions will only execute when told to do so by a controller.
Thus, the three instructions of the datapath in Listing 4.12 can increment, decre-
ment, or clear register a, depending on what the controller tells the datapath to do.

An instruction has the same meaning for expressions as an always block: it
specifies operations in combinational logic and describes register-updates. An in-
struction has a name such as inc, dec, and clr so it can be referenced by a
controller. The keyword sfg precedes the instruction name, and this keyword is an
acronym for signal flow graph: An instruction is a snippet of a dataflow graph of a
hardware description during 1 clock cycle of processing.

A datapath with instructions needs a controller to select which instruction should
execute in each clock cycle. The FSMD model uses an FSM for this. Listing 4.13
shows a FSM controller for the datapath of Listing 4.12. In this case, the controller
will steer the datapath such that it first counts up from 0 to 3, and next counts down
from 3 to 0. The FSM is a textual format for a state transition diagram. Going
through the listing, we can identify the following features.

108 4 Finite State Machine with Datapath

Listing 4.12 Datapath for an up-down counter with three instructions
1 dp updown(out c : ns(3)) {
2 reg a : ns(3);
3 always { c = a; }
4 sfg inc { a = a + 1; } // instruction inc
5 sfg dec { a = a - 1; } // instruction dec
6 sfg clr { a = 0; } // instruction clr
7 }

Listing 4.13 Controller for the up-down counter
1 fsm ctl_updown(updown) {
2 initial s0;
3 state s1, s2;
4 @s0 (clr) -> s1;
5 @s1 if (a < 3) then (inc) -> s1;
6 else (dec) -> s2;
7 @s2 if (a > 0) then (dec) -> s2;
8 else (inc) -> s1;
9 }

� Line 1: The fsm keyword defines a FSM with name ctl updown and tied to
the datapath updown.

� Line 2–3: The FSM contains three states. One state, called s0, will be the initial
state. Two other states, called s1 and s2, are regular states. The current state of
the FSM will always be one of s0, s1, or s2.

� Line 4: When the current state is s0, the FSM will unconditionally transition to
state s1. State transitions will be taken at each clock edge. At the same time, the
datapath will receive the instruction clr from the FSM, which will cause the
register a to be cleared (See Listing 4.12).

� Line 5–6: When the current state of the FSM equals s1, a conditional state
transition will be taken. Depending on the value of the condition, the FSM will
transition either to state s1 (Line 5), or else to state s2 (Line 6), and the datapath
will receive either the instruction inc or else dec. This will either increment or
else decrement register a. The state transition condition is given by the expres-
sion a < 3. Thus, the FSM will remain in state s1 as long as register a is below
three. When a equals three, the FSM will transition to s2 and a decrementing
sequence is initiated.

� Line 7–8: When the current state of the FSM equals s2, a conditional state tran-
sition to either s1 or else s2 will be taken. These two state transitions will issue
a decrement instruction to the datapath as long as register a is above zero. When
the register equals zero, the controller will transition to s1 and restart the incre-
menting sequence.

Thus, the FSM controller determines the schedule of instructions on the datap-
ath. There are many possible schedules, and the example shown in Listing 4.9 is
one of them. However, since an FSM is not a programmable construct, the imple-
mentation of the FSM will fix the schedule of instructions provided to the datapath.

4.4 Finite State Machines with Datapath 109

Table 4.4 Behavior of the
FSMD in Listing 4.13

Cycle FSM curr/next DP instr DP expr a curr/next

0 s0/s1 clr a D 0; 0/0
1 s1/s1 inc a D a C 1; 0/1
2 s1/s1 inc a D a C 1; 1/2
3 s1/s1 inc a D a C 1; 2/3
4 s1/s2 dec a D a � 1; 3/2
5 s2/s2 dec a D a � 1; 2/1
6 s2/s2 dec a D a � 1; 1/0
7 s2/s1 inc a D a C 1; 0/1
9 s1/s1 inc a D a C 1; 1/2
9 s1/s1 inc a D a C 1; 2/3

Table 4.4 illustrates the first 10 clock cycles of operation for this FSMD. Each row
shows the clock cycle, the current and next FSM state, the datapath instruction se-
lected by the controller, the datapath expression, and the current and next value of
the register a.

In the up/down counter example, each datapath instruction contains a single ex-
pression, and the FSM selects a single datapath instruction for execution during
each clock cycle. This is not a strict requirement. An instruction may contain as
many expressions as needed, and the FSM controller may select multiple instruc-
tions for execution during any clock cycle. You can think of a group of scheduled
instructions and the always block as a single, large always block that is active
for a single clock cycle. Of course, not all combinations will work in each case.
For example, in the datapath shown in Listing 4.12, the instructions clr, inc, and
dec are all exclusive since all of them modify register a. The set of expressions
that execute during a given clock cycle (as a result of the always block and the
scheduled instructions) have to be conform to the same rules as if there were only a
single always block. We will define these rules precisely in Sect. 4.6.

Listing 4.14 shows the implementation of Euclid’s algorithm as an FSMD. In
this case, several datapath instructions contain multiple expressions. In addition, the
controller runs multiple datapath instructions during one state transition (line 21).
The body of the reduce instruction was presented earlier as the computational core
of GCD (Listing 4.14). The additional functionality provided by the controller is the
initialization of the registers m and n, and the detection of the algorithm completion.

We can now provide a more precise description of an FSMD and its associated
execution model. An FSMD consists of two stacked FSMs, as illustrated in Fig. 4.7.
The top FSM contains the controller and is specified using a state transition diagram.
The bottom FSM contains the datapath and is specified using expressions. The top
FSM send instructions to the bottom FSM and receives status information in return.
Both FSM operate synchronously and are connected to a single clock.

Each clock cycle, the two FSM go through the following activities.

1. Just after the clock edge, the state variables of both FSM are updated. For the
controller, this means that a state transition is completed and the state register
holds the new current-state value. For the datapath, this means that the register
variables are updated as a result of assigning expressions to them.

110 4 Finite State Machine with Datapath

Listing 4.14 Euclid’s GCD as an FSMD
1 dp euclid(in m_in, n_in : ns(16);
2 out gcd : ns(16)) {
3 reg m, n : ns(16);
4 reg done : ns(1);
5 sfg init { m = m_in;
6 n = n_in;
7 done = 0;
8 gcd = 0; }
9 sfg reduce { m = (m >= n) ? m - n : m;

10 n = (n > m) ? n - m : n; }
11 sfg outidle { gcd = 0;
12 done = ((m == 0) | (n == 0)); }
13 sfg complete{ gcd = ((m > n) ? m : n);
14 $display("gcd = ", gcd); }
15 }
16 fsm euclid_ctl(euclid) {
17 initial s0;
18 state s1, s2;
19 @s0 (init) -> s1;
20 @s1 if (done) then (complete) -> s2;
21 else (reduce, outidle) -> s1;
22 @s2 (outidle) -> s2;
23 }

Fig. 4.7 An FSMD consists
of two stacked FSMs

FSM Controller

Conditions Instructions

Control
Logic

Datapath

Datapath
Logic

Inputs Outputs

2. The control FSM combines the control-state and datapath-state to evaluate the
new next-state for the control FSM. At the same time, it will also select what
instructions should be executed by the datapath.

3. The datapath FSM will evaluate the next-state for the state variables in the dat-
apath, using the updated datapath state as well as the instructions received from
the control FSM.

4.4 Finite State Machines with Datapath 111

4. Just before the next clock edge, both the control FSM and the datapath FSM
have evaluated and prepared the next-state value for the control state as well as
the datapath state.

What makes a controller FSM different from a datapath FSM? Indeed, as il-
lustrated in Fig. 4.7, both the datapath and the controller are sequential digital
machines. Yet, from a designers’ viewpoint, the creation of datapath logic and con-
trol logic is very different.

� Control logic tends to have an irregular structure. Datapath logic tends to have a
regular structure (especially once you work with multibit words).

� Control logic is easy to describe using a finite state transition diagram and hard to
describe using expressions. Datapath logic is just the opposite: easy to describe
using expressions but hard to capture in state transition diagrams.

� The registers (state) in a controller have a different purpose than those in the dat-
apath. Datapath registers contain algorithmic state (like m and n in Listing 4.10).
Control registers contain sequencing state.

In conclusion, we have discussed FSMD, a standard model for digital hard-
ware design. Our discussion covered the modeling syntax as well as the operation.
FSMDs are useful because they capture control flow as well as data flow in hard-
ware. Recall that C programs are also a combination of control flow and dataflow
(Chap. 3). This results in an implied connection between hardware FSMD models
and C programs.

4.4.2 An FSMD is Not Unique

Figure 4.7 demonstrated how an FSMD actually consists of two stacked FSM. This
has an interesting implication. From an implementation perspective, the partitioning
between control logic and datapath logic is not unique. To illustrate this on Fig. 4.7,
assume that we would merge the control logic and datapath logic into a single logic
module, and assume that we would combine the registers in the controller with those
in the datapath. The resulting design would still look as an FSM. The implementa-
tion thus makes no clear distinction between the Datapath part and FSM part.

In the previous subsection, we showed that the modeling of the FSM controller
and the Datapath is very different: using state transition graphs and expressions, re-
spectively. Since the partitioning between a controller and the datapath is not unique,
this means that we should be able to write up an FSM using expressions. This is
illustrated in Listings 4.15 and 4.16. The first listing shows the FSM state transi-
tion diagram for the up-down counter from Sect. 4.4.1. The second listing shows an
equivalent description using expressions. The key difference between both is that in
Listing 4.16, we have chosen the encoding for controller states. Also note that the
‘controller’ function in Listing 4.16 is captured in an always block.

Since we can model an FSM with expressions, we can also merge it with the
datapath controlled by this FSM. The resulting design for the up-down counter is

112 4 Finite State Machine with Datapath

Listing 4.15 FSM controller for updown counter
1 fsm ctl_updown(updown) {
2 initial s0;
3 state s1, s2;
4 @s0 (clr) -> s1;
5 @s1 if (a < 3) then (inc) -> s1;
6 else (dec) -> s2;
7 @s2 if (a > 0) then (dec) -> s2;
8 else (inc) -> s1;
9 }

Listing 4.16 FSM controller for updown counter using expressions
1 dp updown_ctl(in a_sm_3, a_gt_0 : ns(1);
2 out instruction : ns(2)) {
3 reg state_reg : ns(2);
4 // state encoding: s0 = 0, s1 = 1, s2 = 2
5 // instruction encoding: clr = 0, inc = 1, dec = 2
6 always {
7 state_reg = (state_reg == 0) ? 1 :
8 ((state_reg == 1) & a_sm_3) ? 1 :
9 ((state_reg == 1) & ˜a_sm_3) ? 2 :

10 ((state_reg == 2) & a_gt_0) ? 2 : 1;
11 instruction = (state_reg == 0) ? 0 :
12 ((state_reg == 1) & a_sm_3) ? 1 :
13 ((state_reg == 1) & ˜a_sm_3) ? 2 :
14 ((state_reg == 2) & a_gt_0) ? 2 : 1;
15 }
16 }

shown in Listing 4.17. This description shows that an FSMD can be captured as
a simple datapath. When choosing the writing style for an FSMD (using either a
separate FSM and datapath description, or else as a single datapath), you would
make the following trade-off considerations.

� When capturing the FSMD in a single datapath, the expressions in the datapath
include scheduling as well as data processing. On the other hand, in an FSMD
with separate FSM and datapath description, the datapath expressions represent
only data processing. Often, data-processing expressions are directly related to
the original specification. Compare, for example, Listings 4.13 and 4.17 while
considering that the purpose of this design is an up-down counter. Obviously,
Listing 4.13 is easier to understand.

� When the datapath expressions include scheduling as well as data processing,
they become harder to reuse in a different schedule. Using an FSMD with sep-
arate FSM and datapath description on the other hand will allow changes to the
scheduling (the FSM) while reusing most of the datapath description.

� When capturing the FSMD in a single datapath, the state assignment is chosen
by the designer and may be optimized for specific applications. In an FSMD with
separate FSM and datapath description, the state assignment is left to the logic
synthesis tool.

4.4 Finite State Machines with Datapath 113

Listing 4.17 Updown counter using expressions
1 dp updown_ctl(out c : ns(3)) {
2 reg a : ns(3);
3 reg state_reg : ns(2);
4 sig a_sm_3 : ns(1);
5 sig a_gt_0 : ns(1);
6 // state encoding: s0 = 0, s1 = 1, s2 = 2
7 always {
8 state_reg = (state_reg == 0) ? 1 :
9 ((state_reg == 1) & a_sm_3) ? 1 :

10 ((state_reg == 1) & ˜a_sm_3) ? 2 :
11 ((state_reg == 2) & a_gt_0) ? 2 : 1;
12 a_sm_3 = (a < 3);
13 a_gt_0 = (a > 0);
14 a = (state_reg == 0) ? 0 :
15 ((state_reg == 1) & a_sm_3) ? a + 1 :
16 ((state_reg == 1) & ˜a_sm_3) ? a - 1 :
17 ((state_reg == 2) & a_gt_0) ? a + 1 : a - 1;
18 c = a;
19 }
20 }

� An FSMD captured as a single datapath is good for designs with simple or no
control scheduling, such as designs found in very high-throughput applications.
An FSMD with separate FSM and datapath description is good for more compli-
cated, structured designs.

In the above examples, we showed how an FSM can be modeled using datapath
expressions, and how this allowed to capture an entire FSMD in a single datap-
ath. The opposite case (modeling a datapath as a state transition diagram) is very
uncommon. Problem 4.9 investigates some of the reasons for this.

4.4.3 Implementation

How to determine the hardware implementation of an FSMD? The basic rules for
mapping expressions on registers/signals into synchronous digital hardware are the
same as before. However, there is also an important difference. When an expression
occurs inside of a datapath instruction, it should execute only when that instruction
is selected by the controller. Thus, the final datapath structure will depend on the
schedule of instructions selected by the FSMD controller.

To clarify this point, consider again the up-down counter in Listing 4.18. From
the FSM model, it is easy to see that clr, inc, and dec will always execute in
different clock cycles. Therefore, the datapath operators used to implement each
of clr, inc, and dec can be shared. A possible implementation of the FSMD
is shown in Fig. 4.8. The datapath includes an adder/subtractor and a multiplexer,
which implement the instruction-set (clr, inc, dec). A local decoder is needed
to convert the encoding used for these instructions into local control signals for the

114 4 Finite State Machine with Datapath

Listing 4.18 Datapath for an up-down counter with three instructions
1 dp updown(out c : ns(3)) {
2 reg a : ns(3);
3 always { c = a; }
4 sfg inc { a = a + 1; }
5 sfg dec { a = a - 1; }
6 sfg clr { a = 0; }
7 }
8 fsm ctl_updown(updown) {
9 initial s0;

10 state s1, s2;
11 @s0 (clr) -> s1;
12 @s1 if (a < 3) then (inc) -> s1;
13 else (dec) -> s2;
14 @s2 if (a > 0) then (dec) -> s2;
15 else (inc) -> s1;
16 }

Fig. 4.8 Implementation
of the up-down counter
FSMD

controller

decoder

<3 FSM

datapathstatus control

a
c

0

1
+ / –

multiplexer and the adder subtractor. The datapath is attached to a controller, which
is implemented with an FSM and a local decoder for datapath status information. In
this case, the value in register a is datapath status.

The implementation shown in Fig. 4.8 can be completely refined using logic syn-
thesis tools: the contents of the decoder and the FSM for example will be defined
using low-level logic synthesis. Through the FSMD description, a designer can still
influence the following aspects of the synthesis process.

� The designer determines the amount of work done in a single clock cycle. This
is simply the set of all datapath instructions which will execute concurrently
in a single clock cycle. Hence, in order to obtain the best possible sharing,
a designer must distribute similar operations over multiple clock cycles. For
example, if there are 16 multiplications to perform with a clock cycle budget
of 4 clock cycles, then an implementation with 4 multiplies each clock cycle

4.5 Simulation and RTL Synthesis of FSMD 115

will most likely be smaller than one which performs 16 multiplies in the first
clock cycle and nothing in the next three cycles.

� The designer also influences indirectly the critical path of the design by the
complexity of the expressions given in the datapath instructions. In synchronous
hardware design, the minimum clock period of a design is bounded by the crit-
ical path. Hence, the critical path of the FSMD datapath should be kept small.
Obviously, small and short expressions will result in smaller and faster logic in
the datapath. If the expressions used to capture the datapath become too complex,
the resulting design may be too slow for the intended system clock period.

4.5 Simulation and RTL Synthesis of FSMD

In this section we will illustrate the use of the GEZEL simulation and code genera-
tion tools for standalone FSMD models. These tools can be downloaded online.

4.5.1 Simulation

We will illustrate the simulation tools on the GCD module discussed earlier in
Sect. 4.4.1. Listing 4.19 shows the gcd module as well as a simulation test-bench.
In this case, the testbench test euclid drives the inputs m and n to two constant
values. The system module shown at the bottom of the listing tells the simula-
tor what module should be considered the top-level module in the simulation. Only
modules which are listed in a system block (as well as the modules included by
the top module) will take part in the simulation.

The simulation command is fdlsim. The arguments include the name of the
file that holds the FSMD descriptions and the number of clock cycles to simulate.
For example, assume Listing 4.19 would be included in a file euclid.fdl, then
the following command would simulate 20 clock cycles.

> fdlsim euclid.fdl 20
m = 0/2322 n = 0/654
m = 2322/1668 n = 654/654
m = 1668/1014 n = 654/654
m = 1014/360 n = 654/654
m = 360/360 n = 654/294
m = 360/66 n = 294/294
m = 66/66 n = 294/228
m = 66/66 n = 228/162
m = 66/66 n = 162/96
m = 66/66 n = 96/30
m = 66/36 n = 30/30
m = 36/6 n = 30/30
m = 6/6 n = 30/24
m = 6/6 n = 24/18

116 4 Finite State Machine with Datapath

Listing 4.19 Euclid’s GCD as an FSMD
1 dp euclid(in m_in, n_in : ns(16);
2 out gcd : ns(16)) {
3 reg m, n : ns(16);
4 reg done : ns(1);
5 always { $display($dec, " m = ", m, " n = ", n); }
6 sfg init { m = m_in;
7 n = n_in;
8 done = 0;
9 gcd = 0; }

10 sfg reduce { m = (m >= n) ? m - n : m;
11 n = (n > m) ? n - m : n; }
12 sfg outidle { gcd = 0;
13 done = ((m == 0) | (n == 0)); }
14 sfg complete{ gcd = ((m > n) ? m : n);
15 $display("cycle = ", $cycle, " gcd = ", gcd); }
16 }
17 fsm euclid_ctl(euclid) {
18 initial s0;
19 state s1, s2;
20 @s0 (init) -> s1;
21 @s1 if (done) then (complete) -> s2;
22 else (reduce, outidle) -> s1;
23 @s2 (outidle) -> s2;
24 }
25
26 dp test_euclid {
27 sig m, n, gcd : ns(16);
28 use euclid(m, n, gcd);
29 always {
30 m = 2322;
31 n = 654;
32 }
33 }
34
35 system S {
36 test_euclid;
37 }

m = 6/6 n = 18/12
m = 6/6 n = 12/6
m = 6/0 n = 6/6
m = 0/0 n = 6/6
m = 0/0 n = 6/6
cycle = 18 gcd = 6
m = 0/0 n = 6/6

Due to the $display statements in the always block and the complete
instruction in Listing 4.19, the simulation generates intermediate output. Note the
particular way of printing register variables, using a current/next value representa-
tion. Clock cycles are counted by the simulator starting from zero, so the simulation
executes the complete instruction in clock cycle 19. There are several other
simulation directives similar to $display, as listed in Table 4.5.

4.6 Proper FSMD 117

Table 4.5 Simulation directives

Directive Use

$display(arg, ..) Used inside sfg. Prints strings and expressions.
$cycle Used as argument of $display. Returns current clock cycle.
$toggle Used as argument of $display. Returns overall toggle count.
$sfg Used as argument of $display. Returns name of current sfg.
$dp Used as argument of $display. Returns name of current dp.
$hex, $dec, $bin Used as argument of $display.

Changes output format for values to hex, decimal or binary.
$finish Used inside sfg. Terminates the simulation immediately.
$trace(expr,filename) Used inside a dp. Records values of register/signal in file.
$option "string" Used at top of file. Enables additional profiling and VCD tracing.

4.5.2 Code Generation and Synthesis

Once an FSMD has been successfully simulated, it can be converted into synthe-
sizable format. The design in Listing 4.19 can be converted into RTL-VHDL code
using the following command:

fdlvhd euclid.fdl

The tool generates a single VHDL file for each datapath in the euclid.fdl
file.

>fdlvhd euclid.fdl
Pre-processing System ...
Output VHDL source ...

Generate file: euclid.vhd
Generate file: test_euclid.vhd
Generate file: system.vhd
Generate file: std_logic_arithext.vhd

4.6 Proper FSMD

A proper FSMD is one which has deterministic behavior. In general, a model with
deterministic behavior is one which will always show the same response given the
same initial state and the same input stimuli. Deterministic behavior is a desirable
feature for many applications and definitely for software programs. For hardware/-
software codesign applications, it makes sense to enforce a uniform approach toward
determinacy across the boundaries of hardware and software.

For a hardware FSMD implementation, deterministic behavior means that the
hardware is free of race conditions. Without determinacy, a hardware model may
end up in an unknown state (often represented using an ‘X’ in multivalued logic

118 4 Finite State Machine with Datapath

hardware simulation) . We will avoid this situation by enforcing modeling condi-
tions to the FSMD, leading to a proper FSMD.

A proper FSMD is obtained by enforcing four properties in the FSMD model.
These properties are easy to check, both by the FSMD developer as well as by the
simulation tools. The four properties are the following:

1. Neither registers nor signals can be assigned more than once during a clock
cycle.

2. No circular definition exists between signals (wires).
3. If a signal is used as an operand of an expression, it must have a known

value in the same clock cycle.
4. All datapath outputs must be defined (assigned) during all clock cycles.

The first rule is obvious and ensures that there will be at most a single assignment
per register/signal and per clock cycle. Recall from our earlier discussion that in a
synchronous hardware model, all expressions are evaluated simultaneously accord-
ing to the data dependencies of the expressions. If we allow multiple assignments
per register/signal, the resulting value in the register or signal will become ambigu-
ous.

The second rule ensures that any signal will carry a single, stable value dur-
ing a clock cycle. Indeed, a circular definition between signals (e.g., as shown in
Listing 4.4) may result in more than a single valid value. For example, circular
definitions would occur when you try to model flip-flops with combinational logic
(state). A proper FSMD model enforces you to use reg for all state variables. An-
other case where you would end up with circular definition between signals is when
you create free-running ring-oscillators. In a cycle-based hardware description lan-
guage, all events happen at the pace of the global clock, and free-running oscillators
cannot be modeled.

The third rule ensures that no signal can be used as an operand when the signal
value would be undefined. Indeed, when an undefined signal is used as an operand
in an expression, the result of the expression may become unknown. Such unknown
values propagate in the model and introduce ambiguity on the outputs.

The fourth rule deals with hierarchy and makes sure that rule 2 and 3 will hold
even across the boundaries of datapaths. As we discussed earlier, datapath inputs
and outputs have the same semantics as wires. The value of a datapath input will
be defined by the datapath output connected to it. Rule 4 says that this datapath
output will always have a known and stable value. Rule 4 is stricter than required.
For example, if we don’t read a datapath input during a certain clock cycle, the
corresponding connected datapath output could remain undefined without causing
trouble. However, requiring all outputs to be always defined is much easier to re-
member for the FSMD designer.

All of the above rules are enforced by the simulation tools for FSMD, either at
runtime (through an error message), or else when the model is parsed. The resulting
hardware created by these modeling rules is determinate and race-free.

4.7 Language Mapping for FSMD by Example 119

4.7 Language Mapping for FSMD by Example

Even though we will be using the GEZEL language throughout this book for mod-
eling of FSMD, all concepts covered so far are equally valid in other modeling
languages including Verilog, VHDL, or SystemC. We use GEZEL because of the
following reasons:

� It is easier to set up cosimulation experiments in GEZEL. We will cover different
types of hardware–software interfaces, and all of these are directly covered using
GEZEL primitives.

� More traditional modeling languages include additional concepts (such as mul-
tivalued logic and event-driven simulation), which, even though important by
themselves, are less relevant in the context of an introduction to hardware–
software codesign.

� GEZEL designs can be expanded into Verilog, VHDL, or SystemC, as will be
illustrated in this section. In fact, the implementation path of GEZEL works by
converting these GEZEL designs into VHDL, and then using hardware synthesis
on the resulting design.

The example we will discuss is the binary GCD algorithm, a lightly optimized
version of the classic GCD that makes use of the odd-even parity of the GCD
operands. The implementation of the design is illustrated in Listings 4.20, 4.21,
4.22, 4.23 for the case of GEZEL, Verilog, and SystemC, respectively.

4.7.1 GCD in GEZEL

Listing 4.20 Binary GCD in GEZEL
1 dp euclid(in m_in, n_in : ns(16);
2 out gcd : ns(16)) {
3 reg m, n : ns(16);
4 reg done : ns(1);
5 reg factor : ns(16);
6
7 sfg init { m = m_in; n = n_in; factor = 0; done = 0; gcd = 0;
8 $display("cycle=", $cycle, " m=", m_in, " n=",
9 n_in); }

10 sfg shiftm { m = m >> 1; }
11 sfg shiftn { n = n >> 1; }
12 sfg reduce { m = (m >= n) ? m - n : m;
13 n = (n > m) ? n - m : n; }
14 sfg shiftf { factor = factor + 1; }
15 sfg outidle { gcd = 0; done = ((m == 0) | (n == 0)); }
16 sfg complete{ gcd = ((m > n) ? m : n) << factor;
17 $display("cycle=", $cycle, " gcd=", gcd); }
18 }
19 fsm euclid_ctl(euclid) {
20 initial s0;
21 state s1, s2;

120 4 Finite State Machine with Datapath

22 @s0 (init) -> s1;
23 @s1 if (done) then (complete) -> s2;
24 else if (m[0] & n[0]) then (reduce, outidle) -> s1;
25 else if (m[0] & ˜n[0]) then (shiftn, outidle) -> s1;
26 else if (˜m[0] & n[0]) then (shiftm, outidle) -> s1;
27 else (shiftn, shiftm,
28 shiftf, outidle) -> s1;
29 @s2 (outidle) -> s2;
30 }

4.7.2 GCD in Verilog

Listing 4.21 Binary GCD in Verilog
1 module euclid(m_in, n_in, gcd, clk, rst);
2 input [15:0] m_in;
3 input [15:0] n_in;
4 output [15:0] gcd;
5 reg [15:0] gcd;
6 input clk;
7 input rst;
8
9 reg [15:0] m, m_next;

10 reg [15:0] n, n_next;
11 reg done, done_next;
12 reg [15:0] factor, factor_next;
13 reg [1:0] state, state_next;
14
15 parameter s0 = 2’d0, s1 = 2’d1, s2 = 2’d2;
16
17 always @(posedge clk)
18 if (rst) begin
19 n <= 16’d0;
20 m <= 16’d0;
21 done <= 1’d0;
22 factor <= 16’d0;
23 state <= s0;
24 end else begin
25 n <= n_next;
26 m <= m_next;
27 done <= done_next;
28 factor <= factor_next;
29 state <= state_next;
30 end
31
32 always @(*) begin
33 n_next <= n; // default reg assignment
34 m_next <= m; // default reg assignment
35 done_next <= done; // default reg assignment
36 factor_next <= factor; // default reg assignment
37 gcd <= 16’d0; // default output assignment
38
39 case (state)
40

4.7 Language Mapping for FSMD by Example 121

41 s0: begin
42 m_next <= m_in;
43 n_next <= n_in;
44 factor_next <= 16’d0;
45 done_next <= 1’d0;
46 gcd <= 16’d0;
47 state_next <= s1;
48 end
49
50 s1: if (done) begin
51 gcd <= ((m > n) ? m : n) << factor;
52 state_next <= s2;
53 end else if (m[0] & n[0]) begin
54 m_next <= (m >= n) ? m - n : m;
55 n_next <= (n > m) ? n - m : n;
56 gcd <= 16’d0;
57 done_next <= ((m == 0) | (n == 0));
58 state_next <= s1;
59 end else if (m[0] & ˜n[0]) begin
60 n_next <= n >> 1;
61 gcd <= 16’d0;
62 done_next <= ((m == 0) | (n == 0));
63 state_next <= s1;
64 end else if (˜m[0] & n[0]) begin
65 m_next <= m >> 1;
66 gcd <= 16’d0;
67 done_next <= ((m == 0) | (n == 0));
68 state_next <= s1;
69 end else begin
70 n_next <= n >> 1;
71 m_next <= m >> 1;
72 factor_next <= factor + 1;
73 gcd <= 16’d0;
74 done_next <= ((m == 0) | (n == 0));
75 state_next <= s1;
76 end
77
78 s2: begin
79 gcd <= 16’d0;
80 done_next <= ((m == 0) | (n == 0));
81 state_next<= s2;
82 end
83
84 default: begin
85 state_next <= s0; // jump back to init
86 end
87 endcase
88 end
89
90 endmodule

122 4 Finite State Machine with Datapath

4.7.3 GCD in VHDL

Listing 4.22 Binary GCD in VHDL
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_arith.all;
4
5 entity gcd is
6 port(m_in, n_in : in std_logic_vector(15 downto 0);
7 gcd : out std_logic_vector(15 downto 0);
8 clk, rst : in std_logic
9);

10 end gcd;
11
12 architecture behavior of gcd is
13 type statetype is (s0, s1, s2);
14 signal state, state_next : statetype;
15 signal m, m_next : std_logic_vector(15 downto 0);
16 signal n, n_next : std_logic_vector(15 downto 0);
17 signal done, done_next : std_logic;
18 signal factor, factor_next : std_logic_vector(15 downto 0);
19 begin
20
21 update_regs: process(clk, rst)
22 begin
23 if (rst=’1’) then
24 m <= (others => ’0’);
25 n <= (others => ’0’);
26 done <= ’0’;
27 factor <= (others => ’0’);
28 state <= s0;
29 elsif (clk=’1’ and clk’event) then
30 state <= state_next;
31 m <= m_next;
32 n <= n_next;
33 done <= done_next;
34 factor <= factor_next;
35 state <= state_next;
36 end if;
37 end process;
38
39 eval_logic: process(m_in, n_in, state)
40 begin
41 n_next <= n;
42 m_next <= m;
43 done_next <= done;
44 factor_next<= factor;
45 gcd <= (others => ’0’);
46
47 case state is
48
49 when s0 =>
50 m_next <= m_in;

4.7 Language Mapping for FSMD by Example 123

51 n_next <= n_in;
52 factor_next <= (others => ’0’);
53 done_next <= ’0’;
54 gcd <= (others => ’0’);
55 state_next <= s1;
56
57 when s1 =>
58 if (done = ’1’) then
59 if (m > n) then
60 gcd <= conv_std_logic_vector(shl(unsigned(m),
61 unsigned(factor)),16);
62 else
63 gcd <= conv_std_logic_vector(shl(unsigned(n),
64 unsigned(factor)),16);
65 end if;
66 state_next <= s2;
67 elsif ((m(0) = ’1’) and (n(0) = ’1’)) then
68 if (m >= n) then
69 m_next <= unsigned(m) - unsigned(n);
70 n_next <= n;
71 else
72 m_next <= m;
73 n_next <= unsigned(n) - unsigned(m);
74 end if;
75 gcd <= (others => ’0’);
76 if ((m = "0000000000000000") or (n = "0000000000000000"))
77 then
78 done_next <= ’1’;
79 else
80 done_next <= ’0’;
81 end if;
82 state_next <= s1;
83 elsif ((m(0) = ’1’) and (n(0) = ’0’)) then
84 n_next <= ’0’ & n(15 downto 1);
85 gcd <= (others => ’0’);
86 if ((m = "0000000000000000") or (n = "0000000000000000"))
87 then
88 done_next <= ’1’;
89 else
90 done_next <= ’0’;
91 end if;
92 state_next <= s1;
93 elsif ((m(0) = ’0’) and (n(0) = ’1’)) then
94 m_next <= ’0’ & m(15 downto 1);
95 gcd <= (others => ’0’);
96 if ((m = "0000000000000000") or (n = "0000000000000000"))
97 then
98 done_next <= ’1’;
99 else

100 done_next <= ’0’;
101 end if;
102 state_next <= s1;
103 else
104 n_next <= ’0’ & n(15 downto 1);

124 4 Finite State Machine with Datapath

105 m_next <= ’0’ & m(15 downto 1);
106 factor_next <= conv_std_logic_vector(unsigned(factor) +
107 conv_unsigned(1,16),16);
108 gcd <= (others => ’0’);
109 if ((m = "0000000000000000") or (n = "0000000000000000"))
110 then
111 done_next <= ’1’;
112 else
113 done_next <= ’0’;
114 end if;
115 state_next <= s1;
116 end if;
117
118 when s2 =>
119 gcd <= (others => ’0’);
120 if ((m = "0000000000000000") or (n = "0000000000000000"))
121 then
122 done_next <= ’1’;
123 else
124 done_next <= ’0’;
125 end if;
126 state_next<= s2;
127
128 when others =>
129 state_next <= s0;
130
131 end case;
132 end process;
133 end behavior;

4.7.4 GCD in SystemC

Listing 4.23 Binary GCD in SystemC
1 #include "systemc.h"
2
3 enum statetype {s0, s1, s2};
4
5 SC_MODULE(gcd_fsmd) {
6 sc_in <bool> clk;
7 sc_in <bool> rst;
8 sc_in <sc_uint<16> > m_in, n_in;
9 sc_out <sc_uint<16> > gcd;

10
11 sc_signal<statetype> state, state_next;
12 sc_uint<16> m, m_next;
13 sc_uint<16> n, n_next;
14 sc_uint<16> factor,factor_next;
15 sc_uint< 1> done, done_next;
16
17 void update_regs();
18 void eval_logic();
19 SC_CTOR(gcd_fsmd) {

4.7 Language Mapping for FSMD by Example 125

20 SC_METHOD(eval_logic);
21 sensitive << m_in << n_in << state;
22 SC_METHOD(update_regs);
23 sensitive_pos << rst << clk;
24 }
25 };
26
27 void gcd_fsmd::update_regs() {
28 if (rst.read() == 1) {
29 state = s0;
30 m = 0;
31 n = 0;
32 factor = 0;
33 done = 0;
34 } else {
35 state = state_next;
36 m = m_next;
37 n = n_next;
38 factor = factor_next;
39 done = done_next;
40 }
41 }
42
43 void gcd_fsmd::eval_logic() {
44
45 n_next = n;
46 m_next = m;
47 done_next = done;
48 factor_next = factor;
49 gcd = 0;
50
51 switch(state) {
52 case s0:
53 m_next = m_in;
54 n_next = n_in;
55 factor_next = 0;
56 done_next = 0;
57 gcd = 0;
58 state_next = s1;
59 break;
60 case s1:
61 if (done == 1) {
62 gcd = ((m > n) ? m : n) << factor;
63 state_next = s2;
64 } else if (m[0] & n[0]) {
65 m_next = (m >= n) ? m - n : m;
66 n_next = (n > m) ? n - m : n;
67 gcd = 0;
68 done_next = ((m == 0) | (n == 0));
69 state_next = s1;
70 } else if (m[0] & ˜n[0]) {
71 n_next = (n >> 1);
72 gcd = 0;
73 done_next = ((m == 0) | (n == 0));

126 4 Finite State Machine with Datapath

74 state_next = s1;
75 } else if (˜m[0] & n[0]) {
76 m_next = m >> 1;
77 gcd = 0;
78 done_next = ((m == 0) | (n == 0));
79 state_next = s1;
80 } else {
81 n_next = n >> 1;
82 m_next = m >> 1;
83 factor_next= factor + 1;
84 gcd = 0;
85 done_next = ((m == 0) | (n == 0));
86 state_next = s1;
87 }
88 break;
89 case s2:
90 gcd = 0;
91 done_next = ((m == 0) | (n == 0));
92 break;
93 default:
94 state_next = s0;
95 }
96 }

4.8 Summary

In this section, we discussed a synchronous hardware modeling mechanism, con-
sisting of a datapath in combination with an FSM controller. The resulting model
is called FSMD (Finite State Machine with Datapath). An FSMD models datapath
instructions with expressions, and control with a state transition graph. Datapath
expressions are created in terms of register variables and signals (wires). Register
variables are implicitly attached to the global clock signal. Datapath instructions
(groups of datapath expressions) form the connection between the controller and
the datapath.

A given FSMD design is not unique. A given design can be decomposed into
many different, equivalent FSMD descriptions. It is up to the designer to pick a
modeling style that feels natural and that is useful for the problem at hand.

We discussed a modeling syntax for FSMD called GEZEL. GEZEL models
can be simulated and converted into synthesizable VHDL code. However, the
FSMD model is generic and can be captured into any suitable hardware description
language. At the end of the chapter, we showed equivalent synthesizable implemen-
tations of an FSMD in GEZEL, Verilog, VHDL, and SystemC.

4.9 Further Reading

The FSMD model has been recognized as a universal model for RTL modeling
of hardware. See Vahid (2007a) for a textbook that starts from combinational and
sequential logic, and gradually works up to FSMD based design. FSMD were

4.10 Problems 127

popularized by Gajski, and are briefly covered in Gajski et al. (2009). Going back
earlier in time, one can find an excellent development of the FSMD model in Davio,
Deschamps, and Thaysse Davio et al. (1983).

The GEZEL toolset can be downloaded from http://rijndael.ece.vt.
edu/gezel2. Proper FSMD, as defined in this chapter, are race-free. A mathe-
matical proof of this can be found in Schaumont et al. (2006).

There is an ongoing discussion how to improve the productivity of hardware
design. Some researchers believe that high-level synthesis, the automatic genera-
tion of RTL starting from high-level descriptions, is unavoidable. Several academic
and commercial design tools that support such high level synthesis are described in
Gajski et al. (2009). See Gupta et al. (2004) for a detailed description of one such
an environment. On the other hand, the nature of hardware design is such that de-
signers like to think about clock cycles when they think about architecture. Hence,
abstraction should be applied with utmost care. See Hoe (2000) and Qin (2004) for
examples for such carefully abstracted hardware design and modeling paradigms.

4.10 Problems

4.1. Which of the circuits (a, b, c, d) in Fig. 4.9 can be simulated using a cycle-based
simulator?

4.2. Design a high-speed sorter for four 32-bit registers (Fig. 4.10). Show how to
create a sorting network for four numbers, using only simple two-input comparator
modules. The comparator modules are built with combinational logic and have a
constant critical path. Optimize the critical path of the overall design and create a
maximally parallel implementation. You may make use of comparator modules, reg-
isters, and wiring. The input of the sorter comes from four registers marked ‘input’,
the output of the sorter needs to be stored in four registers marked ‘output’.

Fig. 4.9 Sample circuits
for Problem 4.1

OUTPUT

OUTPUT

a

b

OUTPUT

OUTPUT

c

d

128 4 Finite State Machine with Datapath

Input

a b

comparator
module

Sorting network

Output
max(a,b) min(a,b)

Fig. 4.10 Sorter design for Problem 4.2

Fig. 4.11 Pattern recognizer
for Problem 4.3 In Out

FSM

In 1 0 1 1 0 0 1 1 1 0 1 0 1 ...
Out 0 1 0 0 1 0 1 0 0 1 0 1 0 ...

4.3. Design a FSM that recognizes the pattern ‘10’ and the pattern ‘01’ in an infinite
stream of bits. Make sure that the machine recognizes only one pattern at a time, and
that it is not triggered by overlapping patterns. Figure 4.11 shows an example of the
behavior of this FSM.

1. Draw a Mealy-type state diagram of this FSM.
2. Draw an RTL schematic of an implementation for this machine. Draw your im-

plementation using registers and logic gates (AND, OR, NOT, and XOR). Make
your implementation as compact as possible.

4.4. Design a Mealy-type FSM that recognizes either of the following two patterns:
1101 or 0111. The patterns should be read left to right (i.e., the leftmost bit is seen
first), and they are to be matched into a stream of single bits.

4.5. Design an FSMD to divide natural numbers. The dividend and the divider each
have 8 bits of resolution. The quotient must have 10 bits of resolution, and the
remainder must have 8 bits of resolution. The divider has the following interface:

dp divider(in x : ns(8);
in y : ns(8);
in start : ns(1);
out q : ns(10);
out r : ns(8);
out done : ns(1)) {

// Define the internals of the FSMD here ..

}

4.10 Problems 129

Given a dividend X and a divider Y , the divider will evaluate a quotient Q on p

bits of precision and a remainder R such that

X:2p D Q:Y CR (4.1)

For example, if pD 8, X D 12, Y D 15, then a solution for Q and R is QD 204

and RD 12 because 12 . 28D 204 . 15C 12.
Your implementation must obtain the quotient and remainder within 32 clock

cycles. To implement the divider, you can use the restoring division algorithm as
follows. The basic operation evaluates a single bit of the quotient according to the
following pseudocode:

basic_divider(input a, b;
output q, r) {

z := 2 * a - b;
if (z < 0) then

q = 0;
r = 2 * a;

else
q = 1;
r = z;

}

To evaluate the quotient over p bits, you repeat the basic 1-bit divider p times as
follows:

r(0) = X;
for i is 1 to p do
basic_divider(r(i-1), Y, q(i), r(i));

Each iteration creates one bit of the quotient, and the last iteration returns the
remainder. For example, if p D 8, then Q D q.0/; q.1/; q.2/; :::; q.7/ and R D
r.8/.

Create a hardware implementation which evaluates one bit of the quotient per
clock cycle.

4.6. How many flip-flops and how many adders do you need to implement the
FSMD description in Listing 4.24? Count each single bit in each register, and as-
sume binary encoding of the FSM state, to determine the flip-flop count.

4.7. FSMD models provide modeling of control (conditional execution) as well as
data processing in hardware. Therefore, it is easy to mimic the behavior of a C
program and build an FSMD that reflects the same control flow as the C program.
Write an FSMD model for the following C function. Assume that the arguments
of the function are the inputs of the FSMD, and that the result of the function is
the FSMD output. Develop your model so that you need no more than a single
multiplier.

130 4 Finite State Machine with Datapath

Listing 4.24 Program for Problem 4.5
1 dp mydp(in i : ns(5); out o : ns(5)) {
2 reg a1, a2, a3, a4 : ns(5);
3 sfg f1 { a1 = i;
4 a2 = 0;
5 a3 = 0;
6 a4 = 0; }
7 sfg f2 { a1 = a2 ? (a1 + a3) : (a1 + a4); }
8 sfg f3 { a3 = a3 + 1; }
9 sfg f4 { a4 = a4 + 1; }

10 sfg f5 { a2 = a2 + a1; }
11 } fsm mydp_ctl(mydp) {
12 initial s0;
13 state s0, s1, s2;
14 @s0 (f1) -> s1;
15 @s1 if (a1) then (f2, f3) -> s2;
16 else (f4) -> s1;
17 @s2 if (a3) then (f2) -> s1;
18 else (f5) -> s2;
19 }

Listing 4.25 Program for Problem 4.6
1 int filter(int a) {
2 static int taps[5];
3 int c[] = {-1, 5, 10, 5, -1};
4 int r;
5
6 for (i=0; i<4; i++)
7 taps[i] = taps[i+1];
8 taps[4] = a;
9 r = 0;

10 for (i=0; i<5; i++)
11 r = r + taps[i] * c[i];
12
13 return r;
14 }

To model an array of constants in GEZEL, you can make use of the lookup table
construct as follows:

dp lookup_example {

lookup T : ns(8) = {5, 4, 3, 2, 1, 1, 1, 1};

sig a, b : ns(3);

always {
a = 3;
b = T[a]; // this assigns the fourth element of T to b

}
}

4.10 Problems 131

Listing 4.26 Program for Problem 6.8
1 dp D(in fp, i1, i2 : ns(4); out mul: ns(4);
2 in mul_st: ns(1);
3 out mul_done : ns(1)) {
4 reg acc, sr2, fpr, r1 : ns(4);
5 reg mul_st_cmd : ns(1);
6 sfg ini { // initialization
7 fpr = fp;
8 r1 = i1;
9 sr2 = i2;

10 acc = 0;
11 mul_st_cmd = mul_st;
12 }
13 sfg calc { // calculation
14 sr2 = (sr2 << 1);
15 acc = (acc << 1) ˆ (r1 & (tc(1)) sr2[3]) // add a if b=1
16 ˆ (fpr & (tc(1)) acc[3]); // reduction if carry
17 }
18 sfg omul { // output inactive
19 mul = acc;
20 mul_done = 1;
21 $display("done. mul=", mul);
22 }
23 sfg noout { // output active
24 mul = 0;
25 mul_done = 0;
26 }
27 }
28 fsm F(D) {
29 state s1, s2, s3, s4, s5;
30 initial s0;
31 @s0 (ini, noout) -> s1;
32 @s1 if (mul_st_cmd) then (calc, noout) -> s2;
33 else (ini, noout) -> s1;
34 @s2 (calc, noout) -> s3;
35 @s3 (calc, noout) -> s4;
36 @s4 (calc, noout) -> s5;
37 @s5 (ini, omul) -> s1;
38 }

4.8. Repeat problem 4.6, but develop your FSMD so that the entire function com-
pletes in a single clock cycle.

4.9. Write the FSMD of Listing 4.26 in a single always block. This FSMD
presents a Galois Field multiplier.

4.10. In this chapter, we discussed how FSM can be expressed as datapath expres-
sions (See Sect. 4.4.2 and Problem 4.8). It is also possible to go the opposite way,
and model datapaths in terms of FSMs.

1. Write an FSM for the datapath shown in Listing 4.27.
2. Discuss why it is a bad idea to model datapath expressions as FSM, while it can

still be useful to model FSM as datapath expression.

132 4 Finite State Machine with Datapath

Listing 4.27 Program for Problem 4.9
1 dp tester(out o: ns(2)) {
2 reg a1 : ns(1);
3 reg a2 : ns(2);
4 always {
5 a1 = a1 + 1;
6 a2 = a2 + a1;
7 o = a2;
8 }
9 }

Chapter 5
Microprogrammed Architectures

Abstract The Finite State Machine controller in an FSMD is nonprogrammable.
By substituting this FSM for a programmable controller, you obtain a micropro-
grammed architecture. The advantage of a programmable architecture is obviously
the flexibility to implement multiple functionalities. This chapter discusses the de-
sign of microprogrammed controllers and datapaths, and it explains the advantages
and limitations of microprogramming. In particular, you will see that complex,
pipelined datapaths are not easy to handle because of the bare-bones approach to
control.

5.1 Limitations of Finite State Machines

Finite State Machines are well suited to capture the control flow of algorithms, and
to support their decision-making. Recall for example how FSM state transition dia-
grams resemble control dependency graphs (CDG). However, FSM are no universal
solution for control modeling. They suffer from several modeling weaknesses,
especially when dealing with complex control requirements.

A key issue is that FSMs are flat. They don’t express any hierarchy. A flat control
model is like a C program where the entire program logic is captured in a single
function. Real systems do not use a flat control model: they need a control hierarchy.
Of course, there have been several proposals for hierarchical modeling extensions
for FSMs, such as the Statecharts from David Harel. Currently, none of these are
widely used for hardware design. Many of the limitations of FSMs stem from their
lack of hierarchy.

5.1.1 State Explosion

A flat FSM suffers from state explosion, which occurs when multiple independent
activities interfere in a single model. Assume that an FSM has to capture two inde-
pendent activities, each of which can be in one of three states. The resulting FSM,

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 5, c� Springer Science+Business Media, LLC 2010

133

134 5 Microprogrammed Architectures

A

B

1

2g

h

A1

B2

C2

h !h

g

h & !g

!h & !g

FSM1

FSM1 X FSM2

C 3!g

!h
C3

A2
A3

B3 C1

B1
!g

h & g

!h g

!g

!h & g

FSM2

Fig. 5.1 State explosion in FSM when creating a product state-machine

called a product state-machine, needs nine states to represent the overall model. The
product state-machine needs to keep track of the current state from two independent
state machines at the same time. Due to conditional state transitions, one state ma-
chine can remain in a single state while the other state machine proceeds to the next
state. This results in multiple intermediate states such as A1, A2, and A3. Figure 5.1
illustrates the effect of state explosion in a product state-machine. Two state ma-
chines, FSM1 and FSM2, need to be merged into a single product state-machine
FSM1xFSM2. In order to represent all individual states, 9 states are needed in total.
The resulting number of state transitions (and state transition conditions) is even
higher. Indeed, if we have n independent state transition conditions in the individual
state machines, the resulting product state-machine can have up to 2n state transition
conditions.

5.1.2 Exception Handling

A second issue with a flat FSM is the problematic handling of exceptions. An excep-
tion is a condition which may cause an immediate state transition, regardless of the
current state of the finite state machine. The purpose of an exception is to abort the
regular flow of control and to transfer the control to a dedicated exception-handler.
An exception may have internal causes, such as an overflow condition in a datapath,
or external causes, such as an interrupt. Regardless of the cause, the effect of an
exception on a finite state machine model is dramatic: an additional state transition
needs to be added to every state of the finite state machine. For example, assume
that the product state-machine in Fig. 5.1 needs to include an exception input called

5.1 Limitations of Finite State Machines 135

Fig. 5.2 Adding a single
global exception deteriorates
the readability of the FSM
significantly

A1

B2

C2
C3

h & !exc !h & !exc

g & !exc

h & !g & !exc

h & g & !exc

!h & !g & !exc

exc
exc

exc exc

exc
exc

exc

exc

A2
A3

B3 C1

B1
!g & !exc

!h & !exc g & !exc

!g & !exc

!h & g

!exc

!exc

exc, and that the assertion of that input requires immediate transition to state A1.
The resulting FSM, shown in Fig. 5.2, shows how exceptions degrade the clarity of
the FSM state transition graph.

5.1.3 Runtime Flexibility

Finally, and perhaps the biggest issue from the viewpoint of hardware–software
codesign, a finite state machine is a nonflexible model. Once the states and state
transitions are defined, the control flow of the FSM is fixed. The hardware imple-
mentation of a FSM leads to a hardwired controller that cannot be modified after
implementation.

As a result, designers have proposed improved techniques for specifying and
implementing control, in order to deal with flexibility, exceptions, and hierarchi-
cal modeling. Microprogramming is one such a technique. Originally introduced
in the 1950s by Maurice Wilkes as a means to create a programmable instruction-
set for mainframe computers, it became very popular in the 1970s and throughout
the 1980s. Microprogramming was found to be very useful to develop complex mi-
croprocessors with flexible instruction-sets. Currently (2008), microprogramming
is often ignored because of the extreme polarization between hardware and soft-
ware. Mainstream design has evolved into an activity where flexibility is almost
always implemented on microprocessors, in software, while dedicated and hard-
coded design is implemented in hardware. However, newer architectures, such as
FPGAs and ASIPs, suggest that flexibility is not the exclusive domain of software.

136 5 Microprogrammed Architectures

In this chapter, we will investigate the microprogramming technique and learn how
it can be used to provide flexibility to hardware circuits while maintaining full
customizability.

5.2 Microprogrammed Control

Figure 5.3 shows a microprogrammed machine next to an FSMD. The fundamental
idea in microprogramming is to replace the next-state logic of the finite state-
machine with a programmable memory, called the control store. The control store
holds microinstructions, and is addressed using a register called CSAR (Control
Store Address Register). The CSAR is equivalent to a program counter in micro-
processors. The next-value of CSAR is determined by the next-address logic, using
the current value of CSAR, the current microinstruction and the value of status flags
evaluated by the datapath. The default next-value of the CSAR corresponds to the
previous CSAR value incremented by one. This way, the control store will return a
stream of microinstructions from sequential memory locations. However, the next-
address logic can also implement conditional jumps or immediate jumps.

Thus, the next-address logic, the CSAR, and the control store implement the
equivalent of an instruction-fetch cycle in a microprocessor. In the design of Fig. 5.3,
each microinstruction takes a single clock cycle to execute. Within a single clock
cycle, the following activities occur:

� The CSAR provides an address to the control store which retrieves a microin-
struction. The microinstruction is split into two parts: a command-field and a
jump-field. The command-field serves as a command for the datapath. The jump-
field goes to the next-address logic.

� The datapath executes the command encoded in the microinstruction, and returns
status information to the next-address logic.

Next-
State
Logic

status

state reg

Control
Store

CSAR

Next-
Address

Logicstatus

Micro-
instruction

Jump field

Datapath Datapath
Command field

FSMD Micro-programmed Machine

Fig. 5.3 In contrast to FSM-based control, microprogramming uses a flexible control scheme

5.3 Microinstruction Encoding 137

� The next-address logic combines datapath states, microinstruction jump-field,
and status returned from the datapath. The next-address logic will eventually up-
date the CSAR. Consequently, the critical path of the microprogrammed machine
in Fig. 5.3 is determined by the combined logic delay through the control store,
the next-address logic, and the datapath.

While the microprogrammed controller is more complicated than the finite state
machine, it also addresses the problems of FSMs very effectively.

1. The microprogrammed controller scales well with complexity. For example, a
12-bit CSAR will allow a control store with 4,096 locations, and therefore a
microprogram with 4,096 steps. An equivalent FSM diagram with 4,096 states,
on the other hand, would be horrible to draw!

2. A microprogrammed machine deals very well with control hierarchies. With
small modifications to the microprogrammed machine in Fig. 5.3, we can save
the CSAR in a separate register or on a stack memory, and later restore it. This
requires the definition of a separate microinstruction to call a subroutine as well
as a second microinstruction to return from it.

3. A microprogrammed machine can deal efficiently with exception handling, since
global exceptions are managed directly by the next-address logic, independently
from the control store. For example, the presence of a global exception can
feed a hard-coded value into the CSAR, immediately transferring the micro-
programmed machine to an exception-handling routine. Exception handling in
a microprogrammed machine is similar to a jump instruction, but it does not af-
fect every instruction of a microprogram in the same way as it affects every state
of a finite state machine.

4. Finally, microprograms are flexible and very easy to change after the micropro-
grammed machine is designed. Simply changing the contents of the control store
is sufficient to change the program of the machine. In a microprogrammed ma-
chine, there is a clear distinction between the architecture of the machine and the
functionality implemented using that architecture.

5.3 Microinstruction Encoding

An interesting design problem that is part of the microprogrammed design is the
format of microinstructions in the control store. In this section, we will discuss the
design trade-offs that determine the microinstruction format.

5.3.1 Jump Field

We start with an example of microinstruction encoding, shown in Fig. 5.4. This is
a 32-bit microinstruction word, with 16 bits reserved for the datapath, and 16 bits

138 5 Microprogrammed Architectures

32 bits

0000

0001

0010

1010

0100

CSAR = CSAR + 1

CSAR = address

CSAR = cf ? address : CSAR + 1

CSAR = cf ? CSAR + 1 : address

CSAR = zf ? address : CSAR + 1

Default

Jump

Jump if carry

Jump if no carry

Jump if zero

next

Jump if not zero

CSAR

Control
Store

Next
Address

Logic

Datapath

Next
CSAR

next + address

micro-
instruction

flagsdatapath
command

datapath command next address

Command field Jump field

1100 CSAR = zf ? CSAR + 1 : address

cf + zf

Fig. 5.4 Sample format for a 32-bit microinstruction word

reserved for the next-address logic. Let us first consider the part for the next-address
logic. The address field holds an absolute target address, pointing to a location
in the control store. In this case, the address is 12 bit, which means that this mi-
croinstruction format would be suited for a control store with 4,096 locations. The
next field encodes the operation that will lead to the next value of CSAR. The
default operation is, as discussed earlier, to increment CSAR. For such instructions,
the address field remains unused. When next has values different from the default
one, various jump instructions can be encoded. An absolute jump will transfer the
value of the address field into CSAR. A conditional jump will use the value of a
flag to conditionally update the CSAR or else increment it. Obviously, the format as
shown is quite bulky and may consume a large amount of storage. For example, the
address field is only used for jump instructions. In an average micro-processor
program, about 1 instruction out of 5 is a jump. Therefore, if the microprogram con-
tains only a few jump instructions, then the storage for the address field is wasted. To
avoid this, we will need to optimize the microinstruction format. For example, when
microinstructions are no jumps, then the bits used for the address field could be
given a different purpose.

5.3 Microinstruction Encoding 139

5.3.2 Command Field

The design of the datapath command format reveals another interesting trade-off:
we can either opt for a very wide microinstruction word, or else we can prefer a
narrow microinstruction word. A wide microinstruction word allows each control
bit of the datapath to be stored separately. A narrow microinstruction word, on the
other hand, will require the creation of “symbolic instructions”, which are encoded
groups of control-bits for the datapath. The FSMD model relies on such symbolic
instructions. Each of the above approaches has a specific name. Horizontal microin-
structions use no encoding at all. They represent each control bit in the datapath with
a separate bit in the microinstruction format. Vertical microinstructions on the other
hand encode the control bits for the datapath as much as possible. A few bits of the
microinstruction can define the value of many more control bits in the datapath.

Figure 5.5 demonstrates an example of vertical and horizontal microinstructions
in the datapath. We wish to create a microprogrammed machine with three instruc-
tions on a single register a. The three instructions do one of the following: double the
value in a, decrement the value in a, or initialize the value in a. The datapath shown
on the bottom of Fig. 5.5 contains two multiplexers and a programmable adder/sub-
tractor. It can be easily verified that each of the instructions enumerated above can
be implemented as a combination of control bit values for each multiplexer and for
the adder/subtractor. The controller on top shows two possible encodings for the
three instructions: a horizontal encoding and a vertical encoding.

Vertical
Microcode

Horizontal
MicrocodeMicro-instruction

a = 2 * a

a = a –1

a = IN

000

110

001

00

10

01

Decoder

Micro-Programmed
Controller

a

+ / –

IN

1 1

0

1

0

Datapath

sel1 sel2 alu

Fig. 5.5 Example of vertical versus horizontal microprogramming

140 5 Microprogrammed Architectures

� In the case of horizontal microcode, the control store will include each of the
control bits in the datapath as a bit in the microinstruction word. Hence, in this
case, the encoding of the instructions reflects exactly the required setting of dat-
apath elements for each microinstruction.

� In the case of vertical microcode, the microinstructions will be encoded. Since
there are three different instructions, we can implement this machine with a two-
bit microinstruction word. To generate the control bits for the datapath, we will
have to decode each of the microinstruction words into local control signals on
the datapath.

We can describe the design trade-off between horizontal and vertical micro-
programs as follows: Vertical microprograms have a better code density, which
is beneficial for the size of the control store. For the example in Fig. 5.5, the
vertically-encoded version of the microprogram will be only 2/3 of the size of the
horizontally-encoded version. On the other hand, vertical microprograms use an ad-
ditional level of encoding, so that each microinstruction needs to be decoded before
it can drive the control bits of the datapath. Thus, the machine with the vertically
encoded microprogram may have a longer critical path.

Obviously, the choice between a vertical and horizontal encoding needs to be
made carefully. In practice, designers use a combination of vertical and horizon-
tal encoding concepts so that the resulting digital structure is compact yet efficient.
Consider for example the value of the next field of the microinstruction word in
Fig. 5.4. There are six different types of jump instructions, which would imply that
a vertical microinstruction would need no more than three bits to encode these six
jumps. Yet, four bits have been used, indicating that there is some redundancy left.
The encoding was chosen to simplify the design of the next-address logic, which is
shown in Fig. 5.6. Another reason to leave “open room” in the encoding of microin-
structions is to allow future upgrades. For example, in the design in Fig. 5.6, it is
quite easy to add an additional conditional jump that uses an arbitrary combination
of cf and zf.

CSAR = CSAR + 1;
CSAR = Address;
CSAR = cf ? Address : CSAR + 1;
CSAR = cf ? CSAR + 1 : Address;
CSAR = zf ? Address : CSAR + 1;

0000
0001
0010
1010
0100

cf
zf

inv

jmp

next

CSAR = zf ? CSAR + 1 : Address; CSAR
Address

CSAR + 1

cf

zf
inv

jmp

0000

Fig. 5.6 Example of vertical versus horizontal microprogramming

5.4 The Microprogrammed Datapath 141

5.4 The Microprogrammed Datapath

The datapath of a microprogrammed machine consists of three elements: compu-
tation units, storage, and communication busses. Each of these may contribute a
few control bits to the microinstruction word. For example, multi-function compu-
tation units have selection bits that determine their specific function, storage units
have address bits and read/write command bits, and communication busses have
source/destination control bits. The datapath may also generate condition flags for
the microprogrammed controller. Typically, these will be generated by the compu-
tation units.

5.4.1 Datapath Architecture

Figure 5.7 illustrates a microprogrammed controller with a datapath attached. The
datapath includes an ALU with shifter unit, a register file with 8 entries, an accumu-
lator register, and an input port.

The microinstruction word is shown on top of Fig. 5.7 and contains 6 fields. Two
fields, Nxt and Address, are used by the microprogrammed controller. The other
are used by the datapath. The type of encoding is mixed horizontal/vertical: the
overall machine uses a horizontal encoding: each module of the machine is con-
trolled independently. The submodules within the machine on the other hand use a
vertical encoding. For example, the ALU field contains 4 bits. In this case, the ALU
component in the datapath will execute up to 16 different commands.

The machine completes a single instruction per clock cycle. The ALU combines
an operand from the accumulator register with an operand from the register file
or the input port. The result of the operation is returned to the register file or the

unused

Register
File

Address NxtALU ShifterSBUSDest

Control
Store

CSAR

Next-
Address

Logic

Input

ACC

Shift

flags

AddressDest NxtShifterALUSBUS

Fig. 5.7 A microprogrammed datapath

142 5 Microprogrammed Architectures

accumulator register. The communication used by datapath operations is controlled
by two fields in the microinstruction word. The SBUS field and the Dest field indi-
cate the source and destination, respectively.

The Shifter module also generates flags, which are used by the microprogrammed
controller to implement conditional jumps. Two flags are created: a zero-flag, which
is high (1) when the output of the shifter is all-zero, and a carry-flag, which contains
the bit shifted-out at the most-significant position.

5.4.2 Writing Microprograms

Table 5.1 illustrates the encoding used by each module of the design from Fig. 5.7.
A microinstruction can be formed by selecting a module function for each module
of the microprogrammed machine, including a next-address for the Address field.
When a field remains unused during a particular instruction, a don’t care value can
be chosen. The don’t care value should be chosen so that unwanted state changes in
the datapath are avoided.

For example, an instruction to copy register R2 into the accumulator register
ACC would be formed as follows: The instruction should read out register R2 from
the register file, pass the register contents over the SBus, through the ALU and the
shifter, and write the result in the ACC register. This observation allows to determine
the value of each field in the microinstruction.

� The SBus needs to carry the value of R2. Using Table 5.1 we find SBUS equals
0010.

� The ALU needs to pass the SBus input to the output based on Table 5.1, ALU
must equal 0001.

� The shifter passes the ALU output unmodified, hence Shiftermust equal 111.
� The output of the shifter is used to update the accumulator register, so the Dest

field equals 1000.
� Assuming that no jump or control transfer is executed by this instruction, the

next microinstruction will simply be one beyond the current CSAR location. This
implies that Nxt should equal 0000 and Address is a don’t-care, for example
all-zeroes.

� Finally, we can find the overall microinstruction code by putting all instruction
fields together. Figure 5.8 illustrates this process. We conclude that a microin-
struction to copy R2 into ACC can be encoded as 0x10F80000 in the control
store.

Writing a microprogram thus consists of formulating the desired behavior as a
sequence of register transfers, and next encoding these register transfers as microin-
struction fields. Higher level constructs, such as loops and if-then-else statements,
can be expressed as a combination (or sequence) of register transfers. While this
makes microprogramming look like a tedious process, keep in mind that this also
offers the programmer full control over the hardware at every clock cycle.

5.4 The Microprogrammed Datapath 143

Table 5.1 Microinstruction encoding of the example machine

Field Width Encoding

SBUS 4 Selects the operand that will drive the S-Bus
0000 R0 0101 R5
0001 R1 0110 R6
0010 R2 0111 R7
0011 R3 1000 Input
0100 R4 1001 Address/Constant

ALU 4 Selects the operation performed by the ALU
0000 ACC 0110 ACC — S-Bus
0001 S-Bus 0111 not S-Bus
0010 ACC C SBus 1000 ACC C 1
0011 ACC � SBus 1001 SBus � 1
0100 SBus � ACC 1010 0
0101 ACC & S-Bus 1011 1

Shifter 3 Selects the function of the programmable shifter
000 logical SHL(ALU) 100 arith SHL(ALU)
001 logical SHR(ALU) 101 arith SHR(ALU)
010 rotate left ALU 111 ALU
011 rotate right ALU

Dest 4 Selects the target that will store S-Bus
0000 R0 0101 R5
0001 R1 0110 R6
0010 R2 0111 R7
0011 R3 1000 ACC
0100 R4 1111 unconnected

Nxt 4 Selects next-value for CSAR
0000 CSAR C 1 1010 cf ? CSAR C 1 : Address
0001 Address 0100 zf ? Address : CSAR C 1
0010 cf ? Address : CSAR C 1 1100 zf ? CSAR C 1 : Address

As an example, let us develop a microprogram that reads two numbers from the
input port and that evaluates their greatest common divisor (GCD) using Euclid’s
algorithm. The first step is to develop a microprogram in terms of register transfers.
A possible approach is shown in Listing 5.1. Lines 2 and 3 in this program read in
two values from the input port and store these values in registers R0 and ACC. At
the end of the program, the resulting GCD will be available in either ACC or R0,
and the program will continue until both values are equal. The stop test is imple-
mented in line 4, using a subtraction of two registers and a conditional jump based
on the zero-flag. Assuming both registers contain different values, the program will
continue to subtract the largest register from the smallest one. This requires to find
which of R0 and ACC is bigger, and it is implemented with a conditional jump in
line 5. The bigger-than test is implemented using a subtraction, a left-shift, and a
test on the resulting carry-flag. If the carry-flag is set, then the most-significant bit
of the subtraction would be one, indicating a negative result in two’s complement

144 5 Microprogrammed Architectures

ACC <– R2

SBUS
0010

ALU
0001

Shifter
111

Nxt
0000

Dest
1000

Address
000000000000

RT-level
Instruction

Micro-Instruction
Field Encoding

Micro-Instruction
Formation

{0,0010,0001,111,1000,0000,000000000000}

{0001,0000,1111,1000,0000,0000,0000,0000}

0 × 10F80000
Micro-Instruction

Encoding

Fig. 5.8 Forming microinstructions from register-transfer instructions

Listing 5.1 Micro-program to evaluate a GCD
1 ; Command Field || Jump Field
2 IN -> R0
3 IN -> ACC
4 Lcheck: (R0 - ACC) || JUMP_IF_Z Ldone
5 (R0 - ACC) << 1 || JUMP_IF_C LSmall
6 R0 - ACC -> R0 || JUMP Lcheck
7 Lsmall: ACC - R0 -> ACC || JUMP Lcheck
8 Ldone: JUMP Ldone

logic. This conditional jump-if-carry will be taken if R0 is smaller than ACC. The
combination of lines 5, 6, and 7 shows how an if-then-else statement can be created
using multiple conditional and unconditional jump instructions. When the program
is complete, in line 8, it iterates in an infinite loop. Depending on how this micropro-
gram is integrated into a bigger program, this infinite loop would have to be replaced
with an appropriate control transfer to the next task.

