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Introduction

William Lahoz, Boris Khattatov, and Richard Ménard

This book came from a request from Springer to the editors to update knowledge
on the science of data assimilation and incorporate developments during the last
5 years. It is designed to update the science of data assimilation since the NATO
(North Atlantic Treaty Organization) Science Series Book “Data Assimilation for
the Earth System” (R. Swinbank, V. Shutyaev, W.A. Lahoz, eds.) came out in 2003,
and fill in some of the gaps in that book. The NATO Science Series Book was based
on a set of lectures presented at the NATO Advanced Study Institute (ASI) on Data
Assimilation for the Earth System, which was held at Maratea, Italy during May–
June 2002. That ASI grew out of a concern that there was little teaching available in
data assimilation, even though it had become central to modern weather forecasting,
and was becoming increasingly important in a range of other Earth disciplines such
as the ocean, land and chemistry.

Many changes have happened in the science of data assimilation over the last
5 years. They include the development of chemical data assimilation systems at
several centres world-wide, both research and operational; the increased interaction
between the research and operational communities; the use of data assimilation to
evaluate research satellite data; the use of data assimilation ideas, long applied to
weather forecast models, to evaluate climate models; the combination of theoretical
notions from variational methods and ensemble Kalman filter methods to improve
data assimilation performance; and the increased extension of data assimilation to
areas beyond the atmosphere and dynamics: chemistry, ionosphere, and other plan-
ets, e.g., Mars and Venus. There has also been a consolidation in the use of data
assimilation to evaluate future observations, and in the use of data assimilation in
areas such as the ocean and the land.

Parallel to these changes in the science of data assimilation, another remark-
able change over the last 5 years has been the increased presence of data
assimilation in teaching initiatives such as Summer Schools. These include the
now biennial ESA (European Space Agency) Earth Observation Summer School

W. Lahoz (B)
Norsk Institutt for Luftforskning, Norwegian Institute for Air Research, NILU, Kjeller, Norway
e-mail: wal@nilu.no
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(http://envisat.esa.int/envschool_2008/) and several others. It can now be said
that data assimilation has become a mainstream topic in the teaching of Earth
Observation.

The NATO Science Series book, although useful and a feature in many univer-
sity lecture courses, has some gaps. These include, for example, an overview of
data assimilation and its relationship to information, either in observations or mod-
els; a discussion of ensemble Kalman filter methods; a discussion of Observing
System Simulation Experiments (OSSEs); a discussion of tropospheric chemical
data assimilation; and a discussion of meteorology and dynamics.

This book is intended to build on the material from the NATO Science Series
book, address the above changes, and fill in the above gaps. Although there will
be inevitable gaps in this book, we think it will provide a useful addition to the
literature on data assimilation. To achieve this, we have asked world-leading data
assimilation scientists to contribute to the chapters. We hope we succeed, at least
until the next data assimilation book along these lines comes out in 5 years! Finally,
we dedicate this book to Andrew Crook (1958–2006) who was one of the original
chapter authors.

November 2009
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Data Assimilation and Information

William Lahoz, Boris Khattatov, and Richard Ménard

1 Introduction

In this introductory chapter we provide an overview of the connection between the
data assimilation methodology and the concept of information, whether embodied
in observations or models. In this context, we provide a step by step introduction to
the need for data assimilation, culminating in an easy to understand description of
the data assimilation methodology. Schematic diagrams and simple examples form
a key part of this chapter.

The plan is to first discuss the need for information; then discuss sources of infor-
mation; discuss the characteristics of this information, in particular the presence of
“information gaps”; provide an objective underpinning to methods to fill in these
information gaps; and discuss the benefits of combining different sources of infor-
mation, in this case from observations that sample in space and time the system of
interest (e.g. the atmosphere, the ocean, the land surface, the ionosphere, other plan-
ets), and models that embody our understanding of the system observed. Finally,
we bring together these ideas under the heading of “data assimilation”, provide a
schematic of the methodology, and provide three simple examples highlighting how
data assimilation adds value, the impact of spatial resolution on information, and
the impact of temporal sampling on information.

At the end of this chapter we identify the foci of this book and the order in which
they are presented in the book.

2 Need for Information

The main challenges to society, for example, climate change, impact of extreme
weather, environmental degradation and ozone loss, require information for an
intelligent response, including making choices on future action. Regardless of its

W. Lahoz (B)
Norsk Institutt for Luftforskning, Norwegian Institute for Air Research, NILU, Kjeller, Norway
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4 W. Lahoz et al.

source, we wish to be able to use this information to make predictions for the
future, test hypotheses, and attribute cause and effect. In this way, we are able to
take action according to information provided on the future behaviour of the system
of interest, and in particular future events (prediction); test our understanding of the
system, and adjust this understanding according to new information (hypothesis test-
ing); and understand the cause of events, and obtain information on possible ways
of changing, mitigating or adjusting to the course of events (attribute cause and
effect).

We can identify a generic chain of information processing:

• Gather information;
• Test hypotheses based on this information;
• Build methods to use this information to attribute cause and effect;
• Use these methods to make predictions.

However, we still need two ingredients: a means of gathering information, and
methods to build on this information gathered. Roughly speaking, observations
(measurements) provide the first ingredient, and models (conceptual, numerical or
otherwise) provide the second ingredient. Note, however, that from the point of
view of information, observations and models are not distinct; it is the mechanism
of obtaining this information that is distinct: observations have a roughly direct link
with the system of interest via the measurement process; models have a roughly indi-
rect link with the system of interest, being an embodiment of information received
from measurements, experience and theory.

3 Sources of Information

We have two broad sources of information: measurements of the system of inter-
est (“observations”); and understanding of the temporal and spatial evolution of
the system of interest (“models”). Further details about observations and models
can be found in Part II, Observations, and Part III, Meteorology and Atmospheric
Dynamics, respectively.

Observations (or measurements) sample the system of interest in space and time,
with spatial and temporal scales dependent on the technique used to make the mea-
surements. These measurements provide information on the system of interest and
contribute to building an understanding of how the system evolves in space and
time.

Understanding can be qualitative, e.g., how variables roughly “connect” or are
related, or quantitative, commonly expressed in equations. A rough, qualitative con-
nection can indicate that if the velocity of a particle increases, its kinetic energy also
increases. A quantitative connection based on equations assigns a numerical rela-
tionship between the velocity and the kinetic energy, so that we can make precise
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(subject to the accuracy of the calculation) the increase in kinetic energy given an
increase in velocity of the particle. Equations can come from general laws (e.g.
Newton’s laws of motion), or relations between parameters (e.g. empirical or statis-
tical). In general, quantification on the basis of laws tends to be more rigorous than
quantification on the basis of empirical or statistical relations, mainly because laws
have broad (if not universal) application, whereas empirical or statistical relations
tend to apply only to specific cases.

4 Characteristics of Information

To make use of the information embodied in observations and models it is nec-
essary to understand the characteristics of this information. In particular, we must
recognize that both observations and models have errors. We now discuss briefly
the nature of these errors.

Observations have errors which are characterized as random (also known as
precision), systematic (also known as bias) and of representativeness (or represen-
tativity). The sum of these errors is sometimes known as the accuracy. Random
errors have the property that they are reduced by averaging. Systematic errors, by
contrast, are not reduced by averaging; if known, they can be subtracted from an
observation. The representativeness error is associated with differences in the reso-
lution of observational information and the resolution of the model interpreting this
information.

Models also have errors. These errors arise through the construction of models, as
models can be incomplete due to a lack of understanding or due to processes being
omitted to make the problem tractable; and through their imperfect simulation of the
“real world”, itself sampled by observations or measurements. Thus, information,
whether in the form of observations or models has errors, and these have to be taken
into account. Further details about the nature of observational and model errors can
be found in the following chapters in Part I, Theory.

Another key feature of observations (or measurements) is that they are discrete
in space and time, with the result that the information provided by observations has
gaps (Fig. 1).

It is desirable to fill gaps in the information provided by observations: first, to
make this information more complete, and hence more useful; second, to provide
information at a regular scale to quantify the characteristics of this information.
Information at an irregular scale can be quantified, but this procedure is more
tractable when done with a regular scale.

Assuming a need to fill in the gaps in the observational information, the question
is how to do so. Conceptually, it is desirable to use information on the behaviour
of the system to extend the observations and fill in the gaps. This information is
provided by a model of how the system behaves; this model then allows one to
organize, summarize and propagate the information from observations. Note that
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Fig. 1 Plot representing ozone data at 10 hPa (approximately 30 km in altitude) for 1 February
1997 based on the observational geometry of ozone measurements from the MLS (Microwave
Limb Sounder) instrument onboard the National Aeronautics and Space Administration (NASA)
UARS (Upper Atmosphere Research Satellite) satellite. For information on UARS, see
http://mls.jpl.nasa.gov/uars/science.php. Blue denotes relatively low ozone values; red denotes
relatively high ozone values. Note the gaps between the satellite orbits. Thanks to Finn Bjørklid
(NILU) for improving this figure

there can be differences in the resolution of the observations, and the resolution of
the models used to propagate the information in observations. This will introduce
errors when filling in the information gaps.

We now discuss algorithms to fill in the information gaps. The idea is that
the algorithm, embedded in a model, provides a set of consistent (i.e., mathe-
matically, physically or otherwise) and objective (i.e., based on impartial prin-
ciples) rules which when followed fill in the information gaps associated with
observations.

5 Objective Ways of Filling in Information Gaps

What algorithm should one use to fill in the information gaps associated with obser-
vations? There are a number of features that such an algorithm should have. The
most important ones are that it be feasible and that it be objective (and consistent).
From the point of view of feasibility, one could build a hierarchy of algorithms
of increasing complexity, starting, for example, with linear interpolation between
observations. A simple approach such as linear interpolation is feasible (because
simple) and, in cases where observations are dense enough, could be expected to be
reasonably accurate. However, although in principle consistent, it is not objective
(because not general) and, for example, in general it will not reflect how it is under-
stood systems such as the atmosphere behave. A more realistic approach would be
to fill in the gap using a model of how the system behaved. For example, for the
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atmosphere, we could use a model that embodies the equations of motion; radiative
transfer; physical processes such as convection; and chemistry. Such a model would
be more expensive to apply than a simple linear interpolation, but in principle would
provide a more accurate (and more objective) approach to filling in the information
gaps in the observations. In practice, one strikes a balance between using a model
that is feasible and using a model that is objective and consistent. Practically, one
seeks a model that is tractable and realistic.

We would like to find methods that allow the interpolation, i.e., filling in
of the observational information gaps using a model, to be done in an “intel-
ligent” way. By intelligent, we mean an “objective” way which makes use of
concepts for combining information that can be quantified. For example, by find-
ing the minimum or maximum value of a quantity that can be calculated from
the information available. In this way, we can think of the model as an intelli-
gent interpolator of the observation information: intelligent because it embodies
our understanding of the system; intelligent because the combination of the obser-
vational and model information is done in an objective way. Note that in practice,
the model (like the observations) provides information that is discrete in space and
time.

Mathematics provides rules for combining information objectively, based on
principles which aim to maximize (or minimize) a quantity (e.g. a “penalty
function”), or on established statistical concepts which relate prior information
(understanding, which comes from prior combination of observations and models)
with posterior information (which comes from making an extra observation).

In particular, mathematics provides a foundation to address questions such as:
“What combination of the observation and model information is optimal?”, and pro-
vides an estimate of the errors of the “optimum” or “best” estimate. This is known
as “data assimilation” (also as Earth Observation data/model fusion), and has strong
links to several mathematical disciplines, including control theory and Bayesian
statistics. The data assimilation methodology adds value to the observations by fill-
ing in the observational gaps and to the model by constraining it with observations
(Fig. 2 below). In this way, the data assimilation allows one to “make sense” of the
observations. Further details about the theory of data assimilation can be found in
the following chapters in Part I, Theory.

Mathematics also provides an algorithmic basis for applying data assimilation
to real problems, including, for example, weather forecasting, where data assim-
ilation has been very successful. In particular, over the last 25 years, the skill of
weather forecasts has increased – the skill of today’s 5-day forecast is comparable
to the skill of the 3-day forecast 25 years ago. Furthermore, the skill of forecasts
for the Southern Hemisphere is now comparable to that of the Northern Hemisphere
(Simmons and Hollingsworth 2002).

Mathematics also provides a theoretical and algorithmic basis for studying
the problem of data assimilation, notably by using simpler models to test ideas.
The results using these simpler models can then be used to inform data assim-
ilation developments with complex systems, such as those used for weather
forecasting.
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Fig. 2 Schematic of how data assimilation (DA) works and adds value to observational and
model information. The data shown are various representations of ozone data at 10 hPa
(about 30 km in height) on 23 September 2002. Lower left panel, “observations”: plot rep-
resenting the day’s ozone data based on the observational geometry of ozone measurements
from the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument
onboard the European Space Agency (ESA) Envisat satellite; for information on MIPAS, see
http://envisat.esa.int/instruments/mipas/. Lower right panel, “forecast”: plot representing a 6-day
ozone forecast (1200 UTC) based on output from a DA system. Top panel, “analyses”: plot rep-
resenting an ozone analysis (1200 UTC) based on output from a DA system. The DA system
associated with the lower right plot and the top plot is based on that at the Met Office, and is
described in Geer et al. (2006). Blue denotes relatively low ozone values; red denotes relatively
high ozone values. The DA method combines the observations with a model forecast (commonly
short-term, e.g., 6 or 12 h), including their errors to produce an ozone analysis. Note how the anal-
ysis (top panel) fill in the gaps in the observations (lower left panel), and the analysis captures the
Antarctic ozone hole split (verified using independent data not used in the assimilation) whereas
the 6-day forecast (lower right panel) does not. In this sense, the DA method adds value to both
the observations and the model. Thanks to Alan Geer for providing the basis of this figure and for
Finn Bjørklid for improving the figure

6 Simple Examples of Data Assimilation

We now provide three simple examples highlighting how data assimilation adds
value (Example 1); the impact of spatial resolution on information (Example 2);
and the impact of temporal sampling on information (Example 3).

Example 1 Combining observations with understanding of a system, where both
pieces of information have finite errors, should, intuitively, increase the information
about the system. There are several ways of quantifying this increase in infor-
mation, one of them being the error embodied in the information, quantified by
the standard deviation. We discuss this using a simple example where informa-
tion from two scalar quantities with Gaussian (i.e., normally distributed) errors is
combined.



Data Assimilation and Information 9

Consider two observations (x1, x2) of variable x, with associated variances (σ 1
2,

σ 2
2). Now assume that the observation errors are random, unbiased and normally

distributed. It can be shown that the optimum estimate (“most probable” value) is
given by:

x =

(
x1
σ 2

1
+ x2
σ 2

2

)
(

1
σ 2

1
+ 1
σ 2

2

) ,

with variance:

σ 2 =
(

1

σ 2
1

+ 1

σ 2
2

)−1

.

We can also see from this example that:

σ1 →∞, x → x2;

σ 2 ≤ min{σ 2
1 , σ 2

2 }.
We can see from this simple example that the error (variance) associated with

the combined information is generally lower than the error associated with any of
the two pieces of information being combined and that, at worse, it is equal to the
minimum of the errors of the individual pieces of information, but never larger. We
can also see obvious limiting cases, when the error of one of the pieces of informa-
tion being combined becomes infinitely large, i.e., the information from this piece
becomes vanishingly small. The result in this example can be generalized to two
observations (x1, x2) of a vector variable x, with associated matrix error covariances
(S1, S2).

Although this simple example encapsulates how information is increased, this
result concerning variances only holds for Gaussian errors. For errors that are not
Gaussian, the variance of the combined information can be larger than that of one of
the pieces of information being combined. This apparently counter-intuitive result
indicates that variance is not the best way of measuring increases in information. In
fact, one must use the concept of entropy to consider errors with general probability
distributions.

Example 2 Consider a large square room, where temperature measurements are
made at each corner. What is the temperature at the centre of the room? What is
the temperature representative for the room? These questions concern the spatial
resolution of information, and how the latter changes as the former changes.

To estimate the temperature at the centre of the room we could average the four
corner temperatures, giving each measurement equal weight. This gives the same
result assuming the temperature varies linearly between opposite corners and taking
an average of the two resulting measurements. Regardless of how the final value is
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computed, a model of how the temperature varies in the room is needed to compute
the temperature at the centre of the room.

To estimate the temperature representative for the room we could proceed as
above. In this case we would be averaging the “point” temperature information from
each corner to provide “area” temperature information for the whole room. When
we use this estimate of the “area” temperature (or any other estimate) as represen-
tative of the room temperature, we incur an error of representativeness. This was
introduced in Sect. 4 above.

The impact of spatial resolution on the estimate for the temperature at the centre
of the room can be seen as follows. If we increase the number of measurements in
the room, for example along the walls or toward the centre, we tend to get a better
estimate of the temperature at the centre of the room, either because we are sam-
pling closer to the room centre, and/or we are obtaining more information of how
the temperature varies in the room. Higher spatial observational sampling gener-
ally provides (at least initially) better information on the system by reducing the
observational gaps. However, there comes a point where we do not get further infor-
mation, e.g., sampling the temperature at close enough locations in the room gives
essentially an unchanged temperature within the error of the measuring device. This
illustrates the concept of observational information saturation with respect to other
observations, where the measurement is no longer independent and provides no new
information.

The impact of spatial resolution on the estimate for the “area” temperature of
the room can be seen as follows. Assume the spatial resolution of the algorithm
(i.e., model) used to estimate the “area” temperature remains fixed. As we reduce
the spatial dimensions of the room the observational gaps become smaller, and the
estimate of the “area” temperature as calculated above (or generally using any algo-
rithm or model) initially tends to become more accurate. However, there comes a
point where, within the error of the algorithm, we do not get further information
if we continue reducing the spatial dimension of the observational gaps. We have
observational information saturation with respect to the model.

Through representation of errors, data assimilation takes account of the spa-
tial resolutions in the model and the observations, and the information saturation
between observations, and between the observations and the model.

Example 3 Consider a person walking along a path in the forest, gathering informa-
tion about their surroundings through their eyes, and keeping their eyes closed for
regular intervals. How does this person keep on the path when their eyes are closed?
How does the time the person keeps their eyes closed affect their progress along the
path? These questions concern the rate at which information is sampled in time, i.e.,
temporal sampling.

The person gathers observational information about their surroundings through
their eyes: “the path is straight”; “the path curves to the left”. This provides infor-
mation of the path to the person, who then incorporates it into a model of their
surroundings. This allows the person to keep along the path when their eyes are
closed: “keep straight ahead”; “turn left”. When the person next opens their eyes
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they can adjust (correct) their model of their surroundings depending on the new
observational information: “turn right”; “bend down to avoid a low tree branch”.
The combination of observational and model information allows the person to walk
along the path.

However, the amount of time the person keeps their eyes closed affects the qual-
ity of observational information they get about their surroundings. If the amount of
time is relatively short, say 1 s, the quality of observational information will be rela-
tively high and the person should be able to walk along the path without mishap. By
contrast, if the amount of time is relatively long, say 1 min, the quality of observa-
tional information will be relatively low and the person would be expected to have
problems walking along the path (note, however, that this depends on the nature
of the path, see later). This shows how temporal sampling can affect the quality of
observational information received, which in turn allows the correction of model
information.

If the path is straight, the amount of time the person keeps their eyes closed can
be relatively long and still allow them to be able to keep along the path without
mishap. This is because the model of the path (built from observational informa-
tion) is relatively simple: “keep on a straight line”, and does not need relatively
high temporal sampling to adjust it. Conversely, if the path has many bends without
pattern in their handedness, the model of the path (again, built from observational
information) is relatively complex: “keep turning in the direction of the path”, and
needs relatively high temporal sampling to adjust it. This shows how the complex-
ity of the system affects the temporal sampling of observational information needed
to adjust (i.e., keep “on track”) a model describing the system. The appropriate
complexity of a model describing the system depends on the character of the obser-
vational information gathered (observation types, errors, spatial resolution, temporal
sampling).

Data assimilation, by confronting the model with observations in time and space,
keeps the model on track.

7 Benefits of Combining Information

As seen in Fig. 2 above, and the examples in Sect. 6, combining information from
observations and a model adds value to both the observations and the model: the
information gaps in the observations are filled in; the model is constrained by the
observations. Other benefits accrue from “confronting” observations and models,
as is done in the data assimilation method. These benefits include the evaluation
of both the observations and the model. This evaluation of information is crucial
in Earth Observation (observational information); Earth System Modelling (model
information, i.e., information which embodies our understanding); and in meld-
ing observations with a model, which we call “data assimilation” (merging of
information). By evaluating information, shortcomings can be identified and
remedied, with a consequent improvement in the collection, propagation and use
of information.
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8 What This Book Is About

This book develops the theme introduced in this chapter, namely, the use of data
assimilation to make sense of observations. It has six foci:

• Theory (the eight chapters in Part I following this chapter);
• Observations (the three chapters in Part II);
• Meteorology and Atmospheric Dynamics (the three chapters in Part III);
• Atmospheric Chemistry (the four chapters in Part IV);
• Wider Applications (the three chapters in Part V);
• The Longer View (the three chapters in Part VI).

These foci span several cross-cutting axes: (i) the mathematics of data assimi-
lation; (ii) observations and models; (iii) the activities of the weather centres and
the activities of the research community; (iv) the different elements of the Earth
System: atmosphere, ocean, land and chemistry; (v) evaluation and production of
added-value analyses; and (vi) the success of the data assimilation method and
future developments. These are exciting times for data assimilation and we hope
this book conveys this excitement.
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Mathematical Concepts of Data Assimilation

N.K. Nichols

1 Introduction

Environmental systems can be realistically described by mathematical and numeri-
cal models of the system dynamics. These models can be used to predict the future
behaviour of the system, provided that the initial states of the system are known.
Complete data defining all of the states of a system at a specific time are, however,
rarely available. Moreover, both the models and the available initial data contain
inaccuracies and random noise that can lead to significant differences between the
predicted states and the actual states of the system. In this case, observations of the
system over time can be incorporated into the model equations to derive “improved”
estimates of the states and also to provide information about the “uncertainty” in the
estimates.

The problem of state-estimation is an inverse problem and can be treated using
observers and/or filters derived by feedback design techniques (see, for example,
Barnett and Cameron 1985). For the very large non-linear systems arising in the
environmental sciences, however, many traditional state-estimation techniques are
not practicable and new “data assimilation” schemes have been developed to gener-
ate accurate state-estimates (see, for example, Daley 1993; Bennett 1992). The aim
of such schemes can be stated as follows.

The aim of a data assimilation scheme is to use measured observations in combination with
a dynamical system model in order to derive accurate estimates of the current and future
states of the system, together with estimates of the uncertainty in the estimated states.

The most significant properties of the data assimilation problem are that the
models are very large and non-linear, with order O(107–108) state variables. The
dynamics are multi-scale and often unstable and/or chaotic. The number of obser-
vations is also large, of order O(105–106) for a period of 6 h, but the data are not
evenly distributed in time or space and generally have “holes” where there are no
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observations (see chapter Data Assimilation and Information, Lahoz et al.). In prac-
tice the assimilation problem is generally ill-posed and the state estimates may be
sensitive to errors.

There are two basic approaches to this problem. The first uses a “dynamic
observer,” which gives a sequential data assimilation scheme, and the second uses
a “direct observer,” which gives a four-dimensional data assimilation scheme. In
the first case, the observations are “fed-back” into the model at each time these
are available and a best estimate is produced and used to predict future states. In
the second case a feasible state trajectory is found that best fits the observed data
over a time window, and the estimated states at the end of the window are used to
produce the next forecast. Under certain mathematical assumptions these processes
solve the same “optimal” state-estimation problem. In operational systems, solv-
ing the “optimal” problem in “real-time” is not always possible, and many different
approximations to the basic assimilation schemes are employed.

In the next section the data assimilation problem is formulated mathematically.
In subsequent sections various techniques for solving the assimilation problem are
discussed.

2 Data Assimilation for Non-linear Dynamical Systems

A variety of models is used to describe systems arising in environmental appli-
cations, as well as in other physical, biological and economic fields. These range
from simple linear, deterministic, continuous ordinary differential equation mod-
els to sophisticated non-linear stochastic partial-differential continuous or discrete
models. The data assimilation schemes, with minor modifications, can be applied to
any general model.

We begin by assuming that for any given initial states and given inputs, the equa-
tions modelling the dynamical system uniquely determine the states of the system
at all future times. This is known as the “perfect” model assumption. In the follow-
ing subsections we define the data assimilation problem for this case and examine
its properties. Next we determine a best linear estimate of the solution to the non-
linear assimilation problem. The data assimilation scheme is then interpreted in a
stochastic framework and the “optimal” state-estimate is derived using statistical
arguments. We consider the case where the model includes errors in the system
equations in a later section of this chapter.

2.1 Basic Least-Squares Formulation for Perfect Models

Data assimilation schemes are described here for a system modelled by the discrete
non-linear equations

xk+1 =Mk,k+1(xk), k = 0, . . . , N − 1, (1)
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where xk ∈ R
n denotes the vector of n model states at time tk and Mk,k+1 : R

n →
R

n is a non-linear operator describing the evolution of the states from time tk to time
tk+1. The operator contains known inputs to the system including known external
forcing functions that drive the system and known parameters describing the system.

Prior estimates, or “background estimates,” xb
0, of the initial states x0 at time t0

are assumed to be known, usually provided by a previous forecast.
The observations are assumed to be related to the system states by the equations

yk = Hk(xk)+ εo
k , k = 0, . . . , N, (2)

where yk ∈ R
pk is a vector of pk observations at time tk and Hk : R

n → R
pk is a

non-linear operator that includes transformations and grid interpolations. The obser-
vational errors εo

k ∈ R
pk consist of instrumentation errors and representativity (or

representativeness) errors (see chapter Data Assimilation and Information, Lahoz
et al.).

For the “optimal” analysis, we aim to find the best estimates xa
k for the system

states xk, k = 0, . . . , N, to fit the observations yk, k = 0, . . . , N, and the background
state xb

0, subject to the model equations (1). We write the problem as a weighted
non-linear least-squares problem constrained by the model equations.

Problem 1 Minimize, with respect to x0, the objective function

J =1

2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)
+

+ 1

2

N∑
k=0

(Hk(xk)− yk)TR−1
k (Hk(xk)− yk),

(3)

subject to xk, k = 1, . . . , N, satisfying the system equations (1) with initial states x0.

The model is assumed here to be “perfect” and the system equations are treated as
strong constraints on the minimization problem. The states xk that satisfy the model
equations (1) are uniquely determined by the initial states and therefore can be writ-
ten explicitly in terms of x0. Substituting into the objective function (3) then allows
the optimization problem to be expressed in terms of the initial states alone. The
assimilation problem, Problem 1, thus becomes an unconstrained weighted least-
squares problem where the initial states are the required control variables in the
optimization.

The weighting matrices B0 ∈ R
n×n and Rk ∈ R

pk×pk , k = 0, 1 . . . , N, are taken
to be symmetric and positive definite and are chosen to give the problem a “smooth”
solution. They represent, respectively, the uncertainty in the background states (prior
estimates) and the observations. The objective function (3) can then be written in the
compact form:

J(x0) = 1

2
‖f(x0)‖2

2 ≡
1

2
f(x0)T f(x0), (4)
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where

f(x0) =

⎛
⎜⎜⎜⎜⎜⎝

B−1/2
0

(
x0 − xb

0

)
R−1/2

0 (H0(x0)− y0)
...

R−1/2
N (HN(xN)− yN)

⎞
⎟⎟⎟⎟⎟⎠

, (5)

and xk =M0,k(x0), k = 1, . . . , N, satisfy the system equations (1) with initial states

x0 at time t0 (see Lawless et al. 2005). The matrices B−1/2
0 and R−1/2

k denote the
inverses of the symmetric square roots of B0 and Rk, respectively.

In this approach the initial states are treated as parameters that must be selected
to minimize the weighted mean square errors between the observations predicted
by the model and the measured observations over the time window and between the
initial and background states. The initial state is adjusted to different positions in
order to achieve the best fit, using an efficient iterative minimization algorithm.

2.2 Properties of the Basic Least-Squares Formulation

The solution xa
0 to the least-squares problem (4) is known as the analysis. The anal-

ysis may not be well-defined if B−1
0 = 0, that is, if no background state is specified.

In that case the number and locations of the observations may not be sufficient to
determine all the degrees of freedom in the optimization problem; in other words,
the system may not be “observable.” If the weighting matrix B0 is non-singular,
however, then, provided the operators M0,k and Hk are continuously differentiable,
the stationary points of the least-squares problem are well-defined. The weighted
background term acts as a “regularization” term, ensuring the existence of a solution
and also damping the sensitivity of the solution to the observational errors (Johnson
et al. 2005a, b).

Under these conditions, the stationary points of the objective function (4) satisfy
the gradient equation, given by

∇x0 J = JT f(x0) = 0, (6)

where J is the Jacobian of the vector function f defined in (5). The Jacobian can be
written in the compact form

J =
(

B−1/2
0

R̂
−1/2

Ĥ

)
, Ĥ =

⎛
⎜⎜⎜⎝

H0
H1M0,1

...
HNM0,N

⎞
⎟⎟⎟⎠ , (7)
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where R̂ = diag{Rk} is a block diagonal matrix containing the weighting matrices
Rk on the diagonal. The matrices M0,k and Hk denote the Jacobians of the model
and observation operators M0,k and Hk, respectively; that is,

M0,k = ∂M0,k

∂x

∣∣∣∣x0 , Hk = ∂Hk

∂x

∣∣∣∣
M0,k(x0)

.

If B0 is non-singular, then the Jacobian J, given by (7), is of full rank and the
stationary points satisfying the gradient equation (6) are well-defined. Stationary
points are not unique, however, and may not yield a minimum of the non-linear
assimilation problem. If a stationary point is such that the Hessian ∇2

x0
J, of the

objective function (3) (or equivalently (4)) is positive-definite at that point, then the
stationary point is a local minimum of the assimilation problem (see Gratton et al.
2007). It should be noted that multiple local minima of the assimilation problem
may exist.

We remark that the sensitivity of the analysis to small perturbations in the data
depends on the “conditioning” of the Hessian, ∇2

x0
J, that is, on the sensitivity of the

inverse of the Hessian to small perturbations. If small errors in the Hessian lead to
large errors in its inverse, then the computed solution to the data assimilation prob-
lem may be very inaccurate. In designing data assimilation schemes, it is important,
therefore, to ensure that the conditioning of the Hessian is as small as feasible, or to
use “preconditioning” techniques to improve the conditioning.

2.3 Best Linear Least-Squares Estimate

In general, explicit solutions to the non-linear data assimilation problem, Problem 1,
cannot be found. A “best” linear estimate of the solution to the non-linear problem
can, however, be derived explicitly. We assume that the departure of the estimated
analysis xa

0 from the background xb
0 is a linear combination of the innovations dk =

yk − Hk
(
xb

k

)
, k = 0, 1, . . . , N, and find the estimate for xa

0 that solves the least-
squares data assimilation problem as accurately as possible.

To determine the estimate, we linearize the assimilation problem about the non-
linear background trajectory xb

k = M0,k
(
xb

0

)
, k = 1, . . . , N. We denote by the

matrices Hk and M0,k the linearizations of the observation and model operators Hk

and M0,k, respectively, about the background trajectory; that is,

Hk = ∂Hk

∂x

∣∣∣∣xb
k
, M0,k = ∂M0,k

∂x

∣∣∣∣
xb

0

.

The linearized least-squares objective function is then given by

J̃ = 1

2
δxT

0 B−1
0 δx0 + 1

2

N∑
k=0

(HkM0,kδx0 − dk)TR−1
k (HkM0,kδx0 − dk), (8)
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where δx0 =
(
x0 − xb

0

)
. Using the compact form of the Jacobian (7), the gradient

equation of the linearized problem may be written

∇x0 J̃ = B−1
0

(
x0 − xb

0

)+
+

N∑
k=0

(HkM0,k)TR−1
k

(
HkM0,k

(
x0 − xb

0

)− (
yk −Hk

(
xb

k

)))

=
(

B−1
0 + Ĥ

T
R̂
−1

Ĥ
) (

x0 − xb
0

)+ Ĥ
T

R̂
−1

d̂

= 0,

(9)

where d̂ = (
dT

0 , dT
1 , . . . , dT

N

)T
is the vector of innovations.

The optimal linear state-estimate for xa
0 is then the solution to the gradient

equation (9) and is given by

xa
0 = xb

0 + K̂d̂, (10)

where

K̂ =
(

B−1
0 + Ĥ

T
R̂
−1

Ĥ
)−1

Ĥ
T

R̂
−1 ≡ B0Ĥ

T
(

ĤB0Ĥ
T + R̂

)−1
. (11)

The matrix K̂ is known as the gain matrix.
For systems where the model and observation operators are linear, the analysis

(10) and (11) is an exact, unique, stationary point of the data assimilation problem,
Problem 1. For non-linear systems multiple stationary points of the objective func-
tion (3) may exist and the analysis (10) and (11) is only a first order approximation to
an optimal solution, due to the linearization of the non-linear model and observation
operators.

The Hessian of the linearized objective function (8) at the analysis (10) and (11)
is given by

∇2
x0

J̃ =
(

B−1
0 + Ĥ

T
R̂
−1

Ĥ
)

. (12)

If B0 is non-singular, then the matrix (12) is symmetric and positive-definite and (10)
and (11) provides the “best” linear estimate of the minimum of the data assimilation
problem, Problem 1, in a region of the state space near to the background.

2.4 Statistical Interpretation

The data assimilation problem, as formulated in Problem 1, determines a least-
squares fit of the model predictions to the observations, subject to constraints.
An estimate of the “uncertainty” in this analysis would be valuable. If additional
assumptions about the stochastic nature of the errors in the initial state estimates and
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the observations are made, then the solution to the data assimilation problem can be
interpreted in statistical terms and the uncertainty in the analysis can be derived.

To obtain a statistical formulation of the data assimilation problem, we assume
that the errors

(
x0–xb

0

)
between the true initial states x0 and the prior background

estimates xb
0 are randomly distributed with mean zero and covariance matrix B0 ∈

R
n×n. The observational errors εo

k ∈ R
pk , k = 0, . . . , N, defined in (2), are assumed

to be unbiased, serially uncorrelated, randomly distributed vectors with zero means
and covariance matrices Rk ∈ R

pk×pk . The observational errors and the errors in the
prior estimates are assumed to be uncorrelated.

Under these basic statistical assumptions, given the prior estimates xb
0, and the

observations yk, k = 0, . . . , N, the “best linear unbiased estimate,” or BLUE, of
the true state x0 at time t0 equals the best least-squares estimate (10) and (11) for
the analysis xa

0. The uncertainty in this estimate is described by the analysis error
covariance, which is given by

A = (In − K̂Ĥ)B0. (13)

Over all linear combinations of the innovations of form (10), the BLUE minimizes
the analysis error covariance and is thus the solution to the assimilation prob-
lem with minimum variance. The analysis given by (10) and (11) is therefore the
“optimal” linear estimate in this sense.

In addition to the basic statistical assumptions, the errors in the prior estimates
and in the observations are commonly assumed to have Gaussian probability distri-
butions, which are fully defined by the means and covariances specified. In this case,
the solution to the data assimilation problem, Problem 1, is equal to the maximum
a posteriori Bayesian estimate of the system states at the initial time. From Bayes
Theorem we have that the posterior probability of (x0 − xb

0), given the departures
from the observations (yk −Hk(xk)), k = 0, . . . , N, satisfies

ρ
(

x0 − xb
0|yk −Hk(xk), k = 0, . . . , N

)
=

= αρ
(

x0 − xb
0

)
ρ

(
yk −Hk(xk), k = 0, . . . , N|x0 − xb

0

)
,

(14)

where ρ
(
x0 − xb

0

)
is the prior probability of

(
x0 − xb

0

)
and ρ(yk − Hk(xk),

k = 0, . . . , N|x0 − xb
0

)
is the conditional joint probability of (yk − Hk(xk)), k =

0, . . . , N, given
(
x0 − xb

0

)
. The scalar α is a normalizing constant that ensures that

the value of the posterior probability is not greater than unity. The “optimal” analysis
is then the initial state that maximizes the posterior probability.

From the assumption that the probability distributions are Gaussian, we have that

ρ
(

x0 − xb
0

)
∝ exp

[
−1

2

(
x0 − xb

0

)T
B−1

(
x0 − xb

0

)]
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and

ρ(yk −Hk(xk)) ∝ exp

[
−1

2
(yk −Hk(xk))TR−1

k (yk −Hk(xk))

]
,

for k = 0, 1, . . . , N. Taking the log of the posterior probability and using the assump-
tions that the observational errors are uncorrelated in time and uncorrelated with the
background errors, we find that

J(x0) ≡ − ln
[
ρ

(
x0 − xb

0|yk −Hk(xk), k = 0, . . . , N
)]

= − ln
[
ρ

(
x0 − xb

0

)]− N∑
k=0

ln
[
ρ

(
yk −Hk(xk)

)]
.

(15)

(See Lorenc 1986, 1988.) The solution x0 to the data assimilation problem,
Problem 1, that minimizes J(x0) is therefore equivalent to the maximum Bayesian a
posteriori likelihood estimate.

If the model and observation operators are linear and the errors are normally
distributed (i.e., Gaussian), then the maximum a posteriori Bayesian estimate and
the minimum variance estimate are equivalent. The BLUE, given explicitly by (10)
and (11), with zero mean and covariance (13), is thus the unique optimal in both
senses.

In practice the error distributions may not be Gaussian and the assumptions
underlying the estimates derived here may not hold. Ideally, we would like to be
able to determine the full probability distributions for the true states of the system
given the prior estimates and the observations. This is a major topic of research and
new approaches based on sampling methods and particle filters are currently being
developed.

Techniques used in practice to solve the data assimilation problem, Problem 1,
include sequential assimilation schemes and variational assimilation schemes.
These methods are described in the next two sections.

3 Sequential Data Assimilation Schemes

We describe sequential assimilation schemes for discrete models of the form (1),
where the observations are related to the states by the Eq. (2). We make the perfect
model assumption here. We assume that at some time tk, prior background esti-
mates xb

k for the states are known. The differences between the observations of the
true states and the observations predicted by the background states at this time,(
yk −H

(
xb

k

))
, known as the innovations, are then used to make a correction to the

background state vector in order to obtain improved estimates xa
k , known as the anal-

ysis states. The model is then evolved forward from the analysis states to the next
time tk+1 where observations are available. The evolved states of the system at the
time tk+1 become the background (or forecast) states and are denoted by xb

k+1. The
background is then corrected to obtain an analysis at this time and the process is
repeated.
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Mathematically this procedure may be written

xa
k = xb

k +Kk

(
yk −Hk

(
xb

k

))
, (16)

xb
k+1 =Mk,k+1

(
xa

k

)
. (17)

The matrix Kk ∈ R
n×p, known as the “gain matrix,” is chosen to ensure that the

analysis states converge to the true states of the system over time. This is possible if
the system is “observable.” Conditions for this property to hold are known (see, for
example, Barnett and Cameron 1985).

The system (16) and (17) forms a modified dynamical system for the analysis
states that can be written

xa
k+1 =Mk,k+1

(
xa

k

)−Kk+1Hk+1
(
Mk,k+1

(
xa

k

))+Kk+1yk+1. (18)

This system is driven by the observations and has different properties from the orig-
inal discrete system model (1). The evolution of the analysed states from time tk
to time tk+1 is described by a modified non-linear operator and the response of the
system depends generally upon the spectrum of its Jacobian, given by the matrix

(Mk,k+1 +Kk+1Hk+1Mk,k+1), where Hk = ∂Hk
∂x

∣∣∣xa
k

and Mk,k+1 = ∂Mk,k+1
∂x

∣∣∣
xa

k

. The

choice of the gain matrices Kk, k = 0, 1, . . . , therefore determines the behaviour
of the analysed states over time and this choice characterizes the data assimilation
scheme.

3.1 Optimal Sequential Assimilation Scheme

For the “optimal” sequential assimilation scheme, the analysis xa
k , given by (16), is

taken to be the best linear estimate of the solution to the least-squares assimilation
problem

min
x

[
1

2

(
x− xb

k

)T
B−1

k

(
x− xb

k

)
+ 1

2
(Hk(x)− yk)TR−1

k (Hk(x)− yk)

]
(19)

at time tk. The gain matrix Kk is then given by

Kk = BkHT
k

(
HkBkHT

k + Rk
)−1

, (20)

with Hk = ∂Hk
∂x

∣∣∣
xb

k

.

If we assume that the background errors are randomly distributed with mean zero
and error covariance matrix

Bk = E
((

x− xb
k

) (
x− xb

k

)T
)

, (21)
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then the optimal analysis is equal to the BLUE, or best linear unbiased estimate, and
minimizes the analysis error variance given, at the optimum, by

Ak ≡ E
((

x− xa
k

) (
x− xa

k

)T
)
= (In −KkHk)Bk. (22)

If the random background error vector has a Gaussian distribution, then the analysis
is the maximum posterior Bayesian estimate. For linear systems, the solution (16)
and (20) gives the exact optimal analysis, but for non-linear systems this solution
gives only a first order approximation to the optimal due to the linearization Hk of
the non-linear observation operator that is used.

In evolving the “optimal” BLUE analysis sequentially, two computational diffi-
culties arise. The first is that the background covariance matrices Bk are required
at each time step. These matrices can be propagated forward in time from the ini-
tial background error covariance matrix B0 using an extended Kalman filter (EKF)
technique (Kalman 1961). It is assumed that, at time t0, prior background estimates
xb

0 for the states are known and the errors between the true initial states and the
background estimates are randomly distributed with mean zero and error covari-
ance B0. The steps of the extended Kalman filter assimilation scheme are then given
as follows. For k = 0, 1, . . . find

xa
k = xb

k +Kk

(
yk −Hk

(
xb

k

))
, (23)

where Kk = BkHT
k

(
HkBkHT

k + Rk
)−1

, (24)

Ak = (I−KkHk)Bk, (25)

xb
k+1 =Mk,k+1

(
xa

k

)
, (26)

Bk+1 = Mk,k+1AkMT
k,k+1. (27)

For systems where the model and observation operators are linear, the analysis
xa

N produced by the Kalman filter at time tN is exactly equal to the solution xa
N =

M0,N
(
xa

0

)
to the least-squares data assimilation problem, Problem 1, at the end of

the time window. Furthermore, the analysis states produced by the Kalman filter
converge over time to the expected values of the true states. For non-linear systems,
however, the EKF only gives approximations to the optimal solution and the EKF
may even become unstable as a dynamical system. The EKF is also sensitive to
computational round-off errors (Bierman 1977).

For large geophysical and environmental systems the extended Kalman filter is,
in any case, impractical to implement due to the size of the covariance matrices that
need to be propagated. For example, for global weather and ocean systems, the EKF
requires the computation of matrices containing of the order of 1014 elements at
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every time step, making it computationally much too expensive to use for real-time
state estimation.

The second difficulty in implementing the optimal assimilation scheme (16) and
(20) sequentially is that in order to compute the analysis xa

k at each time step, we
must find BkHT

k wa
k , where wa

k solves the linear equations

(
HkBkHT

k + Rk
)

wa
k =

(
yk −Hk

(
xb

k

))
. (28)

This is a very large inverse problem with O(105–106) variables to find. More-
over, the solution may be sensitive to small errors in the data if the matrix(
HkBkHT

k + Rk
)

is ill-conditioned.
In practice most operational sequential assimilation schemes avoid these two dif-

ficulties by using approximations that can be implemented efficiently. A summary
of these methods is given in the next subsection.

3.2 Practical Implementation

A variety of sequential data assimilation schemes has been developed for practi-
cal implementation. These differ mainly in the detailed steps of the procedures.
Sequential assimilation schemes used operationally include (Nichols 2003a):

– Successive Correction. In these schemes, the feedback gain Kk is not chosen opti-
mally, but is designed to smooth observations into the states at all spatial grid
points within some radius of influence of each observation (Bergthorsson and
Döös 1955). An iterative process is used to determine the analysis. The Cressman
scheme is an example (Cressman 1959). The iterations converge to a result that is
consistent with observational error but may not be consistent with the dynamical
system equations. Over time the analysis states may not converge to the expected
values of the true states. These schemes are generally not effective in data sparse
regions.

– Optimal Interpolation or Statistical Interpolation. These schemes approximate
the optimal solution by replacing the background error covariance matrix Bk by a
constant matrix B̃, which has a “fixed” structure for all k. The gain matrix Kk in
(16) is then taken to be

Kk = B̃HT
k

(
HkB̃HT

k + Rk

)−1
. (29)

(see Ghil and Malanotte-Rizzoli 1991). The matrix B̃ is generally defined by an
isotropic correlation function (dependent only on the distance between spatial grid
points and observational points), with the correlation lengths adjusted empirically.
To simplify the inversion step, the gain is further modified to have a block structure
by using innovations only in small regions around grid points to obtain the analysis
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states. The inversion problem then reduces to solving a number of much smaller
systems of equations.

– Analysis Correction. In these schemes, approximations to the optimal analysis
states are computed iteratively, as in the Successive Correction method. The
procedure is designed, however, to ensure that the iterates converge to the approxi-
mate “optimal” analysis that is obtained by replacing the optimal gain matrix (20)
by the gain matrix (29), as in the optimal interpolation scheme (Bratseth 1986;
Lorenc et al. 1991). This scheme is effective across data sparse regions and the
analysis produced remains consistent with the dynamical equations.

– 3D-Var. These schemes apply iterative minimization methods directly to the vari-
ational problem (19) (Rabier et al. 1993). The covariance matrix Bk is replaced
by the approximation B̃, as defined for optimal interpolation. The solution con-
verges to the analysis obtained by replacing the optimal gain (20) by (29) in (16).
Minimization techniques used commonly are pre-conditioned conjugate gradient
methods and quasi-Newton methods. The properties of the analysis are similar to
those obtained by the Analysis Correction method, but the iteration procedure is
more efficient.

– 3D-PSAS and 3D-Representer. In these schemes iterative minimization methods
are applied to the dual variational problem

min
w

[
1

2

(
wTHkB̃HT

k + Rk

)
w− wT (

Hk(x)− yk
)]

.

The iterates converge to the solution wa
k of the system (28) with Bk replaced by B̃.

The resulting analysis states converge to xa
k = B̃HT

k wa
k , which approximates the

“optimal” solution to the variational problem (19), as in the 3D-Var scheme (Cohn
et al. 1998; Daley and Barker 2001). The advantage is that this scheme operates
in the “observation space,” which is, in general, of lower dimension than the state
space. Additional work is needed, however, in order to reconstruct the analysis
states.

In summary, most operational sequential data assimilation schemes aim to
approximate the optimal analysis by replacing the background error covariance
matrix by an approximation that is fixed over time and by simplifying the inversion
problem and/or solving the inversion iteratively. Examples illustrating the applica-
tion of these schemes to simplified models can be found in Martin et al. (1999) and
on the website of the Data Assimilation Research Centre at http://darc.nerc.ac.uk/.

3.3 Ensemble Filters and Sampling Methods

Newer approaches to sequential data assimilation known as ensemble filter meth-
ods, based on classical Kalman or square-root filtering, have recently received much
attention. These methods use reduced rank estimation techniques to approximate the
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classical filters and make the implementation feasible in real time. With these meth-
ods an ensemble consisting of a small number of analysis vectors (much less than
the number of states n) is propagated simultaneously by the non-linear model from
one observation time to the next in order to provide an ensemble of background
states. The background ensemble is updated with the observations to give a new
ensemble of analysis vectors and the “optimal” analysis state and its error covari-
ance matrix are determined using a filter similar to the classical filters. An advantage
of these methods is that the model and observation operators are not approximated
linearly. The accuracy of the estimated states depends, however, on the spread of the
ensemble, which must be sufficient to capture the true behaviour of the system.

There are many variants of this technique under development; see, for exam-
ple, Anderson (2001); Bishop et al. (2001); Burgers et al. (1998); Evensen (2003);
Houtekamer and Mitchell (1998); Nerger et al. (2005); Ott et al. (2004); Tippett et al.
(2003); Zupanski (2005). Although the implementations may suffer from some dif-
ficulties (Livings et al. 2008), these methods retain the advantages of the classical
Kalman and square-root filters while remaining feasible for application to large sys-
tems. Details of these techniques are described in a later chapter (chapter Ensemble
Kalman Filter: Cument Status and Potential, Kalnay).

Sampling and particle filter methods aim to determine the full probability dis-
tributions for the true states of the system. These methods allow for non-Gaussian
behaviour of the errors in the prior estimates and the observations and are closely
related to the ensemble methods; see for example, Anderson and Anderson (1999);
Pham (2001); Kim et al. (2003); van Leeuwen (2003); Apte et al. (2007). Although
these methods are not yet efficient for very large geophysical problems, these
approaches are promising and provide new directions for research.

4 Four-Dimensional Variational Assimilation Schemes

The least-squares data assimilation problem, Problem 1, is currently treated in
many operational centres using four-dimensional variational schemes (4D-Var)
(Sasaki 1970; Talagrand 1981; Rabier et al. 2000; Chapter Variational Assimilation,
Talagrand). In these schemes the constrained minimization problem, Problem 1,
is solved iteratively by a gradient optimization method where the gradients are
determined using an adjoint method.

4.1 4D-Var and the Adjoint Method

To solve the least-squares assimilation problem iteratively, the constrained prob-
lem, Problem 1, is first written as an unconstrained problem using the method of
Lagrange. Necessary conditions for the solution to the unconstrained problem then
require that a set of adjoint equations together with the system equations (1) must
be satisfied. The adjoint equations are given by
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λN+1 = 0, (30)

λk = MT
k,k+1λk+1 +HT

k R−1
k (yk −Hk(xk)), k = N, . . . , 0, (31)

where λk ∈ R
n, k = 0, . . . , N, are the adjoint variables and Mk,k+1 ∈ R

n×n and
Hk ∈ R

n×pk are the Jacobians of Mk,k+1 and Hk with respect to xk. The adjoint
variables λk measure the sensitivity of the objective function (3) to changes in the
solutions xk of the state equations for each value of k.

The gradient of the objective function (3) with respect to the initial data x0 is
then given by

∇x0 J = B−1
0

(
x0 − xb

0

)
− λ0. (32)

At the optimum, the gradient (32) is required to be equal to zero. Otherwise this gra-
dient provides the local descent direction needed in the iteration procedure to find
an improved estimate for the optimal initial states. Each step of the gradient itera-
tion process requires one forward solution of the model equations, starting from the
current best estimate of the initial states, and one backward solution of the adjoint
equations. The estimated initial conditions are then updated using the computed gra-
dient direction. This process is expensive, but it is operationally feasible, even for
very large systems.

A dual approach, used in 4D-PSAS and 4D-Representer methods, in which the
minimization is performed in observation space, is also possible (Courtier 1997;
Xu et al. 2005; Rosmond and Xu 2006). In these schemes, as in the three dimen-
sional 3D-PSAS and 3D-Representer methods, a dual four-dimensional variational
problem is solved using a gradient iteration method, and the analysis states are then
reconstructed from the dual variables.

The primary difficulty in implementing variational assimilation schemes is the
need to develop an adjoint model for the system. The adjoint equations are related
theoretically to the linearized state equations, and the system matrix of the adjoint
model is given directly by MT

k,k+1, where Mk,k+1 is the system matrix of the
linearized model. The adjoint equations can thus be generated directly from the
linearized system equations. Automatic differentiation techniques can be applied
to the forward solution code to generate the adjoint code (Griewank and Corliss
1991; Giering and Kaminski 1998). Alternatively an approximate adjoint sys-
tem can be obtained by discretizing a continuous linear or adjoint model of the
non-linear dynamics (Lawless et al. 2003). This approach has the advantage that
additional approximations can be incorporated into the linearization of the system
equations.

Other issues arising in the use of variational schemes are the need to cycle the
scheme from one analysis time to the next and the length of the window to be used
in each cycle. For each new cycle, the initial background weighting, or covariance,
matrix B0 should depend on the current best estimate of the state, which is taken
to be the optimal solution of the variational problem at the end of the previous
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assimilation window. The Hessian of the objective function at the end of the previous
cycle can provide this information, but this information is expensive to extract. In
practice a climatological or seasonal average is used for the weighting matrix to start
each cycle. New research is now becoming available on flow dependent covariance
matrices and on longer assimilation windows, in which the initial weighting matrix
is expected to have less influence on the analysis (see ECMWF 2007).

4.2 Incremental Variational Methods

To make the variational methods more efficient, an “incremental” approach is gen-
erally used in which the non-linear assimilation problem is replaced by a sequence
of approximate linear least-squares problems (Courtier et al. 1994).

At each step i of this method, a linear variational problem is solved to find an
increment δx(i)

0 to the current best estimate of the analysis x(i)
0 . From the analysis x(i)

0
we solve the non-linear model equations (1) in order to determine the analysis states

x(i)
k =M0,k

(
x(i)

0

)
and the corresponding innovations d(i)

k = yk −Hk

(
x(i)

k

)
at time

tk. We then linearize the non-linear assimilation problem about the analysis state
trajectory. Initially we set x(0)

0 = xb
0, for i = 0. The linearized variational problem

becomes

min
δx(i)

0

1

2

(
δx(i)

0 −
[
xb

0 − x(i)
0

])T
B−1

0

(
δx(i)

0 −
[
xb

0 − x(i)
0

])

+ 1

2

N∑
k=0

(
Hkδx

(i)
k − d(i)

k

)T
R−1

k

(
Hkδx

(i)
k − d(i)

k

)
,

(33)

subject to the tangent linear model (TLM) equations

δx(i)
k+1 = Mk,k+1δx

(i)
k , (34)

where Mk,k+1 ∈ R
n×n and Hk ∈ R

n×pk are linearizations of the operators Mk,k+1

and Hk about the states x(i)
k . A new estimate for the analysis x(i+1)

0 = x(i)
0 + δx(i)

0
is obtained by updating the current estimate of the analysis with the solution to the
linear variational problem (33) and the process is then repeated.

The linearized problem (33) is solved by an “inner” iteration process. Each
inner iteration requires one forward solution of the tangent linear model equations
(34), and one backward solution of the corresponding linear adjoint equations to
determine the gradient of the objective function. The full incremental variational
procedure thus consists of an inner and outer iteration process. In practice, the inner
linear least-squares problem is solved only approximately, using a relatively small
number of inner iterations, and only a few outer loops of the process are carried out,
due to computational time constraints.
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The incremental approach is also used in the implementation of the 4D-Repre-
senter method (Xu et al. 2005). The dual of the inner linear minimization problem is
solved in observation space. The increments in physical space are then reconstructed
from the dual variables at the end of the inner iteration and the outer loop is repeated.

Recently the incremental procedure has been shown to be equivalent to an
approximate Gauss-Newton method and conditions for its convergence have been
established (Lawless et al. 2005; Gratton et al. 2007). Approximations to the tan-
gent linear model and to the corresponding adjoint may be used in the inner iteration
without loss of convergence. Furthermore, the inner linear minimization problem
does not need to be solved to full accuracy in each outer loop, thus avoiding unnec-
essary computation. Appropriate stopping criteria for the inner iteration process are
presented in Lawless and Nichols (2006).

Additional techniques for increasing the efficiency of the four-dimensional
variational methods are discussed in the next subsections.

4.3 Control Variable Transforms

In the incremental variational assimilation scheme, transformations of the “control
variables” may be applied in order to “decouple” the state variables, to simplify the
computational work and to improve the conditioning of the minimization problem.
The assimilation problem is written in terms of new variables χ0, where

(
x0 − xb

0

)
= Uχ0. (35)

The transformed linear variational problem (33) becomes

min
χ0

[
1

2
‖B−1/2

0 Uχ0‖2
2 +

1

2
‖R̂

−1/2
ĤUχ0 − R̂

−1/2
d̂‖2

2

]
, (36)

where Ĥ, R̂ are defined as in (7) and d̂ is the vector comprised of the innova-
tions. The conditioning of the optimization problem then depends on the Hessian
of the objective function. Transforming the control variables alters the Hessian and
changes the convergence properties of the inner iteration of the incremental method.
The transformation thus acts as a preconditioner on the inner linearized least-squares
problem. The transformation does not, however, affect the convergence of the outer
loop of the incremental process.

If we choose U = B1/2
0 , where B1/2

0 is the symmetric square root of B0, the
transformed problem (36) takes the form of a classical Tikhonov regularized inverse
problem. The Hessian is then given by

I+ B1/2
0 ĤR̂

−1
ĤB1/2

0 , (37)
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which is essentially a low-rank update of the identity matrix. The matrix

R̂
−1/2

ĤB1/2
0 is the observability matrix of the system and is key to the assimilation

of information from the observations (Johnson et al. 2005a, b). In the transformed
optimization problem (36), the state variables in the background (or regularization)
term are weighted by the identity matrix and thus are decoupled. From a statistical
point of view, this means that the transformed variables are uncorrelated, identically
distributed random variables. From a practical point of view, the computational work
needed in the inversion of the Hessian is simplified and the inner iteration may be
implemented more efficiently. Additional preconditioners may also be applied to the
gradient minimization algorithm in the incremental method to give further increases
in the rates of convergence.

Operationally, control variable transforms may be used implicitly to define the
background weighting, or covariance, matrix B0 in the least-squares formulation
of the assimilation problem. A set of control variables is selected that are assumed
from physical arguments to be uncorrelated. An appropriate transformation U from
these variables to the original variables

(
x0 − xb

0

)
is then defined and the matrix B0

is implicitly constructed from this transformation together with information about
the spatial autocorrelations of each control variable. By this method additional
constraints can be built into the transformations to ensure balance relations hold
between the variables, and spectral and other transformations can also be applied
implicitly. Flow dependence is also introduced into the weighting matrices by this
technique. The validity of this approach depends, however, on the assumption that
the transformed control variables χ0 are truly decoupled, or uncorrelated (see, for
example, Bannister et al. 2008; Katz 2007; Wlasak et al. 2006; Cullen 2003; Weaver
and Courtier 2001). Good choices for the control variables and appropriate precon-
ditioners for the gradient minimization algorithms continue to be major topics of
research and development.

4.4 Model Reduction

To increase the efficiency of the incremental methods further, the inner linear
minimization problem is often approximated using low dimensional models. The
simplest approach is to obtain the increments using a low-resolution linearized
model for the dynamical system on a coarse grid. A prolongation operator is then
used to map the low-resolution increments to the high-resolution model. Different
resolutions can be used at each outer iteration of the procedure, leading to a multi-
level approach (Trémolet 2005; Radnoti et al. 2005). These methods are now applied
in practice, but theory to support their use is needed.

An alternative technique uses projection operators determined by methods from
control theory to produce “optimal” reduced order models that most accurately cap-
ture the response of the full dynamic system. This approach allows much smaller
system models to be used for the same computational accuracy, but currently these
are expensive to derive (Lawless et al. 2008). More efficient approaches using sub-
space iteration methods and rational interpolation techniques are currently under
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development. The latter approaches are promising as they allow for the practical
reduction of unstable systems (Boess 2008; Bunse-Gerstner et al. 2007). Efficient
new approximation methods based on proper orthogonal decomposition (POD)
have also been developed recently for constructing the optimal projection operators
(Willcox and Peraire 2002).

Other new approaches aim to solve the full non-linear variational problem in
a low dimensional subspace spanned by basis functions generated using POD
schemes from control theory or other similar methods (see Cao et al. 2007, and
references therein). The accuracy and efficiency of these methods depends on how
well the dynamics of the system can be captured in the low dimensional space.
Similar techniques, which are adjoint free, have been developed for parameter esti-
mation and model calibration (Vermeulen and Heemink 2006). Research in this area
is currently active.

In summary, four-dimensional variational data assimilation schemes are in oper-
ational use at major numerical weather forecasting centres and new theory and
new implementation techniques for these schemes continue to be major areas
for research. Examples illustrating the use of these schemes on simplified mod-
els can be found in Griffith (1997) and Lawless et al. (2005). Tutorial examples
are also available on the website of the Data Assimilation Research Centre at
http://darc.nerc.ac.uk/.

5 Data Assimilation for Dynamical Systems with Model Errors

In the previous sections of this chapter, we have made the “perfect” model assump-
tion that the initial states of the model equations uniquely determine the future
states of the system. In practice, however, the non-linear dynamical model equa-
tions describing geophysical and environmental systems do not represent the system
behaviour exactly and model errors arise due to lack of resolution (representativity
errors) and inaccuracies in physical parameters, boundary conditions and forcing
terms. Errors also occur due to discrete approximations and random disturbances.
Model errors can be taken into account by treating the model equations as weak
constraints in the assimilation problem.

A general least-squares formulation of the data assimilation problem for systems
with model errors is introduced in this section. A statistical interpretation of the
problem is presented and techniques for solving the assimilation problem for models
with random forcing errors are discussed. In reality, model errors are comprised of
both systematic and random components. A framework for treating both types of
model error using the technique of state augmentation is developed (Nichols 2003b)
and applications are reviewed.

5.1 Least-Squares Formulation for Models with Errors

We assume that the evolution of the dynamical system, taking into account model
errors, is described by the discrete non-linear equations
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xk+1 =Mk,k+1(xk)+ ηk, k = 0, . . . , N − 1, (38)

where ηk ∈ R
n denotes model errors at time tk. Prior estimates, or “background”

estimates, xb
0, of the initial states x0 are assumed to be known and the observations

are assumed to be related to the system states by the Eq. (2).
For the “optimal” analysis, we aim to find the best estimates xa

k of the true states
of the system, xk, given observations yk, k = 0, . . . , N, subject to the model equa-
tions (38) and prior estimates xb

0. The “optimal” assimilation problem is written as
a weighted non-linear least-squares problem where the square errors in the model
equations, together with the square errors between the model predictions and the
observed system states and between the background and initial states are minimized.
The data assimilation problem is defined mathematically as follows.

Problem 2 Minimize, with respect to x0 and ηk, k = 0, . . . , N − 1, the objective
function

J =
1

2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)+
+1

2

N∑
k=0

(Hk(xk)− yk)TR−1
k (Hk(xk)− yk)+ 1

2

N−1∑
k=0

ηT
k Q−1

k ηk,
(39)

subject to xk, k = 0, . . . , N, satisfying the system equations (38).

The model equations (38) are treated here as weak constraints on the objective
function. The initial states of the system and the model errors at every time step
are the control parameters that must be determined. The weighting matrices B0 ∈
R

n×n and Rk ∈ R
pk×pk , Qk ∈ R

n×n, k = 0, 1 . . . , N, are taken to be symmetric
and positive definite and are chosen to give the problem a “smooth” solution. The
choices of the weights should reflect the relative confidence in the accuracy of the
background, the observations and the model dynamics and also the structure of the
model errors over the time window of the assimilation.

If we assume that the errors in the prior estimates, in the observations and in the
model equations are random variables, then the “optimal” solution to the weakly
constrained data assimilation problem, Problem 2, can be interpreted in a statistical
sense. We assume that the probability distribution of the random errors

(
x0 − xb

0

)
between the true initial states and the prior background estimates is Gaussian with
mean zero and covariance matrix B0 ∈ R

n×n. The observational errors εo
k ∈ R

pk ,
defined in (2), are assumed to be unbiased, serially uncorrelated, Gaussian random
vectors with covariance matrices Rk ∈ R

pk×pk . The model errors ηk, defined in (38),
are also assumed to be randomly distributed variables that are unbiased and seri-
ally uncorrelated, with zero means and covariance matrices given by Qk ∈ R

n×n.
The model errors, the observational errors and the errors in the prior estimates are
assumed to be uncorrelated. Under these statistical assumptions, the optimal analy-
sis x0 that solves the data assimilation problem, Problem 2, is equal to the maximum
a posteriori Bayesian estimate of the system states, given the observations and the
prior estimates of the initial states.
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5.2 Optimal Solution of the Assimilation Problem

In order to find the “optimal” analysis that solves Problem 2, either sequential
schemes that use the extended Kalman filter (EKF) or variational schemes that
solve the minimization problem iteratively can be applied. The EKF propagates
the analysis and the covariance matrices forward together, taking into account the
model error statistics, in order to produce the “optimal” linear unbiased state esti-
mate at each time step, conditional on the current and all previous observations.
For linear models, the solution obtained using the EKF is the exact optimal and
is equal to the solution to the assimilation problem at the end of the time period.
For non-linear systems, approximate linearizations of the model and observation
operators are introduced in the extended filter, and the optimality property is not
retained.

Variational techniques, in contrast, solve the optimal assimilation problem,
Problem 2, for all the analysis states in the assimilation window simultaneously.
A direct gradient iterative minimization procedure is applied to the objective
function (39), where the descent directions are determined from the associated
adjoint equations. The full set of adjoint equations provides gradients of the
objective function with respect to the initial states and with respect to all of the
model errors at each time step. A forward solve of the model equations, fol-
lowed by a reverse solve of the adjoint equations is needed to determine the
gradients. Alternatively, the optimal assimilation problem can be solved by a
dual variational approach in which the minimization is performed in observation
space.

For very large stochastic systems, such as weather and ocean systems, these
techniques for treating model errors are not practicable for “real-time” assimilation
due to computational constraints. The four-dimensional variational and extended
Kalman filter data assimilation schemes are both generally too expensive for oper-
ational use due to the enormous cost of estimating all of the model errors in the
variational approach or, alternatively, propagating the error covariance matrices in
the Kalman filter.

Promising practical approaches to solving the assimilation problem for mod-
els with stochastic forcing errors include the sequential ensemble filter methods
and the dual variational methods. The ensemble methods take the model errors
into account in the low order equations for propagating the ensemble statistics.
The dual variational methods solve the assimilation problem in observational
space and estimate the model errors implicitly during the reconstruction of the
states from the dual variables. Reduced order approaches to solving the vari-
ational problem in physical space also allow model errors to be taken into
account.

In practice, model errors do not, however, satisfy the statistical assumptions
made here. The model error is expected to depend on the model state and hence
to be systematic and correlated in time. A more general form of the model
error that includes both systematic and random elements is described in the next
subsection.
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5.3 Systematic Model Error and State Augmentation

The problem of accounting for systematic model errors in a cost-effective way has
recently received more attention. Techniques for treating bias errors in the fore-
cast using sequential and four-dimensional variational assimilation schemes (Dee
and da Silva 1998; Derber 1989; chapter Bias Estimation, Ménard) and for treating
time-correlated stochastic errors (Zupanski 1997) have been investigated. A gen-
eral formulation for the treatment of systematic model errors has also been derived
(Griffith and Nichols 1996).

We present here a framework for treating systematic, time-correlated model
errors based on the formulation of Griffith and Nichols (1996, 2000). Simple
assumptions about the evolution of the errors are made, enabling the systematic
error to be estimated as part of the assimilation process. The model equations are
augmented by the evolution equations for the error and standard data assimilation
techniques can then be applied to the augmented state system.

To take into account the systematic components of the model errors, we assume
that the evolution of the errors in the model equations (38) is described by the
equations

ηk = Tk(ek)+ qk, (40)

ek+1 = Gk,k+1(xk, ek), (41)

where the vectors ek ∈ R
r represent time-varying systematic components of the

model errors and qk ∈ R
n are random errors. The random errors are commonly

assumed to be unbiased, serially uncorrelated, and normally distributed with known
covariances. The effect of the systematic errors on the model equations is defined
by the operators Tk : R

r → R
n. The operators Gk,k+1 : R

n × R
r → R

r, describing
the systematic error dynamics, are to be specified. The evolution of the errors may
depend on the current states of the system.

In practice little is known about the form of the model errors and a simple form
for the error evolution that reflects any available knowledge needs to be prescribed.
The most common assumption is that the errors constitute a constant bias in each of
the model equations. In this case the evolution of the errors is given by ek+1 = ek,
with Tk = I. Other forms include linearly evolving error and spectral forms varying
on a given time-scale (see Griffith 1997; Griffith and Nichols 2000). These forms are
expected to be appropriate, respectively, for representing average errors in source
terms or in boundary conditions, for representing discretization error in models
that approximate continuous dynamical processes by discrete-time systems, and for
approximating the first order terms in a Fourier or spherical harmonic expansion of
the model error.

Together the system equations and the model error equations (38), (40) and
(41) constitute an augmented state system model. The aim of the data assimila-
tion problem for the augmented system is to estimate the values of the augmented
states (xT

k , eT
k )T , for k = 0, . . . , N − 1, that best fit the observations, subject to the
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augmented state equations. Assuming that the errors in the initial states, the obser-
vations and the random components of the model errors, are unbiased, normally
distributed, serially uncorrelated and uncorrelated with each other, then the solu-
tion delivers the maximum a posteriori estimate of the augmented system states.
Although this formulation takes into account the evolution of the systematic model
errors, the data assimilation problem remains intractable for operational use. If,
however, the augmented system is treated as a “perfect” deterministic model, then
solving the augmented data assimilation problem becomes feasible. The aim of the
data assimilation, in this case, is to estimate the systematic components of the model
error simultaneously with the model states.

The “perfect” augmented system equations are written

xk+1 =Mk,k+1(xk)+ Tk(ek), (42)

ek+1 = Gk,k+1(xk, ek) (43)

for k = 0, . . . , N − 1, where the observations are related to the model states by the
Eq. (2), as previously. It is assumed that prior estimates, or “background estimates,”
xb

0 and eb
0 of x0 and e0 are known.

The augmented data assimilation problem is to minimize the weighted square
errors between the model predictions and the observed system states, over the
assimilation interval. The problem is written

Problem 3 Minimize, with respect to (xT
0 , eT

0 )T , the objective function

J =
1

2
((x0 − xb

0)T , (e0 − eb
0)T )W−1

0 ((x0 − xb
0)T , (e0 − eb

0)T )T

+1

2

N∑
k=0

(
yk −Hk(xk)

)T R−1
k

(
yk −Hk(xk)

)
,

(44)

subject to the augmented system equations (42) and (43).

The augmented system equations (42) and (43) are treated as strong constraints
on the problem. The initial values x0 and e0 of the model states and model errors
completely determine the response of the augmented system and are taken to be the
control variables in the optimization. The weighting matrices W0 ∈ R

(n+r)×(n+r)

and Rk ∈ R
pk×pk , k = 0, 1, . . . , N, are assumed to be symmetric and posi-

tive definite. Since the matrix W0 is non-singular, the problem is well-posed and
may be solved by any of the standard data assimilation schemes described in this
chapter.

We remark that if a sequential method is used, then the initial weighting matrix
W0 must contain cross-variable terms relating the states and the model errors or
the observations may have no effect on the error estimates. In the variational meth-
ods, the weighting matrices (or covariance matrices) are implicitly propagated and
this is not a problem. Furthermore, in the sequential methods, since the error esti-
mates are updated at every observation point, the error estimates may not behave
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smoothly. The variational method tends to average the analysis updates over time,
automatically smoothing the estimates. For the variational methods, however, an
additional set of adjoint equations must be solved to determine the gradient of the
objective function with respect to the initial model errors e0.

Various applications of this approach to model error estimation, using both
sequential and four-dimensional assimilation methods, are described in the litera-
ture for simplified models (Griffith 1997; Martin 2001; Martin et al. 1999; Griffith
and Nichols 1996, 2000). These techniques have been applied successfully in prac-
tice to estimate systematic errors in operational equatorial ocean models (Martin
et al. 2001; Bell et al. 2004).

5.4 Data Assimilation for Parameter Estimation

Model errors also arise from inaccurate parameters in the model equations. The
parameters generally enter the problem non-linearly, but since the required param-
eters are constants, the dynamics of the model errors in this case are simple. The
error vector is usually also of small dimension relative to the dimension of the state
variables. Using augmented forms of the equations, data assimilation can be applied
directly to the estimation and calibration of the parameters. The augmented model
equations take the form

xk+1 =Mk,k+1(xk, ek), (45)

ek+1 = ek, (46)

where the vector e0 represents the unknown parameters in the model. The estima-
tion problem is then to minimize the objective function (44), subject to the model
equations (45) and (46).

The standard sequential and variational assimilation schemes can be applied to
solve the problem. In the sequential methods, the form of the weighting (or covari-
ance) matrices becomes important due to the non-linearity of the system equations.
On the other hand, in the variational methods, the adjoint equations take a simple
form and only the adjoints of the states are needed in order to find the gradients
of the objective function with respect to both the states and the model errors. An
application of a sequential scheme to the estimation of parameters in a simplified
morphodynamic model for forecasting coastal bathymetry is described in Smith
et al. (2008).

In summary, assimilation techniques for estimating random and systematic com-
ponents of model errors along with the model states are described here. These
techniques are effective and can lead to significantly improved forecasts (see chapter
Assimilation of Operational Data, Andersson and Thépaut). For different types of
error, different forms for the model error evolution are appropriate. Efficient meth-
ods for taking into account both random and systematic model errors are currently
major topics of research.
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6 Conclusions

The aims and basic concepts of data assimilation for geophysical and environmen-
tal systems are described here. Two approaches to the problem of data assimilation,
sequential and variational assimilation, are introduced. A variety of assimilation
schemes for discrete non-linear system models is derived and practical implementa-
tion issues are discussed. For all of these schemes, the model equations are assumed
to be “perfect” representations of the true dynamical system. In practice the mod-
els contain both systematic errors and random noise. In the final section of the
chapter we discuss data assimilation techniques for treating model errors of both
types. Significant approximations are needed in order to implement these methods in
“real-time,” due to computational constraints. Further research on data assimilation
schemes is needed and there remain many open problems for investigation. Details
of current work on data assimilation schemes are given in subsequent chapters of
this book.
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Variational Assimilation

Olivier Talagrand

1 Introduction

The expression variational assimilation designates a class of assimilation algo-
rithms in which the fields to be estimated are explicitly determined as minimizers
of a scalar function, called the objective function, that measures the misfit to
the available data. In particular, four-dimensional variational assimilation, usually
abbreviated as 4D-Var, minimizes the misfit between a temporal sequence of model
states and the observations that are available over a given assimilation window. As
such, and contrary to the standard Kalman filter and, more generally, to sequential
algorithms for assimilation, it propagates the information contained in the data both
forward and backward in time.

From a numerical point of view, variational algorithms require the minimiza-
tion of a scalar function defined over a large dimensional space. That is possible in
practice through the systematic use of the adjoint of the assimilating model.

We first describe variational assimilation in the context of statistical linear esti-
mation, which also underlies the theory of the Kalman filter (Sect. 2). This leads
to the definition of a general form for the objective function to be minimized.
Minimization methods and the adjoint approach for computing gradients, are then
succinctly described (Sect. 3), as well as practical implementation of variational
assimilation (Sect. 4). A number of problems, associated in particular with the
strong non-linearity of the governing equations, are discussed (Sect. 5). The adjoint
approach is further discussed, concerning in particular uses other than variational
assimilation (Sect. 6). Conclusions follow in Sect. 7.

A large part of what follows is derived in the framework of Bayesian and statis-
tical estimation. E[ ] will denote statistical expectation, and N (a, C) the Gaussian
probability distribution (either scalar or vector) with expectation a and covariance
C. The superscript T will denote transposition.
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2 Variational Assimilation in the Context of Statistical
Linear Estimation

For an elementary introduction, consider the following situation. One wants to deter-
mine an unknown scalar quantity xt (i.e. true state) from two observations of the
form

z1 = xt + ε1 (1a)

z2 = xt + ε2. (1b)

In these expressions, ε1 and ε2 are observational errors, whose exact values
are unknown, but whose statistical properties are known. More precisely, it is
assumed that these errors are centred (E[ε1] = E[ε2] = 0), mutually uncorrelated
(E[ε1ε2] = 0), and have respective variances E[ε1

2] = s1 and E[ε2
2] = s2. We look

for an estimate of x, of the form xa ≡ α1z1 + α2z2, (α1+α2 = 1), with α1 and α2
chosen so as to minimize the statistical quadratic estimation error s ≡ E[(xa − x)2].
The answer is

xa = s2z1 + s1z2

s1 + s2
(2)

that is each of the two measurements is weighted in inverse proportion to the vari-
ance of the error on that measurement. The corresponding quadratic estimation
error, which minimizes s, and which we denote sa, is given by

1

sa
= 1

s1
+ 1

s2
. (3)

The same estimate xa would be obtained by considering z1 as a “background”
estimate for x, and z2 as an “observation” (or the reverse), and then applying the
standard formulas for the Kalman filter.

The same estimate can also be obtained as the minimizer of the function

x → J(x) ≡ 1

2

[
(x− z1)2

s1
+ (x− z2)2

s2

]
. (4)

The meaning of this expression is clear. The squared deviation of x from either
one of the two observations is weighted in inverse proportion of the variance of
the error on that observation. Minimization of J(x) therefore imposes that x must fit
either observation to within its own accuracy. This leads to the estimate given by
Eqs. (2) and (3).

Variational assimilation, as it is implemented at present in meteorological
and oceanographical applications (see chapters Numerical Weather Prediction,
Swinbank; Ocean Data Assimilation, Haines), minimizes a function which gener-
alizes Eq. (4). In particular, in the linear case, and as in the elementary example
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above, it minimizes the statistical quadratic estimation error (on any component of
the estimated fields individually), and is actually another algorithm for solving the
same problem as the Kalman filter.

Consider the following more general estimation problem. Estimate an unknown
vector xt (with components xi

t, i=1,. . ., n), belonging to state space S, with dimen-
sion n, from a known data vector z (with components zj, j =1, . . ., m), belonging to
data space D, with dimension m, of the form

z = �xt + ε. (5)

In Eq. (5), � is a known linear operator from S into D, called the data operator,
and represented by an m × n-matrix. ε is a random vector in D, called the error
vector. The problem is, therefore, to invert the operator �, taking into account, as
far as possible, the statistical properties of the error ε. The estimate of xt is sought
in the form of a linear (and a priori non-homogeneous) function of z, viz.

xa = a+ Az, (6)

where a is a vector of S, and A is a linear operator from D into S. a and A are to be
determined under the following two conditions:

(i) The estimate xa is invariant in a change of origin in state space (for instance,
if the unknown xt contains temperatures, the result must be independent of
whether those temperatures are expressed in degrees Celsius or in Kelvins);

(ii) For any component xi
t of xt, the statistical expectation of the square of the

corresponding estimation error xa
i − xt

i is minimized.

The solution to this problem is given by

xa = (�TS−1�)−1�TS−1(z− μ) (7)

[i.e., A = (�TS–1�)–1�TS–1 and a = –Aμ], where μ ≡ E[ε] and
S ≡ E[(ε − μ)(ε − μ)T ] are, respectively, the expectation and covariance matrix
of the error ε. It is seen that A is a left-inverse of � (i.e., A� = In, where In is
the unit matrix of order n), with the consequence that the estimate xa is unbiased,
(E[xa − xt] = 0), and that the corresponding estimation error has covariance

Pa ≡ E
[
(xa − xt)(xa − xt)T] = (�TS−1�)−1. (8)

Condition (ii) above means that the trace of Pa is the minimum trace that can be
obtained among all possible linear estimates of x.

Equations (7) and (8) generalize Eqs. (2) and (3). The estimate xa is called the
Best Linear Unbiased Estimate (BLUE) of x from z (the term Best Linear Unbiased
Estimator is also used). Its explicit determination requires the knowledge of (at
most) the expectation μ and the covariance matrix S of the data error ε.
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Taking Eq. (7) at face value, the unambiguous definition of the BLUE requires
the matrix S, and then the matrix �TS–1�, to be invertible. The need for invert-
ibility of S is only apparent (without going into full details, S is singular when
some components of x are exactly observed; it then suffices to restrict the estimation
to those components that are not exactly observed). The condition for invertibility
of �TS–1�, once S is invertible, is on the other hand real. It is equivalent to the
condition that the null space of the data operator � is restricted to the 0-vector

�x = 0 ⇔ x = 0 (9)

or, equivalently, that � has rank equal to the dimension n of x. This means that the
data vector z contains information, either directly or indirectly, on every component
of x. The problem of determining x from z is overdetermined. This requires that
m ≥ n. There must be at least as many scalar data in z as there are scalar parameters
to be determined. We will set m = n + p. The condition given by Eq. (9) will be
called the determinacy condition.

The BLUE possesses a number of important properties.

• As already mentioned, the operator A is a left-inverse of �. This means that, if
the data are exact (ε = 0 in Eq. 9), then so is the estimate xa;

• The BLUE is invariant in a change of origin in either data or state space. It
is also invariant in any invertible linear change of coordinates in either space.
This means, for instance, that a profile of observed temperatures can be trans-
formed, through the hydrostatic equation, into a profile of geopotential values
without altering the estimated fields. It also means that the horizontal wind can
be estimated in terms of geometrical coordinates, or in terms of its divergence and
vorticity. The result will be the same. This condition of invariance also means that
the BLUE is independent of the choice of a scalar product, either in state or data
space. For instance, for any symmetric definite positive matrix C, the quantity
(xa–x)TC(xa–x), which is one (among infinitely many) measure of the magni-
tude of the estimation error (xa–x), is minimized by the BLUE. The invariance
of the BLUE in any invertible change of linear coordinates can also be expressed
by saying that Eqs. (7) and (8) are more than vector-matrix equations. They are
tensor equations, valid in any system of linear coordinates;

• When the data error ε is Gaussian, ε∼N (μ, S), the BLUE achieves Bayesian
estimation, in the sense that the conditional probability distribution for the state
vector x, given the data vector z, is the Gaussian distribution with expectation xa

and covariance matrix Pa, as given by Eqs. (7) and (8). In condensed notation,

P(x|z) = N (xa, Pa).

It is easily verified that the BLUE xa can be obtained as the minimizer of the
following scalar function, defined over state space

x → J(x) ≡ 1

2
[�x− (z− μ)]TS−1 [�x− (z− μ)] . (10)
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This expression generalizes Eq. (4). Its significance is clear. For any vector x in
state space, �x is what the data operator � would produce if it was applied on x. J(x)
is then a measure of the magnitude of the discrepancy between �x and the unbiased
data vector z–μ. Through the inverse covariance matrix S–1, that measure possesses
two notable properties. First, it weights the data according to their accuracy. Second,
it is physically non-dimensional, making it possible to combine in a consistent way
data of a different physical nature.

Variational assimilation, as it exists at present in meteorology and oceanography,
minimizes objective functions of the form of Eq. (10), with the only difference, to
be discussed later, that moderately non-linear operators � are used. What follows
is a more detailed description of how variational assimilation is implemented in
practice, and of the main results it produces.

The first step in the minimization of a function such as that given by Eq. (10) is
to remove the bias in the data by subtracting the error expectation μ from the data
vector. Unless specified otherwise, it will be assumed below that this has been done,
and the expectation μ will not appear any more explicitly in the equations. But it
must be kept in mind that implementation of variational assimilation requires the
prior knowledge, and subtraction from the data, of the error expectation, or bias.
Failure to properly remove the bias in the data will, in general, result in the presence
of residual biases in the estimated fields (chapter Bias Estimation, Ménard, discusses
bias in data assimilation).

When the determinacy condition (Eq. 9) is verified, the data vector z can always
be transformed, through linear invertible operations, into two components of the
following form. First, an explicit estimate of the true state vector xt, of form

xb = xt + εb, (11)

where εb is an error; second, an additional set of data, of the form

y = Hxt + εo, (12)

with dimension p = m – n. In this equation, H is a linear operator, represented by
a p × n-matrix, and εo is an error. In addition, the transformations that lead to Eqs.
(11) and (12) can always be defined in such a way that the errors εb and εo are
uncorrelated

E
[
εb(εo)T

]
= 0 (13)

It is in the form of Eqs. (11) and (12) that data are most often available in
meteorological and oceanographical applications. The component xb is a prior, or
background estimate of the unknown state vector x at a given time k (usually a recent
forecast, or a climatological estimate). As for the additional vector y, it consists of
observations depending on the state vector through the observation operator H.
The uncorrelation hypothesis (Eq. 13), although certainly disputable, is often (if not
always) made. Equations (11) and (12), together with Eq. (13), are also assumed in
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the standard Kalman filter. We stress here that Eqs. (11) and (13) are no more restric-
tive than, but exactly equivalent to, Eq. (5) together with the determinacy condition,
Eq. (9).

Introducing the covariance matrices of the errors εb and εo

Pb ≡ E
[
εb(εb)T

]
, R ≡ E

[
εo(εo)T]

, (14)

Equations (7) and (8) take the following form, used in particular in the Kalman
filter

xa = xb + PbHT [HPbHT + R]−1(y−Hxb) (15a)

Pa = Pb − PbHT [HPbHT + R]−1HPb. (15b)

We recall that the vector

d ≡ y−Hxb, (16)

is called the innovation vector, and that the matrix HPbHT + R, the inverse of which
appears in Eqs. (15a) and (15b), is the covariance matrix of d

HPbHT + R = E[ddT ]. (17)

As for the objective function (Eq. 10), it takes under decomposition of Eqs. (11)
and (12) the following form

J(x) = 1

2
(x− xb)T [Pb]−1(x− xb)+ 1

2
(Hx− y)TR−1(Hx− y). (18)

The meaning of this expression is clear. The first term on the right hand side of
Eq. (18) is a measure of the deviation of x from the background, while the second
term is a measure of the deviation from the observation.

Several situations are encountered in the practice of meteorology and oceanogra-
phy, which we are going to describe in some detail, giving more explicit expressions
for the general form (Eq. 18) of the objective function.

The simplest situation is when a background xb, of form given by Eq. (11), is
available at some time k, together with observations, of form given by Eq. (12), that
have been performed at the same time (or over a period of time short enough so
that the flow can be considered stationary). Minimization of the objective function
(Eq. 18) will produce an estimate of the state of the flow at time t. One then speaks
in that case of three-dimensional variational analysis, often abbreviated as 3D-Var.

A different, more complex, situation is encountered when one wants to assimilate
observations that are distributed over a period of time over which the evolution of
the flow cannot be neglected. Let us assume observations are available at successive
times k = 0, 1,. . ., K, of the form
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yk = Hkxt
k + εo

k , (19)

where xt
k is the exact true state of the flow at time k, Hk is a linear observation

operator, and εo
k an observational error with covariance matrix Rk. The observational

errors are assumed to be uncorrelated in time. It is assumed in addition that the
temporal evolution of the flow is described by the equation

xt
k+1 = Mkxt

k + ηk, (20)

with known model linear operator Mk, and random model error ηk.
Assume in addition that a background x0

b, with error covariance matrix P0
b,

and error uncorrelated with the observational errors in Eq. (19), is available at time
k = 0.

If the model error is ignored, any initial condition x0 at time k = 0 defines a
model solution

xk+1 = Mkxk k = 0, . . . , K − 1. (21)

The objective function

J(x0) = 1

2

(
x0 − xb

0

)T [
Pb

0

]−1 (
x0 − xb

0

)
+ 1

2

K∑
k=0

(Hkxk − yk)T [Rk]−1(Hkxk − yk)

(22)
which is of the general form given by Eq. (10), measures the distance between the
model solution (Eq. 21) and the data. Minimization of J(x0) will define the initial
condition of the model solution that fits the data most closely. Following a ter-
minology first introduced by Sasaki (1970a, b, c), this is called strong constraint
four-dimensional variational assimilation, often abbreviated as strong constraint
4D-Var. The words “strong constraint” stress the fact that the model identified by
Eq. (21) must be exactly verified by the sequence of estimated state vectors.

If the model error is taken into account, Eq. (20) defines an additional set of
“noisy” data. We assume the model error ηk in Eq. (20) to have covariance matrix
Qk, to be uncorrelated in time and to be uncorrelated with observation and back-
ground errors. Equation (10) then gives the following expression for the objective
function defining the BLUE of the sequence of states {xk, k = 0, . . ., K}

J(x0, x1, . . . , xK) = 1

2

(
x0 − xb

0

)T [
Pb

0

]−1
(x0 − xb

0)

+ 1

2

K∑
k=0

(Hkxk − yk)T [Rk]−1(Hkxk − yk)

+ 1

2

K−1∑
k=0

(xk+1 −Mkxk)T [Qk]−1(xk+1 −Mkxk).

(23)
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The objective function is now a function of the whole sequence of states {xk,
k = 0, . . ., K}. Minimization of an objective function of the form given by Eq. (23),
where the model equations are present as noisy data to be fitted by the analysed
fields like any other data, is called, again according to the terminology introduced
by Sasaki (1970a, b, c), weak constraint four-dimensional variational assimilation,
abbreviated as weak constraint 4D-Var.

Equations (22) and (23), with appropriate redefinition of the state and observation
spaces, are particular cases of Eq. (10). Another type of variational algorithm can
be defined from Eq. (15a), which can be written as

xa = xb + PbHTw, (24)

where the vector w ≡ [HPbHT + R]–1 d minimizes the objective function

K(ν) ≡ 1

2
νT [HPHT + R]ν− dTν. (25)

This function is defined on the dual of the observation space, which has dimen-
sion p. Minimization of Eq. (25) corresponds to the dual approach to variational
assimilation, by opposition to the primal approach, given by Eq. (18). The dual
approach is also known as defining the Physical Space Assimilation System (PSAS,
pronounced “pizzazz”; the word Physical is historical). Just as Eqs. (18), (22),
and (23) are particular forms of Eq. (10), the dual approach can be used in any
of the situations corresponding to those three equations. Depending on the con-
ditions of the problem, and especially on the relative dimension of the state and
observation space, it may be more advantageous to use the primal or the dual
approach. A significant difference is that the dual approach uses the error covari-
ance matrices Pb and R in their direct forms, while the primal approach requires
their inverses. Another difference is that the dual approach requires an explicit
background xb, while the primal approach can be implemented, in the general form
given by Eq. (10), without an explicit background (it only requires the determinacy
condition, Eq. 9).

All forms of variational assimilation given by Eqs. (18), (22), (23), and (25) have
been used, or at least extensively studied, for assimilation of meteorological and
oceanographical observations. The theory of the BLUE requires the data operators
(�, H and Mk in the above notations) to be linear. In practice, this condition is rarely
verified. In particular, variational assimilation of form given by Eq. (22) or (23) is
almost always implemented with a non-linear model. From a heuristic point of view,
it is clear that, if the non-linearity is in a sense sufficiently small, variational assim-
ilation, even if it does not solve a clearly identified estimation problem, is likely to
produce useful results (this point will be further discussed in Sect. 5 below). The
dual approach, on the other hand, explicitly uses the transpose observation operator
HT, and requires exact linearity.
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3 Minimization Methods: The Adjoint Approach

3.1 Gradient Methods for Minimization

Variational assimilation aims at minimizing an objective function of one of the
forms defined in the previous section. The objective functions we will consider can
be exactly quadratic or not. We will make a slight change of notation, and will sys-
tematically denote by x, and will call control variable, the argument of the function
to be minimized; in Eq. (23), the control variable is the whole sequence x0, . . ., xK,
while it is ν in Eq. (25). The control variable belongs to the control space, whose
dimension will be denoted by N. We will denote by ∂J/∂x the gradient of J with
respect to x, i.e., the N-vector whose components are the partial derivatives of J
with respect to the components xi of x, viz.,

∂J

∂x
=

(
∂J

∂xi

)
i=1,...,N

. (26)

The gradient is equal to 0 at the minimum of the objective function. One way to
determine the minimum could conceivably be (as is actually often done in simple
small dimension problems) to determine analytical expressions for the components
of the gradient, and then to solve a system of N scalar equations for the minimizing
components of x. In meteorological and oceanographical applications, the complex-
ity of the computations defining the objective function (in 4D-Var, these calculations
include the temporal integration of a numerical dynamical model of the flow over
the assimilation window) makes it totally inconceivable even to obtain analytical
expressions for the gradient. Another way to proceed is to implement an iterative
minimization algorithm, which determines a sequence of successive approximations
x(l) of the minimizing value of x, viz.,

x(l+1) = x(l) − D(l), (27)

where D(l) is at every iteration an appropriately chosen vector in control space.
One possibility is to choose D(l) along the direction of the local gradient ∂J/∂x.
Algorithms which are based on that choice, called steepest descent algorithms, turn
out, however, not to be numerically very efficient. In other algorithms, the vector D(l)

is determined as a combination of the local gradient and of a number of gradients
computed at previous steps of the iteration, Eq. (27) (see, e.g., Bonnans et al. 2003).
All minimization methods that are efficient for large dimensions are of the form
given by Eq. (27), and require the explicit determination, at each iteration step, of
the local gradient ∂J/∂x. They are called gradient methods. Since one cannot hope to
obtain an analytical expression for the gradient, it must be determined numerically.
One possibility could be to determine it by finite differences, by imposing in turn a
perturbation �xi on all components xi of the control vector, and approximating the
partial derivative ∂J/∂xi by the difference quotient
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∂J

∂xi
≈ J(x+�xi)− J(x)

�xi
. (28)

This, however, would require N explicit computations of the objective function,
i.e., in the case of four-dimensional assimilation, N integrations of the assimilat-
ing model. Although that has actually been done for variational assimilation of
meteorological observations, in an experimental setting, and with a relatively small
dimension model (Hoffman 1986), it would clearly be impossible in any practical
application.

3.2 The Adjoint Method

The adjoint method allows numerical computation of the gradient of a scalar func-
tion at a cost that is at most a few times the cost of the direct computation of that
function. Adjoint equations are an extremely powerful mathematical and numerical
tool. They are central to the theory of optimal control, i.e., the theory of how the
behaviour of a physical system can be controlled by acting on some of its compo-
nents (see for instance the book by Lions 1971). Adjoint equations can also be used
for solving mathematical problems in their own right. The use of adjoint equations
in meteorological and oceanographical applications was advocated by the Russian
school of mathematics at an early stage of development of numerical modelling
of the atmosphere and ocean (see, e.g., Marchuk 1974). We are going to demon-
strate the method of adjoint equations in the special case of strong constraint 4D-Var
(Eq. 22), in the most general case where the model and observation operators can
be non-linear.

In order to stress the possible non-linearity of the model and observation oper-
ators, we now introduce the non-linear model operator, Mk( ), and the non-linear
observation operator, Hk( ). The notation for operators used hitherto in this chapter,
Mk and Hk (denoting linear model and observation operators, respectively), being
reserved hereafter for the Jacobians (matrices of partial derivatives) of Mk( ) and
Hk( ), respectively. We rewrite Eqs. (21) and (22) with non-linear operators as

J(x0) = 1

2

(
x0 − xb

0

)T [
Pb

0

]−1 (
x0 − xb

0

)
+1

2

K∑
k=0

(Hk(xk)−yk)T [Rk]−1(Hk(xk)−yk)

(29a)
with

xk+1 =Mk(xk), k = 0, . . . , K − 1. (29b)

Our purpose is to determine the gradient ∂J/∂x0 of J with respect to x0. That
gradient is characterized by the property that, for any perturbation δx0 of x0, the
corresponding variation of J is, to first order with respect to δx0, equal to
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δJ =
(
∂J

∂x0

)T

δx0. (30)

The perturbation δx0 results at later times in perturbations which, through
differentiation of Eq. (29b), are given to first order by

δxk+1 = Mkδxk, k = 0, . . . , K − 1, (31)

where, as said, Mk is the Jacobian of xk+1 with respect to xk. Equation (31) is called
the tangent linear equation of Eq. (29b). Although the dependence is not explicit in
Eq. (31), it must be kept in mind that the Jacobian Mk will, in general, depend in the
non-linear case on the local value of xk.

As for the first order variation of the objective function J, it is given by
differentiation of Eq. (29a), viz.,

δJ =
(

x0 − xb
0

)T [
Pb

0

]−1
δx0 +

K∑
k=0

(Hk(xk)− yk)TR−1
k Hkδxk, (32)

where Hk is the local Jacobian of Hk, and where the δxk’s are given by Eq. (31).
δJ is a compound function of δx0 through the δxk’s. Our purpose is to “skip” the

intermediate δxk’s, and to obtain a direct dependence of δJ with respect to δx0 of
form given by Eq. (30). To that end, we introduce at each time k = 1,. . ., K a vector
λk, belonging to the dual of state space (and therefore with dimension n), and to be
defined more precisely later. We form the products λT

k (δxk − Mk−1δxk−1), which,
according to Eq. (31), are equal to 0. Subtracting those products from the right-hand
side of Eq. (32) yields

δJ =
(

x0 − xb
0

)T [
Pb

0

]−1
δx0 +

K∑
k=0

(Hk(xk)− yk)TR−1
k Hkδxk

−
K∑

k=0

λT
k (δxk −Mk−1δxk−1)

(33)

(subtracting rather than adding the products is of course arbitrary, but convenient).
We now transform Eq. (33) by first using the fact that the transpose of a matrix
product is the product of the corresponding transposes, taken in reversed order. For

instance, the product (Hk(xk)− yk)TR−1
k Hk is equal to

([
HT

k R−1
k (Hk(xk)− yk)

])T

(where use has been made of the fact that the covariance matrix Rk is symmet-
ric), thus transforming the (scalar) quantity (Hk(x)k−yk)TR−1

k Hkδxk into the scalar
product of the two n-vectors HT

k R−1
k (Hk(xk)− yk) and δxk. Performing that opera-

tion on all terms in Eq. (33) and gathering all terms with common factor δxk yields
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δJ =
{[

Pb
0

]−1 (
x0 − xb

0

)
+HT

0 R−1
0 (H0(x0)− y0)+MT

0 λ1

}T

δx0

+
K−1∑
k=1

{
HT

k R−1
k (Hk(xk)− yk)− λk +MT

k λk+1

}T
δxk

+
{

HT
KR−1

K (HK(xK)− yK)− λK

}T
δxK .

(34)

This expression is valid for any choice of the λk’s. It is seen that choosing

λK = HT
KR−1

K

(
HK(xK)− yK

)
, (35a)

and then recursively

λk = MT
k λk+1 +HT

k R−1
k

(
Hk(xk)− yk

)
for k = K − 1, . . . , 1, (35b)

eliminates all δxk terms in Eq. (34), except the δx0 term. Defining further

λ0 = MT
0λ1 +

[
Pb

0

]−1 (
x0 − xb

0

)
+HT

0 R−1
0 (H0(x0)− y0) (35c)

there remains

δJ = λT
0 δx0, (36)

which shows that λ0 is the required gradient of the objective function with respect
to the initial condition x0 (see Eq. 30).

Equations (35a), (35b), and (35c) make up the adjoint of the tangent linear equa-
tion, Eq. (31). The word “adjoint” comes from the fact that Eqs. (35a), (35b), and
(35c) are built on the transpose matrices HT

k and MT
k , which are particular cases

of the more general notion of adjoint operators. The adjoint equation is defined
for the particular solution xk of the basic equation (29b) for which the gradient is
to be determined. It depends on that solution through the terms Hk(xk) − yk and,
in the case of either a non-linear model operator Mk or a non-linear observation
operator Hk, through the transpose Jacobians MT

k and/or HT
k . It is often said for

convenience that Eqs. (35a), (35b), and (35c) define the adjoint of the basic model
given by Eq. (29b), but it must be kept in mind that the adjoint equation is defined
for a particular solution of that model.

The computations to be performed for determining the gradient ∂J/∂x0 for given
initial condition x0 are now clearly defined:

(1) Starting from x0, integrate the basic equation (29b). Store the corresponding
solution xk in memory;

(2) Starting from the “final” condition (Eq. 35a) at time K, integrate the adjoint
equations (35b) and (35c) backward in time. The required gradient is λ0. The
direct solution xk is necessary for computing the terms HT

k R−1
k (Hk(xk) − yk)
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and, in case the basic model (Eq. 29b) is non-linear, for determining the
transpose Jacobian MT

k .

The determination of the gradient therefore requires one forward integration of
the basic model (Eq. 29b), followed by one backward integration of the adjoint
model (Eqs. 35a, 35b, and 35c). The latter is a modified form of the direct model,
and the corresponding cost must be of similar magnitude to the cost of integrating
the direct model. It can be rigorously shown that, in terms of the number of arith-
metic operations to be performed, the cost of one adjoint computation of the gradient
∂J/∂x0 is at most four times the cost of one computation of the objective function,
J. In meteorological and oceanographical applications, the cost of one adjoint inte-
gration (in terms of elapsed computer time) is typically twice the cost of one direct
integration. This ratio is basically independent of the dimension N of the control
variable, and makes the adjoint computation of a gradient much more economical
than the N direct model integrations that would be required if the gradient was to be
computed by explicit perturbations. It is this fact that made variational assimilation
possible at all in the first place.

Not surprisingly, there is a price to be paid for this major reduction in com-
puting time. The price, as seen above, is the necessity to store in memory the
direct solution xk. More precisely, what has to be kept in memory (or else to
be recomputed in the course of the adjoint integration) are all quantities that are
arguments of non-linear operations in the direct integration. Relaxing the storage
constraint, for instance by using a more economical approximate adjoint, is diffi-
cult. Experience shows that minimization algorithms, especially efficient ones, are
very sensitive to even slight misspecification of the gradient. The question of how
the cost of variational assimilation can be reduced will be discussed in the next
section.

The description that has just been given of the adjoint method is fundamentally
sufficient for 4D-Var. It obviously covers the case of 3D-Var (minimization of an
objective function of form given by Eq. 18), which does not involve a dynamical
model of the flow. In that case, of course, only the transpose Jacobian HT of the
observation operator is needed.

The first attempt at using the adjoint approach for variational assimilation of
meteorological observations was made by Penenko and Obraztsov (1976), on a sim-
ple one-level linear atmospheric model, and with synthetic data. Later attempts were
made by Lewis and Derber (1985), Le Dimet and Talagrand (1986) and Talagrand
and Courtier (1987). Courtier and Talagrand (1987) first used real data, while
Thacker and Long (1988) made the first attempt at using adjoint equations for vari-
ational assimilation of oceanographical observations. Thépaut and Courtier (1991)
first used a full primitive equation meteorological model. These early works showed
that variational assimilation of meteorological or oceanographical observations
was numerically feasible at an acceptable cost, and produced physically realistic
results. Variational assimilation was progressively applied to more and more com-
plex numerical models. It was introduced in 1997 in operational prediction, in the
strong-constraint formulation, at the European Centre for Medium-Range Weather
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Forecasts, ECMWF (Klinker et al. 2000), and in 2000 at the French Meteorological
Service (Météo-France). In both places, operational implementation of variational
assimilation has resulted in significant improvements of the ensuing forecasts (see
chapter Assimilation of Operational Data, Andersson and Thépaut). Some of these
improvements were due to side effects not directly linked to the variational charac-
ter of the assimilation, but others, especially in a number of specific meteorological
situations, were due to better consistency between the assimilated states and the
dynamics of the atmospheric flow. Since then, other meteorological services, such as
the Japan Meteorological Agency, the Meteorological Office (United Kingdom), the
Meteorological Service of Canada and the China Meteorological Administration,
have introduced variational assimilation in their operational prediction system. All
these schemes are of the strong-constraint form, and use a 6-h assimilation win-
dow (12-h in the case of ECMWF). In addition, ECMWF, after having produced
several sets of reanalysed past observations, all based on sequential assimilation
algorithms, is now running a new reanalysis project (the ERA-Interim project,
http://www.ecmwf.int/research/era/do/get/era-interim) based on variational assim-
ilation. A specific advantage of variational assimilation in the case of reanalysis
of past data is that it propagates information both forward and backward in time,
thus allowing the use of observations that have been performed after estimation
time.

Similar developments have taken place in oceanography, and variational assimi-
lation using the adjoint of oceanographic circulation models is now commonly used
for many diverse applications (although not so far for operational oceanographic
prediction). Those applications include determination of the initial conditions of the
flow, as described above (see, e.g., Weaver and Anderson 1997; Vialard et al. 2003;
Ricci et al. 2005), but also identification of “parameters”, such as wind stress at
the surface of the ocean (Vossepoel et al. 2004). Egbert et al. (1994) and Louvel
(2001) used the dual approach through minimization in dual observation space of
an objective function of form given by Eq. (25). In that approach, each iteration of
the minimization process requires first a backward integration of the adjoint model,
followed by a forward integration of the tangent linear model. Variational assimi-
lation has also extended to other fields of geophysics and environmental sciences,
such as atmospheric chemistry (Fisher and Lary 1995; Errera and Fonteyn 2001;
Elbern et al. 2007; Lahoz et al. 2007 – see also chapters in Part IV, Atmospheric
Chemistry), or surface hydrology (Reichle 2000 – see chapter Land Surface Data
Assimilation, Houser et al.). Other extensions of the variational methodology, that
have largely benefited from the experience in meteorology, have been to terrestrial
magnetism (Fournier et al. 2007; Sun et al. 2007) and seismology (Tromp et al.
2005).

4 Practical Implementation

If the principle of variational assimilation and of the adjoint method is conceptually
perfectly clear and rigorous, practical implementation of variational assimilation
raises a number of serious problems. We will discuss below the specific problems
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associated with the development and validation of a code for performing the adjoint
computations defined by Eq. (35), and are going to consider first a number of purely
numerical problems.