5.5 Implementing a Microprogrammed Machine

In this section, we discuss a sample implementation of a microprogrammed machine
in the GEZEL language. This can be used as a template for other implementations.

5.5.1 Microinstruction Word Definition

A convenient starting point in the design of a microprogrammed machine is the
definition of the microinstruction. This includes the allocation of microinstruction
control bits and the definition of the meaning of relevant bit-patterns.

5.5 Implementing a Microprogrammed Machine 145

The individual control fields are defined as subvectors of the microinstruction.
Listing 5.2 shows the GEZEL implementation of the microprogrammed design
discussed in the previous Section. The possible values for each microinstruction
field are shown in Lines 5–65. The use of C macros simplifies the writing of
microprograms.

The formation of a single microinstruction is done using a C macro as well,
shown in Lines 68–75. Lines 78–128 show the microprogrammed controller, which
includes a control store with a microprogram and the next-address CSAR logic. The
control store is a lookup table with a sequence of microinstructions (lines 85–100).
On line 110, a microinstruction is fetched from the control store, and broken down
into individual fields which form the output of the microprogrammed controller
(lines 110–117). The next-address logic uses the next-address control field to find a
new value for CSAR each clock cycle (lines 120–126).

The microprogrammed machine includes several datapaths, including a register
file (lines 130–161), an ALU (lines 163–185), a shifter (lines 187–211). Each of the
datapaths is crafted along a similar principle: based on the control field input, the
data-input is transformed into a corresponding data-output. The decoding process
of control fields is visible as a sequence of ternary selection-operators.

The top-level cell for the microprogrammed machine is contained in lines 213–
245. The top-level includes the controller, a register file, an ALU, and a shifter. The
top-level module also defines a data-input port and a data-output port, and each has
a strobe control signal that indicates a data-transfer. The strobe signals are gener-
ated by the top-level module based decoding of microinstruction fields. The input
strobe is generated when the SBUS control field indicates that the SBUS will be
reading an external input. The output strobe is generated by a separate, dedicated
microinstruction bit.

A simple testbench for the top-level cell is shown on lines 247–266. The test-
bench feeds in a sequence of data to the microprogrammed machine, and prints out
each number appearing at the data output port. The microprogram for this machine
evaluates the GCD of each tuple in the list of numbers shown on line 255.

Listing 5.2 Micro-programmed controller in GEZEL
1 // wordlength in the datapath
2 #define WLEN 16

3
4 /* encoding for data output */

5 #define O_NIL 0 /* OT <- 0 */

6 #define O_WR 1 /* OT <- SBUS */

7
8 /* encoding for SBUS multiplexer */

9 #define SBUS_R0 0 /* SBUS <- R0 */

10 #define SBUS_R1 1 /* SBUS <- R1 */

11 #define SBUS_R2 2 /* SBUS <- R2 */

12 #define SBUS_R3 3 /* SBUS <- R3 */

13 #define SBUS_R4 4 /* SBUS <- R4 */

14 #define SBUS_R5 5 /* SBUS <- R5 */

15 #define SBUS_R6 6 /* SBUS <- R6 */

16 #define SBUS_R7 7 /* SBUS <- R7 */

146 5 Microprogrammed Architectures

17 #define SBUS_IN 8 /* SBUS <- IN */

18 #define SBUS_X SBUS_R0 /* don’t care */

19
20 /* encoding for ALU */

21 #define ALU_ACC 0 /* ALU <- ACC */

22 #define ALU_PASS 1 /* ALU <- SBUS */

23 #define ALU_ADD 2 /* ALU <- ACC + SBUS */

24 #define ALU_SUBA 3 /* ALU <- ACC - SBUS */

25 #define ALU_SUBS 4 /* ALU <- SBUS - ACC */

26 #define ALU_AND 5 /* ALU <- ACC and SBUS */

27 #define ALU_OR 6 /* ALU <- ACC or SBUS */

28 #define ALU_NOT 7 /* ALU <- not SBUS */

29 #define ALU_INCS 8 /* ALU <- ACC + 1 */

30 #define ALU_INCA 9 /* ALU <- SBUS - 1 */

31 #define ALU_CLR 10 /* ALU <- 0 */

32 #define ALU_SET 11 /* ALU <- 1 */

33 #define ALU_X ALU_ACC /* don’t care */

34
35 /* encoding for shifter */

36 #define SHFT_SHL 1 /* Shifter <- shiftleft(alu) */

37 #define SHFT_SHR 2 /* Shifter <- shiftright(alu) */

38 #define SHFT_ROL 3 /* Shifter <- rotateleft(alu) */

39 #define SHFT_ROR 4 /* Shifter <- rotateright(alu) */

40 #define SHFT_SLA 5 /* Shifter <- shiftleftarithmetical (alu) */

41 #define SHFT_SRA 6 /* Shifter <- shiftrightarithmetical (alu) */

42 #define SHFT_NIL 7 /* Shifter <- ALU */

43 #define SHFT_X SHFT_NIL /* don’t care */

44
45 /* encoding for result destination */

46 #define DST_R0 0 /* R0 <- Shifter */

47 #define DST_R1 1 /* R1 <- Shifter */

48 #define DST_R2 2 /* R2 <- Shifter */

49 #define DST_R3 3 /* R3 <- Shifter */

50 #define DST_R4 4 /* R4 <- Shifter */

51 #define DST_R5 5 /* R5 <- Shifter */

52 #define DST_R6 6 /* R6 <- Shifter */

53 #define DST_R7 7 /* R7 <- Shifter */

54 #define DST_ACC 8 /* IR <- Shifter */

55 #define DST_NIL 15 /* not connected <- shifter */

56 #define DST_X DST_NIL /* don’t care instruction */

57
58 /* encoding for command field */

59 #define NXT_NXT 0 /* CSAR <- CSAR + 1 */

60 #define NXT_JMP 1 /* CSAR <- Address */

61 #define NXT_JC 2 /* CSAR <- (carry==1)? Address : CSAR + 1 */

62 #define NXT_JNC 10 /* CSAR <- (carry==0)? Address : CSAR + 1 */

63 #define NXT_JZ 4 /* CSAR <- (zero==1) ? Address : CSAR + 1 */

64 #define NXT_JNZ 12 /* CSAR <- (zero==0) ? Address : CSAR + 1 */

65 #define NXT_X NXT_NXT

66
67 /* encoding for the microinstruction word */

68 #define MI(OUT, SBUS, ALU, SHFT, DEST, NXT, ADR) \

69 (OUT << 31) | \

70 (SBUS << 27) | \

5.5 Implementing a Microprogrammed Machine 147

71 (ALU << 23) | \

72 (SHFT << 20) | \

73 (DEST << 16) | \

74 (NXT << 12) | \

75 (ADR)

76
77 dp control(in carry, zero : ns(1);

78 out ctl_ot : ns(1);

79 out ctl_sbus : ns(4);

80 out ctl_alu : ns(4);

81 out ctl_shft : ns(3);

82 out ctl_dest : ns(4)) {

83
84 lookup cstore : ns(32) = {

85 // 0 Lstart: IN -> R0
86 MI(O_NIL, SBUS_IN, ALU_PASS, SHFT_NIL, DST_R0, NXT_NXT, 0),

87 // 1 IN -> ACC
88 MI(O_NIL, SBUS_IN, ALU_PASS, SHFT_NIL, DST_ACC, NXT_NXT, 0),

89 // 2 Lcheck: (R0 - ACC) || JUMP_IF_Z Ldone
90 MI(O_NIL, SBUS_R0, ALU_SUBS, SHFT_NIL, DST_NIL, NXT_JZ, 6),

91 // 3 (R0 - ACC) << 1 || JUMP_IF_C LSmall
92 MI(O_NIL, SBUS_R0, ALU_SUBS, SHFT_SHL, DST_NIL, NXT_JC, 5),

93 // 4 R0 - ACC -> R0 || JUMP Lcheck
94 MI(O_NIL, SBUS_R0, ALU_SUBS, SHFT_NIL, DST_R0, NXT_JMP, 2),

95 // 5 Lsmall: ACC - R0 -> ACC || JUMP Lcheck
96 MI(O_NIL, SBUS_R0, ALU_SUBA, SHFT_NIL, DST_ACC, NXT_JMP, 2),

97 // 6 Ldone: R0 -> OUT || JUMP Lstart

98 MI(O_WR, SBUS_R0, ALU_X, SHFT_X, DST_X, NXT_JMP, 0)

99 };

100
101 reg csar : ns(12);

102 sig mir : ns(32);

103 sig ctl_nxt : ns(4);

104 sig csar_nxt : ns(12);

105 sig ctl_address : ns(12);

106
107 always {

108
109 mir = cstore(csar);

110 ctl_ot = mir[31];

111 ctl_sbus = mir[27:30];

112 ctl_alu = mir[23:26];

113 ctl_shft = mir[20:22];

114 ctl_dest = mir[16:19];

115 ctl_nxt = mir[12:15];

116 ctl_address = mir[0:11];

117
118 csar_nxt = csar + 1;

119 csar = (ctl_nxt == NXT_NXT) ? csar_nxt :

120 (ctl_nxt == NXT_JMP) ? ctl_address :

121 (ctl_nxt == NXT_JC) ? ((carry==1) ? ctl_address : csar_nxt) :

122 (ctl_nxt == NXT_JZ) ? ((zero==1) ? ctl_address : csar_nxt) :

123 (ctl_nxt == NXT_JNC) ? ((carry==0) ? ctl_address : csar_nxt) :

124 (ctl_nxt == NXT_JNZ) ? ((zero==0) ? ctl_address : csar_nxt) :

148 5 Microprogrammed Architectures

125 csar;

126 }

127 }

128
129 dp regfile (in ctl_dest : ns(4);

130 in ctl_sbus : ns(4);

131 in data_in : ns(WLEN);

132 out data_out : ns(WLEN)) {

133 reg r0 : ns(WLEN);

134 reg r1 : ns(WLEN);

135 reg r2 : ns(WLEN);

136 reg r3 : ns(WLEN);

137 reg r4 : ns(WLEN);

138 reg r5 : ns(WLEN);

139 reg r6 : ns(WLEN);

140 reg r7 : ns(WLEN);

141 always {

142 r0 = (ctl_dest == DST_R0) ? data_in : r0;

143 r1 = (ctl_dest == DST_R1) ? data_in : r1;

144 r2 = (ctl_dest == DST_R2) ? data_in : r2;

145 r3 = (ctl_dest == DST_R3) ? data_in : r3;

146 r4 = (ctl_dest == DST_R4) ? data_in : r4;

147 r5 = (ctl_dest == DST_R5) ? data_in : r5;

148 r6 = (ctl_dest == DST_R6) ? data_in : r6;

149 r7 = (ctl_dest == DST_R7) ? data_in : r7;

150 data_out = (ctl_sbus == SBUS_R0) ? r0 :

151 (ctl_sbus == SBUS_R1) ? r1 :

152 (ctl_sbus == SBUS_R2) ? r2 :

153 (ctl_sbus == SBUS_R3) ? r3 :

154 (ctl_sbus == SBUS_R4) ? r4 :

155 (ctl_sbus == SBUS_R5) ? r5 :

156 (ctl_sbus == SBUS_R6) ? r6 :

157 (ctl_sbus == SBUS_R7) ? r7 :

158 r0;

159 }

160 }

161
162 dp alu (in ctl_dest : ns(4);

163 in ctl_alu : ns(4);

164 in sbus : ns(WLEN);

165 in shift : ns(WLEN);

166 out q : ns(WLEN)) {

167 reg acc : ns(WLEN);

168 always {

169 q = (ctl_alu == ALU_ACC) ? acc :

170 (ctl_alu == ALU_PASS) ? sbus :

171 (ctl_alu == ALU_ADD) ? acc + sbus :

172 (ctl_alu == ALU_SUBA) ? acc - sbus :

173 (ctl_alu == ALU_SUBS) ? sbus - acc :

174 (ctl_alu == ALU_AND) ? acc & sbus :

175 (ctl_alu == ALU_OR) ? acc | sbus :

176 (ctl_alu == ALU_NOT) ? ˜ sbus :

177 (ctl_alu == ALU_INCS) ? sbus + 1 :

178 (ctl_alu == ALU_INCA) ? acc + 1 :

5.5 Implementing a Microprogrammed Machine 149

179 (ctl_alu == ALU_CLR) ? 0 :

180 (ctl_alu == ALU_SET) ? 1 :

181 0;

182 acc = (ctl_dest == DST_ACC) ? shift : acc;

183 }

184 }

185
186 dp shifter(in ctl : ns(3);

187 out zero : ns(1);

188 out cy : ns(1);

189 in shft_in : ns(WLEN);

190 out so : ns(WLEN)) {

191 always {

192 so = (ctl == SHFT_NIL) ? shft_in :

193 (ctl == SHFT_SHL) ? (ns(WLEN)) (shft_in << 1) :

194 (ctl == SHFT_SHR) ? (ns(WLEN)) (shft_in >> 1) :

195 (ctl == SHFT_ROL) ? (ns(WLEN)) (shft_in # shft_in [WLEN-1]) :

196 (ctl == SHFT_ROR) ? (ns(WLEN)) (shft_in[0] # (shft_in >> 1)):

197 (ctl == SHFT_SLA) ? (ns(WLEN)) (shft_in << 1) :

198 (ctl == SHFT_SRA) ? (ns(WLEN)) (((tc(WLEN)) shft_in) >> 1) :

199 0;

200 zero = (shft_out == 0);

201 cy = (ctl == SHFT_NIL) ? 0 :

202 (ctl == SHFT_SHL) ? shft_in[WLEN-1] :

203 (ctl == SHFT_SHR) ? 0 :

204 (ctl == SHFT_ROL) ? shft_in[WLEN-1] :

205 (ctl == SHFT_ROR) ? shft_in[0] :

206 (ctl == SHFT_SLA) ? shft_in[WLEN-1] :

207 (ctl == SHFT_SRA) ? 0 :

208 0;

209 }

210 }

211
212 dp hmm(in din : ns(WLEN); out din_strb : ns(1);

213 out dout : ns(WLEN); out dout_strb : ns(1)) {

214 sig carry, zero : ns(1);

215 sig ctl_ot : ns(1);

216 sig ctl_sbus : ns(4);

217 sig ctl_alu : ns(4);

218 sig ctl_shft : ns(3);

219 sig ctl_acc : ns(1);

220 sig ctl_dest : ns(4);

221
222 sig rf_out, rf_in : ns(WLEN);

223 sig sbus : ns(WLEN);

224 sig alu_in : ns(WLEN);

225 sig alu_out : ns(WLEN);

226 sig shft_in : ns(WLEN);

227 sig shft_out : ns(WLEN);

228
229 use control(carry, zero,

230 ctl_ot, ctl_sbus, ctl_alu, ctl_shft, ctl_dest);

231 use regfile(ctl_dest, ctl_sbus, rf_in, rf_out);

232 use alu (ctl_dest, ctl_alu, sbus, alu_in, alu_out);

150 5 Microprogrammed Architectures

233 use shifter(ctl_shft, zero, carry, shft_in, shft_out);

234
235 always {

236 sbus = (ctl_sbus == SBUS_IN) ? din : rf_out;

237 din_strb = (ctl_sbus == SBUS_IN) ? 1 : 0;

238 dout = sbus;

239 dout_strb = (ctl_ot == O_WR) ? 1 : 0;

240 rf_in = shft_out;

241 alu_in = shft_out;

242 shft_in = alu_out;

243 }

244 }

245
246 dp hmmtest {

247 sig din : ns(WLEN);

248 sig din_strb : ns(1);

249 sig dout : ns(WLEN);

250 sig dout_strb : ns(1);

251 use hmm(din, din_strb, dout, dout_strb);

252
253 reg dcnt : ns(5);

254 lookup stim : ns(WLEN) = { 14, 32, 87, 12, 23, 99, 32, 22};

255
256 always {

257 dcnt = (din_strb) ? dcnt + 1 : dcnt;

258 din = stim(dcnt & 7);

259 $display($cycle, " IO ", din_strb, " ", dout_strb, " ", $dec,

260 din, " ", dout);

261 }

262 }

263
264 system S {

265 hmmtest;

266 }

This design can be simulated with the fdlsim GEZEL simulator. Because of
the C macros included in the source, the program first needs to be processed using
the C preprocessor. The following command line illustrates how to simulate the first
100 cycles of this design.

>cpp -P hmm2.fdl | fdlsim 100

The first few lines of output look as follows:

0 IO 1 0 14 14
1 IO 1 0 32 32
2 IO 0 0 87 14
3 IO 0 0 87 14
4 IO 0 0 87 14
...

The microprogrammed machine reads the numbers 14 and 32 in clock cycle 0
and 1, respectively, and starts the GCD calculation. To find the corresponding GCD,
we look for a “1” in the fourth column (output strobe). Around cycle 21, the first one

5.6 Microprogram Interpreters 151

appears. We can find that GCD(32,14)D2. Note that the testbench proceeds with the
next two inputs in cycle 23 and 24.

18 IO 0 0 87 2
19 IO 0 0 87 2
20 IO 0 0 87 2
21 IO 0 1 87 2
22 IO 1 0 87 87
23 IO 1 0 12 12
24 IO 0 0 23 87

A quick command to filter out the valid outputs during simulation is the
following.

> cpp -P hmm2.fdl | fdlsim 200| awk ‘‘{if ($4 == "1") print $0}’’
21 IO 0 1 87 2
55 IO 0 1 23 3
92 IO 0 1 32 1
117 IO 0 1 14 2
139 IO 0 1 87 2
173 IO 0 1 23 3

The above design illustrates how the FSMD model can be applied to create a
more complex microprogrammed machine. In the following, we show how this can
be used to create programming concepts at even higher levels of abstraction, using
microprogram interpreters.

5.6 Microprogram Interpreters

A microprogram is a highly-optimized sequence of commands for a datapath. This
sequence of register transfers is optimized for parallelism. Writing efficient micro-
programs is not so easy because it requires an in-depth understanding of the machine
architecture. An obvious question is if a programming language, such as a pseudo-
assembly language, would be of help in developing microprograms. Certainly, the
writing process itself could be made more convenient. Tools can generate the con-
tent of the control store automatically. On the other hand, if we want to keep all
the parallelism in the machine visible, the resulting programming language needs to
have a low abstraction level.

A common usage of microprograms is therefore not to encode complete appli-
cations, but instead to serve as interpreters for other programs. An interpreter is a
machine that decodes and executes instruction sequences of an abstract high-level
machine, which we will call the macro-machine. The instructions from the macro-
machine will be implemented in terms of microprograms for a microprogrammed
machine. Such a construct is illustrated in Fig. 5.9, and is called a microprogram
interpreter. We create a microprogram in the form of an infinite loop, which reads a
macro-instruction byte and breaks down a byte in opcode and operand fields. It then
takes specific actions depending on the values of the opcode.

152 5 Microprogrammed Architectures

Fig. 5.9 A microprogram
interpreter implements a more
abstract language

read
input

muladd

opcode = 01 opcode = 00

microprog
for
mul

microprog
for
add

Macro-machine

RA

RB

RC

RD

Registers

Macro-instruction Format

MUL Rx, Ry, Rz
ADD Rx, Ry, Rz

Macro-instructions

Micro-programmed machine

R0

R1

R2

R3

Registers

R4

R5

R6

R7

ACC

Register
Mapping RxOp Ry Rz

00
01 MUL

00 RA
01 RB
10 RC
11 RD

ADD

Fig. 5.10 Programmer’s model for the macro-machine example

We will discuss, by means of an example, how such a macro-machine can be
implemented. Figure 5.10 shows the programmers’ model of the macro-machine.
It is a very simple machine, with four registers RA through RD, and two instruc-
tions for adding and multiplying those registers. The macro-machine will have
the same wordlength as the microprogrammed machine, but it has fewer register
than the original microprogrammed machine. To implement the macro-machine,
we will map the macro-register set directly onto the micro-register set. In this
case, we will map register RA to RD onto register R4 to R7, respectively. This
leaves register R0 to R3, as well as the accumulator, available to implement macro-
instructions. The macro-machine has two instructions: add and mul. Each of
these instructions takes two source operands and generates one destination operand.
The operands are macro-machine registers. Because the micro-machine has to

5.6 Microprogram Interpreters 153

decode the macro-instructions, we also need to choose the instruction-encoding of
the macro-instructions. This is illustrated on the right of Fig. 5.10. Each macro-
instruction is a single byte, with two bits for the macroopcode, and two bits for each
of the macro-instruction operands.

Listing 5.3 shows a sample implementation for each of the ADD and MUL
instructions. We have assumed that single-level subroutines are supported at the
level of the micro-machine. See Problem 5.3 how such a subroutine call can be
implemented in the microprogrammed machine.

The microinterpreter loop, on line 21–29, reads one macro-instruction from the
input, and determines the macro-instruction opcode with a couple of shift instruc-
tions. Depending on the value of the opcode field, the microprogram will then jump
to a routine to implement the appropriate macro-instruction, add or mul.

The implementation of ADD is shown in lines 35–39. The microinstructions use
fixed source operands and a fixed destination operand. Since the macro-instructions
can use one of four possible operand registers, an additional register-move operation
is needed to prepare the microinstruction operands. This is done by the putarg
and getarg subroutines, starting on line 62. The getarg subroutine copies data
from the macro-machine source registers (RA through RD) to the micro-machine
source working registers (R1 and R2). The putarg subroutine moves data from
the micro-machine destination working register R1 back to the destination macro-
machine register (RA through RD).

The implementation of the add instruction starts on line 35. At the start of this
section of code, the accumulator contains the macro-instruction. The accumulator
value is passed on to the getarg routine, which decodes the two source operand
registers and copies them into micro-machine register R1 and R2. Next, the add
macro-instruction performs the addition and stores the result in R1 (line 36–39). The
putarg and getarg routines assume that the opcode of the macro-instruction
is stored in the accumulator. Since the body of the add instruction changes the
accumulator, it needs to be preserved before putarg is called. This is the purpose
of the register-copy instructions on lines 36 and 39.

The implementation of the mul macro-instruction starts on line 46 and follows
the same principles as the add instruction. In this case, the body of the instruc-
tion is more complex as the multiply operation needs to be performed using an
add-and-shift loop. A loop counter is created in register R3 to perform 8 iterations
of add-and-shift. Because the accumulator register is only 8 bit, the multiply instruc-
tion cannot capture all 16 output bits of an 8-by-8 bit multiply. The implementation
of mul preserves only the least significant byte.

Listing 5.3 Implementation of the macro-instructions ADD and MUL
1 //---
2 // Macro-machine for the instructions
3 //
4 // ADD Rx, Ry, Rz
5 // MUL Rx, Ry, Rz
6 //
7 // Macro-instruction encoding:
8 // +----+----+----+----+

154 5 Microprogrammed Architectures

9 // | ii + Rx + Ry + Rz +
10 // +----+----+----+----+
11 //
12 // where ii = 00 for ADD
13 // 01 for MUL
14 // where Rx, Ry and Rz are encoded as follows:
15 // 00 for RA (mapped to R4)
16 // 01 for RB (mapped to R5)
17 // 10 for RC (mapped to R6)
18 // 11 for RD (mapped to R7)
19 //
20 // Interpreter loop reads instructions from input
21 macro: IN -> ACC
22 (ACC & 0xC0) >> 1 -> R0
23 R0 >> 1 -> R0
24 R0 >> 1 -> R0
25 R0 >> 1 -> R0
26 R0 >> 1 -> R0
27 R0 >> 1 -> R0 || JUMP_IF_NZ mul
28 (no_op) || JUMP add
29 macro_done: (no_op) || JUMP macro
30
31 //---
32 //
33 // Rx = Ry + Rz
34 //
35 add: (no_op) || CALL getarg
36 ACC -> R0
37 R2 -> ACC
38 (R1 + ACC) -> R1
39 R0 -> ACC || CALL putarg
40 (no_op) || JUMP macro_done
41
42 //---
43 //
44 // Rx = Ry * Rz
45 //
46 mul: (no_op) || CALL getarg
47 ACC -> R0
48 0 -> ACC
49 8 -> R3
50 loopmul: (R1 << 1) -> R1 || JUMP_IF_NC nopartial
51 (ACC << 1) -> ACC
52 (R2 + ACC) -> ACC
53 nopartial: (R3 - 1) -> R3 || JUMP_IF_NZ loopmul
54 ACC -> R1
55 R0 -> ACC || CALL putarg
56 (no_op) || JUMP macro_done
57
58 //---
59 //
60 // GETARG
61 //
62 getarg: (ACC & 0x03) -> R0 || JUMP_IF_Z Rz_is_R4

5.7 Microprogram Pipelining 155

63 (R0 - 0x1) || JUMP_IF_Z Rz_is_R5
64 (R0 - 0x2) || JUMP_IF_Z Rz_is_R6
65 Rz_is_R7: R7 -> R1 || JUMP get_Ry
66 Rz_is_R6: R6 -> R1 || JUMP get_Ry
67 Rz_is_R5: R5 -> R1 || JUMP get_Ry
68 Rz_is_R4: R4 -> R1 || JUMP get_Ry
69 get_Ry: (ACC & 0x0C) >> 1 -> R0
70 R0 >> 1 -> R0 || JUMP_IF_Z Ry_is_R4
71 (R0 - 0x1) || JUMP_IF_Z Ry_is_R5
72 (R0 - 0x2) || JUMP_IF_Z Ry_is_R6
73 Ry_is_R7: R7 -> R2 || RETURN
74 Ry_is_R6: R6 -> R2 || RETURN
75 Ry_is_R5: R5 -> R2 || RETURN
76 Ry_is_R4: R4 -> R2 || RETURN
77
78 //---
79 //
80 // PUTARG
81 //
82 putarg: (ACC & 0x30) >> 1 -> R0
83 R0 >> 1 -> R0
84 R0 >> 1 -> R0
85 R0 >> 1 -> R0 || JUMP_IF_Z Rx_is_R4
86 (R0 - 0x1) || JUMP_IF_Z Rx_is_R5
87 (R0 - 0x2) || JUMP_IF_Z Rx_is_R6
88 Rx_is_R7: R1 -> R7 || RETURN
89 Rx_is_R6: R1 -> R6 || RETURN
90 Rx_is_R5: R1 -> R5 || RETURN
91 Rx_is_R4: R1 -> R4 || RETURN

A microprogrammed interpreter can create the illusion of a machine that has
more powerful instructions than the original microprogrammed architecture. The
trade-off made by such an interpreter is that of abstraction versus performance: each
instruction of the macro-machine may need many micro-machine instructions. The
concept of microprogram interpreters has been used extensively to design processors
with configurable instruction sets and was originally used to enhance the flexibility
of expensive hardware. Today, the technique of microprogram interpreter design is
still very useful to create an additional level of abstraction on top of a micropro-
grammed architecture.

5.7 Microprogram Pipelining

As can be observed from Fig. 5.11, the microprogram controller may be part of a
long chain of combinational logic. Pipeline registers can be used to break these long
chains. However, the introduction of pipeline registers has a large impact on the
design of microprograms. In this section, we will study these effects in more detail.

156 5 Microprogrammed Architectures

Control
Store

CSAR

Next-
Address

Logicstatus

Pipelining of
Next-Address Logic

Datapath

Condition registers and/or
Pipelining in the datapath

Micro-Instruction
Register

Fig. 5.11 Typical placement of pipeline registers in a microprogram interpreter

First, observe in Fig. 5.11 that the CSAR register is part of possibly three loops
with logic. The first loop runs through the next-address logic. The second loop runs
through the control store and the next-address logic. The third loop runs through the
control store, the data path, and the next-address logic. These combinational paths
may limit the maximum clock frequency of the microprogrammed machine. There
are three common places where additional pipeline registers may be inserted in the
design of this machine, and they are marked with shaded boxes in Fig. 5.11.

� A common location to insert a pipeline register is at the output of the control
store. The register at that location is called the microinstruction register. Insert-
ing a register there allows overlap of the datapath evaluation, the next address
evaluation, and the microinstruction fetch.

� Another location for pipeline registers is the datapath. Besides pipeline register
inside of the data path, additional condition-code registers can be placed at the
datapath outputs.

� Finally, the next-address logic may be pipelined as well, in case high-speed oper-
ation is required and the target CSAR address cannot be evaluated within a single
clock cycle.

5.7.1 Microinstruction Register

Because each of these registers cuts through a different update-loop of the CSAR
register, and each of them has a different effect on the microprograms, let us first
consider the effect of adding the microinstruction register. Because of this regis-
ter, the microinstruction fetch (i.e., addressing the CSTORE and retrieving the next

5.7 Microprogram Pipelining 157

Table 5.2 Effect of the
microinstruction register
on jump instructions

Cycle CSAR Microinstruction register

N 4
N C 1 5 CSTORE(4) D JUMP 10
N C 2 10 CSTORE(5) need to cancel
N C 3 11 CSTORE(10) execute

Table 5.3 Effect of the
microinstruction register
and condition-code register
on conditional jump
instructions

Cycle CSAR Microinstruction register

N 3
N C 1 4 CSTORE(3) D TEST R0 sets Z-flag
N C 2 5 CSTORE(4) D JZ 10
N C 3 10 CSTORE(5) need to cancel
N C 4 11 CSTORE(10) execute

microinstruction) is offset by one cycle from the evaluation of that microinstruction.
For example, when the CSAR is fetching instruction i from a sequence of instruc-
tions, the datapath and next-address logic will be executing instruction i � 1.

Table 5.2 illustrates the effect of this offset on the instruction stream, when that
stream contains a jump instruction. The microprogrammer entered a JUMP 10 in-
struction in CSTORE location 4, and that instruction will be fetched in clock cycle
N . In clock cycle N C 1, the microinstruction will appear at the output of the
microinstruction register. The execution of that instruction will complete in cycle
N C 2. For a JUMP, this means that the value of CSAR will be affected in cycle
N C 2. As a result, a JUMP instruction cannot modify the value of CSAR within
a single clock cycle. If CSTORE(4) contains a JUMP, then the instruction located
in CSTORE(5) will be fetched as well. The microprogrammer needs to be aware
of this. The possible strategies are (a) take into account that a JUMP will be exe-
cuted with one cycle of delay (so-called “delayed branch”) or (b) include support in
the microprogrammed machine to cancel the execution of an instruction in case of
a jump.

5.7.2 Datapath Condition-Code Register

As a second case, let us assume that we have a condition-code register in the data-
path, in addition to a microinstruction register. The result of a condition code register
is that a condition value will only be available 1 clock cycle after the expression
leading to that condition was evaluated on the datapath. As a result, a conditional-
jump instruction can only operate on datapath conditions from the previous clock
cycle. Table 5.3 illustrates this effect. The branch instruction in CSTORE(4) is a
conditional jump. When the condition is true, the jump will be executed with 1 clock
cycle delay, as was discussed before. However, the JZ is evaluated in cycle N C 2

158 5 Microprogrammed Architectures

Table 5.4 Effect of
additional pipeline registers
in the CSAR update loop

Cycle CSAR pipe CSAR Microinstruction register

0 0 0 CSTORE(0)
1 1 0 CSTORE(0) twice ?
2 1 1 CSTORE(1)
3 2 1 CSTORE(1) twice ?

based on a condition code generated in cycle N C 1. Thus, the microprogrammer
needs to be aware that conditions need to be available 1 clock cycle before they will
be used in conditional jumps.

5.7.3 Pipelined Next-Address Logic

Finally, let us assume that there is a third level of pipelining available inside of the
next-address update loop. For simplicity, we will assume there are two CSAR reg-
isters back-to-back in the next-address loop. The output of the next-address-logic
is fed into a register CSAR pipe, and the output of CSAR pipe is connected to
CSAR. Table 5.4 shows the operation of this microprogrammed machine, assum-
ing all registers are initially zero. As shown in the table, the two CSAR registers
in the next-address loop result in two (independent) address sequences. When all
registers start out at 0, then each instruction of the microprogram will be executed
twice. Solving this problem is not easy. While one can do a careful initialization of
CSAR pipe and CSAR such that they start out at different values (e.g., 1 and 0), this
reinitialization will need to be done at each jump instruction. This makes the design
and the programming of pipelined next-address logic very hard.

The previous three examples show that a microprogrammer must be aware of the
implementation details of the microarchitecture, and in particular of all the delay
effects caused by registers. This can significantly increase the complexity of the
development of microprograms.

5.8 Picoblaze: A Contemporary Microprogram Controller

Although microprogramming originated many years ago, its ideas are still very use-
ful. When complex systems are created in hardware, the design of an adequate
control architecture is often a key problem. In this section, we illustrate a possible
solution based on the use of a microcontroller.

Most FPGA companies now offer small programmable, synthesizable con-
trollers. This includes for example, Picoblaze (Xilinx) or Mico8 (Lattice Semicon-
ductor). These controllers have only minimal computational capabilities, such as
an ALU with basic logical and arithmetic operations. However, they do implement
an instruction-fetch engine, and as such as they are well suited as controllers for

5.8 Picoblaze: A Contemporary Microprogram Controller 159

Picoblaze
Microcontroller

in_port[7:0]

interrupt

reset

out_port[7:0]

port_id[7:0]

read_strobe

write_strobe

interrupt_ack

Program Memory

addressinstruction

Logic
Module

Logic
Module

Logic
Module

Interconnect Decoder

DecoderDecoderDecoder

Fig. 5.12 Using a Picoblaze controller as a microprogram sequencer

larger circuits. They also come with a pseudoassembly instruction-set, that allows
for easy design of control programs. For these reasons, these small controllers are
well suited as replacement for finite machines.

In this section, we will discuss another use of these controllers – namely using
them as microprogram controllers. Figure 5.12 shows an example of a micropro-
grammed architecture based on Picoblaze. The Picoblaze controller is an 8-bit
architecture with an internal program memory. The controller has several additional
ports that are helpful to use this module as a system controller.

� An 8-bit input port in port can read in 8-bit values.
� An 8-bit output port out port can produce 8-bit values.
� A port identifier port id carries a port address. This allows the picoblaze con-

troller to distinguish 256 multiplexed input and output ports.
� A read strobe and write strobe synchronizes input/output operations

on the I/O ports.
� Additional control lines will initialize the controller (reset) or will handle in-

terrupts (interrupt, interrupt ack).

The Picoblaze controller has several instructions to communicate through the I/O
ports.

OUTPUT sX, sY; // write contents of reg sX to port ID reg sY
OUTPUT sX, kk; // write contents of reg sX to port ID const kk
INPUT sX, sY; // read contents of port ID reg sY into reg sX
INPUT sX, kk; // read contents of port ID const kk into reg sX

160 5 Microprogrammed Architectures

In the example of Fig. 5.12, the I/O ports are used to control several datapath
submodules. Combining the port address and the port data, we can communicate up
to 16 bits of data per Picoblaze instruction to the datapath submodules. Thus, we will
have to use a verticallyencoded microinstruction to accommodate a large number of
logic modules. For this reason, there are decoders on top of each logic module in
Fig. 5.12. There can be up to 8 bits of status information from the logic modules back
to the Picoblaze controller. If there are more than 8 status flags over the entire group
of logic modules, additional decoding needs to be introduced based on the port
identifier. An important characteristic of the architecture in Fig. 5.12 is the dedicated
interconnect, which enables one logic module to be directly connected to the next
one. This dedicated interconnect is, strictly speaking, not needed: a designer could
simply use the Picoblaze I/O instructions to implement communication between
datapath modules. However, this practice will almost certainly turn the controller
into a bottleneck. A better strategy is to start off with a specialized interconnect.

5.9 Summary

In this section we introduced Microprogramming as means to deal with control
design problems in hardware. Finite State Machines are good for small, compact
specifications, but they do result in a few issues. Finite State Machines cannot easily
express hierarchy (FSMs calling other FSMs). As a result, control problems can
easily blow up when specified as a finite-state-machine, yielding so-called “state
explosion”. In a microprogrammed architecture, the hardcoded next-state logic of a
finite state machine is replaced with a programmable control store and a program
control (called CSAR or Control Store Address Register). This takes care of most
problems: microprograms can call other microprograms using jump instructions or
using the equivalent of subroutines. Microprograms have a much higher scalability
than finite state machines.

Writing microprograms is more difficult than writing assembly code or C code.
Therefore, instead of mapping a full application directly into microcode, it may
be easier to develop a microprogrammed interpreter. Such an interpreter imple-
ments an instruction-set for a language at a higher level of abstraction. Still, even
single microinstructions may be hard to write, and in particular the programmer
has to be aware of all pipelining and delay effects inside of the microprogrammed
architecture.

5.10 Further Reading

The limitations of FSM as a mechanism for control modeling have long been rec-
ognized in literature. While it has not been the topic of the chapter, there are
several alternate control modeling mechanisms available. A key contribution to

5.11 Problems 161

hierarchical modeling of FSM was defined by David Harel in StateCharts (Harel
1987). Additionally, the development of so-called synchronous languages support
the specification of control as event-driven programs. See for example Esterel by
Berry (2000) and Potop-Butucaru et al. (2007).

A nice introduction and historical review of Microprogramming can be found
online on the pages of Smotherman (2009). Most of the work on microprogramming
was done in the late 1980s and early 1990s. Conference proceedings and computer-
architecture books from that period are an excellent source of design ideas. For
example, a extensive description of microprogramming is found in the textbook by
Lynch (1993). Control optimization issues of microprogramming are discussed by
Davio et al. (1983).

Documentation for the Picoblaze microcontroller, as well as the source code, can
be found online (Xilinx 2009).

5.11 Problems

5.1. Figure 5.13 shows a microprogrammed datapath. There are six control bits for
the datapath: two bits for each of the multiplexers M1 and M2 and two bits for the
ALU. The encoding of the control bits is indicated in the figure.

(a) Develop a horizontal microinstruction encoding for the list of microinstructions
shown in Table 5.5.

M1

M2

ALU
00
01
10

00 = A + B
01 = A – B
10 = A
11 = B

ALU encoding

A

R1

Q

10
01
00

B

R2

Fig. 5.13 Datapath for Problem 5.1

162 5 Microprogrammed Architectures

Table 5.5 Microinstructions for Problem 5.1

SWAP Interchange the content of R1 and R2.

ADD Rx Add the contents of R1 and R2 and store the contents in Rx, which is equal
to R1 or R2. There are two variants of this instruction depending on Rx.

COPY Rx Copy the contents of Ry into Rx. (Rx, Ry) is either (R1, R2) or (R2, R1).

There are two variants of this instruction depending on Rx.

NOP Do nothing.

Table 5.6 Next-address
instructions for Problem 5.3

NXT CSAR = CSAR + 1;
JUMP k CSAR = k;
GOSUB k RET = CSAR + 1; CSAR = k;
RETURN CSAR = RET;
SWITCH k RET = CSAR + 1; CSAR = RET;

(b) Develop a vertical microinstruction encoding for the same list of instructions.
Use a reasonable encoding that results in a compact and efficient decoder for
the datapath.

5.2. Using the microprogrammed machine discussed in Sect. 5.5, create a program
that reads in a number from the input and that counts the number of nonzero bits in
that number. The resulting bitcount must be stored in register R7.

5.3. Design a next-address instruction decoder based on the set of microinstructions
shown in Table 5.6. Design your implementation in GEZEL or Verilog. An example
IO definition is shown next. The CSAR has to be 10 bit wide, the width of the
Address field and the width of the next-address field must be chosen accordingly.

dp nextaddress_decoder(in csar : ns(10);
out address : ns(x);
out next : ns(y)) {

// ...
}

5.4. Figure 5.14 shows the implementation of a next-address decoder. A total of 10
bits from the microinstruction are used to control the next-address logic: a six-bit
address field, and four control bits, b0, b1, b2, and b3.

For each of the combinations of control bits shown in Table 5.7, find a good
description of the instruction corresponding to the control bit values shown. Don’t
write generic descriptions (like “CSAR register is incremented by one”), but give a
high-level description of the instruction they implement. Use terms that a software
programmer can understand.

5.5. Your colleague asks you to evaluate an enhancement for a microprogrammed
architecture, as illustrated in Fig. 5.15. The enhancement is to insert a pipeline reg-
ister just in form of the control store.

5.11 Problems 163

CSTORE

in

+
1

b1

b2

6

6

6

b3

1

0

1
0 1

0

b0

1 6

6-bit address field +
{b0, b1, b2, b3}

CSAR

micro
instruction

+ 6
0

Fig. 5.14 Datapath for Problem 5.4

Table 5.7 Next-address
instructions for Problem 5.4

Combination b0 b1 b2 b3

Instruction 1 1 X 0 X
Instruction 2 X 1 1 0
Instruction 3 X 1 1 1
Instruction 4 X 0 1 0

Fig. 5.15 Datapath for
Problem 5.5

Control
Store

CSAR

Next-
Address

Logic

Insert a pipeline register here

Datapath
commandsconditions

(a) Does this additional register reduce the critical path of the overall architecture?
(b) Your colleague calls this a dual-thread architecture and claims this enhancement

allows the micro-control engine to run two completely independent programs in
an interleaved fashion. Do you agree with this or not?

Chapter 6
General-Purpose Embedded Cores

Abstract The most successful programmable component on silicon is the micro-
processor. Fueled by a well-balanced mix of efficient implementations, flexibility,
and tool support, microprocessors have grown into a key component for electronic
design. This chapter reviews the major features of microprocessor architectures, and
in particular of RISC (Reduced Instruction Set Computer) processors. The topic of
microprocessors is a very broad one; entire books are devoted to its discussion. The
objectives of this chapter are more modest. Our objective is to get insight into the
relation between a C program and the execution of that C program on a micro-
processor. This will help us to understand the cost of the C program in terms of
memory footprint and execution time. Later chapters build on this insight to discuss
the detailed interaction of C programs with custom-hardware modules. The chapter
covers four different aspects of C program execution on RISC processors. First, we
will discuss the major architecture elements of a RISC processor and their role in C
program execution. Second, we will discuss the path from C programs to assembly
programs to machine instructions. Third, we will discuss the runtime organization
of a C program at the level of the machine. And finally, we will discuss techniques
to evaluate the quality of generated assembly code, and thus evaluate the quality of
the C compiler. Much more can be said on microprocessors besides these points; the
reader can find additional suggestions in the Further Reading section at the end of
this chapter.

6.1 Processors

The most successful programmable component of the past decades is, without
doubt, the microprocessor. Nowadays almost any electronic device more compli-
cated than a pushbutton is fitted with a microprocessor or a microcontroller. Here
are some of the driving factors in that evolution.

� Microprocessors, or the stored-program concept in general, separate software
from hardware through the definition of an instruction-set. No other hardware
development technique has ever been able to uncouple hardware and software in

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 6, c� Springer Science+Business Media, LLC 2010

165

166 6 General-Purpose Embedded Cores

a similar way. Think for example about microprogramming. Microprograms are
really shorthand notations for the control specification of a specialized datapath.
The notion of a microprogram as an entity that can be developed independently
makes no sense because microinstructions are specialized.

� Microprocessors come with tools (compilers and assemblers), that help a
designer to create applications. The availability of a compiler to translate a
programming language into a program for a microprocessor is an enormous
advantage. An embedded software designer can become proficient in a high level
programming language – for example C – and move easily between different
microprocessor architectures, without having to become an expert in any of those
architectures.

� No other device has been able to cope as efficiently with reuse as microproces-
sors did. A general-purpose embedded core is an excellent example of reuse in
itself. However, microprocessors have also dictated the rules of reuse in elec-
tronic system design in general. They have defined bus interfaces to support the
physical integration of an electronic system consisting of multiple components.
Their compilers have enabled the development of standard software libraries as
well as the logical integration of a system.

� Fourth, no other programmable component has the same scalability as a micro-
processor. The concept of the stored-program computer has been implemented
across a large range of word-lengths (4-bit ... 64-bit). In addition, micropro-
cessors have also extended their reach to entire chips, containing many other
components besides a microprocessor, while staying “in command” of the sys-
tem. This approach, commonly called System-On-Chip (SoC), will be discussed
in the next chapter.

In summary, the combination of instruction-set, tools, reuse, and scalability have
turned the microprocessor into a dominant component in electronic systems. In fact,
hardware/software codesign by itself starts by combining software with dedicated
hardware components attached to the microprocessor hardware. The starting point
of this chapter is the architecture of the Reduced Instruction Set Computer (RISC)
processor, a very common type of processor architecture. From the RISC architec-
ture, the chapter then investigates the relation of a C program with its execution on
a microprocessor.

6.1.1 The Toolchain of a Typical Microprocessor

Figure 6.1 illustrates the typical design flow to convert software source code into
instructions for a processor. The figure introduces the following terminology used
in this chapter. A compiler or an assembler is used to convert source code into ob-
ject code. Each object code file contains a binary representation of the instructions
and data constants corresponding to the source code, along with supporting infor-
mation to organize these instructions and constants in memory. A linker is used to
combine several object code files into a single, stand-alone executable file. A linker

6.1 Processors 167

Fig. 6.1 Standard design
flow of software source code
to processor instruction

Executable
Format

Source
Code (C)

Assembly
Code (s)

Object
Code

Object
Code

Compiler Assembler

Library

Linker

Binary
Format

Loader

Memory Processor

will resolve all unknown elements, such as external data or library routines, while
creating the executable file. Finally, a loader program determines how the infor-
mation in an executable file is organized into memory locations. Typically, there
will be a part of the memory space reserved for instructions, another part for con-
stant data, another part for global data with read/write access, and so on. A very
simple microprocessor system contains at least two elements: the processor and a
memory holding instructions for the processor. The memory is initialized with pro-
cessor instructions by the loader. The processor will then fetch these instructions
from memory and execute them on the processor datapath.

6.1.2 From C to Assembly Instructions

Let us demonstrate the tool flow explained above through an example. Listing 6.1
shows a C program that evaluates the largest among the common divisors of 5 pairs
of numbers. The program illustrates a few interesting features, such as function calls,
arrays, and global variables. We will inspect the C program at two lower levels of

168 6 General-Purpose Embedded Cores

Listing 6.1 A C program to find the maximum of greatest common divisors
1 int gcd(int a[5], int b[5]) {
2 int i, m, n, max;
3 max = 0;
4 for (i=0; i<5; i++) {
5 m = a[i];
6 n = b[i];
7 while (m != n) {
8 if (m > n)
9 m = m - n;

10 else
11 n = n - m;
12 }
13 if (max > m)
14 max = m;
15 }
16 return max;
17 }
18
19 int a[] = {26, 3,33,56,11};
20 int b[] = {87,12,23,45,17};
21
22 int main() {
23 return gcd(a, b);
24 }

abstraction. First, at the level of assembly code generated by the compiler, and next,
at the level of the machine code stored in the executable generated by the linker.

In this book, we consider embedded microprocessor architectures such as ARM
or Microblaze. We are making use of a cross-compiler to generate the executable
for these microprocessors. A cross-compiler generates an executable for processor
different than the machine used to run the compiler. In this case, we will generate
an executable for an ARM processor using a PC workstation. The examples in this
book make use of the GNU compiler toolchain. The command to generate the ARM
assembly listing is as follows:

> /usr/local/arm/bin/arm-linux-gcc -c -S -O2 gcd.c -o gcd.s

The command to generate the ARM ELF executable is as follows:

> /usr/local/arm/bin/arm-linux-gcc -O2 gcd.c -o gcd

Both commands run the same program, arm-linux-gcc, but the specific
function is selected through the use of command-line flags. Using man gcc or
gcc --help on the command line will list and clarify the available command-
line options.

Listing 6.2 is the assembly program generated out of the C program in
Listing 6.1. Comparing the assembly program to the C program helps us in under-
standing low-level implementation details of the C program. Consider the following
examples.

6.1 Processors 169

Listing 6.2 Assembly dump of Listing 6.1
1 gcd:
2 str lr, [sp, #-4]!
3 mov lr, #0
4 mov ip, lr
5 .L13:
6 ldr r3, [r0, ip, asl #2]
7 ldr r2, [r1, ip, asl #2]
8 cmp r3, r2
9 beq .L17

10 .L11:
11 cmp r3, r2
12 rsbgt r3, r2, r3
13 rsble r2, r3, r2
14 cmp r3, r2
15 bne .L11
16 .L17:
17 add ip, ip, #1
18 cmp lr, r3
19 movge lr, r3
20 cmp ip, #4
21 movgt r0, lr
22 ldrgt pc, [sp], #4
23 b .L13
24 a:
25 .word 26, 3, 33, 56, 11
26 b:
27 .word 87, 12, 23, 45, 17
28 main:
29 str lr, [sp, #-4]!
30 ldr r0, .L19
31 ldr r1, .L19+4
32 ldr lr, [sp], #4
33 b gcd
34 .align 2
35 .L19:
36 .word a
37 .word b

� Program Structure. The overall structure of the assembly program preserves
the structure of the C program. The gcd function is on lines 1–23, the main
function is on lines 28–34. The loop structure of the C program can be identified
in the assembly program by inspection of the labels and the corresponding branch
instructions. In the gcd function, the inner for loop is on lines 10–15, and the
outer while loop is on line 5–23.

� Storage. The constant arrays a and b are directly encoded as constants in the
assembly, on lines 24–27. The assembly code does not directly work with these
constant arrays, but instead with pointer to these arrays. The storage location at
label .L19 will hold a pointer to array a followed by a pointer to array b.

� Function Calls. Function calls in assembly code need to handle the same
semantics as a C function call. The function call gcd(a,b) has two parameters

170 6 General-Purpose Embedded Cores

which needs to be passed from main to gcd. Lines 30–32 of the assembly
program show how this C function call is implemented. The assembly program
copies the starting address of these arrays into r0 and r1. The gcd function
in the assembly can make use of r0 and r1 as a pointer to array a and b,
respectively.

The assembly program is the starting point to study the implementation details
of software on a microprocessor. Further in this chapter, we will also discuss other
implementation issues, such as handling of local variables, data types, memory al-
location, and compiler optimizations.

The microprocessor works with object code, binary opcodes generated out of
assembly programs. Compiler tools can recreate the assembly code out of the exe-
cutable format. Once an executable is available, the following command shows how
to retrieve the opcodes for the gcd program.

> /usr/local/arm/bin/arm-linux-objdump -d gcd

Listing 6.3 shows the object code dump for the gcd program. The instructions
are mapped to sections of memory, and the .text section holds the instructions
of the program. Each function as a particular starting address, measured to the start
of the executable. In this case, the gcd function starts at 0x8380 and the main
functions starts at 0x83cc. Listing 6.3 also shows the opcode of each instruction,
the binary representation of instructions handled by the microprocessor. As part of
generating the executable, the address value of each label is added to each instruc-
tion. For example, the b .L13 instruction on line 23 of Listing 6.2 is encoded as a
branch to address 0x838c on line 22 of Listing 6.3.

When we study the low-level behavior of a microprocessor, we investigate how
instructions execute on the microprocessor. We can use the assembly mnemonic
(such as cmp, mov, and so on) to describe the instruction. Such mnemonics are just
shorthand notations for the opcodes stored in memory.

6.1.3 Simulating a C Program Executing on a Microprocessor

Before going into the details of microprocessors, we briefly explain how to simu-
late an embedded microprocessor on a standard workstation. Such simulations are
very common in hardware–software codesign; they are meant to test the executa-
bles created with a cross-compiler, and to evaluate the performance of the resulting
program. Microprocessors such as ARM can be simulated with an instruction-set
simulator, a simulation engine specialized at simulating the instruction-set for a
particular microprocessor. The GEZEL cosimulation environment integrates sev-
eral instruction-simulation engines, including one for the ARM processor, one for
the 8051 microcontroller and one for the picoblaze microcontroller. These simula-
tion engines are open-source software projects. SimIt-ARM was developed by Wei
Qin, the Dalton 8051 simulator was developed by the team of Frank Vahid, and the
Picoblaze simulator was developed by Mark Six.

6.1 Processors 171

Listing 6.3 Object dump of Listing 6.2
1 Disassembly of section .text:
2
3 00008380 <gcd>:
4 8380: e52de004 str lr, [sp, -#4]!
5 8384: e3a0e000 mov lr, #0 ; 0x0
6 8388: e1a0c00e mov ip, lr
7 838c: e790310c ldr r3, [r0, ip, lsl #2]
8 8390: e791210c ldr r2, [r1, ip, lsl #2]
9 8394: e1530002 cmp r3, r2

10 8398: 0a000004 beq 83b0 <gcd+0x30>
11 839c: e1530002 cmp r3, r2
12 83a0: c0623003 rsbgt r3, r2, r3
13 83a4: d0632002 rsble r2, r3, r2
14 83a8: e1530002 cmp r3, r2
15 83ac: 1afffffa bne 839c <gcd+0x1c>
16 83b0: e28cc001 add ip, ip, #1 ; 0x1
17 83b4: e15e0003 cmp lr, r3
18 83b8: a1a0e003 movge lr, r3
19 83bc: e35c0004 cmp ip, #4 ; 0x4
20 83c0: c1a0000e movgt r0, lr
21 83c4: c49df004 ldrgt pc, [sp], #4
22 83c8: eaffffef b 838c <gcd+0xc>
23 000083cc <main>:
24 83cc: e52de004 str lr, [sp, -#4]!
25 83d0: e59f0008 ldr r0, [pc, #8] ; 83e0 <main+0x14>
26 83d4: e59f1008 ldr r1, [pc, #8] ; 83e4 <main+0x18>
27 83d8: e49de004 ldr lr, [sp], #4
28 83dc: eaffffe7 b 8380 <gcd>
29 83e0: 00010444 andeq r0, r1, r4, asr #8
30 83e4: 00010458 andeq r0, r1, r8, asr r4

Figure 6.2 shows how instruction-set simulators are integrated into the GEZEL
cosimulation engine, gplatform. The software part of the application is written
in C, and compiled into executable format using a cross compiler. The hardware
part of the application is written in GEZEL, and it specifies the platform archi-
tecture: the microprocessor, and its interaction with other hardware modules. The
combination of the GEZEL program and the cross-compiled executable format
is used in a cosimulation. All the instruction-set simulation engines in GEZEL
are cycle-accurate simulators; they reflect the behavior of a processor clock-cycle
by clock-cycle. Instruction-set simulation engines can also be instruction-accurate
rather than cycle-accurate. Such simulators run faster than cycle-accurate simulation
engines because they handle less detail.

Listing 6.4 shows a GEZEL program that simulates a stand-alone ARM core that
executes the gcd program of Listing 6.1. Lines 1–4 define an ARM core which
runs an executable program called gcd. The ipblock is a special type of GEZEL
module which represents a black-box simulation model, a simulation model without
internal details. This particular module does not have any input/output ports. We will

172 6 General-Purpose Embedded Cores

Fig. 6.2 An instruction-set
simulator, integrated into
GEZEL, can simulate
cross-compiled executables

Source
Code (C)

Cross-
Compiler

Executable
Format

GEZEL Program

ARM
Core

Custom
HW

SimIt-ARM
Simulation

Engine

GEZEL Cosimulator (gplatform)

Hardware
Simulation

Engine

Listing 6.4 A GEZEL top-level module with a single ARM core
1 ipblock myarm {
2 iptype "armsystem";
3 ipparm "exec = gcd";
4 }
5
6 dp top {
7 use myarm;
8 }
9

10 system S {
11 top;
12 }

introduce such input/output ports while discussing the various hardware/software
interfaces (Chap. 11). Lines 6–12 of the GEZEL program simply configure the
myarm module for execution.

To simulate the program, we will need to cross-compile the C application
software for the ARM instruction-set simulator. Next, we run the instruction-set sim-
ulator. To generate output through the cosimulation, we modified the main function
of the C program as follows:

int main() {
printf("gcd(a,b)=%d\n", gcd(a,b));
return 0;

}

The compilation and cosimulation is now done through the following commands:

> /usr/local/arm/bin/arm-linux-gcc -static gcd.c -o gcd
> gplatform top.fdl

6.2 The RISC Pipeline 173

core myarm
armsystem: loading executable [gcd]
gcd(a,b)=3
Total Cycles: 14,338

The output of the simulation shows that the program takes 14,338 cycles to ex-
ecute. In the next chapters, we will look at techniques to analyze this performance
and to improve it.

6.2 The RISC Pipeline

This section describes the internal architecture of a very common type of micropro-
cessor, the Reduced Instruction Set Computer (RISC). Our objective is a review of
the basic ideas in RISC architecture design, with enough detail to enable us to deal
with common hardware/software codesign problems. The material in this section is
typically covered in-depth in a computer-architecture course.

In a RISC processor, the execution of a single instruction is split in different
stages, which are chained together as a pipeline. Each instruction operates on a
set of registers contained within the processor. For example, the ARM processor
contains 17 registers: data register r0 to r14, a program counter register pc, and
a processor status register cpsr. The Microblaze processor has 32 general-purpose
registers (r0 to r31) and up to 18 special-purpose registers (such as the program
counter, the status register, and more). Processor registers are used as operands or
as targets for the processor instructions.

Each stage of a RISC pipeline takes 1 clock cycle to complete. A typical RISC
pipeline has 3 or 5 stages, and Fig. 6.3 illustrates a 5-stage pipeline. The five stages

Instruction
Memory Read

Instruction
Fetch

Instruction
Decode

Execute

Buffer

Write-back

Instruction
Decode

Register
Read

Datapath
Operation

Evaluate
Next-PC

Data
Memory R / W

Register
Write

Fig. 6.3 A five-stage RISC pipeline

174 6 General-Purpose Embedded Cores

of the pipeline are called Instruction Fetch, Instruction Decode, Execute, Buffer, and
Write-back. As an instruction is executed, each of the stages performs the following
activities:

� Instruction Fetch: The processor retrieves the instruction addressed by the pro-
gram counter register from the instruction memory.

� Instruction Decode: The processor examines the instruction opcode. For the
case of a branch-instruction, the program counter will be updated. For the case
of a compute-instruction, the processor will retrieve the processor data registers
that are used as operands.

� Execute: The processor executes the computational part of the instruction on a
datapath. In case the instruction will need to access data memory, the execute
stage will prepare the address for the data memory.

� Buffer: In this stage, the processor may access the data memory, for reading or
for writing. In case the instruction does not need to access data memory, the data
will be forwarded to the next pipeline stage.

� Write Back: In the final stage of the pipeline, the processor registers are updated.

A 3-stage RISC pipeline is similar to a 5-stage RISC pipeline, but the Execute,
Buffer, and Write-back stages are collapsed into a single stage.

Under ideal circumstances, the RISC pipeline is able to accept a new instruction
every clock cycle. Thus, the instruction throughput in a RISC processor may be as
high as one instruction every cycle. Because of the pipelining, each instruction may
take up to 5 clock cycles to complete. The instruction latency therefore can be up to
5 clock cycles. A RISC pipeline improves instruction throughput at the expense of
instruction latency. However, the increased instruction latency of a RISC processor
is usually not a problem because the clock frequency of a pipelined processor is
higher than that of a nonpipelined processor.

In some cases, it is not possible for an instruction to finish within 5 clock cy-
cles. A pipeline stall occurs when the progress of instruction through the pipeline
is temporarily halted. The cause of such a stall is a pipeline hazard. In advanced
RISC processors, pipeline interlock hardware can detect and resolve pipeline haz-
ards automatically. Even when interlock hardware is present, pipeline hazards may
still occur. We discuss three different categories of pipeline hazards, along with ex-
amples for an ARMv6 processor. The three categories are the following.

� Control hazards are pipeline hazards caused by branches.
� Data hazards are pipeline hazards caused by unfulfilled data dependencies.
� Structural hazards are caused by resource conflicts and cache misses.

6.2.1 Control Hazards

Branch instructions are the most common form of pipeline stalls. As indicated in
Fig. 6.3, a branch is only executed (i.e., it modifies the program counter register) in
stage 2 of the pipeline. At that moment, another instruction has already entered the

6.2 The RISC Pipeline 175

Fetch Decode Execute Buffer Writeback

cmp r0, #5

ble TGT cmp r0, #5

ble TGT

0

1

2

Cycle

start: mov r0, #5
 cmp r0, #5
 ble TGT
 mov r0, #0
 nop
TGT:
 add r0, #10

Program

interlock

mov r0, #0

TGT: add r0, #10

cmp r0, #5

cmp r0, #5

cmp r0, #5

ble TGT

mov r0, #0

TGT: add r0, #10

TGT: add r0, #10

2

3

4

5

unused

unused

6 TGT: add r0, #10 unused

Fig. 6.4 Example of a control hazard

pipeline. As this instruction is located after the branch instruction, that instruction
should be thrown away in order to preserve sequential execution semantics.

Figure 6.4 illustrates a control hazard. The pipeline is shown drawn on its side,
running from left to right. Time runs down across the rows. A control hazard occurs
because of the branch instruction ble TGT. In cycle 2, the new program counter
value evaluates to the target address of the branch, TGT. Note that even though ble
is a conditional branch that uses the result of the instruction just before that (cmp
r0, #5), the branch condition is available in cycle 2 because of the interlock hard-
ware in the pipeline (See Sect. 6.2.2). Starting in cycle 3, instructions from the target
addressTGT enter the pipeline. At the same time, the instruction just after the branch
is canceled in the decode stage. This results in an unused instruction slot just after
the branch instruction.

Some RISC processors, including the Microblaze, include a delayed-branch in-
struction. The purpose of this instruction is to allow the instruction just after the
branch instruction to complete even when the branch is taken. This will prevent
“unused” pipeline slots as shown in Fig. 6.4.

For example, the following C function:

1 int accumulate() {
2 int i,j;
3 for (i=0; i<100; i++)
4 j += i;
5 return j;
6 }

176 6 General-Purpose Embedded Cores

leads to the following assembly code for Microblaze:

addk r4,r0,r0 ; clear r4 (holds i)
addk r3,r3,r4 ; j = j + i

$L9:
addik r4,r4,1 ; i = i + 1
addik r18,r0,99 ; r18 <- 99
cmp r18,r4,r18 ; compare i with 99
bgeid r18,$L9 ; delayed branch if equal
addk r3,r3,r4 ; j = j + i -> branch delay slot

The delayed-branch instruction is bgeid, which is a “branch if-greater-or-equal
delayed”. The instruction just after the branch corresponds to the loop body j = j
+ i. Because it is a delayed-branch instruction, it will be executed regardless if the
conditional branch is taken or not.

6.2.2 Data Hazards

A second cause of pipeline stalls are data hazards: pipeline delays caused by the
unavailability of data. Processor registers are updated at the end of each instruction,
during the write-back phase. But what if the data is required before it has updated
a processor register? After all, as indicated in the pipeline diagram in Fig. 6.3, the
write-back stage is two cycles after the execute stage. So an instruction that reaches
the write-back stage is two instructions after the instruction that is currently execut-
ing. In the following snippet, by the time the mov instruction reaches the write-back
stage, the add instruction will be in the buffer stage, and the addition would have
already completed.

mov r0, #5
add r1, r0, r1

In a RISC pipeline, this is handled by pipeline interlock hardware. The pipeline
interlock hardware looks at the read/write patterns of all instructions currently flow-
ing in the RISC pipeline and makes sure they take data from the right source. For
the example above, when the add instruction is in the execute stage, it will take
the result directly from the mov instruction result, which will be in the buffer stage.
This activity is called forwarding, and it is handled automatically by the proces-
sor. In some cases, forwarding is not possible because the data is simply not yet
available. This happens when a read-from-memory instruction is followed by an in-
struction that uses the data coming from memory. An example of this case is shown
in Fig. 6.5.

The second instruction fetches data from memory and stores it in register r1.
The following add instruction uses the data from that register as an operand. In
cycle 4, the add instruction reaches the execute stage. However, at that moment,
the ldr instruction is still accessing the data memory. The new value of r1 is only
available at the start of cycle 5. Therefore, the interlock hardware will stall all stages

6.2 The RISC Pipeline 177

Fetch Decode Execute Buffer Writeback

mov r0, #5

ldr r1,[r0]

add r2,r1,#3

cmp r0, #5

cmp r0, #5

cmp r0, #5

0

1

2

3

Cycle

start: mov r0, #5
 ldr r1, [r0]
 add r2, r1, #3
 mov r3, #0
 nop

Program

ldr r1,[r0]

ldr r1,[r0]mov r3,#0 cmp r0, #5

cmp r0, #5

3

4

5

6

ldr r1,[r0]

ldr r1,[r0]

wait

mov r3,#0 add r2,r1,#3

add r2,r1,#3

waitwait

mov r3,#0

add r2,r1,#3mov r3,#0

7

8

mov r3,#0 add r2,r1,#3

mov r3,#0

unused

unused

Fig. 6.5 Example of a data hazard

preceding the buffer stage in cycle 4. Starting in cycle 5, the entire pipeline moves
forward again, but due to the stall in cycle 4, an unused pipeline slot flushes out in
cycle 5 and cycle 6.

Data hazards can lengthen the execution time of an instruction that would nor-
mally finish in just 5 clock cycles. For classic RISC processors, data hazards can be
predicted statically, by examining the assembly program. When the execution time
of a program needs to be estimated exactly, a programmer will need to be able to
identify all data hazards and their effects.

6.2.3 Structural Hazards

The third class of hazards are structural hazards. These are hazards caused by in-
structions that require more resources from a processor than those that are available.
For example, a given instruction may require 5 concurrent additions while there is
only a single ALU available. To address such a case, the execution phase of the in-
struction will be artificially extended over multiple clock cycles, while the pipeline
stages before that will be stalled.

Another example of a structural hazard is illustrated in Fig. 6.6. The ldmia in-
struction is a load-multiple instruction that will read consecutive memory locations
and store the resulting values in memory. In the example shown, the value stored
in address r0 will be copied to r1, while the value stored in address r0+4 will be

178 6 General-Purpose Embedded Cores

Fetch Decode Execute Buffer Writeback

mov r0, #5

ldmia r0,{r1,r2} mov r0, #5

0

1

2

3

Cycle

mov r0, #5
ldmia r0, {r1,r2}
add r4, r1,r2
add r4, r4,r3

Program

ldmia r0,{r1,r2} mov r0, #5add r4,r1,r2

3

4

5

6

ldmia r0,{r1,r2} mov r0, #5

load r1ldmia r0,{r1,r2}

load r2

waitwait

add r4,r1,r2add r4,r4,r3

add r4,r1,r2

add r4,r1,r2

add r4,r4,r3

add r4,r4,r3

add r4,r4,r3

mov r0, #5

update r1

update r2

add r4,r1,r2

add r4,r4,r3

7

8

Fig. 6.6 Example of a structural hazard

copied to r2. When the ldmia instruction reaches the execute stage, the execute
stage will be busy for 2 clock cycles in order to evaluate the memory addresses r0
and r0+4. Therefore, all pipeline stages before the execute stage are halted for a
single clock cycle. After that, the pipeline proceeds normally.

A structural hazard is caused by the processor architecture, but it may have a
broad number of causes: the width of memory ports, the number of execution units
in the datapath, or restrictions on the communication busses. A programmer can
only predict structural hazards through a solid understanding of the processor archi-
tecture. Furthermore, memory latency effects can also cause the execution time of
the buffer stage to vary. A cache miss for example can extend the latency of a load-
memory instruction with hundreds of cycles. While the load-memory instruction is
waiting for data to be returned from memory, it will stall the pipeline in a manner
similar to a structural hazard.

6.3 Program Organization

For an efficient hardware/software codesign, a designer needs to have a simulta-
neous understanding of system architecture and software. This is different from
traditional computer science, where a designer is typically interested in running a C
program “as fast as possible”, but without much concern for the computer hardware
that runs the C program.

6.3 Program Organization 179

In this section, we will look at the relationship between a C program and its
implementation on a RISC processor. This includes a discussion of the main parts
of a C program and their mapping to instructions and into sections of memory, the
organization of a C program into binary format, and the link between a C program
and the RISC architecture. While the examples will be made for ARM and Micro-
Blaze RISC processors, the ideas explained here are generic and applicable to many
other RISC processors. In fact, a good hardware/software codesigner tries to be as
architecture-independent as possible, which means that she will be able to easily
move from one processor architecture to another. For example, we will show that it
is possible to do decent performance analysis of a C program, at the cycle-accurate
level, without detailed knowledge of the instruction-set of a processor.

6.3.1 Data Types

A good starting point to discuss the mapping of C programs to RISC processors
are the datatypes used by C programs. Table 6.1 shows how C maps to the native
datatypes supported by ARM and Microblaze processors. All C data types, apart
from char, are treated as signed (two’s complement) numbers.

The difference between operations on two’s complement numbers and operations
on unsigned numbers is minor, at least in terms of machine representation of the
numbers. Signed numbers may require sign extension (see Sect. 4.1.2). In addition,
the comparison of signed numbers is different from the comparison of unsigned
numbers. Indeed, when comparing unsigned bytes, 0xff is bigger than 0x01. But,
when comparing signed bytes, 0xff is smaller than 0x01.

The mapping of C datatypes to physical memory locations is affected by several
factors. First, datatypes need to follow the rules of datatype alignment, which define
what are the allowed starting addresses for datatypes in memory. A RISC processor
will access the data memory at predefined physical boundaries, typically one word
(32 bits) at a time. Thus, a single memory transfer may be able to access any of
the four bytes in a word, but a group of four bytes across a word boundary cannot
be accessed in a single memory transfer. For this reason, datatypes may need align-
ment in the physical memory organization, and this restricts the location of these
datatypes in logical address space (Fig. 6.7a).

A second factor that affects the mapping of datatypes is the storage order, il-
lustrated in Fig. 6.7b. A little-endian storage order will map the lower-significant

Table 6.1 C compiler data
types

C data type ARM Microblaze

Char Unsigned 8-bit Unsigned 8-bit
Short Signed 16-bit Signed 16-bit
Int Signed 32-bit Signed 32-bit
Long Signed 32-bit Signed 32-bit
Long long Signed 64-bit Signed 64-bit

180 6 General-Purpose Embedded Cores

32 bit physical
memory organization

aligned

non-aligned

0 ¥ 8000

0 ¥ 8004

0 ¥ 8008

0 ¥ 800C

0 ¥ 8010

0 × 78 0 × 56 0 × 34 0 × 12

LSBMSB

0 × 80000 × 80010 × 80020 × 8003

0 × 80030 × 80020 × 80010 × 8000

Little Endian
Storage
 Order

Big Endian
Storage

Order

Word Value

logical
memory
address

b

a

Fig. 6.7 (a) Alignment of data types (b) Little-endian and Big-endian storage order

bytes of a word into lower memory locations. A big-endian storage order, on the
other hand, will map the higher-significant bytes to lower memory locations. If only
C-programming is involved in a design, then the endianness is not important. In
hardware/software codesign, the physical representation of datatypes is important
in the transition of software to hardware and back. Hence, the endianness of a pro-
cessor (and in some cases even the bit-ordering) is important. It is easy to check the
endianness of a given processor using a small C program such as the following one.

int main() {
char j[4];
volatile int *pj;
pj = (int *) j;

j[0] = 0x12;
j[1] = 0x34;
j[2] = 0x56;
j[3] = 0x78;

printf("%x\n", *pj);
}

For this program, a little-endian processor will print 78,563,412, while a big-
endian processor will print 12,345,678. A Microblaze processor is big-endian, while
an ARM processor is (normally) little-endian.

6.3.2 Variables in the Memory Hierarchy

Next, we discuss the relationship between the variables of a C program and the
memory locations used to store those variables. The memory hierarchy gives the
RISC pipeline the illusion of a continuous and very fast memory space. As illus-
trated in Fig. 6.8, a memory hierarchy includes the processor registers, the cache

6.3 Program Organization 181

RISC Pipeline

Register
File

Cache
Main

Memory

Controlled by
instruction type

(compiler)

Controlled by
architecture
(cache miss)

Fig. 6.8 Memory hierarchy

memory, and the main memory. In embedded processors, cache memory is optional;
in high-end processors on the other hand, multiple levels of cache memory are used.

The cache operates as a fast local memory which holds the most-frequently used
main-memory locations. Whenever the processor requests data from a memory lo-
cation, the cache may report a hit and return a locally-stored copy of the desired
memory location. The cache may also report a miss and instead first fetch the re-
quested memory location from main memory. A cache memory improves program
efficiency when data (or instructions) are used more than once by a C program. For
example, a loop counter will be accessed at least once every iteration of the loop.
As a result, the probability of a cache hit is much larger than that of a cache miss.

The memory hierarchy is transparent to a C programmer. Under normal circum-
stances, a C programmer will not worry what type of memory is used to store the
data from a given program. It could be the processors’ registers, the cache, or the
main-memory. In reality, data travels up and down the memory hierarchy during
program execution. This is illustrated by the following example, which shows a C
function accumulating an array.

1 void accumulate(int *c, int a[10]) {
2 int i;
3 *c = 0;
4 for (i=0; i<10; i++)
5 *c += a[i];
6 }

We can now generate the ARM assembly code using the ARM cross-compiler.
We will use optimization-level 2 for this.

/usr/local/arm/bin/arm-linux-gcc -O2 -c -S accumulate.c

This generates the following listing in accumulate.s:

1 mov r3, #0
2 str r3, [r0, #0]
3 mov ip, r3
4 .L6:
5 ldr r2, [r1, ip, asl #2] ; r2 <- a[i]
6 ldr r3, [r0, #0] ; r3 <- *c (memory)

182 6 General-Purpose Embedded Cores

7 add ip, ip, #1 ; increment loop ctr
8 add r3, r3, r2
9 cmp ip, #9

10 str r3, [r0, #0] ; r3 -> *c (memory)
11 movgt pc, lr
12 b .L6

Let us consider how the accumulator variable is implemented. Looking at the
C program, there is only a single placeholder for the accumulator, namely *c. In
terms of physical memory, there are at least three different locations where a copy
of *c may be found: the processor registers, the cache, and the main memory. For
example, in the assembly implementation, we see how the value of the accumulator
travels up in the memory hierarchy. According to the C function, the accumulator is
provided through a pointer. This implies that the accumulator will be stored in main
memory. On line 6 of the previous Listing, that variable is read from memory and
stored in processor register r3. On line 10, the processor register r3 is written back
to memory. Thus, depending on the nature and state of the cache memory, read-
ing/writing processor registers from/to memory may trigger additional data transfer
between the cache memory and the main memory. In the context of codesign, this
difference between the physical implementation of a C program and its logical de-
sign is important. For example, when a communication link needs to be created
between software and hardware, the physical mapping of variables is important.

A C programmer has a limited amount of control over the mapping of variables
onto the memory hierarchy. The control is offered through the use of storage class
specifiers and type qualifiers. The most important ones are enumerated in Table 6.2.
A few example declarations are shown below.

volatile int *c; // c is a pointer to a volatile int
int * const y; // y is a constant pointer to an int
register int x; // x is preferably mapped into a register

Table 6.2 C storage class specifiers and type qualifiers

Keyword Function

Storage specifier
Register Indicates that the preferred mapping of the data type is in processor

registers. This will keep the variable as class as possible to the RISC
pipeline.

Static Limits the scope (visibility) of the variable over multiple files. This
specifier does not relate to the memory hierarchy, but to the functions
where the variable may be accessed.

Extern Extends the scope (visibility) of the variable to all files. This specifier does
not relate to the memory hierarchy, but to the functions where the
variable may be accessed.

Type qualifier
Const Indicates that the qualified variable cannot be changed.

Volatile Indicates that the qualified variable can change its value at any time, even
outside of the operations in the C program. As a result, the compiler
will make sure to write the value always back to main memory after
modification, and maintain a copy of it inside of the processor registers.

6.3 Program Organization 183

The use of type qualifiers and storage specifiers allows some control of the
memory-hierarchy and the implementation of variables in C. Throughout this chap-
ter, and later when discussing hardware/software interfaces, other examples of their
use will appear.

6.3.3 Function Calls

Behavioral hierarchy – C functions calling other functions – is key to mastering
complexity with C programs. In this section, we briefly describe the concepts of C
function calls in the context of RISC processors. We use the example C program in
Listing 6.5.

Let us assume that we have compiled this program for an ARM processor us-
ing the arm-linux-gcc cross compiler. It is possible to recreate the assembly
listing corresponding to the object file by disassembling the object code. The util-
ity arm-linux-objdump takes care of that. The -d flag on the command line
selects the disassembler functionality. The utility supports many other functions
(See Problem 6.8).

/usr/local/arm/bin/arm-linux-objdump -O2 -c accumulate.c -o
accumulate.o

/usr/local/arm/bin/arm-linux-objdump -d accumulate

The ARM assembly listing of this program is shown in Listing 6.6.
Close inspection of the instructions will reveal many practical aspects of the

runtime layout of this program, and in particular of the implementation of func-
tion calls. The instruction that branches into accumulate is implemented at
address 0x2c with a bl instruction – branch with link. This instruction will copy
the program counter in a separate link register lr, and load the address of the
branch target into the program counter. A return-from-subroutine can now be im-
plemented by copying the link register back into the program counter. This is shown
at address 0x1c in accumulate. Obviously, care must be taken when doing

Listing 6.5 Accumulate Example in C
1 int accumulate(int a[10]) {
2 int i;
3 int c = 0;
4 for (i=0; i<10; i++)
5 c += a[i];
6 return c;
7 }
8
9 int a[10];

10 int one = 1;
11
12 int main() {
13 return one + accumulate(a);
14 }

184 6 General-Purpose Embedded Cores

Listing 6.6 Accumulate Example in Assembly
00000000 <accumulate>:

0: e3a01000 mov r1, #0
4: e1a02001 mov r2, r1
8: e7903102 ldr r3, [r0, r2, lsl #2]
c: e2822001 add r2, r2, #1
10: e3520009 cmp r2, #9
14: e0811003 add r1, r1, r3
18: c1a00001 movgt r0, r1
1c: c1a0f00e movgt pc, lr
20: ea000000 b 8 <accumulate+0x8>

00000024 <main>:
24: e52de004 str lr, [sp, -#4]!
28: e59f0014 ldr r0, [pc, #20] ; 44 <main+0x20>
2c: ebfffffe bl 0 <accumulate>
30: e59f2010 ldr r2, [pc, #16] ; 48 <main+0x24>
34: e5923000 ldr r3, [r2]
38: e0833000 add r3, r3, r0
3c: e1a00003 mov r0, r3
40: e49df004 ldr pc, [sp], #4

...

multiple subroutine calls so that lr is not overwritten. In the main function, this is
solved at the entry, at address 0x24. There is an instruction that copies the current
contents of lr into a local area within the stack, and at the end of the main function
the program counter is directly read from the same location.

The arguments into (and out from) the accumulate function are passed
through register r0 rather than main memory. This is obviously much faster when
only a few data elements need to be copied. The input argument of accumulate
is the base address from the array a. Indeed, the instruction on address 8 uses r0
as a base address and adds the loop counter multiplied by 4. This expression thus
results in the effective address of element a[i] as shown on line 5 of the C program
(Listing 6.5). The return argument from accumulate is register r0 as well. On
address 0x18 of the assembly program, the accumulator value is passed from r1
to r0. For ARM processors, the full details of the procedure-calling convention are
defined in the ARM Procedure Call Standard (APCS), a document used by com-
piler writers and software library developers. In general, arguments are passed from
function to function through a data structure known as a stack frame. A stack frame
holds the return address, the local variables, the input and output arguments of the
function, and the location of the calling stack frame. A nice example of a stack frame
is found when the accumulate function described earlier is compiled without op-
timizations. In that case, the C compiler takes a very conservative approach and will
keep all local variables in main memory, rather than in registers.

/usr/local/arm/bin/arm-linux-gcc -c -S accumulate.c

Listing 6.7 shows the resulting nonoptimized assembly code of accumulate.
Figure 6.9 illustrates the construction of the stack frame.

6.3 Program Organization 185

Listing 6.7 Accumulate without compiler optimizations
1 accumulate:
2 mov ip, sp
3 stmfd sp!, {fp, ip, lr, pc}
4 sub fp, ip, #4
5 sub sp, sp, #12
6 str r0, [fp, #-16] ; base address a
7 mov r3, #0
8 str r3, [fp, #-24] ; c
9 mov r3, #0

10 str r3, [fp, #-20] ; i
11 .L2:
12 ldr r3, [fp, #-20]
13 cmp r3, #9 ; i<10 ?
14 ble .L5
15 b .L3
16 .L5:
17 ldr r3, [fp, #-20] ; i * 4
18 mov r2, r3, asl #2
19 ldr r3, [fp, #-16]
20 add r3, r2, r3 ; *a + 4 * i
21 ldr r2, [fp, #-24]
22 ldr r3, [r3, #0]
23 add r3, r2, r3 ; c = c + a[i]
24 str r3, [fp, #-24] ; update c
25 ldr r3, [fp, #-20]
26 add r3, r3, #1
27 str r3, [fp, #-20] ; i = i + 1
28 b .L2
29 .L3:
30 ldr r3, [fp, #-24] ; return arg
31 mov r0, r3
32 ldmea fp, {fp, sp, pc}

The instructions on line 2 and 3 are used to create the stack frame. On line 3, the
frame pointer (fp), stack pointer (sp), link register or return address (lr), and cur-
rent program counter (pc) are pushed onto the stack. The single instruction stmfd
is able to perform multiple transfers (m), and it grows the stack downward (fd).
These four elements take up 16 bytes of stack memory.

On line 3, the frame pointer is made to point to the first word of the stack frame.
All variables stored in the stack frame will now be referenced based on the frame
pointer fp. Since the first 4 words in the stack frame are already occupied, the first
free word is at address fp - 16, the next free word is at address fp - 20, and
so on. These addresses may be found back in Listing 6.7.

The following local variables of the function accumulate are stored within
the stack frame: the base address of a, the variable i, and the variable c. Finally,
on line 31, a return instruction is shown. With a single instruction, the frame pointer
fp, the stack pointer sp, and the program counter pc are restored to the values just
before calling the accumulate function.

186 6 General-Purpose Embedded Cores

High

sp

mov ip, sp
stmfd sp!, {fp, ip, lr, pc}
sub fp, ip, #4
sub sp, sp, #12
str r0, [fp, #-16]
str r3, [fp, #-20]
str r3, [fp, #-24]

High

new fp

old fp

old fp

Stack Frame Construction

Before Calling Accumulate During Execution of Accumulate

Low

Low

old sp

pc

return address

base adr a

i

new sp

–4

–8

–12

–16

–20

ldmea fp, {fp, sp, pc}

Stack Frame Return

c

Fig. 6.9 Memory hierarchy

6.3.4 Program Layout

Another aspect of C program implementation is the physical representation of the
program and its data structures in the memory hierarchy. This leads to the program
layout, the template that is used to organize instructions and data. A distinction must
be made between the organization of a compiled C program in an executable file (or
a program ROM), and the memory organization of that C program during execution.
The former case is a static representation of all the instructions and constants defined
by the C program. The latter case is a dynamic representation of all the instructions
and the runtime data structures such as the stack and the heap.

Figure 6.10 shows how a C program is compiled into an executable file, which
in turn is mapped into memory. There are several standards available for the orga-
nization of executable files. In the figure, the example of ELF (Executable Linkable
Format) is shown. An ELF file is organized into sections, and each of these can take
up a variable amount of space in the file. The sections commonly found in an ELF
file are the .text section which contains the binary instructions of the C program
and the .data section which contains initialized data (constants). The ELF file
may also contain debugging information, such as the names of the variables in the C
program. This debugging information is utilized by source level debuggers to relate
the execution of a binary program to actions of the C source code.

When a compiled C program is first loaded into memory for execution, the ELF
file is analyzed by the loader and the sections with relevant information are copied
into memory locations. In contrast to a file, the resulting organization of instructions
and data into memory do not need to be contiguous or even occupy the same phys-
ical memory. Each section of an ELF file can be mapped at a different address, and
possibly map into a different memory module. The example in Fig. 6.10 shows how

6.3 Program Organization 187

C Source
Code

ELF Object
File

Memory
Layout

.text

Header
Information

DDR RAMSRAM

.text .dataint main() {
 ...
}}

addr1 addr2

addr3

.data

Debug
Information

Compile
+ Link

Loader .bss (0)

heap

stackother
sections

addr3

addr4

addr5

Fig. 6.10 Static and dynamic program layout

the .text segment maps into fast static ram memory (SRAM) while the .data,
stack, and heap segments map into DDR RAM memory. During program execution,
there may be sections of memory which do not appear in the ELF file, or which do
not occupy any area within the ELF file. These sections include data storage areas:
dynamic data (heap), local data (stack), and global data (bss).

A C compiler will typically come with utilities that allows inspection of the or-
ganization of an executable file or an object file. Based on this, we can understand
why a given section may or may not fit into a given memory area. We will illustrate
a few GNU utilities that can report the size of each executable segment. Assume
that we have a compiled ELF executable for the C program from Listing 6.5, and
that we need to know how much memory is required for the data and instructions
from that program.

We assume that the program is called sections.c, that its corresponding ob-
ject file is sections.o, and that the executable file is called sections. We
make use of the ARM cross-compiler tools. The arm-linux-size utility gives
a summary printout of the amount of memory required for a given C program.

> arm-linux-size sections.o
text data bss dec hex filename

76 4 0 80 50 sections.o

The output of the program on sections.o shows that there are 76 bytes in the
text segment, 4 bytes in the initialized data-segmentdata, and 0 bytes in the non-
initialized data-segment bss. Looking at the C program, we can conclude that there
are 19 words (76/4) required for the instructions that implement accumulate and
main. Assuming one instruction per word, there will be around 19 instructions re-
quired to implement these two functions. Besides the text segment, there is also
a data segment with 4 bytes. These 4 bytes of initialized data are needed to store
the variable one on line 10.

When we run the same utility on the executable file, we find that the amount of
code and data increases significantly. This is because various C libraries have been
linked into the program.

188 6 General-Purpose Embedded Cores

> arm-linux-size sections
text data bss dec hex filename

362095 4176 5204 371475 5ab13 sections

We now verify our assumption on the 19 instructions in the program. The as-
sembly listing corresponding to sections.o is shown in Listing 6.6. We find that
there are 17 instructions, while according to the size command there are 19 words
in the text segment. Where do these two additional words come from? Inspection
of the assembly program reveals the answer. On address 2c, the first word after the
last instruction is read and stored into r0. On address 30, the second word after the
last instruction is read and stored into r2. These two addresses correspond to the
base addresses of the array a and the scalar variable one, respectively. Thus, the C
compiler turns all global variables into pointers, which are stored as part of the text
segment.

The above analysis of the executable program still leaves a few questions unan-
swered. One of them is where the text and data segment will fit into physical
memory? This question can also be addressed using the same arm-linux-
objdump utility. The -h flag turns on printout of header sections. This reveals
the following information for the sections program.

> arm-linux-objdump -h sections

sections: file format elf32-littlearm

Sections:
Idx Name Size VMA LMA File off Algn

0 .init 00000014 000080c0 000080c0 000000c0 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .text 00046de8 000080e0 000080e0 000000e0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE

2 .fini 0000000c 0004eec8 0004eec8 00046ec8 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

3 .rodata 00011867 0004eed4 0004eed4 00046ed4 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA

...
7 .data 00001024 00068788 00068788 00058788 2**2

CONTENTS, ALLOC, LOAD, DATA
...

14 .bss 00001454 000697e0 000697e0 000597e0 2**5
ALLOC

This listing illustrates the name of the sections, their size, the starting address
(VMA and LMA), the offset within the ELF file, and the alignment in bytes as a
power of 2. The number we are looking for is the starting address of each segment.
VMA stands for virtual memory address and reflects the address of the section dur-
ing execution. LMA stands for load memory address and reflects the address of
the section when the program is first loaded into memory. In this case both are the
same. The numbers would be different in cases where the program is stored in a dif-
ferent memory than the one that holds the program at runtime. For example, a Flash
memory can store the program sections at the address reflected by LMA. When the
program executes, it is copied into RAM memory at the address reflected by VMA.

6.3 Program Organization 189

The section dump shown above does not indicate the place where the stack and
heap are allocated. The answer to that question is that an arm-linux executable
does not decide by itself where the stack will be allocated. Instead, this executable is
meant to run as a process in an operating system (linux) and follows the conventions
for stack and heap in that operating system.

However, in the case when an operating system is not present, the executable will
show sections for the stack and heap as well. As an example, we illustrate the out-
put of the utilities discussed above when the program is executed stand-alone on a
Microblaze core. To obtain this information, the C program from Listing 6.5 is com-
piled on a Microblaze C cross-compiler. Next, similar GNU utilities for Microblaze
are used to analyze the object file and the executable file. Compared to the numbers
found earlier, the final executable is considerably slimmer, due to the optimized
libraries that are used.

> mb-size sections.o
text data bss dec hex filename

84 4 0 88 58 sections.o
> mb-size sections

text data bss dec hex filename
1528 304 2128 3960 f78 sections

The result of objdump listing the header sections is illustrated in Fig. 6.11. In
this case, the listing contains, besides a text, data, and bss segment, also a
heap and a stack. Using the numbers from the size and LMA columns, one can
draw a memory map as shown on the right of the figure.

Memory

.text

.data

8c000000

8c0005d8

> mb-objdump -h sections

sections: file format elf32-microblaze

Sections:
Idx Name Size VMA LMA File off Algn
...
4 .text 00000588 8c000000 8c000000 000000d4 2**2

CONTENTS, ALLOC, LOAD, CODE
...

.bss

.heap

.stack

8c000708

8c000754

8c000b58

...
10 .data 00000118 8c0005d8 8c0005d8 000006ac 2**2

CONTENTS, ALLOC, LOAD, DATA
...
19 .bss 0000004c 8c000708 8c000708 000007dc 2**2

ALLOC
20 .heap 00000404 8c000754 8c000754 000007dc 2**0

ALLOC
21 .stack 00000400 8c000b58 8c000b58 000007dc 2**0

ALLOC

Fig. 6.11 Output of objdump on the sections program on Microblaze

190 6 General-Purpose Embedded Cores

6.4 Analyzing the Quality of Compiled Code

By the nature of the job, a hardware/software codesigner is likely to get into touch
with the low-level details of a program. That, in turn, inevitably means handling
assembly language of a processor. Since most likely you will encounter many dif-
ferent processor architectures over your engineering career, it’s reasonable to ask
how much knowledge is really required on the processor’s instruction set in order to
do useful hardware/software codesign. This section will attempt to answer that ques-
tion. In short, it is not very useful to learn how to program assembly on a processor
when there is a C compiler available for that processor. However, it is very useful to
be able to analyze the C compiler output at the level of the assembly language. Thus,
given a C program and an assembly program corresponding to the C, a hardware/-
software codesigner should be able to establish the links between the two. We call
this concept Program Analysis: interpreting and understanding the performance of a
program based on observing the assembly code of that program. Program Analysis
is useful for addressing many design activities, such as the following examples.

� Program analysis provides insight into the optimizations that a C compiler can
and cannot offer. Many C programmers are hopeful about the capabilities of a
C compiler to produce efficient assembly code. While this is generally true for
a high-quality compiler, there are many cases where a compiler cannot help.
For example, a compiler is unable to make optimizations that require specific
knowledge in the statistical properties of the program data input. A compiler
will not transform a program with double or float variables into one with
int variables, even if an int would give sufficient precision for a particular
application. A compiler cannot perform optimizations at high abstraction levels,
such converting one type of sorting algorithm into another, equivalent, but more
efficient, sorting algorithm. To understand what a compiler can and cannot do, it
is helpful to compare C code and the corresponding assembly code.

� Program analysis enables a programmer to make quite accurate predictions on the
execution time of a given program. In cases where you are addressing low-level
issues, such as controlling hardware modules or controlling hardware interface
signals from within software, these timing predictions may be very important.

We distinguish static program analysis, which inspects only the assembly code,
and dynamic program analysis, which observes program execution at runtime. We
will illustrate the concept of each by means of examples from ARM and Microblaze
assembly code.

6.4.1 Analysis Based on Static Assembly Code

The objective of Static Program Analysis is to quantify (appreciate) the performance
of a given C program on a given processor by studying the assembly language
produced by the C compiler, and while relying on the processor’s documentation

6.4 Analyzing the Quality of Compiled Code 191

Listing 6.8 A simple convolution function
1 int array[256];
2 int c[256];
3 int main() {
4 int i, a;
5 a = 0;
6 for (i=0; i<256; i++)
7 a += array[i] * c[256 - i];
8 return a;
9 }

as needed. We will do this by discussing a small example C program, shown in
Listing 6.8. This program is a convolution operation: it evaluates the cross-product
of a data-array with a reversed data-array.

We are interested in the efficiency of this program on a Microblaze processor. For
this purpose, we generate the assembly listing of this program using the Microblaze
GNU compiler. The optimization level is set at O2. The resulting assembly listing
is shown in Listing 6.9.

The question we wish to address is: did the C compiler do a good job while
converting the C program in Listing 6.8 into assembly? In previous sections, we
already discussed several of the elements that help us answer this question, including
the concept of a stack frame. Another concept is the Application Binary Interface
(ABI). The ABI defines how a processor will use its registers to implement a C
program. For the case of a Microblaze processor and the example in Listing 6.8, the
following aspects are relevant.

� The Microblaze has 32 registers.
� Register r0 is always zero and used as a zero-constant.
� Register r1 is the stack pointer.
� Registers r19 through r31 are callee-saved registers: a function that wishes to

use these registers must preserve their contents before returning to the caller.

These elements will help to understand lines 8–17 from Listing 6.9.

� Line 8 grows the stack pointer by 44 bytes (11 words). Note that the Microblaze
stack grows downwards.

� Lines 9, 10, 13, 14 save registers on the stack. These registers (r22, r23, r19,
r24) will be used as temporary variables by the program. They are restored just
before the main function terminates.

From the values loaded into the working registers, we can infer what they actually
represent.

� Register r22 is initialized with array, the starting address of the array.
� Register r23 is initialized with c+1024, which is the start of the c variable plus

1024. Since the c variable is an array with 256 integers, we conclude that r23
points to the end of the c variable.

� Register r19 is initialized to 255, which is the loop count minus 1.
� Register r24 is initialized to 0, and could be the loop counter or the accumulator.

192 6 General-Purpose Embedded Cores

Listing 6.9 Microblaze assembly for the convolution program
1 .text
2 .align 2
3 .globl main
4 .ent main
5 main:
6 .frame r1,44,r15
7 .mask 0x01c88000
8 addik r1,r1,-44
9 swi r22,r1,32

10 swi r23,r1,36
11 addik r22,r0,array
12 addik r23,r0,c+1024
13 swi r19,r1,28
14 swi r24,r1,40
15 swi r15,r1,0
16 addk r24,r0,r0
17 addik r19,r0,255
18 $L5:
19 lwi r5,r22,0
20 lwi r6,r23,0
21 brlid r15,__mulsi3
22 addik r19,r19,-1
23 addk r24,r24,r3
24 addik r22,r22,4
25 bgeid r19,$L5
26 addik r23,r23,-4
27 addk r3,r24,r0
28 lwi r15,r1,0
29 lwi r19,r1,28
30 lwi r22,r1,32
31 lwi r23,r1,36
32 lwi r24,r1,40
33 rtsd r15,8
34 addik r1,r1,44
35 .end main
36 $Lfe1:
37 .size main,$Lfe1-main
38 .bss
39 .comm array,1024,4
40 .type array, @object
41 .comm c,1024,4
42 .type c, @object

We now know enough to tackle the loop body in lines 18–26. Loops in assembly
code are easy to find since they always start with a label (like $L5) and terminate
with a branch instruction to that label. In this case, the last instruction of the loop
body is on line 25 because the branch on line 24 is a delayed-branch (ends with a
“d”). The loop body reads an element from the variables array and c (line 18 and
19) and stores the result in r5 and r6. The next instruction is a function call. It is

6.4 Analyzing the Quality of Compiled Code 193

implemented in a RISC processor as a branch which saves the return address on
the stack. r15 is used to hold the return address. The function is called mulsi3.
From its name, this function hints to be a multiplication, indicating that the compiler
generated code for a microprocessor without a built-in multiplier. The multiplication
will support the implementation of the following C code.

a += array[i] * c[256 - i];

This is a clear example where the investigation of the assembly code helps to an-
swer performance questions that are invisible at the level of C. For example, suppose
that you would be testing a Microblaze program. To improve the program perfor-
mance, you added a hardware multiplier to the process. However, you don’t notice
any improvements. Looking into the assembly code (and finding mulsi3) will
directly reveal why the hardware multiplier is not used.

The result of the function mulsi3 is provided in registers r3 and r4 (this
is another convention of the ABI). Indeed we see that r3 is accumulated to r24
on line 21. This clears up the meaning of register r24: it is the accumulator. Note
that there are three adjustments to counter values in the loop body: Register r19
is decremented by 1, register r22 is incremented by 4, and register r23 is decre-
mented by 4. The adjustment to r23 is still part of the loop because this instruction
is located in the branch delay slot after the bgeid branch. We already know that
register r22 and r32 are pointers pointing to the variables array and c. Register
r19 is the loop counter. Thus, we conclude that the compiler was able to find out
that the address expressions for c and array are sequential, just as the loop counter
i. It is as if the compiler has automatically performed the following very effective
optimization:

int array[256];
int c[256];
int main() {

int i, a;
int *p1, *p2;
p1 = array;
p2 = &(c[255]);
a = 0;
for (i=0; i<256; i++)
a += (*(p1++)) * (*(p2--));

return a;
}

We conclude that the C compiler is able to do fairly advanced dataflow analysis
and optimization (when the optimization flag is turned on). Static program anal-
ysis does not reveal cycle counts and performance numbers. Rather, it provides a
qualitative appreciation of a program. Being able to investigate assembly code, even
for processors foreign to you, enables you to make accurate decisions on potential
software performance.

194 6 General-Purpose Embedded Cores

6.4.2 Analysis Based on Execution of Object Code

Another way of looking at program performance is to analyze its behavior dur-
ing execution. This is called Dynamic Program Analysis. Processor features such
as pipeline stalls and cache misses are not easy to determine using static program
analysis alone. Dynamic Program Analysis can reveal all these effects.

In order to observe a program during execution, we need to make use of a proces-
sor simulator. SimIt-ARM, one of the instruction simulators integrated in GEZEL,
is able to report the activities of each instruction as it flows through the processor
pipeline. This includes quantities such as the value of the program counter, the sim-
ulation cycle-count, and the instruction completion time. Obviously, collecting this
type of information will generate huge amounts of data, and a programmer needs to
trace instructions selectively. SimIt-ARM provides the means to turn the instruction-
tracing feature on or off so that a designer can focus on a particular program area of
interest.

Listing 6.10 shows the listing of a GCD function. Lines 11–13 illustrate a pseu-
dosystemcall that is used to turn the instruction-tracing feature of SimIt-ARM on
and off. This pseudosystemcall is simulator-specific, and will be implemented dif-
ferently when a different processor or simulation environment is used. As shown
in the main function on lines 17–19, the gcd function is called after turning the
tracing feature on, and it is turned-off again after that.

We will also generate the assembly code for the gcd function, which is use-
ful as a guide during instruction tracing. Listing 6.11 shows the resulting code,

Listing 6.10 Microblaze assembly for the convolution program
1 int gcd (int a, int b) {
2 while (a != b) {
3 if (a > b)
4 a = a - b;
5 else
6 b = b - a;
7 }
8 return a;
9 }

10
11 void instructiontrace(unsigned a) {
12 asm("swi 514");
13 }
14
15 int main() {
16 int a, i;
17 instructiontrace(1);
18 a = gcd(6, 8);
19 instructiontrace(0);
20 printf("GCD=%d\n", a);
21 return 0;
22 }

6.4 Analyzing the Quality of Compiled Code 195

Listing 6.11 ARM assembly code for gcd function
1 gcd:
2 mov ip, sp ; set up stack frame
3 stmfd sp!, {fp, ip, lr, pc}
4 sub fp, ip, #4
5 sub sp, sp, #8
6 str r0, [fp, #-16] ; storage for var_a
7 str r1, [fp, #-20] ; storage for var_b
8 .L2:
9 ldr r2, [fp, #-16]

10 ldr r3, [fp, #-20]
11 cmp r2, r3 ; while (var_a != var_b)
12 bne .L4
13 b .L3
14 .L4:
15 ldr r2, [fp, #-16] ; if (var_a > var_b)
16 ldr r3, [fp, #-20]
17 cmp r2, r3
18 ble .L5
19 ldr r3, [fp, #-16]
20 ldr r2, [fp, #-20]
21 rsb r3, r2, r3 ; var_a = var_a - var_b;
22 str r3, [fp, #-16]
23 b .L2
24 .L5: ; else
25 ldr r3, [fp, #-20]
26 ldr r2, [fp, #-16]
27 rsb r3, r2, r3 ; var_b = var_b - var_a;
28 str r3, [fp, #-20]
29 b .L2
30 .L3:
31 mov r0, r3
32 ldmea fp, {fp, sp, pc}

annotated with the corresponding C statements in Listing 6.10. We will first look
at the execution without compiler optimization.

/usr/local/arm/bin/arm-linux-gcc -static -S gcd.c -o gcd.S

Next, we prepare the processor simulator to collect the instruction trace. Pro-
cessor simulators will typically require additional configuration parameters for the
memory subsystem. In this simulation, we use the following parameters:

� D-cache of 16 KByte, organized as a 32-set associative cache with a line size of
32-bytes.

� I-cache of 16 KByte, organized as a 32-set associative cache with a line size of
32-bytes.

� 64-cycle memory-access latency, 1-cycle cache-access latency.

For completeness, we will recall the operation of a set-associative cache. Con-
sider the address mapping used by a 16KByte set-associative cache with 32 sets and
a line size of 32 bytes. Since the entire cache is 16KByte, each of the 32 sets in the

196 6 General-Purpose Embedded Cores

32 sets

16 lines

0 ¥ 8524 = 0 ¥ 200 * 0 ¥ 42 + 0 ¥ 124

0
1
2
3
4
5
6
7
8
9
A
B
C

00 1F
20 3F
40 5F
60 7F
80 9F
A0 BF
C0 DF
E0 FF
100
120
140
160
180

11F
13F
15F
17F
19F

line size = 32 bytes

C
D
E
F

180
1A0
1C0
1E0

19F
1BF
1DF
1FF

Fig. 6.12 Mapping of address 0x8524 in a 32-set, 16-line, 32-bytes-per-line set-associative cache

cache contains 512 bytes or 16 lines. If we number the cache lines from 0 to 15,
then address n from the address space will map into line .n=32/mod16. For exam-
ple, assume that the processor performs an instruction fetch from address 0x8524.
Figure 6.12 shows how this address maps into the second word of the tenth line of
the cache. The cache will thus check each tenth line in each of the 32 sets before
declaring a cache-miss.

We can now perform the simulation with instruction tracing on. The output is
shown, in part, below. The columns in this listing have the following meaning.

� Cycle: The simulation cycle count at the instruction fetch
� Addr: The location of that instruction in program memory
� Opcode: The instruction opcode
� P: Pipeline misspeculation. If a 1 appears in this column, then the instruction is

not completed but removed from the pipeline
� I: Instruction-cache miss. If a 1 appears in this column, then there is a cache miss

when this instruction is fetched
� D: Data-cache miss. If a 1 appears in this column, then there is a data cache miss

when this instruction executes
� Time: The total time that this instruction is active in the pipeline, from the cycle

it is fetched to the cycle it is retired
� Mnemonic: Assembly code for this instruction

Cycle Addr Opcode P I D Time Mnemonic
30601 81e4 e1a0c00d 0 1 0 70 mov ip, sp;
30667 81e8 e92dd800 0 0 0 8 stmdb sp!, {fp, ip, lr, pc};
30668 81ec e24cb004 0 0 0 8 sub fp, ip, #4;
30672 81f0 e24dd008 0 0 0 5 sub sp, sp, #8;

6.4 Analyzing the Quality of Compiled Code 197

30673 81f4 e50b0010 0 0 0 5 str r0, [fp, #-16];
30674 81f8 e50b1014 0 0 0 5 str r1, [fp, #-20];
30675 81fc e51b2010 0 0 0 5 ldr r2, [fp, #-16];
30676 8200 e51b3014 0 1 0 70 ldr r3, [fp, #-20];
30742 8204 e1520003 0 0 0 6 cmp r2, r3;
30743 8208 1a000000 0 0 0 3 bne 0x8210;
30745 820c ea00000d 1 0 0 1 b 0x8248;
30746 8210 e51b2010 0 0 0 5 ldr r2, [fp, #-16];
30747 8214 e51b3014 0 0 0 5 ldr r3, [fp, #-20];
30748 8218 e1520003 0 0 0 6 cmp r2, r3;
30749 821c da000004 0 0 0 3 ble 0x8234;
30751 8220 e51b3010 1 1 0 1 ldr r3, [fp, #-16];
30752 8234 e51b3014 0 1 0 69 ldr r3, [fp, #-20];
30817 8238 e51b2010 0 0 0 5 ldr r2, [fp, #-16];
30818 823c e0623003 0 0 0 6 rsb r3, r2, r3;
30819 8240 e50b3014 0 0 0 6 str r3, [fp, #-20];
30821 8244 eaffffec 0 0 0 2 b 0x81fc;
30822 8248 e1a00003 1 0 0 1 mov r0, r3;
30823 81fc e51b2010 0 0 0 5 ldr r2, [fp, #-16];
30824 8200 e51b3014 0 0 0 5 ldr r3, [fp, #-20];
30826 8208 1a000000 0 0 0 3 bne 0x8210;
30828 820c ea00000d 1 0 0 1 b 0x8248;

First, find a few instructions in the table that have a “1” in the P column. These
are pipeline misspeculations. They happen for example at cycle 30,745 and cycle
30,751. You can see that these instructions come just after a branch instruction,
and thus they are caused by a control hazard. Next observe the execution time
of the instructions. Most instructions take less than 6 clock cycles, but a few take
over 50 clock cycles. As indicated in the I and D column, these instructions are
slowed down by cache misses. For example, the instruction at cycle 30,676, address
0x8200, is an instruction-cache miss, and so is the instruction at cycle 30,752,
address 0x8234.

It is possible to explain why an instruction causes an I-cache miss? Indeed, this is
possible, and there are two cases to consider. The first case is when a linear sequence
of instructions is executing. In that case, I-cache misses will occur at the boundary
of the cache-lines. In a cache organization with a line size of 32 bytes, cache misses
will thus occur at multiples of 32 bytes (0x20 in hex). The instruction at address
0x8200 is an example of this case. This is the first instruction of a cache line which
is not in the cache. Therefore, the instruction-fetch stage stalls for 64 clock cycles
in order to update the cache. The second case is when a jump instruction executes
and moves to a program location which is not in the cache. In that case, the target
address may be in the middle of a cache line, and a cache miss may still occur. The
instruction at address 0x8234 is an example of that case. That instruction is executed
as a result of jump. In fact, the instruction just before that (at address 0x8220) is
also cache miss. That instruction does not complete, however, because it is part of a
control hazard.

Finally, observe also that some regular instructions take 5 clock cycles to com-
plete, while others take 6 clock cycles. A relevant example are the instructions on ad-
dress 0x8214 and address 0x8218. The first of these instructions is a memory-fetch

198 6 General-Purpose Embedded Cores

that loads the value of a local variable (b) into register r3. The following instruction
is a compare instruction that uses the value of r3. As discussed earlier, this is an
example of a data hazard, where the value of a register is only available after the
buffer stage of the RISC pipeline. The compare-instruction at address 0x8218 can-
not benefit from pipeline interlock hardware and it must be stalled for 1 clock cycle
until the result is available from data-memory.

As a result, dynamic instruction-tracing makes it possible to determine the cause
of pipeline hazards in a program. This technique is therefore useful for low-level
performance optimization.

6.5 Summary

In this chapter, we discussed the organization and operation of typical RISC pro-
cessors, using the ARM and the Microblaze as an example. In hardware–software
codesign, processors are the entry-point of software into the hardware world. Hence,
to analyze the operation of a low-level hardware–software interface, it is very use-
ful to understand the link between a C program, its assembly instructions, and the
behavior of these instructions in the processor pipeline. The execution of software
by a RISC processor is affected by the behavior of the RISC pipeline, its memory
hierarchy, and the organization of instructions and data into memory. Through the
understanding of a limited set of concepts in C, these complex interactions can be
understood and controlled to a fairly detailed level. For example, the mapping of
datatypes to memory can be influenced with storage qualifiers, and detailed perfor-
mance optimization is possible through careful rewriting of C code in combination
with study of the resulting program through static and dynamic analysis. This chap-
ter has prepared us for the next big step in a hardware/software codesigned system:
the extension of a simple RISC processor into a system-on-chip architecture that
integrates software, processors, and custom hardware functions. Clearly, the RISC
processor will play a pivotal role in this story.

6.6 Further Reading

The classic work on RISC processor architectures is by Hennessy and Patterson
(2006). It is essential reading if you want to delve into the internals of RISC pro-
cessors. Good documentation on the low-level software tools such as size and
objdump is not easy to find; the manual pages unfortunately are rather specialized.
Books on Embedded Linux Programming, such as Yaghmour et al. (2008), are the
right place to start if the man pages do not help. The ELF format is described in
detail in the Tool Interface Standard ELF format (ELF Committee 1995). Proces-
sor documentation can be found with the processor designers or processor vendors.
For example, ARM has an extensive on-line library documenting all the features of

6.7 Problems 199

ARM processors (ARM 2009b), and Xilinx provides a detailed specification of the
Microblaze instruction-set (Xilinx 2009).

An effective method to learn about the low-level implementation of a RISC core
is to implement one, for example starting from open source code. The LEON series
of processors by Gaisler Aeroflex, for example, provides a complete collection of
HDL source code, compilers, and debuggers (Aeroflex 2009). The internals of a
processor simulator, and of the SimIt-ARM instruction-set simulator are described
by Qin in several articles (D’Errico and Qin 2006; Qin and Malik 2003).

6.7 Problems

6.1. Write a short C program that helps you to determine if the stack grows upwards
or downwards.

6.2. Write a short C program that helps you to determine the position of the stack
segment, the text segment, the heap, and data segment (global variables).

6.3. Explain the difference between the following terms:

� Control hazard and data hazard
� Delayed branch and conditional branch
� Little Endian and Big Endian
� volatile int * a and int * const a
� Virtual Memory Address (VMA) and Load Memory Address (LMA)

6.4. This problem considers C Qualifiers and Specifiers.

(a) Correct or not: The volatile qualifier will prevent a processor from storing
that variable in the cache ?

(b) When writing a C program, you can create an integer variable a as follows:
register int a. This specifier tells the compiler that a should be prefer-
ably kept in a register as much as possible, in the interest of program execution
speed. Explain why this specifier cannot be used for the memory-mapped regis-
ters in a hardware coprocessor.

6.5. The following C function was compiled for Microblaze with optimization-level
O2. It results in a sequence of 4 assembly instructions. Carefully examine the C
code (Listing 6.12) and the assembly code (Listing 6.13), and answer the following
questions. Note that register r5 holds the function argument and register r3 holds
the function return value.

(a) Explain why the assembly code does not have a loop?
(b) Suppose line 5 of the C program reads a = a - 1 instead of a = a + 1.

Determine how the assembly code would change.

200 6 General-Purpose Embedded Cores

Listing 6.12 C Listing for Problem 6.5
1 int dummy(int a) {
2 int i, j = a;
3 for (i=0; i<3; i++) {
4 j += a;
5 a = a + 1;
6 }
7 return a + j;
8 }

Listing 6.13 Assembly Listing for Problem 6.5
1 muli r3, r5, 4
2 addk r4, r3, r5
3 rtsd r15, 8
4 addik r3, r3, 6

Listing 6.14 Assembly Listing for Problem 6.6
1 ldr r3, [fp, #-16]; // load-register
2 mov r2, r3, lsr #1; // lsr = shift-right
3 ldr r3, [fp, #-16];
4 and r3, r3, #1;
5 rsb r3, r3, #0;
6 and r3, r3, #-805306367;
7 eor r3, r2, r3;
8 str r3, [fp, #-16]; // store-register

6.6. The following C statement implements a pseudorandom generator. It translates
to the sequence of assembly instructions as shown in Listing 6.14. The assembly
instructions are those of a 5-stage pipelined StrongARM processor.

unsigned rnstate;
rnstate = (rnstate >> 1) ˆ (-(signed int)(rnstate &1)

& 0xd0000001u);

Answer the following questions:

(a) What is the purpose of line 5 in Listing 6.14 (the rsb instruction) in the Stron-
gArm Code? Point out exactly what part of the C expression it will implement.

(b) What types of hazard can be caused by line 3 in Listing 6.14?

6.7. The C in Listing 6.15 was compiled for StrongARM using the following com-
mand:

/usr/local/arm/bin/arm-linux-gcc -O -S -static loop.c -o loop.s

The resulting assembly code is shown in Listing 6.16.

(a) Draw a dataflow diagram of the assembly code.
(b) Identify all instructions in this listing that are directly involved in the address

calculation of a data memory read.

6.7 Problems 201

Listing 6.15 C program for Problem 6.7
1 int a[100]
2 int b[100];
3 int i;
4
5 for (i=0; i<100; ++i) {
6 a[b[i]] = i + 2;
7 }
8 return 0;

Listing 6.16 Assembly listing for Problem 6.7
1 mov r1, #0
2 .L6:
3 add r0, sp, #800
4 add r3, r0, r1, asl #2
5 ldr r3, [r3, #-800]
6 add r2, r0, r3, asl #2
7 add r3, r1, #2
8 str r3, [r2, #-400]
9 add r1, r1, #1

10 cmp r1, #99
11 ble .L6

6.8. Listing 6.17 shows a routine to evaluate the CORDIC transformation
(Coordinate Digital Transformation). CORDIC procedures are used to approxi-
mate trigonometric operations using simple integer arithmetic. In this case, we are
interested in the inner loop of the program, on lines 16–28. This program will be
compiled with a single level of optimization as follows:

arm-linux-gcc -O1 -g -c cordic.c

Next, the assembly code of the program is created using the objdump utility.
The command line flags are chosen to generate the assembly code, interleaved with
the C code. This is possible if the object code was generated using debug informa-
tion (-g flag above). The resulting file is shown in Listing 6.18.

arm-linux-objdump -S -d cordic.o

(a) Study the listing in Listing 6.18 and explain the difference between an addgt
and an addle instruction on the ARM processor.

(b) Using objdump, find the size of the text segment and the data segment.
(c) Study the listing in Listing 6.18 and point out what are the callee-saved registers

in this routine.
(d) Estimate the execution time for the cordic routine, ignoring the cache misses.

202 6 General-Purpose Embedded Cores

Listing 6.17 C listing for Problem 6.8
1 #define AG_CONST 163008218
2
3 static const int angles[] = {
4 210828714, 124459457, 65760959, 33381289,
5 16755421, 8385878, 4193962, 2097109,
6 1048570, 524287, 262143, 131071,
7 65535, 32767, 16383, 8191,
8 4095, 2047, 1024, 511 };
9

10 void cordic(int target, int *rX, int *rY) {
11 int X, Y, T, current;
12 unsigned step;
13 X = AG_CONST;
14 Y = 0;
15 current = 0;
16 for(step=0; step < 20; step++) {
17 if (target > current) {
18 T = X - (Y >> step);
19 Y = (X >> step) + Y;
20 X = T;
21 current += angles[step];
22 } else {
23 T = X + (Y >> step);
24 Y = -(X >> step) + Y;
25 X = T;
26 current -= angles[step];
27 }
28 }
29 *rX = X;
30 *rY = Y;
31 }

Listing 6.18 Mixed C-assembly listing for Problem 8.8
1 void cordic(int target, int *rX, int *rY) {
2 0: e92d40f0 stmdb sp!, {r4, r5, r6, r7, lr}
3 4: e1a06001 mov r6, r1
4 8: e1a07002 mov r7, r2
5 int X, Y, T, current;
6 unsigned step;
7 X = AG_CONST;
8 c: e59fe054 ldr lr, [pc, #84]
9 Y = 0;

10 10: e3a02000 mov r2, #0 ; 0x0
11 current = 0;
12 14: e1a01002 mov r1, r2
13 for(step=0; step < 20; step++) {
14 18: e1a0c002 mov ip, r2
15 1c: e59f5048 ldr r5, [pc, #72]
16 20: e1a04005 mov r4, r5
17 if (target > current) {
18 24: e1500001 cmp r0, r1
19 T = X - (Y >> step);
20 28: c04e3c52 subgt r3, lr, r2, asr ip

6.7 Problems 203

21 Y = (X >> step) + Y;
22 2c: c0822c5e addgt r2, r2, lr, asr ip
23 X = T;
24 30: c1a0e003 movgt lr, r3
25 current += angles[step];
26 34: c795310c ldrgt r3, [r5, ip, lsl #2]
27 38: c0811003 addgt r1, r1, r3
28 } else {
29 T = X + (Y >> step);
30 3c: d08e3c52 addle r3, lr, r2, asr ip
31 Y = -(X >> step) + Y;
32 40: d0422c5e suble r2, r2, lr, asr ip
33 X = T;
34 44: d1a0e003 movle lr, r3
35 current -= angles[step];
36 48: d794310c ldrle r3, [r4, ip, lsl #2]
37 4c: d0631001 rsble r1, r3, r1
38 50: e28cc001 add ip, ip, #1
39 54: e35c0013 cmp ip, #19
40 58: 8586e000 strhi lr, [r6]
41 }
42 }
43 *rX = X;
44 *rY = Y;
45 5c: 85872000 strhi r2, [r7]
46 }
47 60: 88bd80f0 ldmhiia sp!, {r4, r5, r6, r7, pc}
48 64: ea000007 b 24 <cordic+0x24>
49 68: 09b74eda ldmeqib r7!, {r1, r3, r4, r6, r7, r9, sl,
50 fp, lr}
51 6c: 00000000 andeq r0, r0, r0

Chapter 7
System On Chip

Abstract There is no generally accepted, universally-available machine abstraction
above that of a RISC processor. However, the RISC is a key component in a very
successful heterogeneous architecture: the System-on-Chip. A system-on-chip ar-
chitecture combines one or more microprocessors, an on-chip bus system, several
dedicated coprocessors, and on-chip memory, all on a single chip. An SoC archi-
tecture provides general-purpose computing capabilities along with a few highly
specialized functions, adapted to a particular design domain. This chapter reviews
the cast of players in the system-on-chip concept, and it describes its key charac-
teristics. The chapter also documents how GEZEL SoC models can be constructed
as a combination of custom FSMD hardware modules and simulation primitives to
capture the RISC cores.

7.1 The System-on-Chip Concept

Figure 7.1 illustrates a typical System-on-chip. It combines several components on a
bus system. One of these components is a microprocessor (typically a RISC), which
plays the role of conductor in the SoC. Other components include on-chip mem-
ory, off-chip-memory interfaces, dedicated peripherals, hardware coprocessors, and
component-to-component communication infrastructure.

The application domain greatly affects the type of hardware peripherals, the size
of memories, and the nature of on-chip communications. A particular configuration
of these elements is also called a platform. Just like a personal computer is a
platform for general-purpose computing, a system-on-chip is a platform for domain-
specialized computing, i.e., for an ensemble of applications that are typical for
a given application domain. Examples of application domains are mobile tele-
phony, video processing, or high-speed networking. The set of applications in the
video-processing domain for example could include image transcoding, image com-
pression and decompression, image color transformations, and so forth. Domain
specialization in a System-on-Chip is advantageous for several reasons.

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 7, c� Springer Science+Business Media, LLC 2010

205

206 7 System On Chip

CPU Memory

Memory
Controller Timer

Parallel
I / OI$ D$

custom dp

Local

external
memory

DMA Bus
Master

Bridge

UART
Custom

HW

Peripheral
Bus

Custom
HW

Local
Bus

direct I/O

High-speed
Bus

Fig. 7.1 Generic template for a system-on-chip

� The specialization of the platform ensures that its processing efficiency is higher
compared to that of general-purpose solutions. Increased processing efficiency
means lower power consumption (longer battery lifetime) or higher absolute per-
formance.

� The flexibility of the platform ensures that it is a reusable solution that works
over multiple applications. As a result, the design cost-per-application decreases,
applications can be developed faster, and the SoC itself becomes cheaper because
it can be manufactured for a larger market.

7.1.1 The Cast of Players

An architecture such as in Fig. 7.1 can be analyzed along 4 orthogonal dimensions:
control, communication, computation, and storage. The role of central controller
role is given to the microprocessor, who is responsible of issuing control signals
to, and collecting status signals from, the various components in the system. The
microprocessor may or may not have a local instruction memory. In case it does
not have a local instruction memory, caches may be utilized to improve instruction-
memory bandwidth. The I$ and D$ symbols in Fig. 7.1 represent the instruction-
and data-caches in the microprocessor. In the context of an SoC architecture, these
caches will only benefit the microprocessor they are serving. This obvious fact has
an often-ignored consequence: whenever the microprocessor needs to interact with
a peripheral, it needs to transfer data beyond the cache. Thus, while the micropro-
cessor in an SoC is in the role of central commander, it is not a good idea to make
the microprocessor also responsible for data-movement or data-handling.

The SoC implements communication using system-wide busses. Each bus is a
bundle of signals including address, data, control, and synchronization signals. The
data transfers on a bus are expressed as read- and write-operations with a particular

7.1 The System-on-Chip Concept 207

memory address. The bus control lines indicate the nature of the transfer (read/write,
size, source, destination), while the synchronization signals ensure that the sender
and receiver on the bus are aligned in time during a data transfer. Each component
connected to a bus will respond to a particular range of memory addresses. The
ensemble of components can thus be represented in an address map, a list of all
system-bus addresses relevant in the system-on-chip.

It is common to split SoC busses into segments. Each segment connects a limited
number of components, grouped according to their communication needs. In the ex-
ample, a high-speed communication bus is used to interconnect the microprocessor,
a high-speed memory interface, and a Direct Memory Access (DMA) controller.
A DMA is a device specialized in performing block-transfers on the bus, for ex-
ample to copy one memory region to another. Next to a high-speed communication
bus, you may also find a peripheral bus, intended for lower-speed components such
as a timer and input–output peripherals. Segmented busses are interconnected with
a bus bridge, a component that translates bus transfers from one segment to another
segment. A bus bridge will only selectively translate transfers from one bus segment
to the other. This selection is done based on the address map.

The bus control lines of each bus segment are under command of the bus master,
the component that decides the nature of a given bus master. Other components, the
bus slaves, will follow the directions of the bus master. Each bus segment can con-
tain one or more bus masters. In case there are multiple masters, the identity of the
bus master can be rotated among bus-master components at run time. In that case,
a bus arbiter will be needed to decide which component can become a bus master
for a given bus transfer. A bus bridge can be either master or bus slave, depending
on the direction of the transfers. For example, when going from the high-speed bus
to the peripheral bus, the bus bridge will act as a bus slave on the high-speed bus
and as a bus master on the peripheral bus. Each of the transfers on the high-speed
bus and on the peripheral bus will be handled independently. Therefore, the seg-
mentation of busses using bus bridges leads to a dual advantage. First, bus segments
can group components with matching read- and write-speed together, thus provid-
ing optimal usage of the available bus bandwidth. Second, the bus segments enable
communication parallelism.

7.1.2 SoC Interfaces for Custom Hardware

Let us consider the opportunities to attach custom hardware modules in the con-
text of an SoC architecture. In the context of this chapter, a “custom hardware
module” means a dedicated digital machine described as an FSMD or as a micro-
programmed machine. Eventually, all custom hardware will be under control of the
central processor in the SoC. The SoC architecture offers several possible hardware-
software interfaces to attach custom hardware modules. Three approaches can be
distinguished in Fig. 7.1 as shaded blocks.

208 7 System On Chip

� The most general approach is to integrate a custom hardware module as a
standard peripheral on a system bus. The microprocessor communicates with the
custom hardware module by means of read/write memory accesses. Of course,
the memory adddresses occupied by the custom hardware module cannot be
used for other purposes (i.e., as addressable memory). For the memory addresses
occupied by the custom hardware module, the microprocessors’ cache has no
meaning, and the caching effect is unwanted. Microcontroller chips with many
different peripherals typically use this memory-mapped strategy to attach pe-
ripherals. The strong point of this approach is that a universal communication
mechanism (memory read/write operations) can be used for a wide range of
custom hardware modules. The corresponding disadvantage, of course, is that
such a bus-based approach to integrate hardware is not very scalable in terms of
performance: the system bus quickly becomes a bottleneck when intense commu-
nication between a microprocessor and the attached hardware modules is needed.

� A second mechanism is to attach custom hardware through a local bus system
or coprocessor interface provided by the microprocessor. In this case, the com-
munication between the hardware module and the microprocessor will follow
a dedicated protocol, defined by the local bus system or coprocessor interface.
In comparison to system-bus interfaces, coprocessor interfaces have a high-
bandwidth and a low latency. The microprocessor may also provide a dedicated
set of instructions to communicate over this interface. Typical coprocessor in-
terfaces do not involve a memory addresses. This type of coprocessor obviously
requires a microprocessor with a coprocessor- or local-bus interface.

� Microprocessors may also provide a means to integrate a custom-hardware
datapath inside of the microprocessor. The instruction set of the microprocessor
is then extended with additional, new instructions to drive this custom hardware.
The communication channel between the custom datapath and the processor is
typically through the processor register file, resulting in a very high communica-
tion bandwidth. However, the very tight integration of custom hardware with a
microprocessor also means that the traditional bottlenecks of the microprocessor
are also a bottleneck for the custom-hardware modules. If the microprocessor is
stalled because of external events (such as memory-access bandwidth), the cus-
tom data-datapath is stalled as well.

These observations show that there is no single best way to integrate hard-
ware and software. There are many possible solutions, each with their advantages
and disadvantages. Selecting the right approach involves trading-off many factors,
including the required communication bandwidth, the design complexity of the cus-
tom hardware interface, the software, the available design time, and the overall cost
budget. The following chapters will cover some of the design aspects of hardware-
software interfaces. In the end, however, it is the hardware-software codesigner who
must identify the integration opportunities of a given System-on-Chip architecture,
and who must realize their potential.

7.2 Four Design Principles in SoC Architecture 209

7.2 Four Design Principles in SoC Architecture

A SoC is very specific to an application domain. Are there any guiding design
principles that are relevant to the design of any SoC? This section will address this
question in more detail. The objective is to clarify four design principles that govern
the majority of modern SoC architectures. These four principles include heteroge-
neous and distributed communications, heterogeneous and distributed data process-
ing, heterogeneous and distributed storage, and hierarchical control. We will review
each of these four points in more detail. This will demonstrate the huge potential of
the SoC, in particular when the technological dimension is brought into the picture.

7.2.1 Heterogeneous and Distributed Data Processing

A first prominent characteristic of an SoC architecture is heterogeneous and dis-
tributed data processing. An SoC may contain multiple independent (distributed)
computational units. Moreover, these units can be heterogenous and include FSMD,
microprogrammed engines, or microprocessors.

One can distinguish three forms of data-processing parallelism. The first is word-
level parallelism, which enables the parallel processing of multiple bits in a word.
The second is operation-level parallelism, which allows multiple instructions to be
executed simultaneously. The third is task-level parallelism, which allows multiple
independent threads of control to be executed independently. Word-level parallelism
and operation-level parallelism are available on all of the machine architectures we
discussed so far: FSMD, Microprogrammed machines, RISC, and also SoC. How-
ever, only an SoC supports task-level parallelism. Note that multithreading in a
RISC is not task-level parallelism; it is task-level concurrency on top of a sequential
machine.

Each of the computational units in an SoC can be specialized to a particular
function. The overall SoC therefore includes a collection of heterogeneous compu-
tational units. For example, a digital signal processing chip in a camera may contain
specialized units to perform image-processing. Computational specialization is the
key to obtain an efficient chip. In addition, the presence of all forms of parallelism
(word-level, operation-level, task-level) ensures that an SoC can fully exploit the
technology.

In fact, integrated circuit technology is extremely effective to provide compu-
tational parallelism. Consider the following numerical example. A 1-bit full-adder
cell can be implemented in about 28 transistors. The Intel Core 2 processor contains
291 million transistors in 65 nm CMOS technology. This is sufficient to implement
325,000 32-bit adders. Assuming a core clock frequency of 2.1 GHz, we thus find
that the silicon used to create a Core 2 can theoretically implement 682,000 Giga-
operations per second. We call this number the intrinsic computational efficiency
of silicon. Of course, we don’t know how to build a machine that would have this
efficiency, let alone that such a machine would be able to cope with the resulting

210 7 System On Chip

power density. The intrinsic computational efficiency merely represents a theoretical
upperbound.

Effintrinsic D 291:106

28:32
:2:1 � 682;000 Gops (7.1)

The actual Core 2 architecture handles around 9.24 instructions per clock cycle,
in a single core and in the most optimal case. The actual efficiency of the 2.1 GHz
Core 2 therefore is 19.4 Giga-operations per second. We make the (strong) approx-
imation that these 9.24 instructions each correspond to a 32-bit addition, and call
the resulting throughput the actual Core2 efficiency. The ratio of the intrinsic Core2
efficiency over the actual Core2 efficiency illustrates the efficiency of silicon tech-
nology compared to the efficiency of a processor core architecture.

Efficiency D Effintrinsic

Effactual
� 682;000

19:4
D 35;150 (7.2)

Therefore, bare silicon can implement computations 35,000 times more efficient
than a Core2! While this is a very simple and crude approximation, it demonstrates
why specialization of silicon using multiple, independent computational units is so
attractive.

7.2.2 Heterogeneous and Distributed Communications

The central bus in a system-on-chip is a critical resource. It is shared by many
components in an SoC. One approach to prevent this resource from becoming a
bottleneck is to split the bus into multiple bus segments using bus bridges. The bus
bridge is therefore a mechanism to create distributed on-chip communications. The
on-chip communication requirements typically show large variations over an SoC.
Therefore, the SoC interconnection mechanisms should be heterogeneous as well.
There may be shared busses, point-to-point connections, serial connections, and par-
allel connections.

Heterogeneous and distributed SoC communications enable a designer to exploit
the on-chip communication bandwidth. In modern technology, this bandwidth is
extremely high. An illustrative example by Chris Rowen mentions the following
numbers. In a 90 nm 6-layer metal processor, we can reasonably assume that metal
layers will be used as follows: two metal layers are used for power and ground,
respectively, two metal layers are used to route wires in the X direction, and two
metal layers are used to route wires in the Y direction. The density of wires in a
90 nm process is 4 wires per micron (one thousandth of a millimeter), and the bit
frequency is at 500 MHz. Consequently, in a chip of 10 millimeter on the side, we
will have 40,000 wires per layer on a side. Such a chip can transport 80,000 bits in
any direction at a frequency of 500 MHz. This corresponds to 40 terabits per second!
Consequently, on-chip communications have a high bandwidth – the real challenge
is how to organize it efficiently.

7.2 Four Design Principles in SoC Architecture 211

The same cannot be said for off-chip communication bandwidth. In fact, off-chip
bandwidth is very expensive compared to on-chip bandwidth. For example, consider
the latest Hypertransport 3.1 standard, a serial link developed for high-speed proces-
sor interconnect. Usually, a (high-end) processor will have one to four of such ports.
The maximum aggregate data bandwidth for such a port is around 20.8 GByte per
second. Thus, we will find less than 80 GByte per second input/output bandwidth on
a state-of-the-art processor today. That is still 62 times less than the 40 Tb/s on-chip
bandwidth in a standard 90 nm CMOS process! This clearly indicates the potential
of on-chip integration.

7.2.3 Heterogeneous and Distributed Storage

A third characteristic of System-on-Chip architectures is a distributed and hetero-
geneous storage architecture. Instead of a single, central memory, an SoC will use a
collection of dedicated memories. Processors and microcoded engines may contain
local instruction memories. Processors may also use cache memories to maintain
local copies of data and instructions. Coprocessors and other active components
will use local register files. Specialized accelerators can use dedicated memories for
specific applications such as for video frame buffering or as local scratchpad.

This storage is implemented with a collection of different memory technologies.
There are five broad categories of silicon-based storage available today.

� Registers are the fastest type of memory available. Registers are also called
foreground memory. They reside the closest to the computation elements of an
architecture. A register does not have the concept of addressing unless it is orga-
nized in a register file.

� Dynamic Random Access Memory (DRAM) provides cheap storage at very high
densities. Today (2009), one in 4 memory chips sold is a DRAM (or a related cat-
egory such as SDRAM, DDR, DDR2). DRAM, and all the following categories
are called background memory. Unlike registers, DRAM cells use a different pro-
cessing technology as normal logic. Therefore, DRAM memories are unsuited to
be integrated on a single-chip SoC.

� Static Random Access Memory (SRAM) is used where fast read–write storage is
required. SRAM has lower density and higher power consumption than DRAM.
It is not used for the bulk of computer storage, but rather for specialized tasks
such as caches, video buffers, and so on. On the plus side, SRAM can be imple-
mented with the same process technology as normal logic gates. It is therefore
easy to mix SRAM and computational elements in an SoC.

� Nonvolatile Read-Only Memory (NVROM) is used for applications that only re-
quire read access on a memory, such as for example to store the instructions
of a program. Nonvolatile memories have a higher density than SRAM. There
is a range of technologies that can be used to implement a NVROM (mask-
programmed ROM, PROM, EPROM, EEPROM).

212 7 System On Chip

Table 7.1 Types of memories

NVROM NVRAM
Register (ROM, PROM, (Flash,

Type Register file DRAM SRAM EPROM) EEPROM)

Cell size (bit) 10 transistors 1 transistor 4 transistors 1 transistor 1 transistor
Retention 0 Tens of ms 0 1 10 years
Addressing Implicit Multiplexed Non-muxed Non-muxed Non-muxed
Access time Less then 1 ns Less then 20 ns Less then 10 ns 20 ns 20 ns (read)

100 �s (write)
Power
consumption

High Low High Very low Very low

Write durability 1 1 1 1-time One million
times

� Nonvolatile Random Access Memory (NVRAM) is used for applications that
need read–write memories that do not loose data when power is removed. The
read- and write-speed in a NVRAM can be asymmetrical (write being slower) so
that in the limit the distinction between NVROM and NVRAM is not sharp.