4.1 The Incremental Approach

The developments of the previous section seem to require that it is the adjoint of
the complete model (Eq. 29b) that has to be used for the computation of the gradi-
ent of the objective function. A Numerical Weather Prediction (NWP) model is an
extremely complex and lengthy code, and the ensuing “all-or-nothing” choice (take
the complete adjoint of the model, or else do nothing) seems particularly imprac-
tical. Simplifying the adjoint equation as such, without modification of the direct
model nor of the objective function, is not an appropriate solution. That would lead
to an approximate gradient of the objective function, and, as has already been said,
experience shows that minimization algorithms, especially efficient ones, are very
sensitive to even slight misspecification of the gradient. A convenient and versatile
solution, known as the incremental approach to variational assimilation, has been
introduced by Courtier et al. (1994). Several variants of that approach exist. We are
going to describe the one that is conceptually the simplest.

The basic idea is to simplify the dynamical model (Eq. 29b) to a form that is both
more economical and more manageable, in particular as concerns the adjoint. But
that is not done on the model (Eq. 29b) itself, but rather on the tangent linear model
(Eq. 31). A reference solution xk

(0) of the basic equation (29b) having been deter-
mined (emanating for instance from the background x0

b = x0
(0)), the corresponding

tangent linear model (Eq. 31) is modified to

δxk+1 = Lkδxk, k = 0, . . . , K − 1, (37)

where Lk is, at any time k, an appropriately chosen “simpler” operator than the
Jacobian Mk. Consistency then requires to modify the basic model (Eq. 29b) in such
a way that the tangent linear equation corresponding to solution xk

(0) is Eq. (37).
This is achieved by making the initial condition x0 ≡ x0

(0) + δx0 evolve into xk ≡
xk

(0) + δxk, where δxk itself evolves according to Eq. (37). That makes the basic
dynamics linear.

As for the objective function (Eq. 29a), several possibilities exist, at least when
the observation operators are non-linear. One possibility is to linearize those opera-
tors just as the model operator Mk has been linearized. This leads to replacing the

quantity Hk(xk) by Hk

(
x(0)

k

)
+Nkδxk, where Nk is an appropriate simplified linear

operator (possibly, but not necessarily, the Jacobian of Hk at point xk). The objective
function (Eq. 29a) is then replaced by

J1(δx0) = 1

2

(
δx0 + x(0)

0 − xb
0

)T [
Pb

0

]−1 (
δx0 + x(0)

0 − xb
0

)

+ 1

2

K∑
k=0

(Nkδxk − dk)TR−1
k (Nkδxk − dk),

(38)
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where the δxk’s are subject to Eq. (37), and where dk ≡ yk − Hk

(
x(0)

k

)
is the

innovation at time k.
The function given by Eq. (38) is an exactly quadratic function of the initial per-

turbation δx0. The minimizing perturbation δx0,m defines a new initial state x0
(1) ≡

x0
(0) + δx0,m, from which a new solution xk

(1) of the basic equation (Eq. 29b) is
computed. The process is then repeated for solution xk

(1).
This defines a system of two-level nested loops for minimization of the orig-

inal objective function (Eq. 29a). The fundamental advantage of the incremental
approach is that it allows one to define at will the simplified linearized operators Lk

and Nk. Many degrees of freedom are available for ensuring an appropriate trade-
off between practical implementability and meteorological accuracy and usefulness.
The simplified dynamics in Eq. (37) can itself be modified in the course of the
minimization, by progressively introducing more and more complex dynamics or
“physics” in the successive outer loops.

It is the incremental method which, after the adjoint method, makes varia-
tional assimilation feasible. It is implemented, either in the form that has just been
described or in slightly different variants, in most (if not all) operational NWP sys-
tems that use variational assimilation. At ECMWF, it is implemented with two outer
loops, the approximations introduced in the linearized dynamics (Eq. 37) consist-
ing first, of a reduced spatial resolution (from triangular spectral truncation T799 to
T255 for the second outer loop) and, second, of a simplified “physical” package.

An obvious question is whether the nested-loop process of the incremental pro-
cess converges and, if it does, to what it converges. In the case where the linearized
operators Lk and Nk vary from one outer loop to the next, the possible convergence
of the process can depend on the way those operators vary. In particular, conver-
gence to the minimum of the original objective function (Eq. 29a) is possible only
if the linear operators Lk and Nk converge to the corresponding Jacobians Mk and
Hk at that minimum. The question of the convergence of the incremental process
has been studied in some detail by Trémolet (2007) on the ECMWF 4D-Var system.
Numerical tests show that the process does not converge asymptotically, at least in
the conditions in which it is implemented at ECMWF. The way the incremental
approach is implemented, at ECMWF and elsewhere, is largely based on empirical
tuning.

4.2 First-Guess-At-the-Right-Time 3D-Var

An extreme case of the incremental approach is what is called First-Guess-At-the-
right-Time 3D-Var, or FGAT 3D-Var. It can be described as a process of form of
Eqs. (37) and (38) in which the simplified linear operator Lk is taken as the identity
operator. This process is four-dimensional in that the observations distributed over
the assimilation window are compared with their analogues in a time-evolving ref-
erence integration of the assimilating model. But it is three-dimensional in that the
minimization of the objective function (Eq. 38) does not use any explicit dynamics
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other than the trivial dynamics expressed by the unit operator, and that the numer-
ical implementation is in effect three-dimensional. The FGAT 3D-Var approach,
which is implemented through a unique minimization (no nested loops), has been
shown to improve the quality of the assimilated fields, simply through the fact that is
effectively uses a more exact innovation vector than does standard 3D-Var, in which
all observations over the assimilation window are compared to the same first-guess
field.

5 Further Considerations on Variational Assimilation

Independently of its numerical and algorithmic properties, the major advantage of
variational assimilation is that it takes into account, through the adjoint equation,
the temporal evolution of the uncertainty in the state of the flow, at least over the
assimilation window. Although (contrary to the Kalman filter) it does not explicitly
compute the evolution of the uncertainty as such (and, in particular, does not pro-
duce an explicit estimate of the uncertainty in the estimated fields), it determines an
approximation of the minimizing solution of the objective function (Eq. 29), which
depends on the dynamics of the flow, and of the temporal evolution of the uncer-
tainty. This was shown in full detail by Thépaut et al. (1993), who compared the
impact of individual observations in a 3D-Var process, which ignores the temporal
evolution of the uncertainty, and a 4D-Var process. The impact was significantly
different, and strongly dependent on the dynamical state of the flow, in the latter
case.

Significant impact does not of course mean positive impact. All operational
implementations of 4D-Var have been preceded by the development and implemen-
tation of a 3D-Var system. This is very convenient in that it allows progressive
introduction of the various components of the full 4D-Var system. But it also
provides the opportunity for systematic comparison of 3D-Var and 4D-Var. The
comparison has always shown the superiority of 4D-Var, in particular in terms of
the quality of the ensuing forecasts. Similar comparisons have also been performed,
with the same conclusions, on other, non-operational assimilation systems. See also
Lorenc and Rawlins (2005) for a detailed discussion of 3D-Var and 4D-Var.

All operational implementations of 4D-Var have so far been of the strong con-
straint form. In spite of the constant improvement of NWP models, the hypothesis of
a perfect model is of course highly disputable. Weak-constraint assimilation, which
corresponds to minimization of an objective function of form given by Eq. (23),
would certainly be desirable. It however requires a quantitative estimate, in the form
of the covariance matrix Qk, of the model error. A reliable estimate may be diffi-
cult to obtain. Derber (1989) has suggested identifying a possible systematic bias in
the model by introducing that bias in the control variable. Other authors (Zupanski
1997; Trémolet 2006) have studied algorithms of the general form given by Eq. (23).
There is some indication (M. Fisher, personal communication) that weak constraint
variational assimilation could be useful over longer assimilation windows (24 h or
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more) than used in strong constraint assimilation. That is easily understandable in
view of the fact that the perfect model hypothesis becomes less and less valid as the
length of the assimilation window increases.

The primal weak-constraint objective function (Eq. 23) becomes singular in
the limit of a perfect model (Qk=0). As already said, the dual approach uses the
data error covariance matrices in their direct form, so that the dual objective func-
tion (Eq. 25), as defined for weak constraint variational assimilation, is regular for
Qk = 0. This means that the same dual algorithm can be used for both strong-
and weak-constraint variational assimilation. This is an attactive feature of the dual
approach.

Courtier (1997) has shown that, subject to an appropriate preconditioning of the
dual variable ν in Eq. (25), the numerical conditioning (and therefore the numerical
cost) of the dual algorithm is the same as that of the primal approach. In varia-
tional assimilation, it is actually the repeated numerical integrations of the direct
and adjoint models that takes the major part of the computations, and the numeri-
cal cost of strong- and weak-constraint variational assimilation is fundamentally the
same. This point is discussed in more detail in Louvel (2001).

The dual approach requires strict linearity of the operator H in Eq. (25)
which, in the case of variational assimilation, means strict linearity of the model
and observation operators. Auroux and Blum (2002, 2004) have introduced a
double-loop algorithm (which has some similarity with the incremental approach
described above) in which successive linear problems of form given by Eq. (25)
are solved, each one being based on a linearization about the result of the
previous one.

More generally, and independently of the particular numerical algorithm that is
used, the validity of the linear approach defined by Eqs. (7) and (10) is question-
able in meteorological and oceanographical applications. It has already been said
that, from a purely heuristic point of view, the linear approach must be valid if the
non-linearities are in a sense small enough. A more accurate description of the real
situation that is encountered in meteorology and oceanography is given, rather than
by Eqs. (11) and (12), by

xb = xt + εb, (39)

y = H∗(xt)+ ε, (40)

where H∗(H − star) denotes a non-linear observation operator. In the case of 3D-
Var, H∗ is the observation operator at estimation time. In the case of 4D-Var, the
vector y denotes the complete temporal sequence of observations, and the operator
H∗ includes the (non-linear) dynamical model. The knowledge of the data (Eqs. 39
and 40) is equivalent to the knowledge of Eq. (39) together with what can be called
the non-linear innovation vector

d ≡ y−H∗(xb) = H∗(xt)−H∗(xb)+ ε. (41)
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If the background xb is close enough to the real unknown state xt, d can be
approximated by

d ≈ H(xt − xb)+ ε, (42)

where H is here the Jacobian of the full operator H∗ at point xb. If the so-called
tangent linear approximation defined by Eq. (42) is valid, Eqs. (39), (40), (41), and
(42) define an estimation problem that is linear with respect to the deviation xt–xb

of the real state with respect to the background xb. Equations (15) and (18) are then
valid, H being the Jacobian of H∗. In the case of 4D-Var, this leads to minimization
of an objective function of the incremental form given by Eqs. (37) and (38), where
the operators Lk and Nk replace the exact Jacobians Mk and Hk along the (full
non-linear) reference model solution.

Both direct (see, e.g., Lacarra and Talagrand 1988) and indirect evidence shows
that the tangent linear approximation is valid for large scale geostrophic atmo-
spheric flow (scales larger than 200 km) up to about 24–48 h. This limit, however,
rapidly decreases with decreasing spatial scales, to be of the order of a few hours
for convective scales. For oceanic geostrophic flow (scales larger than a few tens of
kilometres), the limit is a few weeks.

The developments of this chapter are therefore fully valid within those limits. It is
to be stressed, however, that in circumstances where the tangent linear approxima-
tion is known or hypothesized to be valid, the linearization in Eq. (42) is rarely
performed explicitly. Either fully non-linear operators are kept in the objective
function to be minimized, or (as is actually the case in the incremental approach
described above) approximations that go further than Eq. (42) are implemented. The
only case where the linearization given by Eq. (42) seems to have explicitly been
implemented is in the above-mentioned works of Auroux and Blum (2002, 2004)
relative to the dual approach, which requires exactly linear operators.

But the question arises of what is to be done in circumstances when the tan-
gent linear approximation is not valid. In the context of 4D-Var, there are actually
two different questions, depending on the strength of the non-linearities. If the non-
linearities are weak, the minimization of an objective function of the general form
given by Eq. (29) remains numerically feasible, but may not be justified on the basis
of estimation theory. If the non-linearities are strong, even the numerical minimiza-
tion of the objective function, owing for instance to the presence of distinct minima,
can raise difficulties.

These questions have not been discussed so far in much depth. One can men-
tion the work of Pires et al. (1996), who studied variational assimilation for a
strongly chaotic non-linear system (specifically, the celebrated three-parameter sys-
tem of Lorenz 1963). These authors have shown that the objective function given
by Eq. (29) possesses an increasing number of local minima with increasing length
of the assimilation window. This can be easily understood in view of the repeated
folding in state space that is associated with chaos. They have defined a proce-
dure, called Quasi-Static Variational Assimilation (QSVA), in which the length of
the assimilation window, starting from a value for which the objective function
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(Eq. 29) possesses a unique minimum, is progressively increased. Each new mini-
mization is started from the result of the previous one. This allows one to keep track
of the absolute minimum of the objective function, at least if the temporal density
of observations is in a sense high enough. QSVA has been implemented on a quasi-
geostrophic atmospheric model by Swanson et al. (1998) who have been able to
usefully extend variational assimilation (in the hypothesis of a perfect model) to
assimilation windows as long as 5 days. This is largely beyond the limit of validity
of the tangent linear approximation. QSVA, or a similar algorithm, could possibly be
implemented in operational practice, for instance by using successive overlapping
assimilation windows.

Other developments have taken place recently at the research level. Carrassi et al.
(2008) have defined a 3D-Var system in which the control variable, instead of con-
sisting of the whole state vector, is restricted to the deviations from the background
along the (relatively few) unstable modes of the system. This approach is now being
extended to 4D-Var (Trevisan, personal communication). A somewhat similar work
has been performed by Liu et al. (2008), who have developed a low-order incremen-
tal 4D-Var system. The background error covariance matrix P0

b (Eq. 38) is defined,
not on the basis of an a priori statistical model, but on the basis of the dispersion
of an ensemble of background forecasts. As in Carrassi et al. (2008), the control
space is not the entire state space, but the state spanned by the background fore-
casts. Taking advantage of the relatively small dimension of the control space, and
of the linearity associated with the incremental character of the procedure, it is not
necessary to use an adjoint code for computing the gradient of the objective func-
tion. That can be achieved through simple transposition of an appropriate matrix.
The results obtained are competitive with a fully-fledged 4D-Var. The “ensemble”
feature of those works give them similarity with the Ensemble Kalman filter (see
chapter Ensemble Kalman Filter: Current Status and Potential, Kalnay).

Both those works suggest that it could be possible to achieve substantial numeri-
cal gain, without significant degradation of the final results (and even maybe without
the use of an adjoint), by restricting the control variable to an appropriate subspace
of the whole state space.

All the algorithms that have been described above are based on the minimization
of an objective function of the general form given by Eqs. (10), (18) or (29), which
is quadratic in terms of the data-minus-unknown differences, with weights equal to
the inverse of the covariance matrices of the corresponding errors. Equations (10)
and (18) correspond to least-variance statistical linear estimation, while Eq. (29)
corresponds to an extension to weakly non-linear situations. Other forms for the
objective function have also been considered. In particular, Fletcher and Zupanski
(2006) and Fletcher (2007), following a general Bayesian approach, propose to max-
imize the conditional probability density function for the state of the flow, given the
data. In the case of linear data operators and Gaussian errors, this leads to mini-
mization of an objective function of form given by Eq. (10). Those authors consider
the case of lognormal distributions, which are more appropriate for bounded vari-
ables such as humidity. This leads to a significantly different form for the objective
function.
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6 More on the Adjoint Method

The adjoint method has been demonstrated above in the particular case of the objec-
tive function given by Eq. (29). It is actually very general, and defines a systematic
approach for computing the (exact) gradient of a differentiable scalar function with
respect to its arguments. Although this may not be obvious from the above devel-
opments, the adjoint method consists in a systematic use of the chain rule for
differentiation of a compound function. Proceeding backward through the origi-
nal sequence of computations, it recursively computes the partial derivatives of the
scalar function under consideration with respect to the variables in those computa-
tions (see, e.g., Talagrand 2003). As such, the adjoint method can be used not only
for optimization purposes, as in variational assimilation, but (actually more simply)
for determination of gradients as such, and for sensitivity studies.

The advantages and disadvantages of variational assimilation will be further dis-
cussed in the Conclusions below (Sect. 7). But its major disadvantage (at least for
variational assimilation as it exists at present) is probably the need for developing
the adjoint code which performs computations in Eq. (35). Not only must the adjoint
code be developed, but it must be carefully validated, since experience shows that
even minor errors in the computed gradient can significantly degrade the efficiency
of the minimization (if not totally inhibit it). In addition, NWP models are con-
stantly modified, and the corresponding modifications must be made on the adjoint
code. Writing the adjoint of a code at the same time as the direct code involves
only a rather small amount of additional work (10 or 20%). But developing the
adjoint of an already existing code can require a substantial amount of work, and
can be a very tedious and time-consuming task. On the other hand, the fact that
adjoint computation is in essence a systematic use of the chain rule for differentia-
tion leads to perfectly defined “adjoint” coding rules, which make the development
of an adjoint code, if lengthy and tedious, at least totally straightforward. These rules
are described in, e.g., Talagrand (1991), Giering and Kaminski (1998) or Kalnay
(2002).

Those same rules are at the basis of “adjoint compilers”, i.e., software pieces
that are designed to automatically develop the adjoint of a given code (see, e.g.,
http://www.fastopt.de/; Hascoët and Pascual 2004). The adjoint of a particular piece
of code is independent of the rest of the code, and automating the derivation of
the adjoint instructions for a sequence of coding instructions, which is a purely
local operation, is relatively easy. Other aspects, such as the choice and management
of non-linear variables to be kept in memory from the direct integration, or to be
recomputed in the course of the adjoint integration, require a global view of the
code, and are more difficult to automate. For that reason, the use of these software
pieces still requires experience of adjoint coding as well as some preparatory work,
but they are nevertheless extremely useful, and very substantially reduce the amount
of time and work necessary for developing the adjoint of an atmospheric or oceanic
circulation model.

The adjoint approach is used in assimilation of meteorological and oceanograph-
ical observations for numerically solving, through an iterative minimization process,
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an optimization problem. Now, as said above, what the adjoint equations really do
is simply compute the gradient of one scalar output of a numerical process with
respect to (potentially all) the input parameters of that process. As such, the adjoint
approach can be used for sensitivity studies of outputs with respect to inputs, inde-
pendently of any optimization or minimization. It will be useful to use the adjoint
approach when the number of output parameters whose sensitivity is sought is
smaller than the number of input parameters with respect to which the sensitivity
is sought (in the inverse case, direct perturbation of the input parameters will be
more economical).

Actually, the first proponents of the use of the adjoint approach in meteorol-
ogy and oceanography had primarily sensitivity studies in mind (Marchuk 1974;
Hall et al. 1982). Adjoint models have been used to perform sensitivity studies
of many different kinds: sensitivity of the atmospheric flow with respect to ini-
tial or lateral boundary conditions (Errico and Vukisevic 1992; Rabier et al. 1992;
Gustafsson et al. 1998); sensitivity of the global oceanic circulation to parame-
ters (Marotzke et al. 1999); sensitivity of biogeochemical processes (Waelbroeck
and Louis 1995); and sensitivity of atmospheric chemical processes (Zhang et al.
1998). See also the special issue of Meteorologische Zeitschrift (Ehrendorfer and
Errico 2007) devoted to Adjoint Applications in Dynamic Meteorology. Two spe-
cific types of applications are worthy of particular mention. The first one has to
do with the identification, for a particular situation, of the unstable components of
the flow. In its simplest form, this amounts to determining the so-called singular
vectors of the flow, i.e., the perturbations that amplify most rapidly, over a period
of time, in the tangent linear approximation (Lacarra and Talagrand 1988; Farrell
1989; Urban 1993). This has been extended by Mu and colleagues (Mu 2000; Mu
et al. 2003) to Non-Linear Singular Vectors (NLSVs), i.e., perturbations that amplify
most rapidly in the full non-linear evolution. A condition must then be imposed on
the initial amplitude of the perturbation, which leads to a (technically more difficult
to solve) constrained optimization problem. Both linear and non-linear singular vec-
tors allow accurate diagnostic and analysis of instability (Moore and Farrell 1993;
Mu and Zhang 2006; Rivière et al. 2008). A related, but more specific, application
is the identification of the components of the flow to which a particular feature of
the future evolution of the flow (such as, for instance, the deepening of a depres-
sion) is most sensitive. This allows one to “target” observations in order to optimize
the prediction of the feature under consideration. This has been implemented suc-
cessfully on the occasion of specific campaigns (see, e.g., Langland et al. 1999;
Bergot and Doerenbecher 2002). Observation targeting through adjoint methods
is further discussed in Buizza et al. (2007). Another, potentially very promising,
application of the adjoint method is the determination of the sensitivity of analysed
and predicted fields to observations. It is then the adjoint of the whole assimilation
and prediction process, and not only of the assimilating model, that has to be used
(Langland and Baker 2004). This has led to very useful diagnostics of the value
and usefulness of various types of observations (Langland and Cardinali, personal
communication).



Variational Assimilation 63

7 Conclusion

Variational assimilation has now become a basic tool of numerical meteorology and
oceanography, and a major component of operational NWP in several major meteo-
rological services. Together with the Ensemble Kalman filter (see chapter Ensemble
Kalman Filter: Current Status and Potential, Kalnay), it is one of the two most
advanced and powerful assimilation methods. The specific advantages of variational
assimilation are rather obvious. It is very versatile and flexible, and allows for easy
introduction of a new type of observation in an assimilation system. It suffices to
specify the corresponding observation operator and the first- and second-order sta-
tistical moments of the associated error. It automatically propagates information
both forward and backward in time, and makes it easy to take into account tempo-
ral correlation between errors (either observation or model errors). To the author’s
knowledge, this last possibility has been used so far on only one occasion, for taking
into account temporally correlated errors in high frequency observations of sur-
face pressure (Järvinen et al. 1999). But it can be extremely useful, especially for
the treatment of model error and of the associated temporal correlation (time will
presumably come when this will be necessary).

Variational assimilation is costly in that it requires the development, validation
and maintenance of the adjoint of the assimilating model, as well as of the various
observation operators. This is a time-consuming task. However, owing to the gain in
experience and expertise, and to the continuous improvement of adjoint compilers,
that task progressively becomes easier and easier. And, as discussed in the previous
section, adjoints, once they are available, can be used for many other applications
than assimilation, and in particular to powerful diagnostic studies.

Assimilation of meteorological and oceanographical observations may be at a
turning point. It seems that the limits of what can be obtained from statistical linear
estimation (i.e., from Eq. (7) and its various generalizations to weakly non-linear
situations) are being reached. The only exception is likely Quasi-Static Variational
Assimilation, discussed in Sect. 5, which is based on minimization of objective func-
tions of form given by Eq. (29), but whose limits have not been identified. Statistical
linear estimation is at the basis of variational assimilation and of the “Kalman” com-
ponent of the Ensemble Kalman filter. It can legitimately be said that the ultimate
purpose of assimilation is to achieve Bayesian estimation, i.e., to determine the con-
ditional probability distribution for the state of the atmosphere (or the ocean), given
all the relevant available information. In view of the large dimension of the state of
the atmosphere, the only possible way to describe the conditional probability dis-
tribution seems to be through an ensemble of points in state space, as indeed the
Ensemble Kalman filter already does. A basic question is then to determine whether
it is possible to develop methods for ensemble variational assimilation, which would
produce a Bayesian ensemble, while retaining the specific advantages of variational
assimilation, namely easy propagation of information both forward and backward
in time, and possibility to easily take error temporal correlations into account. Some
results suggest that this should be possible.
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Ensemble Kalman Filter: Current Status
and Potential

Eugenia Kalnay

1 Introduction

In this chapter we give an introduction to different types of Ensemble Kalman filter,
describe the Local Ensemble Transform Kalman Filter (LETKF) as a representative
prototype of these methods, and several examples of how advanced properties and
applications that have been developed and explored for 4D-Var (four-dimensional
variational assimilation) can be adapted to the LETKF without requiring an adjoint
model. Although the Ensemble Kalman filter is less mature than 4D-Var (Kalnay
2003), its simplicity and its competitive performance with respect to 4D-Var suggest
that it may become the method of choice.

The mathematical foundation of data assimilation is reviewed by Nichols
(chapter Mathematical Concepts of Data Assimilation). Ide et al. (1997) concisely
summarized the sequential and variational approaches in a paper introducing a
widely used notation that we follow here, with bold low-case letters and bold
capitals representing vectors and matrices, respectively. Non-linear operators are,
however, represented in bold Kunster script (as in other chapters in this book).
Since variational methods (chapter Variational Assimilation, Talagrand) and sequen-
tial methods basically solve the same problem (Lorenc 1986; Fisher et al. 2005)
but make different approximations in order to become computationally feasible for
large atmospheric and oceanic problems, it is particularly interesting to compare
them whenever possible.

In this chapter we briefly review the most developed advanced sequential method,
the Ensemble Kalman filter (EnKF) and several widely used formulations (Sect. 2).
In Sect. 3 we compare the EnKF with the corresponding most advanced variational
approach, 4D-Var (see chapter Variational Assimilation, Talagrand). Because 4D-
Var has a longer history (e.g. Talagrand and Courtier 1987; Courtier and Talagrand
1990; Thépaut and Courtier 1991), and has been implemented in many operational
centers (e.g. Rabier et al. 2000), there are many innovative ideas that have been
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developed and explored in the context of 4D-Var, whereas the EnKF is a newer
and less mature approach. We therefore present in Sect. 3 examples of how specific
approaches explored in the context of 4D-Var can be simply adapted to the EnKF.
These include the 4D-Var smoothing property that leads to a faster spin-up, the outer
loop that increases the analysis accuracy in the presence of non-linear observation
operators, the adjoint sensitivity of the forecasts to the observations, the use of lower
resolution analysis grids, and the treatment of model errors. Section 4 is a summary
and discussion.

2 Brief Review of Ensemble Kalman Filtering

The Kalman filter equations (Kalman 1960) are discussed by Nichols (chapter
Mathematical Concepts of Data Assimilation, Sect. 3.1). Here we summarize key
points of an alternative derivation of the Kalman filter equations for a linear per-
fect model due to Hunt et al. (2007) based on a maximum likelihood approach
which provides additional insight about the role that the background term plays in
the variational cost function (see Nichols, chapter Mathematical Concepts of Data
Assimilation, Sect. 2; Talagrand, chapter Variational Assimilation, Sect. 2).

We start by assuming that the analysis x̄a
n−1 valid at time tn−1 has Gaussian errors

with covariance Pa
n−1 so that the likelihood of the true state xt is

ρ(xt − x̄a
n−1) ∝ exp

{
−1

2
(xt − x̄a

n−1)T [Pa
n−1]−1(xt − x̄a

n−1)

}
,

where the overbar represents the expected value (cf. chapter Mathematical Concepts
of Data Assimilation, Nichols, Sect. 2.4). The past observations yj from time t1 to
tn−1 (i.e. j = 1, . . . , n−1) are also assumed to have a Gaussian distribution with error
covariances Rj, so that the likelihood of a trajectory of states {x(tj)| j = 1, . . . , n−1}
given the past observations is proportional to

n−1∏
j=1

exp

[
−1

2
(yj −Hjx(tj))

TR−1
j (yj −Hjx(tj))

]
,

where Hj is the linear observation operator that transforms the model into the corre-
sponding observation. To maximize the likelihood function, it is more convenient,
however, to write the likelihood function as a function of the state at a single
time rather than for the whole trajectory. Let Mi,j be the linear forecast model that
advances a state from x(ti) to x(tj), we can then express the likelihood function as a
function of the state x at a single time say tn−1, as follows

n−1∏
j=1

exp

[
−1

2
(yj −HjMn−1, j xn−1)TR−1

j (yj −HjMn−1, j xn−1)

]
.
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Note that in this derivation we allow tj to be less than tn−1, although integrat-
ing the model backward in time is problematic, it is used here only to derive the
algorithm – in the end the algorithm will not require the backward integration of
the model. Such an issue about time integration is found in the derivation of most
Kalman smoother algorithms (see for instance Jazwinski 1970).

The analysis x̄a
n−1 and its covariance Pa

n−1 are the mean and covariance of a
Gaussian probability distribution representing the relative likelihood of a state xn−1
given all previous observations, so that taking logarithms of the likelihoods, for
some constant c,

n−1∑
j=1

[yo
j −HjMn−1, j xn−1]TR−1

j [yo
j −HjMn−1, j xn−1]

= [xn−1 − x̄a
n−1]T (Pa

n−1)−1[xn−1 − x̄a
n−1]+ c

(1)

The Kalman filter determines x̄a
n and Pa

n such that an equation analogous to
Eq. (1) holds at time tn. In the forecast step of the Kalman filter the analysis x̄a

n
and its covariance are propagated to time tn with the linear forecast model Mn−1,n
and its adjoint MT

n−1,n creating the background state and its covariance:

x̄b
n = Mn−1,n x̄a

n−1

Pb
n = Mn−1,n Pa

n MT
n−1,n

(2)

Propagating Eq. (1), using Eq. (2), we get a relationship valid for states at time
tn (see Hunt et al. 2007 for further details), showing that the background term rep-
resents the Gaussian probability distribution of a state, given the past observations
up to tn−1:

n−1∑
j=1

[yo
j −HjMn, j xn]TR−1

j [yo
j −HjMn, j xn] = [xn − x̄b

n]T (Pb
n)−1[xn − x̄b

n]+ c (3)

When the new observations at time tn are obtained, we use Eq. (3) to obtain an
expression equivalent to Eq. (1) valid at time tn, for another constant c′:

[xn − x̄b
n]T (Pb

n)−1[xn − x̄b
n] + [yo

n −Hnxn]TR−1
n [yo

n −Hnxn]

= [xn − x̄a
n]T (Pa

n)−1[x − x̄a
n]+ c′

(4)

The analysis state that minimizes the variational cost function

J(xn) = [xn − x̄b
n]T (Pb

n)−1[xn − x̄b
n]+ [yo

n −Hnxn]TR−1
n [yo

n −Hnxn]

is the state with maximum likelihood given all the observations (cf. chapter
Mathematical Concepts of Data Assimilation, Nichols, Sect. 2.4). Equation (3)
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shows that in this cost function the background term represents the Gaussian dis-
tribution of a state with the maximum likelihood trajectory (history), i.e., x̄b

n is the
analysis/forecast trajectory that best fits the past data available until tn−1.

Equating the terms in Eq. (4) that are quadratic and linear in x, the Kalman filter
equations for the analysis step are obtained:

Pa
n =

[(
Pb

n

)−1 +HT
n R−1

n Hn

]−1

=
[
I+ Pb

nHT
n R−1

n Hn

]−1
Pb

n (5)

x̄a
n = Pa

n

[(
Pb

n

)−1
x̄b

n +HT
n R−1

n yo
n

]
= x̄b

n + Pa
nHT

n R−1
n

(
yo

n −Hnx̄b
n

)
(6)

The Remark 1 of Ide et al. (1997) “[In sequential methods] observations are
processed whenever available and then discarded” follows from the fact that the
background term is the most likely solution given all the past data, i.e., if the Kalman
filter has already spun-up from the initial conditions, the observations are to be used
only once (but see the discussion on spin-up in Sect. 3).

The Kalman gain matrix that multiplies the observational increment yo
n − Hnx̄b

n
in Eq. (6) can be written as

Kn = Pa
nHT

n R−1
n = Pb

nHT
n

(
HnPb

nHT
n + Rn

)−1
.

For non-linear models Mn−1,n, the Extended Kalman filter (EKF) approximation
uses the non-linear model in the forecast step to advance the background state, but
the covariance is advanced using the model linearized around the trajectory x̄b

n, and
its adjoint (e.g. Ghil and Malanotte-Rizzoli 1991; Nichols, chapter Mathematical
Concepts of Data Assimilation, Nichols, Sect. 3):

x̄b
n =Mn−1,n(x̄a

n−1),
Pb

n = Mn−1,nPa
n−1MT

n−1,n
(7)

The cost of advancing the background error covariance with the linear tangent
and adjoint models in Eq. (7) makes the EKF computationally unfeasible for any
atmospheric model of realistic size without major simplifications.

Evensen (1994) suggested that Eq. (7) could be computed more efficiently with
an Ensemble Kalman filter (EnKF) for non-linear models. The ensemble is created
running K forecasts, where the size of the forecast ensemble is much smaller than
n, the dimension of the model, K � n. Then Eq. (7) can be replaced by

x̄b
n =Mn−1,n(x̄a

n−1), x̄b
n =

1

K

K∑
k=1

xb
n,k

Pb
n ≈ 1

K−1

K−1∑
k=1

(xb
n,k − x̄b

n)(xb
n,k − x̄b

n)T
(8)

where the overbar now represents the ensemble average.
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Because the background error covariance is estimated from a relatively small
ensemble, there are sampling errors at long distances, so that Houtekamer and
Mitchell (2001) and Hamill et al. (2001) introduced the idea of localizing Pn

b, i.e.,
multiplying each term of the covariance by an approximation of the Gaussian func-
tion exp(−r2

i j/2L2) (Gaspari and Cohn 1999). Here, ri j is the distance between two
grid points i,j, and L is the localization scale, so that the effect of localization is that
long distance correlations are damped to zero. Mitchell et al. (2002) pointed out that
this localization introduces imbalances in the analysis. Hunt (2005) and Miyoshi
(2005) used an alternative localization multiplying the inverse of the observation
error covariance R−1 by the Gaussian function, thus assuming that long distance
observations have larger errors and reducing their impact on the grid point analyses.
Because, unlike Pb

n, R is generally either diagonal or block diagonal, this “observa-
tion localization” may be less prone to generate imbalances (Greybush et al. 2009).

There are two basic approaches to the EnKF, perturbed observations and square-
root filters. In the perturbed observations EnKF, Burgers et al. (1998), Houtekamer
and Mitchell (1998), Keppenne (2000), Keppenne and Rienecker (2002), Evensen
and van Leeuwen (1996), Houtekamer et al. (2005) and others used ensembles of
data assimilation systems with randomly perturbed observations (Evensen 2003).
Perturbing the observations assimilated in different ensembles is required in this
approach in order to avoid an underestimation of the size of the analysis error covari-
ance, but it may introduce an additional source of sampling errors (Whitaker and
Hamill 2002).

An alternative to the perturbed observations (or stochastic) approach are the
ensemble square-root filters that generate an analysis ensemble mean and covari-
ance satisfying the Kalman filter equations for linear models (Tippett et al. 2003;
Bishop et al. 2001; Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004;
Hunt et al. 2007). We will focus in the rest of the chapter on square-root (or deter-
ministic) filters. Houtekamer and Mitchell (2001) pointed out that observations with
uncorrelated errors can be assimilated serially (one at a time), with the background
for a new observation being the analysis obtained when assimilating the previous
observation. Tippett et al. (2003) discuss the differences between several square-
root filters that derive computational efficiency by assimilating observations serially.
Another Monte Carlo method that avoids using perturbed observations is described
in Pham (2001).

Different square-root filters are possible because different analysis ensemble
perturbations can have the same analysis error covariance. Of the three schemes
discussed in Tippett et al. (2003), the Ensemble Adjustment Kalman Filter (EAKF)
of Anderson (2001) has been implemented into the flexible Data Assimilation
Research Testbed (DART) infrastructure and has been applied to many geophys-
ical problems (http://www.image.ucar.edu/DAReS/Publications/). The square-root
filter of Whitaker and Hamill (2002) results in simple scalar assimilation equations
when observations are assimilated serially, and has also been adopted for a number
of problems, such as the assimilation of surface observations (Whitaker et al. 2004),
and for the regional EnKF of Torn and Hakim (2008) where only non-satellite data
are assimilated. We note that the application of EnKF to regional models requires
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including appropriate perturbations in the boundary conditions to avoid a reduction
in variance in the interior (Nutter et al. 2004). Torn et al. (2006) showed that in the
absence of a global EnKF system to provide consistent perturbed boundary condi-
tions, several perturbation methods could give results comparable to those obtained
with a global ensemble boundary conditions, thus making regional EnKF practically
feasible for many groups without access to global EnKF. The third square-root filter
discussed in Tippett et al. (2003) is the Ensemble Transform Kalman Filter, ETKF
(Bishop et al. 2001), which introduced the computation of the analysis covariance by
a transform method also adopted by Hunt et al. (2007). Zupanski (2005) proposed
the Maximum Likelihood Ensemble Filter (MLEF) where a 4D-Var cost function
with possibly non-linear observation operators is minimized within the subspace of
the ensemble forecasts. In this system, the control forecast is allowed to have higher
resolution than the rest of the ensemble. A review of EnKF methods is presented in
Evensen (2003), and a comparison of EnKF with 4D-Var results for several models
in Kalnay et al. (2007a).

Ott et al. (2002, 2004), and Hunt et al. (2007) developed an alternative type
of square-root EnKF without perturbed observations by performing the analyses
locally in space, as did Keppenne (2000). This is computationally efficient because
the analyses at different grid points are independent and thus can be done in par-
allel. Since observations are assimilated simultaneously, not serially, it is simple to
account for observation error correlations.

In this chapter we present results mostly based on the Local Ensemble Transform
Kalman Filter (LETKF) as a representative prototype of EnKF. The LETKF
algorithm is summarized below (see Hunt et al. 2007, for full details).

LETKF Algorithm

This summary description is written as if all the observations are at the analysis
time (i.e., for the 3D-LETKF), but the algorithm is essentially the same for the 4D-
LETKF (Hunt et al. 2007). In 4D-LETKF (discussed below) the observations are
in a time window that includes the analysis time and the non-linear observation
operator H is evaluated at the observation time. M is the non-linear model forecast.

(a) LETKF forecast step (done globally) for each ensemble member k:

xb
n,k =Mn−1,n(xa

n−1,k) , k = 1, . . . , K

(b) LETKF analysis step (at time tn, so the subscript n is dropped):

Xb = [
xb

1 − x̄b, . . . , xb
K − x̄b

]
; Pb = Xb(Xb)T

yb
k = H(xb

k) ; Yb = [
yb

1 − ȳb, . . . , yb
K − ȳb

]

These computations can be done locally or globally, whichever is more efficient.
Here the overbar represents the ensemble average.
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Localization: choose for each grid point the observations to be used. Compute
for each grid point the local analysis error covariance P̂

a
and analysis perturbations

Wa in ensemble space:

P̂
a = [

(K − 1)I+ (Yb)TR−1Yb]
Wa=

[
(K − 1)P̂

a
]1/2

The square-root required for the matrix of analysis perturbations in ensemble
space is computed using the symmetric square root (Wang et al. 2004). This square-
root has the advantage of having a zero mean and being closer to the identity than
the square-root matrix obtained by Cholesky decomposition. As a result the analysis
perturbations (chosen in different ways in different EnKF schemes) are also close to
the background perturbations (Ott et al. 2002). Note that Wa can also be considered
a matrix of weights since multiplying the forecast ensemble perturbations at each
grid point by Wa gives the grid point analysis ensemble perturbations.

Local analysis mean increment in ensemble space:

w̄a = P̂
a
(Yb)TR−1(yo − ȳb)

Note that the forecast ensemble at each grid point multiplied by the vector of
weights w̄a gives the grid point analysis x̄a. The ensemble space analysis w̄a is
added to each column of Wa to get the analysis ensemble in ensemble space: Wa ←
Wa ⊕ w̄a

The new ensemble analyses are the K columns of

Xa = XbWa + x̄b

Global analysis ensemble: The analysis ensemble columns for each grid point are
gathered together to form the new global analysis ensemble Xa

n,k, and the analysis
cycle can proceed.

3 Adaptation of 4D-Var Techniques into EnKF

4D-Var and EnKF are essentially solving the same problem since they minimize the
same cost function in Eq. (2) using different computational methods. These differ-
ences lead to several advantages and disadvantages for each of the two methods (see,
for example, Lorenc 2003; Table 7 of Kalnay et al. 2007a; discussion of Gustafsson
2007; response of Kalnay et al. 2007b).

A major difference between 4D-Var and the EnKF is the dimension of the sub-
space of the analysis increments (analysis minus background). 4D-Var corrects the
background forecast in a subspace that has the dimension of the linear tangent and
the adjoint models used in the minimization algorithm, and this subspace is gener-
ally much larger than the local subspace of corrections in the EnKF of dimension
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K−1 determined by the ensemble size. It would be impractical to try to overcome
this apparent EnKF disadvantage by using a very large ensemble size. Fortunately,
the localization of the error covariances carried out in the EnKF in order to reduce
long distance covariance sampling errors, substantially addresses this problem by
greatly increasing the number of degrees of freedom available to fit the data. As
a result, experience has been that the quality of the EnKF analyses with localiza-
tion increases with the number of ensemble members, but that there is little further
improvement when the size of the ensemble is increased beyond about 100. The
observation that 50–100 ensemble members are sufficient for the EnKF seems to
hold for atmospheric problems ranging from the storm-scales and mesoscales to the
global-scales (Fuqing Zhang, personal communication).

There are a number of attractive properties of 4D-Var developed over the years.
They include the ability to assimilate observations at their right time (Talagrand
and Courtier 1987); the fact that within the data assimilation window 4D-Var acts
as a smoother (Thépaut and Courtier 1991); the availability of an adjoint model
allowing the estimation of the impact of observations on the analysis (Cardinali
et al. 2004) and on the forecasts (Langland and Baker 2004); the ability to use long
assimilation windows (Pires et al. 1996); the computation of outer loops correct-
ing the background state when computing non-linear observation operators and the
ability to use a lower resolution simplified model in the inner loop (see Fig. 3 dis-
cussed later); and the possibility of accounting for model errors by using the model
as a weak constraint (Trémolet 2007). In the rest of this section we discuss how
these advantageous methods that have been developed and implemented for 4D-Var
systems can also be adapted and used in the LETKF, a prototype of EnKF.

3.1 4D-LETKF and No-Cost Smoother

Hunt et al. (2004) developed an extension of the Local Ensemble Kalman Filter
(LEKF; Ott et al. 2004) to four dimensions (4-D), taking advantage of the fact
that the observational increments are expressed as linear combinations (weights)
of the forecast ensemble perturbations at the time of the observation. 1 This allows
using the same coefficients to “transport” the observational increments either for-
ward or backward in time to the time of the analysis. We note that within this 4-D
formulation it is possible to account for observation errors correlated in time, as
Järvinen et al. (1999) have done within 4D-Var. Hunt et al. (2007) showed that the
4-D extension is particularly simple within the LETKF framework, requiring the
concatenation of observations performed at different times within the assimilation
window into the vectors yo, ȳb and the vertical columns of Yb and of a block error

1 Strictly speaking the combinations are not linear since the weights depend on the forecasts
(Nerger et al. 2005).
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4D-LETKF

tn−1 tntime

Fig. 1 Schematic showing that the 4D-LETKF finds the linear combination of the ensemble fore-
casts at tn that best fits the observations throughout the assimilation window tn−1 − tn. The white
circles represent the ensemble of analyses (whose mean is the analysis x̄a), the full lines represent
the ensemble forecasts, the dashed line represents the linear combination of the forecasts whose
final state is the analysis, and the grey stars represent the asynchronous observations. The cross at
the initial time of the assimilation window tn−1 is a no-cost Kalman smoother, i.e., an analysis at
tn−1 improved using the information of “future” observations within the assimilation window by
weighting the ensembles at tn−1 with the weights obtained at tn. The smoothed analysis ensemble
at tn−1 (not shown in the schematic) can also be obtained at no cost using the same linear com-
bination of the ensemble forecasts valid at tn given by Wa. Adapted from Kalnay et al. (2007b)

covariance R with blocks corresponding to the same observations. Note that 4D-
LETKF determines the linear combination of ensemble forecasts valid at the end of
the assimilation window that best fits the data throughout the assimilation window.

This property allows creating a “cost-free” smoother for the LETKF with anal-
ogous smoothing properties as 4D-Var (Fig. 1): the same weighted combination of
the forecasts with weights given by the vector w̄a is valid at any time of the assim-
ilation interval. It provides a smoothed analysis mean that (as in 4D-Var) is more
accurate than the original analysis because it uses the future data available within
the assimilation window (Kalnay et al. 2007b; Yang et al. 2009a). As in 4D-Var, the
smoothed analysis at the beginning of the assimilation window is an improvement
over the filtered analysis computed using only past data. At the end of the assimi-
lation interval only past data is used so that (as in 4D-Var) the smoother coincides
with the analysis obtained with the filter.

It should be noted that in the same way we can use the weights w̄a to provide
a mean smoother solution as a function of time, we can use the matrix Wa and
apply it to the forecast perturbations XbWa to provide an associated uncertainty
evolving with time (Ross Hoffman, personal communication). The updating of the
uncertainty is critical for the “Running in Place” method described next, but the
uncertainty is not updated in the “outer loop” approach.

3.2 Application of the No-Cost Smoother to the Acceleration
of the Spin-Up

4D-Var has been observed to spin up faster than EnKF (e.g. Caya et al. 2005), pre-
sumably because of its smoothing properties that allow finding the initial conditions
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at the beginning of the assimilation window that will best fit all the observations. The
fact that we can compute a no-cost smoother allows the development of a new algo-
rithm, called Running in Place by Kalnay and Yang (2008) that should be useful in
rapidly evolving situations. For example, at the time radar measurements first detect
the development of a severe storm, the available EnKF estimate of the atmospheric
state and its uncertainty are no longer very useful. In other words, while formally
the EnKF members and their average are still the most likely state and best estimate
of the uncertainty given all the past data, these EnKF estimates are no longer likely
at all. At the start of severe storm convection, the dynamics of the system changes
substantially, and the statistics of the processes become non-stationary. In this case,
as in the spin-up case in which there are no previous observations available, the
running in place algorithm ignores the rule “use the data and then discard it” and
repeatedly recycles the new observations.

Running in place algorithm: This algorithm is applied to each assimilation
window during the spin-up phase. The LETKF is “cold-started” with any initial
ensemble mean and perturbations at t0. The “running in place” loop at time tn
(initially t0) is as follows:

1. Integrate the ensemble from tn to tn+1, perform a standard LETKF analysis and
obtain the analysis weights for the interval [tn, tn+1], saving the mean square
observations minus forecast (OMF) computed by the LETKF;

2. Apply the no-cost smoother to obtain the smoothed analysis ensemble at tn by
using these weights;

3. Perturb the smoothed analysis ensemble with small zero-mean random Gaussian
perturbations, a method similar to additive inflation. Typically, the perturbations
have an amplitude equal to a small percentage of the climate variance;

4. Integrate the perturbed smoothed ensemble to tn+1. While the forecast fit to the
observations continues to improve according to a criterion such as

OMF2(iter)− OMF2(iter+ 1)

OMF2(iter)
> ε,

go to step 2 and perform another iteration. If not, replace tn with tn+1 and go to
step 1;

5. If no additional iteration beyond the first one is needed, the running in place anal-
ysis is the same as the standard EnKF. When the system converges, no additional
iterations are needed, so that if several assimilation cycles take place without
invoking a second iteration, the running in place algorithm can be switched off
and the system returns to a normal EnKF.

The purpose of adding perturbations in step 3 is twofold: it avoids reaching the
same analysis as in the previous iteration, and it increases the chances that the



Ensemble Kalman Filter: Current Status and Potential 79

Fig. 2 Comparison of the spin-up of a quasi-geostrophic model simulated data assimilation when
starting from random initial conditions. Observations (simulated radiosondes) are available every
12 h, and the analysis root-mean-square (RMS) errors are computed by comparing with a nature run
(see the chapter Observing System Simulation Experiments, Masutani et al.). Black line: original
LETKF with 40 ensemble members, and no prior statistical information, blue line: optimized 4D-
Var, red line: LETKF “running in place” with ε = 5% and 40 ensemble members, green line: as
the red line but with 20 ensemble members

ensemble will explore unstable directions of error growth missed by the unper-
turbed ensemble and not be “trapped” in the “unlikely” subspace of the initial
perturbations.

Running in place was tested with the LETKF in the quasi-geostrophic, QG,
model of Rotunno and Bao (1996) (Fig. 2 adapted from Kalnay and Yang 2008).
When starting from a 3D-Var (three dimensional variational) analysis mean, the
LETKF converges quickly (not shown), but from random initial states it takes 120
cycles (60 days) to reach a point in which the ensemble perturbations represent the
“errors of the day” (black line in Fig. 2). From then on the ensemble converges
quickly, in about 60 more cycles (180 cycles total).

By contrast, the 4D-Var started from the same initial mean state, but using as
background error covariance the 3D-Var B scaled down with an optimal factor, con-
verges twice as fast, in about 90 cycles (blue line in Fig. 2). The running in place
algorithm with ε = 5% (red line) converges about as fast as 4D-Var, and it only takes
about 2 iterations per cycle (i.e., one additional assimilation for each window). The
green line is also for ε = 5%, but with K = 20 ensemble members, not K = 40 as
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used in the other experiments and also gives good results, but experiments with K=
10 failed to spin-up faster with this technique. With ε = 1% (not shown) the initial
convergence (in real time) is faster, but it requires about 5 times more iterations. It
is interesting that when the number of iterations is fixed to 10 (not shown), the data
are over-fitted so that the system quickly converges to a final level of error about
twice as large than when the iterations are chosen adaptively.

3.3 “Outer Loop” and Dealing with Non-linear Ensemble
Perturbations

A disadvantage of the EnKF is that the Kalman filter equations used in the analysis
assume that the ensemble perturbations are Gaussian, so that when windows are rel-
atively long and perturbations become non-linear, this assumption breaks down and
the EnKF is not optimal (Harlim and Hunt 2007a, b). By contrast, 4D-Var is recom-
puted within an assimilation window until the initial conditions that minimize the
cost function for the non-linear model integration in that window are found. In many
operational centres (e.g. the National Centers for Environmental Prediction, NCEP,
and the European Centre for Medium-Range Weather Forecasts, ECMWF) the min-
imization of the 3D-Var or 4D-Var cost function is done with a linear “inner loop”
that improves the initial conditions minimizing a cost function that is quadratic in
the perturbations. In the 4D-Var “outer loop” the non-linear model is integrated
from the initial state improved by the inner loop and the linearized observational
increments are recomputed for the next inner loop (Fig. 3).

The ability of including an outer loop increases significantly the accuracy of both
3D-Var and 4D-Var analyses (Arlindo da Silva, personal communication), so that it
would be important to develop the ability to carry out an equivalent “outer loop”
in the LETKF. This can be done by considering the LETKF analysis for a window
as an “inner loop” and, using the no-cost smoother, adapting the 4D-Var outer loop
algorithm to the EnKF. As in 4D-Var, we introduce into the LETKF the freedom
of the inner loop to improve the initial analysis (i.e., the mean of the ensemble) but
keep constant the background error covariance, given by the ensemble initial per-
turbations. This re-centres the initial ensemble forecasts about the value improved
by the inner loop, and another “outer loop” with full non-linear integrations can be
carried out. 2 Note that this algorithm is identical to “running in place”, except that
only the mean is updated, not the perturbations about the mean at tn.

This algorithm for an outer loop within the EnKF was tested with the Lorenz
(1963) model for which comparisons between LETKF and 4D-Var were made,
optimizing simultaneously the background error covariance and the length of the
window for 4D-Var (Kalnay et al. 2007a). For short assimilation windows, the
3-member LETKF gives analysis errors similar or smaller than 4D-Var, but with

2 Takemasa Miyoshi (personal communication) has pointed out that Jazwinski (1970) proposed
the same “outer loop” algorithm for Extended Kalman filter (see footnote on page 276).
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Fig. 3 Schematic of how the 4D-Var cost function is minimized in the ECMWF system. From
Yannick Trémolet, August 2007 class on Incremental 4D-Var at University of Maryland summer
Workshop on Applications of Remotely sensed data to Data Assimilation

long assimilation windows of 25 steps, when the perturbations grow non-linearly,
Kalnay et al. (2007a) were not able to find an LETKF configuration competitive
with 4D-Var. However, as shown in Table 1 below, the LETKF with an outer loop
is able to beat 4D-Var. We note that “running in place” (with up to one additional

Table 1 Comparison of the RMSE (RMS error, non-dimensional units) for 4D-Var and LETKF
for the Lorenz (1963) 3-variable model. 4D-Var has been simultaneously optimized for the window
length (Kalnay et al. 2007a; Pires et al. 1996) and the background error covariance, and the full
non-linear model is used in the minimization. LETKF is performed with 3 ensemble members (no
localization is needed for this problem), and inflation is optimized. For the 25 steps case, “running
in place” further reduces the error to about 0.39

Experiment details 4D-Var LETKF (inflation factor)

LETKF with less than 3
“outer loop” iterations
(inflation factor)

Window = 8 steps
(perturbations are
approximately linear)

0.31 0.30 (1.05) 0.27 (1.04)

Window = 25 steps
(perturbations are
non-linear)

0.53 0.66 (1.28) 0.48 (1.08)
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analysis) can further improve the results for the case of 25 steps, reducing the RMS
(root-mean-square) analysis error of 0.48 obtained using the outer loop to about
0.39, with inflation of 1.05. As in the case of the spin-up, this re-use of observations
is justified by the fact that for long windows and non-linear perturbations, the back-
ground ensemble ceases to be Gaussian, and the assumption of statistical stationarity
is no longer viable.

These experiments suggest that it should be possible to deal with non-linearities
and obtain results comparable or better than 4D-Var by methods such as an outer
loop and running in place.

3.4 Adjoint Forecast Sensitivity to Observations Without
Adjoint Model

Langland and Baker (2004) proposed an adjoint-based procedure to assess the obser-
vation impact on short-range forecasts without carrying out data-denial experiments.
This adjoint-based procedure can evaluate the impact of any or all observations
assimilated in the data assimilation and forecast system on a selected measure of
short-range forecast error. In addition, it can be used as a diagnostic tool to monitor
the quality of observations, showing which observations make the forecast worse,
and can also give an estimate of the relative importance of observations from dif-
ferent sources. Following a similar procedure, Zhu and Gelaro (2008) showed that
this adjoint-based method provides accurate assessments of the forecast sensitivity
with respect to most of the observations assimilated. Unfortunately, this powerful
and efficient method to estimate observation impact requires the adjoint of the fore-
cast model which is complicated to develop and not always available, as well as the
adjoint of the data assimilation algorithm.

Liu and Kalnay (2008) proposed an ensemble-based sensitivity method able to
assess the same forecast sensitivity to observations as in Langland and Baker (2004),
but without adjoint. Following Langland and Baker (2004), they define a cost func-
tion �e2

t = (eT
t|0 et|0 − eT

t|−6 et|−6) that measures the forecast sensitivity at time t of

the observations assimilated at time 0. Here et|0 = x̄f
t|0 − x̄a

t is the perceived error
of the forecast started from the analysis at t = 0, verified against the analysis valid
at time t, and et|−6 = x̄f

t|−6 − x̄a
t is the corresponding error of the forecast starting

from the previous analysis at t = –6 h. The difference between the two forecasts is
only due to the observations yo

0 assimilated at t= 0: x̄a
0− x̄b

0|−6 = K(yo
0−H(x̄b

0|−6)),
where K is the gain matrix of the data assimilation system. There is a slight error in
Eq. (10) in Liu and Kalnay (2008) so that we re-derive here the forecast sensitivity
equation (Hong Li, personal communication):

�e2
t = (eT

t|0et|0−eT
t|−6et|−6) = (eT

t|0−eT
t|−6)(et|0+et|−6) = (x̄f

t|0−x̄f
t|−6)T(et|0+ et|−6)

�e2
t ≈

[
M(x̄a

0 − x̄b
0|−6)

]T
(et|0 + et|−6) =

[
MK(y−H(xb

0|−6))
]T

(et|0 + et|−6)
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where M is the linear tangent forecast model that advances a perturbation from 0-h
to time t.

Langland and Baker (2004) compute this error sensitivity by using the adjoint of
the model and of the data assimilation scheme:

�e2
t,LB =

[
y−H(xb

0|−6)
]T

KTMT (et|0 + et|−6)

In the EnKF we can take advantage of the fact that the Kalman gain is
computed as K = PaHTR−1 = (K − 1)−1Xa(Xa)THTR−1, so that MK =
MXa(Xa)THTR−1/(K−1) ≈ Xf

t|0(Ya)TR−1/(K−1), with Xf
t|0, the forecast differ-

ences at time t computed non-linearly rather than with the linear tangent model. As
a result, for EnKF the forecast sensitivity is computed as

�e2
t,EnKF =

[
y−H(xb

0|−6)
]T

R−1Ya(Xf
t|0)T (et|0 + et|−6)/(K − 1)

Because the forecast perturbation matrix Xf
t|0 is computed non-linearly, the fore-

cast sensitivity and the ability to detect bad observations remains valid even for
forecasts longer than 24 h, for which the adjoint sensitivity based on the adjoint
model MT ceases to be accurate. As in Langland and Baker (2004) and Zhu
and Gelaro (2008), it is possible to split the vector of observational increments
y−H(xb

0|−6) into any subset of observations and obtain the corresponding forecast
sensitivity.

Figure 4 shows the result of applying this method to the Lorenz (1996) 40-
variables model. In this case observations were made at every point every 6 h,
created from a “nature” run by adding Gaussian observational errors of mean zero

Fig. 4 Left: Domain average variability in the forecast impact estimated by the adjoint method
(plus symbols), the EnKF sensitivity (closed circles) and the actual forecast sensitivity. Right:
Time average (over the last 7,000 analysis cycles) of the contribution to the reduction of the
1-day forecast errors from each observation location. The observation at the 11th grid point has
σ o = 8 random errors rather than the specified value of 0.2. Adjoint sensitivity (grey plus), EnKF
sensitivity (black). Adapted from Liu and Kalnay (2008)
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and standard deviation 0.2. The left panel shows that both the adjoint and the EnKF
sensitivity methods are able to estimate quite accurately the day-to-day variabil-
ity in the 24-h forecast sensitivity to the observations when all the observations
have similar Gaussian errors. A “bad station” was then simulated at grid point 11
by increasing the standard deviation of the errors to 0.8 without “telling” the data
assimilation system about the observation problems in this location. The right panel
of Fig. 4 shows the time average of the forecast sensitivity for this case, indicat-
ing that both the adjoint and the ensemble-based sensitivity are able to identify that
the observations at grid point 11 have a deleterious impact on the forecast. They
both show that the neighbouring points improved the forecasts more than average
by partially correcting the effects of the 11th point observations.

The cost function in this example was based on the Eulerian norm, appropriate
for a univariate problem, but the method can be easily extended to an energy norm,
allowing the comparison of the impact of winds and temperature observations on the
forecasts. Although for short (1-day) forecasts the adjoint and ensemble sensitivities
have similar performances (Fig. 4), the (linear) adjoint sensitivity ceases to identify
the wrong observations if the forecasts are 2-days or longer. The ensemble sensitiv-
ity, which is based on non-linear integrations, continues to identify the observations
having a negative impact even on long forecasts (not shown).

We note that Liu et al. (2009) also formulated the sensitivity of the analysis to the
observations as in Cardinali et al. (2004) and showed that it provides a good qualita-
tive estimate of the impact of adding or denying observations on the analysis error,
without the need to run these costly experiments. Since the Kalman gain matrix is
available in ensemble space, complete cross-validations of each observation can be
computed exactly within the LETKF without repeating the analysis.

3.5 Use of a Lower Resolution Analysis

The inner/outer loop used in 4D-Var was introduced in Sect. 3.3 above, where we
showed that a similar outer loop can be carried out in EnKF. We now point out that
it is common practice to compute the inner loop minimization, shown schematically
in Fig. 3, using a simplified model (Lorenc 2003), which usually has lower resolu-
tion and simpler physics than the full resolution model used for the non-linear outer
loop integration. The low-resolution analysis correction computed in the inner loop
is interpolated back to the full resolution model (Fig. 3). The use of lower resolution
in the minimization algorithm of the inner loop results in substantial savings in com-
putational cost compared with a full resolution minimization, but it also degrades
the analysis.

Yang et al. (2009b) took advantage that in the LETKF the analysis ensemble
members are a weighted combination of the forecasts, and that the analysis weights
Wa are much smoother (they vary on a much larger scale) than the analysis incre-
ments or the analysis fields themselves. They tested the idea of interpolating the
weights but using the full resolution forecast model on the same quasi-geostrophic
model discussed before. They performed full resolution analyses and compared the
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results with a computation of the LETKF analysis (i.e., the weight matrix Wa) on
coarser grids, every 3 × 3, 5 × 5 and 7 × 7 grid points, corresponding to an analy-
sis grid coverage of 11, 4 and 2%, respectively, as well as interpolating the analysis
increments. They found that interpolating the weights did not degrade the analy-
sis compared with the full resolution, whereas interpolating the analysis increments
resulted in a serious degradation (Fig. 5).

The use of a symmetric square-root in the LETKF ensures that the interpolated
analysis has the same linear conservation properties as the full resolution analysis.
The results suggest that interpolating the analysis weights computed on a coarse
grid without degrading the analysis can substantially reduce the computational cost
of the LETKF. Although the full resolution ensemble forecasts are still required,
they are also needed for ensemble forecasting in operational centres.

We note that the fact that the weights vary on large scales, and that the use of a
coarser analyses with weight interpolation actually improves slightly the analysis in
data sparse regions, suggest that smoothing the weights is a good approach to filling
data gaps such as those that appear in between satellite orbits (Yang et al. 2009b;
Lars Nerger, personal communication). Smoothing the weights, both in the horizon-
tal and in the vertical may also reduce sampling errors and increase the accuracy of
the EnKF analyses.

Fig. 5 The time series of the RMS analysis error in terms of the potential vorticity from different
data assimilation experiments. The LETKF analysis from the full-resolution is denoted as the black
line and the 3D-Var derived at the same resolution is denoted as the grey line. The LETKF analyses
derived from weight-interpolation with different analysis coverage are indicated with blue lines.
The LETKF analyses derived after the first 20 days from increment-interpolation with different
analysis coverage are indicated with the red lines. Adapted from Yang et al. (2009b)
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3.6 Model and Observational Error

Model error can seriously affect the EnKF because, among other reasons, the pres-
ence of model biases cannot be detected by the EnKF original formulation, and
the ensemble spread is the same with or without model bias (Li 2007). For this
reason, the most widely used method for imperfect models is to increase the multi-
plicative or additive inflation (e.g. Whitaker et al. 2008). Model biases can also be
taken into account by estimating the bias as in Dee and da Silva (1998) or its sim-
plified approximation (Radakovich et al. 2001) – see also chapter Bias Estimation
(Ménard). More recently, Baek et al. (2006) pointed out that model bias could be
estimated accurately augmenting the model state with the bias, and allowing the
error covariance to eventually correct the bias. Because in this study the bias was
assumed to be a full resolution field, this required doubling the number of ensemble
members in order to reach convergence.

In the standard 4D-Var, the impact of model bias cannot be neglected within
longer windows because the model (assumed to be perfect) is used as a strong
constraint in the minimization (e.g. Andersson et al. 2005). Trémolet (2007) has
developed several techniques allowing for the model to be a weak constraint in
order to estimate and correct model errors. Although the results are promising, the
methodology for the weak constraint is complex, and still under development.

Li (2007) and Li et al. (2009a) compared several methods to deal with model
bias (Fig. 6), including a “Low-dimensional” method based on an independent esti-
mation of the bias from averages of 6-h estimated forecast errors started from a
reanalysis (or any other available good quality analysis). This method was applied
to the SPEEDY (Simplified Parameterizations primitivE-Equation DYnamics)
model (Molteni 2003) assimilating simulated observations from the NCEP-NCAR
(National Centers for Environmental Prediction-National Center for Atmospheric
Research) reanalysis, and it was found to be able not only to estimate the bias, but
also the errors in the diurnal cycle and the model forecast errors linearly dependent
on the state of the model (Danforth et al. 2006; Danforth and Kalnay 2008).

The results obtained by Li (2009a) accounting for model errors within the
LETKF, presented in Fig. 6, indicate that: (a) additive inflation is slightly better
than multiplicative inflation; and (b) methods to estimate and correct model bias
(e.g. Dee and da Silva 1998; Danforth et al. 2006) should be combined with infla-
tion, which is more appropriate in correcting random model errors. The combination
of the low-dimensional method with additive inflation gave the best results, and was
substantially better than the results obtained assuming a perfect model (Fig. 6).

We note that the approach of Baek et al. (2006) of correcting model bias by
augmenting the state vector with the bias can be used to determine other parameters,
such as surface fluxes, observational bias, nudging coefficients, etc. It is similar to
increasing the control vector in the variational approach, and is only limited by the
number of degrees of freedom that are added to the control vector and sampling
errors in the augmented background error covariance.

With respect to observation error estimations, Desroziers et al. (2005) derived
statistical relationships between products of observations minus background,
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Fig. 6 Comparison of the analysis error averaged over 2 months for the zonal velocity in the
SPEEDY model for several simulations with the radiosonde observations available every other
point. The yellow line corresponds to a perfect model simulation with the observations extracted
from a SPEEDY model “nature run” (see chapter Observing System Simulation Experiments,
Masutani et al.). The red is the control run, in which the observations were extracted from the
NCEP-NCAR reanalysis, but the same multiplicative inflation was used as in the perfect model
case. The blue line and the black solid lines correspond to the application of optimized multiplica-
tive and additive inflation, respectively. The long-dashed line was obtained correcting the bias with
the Dee and da Silva (1998) method, and combining it with additive inflation. The short-dashed
is as the long-dashed but using the Danforth et al. (2006) low-dimensional method to correct the
bias, and the green line is as the long-dashed line but using the simplified Dee and da Silva method.
Adapted from Li (2007)

observations minus analysis, and analysis minus forecasts and the background and
observational error covariances. Li (2007) took advantage of these relationships to
develop a method to adaptively estimate both the observation errors variance and
the optimal inflation of the background error covariance. This method has been
successfully tested in several models (Li et al. 2009a; Reichle et al. 2008).

4 Summary and Discussion

4D-Var and the EnKF are the most advanced methods for data assimilation. 4D-
Var has been widely adopted in operational centres, with excellent results and much
accumulated experience. EnKF is less mature, and has the disadvantage that the
corrections introduced by observations are done in spaces of lower dimension that
depend on the ensemble size, although this problem is ameliorated by the use
of localization. The main advantages of the EnKF are that it provides an esti-
mate of the forecast and analysis error covariances, and that it is much simpler to
implement than 4D-Var. A recent WWRP/THORPEX Workshop in Buenos Aires,
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10–13 November 2008, was dedicated to 4D-Var and Ensemble Kalman Filter Inter-
comparisons with many papers and discussions (http://4dvarenkf.cima.fcen.uba.ar/).
Buehner et al. (2008) presented “clean” comparisons between the operational 4D-
Var and EnKF systems in Environment Canada, using the same model resolution
and observations, showing that their forecasts had essentially identical scores in
the Northern Hemisphere, whereas a hybrid system based on 4D-Var but using a
background error covariance based on the EnKF gave a 10-h improvement in the
5-day forecasts in the Southern Hemisphere. This supports the statement that the
best approach should be a hybrid that combines “the best characteristics” of both
EnKF and 4D-Var (e.g. Lorenc 2003; Barker 2008). This would also bring the main
disadvantage of 4D-Var to the hybrid system, i.e., the need to develop and maintain
an adjoint model. This makes the hybrid approach attractive to operational centres
that already have appropriate linear tangent and adjoint models, but less so to other
centres.

In this review we have focused on the idea that the advantages and new tech-
niques developed over the years for 4D-Var, can be adapted and implemented within
the EnKF framework, without requiring an adjoint model. The LETKF (Hunt et al.
2007) was used as a prototype of the EnKF. It belongs to the square-root or deter-
ministic class of the EnKF (e.g. Whitaker and Hamill 2002) but simultaneously
assimilates observations locally in space, and uses the ensemble transform approach
of Bishop et al. (2001) to obtain the analysis ensemble as a linear combination of
the background forecasts.

We showed how the LETKF could be modified to include some of the most
important 4D-Var advantages. In particular, the 3D-LETKF or 4D-LETKF can be
used as a smoother that is cost-free beyond the computation of the filter and storing
the weights. This allows a faster spin-up in the “running in place” method, so that the
LETKF spins up as fast as 4D-Var. This is important in situations such as the forecast
of severe storms, which cannot wait for a slow ensemble spin-up. Long assimilation
windows and the consequent non-linearity of the perturbations typically result in
non-Gaussianity of the ensemble perturbations and, as a result, a poorer perfor-
mance of LETKF compared to 4D-Var. The no-cost smoothing method can be used
to perform the equivalent of the 4D-Var “outer loop” and help deal with the problem
of non-linearity. One of the most powerful applications of the adjoint model is the
ability to estimate the impact of a class of observations on the short range forecast
(Langland and Baker 2004). Liu and Kalnay (2008) have shown how to perform the
same “adjoint sensitivity” within the LETKF without an adjoint model. Yang et al.
(2009b) showed that the analysis weights created by the LETKF vary smoothly on
horizontal scales much larger than the analyses or the analysis increments, so that
the analyses can be performed on a very coarse grid and the weights interpolated
to the full resolution grid. Because these weights are applied to the full resolution
model, Yang et al. (2009b) found that the weight interpolation from a coarse reso-
lution grid did not degrade the analysis, suggesting that the weights vary on large
scales, and that smoothing the weights can increase the accuracy of the analysis. Li
et al. (2009a) compared several methods used to correct model errors and showed
that it is advantageous to combine methods that correct the bias, such as that of
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Dee and da Silva (1998) and the low-dimensional method of Danforth et al. (2006),
with methods like inflation that are more appropriate to account for random model
errors. This is an alternative to the weak constraint method (Trémolet 2007) to deal
with model errors in 4D-Var, and involves the addition of a relatively small num-
ber of degrees of freedom to the control vector. Li et al. (2009b) also showed how
observation errors and background error inflation can be estimated adaptively within
EnKF.

In summary, we have emphasized that the EnKF can profit from the methods
and improvements that have been developed in the wide research and operational
experience acquired with 4D-Var. Given that operational tests comparing 4D-Var
and the LETKF indicate that the performance of these two methods is already very
close (e.g. Miyoshi and Yamane 2007; Buehner et al. 2008), and that the LETKF
and other EnKF methods are simpler to implement, their future looks bright. For
centres that have access to the model adjoint, hybrid 4D-Var-EnKF may be optimal.
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Error Statistics in Data Assimilation:
Estimation and Modelling

Mark Buehner

1 Introduction

As already discussed in previous chapters in Part I, Theory, the purpose of data
assimilation is to use observations to compute an “optimal” correction to a back-
ground state by using estimates of the uncertainty associated with the background
state and the observations. The uncertainty is typically characterized by covariance
matrices for the error in the background state and the observations. These covari-
ance matrices determine the level of influence each observation has on the analysis
and how this influence is distributed spatially, temporally and among the different
types of analysis variables. The optimality of any assimilation approach based on
linear estimation theory depends on the validity of a set of assumptions, includ-
ing that the errors in the background state and observations are Gaussian with both
zero bias and precisely known covariances. The estimation of these covariances is
a difficult problem, partly due to a lack of knowledge of the statistical properties
of background and observation error. As pointed out by Dee (1995), the number
of available observations of the atmosphere or ocean is generally many orders of
magnitude less than that required to estimate the full error covariances. In addi-
tion, especially for the case of background errors, the computational challenge of
estimating the full covariance matrix of a random vector containing at least O(106)
elements also poses a significant challenge. This chapter outlines the theory and
some practical approaches used to estimate and model background and observation
error statistics. Because most data assimilation approaches currently used for realis-
tic atmospheric and oceanographic applications rely on the assumption of Gaussian
error distributions, our focus here is restricted to the estimation of error covariances
and not the higher-order statistical moments or the full probability distributions.
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1.1 Source of Statistical Information

Errors in the background state and the observations are defined with respect to the
true state of the system (e.g. atmosphere or ocean), respectively, as

εb = xb − xt ,

εo = y−H(xt) ,
(1)

where y is a vector containing the observations, H is the observation operator, xt is
the true state and xb is the background state. Since we do not know the true state
of the system, it is impossible to directly compute the background and observation
errors. Assuming for the moment that we do precisely know the observation operator
H, the only useful quantity from which we can compute the required error statistics
is the innovation vector, defined as

d = y−H (xb) = εo +H(xt)−H(xt + εb) ≈ εo −H εb (2)

where H is the linearized version of H. Clearly, the observation and background
errors cannot both be obtained from this single equation. By making the common
assumption that the background and observation errors are uncorrelated with each
other, the innovation covariance matrix is given by

S = R+HBHT , (3)

where R is the observation error covariance matrix, B is the background error covari-
ance matrix and the superscript T represents matrix transposition. Practically, the
covariance matrix S can be estimated by averaging over time, if the observing net-
work remains relatively fixed and the error covariances are assumed stationary in
time. However, again it is impossible to obtain both terms on the right-hand side
from this single equation. This represents a fundamental problem in estimating the
error probability distribution functions (PDFs) for data assimilation. Only by rely-
ing on additional assumptions about the background and observation error PDFs,
can the two components that contribute to S be separated. Furthermore, these addi-
tional assumptions cannot be directly validated, but must be based on information
independent from the actual values of the background state and observations (see,
e.g., Dee 1995; Talagrand 1999).

1.2 Importance of Background and Observation Error Statistics
in Data Assimilation

The importance of the background error covariances can be seen by examining the
linear analysis equation (see, e.g., Gelb 1974)

�x = BHT (
HBHT + R

)−1
d , (4)

where �x is the analysis increment. If we take the case where only a single
observation is assimilated, then the quantities in parentheses in Eq. (4) are scalars
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and the resulting analysis increment is proportional to BHT, where HT is a column
vector. Consequently, for a given type of observation the spatial and multivari-
ate structure of the analysis increment depends strongly on the background error
covariances.

Moreover, as seen in the chapter Mathematical Concepts of Data Assimilation
(Nichols), the weight given to an observation is governed by the relative amplitude
of background and observation error variances. In general, a larger background error
variance results in a larger correction to the background state and more weight given
to the observation. Similarly, a larger observation error variance results in a smaller
correction to the background state. The effect of the background and observation
error correlations is to determine how the relative importance of the background
state and observations varies as a function of the spatial or temporal scale. For
example, broad monotonically decreasing spatial correlations have the effect of con-
centrating more of the error variance in the large-scale component of the error and
less in the small-scale component (Daley 1991, Sect. 4.8). As a result, the relative
weight given to the observations can vary as a function of scale (either in space
or time) if the background and observation errors have different spatial or tempo-
ral correlations. For example, when the specified background error correlations are
broader than the observation error correlations, the large-scale component of the
background state is considered to be less accurate than the small-scale component
relative to the observations. Consequently, the analysis increment tends to be smooth
because more weight is given to the large-scale component of the observations.

2 Estimation of Background and Observation Error Statistics

Background and observation error statistics are typically estimated from either a
statistical study of the innovations (Hollingsworth and Lönnberg 1986) or an ad hoc
method such as the NMC (National Meteorological Center) method (Parrish and
Derber 1992). Another approach is to use Monte Carlo simulations to approximate
the effect of observation and model errors (assuming their PDFs are known) in the
forecast-analysis cycle to obtain random realizations of background error. Using an
ensemble of such error realizations, the background error PDF can be estimated.
An example of this is the Ensemble Kalman filter (EnKF) (see chapter Ensemble
Kalman Filter: Current Status and Potential, Kalnay; Evensen 1994). In this section
several approaches for estimating the background and observation error covariances
are described.

2.1 Estimation of Background and Observation Error Statistics
from Innovations

As already mentioned, the innovations represent the only direct source of informa-
tion for estimating the background and observation error statistics. A frequently
employed approach for using innovations to estimate the error statistics was
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developed for use with conventional radiosonde observations (Hollingsworth and
Lönnberg 1986). The principle assumption on which the method is based is that
the errors in the observations originating from distinct balloons are uncorrelated.
In addition, the horizontal spacing of the observations must be sufficiently small
to resolve the background error correlations and the background and observation
error statistics are assumed to be horizontally homogeneous. The innovation covari-
ances are then estimated for a particular pressure level as a function of the horizontal
separation distance. It is usually necessary to assume the error statistics are station-
ary in time so that data over a time period of several weeks can be used to obtain a
sufficiently large sample size. The covariances from distinct balloons (non-zero sep-
aration distance) are then extrapolated to zero separation distance. The extrapolated
value represents an estimate of the background error variance and by subtracting
this from the innovation variance an estimate of the observation error variance is
obtained. The horizontal background error correlations can also be estimated from
the horizontal innovation covariances, with the estimated observation error variance
removed at zero separation distance. Due to the limited and heterogeneous distri-
bution of radiosonde observations over the globe, the approach can only provide
information on the background error covariances over particular regions and for a
limited range of spatial scales. Also, the application of this approach to satellite
observations that are more uniformly distributed may be difficult due to the pos-
sibility of horizontally correlated observation errors and the limited horizontal and
vertical resolution of the observations.

Another type of approach uses an existing variational data assimilation system
or components of that system to estimate elements of the error covariances from the
innovations. With this approach, the lack of consistency of the covariance matrices
specified in the data assimilation system and the innovations is used to tune a small
set of covariance parameters. For example, it may be assumed that the specified
background and observation error correlations are correct and that only the variances
need be scaled by a set of horizontally constant factors. The level of consistency
between the specified covariances and the innovations is measured by comparing the
value of a component of the cost function with its expected value computed using
a randomization method (Desroziers and Ivanov 2001; Chapnik et al. 2004, 2006).
Alternatively, a likelihood function can be constructed using the innovations and the
covariance matrix S and an iterative scheme used to find the covariance parameters
that maximize the likelihood (Dee 1995). In the case where only the variances are
tuned, the accuracy of the estimated values depends strongly on the assumption of
accurate error correlations. For example, Chapnik et al. (2004) showed that if the
observation error is assumed to be uncorrelated, but the real error is correlated, then
the approach will underestimate the observation error variance (sometimes giving a
value as small as zero) and overestimate the background error variance.

More recently, Desroziers et al. (2005) demonstrated how covariance parame-
ters could be estimated by simply computing particular statistics from the routine
output of a data assimilation system. For example, the expected value for the obser-
vation error covariance matrix should be equal to cov(y – Hxa, y – Hxb), where
xa is the analysed state. A similar relation is also easily computed for the expected
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value of the background error covariances after they are projected into observation
space. An inconsistency between the expected covariance and the covariance speci-
fied in the assimilation system, for example, a particular observation error variance,
would mean that this error variance should be adjusted. Desroziers et al. (2005)
showed, in an idealized setting, that an iterative scheme involving the data assimila-
tion system itself can be constructed that converges towards the true error variance.
The advantage of this approach over the others mentioned above is that it requires
very minimal changes to an existing data assimilation system. However, as with
the other approaches, any incorrect assumption regarding the structure of the error
covariances (e.g. spatially uncorrelated observation errors) will likely result in
convergence towards incorrect variance estimates.

2.2 Estimation of Background Error Covariances
with the Lagged-Forecast (NMC) Method

Several Numerical Weather Prediction (NWP) centres employ variational assim-
ilation systems with stationary background error covariances estimated using the
“NMC method” or lagged-forecast difference method (Parrish and Derber 1992;
Gauthier et al. 1998; Rabier et al. 1998; Derber and Bouttier 1999). Following this
method, the differences between pairs of forecasts valid at the same time, but having
different lead times, are taken to be representative of background error. Such fore-
cast differences can easily be computed for a past period using the archived output
of an operational forecasting system. For example, at the Canadian Meteorological
Centre, the differences between 48- and 24-h forecasts taken over a period of
2–3 months are used (Gauthier et al. 1998). However, a lack of correspondence
between these lagged forecast differences and 6-h forecast error necessitates mod-
ification of the computed covariances, especially the variances. The variances may
be tuned using a method based on the innovations as outlined in the previous
section.

2.3 Estimation of Background Error Covariances with Monte
Carlo Approaches

Methods based on Monte Carlo simulation have been developed to address the prob-
lem of how errors in the inputs to a data assimilation system lead to errors in the
background (and analysed) state. If the PDFs of both the observation and model
error are known, then these approaches, such as the EnKF, provide an estimate of the
PDF (and therefore the covariances) of the resulting background error. An ensemble
of analysis-forecast experiments are run, each using a set of observations and short-
term model integrations perturbed with an independent realization of errors drawn
from their known observation and model error PDFs. If the error PDF remains
close to Gaussian, the resulting ensemble of background states is representative
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of a random sample drawn from the background error PDF (Burgers et al.
1998).

In the EnKF, the analysis step for each ensemble member is performed using
background error covariances estimated from the ensemble spread of forecasts valid
for that specific analysis time. Typically at least O(100) ensemble members are
used to obtain a sufficiently accurate estimate of the error statistics. A simpler
approach used to estimate the stationary background error covariances is similar
to that described by Houtekamer et al. (1996) and was recently used in place of
the NMC method at several NWP centres (Fisher and Andersson 2001; Buehner
2005; Buehner et al. 2005; Belo Pereira and Berre 2006). In that approach, the anal-
ysis step for each ensemble member employs a previous, usually static, estimate
of the background error covariances. Unlike the EnKF, such approaches have been
employed with only a small number of parallel analysis-forecast experiments, but
where the background error realizations are pooled over a sufficiently long time
period to obtain an estimate of the stationary, or slowly varying, component of the
error statistics. However, like with the NMC method, this approach can only be
used to estimate the background error covariances after an initial assimilation sys-
tem with its own background error covariances is available. A major challenge for
all approaches based on Monte Carlo simulation is the specification of the model
error PDF. Approaches have been examined to adaptively tune a parametrized form
of the model error covariances with some success in idealized settings (e.g. Mitchell
and Houtekamer 2000).

2.4 Other Approaches for the Estimation of Background
Error Covariances

Some other approaches have been examined for obtaining low-rank estimates of the
true flow-dependent background error covariances such as would be obtained, in a
linear context, with a Kalman filter.

An approximate reduced-rank Kalman filter was developed and tested at the
European Centre for Medium-Range Weather Forecasts (ECMWF) with the goal
of providing an improved background error covariance matrix for the operational
4D-Var (four dimensional variational) assimilation system (Fisher 1998; Fisher and
Andersson 2001; see chapter Variational Assimilation, Talagrand). The approach
uses partially evolved singular vectors to define the background error covariances in
a low-dimensional subspace. In the orthogonal subspace that spans the remainder of
the analysis space, the standard stationary background error covariances are used.
The singular vectors are computed with a 48-h optimization time and an initial-time
norm defined using the inverse of an approximation to the analysis error covariance
matrix at the previous analysis time. The result is a set of vectors that eventually
evolve into the leading eigenvectors of the 48-h forecast error covariance matrix,
under the assumption that the error growth can be described by linearized dynamics
and that the contribution from model error is negligible. After extensive testing in
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a realistic NWP context, it was found that the reduced-rank Kalman filter did not
lead to consistent improvements to forecast quality. Possible explanations given for
the lack of positive impact include that the estimate of the analysis error covariance
matrix may not have been sufficiently accurate.

A related approach uses the gradient, with respect to the initial conditions, of
some specified scalar function of the future state of the system (Hello and Bouttier
2001). Like the reduced-rank Kalman filter described above, the gradient vector is
used to specify the background error covariances in a low-dimensional subspace (in
this case just a single direction); the standard background error covariances are used
for the remaining orthogonal subspace. By employing the sensitivity to initial condi-
tions of a series of 48-h forecasts of cyclones, Hello and Bouttier (2001) were able
to improve the forecasts of these cyclones as compared with the standard 3D-Var
(three-dimensional variational; see chapter Variational Assimilation, Talagrand)
approach. This is despite the fact that, unlike the singular vectors employed by
Fisher and Andersson (2001), the calculation of the gradient vector involves solely
the dynamics and does not include any statistical information concerning the
errors.

2.5 Estimation of Observation-Error Correlations

Compared with background errors, approaches for estimating the correlations of
observation error have not been examined as extensively. However, to make opti-
mal use of the ever increasing volume of available satellite data, it is becoming
necessary to obtain accurate estimates of both their spatial and inter-channel error
correlations. When employing a four-dimensional assimilation approach it may
even be necessary to account for temporal error correlations for both satellite and
conventional data.

To date, a common approach for dealing with correlated errors is to simply thin
the data either temporally, spatially, or with respect to the radiance frequency chan-
nel. The thinned data is then assimilated under the hypothesis that the observation
errors are uncorrelated. While this approach effectively reduces the error correla-
tions among the data that survive the thinning procedure, it also may eliminate a
significant amount of useful information on the small-scale structure of the atmo-
spheric or oceanic state. For example, let us assume that a particular observation
type has errors that are positively correlated in the horizontal direction. Properly
accounting for these correlations (instead of assuming uncorrelated errors) in the
data assimilation procedure would increase the weight given to the small-scale com-
ponent while reducing the weight given to the large-scale component. Horizontally
thinning the data also results in decreased weight given to the large-scale compo-
nent, but it does so at the expense of reducing the information content of the data at
the small scales. In fact, data with smooth positive error correlations are more accu-
rate with respect to the small-scale component than data with uncorrelated errors,
assuming the spatial resolution and error variance are equal (Daley 1991, Sect. 4.8).
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The problem of horizontally correlated errors associated with atmospheric
motion vector (AMV) data derived from satellite observations of cloud or
humidity field motion has been studied by Bormann et al. (2003). The AMV data
are co-located with radiosonde wind observations and the covariances of their
difference estimated as a function of horizontal separation distance. The covari-
ances for non-zero separation distance are then extrapolated to zero separation, like
in the approaches described in Sect. 2.1 above for separating innovation covariances
into the contributions from observation and background errors. Under the assump-
tion that the radiosonde observation errors are horizontally uncorrelated, the AMV
error correlations are estimated from the horizontally correlated component of the
covariances.

A similar approach, used by Garand et al. (2007), allows the inter-channel
error correlations to be estimated for AIRS (Atmospheric InfraRed Sounder) data.
First, the inter-channel covariances for all possible pair-wise channel combina-
tions of the innovation vector are computed as a function of horizontal separation
distance. For each channel pair, the covariances for non-zero horizontal separa-
tion distance are extrapolated to zero separation distance. Then, the assumption
is made that the covariances for non-zero separation distance are dominated
by the background error. Consequently, the difference between the covariances
computed at zero separation distance and the values obtained by extrapola-
tion represent an estimate of the observation error variances for each channel
and the inter-channel error covariances for all pair-wise channel combinations.
The inter-channel error correlations are then obtained by normalizing the inter-
channel covariances by the product of the corresponding error standard deviations.
Even though the approach relies on the assumption that errors associated with
AIRS data are horizontally uncorrelated, which has yet to be independently ver-
ified, the results appear physically realistic. Error correlations are generally high
among the water vapour sensing channels and among surface sensitive channels.
In contrast, they are negligible for channels within the main CO2 absorption
band.

With the increasing use of four-dimensional assimilation schemes for both
atmospheric and oceanic state estimation, accounting for temporal correlations of
observation error is becoming increasingly important. Properly incorporating esti-
mates of temporal error correlations when assimilating time series of data would
increase the weight given to the time tendency (high frequency component) and less
weight to the time mean (low frequency component) of the data. This was demon-
strated by Järvinen et al. (1999) for the case of time series of surface pressure data
in a 4D-Var assimilation system. In that study the temporal error correlations were
assumed to have a particular functional form and associated decorrelation time-
scale, since objective approaches for estimating temporal error correlations had not
yet been demonstrated.

In summary, the issue of accurately estimating spatial and temporal observation
error correlations is becoming increasingly important. They will be necessary to
make optimal use of the growing volume of both satellite and conventional data to
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extract information on the small spatial and temporal scales at which the errors are
often significantly correlated.

3 Modelling Error Covariances

For realistic NWP or oceanographic applications, a series of simplifying assump-
tions must be employed to obtain useful estimates of the background and observa-
tion error covariances. This is necessitated by both a lack of precise information on
the background and observation errors (as addressed in the previous section) and
the computational expense of utilizing the full covariance matrices in data assim-
ilation systems. A typical NWP system, for example, could have background and
observation error covariance matrices with O(1014) elements. To be practical, any
approach for modelling the covariances must significantly decrease the number of
parameters required to define the covariances and also decrease the computational
expense of employing the covariances in a data assimilation system. In addition,
any approach must still capture the most important aspects of the true covariance
structure. The main challenge to date has been to model the spatial correlations of
the background errors, whereas observation errors have typically been assumed to
be uncorrelated in most assimilation systems. Consequently, only approaches for
modelling background error correlations are briefly discussed in this section.

3.1 Spectral Representation: Homogeneous and Isotropic Error
Correlations

A very efficient approach for modelling the background error correlations is to
employ a spectral representation together with the assumption of homogeneity and
isotropy for the horizontal correlations. Under these assumptions, the correlation
matrix for a sphere in spectral space has a simple diagonal structure with elements
that depend only on the total wavenumber (Courtier et al. 1998). Consequently,
a full-rank matrix with reasonably smooth and robust correlations can be estimated
from relatively few error samples. This representation for the horizontal correlations
is often combined with vertical correlations in a way that does not require separabil-
ity between the horizontal and vertical correlations. The resulting three-dimensional
correlation matrix has a block diagonal structure given by

Ĉ (n, k1, k2) =
[
Ĉh (n, k1) Ĉh (n, k2)

]1/2
Cv (k1, k2, n) , (5)

where Ĉh is the spectral horizontal correlations, Cv is the vertical correlation matrix
for each horizontal total wavenumber (n), and k represents the vertical level index.
The non-separability of the correlations results in the dependence of the vertical
correlations on the horizontal scale. Consequently, the horizontally small-scale
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contribution to the errors typically has sharper vertical correlations than components
at larger scales. This dependence is necessary to simultaneously obtain the correct
correlations for wind and mass fields (Phillips 1986).

The original analysis variables can be transformed into a set of variables for
which the assumptions of homogeneity and isotropy are more valid. For example,
modelling wind correlations in terms of vorticity and divergence (or streamfunction
and velocity potential) is often more accurate than using velocity components for
which the correlations can be significantly anisotropic.

3.2 Physical-Space Representation

Alternatively, the error covariances can be estimated without constraining the corre-
lations to be horizontally homogeneous and isotropic. However, if the correlations
are estimated directly from a small sample of background-error realizations with-
out imposing any additional constraints, the rank of the resulting correlation matrix
cannot exceed the sample size. In addition, the correlations often have a noisy struc-
ture and do not approach zero at long separation distances, even with unrealistically
large correlations on the opposite side of the globe. To overcome these problems,
a procedure for spatially localizing the correlations was proposed by Gaspari and
Cohn (1999) and examined in the context of an EnKF by Houtekamer and Mitchell
(2001) and Hamill et al. (2001). The technique for efficiently employing a spa-
tially localized ensemble representation of the background error correlations in a
variational assimilation framework was described by Lorenc (2003) and Buehner
(2005). While reducing or eliminating distant correlations, spatial localization also
increases the rank of the correlation matrix estimated from a given sample size of
error realizations.

Another approach for reducing the problem of estimating the full correlation
matrix from a small sample is to compute the weighted mean of such a correlation
matrix with another matrix for which the assumptions of homogeneity and isotropy
are imposed. This hybrid approach was used in the context of an EnKF by Hamill
and Snyder (2000). In the variational context, a convenient approach is to combine
two correlation matrices by augmenting the control vector used by minimization
algorithm as described by Buehner (2005). Alternatively, a Householder transforma-
tion can be used to separate the analysis increment into the part that projects onto
the subspace spanned by the sample of error realizations and the complementary
subspace (Fisher 1998).

Efficient approaches for modelling spatial background-error correlations with
various classes of functional forms in physical space have also been examined.
Weaver and Courtier (2001) showed how the application of a diffusion operator can
be used to efficiently implement spatial correlations that are generally Gaussian-
shaped. Similarly, recursive filters have been used to model correlations efficiently,
while partially relaxing the assumptions of homogeneity and isotropy (Derber and
Rosati 1989; Wu et al. 2002; Purser et al. 2003).
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3.3 Spectral/Physical-Space Representation

As described above, imposing the constraint that the correlations are to some extent
local, either in the spatial or spectral domain is often necessary to obtain a use-
ful covariance estimate. However, spectral localization has typically only been
employed in the limiting case of the correlations being diagonal. Since diagonal
correlations in spectral space correspond to homogeneous correlations in physical
space, it is natural to consider what a more moderate amount of spectral localization
would produce in physical space. This has been studied in the context of using a set
of wavelets to define a space in which the correlations are assumed to be diagonal
(Fisher and Andersson 2001; Deckmyn and Berre 2005; Pannekoucke et al. 2007)
and also through explicit localization of correlations in spectral space (Buehner and
Charron 2007). In both cases, the moderate localization of correlations in spectral
space is shown to allow a certain amount of inhomogeneity of the correlations in
physical space while still having a smoothing effect on the correlations. In effect,
increasing amounts of spectral localization is equivalent with spatially averaging the
local correlation functions in physical space over increasingly large areas (Buehner
and Charron 2007). Of course, the limiting case where the spectral correlations
become diagonal corresponds with an averaging of the local correlation functions
over the entire domain. There likely exists an optimal level of combined spectral
and spatial localization that depends on several factors, including the size of the
sample of error realizations and the level of spatial inhomogeneity and typical spa-
tial length scale of the true correlations. Some examples of the effect of spectral and
spatial localization are shown in Sect. 4.

3.4 Theoretically-Based Correlation Modelling

The approaches discussed so far are mostly empirical approaches that rely on
assumptions about the statistical properties of the background errors. In this sec-
tion, examples of approaches for modelling error correlations are described that rely
on theoretical assumptions concerning the dynamical properties of the errors. Due
to their being based on dynamical relationships, the resulting correlations may be
flow-dependent. Such approaches are often used to transform a set of intermediate
variables that are assumed to have simpler (possibly stationary, homogeneous and
isotropic) correlations into the actual analysis variables.

A common example of such theoretically-based correlation models involves a
so-called balance operator to construct between-variable correlations. For example,
in several operational NWP data assimilation systems the temperature and surface
pressure increments are constructed by adding the increments of unbalanced and
balanced components of these variables, where the latter is computed from the
streamfunction (or vorticity) increment via a balance operator for geostrophy (e.g.
Gauthier et al. 1998; Derber and Bouttier 1999). For example, the three-dimensional
temperature increment field is computed using
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�T = �Tu +GT�ψ , (6)

where �Tu is the analysis increment of the unbalanced component of temperature
and GT is the balance operator for obtaining the geostrophically balanced compo-
nent of temperature from the streamfunction. This implies correlations between the
wind and mass field increments that are consistent with geostrophy and the hydro-
static relationship. Additional balance operators are also usually employed to create
correlations between the rotational and divergent components of the wind field near
the surface (cf. Ekman balance). The result is that the background error covariance
matrix is represented as a series of separate matrices or operators:

B = GV1/2Cu(V1/2)TGT , (7)

where Cu is the correlation matrix for the set of independent variables with hori-
zontally homogeneous and isotropic correlations, V is a diagonal matrix containing
the error variances, and G, which includes GT, transforms the unbalanced variables
into the full quantities for temperature, surface pressure, and velocity potential (or
divergence) using the balance operators. Consequently, the effective correlations
in B are neither horizontally homogeneous nor isotropic due to the spatial depen-
dence of the balance operators. The temperature correlations at the Equator are
mostly determined by the correlations of the unbalanced temperature, whereas in
the extra-tropics they are a combination of the unbalanced and balanced tempera-
ture correlations. In turn, the balanced temperature correlations are derived from the
streamfunction (or vorticity) correlations. Figure 1 shows the fraction of tempera-
ture variance explained by a simple linear balance with streamfunction when either
the NMC method or a Monte Carlo approach applied to a 3D-Var assimilation sys-
tem is used to generate the error sample. Note that the temperature and wind fields
are more strongly in balance when using the NMC method than when using the
6-h spread of background states from a Monte Carlo simulation. The results were
obtained using the Canadian 3D-Var system described by Chouinard et al. (2001).
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Fig. 1 The zonally averaged ratio of balanced temperature variance normalized by the full tem-
perature variance from the background error covariances estimated using (a) the NMC method and
(b) a Monte Carlo approach applied to a 3D-Var assimilation system
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If a linear balance is used to compute the balanced component of temperature,
then the operator G does not depend on the flow. However, the use of the non-linear
balance

∇2Pb = −∇ · (vr · ∇vr + f k× vr) , (8)

where Pb is the balanced pressure variable and vr is the rotational wind vector,
results in a balance operator that, when linearized with respect to the background
state, is flow-dependent (Fisher 2003). Therefore, G depends on the background
state itself and, therefore, so does the correlation structure in B of temperature in the
extra-tropics. Similarly, to compute a more realistic balanced component of diver-
gence, Fisher (2003) evaluated using the quasi-geostrophic omega equation, and
Byrom and Roulstone (2003) examined using Richardson’s equation.

Another approach for introducing a theoretically-based correlation model that
is flow-dependent relies on the coordinate transformation described by Dee and
Gaspari (1996). The idea is to take advantage of the efficiency of using a homo-
geneous and isotropic correlation model, but to apply it in a space with transformed
spatial coordinates. This transformation can be chosen so that when transformed
back into the original coordinate system, the resulting correlations are heteroge-
neous, anisotropic and possibly flow-dependent. They used a simple coordinate
transform to obtain a latitudinal dependence of the horizontal correlations, that is,
with a larger length-scale in the tropics than in the extra-tropics. Desroziers (1997)
used a similar approach and a coordinate transformation based on semi-geostrophic
theory to obtain more realistic correlations in the vicinity of frontal structures.

4 Illustrative Examples

In this section, several examples are shown to illustrate some of the approaches for
estimating and modelling error statistics discussed previously. All have been taken
from Canadian operational or experimental atmospheric data assimilation systems
used for NWP.

4.1 Estimated Error Variances

Figure 2 shows the estimated background error standard deviation (stdev) of tem-
perature obtained from using the NMC method and the EnKF of Houtekamer et al.
(2005). Note that the stdev field obtained with the NMC method is zonally invariant,
because the original estimates have been zonally averaged. Without this averaging,
the estimated stdev fields tend to have unrealistic spatial variations, with larger val-
ues downstream of well-observed areas and lower values near data sparse regions.
Even though the EnKF can be used to estimate flow-dependent background error
covariances for each analysis time, here the variances obtained from the ensemble
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Fig. 2 Estimated background error stdev of temperature near 500 hPa computed using: (a) the
NMC method and (b) a temporal average of the background ensemble spread variances from the
EnKF. Figure adapted from Buehner (2005)

spread of background states are temporally averaged over 1 month. When com-
pared with the NMC method, the EnKF produces more realistic spatial variations
with higher values over the oceans than over the continents.

4.2 Single Observation Experiments

The analysis increment resulting from the assimilation of a single observation
provides a partial view of the background error covariances by showing how infor-
mation from the observation is distributed both spatially and among the different
analysis variables. From the linear analysis equation, the analysis increment from
assimilating a single observation is proportional to BHT, where H is reduced to a
row vector. For observation types closely related to one of the variables represented
in the background error covariances, the analysis increment is simply proportional to
a column of B. This is especially convenient when the background error covariances
are modelled using a series of operators and therefore cannot be easily computed
explicitly.

Non-stationary features such as strong horizontal gradients and regions of
instability can significantly influence the background error statistics. As already
discussed, the EnKF is able to capture this flow dependence. To demonstrate this,
a single temperature observation 1 K greater than the background temperature
near 900 hPa was assimilated within a strong near-surface temperature front that
appeared over the North Pacific on 27 May 2002 at 1200 UTC (adapted from
Buehner 2005). All analyses were performed with a variational analysis system
using either the homogeneous and isotropic background error correlations estimated
with the NMC method or the spatially localized ensemble correlations estimated
from the output of the EnKF. The analysis increment produced using the back-
ground error covariances from the 3D-Var (Fig. 3a) is clearly unaffected by the
local meteorological conditions (the background temperature is shown in the dark
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Fig. 3 Analysis increment of temperature (shaded contours, contour increment of 0.15 K) and
wind (vectors) from a single temperature observation near 900 hPa located in a strong near-surface
temperature front at 1200 UTC, 27 May 2002. The experiment was performed using: (a) the homo-
geneous and isotropic background error correlations estimated with the NMC method in 3D-Var,
(b) the spatially localized background error correlations estimated with the EnKF, and (c) the same
background error covariances as the first panel, except in a 4D-Var system with the observation
occurring 6 h after the beginning of the assimilation window. The background temperature field is
shown as black unshaded contours with a contour interval 10 times larger than for the temperature
increment

contours). The temperature increment decays in a nearly isotropic fashion away
from the observation location and the wind increment is nearly zero at the location of
the temperature observation. In contrast, when using covariances estimated from the
EnKF ensemble of background states valid for the same analysis time (Fig. 3b), the
temperature increment is slightly elongated along the front and the wind increment
is larger with vectors oriented parallel with the background temperature gradient at
the observation location.

Finally, a 4D-Var analysis was performed with the beginning of the assimilation
window occurring 6 h before the time of the temperature observation. The same
background error covariances are used as in 3D-Var, but in 4D-Var they are implic-
itly propagated throughout the assimilation window with the linearized version of
the atmospheric forecast model. The result is an analysis increment (Fig. 3c) that is
slightly modified relative to the result with 3D-Var. However, the change in the wind
increment demonstrates that the covariance propagation has introduced qualitatively
similar local correlations between temperature and wind as in the EnKF covariances
such that the winds are again parallel to the background temperature gradient near
the observation location.

The next series of examples demonstrate different approaches for modelling
background error correlations (adapted from Buehner and Charron 2007).

Figure 4 shows the zonal cross-section of the meridional wind analysis incre-
ment from using 3D-Var to assimilate a single zonal wind observation located over
the southern Pacific ocean at 60◦S, 180◦E and 300 hPa. The background error
covariances were estimated using a Monte Carlo simulation approach applied to
a 3D-Var assimilation system. The error sample was obtained from differences
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Fig. 4 Zonal cross-sections of the zonal wind covariances with respect to 60◦S, 180◦E and 300 hPa
with: (a) homogeneous and isotropic correlations, (b) correlations with spectral localization, and
(c) correlations with no localization. The covariances are normalized to have a maximum value of
one, the contour interval is 0.1 and dashed contours denote negative values

between the background states from an assimilation experiment that assimi-
lated perturbed observations and an experiment employing unperturbed observa-
tions. The error realizations were pooled over a 1-month period to estimate the
covariances.

For the first result, the correlations were modelled as being horizontally homo-
geneous and isotropic, that is, diagonal in spectral space (Fig. 4a). In the second
result, the same correlations were used after applying only a moderate amount of
spectral localization (Fig. 4b). Finally, the sample estimate of the correlations with
no localization was used to produce the third result (Fig. 4c). Note how the use of
horizontally homogeneous and isotropic correlations produces a spatially smooth
covariance structure. Conversely, when no localization is applied, the covariances
are quite noisy. When spectral localization is applied with a localization radius that
sets to zero correlations with a difference in total wavenumber greater than 10, the
covariance structure is slightly more noisy than with the diagonal spectral corre-
lations, but significantly smoother than when no localization is applied. With no
localization, the correlation structure is sharper in the zonal direction and broader
in the vertical direction relative to the homogeneous correlations. The spectrally
localized correlations appear to also exhibit this difference with the homogeneous
correlation, although to a lesser degree.

Figure 5 shows the same type of result as Fig. 4, except the location is at the
Equator. Again, the spectrally localized correlations result in a spatially smoother
covariance structure (Fig. 5b) than the raw sample estimate (Fig. 5c), but slightly
noisier than when employing horizontally homogeneous and isotropic correlations
(Fig. 5a). For this location the homogeneous correlations again differ from the
previous results. Now the correlations with spectral localization or no localiza-
tion both exhibit a correlation structure that is broader in the zonal direction and
sharper in the vertical direction. This is in the opposite sense compared to the
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Fig. 5 Same as Fig. 4, but for a location at the Equator

covariances at 60◦S and, presumably, is a robust result related to differences in the
extra-tropical versus tropical atmospheric dynamics. Similar latitudinal variations
were also demonstrated by Ingleby (2001).

5 Summary

This chapter has provided an overview of the relevant issues and common
approaches used for estimating and modelling the error covariances required for
data assimilation, with an emphasis on approaches used for NWP. The discussion
of error covariance estimation highlighted the fundamental theoretical limitation
encountered when trying to estimate the covariances of both the observations and
the background state from a single quantity, the innovation (that is, the differ-
ence between the observations and the background state projected into observation
space). This limitation necessitates the introduction of external assumptions and
the different approaches described vary with respect to the assumptions adopted.
Examples of these include assuming the observation errors are spatially uncorre-
lated (allowing the variances and background error correlations to be estimated)
or assuming the observation and model error statistics are known (allowing the
background error covariances to be estimated with a Monte Carlo technique). The
chapter Evaluation of Assimilation Algorithms (Talagrand) provides further details.

Approaches for modelling the error covariances, especially of the background
error, must be computationally feasible, in terms of both memory and time lim-
itations. Due to the high dimensionality of the problem and a lack of sufficient
observation data to explicitly estimate and use the complete covariances, assump-
tions also must be employed regarding the structure of the error covariances. The
most common assumptions are that the spatial correlations are either partially or
completely horizontally homogeneous (possibly for a set of transformed analysis
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variables) and/or that they are to some extent spatially local such that the corre-
lations become zero at a specified distance. By employing one or both of these
assumptions, a robust estimate of the covariances can usually be obtained with a
relatively small sample of error realizations and used within a data assimilation sys-
tem. However, the quality of the resulting analysis depends on how well the imposed
assumptions decrease the sampling error in the covariance estimate while preserving
the essential aspects of the covariances.

Current research on data assimilation for application to NWP is generally focused
on two approaches: the variational approach, namely 3D-Var and 4D-Var, and vari-
ations of the EnKF. Typically, applications of these two approaches employ very
different assumptions regarding the estimation and modelling of background error
covariances. Variational approaches commonly use temporally static covariances
with horizontally homogeneous and isotropic correlations (for a specific set of
transformed analysis variables) with theoretically-based balance relationships and
estimated with an ad hoc method. Applications of the EnKF use time-dependent
covariances estimated from an ensemble of model states where usually the only
assumption is that the spatial correlations are to some extent local. It is interesting to
note that despite the large differences in the resulting background error covariances
employed by each approach, both can produce analyses of comparable quality (as
of yet unpublished results presented at “WMO-sponsored workshop on 4D-Var and
EnKF inter-comparisons”: http://4dvarenkf.cima.fcen.uba.ar). This suggests that an
in-depth comparison of the way background error covariances are estimated and
modelled in applications of the two approaches may help identify which aspects
of each are most beneficial with respect to analysis quality. By combining aspects
of each approach, it is possible that new approaches for estimating and modelling
background error covariances may be obtained that result in better analyses than
those produced by either of the original two approaches.
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Bias Estimation

Richard Ménard

1 Introduction

One of the standard assumptions in data assimilation is that observation and model
errors are purely random, i.e., they do not contain systematic errors (see chapter
Mathematical Concepts of Data Assimilation, Nichols). In reality, the distinction
between random errors and systematic errors is somewhat academic. Because of
non-linearities and the complexity in the different processes involved, model errors
and observation errors arise both as random and systematic. Model errors originate
from parametrizations, unrepresented model physics, inaccurate boundary forc-
ing, and resolution, among others sources. With satellite observations, the forward
model often gives rise to large systematic errors. Conventional observations can
also be contaminated by missing or inadequate representation of physical processes.
Removing systematic errors from observations or models requires considerable
effort and is made, basically, by improving the representation of physical processes
involved. As such, it is never complete.

Data assimilation schemes built on the standard assumptions that the errors are
purely random, cannot produce analyses with no bias if either observations or the
model have systematic errors – no matter how the error variances are specified (Dee
and da Silva 1998). The problem of dealing with biases is thus unavoidable.

The detection of bias is made by comparing models or observations with inde-
pendent data that are trusted as accurate and unbiased. This comparison is best
made when spatial and temporal co-location is used. Then, from those residuals
and with appropriate modelling assumptions, a model representation of the bias can
be obtained and bias correction can be applied.

In this chapter we are going one step further by considering bias estimation and
correction as an integral part of data assimilation. From the point of view of estima-
tion theory, combining bias and state estimation is performed by using an augmented
system where bias parameters are added to the state vector. Although this may sound
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simple, the proper mathematical formulation of this problem has been obtained only
recently. In earlier attempts the problems of bias in observations and bias in models
were dealt separately. With recent advances in the theory, it is now possible to for-
mulate the complete problem of estimation in presence of bias. This theory will be
presented in Sect. 3. The application of these schemes have also made encouraging
progress: First, by implementing such schemes in an operational data assimilation
system, the real issues of implementation and the determination of the input infor-
mation is now being investigated; Second, as the theory has progressed, a better
understanding of these schemes is obtained which, in turn, has provided further
insights for its application.

Before we turn to the main development of this chapter, it may be useful to give
some clarification about the terminology. Bias in data assimilation broadly refers to
the presence of systematic errors, while in statistics it is a property of an estimator.
Specifically, in statistics we say that x̂ is an unbiased estimator of x, if E[x̂ |x ] = x
when x is deterministic or E[x̂] = E[x] when x is stochastic. We can reconcile the
statistical definition with its usage in data assimilation by considering that observa-
tions, model forecasts and analyses all aim at determining the true state, and in that
sense and broadly speaking, they can be considered as estimators of the true state.
Biases in that context refer to the mean differences between the estimator and true
state, i.e., the systematic error.

2 Detection of Bias

Although biases are usually diagnosed by comparison with independent and trusted
unbiased data sets, and for models by forecast drift, the question arises “How do
we detect biases in a data assimilation cycle?” This section will address specifically
this issue. The detection of bias has been discussed at length and presented in
several applications by Dee (2005), for which we owe much of the discussion
presented here.

2.1 Bias Detection Using Innovations

Statistics of observed-minus-background residuals (also called innovations) provide
information on systematic errors in model and observations. Routine monitoring of
observations-minus-background residuals in operational assimilation centres pro-
vides a wealth of information on the biases and performance of the assimilation
system. Non-zero-mean residuals (see chapter Mathematical Concepts of Data
Assimilation, Nichols, for notation):

〈
y−Hxf

〉
= 〈

εo〉− H
〈
εf

〉
= bo −Hbf , (1)
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indicate the presence of bias in either model forecast or observations (or both) but
cannot identify the source. However, a closer analysis of the residuals can reveal the
source of bias. For example, an abrupt change in a particular channel or observa-
tion is indicative of instrument malfunction. An objective method to detect artificial
and local changes in an observation network is the standard normal homogeneity
test (SNHT; Alexandersson and Moberg 1997). The idea behind this method is
that natural changes are similar in time series at different stations, whereas artifi-
cial irregularities are site-specific. This method was applied to diagnose problems
with the radiosonde network that occurred in the ERA-40 reanalysis (Haimberger
2007). Time series of the analysis of observed-minus-background residuals are also
useful as they can reveal sources of bias. Such an analysis applied to the radiosonde
temperatures in the NCEP (National Centers for Environmental Prediction) global
assimilation system revealed excessive power in periods longer than 10 days, as
well as a strong peak in the diurnal cycle which pointed to model underestima-
tion of mean surface diurnal temperature variations (Dee 2005). The inspection of
observed-minus-background residuals is also useful for revealing biases in radia-
tive transfer models. Saunders (2005) investigated the origin of systematic errors
by looking at biases of observed-minus-background residuals in radiation spectral
space for the AIRS (Atmospheric InfraRed Sounder – see Appendix for a list of
acronyms) instrument. As different bands and wavelengths are associated with dif-
ferent gases, different aspects of the spectroscopy and its modelling, insights on
problems with the radiative transfer modelling can thus be obtained.

2.2 Bias Detection Using Analysis Increments

Analysis-minus-forecast residuals, called analysis increments, also provide infor-
mation on systematic errors. Using a BLUE (Best Linear Unbiased Estimate), the
average analysis increment is

〈
xa − xf

〉
=

〈
K(εo −Hε f )

〉
(2)

in fact, closely related to mean observed-minus-background residuals or mean inno-
vations. It can be argued that if the averaging procedure (e.g. zonal time-mean) used
to obtain the observation and background error statistics is the same as that used to
compute the analysis increments, and if the observation network is fairly uniform in
the averaging sense (e.g. an observation network that is zonally uniform and regular
in time, and is represented by zonal time-mean statistics), then the gain matrix K
can be factored out

〈
xa − x f

〉
≈ K

〈
εo −Hε f

〉
= K(bo −Hb f ). (3)

The average analysis increment gives, however, the false impression that it pro-
vides bias information on the model space, whereas in essence it only contains bias
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information in observation space. Moreover, wrong conclusions about the bias can
occur if the Kalman gain is somehow erroneous, by projecting erroneous incre-
ments away from the observation locations (see Polavarapu et al. 2005 for further
discussion). Nevertheless, the average analysis increments provide a useful tool to
collectively assemble the biases (obtained in observation space) onto the model
space. We remark also that the analysis increment is one of the two components
of the Data-minus-Analysis (DmA) vector (see chapter Evaluation of Assimilation
Algorithms, Talagrand). As noted in this chapter by Talagrand there is a one-to-one
correspondence between DmA and OmF (the innovations), so that basically these
quantities are equivalent. The diagnostic based on analysis increments is thus chosen
as a matter of convenience.

Figure 1 shows the zonal monthly mean analysis increments of temperature from
two assimilation systems. The left panel shows the result produced from the ERA-
40 reanalysis for the month of August 2002, and the right panel from the Canadian
GEM-BACH model (Ménard et al. 2007) for a similar time period (September 2003)
but with no observation bias correction on the AMSU-A stratospheric channels
11–14. Strong biases of slightly over 1 K and of alternating signs are noted in the
stratospheric polar and tropical regions.

Although the mean analysis increments indicate the presence of large biases in
the stratosphere, their origin is unclear. In free running mode, models are known to
have large systematic errors in the stratosphere. The main source of stratospheric
data in the ERA-40 reanalysis is TOVS/ATOVS (left panel, Fig. 1). The assimilated

Fig. 1 Zonal mean time-averaged temperature increments. Left panel, from ERA-40 reanalysis for
August 2002. Right panel, from the Canadian model GEM-BACH without AMSU bias correction
on channels 11–14 (Reproduced from Dee 2005; © Royal Meteorological Society)
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radiances have been corrected for biases by correcting for scan angle systematic
errors and air-mass dependence using an off-line procedure (see Sect. 4). To account
for state-dependent systematic errors in radiative transfer calculations, a regression
of the residuals with model layer-mean temperatures is made. Lacking unbiased
observations in the stratosphere to anchor the stratospheric analyses, it is possible,
therefore, that model biases and observations become interdependent. The striking
similarity of the bias patterns with those of the right panel in Fig. 1, where a different
model was used and no radiance correction was applied on the stratospheric chan-
nels (compare the left and right panels in Fig. 1), suggests that analysis increments
originate primarily from observation bias and that the observation bias correction
and the model temperature bias become interdependent in the stratosphere.

3 Bias Analysis

We have seen that the basic information from which biases can be estimated arises
from innovations. In this section we derive the analysis equation following Lea et al.
(2008) where for the first time both observation and model have biases. As in Lea
et al. (2008) the derivation contains both variational and sequential formulations, but
to simplify the development we do not address the issue of representativeness error.
The derivation uses simple and clear assumptions in a Bayesian formulation. To
apply this method requires, however, some knowledge about the model and observa-
tion bias characteristics as well as knowledge of the bias error covariances – which,
in the current state of knowledge, we are severely lacking. The ability to distin-
guish the model bias and observation bias from the innovation information needs to
be developed. We hope, nevertheless, that having the problem well posed to begin
with, will help make further steps in this important problem for data assimilation.

To set the stage, let us introduce the equations for the state, the measurement, the
model bias, and the observation bias,

xf = xt + et + εf

y = H(xt)+ bt + εo

ef = et + εq

bf = bt + εb.

(4)

The parameters on the left hand side of the equations, the forecast xf , the obser-
vation y, the model bias forecast or model bias prior e f , and the observation bias
forecast or observation bias prior b f are known. H() is the non-linear observation
operator. The true state xt, the (true) model bias et and (true) observation bias bt

are to be estimated, and the epsilon (ε) variables represent zero-mean normally-
distributed errors associated with each variable: εf is the forecast (random) error
with covariance Pf ; εo is the observation (random) error with covariance R; εq is
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the model (random) error with covariance Q; and εb is the random error of the
observation bias with covariance S.

3.1 Variational Formulation

Following Lea et al. (2008) we make three fundamental assumptions, which permit
us to well-pose the analysis equation in presence of both observation and model
error biases. For convenience, we have dropped the superscript t to denote the truth
in this subsection:

1. The observation y is independent of the model bias e. If p denotes the (condi-
tional) probability density function, then

p(y|x, b, e) = p(y|x, b); (5)

2. The model state x is independent of the observation bias b, i.e.,

p(x|b, e) = p(x|e); (6)

3. The model bias is independent of the observation bias, that is

p(b, e) = p(b|e) p(e) = p(e|b ) p(b) = p(b) p(e). (7)

In this general context, the analysis consists in finding the maximum a posteriori
estimate of the state, the observation bias and the model bias, given the observations
and any prior knowledge of the state and biases. The starting point is the calculation
of the conditional probability density function p(x, b, e|y). Using Bayes’ theorem,
we have

p(x, b, e|y) = p(y|x, b, e) p(x, b, e)

p(y)
(8)

According to assumption 1 (Eq. 5), the first factor in the numerator simplifies to

p(y|x, b, e) = p(y|x, b). (9)

Using again Bayes’ theorem, the second factor in the numerator can be re-written
as

p(x, b, e) = p(x|b, e) p(b|e) p(e), (10)

and using assumption 2 (Eq. 6), and assumption 3 (Eq. 7), this simplifies to

p(x, b, e) = p(x|e) p(b) p(e), (11)
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so that the posterior probability density function is

p(x, b, e|y) = p(y|x, b) p(x|e) p(b) p(e)

p(y)
. (12)

Assuming a normal distribution, the probability densities are expressed as:

p(y |x, b ) = N (H(x)+b, R) = α1 exp

[
−1

2
(y−H(x)− b)TR−1(y−H(x)− b)

]
,

(13)
where α1 is a constant that does not depend on any of the estimated variables, x, b,
or e, and similarly

p(x |e ) = N (xf − e, Pf ) = α2 exp

[
−1

2
(x− xf + e)T [Pf ]−1(x− xf + e)

]
, (14)

p(b) = N (bf , S) = α3 exp

[
−1

2
(b− bf )T S−1(b− bf )

]
, (15)

p(e) = N (ef , Q) = α4 exp

[
−1

2
(e− ef )TQ−1(e− ef )

]
. (16)

The probability density p(y) does not depend on any of the estimated parameters x, b
or e, but only on their priors. Maximizing the a posteriori probability is equivalent to
minimizing the following cost function (this is quadratic if the observation operator
is linear):

J(x, b, e) = 1

2
(y−H(x)− b)TR−1(y−H(x)− b)

+ 1

2
(x− xf + e)T [Pf ]−1(x− xf + e)

+ 1

2
(b− bf )T S−1(b− bf )

+ 1

2
(e− ef )T Q−1(e− ef ).

(17)

A remark is worth making with regard to Eq. (14) and the resulting cost function
given by Eq. (17). In a dynamically evolving system, the forecast is not indepen-
dent of the model bias since it depends on the model bias in the previous time step.
A cross covariance between x and e should be introduced accordingly. A better
approach is to account for the time dependence in the estimation problem and intro-
duce the model bias as a tendency on the state. For the purpose of this derivation, we
will neglect the cross-covariance term. This issue will be treated later in this chapter.
We should also remark that assumption (6) should not be confused with the fact that
b usually depends on x. Assumption (6) only says that the true state does not depend
on the observation bias. The dependence of b on x can introduce a cross-covariance
term in the cost function. It is possible however, to avoid such a term by making b
depend on xf rather than xt which for all practical purposes should be sufficient (one
should consult the Appendix in Ménard et al. 2000 for an example).
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3.2 Sequential Formulation

The equations for the sequential formulation are found by setting to zero the partial
derivatives of J with respect to x, b, and e. When H is linear we obtain a set of
coupled linear equations,

[(Pf )−1 +HTR−1H] x̂+HTR−1b̂+ (Pf )−1 ê = (Pf )−1xf +HTR−1y (18)

R−1H x̂ + (R−1 + S−1) b̂ = R−1y+ S−1bf (19)

(Pf )−1x̂ + [(Pf )−1 + Q−1] ê = (Pf )−1 xf +Q−1ef (20)

where x̂, b̂, ê are the estimated or analysis values, and H is the Jacobian of the obser-
vation operator (see chapter Mathematical Concepts of Data Assimilation, Nichols);
HT is the transpose of H. Multiplying Eq. (19) by HT and using Eqs. (18) and (20)
we can eliminate x̂ from the system and we get

HTS−1(b̂− bf )+Q−1(ê− ef ) = 0. (21)

Using the matrix inversion lemma or the Sherman-Morrison-Woodbury formula
(see, for instance, Lewis et al. 2006), Eq. (18) can be rewritten as

x̂ = xf − ê+K[y− b̂−H(xf − ê)] (22)

K = Pf HT (HPf HT + R)−1, (23)

which requires knowledge of the model bias estimate ê and the observation bias
estimate b̂. The model bias estimate ê can be obtained by eliminating x̂ from Eqs.
(22) and (20),

ê = ef − L[y− b̂−H(xf − ef )] (24)

L = QHT (HPf HT +HQHT + R)−1, (25)

but then it depends on the knowledge of the observation bias estimate. Finally, the
observation bias estimate can be obtained from Eqs. (24) and (21) by eliminating ê,
and we get an expression that depends only on forecast (or prior) values,

b̂ = bf +M[y− bf −H(xf − ef )], (26)

M = S(HPf HT +HQHT + R+ S)−1. (27)

In this semi-coupled solution, the system is first solved by estimating the observation
bias, then the model bias, and then the state. We note, however, that it requires the
inversion of three different error covariances.
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An entirely uncoupled system solution and much more practical form can be
obtained by substituting Eqs. (26) and (27) into Eqs. (24) and (25) and using the
following identity (S− X)−1(SX−1 − I) = X−1 to obtain,

ê = ef − L∗[y− bf −H(xf − ef )] (28)

L∗ = QHT (HPf HT +HQHT + R+ S)−1, (29)

and, similarly, by substituting Eqs. (26), (27), and (29) into Eqs. (22) and (23) to get

x̂ = xf − ef +K∗[y− bf −H(xf − ef )] (30)

K∗ = (Pf +Q)HT (HPf HT +HQHT + R+ S)−1. (31)

The presence of Q in the first term in parentheses in Eq. (31) comes from the use of
model forecast bias rather than model analysis bias as in Eq. (22).

In this new formulation (Eqs. 26, 27, 28, 29, 30, and 31), the same observation
residual d = y − bf − H(xf − ef ) is used in all equations. Also, only one matrix,
i.e., X = HPf HT + HQHT + R + S, needs to be inverted. The appearance of the
observation in the analysis equations for the state, model bias and observation bias
does not mean that the information content of the observation is used three times, as
was noted in Dee and Todling (2000); Eqs. (26), (27), (28), (29), (30), and (31) can
in fact be rewritten in the following form

b̂ = bf + SX−1d

ê = ef −QHTS−1(b̂− bf )

x̂ = xf − ef − (Pf +Q)Q−1(ê− ef ),

(32)

which shows clearly that the observation information, d, the innovation vector, is
used only once.

Schemes where only the model is biased or only the observations are biased are
easily derived from this general formulation. The form given by Eq. (32) also shows
clearly that the bias can be estimated separately from the state estimate, the so-called
bias-separation property (Dee and da Silva 1998). It is important to note, however,
that the bias-separation property found by Friedland (1969) actually referred to the
separation of the propagation of error covariances in a Kalman filter, which only
occurs for a constant model bias with no stochastic forcing. The bias-separation
property in the state-bias variables in form given by Eq. (32) (see Dee and da Silva
1998) seems to occur in any optimal linear system, and is just a reflection of the fact
that the observation information is only used once.
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4 Observation Bias Correction Schemes

An important, and actually one of the first, application of bias estimation has
been for correcting satellite observations. Radiance observations from satellites
usually have large systematic errors. It is essential to remove these biases in the
measurement to properly extract the information content for data assimilation.

Consider the typical problem of temperature remote sensing. Systematic errors
in measurements and radiative transfer are typically much larger than the model’s
short-term forecast (e.g. 6 h) bias. The mean observation residual is then a good
approximation of the observation bias

〈y−H(x)〉 ≈ 〈
εo〉

. (33)

In the troposphere, the model short-term forecast error is constrained and, to a
certain extent, negligible due in part to the fact that other accurate observations such
as radiosondes are used in the assimilation. In the middle and upper stratosphere and
for other components of the Earth system that are not so well sampled by accurate
observations, the property (2) (Eq. 6) may not be valid.

Following Eyre (1992), a parametric form is used to represent the observation
bias as a scan angle bias β0 and an air mass correction represented as regression
of N atmospheric predictors, and which is introduced to account for the fact that
radiative transfer systematic errors are state-dependent,

b = β0 +
N∑

i=1

βipi(x), (34)

Typically, only a few predictors are chosen in order to avoid overfitting. It is usual
to have as predictors:

• geopotential thickness of the layer 1,000–300 hPa;
• geopotential thickness of the layer 200–50 hPa;
• geopotential thickness of the layer 50–5 hPa;
• geopotential thickness of the layer 10–1 hPa.

Different approaches have been proposed to estimate the parameters βi: a static
scheme; an adaptive off-line scheme; and an adaptive on-line or variational bias
correction scheme.

4.1 Static Bias Correction Scheme

In the static scheme, the optimal values of the parameters are calculated from a
set of observations and background xb from a control assimilation over a period



Bias Estimation 123

of typically a month. The parameters are then fixed and applied to all subsequent
analyses.

This scheme is implemented by minimizing the cost function,

J(β) =
∑

k

1

2

[
yk −Hk

(
xb

k

)
− b(β)

]T
R−1

[
yk −Hk

(
xb

k

)
− b(β)

]
. (35)

Figure 2 illustrates the effect of this scheme for AMSU-B of NOAA-16 (Garand
et al. 2006). Panel (a) shows the raw radiances without any bias correction for
channels 2–5 as a function of scan angle. Panel (b) shows the radiances after the
scan position bias correction. Panel (c) displays the radiances after scan angle bias
correction and air-mass correction. Panel (d) shows the standard deviation.

Note how the curvature of the mean observation residual line has been eliminated
after the scan angle correction. We also observe that the air-mass correction reduces
the observation bias by almost an order of magnitude. Finally, we note also that, in

Fig. 2 Mean AMSU-B observation residuals (O-P, observation minus forecast) versus scan posi-
tion. (a) Raw radiance data; (b) after scan angle bias correction; (c) after bias correction and
air-mass correction. Corresponding standard deviations are given by (d). First and last 7 scans
not used
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practice, the bias correction is made for each channel individually so, in principle,
the value of R is irrelevant in the minimization.

4.2 Adaptive Off-Line Bias Correction Scheme

Changes in the nature of the bias such as during contamination, instrument prob-
lems or changes in data processing, cannot be accounted for properly by the static
bias correction scheme. An adaptive bias correction scheme is an off-line bias cor-
rection scheme similar to the static scheme but where the parameters βi are updated
continuously (but not the predictors nor the scan-angle correction). Typically, the
updates are made at each analysis cycle and the correction is made prior to each
new analysis, by minimizing the cost function,

J(βk) = 1

2

[
yk−1 −Hk−1

(
xa

k−1

)− b(βk)
]T R−1 [

yk−1 −Hk−1
(
xa

k−1

)− b(βk)
]

+ 1

2
(βk − βk−1)T�−1(βk − βk−1);

(36)
k increases by one after each analysis cycle. � is equivalent to S, but for the param-
eter value space, and controls the quasi-stationarity of the bias parameters. The
second term in Eq. (36) acts like an inertia constraint (i.e., βk does not change easily
with time) but the value of � is somewhat arbitrary.

The off-line adaptive scheme cannot distinguish observation bias from model
bias. As shown by Auligné et al. (2007), if a model bias is present, the information
that pulls away the model from its biased solution is gradually removed by the bias
correction as it gets contaminated by the model bias, and the scheme converges
eventually to the model biased solution.

4.3 Adaptive On-Line Bias Correction Scheme or Variational
Correction Scheme

A better approach is to update the bias inside the assimilation system by finding
corrections that minimize the radiance departure while simultaneously improving
the fit to other observed data inside the analysis cycle. This is achieved by including
the bias parameters in the control state vector of the variational analysis problem.
The cost function to minimize is of the form,

J(x,β) = 1

2
[y−H(x)− b(β)]TR−1[y−H(x)− b(β)]

+ 1

2
(x− xf )T [Pf ]−1(x− xf )

+ 1

2
(β− βf )T�−1(β− βf ).

(37)
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This approach was first developed at NCEP (Derber and Wu 1998) and
then implemented at the European Centre for Medium-Range Weather Forecasts,
ECMWF (Dee 2004). The adjustment balances the uncertainty of the state forecast,
the observations and the inertia constraint on the bias parameters. It accounts nat-
urally for all observations simultaneously inside the analysis. This approach shows
some robustness in presence of model bias (Auligné et al. 2007) but, most impor-
tantly, goes a long way towards the automation of satellite bias corrections, which is
becoming critical in numerous weather prediction centres as more and more satellite
observations are assimilated.

Finally, we add that other bias models other than the scan angle-air mass factor
correction are in use. The so-called gamma-delta method introduced by Watts and
McNally (2004) is based on the assumption that the main bias comes from system-
atic errors in the radiative transfer model that can be modelled by a multiplier of the
total optical depth.

5 Model Bias Correction Schemes

Model systematic errors can be estimated and incorporated in the state estimation
using data assimilation. Model error is generally represented by an added term to
the model forecast and is either a deterministic or stochastic term. Several meth-
ods have been proposed; they fall into two main categories, static estimation and
dynamical estimation schemes, depending on whether the bias evolution of errors
(either implicit as in 4D-Var or explicit as in a Kalman filter scheme) is accounted
for (dynamical) or not (static) in the optimization scheme.

5.1 Static Schemes

Static schemes have constant error covariances. The background (or forecast) error
covariance and the bias error covariances are not propagated in time nor updated
as a result of observations, but the model bias is allowed to evolve in time. Static
schemes were first developed by Dee and da Silva (1998), where it was assumed
that the observation errors have no biases. It is a special case of the more general
bias analysis derived in Sect. 3 above. As in the general case, these schemes can be
formulated either as a sequential or parallel scheme, which takes the following form
in the case of no observation bias:

• In a sequential form, the bias estimate is computed first

ê = ef − L[y−H(xf − ef )] (38)

L = QHT (HPf HT +HQHT + R)−1, (39)
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It uses a bias prior or bias forecast ef which can be estimated from the previous
analysis in the case of a constant bias, or a forecast bias following an evolution
law. Once ê is computed then the state estimate can be computed as

x̂ = xf − ê+K[y−H(xf − ê)] (40)

K = Pf HT (HPf HT + R)−1, (41)

This scheme has the advantage of using the same gain matrix as the usual
unbiased estimation problems;

• In a parallel form, both state and bias estimates can be computed independently
of each other. It uses Eqs. (38) and (39) for the model bias estimate, and

x̂ = xf − ef +K∗[y−H(xf − ef )] (42)

K∗ = (Pf +Q)HT (HPf HT +HQHT + R)−1, (43)

for the state estimate. Contrary to the sequential scheme, the observation-minus-
model residuals are the same in both bias and state analysis equations. Also,
the matrix to be inverted is the same in both cases. In a PSAS (Physical Space
Assimilation System; see chapter Variational Assimilation, Talagrand) algorithm
the conjugate gradient step need only be solved once.

The equivalent 3D-Var scheme derives directly from Eq. (17) letting b = 0 and
has no S penalty term. In practice, Q is unknown, but Dee and da Silva (1998)
suggested making the assumption that the model bias correlation scales are roughly
the same as those of the random components of the error covariance and, thus, an
approximation of the form

Q = γPf , (44)

can be used. Furthermore, if we assume that the model systematic error is small
compared to the random forecast errors, i.e., γ � 1, the bias gain matrix L can then
be approximated as,

L = γPf HT [(1+ γ )HPf HT + R]−1 ≈ γK. (45)

This can reduce the computational cost since only one gain matrix needs to be
computed. Note that an optimum interpolation type of analysis solver would benefit
from this latter approximation, but a conjugate gradient solver in PSAS would not.

A successful implementation of the static scheme was performed by Dee and
Todling (2000) for the moisture analysis, and using a constant bias. The parameter
was tuned to reduce the energy of the long-wave portion of the spectrum of bias
corrected observed-minus-forecast residuals so as to become as flat as possible. It is
interesting to note that the bias-corrected observation-minus-forecast residuals were
fairly white in the mid troposphere but showed degradation near the surface and
higher up near the tropopause.
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While some model errors are persistent, others are cyclical, and others, although
not cyclical, are predictable. In an ocean data assimilation problem, Chepurin et al.
(2005) used an EOF (Empirical Orthogonal Function) analysis of observed-minus-
forecast statistics to model the model bias. Leading EOFs that evolved in time were
used as the bias evolution model. To untangle the random component from the sys-
tematic component of the forecast errors, they assumed that the spatial scales of the
systematic errors were basin-wide while random forecast errors had shorter length
scales in comparison. This assumption is completely different from that of Eq. (44),
but the results showed an improvement in the analyses.

The effectiveness of the bias correction strongly depends on the actual form of
the bias model used. In a land surface model a skin temperature bias correction
that accounts for diurnal variation was shown to be very effective (Radakovich et al.
2004). In the context of model ozone bias, Dee (2005) was able to construct a predic-
tive bias model using analysis increments and a fit to a lag-6 autoregressive moving
average model. In the simple context examined by Dee (2005) the bias correction
indicated an improvement in the RMS (root-mean-square) analysis error, but, unfor-
tunately, the scheme was never implemented. The question of using an additive bias
model was also revisited with simplified models in the context that the truth model
and forecast model may have different attractors (Baek et al. 2006).

5.2 Dynamical Schemes

Dynamical schemes account for the evolution of the state and model bias in the
optimization problem. Kalman filtering, the Ensemble Kalman filter (EnKF), and
4D-Var (strong and weak constraint) algorithms have been developed to address
this problem (see chapter Mathematical Concepts of Data Assimilation, Nichols,
for details of these assimilation schemes). To set the stage let us assume that the
evolution of the state can be described by

xt
k =Mk−1

(
xt

k−1

)+ Tk−1et
k−1, (46)

and that of the model bias by

et
k = Gk−1

(
et

k−1, xt
k−1

)
. (47)

Tk represents the transformation of the bias parameter space to the model state
space. The transformation Tk is used when a limited number of bias parameters
are estimated (in association with an appropriate bias evolution equation), other-
wise we assume that Tk = I when the bias parameters are identical to the model
variables. A zero-mean white noise can also be added to either one or both of
these equations. Such a term in the state equation (Eq. 46) represents the stan-
dard model error in Kalman filtering. A random noise added to the bias evolution
(Eq. 47), reflects the fact that the bias evolution equation is not perfect. In current
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state-of-the-art bias evolution models this is quite a valid assumption. The error
covariance of this random noise was introduced earlier in Sect. 3, as the covariance
matrix Q.

The modelling of bias evolution is fairly recent, and only simple forms have
been investigated so far – typically a product of a spatial function with a tempo-
ral function, which in the simplest case is just flat and thus represents a constant
bias, although with spatial dependence. Strong and weak constraint variational for-
mulations have been investigated with atmospheric models of diverse complexity
ranging from simple models to complex operational models. A limited number of
studies with generally simple models have also been conducted using a Kalman
filtering approach.

The feasibility of estimating model error bias using a strong constraint variational
method was first examined by Derber (1989). Using a low resolution limited area
quasi-geostrophic model and controlling only the model bias (and not the initial
conditions) with a bias model

et
k = f (tk)φ(x, y, z), (48)

that has a prescribed time evolution, Derber (1989) was able to get consistently a
better fit to the control analyses and a superior forecast compared to a variational
assimilation problem controlled by the initial conditions only. The model was some-
what crude and, as expected, showed large biases in comparison with errors due to
initial conditions. With more sophisticated atmospheric models, it is expected that
the effect of the initial error will become more important. It is then necessary to
estimate both initial conditions and the model bias. Zupanski (1993) generalized
the variational assimilation problem of Derber (1989) to include a control over the
initial conditions, and the study was conducted with an operational weather pre-
diction model. Interestingly, in this approach the gradient of the cost function with
respect to the initial conditions depends on the adjoint variable at the initial time
as in the standard 4D-Var framework, and the gradient of the cost function with
respect to the model bias is evaluated in the same fashion as in Derber (1989). In the
experiments of Zupanski (1993), optimum interpolation analyses were used in place
of observations, thus introducing model information in the data. The results were
somewhat disappointing, showing that better results were obtained when a 4D-Var
estimation of the initial conditions was conducted first, rather than doing a simul-
taneous model bias and initial condition estimation. Griffith and Nichols (1996)
and Nichols (2003) explored further this approach by investigating other simple
bias models and touched upon the weak constraint problem, although only for a
special case.

A simple derivation of the adjoint equations when biases are considered can
be obtained using the Lagrange multiplier method. Consider for instance the cost
function,
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J(x0, e0) = 1

2

N∑
k=0

[yk −Hk(xk)]TR−1
k [yk −Hk(xk)]

+ 1

2

(
x0 − xf

0 + e0

)T
B−1

(
x0 − xf

0 + e0

)

+ 1

2

(
e0 − ef

0

)T
Q−1

(
e0 − ef

0

)
(49)

subject to the strong constraint,

xt
k =Mk−1

(
xt

k−1

)+ et
k−1, (50)

et
k = et

k−1. (51)

The constrained optimization problem can be turned into an unconstrained prob-
lem by introducing 2N Lagrange multipliers λi(i = 1, . . . , N), μi (i = 1, . . . , N),
and optimizing the new cost function

L(x0, e0, xk, ek, λk, μk) = J(x0, e0)

+
N∑

k=1

λT
k [xk −Mk−1(xk−1)+ ek−1]

+
N∑

k=1

μT
k (ek − ek−1).

(52)

The gradient of L with respect to each variable is

∂L

∂x0
= B−1

(
x0 − xf

0 − e0

)
−HT

0 R−1
0 [y0 −H0(x0)]−MT

0λ1

∂L

∂e0
= −B−1

(
x0 − xf

0 − e0

)
+Q−1

(
e0 − ef

0

)
− λ1 − μ1

∂L

∂xk
= −HT

k R−1
k [yk −Hk(xk)]+ λk −MT

k λk+1

∂L

∂ek
= −λk+1 + μk − μk+1

∂L

∂xN
= −HT

NR−1
N [yN −HN(xN)]+ λN

∂L

∂eN
= μN

(53)

From the end condition at k = N we get λN+1 = μN+1 = 0. The first equation
in Eq. (53) above can be rewritten as
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∂L

∂x0
= B−1

(
x0 − xf

0 + e0

)
− λ0 (54)

and to obtain the gradient of L with respect to e0, we need to iterate backward the
fourth equation of Eq. (53) from k = N to k = 0 to get an expression for μ0,

μ0 =
N∑

i=1

λi (55)

and then we get

∂L

∂e0
= −B−1

(
x0 − xf

0 − e0

)
+Q−1

(
e0 − ef

0

)
−

N∑
i=1

λi. (56)

The introduction of e0 in the model background penalty term (i.e., JB) introduces
a direct coupling between x0 and e0 in Eqs. (54) and (56). It is interesting to note
that if we had not introduced this dependence in JB, the resulting minimization con-
ditions would have been the same as for the weak constraint case with a constant
model bias considered in Griffith and Nichols (1996).

Unexplained model biases are unavoidable and they dictate the use of a weak
constraint approach. Neglecting to include random model errors may result in over-
fitting the analyses and degrading the forecast skill, as was first demonstrated by
Wergen (1992). Ménard and Daley (1996) diagnosed the effect of a strong constraint
in 4D-Var using Kalman smoother theory. The variational formalism of weak con-
traints was first introduced by Sasaki (1970). The first implementation was done
by Bennett and co-workers (Bennett 1992; Bennett et al. 1993, 1996, 1997) using
the representer method which reduced the size of the assimilation problem to the
number of observations. Amodei (1995) and Courtier (1997) also introduced an
extension of the 4D-PSAS that accounts for random model error, by increasing the
size of the control state vector. Zupanski (1997) applied a weak constraint 4D-Var
to an operational limited area model with model error represented by a first-order
Markov process but in which the estimated random component is defined at a
coarser resolution in time and space.

At ECMWF a research effort on weak constraint 4D-Var spanning several years
was conducted by Trémolet (2003, 2006, 2007). Using a simple bias evolution
model, namely a piece-wise constant, Trémolet investigated issues related to oper-
ational implementation such as the reasons for the limited success of model error
estimation. He first noted that the model bias error covariance proposed by Dee
and da Silva (Eq. 44) has little noticeable impact on the forecast, as the cumulative
effect of the model-error forcing approximately compensates for the differences in
initial conditions. Using the parallel form of the bias estimation problem (Eqs. 38,
39, 42, and 43) Trémolet noted that the basic difference between the model bias
increment and the state increment comes from the leftmost matrix appearing in the
gain matrices L and K∗. If Q is taken to be proportional to Pf , the initial condition
increment and the model bias increment are constrained in the same direction and



Bias Estimation 131

0 400 800 1200 1600 2000

Distance (km)

60

50

40

30

20

10
M

od
el

 L
ev

el

Unbal Temp, lnPs Bg Horizontal Correlations

0.05

0.0
5

0.
05

0.1

0.1

0.1

0.1

0.
15

0.
15

0.
2

0.
2

0.
25

0.
25

0.
3

0.
3

0.
35

0.
35

0.
4

0.
4

0.
45

0.
45

0.
5

0.
5

0.55

0.
55

0.
6

0.
6

0.
65

0.
65

0. 7

0.
7

0.
75

0.75

0.
8

0.
8

0.
85

0.
85

0.
9

0.
9

0.
95

0 400 800 1200 1600 2000

Distance (km)

60

50

40

30

20

10

M
od

el
 L

ev
el

Temperature, lnPs Horizontal Correlations

0.05

0.
05

0.05

0.1

0.
1

0.1

0.
15

0.
15

0.
2

0.
2

0.
25

0.
25

0.
3

0.
3

0.
350.

4
0

.4
5

0.
50.

550.
6

0.
65

0.
7

0.
750.
8

0.
85

0.
9

0.
95

(a)

(b)

Fig. 3 Horizontal temperature correlations for the background error (panel a) and for the model
error (panel b) (Trémolet 2007; © Royal Meteorological Society)
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are of opposite sign. The model bias is restricted to the same subspace as the initial
condition increments and they differ only in their relative amplitude. An alternative
method was presented by Trémolet. Since model error arises as a tendency in the
model prognostic equation, model tendencies derived from an ensemble of forecasts
should represent a distribution of the possible evolutions of the atmosphere from the
true state. The spread of these tendencies may be a good first guess for the model
error covariance. Figure 3 shows an example of the model error covariance hori-
zontal correlation for temperature (panel b) as a function of height compared with
the background error covariance (panel a). The model error covariance has much
smaller scales than the background error covariance and thus provides an additional
source of information for the model bias estimation.

6 Conclusions

A standard assumption in data assimilation is that neither observations nor the model
have systematic errors, i.e., biases. In reality, models and observations often have
systematic errors that cannot be neglected in comparison with the error standard
deviation. In some cases, as in satellite remote sensing, systematic errors can be
as large as the random component. When observations or the model have biases,
an assimilation scheme based on the standard assumption will produce analyses
that are still biased although it may be somewhat reduced. The presence of biases
does in effect reduce the ability of observations to be used effectively in a model
no matter how the error statistics are prescribed. Removing biases at the source
or by a bias correction scheme is one way to produce an analysis that is unbi-
ased. Over the years and, particularly recently, significant progress has been made
to include on-line bias estimation and correction schemes in the assimilation sys-
tem. Although data assimilation theory can be formulated where both observations
and models have systematic errors, the outstanding issue of bias estimation is the
problem of identifying model and observation bias from innovation statistics which
can only be solved by using additional information. The experience with opera-
tional models that is now building up may provide further insights on this particular
problem, and on the error statistics that are needed to address the problem of bias
estimation.

From a mathematical point of view, bias estimation of model error and observa-
tion error on-line with state estimation can be formulated in Kalman filtering form,
3-D variational (3D-Var) form, and 4-D variational (4D-Var) strong and weak con-
straint forms. In a Kalman filter form, the estimation can be formulated either as a
sequential process where the bias estimation is performed first and then state esti-
mation follows, or in parallel where both bias and state estimates are computed
concurrently and independently of each other. No special property or assumption
aside from linearity is needed for sequential and parallel estimation steps to occur.

The so-called bias separation introduced by Friedland (1969) actually refers to
the Kalman filter evolution of the error covariances of the bias parameters that can
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be separated from the evolution of the state and cross state-bias error covariances
which occur in the case of a constant bias treated as a strong constraint. The parallel
form of the estimation problem has allowed clarification of some theoretical and
practical issues about the bias estimation problem. In particular, it has been shown
that, in effect, the observations are not used twice (once for the bias estimation
and once for the state estimation) despite the fact that the observations may appear
twice in the combined state-bias estimation algorithm. Also, it is now clear that if
the model bias covariance error is based on the background error covariance, the
correction of the state actually compensates to a large extent the correction on the
model bias, and results in very little improvement in the forecast. It is thus important
that the subspaces spanned by the bias error covariance and state error covariance be
different. These new findings may shed some light on the outstanding issue of bias
estimation – how can we separate observation bias from model bias? More work in
that direction needs to be done and implementation in an operational system should
provide insights to this fundamental problem. The application of robust estimation
theory to the bias estimation problem (e.g. Kitanidis 1987; Simon 2006; Gillijns and
De Moor 2007) may be a promising avenue, as it would reduce our dependence on
unknown or poorly known error statistics.

Acknowledgments The author wishes to thank Stephen Cohn for the careful review of the
manuscript, and Olivier Talagrand and Dick Dee for their thoughtful review which helped clarify
the assumptions and limitations built in these algorithms.
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The Principle of Energetic Consistency in Data
Assimilation

Stephen E. Cohn

1 Introduction

The preceding chapters have illustrated two essential features of data assimila-
tion. First, to extract all the information available in the observations requires
all the sources of uncertainty – in the initial conditions, the dynamics, and the
observations – to be identified and accounted for properly in the data assimila-
tion process. This task is complicated by the fact that the non-linear dynamical
system actually being observed is typically an infinite-dimensional (continuum)
system, whereas at one’s disposal is only a finite-dimensional (discrete) numerical
model of the continuum system dynamics. Second, to formulate a computation-
ally viable data assimilation algorithm requires some probabilistic assumptions and
computational approximations to be made. Those made in four-dimensional varia-
tional (4D-Var) and ensemble Kalman filter (EnKF) methods have been discussed in
Chapters Variational Assimilation (Talagrand) and Ensemble Kalman Filter: Status
and Potential (Kalnay), respectively.

The need to make assumptions and approximations makes it difficult in practice
to distinguish whether uncertainties perceived by a data assimilation scheme are
genuine, arising from the initial conditions, continuum dynamics and observations,
or are instead artificial uncertainties that arise from assumptions and approxima-
tions made in the algorithmic formulation of the scheme itself. It is even possible
that the latter dominate. For instance, in an EnKF for atmospheric data assimila-
tion, Houtekamer et al. (2005) have found that the “model error” perceived by the
filter – the total uncertainty accumulated from all sources not represented explicitly
in the filter formulation – is quite large. Houtekamer and Mitchell (2005, pp. 3284–
3285) go on to report that, when measured in a linearized total energy norm, this
uncertainty is comparable to what would be incurred by neglecting model “physics”
entirely. They conclude that much of it may originate in the analysis step, i.e., in
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assumptions and approximations made in the EnKF formulation for assimilating the
observations themselves. Considering that this uncertainty likely stems from a mul-
titude of sources beyond the discrete dynamical model, Houtekamer and Mitchell
(2005, p. 3285) suggest referring to it as “system error” rather than model error.

This example serves to illustrate the fact that current data assimilation method-
ologies lack a mechanism for distinguishing clearly between artificial and genuine
sources of uncertainty. Such a mechanism would require a general principle depend-
ing only on known properties of the continuum system being observed, not on any
assumptions or approximations made in the formulation of the data assimilation
scheme itself. The present chapter states such a principle, called here the principle
of energetic consistency (PEC), demonstrates its validity for a wide range of non-
linear continuum dynamics, and illustrates its application to distinguishing sources
of uncertainty in EnKF methods. This and related applications of the PEC are dis-
cussed in Sect. 2, while supporting theoretical results are deferred mostly to Sects.
3, 4, and 5 and three appendices. Concluding remarks are given in Sect. 6.

1.1 Applications

The key assumption of the PEC is that the non-linear continuum system being
observed has total energy as a scalar invariant property, and which can be expressed
in some state variables, called energy variables of the system, as the square of the
norm on a separable Hilbert space. For example, for the hydrostatic atmospheric
primitive equation dynamics discussed in Sect. 2.1, one set of energy variables is
comprised of s1 = u

√
p∗, s2 = v

√
p∗, s3 = √

Tp∗ and s4 = √
p∗, where u and

v are the zonal and meridional wind components, respectively, T is temperature,
and p∗ = ps − pt, with ps the surface pressure and pt the (constant) top pressure.
The PEC can be made to apply also to systems having only total mass as a scalar
invariant, for instance to the assimilation of any number of chemically
interacting tracers, by taking the square root of the mass density of each tracer as a
state variable.

Applying the PEC to a data assimilation scheme requires the state variables of
the scheme to be chosen to be (discretized) energy variables. As discussed in Sects.
2.2 and 2.4, this requires no explicit change of variables in an existing numerical
model of the continuum dynamics, but it does require the observation operators
to be expressed in terms of energy variables. When the state variables of a data
assimilation scheme are chosen to be energy variables, the norm in which quantities
are measured represents actual total energy rather than a linearized total energy.

The principle of energetic consistency is stated precisely in Sect. 2.1. Briefly, sup-
pose that the state variables used to describe the continuum system being observed
are energy variables for the system, for instance s = (s1, s2, s3, s4)

T in the example
above, where the superscript T denotes transposition. Then the total energy of the
continuum system at time t is E(t) = ‖s(t)‖2, where ‖ · ‖ denotes a Hilbert space
norm, and being a scalar invariant, E(t) is a property of the system itself, not of the
choice of state variables. The PEC states that



The Principle of Energetic Consistency in Data Assimilation 139

||s(t)||2 + trP(t) = EE(t) ,

where s(t) and P(t) are, respectively, the mean and covariance operator of s(t), the
symbol tr denotes the trace operator, E is the expectation operator, and it is assumed
that EE(t) < ∞. The trace of the covariance operator is called the total variance,
or total uncertainty, in the system state s(t). Thus the PEC partitions the expected
value of the total energy of the system into two parts, a “certain” part, namely the
total energy ‖s(t)‖2 of the mean state, and an “uncertain” part, namely the total
variance trP(t). By way of this partitioning, the PEC says that the mean state and
the covariance operator must be energetically consistent. Mathematically, the PEC
is the extension to second-order Hilbert space-valued random variables (defined in
Appendix 1) of the familiar result that x2 + σ 2 = Ex2 for a scalar random variable
x with mean x = Ex and variance σ 2 = E(x− x)2.

The principle of energetic consistency is a general statement that requires little
in order to be valid. It is not a statement about any particular continuum dynamics,
but rather about a large class of dynamics. However, if the dynamics are also con-
servative, i.e., if E(t) = E(t0) for every initial state, where t > t0 and t0 is the initial
time, then the PEC implies immediately that

||s(t)||2 + trP(t) = ||s(t0)||2 + trP(t0).

This statement of energy conservation is an exact dynamical link between just the
first two moments of the continuum system state. It says that the total variance of
the continuum state can increase (decrease) only as a result of extracting energy
from (inserting energy into) the mean state, with the change in total variance bal-
anced exactly by the change in total energy of the mean state. Special cases of
the PEC written essentially as this statement of energy conservation have been
recognized and used for different purposes by Kraichnan (1961), Epstein (1969),
Fleming (1971), Cohn (1993, pp. 3131–3132), and Cohn (2009).

In Sect. 2.2 of the present chapter, it is shown that a conditional version of the
PEC holds:

||sk(t)||2 + trPk(t) = E(E(t)|yk) ,

where sk(t) and Pk(t) are, respectively, the conditional mean and conditional covari-
ance operator of s(t). Here the conditioning is on arbitrary observation vectors
yi = y(ti), i = 1, . . . , k, and yk = (yT

1 , . . . , yT
k )T denotes the vector of all the

observations up to time tk. Like the PEC itself, the conditional version is a gen-
eral statement, requiring little for validity, in particular requiring no assumptions on
the relationship between the observations and the continuum state.

Ensemble Kalman filters are designed to calculate a discrete approximation to
the conditional mean and covariance operator, under a number of assumptions (e.g.
Anderson and Anderson 1999). The generality of the conditional version of the
PEC is what makes it useful for distinguishing genuine and artificial sources of
uncertainty in EnKF schemes. The conditional version of the PEC does not apply
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directly to 4D-Var methods, however, because these are designed to approximate the
conditional mode, under a number of assumptions, rather than the conditional mean.
Some remarks on application of the PEC to 4D-Var methods are given in Sect. 6.

It is shown also in Sect. 2.2 that, as in the finite-dimensional case, the conditional
mean state is the minimum variance state estimate: it minimizes the expected value
of the total energy of the estimation error, under the sole assumption that this expec-
tation is finite. More generally, for any choice of state variables that are not energy
variables, the conditional mean state still minimizes the expected value of linearized
energy norms of the estimation error. However, unlike the actual total energy of the
estimation error, a linearized energy norm does not measure an intrinsic property of
the observed continuum system, but only a property of the choice of state variables.
Thus the fact that the conditional mean state is the minimum variance state estimate
provides by itself a good reason to choose the state variables of an EnKF scheme to
be energy variables.

Section 2.3 gives relationships that the PEC implies for arbitrary discretizations
of the continuum dynamics, and Sect. 2.4 applies these to provide relationships that
are supposed to be satisfied by EnKF schemes. The relationships corresponding to
those that hold for conservative continuum dynamics are especially useful for testing
the effect of the various assumptions and approximations made in EnKF schemes.
When what is supposed to be a conservative continuum environment is simulated
numerically, for instance in the case of an atmospheric model by turning off the
model physics and simulating only the dynamics, these relationships can be used
to verify whether or not a given assumption or approximation creates an artificial
energetic source (or sink) of uncertainty. This kind of diagnostic test is completely
analogous to energy conservation tests run on a numerical model of the dynamics
during model development.

Section 2.4 uses these relationships to obtain theoretical results on some com-
mon approximations as artificial sources or sinks of uncertainty, including limited
ensemble size, use of the sample covariance, covariance localization, the linear
Kalman-type analysis update, and perhaps most importantly, use of a discrete
dynamical model. Section 2.4 concludes with an analysis showing that a significant
loss of total variance can occur as a result of even slight, but spurious, numeri-
cal dissipation typical of discrete model dynamics. The analysis shows further that,
because the assimilation of observations continues to feed energy into small spa-
tial scales, only to be dissipated away again, spuriously, during subsequent model
integration of each ensemble member, the total variance can decay exponentially.
Thus the interaction between spurious model dissipation and the assimilation of
observations can cause ensemble collapse and filter divergence if left untreated.

This spurious loss of total variance, compounded by the assimilation of obser-
vations, is a problem not only for ensemble Kalman filtering per se. It has been
observed to occur also for a full-rank Kalman filter in a study of stratospheric con-
stituent data assimilation by Ménard et al. (2000) and Ménard and Chang (2000),
making itself evident in that case by the presence of total mass as a supposedly
conserved scalar. This problem may explain much of the need for the large “sys-
tem error” term invoked by Houtekamer and Mitchell (2005, p. 3285), and for the
“covariance inflation” factor proposed by Anderson and Anderson (1999, p. 2747)
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which has become a common design feature in EnKF schemes. The analysis of Sect.
2.4 suggests a way to remedy this problem directly, in essence by undoing the spu-
rious dissipation that acts on the ensemble perturbations. That the proposed remedy
can be properly “tuned” is assured by the statement of energy conservation provided
by the PEC.

1.2 Theory

The essential requirement for the principle of energetic consistency to be valid is for
the state of the non-linear system being observed to exist as a second-order Hilbert
space-valued random variable over a closed time interval. The remaining sections of
this chapter give general hypotheses under which this is the case. The emphasis is on
continuum dynamical systems that are deterministic and may conserve total energy,
but have a random initial state, since it is in the conservative case that the PEC has
the most immediate applications indicated above. In the language of partial differ-
ential equations, this means that of primary interest in the rest of the chapter is the
stochastic initial-value problem for non-linear hyperbolic systems. The parabolic
case is encountered more frequently than the hyperbolic case in the literature on
stochastic partial differential equations, but parabolic systems are usually not con-
servative and have a fundamentally different character than hyperbolic ones. Loss
of total variance due to spurious dissipation in an otherwise conservative system is
an illustration of this difference.

Section 3 gives the main theoretical results for stochastic initial-value prob-
lems on an arbitrary separable Hilbert space. Section 3.1 describes the abstract
problem setting, and Sect. 3.2 summarizes the theory of Hilbert space-valued ran-
dom variables which is given in more detail in Appendix 1. Theorem 1 in Sect.
3.3 states hypotheses under which the stochastic initial-value problem defines a
second-order Hilbert space-valued random variable over a closed time interval, with
conservative dynamics as a special case. Section 3.4 discusses the simplification of
Theorem 1 that occurs if it is assumed that the total energy of every realization of
the initial state is bounded by a constant. Such an assumption yields a convenient
characterization of the system state, and also restricts the class of probability distri-
butions that the system state can have at any time. For instance, the state cannot be
Gaussian-distributed under such an assumption.

Section 4 shows how Theorem 1 is applied to verify the PEC for classical solu-
tions of non-linear systems of differential equations. The stochastic initial-value
problem for ordinary differential equations is treated in Sect. 4.1, and for symmet-
ric hyperbolic partial differential equations in Sect. 4.2. For the hyperbolic case,
well-posedness of the stochastic initial-value problem turns out generally to require
boundedness of the total energy of every realization of the initial state. Thus the
solution is not Gaussian-distributed at any time, but it can be characterized in a
convenient way.

The results of Sect. 4.2 are applied to the global non-linear shallow-water equa-
tions as a concrete example in Sect. 5. For the shallow-water equations, s1 = u

√
Φ,

s2 = v
√
Φ and s3 = Φ, where Φ is the geopotential, comprise a set of energy
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variables. Smoothness conditions satisfied by every realization of the solution
s = (s1, s2, s3)T of the stochastic initial-value problem are given. Every realiza-
tion of the geopotential field is bounded from below by a single positive constant,
and a characterization of the solution is used to show how such a random field can
be constructed for the initial condition. The trace of the covariance operator can be
expressed as

trP(t) =
∫

S
tr Pt(x, x) a2 cosφ dφ dλ,

where the integration is over the sphere S of radius a, Pt is the 3 × 3 covariance
matrix of the stochastic shallow-water state at time t, x = (λ,φ) denotes location on
the sphere with λ the longitude and φ the latitude, and tr C denotes the trace, or sum
of the diagonal elements, of a matrix C.

Appendix 1 covers the theory of Hilbert space-valued random variables,
Appendix 2 treats the theory of families of Hilbert spaces which are needed to han-
dle spherical geometry, and Appendix 3 summarizes mathematical concepts and
definitions used in the text.

2 The Principle of Energetic Consistency: Some Applications

2.1 The Principle of Energetic Consistency

Denote by s = (s1, . . . , sn)T the state vector of the continuum system whose state is
to be estimated. Assume that the state variables s1, . . . , sn are energy variables for
the system. By this it is meant that there is a real, separable Hilbert space H, with
inner product and corresponding norm denoted by (·, ·) and ‖ · ‖, respectively, such
that the total energy E = ‖s‖2 is a scalar invariant of the system, i.e., a property of
the system itself and not of any choice of state variables.

For example, n = 4 in the case of hydrostatic atmospheric dynamics mentioned
in the Introduction, and s1 = u

√
p∗, s2 = v

√
p∗, s3 = √

Tp∗ and s4 = √
p∗ are

energy variables. This is seen by writing the total energy integral for a (shallow)
hydrostatic atmosphere as

E =
∫ ∫ ∫ 1

0
sT As dσ a2dS ,

where s = (s1, s2, s3, s4)T , A is the diagonal matrix

A = 1
g diag

(
1
2 , 1

2 , cp,φs

)
,

g is the acceleration due to gravity, cp is the specific heat of (dry) air at constant
pressure, φs is the surface geopotential, a is the Earth radius, the double integral is
over the sphere with element of surface area a2dS, and σ = (p−pt)/p∗ is the vertical
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coordinate where p is pressure; cf. Kasahara (1974, Eq. 5.18 and p. 516).1 In this
case, H is the Hilbert space of real 4-vectors with fourth component independent of
the vertical coordinate σ , with inner product

(f, g) =
∫ ∫ ∫ 1

0
fT Ag dσ a2dS

and corresponding norm ‖g‖ = (g, g)1/2 < ∞, for all f, g ∈ H. Similarly, n = 3
for shallow-water dynamics, and s1 = u

√
Φ, s2 = v

√
Φ and s3 = Φ are energy

variables. As discussed further in Sect. 5, in this case H is the Hilbert space of real
3-vectors with inner product

(f, g) =
∫ ∫

fT g a2dS

and corresponding norm ‖g‖ = (g, g)1/2 <∞, for all f, g ∈ H.
Let (�,F , P) be a complete probability space, and assume that the system state

s = s(t) is an H-valued random variable, for all time t in a closed time interval
T = [t0, T]. This means that, for each t ∈ T and each g ∈ H, (g, s(t)) is a scalar
(real) random variable on (�,F , P). Randomness of the system state may arise, for
instance, from a random initial condition s(t0), from uncertain parameters in the
system dynamics, or from stochastic forcing of the system dynamics.

Since s(t) is an H-valued random variable, the total energy E(t) = ‖s(t)‖2 is
a scalar random variable, for all t ∈ T . Assume that EE(t) < ∞ for all t ∈ T ,
where E denotes the expectation operator, which is defined only for scalar random
variables on (�,F , P). It follows (see Appendices 1a–1c for details) from the stated
assumptions that, for all t ∈ T , there exists a unique element s(t) ∈ H such that

(g, s(t)) = E(g, s(t)) (1)

for all g ∈ H, called the mean of s(t), and a unique bounded linear operator P(t) :
H→ H such that

(f,P(t)g) = E
[
(f, s(t)− s(t))(g, s(t)− s(t))

]
(2)

1Staniforth et al. (2003) point out that the total energy of such an atmosphere is actually E + E′,
where E′ is the constant

E′ = 1

g

∫ ∫ ∫ 1

0
φspt dσ a2dS = pt

g

∫ ∫
φs a2dS ,

and they give corresponding expressions for E and E′ for deep and/or non-hydrostatic atmospheres.
Also, note that a moisture variable is not considered to be an atmospheric state variable for the
purposes of this chapter, since moisture in the atmosphere contributes only indirectly to the total
energy integral. Thus, choosing state variables to be energy variables does not imply a choice of
moisture variables. Dee and da Silva (2003) discuss the many practical considerations involved in
the choice of moisture variables.
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for all f, g ∈ H, called the covariance operator of s(t), and further that these are
related by

‖s(t)‖2 + trP(t) = EE(t) . (3)

The covariance operator is self-adjoint and positive semidefinite, and also trace
class. That is, the trace of P(t), defined for all t ∈ T by

trP(t) =
∞∑

i=1

(gi,P(t)gi) ,

where {gi}∞i=1 is any countable orthonormal basis for H, is finite and independent of
basis. Further,

trP(t) = E‖s(t)− s(t)‖2 , (4)

for all t ∈ T .
Equation (3) is the principle of energetic consistency (PEC) in its strong form.2

It says that the sum of the total energy of the mean state and the total uncertainty in
the system, as measured by the total variance trP(t), equals the expected value of
the total energy of the system. It is clear that each of the three terms in Eq. (3) is a
property of the dynamical system itself, not of the choice of state variables.

If ‖s(t)‖2 is not a scalar invariant but the other two assumptions are satisfied for
all t ∈ T , i.e., if s(t) is an H-valued random variable, with H a real, separable
Hilbert space, and if E‖s(t)‖2 < ∞, then the mean state and covariance operator
still exist uniquely and satisfy

||s(t)||2 + trP(t) = E ||s(t)||2

for all t ∈ T . This is a weak version of the PEC. It is weak because none of the
terms here has an intrinsic physical meaning: each measures a property only of the
state variables s1, . . . , sn chosen to describe the dynamical system, not a property of

2To derive the PEC in the finite-dimensional case, apply the expectation operator to the identity

||s||2 = ||s||2 + 2(s, s′)+ ||s′||2 ,

where s′ = s− s and the time argument has been omitted, to obtain

||s||2 + E||s′||2 = E||s||2 .

Since (f, g) = fT Bg for some symmetric positive definite matrix B and all vectors f, g ∈ H in
case H is finite-dimensional, it follows from the definition given by Eq. (2) that in this case the
covariance operator P has matrix representation P = Es′s′T B, where the expectation operator
applied to a matrix of random variables is defined to act elementwise as usual. Therefore

E||s′||2 = Es′T Bs′ = E tr s′s′T B = tr Es′s′T B = tr P .
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the system itself. In particular, the total variance trP(t) is not an intrinsic property
of the system if ‖s(t)‖2 is not a scalar invariant of the system.

The assumption that ‖s(t)‖2 is a scalar invariant makes the principle of energetic
consistency (Eq. 3) a strong statement about the dynamical system itself. It is also
a general statement: no assumptions have been made on the system dynamics other
than the simple ones stated above, whose purpose is mainly to guarantee existence
of two moments of the system state. Similarly, the probability distribution function
of (g, s(t)) for any g ∈ H and t ∈ T has been left essentially free.

That only the first two moments of the system state appear in the PEC is due to
the fact that, by definition, the total energy E(t) = ‖s(t)‖2 is quadratic in the energy
variables s1, . . . , sn. Note that the total energy integral for a hydrostatic atmosphere
happens to be a cubic polynomial in the variables u, v, T and p∗, which are typical
model variables for hydrostatic models. Also, for the shallow-water equations, the
total energy integral happens to be a cubic polynomial in the variables u, v and
Φ. It is not difficult to show that for a total energy integral that is an mth-order
polynomial in some state variables s̃1, . . . , s̃n, there is a relationship much like the
PEC among moments of these state variables up to order m only, provided all the
moments up to order m exist, and the expected value of the total energy. A theory
based on such a relationship would lack the simplicity of the one presented in this
chapter, which relies heavily on the assumption that the total energy is the square
of a Hilbert space norm. More importantly from a practical point of view, 4D-Var
and EnKF methods are designed to approximate the evolution of just the first two
moments of the system state: the PEC as stated is suited specifically to current data
assimilation practice. Further, choosing the state variables to be energy variables
is natural in the case of EnKF methods, because these are based on the minimum
variance optimality criterion, as discussed next.

2.2 Minimum Variance State Estimation

In addition to the assumptions stated in Sect. 2.1, assume now that for all t ∈ T , the
state vector s(t) is jointly distributed with some real, random pi-vectors yi = y(ti),
i = 1, . . . , k, called observation vectors, where t1 < · · · < tk are time instants in
T . This means simply that the pi components of each vector yi are scalar random
variables on the probability space (Ω ,F , P). This is the case, for instance, if the
observations are related to the state according to

y(ti) = hti(s(ti); w(ti)) (5)

for i = 1, . . . , k, where w(t1), . . . , w(tk) are real random vectors, provided that the
observation operators ht1 , . . . , htk are continuous in both arguments. Note that obser-
vation operators that are linear in variables such as winds, temperature or surface
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pressure are non-linear in the energy variables. The time tk can be thought of as rep-
resenting the current observation time. Let yk = (yT

1 , . . . , yT
k )T denote the random

pk-vector consisting of all the observations up to time tk, where pk = ∑k
i=1 pi.

Recall that if r is a scalar random variable, then the conditional expectation
E(r|yk) is also a scalar random variable. Thus, E((g, s(t))|yk) is a scalar random
variable, for each g ∈ H and all t ∈ T . In fact, since EE(t) = E‖s(t)‖2 < ∞ for
all t ∈ T , it follows that there exists an H-valued random variable sk(t), called the
conditional mean of s(t), such that for all g ∈ H and t ∈ T ,

E ||sk(t)||2 <∞ ,

and

(g, sk(t)) = E((g, s(t))|yk) (6)

with probability one.3 Similarly, there exists a bounded, self-adjoint, positive
semi-definite, trace class, random linear operator Pk(t) : H → H, called the
conditional covariance operator of s(t), such that for all f, g ∈ H and t ∈ T ,

(f,Pk(t)g) = E
[
(f, s(t)− sk(t))(g, s(t)− sk(t))|yk

]
(7)

with probability one, and also

3This follows from Appendix 1d. Note first that

sk[g] = E((g, s)|yk) ,

where the time argument has been omitted, defines a random linear functional on H. Let {gi}∞i=1 be
a countable orthonormal basis for H. Then(

sk[gi]
)2 ≤ E((gi, s)2|yk)

by the Schwarz inequality, and taking expectations gives

E
(

sk[gi]
)2 ≤ E(gi, s)2 ,

for i = 1, 2, . . .. Therefore,

∞∑
i=1

E
(

sk[gi]
)2 ≤

∞∑
i=1

E(gi, s)2 = E
∞∑

i=1

(gi, s)2 = E||s||2 <∞ .

Hence by the construction of Appendix 1d, there exists an H-valued random variable sk such that
E‖sk‖2 <∞ and, for all g ∈ H,

(g, sk) = sk[g]

with probability one. The construction shows that sk is defined uniquely on the set of ω ∈ Ω where∑∞
i=1

(
sk[gi]

)2
<∞, which must have probability measure one.
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trPk(t) = E(‖s(t)− sk(t)‖2|yk) (8)

with probability one.4

It follows that, for all t ∈ T ,

‖sk(t)‖2 + trPk(t) = E(E(t)|yk) (9)

with probability one. Equation (9) extends the principle of energetic consistency
(Eq. 3) to include the effect of observing the dynamical system. Each of the terms
in Eq. (9) is a scalar random variable, accounting for the observations, and each
measures a property of the observed dynamical system. If ‖s(t)‖2 is not a scalar
invariant but the remaining assumptions are satisfied, with E‖s(t)‖2 < ∞ for all
t ∈ T , then the corresponding weak version

||sk(t)||2 + trPk(t) = E(||s(t)||2|yk)

still holds, with probability one, for all t ∈ T . However, the terms here then have no
intrinsic physical meaning.

Now let s̃k(t) be any H-valued random variable depending on the observations
yk, such that

E ‖̃sk(t)‖2 <∞ (10)

4To see this, first define the conditional covariance functional

Ck[f, g] = E
[
(f, s− sk)(g, s− sk)|yk

]
,

where the time argument has been omitted. The functional Ck is a symmetric, positive semidefinite,
random bilinear functional on H. As in Eq. (64) of Appendix 1c,

∣∣∣Ck[f, g]
∣∣∣ ≤ ||f|| ||g|| E(||s− sk||2|yk)

for all f, g ∈ H. Therefore, for each ω ∈ Ω where E(‖s − sk‖2|yk) < ∞, there exists a unique
bounded linear operator Pk : H → H such that (f,Pkg) = Ck[f, g] for all f, g ∈ H, and this
operator is self-adjoint, positive semidefinite, and trace class, with

trPk = E(||s− sk||2|yk) .

But E(‖s− sk‖2|yk) <∞ with probability one, since

E||s− sk||2 ≤ 2E||s||2 + 2E||sk||2 <∞

by the parallelogram law. Thus the set of ω ∈ � where E
(
‖s− sk‖2|yk

)
= ∞ has probability

measure zero. Upon defining Pk to be the zero operator on this set, it follows that Pk is bounded,
self-adjoint, positive semidefinite and trace class for all ω ∈ �, and that Eqs. (7) and (8) hold with
probability one.
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for all t ∈ T , which will be called an estimate of the system state s(t). It follows
from the parallelogram law (see Appendix 3d) that

E ||s(t)− s̃k(t)||2 ≤ 2EE(t)+ 2E ||̃sk(t)||2 <∞ .

The scalar random variable ‖s(t)− s̃k(t)‖2 is the total energy of the estimation error
s(t)− s̃k(t). An estimate of s(t) is called a minimum variance estimate if it minimizes
the expected value of the total energy of the estimation error, E‖s(t)− s̃k(t)‖2, over
all estimates s̃k(t). Thus, by definition, the property of being a minimum variance
estimate is an intrinsic property of the observed dynamical system.

The conditional mean state sk(t) is an H-valued random variable depending on
yk, and it was already shown to satisfy Eq. (10). Thus the conditional mean state is
an estimate of the system state. Furthermore, by essentially the same argument as
in the finite-dimensional case (e.g. Jazwinski 1970, p. 149, Theorem 5.3 or Cohn
1997, pp. 282–283), one has

E ||s(t)− s̃k(t)||2 = E ||s(t)− sk(t)||2 + E ||sk(t)− s̃k(t)||2

for all t ∈ T .5 Therefore,

5This follows by taking expectations on the identity

||s− s̃k||2 = ||s− sk||2 + 2(s− sk, sk − s̃k)+ ||sk − s̃k||2 ,

where the time argument has been omitted, and noting that E(s− sk, sk − s̃k) = 0 since

E
[
(s− sk, sk − s̃k)|yk

]
= 0

with probability one. The latter equality can be shown in the infinite-dimensional case as follows.
Let {gi}∞i=1 be a countable orthonormal basis for H. Then

E
[
(s− sk, sk − s̃k)|yk

]
= E

[ ∞∑
i=1

(gi, s− sk)(gi, sk − s̃k)|yk

]

=
∞∑

i=1

E
[
(gi, s− sk)(gi, sk − s̃k)|yk

]
,

since

E
∞∑

i=1

|(gi, s− sk)(gi, sk − s̃k)| ≤
(
E||s− sk||2

)1/2 (
E||sk − s̃k||2

)1/2
<∞ ;

cf. Doob (1953, Property CE5, p. 23). But for each i = 1, 2, . . .,

E
[
(gi, s− sk)(gi, sk − s̃k)|yk

]
= (gi, sk − s̃k) E

[
(gi, s− sk)|yk

]
= 0

with probability one, since sk − s̃k depends only on yk and since E
[
(gi, s− sk)|yk

]
= 0 with

probability one.
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E ||s(t)− s̃k(t)||2 ≥ E ||s(t)− sk(t)||2

for all t ∈ T , with equality if, and only if, s̃k(t) = sk(t) with probability one. Thus
the conditional mean state is always a minimum variance state estimate, and any
minimum variance state estimate is identical to the conditional mean state with
probability one.

The conditional mean state has the following additional properties. First, taking
expectations in Eq. (6) and using Eq. (1) gives

E(g, sk(t)) = E(g, s(t)) = (g, s(t))

for all g ∈ H and t ∈ T . Thus the conditional mean state sk(t) has mean s(t).
Equivalently, the conditional mean state is an unbiased estimate of the system state.

It follows that

E ||sk(t)− s(t)||2 = E ||sk(t)||2 − ||s(t)||2

for all t ∈ T . Taking expectations in Eq. (9) gives

E‖sk(t)‖2 + E trPk(t) = EE(t) (11)

for all t ∈ T , which is yet another extension of the PEC. Combining these two
results with Eqs. (3) and (4) gives

E ||s(t)− s(t)||2 = trP(t) = E trPk(t)+ E ||sk(t)− s(t)||2 .

Therefore,

E trPk(t) ≤ trP(t) (12)

for all t ∈ T . This means that in the expected value sense, the act of observing can
only reduce total variance or, possibly, leave it unchanged. Also,

E‖sk(t)− s(t)‖2 ≤ E‖s(t)− s(t)‖2 (13)

for all t ∈ T . This means that the conditional mean state can only be more concen-
trated about its mean than is the system state itself or, possibly, as concentrated. The
inequalities given by Eqs. (12) and (13) still hold if ‖s(t)‖2 is not a scalar invari-
ant, but in that case the inequalities have no physical interpretation intrinsic to the
dynamical system.
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2.3 Discretization

The principle of energetic consistency (Eq. 3) and its extension to include the effect
of observations (Eq. 9) are general relationships that apply independently of the
continuum dynamics and the observations. However, they are not yet quite in a
form directly applicable to computational methods for data assimilation, which are
necessarily discrete. To maintain generality, a generic discretization will now be
introduced.

Let HN be an N-dimensional subspace of H. For instance, HN could be the space
of all g ∈ H that are constant on grid boxes of a numerical model of the contin-
uum dynamics, or the space of all g ∈ H obtained by a fixed spectral truncation.
Then HN is a (finite-dimensional) Hilbert space, under the same inner product and
corresponding norm as that of H.

Let � be the orthogonal projection operator from H onto HN . Thus �g ∈ HN

and (�f, g−�g) = 0 for all f, g ∈ H. Denote by sr(t) = �s(t) the “resolved” part
of the state s(t) and by su(t) = s(t)− sr(t) the “unresolved” part, for all t ∈ T . Then
the total energy E(t) = ‖s(t)‖2 is the sum of the total energy in the resolved scales,
Er(t) = ‖sr(t)‖2, and that in the unresolved scales, Eu(t) = ‖su(t)‖2:

E(t) = Er(t)+ Eu(t) ,

for all t ∈ T . The components s1, . . . , sN of sr(t) will be called discretized energy
variables.

From the definition of sr(t) and the fact that s(t) is an H-valued random variable
it follows that sr(t) is an HN-valued random variable, and further that

E ||sr(t)||2 = EEr(t) ≤ EE(t) <∞

for all t ∈ T . Therefore, sr(t) has mean sr(t) ∈ HN and covariance operator Pr(t) :
HN → HN , defined uniquely for all t ∈ T by the relationships

(g, sr(t)) = E(g, sr(t)) (14)

and

(f,Pr(t)g) = E
[
(f, sr(t)− sr(t))(g, sr(t)− sr(t))

]
, (15)

respectively, for all f, g ∈ HN . It follows that the principle of energetic consistency
holds for sr(t):

‖sr(t)‖2 + trPr(t) = EEr(t) (16)

for all t ∈ T , where
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trPr(t) =
N∑

i=1

(gi,Pr(t)gi) = E ||sr(t)− sr(t)||2 ,

and {gi}Ni=1 is any orthonormal basis for HN .
The discretized PEC (Eq. 16) can be written in some equivalent ways. For

instance, it can be verified that sr(t) = �s(t) and that Pr(t) = �P̃(t), where
P̃(t) : HN → H denotes the restriction of P(t) to HN , i.e., P̃(t)g = P(t)g for
all g ∈ HN . Also, viewing elements of HN as real N-vectors, the inner product on
HN must be given by a real, symmetric positive definite matrix B,

(f, g) = fTBg ,

with corresponding norm ‖f‖ = (f, f)1/2, for all f, g ∈ HN .6 Then sr(t) is viewed
as a vector of real random variables and it follows from the definition given by
Eq. (14) that

sr(t) = Esr(t) ,

where the expectation operator applied to a vector of random variables is defined to
act componentwise, so that

||sr(t)||2 = sT
r (t)Bsr(t)

for all t ∈ T . Further, it follows from the definition given by Eq. (15) that Pr(t) has
matrix representation

Pr(t) = E
[
(sr(t)− sr(t))(sr(t)− sr(t))T]

B ,

where the expectation operator applied to a matrix of random variables is defined to
act elementwise, so that

6For instance, if HN consists of the elements of H that are constant on grid volumes Vj of a
numerical model of hydrostatic atmospheric dynamics with an unstaggered grid, then the matrix B
is the block-diagonal matrix with diagonal blocks

Bj =
∫ ∫ ∫

Vj

A dσ a2dS ,

where the diagonal matrix A was defined in Sect. 2.1. In the general case, HN is isometrically
isomorphic to the Hilbert space GN of real N-vectors with the stated inner product and correspond-
ing norm; cf. Reed and Simon (1972, Theorem II.7, p. 47). Thus, viewing the elements of HN as
real N-vectors means it is understood that an isometric isomorphism has been applied to elements
of HN to obtain elements of GN . Then HN -valued random variables become GN -valued random
variables, because an isometric isomorphism is norm-continuous.
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trPr(t) = tr Pr(t)

for all t ∈ T .
Just as Eq. (9) followed from Eq. (3), it follows from Eq. (16) that

‖sk
r (t)‖2 + trPk

r (t) = E
(

Er(t)|yk
)

(17)

with probability one, for all t ∈ T . Here the conditional mean sk
r (t) of sr(t) is an

HN-valued random variable with E‖sk
r (t)‖2 <∞ and satisfies

(
g, sk

r (t)
)
= E

(
(g, sr(t))|yk

)

with probability one, for all t ∈ T and g ∈ HN . The conditional covariance operator
Pk

r (t) : HN → HN of sr(t) is a bounded, self-adjoint, positive semidefinite, trace
class, random linear operator satisfying

(
f,Pk

r (t)g
)
= E

[
(f, sr(t)− sk

r (t))(g, sr(t)− sk
r (t))|yk

]

and

trPk
r (t) = E

(
||sr(t)− sk

r (t)||2|yk
)

,

both with probability one, for all t ∈ T and f, g ∈ HN . The equivalent ways of writ-
ing Eq. (16) described in the preceding paragraph apply similarly to Eq. (17). For
instance, the discrete conditional mean state can be defined as sk

r (t) = �sk(t), and
the discrete conditional covariance operator Pk

r (t) can be represented as a random
matrix, i.e., a matrix of random variables. It is clear that the discrete conditional
mean state is an unbiased estimate of the discrete system state sr(t).

Finally, let s̃k
r (t) denote any HN-valued random variable depending on the obser-

vations yk, such that E ‖̃sk
r (t)‖2 <∞ for all t ∈ T . As in Sect. 2.2, it follows that the

expected value of the total energy of the estimation error sr(t)− s̃k
r (t) is given by

E ||sr(t)− s̃k
r (t)||2 = E ||sr(t)− sk

r (t)||2 + E ||sk
r (t)− s̃k

r (t)||2 <∞

for all t ∈ T , and is therefore minimized (uniquely, with probability one) over all
estimates s̃k

r (t) by the discrete conditional mean state sk
r (t). With this minimization

as the optimality criterion, the objective of data assimilation is thus to calculate sk
r (t).

Taking expectations in Eq. (17) gives

E ||sk
r (t)||2 + E trPk

r (t) = EEr(t)

for all t ∈ T , from which discrete counterparts of Eqs. (12) and (13) follow.
One difficulty in attempting to calculate sk

r (t) through data assimilation is that
the observations, for instance as given by Eq. (5), depend on both the resolved and
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unresolved parts of the continuum system state s(t). This dependence leads in turn
to the observation error due to unresolved scales, which is part of the so-called
representativeness error (e.g. Janjić and Cohn 2006, and references therein).

2.4 Application to Ensemble Kalman Filter Methods

2.4.1 General Formulation

Suppose now that a discrete model of the non-linear continuum dynamics is given,
in the general form

xti =Mti,ti−1 (xti−1 )

for i = 1, . . . , K, with tK > tk, where Mti,ti−1 : Dx → Dx is continuous and Dx
is a domain (a connected open set) in R

N . Typically the state variables x1, . . . , xN

are not discretized energy variables as defined in the preceding subsection, but
there is a known, continuous and invertible transformation x̃ = x̃(x) from Dx to
a domain Dx̃ ∈ R

N , with continuous inverse x = x(̃x), such that x̃1, . . . , x̃N are
discretized energy variables. For instance, the simple transformation from typi-
cal atmospheric model variables (u, v, T , p∗) defined on the model grid to gridded
energy variables (u

√
p∗, v

√
p∗,
√

Tp∗,
√

p∗) has the required properties, provided
that T and p∗ remain bounded from below by positive constants. Then the given
model is equivalent to the model

x̃ti = M̃ti,ti−1 (̃xti−1 )

for i = 1, . . . , K, where M̃ti,ti−1 : Dx̃ → Dx̃ is continuous and is obtained as the
composition

M̃ti,ti−1 = x̃ ◦ Mti,ti−1 ◦ x ,

for i = 1, . . . , K. Applying the principle of energetic consistency to a given model
thus requires no real change to the model, but only a change of variables before
and after each observation time to process the observations, which in general are
related non-linearly to the energy variables as in Eq. (5). Henceforth the tildes will
be omitted, including that for the domain Dx̃, and it is to be understood that the
model variables are discretized energy variables.

Denote by GN the Hilbert space of real N-vectors with inner product (f, g) = fTBg
and corresponding norm ‖f‖ = (f, f)1/2, for all f, g ∈ GN , where B is the real,
symmetric positive definite matrix defined in the preceding subsection. Note that
the same symbols are used for the inner product and norm on H, but no confusion
should arise because the context will be clear. View the HN-valued random variable
sr(t0) of the preceding subsection as a GN-valued random variable and let
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xt0 = sr(t0) ,

where it is assumed that sr(t0) ∈ Dx. Denote by

Ed(ti) = ||xti ||2

the total energy of the resulting discrete model state, for i = 0, . . . , K. Since Mti,ti−1

is continuous, xti is a GN-valued random variable and Ed(ti) is a scalar random
variable, for i = 1, . . . , K.

Suppose now that the non-linear continuum dynamics are conservative, E(t) =
E(t0) for all t ∈ T = [t0, T], as is the case for dry hydrostatic atmospheric dynamics
and for shallow-water dynamics. In this case the principle of energetic consistency
(Eq. 3) reads

||s(t)||2 + trP(t) = EE(t0) = const. .

Suppose also for now that the given discrete dynamical model is conservative,

||Mti,ti−1 (f)||2 = ||f||2

for all f ∈ Dx and for i = 1, . . . , K. Then

EEd(ti) = EEd(t0) = EEr(t0) <∞ (18)

for i = 1, . . . , K. It follows immediately that the mean state xti = Exti ∈ GN and
covariance matrix Pti : GN → GN defined by

Pti = E
[
(xti − xti)(xti − xti)

T]
B

exist for i = 0, . . . , K, and that they are related by

‖xti‖2 + tr Pti = EEr(t0) = const. , (19)

for i = 0, . . . , K. Thus, for both the continuum state and the modelled discrete state,
the sum of the total energy of the mean state and the total variance is constant in
time. Equation (19) is somewhat at odds with Eq. (16), whose right-hand side need
not be constant in time when the continuum dynamics are conservative.

It follows similarly from Eq. (18) that

‖xk
ti‖2 + tr Pk

ti = E
(

Er(t0)|yk
)

(20)

with probability one, for i = 0, . . . , K. Here xk
ti and Pk

ti are, respectively, the mean
state and covariance matrix of xti conditioned on the observations yk, and are defined
as in Sects. 2.2 and 2.3. The right-hand side of Eq. (20) is independent of the time
ti, so that in particular,
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‖xk
tk+1
‖2 + tr Pk

tk+1
= ‖xk

tk‖2 + tr Pk
tk (21)

with probability one. In traditional filtering notation this is written

||xf
k+1||2 + tr Pf

k+1 = ||xa
k ||2 + tr Pa

k

with probability one, where xa
k and Pa

k are, respectively, the conditional mean anal-

ysis and conditional analysis error covariance matrix at time tk, and xf
k+1 and Pf

k+1
are, respectively, the conditional mean forecast and conditional forecast error covari-
ance matrix to time tk+1, where all the conditioning is on the observations up to
time tk.

2.4.2 Ensemble Behaviour Between Observation Times

An ensemble version of Eq. (21) is satisfied exactly, independently of ensemble
size L, by an appropriately formulated EnKF scheme. Assume that xk

tk ∈ Dx with

probability one.7 Then let
{
xk

tk (l)
}L

l=1
be a sample of the GN-valued random variable

xk
tk with xk

tk (l) ∈ Dx for l = 1, . . . , L, and define

xk
tk+1

(l) =Mtk+1,tk

(
xk

tk (l)
)

for l = 1, . . . , L. Also, for i = k and i = k + 1, define

Êk
ti =

1

L

L∑
l=1

||xk
ti(l)||2 ,

x̂k
ti =

1

L

L∑
l=1

xk
ti(l) ,

and

P̂
k
ti =

1

L

L∑
l=1

(
xk

ti (l)− x̂k
ti

) (
xk

ti(l)− x̂k
ti

)T
B .

By manipulating the sums it follows that

Êk
ti = ‖̂xk

ti‖2 + tr P̂
k
ti (22)

for i = k and i = k + 1. But ‖xk
tk+1

(l)‖2 = ‖xk
tk (l)‖2 for l = 1, . . . , L, since Mtk+1,tk

is conservative, and therefore

7If Dx is convex then xti ∈ Dx for i = 0, . . . , K (e.g. Cohn 2009, p. 454), and therefore xk
ti ∈ Dx

with probability one, for i = 0, . . . , K.
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Êk
tk+1

= Êk
tk .

This statement of energy conservation thus reads

‖̂xk
tk+1
‖2 + tr P̂

k
tk+1

= ‖̂xk
tk‖2 + tr P̂

k
tk , (23)

which corresponds to Eq. (21).

Equation (22) does not hold if the conditional covariance estimate P̂
k
ti is replaced

there by the sample covariance L/(L− 1)̂P
k
ti . Therefore, Eq. (23) does not generally

hold if either or both conditional covariance estimates there are replaced by the cor-

responding sample covariances. The sample covariance L/(L−1)̂P
k
tk+1

has been used
traditionally in EnKF schemes, on the grounds that it is unbiased as an estimator of
Pk

tk+1
, but it is clear that this violates energy conservation by artificially increasing

the total energy Êk
tk+1

of the ensemble at each observation time. This increase can be
significant for typically small ensemble sizes. For instance, for L = 100 it is about
0.1% per observation time, or more than 4% per 10 days with observations every

6 h, in case tr P̂
k
tk+1

= 0.1‖̂xk
tk+1
‖2. Von Storch and Zwiers (1999, p. 87) give other

reasons why the sample covariance should be used only with caution in general.
Now let C be an N×N correlation matrix, i.e., a symmetric positive semidefinite

matrix with unit diagonal. Then since the trace of a square matrix is the sum of its
diagonal elements, it follows that

tr (C ◦ P) = tr P

for any N × N matrix P, where the symbol ◦ is used to denote the Hadamard (ele-

mentwise) product of two matrices. Thus, Eq. (23) still holds if P̂
k
tk+1

is replaced
there by a “localized” conditional covariance estimate

P̃
k
tk+1

= C ◦ P̂
k
tk+1

.

The covariance localization approach introduced by Houtekamer and Mitchell
(2001, Eq. 6) and studied further by Mitchell et al. (2002) approximates this for-
mula, reducing computational effort, but the degree to which the approximation
might in effect violate energy conservation is not known. The effect of the alter-
native localization approach of Ott et al. (2004) on energy conservation is also not
known.

2.4.3 Ensemble Behaviour at Observation Times

To see what is supposed to happen at observation times, assume for the moment that
E(t0) is simply a constant, i.e., is not a random variable. Thus each realization of the
continuum system state has the same total energy at the initial time t0, hence at all
times t ∈ T since the continuum dynamics were assumed to be conservative. Then
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assume that Ed(t0) = Er(t0) is also a constant. Thus each realization of the modelled
discrete state has the same total energy,

||xti ||2 = Ed(ti) = Ed(t0) = const.

for i = 0, . . . , K, since the discrete model was also assumed to be conservative. On
taking conditional expectations it follows that

E(‖xti‖2|yk) = Ed(t0) = const. (24)

with probability one, for i = 0, . . . , K, independently of the relationship between
the observations and the continuum state. For an EnKF scheme, this means that
the analysis update is supposed to leave the total energy of each ensemble member
unchanged, at each observation time, regardless of how any assumed relationship
between the observations and the discrete state is modelled. The assumption that
Ed(t0) is constant can be implemented in an EnKF scheme by normalizing the total
energy of each ensemble member to a constant at the initial time.

It follows from Eq. (24) that

‖xk
tk‖2 + tr Pk

tk = ‖xk−1
tk ‖2 + tr Pk−1

tk (25)

with probability one, where xk−1
tk and Pk−1

tk are, respectively, the mean state and
covariance matrix at time tk, both conditioned on the observations up to time tk−1.
In traditional filtering notation, this is written

||xa
k ||2 + tr Pa

k = ||xf
k||2 + tr Pf

k

with probability one. It can be verified that the usual Kalman-type analysis update
formula for discrete linear observation operators does not satisfy this relationship.
The reason it does not is that, interpreted probabilistically, the Kalman formula
assumes that the discrete state is Gaussian-distributed, which is not possible if its
total energy is a constant. On the other hand, on taking expectations in Eq. (25), it
follows that

E‖xk
tk‖2 + E tr Pk

tk = E‖xk−1
tk ‖2 + E tr Pk−1

tk , (26)

which is satisfied for the linear Kalman update formula. Ensemble implementations
of the Kalman formula do not leave the total energy of each ensemble mem-
ber unchanged at observation times, and do not satisfy the ensemble version of
Eq. (25), viz.,

||̂xk
tk ||2 + tr P̂

k
tk = ||̂xk−1

tk ||2 + tr P̂
k−1
tk

but at least they should satisfy
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E ‖̂xk
tk‖2 + E tr P̂

k
tk = E ‖̂xk−1

tk ‖2 + E tr P̂
k−1
tk . (27)

Verifying Eq. (27) would require carrying out numerical experiments with many
random samples of the discrete initial state.

More generally now, suppose that there are constants Emin and Emax such that
Emin ≤ Ed(t0) ≤ Emax. This is the case if it is assumed that the total energy of every
realization of the continuum initial state is bounded from above. It follows that

Emin ≤ ||xk−1
tk ||2 + tr Pk−1

tk ≤ Emax

and

Emin ≤ ‖xk
tk‖2 + tr Pk

tk ≤ Emax , (28)

both with probability one, independently of the relationship between the obser-
vations and the continuum state or the discrete state, actual or assumed. Again,
ensemble implementations of the Kalman update formula cannot satisfy

Emin ≤ ||̂xk
tk ||2 + tr P̂

k
tk ≤ Emax ,

because a Gaussian-distributed state cannot have total energy bounded from above
by a constant. However, Eq. (28) implies that

Emin ≤ E ||xk
tk ||2 + E tr Pk

tk ≤ Emax ,

which is satisfied for the linear Kalman update formula. Therefore, an ensemble
implementation of this formula should satisfy

Emin ≤ E ||̂xk
tk ||2 + E tr P̂

k
tk ≤ Emax .

2.4.4 Ensemble Behaviour for Dissipative Models

Numerical models almost always exhibit some spurious dissipation. Typical numer-
ical dissipation is mild and may be self-limiting in the context of deterministic
prediction (e.g. Lin and Rood 1997, p. 2490; Lin 2004, p. 2303), but it can pose
a serious problem in the context of filtering. Ménard et al. (2000, pp. 2658–2661)
have found for a full Kalman filter for assimilating tracer observations on isentropic
surfaces that a small, spurious dissipation in the numerical advection model causes a
large, state-dependent loss of total variance (with the total variance defined slightly
differently there than in the present chapter), even without assimilating the observa-
tions. Ménard and Chang (2000, p. 2676) found, moreover, that this spurious loss
of variance is made worse by the assimilation of observations. That the loss of total
variance due to spurious numerical dissipation is a generic problem for filtering can
be understood in the EnKF context in the following way.
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The individual ensemble members {xk
tk (l)}Ll=1 are supposed to be spatially some-

what rough, particularly near the observations, since they are supposed to be samples
from a probability distribution that includes the effect of observation error, which is
local. The ensemble mean x̂k

tk is more spatially smooth than the individual ensemble
members since it is their average. Thus the spurious loss of total energy of each of
the ensemble perturbations {xk

tk (l)− x̂k
tk}Ll=1 up to the next observing time is usually

far more than for a “typical” state, such as the ensemble mean, since a significant
fraction of the total energy of each of the ensemble perturbations is supposed to be
concentrated near grid scale, where numerical dissipation usually acts most strongly.
The total variance is just the ensemble average of the total energy of the ensemble
perturbations, and thus is usually lost to spurious numerical dissipation much more
rapidly than is the total energy of the ensemble mean. Moreover, this loss of total
variance need not be self-limiting, because the ensemble analysis update is supposed
to inject energy into the perturbations, from the observation error near grid scale, at
each observation time, only to be dissipated away again. If this argument is correct,
then for large times tk− t0 one should expect an exponential decay of total variance.

Ménard et al. (2000) addressed the problem of loss of total variance due to spu-
rious numerical dissipation by utilizing the fact that for tracer dynamics there is a
partial differential equation for variance evolution that can be discretized directly.
This was found to give results superior to simply adding an artificial “model error”
term for instance (Ménard and Chang 2000, p. 2682). Unfortunately, such an equa-
tion does not exist for much more general dynamics. The argument above can
be formalized in the following way, which also leads to a general approach for
addressing the problem.

Suppose that the given discrete model is dissipative, in the sense that

||Mtk+1,tk (x)||2 ≤ ||x||2

for all x ∈ Dx. Here Mtk+1,tk will be thought of as the solution operator from time
tk to time tk+1 for a system of ordinary differential equations,

dx
dt
+ f(x, t) = d(x, t) ,

where dx/dt + f=0 is a conservative model of the continuum dynamics, (x, f(x, t))
= 0 for all x ∈ Dx, and where d is dissipative and defined throughout GN ,

(x, d(x, t)) ≤ 0 (29)

for all x ∈ GN . Thus,

d

dt
||x||2 = d

dt
(x, x) = 2

(
x,

dx
dt

)
= 2(x, d(x, t)) ≤ 0 .

The ensemble members {x(l)}Ll=1 are supposed to satisfy the equation
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dx(l)

dt
+ f(x(l)) = d(x(l)) ,

where time arguments are omitted for notational convenience. Then the ensemble
mean x̂ = 1

L

∑L
l=1 x(l) satisfies

d̂x
dt
+ f̂ = d̂ ,

where f̂ = 1
L

∑L
l=1 f(x(l)) and d̂ = 1

L

∑L
l=1 d(x(l)). Assume that d is linear in a

neighbourhood of x̂ that includes all the ensemble members, i.e.,

d(x(l)) = d(̂x)+ D(x(l)− x̂) (30)

for l = 1, . . . , L, where D is the Jacobian matrix

D = Dx̂ = ∂d(x)

∂x

∣∣∣∣
x=̂x

. (31)

Taking ensemble averages in Eq. (30) gives d̂ = d(̂x), and therefore

d(x(l)− x̂)

dt
+ f(x(l))− f̂ = D(x(l)− x̂) (32)

for l = 1, . . . , L. Thus,

d

dt
||x(l)− x̂||2 = −2(x(l)− x̂, f(x(l))− f̂)+ 2(x(l)− x̂, D(x(l)− x̂))

for l = 1, . . . , L. Since the total variance is

tr P̂ = 1

L

L∑
l=1

||x(l)− x̂||2 ,

and since (x(l), f(x(l))) = 0 for l = 1, . . . , L, it follows that

1

2

d tr P̂
dt

= (̂x, f̂)+ 1

L

L∑
l=1

(x(l)− x̂, D(x(l)− x̂)) . (33)

Note that in case f is linear, then (̂x,̂ f) = (̂x, f(̂x)) = 0.
Now, if d is linear over all of GN , then the Jacobian matrix D is independent of x̂,

and also D(x(l)− x̂) = d(x(l)− x̂). Therefore, if Eq. (29) holds as a strict inequality
for at least one of the ensemble perturbations, i.e., if

(x(l)− x̂, d(x(l)− x̂)) < 0
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for at least one l ∈ [1, L], then

(x(l)− x̂, D(x(l)− x̂)) = (x(l)− x̂, d(x(l)− x̂)) < 0

for at least one l ∈ [1, L], so it follows from Eq. (33) that

1

2

d tr P̂
dt

< (̂x,̂ f) . (34)

Thus the effect of linear model dissipation is to reduce the total variance tr P̂.
However, spurious numerical dissipation is typically non-linear, particularly when
expressed in terms of energy variables. Also, Ménard et al. (2000, Fig. 1) found the
loss of total variance to depend strongly on the state estimate, which in the present
context requires the Jacobian matrix D to depend on the ensemble mean x̂. Thus
d has been allowed to be non-linear, and is assumed for the purpose of this analy-
sis to be linear only in a neighbourhood of the ensemble mean. This local linearity
assumption (Eq. 30) can be justified if the total energy of each of the ensemble
perturbations is small relative to the total energy of the ensemble mean.

Instead of taking d to be linear, assume that

1

L

L∑
l=1

(x(l), d(x(l))) ≤ (1+ ε)(̂x, d(̂x)) (35)

for some time-independent constant ε > 0, i.e., that the non-linear dissipation acts
more strongly on the ensemble members, on average, than on the ensemble mean,
for all time, as should be the case if the ensemble members are periodically updated
with observation error near grid scale. Then from Eq. (30) and the fact that d̂ = d(̂x)
it follows that

1

L

L∑
l=1

(x(l)− x̂, D(x(l)− x̂)) = 1

L

L∑
l=1

(x(l)− x̂, d(x(l))− d(̂x))

= 1

L

L∑
l=1

(x(l), d(x(l)))− (̂x, d(̂x))

≤ ε(̂x, d(̂x)) .

(36)

If Eq. (29) holds as a strict inequality for the ensemble mean, i.e., if

(̂x, d(̂x)) < 0 ,

then it follows from Eqs. (33) and (36) that Eq. (34) still holds, and thus that the
effect of the non-linear dissipation is indeed to reduce the total variance tr P̂.

To see why the effect can actually be an exponential loss of total variance,
suppose that in fact there is a time-independent constant δ > 0 such that
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(̂x, d(̂x)) ≤ −δ .

It follows that there is a time-independent constant C > 0 such that

C tr P̂ ≤ −(̂x, d(̂x)) .

Combining this result with Eqs. (33) and (36) yields

1

2

d

dt
tr P̂ ≤ (̂x,̂ f)− εC tr P̂ .

In case f is linear, so that (̂x,̂ f) = 0, it follows that

tr P̂
k
tk ≤ e−2εC(tk−t0)tr P̂

0
t0 .

In the general nonlinear case, if |(̂x,̂ f)| ≤ α for some time-independent constant α,
then

tr P̂
k
tk ≤

α

εC

[
1− e−2εC(tk−t0)

]
+ e−2εC(tk−t0)tr P̂

0
t0 .

Non-linearity can thus prevent decay to zero, although even the crude bound α/εC
may be small.

Spurious loss of total variance can be eliminated by undoing the spurious dis-

sipation that acts on the ensemble perturbations. Denote by P̃
k
tk+1

the ensemble
covariance matrix that would have been obtained in case D = 0, starting from

P̃
k
tk = P̂

k
tk . Then it follows from Eq. (32) that, to first order in �tk = tk+1 − tk,

P̃
k
tk+1

= (I−�tkD)̂P
k
tk+1

(I−�tkD∗) , (37)

where P̂
k
tk+1

is the ensemble covariance matrix obtained with dissipation, I is the

identity matrix, and D∗ is the adjoint of D with respect to the inner product on GN ,

D∗ = B−1DTB .

The dissipation correction formula (Eq. 37) can be thought of as a generalization of
the idea of covariance inflation (Anderson and Anderson 1999, p. 2747). Covariance

inflation addresses general filter divergence problems simply by multiplying P̂
k
tk+1

by a number α = α(�tk) slightly larger than one, thus amplifying all spatial scales
equally. Covariance inflation did not perform well in experiments of Ménard et al.
(2000, p. 2666), because it led to too much growth of variance away from the sparse
observations. In the dissipation correction formula, the amplification is selective,
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acting most strongly on the scales that have been most damped by spurious numer-
ical dissipation, and only weakly or not at all on the larger scales where numerical
models have little or no spurious dissipation.

For complex models, arriving at an appropriate formulation for the matrix
D = Dx̂ may not be a simple matter, and surely would involve some trial and error.
However, an appropriate formulation would guarantee that the principle of ener-
getic consistency is satisfied in the form of Eq. (23) extremely well on replacing

P̂
k
tk+1

with P̃
k
tk+1

, provided that |(̂xk
tk , d(̂xk

tk ))| � ‖̂xk
tk‖2.

3 The Principle of Energetic Consistency

3.1 Problem Setting

Let H be a real, separable Hilbert space, with inner product and corresponding norm
denoted by (·, ·) and ‖·‖, respectively. Recall from Appendix 3d that every separable
Hilbert space has a countable orthonormal basis, and that every orthonormal basis of
a separable Hilbert space has the same number of elements N ≤ ∞, the dimension
of the space. Let {hi}Ni=1 be an orthonormal basis for H, where N = dimH ≤ ∞ is
the dimension of H.

Let S be any non-empty set in B(H), where B(H) denotes the Borel field gen-
erated by the open sets in H, i.e., B(H) is the smallest σ -algebra of subsets of H
containing all the sets that are open in H. In particular, S ⊂ H, S can be all of H,
and S can be any open or closed set in H.

Let t0 and T be two times with −∞ < t0 < T < ∞, and let T be a time
set bounded by and including t0 and T. For instance, T = [t0, T] in the case of
continuous-time dynamics, and T = [t0, t1, . . . , tK = T] in the discrete-time case.
The set T is allowed to depend on the set S, T = T (S).

Let Nt,t0 be a map from S into H (written Nt,t0 : S → H) for all times t ∈ T ,
i.e., for all st0 ∈ S and t ∈ T , Nt,t0 (st0 ) is defined and

st = Nt,t0 (st0 ) (38)

is in H, so that ‖st‖ <∞. Assume that Nt,t0 is continuous and bounded for all t ∈ T .
Continuity means that for every t ∈ T , st0 ∈ S and ε > 0, there is a δ > 0 such that
if ‖st0 − s′t0‖ < δ and s′t0 ∈ S, then ‖Nt,t0 (st0 )−Nt,t0 (s′t0 )‖ < ε. Boundedness means
that there is a constant M = Mt,t0 such that

||Nt,t0 (st0 )|| ≤ Mt,t0 ||st0 ||

for all st0 ∈ S and t ∈ T . Continuity and boundedness are equivalent if Nt,t0 is a
linear operator.

In the applications of Sect. 4, Nt,t0 will be the solution operator of a well-
posed initial-value problem, for the state vector s of a non-linear, deterministic
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system of partial (N = dimH = ∞) or ordinary (N = dimH < ∞) differ-
ential equations (T = [t0, T]). Recall that continuity of the solution operator is
part of the (Hadamard) definition of well-posedness of the initial-value problem for
continuous-time or discrete-time dynamical systems: not only must there exist sets
S and T = T (S), taken here to be defined as above, and a unique solution st ∈ H
for all st0 ∈ S and t ∈ T , which taken together define the solution operator, but the
solution must also depend continuously on the initial data. In Sect. 4.1 on ordinary
differential equations, H will be Euclidean space R

N and the set S for the initial
conditions will be an open subset of R

N . In Sect. 4.2 on partial differential equa-
tions, H will be the space L2(D) of square-integrable vectors on the spatial domain
D of the problem, and S will be an open subset of an appropriate Sobolev space
contained in L2(D).

The operator Nt,t0 is called isometric or conservative (in the norm ‖ · ‖ on H) if

||Nt,t0 (st0 )|| = ||st0 ||

for all st0 ∈ S and t ∈ T , and the differential (or difference) equations that express
the dynamics of a well-posed initial-value problem are called conservative if the
solution operator of the problem is conservative. With st ∈ H defined for all st0 ∈ S
and t ∈ T by Eq. (38), the quantity

Et = ‖st‖2 = (st, st) <∞ (39)

satisfies Et ≤ M2
t,t0 Et0 for all t ∈ T under the assumption of boundedness, and is

constant in time, Et = Et0 for all t ∈ T , in the conservative case.
It will be seen in Sect. 3.3 that, in essence, the principle of energetic consistency

is a statement about continuous, bounded transformations of Hilbert space, with
conservative transformations as an important special case. Thus, applied to bounded
solution operators, it becomes a statement about well-posed initial-value problems.
It is important to recognize that the quantity Et defined in Eq. (39) is quadratic in st.
For non-linear systems of differential equations that express physical laws, there is
often a choice of dependent (state) variables such that Et is the physical total energy,
in which case the dynamics are conservative in the norm on H if the physical system
is closed. However, in the rest of this chapter it will not be assumed that Et represents
a physical total energy, nor that it is a scalar invariant. Rather, it will be simplest to
proceed with the abstract hypotheses stated in the present subsection, and to treat
the conservative case as special.