Table 7.1 summarizes the key characteristics of these different types of memory.
The entries in the table have the following meaning:

� The cell size is the silicon area required to store a single bit. The cell size is
only part of the complete memory – additional hardware is needed for address
decoding, multiplexing bits from the data bus, and so on. High-density storage
technologies use only a single transistor per bit, and make use of low-level phys-
ical properties of that transistor (parasitic capacitance, floating gate, etc) to hold
the bit.

� The retention time expresses how long a bit can be held in a nonpowered memory.
� The addressing mechanism shows how bits are retrieved from memory. In multi-

plexed addressing, such as used by DRAM, the address is cut in two parts which
are provided sequentially to the memory.

� The access time is the time required to fetch a data element from memory. Note
that the access time is a coarse number, as it does not capture the detailed be-
havior of a memory. For example, in NVRAM technologies, the read and write
access time is asymmetrical: write takes longer than read. Modern DRAM mem-
ories are very efficient in providing consecutive memory locations (burst access),
but individual random locations take longer. Finally, modern memories can be
internally pipelined, such that they can process more than one read or write com-
mand at the same time.

� The power consumption is a qualitative appreciation for the power consumption
of a memory, as measured per access and per bit. Fast read/write storage is much
more power-hungry than slow read-only storage.

The presence of distributed storage significantly complicates the concept of a
centralized memory address space, which is so useful in SoC. As long as the data

7.2 Four Design Principles in SoC Architecture 213

within these distributed memories is local to a single component, this does not cause
any problem. However, it becomes troublesome when data needs to be shared among
components. First, when multiple copies of a single data item exist in different mem-
ories, all these copies need to be kept consistent. Second, updating of a shared data
item needs to be implemented in a way that will not violate data dependencies
among the components that share the data item. It is easy to find a few examples
where either of these two requirements will be violated (see Problem 7.1).

In 1994, Wulf and McKee wrote a paper entitled Hitting the Memory Wall: Impli-
cations of the Obvious. The authors used the term memory wall to indicate the point
at which the performance of a (computer) system is determined by the speed of
memory, and is no longer dependent on processor speed. While the authors conclu-
sions were made for general-purpose computing architectures, their insights are also
valid for mixed hardware/software systems such as those found in System-on-Chip.
Wulf and McKee observed that the performance improvement of processors over
time was higher than the performance improvement of memories. They assumed
60% performance improvement per year for processors, and 10% for memories –
valid numbers for systems around the turn of the century. The memory wall de-
scribes the specific moment when the performance of a computer system becomes
performance-constrained by the memory subsystem. It is derived as follows:

In general-purpose computer architectures with a cache, the memory access time
of a processor with cycle time tc , cache hit-rate p, and memory access time tm, is
given by

tavg D p � tc C .1 � p/ � tm (7.3)

Now assume that on the average, one in 5 processor instructions will require
a memory reference. Under this assumption, the system becomes memory-access
constrained when tavg reaches 5 times the cycle time tc . Indeed, no matter how good
the processor is, it will spend more time waiting for memory than executing instruc-
tions. This point is called the memory wall.

How likely is it for a computer to hit the memory wall? To answer this question,
we should observe that the cache hit rate p cannot be 100%. Data-elements stored
in memory have to be fetched at least once from memory before they can be stored
in a cache. Let us assume a factor of p D 0:99 (rather pessimistic), a cycle time tc
of 1, and a cycle time tm of 10.

Under this assumption,

.tavg/now D 0:99 � 1C 0:01 � 10 D 1:09 (7.4)

One year from now, memory is 1.1 times faster and the processor is 1.6 times
faster. Thus, one year from now, tavg will change to

.tavg/nowC1 D 0:99 � 1C 0:01 � 10 � 1:6

1:1
D 1:135 (7.5)

214 7 System On Chip

And after N years it will be

.tavg/nowCN D 0:99 � 1C 0:01 � 10 � 1:6

1:1

N

(7.6)

The memory wall will be hit when tavg equals 5, which can be solved according
to the above equation to be N D 9:8 years. Now, more than a decade after this 1994
paper, it is unclear if the doomsday scenario has really materialized. Many other
factors have changed in the meantime as well, making the formula an unreliable
predictor. For example, current processor workloads are very different than those
from 10 years ago. Multimedia, gaming, and internet have become a major factor. In
addition, current processor scaling is no longer done by increasing clock frequency
but by more drastic changes at the architecture-level (multiprocessors). Finally, new
limiting factors, such as power consumption density and technological variability,
have retargeted the quest for performance into one for efficiency.

Despite this, memory remains a crucial element in SoC design, and it still has a
major impact on system performance. In many applications, the selection of mem-
ory elements, their configuration and layout, and their programming is a crucial
design task.

7.2.4 Hierarchical Control

The final concept in the architecture of an SoC is the hierarchy of control among
components. A hierarchy of control means that the entire SoC operates as a single
logical entity. This implies that all components in an SoC will need to synchronize
at some point. For example, consider a C program (on a RISC) that uses a copro-
cessor implemented as a peripheral. The C program will need to send arguments to
the coprocessor, wait for the coprocessor to finish execution, and finally retrieve the
result from the coprocessor. From the perspective of the coprocessor, the custom
hardware will first wait for someone to provide it with operands over the periph-
eral bus, next it will do active processing, and finally it will signal completion of
the operation to the caller (for example, by setting a status flag). It is clear that the
control on the RISC processor as well as on the coprocessor are not independent.
The local controller in the coprocessor can be developed with an FSM or a micro-
programming technique. The RISC processor will maintain overall control in the
system and distribute commands to custom hardware.

The design of a good control hierarchy is a challenging problem. On the one
hand, it should exploit the distributed nature of the SoC as good as possible – this
implies doing many things in parallel. On the other hand, it should minimize the
number of conflicts that arise as a result of running things in parallel. Such conflicts
can be the result of overloading the available bus-system or memory bandwidth, or
overscheduling a coprocessor. Due to the control hierarchy, all components of an
SoC are logically connected to each other, and each of them may cause a system
bottleneck. The challenge for the SoC designer (or platform programmer) is to be
aware of the location of such system bottlenecks and to control them.

7.3 Example: Portable Multimedia System 215

7.3 Example: Portable Multimedia System

In this section we illustrate the four key characteristics discussed earlier (distributed
and heterogeneous memory, interconnect, computing, and hierarchical control) by
means of an example. Figure 7.2 shows the block diagram of a digital media pro-
cessor by Texas Instruments. The chip is used for the processing of still images,
video, and audio in portable, battery-operated devices. It is manufactured in 130 nm
CMOS, and the entire chip consumes no more than 250 mW in default-preview
mode and 400 mW when video encoding and decoding is operational.

The chip supports a number of device modes. Each mode corresponds to typical
user activity. The modes include the following:

� Live preview of images (coming from the CMOS imager) on the video display.
� Live-video conversion to a compressed format (MPEG, MJPEG) and streaming

of the result into an external memory.
� Still-image capturing of a high-resolution image and conversion to JPEG.
� Live audio capturing and audio compression to MP3, WMA, or AAC.
� Video decode and playback of a recorded stream onto the video display.
� Still image decode and playback of a stored image onto the video display.
� Audio decode and playback.
� Photo printing of a stored image into a format suitable for a photo printer.

The central component of the block diagram in Fig. 7.2 is the SDRAM mem-
ory controller. During operation, image data is stored in off-chip SDRAM memory.
The SDRAM controller organizes memory traffic to this large off-chip memory.

C54X
Core

128 K RAM
Data / Code

SDRAM
Controller

Imaging
Accelerator

Variable
Length
Codec

DMA
Engine

CCD CTL
and Preview

16K RAM
8K I/D Cache

CCD
Imager

Flash /
SRAM SDRAM

31K × 16 bit
Image
Buffer

Quantization
and Inverse
Quantization

ARM925
Core & I/O

Video
Encoder

NTSC / PALGPIO: USB, UART,
MMC/SD, ...

High-Speed
Signal Processing

Complex
Signal Processing

System
Control

Video I / O

audio

Fig. 7.2 Generic template for a system-on-chip

216 7 System On Chip

Around the controller, four different subsystems are organized. They deal with video
input/output, complex signal processing, high-speed signal processing, and system
control, respectively.

The video input/output subsystem includes the CCD sensor interface and a video
encoder. The CCD interface is capable of sampling up to 40 MHz at 12 bits per pixel,
and it needs to provide high-resolution still images (2–5 Mpixels) as well as moving
images (up to 30 frames/s at 640 � 480 pixels). Most CCD sensors record only a
single color per pixel. Typically there are 25% red pixels, 25% blue pixels, and
50% green pixels, which are arranged in a so-called Bayer pattern. This means that,
before images can be processed, the missing pixels need to be filled in (interpolated).
This task is a typical example of streaming and dedicated processing. The video
subsystem also contains a video encoder, capable of merging two video streams on
screen, and providing picture-in-picture functionality. The video coder also includes
on-screen menu subsystem functionality. The output of the video coder goes to an
attached LCD or a TV. The video coder provides in the range of 100 operations per
pixel, while the power budget of the entire video subsystem is less than 100 mW.
Such numbers are clearly out of range for a software-driven processor.

The complex signal-processing subsystem is created on top of a C54x digital
signal processor (DSP) with 128 Kbytes of RAM and operating at 72 MHz. The
DSP processor performs the main processing and control logic for the wide range
of signal processing algorithms that the device has to perform (MPEG-1, MPEG-2,
MPEG-4, WMV, H.263, H.264, JPEG, JPEG2K, M-JPEG, MP3, AAC, WMA).

The third subsystem is the high-speed signal processing subsystem, needed for
encoding and decoding of moving images. Three coprocessors deliver additional
computing muscle for the cases where the DSP falls short. There is a DMA engine
that helps moving data back and forth between the memory attached to the DSP
and the coprocessors. The three coprocessors implement the following functions:
The first one is a SIMD-type of coprocessor to provide vector-processing for image
processing algorithms. The second is a quantization coprocessor to perform quan-
tization in image encoding algorithms. The third coprocessor performs Huffman
encoding for those image encoding standards. The coprocessor subsystem increases
the overall processing parallelism of the chip, as they can work concurrently with
the DSP processor. This allows the system clock to be decreased.

Finally, the system ARM subsystem is the overall system manager. It synchro-
nizes and controls the different subcomponents of the system. It also provides
interfaces for data input/output and user interface support.

Each of the four properties discussed in the previous section can be identified in
this chip.

� The SoC contains heterogeneous and distributed processing. There is hardwired
processing (video subsystem), signal processing (DSP), and general-purpose
processing on an ARM processor. All of this processing can have overlapped
activity.

� The SoC contains heterogeneous and distributed interconnect. Instead of a sin-
gle central bus, there is a central “switchbox” that multiplexes accesses to
the off-chip memory. Where needed, additional dedicated interconnections are

7.4 SoC Modeling in GEZEL 217

implemented. Some examples of dedicated interconnections include the bus
between the DSP and its instruction memory, the bus between the ARM and
its instruction memory, and the bus between the coprocessors and their image
buffers.

� The SoC contains heterogeneous and distributed storage. The bulk of the mem-
ory is contained within an off-chip SDRAM module, but there are also dedicated
instruction memories attached to the TI DSP and the ARM, and there are dedi-
cated data memories acting as small dedicated buffers.

� Finally, there is a hierarchy of control that ensures the overall parallelism in the
architecture is optimal. The ARM will start/stop components and control data
streams depending on the mode of the device.

The DM310 chip is an excellent example of the balancing effort required to
support real-time video and audio in a portable device. The architects (hardware
and software people) of this chip have worked closely together to come up with the
right balance between flexibility and energy-efficiency.

7.4 SoC Modeling in GEZEL

In the last section of this chapter, we consider how a System-on-Chip can be
modeled in GEZEL, building on our previous experience with FSMD design, micro-
programmed design, and general-purpose processors. The approach used by GEZEL
is to implement SoC modeling through the inclusion of instruction-set simulators in
the simulator. A typical example configuration is shown in Fig. 7.3. It includes sev-
eral components. Custom hardware modules are captured as FSMD models. The
microprocessor cores are captured as custom library modules, called ipblock.

GEZEL Model

FSMDFSMDipblock ipblock

C program

cross-compiler

ISS interface

gplatform

Fig. 7.3 A GEZEL system-on-chip model

218 7 System On Chip

Each microprocessor core, when integrated in an SoC, can offer different types of
interfaces. Each of these interface types is captured in a different ipblock. The
software executed by the microprocessor core is developed in C or assembly and
converted to binary format using a cross-compiler or cross-assembler. The binary is
used to initialize the instruction-set simulator, embedded in an ipblock. The en-
tire system simulation is executed by the GEZEL platform simulator gplatform.

7.4.1 An SoC with a StrongARM Core

We describe some of the features of SoC modeling, including two cores included in
the gplatform simulator. The first core is a StrongARM core, modeled with the
Simit-ARM v2.1 simulator developed by W. Qin at Boston University. Listing 7.1
shows a simple, standalone ARM core, similar to the model covered in Listing 6.4.
Line 2 of this listing tells that this module is an ARM core with attached instruc-
tion memory (armsystem). Line 3 names the ELF executable that must be loaded
into the ARM simulator when the simulation starts. The format of an ipblock is
generic and can be applied to many different types of cosimulation entities.

The model shown in Listing 7.1 is not very interesting since it does not show any
communication between hardware and software. We will extend this model with a
memory-mapped interface, as shown in Listing 7.2. Figure 7.4 illustrates how this
model corresponds to a System-on-Chip architecture. In Listing 7.2, a hardware-
to-software interface is defined on lines 6–10. This particular example shows a
memory-mapped interface. The interface has a single output port data. The port
can be thought of as a register that is written by the software. The software can up-
date the value of the register by writing to memory address 0x80000000. After
each update, the output port data will hold this value until the software writes to
the register again. Note that the association between the memory-mapped interface
and the ARM core is established based on the name of the core (line 8 in Listing
7.2). Lines 12–28 show a custom hardware module, modeled as an FSMD, which
is attached to this memory-mapped interface. The FSM uses the least-significant bit
from the memory-mapped register as a state transition condition. Whenever this bit
changes from 0 to 1, the FSMD will print the value of the memory-mapped register.

Listing 7.1 A GEZEL top-level module with a single ARM core
1 ipblock myarm {
2 iptype "armsystem";
3 ipparm "exec = hello";
4 }
5
6 system S {
7 myarm;
8 }

7.4 SoC Modeling in GEZEL 219

Listing 7.2 A GEZEL module with an ARM core and a memory-mapped interface on the ARM
1 ipblock myarm {
2 iptype "armsystem";
3 ipparm "exec=hello";
4 }
5
6 ipblock port1(out data : ns(32)) {
7 iptype "armsystemsource";
8 ipparm "core=myarm";
9 ipparm "address = 0x80000000";

10 }
11
12 dp portreader {
13 sig data : ns(32);
14 use myarm;
15 use port1(data);
16 reg changed : ns(1);
17 always { changed = data[0]; }
18 sfg show { $display($cycle,": The MM interface is now ", $dec,
19 data); }
20 sfg nil { }
21 }
22 fsm f_portreader(portreader) {
23 initial s0;
24 state s1;
25 @s0 if (˜changed) then (nil) -> s0;
26 else (show) -> s1;
27 @s1 if (changed) then (nil) -> s1;
28 else (nil) -> s0;
29 }
30
31 system S {
32 portreader;
33 }

To cosimulate this model, we proceed as follows: First, we cross-compile a C
program to run on the ARM. Next, we execute the cosimulation. The following is
an example C program that we will run on top of this system architecture.

#include <stdio.h>

int main() {
int y;
volatile int * a = (int *) 0x80000000;

*a = 25;

*a = 0;

*a = 39;

*a = 0;

return 0;
}

220 7 System On Chip

CPU

Custom
HW

I$ D$
port1myarm

GEZEL Model

port reader

myarm

ISS

port1

armsystemsourcearmsystem

changed

S0

S1

Fig. 7.4 Correspondence of Listing 7.2 to SoC architecture

This program creates a pointer to the absolute memory address 0x80000000,
which corresponds to the memory-mapped port of the custom hardware module in
Listing 7.2. The C program then writes a sequence of values to this address. The
nonzero values will trigger the $display statement shown on line 18 of Listing
7.2. Compilation of this program and execution of the cosimulation are done through
the following commands.

> arm-linux-gcc -static hello.c -o hello
> gplatform armex.fdl
core myarm
armsystem: loading executable [hello]
7063: The MM interface is now 25
7069: The MM interface is now 39
Total Cycles: 7595

The cosimulation verifies that data is passed correctly from software to hardware.
The first print statement only happens at cycle 7063. This caused by the need to ini-
tialize the C runtime environment on the ARM (changing the C runtime environment
to a faster library may reduce this delay significantly).

The relation between the GEZEL model and the System-on-Chip architecture,
as illustrated in Fig. 7.4, shows that the FSMD captures the internals of a shaded
“custom hardware” module in a System-on-Chip architecture. The memory-mapped
register captured by port1 is located at the input of this custom hardware mod-
ule. Thus, the GEZEL model in Listing 7.2 does not capture the bus infrastructure
(the peripheral bus, the bus bridge, the high-speed bus) of the SoC. This has an
advantage as well as a disadvantage. On the plus side, the resulting simulation
model is easy to build and will have a high simulation speed. On the down side,

7.4 SoC Modeling in GEZEL 221

the resulting simulation does not capture the bus conflicts that occur in the real SoC
architecture, and therefore the simulation results may show a difference with the
real chip. Ultimately, the choice of modeling accuracy is with the designer. A more
detailed GEZEL model could capture the transactions on an SoC bus as well, but
this would cost an additional effort, and the resulting model may simulate at a lower
speed. For a cosimulation that focuses on verifying the functionality of a hardware-
software codesign, a model such as shown in Listing 7.2 is adequate.

7.4.2 Ping-Pong Buffer with an 8051

As a second example, we show how an 8051 microcontroller core can be cosim-
ulated in a GEZEL system model. Figure 7.5a shows a system with an 8-bit
8051 microcontroller, a dual-port RAM with 64 locations, and a hardware module.
The microcontroller, as well as the hardware module, can access the RAM. The
8051 microcontroller has several 8-bit I/O ports, and two of them are used in this
design. Port P0 is used to send a data byte to the hardware, while port P1 is used to
retrieve a data byte from the hardware.

The idea of this design is the implement a ping-pong buffer as follows. The
RAM is split up in two sections of 32 locations each. When the 8051 controller
is writing into the lower section of the RAM, the hardware will read out the upper
section of the RAM. Next, the 8051 will switch to writing the higher section of the
RAM, while the hardware module will scan out the lower section of the RAM. This

my8051_cmdo
FSM

8051

P0

P1

dual-port
RAM

pingpong
reader

FSMD

adad

data data

a

my8051

ISS

i8051system

i8051systemsource

my8051_cmdi

i8051systemsink

my8051_xram

i8051buffer ramofsradr

adr
ramin

ramout
ramw

0 × 0

0 × 20

0
0

+1

pingpongreader

b

Fig. 7.5 (a) 8051 microcontroller with a coprocessor; (b) Corresponding GEZEL model structure

222 7 System On Chip

double-buffering technique is frequently used to emulate a dual-port shared RAM
with single-port RAM modules. Switching between the two operational modes of
the system is implemented using a two-way handshake between the 8051 controller
and the hardware. The two ports on the 8051 are used for this purpose.

Figure 7.5b and Listing 7.3 show the GEZEL design that implements this model.
The 8051 microcontroller is captured with three different ipblock: one for the
microcontroller (line 1–6), a second one for port P0 configured as input port (line
8–12), and a third one for port P1 configured as output port (line 14–18). Similar
to the StrongARM simulation model, the 8051 microcontroller is captured with an
instruction-set simulator, in this case the Dalton ISS from the University of Cali-
fornia at Riverside. The shared buffer is captured in an ipblock as well, starting
on line 20. The shared buffer is specific to the 8051 microcontroller and is attached
to the 8051s xbus (expansion bus). The buffer provides one read/write port for the
hardware, while the other port is only accessible from within the 8051 software.
The hardware module that accesses the ping-pong buffer is listed starting at line 30.
The FSMD will first read locations 0 through 0x1F, and next locations 0x20 through
0x3F. The handshake protocol is implemented through the 8051s P0 and P1 port.

Listing 7.3 GEZEL Model of a ping-pong buffer on between an 8051 microcontroller and a hard-
ware FSMD

1 ipblock my8051 {

2 iptype "i8051system";

3 ipparm "exec=ramrw.ihx";

4 ipparm "verbose=1";

5 ipparm "period=1";

6 }

7
8 ipblock my8051_cmdo(out data : ns(8)) {

9 iptype "i8051systemsource";

10 ipparm "core=my8051";

11 ipparm "port=P0";

12 }

13
14 ipblock my8051_cmdi(in data : ns(8)) {

15 iptype "i8051systemsink";

16 ipparm "core=my8051";

17 ipparm "port=P1";

18 }

19
20 ipblock my8051_xram(in idata : ns(8);

21 out odata : ns(8);

22 in address : ns(6);

23 in wr : ns(1)) {

24 iptype "i8051buffer";

25 ipparm "core=my8051";

26 ipparm "xbus=0x4000";

27 ipparm "xrange=0x40"; // 64 locations at address 0x4000
28 }

29
30 dp pingpongreader {

31 reg rreq, rack, rid : ns(1);

7.4 SoC Modeling in GEZEL 223

32 reg radr : ns(6);

33 reg ramofs : ns(6);

34 sig adr : ns(6);

35 sig ramin, ramout : ns(8);

36 sig ramw : ns(1);

37 sig P0o, P0i : ns(8);

38 use my8051;

39 use my8051_cmdo(P0o);

40 use my8051_cmdi(P0i);

41 use my8051_xram(ramin, ramout, adr, ramw);

42 always { rreq = P0o[0];

43 adr = radr;

44 ramw = 0;

45 ramin = 0; }

46 sfg noack { P0i = 0; }

47 sfg doack { P0i = 1; }

48 sfg getramofs0 { ramofs = 0x0; }

49 sfg getramofs2 { ramofs = 0x20; }

50 sfg readram0 { radr = ramofs; }

51 sfg readram1 { radr = radr + 1;

52 $display($cycle, " ram radr ", radr, " data ", ramout);

53 }

54 }

55
56 fsm fpingpongreader(pingpongreader) {

57 initial s0;

58 state s1, s2, s3, s4, s5, s6;

59 @s0 if (˜rreq) then (noack) -> s1;

60 else (noack) -> s0;

61
62 @s1 if (rreq) then (doack, getramofs0) -> s2;

63 else (noack) -> s1;

64
65 @s2 (readram0, doack) -> s3;

66 @s3 if (radr == 0x5) then (doack) -> s4;

67 else (readram1, doack) -> s3;

68
69 @s4 if (˜rreq) then (noack, getramofs2) -> s5;

70 else (doack) -> s4;

71
72 @s5 (readram0, noack) -> s6;

73 @s6 if (radr == 0x25) then (doack) -> s1;

74 else (readram1, doack) -> s6;

75 }

76
77 system S {

78 pingpongreader;

79 }

Listing 7.4 shows the driver software for the 8051 microcontroller. This software
was written for the Small Devices C Compiler (sdcc), a C compiler that supports a
broad range of microcontrollers. This compiler directly supports 8051 port access
through symbolic names (P0, P1, and so on). In addition, the shared memory ac-
cesses can be modeled through an initialized pointer.

224 7 System On Chip

Listing 7.4 8051 software driver for the ping-point buffer
1 #include <8051.h>
2
3 void main() {
4 int i;
5
6 volatile xdata unsigned char *shared =
7 (volatile xdata unsigned char *) 0x4000;
8
9 for (i=0; i<64; i++) {

10 shared[i] = 64 - i;
11 }
12
13 P0 = 0x0;
14 while (1) {
15
16 P0 = 0x1;
17 while (P1 != 0x1) ;
18
19 // hw is accessing section 0 here.
20 // we can access section 1
21 for (i = 0x20; i < 0x3F; i++)
22 shared[i] = 0xff - i;
23
24 P0 = 0x0;
25 while ((P1 & 0x1)) ;
26
27 // hw is accessing section 1 here
28 // we can access section 0
29 for (i = 0x00; i < 0x1F; i++)
30 shared[i] = 0x80 - i;
31 }
32 }

To cosimulate the 8051 and the hardware, we first cross-compiler the 8051 C
code to binary format. Next, we use the gplatform cosimulator to execute the simula-
tion. Because the microcontroller will execute an infinite program, the cosimulation
is terminated after 60,000 clock cycles. The program output shows that the GEZEL
model scans out the lower part of the ping-pong buffer starting at cycle 36,952,
and the upper part starting at cycle 50,152. The cycle count is relatively high because
the instruction length of a traditional 8051 microcontroller is high: each instruction
takes 12 clock cycles to execute.

> sdcc --model-large ram.c
> gplatfrom -c 60000 block8051.fdl
i8051system: loading executable [ramrw.ihx]
0x00 0x00 0xFF 0xFF
0x01 0x00 0xFF 0xFF
36952 ram radr 0/1 data 40
36953 ram radr 1/2 data 3f
36954 ram radr 2/3 data 3e

7.6 Further Reading 225

36955 ram radr 3/4 data 3d
36956 ram radr 4/5 data 3c
0x00 0x01 0xFF 0xFF
50152 ram radr 20/21 data df
50153 ram radr 21/22 data de
50154 ram radr 22/23 data dd
50155 ram radr 23/24 data dc
50156 ram radr 24/25 data db
Total Cycles: 60000

7.5 Summary

System-on-chip architectures implement a combination of flexibility and specializa-
tion. The RISC core, the champion of flexibility in embedded designs, takes care of
general-purpose processing, and acts as a central controller in SoC. Multiple addi-
tional specialized components, including memories, peripherals, and coprocessors,
are helping the RISC to address specialized tasks. The interconnect infrastructure,
consisting of on-chip bus segments, bus bridges, and specialized connections, help
integrating everything together.

All of this makes the SoC a wide-spread paradigm that will be around for some
years to come. It is a pragmatic solution that addresses several problems of mod-
ern electronic design at the same time. First, an SoC maintains flexibility and is
applicable as a platform for several applications within an application domain. This
reusability makes the SoC economically advantageous. Compared to a dedicated
hardware design, the SoC chip is cheaper, and a given application can be created
faster. Second, an SoC contains specialized processing capabilities where needed,
and this allows it to be energy-efficient. This greatly expands to potential applica-
tions of SoC.

In this chapter, we have reached the summit of our architecture exploration. The
key objective of this journey was to investigate how we can make hardware more
flexible. We started from custom-hardware models coded as FSMD models. Next,
we replaced the fixed finite state machine of an FSMD with a flexible microcoded
controller, and obtained a microprogrammed architecture. Third, we turned to RISC
processors, which are greatly improved microprogrammed architectures that shield
software from hardware. Finally, we used the RISC as a central element in the
System-on-Chip architecture.

7.6 Further Reading

System-on-chip is a broad concept with many different dimensions. One of these
dimensions is easier and faster design through reuse (Saleh et al. 2006). Another
is that SoC technology is critical for modern consumer applications because of the

226 7 System On Chip

optimal balance between energy-efficiency and flexibility (Claasen 2006). In recent
years, alternative visions on SoC architectures have been given, and an interesting
one is given in the book of Rowen (2004). The example on the efficiency of on-chip
interconnect comes from the same book.

The definition of intrinsic computational power of silicon is elaborated in the
ISSCC99 article by Claasen (1999). The paper by Wulf and McKee on the Memory
Wall can be found online (Wulf and McKee 1995). In 2004, one of the authors
provided an interesting retrospective (McKee 2004).

The digital media processor discussed in this chapter is described in more detail
by Talla and colleagues in Talla et al. (2004).

The Dalton 8051 Instruction Set Simulator can be found online, including a syn-
thesizable VHDL view of the 8051 processor (Vahid 2009).

7.7 Problems

7.1. Consider Fig. 7.1 again.

(a) Explain why the memory area occupied by the UART peripheral cannot be
cached by the RISC processor.

(b) Assume that the high-speed bus would include a second RISC core, which also
has an instruction-cache and a data-cache. Explain why, without special pre-
cautions, caching can cause problems with the stable operation of the system.

(c) A quick fix for the problem described in (b) could be obtained by dropping one
of the caches in each processor. Which cache must be dropped: the instruction-
cache or the data-cache?

7.2. Consider the simple SoC model in Fig. 7.6. Assume that the high-speed bus can
carry 200 MWord/sec, and the peripheral bus can carry 30 MWord/sec. The CPU has
no cache and requests the following data streams from the system: 80 MWord/sec
of read-only bandwidth for instructions, 40 Mword/sec of read/write bandwidth for
data, and 2 MWord/sec for Ethernet packet input/output.

(a) What is the data bandwidth through the bus bridge?
(b) Assume you have to convert this architecture into a dual-core architecture,

where the second core has the same data stream requirements as the first

Fig. 7.6 System-on-chip
model for Problem 7.2

CPU MEM

High-speed BusPeripheral Bus

Ethernet

Bridge

7.7 Problems 227

CPU SRAM

High-speed Bus Peripheral Bus

Bridge

NVRAM
Boot

UART

32 B

VGA

16 KB

Flash

16 MB

3232

16 MB 128 KB

Fig. 7.7 System-on-chip model for Problem 7.3

core. Discuss how you will modify the SoC. Keep in mind that you can add
components and busses, but that you cannot change their specifications. Don’t
forget to add bus arbitration units, if you need them.

7.3. You have to design a memory map for the SoC shown in Fig. 7.7. The sys-
tem contains a high-speed bus and a peripheral bus, both of them with a 32-bit
address space and both of them carrying words (32 bit). The components of the sys-
tem include a RISC, a 16 MByte RAM memory, 128 KByte of nonvolatile program
memory, a 16 MByte Flash memory. In addition, there is a VGA peripheral and a
UART peripheral. The VGA has a 16 KByte video buffer memory, and the UART
contains 32 bytes of transmit/receive registers.

(a) Draw a possible memory map for the processor. Keep in mind that the Bus
Bridge can only convert bus transfers within a single, continuous address space.

(b) Define what address range can be cached by the processor. A “cached address
range” means that a memory-read to an address in that range will result in a
backup copy stored in the cache.

7.4. Consider Listing 7.3 and 7.4 again. Modify the GEZEL program and the C
program so that the FSMD writes into the shared memory, and the C program reads
from the shared memory. Cosimulate the result to verify the solution is correct.

Part III
Hardware/Software Interfaces

The third part of this book is a systematic overview of hardware/software interfaces,
describing all the elements that connect low-level hardware to custom hardware. We
start with an overview of on-chip communication busses. Next, we describe various
forms of hardware interfaces, along with their counterpart in software. Finally, we
show how to develop efficient control mechanisms for custom-hardware modules.

Chapter 8
On-Chip Busses

Abstract The on-chip bus is the backbone of any SoC, and it is a means to
efficiently connect various components including processors, memory, and periph-
erals. The challenges for an on-chip bus are not minor: it has to accommodate a wide
range of communication needs with a single, unified architecture. In this chapter we
review the key characteristics of the on-chip bus, using several existing on-chip bus
standards as examples: ARM/AMBA, IBM/Coreconnect, and Wishbone. We also
look at some of the long-term challenges for on-chip interconnect, and how this will
affect the design of hardware–software interfaces.

8.1 Connecting Hardware and Software

Over the next few chapters, we will discuss various forms of interconnecting hard-
ware components and software drivers, and in this chapter we will focus on the
on-chip bus system. As shown in Fig. 8.1, an on-chip bus connects a microproces-
sor with a coprocessor. Several elements play a role in the design of the overall
system. First, the microprocessor is attached to the on-chip bus through a micropro-
cessor bus interface. On the microprocessor, several layers of software transform
the bus interface into an Application Programmers’ Interface (API), through the use
of drivers and low-level software programming. A similar bus interface exists on
the hardware coprocessor. The custom hardware module within the coprocessor is
isolated from the bus interface by means of a control shell, the hardware equivalent
of a software driver on the microprocessor. Thus, the link of software to hardware
includes a software driver, an on-chip interconnection bus, and a hardware control
shell. A good interface (in hardware or software) will shield the software program-
mer or hardware designer as much as possible from the low-level communication
details. This makes the design of software drivers and hardware control shells a chal-
lenging task. A factor further complicating this problem is that bus-systems need to
be very flexible and scalable so that they can adapt to a wide range of situations and
needs. The bus systems, which we will discuss in the section, will illustrate how this
flexibility is achieved.

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 8, c� Springer Science+Business Media, LLC 2010

231

232 8 On-Chip Busses

software
application

Microprocessor
Bus Interface

Driver

Custom-HW
Bus Interface

Control Shell

Custom-HW
Module

PortsAPI

Microprocessor Coprocessor

On-chip Bus

Fig. 8.1 Elements in a bus-based hardware–software interface

8.2 On-Chip Bus Systems

This section describes the basic structure of an on-chip bus, and provides some
common terminology and notations.

8.2.1 Some Existing On-Chip Bus Systems

The discussions in this chapter are based on three different bus systems: the AMBA
bus, the CoreConnect bus and the Wishbone bus.

� AMBA is the bus system used by ARM processors. Originally developed in
1995, the AMBA bus is now in its third generation, and it has evolved into
a general on-chip interconnect mechanism. The third generation of AMBA
provides three variants of interconnect. A general-purpose, low-bandwidth bus
called APB (Advanced Peripheral Bus), a high-speed single-frequency bus called
AHB (Advanced High-performance Bus), and a high-speed multifrequency bus
called AXI (AMBA Advanced Extensible Interface).

� CoreConnect is a bus system proposed by IBM for its PowerPC line of proces-
sors. Similar to the AMBA bus, the CoreConnect bus comes in several variants.
The main variants include a general-purpose, low-bandwidth bus called OPB
(On-chip Peripheral Bus) and a high-speed single-frequency bus called PLB
(Processor Local Bus).

� Wishbone is an open-source bus system proposed by SiliCore Corporation. The
bus is used by many open-source hardware components, for example those in the
OpenCores project (http://www.opencores.org). The Wishbone bus is
simpler than AMBA and CoreConnect. The specification defines two interfaces
(a master-interface and a slave-interface) from which various bus topologies can
be derived.

8.2 On-Chip Bus Systems 233

Rather than describing each bus separately, we will unify them in a generic bus
system that reflects the characteristics of each of them. We then will point out
how each of AMBA, CoreConnect, and Wishbone implement the features of this
generic bus.

8.2.2 Bus Elements

An on-chip bus system implements a bus protocol: a sequence of steps to trans-
fer data in an orderly manner. A typical on-chip bus system will consist of one or
more bus segments, as shown in Fig. 8.2. Each bus segment groups one or more
bus masters with bus slaves. Bus bridges are directional components to connect bus
segments. A bus-bridge acts as a slave at the input, and as a master at the output. At
any particular moment, a bus segment is under the control of either a bus master or
a bus arbiter. A bus arbiter’s role is to decide what bus master is allowed to control
the bus at a particular moment. The arbitration should be done in a fair manner such
that no bus masters get permanently locked out of bus access. The bus slaves can
never obtain control over a bus segment, but instead have to follow the directions of
the bus master that owns the bus.

A bus system uses an address space to organize the communication between
components. A sample address space is shown on the right of Fig. 8.2. Usually, the
smallest addressable entity in an address space is one byte. Each data transfer over
the bus is associated with a given destination address. The destination address deter-
mines what component should pick up the data. Bus bridges are address-transparent:
they will merge the slave address spaces from their output and transform it to a sin-
gle slave address space at their input.

An on-chip bus physically consists of a bundle of wires, which includes one
of the following four categories: address wires, data wires, command wires, and
synchronization wires.

Arbiter

Master1 Master2 Bridge

• Address
• Data
• Control
• Synchronization

Address Space

Bus Topology

Bridge
Slave4

Master1

Master1

Slave 1

Slave 2

Slave 3

Slave1 Slave2 Slave3 Slave4 Slave5

Segment 1 Segment 1Segment 2

Bridge Slave5

Segment 2

Fig. 8.2 Bus topology and components

234 8 On-Chip Busses

� Data wires transfer data items between components. As discussed in the previous
chapter, on-chip wiring is very dense, and data wires do not have to be mul-
tiplexed. Masters, slaves, and bridges will have separate data inputs and data
outputs.

� Address wires carry the address that goes with a given data item. The process of
recognizing the destination address is called address decoding. One approach to
implement address decoding is to implement it inside of the bus slave. Another
approach is to perform address decoding centrally, and to distribute the decoded
address signals directly to the slaves.

� Command wires describe the nature of the transfer to be performed. Simple com-
mands include read and write, but larger on-chip bus systems may contain a wide
variety of commands, that either speed up or else qualify a given read or write
command. Several examples will be discussed later for actual on-chip busses.

� Synchronization wires ensure that bus masters and bus slaves are synchronized
during data transfer. Common on-chip bus systems today are synchronous. They
use a single clock signal per bus segment: all data, address, and command wires
are referenced to the edges of the bus clock. Besides the clock signal, additional
control signals are used to synchronize a bus master and bus slave, for example
to indicate time-outs and to support request-acknowledge signalling.

8.2.3 Bus Signals

Figure 8.3 shows the physical layout of a typical bus segment with two masters
and two slaves. The AND and OR gates in the center of the diagram serve as
multiplexers. Several signals are merged this way into bus-wide address and data
signals. For example, the address generated by the bus masters is merged into a sin-
gle bus address, and this bus address is distributed to the bus slaves. Similarly, the
data from the masters to the slaves is merged into a bus-wide write-data signal, and
the data from the slaves to the masters is merged into a bus-wide read-data signal.

The convention that associates the direction of data with reading and writing
the data is as follows. Writing data means: sending it from a master to a slave.

Arbiter

Master1

Master2

m1_grant

m1_request
Slave 1

Slave 2

bus_addr + bus_wdata

m1_addr +
m1_wdata

m2_grant

m2_request

m2_addr +
m2_wdata

m1_enable

m2_enable

s1_enable
s1_rdata

s2_enable
s2_rdatabus_rdata

Fig. 8.3 Physical Interconnection of a bus. The * addr, * wdata, * sdata signals are signal vectors.
The * enable, * grant, * request signals are single-bit signals

8.2 On-Chip Bus Systems 235

Reading data means: sending it from a slave to a master. Both the AMBA bus and
the CoreConnect bus use this convention, and it affects the input/output direction of
bus signals on slave or master components.

In Fig. 8.3, each component generates its own bus-enable signal in order to drive
a data item or an address onto the bus. This scheme is used by the Coreconnect
bus system. For example, when Master1 will write data, then m1 enable will
be high while m2 enable will be low. If both enable signals would be high, the
resulting bus address and write-data will be undefined. Thus, the bus protocol will
only work when the components collaborate and follow the rules of the protocol.
The AMBA bus system follows a more strict mechanism: in AMBA, the bus-enable
signals are generated by a central bus controller (usually the bus arbiter).

Since a bus segment can potentially group a large amount of signals, bus systems
will follow a naming convention. The objective of a naming convention is to infer
the functionality of a wire based on its name. A naming convention is very helpful
to read a timing diagram, discussed below. The naming convention can be slightly
different for each bus system, as the following examples show.

� The IBM/Coreconnect bus signals are prefixed with the component identifier that
drives the signal. For example, M0 ABus[0:31] is a 32-bit address bus signal
driven by master M0. The address signals from the masters are combined into a
common bus address signal using a technique similar to Fig. 8.3. The common
bus signal has a different prefix and is called PLB ABus[0:31].PLB stands for
Processor Local Bus, the high speed bus of the IBM/Coreconnect bus system.

� The ARM/AMBA bus signals are prefixed with a single letter that indicates
which type of bus segment the signal is part of. For example, HREADY is a sig-
nal of the AMBA Advanced High-Performance Bus (AHB), while PREADY is a
signal of the AMBA Advanced Peripheral Bus (APB). This means that bus sig-
nals are not always unique. For example, in an AMBA bus, two bus slaves can
both have an output port HRDATA, which would be the read-data signal from the
slave to the master. In contrast, the same signals in a Coreconnect PLB bus would
be called SL0 RdDBus and SL1 RdDBus. The cause of this difference is that
the names of the AMBA bus signals are attributed with component pins, not with
bus wires.

� The Wishbone bus signals are suffixed with a single letter that indicates the di-
rection of the signal. For example, CLK I is an input signal carrying the clock,
which ACK O is an output signal carrying the acknowledge part of a handshake.
Similar to the AMBA bus, the Wishbone bus defines names for component pins,
but not for the bus wires.

8.2.4 Bus Timing Diagram

Because a bus system reflects a complex, highly parallel entity, timing diagrams
are extensively used to describe the timing relationships of one signal to the other.

236 8 On-Chip Busses

1 2 3 4 5

clk

strb_i

strb_o

addr_o[31:0]

data_i[7:0]

vec_i[15:0]

0 × 8F000000 0 × 8F0000040 × 0

0 ×12

0 × F4C00 × A028

Fig. 8.4 Bus timing diagram notation

Figure 8.4 illustrates a timing diagram of the activities in a generic bus over 5 clock
cycles. The clock signal is shown on top, and all signals are referenced to the upgo-
ing clock edge. Dashed vertical lines indicate the timing reference.

When discussing timing diagrams, one must make a distinction between clock
edges and clock cycles. The difference between them is subtle but often causes con-
fusion. The term clock cycle is ambiguous, because it does not indicate a singular
point in time: it has a beginning and an end. A clock edge, on the other hand, is an
atomic event that cannot be partitioned further (at least not under a single-clock syn-
chronous paradigm). A consequence of the ambiguous term clock cycle is that the
meaning of the term can change with the direction of the signals. When discussing
input signals, designers usually mean that these signals must be stable at the start
of the clock cycle, just before a clock edge. When discussing output signals on the
other hand, designers usually talk about signals that are stable at the end of the clock
cycle, so after a clock edge. Consider for example signal strb o in Fig. 8.4. The
signal goes down just after the clock edge labeled 2. As strb o is an output signal,
a designer would say that the signal is low in clock cycle 2: the output should reach
a stable value after clock edge 2. In contrast, consider the signal strb i. This input
signal is high at the clock edge labeled 2. Therefore, a designer would say this input
is high in clock cycle 2. This means that the signal should reach a stable value be-
fore clock edge 2. Therefore, talking about clock edges will be less ambiguous than
talking about clock cycles, especially when discussing bus protocols that involve
multiple interconnected components.

Signal busses of several wires can be collapsed into a single trace in the timing
diagram. Examples in Fig. 8.4 are for example addr o, data i, and vec i. The
label indicates when the bus changes value. For example, addr o changes from
0x8F000000 to 0x00000000 at the third clock edge, and it changes back to

8.3 Bus Transfers 237

0x8F000004 1 clock cycle later. Various schemes exist to indicate that a signal or
a bus has an unknown or don’t care value. The value of data i at the second clock
edge and the value of vec i at the third clock edge are all unknown.

Bus timing diagrams are a very useful form to describe the activities on a bus as
a function of time. They are also a central piece of documentation for the design of
a hardware–software interface.

8.3 Bus Transfers

In this section, we will discuss several examples of data transfer between a bus
master and a bus slave. We will also discuss several strategies commonly used by on-
chip busses to improve the overall system performance. Over the next few sections,
we will describe a generic bus and, where appropriate, define the relationship of
signals on this generic bus to AMBA and CoreConnect. Table 8.1 gives a summary
of the control signals that will appear in timing diagrams. The exact meaning of
these signals will be explained throughout this chapter.

8.3.1 Simple Read and Write Transfers

Figure 8.5 illustrates a write transfer on a generic peripheral bus. A bus master will
write the value 0xF000 to address 0x8B800040. We will assume this bus has
only a single bus master and that it does not need arbitration. On clock edge 2, the
master takes control of the bus by driving the master select line m sel high. This

Table 8.1 Signals on the generic bus

Signal name Meaning

clk Clock signal. All other bus signals are references to the upgoing clock edge.

m addr Master address bus.
m data Data bus from master to slave (write operation).
s data Data bus from slave to master (read operation).
m rnw Read-not-Write. Control line to distinguish read from write operations.

m sel Master select signal, indicates that this master takes control of the bus.
s ack Slave acknowledge signal, indicates transfer completion.
m addr valid Used in place of m sel in split-transfers.
s addr ack Used for the address in place of s ack in split-transfers.
s wr ack Used for the write-data in place of s ack in split-transfers.
s rd ack Used for the read-data in place of s ack in split-transfers.

m burst Indicates the burst type of the current transfer.
m lock Indicates that the bus is locked for the current transfer.
m req Requests bus access to the bus arbiter.
m grant Indicates bus access is granted.

238 8 On-Chip Busses

1 2 3 4 5

clk

m_addr

m_rnw

0 × 8B800040 m_addr

m_rnw

m_sel

addr

rnw

sel

addr

rnw

sel
m_sel

m_data

s_ack

0 × F000

m_sel

m_data

s_ack
data

ack

data

ack

Master Slave

Fig. 8.5 Write transfer with one wait state on a generic peripheral bus

indicates to the bus slave that a bus transaction has started. Further details on the
nature of the bus transaction are reflected in the state of the bus address m addr
and the bus read/write control signal m rnw. In this case, the transfer is a write, so
the read-not-write (m rnw) signal goes low.

Bus requests from the master are acknowledged by the slave. A slave can extend
the duration of a transfer in case the slave cannot immediately respond to the request
of a master. In Fig. 8.5, the slave issues an acknowledge signal s ack on clock
edge 4. This is 1 clock cycle later than the earliest possible clock edge 3. Such a
cycle of delay is called a wait state: the bus protocol is extended for a few cycles.
Wait states enable communication between bus components of very different speed.
However, wait states are also a disadvantage. During a wait state, the bus is tied-
up and inaccessible to other masters. In a system with many slow slaves, this will
significantly affect the overall system performance. A bus timeout can be used to
avoid that a slave takes over a bus completely. If, after a given amount of clock
cycles, no response is obtained from the bus slave, the bus arbiter can declare a
timeout condition. This is a signal to the bus master to give up the bus and abort the
transfer.

Figure 8.6 shows a read transfer with no wait states. The protocol is almost iden-
tical as a write transfer. Only the direction of data is reversed (from slave to master),
and the m rnw control line remains high to indicate a read transfer. The bus proto-
cols for read and write described here are typical for peripheral busses. Table 8.2
makes a comparison between the signal names of the generic bus discussed above,
the CoreConnect/OPB bus, the AMBA/APB bus, and the Wishbone bus.

8.3.2 Transfer Sizing and Endianess

By default, all masters and slaves on an on-chip bus will use a uniform wordlength
and a uniform endianess. For example, the masters, the slaves, and the bus could be

8.3 Bus Transfers 239

1 2 3 4

clk

m_addr

m_rnw

0 × 8B800080
Slave

m_addr

m_rnw

m_sel

addr

rnw

sel

addr

rnw

sel
m_sel

s_data

s_ack

0 × A0

m_sel

s_data

s_ack
data

ack

data

ack

Master

Fig. 8.6 Read transfer with no wait state on a generic peripheral bus

Table 8.2 Bus signals for simple read/write on Coreconnect/OPB,
ARM/APB and Wishbone Busses

Generic CoreConnect/OPB AMBA/APB Wishbone

clk OPB CLK PCLK CLK I (master/slave)
m addr Mn ABUS PADDR ADDR O (master)

ADDR I (slave)
m rnw Mn RNW PWRITE WE O (master)
m sel Mn Select PSEL STB O (master)
m data OPB DBUS PWDATA DAT O (master)

DAT I (slave)
s data OPB DBUS PRDATA DAT I (master)

DAT O (slave)
s ack Sl XferAck PREADY ACK O (slave)

using 32-bit little-endian words. This would mean that each data transfer transports
32 bits, and that the least significant byte would be found in the lower byte of the 32-
bit word. As long as the master, the bus, and the slave make identical assumptions on
the data format, a single request and a single acknowledge signal will be adequate
to control the transfer of data.

The specific wire numbering within a signal vector can depend on the type of
bus. The documentation of the bus should be consulted to determine the name of the
least significant bit of a word. As an example, Table 8.3 illustrates the signal naming
for a bus slave input under various bus schemes.

While endianess can be configured on most busses, it is a static selection, and
dynamic endianess switching is not supported by AMBA, Coreconnect, or Wish-
bone. The additional hardware and complexity introduced in the bus system do not
justify the benefit. Indeed, as illustrated in Fig. 8.7, heterogeneous endianess can be
resolved while interconnecting bus components to the bus system.

A bus system will also need to provide a mechanism for transfer sizing: selecting
what part of a given word belongs to the actual data transfer. In a 32-bit data-bus

240 8 On-Chip Busses

Table 8.3 Signal naming and numbering for a bus slave input

Signal part Offset CoreConnect/OPB AMBA/APB Wishbone

Word Sl DBUS[0..31] PWDATA[31..0] DAT I[31..0]
Most significant bit Sl DBUS[0] PWDATA[31] DAT I[31]
Little endian byte 0 Sl DBUS[24..31] PWDATA[7..0] DAT I[7..0]
Big endian byte 0 Sl DBUS[0..7] PWDATA[31..24] DAT I[31..24]
Little endian byte 3 Sl DBUS[0..7] PWDATA[31..24] DAT I[31..24]
Big endian byte 3 Sl DBUS[24..31] PWDATA[7..0] DAT I[7..0]

Bus Master

Bus

Bus Slave

0781516232431

Fig. 8.7 Connecting a big-endian slave to little-endian master

for example, it is useful to be able to transfer a single byte or a halfword (16 bit).
For example, this would allow a C program to write a single char (8 bit) to memory.
Transfer sizing is expressed using byte-enable signals, or else by directly encoding
the size of the transfer as part of the bus control signals. The former method, using
byte-enable signals, is slightly more general than the latter, because it allows one to
cope with unaligned transfers.

To see the difference between the two, consider the difference in performance for
a processor running the following C program.

int main() {
unsigned i;
char a[32], *p = a;

for (i=0; i<32; i++)

*p++ = (char) (i + 4);

return 0;
}

As the processor moves through all iterations of the i-loop, it will generate byte-
aligned write operations to all addresses occupied by the a array. Assume that this
happens in a system with a 32-bit data bus, and that the third byte of a 32-bit word
needs to be written during a particular iteration. When the bus does not support
unaligned data transfers, the processor will first need to read the word that contains
the byte, update the word by modifying a single byte, and write it back to memory.
When the bus does support unaligned data transfers, on the other hand, the processor

8.3 Bus Transfers 241

can directly write to the third byte in a word. Therefore, the example program will
complete quicker on systems that support unaligned transfers. Note that unaligned
transfers can also lead to exceptions. For example, processors with a word-level
memory organization do not support transfer of unaligned words. If a programmer
attempts to perform such a transfer, an exception will result, which usually halts the
execution of the program.

Endianess and byte-transfer sizing help bus components to deal with the order-
ing of individual bytes within a bus word. However, it is also possible that the bus
wordlength of the master or the slave is physically different from the wordlength
provided by the bus. For example, a bus slave could have an 8-bit data bus but needs
to be connected to a 32-bit bus. Or, a bus master could have a 64-bit data bus but
needs to be connected to a 32-bit bus. These cases will involve the addition of extra
hardware to accommodate the interface. Figure 8.8 shows how a 64-bit bus slave
and a 16-bit bus slave can be connected to a 32-bit bus. In the case of the 64-bit bus
slave, a data-write will transfer only 32 bits at a time; the upper 32 bits are wired
to zero. In the case of a data-read, one of the address lines, Addr[2], needs to be
used to multiplex the 64 bits of data produced by the bus slave. The net effect of
the multiplexing is that the bus slave appears as a continuous memory region when
data is read. The case of the 16-bit bus slave is opposite: the 32-bit bus system can
deliver more data than the 16-bit bus slave can handle, and an additional address bit,
Addr[1] is used to determine which part of the 32-bit bus will be transferred to
the 16-bit bus slave.

In summary, busses are able to deal with varying wordlength requirements by
the introduction of additional control signals (byte-select signals) and by adding
additional multiplexing hardware around the bus slaves or bus masters. A designer
also needs to be aware of the endianess assumptions held by the on-chip bus, the
bus master, and the bus slave.

64-bit Bus Slave

Do[0..63]
Do[0..31]

Addr[2]

1

0
[0..31]

[32..63]

Di[0..31]

0

Di[0..63]

16-bit Bus Slave

Do[0..15] Do[0..31]Di[0..15]

Addr[1]

0

Di[0..31]
1

0
[0..15]

[16..31]

Fig. 8.8 Connecting a 16-bit resp. 64-bit Bus slave to a 32-bit bus

242 8 On-Chip Busses

8.3.3 Improved Bus Transfers

As discussed above, each bus data transfer will go through multiple phases. First, the
bus master has to negotiate bus access with the bus arbiter. Next, the bus master has
to issue a bus address and a bus command. Third, the bus slave has to acknowledge
the data transfer. Finally, the bus master has to terminate the bus transfer and release
control over the bus. Each of these activities takes a finite amount of time to com-
plete. Moreover, all of these activities are sequential so that the overall system is lim-
ited by the speed of the slowest component. For high-speed busses, this is too slow.

On-chip busses use three mechanisms to speed up these transfers. The first mech-
anism, transaction-splitting, separates each bus transaction in multiple phases, and
allows each phase to complete separately. This prevents locking up the bus over an
extended period of time. The second mechanism, pipelining, introduces overlap in
the execution of bus transfer phases. The third mechanism, burstmode operation,
transfers multiple data items, located at closely related addresses, during a single
bus transaction.

8.3.3.1 Pipelined Transfers and Transaction Splitting

A bus may use one or several of these mechanisms at the same time. AMBA and
CoreConnect treat the transfer of an address as a separate transaction from the trans-
fer of data, and each transaction has its own acknowledge-signal. The rationale is
that a bus slave will need some time after the reception of an address in order to
prepare for the data transfer. This separate acknowledgement of address and data is
also the basis for pipelining and transaction-splitting. Figure 8.9 gives an example

1 2 3 4 5

clk

m_addr

m_rnw

m_adr_valid

Addr1

6 7

Addr2

s_addr_ack

m_wr_data

s_wr_ack

s_rd_data

s_rd_ack

Data1

Data2

Fig. 8.9 Example of pipelined read/write on a generic bus

8.3 Bus Transfers 243

of overlapped read/write transfers for a generic bus. Two transfers are shown in the
figure: a write followed by a read. The bus used in this figure is slightly different
from the one used in Figs. 8.5 and 8.6. The difference is that there are three acknowl-
edge signals rather than a single one. On clock edge 2, the bus master indicates a
write to address Addr1. The bus slave acknowledges this address on clock edge 3.
However, at that moment the data transfer is not yet completed. By acknowledging
the address, the slave merely indicates it is ready to accept data. From clock edge 4,
the bus master executes two activities. First, it sends the write-data Data1 to the
bus slave. Then, it initiates the next transfer by driving a new address Addr2 on the
bus. On clock edge 5, two events take place: the bus slave accepts Data1, and it
also acknowledges the read-address Addr2. Finally, on clock edge 6, the bus slave
returns the data resulting from that read operation, Data2. Thus, through multi-
ple control/status signals, the bus masters and bus slaves are able to implement bus
transfers in an overlapped fashion. Obviously, this will require additional hardware
in the bus interface for the master and the slave.

Both the AMBA/AHB and the Coreconnect/PLB support overlapped and
pipelined bus transfers, although the detailed implementation of the protocol on
each bus system is different. The Wishbone bus does not support splitting or pipe-
lining of bus transfers.

8.3.3.2 Burstmode Transfers

The third technique, burstmode transfer, will transfer multiple data items from
closely related addresses in one bus transfer. In computer systems, this works well
because of the locality of data and instruction accesses. For example, in case of a
cache miss on a processor, and entire cache line needs to be replaced. This will re-
quire reading or writing of 32 or more consecutive bytes from memory. Burst-mode
transfer is also advantageous for paged memory architectures, such as DRAM. In
a paged memory architecture, a memory access goes through two stages: the first
stage selects a single page in memory, while the next stage accesses a single element
within the page. Accessing multiple data elements within a single page is easier and
quicker than accessing data elements from different pages. The burst-mode transfer
of a bus can exploit this when all data elements in a single burst are located on the
same memory page.

Burst-mode transfers can have a fixed or a variable length. In a fixed-length burst-
mode scheme, the bus master will negotiate the burst properties at the start of the
burst transfer, and next perform each transfer within the burst. In a variable-length
scheme, the bus master (or the bus slave) has the option of terminating the burst
after every transfer. The addresses within a burst are usually incremental, although
there are also applications where the address needs to remain constant, or where the
address increments with a modulo operation. Thus, as part of the burst specification,
a bus may allow the user to specify the nature of the burst address sequence. Finally,
the address step will depend on the size of the data within the burst: bytes, half-
words, and words will increment addresses by 1, 2, and 4, respectively. Obviously,

244 8 On-Chip Busses

Table 8.4 Burst transfer schemes

Burst property CoreConnect/OPB AMBA/APB Wishbone

Burst length Fixed (2 .. 16) Fixed (4, 8, 16) Variable
or Variable or Variable

Address sequence Incr Incr/Mod/Const Incr/Const
Transfer size Fixed by bus Byte/Halfword/Word Byte/Halfword/Word

1 2 3 4 5

clk

m_addr

m_rnw

Addr1

6 7

Addr1+4 Addr1+8 Addr1+12

m_burst increment_4

m_adr_valid

s_addr_ack

m_wr_data

s_wr_ack

Data1 Data2 Data3 Data4

Fig. 8.10 A 4-beat incrementing write burst

all of these options involve adding extra control-signals on the bus, at the side of
the master as well as the slave. Table 8.4 shows the main features for burst-mode
support on Coreconnect, AMBA, and Wishbone.

An example of a burst-mode transfer is shown in Fig. 8.10. This transfer illus-
trates a burst transfer of 4 incrementally addressed words. Besides the commands
discussed before (m addr, m rnw, m adr valid), a new command m burst
is used to indicate the type of burst transfer performed by the master. Since this
is a generic example, we will just assume that one of the burst types is encoded as
increment 4, meaning a burst of 4 consecutive transfers with incrementing ad-
dress. On clock edge 3, the slave accepts this transfer, and after that the master will
provide 4 data words in sequence. The address information provided by the master
after the first address is, in principle, redundant. The addresses are implied from
the burst type (increment 4) and the address of the first transfer. Figure 8.10
assumes that the wordlength of the transfers will equal 4 bytes (one word). There-
fore, the address sequence increments by 4. The scheme in this figure is similar
to the scheme used by AMBA/AHB. The Coreconnect/PLB system is slightly more
general (and as a consequence, more complicated), although the ideas of burst trans-
fers are similar to those explained above.

This completes our discussion on bus data transfers. As demonstrated in this sec-
tion, there are many variations and enhancements possible for data transfer over
a bus. Optimal bus performance requires both the master as well as the slave to

8.4 Multimaster Bus Systems 245

be aware of all features provided by a bus protocol. For the hardware–software
codesigner, understanding the bus protocols is useful to observe the hardware–
software communication at its lowest abstraction level. For example, it is very well
possible to associate the behavior of a C program with the data transfers observed
on a bus (see Problem 10.3).

So far, we made the implicit assumption that there is only a single master on the
bus. In the next section, we will discuss the concepts of bus arbitration, when there
are multiple masters on the bus.

8.4 Multimaster Bus Systems

When there is more than a single master on a bus, each bus transfer will need
to be negotiated. A bus arbiter will control this negotiation process and allocate
each transfer to a bus master. Because the specific bus signals are different for
AMBA/AHB and Coreconnect/PLB, we will discuss the case of a generic bus and
clarify bus-specific implementation features separately.

Figure 8.11 shows the topology of a multimaster bus with two masters and an
arbiter circuit. The slaves are not shown in the figure. Of the regular bus features,
only the address bus, and a transfer-acknowledge signal are visible. Each master can
request access to the bus through the request connection. The arbiter uses grant
to indicate the master that it can access the bus. Once a master has control over the
bus, it will proceed through one of the regular bus transfer schemes as discussed
before. The lock signals are used by a master to grab exclusive control over the
bus, and will be clarified later.

Figure 8.12 shows how two masters compete for the bus over several clock
cycles. On clock edge 2, master 1 requests the bus through req1. Since master 2 is
not in need for the bus at that moment, the arbiter will grant the bus to master 1. Note
that the grant signal comes as an immediate response to the request signal.

Master1

req
grant

sel

ack

Master2

req
grant

sel

ack

Arbiter

req1
req2

grant1
grant2

lock1 addr
lock

addr
lock

lock1
lock2

1

0
to Slave

from Slave

Fig. 8.11 Multi-master arbitration

246 8 On-Chip Busses

1 2 3 4 5

clk

6 7

req1

req2

grant1

grant2

sel2

addr

ack

Addr1 Addr2 Addr1 Addr2

Fig. 8.12 Multi-master arbitration timing

This means that the bus negotiation process can complete within a single clock
cycle. In addition, it implies that the arbiter will need to use combinational logic to
generate the grant signal based on the request signal.

After clock edge 2, master 1 drives an address onto the address bus and completes
a regular bus transfer. We assume that the slave acknowledges the completion of
this transfer on clock edge 3, by pulling ack high. The earliest time when the next
arbitration for a bus transfer takes place is clock edge 3. This is called an overlapping
arbitration cycle, because the arbitration of the next transfer happens at the same
moment as the completion of the current transfer. The second transfer is granted to
master 2, and completes on clock edge 4.

Between clock edge 4 and 5, the bus sits idle for one cycle, because no master
has requested access to the bus. On clock edge 5, both master 1 and 2 request access
to the bus. Only one master is allowed to proceed, and this means that there is a
priority resolution implemented among the masters. In this case, master 1 has fixed
priority over master 2, which means that master 1 will always get access to the bus,
and master 2 will get access to the bus only when master 1 does not need it. The
transfer of master 1 completes at clock edge 6. Since master 2 is still waiting for
access to be granted, it can proceed at clock edge 6 because master 1 no longer
needs to bus. The fourth and final transfer then completes on clock edge 7.

8.4.1 Bus Priority

The timing diagram in Fig. 8.12 reveals the interesting concept of priority. When
multiple masters want to access the bus at the same time, only a single master is

8.4 Multimaster Bus Systems 247

allowed to proceed based on priority resolution. The simplest priority scheme is
to allocate a fixed priority, strictly increasing, to every master. While this is easy
to implement, it is not necessarily the best solution. When a high-priority master
continuously accesses the bus, other low-priority masters can be denied bus transfers
for extended amounts of time.

A common case of a multimaster configuration is when multiple processors on
a single bus access the same memory. In case the processors work as a symmet-
rical entity, no processor should have priority over the other. In a situation where
all masters have equivalent access rights, priority resolution is implemented using
round-robin scheme. In that case, each master takes turns to get access to the bus.
When two masters request the bus continuously, then the bus transfers of master 1
and master 2 will be interleaved. Another scheme is least-recently-used, in which
the master that was waiting for the bus for the longest time will get access first.
Equal-priority schemes such as round-robin or least-recently-used avoid starvation
of the bus masters, but, they also make the performance of the bus somewhat un-
predictable. When working with latency-critical applications, this can be a problem.
To address this, designers can use a mixed scheme that combines multiple levels of
priority with an equal-priority scheme to allow several masters to share the same
priority level.

The priority algorithm used by the bus arbiter is not part of the definition of
the bus transfer protocol. Therefore, the Coreconnect/PLB and AMBA/AHB bus
schemes only describe the arbitration connections, but not the priority schemes. The
Wishbone bus is special in that it does not define special bus request/grant signals.
Instead, Wishbone leaves the design of the bus topology to the designer.

Table 8.5 makes a comparison between the generic bus arbitration signals defined
above, and those of CoreConnect and AMBA. The table also lists a few arbitration
signals that are unique to each individual bus protocol. The bus locking signals will
be explained shortly. The other signals have the following meaning.

� Mx priority[..] allows a PLB master to select its priority for each transfer.
This scheme allows the master to change its priority level dynamically depending
on the needs of the bus transfer.

� HMASTER[..] is an encoding of the identity of the master that was granted bus
access by the arbiter. The signal is used to drive the bus address multiplexer.

Table 8.5 Arbitration signals
on CoreConnect/OPB and
AMBA/AHB

Signal CoreConnect/PLB AMBA/AHB

reqx Mx request HBUSREQ
grantx PLB PAValid HGRANT
lock Mx Buslock HLOCK

PLB Buslock HMASTLOCK
Mx priority[..]

sel HMASTER[..]

248 8 On-Chip Busses

8.4.2 Bus Locking

The final concept in multimaster bus schemes is bus locking: the exclusive allocation
of a bus to a single master for the duration of multiple transfers. There are several
reasons why bus locking may be needed. First, when large blocks of data need to
be transferred with strict latency requirements, exclusive access to the bus may be
required. While burst-mode transfers can help a master to complete these transfers
quickly, these transfers can still be interrupted by another master with higher prior-
ity. By locking the bus, the master can be sure this will not happen.

The second need for bus locking is when a master needs to have guaranteed,
exclusive access to consecutive transfers, typically a read transfer followed by a
write transfer. This mechanism can be used to implement a test-and-set instruction,
a well-known primitive used to implement mutual exclusion in software. When two
bus masters have access to a single, shared region of memory, access to that shared
region needs to be exclusive.

An example implementation of test-and-set is shown below. This C program runs
on each of two processors (bus masters) attached to the same bus. They share a
memory location at address 0x8000. By calling testandset, a processor will
try to read this memory location, and write into it in the span of a single locked
bus transfer. This means that the function test and set() cannot be inter-
rupted: only one processor will be able to read the value of the mutex when its
value is low. The two processors use this function as follows. Before accessing the
shared resource, the processors will call enter(), while they will call leave().
The shared resource can be anything that needs exclusive access by one of the
processors.

int *mutex = (int *) 0x8000; // location of mutex

int test_and_set() {
int a;
lock_bus();
a = *mutex;

*mutex = 1;
unlock_bus();

}

void leave() {

*mutex = 0;
}

void enter() {
while (test_and_set()) ;

}

Figure 8.13 shows an example of test-and-set with bus-locking. On clock
edge 2, master 2 requests access to the bus using req2. This access is granted
by the arbiter through grant2. After clock edge 2, this master grabs the bus using
sel2 and locks it using lock2. Master 2 will now perform a test-and-set operation,
which involves a read of a memory address immediately followed by a write to the

8.4 Multimaster Bus Systems 249

1 2 3 4 5

clk

6 7

req1

req2

grant2

lock2

grant1

sel2

addr

m_rnw

m_data

s_data

s_ack

0 × 8000 0 × 8000 Addr1

Data1Write 0 × 1

Read Mutex

Fig. 8.13 Test-and-set operation with bus locking

same memory address. The read operation starts on clock edge 3 and completes on
clock edge 4. On clock edge 3, the master drives an address onto the bus and signals
a read operation (m rnw). On clock edge 4, the slave delivers the data stored at this
address and completes the transfer using s ack.