3.2 Scalar and Hilbert Space-Valued Random Variables

Before stating the principle of energetic consistency in the setting of Sect. 3.1, some
probability concepts will first be summarized. For details, see Appendices 1a–1c
and 3c.
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Let (Ω ,F , P) be a complete probability space, with � the sample space, F the
event space and P the probability measure. The event space consists of subsets of
the set �, called events or measurable sets, which are those subsets on which the
probability measure is defined. Denote by E the expectation operator.

A (scalar) random variable is a map r : Ω → R
e that is measurable, i.e., an

extended real-valued function r, defined for all ω ∈ Ω , that satisfies

{ω ∈ Ω : r(ω) ≤ x} ∈ F

for all x ∈ R. Thus, if r is a random variable then its probability distribution function

Fr(x) = P({ω ∈ Ω : r(ω) ≤ x})

is defined for all x ∈ R. If r is a random variable then r2 is a random variable.
Suppose that r is a random variable. Then the expectation E |r| is defined and

E |r| ≤ ∞. If E |r| <∞, then the expectation Er is defined and called the mean of r,
and |Er| ≤ E |r| < ∞. If Er2 < ∞, then r is called second-order, the mean r = Er
and variance σ 2 = E(r − r)2 of r are defined, and

Er2 = r2 + σ 2 . (40)

An H-valued random variable is a map r : Ω → H such that

{ω ∈ Ω : r(ω) ∈ B} ∈ F

for every set B ∈ B(H). A map r : Ω → H is an H-valued random variable if, and
only if, (h, r) is a scalar random variable for every h ∈ H, that is, if and only if

{ω ∈ Ω : (h, r(ω)) ≤ x} ∈ F

for all h ∈ H and x ∈ R. If r is an H-valued random variable then ‖r‖ is a scalar
random variable. An H-valued random variable r is called second-order if ‖r‖ is
a second-order scalar random variable, i.e., if E‖r‖2 < ∞. If r is a second-order
H-valued random variable then (h, r) is a second-order scalar random variable, i.e.,
E(h, r)2 <∞, for all h ∈ H.

Suppose that r is a second-order H-valued random variable. Then there exists a
unique element r ∈ H, called the mean of r, such that E(h, r) = (h, r) for all h ∈ H.
Also, r′ = r− r is a second-order H-valued random variable with mean 0 ∈ H, and

E ||r||2 = ||r||2 + E ||r′||2 .

Furthermore, there exists a unique bounded linear operator P : H → H, called the
covariance operator of r, such that
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E(g, r′)(h, r′) = (g,Ph)

for all g, h ∈ H. The covariance operator P is self-adjoint and positive semidefinite,
i.e., (g,Ph) = (Pg, h) and (h,Ph) ≥ 0 for all g, h ∈ H. It is also trace class, i.e.,
the sum

∑N
i=1(hi,Phi) is finite and independent of the orthonormal basis {hi}Ni=1,

N = dimH ≤ ∞, chosen for H. This sum is called the trace of P:

trP =
N∑

i=1

(hi,Phi) <∞ .

In addition, there exists an orthonormal basis for H which consists of eigenvectors
{h̃i}Ni=1 of P ,

Ph̃i = λih̃i

for i = 1, 2, . . . , N, and the corresponding eigenvalues {λi}Ni=1 are all non-negative.
It follows that

λi = (h̃i,Ph̃i) = E(h̃i, r′)2 = σ 2
i ,

where σ 2
i is the variance of the second-order scalar random variable (h̃i, r), for

i = 1, 2, . . . , N, and that

trP =
N∑

i=1

σ 2
i = E ||r′||2 .

Thus the trace of P is also called the total variance of the second-order H-valued
random variable r, and

E‖r‖2 = ‖r‖2 + E‖r′‖2 = ‖r‖2 +
N∑

i=1

σ 2
i = ‖r‖2 + trP . (41)

Equation (41) generalizes Eq. (40), which holds for second-order scalar random
variables, to the case of second-order H-valued random variables.

Suppose that R ∈ B(H). An R-valued random variable is a map r : Ω → R
such that

{ω ∈ Ω : r(ω) ∈ C} ∈ F

for every set C ∈ BR(H), where

BR(H) = {B ∈ B(H) : B ⊂ R}.
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Every R-valued random variable is an H-valued random variable, and every
H-valued random variable r with r(ω) ∈ R for all ω ∈ Ω is an R-valued random
variable. An R-valued random variable r is called second-order if ‖r‖ is a second-
order scalar random variable. Thus every second-order R-valued random variable
is a second-order H-valued random variable, and every second-order H-valued ran-
dom variable r with r(ω) ∈ R for all ω ∈ Ω is a second-order R-valued random
variable. Finally, if r is an R-valued random variable and N is a continuous map
from R into H, then N(r) is an H-valued random variable.

3.3 The Principle of Energetic Consistency in Hilbert Space

Referring now back to Sect. 3.1, consider for st0 not just a single element of S,
but rather a whole collection of elements st0 (ω) indexed by the probability variable
ω ∈ Ω . Suppose at first that st0 is simply a map st0 : Ω → S, i.e., that st0 (ω) is
defined for all ω ∈ Ω and st0 (ω) ∈ S for all ω ∈ Ω . Then since Nt,t0 : S → H for
all t ∈ T , it follows that st = Nt,t0 (st0 ) : Ω → H for all t ∈ T , with

st(ω) = Nt,t0 (st0 (ω))

and ‖st(ω)‖ <∞, for all ω ∈ Ω and t ∈ T .
Suppose further that st0 is an S-valued random variable. Then it follows from the

continuity assumption on Nt,t0 that st is an H-valued random variable, and therefore
that Et = ‖st‖2 is a scalar random variable, for all t ∈ T .

Suppose still further that st0 is a second-order S-valued random variable, EEt0 =
E‖st0‖2 <∞. Then from the boundedness assumption on Nt,t0 ,

||st(ω)||2 ≤ M2
t,t0 ||st0 (ω)||2

for all ω ∈ Ω and t ∈ T , it follows that

EEt = E ||st||2 ≤ M2
t,t0E ||st0 ||2 <∞

for all t ∈ T . Therefore, st is a second-order H-valued random variable, with mean
st ∈ H, covariance operator Pt : H→ H, and

E ||st||2 = ||st||2 + trPt ,

for all t ∈ T . Thus the principle of energetic consistency has been established:

Theorem 1 Let H, S, T and Nt,t0 be as stated in Sect. 3.1, with Nt,t0 continuous
and bounded for all t ∈ T , and let E be the expectation operator on a complete
probability space (Ω ,F , P). If st0 is a second-order S-valued random variable, then
for all t ∈ T , (i) st = Nt,t0 (st0 ) is a second-order H-valued random variable, (ii)
Et = ‖st‖2 is a scalar random variable, (iii) st has mean st ∈ H and covariance
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operator Pt : H→ H, (iv)

EEt = ||st||2 + trPt ,

and (v)

‖st‖2 + trPt ≤ M2
t,t0 (‖st0‖2 + trPt0 ) . (42)

If, in addition, Nt,t0 is conservative, then (vi)

‖st‖2 + trPt = ‖st0‖2 + trPt0 (43)

for all t ∈ T .

It is in the conservative case that the principle of energetic consistency is most
useful, because in that case, Eq. (43) provides an equality against which approximate
moment evolution schemes can be compared, as discussed in Sect. 2.4 and in Cohn
(2009). In case Nt,t0 is only bounded, for example in the presence of dissipation, or
for initial-boundary value problems with a net flux of energy across the boundaries,
Eq. (42) still provides an upper bound on the total variance trPt.

3.4 A Natural Restriction on S
Suppose for the moment that st0 is an S-valued random variable, not necessarily
second-order. When the squared norm on H represents a physical total energy, it
is natural to impose the restriction that every possible initial state st0 (ω), ω ∈ Ω ,
has total energy less than some finite maximum amount, say E∗ < ∞, i.e., that
S ⊂ HE∗ , where HE is defined for all E > 0 as the open set

HE = {s ∈ H : ‖s‖2 < E} . (44)

Otherwise, given any total energy E, no matter how large, there would be a non-zero
probability that st0 has total energy greater than or equal to E:

P({ω ∈ Ω : ||st0 (ω)||2 ≥ E}) > 0.

Of course, it can be argued that since this probability would be very small for E
very large, it may be acceptable as an approximation not to impose this restriction.
On the other hand, as discussed in Sect. 4.2 and illustrated in Sect. 5, for classical
solutions of hyperbolic systems of partial differential equations, it is necessary to
require that S ⊂ HE∗ for some E∗ < ∞ just to ensure well-posedness. Thus the
restriction is often not only natural, but also necessary. It also simplifies matters, as
discussed next, for it makes st0 second-order automatically and gives st = Nt,t0 (st0 )
some additional desirable properties, and it also yields a convenient characterization
of st0 and st.
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Suppose that st0 is an S-valued random variable, and that S ⊂ HE∗ for some
E∗ < ∞. Thus ‖st0 (ω)‖2 < E∗ for all ω ∈ Ω , and therefore E‖st0‖2 < E∗, i.e., st0
is a second-order S-valued random variable. Therefore, for all t ∈ T , st = Nt,t0 (st0 )
is a second-order H-valued random variable, in fact with st(ω) ∈ HE for all ω ∈ Ω ,
where E = E∗ in the conservative case and E = M2

t,t0 E∗ in the merely bounded
case. Since HE is an open set in H, HE ∈ B(H). Therefore, for all t ∈ T , st is an
HE-valued random variable. Further, for all p > 0 and t ∈ T , E‖st‖p < Ep/2. Thus
‖st‖ has finite moments of all orders, for all t ∈ T .

Now suppose that s is an HE-valued random variable, for some E < ∞. Then
since s is also an H-valued random variable, (hi, s) is a scalar random variable for
i = 1, . . . , N, where {hi}Ni=1 is any orthonormal basis for H and N = dimH ≤ ∞.
Since s(ω) ∈ H for all ω ∈ Ω , s(ω) has the representation

s(ω) =
N∑

i=1

(hi, s(ω))hi

for each ω ∈ Ω , and by Parseval’s relation,

||s(ω)||2 =
N∑

i=1

(hi, s(ω))2 < E

for each ω ∈ Ω .
It is shown in Appendix 1d that if {si}Ni=1 is any collection of scalar random

variables with
∑N

i=1 Es2
i < ∞, where N = dimH ≤ ∞, then there is a second-

order H-valued random variable s̃ such that (hi, s̃(ω)) = si(ω) for i = 1, . . . , N and
for all ω ∈ Ω with

∑N
i=1 s2

i (ω) <∞. Therefore, if {si}Ni=1 is any collection of scalar
random variables with

∑N
i=1 s2

i (ω) < E for all ω ∈ Ω , then there is a second-order
H-valued random variable s̃ such that (hi, s̃(ω)) = si(ω) for i = 1, . . . , N and for
all ω ∈ Ω , in which case s̃(ω) = ∑N

i=1 si(ω)hi for all ω ∈ Ω , and so by Parseval’s
relation, this s̃ is an HE-valued random variable.

Thus, a map s : Ω → H is an HE-valued random variable if, and only if,

s(ω) =
N∑

i=1

si(ω)hi

for all ω ∈ Ω , where {si}Ni=1 is a collection of scalar random variables with

N∑
i=1

s2
i (ω) < E

for all ω ∈ Ω , in which case
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si(ω) = (hi, s(ω))

for i = 1, . . . , N and for all ω ∈ Ω . In particular, |si(ω)| < E1/2 for i = 1, . . . , N
and for all ω ∈ Ω , which is a strong restriction on the scalar random variables
si = (hi, s). It implies immediately that the probability distribution functions

F(hi,s)(x) = P({ω ∈ Ω : (hi, s(ω)) ≤ x})

must satisfy

F(hi,s)(x) =
{

0 if x ≤ −E1/2

1 if x ≥ E1/2

for i = 1, . . . , N. Thus (hi, s) cannot be Gaussian-distributed, for instance, for any
i = 1, . . . , N. Also, since ‖s(ω)‖ < E1/2 for all ω ∈ Ω , the probability distribution
function

F||s||(x) = P({ω ∈ Ω : ||s(ω)|| ≤ x})

of the scalar random variable ‖s‖ must satisfy

F||s||(x) =
{

0 if x ≤ 0

1 if x ≥ E1/2 .

The characterization of HE-valued random variables given above will be used
in Sect. 5 to construct an HE-valued random variable st0 for the shallow-water
equations. This will guarantee directly that the random initial geopotential field is
positive.

4 The Principle of Energetic Consistency for Differential
Equations

4.1 Ordinary Differential Equations

Consider a non-linear system of ordinary differential equations

ds
dt
+ f(s, t) = 0 , (45)

where f : S1 × T1 → R
N , with S1 an open connected set in R

N , possibly all of R
N ,

and with T1 = [t0, T1] and 0 < T1 − t0 < ∞. Take H = R
N , with (·, ·) denoting

the Euclidean inner product, (g, h) = gTh for all g, h ∈ R
N , and ‖ · ‖ the Euclidean

norm, ‖h‖ = (hTh)1/2 for all h ∈ R
N .
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Assume that f is of class C(S1 × T1), i.e., that f is continuous on its domain of
definition S1 × T1. Assume also that f is bounded on S1 × T1:

||f(s, t)|| < C1

for some constant C1, for all s ∈ S1 and t ∈ T1. Note that the latter assumption fol-
lows from the former one if S1 ⊂ HE for some E < ∞, where HE was defined
in Eq. (44). Assume finally that f is Lipschitz continuous in its first argument,
uniformly in time, i.e., that there is a constant C2 such that

||f(r, t)− f(s, t)|| ≤ C2||r− s||

for all r, s ∈ S1 and t ∈ T1.
A real N-vector function s = s(t) defined on an interval T∗ = [t0, T∗], T∗ ∈

(t0, T1], is called a (continuous) solution of Eq. (45) if, for all t ∈ T∗, (i) s(t) ∈ S1,
(ii) s(t) is continuous, and (iii) s(t) satisfies Eq. (45) pointwise. It follows from the
continuity assumption on f that if s is a solution on an interval T∗, then ds/dt is
continuous on T∗, and so

d

dt
‖s‖2 = d

dt
(s, s) = 2

(
s,

ds
dt

)
= −2(s, f(s, t)) (46)

is also continuous on T∗, hence integrable on T∗. Similarly, if r and s are two
solutions on an interval T∗, then by the Schwarz inequality,

||r− s||
∣∣∣∣d||r− s||

dt

∣∣∣∣ = |(r− s, f(r, t)− f(s, t))| ≤ ||r− s|| ||f(r, t)− f(s, t)||

for all t ∈ T∗, and so by integrating it follows from the Lipschitz continuity
assumption that

||r(t)− s(t)|| ≤ eC2(t−t0)||r(t0)− s(t0)||

for all t ∈ T∗. Thus, if r(t0) = s(t0) then r(t) = s(t) for all t ∈ T∗: for each st0 ∈ S1
there exists at most one solution s(t) defined on an interval T∗, such that s(t0) = st0 .
The inequality also shows that if such a solution exists, then it depends continuously
on st0 , for all t ∈ T∗.

The continuity and boundedness assumptions on f together imply that, for each
st0 ∈ S1, there does exist a solution s(t) with s(t0) = st0 , and that it remains in
existence either until time t = T1 or the first time that the solution hits the boundary
∂S1 of S1, where f may not be defined, whichever is smaller (e.g. Coddington and
Levinson 1955, pp. 6, 15). Thus, if S1 = R

N , then the solution exists until time
T1. This time can be arbitrarily large, for instance if f is independent of time. More
generally, a minimum existence time can be found by noting that the solution s(t)
with s(t0) = st0 ∈ S1 must satisfy the integral equation
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s(t) = st0 −
∫ t

t0
f(s(τ ), τ ) dτ ,

and so

||s(t)− st0 || < C1(t − t0)

by the boundedness assumption on f, for as long as the solution exists. Denoting by
ρ(st0 ) the Euclidean distance from any st0 ∈ S1 to ∂S1,

ρ(st0 ) = inf
h∈∂S1

||h− st0 || ,

it follows that ‖s(t)− st0‖ < ρ(st0 ) if t − t0 ≤ ρ(st0 )/C1, and so the solution exists
on T∗ = [t0, T∗] for

T∗ = T∗(st0 ) = min(T1, t0 + ρ(st0 )/C1) .

Note that ρ(st0 ) > 0 for each st0 ∈ S1 since S1 is an open set, and therefore T∗ > t0.
The principle of energetic consistency requires a set S ∈ B(H) = B(RN) for the

initial data and a time interval T = [t0, T] such that, for every st0 ∈ S, the corre-
sponding solution exists on T , i.e., every solution must exist for the same minimum
amount of time T − t0 > 0, independently of the location of st0 ∈ S. If S1 = R

N ,
then take S = R

N and T = [t0, T1]. Otherwise, let S be any open set in R
N which is

contained in the interior of S1, and denote by ρS the minimum Euclidean distance
from the boundary of S to that of S1. Then

ρ(st0 ) > ρS = inf
s∈S
ρ(s) > 0

for all st0 ∈ S, and setting

T = TS = min(T1, t0 + ρS/C1)

and T = T (S) = [t0, T], it follows that the unique solution s(t) corresponding to
each st0 ∈ S exists for all t ∈ T . Denoting this solution by st = Nt,t0 (st0 ), it follows
that Nt,t0 is defined uniquely on S, as a continuous map from S into H = R

N , for
all t ∈ T .

It follows from Eq. (46) that the solution operator Nt,t0 is conservative if

(s, f(s, t)) = 0

for all s ∈ S1 and t ∈ T . More generally, it follows that if there is a constant C3
such that

|(s, f(s, t))| ≤ C3||s||2
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for all s ∈ S1 and t ∈ T , then Nt,t0 is bounded, with

||st|| = ||Nt,t0 (st0 )|| ≤ eC3(t−t0)||st0 ||

for all t ∈ T . Note that if f(s, t) depends linearly on s near the origin of coordinates
0 ∈ R

N , or if 0 �∈ S1, then by the boundedness assumption on f there is a constant
C3 such that ‖f(s, t))‖ ≤ C3‖s‖ for all s ∈ S1 and t ∈ T , so that by the Schwarz
inequality,

|(s, f(s, t))| ≤ ||s|| ||f(s, t))|| ≤ C3||s||2

for all s ∈ S1 and t ∈ T , and therefore Nt,t0 is bounded for all t ∈ T .

4.2 Symmetric Hyperbolic Partial Differential Equations

4.2.1 The Deterministic Initial-Value Problem

Consider now a non-linear system of partial differential equations

∂s
∂t
+Gs = 0 , (47)

where G = G(s) = G(s, x, t) is a linear differential operator of first order in space
variables x = (x1, . . . , xd)T ,

G =
d∑

j=1

Aj(s, x, t)
∂

∂xj
+ Ad+1(s, x, t) ,

and A1, . . . , Ad+1 are real n × n matrices. For simplicity assume that the d-
dimensional spatial domain D of the problem is

D = {x ∈ R
d : |xj| ≤ Lj, j = 1, . . . , d} ,

with periodic boundary conditions at the endpoints xj = ±Lj, j = 1, . . . , d. Consider
endpoint xj = Lj to be identified with endpoint xj = −Lj, for each j = 1, . . . , d, so
that a continuous function on D satisfies the periodic boundary conditions automat-
ically. (Spherical geometry will be treated in Sect. 5.) Take H = L2(D), the Hilbert
space of real, Lebesgue square-integrable n-vectors on D, with inner product

(g, h) =
∫

D
gT (x)h(x) dx1 · · · dxd

for all g, h ∈ L2(D), and corresponding norm ‖h‖ = (h, h)1/2 for all h ∈ L2(D).
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Assume that the matrices A1, . . . , Ad+1 are defined on all of R
n×D×T1, where

T1 = [t0, T1] and 0 < T1 − t0 < ∞. Assume further that each matrix is of class
C∞(Rn ×D× T1), i.e., that all of the matrix elements and all of their partial deriva-
tives are continuous functions on R

n × D × T1 and satisfy the periodic boundary
conditions in the space variables. Assume finally that A1, . . . , Ad (but not Ad+1) are
symmetric matrices.

A real n-vector function s = s(x, t) defined on D × T∗, with T∗ = [t0, T∗] and
T∗ ∈ (t0, T1], is called a classical solution of the symmetric hyperbolic system
(Eq. 47) if (i) s ∈ C1(D) ∩ C1(T∗) and (ii) s satisfies Eq. (47) pointwise in D × T∗.
The condition s ∈ C1(D) ∩ C1(T∗) means that the components of the vector s and
their first time and space derivatives are continuous on D for each fixed t ∈ T∗, are
continuous on T∗ for each fixed x ∈ D, and satisfy the periodic boundary conditions.
The initial condition for a classical solution is a real n-vector function st0 ∈ C1(D).

Suppose for the moment that s = s(x, t) is a classical solution on D× T∗. Then

d

dt
‖s‖2 = d

dt
(s, s) = 2

(
s,
∂s
∂t

)
= −2(s, G(s)s) (48)

is continuous on T∗. Also, by using the symmetry of A1, . . . , Ad and the periodic
boundary conditions, an integration by parts gives

(s, G(s)s) =
∫

D
sT (x, t)B(x, t)s(x, t) dx1 · · · dxd (49)

for all t ∈ T∗, where

B(x, t) = Ad+1(s, x, t)− 1
2

d∑
j=1

dAj(s, x, t)

dxj

and

dAj

dxj
=

n∑
i=1

∂Aj

∂si

∂si

∂xj
+ ∂Aj

∂xj
.

Further, since s ∈ C1(D)∩C1(T∗), the components of s and their first partial deriva-
tives with respect to the space variables are bounded functions on D × T∗. Define
β0 = β0(s) by

β0 = max
D×T∗

n∑
i=1

|si(x, t)| ,

and βj = βj(s) by
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βj = max
D×T∗

n∑
i=1

∣∣∣∣∂si(x, t)

∂xj

∣∣∣∣ ,

for j = 1, . . . , d. Then it follows from Eq. (49) and the continuity assumption on
the matrices A1, . . . , Ad+1 that there is a continuous function C1 = C1(β0, . . . ,βd)
such that

|(s, G(s)s)| ≤ C1||s||2

for all t ∈ T∗. Equation (48) then implies that

‖s(·, t)‖ ≤ eC1(t−t0)‖s(·, t0)‖ (50)

for all t ∈ T∗.
A similar argument shows that if r and s are two classical solutions on D × T∗,

then there is a continuous function C2 = C2(β0(r), . . . ,βd(r),β0(s), . . . ,βd(s)) such
that

‖r(·, t)− s(·, t)‖ ≤ eC2(t−t0)‖r(·, t0)− s(·, t0)‖ (51)

for all t ∈ T∗. Therefore, for each st0 ∈ C1(D), there exists at most one classical
solution s on D × T∗ such that s(x, t0) = st0 (x) for all x ∈ D. This inequality does
not imply that if such a solution exists, then it depends continuously on st0 in the
norm ‖·‖, unless C2 can be made to depend only on rt0 and st0 . This is accomplished
by means of the existence theory itself, discussed next.

Denote by Hk = Hk(D), for k = 0, 1, . . ., the Sobolev space of real n-vectors on
D with k Lebesgue square-integrable derivatives on D. The spaces Hk are Hilbert
spaces, with inner product

(g, h)Hk =
k∑

l=0

∑
l1+···+ld=l

(Dlg, Dlh)

for all g, h ∈ Hk, where

Dl = ∂ l

∂xl1
1 · · · ∂xld

d

,

and corresponding norm ‖h‖Hk = (h, h)1/2
Hk for all h ∈ Hk. Note that Hm ⊂ Hk ⊂

H0 = H for 0 ≤ k ≤ m. The Sobolev lemma (e.g. Kreiss and Lorenz 1989,

Appendix 3, pp. 371–387) says that if h ∈ Hk and k ≥
[

d
2

]
+ 1, where [y] denotes

the largest integer less than or equal to y, then h is a bounded function on D, with
bound
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max
x∈D

n∑
i=1

|hi(x)| ≤ αk‖h‖Hk , (52)

where the constant αk depends on L1, . . . , Ld but not on h. It follows that if h ∈ Hk

and k ≥
[

d
2

]
+ l + 1 for some positive integer l, then all of the lth-order partial

derivatives of h are bounded functions on D, with bound

max
x∈D

n∑
i=1

|Dlhi(x)| ≤ αk‖h‖Hk , (53)

and in particular, h ∈ Cl−1(D), since otherwise the lth-order partial derivatives of
h are not defined as bounded functions. Thus, for any non-negative integer l, Hk =
Hk(D) ⊂ Cl(D) if k ≥

[
d
2

]
+ l+ 2.

Suppose now that st0 ∈ Hk with k ≥
[

d
2

]
+ 3. According to the existence theory

for linear and quasi-linear symmetric hyperbolic systems (e.g. Courant and Hilbert
1962, pp. 668–676), there is a time interval T∗ ⊂ T1 for which Eq. (47) has a solution
s ∈ Hk ∩ C1(T∗) with s(x, t0) = st0 (x) for all x ∈ D, which is the classical solution
since Hk ⊂ C1(D), and the solution remains in existence as long as t ≤ T1 and
s(·, t) ∈ Hk. This is completely analogous to the situation for ordinary differential
equations: the first time t such that the solution s(·, t) �∈ Hk, if such a time is reached,
is the first time the solution hits the “boundary” of Hk, ‖s(·, t)‖Hk = ∞. Typically
the first partial derivatives of the classical solution become unbounded in finite time,
even if st0 ∈ C∞(D) (e.g. Lax 1973, Theorem 6.1, p. 37).

A minimum existence time for the solution s ∈ Hk ∩ C1(T∗), k ≥
[

d
2

]
+ 3, can

be found in the following way. For any s ∈ Hk ∩ C1(T∗),

d

dt
||s‖2

Hk = −2(s, G(s)s)Hk

is continuous on T∗, as in Eq. (48). An integration by parts using the symmetry of
the matrices A1, . . . , Ad, along with the Sobolev inequalities of Eqs. (52) and (53),
shows that there is a function φ ∈ C1([0,∞)) such that

|(s, G(s)s)Hk | ≤ φ(||s‖Hk )||s‖Hk ;

see Kreiss and Lorenz (1989, pp. 190–196) for details. It follows that the solution
s(·, t) exists in Hk as long as t ≤ T1 and the solution y(t) of the ordinary differential
equation dy/dt = φ(y) with y(t0) = ‖st0‖Hk remains finite. Further, there is a time
T2 > t0 depending continuously on ‖st0‖Hk , T2 = T2(‖st0‖Hk ) ≤ T1, for which
‖s(·, t)‖Hk can be bounded in terms of ‖st0‖Hk , say



The Principle of Energetic Consistency in Data Assimilation 177

||s(·, t)‖Hk ≤
√

2 ||st0‖Hk ,

for all t ∈ [t0, T2] (e.g. Kreiss and Lorenz 1989, Lemma 6.4.4, p. 196). Then by the
continuity of T2(‖st0‖Hk ), it follows that if st0 is restricted to be in any bounded set
in Hk, say if st0 ∈ Hk

E for some E <∞, where

Hk
E = {h ∈ Hk : ||h‖2

Hk < E} ,

then T2 becomes independent of st0 (but depends on E), and the solution s
corresponding to any st0 ∈ Hk

E satisfies

||s(·, t)‖2
Hk < 2E

for all t ∈ [t0, T2]. Also, since Hk
E is open as a set in Hk, and since ‖h‖ ≤ ‖h‖Hk for

all h ∈ Hk, Hk
E is open as a set in L2(D), and therefore Hk

E ∈ B(L2(D)).

4.2.2 The Solution Operator

Thus take S = Hk
E for any E <∞ and k ≥

[
d
2

]
+ 3, and take T = T (S) = [t0, T2].

Then S ∈ B(H) = B(L2(D)), and the unique classical solution s(·, t) corresponding
to each st0 ∈ S exists in Hk

2E ⊂ Hk ⊂ H = L2(D) for all t ∈ T . Denoting this
solution by st = Nt,t0 (st0 ), it follows that Nt,t0 is defined uniquely on S, as a map
from S into H, for all t ∈ T . Further, since st ∈ Hk

2E for all t ∈ T , it follows from
the Sobolev inequalities that the function C2 in Eq. (51) depends only on E and αk,
and therefore the map Nt,t0 is continuous in the norm ‖ · ‖, for all t ∈ T . Note that
S = Hk

E ⊂ HE, where HE was defined in Eq. (44), since ‖h‖ ≤ ‖h‖Hk for all
h ∈ Hk. It was necessary to define S as a bounded set in Hk, and therefore as a
bounded set in L2(D).

The solution operator Nt,t0 is bounded not only as a map from S into H, with the
function C1 in Eq. (50) now being a constant depending only on E and αk, but also
as a map from S into Hk, with

||st‖Hk = ||Nt,t0 (st0 )‖Hk ≤
√

2 ||st0‖Hk

for all t ∈ T . According to Eq. (48), the solution operator is conservative if the
differential operator G is skew-symmetric,

(s, G(r)s) = 0

for all r(·, t), s(·, t) ∈ Hk and t ∈ T . This conservation condition is met for an
important class of symmetric hyperbolic systems (Lax 1973, p. 31), but often a
change of dependent variables which destroys symmetry of the matrices A1, . . . , Ad

is necessary to obtain conservation in H = L2(D), as will be the case for the shallow-
water equations.
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It has been shown that, for each st0 ∈ S = Hk
E, with E < ∞, k ≥

[
d
2

]
+ l + 2

and l ≥ 1, the unique corresponding solution s = s(x, t) is of class Cl(D) ∩ C1(T ),
for T = [t0, T] and an appropriately defined T depending on αk and E, and that
‖s(·, t)‖2

Hk < 2E for all t ∈ T . It is important to have a condition to guarantee

further that s ∈ Cl(D× T ), particularly for the shallow-water example. To this end,
denote by L2(D×T ) the Hilbert space of real, Lebesgue square-integrable n-vectors
on D× T , with inner product

(g, h)T =
∫ T

t0
(g, h) dt

for all g, h ∈ L2(D × T ), and corresponding norm ‖h‖T = (h, h)1/2
T for all h ∈

L2(D × T ). Also, denote by Hm(D × T ), for m = 0, 1, . . ., the Sobolev space of
real n-vectors on D × T with m Lebesgue square-integrable mixed space and time
partial derivatives on D × T , with the Sobolev inner product and norm. Thus, for

any non-negative integer l, Hm(D × T ) ⊂ Cl(D × T ) if m ≥
[

d+1
2

]
+ l + 2.

Now, the differential equations (Eq. 47) can be used to express all mixed space-time
partial derivatives of the solution up to any order m in terms of pure spatial partial
derivatives up to order m. But

∫ T

t0
||s(·, t)‖2

Hk dt < 2E(T − t0) <∞

since ‖s(·, t)‖2
Hk < 2E for all t ∈ T , and therefore s ∈ Hk(D × T ). Thus, for each

st0 ∈ S = Hk
E, with E <∞, k ≥

[
d+1

2

]
+ l+ 2 and l ≥ 1, the unique corresponding

solution s = s(x, t) is of class Cl(D× T ).

4.2.3 The Stochastic Initial-Value Problem

With H = L2(D), S = Hk
E, E < ∞, k ≥

[
d
2

]
+ l + 2 and l ≥ 1, let T = [t0, T]

and Nt,t0 be as defined in Sect. 4.2.2, let t ∈ T , and suppose that st0 is an S-valued
random variable. Since S ⊂ HE, it follows from the discussion of Sect. 3.4 that st0 is
a second-order S-valued random variable. Therefore by Theorem 1, st = Nt,t0 (st0 )
is a second-order H-valued random variable, with mean st ∈ H and covariance
operator Pt : H→ H, which are related by

||st||2 + trPt ≤ e2C1(t−t0)(||st0 ||2 + trPt0 ) ,

where C1 is the constant in Eq. (50). In fact,

||st(ω)||2 ≤ ||st(ω)||2Hk ≤ 2||st0 (ω)||2Hk < 2E
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for all ω ∈ �, and so st is a second-order Hk-valued random variable with

E ||st||2 = ||st||2 + trPt ≤ E ||st‖2
Hk ≤ 2E ||st0‖2

Hk < 2E .

The covariance operator Pt can be expressed in the following tangible way, which
will lead also to a simple expression for trPt. Since Pt is a trace class operator, Pt

is also a Hilbert-Schmidt operator. Since H = L2(D) and Pt : H → H, it follows
(e.g. Reed and Simon 1972, Theorem VI.23, p. 210) that there is a real n× n matrix
function Pt ∈ L2(D× D), called the covariance matrix of st, such that

(Pth)(x) =
∫

D
Pt(x, y)h(y) dy

for all h ∈ H, where dy = dy1 · · · dyd, and moreover, that

∫
D

∫
D

tr Pt(x, y)PT
t (x, y) dx dy =

∞∑
i=1

λ2
i (t) <∞ , (54)

where tr A denotes the trace of a matrix A and {λi(t)}∞i=1 are the eigenvalues of the
covariance operator Pt. Thus

E(g, st − st)(h, st − st) = (g,Pth) =
∫

D

∫
D

gT (x)Pt(x, y)h(y) dx dy (55)

for all g, h ∈ H. Since Pt is self-adjoint, the covariance matrix Pt has the symmetry
property PT

t (x, y) = Pt(y, x) for all x, y ∈ D.
Now let {h̃i(·, t)}∞i=1 denote the orthonormal eigenvectors (eigenfunctions) of Pt

corresponding to the eigenvalues {λi(t)}∞i=1,

Pth̃i(·, t) = λi(t)h̃i(·, t)

for i = 1, 2, . . .. The eigenvalues are all non-negative since the covariance operator
is positive semidefinite, and the eigenvectors form an orthonormal basis for H since
the covariance operator is Hilbert-Schmidt. From Eq. (55) and the orthonormality
of the eigenvectors, it follows that

∫
D

∫
D

h̃
T
j (x, t)Pt(x, y)h̃i(y, t) dx dy = (h̃j(·, t),Pth̃i(·, t)) = λi(t)δij

for i, j = 1, 2, . . ., where δij is the Kronecker delta. Therefore, Pt has the
representation

Pt(x, y) =
∞∑

i=1

λi(t)h̃i(x, t)h̃
T
i (y, t) , (56)
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where the convergence is in L2(D × D) as indicated in Eq. (54). Since the
eigenvectors form an orthonormal basis for H and since Pt is trace class,

trPt =
∞∑

i=1

λi(t) <∞ .

But according to Eq. (56),

tr Pt(x, x) =
∞∑

i=1

λi(t)h̃
T
i (x, t)h̃i(x, t) ,

and therefore

∫
D

tr Pt(x, x) dx =
∞∑

i=1

λi(t)

by the normality of the eigenvectors. Thus,

trPt =
∫

D
tr Pt(x, x) dx . (57)

Now recall that st is a second-order Hk-valued random variable. Therefore st ∈
Hk, Pt maps Hk into Hk, and

E ||st‖2
Hk = ||st‖2

Hk + trPt .

Also, st ∈ Cl(D) since Hk ⊂ Cl(D). Further, since Pt maps Hk into Hk, the
eigenvectors of Pt form an orthonormal basis for Hk, and therefore they are all
in Cl(D).

Finally, let {hi}∞i=1 be an orthonormal basis for Hk. Since st0 is an Hk
E-valued

random variable, it follows from the discussion of Sect. 3.4 that

st0 (ω) =
∞∑

i=1

(hi, st0 (ω))Hk hi

for all ω ∈ Ω , with

||st0 (ω)||2Hk =
∞∑

i=1

(hi, st0 (ω))2
Hk < E .

for all ω ∈ Ω . It follows also that if {si}∞i=1 is any collection of scalar random
variables with
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∞∑
i=1

s2
i (ω) < E

for all ω ∈ Ω , then
∑∞

i=1 si(ω)hi is an Hk
E-valued random variable.

5 The Shallow-Water Equations

The global non-linear shallow-water equations written for the zonal and meridional
velocity components and geopotential, u, v and Φ, respectively, are the system

∂u

∂t
+ V · ∇u−

(
f + u

a
tanφ

)
v+ 1

a cosφ

∂Φ

∂λ
= 0

∂v

∂t
+ V · ∇v+

(
f + u

a
tanφ

)
u+ 1

a

∂Φ

∂φ
= 0

∂Φ

∂t
+ V · ∇Φ +Φ∇ · V = 0 ,

where V is the wind vector, φ the latitude, λ the longitude, a the Earth radius, and
f the Coriolis parameter. The change of variable Φ = w2/4 yields the symmetric
hyperbolic system

∂s
∂t
+

[
A

1

a cosφ

∂

∂λ
+ B

1

a

∂

∂φ
+ C

]
s = 0 , (58)

where s = (u, v, w)T ,

A =
⎡
⎣ u 0 1

2 w
0 u 0

1
2 w 0 u

⎤
⎦ ,

B =
⎡
⎣ v 0 0

0 v 1
2 w

0 1
2 w v

⎤
⎦ ,

C =
⎡
⎣ 0 − (

f + u
a tanφ

)
0

f + u
a tanφ 0 0
0 − 1

2
w
a tanφ 0

⎤
⎦ .

Now let H = L2(S), the Hilbert space of real square-integrable 3-vectors on
the sphere of radius a, with inner product (·,·) and corresponding norm ‖ · ‖.
Appendix 2b establishes a Sobolev-type lemma for the family of Hilbert spaces
{Φp = Φp(S), p ≥ 0},

Φp = {h ∈ L2(S) : ||(I −�)ph|| <∞} ,
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where � is the Laplacian operator on the sphere, with inner product

(g, h)p = ((I −�)pg, (I −�)ph)

for all g, h ∈ Φp, and corresponding norm ‖h‖p = (h, h)1/2
p for all h ∈ Φp. Thus if

h ∈ Φp and p is a positive integer or half-integer, then all partial derivatives of the
components of h up to order 2p are square-integrable. The spacesΦp are convenient
for spherical geometry since the Laplacian operator is coordinate-free. The exis-
tence and uniqueness theory of Sect. 4.2 based on Sobolev spaces and inequalities
carries over to the sphere using the spaces Φp for integers and half-integers p.

Tentatively let

S = {h ∈ Φ2 : ||h‖2
2 < E}

for some E <∞. It follows from Appendix 2b that

S ⊂ Φ2 ⊂ C1(S) ,

as expected from Sect. 4.2.1. It follows from Sect. 4.2.2 that for the symmetric
hyperbolic system (Eq. 58) there is a time interval T = T (S) = [t0, T] such that,
corresponding to each st0 ∈ S, there exists a unique classical solution st ∈ Φ2 for
all t ∈ T , and further that s ∈ C1(S× T ).

However, since w = 2
√
Φ, this solution does not solve the original shallow-water

system unless w ≥ 0 on S× T . The differential equation for w is

∂w

∂t
+ V · ∇w+ 1

2 w∇ · V = 0 ,

and therefore along the curves x = x(t) = (λ(t),φ(t)) defined by

dx
dt
= V(x, t) , (59)

the solution w satisfies the ordinary differential equation

dw

dt
+ 1

2 w∇ · V = 0 .

This guarantees that if w > 0 initially, then w > 0 for all t ∈ T . Thus redefine S as

S = {h ∈ Φ2 : ||h‖2
2 < E} ∩ {(u, v, w) ∈ Φ2 : w > 0} .

Note that the latter set is open in L2(S) since it is open in Φ2, and therefore S ∈
B(L2(S)) since the intersection of two open sets is open. Also note that the initial-
value problem for Eq. (59) is well-posed since V ∈ C1(S× T ).

The classical solutions of the shallow-water equations satisfy the energy equation
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∂

∂t

[
Φ(u2 + v2)+Φ2

]
+ ∇ ·

{[
Φ(u2 + v2)+ 2Φ2

]
V

}
= 0 .

This suggests introducing a new set of dependent variables, the energy variables
s = (α,β,Φ)T with α = uΦ1/2 and β = vΦ1/2. In the energy variables, the physical
total energy is just 1

2‖s‖2, and it is conserved. It can be verified that in terms of the
energy variables, the shallow-water system can be written as

∂s
∂t
+Gs = 0 , (60)

where G = G(s) has the form

G = A
1

a cosφ

∂

∂λ
+ B

1

a

∂

∂φ
+ 1

2

1

a cosφ

(
∂A
∂λ

+ ∂B cosφ

∂φ

)
+ C ,

with

A =
⎡
⎣αΦ

−1/2 0 4
5Φ

1/2

0 αΦ−1/2 0
4
5Φ

1/2 0 2
5αΦ

−1/2

⎤
⎦ ,

B =
⎡
⎣βΦ

−1/2 0 0
0 βΦ−1/2 4

5Φ
1/2

0 4
5Φ

1/2 2
5βΦ

−1/2

⎤
⎦ ,

C =
⎡
⎣ 0 −(f + 1

aαΦ
−1/2 tanφ) 0

f + 1
aαΦ

−1/2 tanφ 0 2
5

1
aΦ

1/2 tanφ
0 − 2

5
1
aΦ

1/2 tanφ 0

⎤
⎦ .

For the system given by Eq. (60) to yield the solution of the original shallow-
water system requires being able to recover u = αΦ−1/2 and v = βΦ−1/2 from α,
β and Φ. Now, products of scalars in Φ2 are also scalars in Φ2 since the elements
of Φ2 are all bounded, continuous functions. But Φ−1/2 is not in Φ2 unless Φ is
bounded from below by a positive constant. Thus for the energy variables, the initial
space S is defined as S = Sγ , where

Sγ = {h ∈ Φ2 : ||h‖2
2 < E} ∩ {(α,β,Φ) ∈ Φ2 : Φ > γ }

for some constant γ > 0. It follows for the energy variables that for all t ∈ T , the
unique solution st corresponding to each st0 ∈ Sγ is in Sδ for some constant δ > 0.
The symmetry of the matrices A and B, the skew-symmetry of the matrix C, and
the form of the differential operator G imply immediately that, for all δ > 0, G is a
skew-symmetric operator on Sδ:

(s, G(r)s) = 0
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for all r, s ∈ Sδ . This of course implies energy conservation, as noted in Sect. 4.2.2.
Now suppose for the energy variables that st0 is an Sγ -valued random variable.

Thus st0 is also second-order, and it follows from Theorem 1 that st = Nt,t0 (st0 ) is
a second-order L2(S)-valued random variable, with mean st ∈ L2(S) and covariance
operator Pt : L2(S) → L2(S), which are related by

||st||2 + trPt = ||st0 ||2 + trPt0 < E

for all t ∈ T . The results of Sect. 4.2.3 show further that, for all t ∈ T , st ∈ Φ2 ⊂
C1(S),

E ||st||2 = ||st||2 + trPt ≤ E ||st‖2
2 < E ,

and

trPt =
∫

S
tr Pt(x, x) a2 cosφ dφ dλ ,

where Pt is the covariance matrix of st.
The discussion at the end of Sect. 4.2.3 gives the general form of Φ2-valued

random variables with bounded Φ2 norm. The Sobolev-type inequality (Eq. 73) of
Appendix 2b then suggests a way of ensuring that such a random variable st0 is an
Sγ -valued random variable. Let

Φt0 (ω) = Φ t0 +Φ ′t0 (ω)

for all ω ∈ Ω . The series expansions in Appendix 2b give the form of every scalar
in Φ2. Suppose that Φ t0 ∈ Φ2 with Φ t0 > μ > γ > 0. Equation (73) shows how to
ensure that |Φ ′t0 (ω)| < μ − γ for all ω ∈ Ω , and therefore that Φt0 (ω) > γ for all
ω ∈ Ω .

6 Concluding Remarks

This chapter has formulated the principle of energetic consistency (PEC), demon-
strated its validity for a wide range of non-linear dynamical systems, and illustrated
its application to distinguishing between artificial and genuine uncertainties in
ensemble Kalman filter (EnKF) methods. It has been argued that because EnKF
methods rely at least tacitly on the minimum variance optimality criterion, it is nat-
ural to choose the state variables in EnKF schemes to be energy variables for the
dynamical system being observed. This requires only that the observation operators
be expressed in terms of energy variables. Once the state variables are chosen to be
energy variables, the PEC can be applied.
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The PEC has been used to show that some of the assumptions and approximations
made in EnKF schemes give rise to artificial energetic sources or sinks of uncer-
tainty, while others are energetically neutral. It has also been shown that the PEC
can be implemented numerically to determine the magnitude of artificial sources
and sinks, which is problem-dependent.

The PEC was used to show, in particular, that the spurious numerical dissipation
typical of discrete dynamical models generally gives rise to an artificial energetic
sink of uncertainty, which can easily result in exponential decay of total variance –
ensemble collapse – if left untreated. The simple hypotheses under which this
behaviour was shown to occur indicates that this is a generic problem, not only for
ensemble filters, but for filtering schemes in general. That this has not yet been obvi-
ous for EnKF schemes is perhaps because such artificial sinks of uncertainty cannot
be clearly identified and distinguished from genuine ones unless the state variables
are chosen to be energy variables. Since the state variables have not traditionally
been chosen to be energy variables, such sinks have usually been compensated for
by an artificially large “model error” term or by “covariance inflation.”

The general remedy suggested in Sect. 2.4.4 for this spurious loss of variance
is simply to pre- and post-multiply the ensemble conditional covariance matrix by
appropriate operators that directly counteract the spurious numerical dissipation,
according to Eq. (37). Weak-constraint, long-window 4D-Var methods approximate
the estimation error covariance evolution of the extended Kalman filter (Cox 1964,
Eqs. 40, 41, 42, and 43; Fisher et al. 2005). To the extent that the covariance matrix
of the extended Kalman filter approximates the conditional covariance matrix, Eq.
(37) then applies to long-window 4D-Var methods, and could be implemented in
4D-Var simply by pre-multiplying the tangent linear model by the matrix I−�tkD,
where the matrix D is obtained by linearizing about the 4D-Var trajectory instead
of the ensemble mean state as in Eq. (31). Such a resolution of the variance loss
problem may be necessary for weak-constraint 4D-Var methods (Trémolet 2006,
2007) to function properly as filters when used with a long time window. It should
be noted, however, that as an approximation to the extended Kalman filter rather than
the full second-moment closure dynamics, 4D-Var methods omit the so-called non-
linear bias term in the second-moment closure equation for the mean state (Cohn
1993, pp. 3131–3132), and therefore lack energetic consistency (Cohn 2009).

Among the results of the more theoretical sections of this chapter that may
have important practical implications for data assimilation is the breakdown of the
Gaussian hypothesis. It has been shown that the stochastic initial-value problem for
symmetric hyperbolic systems is well-posed under natural hypotheses, but that in
general the state cannot be Gaussian-distributed at any time. This result is due not
to the fact that there are often state variables that are restricted to be positive, and
which therefore can only be Gaussian-distributed as an approximation, sometimes a
good one, but is rather a consequence of well-posedness and of boundedness of the
solution operator. Also, the usual Kalman-type observation update formula, which
for its probabilistic interpretation is based on an assumption that the conditional
mean state is Gaussian-distributed, lacks energetic consistency except in the sense
of expectation. Similarly, the probabilistic interpretation of 4D-Var is based on an
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assumption that the initial state is Gaussian-distributed. Thus it will be worthwhile
to try to formulate generalized observation updates for use in EnKF methods, and
also generalized versions of 4D-Var methods. Data assimilation is still a young field,
and it is clear that much work lies ahead.
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Appendix 1: Random Variables Taking Values in Hilbert Space

Appendix 1a defines Hilbert space-valued random variables and gives some of their
main properties. Appendices 1b–1d give the definition, main properties and gen-
eral construction, respectively, of Hilbert space-valued random variables of second
order. Definitions of basic terms used in this appendix are provided in Appendix 3.
Further treatment of Hilbert space-valued random variables, and of random vari-
ables taking values in more general spaces, can be found in the books of Itô (1984)
and Kallianpur and Xiong (1995).

Hilbert space-valued random variables, like scalar random variables, are defined
with reference to some probability space (Ω ,F , P), with � the sample space, F
the event space and P the probability measure. Thus throughout this appendix, a
probability space (Ω ,F , P) is considered to be given. The expectation operator is
denoted by E . It is assumed that the given probability space is complete.

A real, separable Hilbert space H is also considered to be given. The inner prod-
uct and corresponding norm on H are denoted by (·, ·) and ‖ · ‖, respectively. The
Borel field generated by the open sets in H is denoted by B(H), i.e., B(H) is the
smallest σ -algebra of sets in H that contains all the open sets in H. Recall that
every separable Hilbert space has a countable orthonormal basis, and that every
orthonormal basis of a separable Hilbert space has the same number of elements
N ≤ ∞, the dimension of the space. For notational convenience it is assumed in this
appendix that H is infinite-dimensional, with {hi}∞i=1 denoting an orthonormal basis
for H. The results of this appendix hold just as well in the finite-dimensional case,
by taking {hi}Ni=1, N <∞, as an orthonormal basis for H, and by replacing infinite
sums by finite ones.

1a H-Valued Random Variables

Recall that if X and Y are sets, f is a map from X into Y, and B is a subset of Y, then
the set
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f−1[B] = {x ∈ X : f(x) ∈ B}

is called the inverse image of B (under f). Recall also that the event space F of
the probability space (Ω ,F , P) consists of the measurable subsets of Ω , which are
called events.

Let (Y , C) be a measurable space, i.e., Y is a set and C is a σ -algebra of subsets of
Y. A map f : Ω → Y is called a (Y , C)-valued random variable if the inverse image
of every set C in the collection C is an event, i.e., if f−1[C] ∈ F for every set C ∈ C
(e.g. Itô 1984, p. 18; Kallianpur and Xiong 1995, p. 86; see also Reed and Simon
1972, p. 24).

Thus an (H,B(H))-valued random variable is a map s : Ω → H such that

{ω ∈ Ω : s(ω) ∈ B} ∈ F

for every set B ∈ B(H). Hereafter, an (H,B(H))-valued random variable is called
simply an H-valued random variable, with the understanding that this always means
an (H,B(H))-valued random variable. An equivalent definition of H-valued random
variables, expressed in terms of scalar random variables, is given in Appendix 1b.

Let S be a non-empty set in B(H). It follows that the collection BS (H) of all sets
in B(H) that are subsets of S,

BS (H) = {B ∈ B(H) : B ⊂ S} ,

is a σ -algebra of subsets of S, namely, the collection of all sets C of the form C =
B∩S with B ∈ B(H). Hence (S ,BS (H)) is a measurable space, and an (S ,BS (H))-
valued random variable is a map s : Ω → S such that

{ω ∈ Ω : s(ω) ∈ C} ∈ F

for every set C ∈ BS (H). Hereafter, an (S,BS (H))-valued random variable is called
simply an S-valued random variable, with the understanding that this always means
an (S,BS (H))-valued random variable.

It follows by definition that every S-valued random variable is an H-valued ran-
dom variable, for if s : Ω → S and s−1[C] ∈ F for every set C ∈ BS (H), then
s−1[B] = s−1[B ∩ S] ∈ F for every set B ∈ B(H). Also, every H-valued random
variable taking values only in S is an S-valued random variable, for if s : Ω → S
and s−1[B] ∈ F for every set B ∈ B(H), then in particular s−1[C] ∈ F for every set
C ∈ BS (H).

Finally, let N be a continuous map from S into H. It follows that if s is an S-
valued random variable, then N(s) is an H-valued random variable, i.e. that

{ω ∈ Ω : N(s(ω)) ∈ B} ∈ F

for every set B ∈ B(H). To see this, note first that
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{ω ∈ Ω : N(s(ω)) ∈ B} = s−1[N−1[B]] ,

and consider the class of sets E in H such that N−1[E] ∈ BS (H). It can be checked
that this class of sets is a σ -algebra. Moreover, this class contains all the open sets
in H, because if O is an open set in H then N−1[O] is also an open set in H by the
continuity of N (e.g. Reed and Simon 1972, p. 8) and so

C = N−1[O] = N−1[O] ∩ S ∈ BS (H) .

But B(H) is the smallest σ -algebra containing all the open sets in H, hence this
class includes B(H), i.e., N−1[B] ∈ BS (H) for every set B ∈ B(H). If s is an S-
valued random variable then s−1[C] ∈ F for every set C ∈ BS (H), and therefore
s−1[N−1[B]] ∈ F for every set B ∈ B(H), i.e., N(s) is an H-valued random variable.

1b Second-Order H-Valued Random Variables

If s is an H-valued random variable and h ∈ H, then by the Schwarz inequality,

|(h, s(ω))| ≤ ‖h‖ ‖s(ω)‖ <∞ (61)

for all ω ∈ Ω , so for each fixed h ∈ H, the inner product (h,s) is a map from � into
R. In fact, it can be shown (e.g. Kallianpur and Xiong 1995, Corollary 3.1.1(b), p.
87) that a map s : Ω → H is an H-valued random variable if, and only if, (h,s) is a
scalar random variable for every h ∈ H. That is, a map s : Ω → H is an H-valued
random variable if, and only if,

{ω ∈ Ω : (h, s(ω)) ≤ α} ∈ F

for every h ∈ H and every α ∈ R.
It follows that if s is an H-valued random variable, then ‖s‖2 is a scalar random

variable, that is,

{ω ∈ Ω : ||s(ω)||2 ≤ α} ∈ F

for every α ∈ R. To see this, observe that if s is an H-valued random variable, then
(hi, s) for i = 1, 2, . . . are scalar random variables, hence

sn =
n∑

i=1

(hi, s)2

are scalar random variables with 0 ≤ sn ≤ sn+1 for n = 1, 2, . . ., and by Parseval’s
relation,
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||s(ω)||2 =
∞∑

i=1

(hi, s(ω))2 = lim
n→∞ sn(ω)

for all ω ∈ Ω . Thus ‖s‖2 is the limit of an increasing sequence of non-negative
scalar random variables, and is therefore a (non-negative) scalar random variable.

If a map s : Ω → H is an H-valued random variable, then since ‖s‖2 ≥ 0 is
a scalar random variable, it follows that E‖s‖2 is defined and either E‖s‖2 = ∞ or
E‖s‖2 <∞. An H-valued random variable s is called second-order if E‖s‖2 <∞.

1c Properties of Second-Order H-Valued Random Variables

In this subsection let s : Ω → H be a second-order H-valued random variable.
Since E‖s‖2 <∞, it follows from Eq. (61) that

E(h, s)2 ≤ ‖h‖2 E‖s‖2 <∞ (62)

for each h ∈ H. Thus, for each h ∈ H, (h,s) is a second-order scalar random
variable, and therefore its mean is defined and finite. The mean of (h,s) will be
denoted by

m[h] = E(h, s) ,

for each h ∈ H. Since E‖s‖2 < ∞, ‖s‖ is a second-order scalar random variable,
and its mean M = E‖s‖ satisfies 0 ≤ M ≤ (

E‖s‖2
)1/2

<∞. Now

|m[h]| = |E(h, s)| ≤ E |(h, s)| ≤ M||h||

for each h ∈ H, by Eq. (61), and also

m[αg+ βh] = αm[g]+ βm[h]

for each g, h ∈ H and α,β ∈ R. Thus m[·] is a bounded linear functional on H, and
by the Riesz representation theorem for Hilbert space (e.g. Royden 1968, p. 213;
Reed and Simon 1972, p. 43) this implies that there exists a unique element s ∈ H,
called the mean of s, such that

m[h] = (h, s)

for each h ∈ H. Thus the mean s of s is defined uniquely in H, and satisfies (h, s) =
E(h, s) for every h ∈ H.

Now let s′(ω) = s(ω)− s for each ω ∈ Ω . Since
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||s′(ω)|| ≤ ||s(ω)|| + ||s|| <∞

for each ω ∈ Ω , s′ = s− s is a map from � into H. Furthermore, for every h ∈ H,
(h,s) is a scalar random variable, |(h, s)| <∞, and |(h, s(ω))| <∞ for each ω ∈ Ω .
Therefore (h, s′) = (h, s) − (h, s) is a scalar random variable for every h ∈ H, and
hence s′ is an H-valued random variable. Also,

E(h, s′) = E(h, s)− (h, s) = 0

for every h ∈ H, so the mean of s′ is 0 ∈ H. Thus

E‖s‖2 = E(s+ s′, s+ s′) = ‖s‖2 + E‖s′‖2 (63)

and, in particular, E‖s′‖2 ≤ E‖s‖2 < ∞. Therefore s′ : Ω → H is a second-order
H-valued random variable, and ‖s′‖ is a second-order scalar random variable.

Since s′ is a second-order H-valued random variable, (g, s′) and (h, s′) are
second-order scalar random variables, for each g, h ∈ H. Therefore the expectation

C[g, h] = E(g, s′)(h, s′)

is defined for all g, h ∈ H, and in fact

|C[g, h]| ≤ E
∣∣(g, s′)(h, s′)

∣∣ ≤ [
E(g, s′)2

]1/2 [
E(h, s′)2

]1/2 ≤ ‖g‖ ‖h‖ E‖s′‖2 .

(64)
The functional C, called the covariance functional of s, is also linear in its two argu-
ments. Thus C[·, ·] is a bounded bilinear functional on H×H. It follows (e.g. Rudin
1991, Theorem 12.8, p. 310) that there exists a unique bounded linear operator
P : H→ H, called the covariance operator of s, such that

C[g, h] = (g,Ph)

for each g, h ∈ H. The covariance operator P is self-adjoint, i.e., (Pg, h) = (g,Ph)
for all g, h ∈ H, since the covariance functional is symmetric, C[h, g] = C[g, h] for
all g, h ∈ H. The covariance operator is also positive semidefinite, i.e., (h,Ph) ≥ 0
for all h ∈ H, since

(h,Ph) = C[h, h] = E(h, s′)2 ≥ 0

for all h ∈ H.
Now consider the second-order scalar random variable ‖s′‖. By Parseval’s

relation,
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||s′(ω)||2 =
∞∑

i=1

(hi, s′(ω))2

for all ω ∈ Ω , and therefore

E ||s′||2 =
∞∑

i=1

E(hi, s′)2 ,

because {(hi, s′)2}∞i=1 is a sequence of non-negative random variables. Furthermore,

E(hi, s′)2 = (hi,Phi) (65)

for i = 1, 2, . . ., by definition of the covariance operator P , and therefore

E ||s′||2 =
∞∑

i=1

(hi,Phi) .

The summation on the right-hand side, called the trace of P and written tr P , is
independent of the choice of orthonormal basis {hi}∞i=1 for H, for any positive,
semidefinite bounded linear operator from H into H (e.g. Reed and Simon 1972,
Theorem VI.18, p. 206). Thus

trP =
∞∑

i=1

(hi,Phi) = E ||s′||2 <∞ ,

and Eq. (63) can be written as

E‖s‖2 = ‖s‖2 + trP , (66)

which is a generalization of Eq. (80) to second-order H-valued random variables.
Since tr P < ∞, P is a trace class operator, and therefore also a compact oper-

ator (e.g. Reed and Simon 1972, Theorem VI.21, p. 209). Since P is self-adjoint in
addition to being compact, it follows from the Hilbert-Schmidt theorem (e.g. Reed
and Simon 1972, Theorem VI.16, p. 203) that there exists an orthonormal basis for
H which consists of eigenvectors {h̃i}∞i=1 of P ,

Ph̃i = λih̃i

for i = 1, 2, . . ., where the corresponding eigenvalues λi = (h̃i,Ph̃i) for i = 1, 2, . . .
are all real numbers and satisfy λi → 0 as i → ∞. In fact, the eigenvalues are
all non-negative since P is positive semidefinite, and therefore λi = ‖Ph̃i‖ for
i = 1, 2, . . .. Further, it follows from Eq. (65) that
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λi = (h̃i,Ph̃i) = E(h̃i, s′)2 = σ 2
i ,

where σ 2
i is the variance of the scalar random variable (h̃i, s), for i = 1, 2, . . .. By

the definition of tr P ,

E ||s′||2 = trP =
∞∑

i=1

(h̃i,Ph̃i) =
∞∑

i=1

λi <∞ .

Thus the eigenvalues {λi}∞i=1 of P are the variances {σ 2
i }∞i=1 and have finite sum tr P .

Equation (66) can then be rewritten as

E‖s‖2 = ‖s‖2 +
∞∑

i=1

σ 2
i , (67)

which is another generalization of Eq. (80).
Since every h ∈ H has the representation h = ∑∞

i=1(hi, h)hi, and since Ph ∈ H
for every h ∈ H, taking hi = h̃i and using the fact that

(h̃i,Ph) = (Ph̃i, h) = λi(h̃i, h) = σ 2
i (h̃i, h)

for i = 1, 2, . . ., gives the following representation for P:

Ph =
∞∑

i=1

σ 2
i (h̃i, h)h̃i (68)

for every h ∈ H. Thus the expectation E(g, s′)(h, s′) is given by the convergent series

E(g, s′)(h, s′) = C[g, h] = (g,Ph) =
∞∑

i=1

σ 2
i (h̃i, g)(h̃i, h) ,

for every g, h ∈ H.
Finally, since P is a positive semidefinite bounded linear operator from H into H,

there exists a unique positive semidefinite bounded linear operator P1/2 : H → H,

called the square root of P , that satisfies
(
P1/2

)2 = P (e.g. Reed and Simon 1972,
Theorem VI.9, p. 196). Since P is also self-adjoint and trace class, P1/2 is self-
adjoint and Hilbert-Schmidt (e.g. Reed and Simon 1972, p. 210), with the same
eigenvectors as P and with eigenvalues that are the non-negative square roots of the
corresponding eigenvalues of P . That is,

P1/2h̃i = σih̃i ,
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where σi = λ1/2
i = [E(h̃i, s′)2]1/2, for i = 1, 2, . . .. Therefore σi = (h̃i,P1/2h̃i) =

‖P1/2h̃i‖ for i = 1, 2, . . ., and P1/2 has the representation

P1/2h =
∞∑

i=1

σi(h̃i, h)h̃i (69)

for every h ∈ H.

1d Construction of Second-Order H-Valued Random Variables

It will now be shown how essentially all second-order H-valued random variables
can be constructed. This will be accomplished by first reconsidering, in a suggestive
notation, the defining properties of every second-order H-valued random variable.
The construction given here is by Itô’s regularization theorem (Itô 1984, Theorem
2.3.3, p. 27; Kallianpur and Xiong 1995, Theorem 3.1.2, p. 87) applied to H, and
amounts to formalizing on H the usual construction of infinite-dimensional random
variables through random Fourier series.

For the moment, fix a second-order H-valued random variable s, and consider
the behaviour of

s[h] = (h, s)

as a functional of h ∈ H, that is, as h varies throughout H. The functional s[·] has
three important properties. First, on evaluation at any h ∈ H, it is a scalar random
variable, with

s[h](ω) = (h, s(ω))

for each ω ∈ Ω , since s : Ω → H is an H-valued random variable. Thus s[·] is a
map from H into the set of scalar random variables on (Ω ,F , P). Second, this map
is linear,

s[αg+ βh] = αs[g]+ βs[h]

for all g, h ∈ H and α,β ∈ R, by linearity of the inner product. Third, according to
Eq. (62),

(Es2[h])1/2 ≤ γ ‖h‖ , (70)

where

γ = (E ||s||2)1/2 <∞ ,
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since the H-valued random variable s is second-order. Thus s[·] is a linear map from
H into the set of second-order scalar random variables on (Ω ,F , P).

Now recall the space L2(Ω ,F , P), whose elements are the equivalence classes
of second-order scalar random variables, where two scalar random variables are
called equivalent if they are equal wp1 (with probability one; see Appendix 3c).
The space L2(Ω ,F , P) is a Hilbert space, with the inner product of any two ele-
ments r̃, s̃ ∈ L2(Ω ,F , P) given by E r̃s̃ and the corresponding norm of any element
s̃ ∈ L2(Ω ,F , P) given by (E s̃2)1/2. The inequality given by Eq. (70) states that the
functional s[·] is bounded, when viewed as a map from H into L2(Ω ,F , P).

A map s[·] from H into the set of scalar random variables on (Ω ,F , P), which is
linear in the sense that if g, h ∈ H and α,β ∈ R then

s[αg+ βh] = αs[g]+ βs[h] wp1 ,

is called a random linear functional (e.g. Itô 1984, p. 22; Omatu and Seinfeld 1989,
p. 48). Observe that the set of ω ∈ Ω of probability measure zero where linearity
fails to hold can depend on α,β, g and h. If linearity holds for all ω ∈ Ω , for all
g, h ∈ H and α,β ∈ R, then the random linear functional is called perfect. If s[·] is
a random linear functional and there is a constant γ ∈ R such that Eq. (70) holds
for all h ∈ H, then the random linear functional is called second-order. Thus, given
any particular H-valued random variable s, the map s[·] defined for all h ∈ H by
s[h] = (h, s) is a perfect random linear functional, and if s is second-order then so
is s[·].

Now it will be shown that a random linear functional s[·] is second-order if, and
only if,

∞∑
i=1

Es2[hi] <∞ . (71)

In particular, a collection {si}∞i=1 of scalar random variables with
∑∞

i=1 Es2
i < ∞

can be used to define a second-order random linear functional, by setting s[hi] = si

for i = 1, 2, . . .. It will then be shown how to construct, from any given second-order
random linear functional s[·], a second-order H-valued random variable s such that,
for all h ∈ H,

(h, s) = s[h] wp1 .

Such an H-valued random variable s is called a regularized version of the random
linear functional s[·] (Itô 1984, Definition 2.3.2, p. 23).

Let s[·] be a second-order random linear functional. Given any h ∈ H and
positive integer n, it follows from the linearity of s[·] that

s

[
n∑

i=1

(hi, h)hi

]
=

n∑
i=1

(hi, h)s[hi] wp1 ,
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where the set of probability measure zero on which equality does not hold may
depend on h and on the orthonormal basis elements {hi}ni=1. By the boundedness of
s[·] it follows that

E
(

n∑
i=1

(hi, h)s[hi]

)2

≤ γ 2

∥∥∥∥∥
n∑

i=1

(hi, h)hi

∥∥∥∥∥
2

,

for some constant γ ∈ R which is independent of h and n. Taking the limit as
n →∞ gives

E
( ∞∑

i=1

(hi, h)s[hi]

)2

≤ γ 2||h||2 <∞ ,

for all h ∈ H. Thus the series
∑∞

i=1(hi, h)s[hi] converges in L2(Ω ,F , P), i.e., there
exists a unique element s̃[h] ∈ L2(Ω ,F , P) such that

lim
n→∞ E

(
s̃[h]−

n∑
i=1

(hi, h)s[hi]

)2

= 0 ,

for all h ∈ H. Equivalently, since a series converges in a Hilbert space if, and only
if, it converges in norm,

∞∑
i=1

(
E {(hi, h)s[hi]}2

)1/2 =
∞∑

i=1

|(hi, h)|
(
Es2[hi]

)1/2
<∞ ,

for all h ∈ H. By the Riesz representation theorem applied to the Hilbert space of
square-summable sequences of real numbers, and since

∞∑
i=1

(hi, h)2 = ||h||2

by Parseval’s relation, the series
∑∞

i=1(hi, h)s[hi] therefore converges in L2(Ω ,F ,
P), for all h ∈ H, if, and only if, Eq. (71) holds, in which case

∞∑
i=1

|(hi, h)|
(
Es2[hi]

)1/2 ≤ ||h||
[ ∞∑

i=1

Es2[hi]

]1/2

<∞ ,

by the Schwarz inequality. Thus, if s[·] is a second-order random linear functional,
then Eq. (71) holds, for every orthonormal basis {hi}∞i=1 of H.

Conversely, suppose that Eq. (71) holds for a random linear functional s[·], for
some orthonormal basis {hi}∞i=1 of H. Since every h ∈ H has the representation
h = ∑∞

i=1(hi, h)hi, it follows from the linearity of s[·] that if h ∈ H then
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s[h] =
∞∑

i=1

(hi, h)s[hi] wp1 ,

and therefore

s2[h] ≤ ||h||2
∞∑

i=1

s2[hi] wp1 ,

by the Schwarz inequality and Parseval’s relation. Thus

Es2[h] ≤ ||h||2
∞∑

i=1

Es2[hi] ,

for every h ∈ H, i.e., Eq. (70) holds with

γ 2 =
∞∑

i=1

Es2[hi] <∞ ,

by Eq. (71), and therefore s[·] is a second-order random linear functional.
Furthermore, since s[·] is a second-order random linear functional, Eq. (71) holds
for every orthonormal basis {hi}∞i=1 of H.

Now let s[·] be a given second-order random linear functional. Since

E
∞∑

i=1

s2[hi] =
∞∑

i=1

Es2[hi] <∞ ,

the sum
∑∞

i=1 s2[hi] must be finite wp1, i.e., if

E =
{
ω ∈ Ω :

∞∑
i=1

s2[hi](ω) <∞
}

then E ∈ F and P(E) = 1, where the set E may depend on {hi}∞i=1. Define s(ω) for
each ω ∈ Ω by

s(ω) =
{ ∑∞

i=1 his[hi](ω) if ω ∈ E
0 if ω �∈ E

.

By Parseval’s relation it follows that

||s(ω)||2 =
{ ∑∞

i=1 s2[hi](ω) if ω ∈ E
0 if ω �∈ E

,
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and therefore ‖s(ω)‖2 <∞ for all ω ∈ Ω . Thus s is a map from � into H, and for
any h ∈ H,

(h, s(ω)) =
∞∑

i=1

(hi, h)s[hi](ω) (72)

for each ω ∈ E. Now, if h ∈ H then

s[h] =
∞∑

i=1

(hi, h)s[hi] wp1 ,

and so there is a set Eh ∈ F with P(Eh) = 1, that may depend on {hi}∞i=1 as well as
on h, such that

s[h](ω) =
∞∑

i=1

(hi, h)s[hi](ω)

for each ω ∈ Eh. Therefore, for all h ∈ H,

(h, s(ω)) = s[h](ω)

for each ω ∈ E ∩ Eh, and P(E ∩ Eh) = 1. Since the probability space (Ω ,F , P) was
assumed to be complete, and since s[h] is a scalar random variable for each h ∈ H,
it follows that (h,s) is a scalar random variable for each h ∈ H. Therefore the map
s : Ω → H is an H-valued random variable. Since

E ||s||2 = E
∞∑

i=1

s2[hi] =
∞∑

i=1

Es2[hi] <∞ ,

s is a second-order H-valued random variable. Since s[·] is bounded as a map from
H into L2(Ω ,F , P),

lim
n→∞ E

(
s[h]−

n∑
i=1

(hi, h)s[hi]

)2

= 0

for all h ∈ H, and since Eq. (72) holds for all h ∈ H and ω ∈ E, it follows that

E (s[h]− (h, s))2 = 0

for all h ∈ H. Therefore, for all h ∈ H, (h, s) = s[h]wp1.
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Appendix 2: The Hilbert Spaces Φp

Let H be a real, separable Hilbert space, with inner product and corresponding norm
denoted by (·,·) and ‖ · ‖, respectively. Denote by B(H) the Borel field generated by
the open sets in H. For convenience it will be assumed in this appendix that H is
infinite-dimensional.

Appendix 2a uses a self-adjoint linear operator on H to construct a special family
of Hilbert spaces {Φp, p ≥ 0}. The inner product and corresponding norm on Φp are
denoted by (·, ·)p and ‖ · ‖p, respectively, for each p ≥ 0. These Hilbert spaces have
the following properties: (i) Φ0 = H; (ii) for each p > 0, Φp ⊂ H, and therefore
Φp is real and separable; (iii) for each p > 0, Φp is dense in H, and therefore Φp is
infinite-dimensional; and (iv) if 0 ≤ q ≤ r, then ‖h‖ = ‖h‖0 ≤ ‖h‖q ≤ ‖h‖r for
all h ∈ Φr, and therefore H = Φ0 ⊃ Φq ⊃ Φr. In view of property (iv), the family
{Φp, p ≥ 0} is called a decreasing family of Hilbert spaces. The construction given
here follows closely that of Kallianpur and Xiong (1995, Example 1.3.2, pp. 40–42).
For various concrete examples and classical applications of decreasing families of
Hilbert spaces constructed in this way, see Reed and Simon (1972, pp. 141–145),
Itô (1984, pp. 1–12), Kallianpur and Xiong (1995, pp. 29–40), and Lax (2006, pp.
61–67).

Appendix 2b discusses the spaces Φp in case H = L2(S), the space of square-
integrable vector or scalar fields on the sphere S, when the operator L used in the
construction of the spaces Φp is taken to be L = −�, where � is the Laplacian
operator on the sphere.

2a Construction of the Hilbert Spaces Φp

Let L be a densely defined, positive semidefinite, self-adjoint linear operator on H,
and let I denote the identity operator on H. It follows from elementary arguments
(e.g. Riesz and Sz.-Nagy 1955, p. 324) that the inverse operator (I + L)−1 is a
bounded, positive semidefinite, self-adjoint linear operator defined on all of H, in
fact with

||(I+ L)−1h|| ≤ ||h||

for all h ∈ H. Assume that some power p1 > 0 of (I+L)−1 is a compact operator on
H. Then it follows from the Hilbert-Schmidt theorem (e.g. Reed and Simon 1972,
Theorem VI.16, p. 203) that there exists a countable orthonormal basis for H which
consists of eigenvectors {gi}∞i=1 of (I+ L)−p1 ,

(I+ L)−p1 gi = μigi

for i = 1, 2, . . ., where the corresponding eigenvalues {μi}∞i=1 satisfy 1 ≥ μ1 ≥
μ2 ≥ · · ·, with μi → 0 as i → ∞. Moreover, μi > 0 for i = 1, 2, . . .,
for suppose otherwise. Then there is a first zero eigenvalue, call it μM+1, since
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the eigenvalues decrease monotonically toward zero. Therefore (I + L)−p1 has
finite rank M, hence I + L is defined everywhere in H and also has rank M. But
rank (I + L) ≥ rank I = ∞ since L is positive semidefinite and H was assumed
infinite-dimensional, a contradiction.

Now define {λi}∞i=1 by (1+λi)−p1 = μi. Then 0 ≤ λ1 ≤ λ2 ≤ · · ·, with λi →∞
as i → ∞, and λi < ∞ for i = 1, 2, . . . since μi > 0 for i = 1, 2, . . .. Since the
function λ(μ) = μ−1/p1 − 1 is measurable and finite for μ ∈ (0, 1], it follows from
the functional calculus for self-adjoint operators (e.g. Riesz and Sz.-Nagy 1955, pp.
343–346; Reed and Simon 1972, pp. 259–264) that

Lgi = λigi

for i = 1, 2, . . ., and similarly for all p ≥ 0 that

(I+ L)pgi = (1+ λi)
pgi

for i = 1, 2, . . ., with (I+ L)p densely defined and self-adjoint in H for all p ≥ 0.
For each p ≥ 0, denote by Φp the domain of definition of (I+ L)p, i.e.,

Φp = {h ∈ H : ||(I+ L)ph|| <∞} .

In particular, Φ0 = H. Now

||(I+ L)ph||2 =
∞∑

i=1

((I+ L)ph, gi)
2 =

∞∑
i=1

(h, (I+ L)pgi)
2

=
∞∑

i=1

(h, (1+ λi)
pgi)

2 =
∞∑

i=1

(1+ λi)
2p(h, gi)

2

for each p ≥ 0, where the first equality is Parseval’s relation and the second one
is due to the fact that (I + L)p is self-adjoint. Thus for each p ≥ 0, Φp is given
explicitly by

Φp =
{

h ∈ H :
∞∑

i=1

(1+ λi)
2p(h, gi)

2 <∞
}

.

Using this formula, it can be checked that for each p ≥ 0, Φp is an inner product
space, with inner product (·, ·)p defined by

(g, h)p =
∞∑

i=1

(1+ λi)
2p(g, gi)(h, gi) = ((I+ L)pg, (I+ L)ph)

for all g, h ∈ Φp, and corresponding norm ‖ · ‖p defined by
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||h‖2
p = (h, h)p = ||(I+ L)ph||2

for all h ∈ Φp. It follows also that if 0 ≤ q ≤ r, then ‖h‖ = ‖h‖0 ≤ ‖h‖q ≤ ‖h‖r

for all h ∈ Φr, and therefore that Φr ⊂ Φq ⊂ H.
Each inner product space Φp, p > 0, is in fact a Hilbert space, i.e., is already

complete in the norm ‖ · ‖p. To see this, suppose that {hn}∞n=1 is a Cauchy sequence
in Φp for some fixed p > 0, i.e. that ‖hn − hm‖p → 0 as n, m → ∞. Since
‖hn − hm‖ ≤ ‖hn − hm‖p for all n, m ≥ 1, it follows that {hn}∞n=1 is also a Cauchy
sequence in H, and since H is complete, the sequence converges to a unique element
h∞ ∈ H. It remains to show that in fact hn → h∞ ∈ Φp as n →∞.

Now

||hn − hm‖2
p = ||(I+ L)p(hn − hm)||2 =

∞∑
i=1

(1+ λi)
2p(hn − hm, gi)

2 .

Thus, that {hn}∞n=1 is a Cauchy sequence in Φp means that, given any ε > 0, there
exists an M = M(ε) such that, for all n, m ≥ M,

I∑
i=1

(1+ λi)
2p(hn − hm, gi)

2 < ε

for any I ≥ 1. But for each i = 1, 2, . . .,

|(hm − h∞, gi)| ≤ ||hm − h∞|| ||gi|| = ||hm − h∞|| → 0 as m →∞ ,

hence (hm, gi) → (h∞, gi) as m →∞, and therefore

I∑
i=1

(1+ λi)
2p(hn − h∞, gi)

2 < ε

for all n ≥ M and I ≥ 1. Letting I →∞ then gives

||hn − h∞‖2
p =

∞∑
i=1

(1+ λi)
2p(hn − h∞, gi)

2 < ε

for all n ≥ M, and therefore hn → h∞ ∈ Φp as n →∞.
Thus, for each p > 0, Φp is a Hilbert space, with inner product (·, ·)p and cor-

responding norm ‖ · ‖p. It can be checked that {(1 + λi)−pgi}∞i=1 is an orthonormal
basis for Φp, for each p > 0.8

8It follows that, for any sequence {rn}∞n=0 with 0 ≤ r0 < r1 < r2 < · · · → ∞, Φ = ∩∞n=0Φrn

is a separable Frèchet space, and since the norms ‖ · ‖rn are Hilbertian seminorms on Φ, also a
countably Hilbertian space. If (I+L)−p1 is not just compact but in fact Hilbert-Schmidt, and if, for
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2b The Case H = L2(S) with L = −�
Now let H = L2(S), the Hilbert space of real, Lebesgue square-integrable scalars
on the unit 2-sphere S, with inner product

(φ,ψ) =
∫

S
φ(x)ψ(x) dx

for all φ,ψ ∈ L2(S), where x = (x1, x2) denotes spherical coordinates on S and dx
denotes the surface area element, and with corresponding norm ‖φ‖ = (φ,φ)1/2 for
all φ ∈ L2(S). Let L = −�, where� is the Laplacian operator on L2(S). Thus L is a
densely defined, positive semidefinite, self-adjoint linear operator on L2(S). Denote
by I the identity operator on L2(S).

It will be shown first that for all p1 > 1/2, (I − �)−p1 is a Hilbert-Schmidt
operator on L2(S), hence a compact operator on L2(S). By Appendix 2a, this allows
construction of the decreasing family of Hilbert spaces {Φp = Φp(S), p ≥ 0},

Φp = {φ ∈ L2(S) : ||(I −�)pφ|| <∞} ,

with inner product

(φ,ψ)p = ((I −�)pφ, (I −�)pψ)

for all φ,ψ ∈ Φp, and corresponding norm ‖φ‖p = (φ,φ)1/2
p for all φ ∈ Φp. Thus

if φ ∈ Φp and p is a positive integer or half-integer, then all partial (directional)
derivatives of φ up to order 2p are Lebesgue square-integrable.

Second, a Sobolev-type lemma for the sphere will be established, showing that if
φ ∈ Φ1/2+q with q > 0, then φ is a bounded function on S, with bound

max
x∈D

|φ(x)|2 < 1
4π

(
1+ 1

2q

)
‖φ‖2

1/2+q . (73)

It follows that if φ ∈ Φ1+q with q > 0, then the first partial derivatives of φ are
bounded functions on the sphere, and in particular that Φ1+q ⊂ C0(S), the space
of continuous functions on the sphere. It will be shown that, in fact, if φ ∈ Φ1+q

with q > 0, then φ is Lipschitz continuous on S. Thus, for any q > 0 and any
non-negative integer l, Φ1+l/2+q ⊂ Cl(S), the space of functions with l continuous
partial derivatives on the sphere, and in fact all of the partial derivatives up to order
l of a function φ ∈ Φ1+l/2+q are Lipschitz continuous.

instance, pn = np1, then Φ = ∩∞n=0Φpn is a countably Hilbertian nuclear space, and it is possible
to define Φ ′-valued random variables, where Φ ′ is the dual space of Φ. Such random variables are
useful for stochastic differential equations in infinite-dimensional spaces (see the books of Itô 1984
and Kallianpur and Xiong 1995), but are not immediately important for the principle of energetic
consistency developed in this chapter.
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These results carry over to vectors in the usual way. Thus denoting by L2(S)
also the Hilbert space of real, Lebesgue square-integrable n-vectors on S, the inner
product is

(g, h) =
∫

S
gT (x)h(x) dx =

n∑
i=1

(gi, hi)

for all g, h ∈ L2(S), and the corresponding norm is ‖h‖ = (h, h)1/2 for all h ∈ L2(S).
Thus for n-vectors on S, the Hilbert spaces Φp, p ≥ 0, are defined by

Φp = {h ∈ L2(S) : ||(I −�)ph|| <∞} ,

with inner product

(g, h)p = ((I −�)pg, (I −�)ph) =
n∑

i=1

(gi, hi)p

for all g, h ∈ Φp, and corresponding norm ‖h‖p = (h, h)1/2
p for all h ∈ Φp.

To establish that (I − �)−p is a Hilbert-Schmidt operator on L2(S) if p > 1/2,
note first that

∞∑
l=0

2l+ 1

[1+ l(l+ 1)]1+2ε
< 1+ 1

2ε
(74)

if ε > 0. To obtain this inequality, let

f (x) = 2x+ 1

[1+ x(x+ 1)]1+2ε

for x ≥ 0 and ε > 0. Then f is monotone decreasing for x ≥ 1/2, and f (0) > f (1),
and so

∞∑
l=0

2l+ 1

[1+ l(l+ 1)]1+2ε
= f (0)+

∞∑
l=1

f (l) < f (0)+
∫ ∞

0
f (x) dx = 1+ 1

2ε
.

The sum in Eq. (74) diverges logarithmically for ε = 0.
Now let C = (I − �)−p with p > 0. Thus C is a bounded operator from L2(S)

into L2(S), with ‖Cφ‖ ≤ ‖φ‖ for all φ ∈ L2(S). The real and imaginary parts of the
spherical harmonics Ym

l form an orthonormal basis for L2(S), and

�Ym
l = −l(l+ 1)Ym

l

for l ≥ 0 and |m| ≤ l. Thus
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CYm
l = λm

l Ym
l ,

with eigenvalues λm
l = (Ym

l , CYm
l ) = [1+ l(l+ 1)]−p for l ≥ 0 and |m| ≤ l. But

∞∑
l=0

l∑
m=−l

(λm
l )2 =

∞∑
l=0

2l+ 1

[1+ l(l+ 1)]2p
,

and so this sum is finite for p > 1/2 by Eq. (74). Hence C is Hilbert-Schmidt for
p > 1/2.

To establish the bound of Eq. (73), suppose that φ ∈ Φ1/2+q with q > 0. Thus
(I −�)1/2+qφ ∈ L2(S) and has a spherical harmonic expansion

(I −�)1/2+qφ =
∞∑

l=0

l∑
m=−l

βm
l Ym

l ,

where the convergence is in L2(S), with

‖φ‖2
1/2+q = ‖(I −�)1/2+qφ‖2 =

∞∑
l=0

l∑
m=−l

|βm
l |2 <∞ . (75)

Therefore

φ =
∞∑

l=0

l∑
m=−l

[1+ l(l+ 1)]−1/2−qβm
l Ym

l , (76)

where the convergence is in Φ1/2+q. It will be shown that this series converges
absolutely, hence pointwise, so that

φ(x) =
∞∑

l=0

l∑
m=−l

[1+ l(l+ 1)]−1/2−qβm
l Ym

l (x)

for each x ∈ S. This will also give Eq. (73).
Now,

|φ| ≤
∞∑

l=0

[1+ l(l+ 1)]−1/2−q
l∑

m=−l

|βm
l | |Ym

l | ,

and so

|φ| ≤
∞∑

l=0

[1+ l(l+ 1)]−1/2−q

⎧⎨
⎩

l∑
m=−l

|βm
l |2

⎫⎬
⎭

1/2 ⎧⎨
⎩

l∑
m=−l

|Ym
l |2

⎫⎬
⎭

1/2
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by the Schwarz inequality. The spherical harmonic addition theorem says that

Pl(cos γ ) = 4π

2l+ 1

l∑
m=−l

Ym
l (x)Y

m
l (y)

for l ≥ 0, where Pl is the lth Legendre polynomial and γ is the angle between x
and y. This implies that

l∑
m=−l

|Ym
l (x)|2 = 2l+ 1

4π

for all x ∈ S, and so

|φ| ≤ 1√
4π

∞∑
l=0

[2l+ 1]1/2[1+ l(l+ 1)]−1/2−q

⎧⎨
⎩

l∑
m=−l

|βm
l |2

⎫⎬
⎭

1/2

.

Another application of the Schwarz inequality then gives

|φ| ≤ 1√
4π

{ ∞∑
l=0

[2l+ 1][1+ l(l+ 1)]−1−2q

}1/2
⎧⎨
⎩

∞∑
l=0

l∑
m=−l

|βm
l |2

⎫⎬
⎭

1/2

,

or, using Eq. (75),

|φ|2 ≤ 1

4π
||φ‖2

1/2+q

∞∑
l=0

2l+ 1

[1+ l(l+ 1)]1+2q
.

Therefore, by Eq. (74), the sum in Eq. (76) converges absolutely, and Eq. (73) holds.
Now suppose that φ ∈ Φ1+q with q > 0. To establish that φ is Lipschitz

continuous on S, note first that by the previous result,

φ(x) =
∞∑

l=0

l∑
m=−l

[1+ l(l+ 1)]−1−qβm
l Ym

l (x)

for each x ∈ S, where

‖φ‖2
1+q = ‖(I −�)1+qφ‖2 =

∞∑
l=0

l∑
m=−l

|βm
l |2 <∞ . (77)

Therefore,
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|φ(x)− φ(y)| ≤
∞∑

l=0

l∑
m=−l

[1+ l(l+ 1)]−1−q|βm
l | |Ym

l (x)− Ym
l (y)|

for each x, y ∈ S, and so by the Schwarz inequality,

|φ(x)−φ(y)|≤
∞∑

l=0

[1+l(l+1)]−1−q

⎧⎨
⎩

l∑
m=−l

|βm
l |2

⎫⎬
⎭

1/2⎧⎨
⎩

l∑
m=−l

|Ym
l (x)− Ym

l (y)|2
⎫⎬
⎭

1/2

.

By the spherical harmonic addition theorem,

l∑
m=−l

|Ym
l (x)− Ym

l (y)|2 =
l∑

m=−l

[
|Ym

l (x)|2 − 2ReYm
l (x)Y

m
l (y)+ |Ym

l (y)|2
]

=2l+ 1

2π

[
1− Pl(cos γ )

]
,

where γ = γ (x, y) is the angle between x and y. Therefore,

|φ(x)− φ(y)| ≤
∞∑

l=0

[1+ l(l+ 1)]−1−q
(

2l+ 1

2π

)1/2 [
1− Pl(cos γ )

]1/2

⎧⎨
⎩

l∑
m=−l

|βm
l |2

⎫⎬
⎭

1/2

,

and so by Eq. (77) and the Schwarz inequality,

|φ(x)−φ(y)| ≤ 1√
2π

{ ∞∑
l=0

[1+ l(l+ 1)]−2−2q(2l+ 1)[1− Pl(cos γ )]

}1/2

||φ‖1+q .

Now, Pl(1) = 1, P′l(1) = l(l+1)/2, and P′′l (1) = [l(l+1)−2]P′l(1)/4 ≥ 0 for l ≥ 0.
It follows that for γ sufficiently small,

1− Pl(cos γ ) ≤ (1− cos γ )P′l(1) = l(l+ 1) sin2 γ
2 ,

and so

|φ(x)− φ(y)| ≤ K√
2π
‖φ‖1+q

∣∣∣∣sin
γ (x, y)

2

∣∣∣∣ , (78)

where

K2 =
∞∑

l=0

[1+ l(l+ 1)]−2−2q(2l+ 1)l(l+ 1) .

This series converges for q > 0 since the terms decay like l−1−4q, and Eq. (78)
shows that φ is Lipschitz continuous.
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Appendix 3: Some Basic Concepts and Definitions

This appendix summarizes background material used elsewhere in this chapter. For
further treatment see, for instance, Doob (1953), Royden (1968), and Reed and
Simon (1972).

3a Measure Spaces

Let X be a set. A collection C of subsets of X is called a σ -algebra, or Borel field, if (i)
the empty set ∅ is in C, (ii) for every set A ∈ C, the complement Ã = {x ∈ X : x �∈ A}
of A is in C, and (iii) for every countable collection {Ai}∞i=1 of sets Ai ∈ C, the union
∪∞i=1Ai of the sets is in C. Given any collection A of subsets of X, there is a smallest
σ -algebra which contains A, i.e., there is a σ -algebra C such that (i) A ⊂ C, and
(ii) if B is a σ -algebra and A ⊂ B then C ⊂ B. The smallest σ -algebra containing
a given collection A of subsets of X is called the Borel field of X generated by A.
A measurable space is a couple (X, C) consisting of a set X and a σ -algebra C of
subsets of X. If (X, C) is a measurable space and Y ∈ C, then (Y , CY ) is a measurable
space, where

CY = {A ∈ C : A ⊂ Y} ,

i.e., CY consists of all the sets in C that are subsets of Y.
The set R

e of extended real numbers is the union of the set R of real numbers and
the sets {∞} and {−∞}. Multiplication of any two extended real numbers is defined
as usual, with the convention that 0 · ∞ = 0. Addition and subtraction of any two
extended real numbers is also defined, except that ∞−∞ is undefined, as usual.

Let Y and Z be two sets. A function g is called a map from Y into Z, written
g : Y → Z, if g(y) is defined for all y ∈ Y and g(y) ∈ Z for all y ∈ Y . Thus a map
g : R → R is a real-valued function defined on all of the real line, a map g : Y → R

is a real-valued function defined on all of Y, and a map g : Y → R
e is an extended

real-valued function defined on all of Y.
Let (X, C) be a measurable space. A subset A of X is called measurable if A ∈ C.

A map g : X → R
e is called measurable (with respect to C) if

{x ∈ X : g(x) ≤ α} ∈ C ,

for every α ∈ R. If g : X → R
e is measurable then |g| is measurable, and if

h : X → R
e is another measurable map then gh is measurable. A measure μ on

(X, C) is a map μ : C → R
e that satisfies (i) μ(A) ≥ 0 for every measurable set A,

(ii) μ(∅) = 0, and (iii)

μ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

μ(Ei) ,
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for every countable collection {Ei}∞i=1 of disjoint measurable sets, i.e., for every
countable collection of sets Ei ∈ C with ∩∞i=1Ei = ∅. A measure space (X, C,μ) is a
measurable space (X, C) together with a measure μ on (X, C).

Let (X, C,μ) be a measure space. A condition C(x) defined for all x ∈ X is
said to hold almost everywhere (a.e.) (with respect to μ) if the set E = {x ∈ X :
C(x) is false} on which it fails to hold is a measurable set of measure zero, i.e.,
E ∈ C and μ(E) = 0. In particular, two maps g : X → R

e and h : X → R
e are said

to be equal almost everywhere, written g = h a.e., if the subset of X on which they
are not equal is a measurable set of measure zero.

A measure space (X, C,μ) is called complete if C contains all subsets of mea-
surable sets of measure zero, i.e., if B ∈ C, μ(B) = 0, and A ⊂ B together imply
that A ∈ C. If (X, C,μ) is a complete measure space and A is a subset of a mea-
surable set of measure zero, then μ(A) = 0. If (X, C,μ) is a measure space then
there is a complete measure space (X, C0,μ0), called the completion of (X, C,μ),
which is determined uniquely by the conditions that (i) C ⊂ C0, (ii) if D ∈ C then
μ(D) = μ0(D), and (iii) D ∈ C0 if and only if D = A ∪ B where B ∈ C and
A ⊂ C ∈ C with μ(C) = 0. Thus a measure space can always be completed by
enlarging its σ -algebra to include the subsets of measurable sets of measure zero
and extending its measure so that the domain of definition of the extended measure
includes the enlarged σ -algebra.

An open interval on the real number line R is a set (α,β) = {x ∈ R : α < x < β}
with α,β ∈ R

e and α < β. Denote by B(R) the Borel field of R generated by the
open intervals, and denote by I(R) ⊂ B(R) the sets that are countable unions of
disjoint open intervals. For each set I = ∪∞i=1(αi,βi) ∈ I(R), define

m∗(I) =
∞∑

i=1

(βi − αi) ,

and for each set B ∈ B(R) define

m∗(B) = inf m∗(I) ,

where the infimum (greatest lower bound) is taken over all those I ∈ I(R) such that
B ⊂ I. Then m∗ is a measure on the measurable space (R,B(R)). The completion of
the measure space (R,B(R), m∗) is denoted by (R,M, m). The sets in M are called
the Lebesgue measurable sets on R, and m is called Lebesgue measure on R.

Let (X, C,μ) be a complete measure space, and let g : X → R
e and h : X → R

e

be two maps. If g is measurable and g = h a.e., then h is measurable.

3b Integration

In this subsection let (X, C,μ) be a measure space. The characteristic function χA

of a subset A of X is the map χA : X → {0, 1} defined for each x ∈ X by
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χA(x) =
{

1 if x ∈ A
0 if x �∈ A

.

A characteristic function χA is a measurable map if, and only if, A is a measurable
set. A map φ : X → R

e is called simple if it is measurable and takes on only a finite
number of values. Thus the characteristic function of a measurable set is simple,
and if φ is simple and takes on the values α1, . . . ,αn then φ = ∑n

i=1 αiχEi , where
Ei = {x ∈ X : φ(x) = αi} ∈ C for i = 1, . . . , n. If φ is simple and the values
α1, . . . ,αn it takes on are all non-negative, the integral of φ over a measurable set E
with respect to measure μ is defined as

∫
E
φ dμ =

n∑
i=1

αiμ(Ei ∩ E) ,

where Ei = {x ∈ X : φ(x) = αi} for i = 1, . . . , n. It is possible that
∫

E φ dμ = ∞,
for instance if α1 �= 0 and μ(E1 ∩ E) = ∞, or if α1 = ∞ and μ(E1 ∩ E) �= 0.

Let E be a measurable set and let g : X → R
e be a map which is non-negative,

i.e., g(x) ≥ 0 for all x ∈ X. If g is measurable, the integral of g over E with respect
to μ is defined as

∫
E

g dμ = sup
∫

E
φ dμ ,

where the supremum (least upper bound) is taken over all simple maps φ with 0 ≤
φ ≤ g. Function g is called integrable (over E, with respect to μ) if g is measurable
and

∫
E

g dμ <∞ .

If {hi}∞i=1 is a collection of non-negative measurable maps from X into R
e, then

h = ∑∞
i=1 hi is a non-negative measurable map from X into R

e and

∫
E

h dμ =
∞∑

i=1

∫
E

hi dμ ,

and in particular, h is integrable if and only if
∑∞

i=1

∫
E hi dμ <∞.

Let E be a measurable set and let g : X → R
e be a map. The positive part g+ of

g is the non-negative map g+ = g ∨ 0, i.e., g+(x) = max{g(x), 0} for each x ∈ X,
and the negative part g− is the non-negative map g− = (−g)∨0. Thus g = g+−g−
and |g| = g+ + g−. If g is measurable, so are g+ and g−, as well as |g|. Function g
is called integrable (over E, with respect to μ) if both g+ and g− are integrable, in
which case the integral of g is defined as

∫
E

g dμ =
∫

E
g+ dμ−

∫
E

g− dμ .



The Principle of Energetic Consistency in Data Assimilation 209

Thus g is integrable over E if, and only if, |g| is integrable over E, in which case

∣∣∣∣
∫

E
g dμ

∣∣∣∣ ≤
∫

E
|g| dμ <∞ .

If g is integrable over X, then |g| <∞ a.e., g is integrable over E, and

∫
E
|g| dμ ≤

∫
X
|g| dμ <∞ .

If g is measurable, then

∫
X
|g| dμ = 0

if, and only if, g = 0 a.e.
Let E be a measurable set and let g : X → R

e and h : X → R
e be two maps. If

g2 and h2 are integrable over E then gh is integrable over E, and

∣∣∣∣
∫

E
gh dμ

∣∣∣∣ ≤
∫

E
|gh| dμ ≤

(∫
E

g2 dμ

)1/2 (∫
E

h2 dμ

)1/2

<∞ . (79)

If g and h are integrable over E and g = h a.e., then

∫
E

g dμ =
∫

E
h dμ .

If the measure space is complete, and if g is integrable over E and g = h a.e., then h
is integrable over E and

∫
E

g dμ =
∫

E
h dμ .

Now consider the complete measure space (R,M, m), where M is the σ -algebra
of Lebesgue measurable sets on R and m is Lebesgue measure on R. If g : R → R

e

is measurable with respect to M, and is either non-negative or integrable over R

with respect to m, the integral of g over a Lebesgue measurable set E is called the
Lebesgue integral of g over E, and is often written as

∫
E

g dm =
∫

E
g(x) dx .

A Borel measure on R is a measure defined on the Lebesgue measurable sets
M that is finite for bounded sets. If F is a monotone increasing function on R that
is continuous on the right, i.e., if F(β) ≥ F(α) and limβ→α F(β) = F(α) for all
α,β ∈ R with α < β, then there exists a unique Borel measure μ on R such that
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μ((α,β]) = F(β)− F(α)

for all α,β ∈ R with α < β, where (α,β] = {x ∈ R : α < x ≤ β}. Let F be
a monotone increasing function that is continuous on the right, and let μ be the
corresponding Borel measure. If g : R → R

e is measurable with respect to M, and
is either non-negative or integrable over R with respect to the Borel measure μ, the
Lebesgue-Stieltjes integral of g over a Lebesgue measurable set E is defined as

∫
E

g(x) dF(x) =
∫

E
g dμ .

3c Probability

A probability space is a measure space (Ω ,F , P) with P(Ω) = 1. The setΩ is called
the sample space, the σ -algebra F of measurable sets is called the event space, a
measurable set is called an event, and P is called the probability measure. For the
rest of this subsection, let (Ω ,F , P) be a probability space.

A measurable map from Ω into R
e is called a (scalar) random variable. Thus a

map s : Ω → R
e is a random variable if, and only if,

{ω ∈ Ω : s(ω) ≤ x} ∈ F

for every x ∈ R. In particular, if s is a random variable then the function

Fs(x) = P({ω ∈ Ω : s(ω) ≤ x}) ,

called the probability distribution function of s, is defined for all x ∈ R. The distri-
bution function of a random variable is monotone increasing and continuous on the
right. If the distribution function Fs of a random variable s is an indefinite integral,
i.e., if

Fs(x) =
∫ x

−∞
fs(y) dy

for all x ∈ R and some Lebesgue integrable function fs, then fs is called the proba-
bilty density function of s, and dFs/dx = fs a.e. (with respect to Lebesgue measure)
in R.

The expectation operator E is the integration operator over Ω with respect to
probability measure. Thus if s is a random variable then E |s| is defined, since |s| is
a random variable and |s| ≥ 0, and

E |s| =
∫
Ω

|s| dP ≤ ∞ ,
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while a random variable s is integrable over Ω if, and only if, E |s| < ∞, in which
case

Es =
∫
Ω

s dP

and |Es| ≤ E |s| <∞. If s is a random variable with E |s| <∞, then s = Es is called
the mean of s, and the mean can be evaluated equivalently as the Lebesgue-Stieltjes
integral

Es =
∫ ∞

−∞
x dFs(x) ,

where Fs is the distribution function of s, hence

Es =
∫ ∞

−∞
xfs(x) dx

if also s has a density function fs, where the integral is the Lebesgue integral.
If s is a random variable then Es2 is defined, since s2 ≥ 0 is a random variable,

and either Es2 = ∞ or Es2 < ∞. A random variable s is called second-order if
Es2 <∞. If r and s are random variables then E |rs| is defined since rs is a random
variable, and E |rs| ≤ ∞. If r and s are second-order random variables, then

E |rs| ≤
(
Er2

)1/2 (
Es2

)1/2
<∞

by Eq. (79), hence Ers is defined and |Ers| ≤ E |rs| < ∞. In particular, on taking
r = 1 and using the fact that

E1 =
∫
Ω

1 dP = P(Ω) = 1 ,

it follows that if s is a second-order random variable then its mean s = Es is defined,
with

0 ≤ |s| = |Es| ≤ E |s| ≤
(
Es2

)1/2
<∞ .

The variance σ 2 = E(s − s)2 of a second-order random variable s is therefore also
defined, and finite, with

0 ≤ σ 2 = E
(

s2 − 2ss+ s2
)
= Es2 − s2 <∞ ,

and

Es2 = s2 + σ 2 . (80)
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A condition C(ω) defined for all ω ∈ Ω is said to hold with probability one
(wp1), or almost surely (a.s.), if it holds a.e. with respect to probability measure.
Thus if s is a random variable, then s = 0 wp1 if, and only if, E |s| = 0. If s is a
random variable with E |s| <∞, i.e., if the mean of s is defined, then |s| <∞ wp1.
If r and s are two random variables with E |r| <∞ and E |s| <∞, and if r = s wp1,
then r and s have the same distribution function and, in particular, Er = Es. If the
probability space is complete, and if s is a random variable, r : Ω → R

e and r = s
wp1, then r is a random variable and has the same distribution function as s, and if,
in addition, E |s| <∞, then E |r| <∞ and Er = Es.

3d Hilbert Space

A non-empty set V is called a linear space or vector space (over the reals) if αg +
βh ∈ V for all g, h ∈ V and α,β ∈ R. A norm on a linear space V is a real-valued
function ‖ · ‖ such that, for all g, h ∈ V and α ∈ R, (i) ‖h‖ ≥ 0, (ii) ‖h‖ = 0 if, and
only if, h = 0, (iii) ‖αh‖ = |α| ‖h‖, and (iv) ‖g+h‖ ≤ ‖g‖+‖h‖. An inner product
on a linear space V is a real-valued function (·, ·) such that, for all f, g, h ∈ V and
α ∈ R, (i) (h, h) ≥ 0, (ii) (h, h) = 0 if, and only if, h = 0, (iii) (g,αh) = α(g, h), (iv)
(f, g+ h) = (f, g)+ (f, h), and (v) (g, h) = (h, g). A normed linear space is a linear
space equipped with a norm, and an inner product space is a linear space equipped
with an inner product. Every inner product space V is a normed linear space, with
norm ‖ · ‖ given by ‖h‖ = (h, h)1/2 for all h ∈ V , where (·, ·) is the inner product on
V. A normed linear space V is an inner product space if, and only if, its norm ‖ · ‖
satisfies the parallelogram law

||g+ h||2 + ||g− h||2 = 2(||g||2 + ||h||2) ,

for all g, h ∈ V . On every inner product space V, the inner product (·, ·) is given by
the polarization identity

(g, h) = 1
4 (||g+ h||2 − ||g− h||2) ,

for all g, h ∈ V , where ‖ · ‖ is the norm corresponding to the inner product, i.e.,
‖h‖ = (h, h)1/2 for all h ∈ V . The Schwarz inequality

|(g, h)| ≤ ||g|| ||h|| <∞ ,

for all g, h ∈ V , holds on every inner product space V, where (·, ·) is the inner
product on V and ‖ · ‖ is the corresponding norm.

A subset O of a normed linear space V is called open in V if for every g ∈ O,
there exists an ε > 0 such that if h ∈ V and ‖g−h‖ < ε then h ∈ O. A subset B of a
normed linear space V is called dense in V if for every h ∈ V and ε > 0, there exists
an element g ∈ B such that ‖g− h‖ < ε. A normed linear space is called separable
if it has a dense subset that contains countably many elements.
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A sequence of elements h1, h2, . . . in a normed linear space V is called a Cauchy
sequence if ‖hm − hn‖ → 0 as m, n → ∞. A sequence of elements h1, h2, . . . in
a normed linear space V is said to converge in V if there exists an element h ∈ V
such that ‖h − hn‖ → 0 as n → ∞, in which case one writes h = limn→∞ hn.
A normed linear space V is called complete if every Cauchy sequence of elements
in V converges in V. A complete normed linear space is called a Banach space. A
Banach space on which the norm is defined by an inner product is called a Hilbert
space. That is, a Hilbert space is an inner product space which is complete in the
norm defined by the inner product.

Let H be a Hilbert space, with inner product (·, ·) and corresponding norm ‖ · ‖.
A subset S of H is called an orthogonal system if g �= 0, h �= 0 and (g, h) = 0, for
every g, h ∈ H. An orthogonal system S is called an orthogonal basis (or complete
orthogonal system) if no other orthogonal system contains S as a proper subset. An
orthogonal basis S is called an orthonormal basis if ‖h‖ = 1 for every h ∈ S. There
exists an orthonormal basis which has countably many elements if, and only if, H is
separable. If H is a separable Hilbert space then every orthonormal basis for H has
the same number of elements N ≤ ∞, and N is called the dimension of H.

Let H be a separable Hilbert space, with inner product (·, ·), corresponding norm
‖ · ‖, and orthonormal basis S = {hi}Ni=1, N ≤ ∞. If h ∈ H then the sequence of
partial sums

∑n
i=1(hi, h)hi converges to h, i.e.,

lim
n→N

||h−
n∑

i=1

(hi, h)hi|| = 0 ,

and so every h ∈ H has the representation

h =
N∑

i=1

(hi, h)hi .

Furthermore,

(g, h) =
N∑

i=1

(hi, g)(hi, h) ,

for every g, h ∈ H. Therefore, for every h ∈ H,

||h||2 =
N∑

i=1

(hi, h)2 ,

which is called Parseval’s relation.
An example of a separable Hilbert space of dimension N ≤ ∞ is the space

�2
N of square-summable sequences of N real numbers, with inner product (g, h) =∑N

i=1 gihi, where gi and hi denote element i of g ∈ �2
N and h ∈ �2

N , respectively. An
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orthonormal basis for �2
N is the set of unit vectors {ej}Nj=1, where element i of ej is

1 if i = j and 0 if i �= j. In case N < ∞, the elements of �2
N are usually written as

(column) N-vectors g = (g1, . . . , gN)T , the inner product is then (g, h) = gTh, and
the columns of the N × N identity matrix constitute an orthonormal basis.

Let (X, C,μ) be a measure space. Denote by L1(X, C,μ) the set of integrable
maps from X into R

e, and consider the function ‖ · ‖ defined for all g ∈ L1(X, C,μ)
by

‖g|| =
∫

X
|g| dμ .

The set L1(X, C,μ) is a linear space, and the function ‖ · ‖ is by definition real-
valued, i.e., ‖g‖ < ∞ for all g ∈ L1(X, C,μ). The function ‖ · ‖ also satisfies all
of the properties of a norm, except that ‖g‖ = 0 does not imply g = 0. However,
‖g‖ = 0 does imply that g = 0 a.e., and g = 0 a.e. implies that ‖g‖ = 0, for all
g ∈ L1(X, C,μ). Two maps g and h from X into R

e are called equivalent, or are
said to belong to the same equivalence class, if g = h a.e. If g and h are equivalent,
and if g, h ∈ L1(X, C,μ), then ‖g‖ = ‖h‖. That is, ‖ · ‖ assigns the same real
number to each member of a given equivalence class of elements of L1(X, C,μ),
and thereby the domain of definition of the function ‖ · ‖ is extended from the
elements of L1(X, C,μ) to the equivalence classes of elements of L1(X, C,μ). The
set L1(X, C,μ) of equivalence classes of elements of L1(X, C,μ) is a linear space,
and ‖ · ‖ is a norm on this space. The Riesz-Fischer theorem states that L1(X, C,μ)
is complete in this norm, i.e., that L1(X, C,μ) is a Banach space under the norm ‖·‖.
The elements of L1(X, C,μ), unlike those of L1(X, C,μ), are not defined pointwise
in X, and therefore are not maps.

Denote by L2(X, C,μ) the set of square-integrable maps from X into R
e, and

consider the function ‖ · ‖ defined for all g ∈ L2(X, C,μ) by

‖g|| =
(∫

X
g2 dμ

)1/2

.

Again, the function ‖ · ‖ assigns the same real number to each member of any given
equivalence class of elements of L2(X, C,μ), i.e., to each g, h ∈ L2(X, C,μ) such
that g = h a.e., and in particular, ‖g‖ = 0 if and only if g = 0 a.e. Thus the domain
of definition of the function ‖ · ‖ can be extended to the equivalence classes. The
set L2(X, C,μ) of equivalence classes of elements of L2(X, C,μ) is a linear space,
‖ · ‖ is a norm on this space, and L2(X, C,μ) is complete in this norm. Therefore
L2(X, C,μ) is a Banach space under the norm ‖ · ‖. Moreover, this norm satisfies
the parallelogram law, and therefore L2(X, C,μ) is a Hilbert space. The polarization
identity yields the inner product (·, ·) on L2(X, C,μ), viz.,

(g, h) =
∫

X
gh dμ ,
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for all g, h ∈ L2(X, C,μ). Again, the elements of L2(X, C,μ) are not defined
pointwise and are not maps. The Schwarz inequality holds on L2(X, C,μ) since
L2(X, C,μ) is an inner product space, and gives Eq. (79) when restricted to the
elements of L2(X, C,μ).

Let V1 and V2 be two normed linear spaces, with inner products ‖ · ‖1 and ‖ · ‖2,
respectively, and let H be a Hilbert space, with inner product (·, ·). A bounded linear
operator from V1 into V2 is a map T : V1 → V2 such that (i) T (αg + βh) =
αT g + βT h for all g, h ∈ V1 and α,β ∈ R, and (ii) there exists a constant γ ∈ R

such that ‖T h‖2 ≤ γ ‖h‖1 for all h ∈ V1. A bounded linear operator T : H → H
is called self-adjoint if (T g, h) = (g, T h) for all g, h ∈ H, and is called positive
semidefinite if (h, T h) ≥ 0 for all h ∈ H.

At the beginning of this subsection, the field of scalars for linear spaces V was
taken to be the real numbers, and inner products were therefore defined to be real-
valued. Thus the Hilbert spaces defined here are real Hilbert spaces. It is also
possible, of course, to define complex Hilbert spaces. One property that is lost by
restricting attention in this chapter to real Hilbert spaces is that, while every pos-
itive semidefinite operator on a complex Hilbert space is self-adjoint, a positive
semidefinite operator on a real Hilbert space need not be self-adjoint (e.g. Reed and
Simon 1972, p. 195). Covariance operators on a real Hilbert space are necessarily
self-adjoint as well as positive semidefinite, however, as discussed in Appendix 1c.
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Janjić, T. and S.E. Cohn, 2006. Treatment of observation error due to unresolved scales in
atmospheric data assimilation. Mon. Weather Rev., 134, 2900–2915.

Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory, Academic Press, NewYork.
Kallianpur, G., and J. Xiong, 1995. Stochastic Differential Equations in Infinite Dimensional

Spaces, Lecture Notes-Monograph Series, vol. 26, Institute of Mathematical Statistics,
Hayward, CA.

Kasahara, A., 1974. Various vertical coordinate systems used for numerical weather prediction.
Mon. Weather Rev., 102, 509–522.

Kraichnan, R.H., 1961. Dynamics of nonlinear stochastic systems. J. Math. Phys., 2, 124–148.
Kreiss, H.-O. and J. Lorenz, 1989. Initial-Boundary Value Problems and the Navier-Stokes

Equations, Academic Press, NewYork.
Lax, P.D., 1973. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock

Waves. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 11, Society for
Industrial and Applied Mathematics, Philadelphia, PA.

Lax, P.D., 2006. Hyperbolic Partial Differential Equations, Courant Lecture Notes in Mathematics,
Vol. 14, American Mathematical Society, NewYork.

Lin, S.-J., 2004. A “vertically Lagrangian” finite-volume dynamical core for global models. Mon.
Weather Rev., 132, 2293–2307.

Lin, S.-J., and R.B. Rood, 1997. An explicit flux-form semi-Lagrangian shallow-water model on
the sphere. Q. J. R. Meteorol. Soc., 123, 2477–2498.

Ménard, R., and L.-P. Chang, 2000. Assimilation of stratospheric chemical tracer observations
using a Kalman filter. Part II: χ2-validated results and analysis of variance and correlation
dynamics. Mon. Weather Rev., 128, 2672–2686.

Ménard, R. and Co-authors, 2000. Assimilation of stratospheric chemical tracer observations using
a Kalman filter. Part I: Formulation. Mon. Weather Rev., 128, 2654–2671.

Mitchell, H.L., P.L. Houtekamer and G. Pellerin, 2002. Ensemble size, balance, and model-error
representation in an ensemble Kalman filter. Mon. Weather Rev., 130, 2791–2808.

Omatu, S. and J.H. Seinfeld, 1989. Distributed Parameter Systems: Theory and Applications,
Oxford University Press, NewYork.

Ott, E. and Co-authors, 2004. A local ensemble Kalman filter for atmospheric data assimilation.
Tellus, 56A, 415–428.

Reed, M. and B. Simon, 1972. Methods of Modern Mathematical Physics, vol. I: Functional
Analysis, Academic Press, NewYork.

Riesz, F. and B. Sz.-Nagy, 1955. Functional Analysis, Frederick Ungar, NewYork.
Royden, H.L., 1968. Real Analysis, 2nd ed., Macmillan, NewYork.
Rudin, W., 1991. Functional Analysis, 2nd ed., McGraw-Hill, NewYork.
Staniforth, A., N. Wood and C. Girard, 2003. Energy and energy-like invariants for deep non-

hydrostatic atmospheres. Q. J. R. Meteorol. Soc., 129, 3495–3499.
Trémolet, Y., 2006. Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc., 132,

2483–2504.
Trémolet, Y., 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc., 133, 1267–1280.
von Storch, H. and F.W. Zwiers, 1999. Statistical Analysis in Climate Research, Cambridge

University Press, NewYork.



Evaluation of Assimilation Algorithms

Olivier Talagrand

1 Introduction

The theory of statistical linear estimation (Best Linear Unbiased Estimate, or
BLUE – the term Best Linear Unbiased Estimator is also used), upon which a large
number of presently existing assimilation algorithms are based, has been described
in chapter Variational Assimilation (Talagrand). On the face of Eq. (7) of that
chapter (which is the same as Eq. (2) below), determination of the BLUE requires
the a priori specification of the expectation μ and the covariance matrix S of the
errors affecting the data. A number of questions naturally arise in this context:

Q1. How is it possible to objectively evaluate the quality of an assimilation
algorithm?

Q2. Is it possible to objectively determine the expectation μ and covariance S,
whose explicit specification is, at least apparently, required for determining
the BLUE?

Q3. Is it possible to objectively verify if an assimilation algorithm is optimal in a
given precise sense, for instance in the sense of least error variance?

These questions are discussed in this chapter. Answers, at least partial, are given.
It is stressed that any procedure for achieving any of the above goals requires
hypotheses that cannot be objectively validated on the basis of the data only. Section
2 summarizes the main elements of the theory of the BLUE, as already described
in chapter Variational Assimilation, and gives additional elements. The three ques-
tions above are dealt with in Sects. 3, 4, 5 and 6, with Sect. 5 being more specifically
devoted to objective evaluation of internal consistency of an assimilation algorithm.
Conclusions and comments are given in Sect. 7.

The notations are the same as in chapter Variational Assimilation, with the excep-
tion that the notation E will be used, as will be explained below, for denoting a

O. Talagrand (B)
Laboratoire de Météorologie Dynamique/CNRS, École Normale Supérieure, Paris, France
e-mail: Talagrand@lmd.ens.fr

217W. Lahoz et al. (eds.), Data Assimilation, DOI 10.1007/978-3-540-74703-1_8,
C© Springer-Verlag Berlin Heidelberg 2010



218 O. Talagrand

particular type of statistical expectation. For any integer q, Iq will denote the unit
matrix of order q.

2 Reminder on Statistical Linear Estimation

An unknown true state vector xt, belonging to state space S, with dimension n,
is to be determined from a known data vector z, belonging to data space D, with
dimension m, of the form

z = � xt + ε. (1)

In this expression, � is a known operator from S into D, called the data opera-
tor, represented by an m × n-matrix, while ε is an unknown m–dimensional error,
assumed to be a realization of a vector random variable in data space. We look for
an estimate of xt (the “analysis”) of the form

xa = a+ Az,

where the n–vector a and the n × m-matrix A are to be determined under the
following two conditions:

(1) The estimate xa is independent of the choice of the origin in state space;
(2) For any component of x, the statistical expectation of the squared estimation

error is minimum.

The solution to this problem is

xa = (�T S−1�)−1�T S−1(z− μ) (2)

i.e.,

A = (�TS−1�)−1�TS−1 (3a)

a = −Aμ, (3b)

where μ ≡ E[ε] and S ≡ E[(ε −μ)(ε −μ)T ] are, respectively, the expectation and
covariance matrix of the data error ε.

The corresponding estimation error xa–xt has zero expectation

E[xa − xt] = 0, (4)

and has covariance matrix

Pa ≡ E[(xa − xt)(xa − xt)T ] = (�TS−1�)−1. (5)
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The estimate xa is the Best Linear Unbiased Estimate (BLUE) of x from z. Its
explicit determination requires, at least in view of Eq. (2), the explicit specification
of both the expectation μ and the covariance matrix S of the error ε.

The BLUE is unambiguously defined if, and only if, the matrix � is of rank n,
i.e., if, and only if, the condition �x = 0 implies x = 0. This is called the determi-
nacy condition. It implies that m ≥ n. We set m = n + p, p ≥ 0. The determinacy
condition depends only on the data matrix �, and says nothing as to the accuracy of
the estimate, which depends on the covariance matrix S (Eq. 5).

The BLUE xa can also be obtained as the minimizer of the following scalar
objective function, defined on state space

x ∈ D → J(x) ≡ 1

2
[�x− (z− μ)]TS−1[�x− (z− μ)]. (6)

Variational assimilation is based on explicit minimization of objective functions of
form given by Eq. (6). The Kalman filter, although being of a totally different algo-
rithmic form, also amounts to minimizing an objective function of form given by
Eq. (6).

Equations (2), (5) and (6) are invariant in a change of origin, as well as in any
invertible linear change of coordinates, in either state or data space. In particular, the
product x1

TS–1x2, being invariant in a linear change of coordinates, defines a proper
scalar product for any two vectors x1 and x2 in data space. That scalar product
is called the Mahalanobis scalar product associated with the covariance matrix S.
Expression (6) shows that the image �xa of the BLUE xa through � is the point in
the image space �(S) that lies closest, in the sense of the S-Mahalanobis norm, to
the unbiased data vector z-μ. The BLUE is thus seen to be the output of the three
following operations:

(1) Remove the bias in the data vector z by subtracting the mean error μ;
(2) Project the unbiased data vector onto the subspace �(S) orthogonally with

respect to the S-Mahalanobis scalar product;
(3) Take the inverse of the projection through �. The determinacy condition

rank(�) = n ensures that the inverse is uniquely defined.

It is seen that the component of z that is S–Mahalanobis orthogonal to �(S) has
no impact on the result of the estimation process. More precisely, project the data
space D onto the subspace �(S), and the subspace ⊥�(S) that is S–Mahalanobis
orthogonal to �(S), and denote w1 and w2 the corresponding respective components
of a vector w in D. The data operator � now becomes

� = (�1, 0)T

where �1 is an n × n invertible operator from S onto �(S). The data vector z
decomposes into
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z1 = �1x+ ε1 (7a)

z2 = ε2 (7b)

It is now seen that the analysed estimate is equal to

xa = �−1
1 (z1 − μ1) = x+ �−1

1 (ε1 − μ1).

The determination of xa therefore requires the knowledge of only the orthogonal
subspace ⊥�(S) and of the component μ1of the mean error μ.

As for the covariance matrix S, it decomposes into the block diagonal matrix

S = diag(S1, S2),

where S1 and S2 are symmetric definite positive matrices. It is seen from Eq. (5)
that the analysis error covariance matrix is equal to

Pa ≡ �−1
1 S1�

−T
1 ,

where �1
–Tdenotes the transpose of �1

–1.
It results from the above that, contrary to what Eqs. (2), (5) or (6) apparently

suggest, the BLUE xa and associated estimation error covariance matrix Pa do not
depend on the full expectation μ and covariance matrix S of the error ε. They depend
only on the orthogonal subspace ⊥�(S) and of the components μ1 and S1of μ and
S along �(S). Both xa and Paare independent of the components μ2 and S2 along
⊥�(S).

We will consider assimilation systems of the general form given by Eq. (2), for
given, not necessarily exact, bias μ and covariance S. Such systems also provide
an estimate of the corresponding error covariance matrix, in the form given by Eq.
(5). Since the assumed μ and S are not necessarily exact, the corresponding esti-
mate is not necessarily the BLUE. One major point of this chapter is precisely to
discuss the possibility of identifying possible misspecifications in either the expecta-
tion or covariance of the data error, and of determining exactly those quantities (see
chapters Error Statistics in Data Assimilation: Estimation and Modelling, Buehner;
Bias Estimation, Ménard).

For convenience, as well as for consistency with usual notations, we will asume
that the mean error μ (or more precisely what is thought to be the mean error)
has been substracted from the data vector z. That mean error will not therefore
appear explicitly in the equations any more. But the possibility exists that it was not
correctly specified in the first place.

The matrix A = (�TS–1�)–1�TS–1is a left-inverse of �. Conversely, any left-
inverse � of � is of the form (�T�–1�)–1�T�–1, with an appropriately chosen
m × m definite-positive symmetric matrix �. To see that, let us first note that, if
the state and data spaces have the same dimension (m = n), �, which has rank n,
is exactly invertible, with inverse � –1. (�T�–1�)–1�T�–1 is then equal to � –1for
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any �. If m > n, � has a null-space Ker(�) with dimension p = m – n. In a way
similar to what has been done above, project the data space onto the image space
�(S) and the kernel Ker(�). Any definite-positive matrix� that decomposes in that
projection into

� = diag(�1,�2),

defines an operator (�T�–1�)–1�T�–1 which, in addition to being a left-inverse of
�, has null space Ker(�). That operator is therefore identical with �. It is seen
that �1 and �2 can be arbitrary. In particular, if multiplication by � is used for
obtaining the BLUE of x, the corresponding estimation error covariance matrix will
be equal to

Pa = �−1
1 �1�

−T
1 .

Since �1 can be arbitrary, so can Pa. The knowledge of the left inverse operator
that defines the BLUE does not bring any information on the associated estimation
error. Contrary to what one might be tempted to think, the knowledge of the matrix
(�T�–1�)–1�T�–1 does not bring, even for known �, any information on the matrix
(�T�–1�)–1. Any left-inverse of � can coexist with any estimation error covariance
matrix Pa.

We will, therefore, consider estimation schemes of the form

xe = Aez, (8)

where Ae is a left-inverse of � (the superscript e stresses the fact that the estimate
xe may not be optimal). The scheme will be associated with an estimated error
covariance matrix Pe. As mentioned above, one particular purpose of this chapter is
to determine whether the possible optimality of the scheme given by Eq. (8) can be
established on objective grounds. In agreement with the fact that there exists no link
in the optimal case between the quantities A and Pa, no link will be assumed here
between Ae and Pe.

As discussed in the chapter Variational Assimilation (Talagrand) it is always pos-
sible, when the determinacy condition is verified, to transform the data vector z,
through linear invertible operations, into two components of the form

xb = xt + εb (9a)

y = Hxt + εo. (9b)

The vector xb, which has dimension n, is an explicit estimate of the unknown state
vector x, called the background estimate of x. The vector y, which has dimension
p, is an additional set of data, linked to the real state vector x through the (linear)
observation operator H, represented by a p × n-matrix.
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In the format of Eq. (9), the data operator is � = (In, HT)T. It is in the format
of Eq. (9) that data are usually available in meteorological and oceanographical
applications. The expressions given by Eqs. (2), (3) and (5) for the BLUE xa and the
estimation error covariance matrix Pa then assume the form

xa = xb − E[εbdT ]{E[ddT ]}−1(y−Hxb), (10a)

Pa = E[εb(εb)T ]− E[εbdT ]{E[ddT ]}−1E[d(εb)T ], (10b)

where d ≡ y – Hxb is the innovation vector. Contrary to what was done in the
chapter Variational Assimilation, we do not assume for the time being that the back-
ground and observation errors εb and εo are uncorrelated, so that Eqs. (10) above
are more general than Eqs. (15) of chapter Variational Assimilation.

In the format of Eq. (7), the left-inverses of � = (In, HT)T are of the form

(xb, y) → xe = xb +K(y−Hxb), (11)

where the gain matrix K can be any n× p matrix. A given gain matrix K can coexist
with any estimated error covariance matrix Pa.

Forms given by Eqs. (2) and (11) are exactly equivalent. At any point below, we
will use the form that is most convenient for our purpose.

3 Objective Evaluation of Assimilation Algorithms

The purpose of assimilation is to estimate as accurately as possible the state
of the atmospheric or oceanic flow (see chapters Numerical Weather Prediction,
Swinbank; Ocean Data Assimilation, Haines). The ultimate validation criterion is,
therefore, the accuracy with which the flow is estimated, and is naturally quantified
by the statistical difference between the estimated values and the corresponding real
values of the various physical parameters that define the state of the flow. It is pre-
cisely the expectation of the square of that difference that the BLUE is intended to
minimize. In most situations, the real values of the quantities to be evaluated will,
however, not be available, even a posteriori. The validation can, therefore, be per-
formed, at best, against observations or estimates that are themselves affected by
errors. Consider the simple case when a scalar quantity x (n = 1) is to evaluated
from two scalar data (m = 2) of the form

z1 = xt + ε1 (12a)

z2 = xt + ε2. (12b)

This is of form given by Eq. (1), with z = (z1, z2)T, � = (1, 1)T, and ε = (ε1, ε2)T.
We assume the errors to be unbiased (E[ε1] = E[ε2] = 0), mutually uncorrelated
(E[ε1ε2] = 0), and to have the same variance s (E[ε2

1] = E[ε2
2] = s), so that S= sI2.
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The BLUE is then xa = (1/2) (z1+ z2), and the estimation error covariance matrix Pa

reduces to the scalar s/2. Consider a linear estimate xe of the form

xe = a1z1 + a2z2,

with a1 + a2= 1 (that is the condition that Ae is in Eq. (8) a left-inverse of �). We
want to check the possible optimality of xe by comparison to an observation (or a
different estimate) xo of the form

xo = xt + η,

where η is a random error. In the logic of least-square statistical mini-
mization taken here, the quantity xo can legitimately be used for valida-
tion if the mean quadratic error E[(xe − x0)2], considered as a function
of the estimate, xe, is minimum when xe is equal to the BLUE xa. This
requires that xo be unbiased (if it had a non-zero bias, E[η], the estimate
xa + E[η] would achieve a better quadratic fit to xo than the BLUE xa).
It also requires the error η to be uncorrelated with the data error ε. It is obvious
that if η has variance s, but is for instance strongly and positively correlated with ε1,
but not with ε2, a better fit to xo will be obtained if a1 > a2 than if a1 = a2. More
precisely, it can be shown that the linear function of z which optimally estimates, in
the sense of minimum statistical quadratic error, the quantity xo is equal to

xoa = xa + E[ηεT ]S−1(S− �Pa�T )S−1z = xa + E[η(ε1 − ε2)]
z1 − z2

2s
.

It is different from xa when the errors η and ε are mutually correlated, with E[η(ε1−
ε2)] �= 0.

If the conditions of unbiasedness and decorrelation from data error are verified
for the validating observation xo, the mean quadratic difference between xe and xo

is equal to

E[(xe − xo)2] = E[(xe − x)2]+ E[η2],

and it is minimum for xe = xa.
This shows that an estimate xe can be usefully validated only against observations

(or other estimates) that are unbiased and affected by errors that are themselves
uncorrelated with the errors affecting the data used for producing xe. In particular,
the fit of the analysed fields to the data that has been used in the analysis cannot
be a proper diagnostic of the quality of the analysis. It can actually be shown that
the fit of the analysed fields to any particular piece of data can be made arbitrarily
small by simply decreasing the assumed variance for the error affecting that piece
of data.

As a consequence, objective comparison between the results of two different
assimilation systems can be performed only against observations or estimates that
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are uncorrelated with data used in either one of the two systems. A practical diffi-
culty is, of course, that the decorrelation between the data used in the assimilation
and in the validation can never be objectively verified, and has to be hypothesized
on the basis of, at best, physical knowledge, experience and good judgment.

4 Estimation of the Statistics of Data Errors

How is it possible to objectively determine the expectation μ= E[ε] and the covari-
ance matrix S = E[(ε−μ)(ε−μ)T ]? One way could be to proceed by trial and error
experimentation, namely to vary μ and S, and to determine, through comparison
against unbiased and independent data, which combination leads to the best statisti-
cal fit to those data. One could even envisage that an explicit statistical optimization
process could be implemented for determining the optimal values of μ and S.
The sheer numerical dimension of the meteorological or oceanographical problems
clearly shows that there can be no hope to entirely and accurately determine μ and S
through such procedures. But empirical tuning of parameters has always been an
important part of the development of assimilation systems. Empirical tuning can be
systematized in the form of cross validation. A typical example is as follows. For a
particular class of instrument, assumed to produce unbiased observations with the
same constant error variance, the assumed variance is varied in a series of assimila-
tion experiments in order to determine the value for which the fit to independent data
is optimized. In spite of a number of instructive studies of cross validation, and of its
extension called generalized cross validation (see, e.g., Wahba et al. 1995), this type
of method has not been so far extensively used in meteorological or oceanographical
applications.

New meteorological observations are available every day, and a natural question
is whether it is possible to determine the quantities μ and S through appropriate sta-
tistical processing of the observations. It is seen from the background-observation
decomposition given by Eq. (9) that the only combination of the data that is
independent of the unknown state vector x is the innovation

d = y−Hxb = −Hεb + εo. (13)

Within the world of data and assimilation, the innovation is the only objective source
of information on the errors affecting the data. The question we consider here is,
therefore: Which knowledge on μ and S can be obtained from statistical processing
of the innovation vector?

Consider the Data-minus-Analysis (DmA) difference vector, viz.,

δ ≡ z− �xe. (14)

It is the a posteriori misfit between the raw data and the estimated state vector xe. By
the definition given by Eq. (8) of xe, δ is �-Mahalanobis orthogonal to the image
subspace �(S), where � is any one of the covariance matrices associated with the
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left-inverse in Eq. (8). In background-observation format of Eq. (9), it decomposes
into δ = [(xb– xe)T, (y–Hxe)T]T. Now, it is seen from Eq. (13) that

xb − xe = −Kd

y−Hxe = (Ip −HK)d.

Given δ, these equations are invertible for d, and show that, for any analysis scheme
given by Eq. (11), the innovation and DmA vectors d and δ are in one-to-one
correspondence. As far as accumulating statistics is concerned, that can be done
equivalently either a priori on the innovation vector or (after the analysis has been
performed) on the DmA difference. Now, the DmA difference z – �xe is the com-
ponent of the data vector that has been seen to be “rejected” in the analysis, and
to have no impact on the analysis, nor on the estimated analysis error. The conclu-
sion is that no information on the data error that could be useful for the estimation
process can be obtained by only statistical processing of the innovation. Prior infor-
mation obtained from external knowledge of the process that produces the data, and
from experience, good judgment or educated guess will always be necessary.

Now, appropriate external information always exists to some extent. To take a
simple example, let us assume that (as has actually happened) the innovation corre-
sponding to one type of observation in a particular meteorological station shows a
specific statistical feature (a systematic bias, to fix ideas) that is not present in the
innovations corresponding to similar observations performed with similar instru-
ments in stations in the same region. It is obvious that the origin of the bias is to
be looked for in the observation, and not in the numerical model that produces the
innovation. But that conclusion, as obvious as it is, uses external knowledge relative
to the observation and prediction system, and could not be obtained from only blind
statistical processing of the innovation.

We will discuss at some length in Sect. 7 the implications of the conclusion that
has been obtained above. We only mention at this stage that the existence of a one-
to-one correspondence between the innovation and the DmA difference could have
been inferred without computation by simply noting that both those quantities are
obtained by eliminating the unknown x from the data z. The result of the elimination
must be independent of how the elimination is performed.

5 Diagnostics of Internal Consistency

The question arises, in view of the conclusion of the previous section, of what, if
anything, can be done in terms of objective evaluation of the statistics of the data
error. It is clear that, if some parameters of those statistics are known, other parame-
ters can be obtained by differences from the accumulated statistics of the innovation.
As an example, Daley (1993) considered the horizontal covariance function of the
innovation for radiosonde geopotential observations, which he made homogeneous
and isotropic through averaging over geographical location and direction. If the
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observational error is spatially uncorrelated, and uncorrelated with the background
error, it will appear in the covariance function as an additional Dirac term with cor-
relation distance 0. Extrapolating the observed covariance to distance 0, Daley thus
obtained an estimation of the variance of the observational error. Many similar diag-
nostics studies can be, and have been, performed. They are necessarily based on a
priori assumptions as to a number of parameters of the probability distribution of
the data errors. They will normally lead to new estimates of other parameters. This
estimation process can be iterated.

A systematic approach is as follows. Any assimilation system of form given
by Eq. (8) relies on a priori specification of the expectation μ and the covariance
matrix S. These define in turn an expectation and a covariance matrix for the inno-
vation d. If μ is for instance assumed to be zero, then necessarily E[d] = 0. In
addition, if, as is usually done, the background and observation errors are assumed
to be uncorrelated, with respective covariance matrices (see chapter Variational
Assimilation, Talagrand)

Pb ≡ E[εb(εb)T ], R ≡ E[εo(εo)T ], (15)

then

E[ddT ] = HPbHT + R.

Comparison of the a posteriori observed statistics of the innovation with the a priori
assumed statistics may reveal inconsistencies, which one may resolve by appropri-
ately redefining the data error expectation and covariance matrix. In view of the
one-to-one correspondence between the innovation and the DmA difference δ, the
same diagnostics can be done alternatively on the latter. The information will be
the same, and the choice is only a matter of convenience. But it must be stressed
that, in view of the result proved in the previous section, consistency between the
a priori assumed and the a posteriori observed statistics is neither a necessary nor
a sufficient condition for optimality of the assimilation process. It is not a suffi-
cient condition because the knowledge of the expectation and covariance of the
innovation does not define the covariance matrices E[εbdT ] and E[εb(εb)T ] that are
necessary for determining xe and Pa (Eqs. 10). And it is not a necessary condition
because a possible inconsistency can always be “explained out” by assuming that
it entirely originates in the DmA difference, without modification of the orthogo-
nal space ⊥�(S). As mentioned in the previous section, that will modify neither
the estimate xe, nor the associated estimated estimation error covariance matrix
Pe. For a fully explicit example, consider again the case of data of form given
by Eq. (12)

z1 = xt + ε1,

z2 = xt + ε2.
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The estimation is performed under the hypothesis that the errors ε1 and ε2 are
unbiased and mutually uncorrelated, and have same variance s. The corresponding
estimate is

xe = 1

2
(z1 + z2), (16a)

and is expected to be associated with quadratic error

se = s

2
. (16b)

As for the innovation, which is here the difference d = z1– z2, it is expected to have
expectation 0 and variance 2s. Assume statistics performed on the data show the
innovation to have respective expectation and mean square

Ee[d] = m, (17a)

Ee[d2] = m2 + 2σ , (17b)

where the subscript e means that Ee denotes a posteriori observed statistical means.
Equations (17) are in contradiction with the hypotheses that have been made on ε1
and ε2 if m �= 0 and/or σ �= s. The image space �(S) is in the present case the
direction z1 = z2, while the space that is S–Mahalanobis orthogonal to �(S) is the
direction z1+z2 = 0. Projecting the error vector ε onto those two directions, and
concentrating as mentioned above the inconsistency on the latter, leads for the error
components to the expectations

E[ε1] = −E[ε2] = −m

2
, (18a)

and covariance matrix

S = 1

2

(
s+ σ s− σ
s− σ s+ σ

)
. (18b)

It is easily verified that these expressions, while being compatible with Eqs. (17),
lead to the estimate of Eq. (16a) and the corresponding estimation error, Eq. (16b).
That is absolutely general, and it is always possible to specify the error expectation
μ and covariance matrix S so as to make them compatible with any expectation
and covariance matrix for the innovation, as well as with any expressions for the
BLUE xe and associated estimation error covariance matrix Pe. That may, on the
other hand, require conditions that, in view of the available external knowledge on
the data, may be very unlikely, if not impossible. In the above example, accommo-
dation of a bias m requires the biases in ε1 and ε2 to be exactly opposite of each
other (Eq. 18a), and accommodation of an a posteriori observed variance σ that is
different from the a priori assumed variance s requires correlation between ε1 and ε2
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(Eq. 18b). That may be known from other sources to be very implausible, or simply
impossible.

The reader may wonder at this stage what would change the analysis. That would
be to modify the error covariance matrix S in such a way that the orthogonal space
⊥�(S) is changed. Keeping ⊥�(S) unchanged, but modifying the component S1of
S along �(S) would not modify the analysis, but would modify the estimation error
covariance matrix.

Keeping in mind that reliable interpretation of possible inconsistencies can only
come from external knowledge, we describe below a number of diagnostics that can
be, and have been, implemented for identifying possible inconsistencies between a
priori assumed and a posteriori observed probability distributions of the innovation.
Some of those diagnostics are implemented either on the innovation itself, others on
the DmA difference, and still others on combinations of both.

A first obvious diagnostic is to test for the possible presence of a bias in either
the innovation or the DmA difference. The presence of a statistically significant
bias in either one of those two quantities is the signature of an improperly-taken-
into-account bias in either the background or the observations (or both). One can
argue that systematic check of a presence of a residual bias in either the innovation
or the DmA difference is likely the first consistency diagnostic to be performed
on an assimilation system. This problem is discussed in more detail in the chapters
Error Statistics in Data Assimilation: Estimation and Modelling (Buehner) and Bias
Estimation (Ménard). In these chapters algorithms are presented for evaluating, in
particular, possible drifts in observational biases.

A second simple diagnostic bears on the covariance of the DmA difference δ. It
is seen from Eqs. (2) and (14) that δ is equal in a consistent system to

δ = (S− �Pa�T )S−1ε,

and has covariance matrix

E[δδT ] = S− �Pa�T . (19)

Noting that the second term on the right-hand side of Eq. (19) is the covariance
matrix of the vector �(xa– xt), this equation can be written as

E[(z−�xt)(z−�xt)T ] = E[(z−�xa)(z−�xa)T ]+E[(�xa−�xt)(�xa−�xt)T ]. (20)

The Pythagorean form of this expression shows that the triangle with vertices {z,
�xa, �xt} has a right angle (in the sense of orthogonality defined by statistical
covariance) at point �xa, or equivalently, that the difference �(xa– xt) is statistically
uncorrelated with the DmA difference, z –�xa.

Equations (19) and (20) also show that the analysed fields must fit the data to
within the accuracy assumed on the latter – Hollingsworth and Lönnberg (1989)
have called efficient an assimilation system that possesses this particular property.
This, with the check of unbiasedness of the innovation or DmA difference, is one
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basic consistency check to perform on an assimilation system. Experience shows
that systems that have been used in operations for a long time, and have been pro-
gressively improved through, mostly, comparison with independent observations,
are consistent as concerns the particular diagnostic considered here. Newly devel-
oped systems, on the other hand, may be off by a factor as large as one order of
magnitude. Such an inconsistency is the signature of a gross misspecification in the
error covariance matrix S, although the check does not say where the misspecifica-
tion lies, nor even, in all mathematical rigour, that the system is not optimal because
of the misspecification.

Consider a sub-matrix of S that is diagonal, corresponding, for instance, to
radiosonde observations that are at mutually sufficiently large distance for the cor-
responding representativeness errors to be uncorrelated. The analysis error will be
spatially correlated, mainly because of an assumed correlation in the background
error. The off-diagonal terms in S will be 0, and Eq. (19) then shows that the
DmA difference will be negatively correlated at short distances. Hollingsworth and
Lönnberg (1989) have described an example of a positive short-distance correla-
tion of the DmA difference in the ECMWF (European Centre for Medium-Range
Weather Forecasts) assimilation system. That was the signature of a misspecifica-
tion somewhere in the matrix S. Later checks showed a negative correlation. The
sign of the DmA difference spatial correlation does not seem to have been recently
checked in operational assimilation systems.

The check defined by Eq. (19) does not, of course, provide a measure of the qual-
ity of the assimilation system. On the contrary, assume that, as a result for instance
of an increase in the number of observations, the accuracy of the analysis increases,
while observation error variances remain constant. The term that is subtracted on
the right-hand side of Eq. (19), which is a measure of the quality of the analysis,
will decrease. As a consequence, the variance of the DmA difference will increase
to tend asymptotically, as it must obviously do in the limit of a perfectly accurate
analysis, to the variance of the data error. That constitutes a definitive proof, if one
is needed, that the fit of an analysis to the data used in that analysis cannot be a
measure of the quality of the analysed fields.

The objective function given by Eq. (6) assumes at its minimum the value

Jmin ≡ J(xa) = 1

2
(�xa − z)TS−1(�xa − z). (21)

It is (half) the squared S–Mahalanobis norm of the DmA difference δ. In the {�(S)−
⊥�(S)} decomposition of the data space D, Eq. (21) reads (see Eq. 7)

Jmin = 1

2
εT

2 S−1ε2.

Since ε2 is in one-to-one linear correspondence with the innovation d, and S2 =
E([ε2ε

T
2 ], invariance of the Mahalanobis scalar product in a linear transformation

implies that
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Jmin = 1

2
dTE[ddT ]−1d. (22)

The value of the objective function at its minimum is (half) the squared Mahalanobis
norm of the innovation, with respect to its own covariance matrix. This is a deter-
ministic result, valid for any realization of the minimization process. It is readily
seen that Jmin is also the value of the dual objective function (see Eq. 25 of chapter
Variational Assimilation, Talagrand) at its minimum.

Equation (22) being valid in any system of coordinates, it is convenient to con-
sider as coordinates the principal components di (i = 1, . . ., p) of d, in which
the covariance matrix E[ddT ] is the unit matrix Ip[E[di dj] = δij, where δij is the
Kronecker symbol]. Equation (22) then reads

Jmin = 1

2

p∑
i=1

d2
i , (23)

which shows that, for a consistent system, Jmin has expectation

E[Jmin] = p

2
. (24)

The expectation of the objective function at its minimum is half the number of obser-
vations. This provides a very simple overall check of consistency of an assimilation
system. If the observed expectation of Jmin is smaller (resp. larger) than p/2, this
means that the assimilation system is inconsistent, and that the covariance matrix
E[ddT ], as specified by the system, is too large (resp. too small). Note that the pres-
ence of a residual bias in the innovation (which can of course be directly checked)
would lead to an increase of Jmin.

Jmin is a direct output of variational algorithms, both in their primal and dual
forms. It can also be computed, although at some numerical cost, in other assimila-
tion algorithms, such as Kalman filtering (see, e.g., Ménard and Chang 2000). The
criterion given by Eq. (24) seems to have been first described and used, in the context
of oceanography and meteorology, by Bennett (1992). Since then, the test given by
Eq. (24) has been performed for a fairly large number of assimilation systems. One
can mention, among others, the works of Ménard and Chang (2000), Talagrand and
Bouttier (2000), Cañizares et al. (2001), Muccino et al. (2004), Sadiki and Fischer
(2005), Chapnik et al. (2006) and Elbern et al. (2007). A remark similar to the one
that has been made about Eq. (19) can also be made here. Systems that have gone
through extended operational validation and tuning, even if they have never been
subject to the particular check given by Eq. (24), usually show a value of E[Jmin]
that differs from its theoretical value p/2 by a factor of, at most, a few units.

The test given by Eq. (24) is often called the χ2–test. The χ2 probability dis-
tribution of order p is the distribution of the sum of the squares of p independent
Gaussian variables, each with expectation 0 and variance 1. It has expectation p and
variance 2p. It is seen from Eq. (23) that, if the data error (and therefore the inno-
vation) is Gaussian, the quantity 2Jmin follows a χ2 distribution of order p. Both
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the expectation and variance of Jmin are then equal to p/2. But it is also seen from
the above that the expectation of Jmin is equal to p/2 independently of whether the
data error is Gaussian or not. However, for large p, and even if the innovation is not
Gaussian, the central limit theorem (which states that the sum of a large number of
independent random variables is Gaussian) ensures that 2Jmin must approximately
follow a χ2 distribution of order p, The distribution of Jmin, which has expectation
p/2 and standard deviation

√
(p/2), is then very strongly peaked. Experience shows

that a few realizations of an assimilation system are sufficient for reliable estimation
of E [Jmin].

The objective function given by Eq. (6) will most often be the sum of a number
of independent terms, viz.,

J(x) =
K∑

k=1

Jk(x),

where

Jk(x) ≡ 1

2
(�kx− zk)TS−1

k (�kx− zk). (25)

In this equation, zk is an mk–dimensional component of the data vector z
(�kmk = m), and the rest of the notation is obvious. The inverse estimation error
covariance matrix is easily obtained from Eq. (5) as

[Pa]−1 =
∑

k

�T
k S−1

k �k. (26)

Left-multiplying by Pa, and then taking the trace of the result, yields

1 = 1

n

∑
k

tr(Pa�T
k S−1

k �k) = 1

n

∑
k

tr(S−1/2
k �kPa�T

k S−1/2
k )

where use has been made, for obtaining the last equality, of the fact that the trace of
the product of two matrices is not modified when the order of the factors is reversed.
This expression shows that the quantity

I(zk) ≡ 1

n
tr(S−1/2

k �kPa�T
k S−1/2

k ) (27)

(which, being the trace of a symmetric definite positive matrix, is necessarily posi-
tive) is a measure of the relative contribution of the subset of data zk to the overall
accuracy of the analysis, or of the (relative) information content of subset zk. In
particular, in case of a background-observation decomposition of form given by
Eq. (10) (for the background, �k = In, and Sk = Pb),
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I(xb) = 1

n
tr[Pa(Pb)−1] = 1− 1

n
tr(KH)

I(y) = 1

n
tr(KH)

.

Rodgers (2000) calls the quantity I(zk) Degrees of Freedom for Signal, or for
Noise, depending on whether the subset zk belongs to observations or background.
Equation (27) is absolutely general, and is valid for any subset of data, including
subsets that may consist of data coming from both the background and the observa-
tions. That is clearly seen from the fact that, given any subset v of the data, the data
vector z can always be transformed, through linear and invertible operations, into
z → (vT, wT)T, where the errors affecting w are uncorrelated with the errors affect-
ing v. In that transformation, the objective function J(x) becomes the sum of two
terms corresponding to v and w respectively, from which the information contents
I(v) and I(w) are clearly defined.

The relative information content I(zk) is in essence the sum of the weights
assigned in the assimilation to the components of zk, normalized in such a way
as to allow consistent comparison between data that have been produced by differ-
ent operators �k. Everything else being equal, I(zk) increases with decreasing error
Sk. Figure 1, extracted from Chapnik et al. (2006), shows the information content

Fig. 1 Relative information content (Eq. 27) for eight different subsets of observations, as esti-
mated for the variational assimilation system of Météo-France. For each type of observations, the
two bars correspond to two different algorithms for computing the relative information content (see
text). Each bar is divided into three parts, corresponding respectively, from top to bottom, to the
Northern Hemisphere (20◦N–90◦N), the tropical belt (20◦S–20◦N) and the Southern Hemisphere
(20◦S–90◦S). For TEMP U and AIREP U (wind observations from radiosondes and aircraft respec-
tively), observations of both horizontal components of the wind vector are included (© Royal
Meteorological Society)
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of eight subsets of observations, as determined for the variational assimilation algo-
rithm of the ARPEGE Numerical Weather Prediction system of Météo-France. Each
vertical bar is divided into three parts, corresponding respectively, from top to bot-
tom, to observations performed northward of latitude 20◦N, between latitudes 20◦N
and 20◦S, and southward of latitude 20◦S (for each type of observations, the two
bars correspond, as will be explained below, to two numerical algorithms for the
computation of the information content).

It is seen that the largest information content corresponds to observation subsets
which contain the largest number of observations: radiosonde wind measurements
TEMP U (which contain measurements of both horizontal components of the wind),
and satellite observations (SATOB and AMSU). The impact of the geographical
distribution of the observations is also clearly visible. The information content of
the Northern Hemisphere dominates in the radiosonde (TEMP), pilot (PILOT) and
aircraft (AIREP) observations, which are much more numerous in the Northern
Hemisphere. For satellite observations, the impact of both hemispheres is the same,
with larger relative impact of the tropical belt for SATOB (wind estimates for geo-
stationary satellites) than for AMSU observations (infrared radiation measurements
performed from satellites on polar orbits).

Figure 2 shows the same information contents as in Fig. 1, divided now by the
number of individual observations in each of the eight subsets. It is the intrin-
sic information content of individual observations, independent of the number of

Fig. 2 Same as Fig. 1, but averaged for individual observations in each class
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observations in a given subset. It is seen that it is the radiosonde measurements of
humidity that have here highest individual information content.

Different, but fundamentally similar diagnostics have been defined and stud-
ied by other authors (see, e.g., Fisher 2003). These types of diagnostics are very
useful. Not only do they provide instructive a posteriori information, but they can
be used for a priori estimation of information content. They have been used, for
instance, by Rabier et al. (2002) for selecting the most informative channels in satel-
lite radiance measurements. More generally, they can be used as part of Observing
System Simulation Experiments (OSSEs) for a priori estimation of the gain that
can be expected from new instruments (see chapter Observing System Simulation
Experiments, Masutani et al.).

On the other hand, these diagnostics are based on the assumption that the
expectations and variances of data errors have been correctly specified. That is,
of course, not necessarily the case and these diagnostics may, in consequence, be
misleading. In particular, they cannot be used in isolation for detecting a possible
misspecification of the required expectations and variances.

It can be shown (Talagrand 1999; Desroziers and Ivanov 2001) that the expecta-
tion of the term Jk(x) (Eq. 25) at the minimum of the objective function is equal to

E[J(xa)] ≡ 1

2
[mk − tr(S

− 1
2

k �kPa�T
k S

− 1
2

k )], (28)

where the same trace is present on the right-hand-side as in Eq. (27). Equation (28)
includes Eq. (24) as a particular case. It shows that, everything else being equal,
E [Jk(xa)] will be smaller for more accurate data (smaller norm for Sk). It is obvious
that the fit of the analysis must be closer to more accurate data. But Eq. (28) shows
that this remains true even when the fit to the data is divided by the covariance
matrix of the data error.

Equation (28) also provides the basis for further evaluation of the consistency
of an assimilation scheme. It suffices to compare the trace of S−1/2

k �kPa�T
k S−1/2

k ,
as computed directly and as determined statistically, through Eq. (28), from results
of assimilation experiments. Desroziers and Ivanov (2001) have shown that, if the
observation error is supposed to be uncorrelated in space and uncorrelated with the
background error, Eq. (28) can be used for estimating the observation and back-
ground error variances. This is, in essence, a systematic extension of the already
mentioned work by Hollingsworth and Lönnberg (1989) and Daley (1993). Along
the same lines, Chapnik et al. (2006) have used Eq. (28) to tune the variances of the
observational errors in the various channels of the TOVS instrument, carried by the
satellites of the NOAA series (Appendix lists acronyms.). This has led to a signif-
icant change for several of the variances (reduction by a factor of 9 in one case).
It has also led to a modest, but distinct, improvement in the quality of the ensuing
forecasts.

As a side remark, Eq. (28) also provides what is likely the simplest way of
computing the trace tr(S−1/2

k �kPa�T
k S−1/2

k ). The matrix S−1/2
k �kPa�T

k S−1/2
k has

dimension mk × mk, where mk can reach values of order O(106). Computing the
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trace of large matrices that are not explicitly available (which is the case in assimila-
tion of meteorological or oceanographical observations) raises specific difficulties.
A simple way to compute the trace tr(S−1/2

k �kPa�T
k S−1/2

k ) is to run the assimila-
tion code from unbiased synthetic data affected with errors that have covariance
matrix Sk, and to determine the trace from the sample average of Jk(xa). Experience
shows that, for large values of mk (and similarly to what has been said above con-
cerning the test given by Eq. 24), a sample of a few elements is sufficient for
determination of E[Jk(xa)]. It is that particular method that has been used for deter-
mining the values marked SOI (for Simulated Optimal Innovation) in Fig. 1 (the
method identified as Girard is also a Monte Carlo type method, described in Girard
1987).

We have described a number of diagnostics, in particular diagnostics of inter-
nal consistency, that can be implemented on an assimilation system. Many other
such diagnostics can be defined, all based on statistics of the innovation or of the
DmA differences. Two particular diagnostics have been defined by Desroziers et al.
(2005). Assuming the background and observation errors to be uncorrelated, and
to have respective covariance matrices Pb and R (see Eq. 15), then, in a consistent
system

E[H(xa − xb)dT] = HPbHT ,

E[(y−Hxa)dT ] = R.

This allows direct comparison with the a priori specified values for Pb and R
(although of course, an inconsistency in, say, the second of those equations, does
not mean that the misspecification lies only in R; actually, it does not even mean
that R is mispecified at all).

It is worth making a few additional remarks concerning the information content
given by Eq. (27). As a simple example, consider the case of a scalar x that evolves
in time t according to the equation

xt+1 = αxt

with α > 0. Assume two equally accurate observations of x have been performed
at times t and t + 1. The corresponding information contents are easily seen to be
in the proportion (1/α, α). For stable systems (α > 1), the later observation is more
informative; it is less informative for unstable systems (α < 1). The two quantities
xtand xt+1 being in one-to-one correspondence, this is true independently of the time
at which xt is to be estimated.

Given two data subsets v1 and v2, with respective information contents I(v1) and
I(v2), the information content I(v) of the union set v= (v1

T, v2
T)T is equal to I(v1) +

I(v2) if the errors affecting v1 and v2are uncorrelated. If that is not the case, v1 and
v2 can be said to be positively, or negatively correlated depending on whether I(v) <
I(v1) + I(v2) or I(v) > I(v1) + I(v2). This defines a sign (and actually a magnitude) for
the correlation between two subsets of data. The information content being invariant
in a linear transformation in data space (and in particular in a change of sign in any
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of the individual data), that correlation is not systematically related to the sign of the
numerical correlations between the components of the errors affecting v1 and v2 (in
general, those correlations make up a whole matrix, with no unambiguous sign).

The information content I(zk) quantifies the relative contribution of subset zk to
the overall accuracy of the estimate of the state vector x. That notion can be extended
to the measure of the contribution of zk to the accuracy of the estimate of any subset,
say u1, of x. To see that, denote n1 the dimension of u1, and decompose the state
vector x into (u1

T, u2
T)T where u2 is the projection of x onto the subspace that

is Pa–Mahalanobis orthogonal to u1. In that decomposition, the estimation error
covariance matrix Pa reads

P = diag(Pa
1, Pa

2)

with
Pa

1 = E[(ua
1 − ut

1)(ua
1 − ut

1)T ],

Pa
2 = E[(ua

2 − ut
2)(ua

2 − ut
2)T ],

(where the superscript a denotes, as before, analysis). As for the data operator �k,
it decomposes into

�k = (�k,1, �k,2),

where �k,1 (�k,2) defines the contribution of u1 (u2) to the data subset zk. Equation
(5) decomposes in turn into

[Pa
1]−1 =

∑
k

�T
k,1S−1

k �k,1, (29a)

[Pa
2]−1 =

∑
k

�T
k,2S−1

k �k,2 (29b)

The same derivation that has led from Eqs. (26) and (27), started this time from
Eq. (29a), leads to defining

I1(zk) ≡ 1

n
tr(S−1/2

k �k,1Pa�T
k,1S−1/2

k ), (30)

as being the relative contribution of the data subset zk to the accuracy of the estima-
tion of u1. One can thus define the relative contribution of any subset of the data (for
instance, the infrared radiances in a given channel over a given geographical area)
to the accuracy of the estimate of any subset of the analysed fields (for instance, the
estimate of humidity over that same area).

Numerical determination of I1(zk) seems, however, to raise serious problems,
since it requires the identification, in one form of another, of the subspace in S that
is Pa–Mahalanobis orthogonal to u1. It is not clear how that could be achieved in
practice.
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6 Diagnostics of Optimality of Assimilation Algorithms

The various diagnostics that have been presented in the previous sections allow
objective comparison of the quality of different assimilation schemes, or evaluation
of the internal consistency of a given scheme. They say nothing as to the optimality,
or otherwise, of a given scheme. The BLUE is defined on conditions of statisti-
cal unbiasedness and minimum estimation error variance. As a consequence, the
estimation error xa–xt, in addition to being unbiased, must be statistically uncorre-
lated with the DmA difference or, equivalently, with the innovation vector. This is
expressed by Eq. (10a), where the second term on the right-hand side is the orthog-
onal projection, in the sense of covariance, of (minus) the background error xt– xb

onto the space spanned by the innovation y – Hxb (see also Eq. 20). The optimality
condition is often expressed, in an exactly equivalent way, by saying that a sequen-
tial algorithm for assimilation is optimal if, and only if, the temporal sequence of
innovation vectors is unbiased and uncorrelated (Kailath 1968).

This optimality condition can be objectively checked against independent obser-
vations. Let us consider an observation of the form

q = Dxt + γ ,

where D is a known linear operator, and the error γ is assumed to be unbiased and
uncorrelated with the data error ε, and therefore with the innovation d. Optimality
of the estimate qa = Dxa of w is equivalent to the conditions that it be statistically
unbiased

E[q− Dxa] = 0, (31)

and uncorrelated with the innovation

E[(q− Dxa)dT ] = 0. (32)

If the unbiasedness condition given by Eq. (31) is usually checked in assimilation
systems, the uncorrelatedness condition given by Eq. (32), in spite of its simplicity,
has so far been rarely used. One of the few examples is a work by Daley (1992), who
computed the correlation of the innovation sequence for the sequential assimilation
system that was then in use at the Canadian Meteorological Centre (that system
is described by Mitchell et al. 1990). He found significantly non-zero correlations,
reaching values of more than 0.4 for the 500 hPa geopotential innovation, at a time-
lag of 12 h. Similar tests, performed more recently on a system for assimilation of
oceanographical observations, led to correlation values around 0.3 (Miller, personal
communication).

The diagnostic given by Eqs. (31) and (32), if used alone, is actually a “one-
way” diagnostic. If the observed correlation is found to be significantly different
from 0, as in the two examples above, that is a proof that the assimilation system is
suboptimal, and can be improved. But if the correlation is found to be statistically
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undistinguishable from 0, that does not mean that the system cannot be improved.
To see that, consider a system which uses as background a short-range forecast
produced by a high-quality Numerical Weather Prediction model, and suppose the
system uses as background error covariance matrix Pb the matrix of climatologi-
cal covariances. That is not erroneous, since the long term statistical distribution
of the background must be close to the climatological distribution. And, provided
the covariance matrix of observation error is correctly specified, one can expect
that the covariance (Eq. 32) will be 0. However, in view of the quality of present
short range numerical weather forecasts, it is clear that such a system could be sig-
nificantly improved. Actually, a system that is suboptimal by the criterion given
by Eq. (32) can very well produce much more accurate estimates than an optimal
“climatological” system.

This first shows that the diagnostic given by Eq. (32) does not have much mean-
ing if it not associated with diagnostics of the magnitude of the difference q –Dxa.
That is not a problem inasmuch as such diagnostics are performed routinely. But this
short discussion also shows that it is impossible to objectively determine, at least on
the basis of diagnostics of form given by Eqs. (31) and (32), whether an assimilation
system makes the best possible use of the available data.

On the other hand, that certainly does not mean that diagnostics of form Eq. (32)
should not be used at all. As mentioned, they have rarely been used so far, but they
can objectively detect suboptimality, and would certainly be a useful complement to
other commonly used diagnostics.

7 Conclusions

We have studied in some detail, in the context of the BLUE, the three questions
stated in the Introduction. The answer to the first question (Q1), relative to the pos-
sibility of objectively evaluating the quality of an assimilation algorithm, is fairly
obvious. Such an evaluation can be made only against unbiased observations that
have not only not been used in the assimilation, but are affected by errors that are
uncorrelated with the errors affecting the data that have been used in the assimila-
tion (in the general case of a non-linear estimation scheme, the condition would be
that the errors affecting the verifying observations must be statistically independent
of the errors affecting the data that have been used in the assimilation).

The second question (Q2) was relative to the possibility of objectively deter-
mining the probability distribution of the errors affecting the data (the expectation
μ and the covariance matrix S in the case of the BLUE). It has led to the con-
clusion that (except for trial and error tuning, which cannot be exhaustive in
meteorological or oceanographical applications) this will always require external
hypotheses, i.e., hypotheses that cannot be objectively validated on the basis of
the data only (incidentally, the author does not know if this result, which has been
shown here on the basis of a fundamentally linear argument, extends to non-linear
estimation). Appropriate external information is always available in meteorological
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and oceanographical applications, but is largely unsufficient to entirely define the
required quantities μ and S. Now, there is no other choice in practice than mak-
ing hypotheses about the statistics of the errors affecting the data. It is important
to distinguish as clearly as possible between hypotheses that are very unlikely to
be ever modified (such as, for instance, that errors in radiosonde observations per-
formed a long distance apart are uncorrelated), from hypotheses that are reasonable
but probably disputable (such as, for instance, that observation errors are statisti-
cally uncorrelated with background errors), and from hypotheses that are made for
convenience, but are very presumably erroneous (such as, for instance, that model
errors are absent, or even only uncorrelated in time). Ideally, one might wish to
define a minimum set of reliable hypotheses such that all remaining necessary error
statistics can be objectively determined from statistics of the innovation. That goal
seems, however, to be somewhat elusive in the present state of assimilation of mete-
orological and oceanographical observations. On the other hand, methods such as
generalized cross validation (Wahba et al. 1995), which are ultimately trial and error
experimentation, but are based on a solid methodological approach, have certainly
not received enough attention in meteorological and oceanographical applications.

Note that systematic comparison between a priori assumed and a posteriori
statistics of the innovation (or equivalently of the DmA difference) can reveal incon-
sistencies for which they cannot be unambiguous interpretation, but which can, if
used with good judgment, help improve the a priori specification of μ and S.

Concerning objective estimation of the optimality of an assimilation algorithm
(Q3), the decorrelation criterion (Eq. 32) is valid only for least squares estimation
(but can extend to non-linear least squares estimation). Although it can prove noth-
ing as to the accuracy of the assimilation, it can nevertheless be useful, and has
likely also not received enough attention.
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Initialization

Peter Lynch and Xiang-Yu Huang

1 Introduction

The spectrum of atmospheric motions is vast, encompassing phenomena having
periods ranging from seconds to millennia. The motions of interest to the fore-
caster typically have timescales of a day or longer, but the mathematical models used
for numerical prediction describe a broader span of dynamical features than those
of direct concern. For many purposes these higher frequency components can be
regarded as noise contaminating the motions of meteorological interest. The elimi-
nation of this noise is achieved by adjustment of the initial fields, a process called
initialization.

The natural oscillations of the atmosphere fall into two groups (see e.g. Kasahara
1976). The solutions of meteorological interest have low frequencies and are close
to geostrophic balance. They are called rotational or vortical modes, since their vor-
ticity is greater than their divergence; if divergence is ignored, these modes reduce
to the Rossby-Haurwitz waves. There are also very fast gravity-inertia wave solu-
tions, with phase speeds of hundreds of metres per second and large divergence. For
typical conditions of large scale atmospheric flow (when the Rossby and Froude
numbers are small) the two types of motion are clearly separated and interac-
tions between them are weak. The high frequency gravity-inertia waves may be
locally significant in the vicinity of steep orography, where there is strong thermal
forcing or where very rapid changes are occurring; but overall they are of minor
importance.

A subtle and delicate state of balance exists in the atmosphere between the wind
and pressure fields, ensuring that the fast gravity waves have much smaller ampli-
tude than the slow rotational part of the flow. Observations show that the pressure
and wind fields in regions not too near the Equator are close to a state of geostrophic
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balance and the flow is quasi-non-divergent. The bulk of the energy is contained
in the slow rotational motions and the amplitude of the high frequency compo-
nents is small. The existence of this geostrophic balance is a perennial source of
interest; it is a consequence of the forcing mechanisms and dominant modes of
hydrodynamic instability and of the manner in which energy is dispersed and dissi-
pated in the atmosphere. For a recent review of balanced flow, see McIntyre (2003).
The gravity-inertia waves are instrumental in the process by which the balance
is maintained, but the nature of the sources of energy ensures that the low fre-
quency components predominate in the large scale flow. The atmospheric balance
is subtle, and difficult to specify precisely. It is delicate in that minor perturba-
tions may disrupt it but robust in that local imbalance tends to be rapidly removed
through radiation of gravity-inertia waves in a process known as geostrophic
adjustment.

When the basic equations are used for numerical prediction the forecast may
contain spurious large amplitude high frequency oscillations. These result from
anomalously large gravity-inertia waves which occur because the balance between
the mass and velocity fields is not reflected faithfully in the analysed fields. High
frequency oscillations of large amplitude are engendered, and these may persist for
a considerable time unless strong dissipative processes are incorporated in the fore-
cast model. It was the presence of such imbalance in the initial fields which gave
rise to the totally unrealistic pressure tendency of 145 hPa/6 h obtained by Lewis
Fry Richardson in the first-ever objective numerical weather forecast (Richardson
1922, Lynch 2006).

Although they have little effect on the long-term evolution of the flow, grav-
ity waves may profoundly influence the way it changes on shorter time-scales.
Figure 1 schematically depicts the pressure variation over a period of 1 day. The
smooth curve represents the variation due to meteorological effects; its gentle slope
(dotted line) indicates the long-term change (Phillips 1973). The rapidly varying
curve represents the actual pressure changes when gravity waves are superim-
posed on the meteorological flow: the slope of the oscillating curve (dashed line)
is precipitous and, if used to determine long-range variations, yields totally mis-
leading results. What Richardson calculated was the instantaneous rate of change
in pressure for an atmospheric state having gravity wave components of large
amplitude.

If the fields are not initialized, the spurious oscillations which occur in
the forecast can lead to various problems. In particular, new observations are
checked for accuracy against a short-range forecast. If this forecast is noisy,
good observations may be rejected or erroneous ones accepted. Thus, initial-
ization is essential for satisfactory data assimilation (see other chapters in
Part I, Theory, for a discussion of data assimilation). Another problem occurs
with precipitation forecasting. A noisy forecast has unrealistically large verti-
cal velocity. This interacts with the humidity field to give hopelessly inaccu-
rate rainfall patterns. To avoid this spin-up, we must control the gravity wave
oscillations.
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Fig. 1 Schematic illustration of pressure variation over a 24 h period. The thick line is the mean,
long-term variation, the thin line is the actual pressure, with high frequency noise. The dotted line
shows the rate of change, at 12 h, of the mean pressure and the dashed line shows the corresponding
rate of change of the actual pressure (after Phillips 1973)

2 Early Initialization Methods

2.1 The Filtered Equations

The first computer forecast was made in 1950 by Charney, Fjørtoft and Von
Neumann (Charney et al. 1950). In order to avoid Richardson’s error, they modified
the prediction equations in such a way as to eliminate the high frequency solutions.
This process is known as filtering. The basic filtered system is the set of quasi-
geostrophic equations. These equations were used in operational forecasting for a
number of years. However, they involve approximations which are not always valid,
and this can result in poor forecasts. A more accurate filtering of the primitive equa-
tions leads to the balance equations. This system is more complicated to solve than
the quasi-geostrophic system, and has not been widely used.

2.2 Static Initialization

Hinkelmann (1951) investigated the problem of noise in numerical integrations and
concluded that if the initial winds were geostrophic, high frequency oscillations
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would occur but would remain small in amplitude. He later succeeded in integrating
the primitive equations, using a very short timestep, with geostrophic initial winds
(Hinkelmann 1959). Forecasts made with the primitive equations were soon shown
to be clearly superior to those using the quasi-geostrophic system. However, the
use of geostrophic initial winds had a huge disadvantage: the valuable information
contained in the observations of the wind field was completely ignored. Moreover,
the remaining noise level is not tolerable in practice. Charney (1955) proposed that
a better estimate of the initial wind field could be obtained by using the non-linear
balance equation. This equation — part of the balance system — is a diagnostic
relationship between the pressure and wind fields. It implies that the wind is non-
divergent. It was later argued by Phillips (1960) that a further improvement would
result if the divergence of the initial field were set equal to that implied by quasi-
geostrophic theory. Each of these steps represented some progress, but the noise
problem still remained essentially unsolved.

2.3 Dynamic Initialization

Another approach, called dynamic initialization, uses the forecast model itself to
define the initial fields (Miyakoda and Moyer 1968). The dissipative processes in
the model can damp out high frequency noise as the forecast proceeds. We integrate
the model first forward and then backward in time, keeping the dissipation active all
the time. We repeat this forward–backward cycle many times until we finally obtain
fields, valid at the initial time, from which the high frequency components have
been damped out. The forecast starting from these fields is noise-free. However, the
procedure is expensive in computer time, and damps the meteorologically signifi-
cant motions as well as the gravity waves, so it is no longer popular. Digital filtering
initialization, described below, is essentially a refinement of dynamic initialization.
Because it used a highly selective filtering technique, it is computationally more
efficient than the older method.

2.4 Variational Initialization

An elegant initialization method based on the calculus of variations was introduced
by Sasaki (1958). We consider the simplest case: given an analysis of the mass
and wind fields, how can they be minimally modified so as to impose geostrophic
balance? This problem can be formulated as the minimization of an integral rep-
resenting the deviation of the resulting fields from balance. The variation of the
integral leads to the Euler-Lagrange equations, which yield diagnostic relationships
for the new mass and wind fields in terms of the incoming analysis. Although the
method was not widely used, the variational method is now at the centre of modern
data assimilation practice. In Sect. 6 below we discuss the use of a digital filter as
a weak constraint in four-dimensional variational assimilation (4D-Var; see chapter
Variational Assimilation, Talagrand).
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3 Atmospheric Normal Mode Oscillations

The solutions of the model equations can be separated, by a process of spectral
analysis, into two sets of components or linear normal modes, slow rotational com-
ponents or Rossby modes, and high frequency gravity modes. We assume that the
amplitude of the motion is so small that all non-linear terms can be neglected. The
horizontal structure is then governed by a system equivalent to the linear shallow
water equations which describe the small-amplitude motions of a shallow layer of
incompressible fluid. These equations were first derived by Laplace in his discus-
sion of tides in the atmosphere and ocean, and are called the Laplace tidal equations.
The simplest means of deriving the linear shallow water equations from the primitive
equations is to assume that the vertical velocity vanishes identically.

3.1 The Laplace Tidal Equations

Let us assume that the motions under consideration can be described as small per-
turbations about a state of rest, in which the temperature is a constant, T0, and the
pressure p̄(z) and density ρ̄(z) vary only with height. The basic state variables sat-
isfy the gas law and are in hydrostatic balance: p̄ = Rρ̄T0 and dp̄/dz = −gρ̄. The
variations of mean pressure and density follow immediately:

p̄(z) = p0 exp(−z/H) , ρ̄(z) = ρ0 exp(−z/H),

where H = p0/gρ0 = RT0/g is the scale-height of the atmosphere. We consider
only motions for which the vertical component of velocity vanishes identically,
w ≡ 0. Let u, v, p and ρ denote variations about the basic state, each of these
being a small quantity. The horizontal momentum, continuity and thermodynamic
equations, with standard notation, are (see chapters The Role of the Model in the
Data Assimilation System, Rood; General Concepts in Meteorology and Dynamics,
Charlton-Perez et al.)

∂ρ̄u

∂t
− f ρ̄v+ ∂p

∂x
= 0 (1)

∂ρ̄v

∂t
+ f ρ̄u+ ∂p

∂y
= 0 (2)

∂ρ

∂t
+∇·ρ̄V = 0 (3)

1

γ p̄

∂p

∂t
− 1

ρ̄

∂ρ

∂t
= 0 (4)

Density can be eliminated from the continuity equation, Eq. (3), by means of the
thermodynamic equation, Eq. (4). Now let us assume that the horizontal and vertical
dependencies of the perturbation quantities are separable:
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⎧⎨
⎩
ρ̄u
ρ̄v
p

⎫⎬
⎭ =

⎧⎨
⎩

U(x, y, t)
V(x, y, t)
P(x, y, t)

⎫⎬
⎭ Z(z). (5)

The momentum and continuity equations can then be written

∂U

∂t
− fV + ∂P

∂x
= 0 (6)

∂V

∂t
+ fU + ∂P

∂y
= 0 (7)

∂P

∂t
+ (gh)∇ · V = 0 (8)

where V = (U, V) is the momentum vector and h = γH = γRT0/g. This is
a set of three equations for the three dependent variables U, V, and P. They are
mathematically isomorphic to the Laplace tidal equations with a mean depth h. The
quantity h is called the equivalent depth. There is no dependence in this system on
the vertical coordinate z.

The vertical structure follows from the hydrostatic equation, together with the
relationship p = (γ gH)ρ implied by the thermodynamic equation. It is determined
by

dZ

dz
+ Z

γH
= 0, (9)

the solution of which is Z = Z0 exp(−z/γH), where Z0 is the amplitude at z = 0.
If we set Z0 = 1, then U, V and P give the momentum and pressure fields at the
Earth’s surface. These variables all decay exponentially with height. It follows from
Eq. (5) that u and v actually increase with height as exp(κz/H), but the kinetic energy
decays.

3.2 Vorticity and Divergence

We examine the solutions of the Laplace tidal equations in some enlightening lim-
iting cases. Holton (1992) gives a more extensive analysis, including treatments of
the equatorial and mid-latitude β-plane approximations. By means of the Helmholtz
Theorem, a general horizontal wind field V may be partitioned into rotational and
divergent components

V = Vψ + Vχ = k × ∇ψ +∇χ .

The stream function ψ and velocity potential χ are related to the vorticity and
divergence by the Poisson equations ∇2ψ = ζ and ∇2χ = δ, respectively. It
is straightforward to derive equations for the vorticity and divergence tendencies.



Initialization 247

Together with the continuity equation, they are

∂ζ

∂t
+ f δ + βv = 0 (10)

∂δ

∂t
− f ζ + βu+ ∇2P = 0 (11)

∂P

∂t
+ ghδ = 0 . (12)

These equations are completely equivalent to Eqs. (6), (7), and (8); no additional
approximations have yet been made. However, the vorticity and divergence forms
enable us to examine various simple approximate solutions.

3.3 Rossby-Haurwitz Modes

If we suppose that the solution is quasi-non-divergent, i.e., we assume |δ| � |ζ |,
the wind is given approximately in terms of the stream function (u, v) ≈ (−ψy,ψx),
and the vorticity equation becomes

∇2ψt + βψx = O(δ) , (13)

and we can ignore the right-hand side. Assuming the stream function has the wave-
like structure of a spherical harmonic, Ym

n (λ,φ) = Pm
n (sinφ) exp(imλ), we substitute

the expressionψ = ψ0Ym
n (λ,φ) exp(−iνt) in the vorticity equation and immediately

deduce an expression for the frequency:

ν = νR ≡ − 2�m

n(n+ 1)
. (14)

This is the celebrated dispersion relation for Rossby-Haurwitz waves (Haurwitz
1940). If we ignore sphericity (the β-plane approximation) and assume harmonic
dependence ψ(x, y, t) = ψ0 exp[i(kx + �y − νt)], then Eq. (13) has the dispersion
relation

c = ν

k
= − β

k2 + �2
,

which is the expression for phase-speed found by Rossby (1939). The Rossby or
Rossby-Haurwitz waves are, to the first approximation, non-divergent waves which
travel westward, the phase speed being greatest for the waves of largest scale. They
are of relatively low frequency — Eq. (14) implies that |ν| ≤ �— and the frequency
decreases as the spatial scale decreases.

To the same degree of approximation, we may write the divergence equation, Eq.
(11), as
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∇2P− f ζ − βψy = O(δ) . (15)

Ignoring the right-hand side of Eq. (11), we get the linear balance equation

∇2P = ∇·f ∇ψ , (16)

a diagnostic relationship between the geopotential and the stream function. This
also follows immediately from the assumption that the wind is both non-divergent
(V = k × ∇ψ) and geostrophic (f V = k × ∇P). If variations of f are ignored, we
can assume P = fψ . The wind and pressure are in approximate geostrophic balance
for Rossby-Haurwitz waves.

3.4 Gravity Wave Modes

If we assume now that the solution is quasi-irrotational, i.e. that |ζ | � |δ|, then
the wind is given approximately by (u, v) ≈ (χx,χy) and the divergence equation
becomes

∇2χt + βχx + ∇2P = O(ζ )

with the right-hand side negligible. Using the continuity equation to eliminate P, we
get

∇2χtt + βχxt − gh∇4χ = 0 .

Seeking a solution χ = χ0Ym
n (λ,φ) exp(−iνt), we find that

ν2 +
(
− 2�m

n(n+ 1)

)
ν − n(n+ 1)gh

a2
= 0 . (17)

The coefficient of the second term is just the Rossby-Haurwitz frequency νR

found in Eq. (14) above, so that

ν = ±
√
ν2

G + (
1

2
νR)2 − 1

2
νR , where νG ≡

√
n(n+ 1)gh

a2
.

Noting that |νG| " |νR|, it follows that

ν± ≈ ±νG ,

the frequency of pure gravity waves. There are then two solutions, representing
waves travelling eastward and westward with equal speeds. The frequency increases
approximately linearly with the total wavenumber n.



Initialization 249

4 Normal Mode Initialization

The model equations, Eqs. (10), (11), and (12) can be written schematically in the
form

Ẋ+ iLX+N (X) = 0 (18)

with X the state vector, L a matrix and N a non-linear vector function. If L is diag-
onalized, the system separates into two subsystems, for the low and high frequency
components (LF and HF, respectively):

Ẏ+ i�YY+N (Y, Z) = 0 (19)

Ż+ i�ZZ+N (Y, Z) = 0 (20)

where Y and Z are the coefficients of the LF and HF components of the flow, referred
to colloquially as the slow and fast components respectively, and �Y and �Z are
diagonal matrices of eigenfrequencies for the two types of modes.

Let us suppose that the initial fields are separated into slow and fast parts, and
that the latter are removed so as to leave only the Rossby waves. It might be hoped
that this process of “linear normal mode initialization”, imposing the condition

Z = 0 at t = 0

would ensure a noise-free forecast. However, the results of the technique are disap-
pointing: the noise is reduced initially, but soon reappears; the forecasting equations
are non-linear, and the slow components interact non-linearly in such a way as to
generate gravity waves. The problem of noise remains: the gravity waves are small
to begin with, but they grow rapidly (see Daley 1991; Chap. 9).

Machenhauer (1977) examined gravity wave dynamics in simple systems and
found that the amplitude of the high-frequency components is quasi-stationary. To
control the growth of HF components, he proposed setting their initial rate of change
to zero, in the hope that they would remain small throughout the forecast. Baer
(1977) proposed a somewhat more general method, using a two-timing perturbation
technique. The forecast, starting from initial fields modified so that Ż = 0 at t = 0
is very smooth and the spurious gravity wave oscillations are almost completely
removed. The method takes account of the non-linear nature of the equations, and
is referred to as non-linear normal mode initialization:

Ż = 0 at t = 0 .

The method is comprehensively reviewed in Daley (1991).
In Fig. 2, we show the evolution of surface pressure for three 24-h forecasts

(Williamson and Temperton 1981). The solid lines (in both panels) are the pressure
variation for forecasts from uninitialized data. Forecasts from linearly initialized
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Fig. 2 Pressure variation over a 24-h period for forecasts from uninitialized data (solid lines, both
panels, LNMI data (dashed line, left panel) and NNMI data (dashed line, right panel). LNMI =
linearly initialized data; NNMI = non-linearly initialized data. From Williamson and Temperton
(1981)

data (LNMI) are shown by the dashed line in the left panel. Forecasts from data
that is non-linearly initialized (NNMI) are shown by the dashed line in the right
panel. It is clear that LNMI is ineffective in removing spurious oscillations. NNMI
is excellent in this regard.

5 Digital Filter Initialization

Normal mode initialization, or NMI, has been used in many NWP (Numerical
Weather Prediction) centres, and has performed satisfactorily. Its most natural con-
text is for global models, for which the horizontal structure of the normal modes
corresponds to the Hough functions, the eigenmodes of the Laplace tidal equations.
For limited area models, normal modes can also be derived, but the lateral bound-
aries force the introduction of simplifying assumptions. An alternative method of
initialization, called digital filter initialization (DFI), was introduced by Lynch and
Huang (1992). It was generalized to allow for diabatic effects by Huang and Lynch
(1993). The latter paper also discussed the use of an optimal filter. A much simpler
filter, the Dolph-Chebyshev filter, which is a special case of the optimal filter, was
applied to the initialization problem by Lynch (1997). A more efficient formulation
of DFI was presented by Lynch et al. (1997).

Digital filter initialization (DFI) uses filters similar to those arising in signal pro-
cessing. The selection principle for these is generally based on the frequency of the
signal components. There are a number of ideal types — lowpass, highpass, band-
pass and bandstop — corresponding to the range of frequencies which pass through
the filter and those which are rejected. In many cases the input consists of a low fre-
quency (LF) signal contaminated by high frequency (HF) noise, and the information
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in the signal can be isolated by using a lowpass filter which rejects the noise. Such
a situation is typical for the application to meteorology discussed below.

The method of digital filter initialization has significant advantages over alterna-
tive methods, and is now in use operationally at several major weather prediction
centres (see chapter Numerical Weather Prediction, Swinbank). In DFI there is no
need to compute or store normal modes; this advantage becomes more pronounced
as the number of degrees of freedom of the model increases. There is no need to
separate the vertical modes; NMI requires the introduction of an auxiliary geopo-
tential variable, and partitioning of its changes between the temperature and surface
pressure involves an ad hoc assumption. DFI is free from this problem. There is
complete compatibility with model discretization, eliminating discretization errors
due to grid disparities. DFI is applicable to exotic grids on arbitrary domains, facili-
tating its use with stretched or irregular model grids. There is no iterative numerical
procedure which may diverge; therefore, all vertical modes can be initialized effec-
tively. The simplicity of the method makes it easy to implement and maintain. The
method is applicable to all prognostic model variables; thus, DFI produces initial
fields for these variables which are compatible with the basic dynamical fields. Last
but not least, DFI filters the additional prognostic variables in non-hydrostatic mod-
els in a manner identical to the basic variables. The DFI method is thus immediately
suitable for non-hydrostatic models (Bubnová et al. 1995; Chen and Huang 2006).

5.1 Design of Non-recursive Filters

Consider a function of time, f(t), with low and high frequency components. To filter
out the high frequencies one may proceed as follows:

[1] Calculate the Fourier transform F(ω) of f (t);
[2] Set the coefficients of the high frequencies to zero;
[3] Calculate the inverse transform.

(See Fig. 3). Step [2] may be performed by multiplying F(ω) by an appropriate
weighting function H(ω).

Suppose that f is known only at discrete moments tn = n�t, so that the sequence{· · · , f−2, f−1, f0, f1, f2, · · · } is given. For example, fn could be the value of some
model variable at a particular grid point at time tn. The shortest period component
that can be represented with a time step �t is τN = 2�t, corresponding to a max-
imum frequency, the so-called Nyquist frequency, ωN = π/�t. The sequence

{
fn

}
may be regarded as the Fourier coefficients of a function F(θ ):

F(θ ) =
∞∑

n=−∞
fne−inθ , (21)
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f (t)
=⇒
∗h (t)

f ∗(t) = f (t)∗ h(t)

⇓ −1 ⇑

F (ω)
H(ω)
=⇒

F (ω) · H (ω)

Fig. 3 Schematic representation of the equivalence between convolution and filtering in Fourier
space.

where θ = ω�t is the digital frequency and F(θ ) is periodic, F(θ ) = F(θ + 2π ).
High frequency components of the sequence may be eliminated by multiplying F(θ )
by a function H(θ ) defined by

H(θ ) =
{

1, |θ | ≤ |θc|;
0, |θ | > |θc|, (22)

where the cutoff frequency θc = ωc�t is assumed to fall in the Nyquist range
(−π ,π ) and H(θ ) has period 2π . This function may be expanded:

H(θ ) =
∞∑

n=−∞
hne−inθ ; hn = 1

2π

∫ π

−π
H(θ )einθdθ . (23)

The values of the coefficients hn follow immediately from Eqs. 22 and 23:

hn = sin nθc

nπ
. (24)

Let
{
f �n

}
denote the low frequency part of

{
fn

}
, from which all components with

frequency greater than θc have been removed. Clearly,

H(θ ) · F(θ ) =
∞∑

n=−∞
f �n e−inθ .

The convolution theorem for Fourier series now implies that H(θ ) · F(θ ) is the
transform of the convolution of

{
hn

}
with

{
fn

}
:

f �n = (h ∗ f )n =
∞∑

k=−∞
hkfn−k. (25)

This enables the filtering to be performed directly on the given sequence
{
fn

}
.

In practice the summation must be truncated at some finite value of k. Thus, an
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approximation to the low frequency part of
{
fn

}
is given by

f �n =
N∑

k=−N

hkfn−k. (26)

A more sophisticated method uses the Chebyshev alternation theorem to obtain a
filter whose maximum error in the pass- and stop-bands is minimized. This method
yields a filter meeting required specifications with fewer coefficients that the other
methods. The design of non-recursive and recursive filters is outlined in Hamming
(1989), where several methods are described, and fuller treatments may be found in
Oppenheim and Schafer (1989).

5.2 Application of a Non-recursive Digital Filter to Initialization

An initialization scheme using a non-recursive digital filter has been developed by
Lynch and Huang (1992) for the HIRLAM (High Resolution Limited Area Model)
model. The uninitialized fields of surface pressure, temperature, humidity and winds
were first integrated forward for 3 h, and running sums of the form

f �F(0) = 1

2
h0f0 +

N∑
n=1

h−nfn, (27)

where fn = f (n�t), were calculated for each field at each gridpoint and on each
model level. These were stored at the end of the 3 h forecast. The original fields
were then used to make a 3 h “hindcast”, during which running sums of the form

f �B(0) = 1

2
h0f0 +

−N∑
n=−1

h−nfn (28)

were accumulated for each field, and stored as before. The two sums were then
combined to form the required summations:

f �(0) = f �F(0)+ f �B(0). (29)

These fields correspond to the application of the digital filter Eq. (26) to the original
data, and will be referred to as the filtered data.

Complete technical details of the original implementation of DFI in the HIRLAM
model may be found in Lynch et al. (1999). A reformulation of the implementation,
with further testing and evaluation, is presented in Huang and Yang (2002).
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5.3 Initialization Example

A detailed case study based on the implementation in HIRLAM was carried out to
check the effect of the initialization on the initial fields and on the forecast, and
to examine the efficacy of DFI in eliminating high frequency noise. The digital
filter initialization was compared to the reference implicit normal mode initialization
(NMI) scheme, and to forecasts with no initialization (NIL). Forecasts starting from
the analysis valid at 1200 UTC on 10 February, 1999 were compared.

We first checked the effect of DFI on the analysis and forecast fields. The max-
imum change in surface pressure due to initialization was 2.2 hPa, with a RMS
(root-mean-square) change of about 0.5 hPa. The changes to the other analysed
variables were in general comparable in size to analysis errors, and considerably
smaller in magnitude than typical changes brought about by the analysis itself: the
RMS change in surface pressure from first guess to analysis was about 1 hPa. The
RMS and maximum differences between the uninitialized 24-h forecast (NIL) and
the filtered forecast (DFI) for all prognostic variables were examined. When we
compare these values to the differences at the initial time they were seen to be gen-
erally smaller. The changes made by DFI are to the high frequency components;
since these are selectively damped during the course of the forecast, the two fore-
casts were very similar. After 24-h the maximum difference in surface pressure was
less than 1 hPa and the RMS difference is only 0.1 hPa.

The basic measure of noise is the mean absolute value of the surface pressure
tendency

N1 =
(

1

N

) N∑
n=1

∣∣∣∣∂ps

∂t

∣∣∣∣ .

For well-balanced fields this quantity has a value of about 1 hPa/3 h. For unini-
tialized fields it can be an order of magnitude larger. In Fig. 4 we plot the value of
N1 for three forecasts. The solid line represents the forecast from uninitialized data:
we see that the value of N1 at the beginning of the forecast is about 12 hPa/3 h. This
large value reflects the lack of an effective multivariate balance in the analysis. It
takes about 6 h to fall to a reasonable value. The dashed line is for a forecast starting
from data initialized using the implicit normal mode method (NMI). The starting
value is about 3 hPa/3 h, falling to about 1.5 hPa/3 h after 12 h. The final graph
(the dotted line) is for the digitally filtered data (DFI). The initial value of N1 is now
about 1.5, and remains more or less constant throughout the forecast. It is clear from
this measure that DFI is more effective in removing high frequency noise than NMI.

The measure N1 indicates the noise in the vertically integrated divergence field.
However, even when this is small, there may be significant activity in the internal
gravity wave modes. To see this, we look at the vertical velocity field at 500 hPa
for the NIL and DFI analyses. The left panel in Fig. 5 shows the uninitialized ver-
tical velocity field, zoomed in over western Europe and the eastern North Atlantic.
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Fig. 4 Mean absolute surface pressure tendency for three forecasts. Solid: uninitialized analysis
(NIL). Dashed: Normal mode initialization (NMI). Dotted: Digital filter initialization (DFI). Units
are hPa/3 h.

Fig. 5 Vertical velocity at 500 hPa over western Europe and the eastern North Atlantic. (Left)
Uninitialized analysis (NIL); (Right) after digital filtering (DFI)

There is clearly substantial gravity wave noise in this field. In fact, the field is phys-
ically quite unrealistic. The right panel shows the DFI vertical velocity. It is much
smoother; the spurious features have been eliminated and the large values with small
horizontal scales which remain are clearly associated with the Scottish Highlands,
the Norwegian Mountains and the Alps. Comparison with the NMI method (see
Lynch et al. 1999, for details) indicates that DFI is more effective than NMI in deal-
ing with internal gravity wave noise. It is noteworthy that stationary mountain waves
are unaffected by digital filtering, since they have zero frequency. This is a desirable
characteristic of the DFI scheme.
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5.4 Benefits for the Data Assimilation Cycle

In Lynch et al. (1999), a parallel test of data for one of the FASTEX (Fronts and
Atlantic Storm Track EXperiment) intensive observing periods showed that the DFI
method resulted in slightly improved scores compared to NMI. As it is not usual
for an initialization scheme to yield significant improvements in forecast accuracy,
some discussion is merited. We cannot demonstrate beyond question the reason
for this improvement. However, the comparative results showed up some definite
defects in the implicit normal mode initialization as implemented in the reference
HIRLAM model. It was clear that the NMI scheme did not eliminate imbalance at
lower model levels. Moreover, although the noise level indicated by the parameter
N1 fell to a reasonable level in 6 h, there was still internal gravity wave noise, not
measured by this parameter. Any noise in the 6 h forecast will be carried through
to the next analysis cycle, and will affect the quality control and assimilation of
new observational data. It is believed that the DFI scheme, with its superior abil-
ity to establish atmospheric balance, results in improved assimilation of data and
consequently in a reduction of forecast errors.

6 Constraints in 4D-Var

We conclude with a discussion on the application of a digital filter as a weak con-
straint in four-dimensional variational assimilation (4D-Var; see chapter Variational
Data Assimilation, Talagrand). The idea is that if the state of the system is noise-free
at a particular time, i.e., is close to the slow manifold, it will remain noise-free, since
the slow manifold is an invariant subset of phase-space (Leith 1980). We consider a
sequence of values

{
x0, x1, x2, · · · xN

}
and form the filtered value

x̄ =
N∑

n=0

hnxn. (30)

The evolution is constrained, so that the value at the mid-point in time is close to
this filtered value, by addition of a term

Jc = 1

2
γ ||xN/2 − x̄||2

to the cost function to be minimized (γ is an adjustable parameter). It is straight-
forward to derive the adjoint of the filter operator (Gustafsson 1992). Gauthier and
Thépaut (2001) applied such a constraint to the 4D-Var system of Météo-France.
They found that a digital filter weak constraint imposed on the low-resolution incre-
ments efficiently controlled the emergence of fast oscillations while maintaining a
close fit to the observations. As the values required for input to the filter are already
available, there is essentially no computational overhead in applying this procedure.
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The dynamical imbalance was significantly less in 4D-Var than in 3D-Var (three-
dimensional variational assimilation). Wee and Kuo (2004) included a Jc term in
the MM5 4D-Var. They found that the weak contraint not only reduces the dynamic
imbalance in the 4D-Var solution, but also improves the quality of the analysis and
forecast significantly.

To illustrate the impact of the Jc constraint, experiments are carried out using the
WRF (Weather Research and Forecasting) 4D-Var system Huang et al. (2009), (a)
without and (b) with the penalty term in the minimization. The cost functions (Jo,
Jb and Jc) are shown in Fig. 6. In both panels, Jc is computed with γ = 0.1. It is
clear that the unconstrained 4D-Var analysis contains a significant amount of noise,
with Jc large, and the weak constraint Jc is able to control the noise level. In most
of our experiments, Jc also helps the convergence of the minimization.

To further demonstrate the noise control effect of Jc, we computed N1 during
the forecasts from WRF 4D-Var analyses using different γ . The results from five
experiments are shown in Fig. 7. NoJcDF: forecast start from a WRF 4D-Var anal-
ysis without Jc or γ = 0. JcDF(0.1): forecast start from a WRF 4D-Var analysis
with Jc and γ = 0.1. JcDF(1): forecast start from a WRF 4D-Var analysis with
Jc and γ = 1. JcDF(10): forecast start from a WRF 4D-Var analysis with Jc and

Fig. 6 Cost functions for experiment (a) without Jc and (b) with Jc in the minimization
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Fig. 7 Mean absolute surface pressure tendency for 5 forecasts

γ = 10. FGS: forecast start from first guess, which is a 3-h forecast from previous
analysis cycle and can be considered as a noise-free forecast. The larger the weight
we assign to Jc in the 4D-Var minimization, the lower the noise level becomes in
the subsequent forecast. However, a larger weight in Jc may compromise the fit to
observations (a larger Jo at the end of minimization). The tuning of γ is necessary.

7 Conclusion

We have described several methods of eliminating noise from the forecast by
removal of spuriously large-amplitude gravity-wave components from the initial
data. This is essential for practical reasons and, in particular, for avoidance of prob-
lems in the assimilation cycle. The benefits of initialization are clear. However, it
is noteworthy that modern variational assimilation methods are capable of produc-
ing fields in good balance, so that a separate initialization stage is less important
now. Constraints to ensure good balance can be incorporated directly into varia-
tional assimilation schemes. The digital filter method is particularly attractive in
this respect, and is a natural choice for variational analysis.
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The Global Observing System

Jean-Noël Thépaut and Erik Andersson

1 Introduction

In this chapter we describe the main components of what is commonly known as the
World Weather Watch Global Observing System (GOS), and review the different
techniques to observe the atmosphere, the ocean and land surfaces. It should be
stressed that the various observing systems generally tend to be complementary
to one another, and that redundancy where it exists is valuable as it enables cross
checking and inter-comparison of data. The emphasis is on the main observation
types and those regularly used in Numerical Weather Prediction (NWP) systems.
It thus complements the chapter Assimilation of Operational Data (Andersson and
Thépaut) on one hand, which concentrates on the assimilation of operational data,
and the chapter Research Satellites (Lahoz) on the other hand, which provides an
overview of available and forthcoming research satellites. The different types of
observations are here divided into two broad categories: in situ observations and
remote sensing observations. We shall see that the different observing systems have
different characteristics that need to be accounted for in assimilation of the data.

A number of acronyms are used in this chapter. The full list of acronyms is
provided in the Appendix.

2 In Situ Observations

Those observation types that were in general use before the satellite era are some-
times referred to as “conventional observations”. For the most part they are in
situ measurements of meteorological parameters such as temperature, wind, pres-
sure and humidity. In situ observations are generally considered to be point-wise
and instantaneous, which are generally accurate assumptions in the context of
operational NWP where the assimilating models typically have resolutions of
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50 km or less in the horizontal, from a few 100 m (in the stratosphere) to a
few tens of metres or less (in the boundary layer) in the vertical, and a few
hours temporally. Each instrument and measurement technique is nevertheless asso-
ciated with its own space- and time-scales due to its sampling characteristics.
Instruments that travel through the atmosphere attached to a balloon or an air-
craft may average over a relatively long distance in a short time, whereas stationary
instruments may sample the same small volume of air over a longer period of time.
Some in situ observations provide integrated information of the entire atmospheric
column.

2.1 Surface and Marine Observations

Near-surface measurements of temperature, wind and humidity have been made for
centuries, forming an invaluable record of the climate (Compo et al. 2006), and pro-
viding a cornerstone for NWP. Stevenson screens are used to house thermometers
to measure temperature at a standard height of 2 m and a wet bulb thermometer
to determine dewpoint depression and hence humidity. A barometer, usually placed
indoors, measures the air pressure. Wind velocity is measured at a standard height
of 10 m with an anemometer. To aid comparison of pressure measurements from
different stations they are normally adjusted to mean sea level, which is problematic
in mountainous areas; assumptions have to be made about the temperature profile
of the fictitious air column that would extend from the station location down to
the sea level. In a further effort to aid comparison of measurements it is required
that the surface observations are made simultaneously at four specific times during
the day: the main so-called synoptic times are 0000, 0600, 1200 and 1800 UTC.
Some stations are making 3-hourly observations, predominantly during day-time.
As more stations are being automated hourly data are becoming more widely avail-
able. At the same time as reading the instruments, the observer (at manual stations)
makes visual observations of clouds, visibility, and current weather. While all these
data are very valuable to forecasters, it is still hard to use all parts of a surface
observation report in a data assimilation system designed for NWP (see chapter
Numerical Weather Prediction, Swinbank) as due to resolution and physics limita-
tions, numerical models do not represent these observables very well. However, the
situation is evolving, especially with the progress made in the development of very
high resolution regional NWP systems.

Surface observations (SYNOP) are available over much of the densely populated
regions of the world, particularly in the Northern Hemisphere, although there are
extensive data voids over parts of Africa (Fig. 1, red markers). Surface observations
from airports (METAR, available during the airfields’ hours of operation) are shown
with blue markers. Similar types of observations are also made from many ships,
which helps fill the gaps over those parts of the ocean that are well covered by com-
mercial shipping routes (cyan markers in Fig. 1). In recent years many drifting (and a
few moored) buoys have been deployed to help fill the data voids (Fig. 2), not least
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Fig. 1 Typical data coverage of surface observations, 20070301 0900-1500 UTC, showing 16,550
SYNOP (red), 1,937 SHIP (cyan) and 12,383 METAR (blue)

Fig. 2 Typical data coverage of buoy observations, 20070301 0900-1500 UTC, showing 5,686
drifting buoys (red) and 140 moored buoys (cyan)

in the southern oceans. The buoys provide frequent surface pressure observations
(hourly or in some cases every 10 min) which is particularly valuable to determine
the intensification rate and movement of storms (Järvinen et al. 1999).

2.2 Radiosondes

First attempts at making observations of the upper atmosphere (in this context, the
free troposphere, i.e., above the boundary layer) were made during the second half
of the nineteenth century. Labitzke and van Loon (1999) give some fascinating
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accounts of early exploration of upper levels of the atmosphere, with particular
emphasis on discoveries related to the stratosphere. Radiosondes came to be a
crucial part of the Global Observing System following the International Geophysical
Year, or IGY (1957).

Radiosondes are generally launched twice a day (at 0000 and 1200 UTC) from
radiosonde stations across the world. As in the case of surface data, the stations
tend to be concentrated in the main populated areas of the Northern Hemisphere
(Fig. 3). Each radiosonde consists of a balloon carrying an instrument package,
from which measurements are relayed to the ground station. The instrument package
makes in situ measurements of pressure, temperature and humidity. Radar, or more
recently GPS (Global Positioning System) navigation, is used to track the balloon
and so ascertain the wind at the height of the balloon. In a radiosonde sounding,
weather elements are reported at standard pressure levels. The reports also include
“significant levels” to allow details of the measurement profile to be reconstructed
between the standard pressure levels.

Radiosondes are a crucial part of the observation network. They are still heav-
ily used by forecasters, particularly in developing countries. They make a major
contribution to the NWP forecast performance (Bouttier and Kelly 2001), primarily
because it is more difficult to use satellite data over land than ocean. Radiosondes
are also essential for the calibration and bias correction of satellite data.

Since there are many fewer radiosonde observations than surface data, the data
voids are even more severe. Some radiosonde ascents are also made from special
weather ships, but, because of their high cost, they are being replaced to some
degree by ASAP (Automated Shipboard Aerological Programme) systems that can
automatically launch radiosonde balloons from commercial ships (cyan markers,
Fig. 3). Radiosondes are also complemented by pilot balloons (red markers, Fig. 4),

Fig. 3 Typical data coverage of radiosonde observations, 20070301 0900-1500 UTC, showing
580 land stations (red), 8 ships (cyan) and 16 dropsondes (green)
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Fig. 4 Typical data coverage of pilot balloons and profiler observations, 20070301 0900-1500
UTC, showing 305 PILOTs (red), 170 American (cyan), 128 European (green) and 186 Japanese
(blue) profilers

which are launched simply to measure wind profiles, without carrying an instrument
package.

Dropsonde observations are similar to radiosondes, except that the instrument
packages are dropped from aircraft rather than flown from a balloon. These are
often used in experimental campaigns, rather than in routine operations. They are
also employed when targeting observations (see Sect. 4). The example in Fig. 3
shows some dropsonde data (green markers) deployed from an aircraft in the area
between Iceland and Greenland.

2.3 Aircraft Observations

Many commercial aircraft make in situ measurements of temperature, wind and
pressure during their flights. The wind measurements need input from the navigation
system since the wind is the difference between the aircraft’s ground velocity and its
air speed. Traditionally, aircraft observations are reported by the pilot at particular
locations along the aircraft routes, e.g., at specific longitude crossings in the Atlantic
as seen from the red markers in Fig. 5, labelled AIREP. More recently there have
been very significant developments in establishing automatic transmission of obser-
vations from the aircraft (green and cyan markers, Fig. 5), under co-ordination of
the AMDAR (Aircraft Meteorological Data Relay) programme of the WMO (World
Meteorological Organization). The aircraft data are irregularly distributed over the
globe with dense concentrations over the United States, Europe and along the main
intercontinental air traffic routes. AMDAR reports are often produced at the spec-
ified frequency of one report per 7 min at cruise level, with additional reports at
wind maxima. During ascent reporting is at 10 hPa intervals vertically for the first
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Fig. 5 Typical data coverage of aircraft observations, 20070301 0900-1500 UTC, showing 3,175
AIREP (red), 22,979 AMDAR (cyan) and 31,587 ACAR (green)

100 hPa in the lower part of the profile and every 50 hPa above that layer to top
of climb (around the tropopause and above) with the reverse applying during the
descent phase. The AMDAR system thus provides data at altitude roughly every
70–100 km along the flight path as well as detailed profiles in the near vicinity of
airports.

The European component of AMDAR is managed by EUCOS (The EUMETNET
(The Network of European Meteorological Services) Composite Observing
System). In an effort to optimize the benefit and the value-for-money of the
European AMDAR programme, EUCOS has developed an elaborate and effective
data collection strategy.

2.4 Targeted Observing

The quality of numerical forecasts depends on the accuracy of initial conditions and
consequently it depends on the full composite of the GOS. Observation targeting
has been proposed as a cost-effective approach to complement the GOS with addi-
tional observations where they are most needed, and where they would have the
greatest impact. Methods have been proposed and developed that make it possible
to identify in advance regions of the atmosphere where forecasts are particularly
sensitive to errors in initial conditions. If those areas are not well covered by routine
observations it would be advantageous to make additional observations there.

Over the past decade many field campaigns took place and extensive work has
been done by NWP centres to assess the impact on the forecast of the extra obser-
vations taken in specific, case-dependent target areas which were identified using
objective and subjective methods (Langland 2005). The campaigns include, for
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example, in 1997 FASTEX (Fronts and Atlantic Storm-Track Experiment), in 1998
NORPEX (NORth-Pacific Experiment) and CALJET (California Land-falling JETs
experiment), in 1999 and 2000 the Winter Storm Reconnaissance programs (WSR99
and WSR00) and in 2003 NA-TReC. The overall conclusion was that, on average,
targeted observations do increase the forecast skill by up to 10–15% in some cases
over, e.g., Europe, but averaged over larger samples, the impact is quite small. For
example, the use of targeted wind profile observations from an airborne Doppler
Wind Lidar (DWL) instrument flying during the NA-TReC showed forecast skill
improvements of about 3% in the verification area over Europe from forecast day 2
to 4 (Weissmann and Cardinali 2006).

Apart from identifying the target area, targeted observing also involves very
significant logistical problems associated with the deployment of additional obser-
vations in remote areas, often located within the main data voids over the ocean.
So far, deployment of dropsondes from specially equipped aircraft has been the
most common approach. The aircraft has to be available on standby at strategic
locations such as Alaska, Hawaii, Iceland or Ireland, for flights over the North
Pacific and the North Atlantic, respectively. An example of targeted dropsonde
data in the Iceland area are shown in Fig. 3 (green markers). Alternative observ-
ing systems that lend themselves to targeting include driftsondes, airborne DWL
and DIAL (lidars for wind and humidity, respectively) and unmanned aircraft.
During the NA-TReC, targeted collection of AMDAR data was developed and
trialled, as well as commanding additional radiosonde launches from ships and
regular stations in close vicinity of the target area. In future, it may also be fea-
sible to enhance the sampling and collection of satellite data in sensitive areas on
demand.

3 Remote Sensing Observations

The Space-based Global Observing System complements the in situ Observing
System to provide the World Weather Watch’s GOS. The main providers of
Earth Observation satellite systems and space-based observations of the atmo-
sphere for NWP centres are the American (NASA and NOAA), European (ESA
and EUMETSAT) and Japanese (JAXA and JMA) space agencies. Other Earth
Observation satellite systems are operated by the Russian Federation, People’s
Republic of China, the Indian Space Agency and other national space agencies.

Research and Development (R&D) Space Agencies (NASA, ESA, JAXA) usu-
ally promote demonstration missions, with innovative technologies, thus paving the
way for future long-term operational missions (see the chapter Research Satellites,
Lahoz, for a comprehensive review of the missions provided by R&D Space
Agencies). The primary goal of R&D Space Agencies is in principle not the delivery
of near real time products (typically 3 h or less) to the community. However, R&D
satellite missions prove to be crucial to better characterize diverse features of the
model (e.g. UARS, POLDER), develop new methodologies in view of assimilation
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of future operational instruments (e.g. AIRS on AQUA, TRMM), or sometimes just
improve the quality of the operational NWP assimilation system when data are of
good quality and sufficient timeliness (e.g. ERS-2, QuikScat, AIRS, Envisat).

Operational Space Agencies (NOAA, EUMETSAT, JMA) operate instruments
inherited from demonstration missions. Operational systems ensure a stabilized
long-life mission technology (e.g. the HIRS instrument onboard NOAA satellites
will have lasted more than 30 years), which eases the investment decisions at the
NWP community end. Operational missions, moreover, ensure robustness in the
processing chain and time delivery to the end-users in agreement with their require-
ments. Today, they constitute the backbone of the Global Observing System and
provide the major part of the data currently assimilated in NWP.