Meanwhile, another master requested bus access starting on clock edge 3 (using
req1). However, because master 2 has locked the bus, the arbiter will ignore this
request. Master 2 will be granted further use of the bus until it release the lock.
This access is guaranteed even if master 2 has a lower priority than other masters
requesting the bus.

After performing the reading part of the test-and-set instruction, master
2 will now write a “1” into the same location. At clock edge 5, master 2 puts the
address and the data on the bus, and at clock edge 6 the slave accepts the data. The
lock can be released after clock edge 5. Note that, should the write operation to the
slave fail, then the complete test-and-set instruction has failed. We assume
however that the write operation completes correctly. As soon as master 2 releases
lock2, control will go to master 1 because of the pending request on req1. As a
result, starting with clock edge 6, a new bus transfer can start, which is allocated to
master 1.

In conclusion, when multiple masters are attached to a single bus, individual bus
transfers need to be arbitrated. In addition, a priority scheme may be used among
masters to ensure latency requirements for particular masters. Finally, bus-locking

250 8 On-Chip Busses

can be used to implement guaranteed access for an extended amount of time. Since
all of these techniques are implemented in hardware, at the level of a bus transfer,
they are very fast and efficient. As such, bus systems play an important role in
building efficient hardware–software communication.

8.5 On-Chip Networks

A key issue with on-chip bus systems is that they are a global resource, shared
among all modules in a chip: processors, memories, coprocessors, and peripherals.
As a result, the communication among these modules is sequentialized. While it is
possible to split a bus in smaller segments using bus segments, this remains only a
partial solution. Bus bridges assume an implicit hierarchy among bus segments: a
bus bridge is a master on one side and a slave on the other. There are many cases,
such as with symmetric multiprocessor architectures, where a hierarchy among the
processors is not wanted or even counter-productive.

Besides the logical constraints originating from a bus, there are also signifi-
cant technological issues. Implementing very long wires on a chip is hard, and
distributing high-frequency signals and clocks using such wires is even harder.
The power consumption of a wire will be proportional to the length of the wire
and the switching frequency of the signals on that wire. Hence, global wires will
consume significantly more power than small, local wires. Chips with a centralized
interconnection system will consume more energy for the same task than chips with
a distributed interconnection system.

In this section, we review some of the ongoing developments in on-chip inter-
connection systems. At the start, it is instructive to consider the approach taken by
the Wishbone bus. In contrast to Coreconnect and AMBA, the Wishbone bus does
not assume a predefined topology. This has some disadvantages, such as for exam-
ple the absence of an arbitration scheme at the bus protocol level (see Sect. 8.4). On
the other hand, Wishbone allows masters and slaves to be connected using arbitrary
topologies. Depending on the interconnection scheme, additional bus-interconnect
components need to be designed. Figure 8.14 illustrates the Wishbone master/slave
interface definition and three possible topologies that are made using this interface.
The easiest topology, and the only one that does not need additional hardware, is a
data-flow type of interconnection that alternates master- and slave-interfaces. The
standard bus topology requires selection of one of several slave interfaces by means
of a decoder. A bus topology can also be extended with multimaster capabilities
by adding arbitration hardware. A cross-bar interconnect system enables multiple
masters to communicate, concurrently, with multiple slaves.

Cross-bar hardware supports multiple concurrent communications, and this may
require multiple arbiters, multiplexers, and decoders. Recent generations of the
AMBA bus support the cross-bar concept partially through so-called multilayer
busses. The idea of such a bus is to implement a cross-bar or interconnect matrix
for a limited number of master and slave interfaces. Each of these interfaces can be

8.5 On-Chip Networks 251

Wishbone
Master

Interface

Wishbone
Slave

Interface

addr_o
dat_i
dat_o
we_o
sel_o
stb_o
cyc_o
ack_i

addr_i
dat_i
dat_o
we_i
sel_i
stb_i
cyc_i
ack_o

Dataflow Interconnection

M
as

te
r

S
la

ve

M
as

te
r

S
la

ve

Bus

Master Master

Slave Slave

Bus

Master Slave Slave

Decoder

Cross-Bar

Fig. 8.14 Bus topologies with Wishbone

AMBA
Master

AMBA
Slave

AMBA
Master

AMBA
Slave

Decoder

Arbiter

Arbiter

Layer 1

AMBA
Slave

AMBA
Slave

Decoder

Arbiter

Layer 2

Fig. 8.15 A multi-layer bus with AMBA

attached to a standard bus system. This way, the interconnect matrix is equivalent
to a multiport bridge. Figure 8.15 illustrates a two-layer bus that connects two slave
interfaces to two master interfaces.

Cross-bar interconnect and multilevel busses have very limited scalability be-
cause they are a centralized resource. The complexity of a cross-bar increases with
the square of the number of connected components. In a modern SoC, distributed
computing is quickly becoming the norm. Think for example of multiprocessor
System-on-Chip architectures. The shift of centralized computing to distributed
computing results in a corresponding shift in the communication paradigm as well.
The present understanding of this new communication paradigm is the “network
on chip”, conceptually presented in Fig. 8.16. The computational elements of the
chip and their interconnections are organized in a geometrical pattern, typically a
matrix. The elements in this matrix are the tiles of the network on chip. Every tile
can directly communicate with its neighboring tiles. In addition, every tile has an
address, symbolically indicated by the matrix indices. This allows any tile to com-
municate with any other tile. A route for the communication is selected, and a data

252 8 On-Chip Busses

Fig. 8.16 A generic
network-on-chip

(0,0) (0,1) (0,2)

Route

(1,0)

(2,0)

(1,1)

(2,1)

(1,2)

(2,2)

Node
Address

Communication LinkProcessor Tile

packet travels through a number of hops, from a source tile to a destination tile
over a number of intermediate tiles. Figure 8.16 illustrates a route from tile (0,2)
to tile (1,0).

The design of a network on-chip, and its operation, introduces a challenging
set of problems. At the basic level, the communication and data representation is
very different from the approach used in on-chip busses. In a network-on-chip, data
items are encapsulated in a packet before being transmitted. Once a packet leaves a
source tile and travels to a destination tile, it needs to find a route. As can be seen
in Fig. 8.16, a route is not unique. Between a given source tile and destination tile,
many different routes are possible. Hence, one needs a distributed routing algorithm,
which will try to select segments such that the overall network on-chip has the low-
est amount of congestion. There are also important system-level questions. What
is the best network-on-chip topology? Can we optimize minimum-latency (fewest
hops) with maximum-throughput (least congestion)? Can we accommodate differ-
ent communication behaviors, such as short high-throughput bursts with regular
low-throughput traffic?

The CELL processor is a well-known multiprocessor device that relies on
network-on-chip technology to provide on-chip communications. The CELL com-
bines 8 regular processing components called SPE (synergistic processing element).
In addition, there is a control processor called PPE (power processor element) and
an off-chip interface unit. All of these components are connected to the same
network on chip, called the EIB (element interconnect bus). As illustrated in
Fig. 8.17, the EIB consists of 4 ring structures, each 16 bytes wide. The com-
munication model of the CELL processors assumes that processors will work using
local memory, and that communication is implemented by moving blocks of data
from one local memory location to the other. A Direct Memory Access (DMA) unit
is used to handle communication between the bus interface and the local memory.

8.6 Summary 253

SPU

Local
Memory

DMA
Bus Itf

SPU

Local
Memory

SPU

Local
Memory

DMA
Bus Itf

DMA
Bus Itf

SPE

Control Control Control

Arbiter

Fig. 8.17 On-chip network in the CELL processor

The 4 rings run in opposite directions, so that each SPE can directly talk to its
neighbors. Communication with other SPE is possible by taking several hops over
the communication bus. Each time an SPE wants to transmit a block of data over
EIB, it will send an appropriate request to the central on-chip arbiter. The arbiter
will schedule all outstanding requests over the 4 rings. Up to three transfers can be
concurrently scheduled over each ring, provided that these transfers use different
segments on the ring.

The resulting data bandwidth on the CELL processor is impressive. In a 3.2 GHz
CELL chip, the interface from the SPE to the rest of the chip supports 25.6 GBytes/s
data bandwidth in each direction. The downside is that the CELL must be pro-
grammed in a very particular manner, as a set of concurrent programs that pass
messages to one another. Optimizing the performance of a parallel CELL pro-
gram is complex, and requires attention to a large collection of details, such as the
granularity of tasks and message blocks, the synchronization mechanisms between
processors, and the locality of data.

8.6 Summary

In this chapter, we discussed the concepts of on-chip interconnection busses,
the lowest abstraction level where software and hardware meet. On-chip busses are
shared communication resources to connect a bus master components with bus slave
components. We discussed several examples, including the AMBA, CoreConnect,
and Wishbone bus. These busses support basic read/write transfers between bus
masters and slaves. They also include enhancements to improve the performance

254 8 On-Chip Busses

of on-chip communication. These enhancements include pipelining, split-transfers,
and burstmode transfers. When multiple masters are present on a bus, each transfer
needs to be arbitrated. These transfers can be prioritized based on the bus master.
Recent developments in on-chip communication with System-on-Chip emphasize
distributed solutions in the form of multilevel busses or network-on-chip. The net
effect of this evolution is that on-chip communication becomes a design challenge
on its own, with many different abstraction layers to tackle. This makes the design
and optimization of on-chip communication schemes, at different abstraction levels,
also an interesting problem from the hardware–software codesign perspective.

8.7 Further Reading

The best reference to study on-chip bus systems is obviously the documentation
from the vendors themselves. The AMBA bus specification can be obtained on-
line from ARM (ARM 2009a). Likewise, the CoreConnect bus specification can
be obtained online from IBM (IBM 2009). An in-depth discussion of contemporary
on-chip bus systems, including AMBA and CoreConnect, is available from Pasricha
and Dutt (2008). The same book also reviews ongoing research topics for on-chip
bus systems.

Recently research efforts have focused on network-on-chip. An overview of the
design principles may be found in De Micheli’s book (Micheli and Benini 2006).
A recent special issue of IEEE Design and Test Magazine has reviewed several
proposals and open research issues (Ivanov and De Micheli 2005).

8.8 Problems

8.1. Find the maximum communication speed from CPU1 to CPU2 in the system
architecture shown in Fig. 8.18. Assume that the CPUs have a dedicated synchro-
nization channel available so that they will be able to choose the most optimal mo-
ment to perform a read- or a write-transaction. Use the following design constants.

� Each bus transaction on the high-speed bus takes 50 ns.
� Each bus transaction on the low-speed bus takes 200 ns.
� Each memory access (read or write) takes 80 ns.
� Each bridge transfer takes 100 ns.
� The CPU’s are much faster than the bus system, and can read/write data on the

bus at any chosen data rate.

8.2. The timing diagram in Fig. 8.19 illustrates a write operation on the AMBA
peripheral bus, AMBA APB. A memory-mapped register is a register which is able
to intercept bus transfers from a specific address. In this case, we wish to create

8.8 Problems 255

synchronization channel

low-speed bus

bridge

slavemaster

high-speed bus

CPU2MEMCPU1

Fig. 8.18 System topology for Problem 10.1

1 2 3 4 5

clk

PADDR

PWRITE

PSEL

0 × 2000

PADDR

PWRITE

PENABLE

PSEL Logic

PENABLE

PWDATA

PSEL

data

PWDATA

Fig. 8.19 Timing diagram and schematic for Problem 10.2

logic which will write PWDATA into a register when a write to address 0x2000
occurs. Develop a logic expression for the logic module shown in Fig. 8.19. Assume
a 16-bit address.

8.3. The system-on-chip in Fig. 8.20 combines a coprocessor, a processor, and on-
chip data- and instruction-memory. The processor will copy each element of an
array a[] to the coprocessor, each time storing the result as an element of an array
r[]. The C program that achieves this is shown on the right of Fig. 8.20. All the
operations in this architecture take zero time to execute, apart from the following
two: accessing the on-chip data memory takes 3 cycles and processing a data item
on the coprocessor takes 5 cycles.

(a) Find the resulting execution time of the C program.
(b) Show how you can rewrite the C program so that the resulting execution time

becomes smaller than 8,000 cycles.

256 8 On-Chip Busses

}}

HW
co-

processor

on-chip
instruction
memory

on-chip
data

memory
CPU

int a[1000], r[1000];
void transform() {

int i;
int *ra = a;
int *rr = r;
for (i=0; i<1000; i++)

*rr++ = call_coproc(*ra++);

3 cycles
per access

5 cycles
per call

on-chip bus

Fig. 8.20 Architecture and C program for Problem 8.3

Listing 8.1 Program for Problem 8.4
#include <stdio.h>
void main() {

int i, a[0x40];
for (i=0; i< 0x40; i++)
if (i > 0x23)

a[i] = a[i-1] + 1;
else

a[i] = 0x5;
}

8.4. While debugging a C program on a 32-bit microprocessor (shown in
Listing 8.1), you capture the following bus transfer. The microprocessor is at-
tached to an off-chip memory that holds the program and the data. The text and data
segment both are stored in an off-chip memory starting at address 0x44000000.
The array a[] starts at address 0x44001084. The instructions from the body
of the loop start at address 0x44000170. Observe closely the timing diagram in
Fig. 8.21 and answer the questions below.

� The cursor X in Fig. 8.21 is positioned at a point for which the address bus con-
tains 0x4400111C and the data bus contains 0x8. Is this a memory read of a
memory write?

� For the same cursor position “X”, is this memory access for an instruction-fetch
or for a data-memory read?

� For the same cursor position “X”, what is the value of the loop counter i from the
C program?

8.5. The timing diagram in Fig. 8.22 shows the arbitration process of two masters,
M1 and M2, requesting access to a shared bus. Answer the questions below using
the information provided in the timing diagram.

(a) Based on the timing diagram, which master has the highest priority for bus
transfers: M1, M2, or impossible to tell?

8.8 Problems 257

Fig. 8.21 Timing diagram for Problem 8.4

1 2 3 4 5

clk

6 7

req1

req2

grant1

master M1

master M2

grant2

sel1

sel2

ack

Fig. 8.22 Timing diagram for Problem 8.5

(b) Which master has control over the address bus between clock edge 3 and clock
edge 4: M1, M2, or impossible to tell?

(c) What type of component determines the value of the grantx signals: a bus
master, an bus arbiter, or a bus slave?

(d) What type of component determines the value of the ack signal: a bus master,
an bus arbiter, or a bus slave?

Chapter 9
Hardware/Software Interfaces

Abstract The objective of a hardware/software interface is to enable communica-
tion between software and custom hardware. The software runs on a microprocessor,
while the custom hardware is attached to that microprocessor. We will consider how
to implement stable data transfers by synchronizing software and hardware. Next,
we will discuss the various implementations of hardware/software interfaces, in-
cluding memory-mapped interfaces, coprocessor interfaces, and custom-instruction
interfaces.

9.1 The Hardware/Software Interface

Figure 9.1 illustrates the elements that make up a “hardware/software” interface.

� The microprocessor interface includes the hardware and low-level firmware that
allows a software program to get “out” of the microprocessor. A microprocessor
can use several different mechanisms for this, such as coprocessor instructions,
or memory load/store instructions.

� The on-chip bus transports data from the microprocessor module to the custom-
hardware module. While typical on-chip buses are shared among several masters
and slaves, they can also be implemented as dedicated point-to-point connec-
tions. For example, coprocessors are often attached to a dedicated link.

� The custom-hardware interface handles data coming from, and going to, the on-
chip bus. The custom-hardware interface will decode the on-chip bus protocol,
and make the data available to the custom-hardware module through a register or
a dedicated memory.

In this chapter, we will discuss three different implementations of the hardware/
software interface. In a memory-mapped interface, the microprocessor inter-
face is the memory interface of a microprocessor, and the communication with
the custom-hardware module is implemented through load/store instructions.
A coprocessor interface uses a dedicated coprocessor port on a microprocessor. The
custom-hardware module is controlled with specialized coprocessor instructions

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 9, c� Springer Science+Business Media, LLC 2010

259

260 9 Hardware/Software Interfaces

Fig. 9.1 The hardware/
software interface

software
application

Microprocessor
Interface

Driver

Custom-HW
Interface

Control Shell

Custom-HW
Module

PortsAPI

Microprocessor Coprocessor

On-chip Bus

on the microprocessor. Finally, a custom-instruction interface integrates a custom-
hardware module inside of a microprocessor and defines a new instruction on the
microprocessor to control this custom-hardware module.

A hardware/software codesigner will choose among these three options based on
the capabilities of a given microprocessor, the required performance of the hard-
ware/software interface in terms of throughput and latency, and the design cost of
attaching (porting) software and hardware to this interface.

9.2 Synchronization Schemes

Before discussing the three types of interfaces, we turn to a fundamental question:
how can we guarantee that the software application and the custom-hardware mod-
ule will remain synchronized, given that they are independently executing entities?
How does a hardware module know that a software program wishes to communicate
with it?

9.2.1 Synchronization Concepts

We define synchronization as the structured interaction of two otherwise indepen-
dent and parallel entities. Figure 9.2 illustrates the key idea of synchronization. Two
entities, in this case a microprocessor and a coprocessor, each have an independent
thread of execution. Through synchronization, one point in the execution thread of
the microprocessor is tied to one point in the control flow of the coprocessor. This
is the synchronization point. Synchronization must guarantee that when the micro-
processor is at point A then the coprocessor will be at point B. There are several
mechanisms to implement this objective, and we will discuss these later.

Synchronization is needed to implement communication in parallel systems. Ob-
viously, if the parallel components never interact, there’s no point trying to keep
them synchronized. We discussed communication within parallel systems before:

9.2 Synchronization Schemes 261

Synchronization Point

A

B

Microprocessor Coprocessor

Fig. 9.2 Synchronization point

recall our discussion on the implementation of data-flow (Chap. 2). In data-flow,
different actors communicate with one another through the exchange of tokens. As-
sume that one actor is implemented in software and another one is implemented as
a custom-hardware module. Also, assume that the software actor sends tokens to
the hardware actor. According to the rules of data-flow, each token produced must
eventually be consumed, and this implies that the hardware actor must somehow
know when the software actor will be sending that token. In other words: the hard-
ware and software actors will need to synchronize when communicating a token. Of
course, there are many different approaches to realize a data-flow communication,
depending on how we realize the data-flow edge. But, regardless of the realiza-
tion, the requirement to synchronize does not go away. For example, one may argue
that a FIFO memory could be used to buffer the tokens going from software to
hardware, thereby allowing hardware and software actors to run “independently.”
This is not the case: FIFO memories do not remove the requirement to synchronize.
When the FIFO is empty, the hardware actor will need to wait until a token appears,
and when the FIFO is full, the software actor will need to wait until a free space
appears.

Synchronization is an interesting problem because it has several dimensions,
each with several levels of abstraction. Figure 9.3 shows the three dimensions of
interest: time, data, and control. In this section, we explain the meaning of these
dimensions. In further sections, we discuss several examples of synchronization
mechanisms.

The dimension of time expresses the granularity at which two parallel entities
synchronize. Clock-cycle accuracy is needed when we interface two hardware com-
ponents with each other. Bus-transfer accuracy is needed when the granularity of
synchronization is expressed in terms of a specific bus protocol, such as a data
transfer from a master to a slave. Finally, transaction accuracy is needed when the
granularity of synchronization is a logical transaction from one entity to the next.
Note that the meaning of time varies with the abstraction level, and does not have
to correspond to wall-clock time. Instead, synchronization only needs to control the
execution order of operations: clock cycles, bus transfers, and logical transfers.

In practice, a synchronization scheme between hardware and software covers
all abstraction levels in time. This is because high-level transactions are typi-
cally implemented in terms of bus-transfers, and bus-transfers imply the use of

262 9 Hardware/Software Interfaces

Synchronization

Time Control

Abstract
(Resource)

BlockingClock Cycle

Bus Transfer

Transaction

Scalar

Composite

Blocking

Non-Blocking

Data

Fig. 9.3 Dimensions of the synchronization problem

synchronization at the cycle-accurate level. However, for a hardware–software code-
signer, it is useful and often easier to think about synchronization problems at higher
abstraction levels, before pinning down the implementation details.

The data dimension of synchronization determines the size of the container in-
volved in the synchronization. When no data is involved at all, the synchronization
between two entities is abstract. Abstract synchronization is useful to handle access
to a shared resource. On the other hand, when two parallel entities communicate data
values, they will need a shared data container. The communication scheme works
as follows: one entity dumps information in the data container, and synchronizes
with the second entity. Next, the second entity retrieves information of the data con-
tainer. In this scheme, synchronization is used to indicate when there is something
of interest in the shared data container. Under scalar data synchronization, the two
entities will synchronize for every single data item transferred. Under composite
data synchronization, the two entities will synchronize only once per several data
transfers.

The control dimension of synchronization indicates how the local behavior in
each entity will implement synchronization. In a blocking scheme, the synchroniza-
tion can stall local behavior. In a nonblocking scheme, the local behavior will not
be stalled, but instead a status signal is issued that the synchronization primitive did
not succeed.

A hardware–software co-designer is able to make decisions along each of these
three dimensions separately. In the following sections, several examples of synchro-
nization will be described.

9.2.2 Semaphore

A semaphore is a synchronization primitive which does not involve the transfer of
data, but instead controls access over an abstract, shared resource. A semaphore S

is a shared resource that supports two operations: grabbing the semaphore (P.S/)
and releasing the semaphore (V.S/). These operations can be executed by several

9.2 Synchronization Schemes 263

concurrent entities. In this case, we will assume there are two entities competing
for the semaphore. The P and V are the first letters of the Dutch verbs “proberen”
and “verhogen,” chosen by the scientist who proposed using semaphores in system
software, Edgser Dijkstra.

The meaning of P.S/ and V.S/ is as follows. P.S/ and V.S/ are indivisible
operations that manipulate the value of a semaphore. Initially, the value of the
semaphore is 1. The operation P.S/ will decrement the semaphore by one. If an
entity tries to P.S/ the semaphore while it is zero, then P.S/ will stall further
execution of that entity until the semaphore is nonzero. Meanwhile, another entity
can increment the semaphore by calling V.S/. When the value of the semaphore
is nonzero, any entity which was stalled on a P.S/ operation will decrement
the semaphore and proceed. In case multiplie entities are blocked on a semaphore,
one of them, chosen at random, will be able to proceed. The maximum value of
the basic binary semaphore is 1. Calling V.S/ several times will not increase the
semaphore above 1, but it will not stall either. This is the basic semaphore opera-
tion, and several enhancements have been defined in the context of operating system
software. For our discussion on synchronization however, this basic definition is
sufficient.

Using semaphore operations, it is possible to describe the synchronization of
two concurrent entities. The pseudocode in Listing 9.1 is an example using a sin-
gle semaphore. A first of two concurrent entities needs to send data to the second
entity through a shared variable shared data. When the first entity starts, it im-
mediately decrements the semaphore. Entity two, on the other hand, waits for a short
while, and then will stall on the semaphore. Meanwhile, entity one will write into the
shared variable, and increment the semaphore. This will unlock the second entity,

Listing 9.1 One-way synchronization with a semaphore
int shared_data;
semaphore S1;

entity one {
P(S1);
while (1) {
short_delay();
shared_data = ...;
V(S1); // synchronization point

}
}

entity two {
short_delay();
while (1) {
P(S1); // synchronization point
received_data = shared_data;

}
}

264 9 Hardware/Software Interfaces

One

Two

P(S1) V(S1)

short_delay

write shared_data

read shared_data

P(S1) P(S1) P(S1)

read shared_data read shared_data

short_delay short_delay

stall stall
time

time

V(S1)V(S1)

write shared_data write shared_data

Fig. 9.4 Synchronization with a single semaphore

which can now read the shared variable. The moment when entity one calls V.S1/

and entity two is stalled on P.S1/ is of particular interest: it is the synchronization
point between entity one and entity two.

Figure 9.4 illustrates the interaction between entities one and two. The dashed
lines indicate the synchronization points. Because entity two keeps on decrementing
the semaphore faster than entity one can increment it, entity two will always stall.
As a result, each write of shared data by entity one is followed by a matching
read in entity two.

Yet, this synchronization scheme is not perfect, because it assumes that entity two
will always arrive first at the synchronization point. Now assume that the slowest
entity would be entity two instead of entity one. Under this assumption, it is possible
that entity one will write shared data several times before entity two can read a
single item. Indeed, V.S1/ will not stall even if it is called several times in sequence.
It is easy to make entity one faster, even for the simple example shown earlier: just
move the short delay () function call from the while-loop in entity one to the while-
loop in entity two.

This observation leads to the conclusion that the general synchronization of two
concurrent entities needs to work in two directions: one entity needs to be able
to wait on the other, and vice versa. In the producer/consumer scenario explained
earlier, the producer will need to wait for the consumer if that consumer is slow.
Conversely, the consumer will need to wait for the producer if the producer is slow.
We can address the situation of unknown delays with a two-semaphore scheme, as
shown in Listing 9.2. At the start, each entity decrements a semaphore. S1 is used to
synchronize entity two, while S2 is used to synchronize entity one. Each entity will
release its semaphore only after the read-operation (or write-operation) is complete.

Figure 9.5 illustrates the case where two semaphores are used. On the first syn-
chronization, entity one is quicker than entity two, and the synchronization is done
using semaphore S2. On the second synchronization, entity two is faster, and in this
case the synchronization is done using sempahore S1.

9.2 Synchronization Schemes 265

Listing 9.2 Two-way synchronization with two semaphores
int shared_data;
semaphore S1, S2;

entity one {
P(S1);
while (1) {
var_delay();
shared_data = ...;
V(S1); // synchronization point 1
P(S2); // synchronization point 2

}
}

entity two {
P(S2);
while (1) {
var_delay();
P(S1); // synchronization point 1
received_data = shared_data;
V(S2); // synchronization point 2

}
}

One

Two

P(S1)

write shared_data

read shared_data

var_delay()
stall

time

time

P(S2)

V(S1) P(S2)

var_delay()

P(S1) V(S2)

var_delay()

var_delay()

P(S1)
stall

write shared_data

V(S1)

Synchronize on S2 Synchronize on S1

Fig. 9.5 Synchronization with two semaphores

9.2.3 One-Way and Two-Way Handshake

In parallel systems, concurrent entities may be physically distinct, and a central-
ized semaphore may not be feasible. For this situation, we will use a handshake:
a signaling protocol based on signal levels. The concepts of semaphore-based syn-
chronization will still apply. We will implement a synchronization point by making
one entity wait for another one.

266 9 Hardware/Software Interfaces

Entity One Entity Two

q

S2

S3

~qd / _

qd / _

S0

S1

_ / q = 1

qd

_ / q = 0

_ / _

clk

q

qd

S0 → S1

S2 → S3

synchronization point

Fig. 9.6 One-way handshake

The most simple implementation of a handshake is a one-way handshake, which
only needs one wire. Figure 9.6 clarifies the implementation of this handshake for
the case of two hardware modules. When we will discuss hardware/software in-
terfaces, we will also consider handshakes between hardware and software. In this
figure, entity one transmits a query signal to entity two. Entity two captures this
signal in a register, and uses its value as a state transition condition. The synchro-
nization point is the transition of S0 to S1 in entity one, with the transition of S2
to S3 in entity two. Entity two will wait for entity one until both of them can make
these transitions in the same clock cycle. Entity one needs to set of acknowledge
signal to high one cycle before the actual synchronization point, because the request
input in entity two is captured in a register.

The limitation of a one-way handshake is similar to the limitation of a one-
semaphore synchronization scheme: it only enables a single entity to stall. To
accomodate arbitrary execution delays, we need a two-way handshake as shown in
Fig. 9.7. In this case, two symmetrical handshake activities are implemented. Each
time, the query signal is asserted during the transition preceding the synchronization
point. Then, the entities wait until they receive a matching response. In the timing
diagram of Fig. 9.7, entity one arrives first in state S0 and waits. Two clock cycles
later, entity two arrives in state S2. The following clock cycle is the synchroniza-
tion point: as entity one proceeds from S0 to S1, entity two makes a corresponding
transition from S2 to S3. Because the handshake process is bidirectional, the syn-
chronization point is executed correctly regardless of which entity arrives first at
that point.

9.2 Synchronization Schemes 267

Entity One Entity Two

q S2

S3

~qd /
r = 1

qd /
r = 1

S0

S1

_ / q = 1

qd

_ / q = 0

rd /
q = 1

rrd

~rd /
q = 1 _ / r = 1

_ / r = 1

S0 ? S1S0 → S0S0 → S0 S? → S0

clk

q

qd

r

rd

S2 → S3S? → S2 S? → S? S?→ S?

synchronization point

S0 → S1

Fig. 9.7 Two-way handshake

There are still some opportunities for optimization. For example, we can
de-assert the response signal already during the synchronization point, which will
make the complete handshake cycle faster to complete. We can also design the
protocol such that it uses level transitions rather than absolute signal levels. Some
of these optimizations are explored in the Problems.

9.2.4 Blocking and Nonblocking Data-Transfer

Semaphores and handshakes implement the idea of a synchronization point. A
hardware/software interface uses a synchronization point to transfer data. The actual
data transfer is implemented using a suitable hardware/software interface, as will be
described later in this chapter.

An interesting aspect of the data transfer is how a synchronization point should
be implemented in terms of the execution flow of the sender or receiver. If a sender
or receiver arrives too early at a synchronization point, should it wait idle until

268 9 Hardware/Software Interfaces

the proper condition comes along, or should it go off and do something else? In
terms of the send/receive operations in hardware and software, these two cases are
distinguished as blocking data transfers and nonblocking data transfers.

A blocking data transfer will stall the execution flow of the software or hardware
until the data-transfer completes. For example, if software has implemented the data
transfer using function calls, then a blocking transfer would mean that these func-
tions do not return until the data transfer has completed. From the perspective of the
programmer, these primitives are the easiest to work with. However, they can stall
the entire program.

A nonblocking data transfer will not stall the execution flow of software or
hardware, but the data transfer may be unsuccessful. So, a software function that
implements a nonblocking data transfer will need to introduce an additional status
flag that can be tested. Nonblocking data transfers will not stall an entire pro-
gram, but they require additional attention of the programmer to deal with exception
cases.

Both of the semaphore and handshake schemes discussed earlier implement a
blocking data transfer. The key observation of this section was that the data transfer
between two parallel entities needs a synchronization mechanism. Semaphores and
handshakes are two well known schemes to implement this synchronization. In the
following sections, we look into the actual implementation of these communication
channels in hardware and software.

9.3 Memory-Mapped Interfaces

A memory-mapped interface allocates part of the address space of a processor for
communication between hardware and software. The memory-mapped interface is
the most general, most wide-spread type of hardware/software interface. This is no
surprise: memory is a central concept in software, and it’s supported at the level
of the programming language through the use of pointers. In this section, we look
into the operation of memory-mapped registers, and into extended concepts such as
mailboxes, queues, and shared memory. We also discuss the GEZEL modeling of
memory-mapped interfaces.

9.3.1 The Memory-Mapped Register

A memory-mapped interface can be as simple as a register which can be read
and written through bus transfers on an on-chip bus. Figure 9.8 illustrates the
generic setup of memory-mapped register, and it identifies the main components
of a memory-mapped interface. The register will be accessed when a given memory
address, or an address within a given range, appears on the bus. The memory ad-
dress, and the related bus command, is analyzed by an address decoder. This decoder

9.3 Memory-Mapped Interfaces 269

software
application

Driver

API

Microprocessor

Priority
Resolve

HW
Write

Data
from
HW

Memory
Mapped
Register

Data
to

HW

Custom-HW Module

Address + Command

Microprocessor
Interface

Data_in

Address
Decoder

SW
Write

SW Read

Data_out

Fig. 9.8 A memory-mapped register

will generate a read pulse or a write pulse for the register. A full decoder will gener-
ate these pulses for a single address value. However, the complexity of the decoder
is proportional to the number of bits that must be decoded. Therefore, it may be
cheaper to build a decoder for a range of memory addresses (See Problem 9.4). The
result of such a decoder is that a register is aliased as multiple memory locations.

A memory-mapped register works as a shared resource between software and
hardware. A write-conflict may occur if the hardware and the software attempt to
write into the register during the same clock cycle. To resolve this case, a priority
decoder can be added that will either give preference to the hardware or the software
on these conflicting write operations. Note that it typically does not make sense to
sequentialize the write operations into the register, since one value would overwrite
the other.

In software, the representation of a memory-mapped register is easy to do using
an initialized pointer as follows.

volatile unsigned int *MMRegister = (unsigned int *) 0x8000;

// write the value ’0xFF’ into the register

*MMRegister = 0xFF;

// read the register
int value = *MMRegister;

270 9 Hardware/Software Interfaces

Microprocessor

volatile int *p = (int *) 0x8000;

int *p = (int *) 0x4000;

0 × 8000 must be a
non-chacheable

address !

Register File

D Cache

ALU

Memory

Memory
Mapped
Register

0 × 4000-
0 × 4FFF

0 × 8000

Fig. 9.9 Integrating a memory-mapped register in a memory hierarchy

Figure 9.9 explains why the pointer must be a volatile pointer. A memory-
mapped register is integrated into the memory hierarchy of a processor, at the level
of main memory. When a processor instruction will read or write from that register,
it will do so through a memory-load or memory-store operation. Through the use
of the volatile qualifier, the C compiler will treat the memory hierarchy slightly
different.

� When using normal pointer operations, the processor and the compiler will at-
tempt to minimize the number of operations to the main memory. This means
that the value stored at an int * can appear in three different locations in the
memory hierharchy: in main memory, in the cache memory, and in a processor
register.

� By defining a register as a volatile int *, the compiler will avoid keeping
a copy of the memory-mapped register in the processor registers. This is essential
because a memory-mapped register can be updated by a custom-hardware mod-
ule, outside of the control of a microprocessor. Hence, keeping backup copies
inside of the processor cache or the processor register file cannot work.

However, defining a memory-mapped register with a volatile pointer will not
prevent that memory address from being cached. Therefore, the memory addresses
that include memory-mapped register must always be allocated into a noncacheable
memory area of a processor. This is a part of the configuration of the processor
cache. Building on the principle of a memory-mapped register, we will now create
communication structures to tie hardware and software together.

9.3 Memory-Mapped Interfaces 271

9.3.2 Mailboxes

A mailbox is a simple extension of a memory-mapped register with a handshake
mechanism. The obvious problem with a memory-mapped register by itself is that
the hardware cannot tell when the software has written or read the register, and vice
versa. Thus, what we need is the equivalent of a mailbox: a box with a little flag to
signal its state. Suppose that we are sending data from software to hardware, then the
software writes into the register, and next sets a “mailbox full” flag. The hardware,
which keeps an eye on the mailbox flag, will then read the value in the register, and
clears the “mailbox full” flag.

This construct is easy to build using three memory mapped registers, as illus-
trated in Fig. 9.10. In this case, the sender is the software program on the left of
the figure, and the receiver is the hardware module on the right of the figure. After
writing fresh data into the data memory-mapped register, the req flag is raised.
The hardware component is a finite state machine that scans the state of the req
flag and, as soon as the flag goes high, will capture the data, and raise the ack flag
in response. Meanwhile, the software program is waiting for the ack flag to go
high. Once both ack and req are high, a similar sequence is followed to reset them
again.

The entire protocol thus goes through four phases: req up, ack up, req down,
and ack down. Because both parties transition through the protocol in an in-
terlocked fashion, the protocol automatically adapts to the speed of the slowest
component. The protocol has two synchronization points: once just after both ack
and req have transitioned high, and a second time just after both ack and req
are low. This means that it is quite easy to double the throughput of the protocol in
Fig. 9.10 (See Problem 9.5).

A mailbox based on memory-mapped registers has a high overhead, in terms of
design cost as well as in terms of performance. The frequent synchronization of
hardware and software through handshakes has two disadvantages. First it requires

Mailbox
Software Hardware

volatileint *req =
 (int *) ADDR1;
volatileint *ack =
 (int *) ADDR2;
volatile int *dat =
 (int *) ADDR3;

void send(int a) {
 *data = a;
 *req = 1;
 while (!*ack) ;
 *req = 0;
 while (*ack);
}

S0

S1

dat

req

ack

~req/
ack=0

req/
ack=1,
read

~req/
ack=0

req/
ack=1

Fig. 9.10 A mailbox register between hardware and software

272 9 Hardware/Software Interfaces

a fine-grained interlocking of the execution flow of hardware and software. Keep
in mind that each four-phase handshake implies two synchronization points. These
interlocked execution flows are harder to design and to control. The second disad-
vantage is that frequent synchronization will generate many additional bus transfers.
For example, consider the while statements in the C program in Fig. 9.10. Each
iteration in the while loop generates one read from a volatile pointer, resulting
in one bus transfer.

Both of these problems – tight coupling and extra bus transfers – can be solved by
improving the buffer mechanism between hardware and software. We will discuss
two examples. The first is to use FIFO queues instead of mailboxes to uncou-
ple hardware and software and to remove the need for interlocked read/write of
the memory-mapped interface. The second is to use shared memory. This can re-
duce the need for synchronization by increasing the granularity of the data transfer,
from a single word to an entire memory block.

9.3.3 First-In First-Out Queues

When a handshake protocol is used to implement a mailbox, the write and read
operations are interleaved. This is inconvenient when the rates of write operations
and read operations is very different. For example, the writes into the FIFO could be
bursty, so that several tokens are written in rapid succession, while the reads from
the FIFO could be very regular, so that tokens are read with a regular pace. The role
of the FIFO is to store the extra tokens during write operations, and to gradually
release them during read operations. Of course, in the long term, the average number
of writes into such a buffer must be equal to the average number of reads: a FIFO
only addresses a short-term need.

Handshakes are also a solution for this type of communication channel. Instead
of having a single pair of request/acknowledge signals, we will now have
two pairs. One pair controls the write operations into the FIFO, while the second
pair controls the read operations into the FIFO. Figure 9.11 illustrates a FIFO queue
with individual handshakes for read and write operations into the queue. In this
case, we have assumed a FIFO with eight positions. The GEZEL code on the left
of Fig. 9.11 shows the register-transfer level operations. In this case, the handshake
operations are tied to incrementing a read-pointer and a write-pointer of a dual-port
memory. The increment operations are conditional on the state of the FIFO, and the
level of the request inputs. The state of the FIFO can be empty, full or nonempty,
and this condition is evaluated based on comparing the read and write pointer values.
Encoding the status of the FIFO using only the value of the read and write pointer
values has a negative side-effect: the code shown in Fig. 9.11 requires always at least
a single empty space in the FIFO buffer. By introducing a separate full flag, all
spaces in the buffer can be utilized (See Problem 9.6).

9.3 Memory-Mapped Interfaces 273

FIFO

di

wack

wreq

do

rreq

rack

WPTR RPTR

dp fifo(in di : ns(8);
 in wreq : ns(1);
 out wack : ns(1);
 out do : ns(8);
 in rreq : ns(1);
 out rack : ns(1)) {
 sig read, write : ns(1);
 reg rptr, wptr : ns(3);
 use dualport_mem(di, wptr, write, // write port
 do, rptr, read); // read port
always{
 read = (rreq & (wptr != rptr)) ? 1 : 0;
 write = (wreq & ((wptr + 1) != rptr) ? 1 : 0;
 wptr = write ? wptr + 1 : wptr;
 rptr = read ? rptr + 1 : rptr;
 wack = write;
 rack = read;
 }
}

Fig. 9.11 A FIFO with handshakes on the read and write ports

9.3.4 Slave and Master Handshakes

The FIFO shown in Fig. 9.11 has two slave interfaces: one for writing and one
for reading. A slave interface waits for a control signal of a connecting interface
and reacts to it. Thus, the acknowledge signals will be set in response to the re-
quest signals. There is a matching master protocol required for a slave protocol. In
the hardware/software interface of Fig. 9.10, the software interface uses a master-
protocol and the hardware interface uses a slave-protocol.

By building a FIFO with a slave input and a master output, multiple sections of
FIFO can be connected together to build a larger FIFO. An example of this scheme
is shown in Fig. 9.12. In this implementation, we use a FIFO with a single storage
location, implemented as a register. The updates of this register are under control
of a finite state machine, which uses the request/acknowledge handshake signals as

274 9 Hardware/Software Interfaces

di

ai

ri

do

ro

ao

W

0

1

S0

~ri

ri

ri & ~a0

~ri a0
1,0,1

0,0,0

0,0,00,0,0 ~ri & a0

0,0,0

S1

S3S2

ri & a0 ~ri & ~a0

1,1,0

0,1,01,0,0

1,0,0 0,1,0 ai, ro, w
condition~a0ri

Fig. 9.12 A one-place FIFO with a slave input handshake and a master output handshake

inputs. Note the direction of the request/acknowledge arrows on the input port and
the output port of the FIFO. At the input port, the request signal is an input, while
at the output port, the request signal is an output.

A master-type of handshake interface can only be connected to a slave-type of
handshake interface, otherwise the handshake protocol does not work. The FIFO in
Fig. 9.12 operates as follows. Initially, the FSM is in state S0, waiting for the input
request signal to be set. Once it is set, it will write the value in the input port into the
register and transition to state S1. In state S1, the FSM sets the request signal for the
output port, indicating that the FIFO stage is nonempty. From state S1, three things
can happen, depending on which handshake (input or output) completes first. If the
input handshake completes (ri falls low), the FSM goes to state S4. If the output
handshake responds (a0 raises high), the FSM goes to state S2. If both handshakes
complete at the same time, the FSM directly goes back to S0.

9.3.5 Shared Memory

Instead of controlling the access on a single register, a single handshake can also be
used to control access to a region of memory. In that case, a shared-memory scheme
is obtained, such as illustrated in Fig. 9.13.

9.3 Memory-Mapped Interfaces 275

Software
volatile int *req =
 (int *) ADDR1;
volatile int *ack =
 (int *) ADDR2;

void send(int a) {
 // modify region 1
 // ...
 *req = 1;
 while (!*ack) ;

 // modify region 2
 // ...
 *req = 0;
 while (*ack);
}

reqack

Region 2

Hardware

S0

S1

~req/
ack=0,

read region 2

req/
ack=1,

~req/
ack=0

Shared Memory

On-chip Bus

Region 1

req/
ack=1

read region 1

Fig. 9.13 A double-buffered shared memory with a memory-mapped request/acknowledge hand-
shake

In this example, a memory module is combined with two memory-mapped
registers. The registers are used to implement a two-way handshake. The memory
is split up in two different regions. The handshake protocol is used control access to
these regions. In one phase of the protocol, changes are only done to one region of
the memory. In the second phase of the protocol, changes are only done to the other
region of the memory. This way, the hardware module can be sure that all data values
in a given section of memory are consistent. This can be used to exchange large data
records such as images, internet packets, file headers, and so on. Shared memory is
a convenient approach to implement distributed memory, as was discussed earlier
in Chap. 7. In addition, memory access may be optimized by clever organization of
the read/write access patterns into a shared memory.

9.3.6 GEZEL Modeling of Memory-Mapped Interfaces

To conclude our discussion on memory-mapped interfaces. We describe the mod-
eling of memory-mapped interfaces in GEZEL. A memory-mapped interface is
represented using a dedicated simulation primitive called an ipblock. There is
a separate primitive for a read-interface and a write-interface, and each is mapped
to a user-specified memory address.

The following example shows the modeling of a memory-mapped interface
for a coprocessor that evaluates the Greatest Common Divisor Algorithm. The
coprocessor uses a single input and a single output, and is controlled using memory-
mapped registers. Listing 9.3 illustrates the design of the coprocessor. Lines 1–28

276 9 Hardware/Software Interfaces

contain 5 ipblock, representing the software processor and the memory-mapped
hardware/software interfaces. These interfaces are not modeled as actual registers,
but merely as modules capable of decoding read operations and write operations
to a given memory bus. The decoded addresses are given as a parameter to the
ipblock. For example, the request signal of the handshake is mapped to address
0x80000000, as shown on line 6–10. The coprocessor kernel is shown on lines
30–43, and is a standard implementation of the greatest-common-divisor algorithm
similar to the one used in earlier examples in this book. The hardware–software in-
terface logic is embedded in the interface module, included on lines 45–101, which
links the ipblock with this datapath. This module is easiest to understand by
inspecting the FSM description. For each GCD computation, the hardware will
go through two complete two-way handshakes. The first handshake (lines 84–89)
provides the two operands to the GCD hardware. These operands are provided se-
quentially, over a single input port. After the first handshake, the computation starts
(line 92). The second handshake (lines 93–100) is used to retrieve the result. This ap-
proach of tightly coupling the execution of the algorithm with the hardware/software
interface logic has advantages and disadvantages: it results in a compact design, but
it also reduces the flexibility of the interface. In the next chapter, we will discuss
design techniques to avoid this tight coupling.

Listing 9.3 A memory-mapped coprocessor for GCD
1 ipblock my_arm {
2 iptype "armsystem";
3 ipparm "exec=gcddrive";
4 }
5
6 ipblock m_req(out data : ns(32)) {
7 iptype "armsystemsource";
8 ipparm "core=my_arm";
9 ipparm "address=0x80000000";

10 }
11
12 ipblock m_ack(in data : ns(32)) {
13 iptype "armsystemsink";
14 ipparm "core=my_arm";
15 ipparm "address=0x80000004";
16 }
17
18 ipblock m_data_out(out data : ns(32)) {
19 iptype "armsystemsource";
20 ipparm "core=my_arm";
21 ipparm "address=0x80000008";
22 }
23
24 ipblock m_data_in(in data : ns(32)) {
25 iptype "armsystemsink";
26 ipparm "core=my_arm";
27 ipparm "address=0x8000000C";
28 }
29

9.3 Memory-Mapped Interfaces 277

30 dp euclid(in m_in, n_in : ns(32);
31 in go : ns(1);
32 out ready : ns(1);
33 out gcd : ns(32)) {
34 reg m, n : ns(32);
35 sig done : ns(1);
36
37 always { done = ((m==0) | (n==0));
38 ready = done;
39 gcd = (m > n) ? m : n;
40 m = go ? m_in : ((m > n) ? m - n : m);
41 n = go ? n_in : ((n >= m) ? n - m : n);
42 }
43 }
44
45 dp tb_euclid {
46 sig m, n : ns(32);
47 sig ready : ns(1);
48 sig go : ns(1);
49 sig gcd : ns(32);
50 use euclid(m, n, go, ready, gcd);
51
52 use my_arm;
53
54 sig req, ack, data_out, data_in : ns(32);
55 use m_req(req);
56 use m_ack(ack);
57 use m_data_out(data_out);
58 use m_data_in(data_in);
59
60 reg r_req : ns(1);
61 reg r_done : ns(1);
62 reg r_m, r_n : ns(32);
63
64 always { r_req = req;
65 r_done = ready;
66 data_in = gcd;
67 m = r_m;
68 n = r_n;
69 }
70 sfg ack1 { ack = 1; }
71 sfg ack0 { ack = 0; }
72 sfg getm { r_m = data_out; }
73 sfg getn { r_n = data_out; }
74 sfg start{ go = 1; }
75 sfg wait { go = 0; }
76 }
77
78 fsm ctl_tb_euclid(tb_euclid) {
79 initial s0;
80 state s1, s2, s3, s4, s5, s6;
81
82 @s0 (ack0, wait) -> s1;
83

278 9 Hardware/Software Interfaces

84 // read m
85 @s1 if (r_req) then (getm, ack1, wait) -> s2;
86 else (ack0, wait) -> s1;
87 // read n
88 @s2 if (˜r_req) then (getn, ack0, wait) -> s3;
89 else (ack1, wait) -> s2;
90
91 // compute
92 @s3 (start, ack0) -> s4;
93 @s4 if (r_done) then (ack0, wait) -> s5;
94 else (ack0, wait) -> s4;
95
96 // output result
97 @s5 if (r_req) then (ack1, wait) -> s6;
98 else (ack0, wait) -> s5;
99 @s6 if (˜r_req) then (ack0, wait) -> s1;

100 else (ack1, wait) -> s6;
101 }
102
103 system S {
104 tb_euclid;
105 }

Listing 9.4 shows a C driver program that matches the coprocessor design of
Listing 9.3. The program evaluates the GCD operation of the numbers 80 and 12,
followed by the GCD of the numbers 80 and 13. Note the difference between a
master-handshake protocol, as shown in the functions sync1() and sync0(),
and a slave-handshake protcol, as illustrated in the FSM transitions in Listing 9.3.
In a master handshake, the request signals are first written and followed by a test on
the acknowledge signals. In a slave handshake, the request signals are first tested,
and followed by a write on the acknowledge signals.

Listing 9.4 A C driver for the GCD memory-mapped coprocessor
1 #include <stdio.h>
2 volatile unsigned int *req = (unsigned int *) 0x80000000;
3 volatile unsigned int *ack = (unsigned int *) 0x80000004;
4
5 void sync1() {
6 *req = 1; while (*ack == 0) ;
7 }
8
9 void sync0() {

10 *req = 0; while (*ack == 1) ;
11 }
12
13 int main() {
14 volatile unsigned int *di = (unsigned int *) 0x80000008;
15 volatile unsigned int *ot = (unsigned int *) 0x8000000C;
16
17 *di = 80;
18 sync1();
19 *di = 12;
20 sync0();

9.4 Coprocessor Interfaces 279

21 sync1();
22 printf("gcd(80,12) = %d\n", *ot);
23 sync0();
24
25 *di = 80;
26 sync1();
27 *di = 13;
28 sync0();
29 sync1();
30 printf("gcd(80,13) = %d\n", *ot);
31 sync0();
32
33 return 0;
34 }

Executing this cosimulation is easy, and follows similar steps as discussed on
Chap. 7. We first cross-compile the C program to an executable. Next, we run the
cosimulator on the executable and the GEZEL program.

> arm-linux-gcc -static gcddrive.c -o gcddrive
> gplatform gcd.fdl
core my_arm
armsystem: loading executable [gcddrive]
armsystemsink: set address 2147483652
armsystemsink: set address 2147483660
gcd(80,12) = 4
gcd(80,13) = 1
Total Cycles: 11814

In conclusion, memory-mapped interfaces are a general-purpose and easy-to-
use mechanism to create hardware/software interfaces. The principle of a two-way
handshake is applicable to many different situations, and it ensures that a simple
shared storage location is sufficient to synchronize hardware and software and to
implement communications. Because memory-mapped interfaces rely on a general-
purpose on-chip bus, they become easily constrained when throughput requirements
increase. In addition, because the on-chip bus is shared with other components, a
memory-mapped interface will also show a varying latency. For cases that require a
dedicated, tightly controlled link, we will use a coprocessor interface.

9.4 Coprocessor Interfaces

In cases where high-throughput between the software and the custom hardware is
needed, it makes sense to have a dedicated interface to attach this hardware. Such
a dedicated interface is called a coprocessor interface. As illustrated in Fig. 9.14, a
coprocessor interface does not make use of the on-chip bus, but instead uses a dedi-
cated port on the processor. This port is driven using a particular set of instructions,
the coprocessor instructions. The coprocessor instruction set is different for each
type of processor, since it depends on the properties of the coprocessor interface.

280 9 Hardware/Software Interfaces

software
application

Coprocessor
Interface

Coprocessor
Instructions

Control Shell

Custom-HW
Module

PortsAPI

Microprocessor Coprocessor

On-chip Bus

Fig. 9.14 Coprocessor interface

A classic example of a coprocessor is a floating-point calculation unit, which is
attached to an integer core. Not all processors have a coprocessor interface.

The choice of designing a custom hardware module for a particular coprocessor
interface is an important design decision: it locks the custom hardware design into a
particular processor. For example, a hardware module designed for an AMBA bus is
likely to have a wider range of users than a hardware module designed for an ARM
coprocessor interface. The former module can run on any system with an AMBA
bus (even those which do not have an ARM processor), while the latter module is
restricted to systems with an ARM processor.

The main advantages of a coprocessor interface over an on-chip bus are higher
throughput and fixed latency. We consider each of these aspects.

� Coprocessor interfaces have a higher throughput then memory-mapped interfaces
because they are not constrained by the processor wordlength. For example,
coprocessor ports on 32-bit CPUs may support 64-bit or 128-bit interfaces,
allowing them to transport four words per coprocessor instruction. Hardware/-
software interfaces based on coprocessor instructions may also be implemented
more efficiently than load/store instructions. A coprocessor instruction com-
monly specifies two source operands and one destination operand. In contrast,
a load/store instruction will specify only a single operand. A complete hard-
ware/software interaction over a coprocessor interface may thus be specified with
fewer instructions as the same interaction over an on-chip bus.

� A coprocessor interface can also maintain fixed latency, so that the execution
timing of software and hardware is precisely known. Indeed, a coprocessor bus
is a dedicated connection between hardware and software, and it has a stable,
predictable timing. This, in turn, can simplify the implementation of hardware/-
software synchronization mechanisms. In contrast, an on-chip bus interface uses
a communication medium which is shared between several components, and
which may include unknown factors such as bus bridges. This leads to unpre-
dictable timing for the hardware/software interaction.

9.4 Coprocessor Interfaces 281

9.4.1 Tight and Loose Coupling

A comparison between the key features of a coprocessor interface and a
memory-mapped interface is shown in Table 9.1. An interesting point in this table is
the distinction between a tightly coupled and a loosely coupled interface. Coupling
indicates the level of interaction between the execution flow in software and the
execution flow in custom-hardware. In a tight coupling scheme, custom-hardware
and software synchronize often, and exchange data often, for example at the gran-
ularity of a few instructions in software. In a loose coupling scheme, hardware and
software synchronize infrequently, for example at the granularity of a function or a
task in software.

A given application can use either tight- or loose-coupling. Figure 9.15 shows
how the choice for loose-coupling of tight-coupling can affect the latencies of
the application. The left side of the figure illustrates a tight-coupling scheme. The
software will send four separate data items to the custom hardware, each time col-
lecting the result. The figure assumes a single synchronization point which sends
the operand and retrieves the result. This is the scheme that would be used by a
coprocessor interface. The synchronization point corresponds to the execution of
a coprocessor instruction in the software. The right side of the figure illustrates a
loosely coupled scheme. In this case, the software provides a large block of data to
the custom hardware, synchronizes with the hardware, and then waits for the custom
hardware to complete processing and return the result. This scheme would be used
by a memory-mapped interface, for example using a shared memory. The correct
choice between tight coupling and loose coupling depends on the application and
the target architecture. Loosely coupled schemes tend to yield slightly more com-
plex hardware designs because the hardware needs to deal more extensively with
data movement between hardware and software. However, there is no single correct
choice between tight and loose coupling.

In the following sections, we will discuss two coprocessor interfaces: the Fast
Simplex Link (FSL) interface, used by the Microblaze soft-core processor, and the
LEON-3 floating point interface.

Table 9.1 Comparing a coprocessor interface with a memory-mapped
interface

Factor Coprocessor interface Memory-mapped interface

Addressing Processor-specific On-chip bus address
Connection Point-to-point Shared
Latency Fixed Variable
Throughput Higher Lower
Typical-use Tightly coupled Loosely coupled

282 9 Hardware/Software Interfaces

input data
synchronization

point

compute
result

input data
synchronization

point

result

input data
synchronization

point

input data

synchronization
point

compute

result

synchronization
point

compute

input data

result

input data
synchronization

point

result

result

compute

compute

Custom HardwareSoftware Custom HardwareSoftware

Fig. 9.15 Tight coupling vs. loose coupling

9.4.2 The Fast Simplex Link

The Microblaze processor, a soft-core processor that can be configured in a Xilinx
FPGA, is configurable with up to 8 Fast Simplex Link (FSL) interfaces. An FSL
link consists of an output port with a master-type handshake, and an input port with
a slave-type handshake. The simplex aspect of FSL relates to the direction of data,
which is either output or input. The Microblaze processor has separate instructions
to write to the output port and read from the input port.

Figure 9.16 shows a single FSL interface. In between the hardware coprocessor
and the Microblaze, FIFO memories can be added to adjust for differences in the
rates for reading and writing. Data going from the Microblaze to the FIFO goes
over a master interface consisting of the signals data, write, and full. Data
going from the FIFO to the Microblaze goes over a slave interface which includes
the signals data, exists, and read. The labeling of handshake signals is slightly
different than what we discussed before: write and exists correspond to req,
while full and read correspond to ack.

The operation of the FSL interface for a FIFO with two positions is shown in
Fig. 9.17. This figure shows the activities of writing three tokens into the FIFO, and
reading them out again. The operation will be familiar because the FSL protocol
uses a two-way handshake. On clock edge 2, the first data item is written into the
FIFO. The exists flag is raised because the FIFO is nonempty. On clock edge 3,

9.4 Coprocessor Interfaces 283

software
application

Custom-HW
Module

PortsAPI

Microblaze Processor Coprocessor

FIFO

data

write

full

exists

read

data

Master Interface

Slave Interface

FSL FSL

FIFO

data

write

full

exists

read

data

Fig. 9.16 The fast simplex link interface

clk

write

full

data to fifo 0 × 01

1 2 3 4 5 6 7 8 9

read

exists

data from fifo 0 × 01 0 × 02 0 × 03

0 × 030 × 02

Fig. 9.17 The FSL handshake protocol

a second data item is written into the FIFO. We assume that the FIFO holds no
more than two places, so that this second write will fill the FIFO completely, and
the full flag is raised as a result. In order to write more tokens into the FIFO, at
least one read operation needs to complete first. This happens on clock edge 5. The
third data item is written into the FIFO on clock edge 6, which completely fills the
FIFO again. The FIFO is emptied by read operations on clock edge 7 and 8. From
clock edge 9 on, the FIFO is empty.

The read and write operations on an FSL interface are controlled using dedicated
Microblaze instructions. The basic read and write operations are of the form:

put rD, FLSx // copy register rD to FSL interface FSLx
get rD, FSLx // copy FSL interface FSLx to register rD

284 9 Hardware/Software Interfaces

There are many variants of these instructions, and we only discuss the main
features.

� The instruction can be formulated as blocking as well as nonblocking operations.
When a nonblocking instruction is unable to complete a read or a write opera-
tion, it will reset the carry flag in the processor. This way, a conditional jump
instruction can be used to distinguish a successful transfer from a failed one.

� The FSL I/O instructions can also read a control status flag directly from the
hardware interface: The data bus shown in Fig. 9.16 physically consists out of
a 32-bit data word and a single-bit control flag. An exception can be raised if
the control bit is different from the expected value. This allows the hardware to
influence the control flow in the software.

� The FSL I/O instructions can also be formulated as atomic operations. In that
case, a group of consecutive FSL instructions will run as a single set, without
any interrupts. This is useful when the interface to a hardware module is created
using several parallel FSL interfaces. By disallowing interrupts, the designer can
be sure that all FSL interfaces are jointly updated.

The FSL interface is a very popular coprocessor interface in the context of FPGA
designs. It uses a simple hardware protocol, and is supported with a flexible, yet ded-
icated instruction set on the processor. However, it’s only a data-moving interface.
In the next section, we will discuss a floating-point coprocessor interface. Such an
interface has a richer execution semantics.

9.4.3 The LEON-3 Floating Point Coprocessor Interface

The interface in this section is a tightly coupled interface to attach a floating-point
unit (FPU) to a processor. While a high-end desktop processor has the FPU built-
in, embedded processors often configure this as an optional extension. The FPU
interface discussed in this section is the one used in the LEON-3 processor, designed
by Gaisler Research. It is a tightly coupled interface because instructions executed
on the FPU need to remain in sync with the instructions executing on the main
processor.

Figure 9.18 illustrates the main signals of the FPU interface. The LEON-3
32-bit microprocessor includes an integer-instruction pipeline, a set of floating-point
registers, and an instruction-fetch unit. When the microprocessor fetches a floating-
point instruction, it will dispatch that instruction to the floating-point coprocessor.
After the result of the floating point operation is returned to the microprocessor, it is
merged with the flow of instructions in the integer pipeline. There are several inter-
esting issues with this scheme, and the signals on the coprocessor interface can best
be understood by examining the interaction between the FPU and the microproces-
sor in detail.

The FPU contains two different datapaths. One is a linear pipeline with three
pipeline stages. The second is a nonlinear pipeline, and it consists of a pipeline

9.4 Coprocessor Interfaces 285

Instruction
Fetch

C
op

ro
ce

ss
or

 In
te

rf
ac

e

Microprocessor
Floating-Point
Coprocessor

operands[2*64]

opcode[9]

opid[6]

flush

flushid[6]

result[64]

resid[6]

allow[3]

except[6]
FP

Registers

Integer
Pipeline Linear

Pipeline
(Add,
Sub,
Mul)

Non
Linear

Pipeline
(Div,
Sqrt)

Fig. 9.18 GRFPU floating point coprocessor interface

with feedback, so that one pipeline stage remains in use for several cycles. FPU
operations such as add, subtract, and multiply are handled by the linear pipeline,
while operations such as divide and square-root are handled by the nonlinear
pipeline. FPU instructions through the linear pipeline have a latency of three clock
cycles and a throughput of one instruction per clock cycle. However, FPU instruc-
tions through the nonlinear pipeline can have a latency of up to 24 clock cycles, and
their throughput can be as low as 1 instruction every 24 clock cycles.

The challenge of the coprocessor interface is to maintain the instruction sequence
in the FPU synchronized with the microprocessor. This is nontrivial because the la-
tency and throughput of intructions in the FPU is irregular. Indeed, results must be
merged in the microprocessor in the same order as their operands are dispatched
to the FPU. Figure 9.19 demonstrates that, due to the complex pipeline architec-
ture of the FPU however, results may arrive out-of-order. Here is how the interface
handles this problem.

� Each operation for the FPU is provided as a set of operands, with a given
opcode, and an instruction identifier opid. When the FPU operation finishes,
it returns the result, toghether with a corresponding instruction identifier
resid. By examining the value of resid, the processor can determine what
result corresponds to what set of operands. The instruction identifier is gener-
ated by the processor, but is typically a simple counter (similar to the labels in
the grids on Fig. 9.19). For each result, the coprocessor will also generate an ex-
ception code except, which allows the detection of overflow, divide-by-zero,
and so on.

� When a floating-point instruction appears just after a conditional branch, the
floating-point instruction may need to be cancelled when the conditional branch

286 9 Hardware/Software Interfaces

Linear Pipeline

Non-Linear Pipeline

1

1

1

3

3

3

4

4

4

6

6

6

2

2 2 2 2

2

5

5 5 5 5

5

Operands &
Instruction Issue

1 3 4 62 5

stage 2

stage 3

stage 1

stage 2

stage 3

stage 1

cycles

2 5

Results 1 3 4 62 5

stage 3

Fig. 9.19 GRFPU Instruction issue and result return

would be taken. Through the control signal flush, the microprocessor can
indicate that the coprocessor should cancel an instruction. The instruction iden-
tifier is provided through flushid.

� Because of the nonlinear pipeline in the coprocessor, not all types of FPU in-
structions can be accepted every clock cycle. The allow signal indicates to the
microprocessor what instructions can start at a given clock cycle.

Clearly, this interface definition is highly specialized toward floating-point copro-
cessors. In addition, the interface is tightly coupled with the microprocessor. Instead
of handshake signals, a series of control signals is defined that ensures that the exe-
cution flow of the coprocessor and the microprocessor will stay synchronized. This
leads to an even more processor-specific interface: the custom-instruction interface.

9.5 Custom-Instruction Interfaces

The integration of hardware and software can be considerably accelerated with the
following idea: reserve part of the opcodes of a microprocessor for new instruc-
tions, and use these opcodes to execute custom-hardware modules. Next, integrate
the custom-hardware modules directly into the microarchitecture of the micro-
processor. As this solution does not make use of an on-chip bus interface or a
coprocessor interface, it is highly processor specific. The resulting design is called
an Application-Specific Instruction-set Processor or ASIP for short.

In an ASIP design, we benefit from the instruction-fetch and dispatch mecha-
nism in the microprocessor to ensure that custom-hardware and software remain
synchronized. In addition, the hardware/software codesign problem is formulated

9.5 Custom-Instruction Interfaces 287

as a problem of finding the proper application-specific instruction-set, which many
designers experience as an easier problem. This has made the ASIP concept very
populuar.

9.5.1 ASIP Design Flow

A very appealing aspect of ASIP design is that it uses an incremental design process.
In constrast, the traditional hardware design process is bottom-up, exact and rigor-
ous. When creating an ASIP, a designer can start with a C program that captures the
required functionality of a function, and that maps the C program on a basic proces-
sor. After the performance of this function on the processor is evaluated, adjustments
to the program/processor can be made. Such adjustments include for example new
hardware in the processor datapath, and new processor instructions. After the pro-
cessor hardware is adjusted, the C program can be tuned as well to make use of
these instructions. This leads to a design flow as illustrated in Fig. 9.20.

The design starts with a C program and a description of the processor. The pro-
cessor description is not a hardware description in terms of FSMD, but instead a
specialized description of processor resources. It contains a description of instruc-
tions supported by the processor, the configuration and size of register files, and the
memory architecture. Using the processor description, an ASIP generator will cre-
ate design components for the ASIP. This includes a software development toolkit
(compiler, assembler, linker, and debugger) as well as a synthesizable hardware
description of the processor. Using the software development toolkit, the application

C Program

ASIP Compiler

Stimuli
Processor
Description

ASIP Generator

ASIP Simulator (ISS)

Binary

HW Synthesis

HDL

Evaluate Performance
cycles / area / clock period Customized

Processor
Memory

Describe
ASIP SW and HW

Fig. 9.20 ASIP design flow

288 9 Hardware/Software Interfaces

program in C can be compiled, simulated, and evaluated. The hardware description
can be technology-mapped onto gates or FPGA, which yields the processor im-
plementation as well as technology metrics such as area and achievable processor
clock. Based on the performance evaluation, the processor description can be re-
worked to give a better performance for a given application. This may also require
rework of the application in C.

Compared to SoC design based on custom-hardware modules, will the ASIP de-
sign flow in Fig. 9.20 deliver better performance? Not in the general case. Keep
in mind that the basic architecture template of an ASIP is a sequential processor.
The fundamental bottlenecks of the sequential processor (memory-access, sequen-
tial execution of code) are also fundamental bottlenecks of an ASIP. Compared to
SoC design based on custom-hardware modules, can the above design flow deliver
less error-prone results? Yes, it can for the following two reasons. First, the design
process is incremental. A functional error will be detected very quickly, in the early
phases of the design. Second, it works at a higher level of abstraction. The applica-
tion is modeled in C. The processor description language (which will be discussed
later) is also at a higher level of abstraction than hardware description languages.
In the past few years, a tremendous progress has been made on design tools that
support the ASIP design flow. All of the shaded boxes in Fig. 9.20 can be obtained
as commercial tools.

9.5.2 Example: Endianess Byte-Ordering Processor

We describe an example of ASIP design, including GEZEL modeling of the custom-
instruction. The application is an endianess byte-ordering processor.

Figure 9.21 illustrates the problem. Processors have a chosen byte-ordering or
endianess. When a processor transmits data words over a network, the byte order
of the transmitted packets is converted from the processor endianess into network
byte-order, which is big-endian in practice. For example, a strongARM processor
is little endian, and will store the word 0x12345678 with the lowest significant
byte in the lowest memory address. However, when that word is transmitted over a
network, the packet byte-order must follow a big-endian convention that will send
0x78 first and 0x12 last. The TCP/IP protocol stack on StrongARM will, therefore,
convert each word from little-endian format to big-endian format before providing
it to the network buffer on the Ethernet card.

For a 32-bit processor, endianness conversion involves byte-level manipulation
using shifting and masking. The following is an example of a function that converts
little-endian to big-endian (or vice versa) in C.

for (i=0; i<4096; i++)
ot[i] = (((in[i] & 0x000000ff) << 24) |

((in[i] & 0x0000ff00) << 8) |
((in[i] & 0x00ff0000) >> 8) |
((in[i] & 0xff000000) >> 24));

9.5 Custom-Instruction Interfaces 289

strongARM
little endian

powerPC
big endian

0 × 12

0 × 34

0 × 56

0 × 78

0 × 1234:5678
0 × 34

0 × 56

0 × 78

0 × 12

0 × 1234:5678

network
(big endian)

0 × 780 × 560 × 340 × 12

Fig. 9.21 Endianess byte-ordering problem

On a strongARM processor, this loop requires 13 cycles per iteration (assuming
no cache misses). Examining the assembly, we would find that there are 11 instruc-
tions inside of the loop, leaving 2 cycles of pipeline stalls per iteration – one for the
branch and one data-dependency (ldr instruction).

.L6:
ldr r3, [r4, ip, asl #2] ; read in[i]
and r2, r3, #65280 ; evaluate ot[i]
mov r2, r2, asl #8 ; ...
orr r2, r2, r3, asl #24 ; ...
and r1, r3, #16711680 ; ...
orr r2, r2, r1, lsr #8 ; ...
orr r2, r2, r3, lsr #24 ; ...
str r2, [r0, ip, asl #2] ; and write back
add ip, ip, #1 ; next iteration
cmp ip, lr ;
ble .L6

We now consider improvements to this design. In hardware, the endianess-
conversion is obviously very simple: it is a simple wiring pattern. The key problem
in this design is how to move data from data memory and back. Before trying an
ASIP, let’s try to solve this problem with a memory-mapped coprocessor.

The GEZEL coprocessor, without the interface definition, looks as follows. It
uses two memory-mapped registers, one for input and one for output.

dp mmswap(in d1 : ns(32); out q1 : ns(32)) {
always {
q1 = d1[7: 0] #

d1[15: 8] #
d1[23:16] #
d1[31:24];

}
}

290 9 Hardware/Software Interfaces

The C driver program for this memory-mapped coprocessor looks as follows.

volatile unsigned int * mmin = (unsigned int *) 0x80000000;
volatile unsigned int * mmot = (unsigned int *) 0x80000004;
for (i=0; i<4096; i++) {

*mmin = in[i];
ot[i] = *mmot;

}

Looking at the assembly, the execution time of the loop body now takes 10
clock cycles per iteration (7 instructions, 1 stall for branching, 2 stall for data-
dependencies). This is a gain of three cycles. We assume that we have single-cycle
access to the memory-mapped coprocessor, which is unlikely in practice. Hence, the
gain of three cycles will probably be lost in a real design. The disadvantage of this
design is apparent from the assembly program: each data element travels four times
over the memory bus in order to be converted.

.L21:
ldr r3, [r0, ip, asl #2] ; load in[i]
str r3, [r4, #0] ; send to coprocessor
ldr r2, [r5, #0] ; read from coprocessor
str r2, [r1, ip, asl #2] ; write ot[i]
add ip, ip, #1 ; next iteration
cmp ip, lr
ble .L21

Using an ASIP design, this wasteful copying over the memory bus can be
avoided: we can retrieve in[i] a single time, convert it inside of the processor,
and write back the converted result to ot[i]. In order to do this as part of an
instruction, we need to modify (extend) the datapath of the processor with a new
operation. Figure 9.22 illustrates how this works: the execution stage of the pipeline
is extended with a new datapath (endianess conversion), and a new instruction is
integrated into the instruction decoder. While this approach looks conceptually sim-
ple, it is not straightforward to implement. First, opcode space is a scarce resource.
In a processor with high code density, there will be very few redundant opcodes in-
side of an instruction set. Second, the datapath of a RISC processor is optimized for
speed. All hardware added into the pipeline must run faster then the slowest pipeline
stage, otherwise it will become a bottleneck for the processor.

GEZEL supports experiments with custom datapaths in a StrongARM proces-
sor, by using some of the unused opcodes of that processor. In particular, GEZEL
supports 2-by-2 and 3-by-1 custom datapaths in a StrongARM. A 2-by-2 cus-
tom datapath reads two register operands and produces two register operands.
A 3-by-1 custom datapath reads three register operands and produces a single reg-
ister operand. The following GEZEL program shows a 2-by-2 custom datapath for
endianess conversion. An ipblock of type armsfu2x2 is used to represent a
custom instruction.

ipblock myarm {
iptype "armsystem";
ipparm "exec=nettohost_sfu";

}

9.5 Custom-Instruction Interfaces 291

Instruction
Memory Read

Instruction
Fetch

Instruction
Decode

Instruction
Decode

Register
Read

Evaluate
Next-PC

Execute
Datapath
Operation

Buffer Data
Memory R / W

Write-back Register
Write

Custom Datapath

Fig. 9.22 Single-argument custom-datapath in an ASIP

ipblock armsfu(out d1, d2 : ns(32);
in q1, q2 : ns(32)) {

iptype "armsfu2x2";
ipparm "core = myarm";
ipparm "device=0";

}

dp swap(in d1, d2 : ns(32);
out q1, q2 : ns(32)) {

always {
q1 = d1[7: 0] #

d1[15: 8] #
d1[23:16] #
d1[31:24];

q2 = d2[7: 0] #
d2[15: 8] #
d2[23:16] #
d2[31:24];

}
}

dp top {
sig d1, d2, q1, q2: ns(32);
use armsfu(d1, d2, q1, q2);
use swap (d1, d2, q1, q2);
use myarm;

}

292 9 Hardware/Software Interfaces

We will now write a C program to use this custom datapath. We need to make
use of a custom opcode to trigger execution of the custom datapath. The GEZEL
armsfu interface relies on the smullnv opcode, which is unused by the Stron-
gARM. As smullnv cannot be produced directly in C, its opcode is inserted in a
regular program by making use of inline assembly. The following C snippet shows
how to define an inline assembly macro, and how to call this instruction for a single-
argument and a double-argument instruction.

#define OP2x2_1(D1, D2, S1, S2) \
asm volatile ("smullnv %0, %1, %2, %3" : \

"=&r"(D1), "=&r"(D2) : \
"r"(S1), "r"(S2));

// use as a single-argument instruction
for (i=0; i<4096; i++) {

OP2x2_1(ot[i], dummy1, in[i], dummy2);
}

// use as a dual-argument instruction
for (i=0; i<2048; i++) {

OP2x2_1(ot[2*i], ot[2*i+1], in[2*i], in[2*i+1]);
}

The resulting assembly for the single-argument case now looks as follows. The
loop requires 8 cycles: 6 instructions and two stalls. This is a gain of 2 clock cy-
cles compared to the previous case. Equally important is that the program now
only needs half the bus transfers, because the coprocessor is integrated inside of
the StrongARM.

.L38:
ldr r3, [r4, lr, asl #2] ; load in[i]
smullnv r2, r7, r3, ip ; perform conversion
str r2, [r1, lr, asl #2] ; write ot[i]
add lr, lr, #1 ; next iteration
cmp lr, r0
ble .L38

The dual-argument design is even more efficient, because the loop management
code is now shared over two endianess conversions. We have 9 cycles per loop itera-
tion: 7 instructions and two stalls. However, each iteration of the loop performs two
conversions, so that the effective cycle cost is 4.5 cycles per endianess conversion
(compared to 8 cycles in the previous case).

.L53:
ldr r1, [r5], #4 ; read in[2*i], adjust pointer
ldr r2, [r5], #4 ; read in[2*i+1], adjust pointer
smullnv r0, ip, r1, r2 ; perform conversion
str r0, [r4], #4 ; store ot[2*i], adjust pointer
subs lr, lr, #1 ; next iteration
str ip, [r4], #4 ; sotre ot[2*i+1], adjust pointer
bne .L53

Summing up, by converting an all-software design to an ASIP-type design, the
cycle cost for endianess conversion on a StrongARM reduces from 13 cycles per

9.5 Custom-Instruction Interfaces 293

word to 4.5 cycles per word, an improvement of 2.9 times. Observe that in the
final design, almost all execution time is spent in moving data from memory to
the processor and back. This illustrates a point we made earlier: the strength of
an ASIP design is also its weakness. An instruction-set architecture is convenient
to build extensions, but bottlenecks in the instruction-set architecture will also be
bottlenecks in the resulting hardware/software codesign.

9.5.3 Finding Good ASIP Instructions

How do we identify good ASIP instructions? Most likely, the application domain
itself will suggest what type of primitives are most frequently needed. For example,
image processing often works with 8-bit pixels. Hence, instructions that support
efficient 8-bit operations will be useful for an image-processing ASIP. Another ex-
ample, coding and cryptography make use of modular arithmetic. Hence, in an ASIP
for coding algorithms, it makes sense to have support for modular addition and mul-
tiplication.

The study of automatic instruction definition is a research field on its own, and is
of particular interest to compiler developers. We will describe two basic techniques
that work directly at the level of assembly language, and that are not specific to
a given application domain. The first technique is called operator fusion, and the
second technique is called operator compounding.

In operator fusion, we define custom instructions as a combination of depen-
dent operations. The dependencies are found by means of data flow analysis of the
code. After data flow analysis, we can cluster assembly operations together. Each
time we group two operations together, the intermediate register storage required for
the individual operations disappears. Figure 9.23a illustrates operator fusion. There
are obviously a few limitations to the clustering process.

� All operations that are fused are jointly executed. Hence, they must be at the same
loop hierarchy level, and they must be within the same branch of an if-then-else
statement. Note that it is still possible to integrate an entire if-then-else statement
as a custom instruction; see Problem 9.7.

� The number of input and output operands must be limited to ensure that the
register-file bandwidth stays within bounds. Indeed, as the new custom instruc-
tion executes, it will require all the input arguments to be available at the same
clock cycle, and it will produce all output arguments at the same clock cycle.

� The length of the chained operations must not be too long, since this adversely
affects the critical path of the processor.

Figure 9.23b shows an example of operator compounding. In this case, we are
combining multiple possibly unrelated operations together, especially when they
share common inputs. The operator compounds are identified using data-flow anal-
ysis of the assembly code, and they have similar limitations as fused operators.

294 9 Hardware/Software Interfaces

REG1 REG2

OP1

REG3 REG4

OP2

REG1 REG2 REG4

CUSTOM DATAPATH

REG1 REG2

OP1

REG3

REG4

OP2

RESULT RESULT

REG1 REG2 REG4

REG3

RESULT

RESULT

a

b

CUSTOM DATAPATH

Fig. 9.23 (a) Operator fusion (b) Operator compounding

We’ll now consider the endianess-conversion example once more and consider
how much more it can be optimized beyond a single OP2x2 ASIP instruction for
endianess conversion. In this case, we consider a complete C function as follows.
Notice how this code has been optimized with incremental pointer arithmetic.

void byteswap(unsigned *in, unsigned *ot) {
int i;
int d1, d2, d3, d4;
unsigned *q1 = in;
unsigned *q2 = ot;
for (i=0; i<2048; i++) {
d1 = *(q1++);
d2 = *(q1++);
OP2x2_1(d3, d4, d1, d2);

*(q2++) = d3;

*(q2++) = d4;
}

}

The assembly code for this functions looks as follows. The loop body contains
nine instructions. Only a single instruction performs the actual byte swap operation!
Four other instructions are related to moving data into and out of the processor (ldr,
str), two instructions do loop counter management (cmp, add), one instruction

9.5 Custom-Instruction Interfaces 295

implements a conditional return (ldmgtfd) and one instruction is a branch. There
will be two pipeline stalls: one for the branch, and one for the second memory-load
(ldr).

byteswap:
stmfd sp!, {r4, r5, lr} ; preserve registers
mov ip, #0 ; init loop counter
mov lr, #2032 ; loop counter limit
add lr, lr, #15

.L76:
ldr r2, [r0], #4 ; load in[i]
ldr r3, [r0], #4 ; load in[i+1]
smullnv r4, r5, r2, r3 ; endianess conversion
str r4, [r1], #4 ; store ot[i]
str r5, [r1], #4 ; store ot[i+1]
add ip, ip, #1 ; increment loop counter
cmp ip, lr ; test
ldmgtfd sp!, {r4, r5, pc} ; and conditionally return
b .L76

To optimize this assembly code with additional ASIP instructions, we can con-
struct a data-flow diagram for the assembly code, and investigate the opportunities
for operation fusion and compounding. Figure 9.24 shows the dataflow analy-
sis diagram. The boxes represent registers, while the circles represent operations.

r4 r5 lr

stmfd

sp
ip

mov

lr

mov

#2032 #0

add

#15

r0

ldr r 2 r4

r1

str

inc
loop body

function arguments

fusion
candidate

lr
ldr

r0

ldr

r0

r3

smullnv

r5

str

r1

str

r1

ip

cmp

r4 r5 pc

ldmgtfd

loop
flag

Fig. 9.24 Analysis of the byteswap function for ASIP instructions

296 9 Hardware/Software Interfaces

A distinction is made between operations inside of the loop and those outside of it;
recall that fusion and compounding only work within a single loop level. The shaded
clusters are examples of possible operation fusion.

� A set of fused operations could merge the loop counter logic into two new
operations. The first operation initializes two registers. The second operation in-
crements one register, compares it to the next, and sets a loop flag as a result of
it. We will call these new operations initloop and incloop, respectively.

� The second set of fused operations is trickier: they involve memory access (str
and ldr), so they cannot be implemented with modifications to the execution
stage of the RISC pipeline alone. In addition, because the StrongARM has only
a single memory port, fusing these operations into a single operation will not
provide performance improvement if there is not a similar modification to the
memory architecture as well. Thus, we cannot define new instructions for these
fusion candidates. However, we may still reduce the footprint of the loop body
by collapsing the store and load instructions in store-multiple and load-multiple
instructions.

The resulting assembly code after these transformations would therefore look as
follows. The loop body contains six instructions, but will have three stalls (one for
ldm, one for the data dependency from ldm to smullnv, and one for the branch).
A loop round-trip now costs 9 cycles, or 4.5 cycles per word. This is as fast as we
found before, but in this version of the code, function call overhead is included.

byteswap:
stmfd sp!, {r4, r5, lr} ; preserve registers
initloop ip, lr, #0, #2047 ; loop-counter instruction 1

.L76:
ldm r0!, {r2, r3} ; load in[i], in[i+1]
smullnv r4, r5, r2, r3 ; endianess conversion
stm r1!, {r4, r5} ; store ot[i], ot[i+1]
incloop ip, lr ; loop counter instruction 2
ldmgtfd sp!, {r4, r5, pc} ; and conditionally return
b .L76

This concludes our discussion of the last hardware/software interface, the cus-
tom instruction. The design of customized processors is a hot research topic, and
optimizations have been investigated that go far beyond the examples we discussed
earlier. For the hardware/software codesigner, it’s important to understand that ASIP
design takes a top–down view on the codesign problem: one starts with a C program,
and next investigates how to improve its performance. In a classic coprocessor de-
sign, the view is bottom-up: one starts with a given kernel in hardware, and next
investigates how to integrate it efficiently into a system. Both approaches are viable,
and in both cases, a codesigner has to think about interfacing hardware and software
efficiently.

9.7 Further Reading 297

9.6 Summary

Hardware/Software interfaces are at the core of the hardware/software codesign
problem. While the previous chapters have discussed the means to build commu-
nication channels between hardware and software, this chapter has explained how
to do it. The starting point of all hardware/software interfaces is a means to syn-
chronize two parallel behaviors, one in software and one in hardware. A semaphore
implements an abstract solution for this problem. Master handshakes and slave
handshakes are a method for synchronization that works in hardware as well as
in software.

We made a distinction between three classes of interfaces, each with a different
integration within the System on Chip architecture. A memory-mapped interface
reuses the addressing mechanism of an on-chip bus to reserve a few slots in the
address space for hardware/software communication. Single memory locations can
be implemented using memory-mapped registers. A range of memory locations can
be implemented using a shared memory. Specialized communication mechanisms,
such as FIFO queues, further improve the characteristics of the hardware/software
communication channel.

The coprocessor interface is a second type of hardware/software interface. It re-
quires a dedicated port on a microprocessor, as well as a few predefined instructions
to move data through that port. We discussed two examples of this interface, includ-
ing the Fast Simplex Link interface, and a floating-point coprocessor interface for
the LEON-3 processor.

The final hardware/software interface is the custom-instruction, created by mod-
ifying the instruction-set architecture of a microprocessor. This interface requires a
rather detailed understanding of microprocessor architecture, and is often supported
with a dedicated toolchain.

As a hardware/software codesigner, it is useful to spend time thinking about
the breadth of this design space, which is enormous. Probably, the most important
point is to realize that there is no single silver bullet that can capture all the varia-
tions of interconnections for hardware and software. There are many trade-offs to
make for each variation, and different solutions can tackle different bottlenecks:
computational power, data bandwidth, power consumption, design cost, and so
on. Also, keep in mind that no system can be free of bottlenecks: the objective
of hardware/software codesign is not to remove bottlenecks, but rather to locate
and understand them. In the next chapter, we will focus on the hardware-side of
custom-hardware modules, and describe how hardware can be controlled from
within software through a hardware/software interface.

9.7 Further Reading

The theory of synchronization is typically discussed in depth in textbooks on Par-
allel or Concurrent Programming, such as Taubenfeld (2006) or Moderchai (2006).
The original documents by Dijkstra are available from the E. W. Dijkstra Archive

298 9 Hardware/Software Interfaces

at the University of Texas Dijkstra (2009). They’re in Dutch! Een uitstekende
gelegenheid dus, om Nederlands te leren.

Early research in hardware/software codesign suggested that much of the hard-
ware/software interface problem can be automated. Chapter 4 in Micheli et al.
(2001) describes some of the work in this area. To date however, no standards to
create hardware/software interfaces exist, and the design of such interfaces largely
remains an ad-hoc process.

Yet, design support is critical to ensure error-free design. Designers often build
virtual platforms of a chip during the implementation. A virtual platform is a com-
plete simulation of the entire chip, emphasizing a detailed representation of the
hardware/software interactions.

Memory-mapped interfaces are ubiquitous in the design of System-on-Chip ar-
chitectures. One can consult the datasheet of a typical microcontroller and find that
all peripherals are programmed or configured using memory-mapped input/output.
For example, check the datasheet of Atmel AT91SAM7L128, an ARM-based mi-
crocontroller with numerous on-chip peripherals Atmel (2008).

In contrast to general hardware/software interfaces, the literature on custom pro-
cessor design is rich and detailed. In fact, the ASIP approach is one of the most
succesful models for hardware/software codesign when practical implementations
are considered. A comprehensive treatment of the ASIP design process is provided
by Rowen in Rowen (2004). Leupers and Ienne discuss customized processor archi-
tectures in Leupers and Ienne (2006). There are numerous publications on design
applications based on ASIP, and as many conferences that cover them (a major event
is Embedded Systems Week, grouping 3 conferences together on compiler design,
on system design, and on embedded software implementation).

9.8 Problems

9.1. Consider the two-way handshake in Fig. 9.25. A sender synchronizes with a
receiver and transmits a sequence of data tokens through a data register.

(a) Describe under what conditions register r1 can be removed without hurting the
integrity of the communication. Assume that, after taking r1 away, the req
input of the receiver is tied to logic-1.

(b) Describe under what conditions register r3 can be removed without hurting the
integrity of the communication. Assume that, after taking r3 away, the req
input of the sender is tied to logic-1.

(c) Assume that you would substitute register r1 by two registers in series, so
that the entire transition from sender-ack to receiver-req now takes two clock
cycles instead of one. Describe the effect of this change on the throughput of
the communication, and describe the effect of this change on the latency of the
communcation.

9.8 Problems 299

Receiver
ack

req

req

ack

r1

r2

r3

Sender

master
handshake

slave
handshake

data data

Fig. 9.25 Two-way handshake for Problem 9.1 and Problem 9.5

9.2. A C function has 10 inputs and 10 outputs, all of them integers. The function
takes 1,000 cycles to execute in software. You need to evaluate if it makes sense
to build a coprocessor for this function. Assume that the function takes K cycles
to execute in hardware, and that you need Q cycles to transfer a word between the
software and the coprocessor over a system bus. Draw a chart that plots Q in terms
of K, and indicate what regions in this chart justify a coprocessor.

9.3. A C function requires 8 programmable constants that change very infrequently,
and 1 data input that changes upon each call. Design a memory-mapped interface
that minimizes the amount of memory locations required, while at the same time
introducing minimal impact on the runtime performance of the design. Be precise:
show a CPU bus on one side, and 8 C 1 registers on the other side, with your
memory-mapped interface design in between. Assume the interface is mapped start-
ing at address 0x100.

9.4. Build a memory-mapped register for the address bus described in Table 8.1.
Evaluate the complexity of two different designs. What is the general recommenda-
tion for the design of memory-mapped address decoders you can make?

(a) A decoder that maps the register to any address of the range 0x3F000000 -
0x3F00FFFF.

(b) A decoder that maps the register to the single address 0x3F000000.

9.5. Consider the two-way handshake in Fig. 9.25. Implement this two-way hand-
shake by developing an FSMD for the sender and the receiver. Next, optimize the
two-way handshake so that two tokens have been transferred each time req and
ack have make a complete handshake and returned to the logic-0 state.

9.6. Modify the design of Fig. 9.11 so that all positions of the FIFO are used before
the full flag is set high.

9.7. Consider the following C program. You have to optimize it using custom in-
structions.

(a) Study the following C program and the corresponding assembly code out of it.

300 9 Hardware/Software Interfaces

int findmax(unsigned int data[1024]) {
unsigned int max = 0;
int i;
for (i=0; i<1024; i++)

if (max < data[i])
data[i] = max;

return max;
}

findmax:
mov r2, #0
mov r1, #1020
mov ip, r2
add r1, r1, #3

.L7:
ldr r3, [r0, r2, asl #2]
cmp ip, r3
strcc ip, [r0, r2, asl #2]
add r2, r2, #1
cmp r2, r1
movgt r0, #0
movgt pc, lr
b .L7

(b) Define a custom instruction max rx, ry, which compares ry to the current
value of rx and replaces that value if ry is bigger than rx. Assume that rx and
ry are unsigned, 32-bit values. Show how the assembly code must be modified.

(c) Design a GEZEL datapath for this custom instruction, following the example
in Sect. 9.5.2.

9.8. The following C function is compiled to a Microblaze processor and results in
assembly code as shown. The input arguments of the assembly code are r5 and r6;
the return argument is r3; the return instruction was left out of the assembly.

int absmax(int v, int w) {
return (v * 6 + w * 4);

}

// input arg: r5, r6
// return arg: r3
addk r3,r5,r5 // op1
addk r3,r3,r5 // op2
addk r3,r3,r3 // op3
addk r6,r6,r6 // op4
addk r6,r6,r6 // op5
addk r3,r3,r6 // op7

(a) Perform dataflow analysis on the assembly code and draw the data dependency
diagram later. Use rectangles to indicate registers and circles to indicate opera-
tions. Label the operations “op1” to “op7.”

(b) When you have drawn the dataflow dependency diagram, define several ASIP
candidate instructions (at least 2) using operation fusion. Indicate clearly which
operations you could merge into ASIP instructions.

9.8 Problems 301

9.9. An ASIP processor performs operations on a stream samples, fed into the ASIP
at a fixed rate. The samples are processed using an algorithm A. Which of the fol-
lowing optimizations will reduce the energy consumption E needed to process a
single sample?

(a) Rewrite the algorithm A so that it requires fewer MOPS from the processor
(MOPS D Million Operations per Second). Does this reduce the energy con-
sumption E?

(b) Add a custom instruction B that will make algorithm A complete in only half
the clock cycles. You can assume the power consumed by added hardware is
negligible. Does this reduce the energy consumption E?

(c) Increase the clock frequency of the ASIP. Does this reduce the energy consump-
tion E?

(d) Lower the voltage of the ASIP. Does this reduce the energy consumption E?

Chapter 10
Coprocessor Control Shell Design

Abstract This chapter discusses the design practice of attaching a custom hardware
module to a hardware/software interface, an activity referred to as control shell
design. It involves the encapsulation of a custom hardware module on a standard
hardware/software interface, and the development of a software driver to control
the custom hardware module through this hardware/software interface. There are
two orthogonal aspects to control shell design. The first, data design, defines
how to transfer data from software to custom hardware and back. The second,
control design, defines how to implement a software control strategy for the custom
hardware. The outcome of data design and control design define the programmer’s
model, the abstract software view of the hardware module. This chapter will address
each of these aspects, and discuss an example based on a control shell for an
encryption coprocessor for the Advanced Encryption Standard (AES).

10.1 The Coprocessor Control Shell

A control shell connects a custom hardware module to a coprocessor bus or an on-
chip bus. The control shell steers the input and output ports of the custom hardware
module. This may affect many different activities of the custom hardware module,
including data transfer as well as control. Figure 10.1 shows the location of the
control shell in the overall integration of a microprocessor with a custom-hardware
module.

10.1.1 Functions of the Coprocessor Control Shell

The design of the control shell is a classic hardware/software codesign problem, that
matches the flexibility of custom-hardware design to the realities of hardware/soft-
ware interfaces. The services that are implemented by the control shell include the
following.

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 10, c� Springer Science+Business Media, LLC 2010

303

304 10 Coprocessor Control Shell Design

Fig. 10.1 The control shell
maps a custom-hardware
module to a
hardware–software interface

software
application

Microprocessor
Interface

Driver

Control Shell

Custom-HW
Module

API

Microprocessor Coprocessor

ControlData

On-chip Bus

� Data Transfer: The control shell implements read/write transactions on the on-
chip bus, using a master-protocol or a slave-protocol. In other cases, the control
shell implements handshake sequences for a coprocessor bus. A control shell can
be optimized for high-throughput and bursty data transfers, for example with a
dedicated Direct Memory Address Controller.

� Wordlength Conversion: The control shell converts data operands of the
custom-hardware module, which can be arbitrary in size and number, into
data structures suitable for on-chip bus communication. For example, in a 32-bit
system, software can deliver only 32-bits of data at a time, while the custom
hardware module may need a much wider 1024-bit input bus. In that case, the
control shell needs to support a conversion of a single 1024-bit operand into an
array of 32-bit words. Furthermore, the control shell takes care of the bit- and
byte-level organization of the data in case conversions between software and
hardware are needed.

� Operand Storage: The control shell provides local and/or temporary storage
for arguments and parameters for the custom-hardware component. Besides ar-
guments and parameters, the control shell can also include local buffering to
support the on-chip interface. The distinction between arguments and parameters
is in fact very important. Arguments are updated every time the custom-hardware
module executes. Parameters, on the other hand, may be updated only infre-
quently. Hence, to minimize the hardware–software communication bandwidth,
parameters are transmitted only once from software to hardware, and then held
in a local memory in the control shell.

� Instruction Set: The control shell defines the programmer’s model, the software-
view of a custom-hardware component in terms of instructions and data
structures. The design of instruction-sets for custom hardware modules is a
particularly interesting and important problem. A carefully designed custom
instruction-set can make the difference between an efficient coprocessor, and a
confusing blob of logic.

� Local Control: The control shell implements local control interactions with the
custom hardware component, such as sequencing a series of micro-operations in
response to a single software command.

10.1 The Coprocessor Control Shell 305

10.1.2 Layout of the Coprocessor Control Shell

Figure 10.2 illustrates the layout of a generic coprocessor control shell, which
connects a custom hardware module and which attaches it to an on-chip bus inter-
face or coprocessor interface. As the control shell itself is a user-defined hardware
component, it can have an arbitrary architecture. The following components are
commonly found in a control shell.

� A data input buffer for Argument Storage.
� A data output buffer for Result Storage.
� A Command Interpreter to control the data buffers and the custom hardware

module based on commands from software.

The control shell has several ports, addressable inputs/outputs of the coprocessor.
For example, an on-chip bus interface uses an address decoder, while a coprocessor
interface may have dedicated ports. From the perspective of the custom hardware
module, it is common to partition the collection of ports into data input/output ports
and control/status ports.

The separation of control and data is an important aspect in the design of co-
processors. Indeed, in a software program on a microprocessor, control and data
are tightly connected through the instruction-set of the microprocessor. In custom-
hardware however, the granularity of interaction between data and control is chosen
by the designer. Observe that in Fig. 10.2, control flows vertically through the hard-
ware while data runs horizontally from left to right.

Despite the relatively simple organization of the control shell, the design space
of the data buffers and the command interpreter is rich and deep. In the following,
we will discuss mechanisms to help us design the control shell efficiently. We will
differentiate between data-design and control-design. Data-design implements data
dependencies between software and hardware. Control-design implements control
dependencies between software and hardware. First, we investigate the performance
limits of a control shell.

Result

Command Interpreter

On-chip Bus Interface / Coprocessor Interface

Control PortStatus Port

Argument
Storage

Custom
Hardware
Module

Result
StorageData Input

Port(s)
Data Output

Port(s)

Fig. 10.2 Layout of a coprocessor control shell

306 10 Coprocessor Control Shell Design

10.1.3 Communication-Constrained vs. Computation-Constrained
Coprocessors

We start by evaluating the performance of the control shell shown in Fig. 10.3. This
shell uses addressable ports to steer 3 input ports and 1 output port of a custom
hardware module. If we add up the wordlengths of the actual input ports and output
ports of the custom hardware module, we find it requires transfer of 128C 128C
32C 32 D 320 bits per execution. This assumes that all of the data ports carry an
operand, not a constant parameter. We will also assume that the custom hardware
module takes 5 cycles to compute a result. Hence, when this module is connected
to software, and we wish to run the module at full performance, we will need to
offer a data bandwidth of 320=5 D 64 bits per cycle. This data bandwidth needs
to be delivered through a hardware/software interface. Let’s assume the interface
provides 128 bits per transfer, and that each transfer will take 1 clock cycle. In that
case, the available bandwidth is 128=1 D 128 bits per cycle. Clearly, the interface
can provide data two times faster than required to keep the custom hardware fully
utilized. This is an example of a computation-constrained system: the bottleneck is
in the hardware computation unit. Now let’s assume that we have a pipelined custom
hardware module, and that the module accepts new operands every clock cycle. In
that case, the module bandwidth increases to 320=1 D 320 bits per clock cycle. The
interface cannot keep up with the bandwidth required to keep the coprocessor fully
utilized. The system is now communication-constrained.

Figure 10.4 summarizes these observations. The distinction between a
communication-constrained system and a computation-constrained system is im-
portant, because it tells the designer where to put design effort. In a communication-
constrained system, it does not make sense to implement a more powerful
coprocessor, because it will remain under-utilized. Conversely, in a computation-
constrained system, we do not need to look for a faster hardware/software interface.

Custom
Hardware
Module

128

128

32

32

Addressable
Ports

Data
Design

Control Shell

Fig. 10.3 Data design in a control shell

10.1 The Coprocessor Control Shell 307

Custom
Hardware
Module

Hardware / Software
Interface

v bits per transfer
B cycles per transfer

w bits per execution
H cycles per execution

v

B

w

H

v wCommunication
Constrained

Computation
Constrained

v

B

w

H

v

B

w

H
< =

>

Fig. 10.4 Communication-constrained system vs computation-constrained system

Table 10.1 Hardware
sharing factor

Architecture HSF

Systolic array processor 1
Bit-parallel processor 1–10
Bit-Serial processor 10–100
Microcoded processor >100

An additional insight can be gained from the number of clock cycles needed
per execution of the custom hardware module. This number is called the hardware
sharing factor or HSF. The HSF is defined as the number of clock cycles that are
available in between each input/output event. For example, an HSF of 10 would
mean that a given hardware architecture has a cycle budget of 10 clock cycles be-
tween successive input/output events. Thus, if this architecture would contain two
multiplier operators then these 10 clock cycles are adequate to support up to 20
multiplications. The HSF is useful in back-of-the-envelope calculations to evaluate
if a given architecture is powerful enough to sustain a computational requirement.
There is a strong correlation between the internal architecture of a hardware module
and its HSF. This is ilustrated in Table 10.1.

� A systolic-array processor is a multidimensional arrangement of computation
units (datapaths or dataflow-actor-like processors) that operate on one or more
parallel streams of data items.

� A bit-parallel processor is a processor with bit-parallel operators such as adders
and multipliers that operates under control of a simple engine (such as a FSMD
or a microprogrammed controller).

� A bit-serial processor is a processor with bit-serial operators, i.e., operators that
compute on a single bit at a time, under control of a simple engine (such as a
FSMD or a microprogrammed controller).

� A microcoded processor is a processor with an instruction-fetch, similar to a
general purpose processor.

308 10 Coprocessor Control Shell Design

The correlation between HSF and architecture is important: it helps a designer
selecting the right architecture style at the start of a design, when only the HSF
is known.

10.2 Data Design

Data Design is the implementation of a mapping between the control-shell ports
and the custom-hardware ports. Typically, this includes the introduction of buffers
and registers, as well as the creation of an address map.

10.2.1 Flexible Addressing Mechanisms

A data port on a coprocessor has three characteristics. The port has a wordlength, a
direction and an update rate. For example, the wordlength and direction could be a
32-bit input. The update rate expresses how frequently a port changes value. The two
extremes are a parameter, which needs to be set only a single time, and a function
argument, which changes value upon each execution of the hardware module.

When these three characteristics (wordlength, direction, and update rate) are
known, we can map the actual ports of the hardware module to the ports of the
control shell. For example, consider a coprocessor for the greatest-common-divisor
function, gcd. The high-level specification of this function would be:

int gcd(int m, int n);

The hardware module equivalent of gcd has two input ports m and n, which are
32-bit wide. The module also has a single output port of 32-bit. These three ports
are the actual ports of the hardware module. When we implement this module as a
memory-mapped coprocessor, the ports of the control shell will be implemented as
memory-mapped registers. Therefore, we need to define a connection from the three
ports of the hardware module to the memory-mapped registers.

This strategy makes each port of the hardware module independently address-
able from software. However, it may not always be possible to allocate an arbitrary
number of data ports in the control shell. In that case, we need to multiplex the
hardware-module ports over the control shell ports.

10.2.2 Multiplexing and Masking

There are several occasions when the ports of the hardware module need to be mul-
tiplexed over the ports of the control shell.

� There may be insufficient control-shell ports available to implement a one-to-one
mapping between hardware-module ports and control-shell ports.

10.2 Data Design 309

GCD

m

out

data

write (ctl)

m

control-shell
port

nn

Fig. 10.5 Time-multiplexing of two hardware-module ports over a single control-shell port

� Some hardware-module ports need to be programmed only once (or very
infrequently), so that it is inefficient to allocate a separate control-shell port for
these ports.

Multiplexing will increase the control complexity of the control shell slightly. In
addition, uncareful multiplexing will reduce the available input/output bandwidth of
the hardware module. Thus, there is a risk that the module becomes communication-
constrained because of the multiplexing process.

Multiplexing can be implemented in different ways. The first is to use time-
multiplexing of the hardware module ports. The second is to introduce an index
register in the control shell. Figure 10.5 shows an example of a time-multiplexed
port for the GCD coprocessor. In this case, the arguments need to be provided by
writing the value of m and n sequentially to the control-shell port.

The index-register technique works as follows. Several ports (say N) on the hard-
ware module are mapped into two ports on the control shell. One port on the control
shell is a data port of sufficient width to hold any single hardware module port.
The second port is an index port and has width log2N bits. The index port controls
the mapping of the data port of the control shell to one of the ports on the hardware
module. Figure 10.6 shows an example of the index-register technique to merge
8 outputs to a single data output. The index register technique is more flexible than
time-multiplexing, because the interface can freely choose the readout order of the
hardware-module output ports. At the same time, it also requires double the amount
of interface operations. Hence, multiplexing with index-registers is most useful for
ports that update very infrequently, such as parameters.

Multiplexing is also useful to handle operands with very long wordlengths. For
example, if the hardware module uses 128-bit operands, while the control-shell ports
are only 32-bit, then the operands can be provided one word at a time by means of
time multiplexing. We will discuss an example further in this chapter.

310 10 Coprocessor Control Shell Design

Hardware Module

q1
q2
q3
q4
q5
q6
q7
q8

index port

output port

control-shell
port

index

Fig. 10.6 Index-register to select one of eight output ports

Finally, we also mention a technique to work with very short operands, such as
single-bit arguments. In this case, it is expensive to allocate a single control-shell
port for each single-bit hardware-module port. Instead, a single control-shell port
should be shared over several hardware-module ports. This may lead to unwanted
bits when reading the control-shell port, and it may also result in unwanted updates
when writing the control-shell port. To solve this, a mask register can be introduced.
A mask register indicates which bits of a control-shell port should be taken into
account when updating the hardware-module ports. The updated value is obtained
by simple bit-masking of the previous value on the hardware ports with the new
value of the control shell port.

new_hardware_port = (old_hardware_port & ˜mask_value) |
(control_shell_value & mask_value);

10.3 Control Design

Control design in a coprocessor is the collection of activities to generate control
signals and to capture status signals. The result of control design is a set of com-
mands or instructions that can be executed by the coprocessor. These commands are
custom-tailored for the design.

Figure 10.7 shows a generic architecture to control a custom hardware module
through software. It includes a command interpreter which accepts commands from
software and which returns status information. The command interpreter is the top-
level controller in the coprocessor, and it communicates directly with software. We
also make a distinction between a command and a configuration. A command is
a one-time control operation. A configuration is a value which will affect the exe-
cution of the coprocessor over an extended period of time, possibly over multiple
commands.

10.3 Control Design 311

Fig. 10.7 Command design
of a control shell

Command
Interpreter

Command

Status

To / From
Software

Custom
Hardware
Module

Configuration

In the following sections, we discuss several architectural techniques that can be
used to optimize the performance of the coprocessor.

10.3.1 Hierarchical Control

Figure 10.8 shows the architecture of a coprocessor that can achieve communica-
tion/computation overlap. The coprocessor has a hierarchy of controllers, which
allow independent control of the input buffering, the computations, and output
buffering. The command interpreter analyzes each command from software and
splits it up into commands for the lower-level FSM. In the simplest form, these
subcommands are simple start/done handshakes. Thus, for each command of soft-
ware, the command interpreter can start a combination of lower-level FSM. Often,
a single level of command decoding is insufficient. For example, we may want to
use a coprocessor which has an addressable register set in the input or output buffer.
In that case, we can embed the register address into the command coming from
software. To implement these more complicated forms of subcontrol, the start/done
handshakes need to be replaced with more complex command/status pairs.

A control hierarchy simplifies the design of control, as is shown in Fig. 10.9. The
command interpreter can easily adapt to the individual schedules from the input
FSM, compute FSM and output FSM. On the other hand, the method of using start/-
done pulses is inconvenient when working with pipelined submodules, since a done
pulse only appears after the pipeline latency of the submodule. This will require
a modification to the start/done scheme, which will be discussed later.

First, we examine how a hierarchical controller as illustrated in Fig. 10.8 can help
in achieving computation/communication overlap. The basic principle, of course, is
well known: we need to pipeline the input/compute/output operations within the co-
processor. Table 10.2 illustrates a set of five software commands to achieve pipelined
execution within the coprocessor. This scheme is called block-level pipelining. The
commands obtain precise pipeline startup and shutdown. The first three commands

312 10 Coprocessor Control Shell Design

Input FSM
Compute

FSM
Output FSM

Command Interpreter

HW / SW
Interface

HW / SW
Interface

HW / SW
Interface

Compute
Kernel

statuscmdstatuscmdstatuscmd

Fig. 10.8 Hierarchical control in a coprocessor

Software
Command
Interpreter

Input
FSM

Compute
FSM

Output
FSM

start

done

time

Fig. 10.9 Execution overlap using hierarchical control

Table 10.2 Command set to
control block-level pipelining

Command Input FSM Compute FSM Output FSM

pipe load1 start
pipe load2 start start
pipe continue start start start
pipe flush1 start start
pipe flush2 start

(pipe load1, pipe load2, pipe continue) require the software to send
an argument to the coprocessor. The last three commands (pipe continue,
pipe flush1, pipe flush2) require the software to retrieve a result from the
coprocessor. Once the pipeline is filled up through the sequence of pipe load1
and pipe load2, the software can repeat the command pipe continue as
often as needed.

10.3 Control Design 313

10.3.2 Control of Internal Pipelining

When a custom hardware module has internal pipeline stages, hierarchical control
becomes more intricate. We need to address two issues during the design of a control
shell. First, we need to find a way to generate control signals for the pipeline stages.
Next, we need to define a proper mechanism to interface these control signals with
the higher layers of control. Indeed, a simple start/done handshake is insufficient
for a pipeline, because it does not reflect the pipeline effect. In this section we will
address both of these aspects.

Figure 10.10 introduces some terminology on pipeline architectures. A pipeline
consists of a number of pipeline stages separated by pipeline registers. The latency
of a pipeline is the number of clock cycles it takes for an operand to move from
the input of the pipeline to the output. The throughput of a pipeline measures the
number of results produced per clock cycle. If a pipeline accepts a new operand
each clock cycle, its throughput is one (per cycle). If, on the other hand, a pipeline
accepts a new operand every N cycles, its throughput is 1=N . In a linear pipeline
architecture, there are no feedback connections. For such a pipeline, the latency
equals the number of pipeline stages, and the throughput equals 1. In a nonlinear
pipeline architecture, there are feedback connections. This happens when certain
stages of a pipeline are reused more than a single time for each data token that enters
the pipeline. In a nonlinear pipeline, the latency can be higher than the number of
pipeline stages, and the throughput can be lower than 1.

In any pipelined coprocessor, the pipeline control signals are eventually be under
the control of a higher-level controller. Pipeline control signals will be required in
two cases.

� In case a pipeline needs to perform more than a single operation, there needs to
be a way to send control information into the pipeline. This control information
will determine the operation of individual pipeline stages.

� In a nonlinear pipeline architecture, multiplexers may be needed between the
pipeline stages in order to feed operands from multiple locations within the
pipeline. These multiplexers need additional control signals.

pipeline feedback

data in data out

pipeline
register

pipeline
register

pipeline
register

Stage 3Stage 2Stage 1

Fig. 10.10 Pipeline terminology

314 10 Coprocessor Control Shell Design

10.3.2.1 Control of Linear Pipelines

We first discuss the control of multifunction pipelines, which use one of the fol-
lowing two methods. The first is called data-stationary control, while the second is
called time-stationary control. Figure 10.11 illustrates the differences between these
two schemes.

� In a data-stationary scheme, control signals will travel along with the data
through the pipeline. At each pipeline stage, the control word is decoded and
transformed into appropriate control signals for that stage.

� In a time-stationary scheme, a single control word will control the entire pipeline
for a single clock cycle. Because the pipeline contains fragments of different data
items, each in a different stage of processing, a time-stationary control scheme
will specify the operations to be performed on several data elements at the same
time.

From a programmer’s perspective, a data-stationary approach is more conve-
nient because it hides the underlying pipeline structure in the program. A RISC
instruction-set, for example, uses data-stationary encoding. On the other hand,
time-stationary control makes the underlying machine structure explicitly visible
in the control signals. Time-stationary control is therefore suitable for tasks that
require access to the entire pipeline at once, such as exception handling. In addi-
tion, nonlinear pipeline architectures are easier to control with a time-stationary

data in data out

Control 1 Control 2 Control 3command status

Data-stationary Control

data in data out

Control 1 Control 2 Control 3

Time-stationary Control

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

statuscommand

Fig. 10.11 Data-stationary and time-stationary pipeline control

10.3 Control Design 315

approach then with a data-stationary approach. Indeed, generating the control
signals for multiplexers between pipeline stages requires an overview of the entire
pipeline.

10.3.2.2 Control of Nonlinear Pipelines

When a pipeline has feedback connections, the pipeline stages are reused multiple
times per data item that enters the pipeline. As a result, the throughput of a pipeline
can no longer be one.

Figure 10.12 illustrates the operation of a nonlinear pipeline structure with three
stages. Each data item that enters the pipeline will use stage 2 and stage 3 two
times. When a new data item enters the pipeline, it will occupy stage 1 in the first
cycle, stage 2 in the second, and stage 3 in the third cycle. The data item is then
routed back to stage 2 for the fourth cycle of processing, and into stage 3 for the
fifth and final cycle of processing. We can thus conclude that this nonlinear, three-
stage pipeline has a latency of 5. The diagram below Fig. 10.12 is a reservation
table, a systematic representation of data items as they flow through the pipeline,
with stages corresponding to rows and clock cycles corresponding to columns. The
table demonstrates the pipeline processing of three data items A, B, and C. From
the diagram, we can see that data items A and B are processed in subsequent clock
cycles. However, item C cannot immediately follow item B: the pipeline is busy and
will occupy stage 2 and stage 3. Hence, item C will need to wait. This situation is
called a pipeline conflict. In cycle 5, the pipeline is available again and item C can
start. We conclude that the pipeline is able to process two elements (A and B) in four
clock cycles. Therefore, the throughput of this pipeline is 0:5.

The operation of nonlinear pipelines has been studied in detail, for example in
the seminal work of Peter Kogge, but this material is beyond the scope of this chap-
ter. Instead, we will consider the impact of pipelining on the generation of control
handshake signals.

pipeline feedback

pipeline
register

data in
C B A

data out

pipeline
register

pipeline
register

1 2 3 4 5 6 7 8 9

A

A A

B

B B

C

C C

A AB B C C

Stage 1 Stage2 Stage 3

Cycle

Stage1

Stage 2

Stage 3

Fig. 10.12 A reservation table for a nonlinear pipeline

316 10 Coprocessor Control Shell Design

10.3.2.3 Control Handshakes for Pipelines

Earlier in this section we used a simple start/done handshake to implement hiearchi-
cal control for an iterated component. How do these handshake signals have to be
modified for pipeline architectures?

In an iterated structure, a single done signal is sufficient to mark two distin-
guished but coinciding events. The first event is when a result is available at the
output. The second event is when a new argument can be accepted at the input. In
a pipeline structure however, input and output activities do not have to coincide.
Indeed, in a pipeline, the latency does not have to be the reciprocal of the through-
put. The case of a linear pipeline is still easy: the latency is equal to the number of
pipeline stages, and the throughput is equal to one. The case of a nonlinear pipeline
is more complex, and the latency as well as the throughput can both be different
from one.

To distinguish input events from output events, we will use two handshake-
acknowledge signals. The first one, done, indicates when the pipeline produces
valid data. The second one, allow, indicates when the input is able to accept new
arguments.

Figure 10.13 illustrates the relation of the handshake signals to the operation
of the pipeline. The left side of the figure illustrates the interface to the pipeline,
while the right side shows the values for start, done, and allow over several
clock cycles. The beginning and end of a pipeline instruction are marked through
start and done. The allow signal indicates if a new instruction can be started
at the next clock cycle. If allow is zero, this means that starting an instruction
will cause a pipeline conflict. You can observe that done is a delayed version of
start, with the delay equal to the pipeline latency. The format of the allow
signal is more complex, because it depends on the exact pattern of pipeline use. For
example, allow must be zero in cycle 3 and cycle 4 because the second pipeline
stage is occupied by instruction A and B.

Nevertheless the allow signal is easy to generate, as demonstrated in Fig. 10.14.
The allow signal indicates when the pipeline is occupied and cannot accept
a new instruction. For the reservation table shown in Fig. 10.14, this happens
two clock cycles after a pipeline instruction starts. These two clock cycles are a

Stage1

Stage 2

Stage 3

1 2 3 4 5 6 7 8 9

A

A

A

A

A

B

B

B

B

B

C

C

C

C

C

Start

Done

Allow

1 1 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 1

1 1 0 0 1 1 0 1 1

Allow
Control

OutputInput

Start Done

Cycle

Fig. 10.13 Control handshakes for a nonlinear pipeline

10.4 Programmer’s Model = Control Design + Data Design 317

Stage1

Stage 2

Stage 3

1 2 3 4 5

A

A

A

A

A

No collision

Collision after 2 cycles

Collision after 2 cycles

12Cycle
1 0

Collision Vector

Collision Vector 1 0

1 0

0 1

0 0

Cycle 1

Cycle 2

Cycle 3

No conflict

Conflict

No conflict

Shift

start

allow

Cycle

Fig. 10.14 Generation of the done signal

forbidden latency. A collision vector is a bit-vector where forbidden latencies are
marked by means of a bit. The index of this bit corresponds to the forbidden la-
tency. For the reservation table shown, the collision vector equals 10, since the only
forbidden latency is two clock cycles. The allow signal can now be generated us-
ing the collision vector and a shift register, as shown on the right of Fig. 10.14. Each
time a new instance of a pipeline instruction starts, a copy of the collision vector is
added to the shift register. The last bit of this shift register indicates if the current
clock cycle coincides with a forbidden latency. Hence, this bit is the inverse of the
allow bit.

10.4 Programmer’s Model = Control Design + Data Design

The previous two sections highlighted two aspects that affect control shell design.
Data design is concerned with moving data from software to the encapsulated hard-
ware module and back. Control design is concerned with generating control signals
for the encapsulated hardware module.

In this section, we consider the impact of these design decisions on the software
driver. The software view of a hardware module is defined as the programmer’s
model. This includes a collection of the memory areas used by the custom hard-
ware module, and a definition of the commands (or instructions) understood by the
module.

10.4.1 Address Map

The address map reflects the organization of software-readable and software-
writable storage elements of the hardware module, as seen from software. The
address map is part of the design of a memory-mapped coprocessor, and its

318 10 Coprocessor Control Shell Design

design should consider the viewpoint of the software designer rather than the
hardware designer. Here are some of the considerations that affect the design of the
address map.

� To a software designer, read and write operations commonly refer to the same
memory location. For a hardware designer, it is easy to route read and write op-
erations to different registers, since read strobes and write strobes are available
on a bus as separate registers. This practice should be avoided because it goes
against the expectations of the software designer. A given memory-mapped ad-
dress should always affect the same hardware registers.

� In the same spirit, a hardware designer can create memory-mapped registers that
are read-only, write-only or read-write registers. By default all memory-mapped
registers should be read/write. This matches the expectations of the software de-
signer. Read/write memory-mapped registers also allow a software designer to
conveniently implement bit-masking operations (such as flipping a single bit in a
memory-mapped register). In some cases, read-only registers are justified, such
as for example to implement registers that reflect hardware status information or
sampled-data signals. However, there are very few cases that justify a write-only
register.

� In software, read/write operations always handle aligned data. For example,
extracting bits number 5–12 out of a 32-bit word is more complicated than ex-
tracting the second byte of the same word. While a hardware designer may have
a tendency to make everything as compact as possible, this practice may result
in an address map that is very hard to handle for a software designer. Hence, the
address map should respect the alignment of the processor.

10.4.2 Instruction Set

The instruction set of custom-hardware module defines how software can control
the module. The design of a good instruction-set is a hard problem; it requires the
codesigner to make the proper trade-off between flexibility and efficiency. Instruc-
tions that trigger complex activities in the hardware module may be very efficient,
but they are difficult to use and understand for a software designer. The design of
an instruction-set strongly depends on the function of the custom-hardware module,
and therefore very few generic guidelines can be given.

� One can distinguish three classes of instructions: one-time commands, on–off
commands, and configurations. One-time commands trigger a single activity
in the hardware module (which may take multiple clock cycles to complete).
Pipeline control commands, such as discussed in Sect. 10.3.1, fall in the same
category. On–Off commands come in pairs, and they control a continuous ac-
tivity on the hardware module. Finally, configurations provide a parameter to an
algorithm. They affect the general behavior of the hardware module. Making the

10.5 Example: AES Encryption Coprocessor 319

proper choice between these is important in order to minimize the amount of
control interaction between the software driver and the hardware module.

� Synchronization between software and hardware is typically implemented at mul-
tiple levels of abstraction. At the lowest level, the hardware/software interfaces
will ensure that data items are transferred correctly from hardware to software
and vice versa. However, additional synchronization may be needed at the algo-
rithm level. For example, a hardware module with a data-dependent execution
time could indicate completion to the driver software through a status flag. In
this case, a status flag can support this additional layer of synchronization.

� Another synchronization problem is present when multiple software users share a
single hardware module. In this case, the different users all see the same hardware
registers, which may be undesirable. This synchronization issue can be handled
in several ways. Coprocessor usage could be serialised (allowing only a single
user at a time), or else a context switch can be implemented in the hardware
module.

� Finally, reset design must be carefully considered. An example of flawed reset
design is when a hardware module can only be initialized by means of full system
reset. It makes sense to define one or several instructions for the hardware module
to handle module initialization and reset.

10.5 Example: AES Encryption Coprocessor

Here is an example of command design for an encryption engine. As command
design and control shell design as a whole are closely linked, we will describe both
of them at the same time. The coprocessor implements the Advanced Encryption
Standard, a block cipher with a block size of 128 bit, and a key size of 128 bit. In its
most simple form, the processor implements the following function template.

void encrypt(unsigned plaintext[4],
unsigned key[4],
unsigned ciphertext[4]);

In this function call, plaintext and key are input arguments, and cipher-
text is an output argument. Each argument is 128-bit, and is mapped into an array
of 4 integers on a 32-bit microprocessor. In addition, the update rate of the ports
is different. For most practical cases, the key argument can be thought of as a
parameter, while the plaintext and ciphertext are arguments.

Figure 10.15 shows the hardware module which must be matched to the
encrypt function call. The module has two data inputs, text in andtext out.
The timing diagram on the right of the figure shows how the block operates. The
encryption starts with a high level in ld when the done output is high. A key and
a plaintext are sampled from the 128-bit input ports, and several clock cycles later,
a corresponding ciphertext is generated, and the done pin is raised again.

320 10 Coprocessor Control Shell Design

text_in

ld
128

128

clk

text_in, key

text_out

Control Shell

input

output

32-bit bus

key

text_out

AES_ENCRYPT

128

done

done

ld

completestart

Fig. 10.15 AES encryption module interface

10.5.1 Control Shell Operation

The control shell is operated through a 32-bit bus. We have to design a command
set to operate the hardware module according to the interface protocol of Fig. 10.15.
We will need to choose a command set which will allow to read and write data to the
coprocessor, and to start the encryption. Furthermore, since the key is a parameter
and the plaintext input is an argument, it will be useful to have a separate command
to change the key and to change the data input. The 128-bit data words need to be
transferred in chunks of 32-bit. We’ll solve this using a multiplexing technique.

Figure 10.16 shows the datapath of the control shell. Three 32-bit control shell
ports are included: data in. data out, and decode. The 128-bit operands are
assembled using a 96-bit working register in combination with a data input port and
a data output port. The control port steers the update of the working register and the
control pins of the encryption module.

10.5.2 Programmer’s Model

We now consider the software view of the control shell, and define the instruction set
of the coprocessor. Table 10.3 shows the address map. The three memory-mapped
registers are mapped onto two addresses; one for data, and one for control.

An instruction for the AES coprocessor is the combination of a value written to
the control register in combination with a value written to (or read from) the data
register. Table 10.4 describes the command set of the coprocessor. These commands
have the following meaning.

� INIT is used to initialize the coprocessor.
� SHIFT is used to shift data into the working register of the coprocessor. The

argument of this command is DATA.
� KEY is used to copy the working register of the coprocessor to the key register.

The argument of this command is DATA.

10.5 Example: AES Encryption Coprocessor 321

text_in

ld
128

32

data_in data_out control

fsm

32-bit bus

96-bit working
register

text_in

key

text_out

AES_ENCRYPT

128

128
128

32

32

32

128

128

done

Fig. 10.16 AES encryption control shell datapath

Table 10.3 Command set for
AES encryption coprocessor

Offset Write Read

0x0 data in data out
0x4 control

Table 10.4 Command set for
AES encryption coprocessor

Command control data in data out

INIT ins rst X 0
SHIFT DATA ins load DATA 0
KEY DATA ins key DATA 0
PTEXT DATA ins text DATA 0
ENCRYPT ins crypt X DONE
CTEXT *DATA ins textout X DATA
READ *DATA ins read X DATA
SYNC ins idle X 0

� PTEXT is used to copy the working register of the coprocessor to the plaintext
input register. The argument of this command is DATA.

� ENCRYPT is to initiate the encryption operation on the coprocessor. The encryp-
tion for this AES module completes in 10 clock cycles. The completion status of
the encryption is available in the data output register.

� CTEXT copies the cipher output register of the coprocessor to the working regis-
ter. This command returns a result in *DATA.

� READ is used to shift data out of the working register of the coprocessor. This
command returns a result in *DATA.

� SYNC is used as part of the high-level synchronization protocol used by the co-
processor. This synchronization needs to make sure that the command written to
the control register is consistent with the value on the data in or data out

322 10 Coprocessor Control Shell Design

ports. This works as follows. Each instruction for the coprocessor is a sequence
of two values at the control port, SYNC followed by an active command. To trans-
fer data to the coprocessor, the data in port needs to be updated between the
SYNC command and the active command. To retrieve data from the coprocessor,
the data out port needs to be read after the active command in the sequence
SYNC, active command.

Each high level function call in C can now be converted into a sequence of
coprocessor commands. The following example illustrates the sequence of com-
mands required to load a key and a plaintext block onto the coprocessor, perform
encryption, and retrieve the ciphertext. This command sequence will be generated,
for example, through software using memory-mapped write and read operations to
control, data in and data out.

// Command Sequence for Encryption
// Input: plaintext[0..3] 4 words of plaintext
// key[0..3] 4 words of key
// Output: ciphertext[0..4] 4 words of ciphertext

SYNC
SHIFT plaintext[0]
SYNC
SHIFT plaintext[1]
SYNC
SHIFT plaintext[2]
SYNC
PTEXT plaintext[3]

SYNC
SHIFT key[0]
SYNC
SHIFT key[1]
SYNC
SHIFT key[3]
SYNC
KEY key[4]

ENCRYPT
wait until (*DATA == 1)

SYNC
CTEXT ciphertext[0]
SYNC
READ ciphertext[1]
SYNC
READ ciphertext[2]
SYNC
READ cuphertext[3]

Finally, the command set for a coprocessor also needs to choose an encoding.
As discussed earlier with microcoded engines and microprocessors, command en-
coding can be very complex and it can contain multiple fields. In this case, we
implement a very simple encoding scheme for control which consists of a single
field. Table 10.5 illustrates this encoding.

10.5 Example: AES Encryption Coprocessor 323

Table 10.5 Command
encoding for AES encryption
coprocessor

Command control Encoding

SYNC ins idle 0
INIT ins rst 1
SHIFT DATA ins load 2
KEY DATA ins key 3
PTEXT DATA ins text 4
ENCRYPT ins crypt 5
CTEXT *DATA ins textout 6
READ *DATA ins read 7

10.5.3 Software Driver Design

Listing 10.1 shows a software driver for the AES encryption processor. We’re
making the assumption that we are using a memory-mapped hardware/software
interface. The three memory-mapped registers are defined on lines 3–5, and we as-
sume that their pointer value has been initialized properly. The command encoding
is captured in an enum statement on line 1.

The coprocessor API uses two functions, set key and do encrypt. The
set key function transfers four words of an 128-bit key using the protocol de-
scribed earlier. First, control is set to ins idle and the data in argument
is loaded. Next, the actual command is given (lines 11–13). Using ins load, the
first three words of the key are shifted into the working register. Using ins key,
all 128 bits of the key register are programmed.

The do encrypt function shows a similar sequence for loading the plaintext.
The encryption command, which takes no arguments, is shown on lines 27–28. The
encryption can take many clock cycles, depending on the architecture of the encryp-
tion coprocessor.

Finally, in lines 33–37, the do encrypt function retrieves the result from the
coprocessor. This works again using an interleaved ins idle/command sequence.
First, control is set to ins idle. Next, the actual command is given and the out-
put argument is retrieved. Using ins textout, the working register is initialized
with the output encryption result. Using ins read, this result is gradually shifted
out of the working register.

Figure 10.17 illustrates how the software driver interacts with the hardware. The
clk signal in this diagram is the hardware clock, which can be unrelated to the clock
of the microprocessor. The signals control, data in, and data out are ports
of the control shell. They are controlled by software, and their value can change
asynchronously from the hardware. The interleaved idle/active sequence on the con-
trol port enables the hardware to select a single clock cycle when the data in
must have a known value, when to start the encryption, and when the data out
must be updated. In the next section, we discuss an RTL implementation for this
control shell.

324 10 Coprocessor Control Shell Design

Listing 10.1 A C driver for an AES memory-mapped coprocessor
1 enum {ins_idle, ins_rst, ins_load, ins_key,

2 ins_text, ins_crypt, ins_textout, ins_read};

3 volatile unsigned int *control; // memory-mapped register for controle
4 volatile unsigned int *data_in; // memory-mapped register for data_in
5 volatile unsigned int *date_out; // memory-mapped register for data_out
6
7 void set_key(unsigned key[4]) {

8 unsigned i;

9
10 for (i=0; i < 4; i++) {

11 *control = ins_idle;

12 *data_in = key[i];

13 *control = (i == 3) ? ins_key : ins_load;

14 }

15 }

16
17 void do_encrypt(unsigned plaintext[4],

18 unsigned ciphertext[4]) {

19 unsigned i;

20
21 for (i=0; i < 4; i++) {

22 *control = ins_idle;

23 *data_in = plaintext[i];

24 *control = (i == 3) ? ins_text : ins_load;

25 }

26
27 *control = ins_idle;

28 *control = ins_crypt;

29 while (*data_out == 0) ; // wait for encryption to complete
30
31 for (i=0; i < 4; i++) {

32 *control = ins_idle;

33 *control = (i == 0) ? ins_textout : ins_read;

34 ciphertext[i] = *data_out;

35 }

36
37 }

10.5.4 Control Shell Design

Listing 10.2 shows a GEZEL implementation of a control shell for the AES copro-
cessor. The AES hardware module is instantiated on line 13, and it is controlled
through three ports: control, data in, data out. Several registers (key,
text in, text out) surround the aes module following an arrangement as
shown in Fig. 10.16.

The easiest way to understand the operation of this design is to start with the FSM
description on line 45–71. The overall operation of the decoder FSM is an infinite
loop that accepts a command from software, and then executes that command. Each
state performs a specific step in the command execution.

10.5 Example: AES Encryption Coprocessor 325

clk

control idle crypt idle

control shell
captures input

control shell
starts encryption

control shell
updates output

data_in

data_out

valid

valid

idle text text_out

HW → SW

SW → HW

SW → HW

Fig. 10.17 AES control shell operation

� In state s1, the FSM tests insreg, which holds the latest value of the control
port, against each possible command. Obviously, it must follow the command
encoding chosen earlier for the C driver program. Depending on the value of the
command, the FSM will transition to state s2, s3, s5, s6.

� State s2 performs the second half of the command handshake protocol, and waits
for ins idle before going back to s1 for the next command. State s2 is used
for the SYNC command.

� State s3 is entered after the ENCRYPT command. This state waits for the en-
cryption to complete. Thus, the control shell is unable to accept new instructions
while the coprocessor is operational. The software can detect command comple-
tion by reading and testing the value of the data out memory-mapped register.
During the ENCRYPT command, the register will reflect the value of the done
flag of the coprocessor.

� State s5 is entered when the first word of the output is read back in software.
� State s6 is entered when the next three words of the output are read back in

software.

The datapath of the control shell (Listing 10.2 lines 15–43) implements the reg-
ister transfers that map the control shell ports to the AES module ports and back.

Listing 10.2 A control shell for the AES coprocessor
1 dp aes_decoder(in control : ns(8);
2 in data_in : ns(32);
3 out data_out : ns(32)) {
4
5 reg rst, ld, done : ns(1);
6 reg key, text_in, text_out : ns(128);
7 sig sigdone : ns(1);
8 sig sigtext_out : ns(128);
9 reg wrkreg0, wrkreg1, wrkreg2 : ns(32);

10 reg insreg : ns(8);
11 reg dinreg : ns(32);
12
13 use aes_top(rst, ld, sigdone, key, text_in, sigtext_out);

326 10 Coprocessor Control Shell Design

14
15 always { insreg = control;
16 dinreg = data_in;
17 done = sigdone;
18 text_out = sigdone ? sigtext_out : text_out; }
19 sfg dout_d { data_out = done; }
20 sfg dout_t { data_out = text_out[127:96]; }
21 sfg dout_w { data_out = wrkreg2; }
22 sfg aes_idle { rst = 0; ld = 0; }
23 sfg aes_rst { rst = 1; ld = 0; }
24 sfg aes_ld { rst = 0; ld = 1; }
25 sfg putword { wrkreg0 = dinreg;
26 wrkreg1 = wrkreg0;
27 wrkreg2 = wrkreg1; }
28 sfg setkey { key = (wrkreg2 << 96) |
29 (wrkreg1 << 64) |
30 (wrkreg0 << 32) |
31 dinreg; }
32 sfg settext { text_in = (wrkreg2 << 96) |
33 (wrkreg1 << 64) |
34 (wrkreg0 << 32) |
35 dinreg; }
36 sfg gettext { data_out = text_out[127:96];
37 wrkreg2 = text_out[95:64];
38 wrkreg1 = text_out[63:32];
39 wrkreg0 = text_out[31:0]; }
40 sfg shiftw { wrkreg2 = wrkreg1;
41 wrkreg1 = wrkreg0; }
42 sfg getword { data_out = wrkreg2; }
43 }
44
45 fsm faes_decoder(aes_decoder) {
46 initial s0;
47 state s1, s2, s3, s4, s5, s6;
48 @s0 (aes_idle, dout_0) -> s1;
49 @s1 if (insreg == 1) then (aes_rst, dout_0) -> s2;
50 else if (insreg == 2) then (aes_idle, putword, dout_0) -> s2;
51 else if (insreg == 3) then (aes_idle, setkey, dout_0) -> s2;
52 else if (insreg == 4) then (aes_idle, settext, dout_0) -> s2;
53 else if (insreg == 5) then (aes_ld, dout_d) -> s3;
54 else if (insreg == 6) then (aes_idle, gettext) -> s5;
55 else if (insreg == 7) then (aes_idle, getword) -> s6;
56 else (aes_idle, dout_0) -> s1;
57 // SYNC
58 @s2 if (insreg == 0) then (aes_idle, dout_0) -> s1;
59 else (aes_idle, dout_0) -> s2;
60 // ENCRYPT
61 @s3 if (done == 1) then (aes_idle, dout_d) -> s4;
62 else (aes_idle, dout_d) -> s3;
63 @s4 if (insreg == 0) then (aes_idle, dout_d) -> s1;
64 else (aes_idle, dout_d) -> s4;
65 // CTEXT
66 @s5 if (insreg == 0) then (aes_idle, dout_0) -> s1;
67 else (aes_idle, dout_t) -> s5;
68 // READ
69 @s6 if (insreg == 0) then (aes_idle, shiftw, dout_0) -> s1;
70 else (aes_idle, dout_w) -> s6;
71 }

10.5 Example: AES Encryption Coprocessor 327

in1

in2

out1

out2

Hardware Module

• Select HW / SW Interface
• Define Command Set

• Select Port Mapping
• Design Control Shell

• Develop Software Driver

Hardware Module

in1

in2

out1

out2

Control ShellSoftware Driver

Software API

HW / SW Interface

Fig. 10.18 Development of a control shell

Figure 10.18 shows the design process that we have followed so far. We started
from a custom hardware module and integrated that into software. This requires
the selection of a hardware/software interface, and the definition of a command
set. Once these are defined, the integration of hardware and software follow two
independent paths. For software, we created a software driver that provides a smooth
transition from a high-level API to the hardware/software interface. For hardware,
we encapsulated the hardware module into a control shell that connects directly onto
the hardware/software interface.