Operational agencies ensure the long-term continuity of the operational sys-
tems in polar as well as geostationary orbits. Both ways of observing the
Earth/atmosphere are very complementary. Geostationary platforms (GEOs),
located at 36,000 km on an equatorial plane, orbit the Earth with the same angular
velocity as the Earth and therefore provide an almost continuous view (repetition
time of down to a few minutes) of the same part of the Earth. The high temporal
resolution of the GEOs makes them essentially suitable for nowcasting applica-
tions, but also for NWP four-dimensional data assimilation systems through the
provision of Atmospheric Motion Winds derived from cloud tracking or sequences
of radiance data. The orbit geometry of GEOs makes them unable to observe
Polar Regions. Figure 6 displays the current constellation of geostationary satellites
currently assimilated at ECMWF (European Centre for Medium-Range Weather
Forecasts). Low Earth Orbiting (LEO) satellites, at least the operational ones, orbit
the Earth at around 800 km with a repetition time over the pole of about 100 min.
Being closer to the atmosphere than the GEOs, these satellites are more suitable to

Fig. 6 Typical data coverage provided by the Geostationary constellation: GOES-11 (brown),
GOES-12 (cyan), Meteosat-7 (red), Meteosat-9 (orange) and MTSAT (red–orange)
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Fig. 7 Typical data coverage provided by the LEO (Low Earth Orbit) constellation of AMSU-
A instruments from NOAA, AQUA and METOP satellites: NOAA-15 in red, NOAA-16 in cyan,
NOAA-18 in green, AQUA in violet and METOP in brown

sound the atmosphere. Figure 7 displays the constellation of the operational AMSU-
A instruments on board NOAA, AQUA and METOP satellites. In both cases (GEOs
and LEOs), a constellation of satellites is required to provide an adequate global
coverage. This is currently achieved by the current respective operational satellite
constellations.

3.1 Passive Technologies

As mentioned in Thépaut (2003) and further discussed in the chapter Assimilation
of Operational Data (Andersson and Thépaut) it is important to realize what is spe-
cific to satellite observations and in particular what they actually measure. Contrary
to conventional in situ observations such as aircraft of radiosonde measurements,
the quantities measured by satellite instruments do not relate directly to geophys-
ical quantities. Satellite instruments do not measure temperature, do not measure
humidity and do not measure wind. Satellite instruments measure essentially the
radiation that reaches the top of the atmosphere at given frequencies. The key to
using satellite observations lies in the data assimilation techniques to infer meteoro-
logical information from these radiance measurements; see the companion chapters
in Part I, Theory.

Eyre (2000) provides an excellent overview of the different instrument technolo-
gies commonly used to observe the atmosphere from space, and a brief summary is
given here. By selecting radiation at different frequencies (or channels), a satellite
instrument can provide information on a range of geophysical variables (e.g. upper
air temperature, moisture, ozone, surface parameters, clouds).

A distinction has to be made between passive and active instruments. Passive
instruments sense radiation emitted by the surface and/or atmosphere (or the solar
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radiation reflected by it). Active instruments emit radiation and measure how much
of it is reflected or back-scattered by the surface and/or atmosphere. In general,
the wavelengths (or channels) available from the most commonly used satellite
instruments may be considered as one of 3 different types.

3.1.1 Atmospheric Sounding Channels from Passive Instruments

Sounding radiometers (infrared or microwave) sense primarily in strong gaseous
absorption bands and measure the radiation emitted by molecules of these gases in
the atmosphere. At a wavelength where the atmosphere is opaque, the instrument
will measure radiation emanating high up in the atmosphere, while at another wave-
length where the atmosphere is more transparent, the instrument will sense radiation
emanating from the atmosphere at lower altitude. It is therefore a careful choice of
the wavelengths detected that will allow the retrieval of atmospheric profile informa-
tion. Emission from gases of known concentration (e.g. carbon dioxide or oxygen)
will provide information on temperature profiles, while measurements from gases of
variable concentration (e.g. ozone, water vapour) provide information on the mixing
ratio of these gases. In the infrared, sounding radiometers are limited by the pres-
ence of clouds (especially opaque clouds), therefore no atmospheric information can
be retrieved below the cloud. Information about the cloud cover and cloud top can,
however, be obtained. Microwave sounding radiometers are less sensitive to clouds
(except in precipitating areas) and are therefore complementary to infrared sounders
in providing atmospheric profile information in all weather conditions.

Instruments of this type include HIRS (High Resolution Infrared Radiation
Sounder) and AMSU (Advanced Microwave Sounding Unit) on NOAA and
METOP satellites, and also SSMIS (Special Sensor Microwave Sounder/Imager)
on DMSP (Defense Meteorological Satellite Program) satellites. Figure 8 repre-
sents the AMSU-A temperature “weighting functions” (indicating the altitude each
AMSU-A channel is sensitive to), showing that a reasonable vertical sampling of the
atmosphere can be achieved from an appropriate selection of channels with varying
absorption strengths.

The vertical resolution of these classical sounders is rather low (around 3 km).
However, the new generation of infrared sounders, such as the AIRS (Atmospheric
InfraRed Sounder) on NASA’s AQUA satellite and the IASI interferometer on
EUMETSAT’s METOP satellite, have somewhat changed the picture. Those instru-
ments measure radiation in several thousands of different channels, and therefore
provide atmospheric temperature and composition information at a much higher
accuracy and vertical resolution than what can be achieved with the old genera-
tion of instruments such as HIRS. Indeed, while individual channels from advanced
sounders only provide a broad layer measurement, it is their multiple combinations
which provide significantly higher vertical resolution. Figure 9 displays the averag-
ing kernels for the AIRS instrument (left panel) and HIRS instrument (right panel).
Averaging kernels correspond to the rows of the Model Resolution Matrix (which
is the convolution of the Kalman gain (or simply gain) matrix with the observation
operator for a given type of observation – see, e.g., chapter Mathematical Concepts
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Fig. 8 Temperature
weighting functions (x-axis)
of the AMSU-A instrument
on board NOAA and METOP
satellites. The y-axis
represents the pressure levels
at which a given channel is
sensitive to

of Data Assimilation, Nichols); ideal averaging kernels for a perfectly observed sys-
tem would show 60 delta function curves corresponding to the 60 levels of the L60
version of the ECMWF model. This is obviously not the case even with the AIRS
instrument. However, it is clear from Fig. 9 that AIRS data offer a much higher
vertical resolution than HIRS.

3.1.2 Surface Sensing Channels from Passive Instruments

These channels, called “imaging” channels, are located in atmospheric “window”
regions of the infrared and microwave spectrum at frequencies where there is very
little interaction with the atmosphere and the main contribution to the measured
radiance in this case is the Earth or cloud top’s surface emission. These channels
are primarily used to obtain information on surface temperature; sea surface tem-
perature derived from infrared imagery is for example widely used in NWP and
global circulation modelling applications. The window channels are also used for
quantities that influence the surface emissivity such as wind speed (through the
roughness over sea), vegetation and snow cover. They can also be used to obtain
information on cloud top (in the infrared), and rain (in the microwave). In addi-
tion, sequences of infrared images from geostationary satellites can be used to track
the cloud movements and, indirectly, derive wind information. Last, and because
various window channels are differentially sensitive to water vapour absorption,
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Fig. 9 Averaging kernels (in K/K) for AIRS (left panel) and HIRS (right panel) instruments. The
y-axis represents the altitude (in pressure level)

they can provide information on total column water vapour. Infrared instruments
of this type include all imagers on GEO satellites, AVHRR on NOAA satellites,
MODIS on NASA’s TERRA and AQUA satellites. Microwave imagers include
SSM/I (Special Sensor Microwave/Imager) and SSMIS on DMSP satellites, TMI
(TRMM Microwave Imager) on the TRMM satellite and AMSR-E on NASA’s
AQUA satellite. New instruments such as SMOS from ESA use L-band frequen-
cies (around 1.4 GHz) that will provide information about soil moisture over land
and salinity over sea.

3.2 Active Technologies

3.2.1 Surface Instruments

These instruments emit radiation towards the surface in the atmospheric window
parts of the electromagnetic spectrum and measure what is scattered back from
it. One widely used instrument of this type is the scatterometer. Scatterometers
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emit microwave centimetric waves towards the sea surface. Some of the signal is
reflected back to the satellite by Bragg reflection, the strength of the reflection being
a function of both the amplitude of the ocean waves and the direction between
the microwave beam and the wave orientation. These instruments provide, there-
fore, indirect information on the ocean wind speed and direction. Instruments of
this type include the scatterometers on ESA’s ERS satellites, Seawinds on NASA’s
QuikScat satellite and more recently ASCAT onboard EUMETSAT’s METOP satel-
lite. Scatterometers are also being progressively exploited over land to provide soil
moisture information.

Among similar-class active instruments are altimeters which through the mea-
surement of the time delay and the shape of the reflected signal, provide information
on the sea surface height, the wave height and the wind, and SARs (Synthetic
Aperture Radars) which provide information on wave height and spectra. Altimeters
and SARs are carried for example on ESA’s Envisat satellite.

3.2.2 Atmospheric Sensing Instruments

Active instruments operating in the visible (lidars) or the microwave (radars) can
also analyse the signal backscattered from atmospheric targets such as molecules,
aerosols, water droplets or ice particles. Their penetration capability allows the
derivation of information on cloud base, cloud top, wind profiles (lidars) or cloud
and rain profiles (radars). Such instruments are currently not carried on operational
meteorological satellites, but several demonstration missions exist or are planned.
A precipitation radar is currently flown on the TRMM satellite. A lidar and a cloud
radar are also flying in tandem (Cloudsat and CALIPSO) together with the NASA’s
AQUA satellite (which together with a few other satellites constitute the so-called
“A-train” – chapter Research Satellites, Lahoz), to provide complementary informa-
tion on cloud and aerosol profiles. More importantly, a Doppler Wind Lidar will be
flown by ESA (the principle being that by measuring the Doppler Shift of the return
signal, the instrument provides information about the speed of the reflecting object
along the line of sight and therefore on the wind) in 2011, providing for the first
time global wind profile information.

3.3 Limb Technologies

As described in Swinbank (2003), the instrument technologies described so far
apply mainly to nadir-viewing instruments, that is instruments that measure the
emission from, or the signal reflected by the Earth/atmosphere from a field of
view below the satellite (although they may be scanned away from the nadir).
Limb-viewing instruments, on the contrary, look at the atmospheric limb (i.e., the
atmosphere above the horizon, as viewed from the satellite).
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3.3.1 Limb Passive Sounders

These instruments have been used so far only on research satellites. They are
particularly useful for stratospheric soundings. The instruments measure radiation
emitted from close to the tangent point (see Fig. 2 chapter Research Satellites,
Lahoz). The instruments need, therefore, to measure at wavelengths where the
atmosphere is optically thin to avoid pollution from signals coming from part of
the atmosphere closer to the satellite than the tangent point. This is the reason
why the limb sounders are limited to the stratosphere and the upper troposphere.
The main difference between limb sounders and nadir sounders is the resolution,
limb sounders providing high vertical resolution (down to a few hundred metres)
and rather poor horizontal resolution (around 400 km, which corresponds to the
path length viewed by the instrument at the tangent point), which can of course
be improved by increasing the spectral resolution of the instrument. Instruments
of such class include MIPAS (Michelson Interferometer for Passive Atmospheric
Sounding) onboard ESA’s Envisat satellite and MLS (Microwave Limb Sounder)
onboard NASA’s Aura satellite.

3.3.2 GPS Technologies

Radio-occultation techniques using GPS (Global Positioning System) are another
novel way of extracting atmospheric information. These techniques exploit an
opportunity that the GPS constellation (originally designed for other applications)
already exists. GPS receivers (such as the GRAS instrument on board METOP
or the recently launched UCAR’s COSMIC constellation) measure the Doppler
shift of a GPS signal refracted along the atmospheric limb path. This refraction
is proportional to (among other parameters) the density of the atmosphere, and
therefore indirectly to temperature and humidity profiles. Provided a sufficient

Fig. 10 Twenty four-hour data coverage provided by the UCAR’s COSMIC constellation
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number of receivers are installed on LEOs, this technique offers high vertical res-
olution (balanced by a somewhat coarse horizontal resolution of ~200–300 km),
self-calibrated and “all weather” observations of atmospheric temperature (and pos-
sibly humidity). These data are now operationally assimilated by a number of NWP
centres (e.g. Healy and Thépaut 2006). Figure 10 represents the typical data cov-
erage (occultation locations) provided by the COSMIC constellation for a period
of 24 h.

4 Evolution of the Global Observing System

In the previous two sections we have outlined the main types of observations used
for operational NWP. In this section, we will briefly mention some other techniques
that might become important in the future.

4.1 Development of the In Situ Component of the GOS

Radiosondes are currently the only observing system for which accurate time and
positioning information is not provided with the data. The location and time of
the launch locations are reported, but not the displacement due to the wind dur-
ing the ascent, which lasts an hour or more. It is currently planned that enhanced
reporting practices will become operational in the near future that will provide
more detailed information of the balloon trajectory, and will allow the dissem-
ination of an order of magnitude more data points in each profile (typically in
excess of 1,000 levels rather than 60–100). Such improved and enhanced reporting
is required to ensure full benefit of these data in present-day higher resolution NWP
systems.

The time delay of signals sent from GPS satellites to ground stations can be
measured extremely accurately. Since the refractive index of air varies with density
and water vapour, this delay gives useful information about the integrated water
vapour and temperature along the slant path between the ground station and the
GPS satellites. In Europe, a system for near real time processing and distribution
of several hundred ground based GPS data has been established. Similarly dense
GPS observing systems exist in Japan and the USA, but the data are not yet freely
available for operational use. The European data are operationally assimilated at
Météo-France (Poli et al. 2007).

To supplement, or in some cases replace, radiosonde wind measurements, wind
profilers are being deployed to measure wind profiles in the troposphere. Wind
profilers are upward looking highly sensitive Doppler radars that are specifically
designed to measure vertical profiles of wind speed and direction above the pro-
filer site. Operational networks have been established in the central USA, Europe
and Japan (Fig. 4). These data are assimilated operationally at several NWP centres
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(e.g. Andersson and Garcia-Mendez 2002). Lidars are another technology that can
be used to measure wind profiles from the ground.

There are proposals to fly a constellation of balloons in the lower stratosphere
(e.g. GAINS, Global Air Ocean In-situ System). Winds can be derived from the
balloon trajectories, and temperatures measured in situ. As well as giving useful
observations of the lower stratosphere, the balloons could also be able to deploy
dropsondes, targeting regions of particular interest.

4.2 Development of the Space Component of the GOS

A constellation of new operational polar-orbiting satellites will progressively
become available during the next 10 years, in particular the American National
Polar-orbiting Operational Environmental Satellite System (NPOESS). These sys-
tems, preceded by the already existing AQUA and SSMIS and forthcoming
NPOESS Preparatory Project (NPP) missions, provide unprecedented capability in
terms of accurate description of various geophysical parameters. These data will be
complemented by research missions that will further improve the observation of the
hydrological cycle of the atmosphere by providing accurate description of clouds
and rain profiles (e.g. GPM, EARTHCARE, MEGHA-TROPIQUES) and, as men-
tioned above, for the first time global wind profiling information (ADM-Aeolus)
will also become available (Stoffelen et al. 2005; Tan et al. 2007). It is also possi-
ble that high spectral infrared sounders will also become available on geostationary
orbits, providing high vertical and temporal resolution atmospheric profiles.

To be more specific and according to the latest CBS OPAG ET-EGOS (Expert
Team on the Evolution of the Global Observing System) (WMO 2004), the vision
for the evolved GOS at the 2015 horizon and beyond suggests (see also the chapter
Research Satellites, Lahoz):

• Six operational Geostationary satellites (GEOs) with onboard multispectral
imagers (Infrared/Visible – IR/VIS), some with hyperspectral sounders (IR);

• 4 operational low earth orbiting (LEO) satellites providing a uniform data
coverage with onboard multispectral imagers (Microwave/Infrared/Visible/
Ultraviolet – MW/IR/VIS/UV), sounders (MW), radio-occultation (RO) capabil-
ities, some with hyperspectral sounders (IR), conical scan MW or scatterometers
and altimeters;

• In addition, several R&D satellites will complement the operational constella-
tion. Further LEOs with active and passive microwave precipitation and cloud
measurements, and two LEOs with soil moisture and ocean salinity capability
will also become available within the next 10-year timeframe;

• Atmospheric composition missions, currently available with the Envisat-EOS
satellites (as of 2009), will hopefully reach a more operational status towards
and after 2015 (e.g. ESA Sentinels 4 and 5);
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• Last but not least, a LEO with wind profiling capabilities will become available
during this timeframe.

Moreover, the recent results obtained by a number of operational centres (e.g.
Healy and Thépaut 2006) suggest that a GPS radio-occultation observing capabil-
ity is now a high priority requirement, not only for NWP but also for reanalysis
and climate applications (see chapter Reanalysis: Data Assimilation for Scientific
Investigation of Climate, Rood and Bosilovich).

5 Concluding Remarks

We have already noted that we do not fully exploit all the information in conven-
tional observations. Unused elements, such as reports of cloud type or rainfall, might
contain enough information to help a forecaster identify locations and instances
where the computer analysis is most likely in error. Methods for manual interven-
tion that allow modification of the computer analyses have been developed for this
purpose, although that is not without pitfalls. Satellite imagery also has a lot of
information about cloud distribution and types. While the use of cloud data is not
straightforward, the presence (or absence) of cloud allows one to draw some infer-
ences about humidity (or liquid water content) and vertical velocity, which should
be useful information for a data assimilation scheme. The importance of the humid-
ity analysis, and hence the importance of all data that pertain to the hydrological
cycle (see chapter Land Surface Data Assimilation, Houser et al.), is set to increase
(Andersson et al. 2005) as the assimilation methods improve, and model resolution
is increased. The use of cloud and rain information is currently the subject of active
research (Chevallier et al. 2002).

Some precipitation data are beginning to be used in data assimilation systems,
in mesoscale models for short range forecast models, as well as global models
(Bauer et al. 2006). Hou et al. (2001) studied the impact of assimilating rain-
fall and total precipitable water information from the TRMM (Tropical Rainfall
Measuring Mission) and SSM/I (Special Sensor Microwave/Imager). They showed
that these data not only improve the hydrological cycle but also cloud and radiation
information, as well as large-scale motion in the tropics.

Towards the end of 1999 a more advanced version of the variational analy-
sis (4D-Var; see chapter Variational Assimilation, Talagrand) was developed at
ECMWF and significant changes also occurred into the GOS mainly due to the
launch of the first ATOVS instrument onboard of NOAA satellites. A comprehen-
sive set of OSEs (Observing System Experiments; see chapter Observing System
Simulation Experiments, Masutani et al.) was then performed (Bouttier and Kelly
2001; Kelly et al. 2004) to validate the new assimilation model and assess the impact
of various components of the GOS within this new scheme. From the results, the
necessity of using satellite data in NWP was clear. In fact, for the first time in
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the Northern Hemisphere, satellite data had larger impact than radiosonde obser-
vations (particularly in summer). Nowadays, denying all satellite observations from
the ECMWF assimilation system entails a skill reduction of about 3 days in the
Southern Hemisphere and about 2/3 of a day in the Northern Hemisphere. This
shows the progress that has been made in the past 10 years at better exploiting
atmospheric information from these satellite observations.

To finish, and to give an idea of the size of the GOS, as of February 2009,
ECMWF uses actively every day ~18 million observations, i.e., pieces of informa-
tion (one wind component at one level; one radiosounding; one channel radiance,
are one observation). Many more data are quality-controlled.
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Assimilation of Operational Data

Erik Andersson and Jean-Noël Thépaut

1 Introduction

In this chapter we focus on the observations that are available for operational, real-
time applications in meteorology, i.e., for numerical weather prediction (NWP).
Many in situ observations can be treated as point-wise measurements. Their influ-
ence on the analysis is expected to be localized and smoothed according to the
specified background error covariance structures (chapters Mathematical Concepts
of Data Assimilation, Nichols; Error Statistics in Data Assimilation: Estimation and
Modelling, Buehner). Most remotely-sensed sounding data, on the other hand, are
integrated measurements that cannot be treated as point-wise observations. This is
an important distinction which needs to be accounted for by the analysis scheme.
Therefore, we expand the discussion of observation operators to integrals, and
examine how such data can be expected to influence the analysis. In operational
meteorology, the most prominent examples of integral observations are measure-
ments of infrared and microwave radiation from satellite instruments. Other, recent
examples include ground-based GPS (Global Positioning Satellites) and radio-
occultation data. The related issues of quality control and data thinning are also
covered. Assimilation of time-sequences of observations is discussed. This chapter
complements chapters The Global Observing System (Thépaut and Andersson) and
Research Satellites (Lahoz).

2 Assimilation of Radiance Observations

Many operational satellite instruments measure infrared or microwave radiation
emanating from the atmosphere and the Earth’s surface. These data provide infor-
mation on the temperature and humidity of the atmosphere, the temperature and
emissivity of the surface, as well as clouds and precipitation which all affect the
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measured radiances. These data types have been particularly challenging to the
design of data assimilation schemes, as the information from a single radiance
measurement depends on so many atmospheric and surface variables. The data
assimilation scheme must faithfully distribute the information along the path of the
measurement (near-vertical in the case of nadir-sounding data and near-horizontal
in the case of limb-sounding data) and also partition the information accurately
between temperature, humidity and surface skin temperature, and other quantities
as appropriate (Rodgers 1976, 1990). See also chapters in Part I, Theory, for a
discussion of data assimilation schemes.

2.1 Constraints on the Inversion of Radiance Data

As the radiance measurements generally provide information on broad vertical
structures, the conversion from radiance to more detailed profiles of temperature
and humidity is an ill-posed problem unless additional “background” information
is used (Rodgers 1976; Eyre and Lorenc 1989). In other words, several distinctly
different profiles of temperature and humidity may produce the same radiances.
Some additional information is thus necessary for the retrieval of an unambiguous
solution.

The 1D-Var (one dimensional variational) retrieval scheme (Eyre 1989) used pro-
files from a short range forecast as background, whereas other retrieval schemes
used statistical background information (Reale et al. 1986) or libraries of represen-
tative atmospheric profiles (Chédin and Scott 1985; Fleming et al. 1986). Even with
very sophisticated techniques it is unavoidable that errors in the selected background
will contribute to the retrieval error (Flobert et al. 1991). The problem shows up as
very systematic air-mass-dependent biases in the retrieved data (Andersson et al.
1991). The errors introduced by the retrieval process are characterized by horizontal
correlations that vary with the meteorological conditions, and are therefore difficult
to accurately account for in the analysis. This problem is fully eliminated by incor-
porating the retrieval process within the analysis. A combined retrieval/analysis
approach enables a more accurate combination of the information contained in
the background, in the radiances and in the conventional data (Andersson et al.
1994; McNally et al. 1999, 2000; Köpken et al. 2004). In this approach all data are
analysed simultaneously in a single global inversion problem.

The presence of conventional data may with this methodology help the inver-
sion of radiance data in their vicinity. In other words the radiance inversion
to temperature and humidity is somewhat constrained by the in situ data. The
more observational information that can be used in the retrieval/analysis proce-
dure, including both point-wise and integral observations, the more accurate the
analysis is likely to be, assuming the constraints are applied appropriately. In
3D/4D-Var (three/four dimensional variational assimilation; see chapter Variational
Assimilation, Talagrand) the background term, Jb constrains (smoothes) the anal-
ysis/retrieval in the horizontal and vertical, whereas in 1D-Var the background
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term constrains the vertical structure only. The horizontal part of the Jb constraint
smoothes out the detrimental effect on the analysis of any small-scale noise in the
measurements. The mass-wind coupling of Jb, which imposes approximate geostro-
phy in the extra-tropics, makes it possible also for wind observations to constrain
the temperature (gradient) information inferred from radiances and in situ data.

2.2 Non-linear Dependence on the Background Humidity Field

The observation operator H(x) for radiance data is a set of radiative transfer cal-
culations. These are carried out using a fast radiative transfer code, e.g., RTTOV,
Radiative Transfer for TOVS (Eyre 1991; Saunders et al. 1999). Saunders et al.
show that the radiative transfer calculations are very nearly linear with respect to
temperature and significantly non-linear with respect to humidity. Because of the
non-linearity the sensitivity of the satellite radiance measurement (in a humidity
sensitive channel) will vary significantly with the amount and the distribution of
humidity in the atmosphere. For computational efficiency, the observation opera-
tors are often linearized. Most of the non-linear dependence of the full observation
operators H(x) is nevertheless accounted for by linearizing around the current atmo-
spheric state (x) using what are called tangent-linear operators. In the incremental
formulation of the variational problem (see the chapters Mathematical Concepts
of Data Assimilation, Nichols; Variational Assimilation, Talagrand) this is done by
using H(x) to evaluate the innovations d(= y – H(xb)) and by linearizing H(x)
around the background state xb which accounts for the state-dependence much more
accurately than linearizing around climatology would. The tangent-linear of H(x)
(denoted H) is thus applied to small increments with respect to the already accurate
xb and linearization errors are largely avoided. To the extent that H varies with xb we
thus have a different H at every location. Linearization errors are further reduced in
many operational applications by re-linearizing the observation operators around a
preliminary analysis approximately half-way through the minimization (Rabier et al.
2000), or even more frequently (Trémolet 2005), to further incorporate non-linear
effects.

The non-linear aspects of the observation operators have important effects on the
analysis. For example, the information content in radiance data, which contributes
to reduced analysis error, depends on H through the term HTR–1H (T being the
transpose; R being the observation error covariance). This term represents the radi-
ance information in terms of analysed quantities (i.e., the temperature and humidity
components of x). As H potentially is different for every background profile, the
analysis thus takes account of the fact that the retrieval/analysis accuracy may vary
with varying atmospheric conditions. The sensitivity of certain infrared measure-
ments to changes in humidity varies strongly over the globe due to the distribution
of humidity in the atmosphere. This has implications on the extent to which such
channels contribute to the humidity retrieval/analysis accuracy, which in turn deter-
mines the relative weight given to the radiance data, the background information
and the in situ data, respectively.
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Such state-dependent data weighting could be incorporated in a data assimilation
scheme with separate retrieval and analysis steps only by passing the full covariance
matrix of retrieval error for each retrieved profile from the retrieval scheme to the
analysis. However, such an approach would be difficult in practice due to the large
data volume involved.

2.3 Temperature/Humidity Partitioning of Radiance Increments

Radiance measurements in sounding channels may be sensitive to some or all of air
temperature, humidity, ozone, several trace gases and clouds, as well as the temper-
ature and emissivity of the surface. So far, it has been operational practice to seek
to remove or mask the effects of clouds and the surface through careful data selec-
tion and screening of the data. Alternatively, surface effects can partly be accounted
for by allowing the surface skin temperature (and, optionally, other quantities) at
each satellite data point to vary during the minimization by including them in an
extension of the control vector. Similar techniques are used in bias estimation – see
chapter Bias Estimation, Ménard.

A measurement in a humidity sensing channel indicating a higher brightness
temperature than that computed from the background implies either that the back-
ground temperature is too low or that the background humidity is too high. Such a
measurement should result in analysis increments in both temperature and humid-
ity. The ambiguity between the two quantities (in the absence of other observations)
is resolved by the background term Jb: the observed radiance increment will be
partitioned between temperature and humidity analysis increments depending on
the relative magnitude of temperature and humidity background errors in B (the
background error covariance matrix – see chapter Mathematical Concepts of Data
Assimilation, Nichols). The partitioning also depends on the atmospheric transmis-
sion resulting in varying sensitivity of the measurement to changes in humidity, and
this is encapsulated in the H operator as discussed above. A measurement in a given
channel may result primarily in humidity analysis increments in some atmospheric
conditions and result primarily in temperature increments in other atmospheric
conditions.

Diagnostic calculations which help one understand these effects are presented in
Fig. 1, where the effective background error in terms of each radiance channel,
i.e., the term HBHT has been estimated. The figure shows maps of the rela-
tive contributions from temperature, humidity and surface temperature background
errors, respectively, to the HIRS channel-6 background error. The figure shows that

�
Fig. 1 (continued) Relative contribution to the HIRS channel 6 background error from respec-
tively air temperature (top panel), humidity (middle panel) and surface skin temperature (bottom
panel). The contours are 0.2, 0.4, 0.6 and 0.8 with shading starting at 0.4 (yellow); values greater
than 0.8 are shaded green. The sum of the three charts is equal to one everywhere, by construction.
From Andersson et al. (2000) (© Royal Meteorological Society)
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humidity background errors dominate in the tropics whereas temperature back-
ground errors dominate in the mid and high latitudes. As HBHT is one of the
terms that determine the magnitude of the analysis increments we can expect
that HIRS channel-6 measurements will affect predominantly the humidity anal-
ysis in the tropics and predominantly the temperature analysis in mid and high
latitudes.

2.4 Passive Tracer Analysis

In four-dimensional assimilation schemes, the time variation recorded by obser-
vations can be explored to great effect. For example, through the adjoint (chapter
Variational Assimilation, Talagrand) of the humidity advection over the assimilation
time window, 4D-Var can fit a time-sequence of humidity data either by modifying
the humidity field itself, or by adjusting the advecting wind. Frequent observations
in a water vapour sounding channel can thus affect the 4D-Var analysis of the wind
field. This is an important result which holds for any passive tracer quantity. It has
provided the motivation to work on the assimilation of frequent water vapour radi-
ance data from geostationary satellites in an attempt to improve the analysis of not
only the humidity field but also the tropical wind field (Munro et al. 1999; Köpken
et al. 2004), and furthermore to develop assimilation of ozone data to improve the
stratospheric wind analysis (Riishøjgaard 1996; Hólm et al. 1999).

3 Assimilation of Hourly Surface Pressure Measurements

It has long been recognized that surface pressure tendency observations or, equiv-
alently, time series of frequent surface pressure observations, provide important
information on the intensity and motion of mid latitude storms. Such observations
are essential for the subjective analysis of weather maps and for short-range fore-
casting. These observations have, however, not been used in objective analysis until
the advent of 4D-Var. This is because of difficulties accounting for the temporal
information in the data in static analysis schemes. In a static scheme all observa-
tions used in an analysis are assumed to refer to the analysis time: all observations
belonging to a given 6-h analysis period would thus refer to the central time of that
period. From frequently reporting stations, only the observation closest to the centre
of each 6-h period could be used.

Unlike static data assimilation schemes, four-dimensional data assimilation
schemes compare the observations to a time-sequence of model states (the model
trajectory) that extends over the assimilation window. The benefits are that the obser-
vations are used at the appropriate time, and many more observations can be used
from frequently reporting stations. This enables effective use of time sequences of
surface pressure observations, for example.
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3.1 Synoptic Analysis of Rapidly Developing Storm Using
Surface-Pressure Data from a Single Station

Synopticians rely heavily on surface pressure tendency data to improve the analy-
sis of rapidly developing mid latitude storms which are highly baroclinic systems.
An observed time sequence of surface pressure observations might, for example,
indicate that a particular storm is not developing rapidly enough in the model. The
ideal analysis correction in this situation should consist in small adjustments to the
three-dimensional structure of the storm at initial time, such as to increase the baro-
clinicity and so the intensification rate of the storm. The ideal analysis increment
would be an unstable perturbation with respect to the given atmospheric situation
over a finite time interval (the assimilation window).

Rabier et al. (1996) showed that 4D-Var will tend to create analysis increments
that correct the part of the background error which projects onto the fast-growing
singular vectors of the model. Thereby, 4D-Var implicitly increases the effective
background errors in the unstable directions (Thépaut et al. 1993, 1996; Rabier
et al. 2000), which facilitates such flow-dependent analysis corrections. The 4D-Var
system, therefore, provides the mechanisms necessary for effective use of surface
pressure tendency data. Long before the time of 4D-Var, Bengtsson (1980) studied
what should be the optimal analysis response to pressure tendency data in a baro-
clinic system within a four-dimensional data assimilation system. In his theoretical
work, Bengtsson demonstrated that it is desirable to update the flow in the mid and
upper troposphere in response to surface pressure tendency observations. The fol-
lowing example from Järvinen et al. (1998) shows 4D-Var results with respect to a
real storm that was developing more quickly in reality than in the model as it was
approaching Ireland from the North Atlantic: the so called “Irish Christmas Storm”,
1997.

When the storm was approaching Ireland, the observations were indicating a
quicker pressure fall (20 hPa in 5 h) than the model prediction (16.5 hPa in 5 h). The
assimilation experiment using hourly surface pressure data produced an analysis
with a 3.5 hPa deeper cyclone than the assimilation without the additional data. In
this situation, where the model had under-predicted the intensification of a quickly
developing baroclinic system, we focus on the upper-air analysis increments created
by 4D-Var in response to the surface pressure data. To this end, an experiment was
run using only the surface-pressure time sequence from one single Irish SYNOP
station, Malin Head. The reported pressure at Malin Head fell by 20.1 hPa in 5 h,
whereas the trajectory model integration from the background produced a pressure
fall of 15.8 hPa in the same period, i.e., an under-prediction of 4.3 hPa, indicative of
a less intense deepening of the storm in the model than in reality.

The 4D-Var correction of the initial state, i.e., the analysis increment, is shown
in Fig. 2a. Its evolution 3 and 6 h into the assimilation window is shown in Fig. 2b,
c, respectively. These are results from an assimilation of hourly pressure obser-
vations from Malin Head. The figures show that the analysis increment in the
time-sequence experiment intensifies rapidly over the 6-h assimilation period. We
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(a) (b) (c)

Fig. 2 Surface pressure (hPa) analysis increment (a, left hand panel) resulting from a time series
of hourly surface pressure data at Malin Head, Ireland. The evolution of the increment 3 and 6 h
into the 6-h assimilation window is shown in (b, middle panel) and (c, right hand panel) (From
Järvinen et al. 1998)

can conclude that the 4D-Var analysis increments have successfully destabilized the
atmosphere with respect to the baroclinic development of the storm over the 6-h time
interval.

The vertical cross-sections of the analysis increments show that the analysis has
cooled the cold air to the west of the storm and sharpened the thermal gradient in the
frontal zone. The tropopause height in the cold air mass has been lowered and the
vertical winds in the frontal region have been strengthened. It is of interest to note
that the maximum temperature increments, created by the time sequence of surface
pressure observation at Malin Head, are located in the mid troposphere 10◦ to the
west of the station. In the absence of any flow-dependent effects the maximum tem-
perature increment would occur in the lower troposphere directly above the station.

3.2 Background Errors in Observable Quantities

The background error covariances B in a variational analysis are specified in terms
of those quantities that lead to a compact formulation of the background term (the
Jb term of the penalty function in the variational analysis), viz., balanced vorticity,
unbalanced temperature, divergence and surface pressure, and specific humidity.
Because of the non-linearities in the observation operators, it is not immediately
obvious how the magnitudes of these background errors can be expressed in terms of
observable quantities such as radiances for comparison with the various observation
errors.

Within the variational analysis, the background errors in terms of observed
quantities (HBHT) are implied, but are not normally computed explicitly. They
depend, in general, on the Jb formulation and on the observation operators. In the
case of radiance observations, this involves the Jacobian of the radiative transfer
model which in turn depends on the atmospheric state. Efficient methods to diag-
nose the diagonal of HBHT have been developed. One method is an adaptation
of the randomization technique suggested by Fisher and Courtier (1995) to esti-
mate the “effective” background error variances in a variational analysis system. By
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multiplying each random vector with the tangent linear observation operators H, one
can produce maps of background error standard deviations for observed quantities,
i.e., estimates of the diagonal of HBHT.

The diagnosed background errors for observed quantities can be compared with
statistics of observation-minus-background departures. If the values are not consis-
tent, it is an indication that some aspects of the specified B matrix may need to be
improved. Such an investigation was performed by Poli et al. (2007) with respect
to the new observational data (namely zenith total delay) provided by ground-based
GPS stations.

4 Variational Quality Control of Observations
with Non-Gaussian Errors

The assimilation methods presented so far assume that the observations are affected
by random errors that can be well approximated by a Gaussian frequency distribu-
tion. Furthermore, the observations are assumed to be bias-free and devoid of any
serious error due to malfunction of instruments, incorrect readings, software errors,
and other so-called gross errors. Several different methods have been developed to
detect such errors and reject all data that have high probability of being in gross
error. We have seen that the innovation vector y −H(xb)(= d) is a measure of the
departure of each observation against a common atmospheric state. This informa-
tion is extremely useful to assess whether any gross errors contaminate the new
data. The departures thus provide the basis for several successful quality control
procedures: the first-guess check, buddy-checks, OI (optimal interpolation) checks,
Bayesian methods and variational quality control.

Quality control is an inherently non-linear process. As we have already seen,
the incremental formulation of 4D-Var has the advantage that non-linearities can be
accounted for, and this can be explored also for the purpose of quality control.

4.1 Probability Density Function of Observation Error

The quadratic form of the observation cost function, Jo, corresponds to an assump-
tion of Gaussian distributions of observation error (Lorenc 1986). This can be seen
from the definition

Jo = ln p+ c (1)

where p is the probability density function (PDF) of the error in the observations
and c is an arbitrary constant.

With a Gaussian PDF, i.e.,

p = exp [0.5 (Hδx− d)TR−1(Hδx− d)] (2)

we obtain the familiar quadratic expression for Jo after insertion in Eq. (1).
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Error distributions for real observations are rarely precisely Gaussian. Real dis-
tributions often have significantly wider tails than can be expected from purely
Gaussian statistics. These tails of the distributions indicate the presence of gross
errors in the data that should be excluded from the analysis. Non-Gaussian PDFs
can be constructed to better reflect the real distributions. The corresponding varia-
tional cost function then becomes non-quadratic, and can be derived from Eq. (1).
Ingleby and Lorenc (1993) proposed to model the PDF of observation error as a
sum of two distributions: one which follows the normal Gaussian distribution, rep-
resenting random errors, and one which is modelled by a flat “box car” distribution,
representing the population of data affected by gross errors. Other models for the
probability density of incorrect data have also been used (e.g. Huber 1977; Gelman
et al. 1995).

The choice of a flat distribution is convenient as it corresponds to the assumptions
that those data (the incorrect data) provide no useful information to the analysis.
The corresponding modification to the cost function to take into account the non-
Gaussian nature of gross errors has the effect of reducing the analysis weight given
to data with large departures from the current value of x (or preliminary analysis).
This is fundamentally different from the normal Kalman gain weights which are
independent of the value of the observed departure.

4.2 Variational Quality Control

The expression for the modified cost function Jo
QC and its gradient with variational

quality control (VarQC) in the case that the gross-error PDF is represented by a flat
(box-car) distribution becomes:

JQC
o = − ln

[
γ + exp(−JN

o )

γ + 1

]
,

∇JQC
o = ∇JN

o

[
1− γ

γ + exp(−JN
o )

]
,

with γ defined as γ = A
√

2π

(1− A)2d
, (3)

where A represents the prior probability of gross error and d the width of the box-
car function. The symbol Jo

N is used here to denote the normal Jo resulting from
Gaussian PDFs. Figure 3 illustrates that Jo

QC is near-quadratic for small observation
departures, but flattens out for large departures and that the gradient ∇Jo

QC then
drops towards zero. This is in contradistinction to the linearly-increasing gradient of
the normal cost function ∇Jo. A VarQC weight can be defined as the ratio between
∇Jo

QC and ∇Jo. This weight is one for small observation departures, meaning that
the observation is fully used; the weight approaches zero, i.e., the observation is
rejected, for large observation departures. The interval within which the VarQC



Assimilation of Operational Data 293

Fig. 3 The observation cost
function (top panel) for one
single observation without
(dashed) and with (full line)
variational quality control
(VarQC). The middle panel
shows the gradient of the
VarQC cost function. The
lower panel shows the a
posteriori probability that the
observation is correct (one
minus the probability of gross
error). Arbitrary units

weight changes from nearly one to nearly zero is relatively narrow. The observa-
tions whose departures fall within this interval are partly used and partly rejected. It
is these observations that will contribute to the non-quadraticity of the cost function,
not the rejected ones.

VarQC does not reject data irrevocably. The VarQC weights can be recomputed
at every iteration of the minimization. Rejected observations can thereby regain
influence on the analysis during later iterations if supported by surrounding data.
This “soft” QC approach is in contrast to traditional “hard” quality control proce-
dures which detect and discard questionable data prior to the main analysis. There
is also no need for a separate (often complicated) quality control (QC) decision
making algorithm. All used data of all observed quantities are quality controlled
simultaneously during the course of the main minimization.

In VarQC the weights given to observations are a function of the magnitude of
the observed departure and may be zero. With purely Gaussian statistics, on the
other hand the weight is never zero, corresponding to the assumption that every
observation improves the analysis regardless of the distance between observation
and analysis.

Non-Gaussian observation error statistics lead to a non-quadratic cost function.
There may also be multiple minima in the VarQC cost function, each representing
the rejection/non-rejection of individual data (see examples given in Dharssi et al.
1992). The technique used by Dharssi et al. was to set the observation errors to
very large values initially and then gradually reduce them to their “true” value. The
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approach taken by Andersson and Järvinen (1999) to limit this problem is instead to
start VarQC from as good as possible an initial state. This is achieved by partially
minimizing the cost function without quality control before VarQC is switched on.
The approach relies on the various pre-analysis checks, such as the checks against
climatology and against the background (Järvinen and Undén 1997) to remove the
obviously wrong observations. Otherwise, the preliminary analysis without VarQC
could be seriously corrupted by gross errors.

4.3 The Need for Realistic Background Error Specification

The specified background error statistics are very important for the success of
quality control procedures. The misfit between background and observations (the
innovations) can be large either because the observations are wrong or because
the background is wrong (or both). Observations may therefore be rejected for the
wrong reason in areas where the background is very poor, unless the specified back-
ground error is high there (Dee et al. 2001). There is thus a danger that observations
are rejected in the vicinity of intense storms, not because the observations are poor
but because the background is poor.

The development of the 4D-Var system on longer assimilation periods (longer
than the current 6 or 12 h) and the development of data assimilation ensemble
techniques, will make the estimated background error at observation points more
dependent on the atmospheric state (Thépaut et al. 1996; Rabier et al. 1998). As a
consequence of these flow-dependent structures, it is expected that automatic quality
control procedures (e.g. VarQC) will become more skilful at discriminating between
good and incorrect data also in extreme weather situations and dynamically active
areas, such as rapidly moving cyclones and troughs.

5 Impact of Observations on the Quality of Numerical Forecasts

The impact of observations in NWP data assimilation systems is usually evalu-
ated through Observing System Experiments (OSEs; see chapter Observing System
Simulation Experiments, Masutani et al.) where several components of the Global
Observing System (GOS) are denied individually and the subsequent forecast skill
degradation accordingly quantified (e.g. Bouttier and Kelly 2001). New comple-
mentary statistically based methods that evaluate the contribution of observations
to a data assimilation system are emerging, for example by looking at their impact
on the reduction of the analysis error variance (Desroziers et al. 2005), or by diag-
nosing their influence on and their consistency within the analysis (Cardinali et al.
2004; Chapnik et al. 2006). See also chapter Evaluation of Assimilation Algorithms
(Talagrand).

A comprehensive description of the impact of observations on NWP is provided
in the proceedings of the third WMO workshop on the impact of various observing
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systems on Numerical Weather Prediction (WMO 2004). All the results compiled
in this document suggest that:

• Conventional observations remain an important component of the GOS.
Radiosondes contribute significantly to regional and also global NWP. Aircraft
observations also provide valuable contribution to the GOS and most NWP cen-
tres are now using the high temporal resolution of these data, especially during
flight ascents and descents. Last but not least, and despite the overwhelming vol-
ume of satellite data, surface observations (in particular surface pressure) over sea
remain essential to anchor the surface pressure field. Surface data are important
for regional and global NWP;

• The ability of global NWP systems to use satellite data has evolved remarkably
over the last decades and these observations now constitute the backbone of the
GOS for this application. Figure 4 is updated from Simmons and Hollingsworth
(2002). This figure presents running annual-mean anomaly correlation of 500 hPa
height for ECMWF’s operational 3-, 5-, 7- and 10-day forecasts for the extra-
tropical Northern and Southern Hemispheres for the period from January 1980 to
February 2007. The first remark is the general upward trend of the curves (indi-
cating a progressive improvement of the forecast quality over the covered period).
A second striking feature is the higher rate of improvement in the forecasts in the
Southern Hemisphere. In 27 years, the skill of medium range weather forecasts
in the Southern Hemisphere has reached a level now comparable to the one in

Fig. 4 Anomaly correlation coefficients of 3-, 5-, 7- and 10-day ECMWF 500 hPa height forecasts
for the extra-tropical Northern and Southern Hemispheres, plotted in the form of annual running
means of archived monthly-mean scores for the period from January 1980 to November 2006.
Values plotted for a particular month are averages over that month and the 11 preceding months.
The coloured shadings show the differences in scores between the two hemispheres at the forecast
ranges indicated (after Simmons and Hollingsworth 2002)
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the Northern Hemisphere. Bearing in mind the relatively poor data coverage pro-
vided by the conventional observing system (in particular over the oceans), this
result is a strong indication of an improved usage of satellite data in the ECMWF
assimilation system. The latest OSEs performed at ECMWF suggest that satel-
lite observations add 3 days of forecast skill in the Southern Hemisphere, against
two-third to three-quarter of a day in the Northern Hemisphere. The impact of
satellite data in regional NWP models remains more contrasted, and much work
is needed to improve their usage at high resolution and over land and sea ice.

6 Final Remarks

Current data assimilation methods enable effective use of a much wider range of
observations than was previously possible (chapter The Global Observing System,
Thépaut and Andersson). In this chapter we have explored some of the new
possibilities offered with respect to:

• Non-linear and multivariate observation operators;
• Non-Gaussian observation error distributions and quality control;
• Flow-dependent background error covariances.

These aspects are general features that presently play a role in the utilization
of conventional as well as satellite measurements. The variety of satellite measure-
ments will continue to increase very substantially in the coming years. Some of
the future data types are likely to put even higher demands on the data assimila-
tion scheme. Indirect, remotely-sensed measurements of the atmosphere are often
ambiguous with respect to the analysed quantities. In a variational scheme the
ambiguities in the inversion of the data are resolved statistically by reference to
the background information and information from coincident observations. This
process will work accurately only if the covariance statistics of background and
observation errors are specified accurately. Continued progress in the formulation
of the background term is therefore likely to be just as important to the accuracy of
the data assimilation as the addition of new data.

A further challenge for the near future is to incorporate observations of clouds
and precipitation, with a view to correct the diabatic processes in the assimilation.
Satellite observations provide information on the location and intensity of convec-
tion, as well as estimates of precipitation rates. These are especially valuable for the
tropical analysis. Some promising results have already been obtained and have led
to operational implementation in some NWP centres. Bauer et al. (2006a, b) have
indeed shown that the assimilation of radiances from microwave imager data could
improve the model spin-up and to a lesser extent the analysis error in terms of trop-
ical cyclone location. In the long term, the current data assimilation methods will
need to be further enhanced to enable a full feedback from satellite observations in
presence of clouds and rain on the temperature, humidity and wind corrections to
the analysis.
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Research Satellites

William Lahoz

1 Introduction

Our knowledge of the Earth System ultimately comes from observations. Although
observations have uncertainties and biases, they are the “truth” against which the-
ories and models must be confronted and evaluated. Predictions of the variability
of the Earth System require an understanding of the variability in the observations
representing the “truth”. This requires observations that are: (i) high quality, i.e.,
have small errors and biases; (ii) consistent, i.e., there is uniformity in the observing
system characteristics; and (iii) long-term, i.e., the results have statistical signifi-
cance. Depending on application, there may be further observational requirements.
For example, for monitoring climate change, global coverage would generally be
required; for studying high impact weather, high spatial and temporal resolution
would generally be required.

2 Observations

Examples of observing platforms include ground-based instruments, sondes, bal-
loons, aircraft (collectively known as in situ instruments) and remote sounding satel-
lites, typically divided into operational satellites (focused on Numerical Weather
Prediction, NWP) and research satellites (typically focused on research of the Earth
System). However, the distinction between operational and research satellites is
becoming blurred, as more research satellites are used operationally. Collectively,
the satellite and in situ data form the Global Observing System (GOS). Currently,
the observations of NWP centres such as the Met Office and the European Centre
for Medium-Range Weather Forecasts (ECMWF) come from in situ instruments
and satellite platforms, with the latter dominated by nadir-viewing satellites. This
chapter focuses on research satellite data. It thus complements the chapters The
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Fig. 1 Schematic illustrating
the transformation of level 0
(L0) data into level 1 (L1)
data and level 2 (L2) data

Global Observing System (Thépaut and Andersson) and Assimilation of Operational
Data (Andersson and Thépaut), which focus on the GOS and the assimilation of
operational data, respectively.

It is important to realize that satellite instruments do not measure directly temper-
ature, ozone or similar geophysical parameters (see chapter The Global Observing
System, Thépaut and Andersson). What they measure is photon counts (level 0
data). Algorithms then transform the level 0 data into radiances (level 1 data).
Subsequently, using retrieval techniques (Rodgers 2000), retrievals of profiles or
total column amounts are derived (level 2 data) – see Fig. 1. It is the level 2 data that
many Earth Observation (EO) scientists use as the starting point for their studies.
Fields derived from manipulation of level 2 data, e.g., by interpolation to a common
grid are termed level 3 data. Analyses derived from the assimilation of level 1 and/or
2 data are termed level 4 data. The use of level 4 data is becoming more common in
the EO community.

Level 2 data from a satellite instrument is not a point measurement, but instead
represents an observation which is representative of a finite volume in the atmo-
sphere, the dimensions of this volume determined by the horizontal and vertical
resolution of the measurement. The so-called averaging kernel (see also chapter The
Global Observing System, Thépaut and Andersson) provides information on how
measurements represent an “average” over a particular volume (Rodgers 2000).

Level 2 data (as well as the level 1 and level 0 data) have associated with them
a number of errors, including random and systematic errors, and the error of rep-
resentativeness (or representativity). Random errors (sometimes termed precision)
have the property that averaging the data can reduce them. This is not the case of the
systematic error or bias (sometimes termed accuracy). The error of representative-
ness is associated with the extent to which the “average” measurement represents
a measurement within any point of the finite volume for which this “average” is
appropriate.

3 Research Satellite Data

3.1 General Considerations

Observing platforms have advantages and disadvantages. For example satellite
observations have low spatial and temporal resolution but good global coverage,
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whereas in situ data have high spatial and temporal resolution but poor global cov-
erage. For observing instruments aboard satellite platforms, nadir sounders have
good horizontal resolution but poor vertical resolution, whereas limb sounders
have poor horizontal resolution but good vertical resolution (Fig. 2). Currently,
the observations used by the Met Office and ECMWF for NWP come from: air-
craft, nadir-viewing satellites, sondes, and the surface, with some observations from
limb-viewing satellites (see, e.g., http://www.ecmwf.int/research/ifsdocs/CY28r1/
index.html; and chapters The Global Observing System, Thépaut and Andersson;
Assimilation of Operational data, Andersson and Thépaut). The use of such a
mixture of observation platforms is typical for met agencies.

As discussed in chapter The Global Observing System (Thépaut and Andersson),
broadly speaking satellite observations of the Earth/atmosphere fall into the fol-
lowing categories: (a) passive technologies; (b) active technologies; (c) and limb
technologies. Passive and active technologies can be used to sense the atmosphere
(sounding instruments) or the Earth’s surface (imaging instruments). Limb tech-
nologies (i.e., those with a limb-viewing geometry) can be divided into limb passive
sounders and GPS (Global Positioning System) radio occultation technologies.

Satellites can be divided into operational and research types. Operational satel-
lites provide data in near-real-time (NRT; for ECMWF data up to 17 h is used
for various purposes, but for the NWP four dimensional variational, 4D-Var, fore-
cast the cut-off can be as short as 1 h or less), and are used in NWP. Currently,
the vast majority of operational satellites have nadir-viewing geometries. Research
satellites provide data off-line (typically more than 2 days after data acquisition),
use both nadir- and limb-viewing geometries, and are mainly used by the scientific
community in, e.g., studies of climate change and attribution, and studies of ozone
depletion. Recently, research satellite data have begun to be of interest to the NWP
community (a requisite is their availability in NRT). A particular example has been
the production of operational ozone analyses since April 2002 by ECMWF using
GOME and SCIAMACHY total column ozone data and MIPAS height-resolved
ozone data.

Satellites can also be classified according to their orbits: (a) geostationary
(GEO); (b) low Earth orbit (LEO) – also termed polar orbiting satellites. GEO
and LEO satellites are discussed in chapter The Global Observing System (Thépaut

Fig. 2 Schematic illustrating
nadir- and limb-viewing
geometries. The ovals
represent the volume
associated with typical
horizontal and vertical
resolutions. Based on Lahoz
(2003)
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and Andersson). Research satellites generally have LEO orbits, and can have
sun-synchronous or non sun-synchronous orbits.

Sun-synchronous satellites have a fixed Equator crossing time, whereas non-sun-
synchronous satellites do not. Sun-synchronous satellites (e.g. ESA’s Envisat and
NASA’s EOS Aura) have the advantage that the instruments always face away from
the sun, so that no periodic satellite yaw manoeuvre to avoid sunlight damaging
the instruments is necessary. However, they have the disadvantage that they can-
not observe the diurnal cycle at a particular location. For example, NO and NO2,
which play a role in determining the distribution of ozone, have strong diurnal
cycles.

Non-sun-synchronous satellites (e.g. NASA’s UARS) have the advantage of
being able to observe the diurnal cycle at a particular location, but the disadvantage
that a periodic satellite yaw manoeuvre is needed to avoid sunlight damaging the
instruments. In the case of the MLS instrument aboard UARS, this had the effect of
the instrument either having a North Looking configuration (34◦S–80◦N) or a South
Looking configuration (80◦S–34◦N).

We now describe in more detail the various research satellites used for Earth
Observation, EO.

3.2 Research Satellites

Most of the Research & Development (R&D) space agencies in the world: NASA
(USA), ESA (Europe), JAXA (Japan) and CSA (Canada) have launched research
satellites over the last 10 years, and are involved in plans to launch research satel-
lites over the next 5–10 years. The following list of research satellites is meant to
be illustrative and is not exhaustive. Acronyms are identified in the Appendix. The
websites mentioned below have been checked on July 2009.

NASA. NASA is involved with UARS and Earth Probe (EP) TOMS (there have
been several TOMS instruments, of which EP is one example, all measuring total
column ozone), and is involved in the EOS series of satellites (Terra, Aqua and
Aura).

NASA’s UARS was launched in September 1991, and ceased operations in
December 2005. The longest lasting of the UARS atmospheric composition instru-
ments, HALOE, made its last occultation sounding in November 2005. UARS
carried a suite of instruments making measurements of the stratosphere and meso-
sphere that have been used to infer meteorological and chemical fields. A number of
UARS limb and occultation sounder instruments (CLAES, HALOE, HRDI, ISAMS,
MLS) have made measurements of temperature, ozone, water vapour, ClO and
winds. The MLS instrument has also made measurements of upper troposphere
water vapour. The UARS data have been extensively evaluated (UARS special issue
in J. Geophys. Res., 1996, Vol. 101, 9539–10473), and have contributed to our
understanding of many aspects of the atmospheric circulation and chemistry (e.g.
the UARS special issue in J. Atmos. Sci., 1994, Vol. 51, 2781–3105).
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EOS Terra was launched in December 1999. It carries on board 5 instruments:
ASTER, CERES, MISR, MODIS and MOPITT. EOS Terra provides information
on: (i) land surface, water and ice (ASTER); (ii) radiation (CERES); (iii) radiation
and biosphere parameters (MISR); (iv) biological and physical processes on land
and the ocean (MODIS); and (v) CO and CH4 in the troposphere, where they are
pollution markers (MOPITT). An example of the impact of EOS Terra comes from
MOPITT, which has provided the first global CO (proxy for air pollution) measure-
ments from space (http://www.atmosp.physics.utoronto.ca/MOPITT/home.html).

EOS Aqua (http://aqua.nasa.gov) was launched in May 2002. It carries on board
6 instruments: AMSR/E, MODIS, AMSU, AIRS, HSB and CERES. EOS Aqua pro-
vides information on: (i) clouds, radiation and precipitation (AMSR/E); (ii) clouds,
radiation, aerosol and biosphere parameters (MODIS); (iii) temperature and humid-
ity (AMSU, AIRS, HSB); and (iv) radiation (CERES). HSB was lost early in the
mission. The NWP community has assimilated clear-sky radiances from AIRS that
are sensitive to temperature and humidity. The EOS Aqua data have been described
in the literature (EOS Aqua special issue in IEEE, 2003, Vol. 41).

EOS Aura (http://aura.gsfc.nasa.gov) was launched in July 2004. It carries on
board 4 instruments: EOS MLS, HIRDLS, TES and OMI. EOS Aura provides infor-
mation on: (i) chemistry of the upper troposphere and lower stratosphere (UTLS),
chemistry of the middle and upper stratosphere, upper troposphere water, and the
impact of volcanoes on global change (EOS MLS); (ii) temperature and con-
stituents in the upper troposphere, stratosphere and mesosphere (HIRDLS); (iii)
global maps of tropospheric ozone and its photochemical precursors (TES); and
(iv) maps of total column ozone (which continue the TOMS record), NO2 and
UV-B radiation (OMI). EOS MLS (which builds upon the experience with UARS
MLS) and HIRDLS are limb sounders (post-launch problems have limited the
measurement performance of HIRDLS); TES can be used in both nadir and limb
sounder mode (although due to technical problems only the nadir mode is func-
tional after May 2005); OMI is a nadir sounder. One of the many innovative aspects
of EOS Aura is the near-real-time production of total column ozone data from OMI
(http://www.temis.nl).

The EOS Aura data have been described in the literature (EOS Aura special issue
in IEEE, 2006, Vol. 44), and in a special issue on EOS Aura validation in J. Geophys.
Res., 2008, Vol. 113 (see also Schoeberl et al. 2008).

EOS Aqua and EOS Aura are part of the EOS “A-Train” (http://www.spacetoday.
org/Satellites/TerraAqua/ATrain.html). The “A-Train” refers to the constellation of
USA satellites and international Earth Science satellites that plan to fly together
with EOS Aqua to enable co-ordinated science observations. These satellites have
an afternoon Equator crossing time close to the mean local time of the “lead” satel-
lite, EOS Aqua, which is 1:30 pm – thus the name, “A” being short for afternoon.
The A-Train consists of, in temporal order of their afternoon Equator crossing time:
EOS Aqua (1:30 pm); CloudSat (1:31 pm); CALIPSO (1:31:15 pm); PARASOL
(1:33 pm); and EOS Aura (1:38 pm). Substantial scientific activities are being under-
taken to exploit the synergy and complementarity between the instruments on board
the A-train.
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Cloudsat provides information on the altitude and properties of clouds;
CALIPSO and PARASOL provide information on clouds and aerosol. The instru-
ments on EOS Aqua and EOS Aura are described above.

OCO, which would have provided information on CO2 and was launched in
February 2009, unfortunately suffered a technical failure and was lost shortly after
launch (Palmer and Rayner 2009). It was scheduled to have been part of the A-train
(afternoon Equator crossing of 1:15 pm).

ESA. ESA is involved with the ERS-2 satellite, which carries the GOME
instrument; the ODIN mission and Envisat. GOME is a nadir sounder that has
been making measurements of total column ozone and NO2 since 1995. Since
June 2003 the ERS-2 satellite has experienced problems. Details of these prob-
lems and action taken by ESA for can be found in http://earth.esa.int/pub/GOME/
YEARLY/anomalies_2007.html

ODIN, also involving the CSA (the Canadian Space Agency), CNES (the French
Space Agency) and SNSB (the Swedish Space Agency), was launched in February
2001. It carries on board 2 instruments: OSIRIS and SMR. ODIN is providing
information on ozone and NO2 (total columns and profiles).

Envisat (http://envisat.esa.int) was launched in March 2002 (GMT). It carries on
board 10 instruments: AATSR, ASAR, DORIS, GOMOS, LRR, MERIS, MIPAS,
MWR, RA-2 and SCIAMACHY. Envisat provides information on: (i) tempera-
ture, ozone, water vapour and other atmospheric constituents using limb, nadir and
occultation geometries (MIPAS, SCIAMACHY, GOMOS); (ii) aerosol (AATSR,
MERIS); (iii) sea surface temperature (AATSR); (iv) sea colour (MERIS); (v) land
and ocean images (ASAR); (vi) land, ice and ocean monitoring (RA-2); (vii) water
vapour column and land surface parameters (MWR); and (viii) cryosphere and land
surface parameters (DORIS). LRR is used to calibrate RA-2. The MIPAS instru-
ment has suffered problems since 2004 which have affected its performance. The
broad spectrum of information from Envisat reflects a paradigm that the Earth
System should be treated as a whole, and that information from its various com-
ponents should be integrated. However, the complexity and cost of Envisat mean it
is unlikely that ESA will launch future missions of a size similar to Envisat.

One of the innovative aspects of the Envisat mission has been the use of
data assimilation techniques to evaluate the atmospheric chemistry instruments
(GOMOS, MIPAS, SCIAMACHY); see chapter Constituent Assimilation (Lahoz
and Errera).

The Envisat data has been evaluated at a series of workshops organized
by ESA. Examples include the Envisat Validation Workshop held at ESRIN
on 9–13 December 2002 (http://envisat.esa.int/pub/ESA_DOC/envisat_val_1202/
proceedings; ESA Special Publication SP-531); the Second Workshop on the
Atmospheric Chemistry Validation of Envisat, ACVE-2, held at ESRIN on
3–7 May 2004 (http://envisat.esa.int/workshops/acve2; ESA Special Publication
SP-562); and the Third Workshop on the Atmospheric Chemistry Validation
of Envisat, ACVE-3, held at ESRIN on 4–7 December 2006 (ESA Special
Publication SP-642). The data from MIPAS and SCIAMACHY have also been
evaluated in special issues in Atmos. Chem. Phys.: (i) Geophysical Validation of
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SCIAMACHY 2002–2004 (Eds. Kelder, Platt and Simon), http://www.atmos-chem-
phys.net/special_issue19.html (2005); and (ii) MIPAS (Michelson Interferometer
for Passive Atmospheric Sounding): Potential of the experiment, data process-
ing and validation of results (Eds. Espy and Hartogh), http://www.atmos-chem-
phys.net/special_issue70.html (2006). Data from the atmospheric chemistry instru-
ments in Envisat have been used to study the unprecedented Antarctic ozone hole
split of September 2002 (special issue in J. Atmos. Sci., 2005, Vol. 62).

Other current and future missions from ESA include GOCE (launched March
2009); SMOS, launched in November 2009; Cryosat-2 (a replacement to the aborted
Cryosat mission), due for launch in 2010; SWARM, due for launch in 2011; ADM-
Aeolus, due for launch in 2011; and EarthCARE (in collaboration with JAXA, the
Japanese space agency), due for launch in 2013 (all these dates as of March 2010;
see, e.g., http://www.esa.int/esaLP/LPearthexp.html). These six missions (Earth
Explorers) are part of ESA’s Living Planet Programme (http://www.esa.int/esaLP);
GOCE, ADM-Aeolus and EarthCARE are core missions; Cryosat-2, SMOS and
SWARM are opportunity missions. GOCE will measure the Earth’s gravity field;
SMOS will measure soil moisture over the Earth’s land masses and salinity over the
oceans; Cryosat-2 will measure cryosphere parameters; SWARM will measure the
Earth’s geomagnetic field and its temporal evolution; ADM-Aeolus will measure
the line-of-sight wind in the troposphere and lower stratosphere; and EarthCARE
will provide vertical profiles of clouds and aerosols, and radiances at the top of
the atmosphere. All these six missions include novel measurements and/or novel
measurement techniques.

In May 2006, six new Earth Explorer Missions were selected by ESA for fur-
ther study: BIOMASS (global measurements of forest biomass); TRAQ (monitoring
air quality and transport of long-range transport of pollutants); PREMIER (under-
standing processes that link trace gases, radiation, chemistry and climate in the
atmosphere); FLEX (observing global photosynthesis through the measurement of
fluorescence); A-SCOPE (improving understanding of the global carbon cycle and
regional CO2 fluxes); and CoReH2O (detailed observations of key snow, ice and
water cycle characteristics). These missions were assessed at a User Consultation
Meeting in January 2009: PREMIER, BIOMASS and CoReH2O were selected to
proceed to the next phase of development and undergo feasibility (Phase A) studies.
It is expected that only one of these missions will eventually fly.

The GMES (Global Monitoring for Environment and Security) programme,
which aims for full operational provision of satellite data for GMES ser-
vices, involves the use of existing and planned national space capabilities as
well as the development of new infrastructure. GMES will be developed tak-
ing into account the activities of the Group on Earth Observations (GEO;
http://www.earthobservations.org/). With its federating role, GMES will be the main
European contribution to the global 10-year implementation plan for the Global
Earth Observing System of Systems (GEOSS).

The GMES Space Component program is intended to meet the requirements of
the three pilot services identified by the EC for early implementation (land mon-
itoring, ocean monitoring and emergency management) and other services to be
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deployed in the 2008–2020 period. The GMES Space Component programme is
built around five concepts of space missions or GMES “Sentinels” (see below for
details), plus access to existing and complementary missions from ESA Member
States, EUMETSAT, Canada and third parties. The following complementary mis-
sions are considered candidates for GMES operational service contributions in
order to get the programme started: SPOT-5 (CNES); TerraSAR-X (DLR/EADS
Astrium, Germany); COSMO-SkyMed (ASI, Italy); RADARSAT-2 (CSA/MDA,
Canada); Pleiades (CNES); Jason-2 (EUMETSAT/CNES/NOAA/NASA); MSG
(EUMETSAT); MetOp (EUMETSAT); DMC – Disaster Monitoring Constellation
(SSTL, UK); RapidEye (RapidEye AG, Germany) and EnMAP – Environmental
Mapping and Analysis Program (hyperspectral mission from DLR).

The following members of the Sentinel family have been identified as core
elements of the GMES Space Component:

• Sentinel 1 – C-Band SAR mission: This is a spacecraft in sun-synchronous orbit at
a mean altitude of 693 km, with a 12 day repeat cycle, and a Synthetic Aperture
Radar (SAR) operating in C-band. It will have four nominal operation modes:
strip map (80 km swath, 5× 5 m resolution); interferometric wide swath (250 km
swath, 20 × 5 m resolution); extra wide swath (400 km swath, 25 × 100 m
resolution); and wave (5 × 20 m resolution). Applications include: monitoring
sea ice zones and the Arctic environment; surveillance of the marine environ-
ment; monitoring land surface motion risks; and providing mapping in support of
humanitarian aid in crisis situations. It is due to provide continuity to data hitherto
provided by ERS-2, RADARSAT and the Envisat missions. Launch is planned for
2011 with a 7 years design lifetime. For more details see ESA (2005).

• Sentinel 2 – Superspectral imaging mission: This is a spacecraft in sun-
synchronous orbit at a mean altitude of 786 km, with a 10 days repeat cycle. It
will have a filter-based pushbroom multi-spectral imager with 13 spectral bands
(Visible-Near Infrared, VNIR; Shortwave-Infrared, SWIR). It will have three spa-
tial resolutions: 10, 20, and 60 m, and field of view of 290 km. Applications
include: generic land cover maps; risk mapping and fast images for disaster relief;
and generation of leaf coverage, leaf chlorophyll content and leaf water content.
It is due to provide enhanced continuity to data hitherto provided by SPOT and
Landsat. Launch is planned for 2012 with a 7 years design lifetime. For more
details see ESA (2007a).

• Sentinel 3 – Ocean and global land mission: This is a spacecraft in sun-
synchronous orbit at a mean altitude of 814.5 km over the geoid, with a 27
days repeat cycle. It has three sets of instruments: (i) Ocean and Land Colour
Instrument (OLCI), with 5 cameras, 8 bands (only visible) for open ocean (low
resolution), 15 bands (only visible) for coastal zones (high resolution), and
spatial sampling of 300 m at the sub-satellite point (SSP); (ii) Sea and Land
Surface Temperature (SLST), 9 spectral bands, 0.5 km (Visible; SWIR) to 1 km
(Microwave-Infrared, MWIR; Thermal Infrared, TIR) resolution, and swath of
180 rpm dual view scan (nadir and backwards); (iii) a RA package including a
Ku/C Radar Altimeter (SRAL), a Microwave Radiometer (MWR) and Precise
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Orbit Determination (POD). Applications include: sea/land colour data and sur-
face temperature; sea surface and land ice topography; coastal zones, inland water
and sea ice topography; and vegetation products. It will provide SAR mode data
over sea ice and coastal regions (hitherto provided by RA-2 on Envisat), and
wide-swath low/medium resolution data from optical and infrared radiometers
(hitherto provided by AATSR and MERIS on Envisat and Vegetation on SPOT).
Launch is planned for 2012 with a 7 years design lifetime. For more details see
ESA (2007b).

• Sentinel 4 – GEO Atmospheric mission: This is a GEO (geostationary orbit)
mission with a European focus (satellite located at 0◦ longitude). It will have
a narrow field spectrometer covering UV (290–400 nm), visible (400–500 nm)
and near-infrared (NIR; 750–775 nm) bands. Spatial sampling will be 5–50 km
and spectral resolution will be between 0.06 and 1 nm (depending on band).
Applications include: monitoring changes in atmospheric composition (e.g.
ozone, NO2, SO2, BrO, formaldehyde and aerosol); and tropospheric variability.
It will be embarked on MTG-S and operated by EUMETSAT. Launch is planned
for after 2017.

• Sentinel 5 – LEO Atmospheric mission: This is a LEO (low Earth orbit) mis-
sion with global coverage at a reference altitude of about 817 km. It will have a
wide swath pushbroom spectrometer suite covering UV (270–400 nm), visible
(400–500, 710–750 nm), near-infrared (NIR; 750–775 nm), and shortwave-
infrared (SWIR; 2,305–2,385 nm) bands. Spatial sampling will be 5–50 km
and spectral resolution will be between 0.05 and 1 nm (depending on band).
Applications include: monitoring changes in atmospheric composition at high
temporal, i.e., daily, resolution (e.g. ozone, NO2, SO2, BrO, formaldehyde and
aerosol); and tropospheric variability. It will be embarked on post-EPS and oper-
ated by EUMETSAT. Launch is planned for after 2017. A Sentinel 5 precursor is
planned for the period 2013–2019 to fill the data gap between the expected end
of the Envisat and EOS Aura missions (before 2014) and the expected launch
dates of MTG-S (2017) and post-EPS (2020). This data gap affects in particular
short-wave measurements with sufficient quality for tropospheric applications.
The Sentinel 5 precursor would be desirable for two reasons: to provide con-
tinuity of data, and to provide transition into operational implementation (e.g.
Sentinel 5 precursor data could be combined with IASI and GOME-2 data). See
ESA (2007c) for more details on Sentinels 4 and 5.

The actual implementation of the missions will be according to a flexible
architecture that may lead to grouping some of them on single platforms. The
whole programme spans the 2006–2018 timeframe and will be implemented in
two Segments. Segment-1 (planned for 2006–2013) will have two funding lines:
a joint ESA/EC funding line where ESA-procurement rules apply but with modifi-
cation to account for EU financial regulations; an ESA-only funding line where the
geographical return targets can be applied. Segment-2 (planned for 2009–2018) is
expected to be co-funded by the EC and ESA. The information on GMES Sentinels
presented above was valid as of December 2008; as often happens with satellite
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missions, this could change. For updates on information on ESA missions see:
http://news.eoportal.org/.

Other agencies: The Japanese Space Agency, JAXA (http://www.jaxa.jp/
index_e.html), is involved with the ADEOS missions: ADEOS (launched 1996)
and ADEOS-II (launched December 2002). The ADEOS mission carried several
instruments on board, including ADEOS TOMS (which measured total column
ozone) and ILAS (a limb instrument which measured temperature, ozone, water
vapour and other atmospheric constituents). The ADEOS mission only lasted for 10
months.

The ADEOS-II mission carried on board 5 instruments: AMSR, GLI, SeaWinds,
POLDER and ILAS-II. ADEOS-II provides information on: (i) water column, pre-
cipitation, and ocean and ice parameters (AMSR); (ii) land, ice and biosphere
parameters (GLI); (iii) winds over the ocean (SeaWinds); (iv) radiation parame-
ters (POLDER); and (v) temperature, ozone and other atmospheric constituents
(ILAS-II). The ADEOS-II mission only lasted until October 2003. The ILAS-II
products have been evaluated in several papers appearing in a special section of J.
Geophys. Res. (Vol. 111, 2006).

TRMM (http://trmm.gsfc.nasa.gov) is a joint project of Japan (JAXA) and the
USA (NASA). It was launched in November 1997. It can observe the rainfall rate in
the tropics and its horizontal and vertical distribution, which were not possible by
the other measuring methods. TRMM data can help understand global change and
implement environmental policies. TRMM Microwave Imager (TMI) data are also
used operationally at ECMWF (and possibly other NWP centres) thanks to their
availability in real time.

GOSAT is a JAXA satellite in collaboration with the Japanese Ministry
of the Environment (MOE) and NIES (National Institute for Environmental
Studies); it was launched in January 2009 (http://www.jaxa.jp/press/2009/
01/20090124_ibuki_e.html). It is designed to observe the global distribution of CO2
and CH4, and is expected to contribute to international efforts to prevent global
warming by acquiring information on absorption and emission levels of greenhouse
gases.

GCOM are a series of JAXA satellites designed to study the global water cycle
(GCOM-W) and the global carbon cycle (GCOM-C). GCOM-W will carry the
AMSR-2 instrument. It will fly in a sun-synchronous orbit with equatorial crossing
time of 1:30 pm, close to that of the EOS Aqua satellite (see above); it is designed
to extend the measurements of the AMSR-E instrument on the EOS Aqua platform.
There will be three consecutive generations of satellites, with 1 year overlap; the
first satellite is due to be launched in 2012. GCOM-C will carry the SGLI instru-
ment. It will also fly in a sun-synchronous platform with equatorial crossing time of
10:30 am. It is due to be launched in 2014.

The Canadian Space Agency, CSA (http://www.space.gc.ca/index.html), is
involved with the SCISAT-1 platform, a solar occultation sounder. It includes ACE
and MAESTRO. It was launched in 2003, and the mission has been extended to
2009. The ACE data products have 14 baseline species, including: ozone, water
vapour, methane, N2O and NO2.
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The validation of SCISAT-1 data is taking place in two phases. In the ini-
tial phase, several papers were published in a Geophys. Res. Lett. special issue
(Vol. 32, 2005); the second phase is ongoing. There are eight validation groups,
covering, e.g., ozone and methane. There is a special issue in Atmos. Chem.
Phys. (papers appearing in 2008–2009) describing the validation of SCISAT-1/ACE
products (http://www.atmos-chem-phys.net/special_issue114.html, eds. A. Richter,
T. Wagner). Plans for ACE-II are being considered.

The CSA SWIFT instrument was a candidate for launch in the time frame
of 2015 and beyond but, unfortunately, the instrument has recently been shelved
(Richard Ménard, personal communication). It was intended to measure strato-
spheric winds and ozone (see http://swift.yorku.ca). For illustrative purposes of
how to quantify future additions to the GOS, we can mention an Observing
System Simulation Experiment (OSSE; see chapter Observing System Simulation
Experiments, Masutani et al.) carried out to evaluate the incremental benefit to
the GOS of SWIFT measurements (Lahoz et al. 2005). It was found that SWIFT
measurements would benefit the GOS, and be useful for scientific studies of, e.g.,
stratospheric variability.

The Chinese Space Agency SBUS and TOU instruments are essen-
tially copies of SBUV (SBUS) and TOMS (TOU). These missions are co-
ordinated by the Chinese National Satellite Meteorological Centre (NSMC;
http://www.fas.org/spp/guide/china/agency/nsmc.htm). They will be flown on
the FY-3 (Fengyun-3) platform, which is a polar orbiter, with a 10:10 am
Equator crossing time. The first FY-3 satellite was launched in May 2008 (see
http://www.sinodefence.com/space/spacecraft/fengyun3.asp); the next satellite is
due to be launched in the timeframe of 2009 or later; there is the possibility of a
third satellite. (According to the China Meteorological Administration, CMA, a fur-
ther satellite series, FY-4, is planned for launch by 2013 and beyond.) NSMC has
requested that NOAA help them with the data processing algorithms.

Other space agencies likely to increase their profile over the next few years, and
not mentioned above, include the Argentinian Space Agency (CONAE), the Russian
Federal Space Agency, and the National Space Agency of Ukraine. A list of space
agencies is provided in: http://en.wikipedia.org/wiki/List_of_space_agencies.

3.3 Benefits of Research Satellites

Research satellites provide several benefits. Because they often have both limb-
and nadir-viewing instruments, they allow the combination of limb/nadir geome-
tries to provide better atmospheric analyses (see, e.g., Struthers et al. 2002), and
provide information on tropospheric ozone (see, e.g., Lamarque et al. 2002), which
is very difficult to measure from space. Because they have instruments which focus
on measurements of ozone and of photochemical species which affect the ozone dis-
tribution, they provide information for studying stratospheric ozone depletion, and
information that helps develop coupled climate/chemistry models, and a chemical
forecasting capability (important for UV and pollution forecasting) – see chapter
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Inverse Modelling and Combined State-Source Estimation for Chemical Weather
(Elbern et al.). Increased interest by the operational centres in ozone and chem-
ical forecasting makes research satellites more attractive to them. An example
of this interest has been the development of algorithms at ECMWF to assimi-
late limb radiances sensitive to ozone and humidity (see Lahoz et al. 2007b for a
summary).

The combined use of research and operational satellite data also provides oppor-
tunities for synergy. For example, different viewing geometries (limb and nadir) can
be used with techniques such as data assimilation to improve the representation of
the atmosphere, and partition information between the stratosphere and troposphere.
Synergy between research and operational satellites, and the potential benefits to
the operational agencies accruing from this synergy, can make it attractive to use
research satellites in an operational capability. This can happen in a number of ways:
(i) one-off use of research satellite data (e.g. measurement of a key photochemical
species such as ozone, or of a novel geophysical parameter such as stratospheric
winds); (ii) regular use of research satellite data (e.g. a satellite series that can
extend the time record of key geophysical parameters such as ozone and water
vapour); and (iii) use of the research satellite instrument design in future operational
missions.

Finally, it is worth insisting on the complementarity of the research and the oper-
ational approach to satellite data, in particular in the sense that often research and
development instruments are precursors of operational instruments. Thus, opera-
tional centres exercise the science on research satellites to improve their readiness
when operational satellites come by. The best illustration of this is provided by the
AIRS and IASI instruments. The science community, in particular at the opera-
tional centres, was able to use AIRS to prepare for the assimilation of data from
multi-spectral sounders, and this minimized the delay when IASI started to pro-
vide data to NWP centres (see chapter The Global Observing System, Thépaut and
Andersson).

3.4 Research Satellites and the Global Climate Observing System

Global monitoring of climate requires products derived from satellite measurements
(GCOS-92 2004). A GCOS (Global Climate Observing System) Implementation
Plan (GIP) has been proposed (GCOS-92 2004; GCOS-107 2006). This aims to set
up an observing system that provides information of the Essential Climate Variables
(ECVs – see Table 1 below) and their associated products that are needed to assist
signatory countries of the UNFCCC (United Nations Framework Convention on
Climate Change; “Parties”) in meeting their responsibilities under the UNFCCC.
The proposed system will provide information to: (i) characterize the state of
the global climate system and its variability; (ii) monitor forcing of the climate
system, including both natural and anthropogenic contributions; (iii) support attri-
bution of the causes of climate change; (iv) support prediction of global climate
change; (v) enable down-scaling of global climate change information to regional
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Table 1 Earth system domain and ECVs

Domain Essential climate variables

Atmospheric (over land, sea
and ice)

Precipitation; Earth radiation budget (including solar irradiance);
upper-air temperature; wind speed and direction; water
vapour; cloud properties; CO2; ozone; aerosol properties

Oceanic Sea-surface temperature; sea level; sea ice; ocean colour (for
biological activity); sea state; ocean salinity

Terrestrial Lakes; snow cover; glaciers and ice caps; albedo; land cover
(including vegetation type); fraction of photosynthetically
active radiation (faPAR); leaf area index (LAI); biomass; fire
disturbance; soil moisture

and local scales; and (vi) enable characterization of extreme events important in
impact assessment and adaptation and the assessment of risk and vulnerability.

The GIP is intended to describe a feasible and cost-effective path toward an inte-
grated observing system that depends on both in situ and satellite measurements.
The ECVs largely dependent on satellite observations, and identified by the GIP, are
given in Table 1 above – see also the recent GCOS report (GCOS-129 2009), which
discusses ECVs and the notion of Fundamental Climate Data Records (FCDRs).

The GIP recognizes that addressing a number of GCOS issues requires research
satellites:

• To provide intermittent, supplemental detail to sustained observations through
(often challenging) new measurements;

• To seek improved and more effective ways of fully meeting observation targets
and creating the required satellite records;

• To develop new observational capabilities to cover some of the ECVs for which a
data record cannot at present be initiated due to an absence of proven capability.

Finally, the GIP indicates that Parties that support the space agencies should:
(a) ensure continuity and overlap of key satellite sensors; (b) record and archive
all satellite metadata (i.e., information on the satellite data); (c) maintain currently
adopted data formats for all archived data; (d) provide data service systems that
ensure accessibility; and (e) reprocess all data relevant to climate for inclusion in
integrated climate analyses and reanalyses.

3.5 Capacity Report for Satellite Missions

As part of the CAPACITY (Composition of the Atmosphere: Progress to
Applications in the user CommunITY) study (http://www.knmi.nl/capacity), a
report was written on existing and planned satellite missions (Kerridge et al. 2005).
This report considered capabilities and limitations. We provide below a sum-
mary of this report – acronyms are identified in Appendix. The ESA CAMELOT
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(Composition of the Atmospheric Mission concEpts and sentineL Observation
Techniques) study (Levelt et al. 2009) is the follow-on study to the CAPACITY
study.

3.5.1 Capabilities

Cloud and aerosol: Imagers on the operational satellites MSG and MetOp/NPOESS,
and on the research satellites ERS-2, Envisat, EOS Terra and EOS Aqua,
PARASOL, EarthCARE and the Sentinel 3 satellite, will provide geographical cov-
erage on tropospheric clouds and aerosol, together with other physical properties
(e.g. optical depth, size parameter, phase, and liquid water content). Radar and lidar
instruments on Cloudsat, CALIPSO and EarthCARE will provide vertical profile
information on clouds and aerosol along the sub-satellite track, although the design
lifetimes of such active instruments are relatively short (~3 years).

Ice water content is a significant meteorological variable but will not be deter-
mined with sufficient accuracy by passive imagers. Visible and infrared wavelengths
are insensitive to the size distribution of particles in the cirrus range. Extinction effi-
ciencies of these size components typically peak in the sub-mm or THz regions,
which are not measured by planned missions. Nadir-viewing imagers and spec-
trometers offer little if any information on either stratospheric aerosols or polar
stratospheric clouds (PSCs).

Water Vapour: Water vapour soundings adequate for NWP will be performed
in cloud-free scenes by MetOp/NPOESS. The operational system will not provide
useful water vapour data above the tropopause, and vertical resolution in the upper
troposphere will not be sufficient for future research applications.

Ozone: MetOp/NPOESS (GOME-2/OMPS) should provide adequate observa-
tions to monitor stratospheric ozone and total column ozone. Tropospheric ozone
retrievals have been demonstrated for GOME (aboard the ERS-2 platform) and sim-
ulations indicate that nadir-FTIR observations from IASI/CrIS may add significant
value to height-resolved ozone information from GOME-2/OMPS in the tropo-
sphere. Ozone observations by MetOp/NPOESS will not have sufficient vertical
resolution in the UTLS for future research applications.

A ground pixel size smaller than that of GOME-2 or OMPS to allow more fre-
quent sounding of the lower troposphere between clouds would be desirable for
future research applications and air quality forecasting. The operational system
will provide UV/Visible observations at only two local times (9:30 am, GOME-2;
1:30 pm, OMPS). Ozone observations at additional local times might be desirable
for air quality forecasting.

Trace gases other than ozone: MetOp and NPOESS UV/Visible sensors should
provide slant columns of several tropospheric trace gases in addition to ozone:
NO2, SO2, H2CO (formaldehyde) and BrO. Typically, nadir observations contain no
height-resolved information. Limb observations of the stratosphere made simultane-
ously by OMPS will allow slant-column information from nadir observations to be
assigned to the troposphere. For GOME-2, a chemistry-transport model, CTM (with
or without assimilation of OMPS limb data) will be needed to represent stratospheric
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distributions of these trace gases and enable assignment of slant-column informa-
tion to the troposphere. A ground pixel size smaller than that of GOME-2 or OMPS,
to allow more frequent sounding of the lower troposphere between clouds, would be
desirable for future research applications and air quality forecasting. As for ozone,
the MetOP/NPOESS system will provide UV/Visible observations at only two local
times (9:30 am, GOME-2; 1:30 pm, OMPS). For air quality forecasting, observa-
tions at additional local times would be desirable for trace gas pollutants with short
photochemical lifetimes. Similar considerations hold for volcanic emissions of SO2.

MetOp/NPOESS FTIR sensors will observe several trace gases in addition to
water vapour and ozone, e.g., methane (CH4) and CO. Height-assignment and
height-resolution of these types of constituent observations is intrinsically limited,
so they will best be exploited through data assimilation (see chapter Constituent
Assimilation, Lahoz and Errera). For trace gases other than water vapour, sensitivity
of the FTIR technique is lowest in the boundary layer, where temperature contrast
with the surface is lowest. Because the MetOp/NPOESS system will have FTIR
sensors operating concurrently in at least two different orbits, such observations
will be made at four local times per day (Equator crossing times: 1:30 am, 9:30 am,
1:30 pm and 9:30 pm). Given the comparatively long photochemical lifetimes of
methane and CO, this temporal sampling should be sufficient for most applications.

FTIR spectrometers on MetOp, NPOESS and GOSAT will also observe CO2.
Because CO2 is close to being a uniformly mixed gas in the troposphere, extremely
stringent observational requirements would need to be imposed to quantify perturba-
tions in CO2 mixing ratio at the amplitudes and spatial and temporal scales required
for future research applications.

For future research on biogenic emission and uptake of trace gases such as CO2,
methane and N2O, there will be a demand for remote-sensing measurements on a
very fine spatial scale (tens of metres). This is not attainable from satellites but might
be attainable from aircraft or balloons.

3.5.2 Limitations

A number of limitations of the currently planned suite of missions were identified:

• The absence of UV/Visible and infrared solar occultation missions for monitoring
of stratospheric trace gas and aerosol profiles beyond MAESTRO and ACE on
SCISAT-1, which are unlikely to be functioning beyond 2010 (see also Sect. 3.2);

• Requirements for sounding tropospheric trace gases will be addressed by
MetOp/NPOESS (see Sect. 3.5.1). To comply better with quantitative require-
ments, the following would be desirable:

• Nadir FTIR: spectral resolution similar to TES, i.e., higher than that of
CrIS or IASI, to target additional tropospheric trace gases (e.g. non-methane
hydrocarbons);

• Nadir UV/Visible: observations later in the day than GOME-2 (Equator cross-
ing time 9:30 am) and OMPS (Equator crossing time 1:30 pm) for early
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morning air quality forecast and for detection of afternoon pollution episodes;
ground-pixel size smaller than OMPS (50 × 50 km) to observe the bound-
ary layer more frequently in between clouds; spectral coverage and resolution
comparable to GOME-2 (to achieve photometric precision on, e.g., NO2).

• MetOP/NPOESS will address requirements for sounding tropospheric aerosol.
To comply better with quantitative requirements, height-resolution would also
be desirable, for which the spectral coverage of GOME-2 and OMPS does not
extend far enough into the near-infrared. This will be provided by the CALIPSO,
ADM-Aeolus and EarthCARE lidars, although only along sub-satellite tracks and
only for limited time periods (dictated by laser lifetimes and low orbit heights);

• MetOp/NPOESS will not address requirements for sounding UTLS trace gases
and aerosol, with the exception of stratospheric ozone (GOME-2 and OMPS) and
aerosol (OMPS). The ODIN, Envisat and EOS Aura limb sounders are currently
addressing these requirements, but none of these are likely to be functioning
beyond 2010 (see also Sect. 3.2).

3.5.3 Conclusions

It was found that the suitability of existing instrument technology depends on a
number of factors including: (i) theme and application to be addressed; (ii) scope
of the satellite mission, including restriction on number of platforms, orbits, num-
ber and types of sensors and systems; and (iii) importance and priority of particular
observations, i.e., what is the effect of not achieving particular observational require-
ments. The CAPACITY study showed that, while many measurements are made
and applications are addressed to various extents, there is scope for improving cur-
rent techniques and bringing new types of sensor and observations to the available
complement of instruments.

In order to define future satellite missions, the potential performance of inte-
grated observing systems, which include satellite and in situ measurements, and a
number of analysis tools, such as specialized retrieval schemes and data assimila-
tion systems, must be assessed. An example of such a tool is OSSEs (see chapter
Observation System Simulation Experiments, Masutani et al.). The relative time-
scale of the planned future missions from ESA, NASA and elsewhere is also
important so that complementarity between missions can be assured and relevant
synergies exploited.

4 Data Assimilation of Research Satellites

In the 1990s, following years of development of meteorological data assimilation by
the NWP community, the data assimilation methodology (e.g. Kalnay 2003) began
to be applied to constituents (including aerosol), with a strong focus on stratospheric
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ozone (Rood 2003, 2005). Research satellites have measured most of the constituent
data assimilated.

The assimilation of stratospheric constituents from research satellites is dis-
cussed in chapter Constituent Assimilation (Lahoz and Errera) – see also Lahoz
et al. (2007a). The assimilation of tropospheric constituents from research satellites
is discussed in chapters Constituent Assimilation (Lahoz and Errera) and Inverse
Modelling and Combined State-Source Estimation for Chemical Weather (Elbern
et al.); the assimilation of data from research satellites into operational systems
is discussed in chapters The Global Observing System (Thépaut and Andersson)
and Assimilation of Operational Data (Andersson and Thépaut). In this section
we provide an introduction to constituent data assimilation, with a focus on the
stratosphere.

Because of its comparatively later application, constituent data assimilation
is less mature than meteorological data assimilation (i.e., NWP). Nevertheless,
there has been substantial progress over the last 15 years, with the field evolving
from initial efforts to test the methodology to later efforts focusing on products
for monitoring ozone and other constituents. More recently, the production of
ozone forecasts by a number of operational centres (e.g. ECMWF, Dethof 2003)
has become routine. A notable feature of the application of the data assimilation
methodology to stratospheric constituents has been the strong interaction between
the NWP and research communities, for example, in the EU-funded ASSET project
(Lahoz et al. 2007b).

The main aims for assimilating ozone in the stratosphere include the develop-
ment of ozone and UV-forecasting capabilities; the need to monitor stratospheric
ozone to track the evolution of the stratospheric composition, mainly ozone and the
gases that destroy it (WMO 2006), and assess compliance with the Montreal pro-
tocol; and the need to evaluate the performance of instruments measuring ozone,
especially those providing long-term datasets (e.g. TOMS, GOME). The assimi-
lation of ozone is also important for technical reasons, including: the constraints
ozone observations provide on other constituents; the use of assimilation techniques
to evaluate models and ozone observations; the development of computer code to
assimilate instrument radiances sensitive to temperature and constituents; and the
dynamical information provided by ozone tracer distributions. Other stratospheric
constituents besides ozone that are of interest in this regard include H2O, N2O,
CH4, NO2, HNO3, ClO, BrO and aerosol (see IGACO 2004 for a more complete
list).

In NWP, the main motivation for stratospheric constituent assimilation has been
the use of constituent information (in particular, water vapour and stratospheric
ozone) to improve the weather forecast. Historically, two approaches have been used
for stratospheric constituent data assimilation. One has done assimilation as part of
an NWP system, used for operational weather forecasting; the other has done assim-
ilation in a standalone chemical model, either a CTM or a photochemical box model,
often with a more sophisticated representation of chemical processes. Whereas the
aim of the NWP approach has been to improve weather forecasts, the aims of the
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Table 2 Selected assimilated stratospheric chemistry research satellite observations, 1978-present

Satellite/instrument Availability Constituents

TOMS (several satellites)
(McPeters et al. 1998)

1978-present Total column ozone

SBUV/2 (several satellites)
(Miller et al. 2002)

1978-present Ozone layers

HIRS channel 9 (several
satellites) (Joiner et al.
1998)

1978-present Radiances sensitive to
ozone

LIMS (Gille and Russell
1984)

1978–1979 Ozone, H2O, HNO3 and
NO2 profiles

UARS CLAES (Roche
et al. 1993)

1991–1993 CH4, NO2 profiles

UARS MLS (Waters 1998) 1991–1997 Ozone profiles
UARS HALOE (Russell

et al. 1993)
1991–2005 Ozone, N2O, CH4, H2O,

HCl profiles
ATMOS (four space shuttle

missions) (Gunson et al.
1996)

April 1985; March 1992;
April 1993; November
1994

O3, NO, NO2, N2O5,
HNO3, HO2NO2, HCN,
ClONO2, HCl, H2O,
CO, CO2, CH4, and N2O
profiles

CRISTA (two space shuttle
missions) (Offermann
et al. 1999)

November 1994; August
1997

Ozone, CH4, N2O,
CFC-11, HNO3,
ClONO2 and N2O5
profiles

ERS-2 GOME (Burrows
et al. 1999)

1995-present Total column ozone and
NO2, ozone profiles

ODIN SMR (Murtagh et al.
2002)

2001-present Ozone and N2O profiles

Envisat MIPAS (Fischer
et al. 2000)

2002-present Ozone, H2O, NO2, HNO3,
N2O, and CH4 profiles;
radiances sensitive to
humidity and ozone

Envisat SCIAMACHY
(Bovensmann et al.
1999)

2002-present Total column ozone, ozone
profiles

Envisat GOMOS (Bertaux
et al. 2000)

2002-present Ozone, NO2, NO3 profiles

ADEOS ILAS-II
(Nakajima et al. 2006)

2002–2003 Ozone profiles

EOS Aura MLS (Waters
et al. 2006)

2004-present Ozone profiles

EOS Aura OMI (Levelt
et al. 2006)

2004-present Total column ozone

chemical model approach are broader, and include providing chemical forecasts and
analyses of chemical constituents.

Table 2 above provides selected stratospheric constituent research satellite
observations for the period 1978 to the present, that have been assimilated by
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NWP-based or chemical model data assimilation systems. References describing
the satellites/instruments are provided.

5 Future Prospects

There are a number of activities, all involving the use of data from research satellites
that are likely to become important in the future. These include:

• The operational use of research satellite data by significant numbers of oper-
ational centres. Examples of data used include ozone (already assimilated
operationally at ECMWF), stratospheric water vapour, CO2 and aerosols – see
chapters The Global Observing System (Thépaut and Andersson), Assimilation
of Operational Data (Andersson and Thépaut);

• Allied with the opportunity to assimilate data from limb sounders, the assimila-
tion of limb radiances by research and operational groups. A lot of work has been
done on developing fast and accurate forward models and the interface between
the forward model and the assimilation. Progress is more advanced in the case of
IR radiances than in the case of UV/Visible radiances, mainly due to the increased
importance of scattering effects for the latter two;

• Chemical forecasting and air quality studies, including tropospheric pollution
forecasting, and estimation of sources and sinks of pollutants and greenhouse
gases – see chapters Constituent Assimilation (Lahoz and Errera), Inverse
Modelling and Combined State-Source Estimation for Chemical Weather (Elbern
et al.);

• An Earth System approach to environmental and associated socio-economic
issues. This approach would incorporate the biosphere and the carbon cycle, and
the coupling of all components of the Earth System. An example of activities
bringing together the various components of the Earth System is the EU-funded
GEMS project (Hollingsworth 2005; Hollingsworth et al. 2008).
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General Concepts in Meteorology and Dynamics

Andrew Charlton-Perez, William Lahoz, and Richard Swinbank

1 Introduction

The aim of this chapter is to give a general overview of the atmospheric circula-
tion, highlighting the main concepts that are important for a basic understanding of
meteorology and atmospheric dynamics relevant to atmospheric data assimilation.

2 The Atmospheric Circulation

2.1 General Details

The main driver of the atmospheric circulation is differential heating from solar
radiation. The tropics, where the sun is almost overhead in the middle of the day,
are heated most strongly, resulting in high temperatures. On the other hand, at high
latitudes the sun is much lower in the sky during the day, resulting in lower temper-
atures. The time-mean global atmospheric circulation acts to reduce the gradient in
temperature between the Equator and Pole by the redistribution of warm and cold
air masses. However, a key additional determinant of the dynamical processes and
flows which are observed is the presence of a gradient in angular momentum due
to the approximately spherical surface of the Earth. The latitudinal temperature dif-
ferences are modulated by the seasonal cycle. In summer, the Earth is tilted toward
the sun, leading to warmer temperatures, and the Summer Pole is in continuous day-
light. By contrast, the mid latitudes receive less heat and light from the sun in winter,
and the Winter Pole is in continuous darkness.

Looking at the Earth from outer space, the atmosphere forms a very thin blue
layer. While the radius of the Earth is about 6,370 km, 90% of the mass of the
atmosphere is no more than 16 km above the surface of the Earth. Thus, the hori-
zontal length scales of the atmospheric circulation can be very much larger than the
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height scales. Many of the most important features of the atmospheric circulation
occur on global scales, but are confined to a few km in the vertical. Meteorologists
also often use pressure, instead of height, as a vertical coordinate, since it decreases
monotonically with height and allows the equations of motion for the atmosphere
to be somewhat simplified. Pressure is measured in Pascals (Pa) and typically
expressed as hectoPascals (hPa). The pressure at the Earth’s surface is approxi-
mately 1,000 hPa and around 100 hPa at 16 km in the mid latitudes. The e-folding
length scale (or scale height) for pressure in the atmosphere is usually taken to be
around 7 km.

Figure 1 is a zonal-mean latitude-pressure cross-section of the climatological
thermal structure of the atmosphere for January and July, derived from long-term
measurements of temperature from weather balloons and satellites. Starting at the

Fig. 1 Monthly zonal mean climatology of temperature, K. The vertical coordinate is pressure
(hPa). Top: January; Bottom: July. The winter and summer hemispheres are indicated. The tro-
posphere, stratosphere and mesosphere are indicated. Based on COSPAR (COmmittee on SPAce
Research) International Reference Atmosphere, CIRA, material. See also Fleming et al. (1988)
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surface the temperature decreases rapidly until we reach the tropopause; the part
of the atmosphere below the tropopause is referred to as the troposphere (or some-
times the lower atmosphere). The main reason for the decrease in temperature with
height – the lapse rate – is the reduction in pressure with height; when an air parcel
is displaced upwards, it expands and cools adiabatically.

Weather systems, such as storms, fronts and tropical cyclones, are all confined to
the troposphere. A key part of the structure of these systems, and the troposphere in
general, is motion of air parcels in the vertical. Vertical motion helps to redistribute
atmospheric constituents throughout the troposphere, leading to reductions in the
gradients of many constituents. Where the air is moist, vertical motion can also
lead to condensation of water vapour contained in the air parcel, since the amount
of water vapour which can exist in an air parcel is strongly dependent upon pres-
sure (from the Clausius-Clapeyron relation). Condensation of water vapour has two
effects: it forms clouds and heats the air parcel through latent heat release from the
change of water phase. Latent heating can act to reduce the lapse rate that would
otherwise be observed and is an important driver of atmospheric motion, particu-
larly in the tropics. For a more detailed explanation of this, and other issues covered
in this chapter, the reader is recommended to consult an atmospheric dynamics text
book, such as Holton (2004).

There is an abrupt change in the temperature profile at the tropopause, the bound-
ary between the troposphere and stratosphere. In the stratosphere, the temperature
structure is determined by the balance between radiative heating and cooling pro-
cesses caused by absorption and emission of long-wave radiation by carbon dioxide
and absorption of solar radiation by ozone. This is in contrast to the troposphere,
which, apart from the effect of clouds is almost transparent to incoming solar radia-
tion and primarily heated by contact with the Earth’s surface. The balance between
heating and cooling processes changes with altitude, largely as a result of the
increase in ozone concentration. This leads to an increase of temperature (a neg-
ative lapse rate) through the stratosphere. The resulting high static stability inhibits
vertical motion. The altitude of the tropopause varies with latitude, from as low as
about 10 km (approximately 300 hPa) at high latitudes to around 16 km (approxi-
mately 100 hPa) in the tropics. As a result of the high tropical tropopause, at around
16 km the atmosphere is coldest at the Equator and warmest at the Summer Pole.

At around 50 km (approximately 1 hPa), where the effect of the ozone heat-
ing fades away, we reach the stratopause. The stratopause is the boundary between
the stratosphere and mesosphere. In the mesosphere, the lapse rate becomes pos-
itive once again. The stratosphere and mesosphere, taken together, are sometimes
referred to as the middle atmosphere. The top of the mesosphere is at around 80 km
(approximately 0.01 hPa), where the mesopause is located. For a comprehensive
description of the dynamical meteorology of the middle atmosphere, the reader is
referred to the excellent book by Andrews et al. (1987).

Above the mesosphere, the thermosphere is the outermost layer of the neutral
atmosphere, and temperatures once more increase with altitude. At this level the
atmosphere is so thin that molecules collide only rarely. Because molecular colli-
sions are infrequent, the conventional definition of temperature based on the ideas
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of Maxwell and Boltzmann is difficult to apply. One manifestation of this is the
breakdown at these heights of the (commonly made) assumption of local thermal
equilibrium (LTE). Furthermore, with the breakdown of turbulent mixing, the dif-
ferent atmospheric constituents start to settle out under the influence of gravity. The
nature of the atmosphere thus becomes quite different from that found in the lower
and middle atmosphere, and is beyond the scope of this book. For more information
about the upper atmosphere, see, e.g., Rees (1989).

2.2 Influence of Rotation

The Earth’s rotation has a major impact on the observed atmospheric flow. The
acceleration of the westerly (u) and southerly (v) wind components (i.e., the zonal
and meridional components of the momentum equations, respectively), is written as
(Andrews et al. 1987):

Du

Dt
−

(
f + u tanφ

a

)
v+ �λ

a cosφ
= Fx (1)

Dv

Dt
+

(
f + u tanφ

a

)
u+ �φ

a
= Fy (2)

where D/Dt is the total derivative; a is the Earth’s radius; λ and φ are longitude
and latitude, respectively; f = 2�sinφ is the Coriolis parameter (� is the Earth’s
rotation rate, = 7.29 × 10–5 s–1); � is the geopotential (involving integration of
the acceleration due to gravity, g, from the ground to a height z); the subscripts
denote differentiation with respect to the subscript; and Fx and Fy are unspecified
horizontal components of friction, or other non-conservative mechanical forcing.
For more detail see also the chapter The Role of the Model in the Data Assimilation
System (Rood).

These equations are derived from Newton’s second law of motion; they equate
the acceleration of air parcels with the balance of forces acting on them. The first
term on the left hand side of both Eqs. (1) and (2) is the acceleration and the other
two terms represent the Coriolis force and the pressure gradient force. The term on
the right hand side of Eqs. (1) and (2) represents the frictional force. The Coriolis
force is a “virtual” force which is a consequence of the Earth’s rotation.

If the Earth were not rotating, the Coriolis force would be zero and air would
ascend in the tropics, where it is heated most strongly, move toward the poles,
descend at higher latitudes as it cooled, and return equatorwards at low levels.
However, since the actual atmospheric circulation is strongly influenced by the
Earth’s rotation the Coriolis force has an important part to play. At the Equator,
the surface is moving eastwards at about 185 ms–1 as a result of the Earth’s rota-
tion. Imagine an air parcel starting at the Equator and moving toward one of the
poles. As it moves away from the Equator, it would also move closer to the Earth’s
axis of rotation. In order to conserve angular momentum about this axis (defined as
moment of inertia about this axis× angular rotation), the parcel would start to move
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eastwards even faster as the moment of inertia decreased. In our normal frame of
reference, which rotates with the Earth, the polewards-moving parcel would appear
to be being accelerated to the east (In standard meteorological convention, we would
refer to this as westerly acceleration, since wind directions are determined by where
the wind comes from.). The Coriolis force allows this acceleration to be represented
in the momentum equations.

By comparing the typical sizes of various terms in the momentum equations, it is
possible to derive several approximate balances which govern atmospheric flow on
different spatial scales.

In the horizontal, an important balance exists between the pressure gradient
and Coriolis forces. Making the approximation that the variation of the Coriolis
effect in latitude is linear (allowing us to remove the terms dependent on tan φ in
Eqs. 1 and 2), and using height, z, as the vertical coordinate and the Cartesian coor-
dinates x and y as the horizontal coordinates, the acceleration of westerly (u) and
southerly (v) wind components (see above) can be written in the following manner
(Andrews et al. 1987) – compare with Eqs. (1) and (2):

Du

Dt
− fv+ 1

ρ

∂p

∂x
= Fx, (3)

Dv

Dt
+ fu+ 1

ρ

∂p

∂y
= Fy, (4)

where ρ is the air density. For large-scale atmospheric flow (∼1,000 km), the two
largest terms in Eqs. (3) and (4) are the Coriolis term and the pressure gradient
term; both are typically an order of magnitude larger than the acceleration and
frictional terms. Equations (3) and (4) can be simplified to a balance between the
Coriolis and pressure gradient forces, an approximation known as geostrophic bal-
ance. From the geostrophic approximation a simple estimate of the flow can be made
(the geostrophic wind) which depends simply on location and the local pressure gra-
dient. In vector notation, the horizontal geostrophic wind ug is given by (where k is
a unit vertical vector):

ug = 1

f
k× 1

ρ
∇p. (5)

The geostrophic wind blows anticlockwise around cyclones (areas of low pres-
sure) in the Northern Hemisphere, and clockwise around anticyclones – rather than
blowing directly from high pressure to low pressure, as one would expect in the
absence of the Coriolis effect. In the Southern Hemisphere the circulation of the
wind is in the opposite sense, as the sign of f is reversed.

When typical sizes of the terms in the vertical component of the momentum
equation are compared (see Eq. 6 below), the most important terms are the pressure
gradient term and the gravity term. Thus, where w is the vertical wind component
and the Cartesian coordinate z is height (see chapter The Role of the Model in the
Data Assimilation System, Rood):
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Dw

Dt
− u2 + v2

a
=− 1

ρ

∂p

∂z
− g+ 2Ωu cos(φ)+ ν∇2(w) → (6a)

− 1

ρ

∂p

∂z
=− RT

p

∂p

∂z
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In this case, the weight of the parcel acts downwards, and this is balanced by
the vertical difference in pressure (or buoyancy). When these two forces are equal
and opposite, the air parcel is in hydrostatic balance; the atmosphere is usually very
close to this condition (Eq. 6b).

A further approximate property of the large-scale flow can be derived by combin-
ing geostrophic and hydrostatic balance. At a constant altitude, the geostrophic wind
is proportional to the pressure gradient – see Eq. (5). In the Northern Hemisphere
westerly winds (a positive value of u) would be in balance with pressure that
decreases to the north ( f is positive in the Northern Hemisphere). By contrast, in
the Southern Hemisphere westerly winds would be in balance with pressure that
decreases to the south ( f is negative in the Southern Hemisphere). Considering
hydrostatic balance, the variation of pressure with height depends on the temper-
ature (Eq. 6b). Normally, the temperature decreases to the north in the Northern
Hemisphere, so the north-south pressure gradient will increase with altitude. As
a result, the strength of the westerly (geostrophic) wind will also increase with
height. A similar argument shows that when the temperature decreases to the south
in the Southern Hemisphere the westerly wind will again increase with height.
Algebraically, this relationship can be derived by taking the derivative of Eq. (5)
with respect to height, then replacing the vertical and horizontal derivative of pres-
sure with the horizontal derivative of temperature using hydrostatic balance. This
procedure leads to Eq. (7), the thermal wind relationship:

∂ug

∂z
= R

Hf
k×∇T , (7)

where R is the gas constant, H is the density height scale (cf. the e-folding length
scale for pressure), T is temperature and k is a unit vertical vector.

Figure 2 shows the zonal-mean latitude-pressure cross-section of westerly winds
for January and July. The troposphere is dominated by westerly jets that reach
their peak values close to the tropopause, the tropospheric jets. Comparing these
cross-sections with Fig. 1, it is evident that the increase of westerlies with height
is correlated with the latitudinal temperature gradient in exactly the way that one
would expect from the thermal wind relationship – see Eq. (7); the tropospheric jet
is much weaker in the Summer Hemisphere, where the temperature gradients are
weaker. In the stratosphere, the westerlies continue to increase with height, again
reflecting the cold polar temperatures, to form the polar night jets. In the summer
stratosphere, the temperature gradients are reversed, and the westerly polar night jet
is replaced by a summer easterly jet.
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Fig. 2 Monthly mean zonal mean climatology of zonal wind, ms–1. Top: January; Bottom: July. The
vertical coordinate is pressure (hPa). Black lines indicate the tilt of the jets. W indicates a westerly
jet; E indicates an easterly jet. The troposphere, stratosphere and mesosphere are indicated. Based
on CIRA material. See also Fleming et al. (1988)

As can be seen, the westerly and easterly stratospheric jets are significantly
stronger (in magnitude) than the westerly tropospheric jets. Another feature to note
is that the Southern Winter westerly jet is stronger than its Northern Winter counter-
part. This can be ascribed to temperatures being generally colder at the South Pole
than at the North Pole and, consequently, to a stronger temperature contrast between
the South Pole and the Equator than between the North Pole and the Equator.
Another feature to note is that the winter jet tilts upwards and equatorwards, whereas
the summer jet tilts upwards and polewards.

The observed meridional, i.e., southerly wind is an order of magnitude smaller
than the zonal, i.e., westerly, wind. The observed vertical wind is at least one fur-
ther order of magnitude smaller still than the meridional winds. However, since the
largest gradients of angular momentum, energy and moisture tend to occur in the
meridional direction, understanding of the meridional and vertical circulation is key
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to our understanding of the global circulation and climate. In the next section, we
discuss the broad features of the meridional circulation and the forces which drive it.

3 General Circulation in the Troposphere

3.1 The Thermally-Driven Circulation in the Tropics

In the tropics, the Coriolis effect is small so, to a first approximation, the large-scale
atmospheric circulation is a direct response to thermal driving. The strongest ascent
is where the solar heating is strongest. At the solstice seasons, there is a strong direct
circulation, known as the Hadley cell, with ascent in the Summer Hemisphere and
upper-level flow into the Winter Hemisphere, and a much weaker partner cell in
the Winter Hemisphere. Air descends in the subtropics, forming a subtropical high-
pressure belt. This circulation pattern is discussed in more detail by many other
authors, e.g., Peixoto and Oort (1992). At the equinox seasons, there is a pair of
Hadley cells of similar magnitude.

The Hadley cell is a direct circulation, i.e., it involves ascent over a warmer
region and descent over a colder region; the Polar cell is also a direct circulation. In
an indirect circulation (the Ferrel cell is an example), the reverse takes place, i.e.,
ascent over a colder region and descent over a warmer region (see Sect. 3.4).

The ascent in the Hadley circulation does not occur equally at all latitudes; there
are differences between land and sea that result from the different heat capacities of
the different surface types. The line along which the air from the two hemispheres
converges and ascends is known as the Inter-tropical Convergence Zone (ITCZ).
This is an area of intense rainfall, since the warm tropical air can hold a lot of water
vapour, which condenses and rains out as the air ascends. By contrast, the regions
where the descent occurs in the subtropics are characterized by low rainfall (for
example, the Sahara and other deserts), since the predominant motion here is the
descent of dry air from aloft.

A simple model of the Hadley cell which describes the main features of the cir-
culation can be derived using only a few basic physical principles (Held and Hou
1980). The Held-Hou model assumes that angular momentum is conserved in the
poleward flow aloft, that winds and temperatures are in thermal wind balance and
that there is no net input or output of energy to the atmosphere integrated over the
entire Hadley cell. With good agreement with the observations, the model predicts:
(i) the existence of an eastward jet at the poleward edge of the Hadley cell; (ii) a
very flat temperature profile in the deep tropics; (iii) the latitudinal extent of the
Hadley cell; and (iv) the strength of the Hadley cell. Several additions can be made
to the most simple formulation of the Held-Hou model, in order to understand other
aspects of the structure of the Hadley circulation. The addition of a simple repre-
sentation of moisture to the model increases the strength and decreases the width
of the upwelling part of the flow and decreases the strength and increases the width
of the downwelling part of the flow. The incorporation of off-equatorial heating
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into the model, to mimic the seasonal cycle of solar heating, produces a circulation
with a similar seasonal bias as seen in observations, between a broad intense cross-
equatorial winter cell and a narrow, weak summer cell. For more details, see the
excellent detailed text by Vallis (2007).

3.2 Angular Momentum Balance

More insight into the structure of the tropospheric circulation can be gained by
considering the angular momentum budget of the lower atmosphere. We have seen
that, for the most part, surface winds in the tropics are equatorward and easterly. If
we consider the effect on the solid Earth, the winds would exert a westward torque,
tending to reduce the rate of rotation of the solid Earth, and at the same time the
atmospheric flow would become more easterly. However, in the long term, both the
atmosphere and the solid Earth are neither accelerating not decelerating. Thus, both
easterly and westerly winds must exist over different parts of the globe.

The direct Hadley circulation transports westerly angular momentum into the
subtropics. Atmospheric waves, in which there is a correlation between zonal and
meridional wind components, are an efficient mechanism to transport westerly angu-
lar momentum into the mid latitudes to form mid latitude jet streams. In turn, the
westerly angular momentum is transported downwards to drive the mid latitude
westerlies. The transport of angular momentum from source regions in low latitudes
to sink regions in mid latitudes maintains the observed atmospheric circulation. This
provides an acceleration of the zonal mean wind at mid latitudes and a deceleration
of the zonal mean wind at low latitudes. It can be shown that this transport of angu-
lar momentum poleward is effected by eddies, i.e., deviations from the zonal mean
(stationary eddies) or the time mean (transient eddies).

Much of the exchange of angular momentum between atmosphere and solid
Earth occurs as a result of turbulent mixing processes in the atmospheric boundary
layer. These frictional processes occur on a scale that cannot be resolved by atmo-
spheric models. The torque acting on the atmosphere as a result is generally referred
to as friction torque. In addition, if we consider a mountain range, it will often be
the case that the atmospheric pressure at a given height on one side of the mountain
will be different from the corresponding pressure on the opposite side. This pres-
sure difference is an additional mechanism for the transfer of angular momentum
between the atmosphere and solid Earth, which is referred to as mountain torque.
Both torques tend to act in the same sense.

As shown by, for example, Swinbank (1985), these torques cannot entirely
explain the angular momentum balance of the atmosphere. This gap in the angular
momentum budget indicates that gravity wave drag is also important, and the pro-
cess needed to be included in atmospheric models. Gravity (buoyancy) waves occur
at intermediate scales between the small-scale boundary layer turbulence and the
large-scale mountain drag. The gravity waves are generated by flow over orography
and other processes such as convective storms, and they carry momentum to upper
levels, where the waves break and exert a drag on winds in the free atmosphere.
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We now summarize the features of the meridional and vertical distributions
of angular momentum fluxes (a flux involves transport of a quantity such as
momentum):

• The annual mean angular momentum transport is almost symmetric about the
Equator, and peaks at approximately 25◦–30◦ for both hemispheres;

• Transport is dominated by transient eddies, e.g., mid latitude cyclones, large-scale
travelling waves;

• The annual mean transport due to the mean meridional circulation (i.e., the
atmospheric circulation in the meridional, north–south, plane) is small;

• In general, the total and transient angular momentum fluxes are largest in the
Winter Hemisphere. This is consistent with the notion of a more vigorous and
disturbed flow in winter;

• The most striking asymmetry occurs for the stationary eddies. The Northern
Hemisphere stationary eddy flux is a significant fraction of the transient eddy
flux. The stationary eddy flux is almost absent in Southern Hemisphere winter;

• The stationary eddy flux in the Northern Hemisphere is associated with large-
scale stationary waves generated by flow over the Rocky Mountains and Tibet,
and by land-sea contrasts. Similar features are not found in the Southern
Hemisphere;

• There is a compensating asymmetry in the winter transient fluxes. The Southern
Hemisphere has the largest values, so the sum of the transient and stationary
values is almost identical for both hemispheres;

• Most of the transport is achieved in the upper troposphere, but angular momen-
tum is added or removed from the atmosphere at the ground. This indicates that
vertical transport is needed.

3.3 Rossby Waves and Mid Latitude Systems

Before discussing the extra-tropical meridional circulation (Sect. 3.4), it is useful
to outline the main features of Rossby waves and their relationship with weather
systems in the mid latitudes. An excellent description of Rossby waves and their
properties can be found in Holton (2004, Chap. 7); here we reproduce some of the
more basic arguments.

The principles behind the existence and propagation of Rossby waves can be
most easily understood by considering a barotropic fluid of constant depth on a
rotating sphere. If the fluid is initially at rest, as we move across the sphere from
Equator to Pole there will be a background gradient of planetary vorticity, simply
equal to the variation of the Coriolis parameter with latitude. The propagation of a
Rossby wave in this idealized fluid can be illustrated by considering a chain of fluid
parcels at rest in the middle of the fluid (Fig. 3).

Now imagine that a fluid parcel is displaced poleward (upward in Fig. 3, top
panel) from its resting position. By conservation of angular momentum, the plan-
etary vorticity at the parcel’s new location is larger than at its original location.
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Fig. 3 Schematic of the development of a negative relative vorticity anomaly and the associ-
ated meridional flow. Top, initial meridional displacement due to the anomaly; bottom, subsequent
development of vorticity anomalies and westward (leftward in panel) propagation of the fluid
displacements. See text for details

In order for the parcel to conserve its absolute vorticity (the sum of planetary
and relative vorticity) its relative vorticity must be reduced, the parcel becomes
a local negative or anticyclonic relative vorticity anomaly. The presence of the
local relative vorticity anomaly generates meridional flow as indicated by the small
arrows in Fig. 3 (top panel) causing northward (upward in Fig. 3, top panel) dis-
placement of the fluid parcel to the west (leftward in Fig. 3, top panel) of the
displaced parcel and southward displacement of the fluid parcel to the east. The
advection of the fluid parcels north and south of their original position causes
the generation of similar local relative vorticity anomalies, causes further merid-
ional displacement of fluid parcels and eventually leads to westward propagation
of the fluid displacements (Fig. 3, bottom panel) – the essence of the Rossby
wave.
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In a more complex baroclinic fluid like the atmosphere, Rossby wave propagation
comes about through similar processes which involve conservation of potential vor-
ticity on isentropic surfaces. In the atmosphere, Rossby waves can be excited either
by the meridional displacement of parcels as illustrated in Fig. 3, or by local sources
of relative vorticity, one example being through vortex stretching caused by latent
heating in the tropics from anomalous moist convection. Particularly important in
the troposphere and stratosphere are Rossby waves which have fixed phase relative
to the ground (for this reason the waves are often called stationary waves). These are
typically waves with small wavenumber/large wavelength and can be understood in
the simplest terms as occurring due to a balance between westward phase propa-
gation of the wave and eastward phase advection by the typically eastward mean
flow.

Rossby waves also have an important part to play in baroclinic instability, the
process which is thought to be responsible for the synoptic scale weather systems
seen in mid latitudes. Again, an excellent in depth treatment of this topic can be
found in Holton (2004, Chap. 8). Baroclinic instability requires the presence of a
background vertical shear or gradient in the horizontal wind. A very simple descrip-
tion of baroclinic instability can be made by considering a model troposphere with
constant shear and static stability, two, rigid, flat bounding surfaces at the ground
and the tropopause and a purely zonal basic state flow. At the ground, the potential
vorticity gradient is negative with largest potential vorticity values at the Equator.
At the tropopause, the potential vorticity gradient is positive with largest potential
vorticity at the poles. One can imagine Rossby waves which occur on the two rigid
surfaces at the ground and the tropopause. These waves have phase propagation in
opposite directions due to the change in sign of the background potential vorticity
gradient. A key part of the instability, that the amplitude of waves grows sponta-
neously once initiated, is that the waves at the ground and tropopause can interact.
This interaction takes the form of a weak induced velocity from one wave on the
structure of the other. If the phase of the waves on the two surfaces is displaced by
1/4 of a wavelength, optimal conditions for growth occur, where the induced merid-
ional flow from each wave tends to enhance the amplitude of the individual peaks
and troughs of the other wave. The presence of a vertically sheared horizontal flow
allows the two Rossby waves to maintain their 1/4 wavelength separation despite their
opposite phase velocities, since the strong winds at tropopause level tend to advect
phase features toward the east. This counter-propagating Rossby wave theory of
baroclinic instability is described in rigorous mathematical detail in an excellent
series of papers by Heifetz et al. (2004a, b) and Methven et al. (2005a, b).

Further analysis of baroclinically unstable structures shows that their phe-
nomenology corresponds strongly to the structure of mid latitude weather systems.
However, calculations of so called “baroclinic lifecycles” show that perturbations
to a baroclinically unstable state rapidly evolve from their linear growth phase to
a highly distorted non-linear breaking phase where the structure of the baroclinic
wave rapidly breaks down. This breakdown often occurs at the end of the mid lati-
tude storm tracks giving us the variety of typical synoptic systems often encountered
in the mid latitudes.
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3.4 The Extra-Tropical Meridional Circulation

In the extra-tropics the diagnosis and understanding of the meridional circulation is
more complicated than that in the tropics, because of the presence of Rossby waves.
Rossby waves can cause significant meridional fluxes of mass and other quantities
and have a significant role to play in the meridional circulation.

We begin by discussing the meridional circulation derived from standard diag-
nostics of the flow. Figure 4 shows the meridional circulation of the atmosphere in
an Eulerian frame, where an observer is fixed to the rotating surface of the Earth
and watches the flow relative to their location. Using these diagnostics, between
around 35◦ and around 65◦ latitude in both hemispheres there is an indirect circu-
lation, known as a Ferrel cell, i.e., ascent occurs at higher latitudes and descent at
lower latitudes. This is exactly the opposite from what one would expect: appar-
ently, ascent occurs in cold air and descent in warm air. However, this picture is
misleading, because it ignores mass fluxes due to eddy motions, focusing instead on
the zonal (i.e., longitudinal) average part of the flow. In fact, much of the ascent at
mid latitudes occurs in the warm sector of mid latitude cyclones, which is generally
warmer than its surroundings.

Finally, it should be pointed out that Fig. 4 also shows a small, direct, circula-
tion at the poles, with ascent at lower latitudes and descent near the poles. These
Polar cells act to warm the atmosphere at the poles and balance radiative cooling.
Associated with this cell, in the lower troposphere, air moves from high latitudes to
mid latitudes in a generally easterly sense.

To further understand the Ferrel cell we consider the angular momentum budget
in its upper branch. As discussed in Sect. 3.2, angular momentum is transported to
mid latitudes by eddies, leading to a convergence of atmospheric angular momen-
tum in this region. This flux convergence is balanced by the Coriolis term, which
removes westerly angular momentum aloft, and provides a low-level source of west-
erly angular momentum that drives the surface westerlies. The Ferrel cell reflects the
effect of the atmospheric circulation in transferring angular momentum vertically at
mid latitudes.

Fig. 4 Eulerian picture of the
atmospheric circulation. NP
and SP stand for North Pole
and South Pole, respectively.
Northern Winter conditions
are assumed. See text for
details
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Fig. 5 Lagrangian picture of
the atmospheric circulation.
NP and SP stand for North
Pole and South Pole,
respectively. Northern Winter
conditions are assumed. See
text for details

The meridional circulation may also be considered in a Lagrangian frame-
work (in which an air parcel is followed), analogous to the transport properties
of the circulation (Fig. 5). In general, this shows rising motion over the Summer
Pole and descending motion over the Winter Pole. The Lagrangian average does
not show an indirect circulation, since it takes into account eddy properties.
The Transformed Eulerian Mean (TEM) framework, introduced by Andrews and
McIntyre (1976) takes into account the effect of eddies in an Eulerian framework.
Both the Lagrangian and TEM frameworks show that the tropospheric meridional
circulation for constituents is a directly, thermally driven circulation. Throughout
much of the troposphere, there is a general poleward motion, deeper in the tropics
than in the mid latitudes. The circulation is closed by a more intense and shallow
equatorward circulation confined to a thin layer close to the ground. These mean
pictures are only revealed when many years of observational data are considered
and averaged, in order to remove day-to-day fluctuations in the flow. For individual
assimilation cycles, one should not expect to see this mean picture emerge in all
cases. The middle atmosphere also has an important meridional circulation which is
discussed at greater length in Sect. 4.

3.5 Other Tropical Circulations

In both the tropics and extra-tropics, there are important features of the flow which
result from asymmetries in the longitudinal direction. In this section we describe
two well known features of the tropical flow, the monsoon and Walker circulations.

Monsoon circulations. The distribution of land and ocean can alter the general
pattern of the atmospheric circulation. Over the ocean, the effect of solar heating is
distributed over the top few metres of sea water, so the oceans exhibit a much weaker
diurnal temperature cycle than land. A major consequence of the land-ocean heating
contrast is the existence of tropical monsoon circulations. Monsoon circulations lead
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to major seasonal variations in the low-level flow, which is generally from land to
ocean in the winter season and from ocean to land in the summer season, after the
onset of the monsoon circulation. According to the most widely used definitions,
three major monsoon circulations occur around the tropics, in West Africa, Australia
and in southern and south-eastern Asia (the Asian summer monsoon). Of these,
the most well-known is the Asian summer monsoon. In Northern Summer strong
heating occurs over the Indian subcontinent, enhanced by the Himalayas. The strong
heating leads to convection, and a thermally driven convective cell results, with
flow into the convecting region at low level and out of the convecting region at
upper levels (see, e.g., http://www.wrh.noaa.gov/twc/monsoon/monsoon_what_is.
php). Since the monsoon circulations occur at low latitudes, the effects of rotation
are small and geostrophic balance does not hold, the dominant driver of motion
being horizontal pressure gradients.

The onset of the Asian summer monsoon is around mid June, with variations of 2
weeks around this date. The monsoon is not steady, and has active and break periods.
The year-to-year variations in onset and the number of break periods of the monsoon
can significantly affect the total rainfall. This has an important consequence for
populations dependent on this rainfall. However, despite this variability, the Asian
summer monsoon circulation is remarkable in its regularity over many decades.
The strong interactions between ocean and atmosphere in the tropics are currently
thought to help to regulate the monsoon circulation.

The Walker circulation. In the longitudinal direction preferred regions for deep
convection exist where temperatures are high and there is a ready supply of mois-
ture. Strong large-scale ascent occurs over Africa, South America and Indonesia.
Convective rainfall is particularly strong over Indonesia and the other islands of
South East Asia because of the ready supply of water from the surrounding seas; this
region is sometimes referred to as the maritime continent. Between the areas of deep
convection and ascent, there may be areas of descent. As in the case of monsoons,
this asymmetry in deep convection leads to a thermally driven circulation, in this
case along the Equator. The major east–west circulation in the Pacific region – with
ascent over the maritime continent and descent over the eastern Pacific is known as
the Walker circulation. In its normal phase, the Walker circulation has ascent over
the maritime continent, with westerly flow at upper levels, descent over the east-
ern Pacific and a return, easterly flow at low levels. Fluctuations in the strength and
structure of the Walker circulation are typically measured by considering the sea-
level pressure difference between Darwin in northern Australia and Tahiti in the mid
Pacific. Variations in this pressure gradient, which is associated with a change in the
region of preferred convection, are known as the Southern Oscillation (SO).

Variations in the Walker circulation are part of the El-Niño Southern Oscillation
(ENSO), a major coupled oscillation of the atmosphere and ocean. Normally, the
sea surface temperature (SST) on the Equator is several degrees colder in the
East Pacific that in the West Pacific. Every few years, changes in the ocean lead
to a warming in the sea temperatures off the coast of South America (since this
typically occurs around Christmas time, the phenomenon was dubbed El Niño).
The main area of convective activity that is normally centred over the western
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Pacific moves eastward and as a result the Walker circulation is modified (see, e.g.,
http://www.pmel.noaa.gov/tao/elnino/nino-home.html). Conditions in which there
is an enhanced warming of the waters over the maritime continent and western
Pacific, and cold SSTs over the eastern Pacific are termed La Niña. The main
features of ENSO are summarized as follows:

• Normally, SSTs in the western tropical Pacific (∼30◦C) are warmer than in the
eastern tropical Pacific (∼23◦C). These temperatures are maintained by westward
(easterly) low-level winds, which through Ekman pumping cause upwelling of
cooler waters in the eastern Pacific. There is strong convection over the warm
western Pacific, associated with Walker circulation;

• The atmosphere-ocean system over the Pacific can become unstable if disturbed,
e.g., by sequences of westerly wind bursts. In this situation, warm surface water
spreads out into the central and eastern Pacific, and convection moves eastward.
The low-level wind in the western Pacific reverses to become eastward (westerly);
the thermocline rises in the western Pacific and deepens in the eastern Pacific.
These changes reinforce each other and are a positive feedback;

• The anomalous El Niño is terminated by upwelling oceanic Kelvin waves which
propagate from the western to the eastern Pacific. The upwelling Kelvin wave
is itself a response to oceanic Rossby waves which are generated by the same
low-level wind anomalies which gave rise to the initial El Niño anomaly. This is
a negative feedback. Hence perturbations to the coupled atmosphere-ocean sys-
tem in the Pacific both help to create and destroy the El Niño. A simple model
which captures many aspects of this behaviour is known as the Delayed Action
Oscillator model (Suarez and Schopf 1994).

Typical time-scales for oscillations in the ENSO system are between 2 and 7
years. Hence, the onset of El Niño or La Niña conditions is relatively slow, occurring
over several months. Changes to the Walker circulation can also result in changes
to atmospheric circulation over large parts of the globe. The influences are often
called teleconnections since they refer to correlations of climate anomalies over
large distances, typically thousands of kilometres. In the case of ENSO, its influ-
ence is spread remotely through the generation and propagation of Rossby waves
by anomalous latent heating in the middle troposphere by convection in the mid
Pacific.

4 General Circulation in the Middle Atmosphere:
The Brewer–Dobson Circulation

4.1 Introduction to the Middle Atmosphere

The middle atmosphere, encompassing the stratosphere and the mesosphere, shows
a series of major contrasts with the troposphere. These are the large-scale wind
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and temperature distributions, which include a large annual cycle in the middle
atmosphere which is absent in the troposphere (Figs. 1 and 2); the absence of
synoptic-scale disturbances in the middle atmosphere, e.g., there are no weather
fronts in the middle atmosphere; and the dominant role of diabatic processes in the
middle atmosphere.

Although the middle atmosphere contains only a small fraction of the atmosphere
(about 10%), it is important for humankind because: it contains most of atmospheric
ozone, which cuts out harmful UV radiation; and its temperature is sensitive to
changes in the concentration of greenhouse gases (e.g. water vapour, methane and
carbon dioxide), so middle atmosphere temperature trends could provide an early
signature of climate change. During wintertime, variability in the stratospheric cir-
culation has been shown to have an impact on the tropospheric flow on time-scales
from 10 to 60 days (see, e.g., Charlton et al. 2003).

The Lagrangian, meridional circulation in the middle atmosphere is known as
the Brewer–Dobson circulation. The Brewer–Dobson circulation is characterized by
diabatic heating (rising motion) over the Summer Pole; cross-hemispheric motion
across the Equator; diabatic cooling (sinking motion) over the Winter Pole (Fig. 5).
The Lagrangian picture provides a more accurate representation of the mean advec-
tive transport of stratospheric tracers, showing the wintertime descent over the Pole
observed in tracer data from instruments aboard NASA’s UARS (Upper Atmosphere
Research Satellite) and ESA’s Envisat satellites (e.g. Lahoz et al. 1996, 2007b).

The temperature and wind distributions in the atmosphere, including the middle
atmosphere, have been discussed in Sects. 2.1 and 2.2. We now discuss the win-
ter and summer stratosphere; later in this section we discuss the distributions of
humidity and ozone in the middle atmosphere.

4.2 Winter and Summer Stratosphere

In the Winter Hemisphere stratosphere, the temperature and geopotential height
decrease toward the Pole, with eastward (westerly) winds and a strong cyclonic vor-
tex centred on or near the Pole – the polar vortex. The winter polar vortex is stronger
in the Southern Hemisphere than in the Northern Hemisphere, as the former has
generally colder temperatures. In the Summer Hemisphere stratosphere, the temper-
ature and geopotential height increases toward the Pole, with westward (easterly)
winds and an anticyclonic vortex centred on or near the Pole – the summertime high.
Observations of the stratospheric flow show that the wintertime, cyclonic vortex is
periodically disturbed by the growth and decay of large, planetary scale structures.
In Northern Hemisphere winter, there is a quasi-permanent anticyclone feature near
the International Date Line, called the Aleutian high. In contrast the summertime
anticyclonic vortex is almost undisturbed.

Perturbations of the stratospheric flow are caused by the growth and upward
propagation of stationary Rossby waves (see Sect. 3.3). A key property of Rossby
waves is that their vertical propagation is governed by the mean flow according to
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the Charney-Drazin theory (Andrews et al. 1987). Waves can only propagate upward
where the mean flow is westerly and less than a critical value, Uc. The critical veloc-
ity for upward propagation is also inversely related to horizontal wavenumber, and
Uc is much smaller for waves of higher wavenumber. The strength of the strato-
spheric jet is such that only waves with wavenumber 1 and 2 can readily propagate
into the stratosphere. The Charney-Drazin theory therefore provides a first-order
explanation of observed stratospheric variability. The wintertime stratosphere is
dominated by large-scale quasi-stationary disturbances to the mean flow because
only the largest, and hence stationary, Rossby waves can propagate in the strong
wintertime jet. The summertime stratosphere is almost undisturbed, because the
zonal mean flow is easterly, and below the threshold for Rossby wave propagation,
hence it is largely free of planetary waves.

Further insight can be gained by considering the distribution of planetary
wave activity in the Northern and Southern Hemispheres. In the extra-tropics, the
Northern Hemisphere has a largely wavenumber two topography due to the pres-
ence of the Himalayas and Rocky Mountain chains, providing strong forcing for
large-scale Rossby waves. In contrast, the Southern Hemisphere is relatively flat in
the extra-tropics and has much lower stationary wave amplitudes than the Northern
Hemisphere. Since Rossby waves are the prime reason for variability in the strato-
sphere, the contrast in planetary wave amplitudes in each hemisphere is strongly
correlated with the strength of the corresponding wintertime polar vortex and tem-
perature near the pole. The contrasts in stratospheric wintertime behaviour in the
two hemispheres are largely the result of these differences in tropospheric dynam-
ical behaviour, rather than any intrinsic difference in the radiative properties of the
two hemispheres. It should also be noted, however, that many of the simplifying
assumptions that are used to derive the Charney-Drazin theory are violated in the
real atmosphere and the reasons that the theory appears to work in the simplest
terms are not well understood.

A further important property of Rossby waves in the stratosphere is that when
they encounter their critical velocity they can “break”. The interaction of Rossby
waves with critical lines is a complex subject which we do not cover in detail
here. A key point, however, is that when Rossby waves break, they cause east-
erly acceleration of the mean flow. Rapid deceleration of the mean flow can
lead to dramatic changes to the stratospheric flow known as stratospheric sudden
warmings.

Stratospheric sudden warmings. Stratospheric sudden warmings (SSWs) are dis-
turbances to the wintertime polar vortex caused by the breaking of transient Rossby
waves. Although some variability of this kind is almost ubiquitous during Northern
Hemisphere winter, it is customary when examining SSWs to focus on events in
which the zonal mean Pole-to-Equator temperature gradient is significantly dis-
turbed. When planetary waves break in the stratosphere an anomalous meridional
circulation (of the kind discussed in previous sections) can occur, with enhanced
descent and adiabatic warming over the Pole. Extremely rapid temperature changes
at the Pole, of the order 80 K in 5 days, have been observed during SSWs, giving
them the “sudden” part of their name.
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Fig. 6 Schematic of a wavenumber-1 type warming (left hand plot) and a wavenumber-2 type
warming (right hand plot). The “High” (H) and “Low” (L) labels indicate relatively high and
low geopotential height (analogously, pressure) centres. The arrows provide a sense of the wind
circulation

SSWs can be classified into major and minor events. In a major warming a rever-
sal of the zonal mean zonal wind (westerlies become easterlies) occurs from the
upper stratosphere down to 10 hPa and poleward of 60◦N (Northern Hemisphere),
60◦S (Southern Hemisphere). In a minor warming these conditions are not satisfied,
but there is still weakening of the winds and an increase of the temperatures.

Major SSWs tend to occur with two different synoptic evolutions or “habits”
(Charlton and Polvani 2007; see Fig. 6). In the vortex displacement or wavenumber
1 type of SSW, the polar vortex is displaced from the Pole toward eastern Eurasia by
growth of the Aleutian anticyclone. In the vortex splitting or wavenumber 2 type of
SSW the vortex remains close to the Pole, but elongates and splits into two similarly
sized pieces. The vortex displacement type also has a strong westward tilt in the
vertical, whereas the vortex splitting type has little tilt in the vertical (Matthewman
et al. 2009).

Major SSWs are relatively rare phenomena; there are typically 6 events per
decade in the Northern Hemisphere. Most events occur during the months of January
and February, although events in December are not uncommon. There can also be
distinct decadal variability in the dynamical activity of the vortex, for example dur-
ing the period March 1992–November 1998 there were no major SSW events, while
the period November 1998 to present has had an anomalously large number of major
SSW events. Our relatively short records of stratospheric variability make it diffi-
cult to fully determine the behaviour in the Southern Hemisphere, but it is thought
that there has been only one major SSW since the early 1960s, in September 2002.
The current generation of general circulation models (GCMs) which resolve the
stratosphere are able to produce SSWs with similar dynamical properties to those
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in observations, but generally have a lower frequency of SSWs than those seen in
observations (Charlton et al. 2007).

At the end of the winter, the final warming occurs. At this time, the polar vortex
breaks down completely and there is a transition from winter to summer conditions.
This event is the result of both radiative and dynamical influences since the increased
solar heating over the Pole and eventual reversal of the Pole-to-Equator tempera-
ture gradient will lead to a reversal of the zonal mean stratospheric jet. The timing
of the final warming is variable in the Northern Hemisphere, occurring any time
between March and May; the timing is more regular in the Southern Hemisphere,
where the polar vortex commonly breaks down during the period October/
November.

The presence of major warmings and the timing of the final warming have a
bearing on the temperature distribution in the winter stratosphere. As we shall
see later, this temperature distribution has a bearing on the conditions that can
cause ozone loss in the Arctic or the Antarctic via heterogeneous chemistry (see
chapter Introduction to Atmospheric Chemistry and Constituent Transport, Yudin
and Khattatov).

4.3 Humidity

Water vapour plays an important role in the radiation budget of the atmosphere,
especially in the upper troposphere/lower stratosphere (UTLS) region. It also pro-
vides information on the atmospheric circulation (as it is a tracer on seasonal
time-scales); it is a source of HOx (=OH+HO2, involved in the catalytic destruc-
tion of ozone – see chapter Introduction to Atmospheric Chemistry and Constituent
Transport, Yudin and Khattatov); and it is a constituent of the Polar Stratospheric
Clouds (PSCs) involved in polar ozone loss (Dessler 2000).

A feature of the middle atmosphere that distinguishes it from the troposphere
is its dryness. The typical humidity profile increases from minimum values of
about 2.5 ppmv (parts per million by volume) at the hygropause (located near
the tropopause) to about 8 ppmv in the lower mesosphere, above which values
decrease – see, e.g., Lahoz et al. (2007a) and chapter Constituent Assimilation
(Lahoz and Errera). These humidity values in the middle atmosphere are orders
of magnitude smaller than typical values in the lower troposphere. We now explain
this vertical variation in the humidity.

It has been understood since the late 1940s (Brewer 1949) that the only possible
explanation for the extreme dryness in the middle atmosphere is that air must expe-
rience very cold temperatures as it enters the stratosphere from the troposphere. The
resulting very small saturation mixing ratios mean that almost all of the moisture
condenses and precipitates out of the air. The cold temperatures required for satura-
tion mixing ratios of a few ppmv are about 185 K (about –88◦C), and occur near the
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tropical tropopause; this indicates that air must enter the stratosphere preferentially
through the tropical tropopause.

Reasoning this way, Brewer deduced the existence of a mean meridional cir-
culation in the stratosphere with ascent across the tropical tropopause, poleward
transport, and descent across the extra-tropical tropopause; this motion is the
Brewer–Dobson circulation and is well represented by the Lagrangian picture
described above (Fig. 5).

Water vapour is much more homogeneously distributed in the middle atmosphere
than in the troposphere, but it does increase gradually with height because chemical
reactions involving methane oxidation are a source of water vapour. The longer air is
in the stratosphere, the more likely it will be that methane will have been oxidized to
form water vapour. Thus, air descending in the wintertime polar vortex is relatively
moist, and the isolation of the polar vortex results in a coherent mass of air located
at high latitudes. In the mesosphere, photolysis is a sink of water vapour. At high
latitudes in the Antarctic winter lower stratosphere, temperatures are low enough to
cause water to freeze out and reduce water vapour mixing ratios.

Recent balloon observations from Boulder, Colorado (USA) suggest that water
vapour in the stratosphere is slowly increasing (Fig. 7). However, recent water
vapour observations from the UARS HALOE instrument suggest, on the contrary,
that water vapour in the stratosphere is decreasing (Randel et al. 2006; Fig. 8).
Owing to these discrepancies, the water vapour variability in the stratosphere is
a current topic of research.

Fig. 7 Water vapour observations over Boulder, Colorado (USA), based on balloon
data from the period 1980–2002. (a) water vapour measurements over 20–22 km;
(b) vertical profile of the water vapour trend (%/year) for the period 1980–2002.
Source: http://commons.wikimedia.org/wiki/Image:BAMS_climate_assess_boulder_water_vapor_
2002.png
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Fig. 8 (a) Time series of near-global mean (60◦N–60◦S) water vapour at 82 hPa derived from
HALOE, HALogen Occultation Experiment, data (1992–2005). The circles show monthly mean
values, and error bars show the monthly standard deviation; (b) Deseasonalized near-global mean
water vapour anomalies at 82 hPa. In both panels the solid lines represent running Gaussian-
weighted means of the invididual points, using a Gaussian half-width of 12 months. With
permission from Randel et al. (2006)

4.4 Ozone

Most of the ozone in the atmosphere (∼90%) resides in the stratosphere, with only
about 10% residing in the troposphere. Ozone is more abundant in the stratosphere
because its main source is photochemical reactions in the tropical middle strato-
sphere; the largest values of ozone mixing ratio occur there (at heights ∼30 km;
pressures ∼10 hPa). However, the largest ozone column amounts (an integra-
tion of ozone from the ground upwards) are found at high latitudes, because the
stratospheric contribution to the column is larger at high latitudes and, there, the
troposphere has a smaller vertical extent.

Ozone plays a major role in determining the middle atmosphere temperature
structure by absorbing solar radiation. It also plays a significant role by absorbing
and emitting thermal infrared radiation. The strong peak in solar heating around the
stratopause is chiefly due to absorption of solar radiation by ozone. To a large extent,
this explains the existence of a warm stratopause. Note that the heating peak occurs
above the ozone mixing ratio peak and not at the mixing ratio peak. This is because
solar radiation is absorbed by ozone on its way down through the atmosphere and
thus less radiation reaches 10 hPa (roughly 30 km) than 1 hPa (roughly 50 km).
However, the ozone distribution and solar heating cannot explain the existence of a
warm stratopause near the Winter Pole, where there is no sunlight. This shows that
dynamical processes are also important in determining the temperature structure of
the middle atmosphere (Shine 1987).

The ozone created photochemically in the tropical middle stratosphere is trans-
ported by the stratospheric mean meridional circulation from the tropical region
poleward and downward to the high latitude lower stratosphere (see, e.g., Fig. 5).
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Ozone is destroyed in the wintertime lower stratosphere, the result being the
well-known ozone hole (Farman et al. 1985). The amount of ozone loss is greater
in the Antarctic than in the Arctic. This is because the conditions required for an
ozone hole: low temperatures (no sunlight during winter); isolation (formation of
winter polar vortex) are more prevalent in the Antarctic than in the Arctic, with
the former generally having lower temperatures and having a stronger and longer
lasting winter polar vortex. These conditions (low temperatures, isolation) allow the
formation of PSCs, on which heterogeneous (surface chemistry) reactions can take
place to liberate chlorine compounds which can be photolysed to release chlorine
atoms when the sun returns in spring. These chlorine atoms are then involved in
catalytic reactions that destroy ozone, forming the ozone hole. We thus see how
wintertime conditions at high latitudes affect the ozone distribution.

4.5 Interaction Between Dynamics, Radiation and Chemistry

Most of the stratosphere is close to radiative equilibrium, although major distur-
bances to this equilibrium can occur, for example during SSWs, as previously
discussed. This approximate radiative equilibrium explains most features of the
stratospheric zonal mean temperature structure (Fig. 1): temperature increases sys-
tematically from Winter Pole to Summer Pole; the warm stratopause coincides with
a peak in solar radiative heating due to absorption by ozone. Note, however, that
as mentioned above, radiative processes on their own cannot explain all of the
temperature structure, and appeal must be made to dynamical processes.

In the Lagrangian picture (Fig. 5) diabatic processes are associated with ver-
tical motion, in particular diabatic heating with ascent and diabatic cooling with
descent. Note that in the downward control picture, Haynes et al. (1991), verti-
cal motion is a consequence of wave breaking in the upper middle atmosphere.
The wintertime Antarctic stratosphere is colder than its Arctic counterpart. Thus,
the former is closer to radiative equilibrium, so that diabatic descent rates in the
Antarctic winter stratosphere tend to be smaller than those in the Arctic winter
stratosphere.

Temperature is also important for chemical processes in the stratosphere.
Chemical reactions depend on temperature (see chapter Introduction to Atmospheric
Chemistry and Constituent Transport, Yudin and Khattatov). Also, as seen above,
temperature plays a key role in setting up the conditions required for the forma-
tion of PSCs, the presence of heterogeneous chemistry processes, and the eventual
formation of the ozone hole.

5 Conclusions

This chapter provides a general overview of the atmospheric circulation from the
ground to about 80 km, highlighting the main concepts that are important for a basic
understanding of meteorology and dynamics. Meteorology and dynamics, together
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with radiation and chemistry, help determine the distribution of the key atmospheric
species ozone and water vapour. These species are of interest to the data assimilation
community, both operational and research.
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The Role of the Model in the Data
Assimilation System

Richard B. Rood

1 Introduction

The chapters in Part I, Theory, describe in some detail the theory and methodology
of data assimilation. This chapter will focus on the role of the predictive model
in an assimilation system. There are numerous books on atmospheric modelling,
their history, their construction, and their applications (e.g. Trenberth 1992; Randall
2000; Jacobson 2005). This chapter will focus on specific aspects of the model and
modelling in data assimilation.

The chapter is outlined as follows:

• Definition and Description of the Model;
• Role of the Model in Data Assimilation;
• Component Structure of an Atmospheric Model;
• Consideration of the Observation-Model Interface;
• Physical Consistency and Data Assimilation;
• Summary.

2 Definition and Description of the Model

Dictionary definitions of model include:

• “A work or construction used in testing or perfecting a final product”;
• “A schematic description of a system, theory, or phenomenon that accounts

for its known or inferred properties and may be used for further studies of its
characteristics”.
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In atmospheric modelling a scientist is generally faced with a set of observations
of variables, for instance, wind, temperature, water, ozone, etc., as well as either the
knowledge or expectation of correlated behaviour between the different variables. A
number of types of models could be developed to describe the observations. These
include:

• Conceptual or heuristic models which outline in the simplest terms the processes
that describe the interrelation between different observed phenomena. These
models are often intuitively or theoretically based. An example would be the
tropical pipe model of Plumb and Ko (1992), which describes the transport of
long-lived tracers in the stratosphere;

• Statistical models which describe the behaviour of the observations based on
the observations themselves. That is the observations are described in terms of
the mean, the variance, and the correlations of an existing set of observations.
Johnson et al. (2000) discuss the use of statistical models in the prediction of
tropical sea surface temperatures;

• Physical models which describe the behaviour of the observations based on first
principle tenets of physics (chemistry, biology, etc.). In general, these principles
are expressed as mathematical equations, and these equations are solved using
discrete numerical methods. Detailed discussions of modelling include Trenberth
(1992), Randall (2000), and Jacobson (2005).

In the study of geophysical phenomena, there are numerous subtypes of mod-
els. These include comprehensive models which attempt to model all of the relevant
couplings or interactions in a system and mechanistic models which have prescribed
variables, and the system evolves relative to the prescribed parameters. All of these
models have their place in scientific investigation, and it is often the interplay
between the different types and subtypes of models that leads to scientific advance.

Models are used in two major roles. The first role is diagnostic, in which the
model is used to determine and to test the processes that are thought to describe
the observations. In this case, it is determined whether or not the processes are
well known and adequately described. In general, since models are an investigative
tool, such studies are aimed at determining the nature of unknown or inadequately
described processes. The second role is prognostic; that is, the model is used to
make a prediction.

In all cases the model represents a management of complexity; that is, a scientist
is faced with a complex set of observations and their interactions and is trying to
manage those observations in order to develop a quantitative representation. In the
case of physical models, which are implicitly at focus here, a comprehensive model
would represent the cumulative knowledge of the physics (chemistry, biology, etc.)
that describe the observations. It is tacit, that an accurate, validated, comprehensive
physical model is the most robust way to forecast; that is, to predict the future.

The physical principles represented in an atmospheric model, for example, are
a series of conservation equations which quantify the conservation of momen-
tum, mass, and thermodynamic energy. The equation of state describes the relation
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between the thermodynamic variables. Because of the key roles that phase changes
of water play in atmospheric energy exchanges, an equation for the conservation of
water is required. Models which include the transport and chemistry of atmosphere
trace gases and aerosols require additional conservation equations for these con-
stituents. The conservation equations for mass, trace gases, and aerosols are often
called continuity equations.

In general, the conservation equation relates the time rate of change of a quan-
tity to the sum of the quantity’s production and loss. For momentum the production
and loss follow from the forces described by Newton’s Laws of Motion. Since the
atmosphere is a fluid, either a Lagrangian or an Eulerian description of the flow can
be used (see chapter General Concepts in Meteorology and Dynamics, Charlton-
Perez et al.). The Lagrangian description follows a notional fluid parcel, and the
Eulerian description relies on spatial and temporal field descriptions of the flow
at a particular point in the domain. Data assimilation can be performed in either
the Lagrangian or Eulerian framework. In this chapter the Eulerian framework will
be the primary focus. Holton (2004) provides a thorough introduction to the fun-
damental equations of motions and their scaling and application to atmospheric
dynamics.

In order to provide an overarching background, it is useful to consider the
elements of a modelling, or simulation, framework described in Fig. 1. In this frame-
work are six major ingredients. The first are the boundary and initial conditions. For
an atmospheric model, boundary conditions include topography, sea surface tem-
perature, land type, vegetation, etc.; boundary conditions are generally prescribed
from external sources of information.

The next three items in the figure are intimately related. They are the represen-
tative equations, the discrete and parametrized equations, and the constraints drawn
from theory. The representative equations are the continuous forms of the conser-
vation equations. The representative equations used in atmospheric modelling are
approximations derived from scaling arguments (see Holton 2004); therefore, even
the equations the modeller is trying to solve have a priori simplification which can
be characterized as errors. The continuous equations are a set of non-linear partial
differential equations. The solutions to the representative equations are a balance
amongst competing forces and tendencies.

The discrete and parametrized equations arise because it is not possible to solve
the representative equations in analytical form. The strategy used by scientists is to
develop a numerical representation of the equations. One approach is to develop a
grid of points which covers the spatial domain of the model. Then a discrete numer-
ical representation of those variables and processes which can be resolved on the
grid is written. Processes which take place on spatial scales smaller than the grid
are parametrized. These approximate solutions are, at best, discrete estimates to
solutions of the analytic equations. The discretization and parametrization of the
representative equations introduce a large source of error. This introduces another
level of balancing in the model; namely, these errors are generally managed through
a subjective balancing process that keeps the numerical solution from producing
obviously incorrect estimates.
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Fig. 1 A schematic description of the conceptual elements of an atmospheric model formulation.
The boundary conditions include, for example, emissions of trace gases, sea surface temperature
(SST), and topography. There are a set of partial differential equations that are the “Representative
Equations”, i.e., the conservation principles important in the physics (and chemistry, biology, . . .)
of the atmosphere. Here, there is a generic variable A, and its change with respect to time, t, is equal
to its Production, P, minus Loss, which is proportional to a Loss Frequency (L) and the amount of
A. These partial differential equations are, usually, specified following scale analysis and approx-
imation for the particular application targeted by the model. The Representative Equations are
represented as numerical approximations (“Discrete/Parametrize”), where the index, n, represents
a step in time of increment Δt. The “Theory/Constraints” are important to robust model formula-
tion. Here, the geostrophic approximation is used as an example. It is important that the numerical
methods represent the theoretical constraints that are obtained, for instance, by scale analysis. The
“Primary Products” are those products for which there is a prognostic equation. The “Derived
Products” are either diagnosed from the primary products or as a function of the primary products.
Here potential vorticity and the residual circulation are used as examples. ε represents the error
that is present at all stages of the model formulation

While all of the terms in the analytic equation are potentially important, there
are conditions or times when there is a dominant balance between, for instance, two
terms. An example of this is thermal wind balance in the middle latitudes of the
atmosphere (see Holton 2004; see chapter General Concepts in Meteorology and
Dynamics, Charlton-Perez et al.). It is these balances, generally at the extremes of
spatial and temporal scales, which provide the constraints drawn from theory. Such
constraints are generally involved in the development of conceptual or heuristic
models. If the modeller implements discrete methods which consistently represent
the relationship between the analytic equations and the constraints drawn from the-
ory, then the modeller maintains a substantive scientific basis for the interpretation
of model results.

The last two items in Fig. 1 represent the products that are drawn from the model.
These are divided into two types: primary products and derived products. The pri-
mary products are variables such as wind, temperature, water, ozone – parameters
that are most often, explicitly modelled; that is, an equation is written for them.
The primary products might also be called the resolved or prognostic variables. The
derived products are of two types. The first type is those products which are diag-
nosed from model state variables, often in the parametrized physical processes. The
second type follows from functional relationships between the primary products;
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for instance, potential vorticity (Holton 2004). A common derived product is the
budget – the sum of the different terms of the discretized conservation equations.
The budget is studied, explicitly, on how the balance is maintained and how this
compares with budgets derived directly from observations or reanalysis (see chap-
ter Reanalysis: Data Assimilation for Scientific Investigation of Climate, Rood and
Bosilovich).

In some cases the primary products can be directly evaluated with observations,
and errors of bias and variability are estimated. If attention has been paid in the
discretization of the analytic equations to honour the theoretical constraints, then
the derived products will behave consistently with the primary products and theory.
They will have errors of bias and variability, but when a budget is formed from the
sum of the terms in the conservation equations, it will balance. That is, the discrete
form of the conservation equation is solved. In this case the correlative relation
between variables is represented and there is a “physical” consistency.

3 The Role of the Model in Data Assimilation

Data assimilation is the melding of observational information with information pro-
vided by a model (Daley 1991; Kalnay 2003; Swinbank et al. 2003). In assimilation
for Earth system science, all types of models, conceptual, statistical, and physi-
cal, are used. Models are used in both their prognostic and diagnostic roles. First
and foremost in data assimilation, the model provides an estimate of the expected
value of the state variables that are observed and assimilated. The discussion, which
follows, centres on this role of state estimation.

The focus here is on physically based models of the atmosphere formulated in
an Eulerian description of the fluid dynamics. Outside of the atmospheric model (or
more generally geophysical models) there are other models in the data assimilation
system. Notably, because of the complexity of expressing error covariances, these
are generally modelled. Also, there are forward and inverse models which transfer
quantities between observed quantities, for example radiances observed by a satel-
lite instrument, and geophysical quantities, for example corresponding temperature
estimates. These types of models are discussed elsewhere in the book; see, e.g., the
chapters in Part II (Observations) and Part IV (Atmospheric Chemistry), and the
companion chapters in Part III (Meteorology and Atmospheric Dynamics).

A schematic of an assimilation system is given in Fig. 2. This is a sequential
assimilation system where a forecast is provided to a statistical analysis algo-
rithm that calculates the merger of model and observational information. Some
assimilation methods cycle back and forth between these steps to assure maximum
coherence. In this figure, errors are specified based on external considerations and
methods. There is a formal interface between the statistical analysis algorithm and
the model prediction which performs a quality assessment of the information prior
to the merger. This interface might also include a balancing process called initial-
ization (see Lynch 2003; see chapter Initialization, Lynch and Huang). The figure
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Fig. 2 A schematic of a Data Assimilation System. This is a sequential assimilation system where
a “Model Forecast” is provided to a “Statistical Analysis” algorithm that calculates the merger of
model and observational information using “Error Covariance” information. In this figure, errors
are specified based on external considerations and methods. There is a formal interface between
the statistical analysis algorithm and the model prediction which performs a quality assessment
(“Quality Control”) of the information prior to the merger. This interface might also include a
balancing process called initialization, which is not explicitly shown. There are two input streams
for the observations, “Data Stream 1” and “Data Stream 2”. The first of these streams represent the
observations that will be assimilated with the model prediction. The other input stream represents
observations that will not be assimilated. This second stream of observations could be, for example,
a new type of observation whose error characteristics are being determined relative to the existing
assimilation system. The products from the system are discussed more fully in the text

shows, explicitly, two input streams for the observations. The first of these streams
represent the observations that will be assimilated with the model prediction. The
other input stream represents observations that will not be assimilated. This second
stream of observations could be, for example, a new type of observation whose error
characteristics are being determined relative to the existing assimilation system.

From a functional point of view, the model provides a short-term forecast of the
expected values of the state variables. This forecast is often called the first-guess,
the background, or the prior. The background and the observations are mapped to
the same space-time domain where they are compared. The model-provided back-
ground is used in the data quality control algorithm, as an objective assessment
of the quality of the assimilation system, and as a crucial element of the statisti-
cal analysis (see, for example, Dee et al. 2001) – see also chapter Error Statistics in
Data Assimilation: Estimation and Modelling (Buehner). In addition, there may be a
formalized process to balance the spatial and temporal attributes of the features rep-
resented (or not represented) in both the model and the observations – initialization.
In the statistical analysis, observation-based corrections to the background are deter-
mined based on the error characteristics of both the observations and the modelled
forecast. These corrections are applied to the background and replace the existing
values in the model. These new, corrected values provide the initial conditions for
the next model forecast.
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The specification of model-error covariances and their evolution with time is a
difficult problem. In order to get a handle on these problems it is generally assumed
that the observational errors and model errors are unbiased over some suitable period
of time, e.g. the length of the forecast between times of data insertion. It is also
assumed that the errors are in a Gaussian distribution. The majority of assimilation
theory is developed based on these assumptions, which are, in fact, not realized. In
particular, when the observations are biased, there would the expectation that the
actual balance of geophysical terms is different from the balance determined by the
model in the assimilation process. Furthermore, since the biases will have spatial
and temporal variability, the balances determined by the assimilation are quite com-
plex. Aside from biases between the observations and the model prediction, there
are biases between different observation systems of the same parameters. These
biases are potentially correctible if there is a known standard of accuracy defined
by a particular observing system. However, the problem of bias is a difficult one to
address and perhaps the greatest challenge facing assimilation (see Dee 2005). Bias
is discussed in chapter Bias Estimation (Ménard).

Figure 2 above shows a set of products which comes from the assimilation sys-
tem. These are (see chapters Mathematical Concepts of Data Assimilation, Nichols;
Evaluation of Assimilation Algorithms, Talagrand):

• Analysis: The analysis is the merged combination of model information and
observational information. The analysis is the estimate of the state of the sys-
tem (in this case the atmosphere) based on the optimization criteria and error
estimates;

• Forecast/simulation: The forecast/simulation is a model run that starts from an
initial condition defined by the analysis. For some amount of time this model run
is expected to represent the state of the system with some deterministic accuracy.
For this case the model run is a forecast. After a certain amount of time the model
run is no longer expected to represent the particular state of the system; though, it
might represent the average state and the variance (i.e., the climate). In this case
the model run is simply a simulation that has been initialized with a realistic state
estimate at some particular time;

• Observation minus forecast increment: The observation minus forecast (O-F)
increment gives a raw estimate of the agreement of the forecast information (i.e.,
the first guess) with the observation information prior to assimilation. Usually,
a small O-F increment indicates a high quality forecast, and O-F increments are
used as a primary measure of the quality of the assimilation. O-F increments are
exquisitely sensitive to changes in the system and are the primary quantity used
for monitoring the stability and quality of the input data streams. Study of the
O-F increment is useful for determining the spatial and temporal characteristics
of some model errors;

• Observation minus analysis increment: The observation minus analysis (O-A)
increment represents the actual changes to the model forecast that are derived
from the statistical analysis algorithm. Therefore, they represent in some bulk
sense the error weighted impact of the O-F increments. If the assimilation system
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weighs the observations heavily relative to the forecast, then the O-A increments
will have significant differences relative to the O-F increments. The opposite is
also true; if the model information is weighed more heavily than the observational
information then there will be little change represented by the O-F increments.
If either of these extremes are realized the basic assumptions of the assimilation
problem need to be reconsidered.

Assimilated data products are often said to be “value-added” (see also chapter
Data Assimilation and Information, Lahoz et al.) The extra value comes from com-
bining two sources of information under the premise that if the error sources are
well represented and if the combination process is robust, then there is more infor-
mation than in either individual source. The two basic sources of information are
observed information and model information. Hence, if there is value added to the
observed information, then that value comes from the model. Both the prognostic
and the diagnostic attributes of the model contribute to the added value.

There are a number of types of information expected to come from the model.
The observations are distributed in both space and time. The observations have
different attributes; for instance, some observations are point values, while others
represent deep layer means. The observations are not continuous; there are spatial
and temporal gaps. The model represents the flow of the atmosphere. The model,
therefore, takes the information from the observations and propagates that informa-
tion. This fills in the gaps. Hence, at its most basic level the model is a physically
based mapping routine.

From the point of view of information, the model propagates information from
observed regions to unobserved regions. If the assimilation is robust, then this
greatly improves knowledge of the state in unobserved regions. Further, if at one
time a region is not observed and if at a future time the region is observed then,
if the model has provided an improved state estimate, then the new observation
can better refine the state estimate. That is, there is better use of the observational
information. From a different perspective, this comparison of model prediction and
observation provides a measure of quality of the assimilation system.

Another function of the model is to transfer information from one observed
parameter to other observed parameters. For example, temperature and wind are
related to each other. For many years, because temperature observations were by far
the most prevalent observation type, temperatures were used to estimate the wind.
Elson (1986) compared geostrophic estimates to a number of methods presumed to
be more accurate. Such estimates of the ageostrophic wind are crucial, for instance,
to weather forecasting and mass transport (see Holton 2004). One place that assim-
ilation has had tremendous impact is in the estimate of mid latitude wind fields,
where the geostrophic balance is strong and the wind is strongly influenced by the
structure of the temperature field.

Perhaps best viewed as an extension of one observation type influencing another
observation type, assimilation also provides estimates of unobserved quantities (see
also chapter Constituent Assimilation, Lahoz and Errera). One quantity of specific
interest is the vertical component of the wind. Because of the strong hydrostatic
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stratification of the atmosphere, the vertical component of the wind is three orders
of magnitude less than the horizontal components. It is difficult to measure; it
remains mostly unmeasured. The vertical wind is, however, critically important to
atmospheric physics, linking not only the conservation of thermodynamic energy
and momentum, but it also is directly correlated with precipitation and release
of latent heat through the condensation of water. Hence a goal of assimilation is
to provide meaningful estimates of the vertical component of the wind through
the correlated information provided by the temperature and horizontal velocity
measurements. There are large errors associated with the estimates of the vertical
wind.

The estimate of vertical wind follows from the divergence of the horizontal veloc-
ity field. The horizontal velocity is usually a resolved variable, by the nomenclature
of Fig. 1, a primary product. Estimates of unobserved quantities also come from
the parametrizations used to represent subscale processes. These quantities might
include precipitation, clouds, turbulent kinetic energy, or in the case of chemistry-
transport models, unobserved chemically reactive constituents or surface emissions.
In general, the success of using the assimilation system to estimate unobserved
quantities varies widely from one geophysical quantity to another.

Similar in spirit to estimating unobserved quantities, assimilation has the
prospect of estimating incompletely observed quantities. An archetypical example
is tropospheric ozone. There are many measures of the total amount of ozone in a
column above a point on the surface of the Earth. There are also many measures
of ozone column above the troposphere. Given the sensitivity of the ozone field to
dynamical features in the atmosphere, especially synoptic-scale and planetary-scale
waves, the dynamical mapping aspects of assimilation are reasonably expected to
offer significant advantage in residual-based estimates of tropospheric ozone (see,
for example, Štajner et al. 2008).

As will be discussed more fully below, the products from assimilated data sets
may not be physically consistent. There are a number of ways to examine the issue of
consistency. As mentioned in the discussion of Fig. 1, the equations of motion tell us
that there are expected balances between variables. These balances suggest correl-
ative behaviour between variables that reflect the physical connectivity. There is no
reason that independent observations and their errors rigorously represent these bal-
ances. Similarly, the observations are not required to sample the mass field such that
mass is conserved. We look to the model to develop these balances. How well the
model does depends on the time-scales that connect the variables and the strength
of the expected correlation and the quality of the observations and the model.

Perhaps the best way to look at the consistency problem is whether or not the
conservation equation balances. In a well formulated model the conservation equa-
tion is solved; there is precise balance. The insertion of data acts like an additional
forcing in the conservation equations. In general, this additional forcing will not
average to zero over, say, the time-scale between data insertions. Conservation is
not obtained. This is an important point to remember as many users of assimilated
data sets assume that because they are essentially continuous in space and time, that
the variables balance the conservation equation.
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The consequences of this violation of conservation propagate through the model.
There are fast modes in the model which will balance quickly and accurately. There
are slow modes, for instance those balances revealed in the long-term space and
time averages suitable for studying the general circulation, which will be influenced
by the forcing that comes from the insertion of data. Hence, the assimilated data
products might have better estimates than a free running model of primary products
like temperature and wind, but the estimates of the derived products such as precip-
itation and the Eulerian-mean residual circulation (see Holton 2004) may be worse.
That is, the analysis increments (i.e., data insertion) are a major part of the forc-
ing. Molod et al. (1996) was one of the first to document the representation of the
moisture and energy budgets in side-by-side free-running climate simulations and
assimilated data using the same predictive model as used in the climate simulation.

4 Component Structure of an Atmospheric Model

This section lays out the component structure of an atmospheric model. The equa-
tions of motion for the atmosphere in tangential coordinates using altitude for the
vertical coordinate (x, y, z) are given below (see Holton 2004). The first three equa-
tions represent the conservation of momentum components. The fourth equation is
the mass continuity equation, and the fifth equation is the thermodynamic energy
equation. The last equation is the equation of state (see chapter General Concepts
in Meteorology and Dynamics, Charlton-Perez et al.).
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(1)

In Eq. (1), t is time; φ is latitude; a is radius of Earth, and Ω is the angular
velocity of the Earth; g is gravity; ν is a coefficient of viscosity; cv is specific heat
at constant volume and cp is specific heat at constant pressure; R is the gas constant
for air; ρ is density; T is temperature; and p is pressure. (u, v, w) = (x (zonal), y
(meridional), z (vertical)) velocity; J is heating.



The Role of the Model in the Data Assimilation System 361

In addition, equations are needed which describe the conservation of trace con-
stituents (see chapters in Part III, Atmospheric Chemistry). The generic form of these
continuity equations are:

DQi

Dt
+ Qi∇ • u = PQi − LQi (2)

Where Qi is the density of a constituent identified by the subscript i; P and L rep-
resent the production and loss from phase changes and photochemistry. An equation
for water in the atmosphere, Qi = QH2O, is required for a comprehensive model. For
water vapour, the production and loss terms are represented by evaporation and con-
densation. These are associated with significant consumption and release of heat,
which must be accounted for in, J, the heating, de facto production and loss term
of the thermodynamic energy equation. In general, in the atmosphere below the
stratopause, heating due to the chemical reactions of trace constituents is assumed
not to impact the heat budget of the atmosphere. It is possible for the spatial distribu-
tion of trace constituents, for example, ozone, to impact the absorption and emission
of radiative energy; hence, there is feedback between the constituent distributions
and diabatic processes in the atmosphere.

Water not only affects the atmosphere through the consumption or release of
energy due to phase changes, but also affects the radiative balance of the atmo-
sphere through both the distribution of vapour and through the distribution of clouds.
Therefore, it is common in modern models to not only represent water vapour,
but also to include an equation for cloud water, Qi = Qcloud, which is partitioned
between cloud liquid and cloud ice. The episodic and local scales of the phase
changes of water and clouds offer one of the most difficult challenges of atmospheric
modelling. This is important for modelling weather, climate, and chemistry.

Due to their impact on both the radiative budget of the atmosphere and formation
of cloud water and ice, a set of constituent conservation equations for aerosols is
required in a comprehensive atmospheric model. Like water vapour, the spatial and
temporal scales of aerosols are often small, below the resolved scales of the model.
Again, aerosol modelling provides significant challenges, and they are important for
modelling weather and, especially, climate and chemistry.

The equations of motion and a suitable set of constituent continuity equations are
the representative equations of the model (see Fig. 1). The equations of motion sup-
port many types of dynamical features, for example, waves, such as, Rossby waves,
synoptic- or baroclinic-scale waves, gravity waves, Kelvin waves, etc. and vortices,
such as hurricanes, tornadoes, etc. There is spatial and temporal heterogeneity in
the forcing terms. Hence, the atmosphere is characterized by complexity, and this
complexity is confronted when trying to build a predictive model out of the above
equations. Further, the complexity is increased by the fact that discrete numerical
representations of the equations of motion support a whole variety of behaviour
unique to numerical approximation.

Atmospheric models are usually built from components. There are several useful
paradigms for organizing their construction. In the first, the model can be divided
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into processes, and the solution as a whole is the accumulation of these processes.
This is called “process splitting” and has been discussed in, for instance, Strang
(1968), Yanenko (1971) and McCrea et al. (1982). Another useful way to look at
models is from the perspective of systems engineering, where the whole model sys-
tem is built from systems of subsystems. This systems approach is useful when
formulating strategies for model evaluation and validation; the interacting subsys-
tems determine the performance of the model as a whole. It is, therefore, often
difficult to relate model performance to the design characteristics of a particular
component.

Recent efforts to organize the modelling community at different laboratories and
in different countries have led to the formalization of a component architecture
approach to organize the structure. In this approach there are base level components
and composited components which rely on the results of the base level components.
The interface between the components is formalized by two-way couplers, which
transfer the needed information. The model as a whole is a composite of composited,
coupled components. Figure 3 shows the Goddard Earth Observing System, version
5 (GEOS-5) component architecture as expressed in the Earth System Modeling
Framework (Hill et al. 2004; http://www.esmf.ucar.edu/).

Referring to Fig. 3, the box labelled “agcm” represents the atmospheric general
circulation model. The components represented here are appropriate for climate
and weather. Additional components would be required to resolve the processes
above the mesosphere; for example, to support space weather (Toth et al. 2005;
see also chapter Assimilation of GPS Soundings in Ionospheric Models, Khattatov).
Below “agcm” are two components which represent the fluid “dynamics” and the
“physics.” The fluid dynamical part of the model represents both the resolved flow
and the drag associated with small (subgrid) scale gravity waves. The dynamics will

Fig. 3 Earth System Modeling Framework (ESMF) component architecture of the Goddard Earth
Observing System, version 5 (GEOS-5) atmospheric model (http://www.esmf.ucar.edu/about_us/).
See text for detailed discussion
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be discussed more fully below. The terms that form the components of the physics
generally represent processes that occur on a scale smaller than resolved; again,
they are subgrid. These are often called “parametrizations” (see Fig. 1). A useful,
approximate concept is that those components collected under the term physics are
treated as occurring only in a vertical column; hence, they can be extracted and
tested in one-dimensional column models.1 Those terms in the “dynamics” are fully
three-dimensional; they connect the columns.

From left to right those components which composite as “physics” are as follows.
The “surface” box represents, for an atmospheric model, the boundary conditions.
Different variables characterize the transfer of momentum, mass, and energy from
lakes, ice, ocean, and land (chapters Ocean Data Assimilation, Haines; Land Surface
Data Assimilation, Houser et al., discuss models of the ocean and land, respec-
tively). In this particular model the “land” model is a composite of a vegetation
model and a catchment basin hydrology model. The next box to the right, “chem-
istry,” is the interface to chemical production and loss terms which take place
point-by-point in both the horizontal and the vertical. This is followed by the accu-
mulation of the processes associated with water and its phase changes, “moist
process”: clouds, water vapour, liquid water, ice, convection, etc. Next are those
processes needed to represent the absorption and reflection of both solar and ter-
restrial (infrared) “radiation.” On the far right is a box labelled as “turbulence”.
Usually, in atmospheric models there is a separate parametrization which represents
the turbulent mixing associated with the planetary boundary layer. More than the
other processes in the composite of “physics,” the processes in the planetary bound-
ary layer may be connected in the horizontal; that is, they might not fit appropriately
into the concept of column physics. As described here, these parametrizations con-
nect momentum, mass, and energy in the vertical; there is transfer between model
levels.

Figure 3 is a specific description of an atmospheric model, which relies on the
representative equations listed above. In Fig. 1, a conceptual description for building
a model was proposed. There are some obvious links. The boundary conditions
appear explicitly, and Fig. 3 provides a framework for splitting up the processes
of the representative equations. It remains to develop a discrete representation of
equations and the identification of the primary and derived products from the model.

As stated at the beginning of the chapter the technical aspects of numerical mod-
elling are left to comprehensive texts such as Jacobson (2005). Some numerical
concepts will be developed here to demonstrate the art of model building. The
focus will be on the “dynamics” part of the model (see Fig. 3). To demonstrate
the concepts consider the thermodynamic energy equation and only the advection
of temperature by the horizontal winds

∂T

∂t
+ u • ∇T = ∂T

∂t
+ u

∂T

∂x
+ v
∂T

∂y
(3)

1See information on column models at the National Center for Atmospheric Research –
http://www.ccsm.ucar.edu/models/atm-cam/docs/scam/
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Attention will be focused on strategies to discretize the advective transport.
Figure 4 illustrates the basic concepts. On the left of the figure a mesh has been
laid down to cover the spatial domain of interest. In this case it is a rectangular
mesh. The mesh does not have to be rectangular, uniform, or orthogonal. In fact
the mesh can be unstructured or can be built to adapt to the features that are being
modelled. The choice of the mesh is determined by the modeller and depends upon
the diagnostic and prognostic applications of the model (see Randall 2000). The
choice of mesh can also be determined by the computational advantages that might
be realized.2

2Typical mesh sizes at the time of this chapter are 200 km for climate models down to 20 km for
global weather models. Experiments are being run at resolutions as small as ~1 km. Computational
resources limit resolution, but also as the resolution becomes finer the foundational assumptions of
physical parametrizations must be reconsidered.
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Using the mesh, index points are prescribed to determine location. In Fig. 4
(top) both the advective velocity and the temperature are prescribed at the centre
of the cell. In Fig. 4 (bottom), the velocities are prescribed at the middle of the cell
edges, and the temperature is prescribed in the centre of the cell. There are no hard
and fast rules about where the parameters are prescribed, but small differences in
their prescription can have large impact on the quality of the estimated solution to
the equation, i.e., the simulation. The prescription directly impacts the ability of
the model to represent conservation properties and to provide the link between the
analytic equations and the theoretical constraints (see Fig. 1; see Rood 1987; Lin
and Rood 1996, 1997; Lin 2004). In addition, the prescription is strongly related to
the stability of the numerical method; that is, the ability to represent any credible
estimate at all.

A traditional and intuitive approach to discretization is to use differences calcu-
lated across the expanse of the grid cell to estimate partial derivatives. This is the
foundation of the finite-difference method, and finite-differences appear in one form
or another in various components of most models. Differences can be calculated
from a stencil that covers a single cell or weighted values from neighbouring cells
can be used. From a numerical point of view, the larger the stencil, the more cells that
are used, the more accurate the approximation of the derivative. Spectral methods,
which use orthogonal expansion functions to estimate the derivatives, essentially
use information from the entire domain. While the use of a large stencil increases
the accuracy of the estimate of the partial derivatives, it also increases the computa-
tional cost and means that discretization errors are correlated across large portions
of the domain.

One approach to solving the model equations is to take the continuous repre-
sentative equations and make term-by-term numerical approximations to variables
and their derivatives. There are many approaches to discretization of the dynamical
equations that govern geophysical processes (Randall 2000; Jacobson 2005). Given
that these equations are, in essence, shared by many scientific disciplines, there are
sophisticated and sometimes similar developments in many different fields. One
approach that has been recently adopted by several modelling centres is described
in Lin (2004). In this approach the cells are treated as finite volumes and piecewise
continuous functions are fit locally to the cells. These piecewise continuous func-
tions are then integrated around the volume to yield the forces acting on the volume.
This method, which was derived with physical consistency as a requirement for
the scheme, has proven to have numerous scientific advantages. The scheme uses
the philosophy that if the correlated physics are represented, then the accuracy of
the scheme can be robustly built on a physical foundation. In addition, the scheme,
which is built around local stencils, has numerous computational advantages.

The variables, u, v, T, and QH2O are often termed the resolved or prognostic vari-
ables. Models are often cast into the form that surface pressure, psfc, is the prognostic
equation for conservation of mass. These variables and their gradients are explicitly
represented on the grid. The hydrostatic balance is a strong balance in the atmo-
sphere. Most current global models are hydrostatic and do not include a prognostic
equation for the vertical velocity, w; it is a diagnostic quantity. Cloud resolving
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models and non-hydrostatic models do resolve the vertical velocity. Non-hydrostatic
effects need to be considered if the horizontal resolution is finer than, approximately,
10 km. The importance of the consistent representation of the vertical velocity will
be discussed more fully later in the chapter. Reactive constituents and aerosols can
add to the list of resolved or prognostic variables. Generally, when the term prog-
nostic is used to describe a variable, it means that a conservation equation has been
written for that variable.

In contrast to the resolved or prognostic variables, there are a set of variables
which are diagnosed at the grid scale. An example of this is the cloud mass flux
between vertical layers of the atmosphere associated with the updrafts and down-
drafts of cumulus clouds. There are some variables such as cloud liquid water and
cloud ice which may be either explicitly resolved or diagnosed. This is dependent on
the spatial resolution of the model. If the model has a resolution that is much larger
that the scale of clouds, then cloud water and cloud ice have lifetimes too short to be
advected from one grid box to another. In this case, these quantities are diagnosed
in the column physics. The terminology prognostic and diagnostic are not precise;
they are jargon. Many of the diagnostic variables are, in fact, predicted; therefore,
they have the time-change attribute associated with the term “prognostic.”

There is also a set of derived products associated with the model (see Fig. 1).
For example, it is often productive to interpret atmospheric motions in terms of
vorticity (∇ × u) and divergence (∇ • u). For large-scale, middle latitude dynamics,
using pressure as the vertical coordinate, the relative vorticity, ζ , is related to the
geopotential, �, by the following relationship

ζ = 1

f
∇2� (4)

f is the Coriolis parameter. Geopotential, �, is defined as �(z) = ∫ z
0 gdz′,and is the

variable which represents the height of a pressure surface when pressure, instead of
height, is used as the vertical coordinate. (Geopotential can be related to a param-
eter with height dimension by dividing it by g; this is termed geopotential height.)
The ability of the discretization method and the numerical technique to represent
relationships such as the one described above is an important and underappreciated
aspect of model construction. Lin and Rood (1997) show explicitly both a configura-
tion of variables on the grid and a specification of averaging techniques that assures
that the relationship between geopotential and vorticity is maintained in the discrete
equations.3

Returning to the grids of Fig. 4, the spatial scale of the grid is related to the small-
est scales which can be resolved in the model. As guidance, it takes a minimum
of 8–10 grid boxes to resolve a wave meaningfully. There is transport and mixing
which occurs at smaller spatial scales. Therefore, for both physical and numerical
reasons there is the need to specify a subgrid mixing algorithm. In addition, explicit

3This constraint, therefore, implicitly links the numerical scheme to large-scale, rotationally dom-
inated flows. As resolution is increased, the divergent component of the flow becomes larger.
Therefore, different numerical considerations are expected to be required.
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filters are used to counter errors that arise because of the discrete representation
of continuous fields. Subgrid mixing and filters often take on the characteristics of
diffusion. Their role in atmospheric models is complex and not well quantified. For
instance, filters have been used to remove gravity waves in weather forecasting mod-
els (see chapter Initialization, Lynch and Huang). Given the important role of gravity
wave dissipation in climate models, such a filter minimally complicates the quanti-
tative representation of mixing in the atmosphere.4 There are similar complications
associated with the boundary layer turbulence parametrization. It is important to
recognize that the dynamical core of the atmospheric model includes not only an
approximation to the resolved advection, but also an algorithm for subgrid mixing,
and filters to remedy numerical errors. All these pieces are tightly related to each
other; they are often conflated.

As is apparent from the discussion above, there is not a unique or defined way
to build an atmospheric model. With the benefit of many years of experience, there
are a set of practices which are often followed. These practices evolve as experience
is gained. There are decisions in model building which balance known sources of
errors. There are decisions simply to give the model viable computational attributes.
In many modelling environments there are parts of the code, components, which
have not been altered in many years. There remain many open problems which
need to be addressed and many paths proposed to address these problems. There
are decisions in design and engineering, which contain more than a small element
of art.

5 Consideration of the Observation-Model Interface

The interaction between the model and the observations takes place, ultimately,
through the statistical analysis algorithm (see Fig. 2). There are many aspects of
this interface which are described elsewhere in this book (e.g. see chapters in Part I,
Theory; chapter Constituent Assimilation, Lahoz and Errera; and chapter Land
Surface Data Assimilation, Houser et al.). The model and the observations are for-
mally connected through the observation operator which can be as straightforward
as interpolation routines or as complex as radiative transfer models which convert
between the model variables and, for instance, the radiances that are observed by
satellite instruments (see chapter Assimilation of Operational Data, Andersson and
Thépaut). The model provides information directly to the quality control algorithm.
Information from the analysis may be returned to the model through initialization
algorithms which strive to filter out dynamical scales which are not important to the
short-term forecast. The model and analysis interface can be a one-time passing of

4The initialization routine removes scales, for example, gravity waves that are detrimental to the
short-term forecast. This is, in part, due to the fact that these scales are not well represented in either
the model or the observations. Plus there are spurious sources of small scales related to imbalances
due to scale errors and random error. It is incorrect to state that waves at these scales are not
important to the atmosphere. They are important to both weather and climate. The behaviour of
motions at these scales changes as the resolution of the model changes.
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information, or there are numerous strategies for cycling the information across the
interface to improve the balance in the model. Four-dimensional variational tech-
niques and the incremental analysis update (Bloom et al. 1996) are examples of
such cycling.

This section focuses on those geophysical variables that serve as the interface
variables and where these variables are updated in the component architecture of
the model (Fig. 3).

In order for assimilation to be a robust approach to analysing observations, there
are a number of attributes that need to be considered. For example, are there enough
data to specify the state variables of the atmosphere? If there are not enough observa-
tions to specify the state, then the model predictions are not likely to be a real source
of information. Alternatively, if there are so many observations that the model is
essentially specified by the observations, then a model is not needed for the analy-
sis. The model must be of sufficient quality that it can propagate information from
one observing time to the next. The observed variable must have a time-scale, a life-
time, such that information lasts from one observing time to the next; that is, there
is the possibility of deterministic prediction. For the assimilation to be robust both
the model and observations must contribute to the analysis; the error characteristics
from one source or another should not always dominate the other.

For the atmosphere the geophysical parameter with, by far, the most complete
coverage is temperature (see chapter The Global Observing System, Thépaut and
Andersson). Since World War II there has been adequate coverage from surface
measurements and balloons to support forecast-assimilation systems. With temper-
ature observations it is possible to make credible estimates of winds by both the
transference of information through the equations of motion and the propagation of
information to chronically under-observed or unobserved regions. There is, also, a
substantial body of horizontal wind observations and water vapour observations in
the troposphere. Wind observations are especially important to the definition of the
atmospheric state.

The temperature and wind observations are both primary products of the model;
they are prognostic variables (see Fig. 1). Their spatial and temporal scales are such
that their information is utilized and propagated by the model, especially in mid-
dle latitudes. From Fig. 3, these variables are directly provided by the dynamical
core. The physics of the atmosphere are such that temperature and wind reflect inte-
grated information. Temperatures and winds from assimilated data systems are often
excellent estimates of the true state in the free troposphere and lower stratosphere.

Though there is a conservation equation for water vapour and water is a pri-
mary, prognostic variable, the water vapour distribution is largely determined in the
“moist processes” component of the “physics” (Fig. 3). Because of phase changes,
the spatial and temporal time-scales are both small. The observations of water which
come from weather balloons reflect the small spatial scales of water in the atmo-
sphere. These scales are far smaller than those represented by the model grid. The
sampling network is not always representative of the state as a whole. The error char-
acteristics are also a strong function of environment, i.e., temperature. Therefore,
the representation of water from assimilated data sets is often not of quality for
geophysical use (see chapter Constituent Assimilation, Lahoz and Errera).
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One challenge that must be faced when using the observations from, for instance,
balloons, is mapping the observational characteristics to the model. The model
might be assumed to represent, for instance, the average temperature in a grid box.
The balloon measurement might be appropriately considered a point measurement,
at least relative to the model grid. Again, there is a more straightforward rela-
tion between modelled and observed temperatures and winds than modelled and
observed water vapour.

Since 1979 satellite observations have come to dominate the absolute number
of observations used in assimilation systems (see chapter The Global Observing
System, Thépaut and Andersson). The first variables observed by satellites that
were useful for assimilation are temperature and ozone observations. As compared
with balloon measurements, satellite information is, often, smeared out over several
model grid cells. It took many years to learn how to use satellite temperature obser-
vations effectively, and it was determined that mapping of the model information
to the radiance space observed by the satellite often facilitated the use of observed
information.

Ozone is an interesting variable to examine the model-observation-analysis inter-
face. In some parts of the atmosphere the ozone distribution is determined by
advection. Hence, the primary model information would come from the “dynam-
ics” component (Fig. 3) in these regions. Given quality representation of the
winds, ozone assimilation works well in these regions (see also chapter Constituent
Assimilation, Lahoz and Errera). Other parts of the ozone distribution are primarily
determined by processes contained in the “chemistry” component (Fig. 3). There
are strong spatial gradients in the chemistry; in some places the time-scales are very
short. Further, there are strong interdependencies with other gases, aerosols, and
temperature (see chapter Introduction to Atmospheric Chemistry and Constituent
Transport, Yudin and Khattatov). In these regions the assimilation is dominated by
the chemical sources and sinks and the advection of ozone from other places and
other times has little impact.

The examples outlined above highlight both the ability of the observing system
to define the atmospheric state and the ability of the model to use the information.
Experience to date shows that if the model information comes from the “dynamics”
(Fig. 3) and the spatial gradients are resolved with some accuracy, then the assimila-
tion can be robust. Alternatively, if the model information comes from the “physics”
(Fig. 3) and the spatial and temporal scales are small, then the assimilation is likely
to have large errors and be of little geophysical value.

Since 1979, and especially since the early 1990s, the amount, the quality, and
the span of satellite observations have all grown tremendously. There are many geo-
physical parameters being measured in the atmosphere, and on the land, ocean, and
ice surface. Some of the data, for instance, ocean surface winds have proven to have
large impact in assimilation systems. Other observations have proven more difficult
to use. The same ideas as described for atmospheric assimilation hold; the observing
system must be able to define the state, and the model able to use the observations.
Many of these new observations would have their interface with the model through
the “physics” component. The spatial and temporal scales of the observations as
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compared to their representation within the model are often not compatible. The
composites that make up the variables in the model are often not what the satel-
lite is observing. The greatest challenges in modelling lie in the representation of
“physics,” and one of the primary development paths for model-data assimilation
should be the development of the model variable–observed variable interface.

6 Physical Consistency and Data Assimilation

Data assimilation has had dramatic impacts on the improvement of weather forecasts
(see chapter Assimilation of Operational Data, Andersson and Thépaut). There has
been wide-scale use of assimilated data sets in climate applications with some great
success, as well as identification of a set of problems for which the assimilation
analyses are not up to the application. Problems that rely on correlated behaviour of
geophysical parameters that are not directly measured, i.e., those estimated by the
model parametrizations, are difficult to address. Two examples of such problems,
hydrometeorology and constituent transport, are discussed in chapter Reanalysis:
Data Assimilation for Scientific Investigation of Climate (Rood and Bosilovich).
The rest of this chapter will explore the attributes that distinguish data assimilation
for weather from data assimilation for climate.

Weather forecasting is first and foremost concerned with providing quantita-
tive estimates of a set of key variables which define local atmospheric conditions.
Successful forecasts benefit from the atmosphere being organized into dynamical
structures, e.g. waves and vortices, whose propagation is well represented by both
the equations of the motion and the numerical methods used to approximate their
solution. The observation system can resolve the actual configuration of the dynami-
cal structures at a particular time. In the midst of the forecast-assimilation cycle, the
model also has a configuration of the dynamical structures. Through well-defined
interfaces, the assimilation routine hands a scale-dependent, balanced initial state to
the predictive model, which, in principle, corrects the observed scales in the model
state. The model propagates these features forward in time. As is well established, in
mid latitudes, during winter, predictions of temperature and wind are useful for sev-
eral days. When precipitation is associated with large scale dynamics, the prediction
of precipitation is useful. Whether that precipitation will be rain or snow is a more
difficult prediction. In the tropics and in the summer, when the dynamical features
are of smaller scale and the localized moist processes are important to organiza-
tion of the features, the length of the useful forecast is shorter. Van den Dool et al.
(1990) discuss measures of forecast skill for high, medium and low temporal vari-
ations in the atmosphere, including the tropics and the extra-tropics; Waliser et al.
(1999) discuss the predictability of tropical phenomena and the relationship to their
time-scale.

“Weather” is a subset of the dynamical features that make up the Earth’s cli-
mate. The role of weather is to transport energy, and consequently, water and other
constituents. A good weather forecast is characterized by a good forecast of wind
velocity, which is essentially the flux of momentum. Since the ultimate impact of



The Role of the Model in the Data Assimilation System 371

weather on climate is a transport process, climate is directly related to the divergence
of fluxes.

The atmosphere, especially at mid latitudes, is dominated by rotational flows
close to geostrophic and hydrostatic balance (see Holton 2004). The divergent
component of the flow, that responsible for irreversible transport, is an order of
magnitude smaller that the rotational part of the flow. Alternatively, the part of the
flow most important to the quality of a weather forecast, the rotational part, is an
order of magnitude larger than the part of the flow important for a physically con-
sistent representation for climate, the divergent part.5 While the fluxes are directly
related to resolved variables such as the horizontal wind, the divergence of the fluxes
are related to transience, non-linearity, and, ultimately, the dissipation of dynamical
systems (see Andrews and McIntyre 1978).

A metric of physical consistency is whether or not the conservation equation bal-
ances. That is, when all advection, production and loss terms are accounted for, is an
accurate estimate of the time rate of change of a quantity realized? If the numerical
methods of a model are formulated from a foundation of physical consistency and
numerical accuracy, then for a free-running model the budgets should balance. This
is not achieved without attention to the details. The effects of corrective filters must
be accounted for, and if the filters are a significant part of the conservation equation,
then the numerical scheme must be reconsidered.

There is no reason to expect that the disparate observations of the Earth system
will satisfy a conservation equation. Therefore, when the observation-based correc-
tions are added to the model equations, imbalance is added. The observations act
like a complicated source-sink term. Whether the model and observations in some
time averaged sense satisfy a geophysical conservation equation depends upon many
things. If there is bias between the model and the observations then the data inser-
tion, the analysis increments, will be a forcing term of constant sign. If there is bias
between the models and the observations, then that suggests that the model pre-
dicts a different mean state than is observed. If the biases in the resolved variables
are “corrected” in the assimilation process, then there is an inconsistency between
the values of those “corrected” resolved variables and the values that the physical
parametrizations of the model generate. This inconsistency might have little or no
effect on the short-term forecast; however, the data insertion is constantly forcing
this imbalance, and it will impact those circulations induced by dissipating waves
that are important to the climate (see Hoskins et al. 1985; Holton et al. 1995; Holton
2004). Data insertion will impact where and how resolved scales are formed and
dissipated.

In order to demonstrate the impact of data insertion more clearly and more quan-
titatively, two examples will be developed. The first is based on the assimilation of

5To be clear, it is the estimate of the divergent part of the wind by data assimilation that is respon-
sible for much of the improvement of weather prediction. However, it is true that in many instances
that a reasonable short-term forecast at middle latitudes can be realized by the barotropic vorticity
equation; hence, the non-divergent geostrophic wind. A good weather forecast might be viewed as,
“how fast is the wind blowing in my face?” This is the flux of momentum.
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temperature corrections into the thermodynamic equation. The second is based on
the analysis of the vertical velocity in the transformed-Eulerian mean formulation
of the equations of motion (see Holton et al. 1995; Holton 2004).

Example 1: Observational Correction to the Thermodynamic
Equation

To demonstrate the problem of physical consistency more quantitatively, consider
the thermodynamic equation written with a simple heating rate and a loss rate
proportional to temperature.

DTf

Dt
= ∂Tf

∂t
+ u • ∇Tf = H − λTf (5)

Tf is written to explicitly represent that this is the model forecast temperature. Two
cases will be examined.

Example 1, Case 1: In Case 1 assume that the assimilation acts as a forcing
term which relaxes the modelled temperature to an analysed temperature determined
from the observations. This analysed temperature, for example, might be a gridded,
least squares estimate from a variety of observations. The subscript a represents the
analysis of the observational information.

DTf

Dt
= H − λTf − λa(Tf − Ta) (6)

Note that the time-scale, 1/λ associated with the original equation follows from
physical principles. The parameter 1/λa represents the relaxation time-scale associ-
ated with the analysis. The time-scale from the analysis follows from the design and
assumptions of the data assimilation system (see Swinbank and O’Neill 1994). This
appears as an additional forcing term; in the construct of Fig. 3, a “physics” term
that is not in the model equations. Therefore, the estimated solution of the equation
for Tf evolves in the presence of this additional forcing term.

The equation can be rearranged as

DTf

Dt
= H + λaTa − (λ+ λa)Tf (7)

The analysis can be viewed as a change to the loss rate. If the observations are biased
relative to the forecast, then the observations are in the time average, a heating term.
If the observations are unbiased in the time average, then this heating term averages
away; still however, the loss rate is changed. The conservation equation is altered.

Example 1, Case 2: Case 2 implements the data-driven correction to the model
equation by correction of the prognostic variable. That is, Tf is replaced with a cor-
rected temperature which is Tf + δTa. On substitution into Eq. (5) and re-arranging
the terms:
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∂Tf

∂t
+ u • ∇Tf − H + λTf = −(

∂(δTa)

∂t
+ u • ∇(δTa)+ λ(δTa)) (8)

The terms on the left side are the model equations, which balance to zero in a
free-running simulation. The terms on the right side represent an additional forcing
to the model associated with the data insertion.

Under the condition that the model equation is satisfied, the left side of Eq. (8) is
zero, then the following equation is obtained.

D(δTa)

Dt
= −λ(δTa) (9)

In this case, the increment from each data insertion relaxes to zero with time.
There are two intuitive time-scales to compare with the cooling time-scale 1/λ.

The first is the advective time-scale, which is a comparison of physically derived
time-scales. This would divide the atmosphere into regions that are dominated by the
“physics” and the “dynamics” as well as transition regions where both are important.
The second time-scale is the time-scale associated with the frequency of insertion
of observational information. From the point of view of “correcting” the model,
the balance of these time-scales provides a mechanism to understand the system
performance. In this case, following a parcel, the data insertion is a succession of
corrections. These corrections relax to zero; hence, the state desired by the model.
However, as the system is relaxing, the slow time-scales in the model are being
constantly impacted by the observations. This impact lasts far longer than the direct
impact of a single observation on the analysis increment. If there is bias between the
model and the observations, then this represents a forcing to a new equilibrium state.
The data insertion is, also, a source of variability at the time-scales of the observing
system.

Another way to think about the role of the model in the assimilation system is to
imagine the model as an instrument “observing” a suite of observations that describe
the atmosphere, or more generally, the Earth. Some parts of the model directly
observe this suite of observations and are well specified. Other parts of the obser-
vation suite are indirectly observed, and there are some unobserved variables which
are diagnosed as part of the model “circuitry.” The influence that the observations
have on these indirectly determined and unobserved variables is strongly depen-
dent on the design of the model and how information flows through the model. It is
strongly dependent on the logic and construction of the numerical parametrizations.

To illustrate this, consider the component architecture of Fig. 3. Since this fig-
ure represents a solution to a set of conservation equations, then the model can be
viewed as residing within a closed system. The correction of the model by observed
information makes this an open system; the tenets of the conservation principle are
no longer true. For the climate, which is the accumulation of the processes repre-
sented in the system, this insertion of information (forcing) from outside the system
must be assumed to have consequences on the basic physical processes.

Figure 5 is a reduced version of Fig. 3; the box around the components shows that
the model is a closed system. The coupler determines the transfer of information
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Fig. 5 Schematic of model
as a closed system, which
accepts forcing from outside
the system. Balance here is
represented symbolically as if
the model was an electrical
circuit with a voltage
difference across the
“coupler.” agcm stands for
“atmospheric general
circulation model”

between the “physics” and the “dynamics.” There are numerous time and space
scales present in the coupler, as well as those intrinsic to the “dynamics” and the
“physics.” If the model is viewed as an electronic instrument, as posed above, then
there is a network of resistors which determine flow of signal through the system.
There are capacitors that represent the time-scales of processes. The balance across
the coupler is represented as a voltage difference, Vdyn–Vphy. The two data insertion
scenarios described above are illustrated in Fig. 5. They both explicitly bring in
information from outside of the system and to different sides of the coupler. They
both would change some aspect of the system, represented symbolically by a change
in the voltage difference across the coupler.

Example 2: Horizontal Divergence and the Vertical Wind

The two cases in Example 1, above, used a simple form of the thermodynamic equa-
tion. The thermodynamic variables have the property of being in local equilibrium.
However their relationship to the wind fields is not always local; the winds are
related to the spatially integrated thermodynamic state. There is the possibility of
action at a distance as momentum that is dissipated in one region can induce circu-
lations which impact distant regions (see Hoskins et al. 1985; Holton et al. 1995;
Holton 2004). Therefore, errors in the wind field are expected to impact the analysis
in a different way than errors in the temperature field.

As pointed out above, for many years atmospheric observations were domi-
nated by temperature measurements. Winds were estimated from the temperature
observations. Assume that the horizontal winds are corrected by the temperature
observations by transfer of information through the assimilation system.
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uc = uf + δ(u(δTa)) and vc = vf + δ(v(δTa)) (10)

The subscript c is the corrected forecast; subscript f is the forecast. u(δTa) and
v(δTa) are the corrections to the velocity field related to the correction in the temper-
ature field that comes from the analysed observations. Through the mass continuity
equation, the divergence of the horizontal wind is related to the vertical gradient
of the vertical velocity. The divergence of the horizontal wind field, therefore, is
the primary quantity that connects the thermodynamic equation and the momentum
equations in the atmosphere (see Eq. 1 and Holton 2004). Schematically, the vertical
velocity is a key variable connecting the “dynamics” and “physics” components of
the model (see Fig. 3). Hence the vertical velocity is a key variable in the coupling
of the “dynamics” and the “physics.”

As an example, consider large-scale, mid latitude dynamical features. Scale anal-
yses in the atmosphere shows that for these dynamical systems the divergence of the
horizontal wind is an order of magnitude smaller than either of the individual terms
that make up the divergence. That is, for a representative velocity scale U and length
scale L

∂u

∂x
+ ∂v

∂y
scales as 0.1

U

L
(11)

The divergence of the assimilation-corrected horizontal wind is

∂uc

∂x
+ ∂vc

∂y
= ∂uf

∂x
+ ∂vf

∂y
+ ∂(δ(u(δT)))

∂x
+ ∂(δ(v(δT)))

∂y
(12)

A 10% “correction” in the wind is, potentially, a 100% error in the divergence. It
follows that there are similarly large errors in the vertical velocity.

As stated in the previous section, the vertical velocity is usually diagnosed in
global models. The vertical velocity can, in general, be diagnosed in two ways.
Following Holton (2004), in pressure coordinates, where ω ≡ Dp

Dt is the vertical
velocity,

ωk(p) = ωk(psfc)−
p∫

psfc

(
∂u

∂x
+ ∂v

∂y
)pdp (13)

The subscript k indicates that this velocity is diagnosed from the kinematics of the
flow field. psfc is the surface pressure.

The vertical velocity can also be diagnosed from the thermodynamic equation.
Again, in pressure coordinates and following Holton (2004), assuming the diabatic
terms, J, can be ignored,

ωT (p) = S−1
p

(
∂T

∂t
+ u

∂T

∂x
+ v
∂T

∂y

)
(14)
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Where Sp is the static stability parameter in pressure coordinates. The subscript T
indicates this estimate of the vertical velocity is from the thermodynamic equation.
In this simplified case the consistency question would ask whether or not these two
estimates of the vertical velocity are equal. Experience shows that this is not the case
in assimilated data sets, and the errors in the divergence dominate the calculation in
ωk.

To illustrate this problem further, and to make the connection to the climate prob-
lem clearer, it is useful to consider the transformed Eulerian-mean formulation of
the equations of motion (see Holton et al. 1995; Holton 2004). This formulation
has proven a powerful paradigm for understanding the general circulation and con-
stituent transport and is an important example of the physical constraints discussed
in Fig. 1. The transformed Eulerian-mean approximates the compensating transport
of the waves (represented by a prime) and the Eulerian-mean meridional circula-
tion (represented by an over bar). In this case the diabatic terms cannot be ignored,
and one estimate of the residual mean vertical velocity,w∗, is called the diabatic
(subscript d) vertical velocity and should equal

w∗d(z) = RJ̄

HN2cp
(15)

For convenience, the vertical coordinate, z, is log pressure-height. N2 is the
square of the buoyancy frequency, and H is a constant scale height ~7 km.

By definition the corresponding analogue to the kinematic estimate is

w∗k (z) = w+ R

H

∂(v′T ′/N2)

∂y
(16)

In this case the question of consistency comes to whether or not w∗k = w∗d is true.
In general this equality is not realized from assimilated data sets, even in the

relatively simple case of the stratosphere (see Schoeberl et al. 2003).
Finally, this form of the exposition of the concepts of physical consistency is

illustrated in Fig. 6. The value of the vertical velocity presented to the coupler
should be the same from the diagnostics via the “physics” and “dynamics.” If this is
not the case, then the assimilation is physically inconsistent. This particular expo-
sition through the vertical velocity is perhaps the most relevant and important in
data assimilation. It is relevant not only to climate and chemistry transport, but to
weather. It poses a physical constraint for assimilation – can physically consistent
thermodynamic and kinematic vertical velocities from the model be maintained in
the assimilation? Or more generally – can the physical balance of the model be
maintained in the presence of the assimilation of observations? This is a formidable
task.
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Fig. 6 Schematic of model
as a closed system, which
accepts forcing from outside
the system. Balance here is
represented as consistency
between vertical velocity
estimates coming from the
“physics” or “dynamics”
components. agcm stands for
“atmospheric general
circulation model”

7 Summary

This chapter introduced the fundamental ideas that a scientist needs to understand
when building or using models in Earth system science research. Rather than focus-
ing on technical aspects of modelling and data assimilation, the chapter focused on
a number of underlying principles. These principles, if adhered to, will allow the
models and model products to be used in quantitative, data-driven research.

With regards to stand-alone models in the absence of data assimilation, it was
emphasized that the underlying physics should be well represented. Specifically, the
need to represent correlated behaviour between geophysical parameters was empha-
sized. A strategy for meeting such a design criteria is to assure that the discrete,
numerical approximation to the continuous equations honours the balance condi-
tions that are used in the development of theoretical constructs. This emphasizes
“consistency,” perhaps at the expense of formal numerical accuracy, as accurate
numerical techniques do not guarantee physical consistency. Data assimilation was
introduced as the addition of a forcing term to the model that is a correction based on
observations. This additional forcing term changes the balance of forces. Therefore,
budgets calculated from assimilated data are not expected, a priori, to be robust for
geophysical applications.

The role of the model in data assimilation was discussed. It is the assimilation
of observational information into the predictive-diagnostic model that sits at the
foundation of the value and the potential value of the information produced by data
assimilation. In applications ranging from mapping, to improved predictions, to gen-
eration of unobserved geophysical variables, data assimilation stands as an essential
ingredient of modern Earth system science. The future development of data assimi-
lation includes both the improvement of the models and the better use of information
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provided by the model. Model improvements include a more robust link in the mod-
els between resolved scales and subgrid physical parametrizations. Specifically, with
regard to the link to data assimilation, the interface between the subgrid information
and the observations needs more attention (see Zhang and Lin 1997). Better use of
model information includes using the information developed by the model that con-
nects the correlative physics important to the climate – how is this, first, preserved,
then improved, when data is inserted into the model?

Several frames of reference were offered for thinking about models, model
construction, and physical consistency. A summary version of these concepts fol-
lows. There are many time-scales represented by the representative equations of
the model. Some of these time-scales represent balances that are achieved almost
instantly between different variables. Other time scales are long, important to, for
instance, the general circulation which will determine the distribution of long-lived
trace constituents. It is possible in assimilation to produce a very accurate repre-
sentation of the observed state variables and those variables which are balanced on
fast time scales. On the other hand, improved estimates in the state variables are
found, at least sometimes, to be associated with degraded estimates of those fea-
tures determined by long time-scales. Conceptually, this can be thought of as the
impact of bias propagating through the physical model (see Dee 2005). With the
assumption that the observations are fundamentally accurate, this indicates errors in
the specification of the physics that demand further research. The identification, the
management, the correction, and the elimination of sources of bias are crucial for
improving the physical robustness and self-consistency of assimilated data sets.

Acknowledgments I thank Minghua Zhang and Ivanka Štajner for reviewing this chapter.
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Numerical Weather Prediction

Richard Swinbank

1 Introduction

Numerical weather prediction (NWP) entails the use of computer models of the
atmosphere to simulate how the state of the atmosphere is likely to evolve over a
period of several hours up to 1 or 2 weeks ahead. This approach is central to modern
operational weather forecasting: it is the improvements in NWP systems that have
led to continual improvements in the skill of weather forecasts over recent decades.

The essential steps in NWP are:

• Making observations of the current weather;
• Assimilating the observations into a numerical model, to represent the current

atmospheric state;
• Integrating the model to simulate the future evolution of the atmosphere;
• Generating products to inform users about the forecast weather.

Many detailed aspects of this process are described elsewhere in this book (Part I,
Theory; Part II, Observations; and companion chapters in Part III, Meteorology and
Atmospheric Dynamics). The aim of this chapter is to describe how the processes fit
together to produce operational weather forecasts.

In this chapter we will review the development of NWP techniques that have con-
tributed to this major improvement in forecast skill, and mention some techniques
that should lead to future improvements. We will describe the main stages in the
NWP process, described in more detail elsewhere in the book, and see how they are
applied in the context of operational weather forecasting. This, and other, chapters
in the book outline the development of data assimilation techniques. Coupled with
the increasingly sophisticated use of satellite observations, this has led to major
improvements in the quality of initial data for weather forecasting. At the same
time, increases in computer power have permitted major advances in numerical
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Fig. 1 Root mean square (RMS) error in mean sea level pressure (hPa) over the North East
Atlantic, illustrating how forecast errors have decreased over the past 40 years. Forecast errors
are shown for 3 different forecast ranges: 24 (blue), 48 (green) and 72 (blue) h; for reference the
T+72 persistence error is shown in magenta

weather prediction models, including more sophisticated physical parametrizations,
numerical techniques and improved resolution. These factors have led to major
improvements in forecast skill. Figure 1 illustrates how forecasts of mean sea level
pressure have improved over the last 40 years (see also Fig. 4 in chapter Assimilation
of Operational Data, Andersson and Thépaut). By this measure, the current skill of
the 3-day forecast is the same as the skill of the 1-day forecast less than 25 years
ago.

This chapter covers the use of NWP for a variety of applications, at different spa-
tial scales and at different time ranges. To meet this range of requirements, national
meteorological services often run a range on numerical models, from high resolu-
tion local models for very short-range prediction through to global models used for
medium range forecasting (up to around 2 weeks) and beyond. To illustrate this
chapter, we draw upon examples from the UK Met Office and other meteorological
services.

2 Observations

2.1 Operational Observing System

The primary input to NWP systems comes from regular measurements made by
many meteorological instruments which are deployed worldwide to form a Global
Observing System, GOS. Since the middle of the nineteenth century, a network of
meteorological stations has been established to take regular measurements of atmo-
spheric pressure, temperature, humidity, wind and other weather elements for use by
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weather forecasters. Later, techniques were developed for making measurements of
the upper levels of the atmosphere, using balloon-borne instruments. Radiosondes
came to be a crucial part of the observing system following the International
Geophysical Year (IGY) in 1957.