Of course, while Fig. 10.18 shows how to integrate a hardware module, it does
not address the performance of the resulting hardware/software interface. As we
will discuss next, the design of a control shell often has critical impact on the per-
formance of the overall design.

10.5.5 System Performance Evaluation

Control shell design has substantial impact on the overall system performance of
a design. We will evaluate the performance of the AES coprocessor following the
scheme of Fig. 10.19. We compare an all-software, optimized AES implementation

328 10 Coprocessor Control Shell Design

AES Algorithm

Optimized
32-bit Software

Coprocessor
Control Shell

All-Hardware

Software Driver
(Listing 12.1)

Control Shell
(Listing 12.2)

case 1: case 2:case 3:

Fig. 10.19 AES coprocessor performance evaluation

with an all-hardware standalone AES implementation. We also compare these re-
sults against the performance of an integrated coprocessor using the software driver
and control shell developed earlier. The experiments were done using GEZEL and
the Simit-ARM intruction set simulator. A C version of the AES algorithm (derived
from the OpenSSH library) takes around 3,600 cycles per encryption on an ARM.
On the other hand, a full-hardware implementation of AES which requires one clock
cycle per round takes 11 clock cycles. The speedup of the hardware design is now
defined as:

S D cyclessoftware

cycleshardware
� Tclock;software

Tclock;hardware
: (10.1)

If we assume that the microprocessor and the custom-hardware run at the same
clock frequency, the speedup S is around 327 times for the full hardware implemen-
tation.

Next, we also compare the design of the hardware AES integrated onto the con-
trol shell discussed earlier. In this case, we use the GEZEL cosimulator to obtain
combine hardware and software simulations and obtain overall performance. The
software includes the software driver of Listing 10.1. The hardware includes the
hardware control shell of Listing 10.2 and the custom hardware module. The sys-
tem cycle count is around 334 cycles per encryption. This is still a factor of 10.9
faster than the all-software implementation, but is it also a factor of 30.2 slower
than the all-hardware implementation.

Table 10.6 shows the performance summary of the AES design. The analysis of
the speedup factors shows that a hardware/software interface can easily become a
bottleneck. In this case, each encryption requires 12 words to be transferred: a key, a
plaintext word, and a ciphertext result. There are many optimization possibilities, at
the algorithmic level as well as at the architecture level. At the algorithmic level, we
can obtain a 30% performance improvement by programming the key only once in
the coprocessor and reusing it as much as possible. At the architecture level, we can
select a faster, more efficient hardware/software interface: using buffer memories,

10.7 Further Reading 329

Table 10.6 Performance
of 100 AES encryptions on
different platforms

Implementation Cycle count Speedup over software

AES software (32-bit) 362,702 1.0
AES custom hardware 1,100 329.7
AES coprocessor 33,381 10.9

burst transfer mode, and so on. In addition, we can also evaluate how to increase the
overlap between communication and computation.

10.6 Summary

In this chapter we discussed design techniques to encapsulate hardware modules
onto a predefined hardware/software interface. These techniques are collected un-
der the single term control shell design. A control shell implements the connection
mechanisms between low-level software and a hardware module, including the
transfer of operands to and from the hardware module, and the generation of control
signals for the hardware module. This requires, in general, the addition of data in-
put/output buffers, and the addition of a controller. Design of a good control shell is
not easy; as demonstrated through the example of an encryption processor, the hard-
ware/software interface can add significant overhead, and even become a bottleneck
in the overall system performance. Therefore, optimizing the communication be-
tween hardware and software is an important objective. One optimization technique
is to improve the overlap between hardware/software communication and compu-
tation. This can be achieved by means of block-level pipelining and/or internal
pipelining. Both forms of pipelining provide improved system-level performance,
at the expense of additional hardware and increased complexity in system control.
Therefore, we also discussed control techniques for pipelined hardware modules.

10.7 Further Reading

Similar to hardware/software interface design, the implementation of coprocessor
control shells is an ad-hoc design process for which few systematic development
has been done.

The classic work on optimization of pipelined architectures is by Kogge Kogge
(1981), and its ideas on scheduling of pipelined architectures are still relevant.

The Advanced Encryption Standard was published by NIST in Federal Infor-
mation Processing Standard 197 (FIPS 197), which can be consulted online NIST
(2001). A detailed description of an AES coprocessor that follows the principles of
control shell design is given by Hodjat in Hodjat and Verbauwhede (2004).

330 10 Coprocessor Control Shell Design

10.8 Problems

10.1. The Motorola DSP56000 processor is a pipelined processor. One of its as-
sembly instructions look as follows.

MPY x0, Y0, A X: (R0)+, X0 Y: (R4)+, Y0

There are no comments in the above line – everything on that line is part of the
instruction! This instruction multiplies register X0 with Y0 and places the product
in the A accumulator. At the same time, the value of register X0 is updated with
the memory location pointed to by register R0, and register Y0 is updated with the
memory location pointed to by register R4. Does the Motorola DSP56000 use time-
stationary control or does it use data-stationary control?

10.2. Listing 10.3 is a design of a control shell for a median module, which evalu-
ates the median of three values. Study the operation of the coprocessor by studying
the GEZEL code listing, and answer the questions later.

Listing 10.3 A control shell for a median module
dp median(in a, b, c : ns(32);

out q : ns(32)) {
sig q1, q2 : ns(32);
always {
q1 = (a > b) ? a : b;
q2 = (a > b) ? b : a;
q = (c > q1) ? q1 : (c < q2) ? q2 : c;
}

}

ipblock myarm {
iptype "armsystem";
ipparm "exec=median_driver";

}

ipblock b_datain(out data : ns(32)) {
iptype "armsystemsource";
ipparm "core=myarm";
ipparm "address=0x80000000";

}

ipblock b_dataout(in data : ns(32)) {
iptype "armsystemsink";
ipparm "core=myarm";
ipparm "address=0x80000004";

}

dp medianshell {
reg a1, a2, a3 : ns(32);
sig q : ns(32);
use median(a1, a2, a3, q);

sig v_in, v_out : ns(32);
use b_datain(v_in);

10.8 Problems 331

use b_dataout(v_out);

use myarm;

reg old_v : ns(32);
always {
old_v = v_in;
a1 = ((old_v == 0) & (v_in > 0)) ? v_in : a1;
a2 = ((old_v == 0) & (v_in > 0)) ? a1 : a2;
a3 = ((old_v == 0) & (v_in > 0)) ? a2 : a3;
v_out = q;

}
}

system S {
medianshell;

}

(a) How many data-input and data-output ports does the coprocessor have?
(b) Is the medianmodule communication-constrainedor computation-constrained

with respect to this hardware/software interface?
(c) Describe how software should operate the coprocessor (write values to it, and

retrieve the result from it).
(d) Write a C program that uses this coprocessor to evaluate the median value of

the numbers 36, 99, and 58.

10.3. Listing 10.4 is a hardware implementation of a vector generator module.
Given a set of input coordinates (ix, iy), the module will generate all integer
coordinates lying on the straight line between (0,0) and (ix, iy). The algo-
rithm implemented by the module, the Bresenham algorithm, is used to draw lines
on raster-scan displays. The listing in 10.4 assumes that (ix, iy) lies in the first
quadrant, so that ix and iy are always positive. The timing diagram on the right of
Fig. 10.20 shows how to operate the module. New target coordinates can be entered
using the ld control input. Loading new coordinates also resets the output coor-
dinates to (0,0). After that, the next control input can be used to retrieve new
output points from the vector. The ouput will be refreshed on the second clock edge
after next is high.

(a) Design a control shell for this module implemented as a coprocessor with a
single 32-bit input port, and a single 32-bit output port. Optimize your design to
take advantage of the fact that the coordinates of the module are 12-bit. Assume
a memory-mapped interface. The design of the control shell includes: definition
of the coprocessor instruction set, design of the control shell hardware, and
design of sample driver software.

(b) How would you modify the design of (a) when the coprocessor needs to be
connected through an 8-bit bus? Describe the required modifications to the
instruction-set, the control-shell hardware, and the sample driver software.

332 10 Coprocessor Control Shell Design

clk

ix, iy

next

ld

valid

ox, oy (0,0) v2 v3ix

iy

0

0

Fig. 10.20 Bresenham vector generation module

Listing 10.4 A Vector Generator
dp bresen(in ix, iy : ns(12);

in ld, next : ns(1);
out ox, oy : ns(12)) {

reg x, y : ns(12); // current position
sig nx, ny : ns(12);
reg e : tc(12);
reg eol : ns(1);
reg rix, riy : ns(12); // current target
reg einc1, einc2 : tc(12);
reg xinc, yinc : ns(1);
reg ldr, nextr : ns(1);

always {
ldr = ld;
nextr = next;
rix = ld ? ix : rix;
riy = ld ? iy : riy;
ox = x;
oy = y;

}

sfg init {
einc1 = (rix > riy) ? (riy - rix) : (rix - riy);
einc2 = (rix > riy) ? riy : rix;
xinc = (rix > riy) ? 1 : 0;
yinc = (rix > riy) ? 0 : 1;
e = (rix > riy) ? 2 * riy - rix : 2 * rix - riy;
x = 0;
y = 0;

}

sfg loop {
nx = (e >= 0) ? x + 1 : x + xinc;
ny = (e >= 0) ? y + 1 : y + yinc;
e = (e >= 0) ? e + einc1 : e + einc2;
x = nx;
y = ny;

10.8 Problems 333

eol = ((nx == rix) & (ny == riy));
}

sfg idle { }
}

fsm f_bresen(bresen) {
initial s0;
state s1, s2;
@s0 (init) -> s1;
@s1 if (ldr) then (init) -> s1;

else if (eol) then (idle) -> s2;
else if (nextr) then (loop) -> s1;
else (idle) -> s1;

@s2 if (ldr) then (init) -> s1;
else (idle) -> s2;

}

// testbench
dp test_bresen {

reg ix, iy : ns(12);
reg ld, next : ns(1);
sig ox, oy : ns(12);
use bresen(ix, iy, ld, next, ox, oy);

always { $display("<",$cycle, ">", $dec, " ox ", ox, " oy ",
oy); }

sfg init { ld = 1; next = 0; ix = 11; iy = 7; }
sfg step { ld = 0; next = 1; ix = 0; iy = 0; }

}
fsm ctl_test_bresen(test_bresen) {

initial s0;
state s1;
@s0 (init) -> s1;
@s1 (step) -> s1;

}

system S {
test_bresen;

}

10.4. Figure 10.21 shows a nonlinear pipeline architecture with three stages. The
shaded blocks labeled 1, 2, and 3 represent combinational logic. Pipeline stage 2
iterates two times over each data item entered. As a result, this architecture can only
process one data item every clock cycle.

(a) Find the forbidden latencies for this pipeline.

334 10 Coprocessor Control Shell Design

Stage1

Stage 2

Stage 3

A

1 2 3 4

A A

A

1 2 3

Cycle

Fig. 10.21 A nonlinear pipeline for problem 12.4

(b) Can this pipeline accept a new data item every other clock cycle? If not, how
could you modify this architecture so that this becomes possible? Every other
cycle means that the pipeline should be able to accept new inputs at regular
intervals.

Part IV
Applications

The final part of the book describes two complete applications of hardware/
software codesign. These examples are given with adequate application background,
so that the system-level specification and the design refinement process is clear. The
examples are fully implemented as prototypes in Field Programmable Gate Arrays
(FPGA), and the reader has access to the full source code of these designs. The
first application is a co-processor of the Trivium stream-cipher algorithm. This
coprocessor is used for streaming-encryption applications. The second application
is a co-processor for the evaluation of digital rotation functions (CORDIC).

Chapter 11
Trivium Crypto-Coprocessor

Abstract Stream ciphers are complex state machines that generate an infinite
stream of pseudo-random bits starting from a single key. These bits can be used
as a keystream in encryption and decryption operations. In this chapter we’ll dis-
cuss the implementation of such a stream cipher algorithm, called Trivium, as a
co-processor. The co-processor is attached to a host processor. The software on that
host processor initializes the Trivium coprocessor, and retrieves a very long (infi-
nite) keystream. We consider different types of host processors, including an 8-bit
8051 microcontroller, a 32-bit StrongARM RISC, and a 32-bit Microblaze proces-
sor. We will consider the impact of different types of hardware–software interfaces
on the performance of the overall design. We will also investigate the path to imple-
mentation on an FPGA.

11.1 The Trivium Stream Cipher Algorithm

The Trivium stream cipher algorithm was proposed by Christophe De Canniere and
Bart Preneel in 2006 in the context of the eSTREAM project, a European effort
that ran from 2004 to 2008 to develop a new stream ciphers. In September 2008,
Trivium was selected as a part of the official eSTREAM portfolio, together with
six other stream cipher algorithms. The algorithm is remarkably simple, yet to this
date it remains unbroken in practice. We will clarify further what it means to break
a stream cipher. In this section, we discuss the concept of a stream cipher, and the
details of the Trivium algorithm.

11.1.1 Stream Ciphers

Let us first clarify how a stream cipher works and how it is different from a block
cipher such as AES (which was discussed in Chap. 10). The left of Fig. 11.1 illus-
trates the difference between a stream cipher and a block cipher. A stream cipher

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 11, c� Springer Science+Business Media, LLC 2010

337

338 11 Trivium Crypto-Coprocessor

Stream
Cipher
Kernel

key

n

1

m

Block
Cipher
Kernel

key

nm

n

plaintext

plaintext
stream

Stream
Cipher

Stream
Cipher

key

ciphertext
stream

plaintext
stream

ciphertextkeystream

stream cipher

a b

key

blockcipher

Fig. 11.1 (a) Stream cipher and Block cipher (b) Stream cipher encryption/decryption

is a state machine with an internal state register of n bits. The stream cipher kernel
will initialize the state register based on a key, and it will update the state register
while producing the keystream.

In contrast to a stream cipher, a block cipher is a state-less function that com-
bines an m bit key with a block of n bits of plaintext. Because there is no state,
the encryption of one block of plaintext bits is independent of the encryption of the
previous block of bits. Of course, many hardware implementations of block ciphers
do include registers. However, these registers are an effect of sequentializing the
block cipher algorithm; it is perfectly feasible to implement block ciphers without
any register.

The cryptographic properties of the stream cipher are based on the highly non-
linear functions used for state register initialization and state register update. These
nonlinear functions ensure that the keystream cannot be predicted even after a very
large number of keystream bits has been observed. Breaking a stream cipher means
that one has found a way to predict the output of the stream cipher, or even better,
one has found a way to reveal the contents of the state register. For a state register
of n bits, the stream cipher can be in 2n possible states, so the total length of the key
stream can be no more than n:2n bits. Practical stream ciphers have an n between
80 and several hundred.

A stream cipher by itself does not produce ciphertext, but only a stream of
keybits. The right of Fig. 11.1 illustrates how one can perform encryption and de-
cryption with a stream cipher. The keystream is combined (xor-ed) with a stream of
plaintext bits to obtain a stream of ciphertext bits. Using an identical stream cipher
that produces the same keystream, the stream of ciphertext bits can be converted
back to plaintext using a second xor operation.

A stream cipher algorithm produces, conceptually, a stream of bits. When the
message to encrypt is not formatted as a stream of bits, but as a stream of bigger
entities, such as words, the stream cipher will need to produce a stream of words
instead. On a RISC processor, for example, it makes sense to represent a stream
as a sequence of 32-bit words. Therefore, depending on the computer architecture,

11.1 The Trivium Stream Cipher Algorithm 339

Stream
Cipher
Kernel

Stream
Cipher
Kernel

Stream
Cipher
Kernel

Stream
Cipher
Kernel

key key keykey

n n n n

keystream

4.n

Fig. 11.2 Parallel stream cipher implementation

we would have a key-stream formatted as single bits, as bytes, as 32-bit words, and
so on. One way to obtain a wider keystream is to run the stream cipher kernel at
high speed and perform a serial-to-parallel conversion of the output. An alternative
is illustrated in Fig. 11.2: the stream cipher can be easily parallelized to produce
multiple keystream bits per clock cycle. This is especially useful when the stream
cipher kernel is a very simple function, as is the case with Trivium.

11.1.2 Trivium

Trivium is a stream cipher with a state register of 288 bits. The state register is
initialized based on an 80-bit key and an 80-bit initial value (IV). After initialization,
Trivium produces a stream of keybits. The specification of Trivium is shown in
Listing 11.1. Each iteration of the loop, a single output bit z is generated, and the
state register s is updated. The addition and multiplication (C and .) are taken over

Listing 11.1 Trivium round
state s[1..288];
loop

t1 = s[66] + s[93];
t2 = s[162] + s]177];
t3 = s[243] + s[288];
z = t1 + t2 + t3;
t1 = t1 + s[91].s[92] + s[171];
t2 = t2 + s[175].s[176] + s[264];
t3 = t3 + s[286].s[287] + s[69];
s[1..93] = t3 || s[1..92];
s[94..177] = t1 || s[94..176];
s[178..288] = t2 || s[178..287];

end loop

340 11 Trivium Crypto-Coprocessor

Listing 11.2 Trivium initialization
state s[1..287];
s[1..92] = K || 0;
s[94..177] = IV || 0;
s[178 .. 288] = 7;
loop for (4 * 288)

t1 = s[66] + s[93] + s[91].s[92] + s[171];
t2 = s[162] + s]177] + s[175].s[176] + s[264];
t3 = s[243] + s[288] + s[286].s[287] + s[69];
s[1..93] = t3 || s[1..92];
s[94..177] = t1 || s[94..176];
s[178..288] = t2 || s[178..287];

end loop

Fig. 11.3 Hardware mapping
of Trivium

trivium

keyschedule

z

e
key + iv

si

so

ld
key + iv

GF(2). They can be implemented with exclusive-or and bitwise-and, respectively.
The double-bar operation (||) denotes concatenation.

The initialization of the state register proceeds as follows. The 80-bit key K and
the 80-bit initial value IV are loaded into the state register, and the state register is
updated 4 times 288 without producing keybits. After that, the state register is ready
to produce keystream bits. This is illustrated in the pseudocode of Listing 11.2.

These listings confirm that, from a computational perspective, Trivium is a very
simple algorithm. A single state register update requires nine single-bit xor oper-
ations and three single-bit and operations. We need two additional single-bit xor
operations to produce the output bit z.

11.1.3 Hardware Mapping of Trivium

A straightforward hardware mapping of the Trivium algorithm requires 288 regis-
ters, 11 XOR gates, and 3 AND gates. Clearly, the largest cost of this algorithm is in
the storage. Figure 11.3 shows how Trivium is partitioned into hardware modules.

� The trivium module calculates the next state. We will use the term Trivium
kernel to indicate the loop body of Listing 11.1, without the state register update.

11.1 The Trivium Stream Cipher Algorithm 341

� The keyschedule module manages state register initialization and update.
The keyschedule module has a single control input ld to initiate the state
register initialization processor. In addition, keyschedule has a single status
bit e that indicates when the initialization has completed, and thus when the
output keystream z is valid. This partitioning between keyschedule and trivium
kernel was chosen with loop unrolling in mind (Fig. 11.2).

Based on this partitioning and the Trivium specification given earlier, it is
straightforward to create a GEZEL description of Trivium. Listing 11.3 shows the
implementation of a 1 bit per cycle Trivium. The control signals in the key-
schedule module are generated based on a counter which is initialized after a
pulse on the ld control input.

To create a bit-parallel keystream, we need to modify the code as follows. First,
we need to instantiate the trivium module multiple times, and chain the state
input and output ports together as shown in Fig. 11.2. Second, we need to adjust
the key schedule, because the initialization phase will take less than four times 288
clock cycles. As an example, Listing 11.4 shows how to unroll Trivium eight times,
thus obtain a stream cipher that generates one byte of keystream per clock cycle. In
this case, the initialization completes 8 times faster, after 143 clock cycles (line 33).

What is the limiting factor when unrolling Trivium? First, notice that unrolling
the algorithm will not increase the critical path of the Trivium kernel operations as
long as they affect different state register bits. Thus, as long as the state register bits
read are different from the state register bits written, then all the kernel operations
are independent. Next, observe that a single Trivium round consists of three circular
shift registers, as shown in Fig. 11.4. The length of each shift register is indicated
inside of the shaded boxes. To find how far we can unroll this structure, we look

A1

A2

T1

T2

66

69 Z

A3
A1

A2

T1

T2

T3

A3 T3

3 24

9 6

66 21 24

Fig. 11.4 Trivium round structure

342 11 Trivium Crypto-Coprocessor

Listing 11.3 1-bit-per-cycle Trivium
1 dp trivium(in si : ns(288); // state input
2 out so : ns(288); // state output
3 out z : ns(1)) { // crypto bit out
4 sig t1, t2, t3 : ns(1);
5 sig t11, t22, t33 : ns(1);
6 sig saa : ns(93);
7 sig sbb : ns(84);
8 sig scc : ns(111);
9 always {

10 t1 = si[65] ˆ si[92];
11 t2 = si[161] ˆ si[176];
12 t3 = si[242] ˆ si[287];
13 z = t1 ˆ t2 ˆ t3;
14 t11 = t1 ˆ (si[90] & si[91]) ˆ si[170];
15 t22 = t2 ˆ (si[174] & si[175]) ˆ si[263];
16 t33 = t3 ˆ (si[285] & si[286]) ˆ si[68];
17 saa = si[0: 92] # t33;
18 sbb = si[93:176] # t11;
19 scc = si[177:287] # t22;
20 so = scc # sbb # saa;
21 }
22 }
23
24 dp keyschedule(in ld : ns(1); // reload key & iv
25 in iv : ns(80); // initialization vector
26 in key : ns(80); // key
27 out e : ns(1); // output valid
28 in si : ns(288); // state input
29 out so : ns(288)) { // state output
30 reg s : ns(288); // state register
31 reg cnt : ns(11); // initialization counter
32 sig saa : ns(93);
33 sig sbb : ns(84);
34 sig scc : ns(111);
35 sig cte : ns(111);
36 always {
37 saa = ld ? key : si[0: 92];
38 sbb = ld ? iv : si[93:176];
39 cte = 7;
40 scc = ld ? (cte << 108) : si[177:287];
41 s = scc # sbb # saa;
42 so = s;

43 cnt = ld ? 1152 : (cnt ? cnt - 1 : cnt); 1152 = 4 * 288
44 e = (cnt ? 0 : 1);
45 }
46 }

11.1 The Trivium Stream Cipher Algorithm 343

Listing 11.4 1-byte-per-cycle Trivium
1 dp trivium(in si : ns(288); // state input
2 out so : ns(288); // state output
3 out z : ns(1)) { // crypto bit out
4 // ...
5 }
6 dp trivium2 : trivium
7 dp trivium3 : trivium
8 dp trivium4 : trivium
9 dp trivium5 : trivium

10 dp trivium6 : trivium
11 dp trivium7 : trivium
12 dp trivium8 : trivium
13
14 dp keyschedule(in ld : ns(1); // reload key & iv
15 in iv : ns(80); // initialization vector
16 in key : ns(80); // key
17 out e : ns(1); // output valid
18 in si : ns(288); // state input
19 out so : ns(288)) { // state output
20 reg s : ns(288); // state register
21 reg cnt : ns(11); // initialization counter
22 sig saa : ns(93);
23 sig sbb : ns(84);
24 sig scc : ns(111);
25 sig cte : ns(111);
26 always {
27 saa = ld ? key : si[0: 92];
28 sbb = ld ? iv : si[93:176];
29 cte = 7;
30 scc = ld ? (cte << 108) : si[177:287];
31 s = scc # sbb # saa;
32 so = s;

33 cnt = ld ? 143 : (cnt ? cnt - 1 : cnt); 143 = 4 * 288 / 8 - 1
34 e = (cnt ? 0 : 1);
35 }
36 }
37
38 dp triviumtop(in ld : ns(1); // reload key & iv
39 in iv : ns(80); // initialization vector
40 in key : ns(80); // key
41 out z : ns(8); // encrypted output
42 out e : ns(1)) { // output valid
43 sig si, so0, so1, so2, so3, so4, so5, so6, so7 : ns(288);
44 sig z0, z1, z2, z3, z4, z5, z6, z7 : ns(1);
45 use keyschedule(ld, iv, key, e, si, so0);
46 use trivium (so0, so1, z0);
47 use trivium2 (so1, so2, z1);
48 use trivium3 (so2, so3, z2);
49 use trivium4 (so3, so4, z3);
50 use trivium5 (so4, so5, z4);
51 use trivium6 (so5, so6, z5);
52 use trivium7 (so6, so7, z6);
53 use trivium8 (so7, si, z7);
54 always {
55 z = z0 # z1 # z2 # z3 # z4 # z5 # z6 # z7;
56 }
57 }

344 11 Trivium Crypto-Coprocessor

for the smallest feedback loop. This loop is located in the upper circular shift reg-
ister, and spans 69 bits. Therefore, we can unroll Trivium at least 69 times before
the critical path will increase beyond a single AND-gate and two XOR gates. In
practice, this means that Trivium can be easily adjusted to generate a key-stream of
double-words (64 bits). After that, the critical path will increase each 69 bits. Thus,
a 192 bit-parallel Trivium will be twice as slow as a 64 bit-parallel Trivium, and a
256 bit-parallel Trivium will be roughly three times as slow.

11.1.4 A Hardware Testbench for Trivium

For completeness, we also show a hardware testbench for the Trivium kernel in
Listing 11.5. In this testbench, the key value is programmed to 0x80 and the IV to
0x0. After loading the key (lines 12–15), the testbench waits until the e-flag indicates
the keystream is ready (lines 29–30). Next, each output byte is printed on the output
(lines 19–22). The first 160 cycles of the simulation produce the following output.

> fdlsim trivium8.fdl 160
147 11001100 cc
148 11001110 ce
149 01110101 75
150 01111011 7b
151 10011001 99
152 10111101 bd
153 01111001 79
154 00100000 20
155 10011010 9a
156 00100011 23
157 01011010 5a
158 10001000 88
159 00010010 12

The key stream bytes produced by Trivium consists of the bytes 0xcc, 0xce,
0x75, 0x7b, 0x99, and so on. The bits in each byte are read left to right (from most
significant to least significant). In the next sections, we will integrate this module
as a coprocessor next to a processor.

11.2 Trivium for 8-bit Platforms

Our first coprocessor design will attach the Trivium stream cipher hardware to an
8-bit microcontroller. We will make use of an 8051 microcontroller. Like many other
microcontrollers, it has several general-purpose digital input–output ports, which
can be used to create hardware–software interfaces. Thus, we will be building a
port-mapped control shell for the Trivium coprocessor. The 8051 microcontroller

11.2 Trivium for 8-bit Platforms 345

Listing 11.5 Testbench for a 1-byte-per-cycle Trivium
1 // testbench
2 dp triviumtest {
3 sig ld : ns(1);
4 sig iv, key : ns(80);
5 sig e : ns(1);
6 reg re : ns(1);
7 sig z : ns(8);
8 reg rz : ns(8);
9 sig bs : ns(8);

10 use triviumtop(ld, iv, key, z, e);
11 always { rz = z;
12 re = e; }
13 sfg init0 { iv = 0;
14 key = 0x80;
15 ld = 1;
16 }
17 sfg idle { ld = 0; }
18 sfg bstuf { ld = 0;
19 }
20 sfg show { ld = 0;
21 bs = rz;
22 $display($cycle, " ", $bin, bs, $hex, " ", bs);
23 }
24 }
25 fsm ft(triviumtest) {
26 initial s0;
27 state s10, s1, s2;
28 @s0 (init0) -> s10;
29 @s10 (init0) -> s1;
30 @s1 if (re) then (bstuf) -> s2;
31 else (idle) -> s1;
32 @s2 (show) -> s2;
33 }

also has an external memory bus (XBUS), which supports a memory space of 64K.
Such external memory busses are rather uncommon for microcontrollers. However,
we will demonstrate the use of such a memory-bus in our design as well.

11.2.1 Overall Design of the 8051 Coprocessor

Figure 11.5 illustrates the overall design. The coprocessor is controlled through
three 8-bit ports (P0, P1, P2). They are used to transfer operands, instructions, and
to retrieve the coprocessor status, respectively. The Trivium hardware will dump the
resulting keystream into a dual-port RAM module, and the contents of the keystream
can be retrieved by the 8051 through the XBUS.

The system works as follows. First, the 8051 programs a key and an initializa-
tion vector into the Trivium coprocessor. Next, the 8051 commands the Trivium

346 11 Trivium Crypto-Coprocessor

8051
Trivium Kernel

(unrolled 8)

xbus

dual-port
RAM

xbus
interface

288

data

8

P0

P1

P2

state

counter

data

ins

status

288

8

adr, ctl

Fig. 11.5 Trivium coprocessor integration on a 8051

coprocessor to generate N keybytes, which will be stored in the shared RAM on
the XBUS. Finally, the 8051 can retrieve the keybytes from the RAM. Note that the
retrieval of the keybytes from RAM is only shown as an example; depending on the
actual application, the keystream may be used for a different purpose. The essential
part of this example is the control of the coprocessor from within the microcon-
troller.

To design the control shell, we will need to develop a command set for the Triv-
ium coprocessor. As the 8-bit ports of the 8051 do not include strobes, we will make
use of a similar handshake procedure as was used earlier in Chap. 10: a simple idle
instruction will help us to determine the exact clock cycle when a command be-
comes valid. The command set for the coprocessor is shown in Table 11.1. All of
the commands except one complete within a single clock cycle. The last command,
ins enc, takes up to 256 clock cycles to complete. The status port of the 8051 is
used to indicate when the the encryption phase has completed. Figure 11.6 illus-
trates the command sequence for the generation of 10 bytes of keystream. Note that
the status port becomes zero when the keystream generation is complete.

11.2.2 Hardware Platform of the 8051 Coprocessor

We will now capture the hardware platform of Fig. 11.5 as a GEZEL program.
Listing 11.6 shows the complete platform apart from the Trivium kernel (which was
discussed in Sect. 11.1.3). The first part of the Listing captures all the 8051-specific
interfaces. The Trivium coprocessor will be connected on top of these interfaces.

� Line 1–6: The 8051 core my8051 will read in an executable called
trivium.ihx. The executable is in Intel Hex Format, a common format for
microcontroller binaries. The period of the core is 1, meaning that the clock

11.2 Trivium for 8-bit Platforms 347

Table 11.1 Command set for trivium coprocessor

Value at P0 Value at P1 Value at P2
(instruction) (data) (status) Meaning

ins idle do not care do not care Idle Instruction
ins key0 Key Byte 0 do not care Program key byte
ins key1 Key Byte 1 do not care Program key byte
ins key2 Key Byte 2 do not care Program key byte
ins key3 Key Byte 3 do not care Program key byte
ins key4 Key Byte 4 do not care Program key byte
ins key5 Key Byte 5 do not care Program key byte
ins key6 Key Byte 6 do not care Program key byte
ins key7 Key Byte 7 do not care Program key byte
ins key8 Key Byte 8 do not care Program key byte
ins key9 Key Byte 9 do not care Program key byte

ins iv0 IV Byte 0 do not care Program IV byte
ins iv1 IV Byte 1 do not care Program IV byte
ins iv2 IV Byte 2 do not care Program IV byte
ins iv3 IV Byte 3 do not care Program IV byte
ins iv4 IV Byte 4 do not care Program IV byte
ins iv5 IV Byte 5 do not care Program IV byte
ins iv6 IV Byte 6 do not care Program IV byte
ins iv7 IV Byte 7 do not care Program IV byte
ins iv8 IV Byte 8 do not care Program IV byte
ins iv9 IV Byte 9 do not care Program IV byte

ins init do not care do not care Initializes state register
ins enc rounds isready Encrypts rounds

clk

P0 10

control shell
captures input done

data

P1

P2

idle enc

10 9 8 7 6 5 4 3 2 1 0

ins

status

Fig. 11.6 Command sequence for encryption

frequency of the 8051 core is the same as the hardware clock frequency. A tra-
ditional 8051 architecture uses 12 clock cycles per instruction. Thus, a period
of 1 means that there will be a single instruction executing each 12 clock cycles.

� Line 7–21: Three I/O ports of the 8051 are defined as P0, P1, and P2.
A port is configured either as input or as output by choosing its type to be

348 11 Trivium Crypto-Coprocessor

i8051systemsource (e.g., Line 8,13) or else i8051systemsink
(e.g., Line 18).

� Line 22–30: A dual-port, shared-memory RAM module attached to the XBUS is
modeled using an ipblock. The module allows to specify the starting address
(xbus, Line 28) as well as the amount of memory locations (xrange, Line 29).

The triviumitf module integrates the Trivium hardware kernel (Line 44) on
top of the hardware/software interfaces. Several registers are used to manage this
module, including a Trivium state register tstate, a round counter cnt, and a
ram address counter ramcnt (Line 50–53).

The key and initialization vector are programmed into the state register through a
sequence of chained multiplexers (Line 56–82). This works as follows. First con-
sider the update of tstate on Line 82. If the counter value cnt is nonzero,
tstate will copy the value so, which is the output of the Trivium kernel. If the
counter value cnt is zero, tstate will instead copy the value of init, which
is defined through Line 56–78. Thus, by loading a nonzero value into cnt (Line
80–81), the Trivium kernel performs active encryption rounds.

Now, when the count value is zero, the state register can be reinitialized with a
chosen key and initialization vector. Each particular command in the range 0x1 to
0x14 will replace a single byte of the key or the initialization vector (Line 56–76).
The init command will pad 0b111 into the most significant bits of the state
register (Line 78).

Finally, the RAM control logic is shown on Line 86–89. Whenever the count
value is nonzero, the ram address starts incrementing and the ram interface carries a
write command.

Listing 11.6 Hardware platform for the 8051 coprocessor
1 ipblock my8051 { 8051 core
2 iptype "i8051system";
3 ipparm "exec=trivium.ihx";
4 ipparm "verbose=1";
5 ipparm "period=1";
6 }

7 ipblock my8051_data(out data : ns(8)) { 8051 interfaces
8 iptype "i8051systemsource";
9 ipparm "core=my8051";

10 ipparm "port=P0";
11 }
12 ipblock my8051_ins(out data : ns(8)) {
13 iptype "i8051systemsource";
14 ipparm "core=my8051";
15 ipparm "port=P1";
16 }
17 ipblock my8051_status(in data : ns(8)) {
18 iptype "i8051systemsink";
19 ipparm "core=my8051";
20 ipparm "port=P2";
21 }

11.2 Trivium for 8-bit Platforms 349

22 ipblock my8051_xram(in idata : ns(8);
23 out odata : ns(8);
24 in address : ns(8);
25 in wr : ns(1)) {
26 iptype "i8051buffer";
27 ipparm "core=my8051";
28 ipparm "xbus=0x4000";
29 ipparm "xrange=0x100"; // 256 locations at address 0x4000
30 }
31

32 dp triviumitf { Trivium control shell
33 sig updata, upins, upstatus : ns(8);
34 use my8051_data (updata);
35 use my8051_ins (upins);
36 use my8051_status(upstatus);
37
38 sig ramadr, ramidata, ramodata : ns(8);
39 sig wr : ns(1);
40 use my8051_xram(ramidata, ramodata, ramadr, wr);
41
42 sig si, so : ns(288);
43 sig z : ns(8);

44 use trivium80(si, so, z); Trivium kernel
45
46 sig k0, k1, k2, k3, k4, k5, k6, k7, k8, k9 : ns(288);
47 sig v0, v1, v2, v3, v4, v5, v6, v7, v8, v9 : ns(288);
48 sig init : ns(288);
49
50 reg tstate : ns(288);
51 sig newcnt : ns(8);
52 reg cnt : ns(8);
53 reg ramcnt : ns(8);
54
55 always {
56 k0 = (upins == 0x1) ? tstate[287: 8] # updata : tstate;
57 k1 = (upins == 0x2) ? k0[287: 16] # updata # k0[7: 0] : k0;
58 k2 = (upins == 0x3) ? k1[287: 24] # updata # k1[15: 0] : k1;
59 k3 = (upins == 0x4) ? k2[287: 32] # updata # k2[23: 0] : k2;
60 k4 = (upins == 0x5) ? k3[287: 40] # updata # k3[31: 0] : k3;
61 k5 = (upins == 0x6) ? k4[287: 48] # updata # k4[39: 0] : k4;
62 k6 = (upins == 0x7) ? k5[287: 56] # updata # k5[47: 0] : k5;
63 k7 = (upins == 0x8) ? k6[287: 64] # updata # k6[55: 0] : k6;
64 k8 = (upins == 0x9) ? k7[287: 72] # updata # k7[63: 0] : k7;
65 k9 = (upins == 0xA) ? k8[287: 80] # updata # k8[71: 0] : k8;
66
67 v0 = (upins == 0xB) ? k9[287:101] # updata # k9[92: 0] : k9;
68 v1 = (upins == 0xC) ? v0[287:109] # updata # v0[100: 0] : v0;
69 v2 = (upins == 0xD) ? v1[287:117] # updata # v1[108: 0] : v1;
70 v3 = (upins == 0xE) ? v2[287:125] # updata # v2[116: 0] : v2;
71 v4 = (upins == 0xF) ? v3[287:133] # updata # v3[124: 0] : v3;
72 v5 = (upins == 0x10) ? v4[287:141] # updata # v4[132: 0] : v4;
73 v6 = (upins == 0x11) ? v5[287:149] # updata # v5[140: 0] : v5;
74 v7 = (upins == 0x12) ? v6[287:157] # updata # v6[148: 0] : v6;
75 v8 = (upins == 0x13) ? v7[287:165] # updata # v7[156: 0] : v7;
76 v9 = (upins == 0x14) ? v8[287:173] # updata # v8[164: 0] : v8;

350 11 Trivium Crypto-Coprocessor

77
78 init = (upins == 015) ? 0b111 # v9[284:0] : v9;
79
80 newcnt = (upins == 0x16) ? updata : 0;
81 cnt = (cnt) ? cnt - 1 : newcnt;
82 tstate = (cnt) ? so : init;
83 si = tstate;
84 upstatus = cnt;
85
86 ramcnt = (cnt) ? ramcnt + 1 : 0;
87 ramadr = ramcnt;
88 wr = (cnt) ? 1 : 0;
89 ramidata = z;
90 }
91 }
92
93 system S {
94 my8051;
95 triviumitf;
96 }

11.2.3 Software Driver for 8051

The software driver for the above coprocessor is shown in Listing 11.7. This C
code is written for the 8051 and can be compiled with SDCC, the Small Devices C
Compiler (http://sdcc.sourceforge.net). This compiler allows directly
using symbolic names, such as the names of the I/O ports P0, P1, and P2.

The program demonstrates the loading of a key and initialization vector (Line
21–43), the execution of the key schedule (Line 46–50), and the generation of a
keystream of 250 bytes (Line 53–56). Note that the software driver does not strictly
follow the interleaving of active commands with ins idle. However, this code
will work fine for the hardware model from Listing 11.6.

As discussed before, the key scheduling of Trivium is similar to the normal op-
eration of Trivium. Key scheduling involves running Trivium for a fixed number of
rounds while discarding the keystream. Hence, the key scheduling part of the driver
software is, apart from the number of rounds, identical to the encryption part.

Finally, Line 64 illustrates how to terminate the simulation. By writing the value
0x55 into port P3, the simulation will halt. This is an artificial construct. Indeed,
the software on a real microcontroller will run indefinitely.

Listing 11.7 8051 Software driver for the Trivium coprocessor
1 #include <8051.h>
2
3 enum {ins_idle, ins_key0, ins_key1,
4 ins_key2, ins_key3, ins_key4, ins_key5,
5 ins_key6, ins_key7, ins_key8, ins_key9,
6 ins_iv0, ins_iv1, ins_iv2, ins_iv3,

11.2 Trivium for 8-bit Platforms 351

7 ins_iv4, ins_iv5, ins_iv6, ins_iv7,
8 ins_iv8, ins_iv9, ins_init, ins_enc};
9

10 void terminate() {
11 // special command to stop simulator
12 P3 = 0x55;
13 }
14
15 void main() {
16 volatile xdata unsigned char *shared =
17 (volatile xdata unsigned char *) 0x4000;
18 unsigned i;
19
20 // program key, iv
21 P1 = ins_key0; P0 = 0x80;
22 P1 = ins_key1; P0 = 0x00;
23 P1 = ins_key2; P0 = 0x00;
24 P1 = ins_key3; P0 = 0x00;
25 P1 = ins_key4; P0 = 0x00;
26 P1 = ins_key5; P0 = 0x00;
27 P1 = ins_key6; P0 = 0x00;
28 P1 = ins_key7; P0 = 0x00;
29 P1 = ins_key8; P0 = 0x00;
30 P1 = ins_key9; P0 = 0x00;
31 P1 = ins_iv0; P0 = 0x00;
32 P1 = ins_iv1; P0 = 0x00;
33 P1 = ins_iv2; P0 = 0x00;
34 P1 = ins_iv3; P0 = 0x00;
35 P1 = ins_iv4; P0 = 0x00;
36 P1 = ins_iv5; P0 = 0x00;
37 P1 = ins_iv6; P0 = 0x00;
38 P1 = ins_iv7; P0 = 0x00;
39 P1 = ins_iv8; P0 = 0x00;
40 P1 = ins_iv9; P0 = 0x00;
41
42 // prepare for key schedule
43 P1 = ins_init;
44
45 // execute key schedule
46 P0 = 143; P1 = ins_enc;
47 P1 = ins_idle;
48
49 // wait until done
50 while (P2) ;
51
52 // produce 250 stream bytes
53 P0 = 250; P1 = ins_enc;
54 P1 = ins_idle;
55
56 while (P2) ; // wait until done
57
58 // read out shared ram and send to port P0, P1
59 for (i=0; i< 8; i++) {
60 P0 = i;

352 11 Trivium Crypto-Coprocessor

61 P1 = shared[i];
62 }
63
64 terminate();
65 }

We can now compile the software driver and execute the simulation. The follow-
ing commands illustrate the output generated by the program. Note that the 8051
microcontroller does not support standard I/O in the traditional sense: it is not pos-
sible to use printf statements without additional I/O hardware and appropriate
software libraries. The instruction-set simulator deals with this limitation by print-
ing the value of all ports each time a new value is written into them. Hence, the four
columns below correspond to the value of P0, P1, P2, and P3, respectively. We
annotated the tool output to clarify the meaning of the sequence of values.

> sdcc trivium.c
> gplatform tstream.fdl
i8051system: loading executable [trivium.ihx]
0xFF 0x01 0x00 0xFF

0x80 0x01 0x00 0xFF Program Key

0x80 0x02 0x00 0xFF
0x00 0x02 0x00 0xFF
0x00 0x03 0x00 0xFF
0x00 0x04 0x00 0xFF
0x00 0x05 0x00 0xFF
0x00 0x06 0x00 0xFF
0x00 0x07 0x00 0xFF
0x00 0x08 0x00 0xFF
0x00 0x09 0x00 0xFF
0x00 0x0A 0x00 0xFF

0x00 0x0B 0x00 0xFF Program IV

0x00 0x0C 0x00 0xFF
0x00 0x0D 0x00 0xFF
0x00 0x0E 0x00 0xFF
0x00 0x0F 0x00 0xFF
0x00 0x10 0x00 0xFF
0x00 0x11 0x00 0xFF
0x00 0x12 0x00 0xFF
0x00 0x13 0x00 0xFF
0x00 0x14 0x00 0xFF
0x00 0x15 0x00 0xFF
0x8F 0x15 0x00 0xFF
0x8F 0x16 0x00 0xFF

0x8F 0x00 0x7A 0xFF Run key schedule

0xFA 0x00 0x00 0xFF
0xFA 0x16 0x00 0xFF

0xFA 0x00 0xE5 0xFF Produce 250 bytes

0x00 0x00 0x00 0xFF

0x00 0xCB 0x00 0xFF First output byte

0x01 0xCB 0x00 0xFF

11.2 Trivium for 8-bit Platforms 353

0x01 0xCC 0x00 0xFF Second output byte

0x02 0xCC 0x00 0xFF

0x02 0xCE 0x00 0xFF Third output byte

0x03 0xCE 0x00 0xFF
0x03 0x75 0x00 0xFF
0x04 0x75 0x00 0xFF
0x04 0x7B 0x00 0xFF
0x05 0x7B 0x00 0xFF
0x05 0x99 0x00 0xFF
0x06 0x99 0x00 0xFF
0x06 0xBD 0x00 0xFF
0x07 0xBD 0x00 0xFF
0x07 0x79 0x00 0xFF

0x07 0x79 0x00 0x55 Terminate
Total Cycles: 13332

The last line of output shows 13,232 cycles, which is a long time when we realize
that a single key stream byte can be produced by the hardware within a single clock
cycle. How hard is it to determine intermediate time-stamps on the execution of this
program? While some instruction-set simulators provide direct support for this, we
will need to develop a small amount of support code to answer this question. We
will introduce an additional coprocessor command which, when observed by the
triviumitf module, will display the current cycle count. This is a debug-only
command, similar to the terminate call in the 8051 software.

The modifications for such a command to the code are minimal. In the C code,
we add a function to call when we would like to see the current cycle count.

void showcycle() {
P1 = 0x20; P1 = 0x0;

}

In the GEZEL code, we extend the triviumitf with a small FSM to execute
the new command.

dp triviumitf {
reg rupins : ns(8);
...
always {
...
rupins = upins;

}
sfg show {
$display("Cycle: ", $cycle);

}
sfg idle { }

}
fsm f_triviumitf(triviumitf) {

initial s0;
state s1;

@s0 if (rupins == 0x20) then (show) -> s1;
else (idle) -> s0;

354 11 Trivium Crypto-Coprocessor

Fig. 11.7 Performance
measurement of Trivium
coprocessor Initialization

Program
IV, Key

Cycle: 0

Cycle: 9638

Cycle: 10718 1416 Cycles

Run Key
Schedule

Produce Key
Stream

Cycle: 11054

Cycle: 0

@s1 if (rupins == 0x00) then (idle) -> s0;
else (idle) -> s1;

}

Each time showcycle() executes, the current cycle count will be printed by
GEZEL. This particular way of measuring performance has a small overhead (88
cycles per call to showcycle()). We add the command in the C code at the fol-
lowing places.

� In the main function, just before programming the first key byte.
� In the main function, just before starting the key schedule.
� In the main function, just before starting the key stream.

Figure 11.7 illustrates the resulting cycle counts obtained from the simulation.
The output shows that most time is spent in startup (initialization of the micro-
controller), and that the software-hardware interaction, as expected, is expensive in
cycle-cost. For example, programming a new key and re-running the key schedule
costs 1416 cycles, almost ten times as long as what is really needed by the hard-
ware (143 cycles). This stresses once more the importance of carefully considering
hardware–software interactions during the design.

11.3 Trivium for 32-bit Platforms

Our second Trivium coprocessor integrates the algorithm on a 32-bit StrongARM
processor. We will compare two integration strategies: a memory-mapped interface
and a custom-instruction interface. Both scenario’s are supported through library

11.3 Trivium for 32-bit Platforms 355

modules in the GEZEL kernel. The hardware kernel follows the same ideas as be-
fore. By unrolling a trivium kernel 32 times, we obtain a module that produces 32
bits of keystream material per clock cycle. After loading the key and initialization
vector, the key schedule of such a module has to execute for 4 � 288=32D 36 clock
cycles before the first word of the keystream is available.

11.3.1 Hardware Platform Using Memory-mapped Interfaces

Figure 11.8 shows the control shell design for a Trivium kernel integrated to a 32-
bit memory-mapped interface. There are four memory-mapped registers involved:
din, dout, control, and status. In this case, the key stream is directly read
by the processor. The Trivium kernel follows the design we discussed earlier in
Sect. 11.1.3. There is one additional control input, go, which is used to control the
update of the state register. Instead of having a free-running Trivium kernel, the
update of the state register will be strictly controlled by software, so that the entire
keystream is captured using read operations from a memory-mapped interface.

As with other memory-mapped interfaces, our first task is to design a control
shell to drive the Trivium kernel. We start with the command set. The command set
must be able to load a key, an initialization vector, run the key schedule, and retrieve
a single word from the key stream. Figure 11.9 illustrates the command set for this
coprocessor.

The control memory-mapped register has a dual purpose. It transfers an in-
struction opcode as well as a parameter. The parameter indicates the part of the
key or initial value which is being transferred. The parameter is 0, 1, or 2, because
3 words are sufficient to cover the 80 bits from the stream cipher key or the stream
cipher initial value. The ins idle instruction has the same purpose as before: it

ARM

state

do
ut

BUS

di
n

z

go ld e

Trivium Kernel
(unrolled 32)

+ Key Schedule

co
nt

ro
l

st
at

us

key

iv

iv key

control
shell
logic

Fig. 11.8 Memory-mapped integration of Trivium on a 32-bit processor

356 11 Trivium Crypto-Coprocessor

Control

Data In

031 24

ins_idle

ins_iv

2 0, 1 or 2 ins_key
+

Status

Data Out

0, 1 or 2 ins_key

ins_keyschedule

ins_outword0

0 0

1

3 X

4 X

5 X ins_outword1

+

+

0, 1 or 2

Fig. 11.9 Command set for a memory-mapped Trivium coprocessor

is used to synchronize the transfer of data operands with instructions. There are
two commands to retrieve keystream bits from the coprocessor: ins outword0
and ins outword1. Both of these transfer a single word from the stream cipher
dout, and they are used alternately in order to avoid sending dummy ins idle
to the coprocessor.

Listing 11.8 Hardware platform for the StrongARM coprocessor
1 ipblock myarm { ARM Core
2 iptype "armsystem";

3 ipparm "exec=trivium";

4 ipparm "period=1";

5 }

6 ipblock armdout(in data : ns(32)) { ARM interfaces
7 iptype "armsystemsink";

8 ipparm "core=myarm";

9 ipparm "address=0x80000000";

10 }

11 ipblock armdin(out data : ns(32)) {

12 iptype "armsystemsource";

13 ipparm "core=myarm";

14 ipparm "address=0x80000004";

15 }

16 ipblock armstatus(in data : ns(32)) {

17 iptype "armsystemsink";

18 ipparm "core=myarm";

19 ipparm "address=0x80000008";

20 }

21 ipblock armcontrol(out data : ns(32)) {

22 iptype "armsystemsource";

23 ipparm "core=myarm";

24 ipparm "address=0x8000000C";

25 }

26

11.3 Trivium for 32-bit Platforms 357

27 dp triviumitf(in din : ns(32); Trivium control shell
28 out dout : ns(32);

29 in ctl : ns(32);

30 out status : ns(32)) {

31 sig ld : ns(1);

32 sig go : ns(1);

33 sig iv, key : ns(80);

34 sig e : ns(1);

35 sig z : ns(32);

36 use triviumtop(ld, go, iv, key, z, e); Trivium kernel
37 reg ivr, keyr : ns(80);

38 sig ivr0, ivr1, ivr2 : ns(32);

39 sig key0, key1, key2 : ns(32);

40 reg oldread : ns(3);

41
42 always {

43 iv = ivr;

44 key = keyr;

45
46 // program new IV
47 ivr0= ((ctl[24:26] == 0x1) & (ctl[0:1] == 0x0)) ? din : ivr[31: 0];

48 ivr1= ((ctl[24:26] == 0x1) & (ctl[0:1] == 0x1)) ? din : ivr[63:32];

49 ivr2= ((ctl[24:26] == 0x1) & (ctl[0:1] == 0x2)) ? din : ivr[79:64];

50 ivr = ivr2 # ivr1 # ivr0;

51
52 // program new KEY
53 key0= ((ctl[24:26] == 0x2) & (ctl[0:1] == 0x0)) ? din : keyr[31: 0];

54 key1= ((ctl[24:26] == 0x2) & (ctl[0:1] == 0x1)) ? din : keyr[63:32];

55 key2= ((ctl[24:26] == 0x2) & (ctl[0:1] == 0x2)) ? din : keyr[79:64];

56 keyr= key2 # key1 # key0;

57
58 // control start
59 ld = ((ctl[24:26] == 0x3) ? 1 : 0);

60
61 // read status
62 status = e;

63
64 // read output data

65 dout= z;

66
67 // trivium control
68 oldread = ((ctl[24:26]));

69 go = ((ctl[24:26] == 0x4) & (oldread ==0x5)) |

70 ((ctl[24:26] == 0x5) & (oldread ==0x4)) |

71 ((ctl[24:26] == 0x3) & (oldread ==0x0));

72 }

73 }

74
75 dp triviumsystem {

76 sig din, dout, ctl, status : ns(32);

77 use myarm;

78 use triviumitf(din, dout, ctl, status);

79 use armdin(din);

358 11 Trivium Crypto-Coprocessor

80 use armdout(dout);

81 use armstatus(status);

82 use armcontrol(ctl);

83 }

84 system S {

85 triviumsystem;

86 }

Listing 11.8 shows the design of the control shell module. The design of the
Trivium kernel is not shown in this listing, although a very similar design can be
found in Listing 11.4. The first part of Listing 11.8, Line 1–25, shows the memory-
mapped interface to the ARM core. This includes instantiation of the core (Line
1–5), and four memory-mapped registers (Line 6–25). The bulk of the code, Line
25–73, contains the control shell for the Trivium kernel. The kernel is instantiated on
Line 36. The registers for key and initial value, defined on Line 33, are programmed
from software through a series of simple decode steps (Line 46–56). The encoding
used by the control memory mapped register corresponds to Fig. 11.9.

The control pins of the Trivium kernel (ld, go) are programmed by means of
simple decoding steps as well (Line 59, 67–71). Note that the go pin is driven by a
pulse of a single clock cycle, rather than a level programmed from software. This is
done by detecting the exact cycle when the value of the control memory mapped
interface changes. Note that the overall design of this control shell is quite simple,
and does not require complex control or a finite state machine. Finally, the system
integration consists of interconnecting the control shell and the memory-mapped
interfaces (Line 75–86).

11.3.2 Software Driver Using Memory-mapped Interfaces

A software driver for the memory-mapped Trivium coprocessor is shown in Listing
11.9. The driver programs the initial value and key, runs the key schedule, and next
receives 512 words of keystream. The state update of the Trivium coprocessor is
controlled by alternately writing 4 and 5 to the command field of the control
memory-mapped interface. This is done during the key schedule (Line 28–32) as
well as during the keystream generation (Line 34–39).

The code also contains an external system call getcyclecount(). This is
a simulator-specific call, in this case specific to SimIt-ARM, to return the current
cycle count of the simulation. By inserting such calls in the driver code (in this case,
on Line 27, 33, 40), we can obtain the execution time of selected phases of the
keystream generation.

To execute the system simulation, we compile the software driver, and run the
GEZEL hardware module and the software executable in gplatform. The simula-
tion output shows the expected keystream bytes: 0xcc, 0xce,0x75, ... The output

11.3 Trivium for 32-bit Platforms 359

Listing 11.9 StrongARM software driver for the memory-mapped Trivium coprocessor
1 extern unsigned long long getcyclecount();
2
3 int main() {
4 volatile unsigned int *data = (unsigned int *) 0x80000004;
5 volatile unsigned int *ctl = (unsigned int *) 0x8000000C;
6 volatile unsigned int *output = (unsigned int *) 0x80000000;
7 volatile unsigned int *status = (unsigned int *) 0x80000008;
8
9 int i;

10 unsigned int stream[512];
11 unsigned long long c0, c1, c2;
12
13 // program iv
14 *ctl = (1 << 24); *data = 0; // word 0
15 *ctl = (1 << 24) | 0x1; // word 1
16 *ctl = (1 << 24) | 0x2; // word 2
17
18 // program key
19 *ctl = (2 << 24); *data = 0x80; // word 0
20 *ctl = (2 << 24) | 0x1; *data = 0; // word 1
21 *ctl = (2 << 24) | 0x2; // word 2
22
23 // run the key schedule
24 *ctl = 0;
25 *ctl = (3 << 24); // start pulse
26
27 c0 = getcyclecount();
28 while (! *status) {
29 *ctl = (4 << 24);
30 if (*status) break;
31 *ctl = (5 << 24);
32 }
33 c1 = getcyclecount();
34 for (i=0; i<256; i++) {
35 stream[2*i] = *output;
36 *ctl = (4 << 24);
37 stream[2*i+1] = *output;
38 *ctl = (5 << 24);
39 }
40 c2 = getcyclecount();
41
42 for (i=0; i<16; i++) {
43 printf("%8x ", stream[i]);
44 if (!((i+1) % 8))
45 printf("\n");
46 }
47 printf("key schedule cycles:",
48 " %lld stream cycles: %lld\n",
49 c1 - c0, c2 - c1);
50
51 return 0;
52 }

360 11 Trivium Crypto-Coprocessor

also shows that the key schedule completed in 435 cycles, and that 512 words of
keystream were generated in 10,524 cycles.

>arm-linux-gcc -static trivium.c cycle.s -o trivium
>gplatform trivium32.fdl
core myarm
armsystem: loading executable [trivium]
armsystemsink: set address 2147483648
armsystemsink: set address 2147483656
ccce757b ccce757b 99bd7920 9a235a88 1251fc9f aff0a655 7ec8ee4e
bfd42128
86dae608 806ea7eb 58aec102 16fa88f4 c5c3aa3e b1bcc9f2 bb440b3f
c4349c9f
key schedule cycles: 435 stream cycles: 10524
Total Cycles: 269540

We now analyze the performance results for this design. As the Trivium kernel
used in this design is unrolled 32 times (and thus can produce a new word every
clock cycle), 512 words in 10,524 clock cycles is not a stellar result. Each word
requires around 20 clock cycles. This includes synchronization of software and
hardware, transfer of a result, writing that result into memory, and managing the
loop counter and address generation (lines 34–39 in Listing 11.9). However, an-
other way to phrase the performance question is: how much better is this result
compared to an optimized full-software implementation? To answer this question,
we can port an available, optimized implementation to the StrongARM and make
a similar profiling. We used the implementation developed by Trivium’s authors,
C. De Canniere, in this profiling experiment, and found that this implementation
takes 3,810 cycles for key schedule and 48,815 cycles for generating 512 words.
Thus, each word of the keystream requires close to 100 clock cycles on the ARM.
Therefore, we conclude that the hardware coprocessor is still five times faster
compared to an optimized software implementation, although the hardware co-
processor has an overhead factor of 20 times compared to a standalone hardware
implementation.

As we wrote the hardware from scratch, one may wonder if it would not have
been easier to try to port the Trivium software implementation into hardware. In
practice, this may be hard to do, because the optimizations one does for software
are very different than the optimizations one does for hardware. As an example,
Listing 11.10 shows part of the software-optimized Trivium implementation of
De Canniere. This implementation was written with 64-bit execution in mind.
Clearly, the efficient translation of this code into hardware is quite difficult, since
the specification does not have the same clarity compared to the algorithm defini-
tion we discussed at the start of the chapter.

This completes our discussion of the memory-mapped Trivium coprocessor de-
sign. In the next section, we consider a third type of hardware/software interface
for the Trivium kernel: the mapping of Trivium into custom instructions on a 32-bit
processor.

11.3 Trivium for 32-bit Platforms 361

Listing 11.10 Optimized software implementation for Trivium
// Support Macro’s
#define U32TO8_LITTLE(p, v) (((u32*)(p))[0] = U32TO32_LITTLE(v))
#define U8TO32_LITTLE(p) U32TO32_LITTLE(((u32*)(p))[0])
#define U32TO32_LITTLE(v) (v)

#define Z(w) (U32TO8_LITTLE(output + 4 * i, \
U8TO32_LITTLE(input + 4 * i) ˆ w))

#define S(a, n) (s##a##n)
#define T(a) (t##a)

#define S00(a, b) ((S(a, 1)<<(32-(b))))
#define S32(a, b) ((S(a, 2)<<(64-(b)))|(S(a, 1)>>((b)-32)))
#define S64(a, b) ((S(a, 3)<<(96-(b)))|(S(a, 2)>>((b)-64)))
#define S96(a, b) ((S(a, 4)<<(128-(b)))|(S(a, 3)>>((b)-96)))

#define UPDATE() \
do { \
T(1) = S64(1, 66) ˆ S64(1, 93); \
T(2) = S64(2, 69) ˆ S64(2, 84); \
T(3) = S64(3, 66) ˆ S96(3, 111); \

\
Z(T(1) ˆ T(2) ˆ T(3)); \

\
T(1) ˆ= (S64(1, 91) & S64(1, 92)) ˆ S64(2, 78); \
T(2) ˆ= (S64(2, 82) & S64(2, 83)) ˆ S64(3, 87); \
T(3) ˆ= (S96(3, 109) & S96(3, 110)) ˆ S64(1, 69); \

} while (0)

#define ROTATE() \
do { \
S(1, 3) = S(1, 2); S(1, 2) = S(1, 1); S(1, 1) = T(3); \
S(2, 3) = S(2, 2); S(2, 2) = S(2, 1); S(2, 1) = T(1); \
S(3, 4) = S(3, 3); S(3, 3) = S(3, 2); S(3, 2) = S(3, 1); \
S(3, 1) = T(2); \

} while (0)

// ...

// This is the Trivium keystream generation loop

for (i = 0; i < msglen / 4; ++i)
{

u32 t1, t2, t3;

UPDATE();
ROTATE();

}

362 11 Trivium Crypto-Coprocessor

11.3.3 Hardware Platform Using a Custom-Instruction Interface

The integration of a Trivium coprocessor as a custom datapath in a processor re-
quires a processor that supports custom-instruction extensions. As discussed in
Chap. 9, this has a strong impact on the tools that come with the processor. In this
example, we will make use of the custom-instruction interface of the StrongARM
processor discussed in Sect. 9.5.1. Figure 11.10 shows the design of a Trivium
Kernel integrated into two custom-instruction interfaces, an OP3X1 and an OP2X2.
The former is an instruction that takes three 32-bit operands and produces a single
32-bit result. The latter is an instruction that takes two 32-bit operands and produces
two 32-bit results.

During normal operation, the trivium state is fed through two Trivium kernels
which each provide 32-bit of keystream. These two words form the results of an
OP2x2 instruction. The same OP2x2 instruction also controls the update of the
Trivium state. This way, each custom OP2x2 instruction advances the Trivium

OP3X1_d3

state

OP2X2_d1

OP3X1 operands

Trivium Kernel
(unrolled 32)

Trivium Kernel
(unrolled 32)

si

soz z

si

OP2X2 results

OP2X2_q1 OP2X2_q2

OP3X1_d1OP3X1_d2

Fig. 11.10 Custom-instruction integration of Trivium on a 32-bit processor

11.3 Trivium for 32-bit Platforms 363

algorithm for 1 step, producing 64 bits of keystream. When the Trivium algorithm is
not advancing, the state register can be reprogrammed by means of OP3x1 instruc-
tions. The third operand of OP3x1 selects which part of the 288-bit state register
will be modified. The first and second operands contain 64 bit of state register data.
The result of the OP3x1 instruction is ignored.

Thus, both programming and keystream retrieval can be done using a bandwidth
of 64 bits, which is larger than the memory-mapped interface. Hence, we can expect
a speedup over the previous implementation. Listing 11.11 shows a GEZEL listing
for this design. As before, we have left out the Trivium kernel which is similar to
the one used in Listing 11.4.

The interface with the ARM is captured on line 1–16, and this is followed by
the Trivium control shell on line 18–57. The Trivium state register is represented
as nine registers of 32 bit rather then a single 288-bit register. Two 32-bit Trivium
kernels are instantiated on line 33 and 34. The state register update is controlled
by the adv control flag, as well as the value of the third operand of the OP3X1
instruction (line 37–45). The output of the Trivium kernels is fed into the result of
the OP2X2 instruction (line 51–52). Finally, the adv flag is created by detecting an
edge in the OP2x2 operand (line 54–55). In practice, this means that two calls to
OP2X2 are needed to advance Trivium one step.

Listing 11.11 Integration of Trivium as two custom-instructions on a 32-bit processor
1 ipblock myarm { ARM core
2 iptype "armsystem";
3 ipparm "exec=trivium";
4 }

5 ipblock armsfu1(out d1, d2 : ns(32); ARM interfaces
6 in q1, q2 : ns(32)) {
7 iptype "armsfu2x2";
8 ipparm "core = myarm";
9 ipparm "device = 0";

10 }
11 ipblock armsfu2(out d1, d2, d3 : ns(32);
12 in q1 : ns(32)) {
13 iptype "armsfu3x1";
14 ipparm "core = myarm";
15 ipparm "device = 0";
16 }
17

18 dp triviumsfu { Trivium control shell
19 sig o2x2_d1, o2x2_d2, o2x2_q1, o2x2_q2 : ns(32);
20 sig o3x1_d1, o3x1_d2, o3x1_d3, o3x1_q1 : ns(32);
21 use armsfu1(o2x2_d1, o2x2_d2, o2x2_q1, o2x2_q2);
22 use armsfu2(o3x1_d1, o3x1_d2, o3x1_d3, o3x1_q1);
23 use myarm;
24
25 reg w1, w2, w3, w4 : ns(32);
26 reg w5, w6, w7, w8 : ns(32);
27 reg w9 : ns(32);
28 reg tick : ns(1);

364 11 Trivium Crypto-Coprocessor

29 sig adv : ns(1);
30 sig si0, si1 : ns(288);
31 sig so0, so1 : ns(288);
32 sig z0, z1 : ns(32);

33 use trivium320(si0, so0, z0); Trivium kernel

34 use trivium321(si1, so1, z1); Trivium kernel
35
36 always {
37 w1 = adv ? so1[0: 31] : ((o3x1_d3 == 1) ? o3x1_d1 : w1);
38 w2 = adv ? so1[32: 63] : ((o3x1_d3 == 1) ? o3x1_d2 : w2);
39 w3 = adv ? so1[64: 95] : ((o3x1_d3 == 2) ? o3x1_d1 : w3);
40 w4 = adv ? so1[96:127] : ((o3x1_d3 == 2) ? o3x1_d2 : w4);
41 w5 = adv ? so1[128:159] : ((o3x1_d3 == 3) ? o3x1_d1 : w5);
42 w6 = adv ? so1[160:191] : ((o3x1_d3 == 3) ? o3x1_d2 : w6);
43 w7 = adv ? so1[192:223] : ((o3x1_d3 == 4) ? o3x1_d1 : w7);
44 w8 = adv ? so1[224:255] : ((o3x1_d3 == 4) ? o3x1_d2 : w8);
45 w9 = adv ? so1[256:287] : ((o3x1_d3 == 5) ? o3x1_d1 : w9);
46 o3x1_q1 = 0;
47
48 si0 = w9 # w8 # w7 # w6 # w5 # w4 # w3 # w2 # w1;
49 si1 = so0;
50
51 o2x2_q1 = z0;
52 o2x2_q2 = z1;
53
54 tick = o2x2_d1[0];
55 adv = (tick != o2x2_d1[0]);
56 }
57 }
58
59 system S {
60 triviumsfu;
61 }

11.3.4 Software Driver for a Custom-Instruction Interface

Listing 11.12 shows a software driver for the Trivium custom-instruction processor
that generates a keystream of 512 words in memory. The driver starts by loading
key and data (line 25–30), running the key schedule (line 34–37), and retrieving
the keystream (line 41–48). At the same time, the getcyclecount system call is
used to determine the performance of the key schedule and the keystream genera-
tion part.

Listing 11.12 Custom-instruction software driver for the Trivium ASIP
1 #include <stdio.h>
2 #define OP2x2_1(D1,D2,S1,S2) \
3 asm volatile ("smullnv %0, %1, %2, %3": \
4 "=&r"(D1),"=&r"(D2): \
5 "r"(S1),"r"(S2));
6
7 #define OP3x1_1(D1, S1, S2, S3) \

11.3 Trivium for 32-bit Platforms 365

8 asm volatile ("mlanv %0, %1, %2, %3": \
9 "=&r"(D1): "r"(S1), "r"(S2), "r"(S3)); \

10
11 extern unsigned long long getcyclecount();
12
13 int main() {
14 int z1, z2, i;
15 unsigned int stream[512];
16 unsigned long long c0, c1, c2;
17
18 int key1 = 0x80;
19 int key2 = 0xe0000000;
20
21 // clear ’tick’
22 OP2x2_1(z1, z2, 0, 0);
23
24 // load key = 80 and IV = 0
25 OP3x1_1(z1,key1, 0, 1);
26 OP3x1_1(z1, 0, 0, 2);
27 OP3x1_1(z1, 0, 0, 3);
28 OP3x1_1(z1, 0, 0, 4);
29 OP3x1_1(z1,key2, 0, 5);
30 OP3x1_1(z1, 0, 0, 0);
31
32 // run key schedule
33 c0 = getcyclecount();
34 for (i=0; i<9; i++) {
35 OP2x2_1(z1, z2, 1, 0);
36 OP2x2_1(z1, z2, 0, 0);
37 }
38 c1 = getcyclecount();
39
40 // run keystream
41 for (i=0; i<128; i++) {
42 OP2x2_1(z1, z2, 1, 0);
43 stream[4*i] = z1;
44 stream[4*i+1] = z2;
45 OP2x2_1(z1, z2, 0, 0);
46 stream[4*i+2] = z1;
47 stream[4*i+3] = z2;
48 }
49 c2 = getcyclecount();
50
51 for (i=0; i<16; i++) {
52 printf("%8x ", stream[i]);
53 if (!((i+1) % 8))
54 printf("\n");
55 }
56 printf("key schedule cycles:",
57 "%lld stream cycles: %lld\n",
58 c1 - c0, c2 - c1);
59
60 return 0;
61 }

366 11 Trivium Crypto-Coprocessor

The algorithm can be compiled with the ARM cross-compiler and simulated on
top of GEZEL gplatform. This results in the following output.

>arm-linux-gcc -static trivium.c cycle.s -o trivium
>gplatform triviumsfu.fdl
core myarm
armsystem: loading executable [trivium]
ccce757b 99bd7920 9a235a88 1251fc9f aff0a655 7ec8ee4e bfd42128
86dae608
806ea7eb 58aec102 16fa88f4 c5c3aa3e b1bcc9f2 bb440b3f c4349c9f
be0a7e3c
key schedule cycles: 289 stream cycles: 8862
Total Cycles: 42688

We can verify that, as before, the correct keystream is generated. The cycle count
of the algorithm is significantly smaller than before: the key schedule completes in
289 cycles, and the keystream is generated within 8,862 cycles. This implies that
each word of keystream required around 17 cycles. If we turn on the O3 flag while
compiling the driver code, we obtain 67 and 1,425 clock cycles for key schedule
and keystream, respectively, implying that each word of the keystream requires less
than three cycles! Hence, we conclude that for this design, an ASIP interface is
significantly more efficient than a memory-mapped interface.

11.4 Summary

In this chapter, we designed a stream cipher coprocessor for three different hosts:
a small 8-bit microcontroller, a 32-bit SoC processor, and a 32-bit ASIP. In each
of these cases, we created a control shell to match the coprocessor to the available
hardware–software interface. The stream cipher algorithm was easy to scale over
different word-lengths by simply unrolling the algorithm. The performance evalu-
ation results of all these implementations are captured in Table 11.2. These results
demonstrate two points. First, it is not easy to achieve the performance of raw hard-
ware. All of the coprocessors are limited by their hardware/software interface or the

Table 11.2 Performance evaluation of trivium coprocessors on multiple platforms

Platform Hardware 8051 Hardware StrongARM Unit
Interface Native Port-mapped Native Memory mapped
Wordlength 8 8 32 32 bit
Key schedule 144 1416 36 435 cycles
Key stream 4 6.7 1 20.5 cycles/word
Platform StrongARM StrongARM StrongARM Unit
Interface SW ASIP ASIP (-O3)
Wordlength 32 64 64 bit
Key schedule 3810 289 67 cycles
Key stream 95 17 3 cycles/word

11.6 Problems 367

speed of software on the host, not by the computational limits of the hardware copro-
cessors. Second, the wide variation of performance results underline the importance
of a carefully designed control shell, and a careful consideration of the application
when selecting a hardware/software interface.

11.5 Further Reading

The standard reference of cryptographic algorithms is by Menezes, van Oorschot,
and Vanstone Menezes et al. (2001). Of course, cryptography is a fast-moving
field. The algorithm described in this section was developed for the eStream
Project ECRYPT (2008) in 2005. The Trivium specifications are by De Canniere
De Canniere and Preneel (2005). The Trivium webpage in the eStream website
describes several other hardware implementations of Trivium.

11.6 Problems

11.1. Design a control shell for the Trivium algorithm on top of a Fast Simplex Link
interface. Please refer to Sect. 9.4.2 for a description of the FSL timing and the FSL
protocol. Assume the following interface for your module.

dp trivium_fsl(in idata : ns(32); // input slave interface
in exists : ns(1);
out read : ns(1);
out odata : ns(32); // output master interface
in full : ns(1);
out write : ns(1))

11.2. Consider a simple linear feedback shift register, defined by the following
polynomial: g.x/ D x35 C x2 C 0. A possible hardware implementation of this
LFSR is shown in Fig. 11.11. This polynomial is primitive, which implies that the

x^0 x^1 x^2 x^3 x^4 x^5 x^35x^34

Fig. 11.11 LFSR for g.x/ D x35 C x2 C 0

368 11 Trivium Crypto-Coprocessor

LFSR will generate a so-called m-sequence: for a given initialization of the registers,
the structure will cycle through all possible 235 � 1 states before returning to the
same state.

(a) Write an optimized software implementation of an LFSR generator that calcu-
lates the first 1,024 states starting from the initialization x32 D x33 D x34 D
x35 D 1 and all other bits 0. For each state you need to store only the first
32 bits.

(b) Write an optimized standalone hardware implementation of an LFSR generator
that calculates the first 1,024 states starting from the initialization x32 D x33 D
x34 D x35 D 1 and all other bits 0. You do not need to store the first 32 bits,
but can feed them directly to an output port.

(c) Design a control shell for the module you have designed under (b), and use
a memory-mapped interface to capture and store the first 1,024 states of
the LFSR. You only need to capture the first 32 bits of each state. Compare
the resulting performance to the solution of (a).

(d) Design a control shell for the module you have designed under (b), and use
a custom-instruction interface to capture and store the first 1,024 states of
the LFSR. You only need to capture the first 32 bits of each state. Compare
the resulting performance to the solution of (a).

Chapter 12
CORDIC Coprocessor

Abstract The Coordinate Rotation Digital Computer Algorithm (CORDIC for
short) is a well known algorithm to perform rotations using simple, integer arith-
metic. The algorithm implements a conversion between rectangular .X; Y / coor-
dinates and polar .r; �/ coordinates. In this chapter, we discuss the design of a
coprocessor that implements the CORDIC algorithm. We will use a Fast-Simplex-
Link (FSL) interface. We also discuss a prototype implementation of the design on
a Spartan 3E Starter Kit, and show how to resolve the communication bottleneck
occuring from an inefficient hardware/software interface.

12.1 The Coordinate Rotation Digital Computer Algorithm

In this section we introduce the CORDIC algorithm, including a reference imple-
mentation in C.

12.1.1 The Algorithm

The CORDIC algorithm calculates the rotation of a two-dimensional vector x0; y0

over an arbitrary angle ˛. Figure 12.1a describes the problem of coordinate rotation.
Given .x0; y0/ and a rotation angle ˛, the coordinates .xT ; yT / are given by:

�
xT

yT

�
D

�
cos ˛ �sin ˛

sin ˛ cos ˛

� �
x0

y0

�
: (12.1)

This rotation can be written in terms of a single function tan ˛ by using

cos ˛ D 1p
1C tan2 ˛

(12.2)

sin ˛ D tan ˛p
1C tan2 ˛

: (12.3)

P.R. Schaumont, A Practical Introduction to Hardware/Software Codesign,
DOI 10.1007/978-1-4419-6000-9 12, c� Springer Science+Business Media, LLC 2010

369

370 12 CORDIC Coprocessor

1

(xT, yT)

(xT, yT)

(x0, y0)

1 1

1/2

tan α

0

1
2

3

α1

α3

α2

10

α

10

1/4

1/8
α3

α2

α1
α0

a b

Fig. 12.1 (a) Coordinate Rotation over ˛ (b) Decomposition of the rotation angle ˛ D ˛0 C ˛1 �
˛2 � ˛3

The resulting coordinate rotation now becomes

�
xT

yT

�
D 1p

1C tan2 ˛

�
1 �tan ˛

tan ˛ 1

� �
x0

y0

�
: (12.4)

The clever part of the CORDIC algorithm is that the rotation over the angle ˛ can
be expressed in terms of rotations over smaller angles. The CORDIC algorithm
chooses a decomposition in angles whose tangent is a power of 2, as illustrated in
Fig. 12.1b. Thus, we choose a set of angles ˛i so that

tan ˛i D 1

2i
: (12.5)

From the figure, we can see that ˛ can be reasonably approximated as ˛0C˛1 �
˛2 � ˛3. Because of the particular property of these angles, Formula 12.4 becomes
easy to evaluate: .xiC1; yiC1/ can be found using addition, subtraction, and shifting
of .xi ; yi /. For example, suppose that we want to rotate clockwise over ˛i , then

xiC1 D Ki

n
xi C yi

2i

o
(12.6)

yiC1 D Ki

n�xi

2i
C yi

o
: (12.7)

If we want to rotate counter-clockwise over ˛i , then we use instead

xiC1 D Ki

n
xi � yi

2i

o
(12.8)

yiC1 D Ki

nxi

2i
C yi

o
: (12.9)

12.1 The Coordinate Rotation Digital Computer Algorithm 371

In these formulas, Ki is a constant that can be precalculated:

Ki D 1p
1C 2�2i

: (12.10)

We can now approximate an arbitrary, but unknown, angle ˇ by means of a
binary-search process as follows. We precalculate the set of angles ˛i D arctan 2�i

and store them in a lookup table. Assume our current approximation of ˇ is ˇi .
If ˇi > ˇ, we rotate clockwise and ˇiC1 D ˇi � ˛i . If ˇi < ˇ, we rotate counter-
clockwise and ˇiC1 D ˇi C ˛i . We continue this process iteratively until ˇn ' ˇ.
We gain around 1 bit of precision per iteration. For example, after 20 iterations, the
precision on the angle is around one part in one million (six significant digits).

12.1.2 Reference Implementation in C

A distinctive property of the CORDIC algorithm is that it can execute using only
additions, subtractions, and shift operations. It maps well to integer arithmetic, even
though the numbers being handled are still fractional. We will discuss a CORDIC
implementation in C that uses scaled int types.

Fractional arithmetic can be implemented using integer numbers, by scaling
each number by a power of two. The resulting representation is called a <M,N>
fixed point representation. M represents the integer wordlength, and N the fractional
wordlength. For example, a <32,28> fixed-point number has a wordlength of 32
bits, and has 28 fractional bits. Thus, the weight of the least significant bit is 2�28.
Fixed-point numbers only change the relative weight of the bits in a binary number.
They work just like integers in all other respects – you can add, subtract, com-
pare, and shift them. So, a 32-bit unsigned number with value 8834773 will, as a
<32,28> number, have the value 8834773=228 D 0:3291209::.

Listing 12.1 shows a fixed-point version of a 32-bit CORDIC algorithm, using
<32,28> fixed point arithmetic. The CORDIC is evaluated using 20 iterations,
which means that it can approximate angles with a precision of arctan 2�20, or
around one-millionth of a radian. At the start, the program defines a few relevant
constants.

� PI, the well-known mathematical constant, equals � � 228 or 843314856.
� K CONST is the product of the twenty first Ki according to (12.10). This constant

factor needs to be evaluated once.
� angles[] is an array of constants that holds the angles ˛i defined by (12.5).

For example, the first element is 210828714, which is a <32,28> number cor-
responding to atan.1/ D 0:78540.

The cordic function, on lines 13–34, first initalizes the angle accumulator
current, and the initial vector (X,Y). Next, it goes through 20 iterations where

372 12 CORDIC Coprocessor

Listing 12.1 Reference implementation of a fixed-point CORDIC algorithm
1 #include <stdio.h>
2 #define K_CONST 163008218 /* 0.60725293510314 */
3 #define PI 843314856 /* 3.141593.. in <32,28> */
4 typedef int fixed; /* <32,28> */
5
6 static const int angles[] = {
7 210828714, 124459457, 65760959, 33381289,
8 16755421, 8385878, 4193962, 2097109,
9 1048570, 524287, 262143, 131071,

10 65535, 32767, 16383, 8191,
11 4095, 2047, 1024, 511 };
12
13 void cordic(int target, int *rX, int *rY) {
14 fixed X, Y, T, current;
15 unsigned step;
16 X = K_CONST;
17 Y = 0;
18 current = 0;
19 for(step=0; step < 20; step++) {
20 if (target > current) {
21 T = X - (Y >> step);
22 Y = (X >> step) + Y;
23 X = T;
24 current += angles[step];
25 } else {
26 T = X + (Y >> step);
27 Y = -(X >> step) + Y;
28 X = T;
29 current -= angles[step];
30 }
31 }
32 *rX = X;
33 *rY = Y;
34 }
35
36 int main(void) {
37 fixed X, Y, target;
38 fixed accsw, accfsl;
39
40 target = PI / 17;
41 cordic(target, &X, &Y);
42
43 printf("Target %d: (X,Y) = (%d,%d)\n", target, X, Y);
44 return(0);
45 }

the angle accumulator is compared with the target angle, and where the vector is
rotated clockwise or counterclockwise.

The main function, on lines 36–45, demonstrates the operation of the function
with a simple testcase, a rotation of (1,0) over �=17. We can compile and run this

12.2 A Hardware Coprocessor for CORDIC 373

program on a PC, or for the SimIT-ARM simulator, and it generates the following
output.

Target 49606756: (X,Y) = (263864846, 49324815)

Indeed, after scaling everything by 228, we can verify that for the target �=17,
(X,Y) equals .0:98297; 0:18375/, or .cos.�=17/; sin.�=17//.

To evaluate the performance of this function on an embedded processor, a simi-
lar technique as in Sect. 11.3.2 can be used. Measurement of the execution time for
cordic on Simit-ARM yields 485 cycles (-O3 compiler optimization) per call. In
the next section, we will develop a hardware implementation of the CORDIC algo-
rithm. Next, we will integrate this hardware design as a coprocessor to the software.

12.2 A Hardware Coprocessor for CORDIC

We’ll develop a hardware implementation of the CORDIC design presented in the
previous section. The objective is to create a coprocessor, and the first step is to
create a hardware kernel to implement CORDIC. Next, we convert the kernel into
a coprocessor design. As before, selecting the right hardware/software interface
among all that are available, is a crucial design decision. In this case, we intend
to map the design onto an FPGA, and the selection is constrained by what is avail-
able in the FPGA design environment. We will be making use of the Fast Simplex
Link interface discussed in Sect. 9.4.2.

12.2.1 A CORDIC Kernel in Hardware

Listing 12.2 illustrates a hardware CORDIC kernel. In anticipation of using the FSL-
based interface, the input/output protocol of the algorithm uses two-way handshake
interfaces. The input uses a slave interface, while the output implements a master in-
terface. The computational part of the algorithm is in sfg iterate, lines 30–38.
This iterate instruction is very close to the inner-loop of the cordic function
in Listing 12.1, including the use of a lookup table angles to store the rotation an-
gles. Note that while GEZEL supports lookup tables, it does not support read/write
arrays.

Listing 12.2 A Standalone hardware implementation of the CORDIC algorithm
1 dp cordic_fsmd (in rdata : tc(32); // interface to slave
2 in exists : ns(1);
3 out read : ns(1);
4 out wdata : tc(32); // interface to master
5 in full : ns(1);
6 out write : ns(1)) {
7 lookup angles : tc(32) = {
8 210828714, 124459457, 65760959, 33381289,

374 12 CORDIC Coprocessor

9 16755421, 8385878, 4193962, 2097109,
10 1048570, 524287, 262143, 131071,
11 65535, 32767, 16383, 8191,
12 4095, 2047, 1024, 511 };
13 reg X, Y, target, current: tc(32);
14 reg step : ns(5);
15 reg done, rexists, rfull : ns(1);
16 sig cmp : ns(1);
17 always { rexists = exists;
18 rfull = full; }
19 sfg dowrite { write = 1; }
20 sfg dontwrite { write = 0;
21 wdata = 0; }
22 sfg doread { read = 1; }
23 sfg dontread { read = 0; }
24 sfg capture { step = 0;
25 done = 0;
26 current = 0;
27 X = 163008218; // K
28 Y = 0;
29 target = rdata; }
30 sfg iterate { step = step + 1;
31 done = (step == 19);
32 cmp = (target > current);
33 X = cmp ? X - (Y >> step):
34 X + (Y >> step);
35 Y = cmp ? Y + (X >> step):
36 Y - (X >> step);
37 current = cmp ? current + angles(step):
38 current - angles(step); }
39 sfg writeX { wdata = X; }
40 sfg writeY { wdata = Y; }
41
42 }
43 fsm fsm_cordic_fsmd(cordic_fsmd) {
44 initial s0;
45 state s1, s2, s22;
46 state c1;
47
48 // wait for SW to write slave
49 @s0 if (rexists) then (capture , doread, dontwrite) -> c1;
50 else (dontread, dontwrite) -> s0;
51
52 // calculate result
53 @c1 if (done) then (dontread, dontwrite) -> s1;
54 else (iterate, dontread, dontwrite) -> c1;
55
56 // after read op completes, do a write to the master
57 @s1 if (rfull) then (dontread, dontwrite) -> s1;
58 else (dowrite , writeX, dontread) -> s2;
59 @s2 if (rfull) then (dontread, dontwrite) -> s2;
60 else (dowrite , writeY, dontread) -> s0;
61 }

12.2 A Hardware Coprocessor for CORDIC 375

clk

a b

rdata

exists

read

wdata

Target

X Y

in

in

out

out

full

write

in

out

Fig. 12.2 (a) Input slave handshake (b) Output master handshake

The remaining datapath instructions in Listing 12.2 support the implementation
of the input/output operations of the algorithm, and they are most easily understood
by studying the controller description on Lines 43–61. The four states of the finite
state machine correspond to the following activities:

� State s0: Reading the target angle.
� State c1: Perform the rotation.
� State s1: Produce output X.
� State s2: Produce output Y.

Figure 12.2 shows a sample input operation and a sample output operation. The
cordic coprocessor goes through an infinite loop consisting of the operations: read
target, calculate, write X, and write Y. Each time it needs a new target angle,
the coprocessor will wait for exists to be raised. The coprocessor will acknowl-
edge the request through read and grab a target angle. Next, the coprocessor
proceeds to evaluate the output coordinates X and Y. When they are available, the
write output is raised and, as long as the full input remains low, X and Y are
passed to the output in a single clock cycle. In Fig. 12.2, four clock cycles are re-
quired for the complete output operation because the full input is raised for two
clock cycles.

The hardware testbench for this design is left as an exercise for the reader (See
Problem 12.1).

376 12 CORDIC Coprocessor

12.2.2 A Control Shell for Fast-Simplex-Link Coprocessors

We will now integrate the hardware kernel into a control shell with FSL interfaces.
The FSL interface is natively supported only on the MicroBlaze processor (which is
currently not included in the GEZEL simulation kernel). Therefore, GEZEL em-
ulates FSL interfaces through memory-mapped operations on the ARM, and an
ipblockwith the outline of a real Fast Simplex Link interface. Figure 12.3 demon-
strates this approach. The cordic kernel is encapsulated in a module, fslcordic,
which defines the proper FSL interface. The FSL interface is driven from an ARM
simulator, which drives the value of the interface signals through memory-mapped
read and write operations.

Listing 12.3 shows the hardware platform of the complete design. The FSL in-
terface is on lines 6–24. The pinout of this interface follows the specifications of the
Xilinx FSL interface, although this GEZEL model does not use all features of the
interface and will not use all signals on the interface pinout. In particular, the Xilinx
FSL supports asynchronous operation and control information in conjunction with
data, while GEZEL sticks to synchronous operation and data-only FSL transfers.
The operation of the FSL interface is emulated with read and write operations on
memory addresses in the ARM simulation model (lines 19–23). The control shell
module, fslcordic, is very simple because the outline of the cordic kernel is
already conform with the FSL interface. In fact, the cordic kernel can be directly
instantiated (line 40) and wired to the FSL ports (lines 43–53). Finally, the top-level
module interconnects the system simulation.

fslcordic

cordic
FSL_S_Data

FSL_S_Exists

FSL_S_Read

FSL_M_Data

FSL_M_Full

FSL_M_Write

fsl

arm1

slavewrite

rdata

exists

read

wdata

full

write

slavestatus

masterwrite
masterstatus

memory space

IPBLOCK

IPBLOCK

FSL_S_Data

FSL_S_Exists

FSL_S_Read

FSL_M_Data

FSL_M_Full

FSL_M_Write

Fig. 12.3 Hierarchy of the GEZEL model in Listing 12.3

Listing 12.3 The CORDIC coprocessor attached toa fast simplex link
1 ipblock arm1 {

2 iptype "armsystem";

3 ipparm "exec = cordic_fixp";

4 }

5
6 ipblock fsl(in FSL_S_Clk : ns(1); // notused
7 in FSL_S_Read : ns(1); // hshk for slave side
8 out FSL_S_Data : ns(32); // data for slave side

12.2 A Hardware Coprocessor for CORDIC 377

9 out FSL_S_Control : ns(1); // control for slave side
10 out FSL_S_Exists : ns(1); // hshk for slave side
11 in FSL_M_Clk : ns(1); // notused
12 in FSL_M_Write : ns(1); // hshk for master side
13 in FSL_M_Data : ns(32); // data for master side
14 in FSL_M_Control : ns(1); // control for master side
15 out FSL_M_Full : ns(1)) { // hshk for master side
16 iptype "xilinx_fsl";

17 ipparm "core=arm1"; // strongarm core
18
19 ipparm "slavewrite = 0x80000000"; // write slave data
20 ipparm "slavestatus = 0x80000004"; // poll slave status
21
22 ipparm "masterread = 0x80000008"; // read master data
23 ipparm "masterstatus= 0x8000000C"; // poll master status
24 }

25
26 dp fslcordic(out FSL_S_Clk : ns(1); // notused
27 out FSL_S_Read : ns(1); // hshk for slave side
28 in FSL_S_Data : ns(32); // data for slave side
29 in FSL_S_Control : ns(1); // control for slave // side
30 in FSL_S_Exists : ns(1); // hshk for slave side
31 out FSL_M_Clk : ns(1); // notused
32 out FSL_M_Write : ns(1); // hshk for master side
33 out FSL_M_Data : ns(32); // data for master side
34 out FSL_M_Control : ns(1); // control for master side
35 in FSL_M_Full : ns(1)) { // hshk for master side

36 sig rdata, wdata : ns(32);

37 sig write, read : ns(1);

38 sig exists, full : ns(1);

39
40 use cordic_fsmd (rdata, exists, read,

41 wdata, full, write);

42
43 always {

44 rdata = FSL_S_Data;

45 exists = FSL_S_Exists;

46 FSL_S_Read = read;

47
48 FSL_M_Data = wdata;

49 FSL_M_Control = 0;

50 FSL_M_Write = write;

51 full = FSL_M_Full;

52
53 FSL_S_Clk = 0;

54 FSL_M_Clk = 0;

55 }

56 }

57
58 dp top {

59 sig FSL_Clk, FSL_Rst, FSL_S_Clk, FSL_M_Clk : ns(1);

60 sig FSL_S_Read, FSL_S_Control, FSL_S_Exists : ns(1);

61 sig FSL_M_Write, FSL_M_Control, FSL_M_Full : ns(1);

62 sig FSL_S_Data, FSL_M_Data : ns(32);

378 12 CORDIC Coprocessor

63
64 use arm1;

65
66 use fslcordic (FSL_S_Clk, FSL_S_Read, FSL_S_Data, FSL_S_Control,

67 FSL_S_Exists, FSL_M_Clk, FSL_M_Write, FSL_M_Data,

68 FSL_M_Control, FSL_M_Full);

69
70 use fsl (FSL_S_Clk, FSL_S_Read, FSL_S_Data, FSL_S_Control,

71 FSL_S_Exists, FSL_M_Clk, FSL_M_Write, FSL_M_Data,

72 FSL_M_Control, FSL_M_Full);

73 }

74
75 system S {

76 top;

77 }

In order to verify the design, we also need a software driver. Listing 12.4 shows
an example driver to compare the reference software implementation (Listing 12.1)
with the FSL coprocessor. The driver evaluates 4096 rotations from 0 to �

2
and ac-

cumulates the coordinates. As the CORDIC design is in fixed point, the results of
the hardware coprocessor must be exactly the same as the results from the software
reference implementation. Of particular interest in the software driver is the emu-
lation of the FSL interface signals through memory-mapped operations. The driver
first transfers a token to the coprocessor (lines 8–9), and then reads two coordinates
from the coprocessor (lines 11–15).

Listing 12.4 Driver for the CORDIC coprocessor on the emulated FSL interface
1 void cordic_driver(int target, int *rX, int *rY) {
2 volatile unsigned int *wchannel_data = (int *) 0x80000000;
3 volatile unsigned int *wchannel_status = (int *) 0x80000004;
4 volatile unsigned int *rchannel_data = (int *) 0x80000008;
5 volatile unsigned int *rchannel_status = (int *) 0x8000000C;
6 int i;
7
8 while (*wchannel_status == 1) ;
9 *wchannel_data = target;

10
11 while (*rchannel_status != 1) ;
12 *rX = *rchannel_data;
13
14 while (*rchannel_status != 1) ;
15 *rY = *rchannel_data;
16 }
17
18 // Reference implementation
19 extern void cordic(int target, int *rX, int *rY);
20
21 int main(void) {
22 fixed X, Y, target;

12.3 An FPGA Prototype of the CORDIC Coprocessor 379

23 fixed accsw, accfsl;
24
25 accsw = 0;
26 for (target = 0; target < PI/2; target += (1 << (UNIT - 12))) {
27 cordic(target, &X, &Y);
28 accsw += (X + Y);
29 }
30
31 accfsl = 0;
32 for (target = 0; target < PI/2; target += (1 << (UNIT - 12))) {
33 cordic_driver(target, &X, &Y);
34 accfsl += (X + Y);
35 }
36
37 printf("Checksum SW %x FSL %x\n", accsw, accfsl);
38 return(0);
39 }

The cosimulation of this model, consisting of the hardware design in Listing 12.3
and the software design in Listing 12.4, confirms that the reference implementation
and the hardware coprocessor behave identically. This functional verification is the
most important feature of this model. The cosimulation model is less relevant for
performance evaluation. As the behavior of the FSL interface is emulated, the per-
formance of the implementation may still change once we move to a processor with
a native FSL interface. In the next section, we will port this coprocessor to the FPGA
for a detailed performance analysis.

> /usr/local/arm/bin/arm-linux-gcc -static -O3 cordic_fixp.c
-o cordic_fixp

> gplatform fsl.fdl
core arm1
armsystem: loading executable [cordic_fixp]
Checksum SW 4ae1ee FSL 4ae1ee
Total Cycles: 3467162

12.3 An FPGA Prototype of the CORDIC Coprocessor

Our next step is to map the complete system – processor and coprocessor – to an
FPGA prototype. The prototyping environment we are using contains the following
components.

� Spartan-3E Starter Kit, including a Spartan 3ES500 Xilinx FPGA and various
peripherals. We will be making use of one peripheral besides the FPGA: a 64
MByte DDR SDRAM Module.

� FPGA Design Software, consisting of Xilinx Platform Studio (EDK 9.2) and
associated hardware synthesis tools (ISE 9.2.04).

380 12 CORDIC Coprocessor

8KB BRAM

GEZEL Design

VHDL
Code
Generation

USB-JTAG

Spartan 3E S500

Microblaze
32-bit RISC
2K ICache
2K Dcache

fslcordic

FSL
LMB

PLB

Debug

DDR
DRAM

Controller

XCL
DDR Off-chip

64 MByte
DDRTimer

Fig. 12.4 FPGA prototype

Figure 12.4 shows the system architecture of the CORDIC design. The copro-
cessor connects through a Fast Simplex Link (FSL) to a Microblaze processor. The
processor includes an instruction-cache and a data-cache of two 2 KByte. Besides
the processor, several other components are included on the platform: an 8 KByte lo-
cal memory, a debug unit, a timer, and a Dual Data Rate (DDR) DRAM Controller.
The interconnect architecture of the system is quite sophisticated, if we consider
how these components interact.

� The 8 KByte local memory is intended as a local store for the Microblaze, for
example to hold the stack or the heap segment of the embedded software. The
local memory uses a dedicated Local Memory Bus (LMB) so that local memory
can be accessed with a fixed latency (2 cycles).

� The DDR Controller provides access to a large off-chip 64 MByte DRAM. The
DDR Controller has two connections to the Microblaze processor. The first uses
the common Processor Local Bus (PLB), and is used for control operations on the
DDR Controller. The second uses the Xilinx Cache Link (XCL), a fast point-to-
point bus similar to FSL, and is used for data transfer from the DDR Controller
to the cache memories.

� The debug unit allows the system to be controlled using debug software on a
laptop. The debug unit has two connections to the Microblaze processor: a PLB
connection for control operations on the debug unit, and a dedicated connection
to the debug port on the Microblaze processor. The debug port provides access to
all internal processor registers, and it supports low-level control operations such
as single-stepping the processor.

12.3 An FPGA Prototype of the CORDIC Coprocessor 381

� The timer unit is used to obtain accurate performance estimations, by counting
the number of elapsed cycles between two positions in the program. The timer
unit is controlled through the PLB.

The platform design and implementation flow relies on Xilinx Platform Studio
(XPS) and will not be discussed in detail here. We will clarify the implementa-
tion path from GEZEL to FPGA using XPS. Once we have a working GEZEL
system simulation, we can convert GEZEL code into synthesizable VHDL. The
code generator is called fdlvhd, and a sample run of the tool on Listing 12.3 is as
follows.

> fdlvhd -c FSL_Clk FSL_Rst fsl.fdl
Pre-processing System ...
Output VHDL source ...

Generate file: arm1.vhd
Generate file: fsl.vhd
Generate file: cordic_fsmd.vhd
Generate file: fslcordic.vhd
Generate file: top.vhd
Generate file: system.vhd
Generate file: std_logic_arithext.vhd

The code generator creates a separate file for each module in the system. In ad-
dition, one extra library file is generated (std logic arithext.vhd), which
is needed for synthesis of GEZEL-generated VHDL code. The code generator also
uses a command line parameter, -c FSL Clk FSL Rst, which enables a user to
choose the name of the clock and reset signal on the top-level module. This makes
the resulting code pin-compatible with VHDL modules expected by XPS. If we con-
sider the system hierarchy of Fig. 12.3 once more, we conclude that not all of the
generated code is of interest. Only cordic and fslcordic constitute the actual
coprocessor. The other modules are “simulation stubs.” Note that GEZEL does not
generate VHDL code for an ARM or and fsl interface; the ipblock modules in
Listing 12.3 translate to black-box views. The transfer of the code to XPS relies on
the standard design flow to create new peripherals. This makes it possible to port
GEZEL to XPS without writing a single line of VHDL.

A detailed discussion of the synthesis results for the platform is beyond the scope
of this example. However, it is useful to make a brief summary of the results, in par-
ticular because it illustrates the relative hardware cost of a coprocessor in a system
platform such as in Fig. 12.4. All components of the platform run at 50 MHz. We
partition the implementation cost of the system into logic cells (lookup-tables for
FPGA), flip-flops, and BlockRAM cells. The entire system requires 4842 logic cells,
3411 flip-flops and 14 BlockRAM cells. Figure 12.5 shows the relative resource cost
for each of the major components in the platform. There are several important con-
clusions to make from this figure. First, the processor occupies around one quarter of
the resources on the platform. The most expensive component in terms of resources
is the DDR controller. The coprocessor cost is relatively minor, although still half
of the Microblaze in logic area.

382 12 CORDIC Coprocessor

Logic Cells (LUT) Flip-Flop Block RAM

M

D T

M

D T

M

D

C
C

D

R

M = Microblaze, D = DDR Controller, C = CORDIC, T = Timer, R = Local RAM

Fig. 12.5 Relative resource cost of platform components for Fig. 12.4

12.4 Handling Large Amounts of Rotations

In this section, we investgate the performance of the FPGA prototype of the
CORDIC coprocessor, and we consider performance optimizations on the overall
system throughput.

A coprocessor is not very useful if you use it only once. Therefore, we will con-
sider a scenario that includes a large number of rotations. We use a large table of
target angles, stored in off-chip memory. The objective is to convert this table into an
equivalent table of .X; Y / coordinates, also stored in off-chip memory. Refering to
Fig. 12.4, the table will be stored in the 64 MByte DDR memory, and the elements
of that table need to be fetched by the Microblaze and processed in the attached
CORDIC coprocessor. The outputs of the CORDIC need to be written back to the
64 MByte DDR memory.

Let’s start with a simple software driver for this coprocessor. Listing 12.5 il-
lustrates a Microblaze program that performs CORDIC transformations on an
array of 8192 elements. The coprocessor driver, cordic driver, is implemented
on lines 9–16. The Microblaze processor uses dedicated instructions to write to,
and read from the FSL interface: (putfsl) and (getfsl). One function call
to cordic driver will complete a single CORDIC rotation. While the copro-
cessor is active, the Microblaze processor will stall and wait for the result. As
discussed earlier, each rotation takes 20 clock cycles in the hardware implemen-
tation. The function compare, lines 17–45, compares the performance of 8192
cordic rotations in software vs. 8192 cordic rotations in hardware. Performance mea-
surements are obtained from a timer module: XTmrCtr Start, XTmrCtr Stop,
and XTmrCtr GetValuewill start, stop and query the timer module, respectively.
The resulting rotations are also accumulated (in accsw and accfsl) as a simple
checksum to verify that the software and the hardware obtain the same result.

We compile Listing 12.5 while allocating all sections in off-chip memory. The
compilation command line selects medium optimization (-O2), as well as several
options specific to the Microblaze processor hardware. This includes a hardware
integer multiplier (-mno-xl-soft-mul) and a hardware pattern comparator

12.4 Handling Large Amounts of Rotations 383

Listing 12.5 Driver for the CORDIC coprocessor on Microblaze
1 #include "fsl.h"
2 #include "xparameters.h"
3 #include "xtmrctr.h"
4 #define N 8196
5 int arrayT[N];
6 int arrayX[N];
7 int arrayY[N];
8
9 void cordic_driver(int target, int *rX, int *rY) {

10 int r;
11 putfslx(target,0,FSL_ATOMIC);
12 getfslx(r,0,FSL_ATOMIC);
13 *rX = r;
14 getfslx(r,0,FSL_ATOMIC);
15 *rY = r;
16 }
17
18 int compare(void) {
19 unsigned i;
20 int accsw = 0, accfsl = 0;
21 int timesw, timefsl;
22 XTmrCtr T;
23
24 XTmrCtr_Start(&T, 0);
25 for (i=0; i<N; i++) {
26 cordic(arrayT[i], &arrayX[i], &arrayY[i]);
27 accsw += (arrayX[i] + arrayY[i]);
28 }
29 XTmrCtr_Stop(&T, 0);
30 timesw = XTmrCtr_GetValue(&T, 0);
31
32 XTmrCtr_Start(&T, 0);
33 for (i=0; i<N; i++) {
34 cordic_driver(arrayT[i], &arrayX[i], &arrayY[i]);
35 accfsl += (arrayX[i] + arrayY[i]);
36 }
37 XTmrCtr_Stop(&T, 0);
38 timefsl = XTmrCtr_GetValue(&T, 0);
39
40 xil_printf("Checksum SW %x FSL %x\n", accsw, accfsl);
41 xil_printf("Cycles SW %d FSL %d\n", timesw, timefsl);
42
43 return(0);
44 }

(-mxl-pattern-compare). The compiler command line also shows the use of
a linker script, which allows the allocation of sections to specific regions of memory
(See Sect. 6.3).

> mb-gcc -O2 \
cordiclarge.c \

384 12 CORDIC Coprocessor

-o executable.elf \
-mno-xl-soft-mul \
-mxl-pattern-compare \
-mcpu=v7.00.b \
-Wl,-T -Wl,cordiclarge_linker_script.ld \
-g \
-I./microblaze_0/include/ \
-L./microblaze_0/lib/

> mb-size executable.elf
text data bss dec hex filename
7032 416 100440 107888 1a570 executable.elf

The actual sizes of the program sections are shown using the mb-size com-
mand. Recall that text contains instructions, data contains initialized data, and
bss contains uninitialized data. The large bss section is occupied by 3 arrays of
8192 elements each, which require 98304 bytes. The remainder of that section is
required for other global data, such as global variables in the C library.

The resulting performance of the program is shown in scenario 1 and 2 of
Table 12.1. The software CORDIC requires 358 million cycles, while the hardware-
accelerated cordic requires 4.8 million cycles, giving a speedup of 74.5 times. While
this is an excellent improvement, it also involves significant overhead. Indeed, 8192
CORDIC rotations take 1,63,840 cycles in the FSL coprocessor. Over the total run-
time of 4.8 million cycles, the coprocessor thus has only 3% utilization! Considering
the program in Listing 12.5, this is also a peak utilization, because the coprocessor
is called in a tight loop with virtually no other software activities. Clearly, there is
still another bottleneck in the system.

That bottleneck is the off-chip memory, in combination with the PLB memory
bus leading to the microprocessor. As all program segments are stored in off-chip
memory, the microblaze will fetch not only all CORDIC data elements, but also all
instructions from the off-chip memory. Worse, the cache memory on a microblaze
is not enabled by default until instructed so by software, so that the program does
not benefit from on-chip memory at all.

There are two possible solutions: local on-chip memories and cache memory. We
will show that the effect of both of them is similar.

Table 12.1 Performance evaluation over 8192 CORDIC rotations

text data bss Performance
Scenario CORDIC Cache segment segment segment (cycles) Speedup

1 SW no DDR DDR DDR 358024365 1
2 FSL no DDR DDR DDR 4801716 74.5
3 SW no On-chip On-chip DDR 16409224 21.8
4 FSL no On-chip On-chip DDR 1173651 305
5 SW yes DDR DDR DDR 16057950 22.3
6 FSL yes DDR DDR DDR 594655 602
7 FSL (prefetch) yes DDR DDR DDR 405840 882
8 FSL (prefetch) yes/8 On-chip On-chip DDR 387744 923

12.4 Handling Large Amounts of Rotations 385

� To enable the use of the on-chip memory (Fig. 12.4), we need to modify the linker
script and re-allocate sections to on-chip memory. In this case, we need to move
the text segments as well as the constant data segment to on-chip memory. In
addition, we can also allocate the stack and heap to on-chip memory, which will
ensure that local variables and dynamic variables will remain on-chip.

� To enable the use of cache memory, we need to include

microblaze_enable_icache();
microblaze_enable_dcache();

at the start of the program. The data and instruction cache of a microblaze is a
direct-mapped, 4-word-per-line cache architecture.

The result of each of these two optimizations is shown in scenario 3, 4, 5, and
6 in Table 12.1. For the software implementations, the use of on-chip local mem-
ory, and the use of a cache each provide a speedup of approximately 22 times. For
the hardware-accelerated implementations, the use of on-chip local memory pro-
vides a speedup of 305 times, while the use of a cache provides a speedup of 602
times. These results confirm that off-chip memory clearly was a major bottleneck
in system performance. In general the effect of adding a cache is larger than the
effect of moving the text segment/local data into on-chip memory. This is because
of two reasons: (a) the cache improves memory-access time, and (b) the cache im-
proves the off-chip memory-access time. Indeed, the “XCL” connections, shown in
Fig. 12.4, enable burst-access to the off-chip memory, while the same burst-access
effect cannot be achieved through the “PLB” connection.

We note also that the impact of cache on the hardware coprocessor is much
more dramatic (600 times speedup instead of 300 times speedup) than its impact
on the software CORDIC (22.3 speedup instead of 21.8 speedup). This can be un-
derstood by looking at the absolute performance numbers. For the case of software,
the cache provides an advantage of 3.5 million cycles over local-memory (scenario
3 vs. scenario 5). For the case of hardware, the cache provides an advantage of
only 500,000 cycles over local memory (scenario 4 vs. scenario 6). However, the
hardware-accelerated system is already heavily optimized, and hence very sensitive
to inefficiencies.

How can we improve this design even further? By close inspection of the loop
that drives the FSL coprocessor, we find that the memory accesses and the coproces-
sor execution are strictly sequential. This is in particular the case for memory-writes,
since the write-through cache of the Microblaze forces all of them to be an off-
chip access. Indeed, the code first accesses arrayT, then runs the coprocessor
through putfsl and getfsl, and finally writes back the results into arrayX
and arrayY. This is illustrated in Fig. 12.6a.

for (i=0; i<N; i++) {
cordic_driver(arrayT[i], &arrayX[i], &arrayY[i]);
accfsl += (arrayX[i] + arrayY[i]);

}

The key optimization is to exploit parallelism between the memory accesses
and the coprocessor execution. Specifically, instead of waiting for the result of the

386 12 CORDIC Coprocessor

Cache / DDR Microblaze FSL Cordic Cache / DDR Microblaze FSL Cordic

read target[0]

putfsl

getfsl

write X[0]

write Y[0]

read target[1]

read target[0]

putfsl

getfsl

read target[1]

write X[0]

write Y[0]

putfsl

putfsl

getfsl

write X[1]

write Y[1]

getfsl
read target[2]

write X[1]

write Y[1]

putfsl

getfsl

a b

Fig. 12.6 (a) Sequential memory access and coprocessor execution (b) Folded memory access
and coprocessor execution

coprocessor (using getfsl), the Microblaze processor may use that time to read
from/ write to memory. A solution that uses this overlap for memory writes is shown
in Fig. 12.6b. An equivalent C code fragment that achieves this behavior looks as
follows.

cordic_put(arrayT[0]);
for (i=1; i<N; i++) {
cordic_get(&tmpX, &tmpY);
cordic_put(arrayT[i]);
arrayX[i-1] = tmpX;
arrayY[i-1] = tmpY;
accfsl += (tmpX + tmpY);

}
cordic_get(&arrayX[N-1], &arrayY[N-1]);
accfsl += (arrayX[N-1] + arrayY[N-1]);

The effect of this optimization is illustrated in scenario 7 of Table 12.1. An ad-
ditional 2,00,000 clock cycles are gained, and the overall execution time is around
4,00,000 clock cycles, or a speedup of 882. At this point, the coprocessor utiliza-
tion has increased to 41%, which is an improvement of more than 10 times over the
original case.

Further improvements are still possible. For example, we know that the accesses
to arrayT are strictly sequential. Hence, it makes sense to increase the line size of
the cache as much as possible (the line size is the number of consecutive elements
that are read after a cache miss). In addition, we can use an on-chip memory for

12.6 Further Reading 387

the program, but reserve all the cache memory for data accesses. The result of these
optimizations is an additional 18,000 cycles, as shown in Table 12.1, scenario 8. The
overall speedup is now 923 times, and the coprocessor utilization is 42%. As long as
the utilization is not 100%, the system-level bottleneck is not in hardware but rather
between the microblaze and the off-chip memory. The next step in the optimization
is to investigate the assembly code of the loop, and to profile the behavior of the
loop in detail.

In conclusion, this section has demonstrated that the design of a hardware module
is only the first step in an efficient hardware/software codesign. System integration
is the next, and often more complicated, step.

12.5 Summary

In this chapter we discussed the implementation of the Coordinate Rotation Digital
Computer (CORDIC) algorithm as a hardware coprocessor. The CORDIC algo-
rithm rotates, iteratively, a vector .X; Y / over a given angle ˛. The algorithm
uses only integer operations, which makes it very well suited for embedded sys-
tem implementation. We discussed a coprocessor design based on the Fast Simple
Link coprocessor interface, and we created a simulation model of the CORDIC
in GEZEL, first as a standalone module, and next as a coprocessor module. Af-
ter functional verification of the coprocessor at high abstraction level, we ported
the design to an FPGA prototype using a Spartan 3E chip. The resulting embed-
ded system architecture consists roughly of one-third microprocessor, one-third
memory-controller, and one-third peripherals (with the coprocessor being included
in the peripherals). Early implementation results showed that the coprocessor pro-
vided a speedup of 74 over the CORDIC software implementation. Through careful
tuning, in particular by optimizing off-chip accesses, that speedup can be further
improved to 923 times.

12.6 Further Reading

The CORDIC algorithm is 50 years old, and was developed for “real-time airborne
computation,” in other words, for a military application. The original CORDIC pro-
posal, by Volder, is a good example of a paper that truly stands the test of time
Volder (1959). More recently, Maharatna has provided a comprehensive overview
Maharatna et al. (2009). Valls discusses CORDIC applications in digital radio re-
ceivers Valls et al. (2006).

388 12 CORDIC Coprocessor

Table 12.2 Test cases
for problem 17.1

Angle cos(angle) sin(angle)

0 1 0

�=6
p

3=2 1=2

�=4 1=
p

2 1=
p

2

�=3 1=2
p

3=2

�=2 0 1

12.7 Problems

12.1. Design a GEZEL testbench for the standalone CORDIC design shown in
Listing 12.2. Verify the sine and cosine values shown in Table 12.2.

12.2. The CORDIC algorithm in this chapter is working in the so-called rotation
mode. In rotation mode, the CORDIC iterations aim to drive the value of the angle
accumulator to zero (refer to Listing 12.1). CORDIC can also be used in vector
mode. In this mode, the CORDIC rotations aim to drive the value of the Y coordinate
to zero. In this case, the input of the algorithm consists of the vector .x0; y0/, and
the angle accumulator is initialized to zero.

(a) Show that, in the vector mode, the final values of .xT ; yT / are given by:

�
xT

yT

�
D

�
K:

p
.x0

2 C y0
2/

0

�
(12.11)

with K a similar magnitude constant as used in the rotation mode.
(b) Show that, in the vector mode, the final value of the angle accumulator is

given by:

˛ D arctan

�
y0

x0

�
(12.12)

(c) Adjust the hardware design in Listing 12.2 so that it implements CORDIC in
vector mode. Verify your design with some of the tuples shown in Table 12.2.

12.3. Develop a CORDIC coprocessor in rotation mode using the custom-
instruction interface discussed in Sect. 11.3.3. The recommended approach is to
build a coprocessor that does a single CORDIC iteration per custom-instruction
call. Hence, you will need an OP2X2 instruction for each iteration. You will also
need a mechanism to program the rotation angle. For example, the software driver
could look like:

int target, X, Y;
unsigned i;

// argument 1: target angle
// argument 2: 10 iterations
OP2x2_1(target, 10, 0, 0);

for (i=0; i<10; i++)
OP2x2_1(X, Y, X, Y);

References

Aeroflex G (2009) Leon-3/grlib intellectual property cores. Tech. rep., http://www.gaisler.com
Appel AW (1997) Modern Compiler Implementation in C: Basic Techniques. Cambridge

University Press
Atmel (2008) At91sam7l128 preliminary. Tech. rep., http://www.atmel.com/dyn/products/product

card.asp?part id=4293
Berry G (2000) The foundations of esterel. In: Proof, Language, and Interaction, pp 425–454
Bogdanov A, Knudsen L, Leander G, Paar C, Poschmann A, Robshaw M, Seurin Y, Vikkelsoe C

(2007) Present: An ultra-lightweight block cipher. In: Proc. Cryptographic Hardware and Em-
bedded Systems 2007, pp 450–466

Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. Ph.D. Dissertation, UCB/ERL 93/63, UC Berkeley, CA

Claasen T (1999) High speed: not the only way to exploit the intrinsic computational power of
silicon. In: Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999
IEEE International, pp 22–25

Claasen T (2006) An industry perspective on current and future state of the art in system-on-chip
(soc) technology. Proceedings of the IEEE 94(6):1121–1137

Committee T (1995) Tool interface standard executable and linkable format (elf) specification,
version 1.2. Tech. rep., http://refspecs.freestandards.org/elf/elf.pdf

Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK (1991) Efficiently computing static
single assignment form and the control dependence graph. ACM Trans Program Lang Syst
13(4):451–490

Davio M, Deschamps JP, Thayse A (1983) Digital Systems with Algorithm Implementation. John
Wiley & Sons, Inc., New York, NY, USA

De Canniere C, Preneel B (2005) Trivium specifications. Tech. rep., ESAT/SCD-COSIC,
K.U.Leuven, http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium p3.pdf

Dennis J (2007) A dataflow retrospective - how it all began. http://csg.csail.mit.edu/Dataflow/talks/
DennisTalk.pdf

D’Errico J, Qin W (2006) Constructing portable compiled instruction-set simulators: an adl-driven
approach. In: DATE ’06: Proceedings of the conference on Design, automation and test in
Europe, pp 112–117

Dijkstra EW (2009) The E.W. Dijkstra Archive. Tech. rep., http://www.cs.utexas.edu/users/EWD/
ECRYPT (2008) The estream project. Tech. rep., http://www.ecrypt.eu.org/stream/technical.html
Edwards SA (2006) The challenges of synthesizing hardware from c-like languages. IEEE

Design & Test of Computers 23(5):375–386
Eker J, Janneck J, Lee E, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003) Taming

heterogeneity - the ptolemy approach. Proceedings of the IEEE 91(1):127–144
Gajski DD, Abdi S, Gerstlauere A, Schirner G (2009) Embedded System Design: Modeling,

Synthesis, Verification. Springer

389

http://www.gaisler.com
http://www.atmel.com/dyn/products/product_card.asp?part_id=4293
http://www.atmel.com/dyn/products/product_card.asp?part_id=4293
http://refspecs.freestandards.org/elf/elf.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://csg.csail.mit.edu/Dataflow/talks/DennisTalk.pdf
http://csg.csail.mit.edu/Dataflow/talks/DennisTalk.pdf
http://www.cs.utexas.edu/users/EWD/
http://www.ecrypt.eu.org/stream/technical.html

390 References

Ganesan P, Venugopalan R, Peddabachagari P, Dean A, Mueller F, Sichitiu M (2003) Analyzing
and modeling encryption overhead for sensor network nodes. In: WSNA ’03: Proceedings of
the 2nd ACM international conference on Wireless sensor networks and applications, ACM,
New York, NY, USA, pp 151–159, DOI http://doi.acm.org/10.1145/941350.941372

Good T, Benaissa M (2007) Hardware results for selected stream cipher candidates. Tech. rep.,
eSTREAM project, http://www.ecrypt.eu.org/stream/hw.html

Gupta S, Gupta R, Dutt N, Nicolau A (2004) SPARK:A Parallelizing Approach to the High-Level
Synthesis of Digital Circuits. Springer

Harel D (1987) Statecharts: A visual formulation for complex systems. Sci Comput Program
8(3):231–274

Hennessy JL, Patterson DA (2006) Computer Architecture: A Quantitative Approach, 4th Edition.
Morgan Kaufmann

Hillis WD, Steele GL Jr (1986) Data parallel algorithms. Commun ACM 29(12):1170–1183
Hodjat A, Verbauwhede I (2004) High-throughput programmable cryptocoprocessor. IEEE Micro

24(3):34–45
Hoe JC (2000) Operation-centric hardware description and synthesis. PhD thesis, MIT
IBM (2009) Coreconnect bus architecture. Tech. rep., https://www-01.ibm.com/chips/techlib/

techlib.nsf/productfamilies/CoreConnect Bus Architecture
Inc X (2009) Xilinx embedded development toolkit. Tech. rep., http://www.xilinx.com/support/

documentation/dt edk.htm
Ivanov A, De Micheli G (2005) Guest editors’ introduction: The network-on-chip paradigm in

practice and research. Design & Test of Computers, IEEE 22(5):399–403
Kaps JP (2008) Chai-tea, cryptographic hardware implementations of xtea. In: INDOCRYPT,

pp 363–375
Karlof C, Sastry N, Wagner D (2004) Tinysec: a link layer security architecture for wireless sen-

sor networks. In: SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, ACM, New York, NY, USA, pp 162–175, DOI http://doi.acm.org/
10.1145/1031495.1031515

Kastner R, Kaplan A, Sarrafzadeh M (2003) Synthesis Techniques and Optimizations for Recon-
figurable Systems. Kluwer Academic Publishers

Keutzer K, Newton A, Rabaey J, Sangiovanni-Vincentelli A (2000) System-level design: orthog-
onalization of concerns and platform-based design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 19(12):1523–1543

Kogge PM (1981) The Architecture of Pipelined Computers. McGraw-Kill
Leander G, Paar C, Poschmann A, Schramm K (2007) New lightweight des variants. In: Fast

Software Encryption, Lecture Notes on Computer Science, vol 4593, pp 196–200
Lee EA, Messerschmitt DG (1987) Static scheduling of synchronous data flow programs for digital

signal processing. IEEE Trans Computers 36(1):24–35
Leupers R, Ienne P (2006) Customizable Embedded Processors: Design Technologies and Appli-

cations. Morgan Kaufmann Publishers Inc.
Lynch M (1993) Micro-programmed State Machine Design, CRC Press, 1993
Ltd A (2009a) The amba system architecture. Tech. rep., http://www.arm.com/products/solutions/

AMBAHomePage.html
Ltd A (2009b) Arm infocenter. Tech. rep., http://infocenter.arm.com/help/index.jsp
Madsen J, Steensgaard-Madsen J, Christensen L (2002) A sophomore course in codesign.

Computer 35(11):108–110, DOI http://dx.doi.org/10.1109/MC.2002.1046983
Maharatna K, Valls J, Juang TB, Sridharan K, Meher P (2009) 50 years of cordic: Algorithms,

architectures, and applications. Circuits and Systems I: Regular Papers, IEEE Transactions on
56(9):1893–1907

McKee S (2004) Reflections on the memory wall. In: Conf. Computing Frontiers, pp 162–168
Meiser G, Eisenbarth T, Lemke-Rust K, Paar C (2007) Software implementation of estream profile

i ciphers on embedded 8-bit avr microcontrollers. Tech. rep., eSTREAM project, http://www.
ecrypt.eu.org/stream/sw.html

Menezes A, van Oorschot P, Vanstone S (2001) Handbook of Applied Cryptography. CRC Press

http://www.ecrypt.eu.org/stream/hw.html
https://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/CoreConnect_Bus_Architecture
https://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/CoreConnect_Bus_Architecture
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.arm.com/products/solutions/AMBAHomePage.html
http://www.arm.com/products/solutions/AMBAHomePage.html
http://infocenter.arm.com/help/index.jsp
http://www.ecrypt.eu.org/stream/sw.html
http://www.ecrypt.eu.org/stream/sw.html

References 391

Micheli GD, Benini L (2006) Networks on Chips: Technology and Tools (Systems on Silicon).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

Micheli GD, Wolf W, Ernst R (2001) Readings in Hardware/Software Co-Design. Morgan
Kaufmann Publishers Inc.

Moderchai BA (2006) Principles of Concurrent and Distributed Programming, 2nd Edition.
Addison Wesley

Muchnick SS (1997) Advanced Compiler Design and Implementation. Morgan Kaufmann
NIST (2001) Federal information processing standards publication 197: Announcing the advanced

encryption standard (aes). Tech. rep., http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
Parhi KK, Messerschmitt DG (1989) Fully-static rate-optimal scheduling of iterative data-flow

programs via optimum unfolding. In: ICPP (1), pp 209–216
Pasricha S, Dutt N (2008) On-Chip Communication Architectures: System on Chip Interconnect.

Morgan Kaufmann
Potop-Butucaru D, Edwards SA, Berry G (2007) Compiling Esterel. Springer
Qin W (2004) Modeling and description of embedded processors for the development of software

tools. PhD thesis, Princeton University
Qin W, Malik S (2003) Flexible and formal modeling of microprocessors with application to retar-

getable simulation. In: DATE ’03: Proceedings of the conference on Design, Automation and
Test in Europe, p 10556

Rabaey JM (2009) Low Power Design Essentials. Springer
Rowen C (2004) Engineering the Complex SOC:Fast, Flexible Design with Configurable

Processors. Prentice Hall
Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux G, Pande P, Grecu C, Ivanov A

(2006) System-on-chip: Reuse and integration. Proceedings of the IEEE 94(6):1050–1069
Satoh A, Morioka S (2003) Hardware-focused performance comparison for the standard block

ciphers aes, camellia, and triple-des. In: ISC, no. 2851 in Lecture Notes on Computer Science,
pp 252–266

Schaumont P, Shukla SK, Verbauwhede I (2006) Design with race-free hardware semantics. In:
DATE, pp 571–576

Smotherman M (2009) A brief history of microprogramming. Tech. rep., Clemson University,
http://www.cs.clemson.edu/mark/uprog.html

Stanford Graphics Lab (2003) Brook language. Http://graphics.stanford.edu/projects/brookgpu/
lang.html

Talla D, Hung CY, Talluri R, Brill F, Smith D, Brier D, Xiong B, Huynh D (2004) Anatomy of a
portable digital mediaprocessor. Micro, IEEE 24(2):32–39

Taubenfeld G (2006) Synchronization Algorithms and Concurrent Programming. Pearson/Prentice
Hall

Thies W (2008) Language and compiler support for stream programs. PhD thesis, MIT, http://
groups.csail.mit.edu/cag/streamit/shtml/documentation.shtml

Vahid F (2003) The softening of hardware. Computer 36(4):27–34
Vahid F (2007a) Digital Design. John Wiler and Sons Publishers
Vahid F (2007b) It’s time to stop calling circuits “hardware”. Computer 40(9):106–108
Vahid F (2009) Dalton project. Tech. rep., http://www.cs.ucr.edu/dalton/
Valls J, Sansaloni T, Perez-Pascual A, Torres V, Almenar V (2006) The use of cordic in software

defined radios: a tutorial. Communications Magazine, IEEE 44(9):46–50
Verbauwhede I, Scheers C, Rabaey J (1994) Memory estimation for high level synthesis. In: Pro-

ceedings of the Design Automation Conference, pp 143–148
Volder JE (1959) The cordic trigonometric computing technique. Electronic Computers, IEEE

Transactions on EC-8(3):330–334
Wolf W (2003) A decade of hardware/software codesign. Computer 36(4):38–43
Wulf W, McKee S (1995) Hitting the memory wall: Implications of the obvious. In:

ACM SIGARCH Computer Architecture News, 23, http://www.cs.virginia.edu/papers/Hitting
Memory Wall-wulf94.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.cs.clemson.edu/mark/uprog.html
http://groups.csail.mit.edu/cag/streamit/shtml/documentation.shtml
http://groups.csail.mit.edu/cag/streamit/shtml/documentation.shtml
http://www.cs.ucr.edu/dalton/
http://www.cs.virginia.edu/papers/Hitting_Memory_Wall-wulf94.pdf
http://www.cs.virginia.edu/papers/Hitting_Memory_Wall-wulf94.pdf

392 References

Xilinx I (2009) Picoblaze for extended spartan-3a family, virtex-4, virtex-ii, and virtex-ii pro fpgas.
Tech. rep., http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

Yaghmour K, Masters J, Ben-Yossef G, Gerum P (2008) Building Embedded Linux Systems, 2nd
Edition. O’Reilly Media, Inc.

http://www.xilinx.com/products/ipcenter/picoblaze-S3-V2-Pro.htm

Index

8051
in GEZEL, 221

address decoding, 233
admissible schedule, 40
Advanced Encryption Standard, 319
Ahmdahl’s law, 26
Application Binary Interface, 191
ASIC, 18
ASIP, 12, 18
assembler, 166

bandwidth
off-chip, 211
on-chip, 211

big-endian, 179
bit-parallel processor, 307
bit-serial processor, 307
block cipher, 337
blocking, 267
boolean data flow, 46
bus

alignment, 240
burst transfer, 242
clock cycle, 235
locking, 248
multi-layer, 250
naming convention, 235
overlapping arbitration, 246
pipelined transfer, 242
split transfer, 242
timeout, 238
timing diagram, 235
topology, 250
transfer sizing, 239
wait state, 238

bus arbiter, 233, 245

bus bridge, 206
bus interface, 231
bus master, 206, 233
bus slave, 206, 233

cache
set-associative, 195

cast
in GEZEL, 98

CFG, see control flow graph
ciphertext, 337
circular queue, 50
code inlining, 60
communication-constrained coprocessor, 306
compiler, 166
computation-constrained coprocessor, 306
computational efficiency

actual, 210
intrinsic, 209

concurrency, 25
Connection Machine, 26
continuous-time model, 23
control edge, 72
control edge implementation, 74
control flow graph, 73, 75

construction from C, 76
for control statements, 76
of euclid’s algorithm, 76

control flow modeling, 46
control hierarchy, 311
control path, 76
control processing, 22
control shell, 231, 303

index-multiplexing, 309
time-multiplexing, 309

control shell port, 305
control store, 136

control store address register, 136

393

394 Index

cooperative multi-threading, 54
coprocessor argument, 303
coprocessor interface, 259, 279
coprocessor parameter, 303
CORDIC, 369

rotation mode, 388
vector mode, 388

crossbar, 250
CSAR, see control store address register
custom-instruction interface, 286
cycle-accurate model, 24
cycle-based hardware, 4

data edge, 72
in control statements, 73

data edge implementation, 74
data flow

actor, 37
actor implementation, 51
firing rule, 38
marking, 38
multi-rate, 64
queue, 37
token, 37

data flow graph, 73, 77
construction from C, 78

data flow graphs,dealing with pointers and
arrays, 80

data flow model, 36
data path, 82
data processing, 22
data-stationary control, 314
dataflow,interleaving, 58
deadlock, 40
determinate specification, 39
DFG, see data flow graph
dis-assembling, 183
discrete-event model, 23
distributed

communication (in SoC), 210
data processing (in SoC), 209
storage (in SoC), 211

DM310 processor, 215
domain-specific, 19
DRAM, 211
DSP, 12, 18

Efficiency
energy, 19
time, 19

endianess, 289
energy efficiency, 15

energy-efficiency, 14
euclid’s algorithm, 44
expression

in GEZEL, 99

fast simplex link, 282, 382
FIFO, 49
finite state machine, 82, 104

in GEZEL, 107
Moore and Mealy, 105

finite state machine with datapath, 107
execution model, 109
implementation, 113
language mapping, 119
limitations, 133
modeling trade-off, 112
proper FSMD, 117

firing vector, 42
fixed point representation, 371
Flexibility, 19
flexibility, 21
FPGA, 12, 18
FSM, see finite state machine
FSMD, see finite state machine with datapath

GEZEL
cast, 96
code generator, 381
expression, 97
finite state machine, 105
instruction, 105
ipblock, 216
operators, 97
registers, 96
wire, 95

handshake, 265
hardware sharing factor, 306
hardware-software codesign

definition, 11, 12
heterogeneous

communications (in SoC), 210
data processing (in SoC), 209
storage (in SoC), 211

hierarchical control
in SoC, 214

instruction
in GEZEL, 107

instruction-accurate model, 25
instruction-instruction interface, 259

Index 395

instruction-set simulator, 170
interface

coprocessor, 208
processor custom-datapath, 208
SoC peripheral, 207

IP reuse, 22
ipblock, 275

in GEZEL, 218

key schedule, 337
keystream, 337

linear feedback shift register, 101
linear pipeline, 284, 313
linker, 166
little-endian, 179
loader, 166
loose-coupling, 282

mailbox, 271
master handshake, 273
memory

access time, 212
cell size, 212
power consumption, 212
retention time, 212

memory wall, 213
memory-mapped coprocessor, 275
memory-mapped interface, 259
memory-mapped register, 268
methodology, 20
microinstruction

formation, 142
microinstruction encoding, 137

horizontal encoding, 139
vertical encoding, 139

microprogram interpreter, 151
macro-machine, 153
micro-machine, 153

microprogram pipelining
control store output pipeline, 157
CSAR update loop pipeline, 158
datapath condition register, 157

multi-rate dataflow graph, 38

network on chip, 250
non-blocking, 267
non-linear pipeline, 284, 313
NVRAM, 212
NVROM, 211

one-way handshake, 265
operator compounding, 293
operator fusion, 293
operators

in GEZEL, 99

parallelism, 25
PASS, see periodic admissible schedule
periodic admissible schedule, 41
picoblaze, 159
plaintext, 337
platform, 18
Platform programming, 20
port-mapped interface, 344
producer/consumer, 264
programmable, 16

rank of a matrix, 42
reconfigurable, 16
register

in GEZEL, 96
in hardware, 211

reservation table, 315
RISC, 18, 173

control hazard, 174
data hazard, 176
data type alignment, 179
delayed-branch, 175
interlock, 174
link register, 183
Load Memory Address, 188
pipeline hazard, 174
pipeline stall, 174
scalability, 166
structural hazard, 177

round-robin, 55
RTL, 4

scheduler, 55
SDF, 39
shared memory, 274
simulation, 15
single-assignment program, 85

merge function, 87
single-thread software, 6
slave handshake, 273
SoC

platform, 205
soft-core, 12
spatial decomposition, 21
specification, 18
SRAM, 211

396 Index

state explosion, 133
static schedule, 49, 60
static single-assignment form, 87
stream cipher, 337
StrongARM

in GEZEL, 218
structural hierarchy, 103
synchronization dimensions, 261
synchronization point, 260
synchronous dataflow graph, 39
systolic-array processor, 307

tight-coupling, 282
time-stationary control, 314

timewise decomposition, 21
topology matrix, 41
transaction-accurate model, 25
Trivium, 337
two-way handshake, 265

volatile pointer, 270

wire
in GEZEL, 97

yield point, 55

	A Practical Introduction to Hardware/Software Codesign
	Preface

	Contents

	Part I Basic Concepts
	Part II The Design Space of Custom Architectures
	Part III Hardware/Software Interfaces
	Part IV Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