A further impetus to the development of the observing network came around
the time of the First GARP (Global Atmospheric Research Programme) Global
Experiment (1978/1979), when satellite observations started to become regularly
used for operational weather forecasting. These observations included both cloud
track winds and satellite temperature soundings. In addition to these observation
types, the observing network also includes observations from aircraft, ships and
drifting buoys. Satellite measurements include scatterometer measurements of sur-
face winds, sea surface temperatures, and soundings of temperature and humidity
derived from GPS (Global Positioning System) signals. Many of these observation
types are described in more detail in chapter The Global Observing System (Thépaut
and Andersson).

The dissemination of these observations is coordinated by the WMO (World
Meteorological Organisation) WWW (World Weather Watch) programme. The
data are exchanged between meteorological centres using the GTS (Global
Telecommunication System). This ensures that meteorological data from all over
the globe are exchanged in a timely basis, for use in operational weather forecasts.

In order to get the most up to date forecasts possible, operational weather fore-
casts need to be run very close to real time. So, each forecast is necessarily based
on only those observations that are received within a few hours of when they were
taken. This can be a particular constraint for satellite data, since the measurements
may be relayed to ground stations only once an orbit. The ground systems to support
operational weather satellites are designed to support this near real time require-
ment. It is also often helpful to process data from research satellites in order to
make use of the novel types of measurements, and assess their benefit in an opera-
tional NWP framework (see chapter Research Satellites, Lahoz). For that reason, it
is beneficial to arrange for a fast delivery stream for research satellite data.

Once the observations are received at operational NWP centres, they are collected
in observation databases. At the start of an operational data assimilation run, all the
observations from the relevant time window are extracted from the database and
prepared for the data assimilation system.

2.2 Quality Control

Each of the observations is subject to a variety of possible errors; there may be
random measurement errors or systematic biases resulting from calibration errors.
One also needs to account for the fact that observations at particular location may not
be entirely representative of the surrounding area; these types of errors are usually
referred to as errors of representativeness. Additionally, there may be serious errors
resulting from instrument malfunction or transmission errors (for example); these
are often referred to as gross errors. It is important that any observations suffering
from gross errors are screened out and not used by the assimilation, otherwise they
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could seriously degrade the quality of the weather forecast. This is the purpose of
quality control, the subject of this subsection. In addition, any systematic biases
should be removed; the bias correction of data is treated in detail in chapter Bias
Estimation (Ménard).

Perhaps the most important part of pre-processing observations ready for assim-
ilation is the quality control step. The aim is to detect all observations that have a
high probability of suffering from gross errors. There are a number of checks that
are part of this process, for example:

• Is the observation self consistent? For example, in a radiosonde sounding, is the
vertical temperature structure physically plausible?

• Is the observation consistent with earlier measurements from the same observing
station?

• Is an observation consistent with its neighbours? This “buddy check” can often
highlight gross errors such as incorrect locations in ship reports;

• Is the observation consistent with a short-range forecast, often referred to as the
background state? The background state reflects our a priori knowledge of the
current state of the atmosphere.

One possible approach, as used at the Met Office, is to assess the “probability
of gross error” (PGE) for each observation (Dharssi et al. 1992). Each observation
is initially assigned a PGE value, dependant on the observation type. For example
we expect about 1.5% of SYNOP pressure observations to be “bad” and therefore
assign them an initial PGE of 0.015. The estimated PGE is then updated as each
of the relevant checks is carried out. At the end of the process, an observation is
rejected if the PGE is greater than 0.5.

In the Met Office system, the buddy check compares each observation against
up to about 12 neighbouring observations, again updating the PGE. Surface obser-
vations are compared with other surface data. Radiosondes, aircraft and cloud-track
winds are each compared with other observations of the same type, and radioson-
des are compared with aircraft data. In general, observations with the same callsign
are not allowed to buddy check each other, since they are likely measured by the
same instrument, although this criterion is not applied to cloud-track winds. The
buddy check compares differences from the background, rather than observed val-
ues themselves, e.g. two ships both 5 hPa lower than background will buddy check
well, even if one is in the middle of a depression and the other has pressure 10 hPa
higher 100 km away.

For the background check, the observations, which can be represented by the
vector y, are compared with the equivalent values derived from the background state,
H(xb), where xb denotes the background state and H the (non-linear) observation
operator, which maps a model state to observation space. The innovation vector
y−H(xb) is therefore a measure of the departure of each observation from a common
atmospheric background state.

One approach is to consider the expected probability distribution function (PDF)
of the observation minus background (or short-term forecast) differences. Generally,
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one would expect this PDF to be close to a Gaussian distribution with a width
reflecting both the instrument errors and errors of representativeness. However,
for observations affected by a gross error, the observation minus background PDF
would be expected to be very broad and shallow. So, if the observation minus back-
ground difference is small, one can infer that the observation is likely to belong
to the set of observations without gross errors, and where the difference is large
the observation is likely to be affected by a gross error. For any particular obser-
vation minus background differences, Bayesian statistics can be used to update the
estimated PGE. For more details of the practical application of these concepts, see
Lorenc and Hammon (1988).

These concepts are taken further in the variational quality control approach,
also known as VarQC (see chapter Assimilation of Operational Data, Andersson
and Thépaut). A modified observation error probability density function (the
standard PDF plus a gross error distribution) is used in the calculation of the
observation term in the cost function (Jo, as discussed below). Because the gra-
dient of Jo is very small, a very low weight is given to an observation that is
a long way from the background. One common approach is to turn VarQC off
for the first few iterations of the variational assimilation (described in Sect. 3).
When VarQC is turned on for later iterations, the bad data are essentially
ignored.

3 Data Assimilation

3.1 Introduction

The aim of this section is to give an overview of the various data assimilation
methods used for operational NWP. While this section describes the application
of different assimilation methods to NWP, the reader is referred to other chapters of
this book for mathematical details (see chapters in Part I, Theory). We will give an
overview of the various approaches used for the objective analysis of meteorologi-
cal data, culminating with an account of the state-of-the-art in meteorological data
assimilation. For the interested reader, Kalnay (2003) gives a good overview of the
historical development of data assimilation methods.

In the very early days of objective analysis of meteorological data, the approach
used was to fit polynomial functions to the observation values (Panovsky 1949).
Gilchrist and Cressman (1954) developed the method further by introducing a region
of influence for each observation, and they suggested the use of a background field
(from a previous forecast). In the approach of Bergthorsson and Döös (1955) the
background field plays a more central role – their technique was based on an analysis
of observation minus background differences, rather than the observation values
themselves. They attempted to optimize the weights given to each observation based
on the accuracy of different observation types, as compiled on a database. Later vari-
ations on the technique involved multiple iterations of the analysis – the Successive
Correction Method (e.g. Cressman 1959).
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Perhaps the most important breakthrough was the adoption of statistical inter-
polation techniques, which came to prominence in meteorology with the book by
Gandin (1963). This put the hitherto pragmatic approach to data analysis onto a
proper statistical basis, usually referred to as Optimal Interpolation (or OI). The
weights given to the observations were properly related to the observation errors. At
the same time, the background field was no longer just the starting point for the cal-
culation of the analysis, but instead was recognized as being another useful source
of information, with its own error characteristics. Arguably, this is the key idea in
the development of data assimilation.

Once computer power made them feasible, data assimilation schemes based on
OI were implemented in several operational centres in the late 1970s, e.g., at the
European Centre for Medium-Range Weather Forecasts, ECMWF (Lorenc 1981)
and the Met Office (Lyne et al. 1982). However, the first implementations had to
make major approximations to make the calculations feasible. The ECMWF scheme
was based on small analysis volumes, while in the Met Office scheme a maximum
of 8 observations influenced each grid-point. These drastic simplifications meant
that initial implementations of OI were, in fact, rather suboptimal. In later years this
gave the term “Optimal Interpolation” a rather bad name within the meteorological
community.

Over about the next 20 years, data assimilation schemes continued to develop,
using various approximations to solve the basic statistical equations (see Lorenc
1986). Later analysis schemes provided improved approximations. For example,
the Analysis Correction scheme of Lorenc et al. (1991) is, in a sense, a hybrid
between OI and the successive correction method. However the key breakthrough
has likely been the adoption of variational methods to determine the solution to the
OI equations (e.g. Le Dimet and Talagrand 1986).

3.2 Variational Methods

The principle underlying variational data assimilation schemes is that one can con-
struct a global cost function J to quantify the mismatch between a model state vector
x, and the available information, comprising the background state xb (i.e., the best
prior estimate of the model state) and (new) observations y (T denotes transpose):

J = 1

2
[x− xb]TB−1[x− xb]+ 1

2
[y−H(x)]TR−1[y−H(x)] (1)

The analysis xa is defined as the vector x that minimizes the cost function, i.e., the
model state that best fits all the available information. In this equation, R denotes
the error covariance of the observations (taking into account errors of representa-
tiveness) and B the error covariance of the background state. The two terms in Eq.
(1) are sometimes denoted Jb and Jo, respectively the background and observation
components of J. This form of variational data assimilation is referred to as 3D-
Var (three-dimensional variational), since the equations are solved in three spatial
dimensions at a single time. While based on the same statistical considerations as
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OI, variational data assimilation does not require the major simplifications employed
by the early OI schemes.

The first operational implementation of a three-dimensional variational data
assimilation scheme was the Spectral Statistical Interpolation (SSI) system of the
US National Centers for Environmental Prediction (NCEP) (Parrish and Derber
1992). This was followed by implementation at ECMWF a few years later (Courtier
et al. 1998) and many other operational NWP centres since then.

Because of the large number of variables, variational data assimilation schemes
do not perform the minimization of J in the model space but, instead, use a
transformed or control space. The elements of this control space are the control
variables; these control variables are chosen in such a way that errors in each
control variable can be assumed to be uncorrelated with one another. For exam-
ple, in the SSI system, the leading control variable is stream function representing
non-divergent flow. Additional control variables represent the divergent flow, unbal-
anced pressure (the component of the mass field not in balance with the wind
field) and humidity. The background error covariance B is defined using a series
of control variable and spatial transforms (Parrish and Derber 1992; Lorenc et al.
2000).

It is generally not straightforward to estimate the error covariance values that
populate the B matrix. In the first implementation of SSI, Parrish and Derber
(1992) suggested that the forecast errors could be estimated from the differ-
ence between pairs of forecasts that verify at the same time. Although this can
only give the covariance of the forecast difference, it was found these esti-
mated covariances gave better results than previous estimates computed from
forecast minus observation differences. In view of its success, this so-called “NMC
method” was widely adopted by operational NWP centres. However, some more
satisfactory ensemble-based techniques are now coming into use, as described
later.

The NASA Data Assimilation Office (now Global Modeling and Assimilation
Office, GMAO) developed an alternative approach, known as PSAS (Physical-space
Statistical Analysis System; Cohn et al. 1998). PSAS can be considered to be the
dual of 3D-Var, solving the same statistical problem as 3D-Var in observation space,
then mapping the solution to model space. PSAS calculates the analysis using
the following equation (where H is the linearization of the observation operator
H about the background trajectory – see chapter Mathematical Concepts of Data
Assimilation, Nichols):

xa = xb + BHT [HBHT + R]−1[y−H(xb)] (2)

The observation-space approach of PSAS is cheaper than the conventional
model-space approach if the number of observation values (the dimension of obser-
vation space) p is much smaller than the dimension of the model state space n.
However, the relatively large value of p in operational systems (resulting from
the vast quantities of satellite data) means that the PSAS approach is now signif-
icantly less competitive than 3D-Var. Reflecting this consideration, the GMAO has
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now adopted the NCEP Gridpoint Statistical Interpolation (GSI) scheme (Wu et al.
2002), which was developed from the SSI scheme.

The 3D-Var approach assumes that all observations are valid at the same time,
even though they are generally taken over a time window, of typically 6 h. In
3D-FGAT (First Guess at the Appropriate Time), a variant of 3D-Var, the Jo

term is calculated by comparing observation values with the background at the
relevant observation times. 3D-FGAT goes some way to improving the use of
observations when the weather is changing quickly, in a relatively inexpensive
manner.

A full treatment of the time variation of both the observations and model state is
afforded by four dimensional variational data assimilation (4D-Var). In this algo-
rithm the cost function minimization is carried out over a time window that is
typically 6 or 12 h for NWP. The Jo terms takes account of the misfit between
the observations yi and the model state xi at each time-step i in the assimilation
window:

J = 1

2
[xo − xb

o]TB−1
o [xo − xb

o]+ 1

2

N∑
i=0

[yi −H(xi)]
TR−1[yi −H(xi)] (3)

In principle, the model state xi is defined by integrating the full non-linear NWP
model from the initial state at the beginning of the time window; the integration of
the non-linear model M over one time-step is shown by xi = Mi(xi−1). However,
for a practical solution of the 4D-Var problem, we need to adopt an incremental
approach and work in terms of perturbations δx to the first-guess non-linear model
trajectory (Courtier et al. 1994). The time evolution of the perturbations can be
estimated using a linear model, M, to approximate M: δxi = Miδxi−1. The adjust-
ment required to the initial conditions is estimated using the adjoint of the linear
model (see chapter Variational Assimilation, Talagrand). This cycle of a forward
integration of the linear model and the backward integration of the adjoint model
is repeated many times to minimize the cost function. The integration of the non-
linear model may be repeated to get an updated version of the full model trajectory,
followed by further iterations of the linear and adjoint models. This is referred to as
a multiple outer loop approach.

The 4D-Var method is the current state-of-the-art in operational data assimila-
tion, and is used by many of the leading operational NWP centres. The version of
4D-Var that we have just described assumes that the model is perfect, i.e., it is a
strong constraint. However, model errors can be significant, particularly over longer
assimilation time windows. To address this issue, weak constraint versions of the
4D-Var algorithm are being developed, including simplified representations of the
effect of model errors (see Trémolet 2007).

As part of the data assimilation process, it is generally beneficial to control
spurious high-frequency oscillations in numerical forecasts. A popular method of
controlling this noise is normal mode initialization (Machenhauer 1977). More
recently, Lynch and Huang (1992) introduced an alternative method of initialization
known as digital filter initialization (see chapter Initialization, Lynch and Huang).
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In the context of 4D-Var, it is reasonably straightforward to apply a digital filter as
a weak constraint. An additional term (usually denoted Jc) is added to the standard
cost function equation, Eq. (1), to penalize departures of the model state x from the
filtered values of that state. Gauthier and Thépaut (2001) applied this to the 4D-Var
system at Météo-France, and it has also been applied at other centres including the
Met Office.

An alternative approach to data assimilation is the Kalman filter. This is formally
similar to the statistical assimilation methods previously discussed, but the major
difference is that the forecast error covariance Pfis evolved using the linear model
M itself, rather than approximating it as a constant covariance matrix B. The Kalman
filter equations are:

xf
i = Mi−1xa

i−1, (4a)

Pf
i = Mi−1Pa

i−1MT
i−1 +Qi−1, (4b)

xa
i = xf

i +Ki

[
yi −Hxf

i

]
, (4c)

Ki = Pf
i HT

i

[
Ri +HiP

f
i HT

i

]−1
, (4d)

Pa
i = [I−KiHi] Pf

i . (4e)

Starting with an analysis, M is used to produce a forecast at the next time-step,
Eq. (4a). In parallel with this, Eq. (4b) is used to derive the forecast error covariance
Pf from the previous analysis error covariance and the model error covariance Q.
Equation (4c) is the analysis step, using the weight matrix (Kalman gain) defined in
Eq. (4d); this step is exactly the same as in PSAS, see Eq. (2). Equation (4e) updates
the error covariance to take account of the assimilated data. The basic Kalman filter
uses a linear model M, and can be shown to give the same analysis xa as the cor-
responding 4D-Var scheme. The Extended Kalman filter is a development of this
scheme that uses a non-linear modelM, and might be viewed as the “gold standard”
of data assimilation.

For the large problems that need to be tackled for operational NWP, the cost of the
covariance evolution Eqs. (4b) and (4c) is prohibitive. However, the Kalman filter is
applied in various approximate forms for example in some constituent assimilation
work (see chapter Constituent Assimilation, Lahoz and Errera) and in the Ensemble
Kalman filter discussed below.

3.3 Assimilation of Satellite Soundings

Satellite observations are, generally speaking, measurements of radiation at a
range of different wavelengths. Since these measurements are related to atmo-
spheric model variables in rather complex ways, the treatment of satellite soundings
is often closely tied to the data assimilation system. Chapter Assimilation of
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Operational Data (Andersson and Thépaut) gives a much more detailed account
of the assimilation of satellite data but, for completeness, we summarize some of
the key issues here.

The most basic approach to the assimilation of satellite data is to assimilate
retrievals, e.g., temperature profiles. These retrieved data are often supplied by the
agencies that provide the satellite instruments. When satellite data first started to be
assimilated for NWP, it was common to use retrievals, and assimilate them in much
the same way as profiles measured by, for example, radiosondes. However, there
are a number of disadvantages to this approach. First, the error characteristics of
retrievals are generally poorly known; it is hard to track the errors (and particularly
their correlation) through all the steps of the calculation. Second, it is likely that the
retrieval product will suffer from a poorer prior estimate of the atmosphere than the
background data from an NWP model; assimilating the retrievals could even have
a negative impact. Rodgers (2000) gives a thorough account of the application of
inverse methods to atmospheric soundings.

An improved approach is the use of locally produced retrievals. A 1-D vari-
ational approach can be used to derive retrievals using background information
from profiles extracted from a recent short-range forecast. While the prior infor-
mation in this case would generally be very accurate, the errors in the retrieval may
still be hard to characterize. In particular, it may be hard to avoid the assimila-
tion using the forecast background twice: once directly and once indirectly via the
retrieval.

Variational techniques allow the direct assimilation of radiance observations, and
therefore avoid the need for an explicit retrieval step. For radiance assimilation, the
observation operator H – see Eq. (1), incorporates a (simplified) radiative transfer
model that maps the atmospheric profile to radiance space. The forecast background
provides the prior information to supplement the radiances. Furthermore, the inver-
sion is further constrained by the assimilation of other observations. This procedure
also has the advantage that radiance errors are much easier to characterize than the
retrieval errors.

For NWP, a pragmatic approach to the assimilation of satellite data is adopted.
For vertical temperature soundings, it is much easier to characterize the radi-
ance errors, and much effort has been spent to develop suitable radiative transfer
models, so radiance assimilation is the best approach. However, there are still
some situations where the assimilation of retrievals may be the most practical
approach; for example, it is much more straightforward to assimilate winds derived
from tracking clouds between satellite images than to assimilate the image data
themselves.

3.4 Ensemble Assimilation Methods

One promising assimilation method that is not yet in widespread use is the Ensemble
Kalman filter (EnKF) – see chapter Ensemble Kalman Filter: Current status and
potential (Kalnay). The principle is that an ensemble of m data assimilation cycles
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are carried out simultaneously, where m is chosen to be sufficiently large to enable
the ensemble to give a good representation of the probability distribution of pos-
sible atmospheric states. All the ensemble members assimilate the same set of
observations, but in order to keep them independent a different set of random
perturbations is added for each ensemble member. Rather than explicitly mod-
elling the forecast error covariance evolution (as in an Extended Kalman filter),
the evolution of the forecast error covariance is calculated from the ensemble
spread.

A particularly promising approach is the use of a localized Ensemble Kalman
filter (e.g. Ott et al. 2004). With a limited number of ensemble members m, the error
covariance estimated from the ensemble is very likely to indicate spurious long-
distance correlations. As a result, assimilating an observation at a particular location
will lead to spurious analysis increments at some distance. To avoid this problem,
an Ensemble Kalman filter may be run for smaller (perhaps overlapping) analysis
volumes. An alternative approach is to use localization functions to multiply the
correlations derived from the ensemble to ensure that they do not spread more than
a few 1,000 km.

An Ensemble Kalman filter is very much cheaper than an Extended Kalman filter.
At the same time, it does not require the development of a linear and adjoint model.
Research at the Canadian Met Service (e.g. Houtekamer and Mitchell 2005) has
shown better performance than 3D-Var, and approaching the performance of 4D-
Var.

Rather than replacing 4D-Var with ensemble methods, some operational NWP
centres are considering a hybrid assimilation method whereby an ensemble
approach is used to estimate the background error covariances for use in a 4D-Var
system. Currently, ECMWF uses an ensemble data assimilation system to estimate
the climatological background error covariances used in their 4D-Var operational
system (Fisher 2003).

The next logical step is to derive the background error covariances from a current
real time ensemble, allowing representation of the actual flow-dependent “errors
of the day”. However it is not possible to make an accurate estimate of the error
covariances without using a rather large ensemble. To circumvent this problem,
Hamill and Synder (2000) ran experiments with a simple 3D-Var data assimila-
tion system, using a judicious blend of climatological error covariances with those
estimated from short-range ensemble forecasts. They showed that this hybrid sys-
tem gave improved performance compared with either using just the climatological
errors or just the ensemble-based errors. More recently, Wang et al. (2008a, b)
have developed a hybrid Ensemble Transform Kalman filter (ETKF) – 3D-Var data
assimilation for the WRF (Weather Research and Forecast) model, and confirmed
the benefit of the hybrid approach, particularly in data sparse regions. The hybrid
technique could also improve on 4D-Var assimilation systems; although 4D-Var
systems implicitly evolve the background error covariances during the assimilation
time window, they are still limited by the static specification of error covariances
at the start of the window. Ensemble methods are discussed further in the next
section.
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4 Numerical Modelling

4.1 Development of Numerical Models

Numerical models of the atmosphere are described in some detail in chapter The
Role of the Model in the Data Assimilation System (Rood). The aim of this section
is to describe how they are applied in an operational NWP context.

The interest in using physically based models to forecast the weather goes back
to Richardson (1922), who attempted to forecast the change in surface pressure over
Europe from observed data, albeit rather unsuccessfully. When electronic comput-
ers were first developed, numerical weather forecasting started to become a realistic
proposition. One of the pioneers was Jules Charney, who realised that the most prac-
tical approach was to use “filtered” equations of motion, based on quasi-geostrophic
balance. Subsequently, Charney et al. (1950) computed a 1-day forecast using a
barotropic (one-level) filtered model, using the ENIAC computer. The first real-
time, operational NWP forecast was run in Sweden in September 1954. The USA
followed the next spring, but it was not until 1965 that the Met Office started running
numerical weather forecasts.

In a visionary article, Charney (1951) saw that, while very useful for under-
standing dynamical processes, quasi-geostrophic equations would not be sufficiently
accurate to allow continued progress in NWP. Primitive equation models would
be required, incorporating conservation laws for mass, energy and momentum. In
addition the major effects of adiabatic physical processes (rainfall, radiation and
boundary layer processes) would need to be represented. These developments have
all subsequently been implemented in NWP models.

It has been found that the accuracy of NWP models is strongly influenced by their
resolution: the higher the resolution, the more accurate the model. However, halv-
ing the resolution in each direction not only means that 8 times as many grid points
are required, but also that the number of time-steps need to be doubled to keep
the computations stable. Alongside the escalating costs of solving the dynamical
equations, the physical parametrization schemes are becoming increasingly sophis-
ticated. As a result, running atmospheric models has always required some of the
fastest supercomputers available.

However, the potentially escalating cost of numerical modelling has been kept
in check by the development of modern discretization techniques, including the use
of semi-implicit and semi-Lagrangian schemes, which have less stringent stability
conditions on the time-step, and more accurate space discretizations. For exam-
ple, Davies et al. (2005) describe the numerical integration methods used for the
dynamical core of the Met Office Unified Model.

In many models, the equations are primarily solved on a set of grid points. These
grid points are typically arranged in a rectangular fashion on a latitude-longitude
grid. The main disadvantage is that near the poles the east-west grid lengths become
very small, which means that a shorter integration time-step is required (unless
semi-Lagrangian techniques are used), or spatial filtering is required. For limited
area models, this problem can be avoided by using a rotated grid (see Fig. 2). For
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Fig. 2 Domains covered by
the Met Office Global, North
Atlantic and Europe (NAE)
and 4 km United Kingdom
(UK4) models

global models, several different model grid geometries have been proposed, includ-
ing icosahedral grids, the “cubed sphere” or the “Fibonacci grid”, see Purser (1999)
and Swinbank and Purser (2006). A popular alternative approach is to use spherical
harmonics to solve the dynamical equations on a sphere. In practice, many global
numerical models employ a combination of spectral and grid-point techniques.

4.2 Model Configurations

Early experiments with numerical prediction models used models that covered
regional or continental scales. The main focus was on forecast ranges of around 1–2
days. As the skill of NWP models improved, it became feasible to extend the fore-
cast range. This entailed the use of large model domains, since information affecting
a particular location would propagate from further afield. In the 1970s, several oper-
ational NWP centres were using models that covered most of a hemisphere, for
example the Met Office “octagon model” that covered the Northern Hemisphere
extra-tropics. 1978/1979 saw the First GARP Global Experiment (FGGE), which
coincided with a major improvement in the availability of operational satellite
soundings. This gave an impetus to the development of global NWP models,
and the start of operational medium-range weather forecasts (notably at the then
recently-founded ECMWF).

The use of global models opened up the prospect of seamless forecasting, from
short-range potentially to seasonal or even climate forecasts. Indeed, modern numer-
ical models share a strong common heritage with general circulation models used
for global climate simulations. For example, at the Met Office the Unified Model
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(Cullen 1993) is run in different configurations for both NWP and climate simu-
lations. For seasonal and longer ranges, the atmospheric model is often run with a
coupled ocean in order to simulate changes to the ocean and consequent changes
to atmospheric forcing. Models of the vegetation and land surface may also be cou-
pled to the atmosphere and ocean; such models are often referred to as Earth System
Models.

While global models are necessary for extended forecast ranges, regional models
are the best way to produce short-range forecasts. Limited area models can be run at
very high resolutions to allow much more detailed forecasts than would otherwise
be possible. They can also generally be run closer to real time, since they can be
initialized using local observations, rather than needing to wait for observations
to be collected from around the globe. The mix of observations assimilated into a
regional model may include data derived from radar measurements of rainfall and
wind, for example, but may not include the range of satellite observations used in
global models.

Boundary conditions for the limited area models are generally provided by nest-
ing inside models covering larger domains. For example, at the Met Office three
main NWP model configurations are currently in use: the global model; a North
Atlantic European (NAE) model; and mesoscale model covering the UK. Figure 2
illustrates the model domains. The model resolutions are being improved every few
years; in the current (2009) configuration the global model has a grid-length of
around 40 km, the NAE model 12 km and the UK mesoscale model 4 km.

A similar set of model configurations is run by other national meteorological ser-
vices. However, many centres do not run their own global model, but use boundary
conditions provided by other centres; for example, some European regional models
use the ECMWF global model to provide boundary conditions. Although not always
possible, it is preferable to nest different configurations of the same model together,
so that the boundary conditions are as consistent as possible with the formulation of
the limited area model.

5 Ensemble Forecasting

5.1 Benefits of Ensemble Forecasts

So far, we have considered deterministic forecasts, in which a single set of outcomes
is predicted. For example, it may be predicted that 5 mm of rainfall will occur in
Exeter between 9 and 12 GMT next Tuesday. But, it may well be that the actual
rainfall is 8 mm, or it may occur in the afternoon instead, or, if the weather is show-
ery, the rain may miss Exeter completely. For many applications, it is very helpful
to be able to issue probabilistic forecasts, indicating the range of likely outcomes,
rather than forecasting whether a single event will occur.

Uncertainties will exist in the initial conditions of each weather forecast, and
these will grow during the forecast period. Lorenz (1963) discovered the fact that
the atmosphere, in common with many other dynamical systems, has a finite limit
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of predictability. By performing two runs made with the same model, with initial
conditions that differed only with round-off errors, he found that the two solutions
completely diverged. For the large-scale atmospheric circulation, Lorenz estimated
a limit of deterministic predictability of around 2 weeks. But individual small-scale
weather features, such as showers, are much less predictable: a more realistic time-
scale may be just an hour or two.

Leith (1974) first proposed the idea of performing ensemble forecasting with a
number of ensemble members rather than the conventional single deterministic fore-
cast. An ensemble should be designed to reflect uncertainties in the forecast at any
given time. So, the m members of an ensemble forecast should represent, in some
sense, the probability distribution of possible model states. Forecast ensembles are
often defined such that one of ensemble members reflects the best available estimate
of the state of the atmosphere, and how it evolves – usually referred to as the control
forecast. Typically, the initial conditions for the control forecast are produced using
a state-of-the-art data assimilation system, as used for a deterministic forecast. Other
ensemble members are derived by adding perturbations to those initial conditions,
as discussed below.

An interesting property of ensemble forecasts is that the error of the ensemble
mean of many forecasts should be less than statistical errors in a single forecast.
Consider the deviation a of forecast model variables with respect to climatology.
The true state of the atmosphere is denoted a0. The value ã denotes an unbiased
estimate of a0, whose expected value at long lead times (averaged over many fore-
casts) is zero:< ã >= 0. If we were to use climatology to estimate a0, the expected
error covariance would be <(0 – a0)(0 – a0)T>=A. A single deterministic forecast ã
would have an error covariance <(ã – a0)(ã – a0)T> = <ããT+a0a0

T – ãa0
T – a0ãT>,

which would tend to a limit of 2A, since the last two terms would be zero at long
lead times. However, if ā is the average of the ensemble of m forecasts, then its error
covariance <(ā – a0)(ā – a0)T> tends to a limit of (1 + 1/m)A. In other words, the
root mean square error of a deterministic forecast will saturate at around

√
2 times

the error of a forecast based on climatology, while the mean of an ensemble should
converge to the climatological average with a spread equivalent to the climatological
error.

5.2 Initial Condition Perturbations

Early ensemble prediction experiments used lagged averaged forecasting (e.g.
Hoffman and Kalnay 1983), in which forecasts initialized at one time are combined
with forecasts initialized at m–1 previous times, i.e., the initial perturbations simply
reflect the differences between the initial analysis fields and a set of forecasts valid
at that time.

Toth and Kalnay (1993) developed an error breeding approach in order to
ensure that the perturbations better reflected the uncertainties in the initial condi-
tions. Perturbed forecasts are run in parallel to the unperturbed control forecast.
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On a regular basis (e.g. every 6 h) the perturbations are scaled back to a stan-
dard size (defined using the same norm), consistent with typical uncertainties in
the analysis. It was found that the perturbations generated acquired a fast growth
rate. This error breeding method favours the fastest growing modes, referred to as
the leading Lyapunov vectors. While this method generates a good estimate of the
modes that lead to uncertainties in the initial conditions, the bred vectors derived
from a set of perturbation runs can be strongly correlated with one another. To
ensure that the ensemble better samples all the uncertainties, a variation has recently
been introduced into the NCEP system in which the vectors are transformed, using
the “Ensemble Transform”, to ensure they are mutually orthogonal. In a further
level of sophistication, the Met Office uses the Ensemble Transform Kalman fil-
ter (ETKF; Wang and Bishop 2003), so that the perturbations are adjusted to take
account of the information introduced by the assimilation of observations. Further
details about the Met Office ensemble forecast systems are given by Bowler et al.
(2008).

An alternative approach is to base the ensemble perturbation on singular vectors,
i.e., the fastest growing modes, determined over a specified period. In the ECMWF
system the initial condition perturbations are based on the singular vectors that grow
fastest over a 48-h optimization time using a total energy norm.

Ideally, the initial condition perturbations should reflect uncertainties at the ini-
tial time, i.e., the structure of the initial perturbations should be closely related to
the analysis area covariance. The error-breeding and related methods, including the
ETKF, are consistent with this approach, since they are based on perturbations that
have grown in the period leading up to the analysis time. On the other hand, the
singular vectors highlight modes that grow in the initial forecast period. The use of
evolved singular vectors, based on the maximum growth over an extended period
rather than just the initial time-step, brings the singular vector method more into
line with the other approaches, while retaining the link with the fastest growing
modes.

5.3 Accounting for Model Errors

During the forecast, the ensemble spread should ideally reflect the increasing
(root mean square, RMS) error as the forecast proceeds. In practice, it is usu-
ally found that the ensemble spread grows more slowly during the forecast than
the RMS error. The main reason for this is that much of the increasing fore-
cast error reflects shortcomings in the numerical model’s representation of the
real atmosphere. One approach to this problem is to introduce some stochastic
fluctuations in the tendencies calculated by the model’s physical parametrization
schemes (Buizza et al. 1999). These fluctuations should be applied to the ten-
dencies in a manner that reflects uncertainties in the model physics. In a similar
way, the “random parameters” component of the Met Office stochastic physics
varies several of the parameters used by the physical parametrizations. The param-
eters are (slowly) varied, in a random manner, within each parameter’s range of
uncertainty.
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A complementary approach is to represent stochastic kinetic energy backscat-
ter. In this type of scheme, some of the kinetic energy that is lost (unrealistically)
in numerical diffusion is reinstated by introducing extra random fluctuations in the
wind fields. Shutts (2005) first applied this type of scheme in the ECMWF model,
using cellular automata to generate pseudo-random patterns for a stream function
forcing field. These additional perturbations increased the ensemble spread and
had a beneficial impact on probabilistic measures of forecast skill. The Met Office
stochastic kinetic energy backscatter scheme was designed to have a similar effect,
though it uses a difference technique to generate “random” wind fluctuations. A
new version of the stochastic kinetic energy backscatter scheme will also take into
account energy dissipation associated with convection as well as with diffusion.

Another way of accounting for model errors in ensemble forecasts is to use
more than one model. NWP models from different operational centres will have
different strengths and weaknesses. By building an ensemble from forecasts of dif-
ferent models, one can construct a multi-model ensemble whose spread reflects the
uncertainties in model parametrizations. In the context of seasonal forecasting, it
has been shown that the combination of ensemble forecasts from different models
results in more skill than the single model ensembles considered separately (e.g. the
DEMETER project; see Palmer et al. 2004). This improvement is not just a result of
the increased ensemble size, but is also due to complementary information provided
by the different climate forecast systems (i.e., the combinations of data assimilation
and numerical model).

As part of the international THORPEX (THe Observing system Research and
Predictability EXperiment) programme, research is being done on the benefit of
building a grand ensemble, combining ensemble forecasts from different cen-
tres. In the THORPEX Interactive Grand Global Ensemble (TIGGE) project (see
http://tigge.ecmwf.int/), several global NWP centres are running regular medium-
range ensembles and making the output available for research. Figure 3 (from
Johnson and Swinbank 2009) compares Brier skill scores from three single-model
ensembles with different versions of multi-model ensembles combining the three
models. This study, and other studies based on TIGGE data (Park et al. 2008;
Matsueda and Tanaka 2008), demonstrated only limited benefit of multi-model
ensembles for forecasts of 500 hPa height and sea level pressure. On the other
hand, multi-model techniques give better benefit for 2 m temperature and, to a lesser
extent, 850 hPa temperature. It was also found that a simple multi-model ensemble
(giving each ensemble the same weight) performed almost as well as more complex
weighting schemes that took into account differing model errors.

Another method of correcting for model errors is to estimate them from a
set of retrospective forecasts. Hamill et al. (2006) built up a large set of refore-
casts using a fixed (T62 resolution) version of the NCEP GFS (Global Forecast
System) model, initialized from the NCEP/NCAR reanalyses (Kalnay et al. 1996).
They refer to the data as “reforecasts” by analogy with the fixed data assimilation
system used to construct reanalysis datasets. By comparing the reforecasts with suit-
able verifying analyses or observations, it is possible to characterize model errors
and apply them to current forecasts. Recent results from ECMWF (R. Hagedorn,
personal communication) indicate that the benefit from applying corrections based
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Fig. 3 Brier skill scores for:
mean sea level pressure
greater than the
climatological mean (top
plot); 2 m temperature greater
than the climatological mean
(middle plot); 2 m
temperature greater than 90th
percentile (bottom plot). The
grey lines show the
bias-corrected single-model
ensembles (ECMWF, Met
Office and NCEP) and the
black lines show three
difference multi-model
ensembles: simple
combination (dotted),
weighted (dashed), weighted
and variance adjusted (solid).
The data are globally
averaged over 120 days
ending 29 April 2008

on reforecasts is similar in magnitude to that obtainable from multi-model ensem-
bles. Results from Hagedorn et al. (2008) indicate that calibrated multi-model
forecasts are better than calibrated single-model forecasts, so it is likely to be worth
employing both techniques in tandem.

6 Forecast Products

6.1 Weather Forecasts

The output from NWP models needs a certain amount of processing before the
information is presented to the public as a weather forecast. Some operational NWP
centres also produce a range of more specialized services and products for particular
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Fig. 4 Example of forecast mean sea level pressure chart for the North Atlantic and Europe. The
contours show pressure in hPa and the coloured lines with symbols show fronts (blue: cold front;
red: warm front; purple: occluded front)

groups of customers in both the public and private sectors. There are also a range of
commercial companies that take raw model output produced by the public weather
services and process them to generate added value products. The aim of this section
is to give a brief overview of how NWP output is processed to meet the needs of a
wide variety of customers.

Perhaps the most basic type of forecast information is a synoptic map of mean sea
level pressure, as shown in Fig. 4. To a meteorologist, or other well-informed user,
this gives a readily interpreted overview of the expected weather. Surface winds
roughly follow the isobars, but with some frictional flow towards low pressure cen-
tres. Fronts mark the areas where large-scale rainfall is expected. The flow patterns
can also give an indication of expected temperatures or shower activity. In order
to make the weather forecasts more generally understandable to the general pub-
lic, maps are often produced using a set of symbols to show the expected weather.
Figure 5a shows an example of this kind of simplified map, for the same forecast
as shown in Fig. 4. Weather forecasts for the general public may also include more
specific information, such as surface air temperature and surface wind. The forecast
should also include at least some indication of cloud amount, amount of precipita-
tion (highlighting if snow is expected) and visibility (especially if it will be poor).

6.2 Site-Specific Information

In many cases, weather forecasts need to be made for specific locations. A sim-
ple approach would be to interpolate the NWP model output directly to each site
where the forecast is required. However, the raw model output is very likely to
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Fig. 5 Examples showing simpler presentations of the forecast from Fig. 4: (a) forecast weather-
symbol map, left-hand plot; (b) map indicating areas where severe weather has been forecast (green
indicates no warning, yellow “be aware” and orange “be prepared”), right-hand plot. The weather
warning map covers the whole day, while the weather symbol map is for just one time; in this case
the warning map highlights the risk of overnight heavy rain, shown in the 0000 UTC forecast maps

need adjustment: the model output likely contains biases; the model topography is
unlikely to represent the local topography at a particular location in question.

To correct for these effects, a method known as Model Output Statistics (MOS)
is often applied. This is essentially a multiple linear regression method, where the
predictors are model forecast variables, and may include other parameters such as
the time of day or time of year. The predictand is a set of observations at the site
under consideration. Based on a sequence of training data, a set of regression coef-
ficients are derived, to quantify how the observed values are related to the model
forecast values. These regression coefficients can then applied to subsequent NWP
model output values in order to calculate the corrected forecast at that site. As in
any statistical regression, the quality of the results is dependent on the quality and
length of the training data.

A variation on the MOS method is based on the Kalman filter equations, Eq. (4).
In the standard MOS approach, the regression coefficients are calculated only once,
but by using a Kalman filter the regression coefficients are updated. This allows the
system to track changes to the NWP model. This may be a more satisfactory method
of taking into account seasonal variations than using a multi-annual training period.

6.3 Probabilistic Forecasts

With some more post-processing the model output can be used to produce warn-
ings of severe weather events. While experienced forecasts can interpret the model
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Fig. 6 A chart showing the spatial variation in the probability of the 6-h rainfall exceeding 5 mm

output and give end users an indication of forecast uncertainties, more objective
probabilistic forecasts can be based on the output from ensemble forecasts.

An ensemble prediction system is usually designed so that, as far as possible,
each ensemble member is as likely as any other. So, the probability of a particular
event occurring can be estimated from the proportion of ensemble members in which
that particular events is forecast. For example the event may be that at least 5 mm
of rain occurs in a specified 6-h period. By scanning the forecast precipitation field
from all the ensemble members, it is straightforward to plot a map showing the
estimated probability of rainfall exceeding the specified threshold. Figure 6 gives an
example of a probabilistic rainfall forecast map.

Another popular way of presenting forecasts for a particular location is to pro-
duce a set of time series plots showing forecasts for different weather elements, such
as temperature, rainfall or wind speed. These are often referred to as meteograms.
Figure 7 shows an example of site-specific temperature forecast derived from an
ensemble prediction. This shows the expected temperature, based on the ensemble
mean, while the red and orange shading indicates the likely range of values. The
previous day’s observed temperature is also shown, for reference.

6.4 Warnings of High-Impact Weather

Forecasting severe weather is a particularly important aspect of weather forecasting.
Severe weather events, such as floods or winds, have a very high socio-economic
impact, disrupting a wide range of everyday activities. It is vitally important that the
public and the emergency services are well-prepared when severe weather events
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Fig. 7 Example of a site-specific temperature forecast, showing associated levels of confidence

are expected. So, at the Met Office, and other weather services, warnings are issued
and widely publicised when severe weather is expected.

Figure 5b is an example of how severe weather events are advertised on the
Met Office website. Different colours are used to indicate the severity of the
expected weather for a particular day: yellow indicates that the public should be
aware of the likelihood of bad weather; orange indicates the need to be prepared
for severe weather and, in the most severe cases, red indicates action should be
taken. Alongside the map, the website gives more details about the nature of severe
weather, and the time period when it is expected. For the example shown in Fig. 5b,
very heavy rainfall was forecast for the indicated areas (see Fig. 5a).

Heavy rainfall can lead to localized flooding, where the intensity of rainfall over-
whelms local drainage systems; these are sometimes referred to as pluvial floods.
Very often, prolonged periods of heavy rainfall can lead to rivers bursting their banks
and fluvial flooding. Prediction of fluvial flooding depends not only on forecast-
ing rainfall but also on understanding the hydrology of relevant river catchments.
Another type of flooding that we need to be able to forecast is coastal flooding that
can result from storm surges. Sea level is affected by storms as well as astronomical
tides; where adverse weather coincides with the highest (spring) tides, the sea may
overtop coastal defences.

While some severe weather events, such as strong winds or heavy rainfall, are
linked to particular storms, there are other types of weather that can have high socio-
economic impacts. For this reason, we often refer to “high-impact weather”. While
a brief dry spell is of little consequence, a prolonged drought can have a devastat-
ing effect on agriculture. A heat wave comprising several unusually hot days (and
nights) can have a major impact on public health – for example the heat wave that
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affected western Europe in summer 2003. Prolonged hot, dry weather can also lead
to devastating wildfires.

6.5 Improving the Prediction of High-Impact Weather

To improve the prediction of high-impact weather, the WMO is co-ordinating
a decade-long research programme, known as THORPEX (see above). The aim
of THORPEX is to co-ordinate research into a range of topics that potentially
improve the skill of weather forecasts. Once the benefit of novel techniques have
been demonstrated, it is planned that prototype products would be delivered to
prospective users via a Global Interactive Forecast System (GIFS).

We have already touched on some of the work covered by the THORPEX
programme, including research into improvements to data assimilation and observ-
ing systems and the TIGGE project on ensemble forecasting. Another THORPEX
research topic has been the use of targeted observations to reduce uncertainties in
the prediction of high-impact weather events. The principle is that errors in the out-
come of a weather forecast can generally be traced back through the earlier stages
of the integration of the NWP model. For example, an ensemble forecast might
show the risk of development of a severe storm at a 3-day lead time. Tracing back
the evolution of the ensemble might indicate a sensitive area in the 1-day forecast
where additional observations would reduce the uncertainty in the forecast evo-
lution. So, by making additional observations in that area, perhaps by deploying
dropsondes from an aircraft, one should be able to improve the skill of the storm
forecast. Several different techniques have been used to predict these sensitive areas:
NCEP and the Met Office use a technique based on the ETKF, while ECMWF use
a singular vector method.

In the USA, NOAA (National Oceanic and Atmospheric Administration) runs
a regular Winter Storm Reconnaisance (WSR) programme, in which aircraft are
deployed in the Pacific Ocean to make additional targeted observations using drop-
sondes. The first WSR campaign was carried out in early 1999 and was found to
improve the forecast in 18 out of 25 cases (Szunyogh et al. 2000). Following this
success, the programme has been repeated every winter. Other observation target-
ing experiments have been run in the North Atlantic, including FASTEX (Fronts
and Atlantic Storm Track Experiment) in 1997 and ATReC (Atlantic THORPEX
Regional Campaign) in 2003. Generally speaking, the Atlantic observation target-
ing campaigns have been less successful than the Pacific WSR campaigns. One
factor is that the North Atlantic is not so big, and not so data sparse as the North
Pacific. Also, more recent Atlantic campaigns have tended to use 4D-Var systems
to evaluate the impact of observation targeting. 4D-Var systems tend to be better
than 3D-Var at exploiting sparse data, so benefit less from additional targeted data.
A study by ECMWF explored the value of observations in targeted sensitive areas
over an extended period (Buizza et al. 2007). They confirmed that targeted obser-
vations are on average more valuable than observations in randomly selected areas,
but their overall impact on forecast skill was rather marginal.
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Where new techniques have been shown to be cost effective, it is planned to use
them as the basis for new products to be delivered to users, particularly to alert
them to forecast high-impact weather events. It is planned that GIFS will build on
the WMO Information System (WIS) that has been designed for the international
distribution of weather-related information. The WMO Severe Weather Forecast
Demonstration Project (SWFDP) demonstrated how information about high-impact
weather for southern Africa could successfully be relayed from global NWP cen-
tres to the South African Weather Service (SAWS). In turn, SAWS interpreted the
data and distributed the information to the national weather services in several of
the less-developed countries in that region, helping them improve warning services
to their local communities. The success of the SWFDP in southern Africa has led
to interest in setting up SWFDP sub-projects in other regions, as well as extending
the project in southern Africa to a wider region. It provides a good example for how
new high-impact weather products developed under THORPEX could be used to
improve regional weather warnings.

7 Conclusions

This chapter gives a general overview of the weather forecasting process, starting
with making observations, assimilating the data into an NWP model, running a
numerical forecast and producing a range of forecast products. Our aim has been
to give readers a general appreciation of the techniques that have led to the rapid
advances in weather forecast skill that we have seen over recent decades. In this sin-
gle chapter, there has been little room to go into detail; other aspects of numerical
weather prediction, and specifically data assimilation, are covered elsewhere in this
book in more detail. We have included discussion of some novel techniques which
should enable further advances in the skill of operational weather forecasts over the
coming years.
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Atmospheric Chemistry



Introduction to Atmospheric Chemistry
and Constituent Transport

Valery Yudin and Boris Khatattov

1 Importance of Chemistry

Atmospheric photochemical processes often occurring at altitudes of tens of kilo-
metres above the surface can be of paramount importance to the existence of life
on Earth. Formed by complex chemical and photodissociation processes, the ozone
layer absorbs harmful ultraviolet radiation in the stratosphere before it reaches the
Earth surface. The deoxyribose nucleic acid molecules (DNAs) of most organisms
absorb very strongly at wavelengths around 300 nm. Had this radiation not been pre-
vented from reaching the ground, it would have caused immediate and significant
tissue damage and led to formation of cancer cells and genetic mutations.

Knowing what processes control formation and destruction of ozone molecules is
important for monitoring and predicting changes in ozone abundances. The spring-
time “ozone hole” phenomenon over the Antarctic continent discovered in the 1980s
clearly demonstrated how human (anthropogenic) activities can destroy the natural
chemical balance in the atmosphere and potentially lead to disastrous consequences.

It took years of scientific studies and debates to discover the complete chain of
related physical effects and chemical reactions and prove that the dramatic rapid
destruction of ozone was originally caused by industrial emissions of chlorofluoro-
carbons. Chlorine and bromine radicals released in the process of photodissociation
of chlorofluorocarbons act as catalysts in fast ozone loss cycles. This property com-
bined with persistent patterns of atmospheric circulation, very cold temperatures
in the Antarctic, and absence of solar radiation during the long Antarctic winter
eventually causes almost complete destruction of October ozone in the lower strato-
sphere, where most of the ozone resides. Recently, wintertime mini ozone holes
were observed in the Northern Hemisphere above western Europe and Russia.
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The risk of global warming highlights another strong link between concentrations
of atmospheric trace gases and global environmental conditions. Some atmospheric
gases, for instance, CO2 and H2O, trap radiation emitted by the Earth’s surface.
Increased concentrations of these gases are likely to lead to temperature increases
in the troposphere since normally this radiation would have escaped to space. While
the direct proof of a relationship between recent increases in atmospheric carbon
dioxide and observed global temperature trends is not easy due to the large nat-
ural variability of temperature records, there exist enough scientific evidence and
modelling studies pointing to this connection beyond reasonable doubt.

The pollution of air near the surface and in the troposphere is another illustration
of the importance of atmospheric chemistry to our well-being. Carbon monox-
ide, nitrogen species, complex organic compounds and small particulate matter
contained in car exhaust and by-products of industrial production and incomplete
combustion lead, through a complex chain of chemical transformations, to the for-
mation of smog, acid rain, and increased amounts of tropospheric ozone. While
stratospheric ozone shields us from harmful radiation, the increased levels of ozone
in the troposphere can lead to complications in patients with cardio-vascular dis-
eases and, in some cases, increased rates of hospital admissions and mortalities
recorded the next day.

Chains of chemical transformations leading to formation of a particular con-
stituent are often very long and complex. This is particularly true for the chemistry
of tropospheric pollutants chemistry, where chemical interactions between hundreds
and thousands of compounds should be monitored. Modelling and understand-
ing these processes requires significant resources and high quality observations
with global coverage. The framework of chemical data assimilation (see chapter
Constituent Assimilation, Lahoz and Errera) can facilitate this task by uncovering
and making use of relationships between observed and simulated quantities in a
mathematically consistent and rigorous fashion. In the following sections we will
give a brief overview of elementary photochemistry and transport of atmospheric
constituents chemistry and related observations. A much more detailed presentation
of chemistry and dynamics in the whole atmosphere can be found, for instance, in
the textbooks of Brasseur et al. (1999) and Brasseur and Solomon (2000).

2 Atmospheric Processes Affecting the Composition

Interactions between thermodynamics, radiation and chemistry on various spatial
and temporal scales define distributions of the radiatively and chemically active
species and their variability. Figure 1 schematically illustrates processes that affect
the atmospheric composition in the boundary layer, free troposphere, and strato-
sphere, from the Equator to the Pole. The separation boundaries marked by the
height of the planetary boundary layer (PBL) and the location of the tropopause
are relatively transparent and their locations vary on different time-scales, exhibit-
ing diurnal, seasonal and sudden (event driven) variations. Penetration and mixing
of stratospheric and tropospheric air masses, ventilation of boundary layer by
vertical convection, and tropical and polar air intrusions to mid latitudes create
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Fig. 1 Schematic illustration of transport of constituents from the surface to the free atmosphere,
and stratosphere-troposphere air mass exchanges. Source: EOS Aura website

variable chemical weather events on the global and regional scales from the sur-
face to the stratopause. Although the description of interactions between chemistry,
radiation and dynamics is vital for atmospheric composition studies, in this intro-
duction we will discuss separately the chemical and transport processes near the
surface, in the free troposphere, and in the stratosphere. Next, we illustrate the sepa-
ration boundaries characterizing the chemistry and transport across the tropopause,
highlighting the penetration of pollutants from natural and anthropogenic surface
emissions.

2.1 Elementary Chemical Processes

The Earth’s atmosphere can be thought of as a combustion system where the energy
of the Sun drives a variety of chemical transformations. The composition of the
atmosphere is determined by complex chemical mechanisms. Each mechanism con-
sists of a few to sometimes hundreds of elementary chemical reactions. For example,
the photolysis of O2 is responsible for initiating the chemistry involved in the
production of ozone, O3, in the stratosphere:

O2 + hν −→O+ O

O2 + O+M−→O3 +M

The process of absorption of a photon by a molecule results in a change in
the energy level of the molecule. In this process the photon disappears. Photons
come in different “colours” or frequencies corresponding to different energies.
“Blue” photons have more energy than “yellow” and more energy than “red”. High
energy photons can break up molecules; this process is called photodissociation
(photolysis). Examples of photolysis reactions are shown below:

O2 + hν −→O+ O

O3 + hν+ −→O2 + O

NO2 + hν −→NO+ O
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Rates of the photodissociation reactions depend on the amount of sunlight (num-
ber of photons) and the absorption cross-section of the molecule that absorbs
photons. These rates are often called photodissociation coefficients or photolysis
rates, J. Details of the calculation of these rates can be found in Brasseur et al.
(1999). For this brief introduction, it is important to note that the rate of change
of a particular chemical due to photodissociation is directly proportional to the
corresponding photolysis rate multiplied by the chemical’s concentration:

d[O3]

dt
= −JO3 · [O3]

The most common reactions between atmospheric chemicals are bimolecular (by
number of reagents) reactions of the type

AB+ C−→A+ BC

An example of such reaction is

NO+ O3 −→ NO2 + O2

In such a reaction, the rate of disappearance of reagents, equal to the rate of
appearance of the products, is

d[AB]

dt
= d[C]

dt
= −d[A]

dt
= −d[BC]

dt
= k · [AB] · [C]

k in this equation is called the reaction rate. This coefficient is usually a strong
function of temperature:

k = A · exp(−�E/RT)

Another common type of atmospheric chemical reaction is the trimolecular
reaction of the type

A+ B+ C−→ products

Some examples are

NO+ NO+ O2−→NO2 + NO2

O2 + O+ N2−→O3 + N2

Similarly to bimolecular reactions, the rate of disappearance of reagents (and
appearance of products) is given by

d[A]

dt
= d[B]

dt
= d[C]

dt
= −d[products]

dt
= k · [A] · [B] · [C]



Introduction to Atmospheric Chemistry and Constituent Transport 413

Chemical transformations in the Earth atmosphere must be considered together
with the influence of the movement of air masses in the vertical and horizontal
directions, turbulent diffusion and molecular mixing of molecules, and the depen-
dence of chemical reactions rates on temperature and pressure. The next sections
review chemistry and transport in the stratosphere and troposphere, highlighting the
current research tendency to understand and constrain uncertainties in atmospheric
photochemistry by means of models and observations.

2.2 Stratospheric Chemistry

The concentration of ozone in the stratosphere is determined by a balance between
its production and losses. In a purely oxygen (simplified) atmosphere, processes
controlling ozone concentration are:

O2 + hν−→O+ O (J1)

O2 + O+M−→O3 +M (k1)

O3 + hν−→O2 + O (J2)

O+ O3 −→O2 + O2 (k2)

In the three body reaction (k1), M stands for any inert molecule such as O2 or N2.
The coupled system of two differential equations that describes the time evolution
of ozone and atomic oxygen can be written as:

d[O]

dt
= 2 · J1 · [O2]− k1 · [O][O2]+ J2[O3]− k2 · [O][O3]

d[O3]

dt
= k1 · [O][O2]− J2[O3]− k2 · [O][O3]

For given initial conditions (concentrations of ozone and atomic oxygen at time
t= t0), this system of first order differential equations can be solved to monitor [O3]
and [O] as a function of time. In reality, the concentration of ozone is directly and
indirectly affected by many other chemicals. Particularly important are the catalytic
ozone destruction cycles of the following form:

X+ O3 −→XO+ O2

O+ XO−→O2 + X

Overall: O+ O3 −→O2 + O2

In this cycle, chemical X leads to destruction of one ozone molecule without
being destroyed itself. As a result, a single molecule X can destroy a very large
number of O3 molecules. In the stratosphere some of the most important catalytic
ozone loss cycles involve NO, Cl, and OH in place of X, for example:

NO+ O3 −→NO2 + O2

O+ NO2 −→O2 + NO

Overall: O+ O3 −→O2 + O2
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Table 1 A typical set of stratospheric photochemical reactions

k001: N2O5 + H2O(a) → 2∗HNO3; k042: HCl+ OH → H2O+ Cl;
k002: O+ O3 → 2∗O2; k043: HCl+ O → OH+ Cl;
k003: O(1D)+ O3 → 2∗O2; k044: HOCl+ OH → H2O+ ClO;
k004: O(1D)+ N2 → O+ N2; k045: ClONO2 + O → ClO+ NO3;
k005: O(1D)+ O2 → O+ O2; k046: ClONO2 + OH → HOCl+ NO3;
k006: O(1D)+ H2O → 2∗OH; k047: ClO+ NO2 +M → ClONO2 +M;
k007: O(1D)+ H2 → H+ OH; k050: NO2 + O → NO+ O2;
k008: O(1D)+ CH4 → OH+ CH3; k051: NO+ O3 → NO2 + O2;
k009: O+ O2 +M → O3 +M; k052: NO+ HO2 → NO2 + OH;
k016: OH+ CO → CO2 + H; k053: NO2 + O3 → NO3 + O2;
k017: CH4 + OH → CH3 + H2O; k054: HNO3 + OH → NO3 + H2O;
k019: H2 + OH → H2O+ H; k055: HNO4 + OH → H2O+ O2 + NO2;
k020: H+ O3 → O2 + OH; k057: NO2 + OH+M → HNO3 +M;
k021: H+ HO2 → 2∗OH; k058: NO2 + HO2 +M → HNO4 +M;
k022: OH+ O → O2 + H; k059: NO3 + NO2 +M → N2O5 +M;
k023: OH+ O3 → O2 + HO2; k060: N2O5 +M → NO2 + NO3 +M;
k024: OH+ OH → H2O+ O; k061: HNO4 +M → HO2 + NO2 +M;
k025: OH+ HO2 → H2O+ O2; j001: O2 → 2∗O
k026: HO2 + O3 → 2∗O2 + OH; j002: O3 → O2 + O
k027: HO2 + O → O2 + OH; j003: O3 → O2 + O(1D)
k028: HO2 + HO2 → H2O2 + O2; j004: HO2 → O+ OH
k029: H2O2 + OH → H2O+ HO2; j005: H2O2 → 2∗OH
k030: H+ O2 +M → HO2 +M; j006: NO2 → NO+ O
k031: Cl+ O3 → ClO+ O2; j007: NO3 → NO2 + O
k032: Cl+ CH4 → HCl+ CH3; j008: NO3 → NO+ O2
k033: Cl+ H2 → H+ HCl; j009: N2O5 → NO2 + NO3
k034: Cl+ HO2 → O2 + HCl; j010: HNO3 → OH+ NO2
k035: Cl+ HO2 → OH+ ClO; j011: HNO4 → OH+ NO3
k036: Cl+ H2O2 → HO2 + HCl; j012: HNO4 → HO2 + NO2
k038: ClO+ O → Cl+ O2; j016: HOCl → OH+ Cl
k039: ClO+ NO → Cl+ NO2; j017: ClONO2 → Cl+ NO3
k040: ClO+ OH → HO2 + Cl; j018: ClONO2 → Cl+ NO2 + O
k041: ClO+ HO2 → HOCl+ O2; j026: HCl → H+ Cl

Table 1 presents an example of a set of photochemical reactions that one usually
needs to take into account when modelling stratospheric chemistry with moder-
ate accuracy. Several important cycles (sulphur, bromine, iodine and heterogeneous
chemistry) are beyond these limited set of 87 reactions. Table 2 illustrates a set
of non-linear chemical equations corresponding to the core set of the stratospheric
reactions given in Table 1 above; for more details see Khattatov et al. (1999).

2.3 Tropospheric Chemistry

Tropospheric chemistry is considered to be the next theoretical and experimental
frontier in the understanding and prediction of Earth’s atmospheric composition
and climate. To advance this discipline over the foreseeable future will be a great
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Table 2 A system of coupled ODEs corresponding to reactions in Table 1

[1:] d[H ]/dt = j026∗HCl+ k007∗O(1D)∗H2 + k016∗OH∗CO+ k019∗H∗2OH−
k020∗H∗O3 − k021∗H∗HO2 + k022∗OH∗O− k030∗H∗O∗2M+ k033∗Cl∗H2

[2:] d[OH ]/dt = j004∗HO2 + 2∗j005∗H2O2 + j010∗HNO3 + j011∗HNO4 + j016∗HOCl+
2∗k006∗O(1D)∗H2O+ k007∗O(1D)∗H2 + k008∗O(1D)∗CH4 − k016∗OH∗CO−
k017∗CH∗4OH− k019∗H∗2OH+ k020∗H∗O3 + 2∗k021∗H∗HO2 − k022∗OH∗O−
k023∗OH∗O3 − 2∗k024∗OH∗OH− k025∗OH∗HO2 + k026∗HO∗2O3 + k027∗HO∗2O−
k029∗H2O∗2OH+ k035∗Cl∗HO2 − k040∗ClO∗OH− k042∗HCl∗OH+ k043∗HCl∗O−
k044∗HOCl∗OH -k046∗ClONO∗2OH+ k052∗NO∗HO2 − k054∗HNO∗3O− k055∗HNO∗4OH−
k057∗NO2OH∗M

. . ..

. . ..

. . ..

[15:] d[N2O5 ]/dt = −j009∗N2O5 − k001∗N2O∗5H2O(a)+ k059∗NO∗3NO∗2M− k060∗N2O∗5M

[16:] d[O ]/dt = 2∗j001∗O2 + j002∗O3 + j004∗HO2 + j006∗NO2 + j007∗NO3+
j018∗ClONO2 − k002∗O∗O3 + k004∗O(1D)∗N2 + k005∗O(1D)∗O2 − k009∗O∗O∗2M−
k022∗OH∗O+ k024∗OH∗OH− k027∗HO∗2O− k038∗ClO∗O− k043∗HCl∗O−
k045∗ClONO∗2O− k050∗NO∗2O

[17:] d[O(1D) ]/dt = j003∗O3 − k003∗O(1D)O3 − k004∗O(1D)∗N2 − k005∗O(1D)∗O2 −
k006∗O(1D)∗H2O− k007∗O(1D)∗H2 − k008∗O(1D)∗CH4

[18:] d[O3 ]/dt = −j002∗O3 − j003∗O3 − k002∗O∗O3 − k003∗O(1D)∗O3 + k009∗O∗O∗2M−
k020∗H∗O3 − k023∗OH∗O3 − k026∗HO∗2O3 − k031∗Cl∗O3 − k051∗NO∗O3 − k053∗NO∗2O3

challenge for atmospheric science research because global and regular observations
of tropospheric species are needed to constrain their highly uncertain budgets, and
investigate mechanisms of chemical transformations of inorganic and organic com-
pounds. In the troposphere, key monitored trace gas species include H2O, O3, OH,
NOx (= NO + NO2), CO, some important hydrocarbons, and aerosols. The chemi-
cal transformations of these species are also affected by the presence of clouds, and
rain and snow.

Tropospheric O3 and H2O define the oxidation of many species through the
hydroxyl radical (OH). Its primary source in the troposphere is the photodissociation
of O3 (hν <411 nm) followed with reaction with H2O:

O3 + hν −→ O2 + O(1D)[hν < 411 nm]

H2O+ O(1D) −→ 2OH

Only a small portion of the O(1D) reacts with H2O. The quenching of O(1D) by
inert air molecules returns it back to atomic oxygen O(3P), and after recombination
of O2 and O(3P), the restoration of O3 is accomplished. There are two major chains
of tropospheric O3 production controlled by OH. In the presence of nitrogen oxides,
the oxidation of hydrocarbons can lead to O3 production through oxidation of CO:
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CO+ OH+ O2 −→CO2 + HO2

HO2 + NO−→OH+ NO2

NO2 + hν−→NO+ O

O+ O2 +M−→O3 +M

Overall : CO+ 2O2 −→CO2 + O3

As seen above, the concentrations of OH, HO2 and NO + NO2 are not affected
by this cycle of CO oxidation. To simplify the study of stratospheric chemistry, the
odd nitrogen and hydrogen families (NOx = NO + NO2 and HOx = OH + HO2,
respectively) can be introduced. This helps to increase effective chemical lifetimes
(e.g. NOx is longer lived than NO or NO2) and relax the requirements for numerical
schemes employed in the solution of chemical equations. OH is involved in the key
reaction that describes loss of NOx:

OH+ NO2 +M−→HNO3 +M

Nitric acid (HNO3) in the troposphere is a soluble substance; it is only moder-
ately reactive. This non-reactive reservoir (HNO3) has a high likelihood of being
removed from the atmosphere before it can be modified to release the NOx radicals,
NO and NO2.

Both HOx radicals (OH and HO2) react directly with O3:

HO2 + O3−→OH+ 2O2

OH+ O3−→HO2 + O2

The net production of OH defined by the above chemical reactions depends on
the availability of NOx in the troposphere. Production of NOx by industrial pro-
cesses and lightning is an important factor in controlling the distributions of nitrogen
oxides. Under high NOx loading, the smog cycle of ozone production (Crutzen
1974) is an effective link in the following chain of photochemical transformations
in the troposphere:

CH4 + OH−→CH3 + H2O

CH3 + O2 +M−→CH3O2 +M

CH3O2 + NO−→CH3O+ NO2

CH3O+ O2 −→HCHO+ HO2

HO2 + NO−→OH+ NO2

NO2 + hν−→NO+ O

O+ O2 +M−→O3 +M

Overall : CH4 + 4O2 −→HCHO+ H2O+ 2O3

The last net reaction is catalysed by both the HOx and NOx families. Other
reactions, including those in the developing branch of inorganic chemistry, can
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be also important to close the budgets of key species and pollutants in the tropo-
sphere (Brasseur et al. 1999). Constraining tropospheric ozone and related tracers
using observations is a key task of current and future intensive observational
campaigns and space environmental missions. The external sources of nitrogen
compounds, hydrocarbons, CO, and CO2, are still the most uncertain parameters in
the chemistry-transport models (CTMs) that aim to forecast chemical weather. The
combination of land data and atmospheric monitoring of species from space is con-
sidered to provide a promising database for the optimization of chemical weather
models; such monitoring aims to include the strengths, locations and temporal
variations of the constituent concentrations and their surface emissions.

2.4 Surface Emissions

Recently, understanding of regional surface concentrations and sources of pollution
has been greatly advanced by the global monitoring of tropospheric constituents
from space. Multi-year space-borne CO, CO2, CH4 and NO2 retrievals provide a
powerful database for the inverse studies that adjust surface boundary conditions in
the CTMs (see chapter Inverse Modelling and Combined State-source Estimation
for Chemical Weather, Elbern et al.).

For optimization of emissions, statistical estimation schemes operate with misfits
of observed minus simulated concentrations to invert the strength of surface sources
required to simulate the observed concentrations in the atmosphere. The natural sur-
face sources are largely related to sudden biomass burning and wildfire events. Their
locations and timing can be identified by space-borne monitoring of burnt areas and
fire counts (Giglio et al. 2006). Anthropogenic activities, including industrial, agri-
cultural and biofuel emissions, can also provide a substantial impact on the total
net surface fluxes of pollutants. The simultaneous optimization of multi-species sur-
face fluxes is currently considered to be the way to provide a consistent adjustment
of correlated emissions in chemical models of the troposphere (van der Werf et al.
2006).

The textbook of Enting (2002) provides a good introduction to the practical for-
mulation and solution of the inverse problems associated with the estimation of
regional and global sources of atmospheric pollution. Depending on data sources,
techniques for estimation (i.e., modelling) of the surface emissions can be sepa-
rated into two types: “top–down” and “bottom–up” algorithms. The “bottom–up”
schemes use land surface data, and international reports of the environmental
protection agencies and committees. The bottom–up schemes employ empirical
relationships and models to estimate surface emissions by adding together and com-
piling various sources of information. The bottom–up studies provide the strength
and geographical distribution of the surface characteristics of pollutants on monthly
and annual scales. These data for major pollutants form the basis of emission inven-
tories. These inventories represent the critical input for modelling and forecasting
pollution budgets and the evolution of pollution plumes. They can be viewed as
the background field for the top–down optimization methods that aim to adjust
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averaged sources by inserting specific observations typical for a given year, month,
or a shorter time interval.

Figure 2 shows an example of the biomass burning emissions of CO used in the
MOZART (Model for OZone And Related Tracers) CTM (Horowitz et al. 2003) for
April–May 2000–2003, adjusted using the monthly MODIS (MODerate resolution
Imaging Spectroradiometer) fire counts (Giglio et al. 2006). An adjustment in the
original climate inventory of CO sources has been made to introduce observed year-
to-year variations in CO surface fluxes and simulate interannual CO variability in
the free atmosphere observed by the MOPITT (Measurements Of Pollution In The
Troposphere) instrument (Fig. 3). (Acronyms are given in the Appendix.)

To predict accurately the observed distribution of pollutants, the joint chemical
assimilation of observed constituents in the free atmosphere and inverse opti-
mization of corresponding surface sources are necessary, especially for urban
and industrial areas (see chapter Inverse Modelling and Combined State-source
Estimation for Chemical Weather, Elbern et al.). Assimilation of observations with-
out correction of systematic model errors associated with surface emissions can
violate the assumption of unbiased errors (see chapter Mathematical Concepts of
Data Assimilation, Nichols). Misspecification of surface concentrations or fluxes
of pollutants in models leads to systematic errors in their forecast. The capability to
suppress forecast biases related to errors in surface emissions before (or in the course
of) assimilation can greatly enhance the quality of combined model-data analysis,
and provide consistent optimization of concentrations and emissions. The practical
solution of the generalized inverse or combined source-state estimation problem
depends on the quality of data, forecast uncertainty and model formulations. Using

Fig. 2 The biomass burning emissions of CO used in the chemistry transport model for April–
May 2000–2003 adjusted using the monthly MODIS/Terra fire counts (Giglio et al. 2006). Red
indicates relatively high values; blue indicates relatively low values
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Fig. 3 Interannual CO variability in the free atmosphere (700 hPa) observed by the MOPITT
instrument during August for the years 2000 (top left), 2001 (top right), 2002 (bottom left) and
2003 (bottom left). Red indicates relatively high values; blue relatively low values

space-borne constituent observations from different instruments for inversion can
result in data-source dependent surface fluxes for a given model. In turn, for a given
dataset the different formulations of models (transport, chemistry and numerics) can
also produce a spread in the solutions to the inverse problem. Characterization of
uncertainties of satellite measurements, evaluation of systematic data discrepancies
and model sensitivity to tunable parameters, can provide realistic error estimates of
the joint state-source estimation results.

The pioneering space-borne measurements of NO2, CH4, and CO from the
Envisat, Terra, Aqua and Aura missions (see chapter Research Satellites, Lahoz),
initiated a number of model-data analysis studies that sought to optimize uncer-
tainties in the emissions of these observed species. Figure 4 illustrates how the
top–down optimization of surface emissions using MOPITT CO retrievals improved
MOZART CTM simulations during the TRACE-P observational campaign in March
2001 over the coastline of South Asia (Petron et al. 2004). With these optimized
emissions incorporated into the CTM, the data assimilation of MOPITT CO
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Fig. 4 Example of observed
(red) and simulated (black
and blue) CO during the
TRACE-P observational
campaign in March 2001. The
two simulations correspond to
two types of CO surface
emissions: the EDGAR-2
emission inventory (black);
and surface CO fluxes
optimized using the monthly
averaged MOPITT/Terra CO
retrievals (blue)

retrievals can be substantially improved. The study of Yudin et al. (2004) demon-
strated the importance of constraining CO emissions before the assimilation of
MOPITT data into the CTM.

The importance of year-dependent optimization of emissions in models is clearly
demonstrated by year-to-year variations of CO constrained by MOPITT measured
radiances for the period 2000–2008. In practice, the top–down estimates of surface
emissions from systematic differences between simulated and observed concentra-
tions in the mid troposphere will depend on the a priori distribution of the surface
fluxes created by the land-surface products (fire counts, burned area products, etc.).

Several environmental models have been recently used to update the estimates of
surface fluxes (Randerson et al. 2004) and evaluate uncertainties in bottom–up emis-
sion inventories. Recent studies show that these inventories still have a large level
of uncertainty. To validate these emissions, model simulations of pollutants with
proposed surface emissions are compared to surface station data and measurements
collected during intensive observational campaigns.

Using inverse top–down methods, global multi-instrument space-borne con-
stituent data from recent and planned satellite missions will help constrain further
emissions of pollutants. It is worth noting that global top–down inverse modelling
results depend strongly on the influence functions that describe the response of
atmospheric pollutant concentrations to changes in surface emissions. The spatial
and temporal structure of these functions is controlled by resolved and subgrid
transport processes in the planetary boundary layer (PBL) and free atmosphere (lay-
ers above the PBL). These transport mechanisms, which deliver pollutants into the
atmosphere from surface sources, will be discussed next.

2.5 Transport of Chemicals from Sources in the PBL
and Convection

The surface of the Earth is a rigid boundary that creates a frictional drag on air
mass motion. The frictional effects are dominant in the PBL, where the horizontal
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mean circulation is relatively weak. The theory of turbulent eddies describes the
thermodynamics and tracer transport in the PBL; its vertical depth is controlled by
vertical eddy fluxes of heat and water. The PBL contains about 10% of the total mass
of the atmosphere. Depending on location, and the type of surface, the characteristic
height of the PBL shows seasonal and diurnal changes varying from 10–100 m
to 1–2 km. For instance, the nighttime PBL is much shallower than its daytime
counterpart.

Surface-sourced pollutants begin to spread horizontally in the PBL; turbulent
constituent fluxes then control this spread and the mixing of the pollutants with
ambient air. Depending on the thermal stratification of the PBL, constituents can be
trapped near the surface or can be ventilated out of the PBL by convective trans-
port. Extreme concentrations of pollutants (smog) are observed for stable layers
associated with temperature inversions. In these stable layers, constituents in warm
air at the Earth’s surface (both land and water) can rapidly be advected upward
into the free atmosphere. Chapter General Concepts in Meteorology and Dynamics
(Charlton-Perez et al.) discusses the general circulation in the free atmosphere.

The convective circulation in the clear-sky and cloudy tropical atmosphere is
schematically shown in the left hand side of Fig. 1. In the deep clouds, the fast
uplifting of moist air allows short-lived chemically active radicals to be advected
into the upper troposphere and lower stratosphere, and affect the budget of ozone
and related species in this region. The slow downdrafts of moist heavy air from
convective clouds and their mixture with adjacent dry air masses close the budget
associated with the convective transport of chemical species. In global models there
are two types of convective schemes: deep and shallow convection schemes that
parametrize the processes in deep tropical clouds and clouds near the top of the
PBL, respectively. Triggering of convective processes depends on the stability of the
PBL and eddy fluxes of heat and moisture. The convective transport of pollutants
such as CO, HNO3, NOx and hydrocarbons is parametrized in a manner analogous
to water vapour convection. In global CTMs, both the subgrid vertical mass fluxes
controlled by convection, and the vertical diffusion, are important mechanisms that
describe the exchange of air masses across the boundaries marked by the height of
PBL and the location of the tropopause (the boundary between the troposphere and
stratosphere) – see Fig. 1.

2.6 Circulation and Transport

The circulation of the troposphere and the stratosphere, and its variations associated
with variable synoptic weather systems and planetary wave structures, determines
the global and regional distribution of chemicals in the free atmosphere. Several con-
ceptual transport models have been proposed to highlight the key features of tracer
dynamics in the tropics, and mid and high latitudes. These concepts aim to interpret
observed troposphere-stratosphere mass exchange, intrusions of tracers between the
subtropical and polar transport barriers, and the summer-winter inter-hemispherical
transport of air in the mid and upper stratosphere. Figure 1 illustrates schematically
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the descent of air in the polar regions during stratospheric winter, and the develop-
ment of the Hadley cell with vertical upwelling in the tropics and descent of air in
adjacent subtropical regions. It also highlights the intrusions of extra-tropical strato-
spheric ozone into the troposphere that occur during tropopause folding events. The
chapters on transport in Andrews et al. (1987), Brasseur et al. (1999) and Brasseur
and Solomon (2002), present the fundamental concepts and provide details on the
spread and mixing of passive and reactive species by the atmospheric circulation.
The next subsections discuss briefly the global transport and mixing of tracers in the
troposphere, stratosphere, and across the tropopause.

2.6.1 Tropospheric Circulation and Mixing

The remarkable differences between the tropospheric and stratospheric circulations
can be explained by the roles of tropospheric water (in all its phases) and the
Earth’s surface. For example, the distribution of land and water can create sig-
nificant zonal asymmetries in the radiation absorbed by the Earth’s surface. This
differential absorption of radiation controls the circulation systems that establish
large-scale transport pathways of tracers in the troposphere. In comparison to the
atmosphere, the Earth’s surface is a more effective absorber of solar radiation. This
feature explains the presence of a net radiative cooling in the mid and upper tro-
posphere, with heating tending to be dominant near the surface. Furthermore, the
latent heat release associated with water vapour condensation in the cloudy tro-
posphere, acts to increase the instability of the vertical layers. Taken together, all
these processes allow one to use the concept of radiative convective equilibrium to
approximate globally the tropospheric thermal regime.

Convective transport of heat and moisture ensures neutral stability in the tropo-
sphere, and provides vertical stirring and dissipation of the vertical perturbations.
Convective mixing of air parcels across isentropic surfaces is accompanied by
diabatic heat release during the condensation of water vapour, thereby creating baro-
clinically unstable regions. In the troposphere, moist air parcels rise along vertically
tilted isentropic surfaces and the transport of air masses is accompanied by cloud
formation and precipitation.

The distribution of the land and the ocean, and variations in land topography,
are important for the formation of tropospheric circulation systems. At large spa-
tial scales, these mechanisms are responsible for the geographical variation of the
storm tracks showing, for instance, the prevailing eastward synoptic storm tracks
in mid latitudes, and the equatorial east–west circulation cells (Walker cells) in the
tropics associated with the heat distribution over the oceans and continents. Land-
sea and valley–mountain breezes are well-known examples of regional circulations
induced by differential topography. Diagnostic studies of the global circulation indi-
cate that the troposphere is well-mixed on the time-scales of months (i.e., a season),
although strong and fast convective mixing can be observed at shorter time-scales
and at regional spatial scales. These relatively fast dynamical time-scales ensure
effective vertical and meridional mixing in the troposphere, and explain the weak
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spatial gradients of long-lived tropospheric tracers, such as CH4, N2O, CFC-11, and
CFC-12.

In order to quantify seasonal changes in tracer budgets, a number of authors
have computed the effective meridional circulation and large-scale eddy mixing
attributable to flows simulated by General Circulation Models (GCMs) and rep-
resented by meteorological analyses (e.g. Plumb and Mahlman 1987; Holton et al.
1995; Haynes and Shuckburgh 2000a, b; Lyjak and Yudin 2005). Figure 5 below
from Yudin et al. (2000) shows examples of meridional mass stream functions
for January and July derived from the NCAR (National Center for Atmospheric
Research) climate middle atmosphere model. For the zonal mean diagnostics, the
“residual” or Transformed Eulerian-Mean (TEM) circulation (middle column of
Fig. 5) represents the effective transport that takes into account compensating effects
between the Eulerian mean (left column of Fig. 5) and the eddy fluxes associ-
ated with deviations of the three-dimensional flow from the zonal mean. The TEM
is based on the reformulation of zonal mean temperature balances and approx-
imates the large-scale Lagrangian mean transport, i.e., the mean circulation that

Fig. 5 The Eulerian (left column); TEM (middle column); and transport (right column) merid-
ional stream functions derived from the sixth year of a MACCM2/NCAR model simulation. The
top row shows results for January; the bottom row presents results for July. The dashed stream
function contours designate the clockwise mass transport (from south to north); solid lines show
the courterclockwise mass transport
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Fig. 6 Zonal mean monthly (April) carbon monoxide (CO) in the troposphere simulated by the
NCAR MOZART CTM (top left panel), and distribution of surface emissions (top right panel) and
chemistry-transport terms: advection (middle left panel), convection (middle right panel), diffusion
(bottom left panel), and chemical production-loss (bottom right panel)

follows a set of fluid particles (Andrews et al. 1987). The TEM framework suc-
cessfully represents the tracer transport in atmospheric flows where large-scale
non-zonal oscillations can be described by the superposition of stationary and
weakly dissipative planetary waves.

For dissipative flows, one can introduce the concept of the transport meridional
circulation for passive tracers (Plumb and Mahlman 1987). This treatment is analo-
gous to the TEM approach described above. This concept aims to describe both the
transport and mixing of tracers induced by transient and dissipative wave motions.
The right column of Fig. 5 shows the stream function of the transport circulation.
From Fig. 5 we can see that the major differences between the TEM and transport
circulations occur in the well-mixed troposphere and lower stratosphere, while in
the mid and upper stratosphere both circulations provide patterns similar to those of
the meridional circulation.

Figure 6 summarizes the concepts discussed in this subsection. It shows the bud-
get of the April zonal mean CO distribution predicted by the NCAR MOZART
CTM. Diagnostic simulations of the CO budget show the interplay of the differ-
ent mechanisms that control the distribution of CO between the surface and the
tropopause.

2.6.2 Stratospheric Circulation and Mixing

As seen from the structure of the various meridional streamfunctions (Fig. 5), tro-
pospheric air enters the stratosphere mainly in the tropics. In the stratosphere this
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air moves polewards. By mass conservation this circulation must be closed by
stratospheric air that returns to the upper troposphere/lower stratosphere (UTLS) at
polar and mid latitudes. For wintertime stratospheric flows, the Eulerian circulation
(left column of Fig. 5) deviates substantially from the TEM and transport circula-
tions. In contrast to the situation for the summer months, the wintertime meridional
mass circulation is affected by strong planetary wave activity. The wintertime polar
night vortex in both hemispheres provides a transport barrier for air mass exchange
between mid and high latitudes. In the winter stratosphere, breaking planetary waves
form a surf zone around the edge of the polar vortex. Chapter General Concepts in
Meteorology and Dynamics (Charlton-Perez et al.) provides further details.

Diagnostics of quasi-horizontal mixing associated with wave breaking are usu-
ally computed at isentropic surfaces; they help examine annual and interannual
changes in the mixing properties of the stratospheric flow. However, note that dif-
ferences between model (e.g. GCM) simulations and analysis schemes combining
models and observations can affect the mixing properties of the flow. Figures 7
and 8 illustrate differences between wave amplitudes and mixing characteristics of
stratospheric analyses produced by ECMWF (European Centre for Medium-Range
Weather Forecasts), Met Office and GEOS-3/GMAO (Goddard Earth Observing

Fig. 7 Top and middle panels: Analyses and diagnostics for ECMWF (left panels); Met Office
(middle panels); and GEOS-3 (right panels). Zonal mean winds (top panel); kinetic eddy energy
averaged for the period 15–30 January 2000 (middle panel). The bottom panel shows (left to right)
kinetic energy distribution for the first 20 zonal modes at 400, 700, and 1,500 K for the three
systems. The x-axis in the top and middle panels corresponds to equivalent latitude; the x-axis in
the bottom panel corresponds to zonal wavenumber. See text for acronyms
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Fig. 8 Averaged (15–30 January 2000) mixing diagnostic results for ECMWF (left panels), Met
Office (middle panels), and GEOS-3 (right panels) stratospheric analyses. Mixing coefficient
Kyy (top panels); inverse e-folding time-scales (λ) obtained with the CAS (contour advection
with surgery) technique (middle panels); distribution of the equivalent mixing lengths Ln =
Le/(2πacosφ) (bottom panels). Crosses show the position of the vortex boundaries in terms of
the maximum of the zonal wind jet. The white lines depict the position of the zero wind line of
the zonal winds. The adjacent dashed lines show the −10 and 10 ms–1 wind contours. The x-axis
in the plots corresponds to equivalent latitude. The y-axis in the plots corresponds to potential
temperature (K)

System/Global Modeling Assimilation Office) (see also chapter The Role of the
Model in the Data Assimilation System, Rood).

2.6.3 Transport and Chemistry Across the Tropopause

A fundamental aim of UTLS studies is to quantify the processes which control
the atmospheric composition in terms of air transported from the stratosphere and
air transported from the upper troposphere. For this quantification it is convenient
to define conceptual boundaries, particularly the tropopause, which separates the
regions of interest. This boundary is a notional concept and plays a crucial role in
our understanding of Stratosphere-Troposphere Exchange (STE).

There are several definitions of the tropopause, for example those based on
static stability, chemical composition and potential vorticity (PV) outside the tropics
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(Shapiro 1981; Wirth 2000; Zahn et al. 2004). The tropopause is conventionally
defined as the level above which the rate of temperature decrease with height (the
“lapse rate”) does not exceed the threshold value of –2 Kkm–1, provided the aver-
age vertical temperature gradient above this level does not fall below this value
again within a 2 km zone. The tropopause is also associated with a sharp transition
in the values of concentrations of tracers and radiatively active gases such as ozone,
methane, nitric acid and water vapour.

The climatological height of the tropopause as a function of latitude has tradi-
tionally been explained by radiative-convective adjustment models. However, these
models do not adequately explain the position of the tropopause height in the extra-
tropics. It has been suggested (Held 1982) that the tropopause height is controlled
by the dynamical effects of synoptic-scale baroclinic eddies. Outside the tropics,
the “dynamical tropopause” has become more popular recently as a tool to anal-
yse dynamics and transport of STE events. It is defined by a specific value of PV.
For conservative or weakly dissipative flows the extratropical dynamical tropopause
is a material surface; this is an advantage when evaluating mass and constituent
exchange across the tropopause.

Figure 9 shows the global distribution of tropopause pressure, using three differ-
ent tropopause definitions, computed using NASA GMAO GEOS-5 meteorological
analyses. The tropopauses computed using these definitions do not coincide, but
are complementary to each other, allowing different characterizations of dynam-
ics, mixing and chemistry. Interested readers are referred to the studies of Shapiro
(1981), Wirth (2000), Zahn et al. (2004), and Randel et al. (2007). These papers
explain the differences and similarities between the thermal, dynamical and chem-
ical definitions of the tropopause boundary, and their use for global and regional
estimations of STE. This is an area of active research, and assimilation of recently
available constituent data from satellites such as EOS Aura is expected to shed light
on UTLS transport and chemistry.

Fig. 9 Global distributions of the tropopause pressure using three types of tropopause definition,
and computed using NASA GMAO GEOS-5 meteorological analyses for 23-01-2006: thermal
tropopause (left panel); dynamical (PV) tropopause (middle panel); chemical (100 ppbv O3)
tropopause (right panel)
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The complexity of dynamics and chemistry in the UTLS has been highlighted
in a number of studies. For chemical transformations and budgets one must include
the interaction between organic and inorganic photochemical cycles, and the influ-
ence of surface and atmospheric sources. Reactions of trace gases on or within
aerosol/cloud/ice particles are likely also to contribute significantly to the UTLS
constituent budget, including ozone. There are two types of multiphase chemical
reactions that one must account for when considering aerosols and other particles:
(i) aqueous phase reactions in liquid aerosol and cloud droplets; and (ii) surface
heterogeneous reactions on ice crystal and solid aerosol surfaces.

The key scientific issues for UTLS chemistry and transport are related to: (i)
quantification of the chemical mechanisms and budgets of the halogen, chlorine,
and bromine compounds that affect ozone concentrations in the UTLS; (ii) the upper
tropospheric spatial and temporal distributions of the major chemical species in tro-
pospheric ozone chemistry (NOx, VOCs – volatile organic compounds), including
the magnitude of chemical sources and sinks; (iii) understanding the role of organic
chemistry in terms of sources and reservoirs for HOx and NOx; (iv) the influence of
transport processes on the concentrations of short-lived source gases of tropospheric
origin; and (v) quantification of the concentrations of key stratospheric species (O3,
HNO3) in the neighbourhood of the tropopause, including their downward fluxes.

In the lower stratosphere, transport processes (a key uncertainty) are affected
by the different pathways and mechanisms by which air may enter this region.
Relatively dry and ozone-rich air arriving from above (middle stratosphere) dif-
fers from the relatively moist, ozone-poor air and polluted air that enters the lower
stratosphere from the upper troposphere.

Holton et al. (1995) illustrates the dynamical aspects of troposphere-stratosphere
mass exchange across the polar, mid latitude and tropical tropopause. Along with
large-scale ascent, entrainment of air into the tropical lower stratosophere via direct
convective penetration from the upper troposphere has been observed, for instance,
from aircraft observations of high CO concentrations. However, the cumulative
importance of convective tropical tracer transport is still uncertain. More effort
should be spent studying the processes by which irreversible mixing takes place.
Turbulent mixing associated with the breaking of tropical inertia-gravity waves can
be also important for formation of the thin low-ozone streamers that can enter the
extratropical UTLS from the tropics.

In the last decade, observational investigations into mid and high latitude
ozone depletion have made substantial progress in understanding the stratospheric
overworld (isentropic levels above 380 K). However, some transport and mixing
questions remain; in particular concerning exchange between tropics and mid lat-
itudes and the vertical variation of such exchange. Transport studies of the UTLS
based on the use of analysed winds highlight problems, likely associated with trans-
port uncertainties, in the reproduction of observed intrusions of stratospheric and
tropospheric air masses across the tropopause.

In mid latitudes, stratospheric air masses arrive in the upper troposphere during
tropopause fold events (Shapiro 1980). In the upper troposphere, tracer fila-
ments are formed through the stirring effects of synoptic eddies, and upper-level
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frontogenesis, and also through large-scale diabatic downwelling. The dilution of
these filaments and blobs with ambient air is controlled by efficient vertical and hor-
izontal mixing known as CAT (clear sky atmospheric turbulence) phenomena. The
polluted air from the PBL can arrive in the upper troposphere through convection
and frontal circulations. To better understand STE, and the transport, chemistry and
dynamics of the UTLS, it is desirable to perform combined multi-instrumental data
assimilation analysis, including chemical data assimilation (see chapter Constituent
Assimilation, Lahoz and Errera).

3 Summary

This chapter provides a brief overview of the chemistry and transport of atmospheric
chemical species, highlighting current research challenges. These challenges can be
addressed by data assimilation.

Recent observations are oriented toward making global chemical model predic-
tions. Existing satellite-based multi-year data records provide opportunities to: (i)
constrain the initial distributions of chemical species; (ii) evaluate the transport
properties of air flows predicted by models; (iii) optimize key parametrizations of
convective transport and diffusion; and (iv) constrain the year-to-year variations
of surface emissions. To properly assimilate data into chemical models such as
CTMs, issues related to stochastic and random errors of observations and models
should be studied. The main subject of the next chapter in this book (Representation
and Modelling of Uncertainties in Chemistry and Transport Models, Khattatov and
Yudin) is the representation of uncertainties in the chemical models introduced in
this chapter.
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Representation and Modelling of Uncertainties
in Chemistry and Transport Models

Boris Khattatov and Valery Yudin

1 Introduction

Representation and analysis of uncertainties (errors) is at the core of any data assim-
ilation system. The main aim of data assimilation is to reduce uncertainties of model
predictions using observations. Under Gaussian error statistics for both parts of the
assimilation system (data and forecast), and by making the assumption of zero bias,
optimal estimation schemes can be derived. After insertion of data, the analysis error
covariance can be evaluated by the optimal estimation formula for linear systems:

Ca = (I−KH)Cf (1)

where Ca and Cf are the analysis and the forecast error covariance matrices, respec-
tively. I is the identity matrix, H is a linear operator which projects the analysed
variables from the forecast space to location of observations and expresses them in
terms of measured quantities, and K is the Kalman gain matrix defined previously
in this book (see chapter Mathematical Concepts of Data Assimilation, Nichols).
In this chapter, the error statistics of observations are assumed to be prescribed by
observers, although in practice the combined tuning of the forecast and observa-
tional error covariances usually is performed in order to secure the optimality of the
observing systems.

The subject of this chapter is representation of uncertainties in the various chem-
ical transport models described in chapter Introduction to Atmospheric Chemistry
and Constituent Transport(Yudin and Khatattov). In studies of atmospheric chem-
istry and transport, description of forecast errors depends on the resolution, spatial
coverage, dimension, and complexity (e.g. number of reactive species) of models.
Our introduction to the parametrization and modelling of errors for atmospheric
composition is separately outlined for errors induced by the chemical coupling of
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species, and uncertainties due to the transport of tracers and emissions. Two concep-
tual schemes for the description and time evolution of random errors in modelling
of atmospheric chemicals will be described:

– A box model approach suitable for trajectory modelling assuming negligible
mixing;

– A 3-D chemistry-transport model (CTM) approach taking into account transport
and diffusion effects.

With increasing computational power, parametrized representation of errors in
chemistry-climate models can, in principle, be replaced by the ensemble-based
methods, which are beyond the scope of this chapter. It is likely that Monte Carlo
methods with an ensemble of ~30–100 members could be a practical avenue for
quantitative error approximations when exploring the coupling between chemistry
and transport.

2 Linear Formalism for Error Evolution in Box Chemical
Models

Let vector x of length J represent the state (volume mixing ratios of a num-
ber of chemicals) of a time-dependent chemistry model described in the chapter
Introduction to Atmospheric Chemistry and Constituent Transport by Yudin and
Khattatov. Let the non-linear operator M describe the transformation of vector
xbetween two consecutive time intervals t to time t+�t, that can be expressed as,

x(t +Δt) =M(x(t)) (2)

Let vector y contain N observations of the state, i.e., observations of the chemical
composition of the atmosphere. Usually, N < J, meaning that we do not have enough
observations to constrain the complete model space. The connection between y (the
observations) and x (the model values) can be established through the non-linear
observational operator H, which represents mapping of the state variables from the
model space to the observational space (chapter Mathematical Concepts of Data
Assimilation, Nichols):

y = H(x) (3)

Everywhere in this discussion we assume that the interpolation errors associated
with operator H are negligible. The results are easily extended to the case when this
is not true. Combining the above two equations, we get

y = H(M(x)) (4)
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The data assimilation problem is then to find the “best” value of x, which
inverts this equation for a given y allowing for observation errors and other prior
information (Lorenc 1986). In most cases, the dimensions of vectors x and y will
be different, and this problem will be either overdetermined or underdetermined.
Therefore, inversion of Eq. (4) should be done in the statistical sense.

“Best” here means that the errors of the final analysis are minimal. An exact value
of a physical quantity can rarely be determined. One can only say that this value
lies within a certain range with a certain probability, and therefore all estimates
of the best value of x obtained from the observed y are probabilistic in nature. A
mathematically robust definition of the best or optimal x is, for instance, the value
corresponding to the maximum of the probability density function (PDF) of x given
observations y. This is the maximum likelihood definition.

The exact shapes of the PDFs in both x and y spaces are generally unknown.
In order to solve the problem posed one needs to establish a relationship between
the PDF of x and the PDF of y. Formal transformation of PDFs by the model from
the parameter space x to the model space y is described by the Fokker-Kolmogorov
equation (e.g. Jazwinski 1970), which is impossible to solve in most practical appli-
cations. This is one of the reasons why simplifications are needed in order to be able
to solve practical problems in data assimilation.

One simplification is that the probability density functions can be approximated
by Gaussian functions:

PDF(x) ∼ exp
{
−0.5(x− !

x)TC−1(x− !
x)

}
(5)

where
!
x is the true (unknown) value of x, and C is the corresponding error covari-

ance matrix. Its diagonal elements are the uncertainties (standard deviations) of
!
x and the off-diagonal elements represent correlation between uncertainties of
different elements of vector x. The covariance matrix C is defined as

C = 〈(x− !
x)(x− !

x)T〉 (6)

where angle brackets represent averaging over all available realizations of x.
We also assume that there exists a prior, independent estimate of x, or xb, often

called the background, with corresponding background error covariance B. The
solution minimizing the final analysis errors is given by a minimum of the following
functional, where T denotes transpose (Lorenc 1986):

J(x) = [y−H(M(x))]T (O+ F)−1[y−H(M(x))]+ [x− xb]TB−1[x− xb] (7)

Here O is the observational error covariance matrix, F is the error covariance cor-
responding to operators M and H, and B is the background error covariance matrix.
The sum O + F is often represented as R. These error covariance matrices charac-
terize our confidence in the measurements, the model and observation operator, and
the a priori background estimate. J(x) is often called the misfit or cost function.
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In practical applications one has to find an appropriate way to compute the error
covariances and to minimize J(x). In most cases, in order to be able to do this we
need to introduce the linear approximation. In the linear approximation we assume
that for small perturbations of the parameter vector �x the following is a good
approximation:

M(x+�x) =M(x)+ L�x (8)

In this expression L is a matrix, while M is, in general, a non-linear operator.
Formally, L is a derivative of M with respect to x:

L = dM/dx (9)

The linearization L of the original model M will be used in two ways. First,
minimization of J(x) often requires knowledge of the derivative of J(x) with respect
to x. This, in turn, requires knowledge of dM/dx. Second, for small variations of x
one can show that the transformation of error covariance matrix Cx in the parameter
space to the error covariance matrix Cy in the model space is as follows:

Cy = L CxLT (10)

This, in turn, allows one to establish a correspondence between the PDF of x
in the parameter space and the PDF of y in the model space. If M represents the
original non-linear model, matrix L is said to be the tangent-linear model and its
transpose, LT, is said to be the adjoint of M. The linearization matrix describes time
evolution of small perturbations of the model state:

δx(t +�t) = Lδx(t) (11)

In the case of the photochemical box model described in the chapter Introduction
to Atmospheric Chemistry and Atmospheric Transport (Yudin and Khattatov),
Eq. (11) expands to

⎡
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The linearization matrix L is, in general, a function of the time interval Δt. This
is easy to understand if we take the extreme case of Δt = 0. In this case, the final
perturbation is the same as the initial perturbation and L is the identity matrix,
I. As the time interval increases, the linearization matrix changes its structure
(see Fig. 1).
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Fig. 1 Example of time evolution of the linearization matrix, L. See text for details. With
permission from Khatattov et al. (1999)

After a few hours of integration a pattern emerges in the distribution of the non-
zero elements, with only a few columns containing most of the non-zero values. This
demonstrates that a relatively small number of species determine concentrations of
all constituents in the model at later times.

For a typical stratospheric chemical system, the matrix L is not invertible for �t
longer than a few hours. The rank of L, i.e., number of linearly independent rows
or columns, quickly decreases with time, thus making the matrix not invertible. The
rank is shown in Fig. 1 on top of each plot. For this example, after just 6 h the rank
decreases from 19 to 11 and becomes 9 after 4 days of integration.

This means that for this example, in general, only nine linear combinations of
initial species concentrations completely define concentrations of all 19 constituents
after 4 days. Formally, on day 4, matrix L represents a transformation from 19-
dimensional space to 9-dimensional space. This is a multidimensional equivalent of
multiplication by zero along some of the dimensions. No matter how large some
concentrations were initially, in a few hours or a few days their impact might be
completely negligible. This behaviour is due to a strong diurnal cycle and the short
lifetime of some species in the model.

An interesting consequence of this result is that the past state of the modelled
stratospheric chemical system can never be determined from present observations
of the system, since L cannot be inverted. On the other hand, it means that one does
not have to know concentrations of all species to predict the state at some later time.
For this example, provided that the model is fairly realistic, only nine linear combi-
nations of species concentrations spanning the orthogonal space of matrix L need to
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Fig. 2 Action of
photochemical model, M.
See text for details. See also
Khattatov (2003)
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Fig. 3 Transformation of
PDFs. See text for details.
See also Khattatov (2003)

Fig. 4 Time evolution of error covariance matrices. The panels refer to values of the covariance
matrix at times in a numerical experiment: 0 h (top left), 6 h (top right), 12 h (bottom left) and 24 h
(bottom right). With permission from Khatattov et al. (1999)

be known in order to predict concentrations of all 19 model constituents 4 days later.
Computer codes for constructing and solving the described photochemical model as
well as for computing the linearization and covariance matrices can be found at:
http://acd.ucar.edu/~boris/research.htm.
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One can think of the photochemical model M as a transformation from
the N-dimensional space (19-dimensional for the example discussed in chapter
Introduction to Atmospheric Chemistry and Constituent Transportby Yudin and
Khatattov) of constituent concentrations at present time to some future time, as
illustrated schematically in Fig. 2.

In most practical cases, the value of x at the initial time is not known precisely;
instead one can specify a region of likely values of x. Instead of a point-to-
point transformation; we now have a region-to-region transformation (Fig. 3). The
“shapes” of these regions are described by probability density functions.

Evolution of the probability density functions is very hard to compute in prac-
tice due to the high dimensionality of the model space and the high computational
requirements of the model operations. However, the Gaussian assumption and the
linearization approximation allows one to use Eq. (10) to compute the evolution of
the Gaussian error covariance matrices. An example of the temporal evolution of
error covariance matrices computed this way is shown in Fig. 4.

3 Variance Evolution and Applications to Measurement
Information Content

As shown in Fig. 1, as Δt becomes larger than the lifetime of the shortest-lived
chemical constituent in the model, the matrix L becomes rank deficient and, hence,
non-invertible. In effect, it means that knowledge of the initial concentrations of
some short-lived chemicals is irrelevant to establishing the state of the system at
time t+Δt since they are determined by concentrations of other chemicals.

Thus, one can pose the following questions (as adapted from Khattatov et al.
2001):

(1) Given concentrations and uncertainties of concentrations of a set of chemicals
at time t, what can be inferred about their concentrations and uncertainties at
time t + Δt?

(2) Which chemicals are the most important for determining the complete state of
a chemical system and which are the least important?

(3) What are the most relaxed (i.e., maximum) measurement errors that guarantee
specified prediction errors for a particular set of atmospheric chemicals?

To illustrate how one can address these questions we reproduce the approach
described in Khattatov et al. (2001). The box photochemical model is initialized
and run for several days using parameters (temperature, pressure, constituent con-
centrations) typical for the spring mid latitude stratosphere at 10 hPa (about 30 km
in altitude). Concentrations of the following 18 species are predicted: H, OH, HO2,
H2O2, NO, NO2, NO3, N2O5, HNO3, HNO4, Cl, ClO, HOCl, HCl, ClONO2, O,
O(1D), and O3; and concentrations of several others are held constant: CO, CH4,
N2O, H2, H2O, and sulphate aerosol. The linearization matrices are automatically
computed and stored for each time step of the model integration; the time step can
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vary from milliseconds to 15 min. The final linearization matrix corresponding to
a larger time interval can then be computed by multiplication of the intermediate
matrices corresponding to individual time steps. For now we ignore uncertainties in
photochemical/chemical reactions rates, numerical errors, and errors due to missing
photochemical processes in the model

To show how uncertainties evolve in time we will now focus on variances, or
diagonal elements of C, and ignore its off-diagonal elements. Let vector v contain
the values of all the diagonal elements of C. It is easy to see from Eq. (10) that

vt+�t = L2 vt (13)

where elements of the matrix L2are simply squared elements of L. For large enough
Δt, both of these matrices become rank deficient and non-invertible in the conven-
tional sense. It means that the same uncertainties vt+Δt of the prediction can be
obtained from different initial uncertainties vt. If we assume that initial uncertain-
ties come from measurements, we can pose the following question: What are the
maximum measurement uncertainties that lead to prediction errors smaller than a
specified upper limit? If vector vmax designates the maximum allowed prediction
variance then, formally, the problem is to maximize each element of vt subject to
the following constraints:

vmax ≥ L2vt

vt > 0
(14)

Since vt is a vector, this is a multi-objective optimization problem which, in gen-
eral, has multiple solutions. Various algorithms have been developed for finding
practical solutions to such problems. Here, we apply the goal attainment method
described in Gembicki (1974) to find a solution to Eq. (14).

We performed a 24-h model integration and computed the corresponding 18×18
linearization matrix. We then computed the singular value decomposition (SVD)
spectrum of the linearization matrix, shown in blue in Fig. 5. The portion of the
spectrum corresponding to the nine largest singular values is fairly flat while the
tail of the spectrum drops abruptly. This means that projections of the vector of
initial concentrations onto the corresponding nine eigenvectors contain most of the
information needed to determine concentrations of all 18 constituents after 24 h.

Figure 5 also presents the SVD spectrum of the matrix L2 whose elements are
the squared elements of matrix L. According to Eq. (11) this matrix determines
the evolution of variances. As expected, the tail portion of this SVD spectrum is
significantly flatter than that of matrix L and the “cut-off” value is not obvious. To
illustrate the time evolution of relative errors in the model we performed a 10-day
model integration, set the values of variances v at the beginning of the integration to
correspond to 10% relative errors, and computed variances at each model time step.
Results of these calculations are presented in Fig. 6.

From Fig. 6 one can see that relative errors change in a complicated way in
response to the diurnal cycle and photochemical transformations between species.



Representation and Modelling of Uncertainties in Chemistry and Transport Models 439

Fig. 5 SVD spectrum of
matrix L (in blue, circles) and
L2 (in red, squares). With
permission from Khattatov
et al. (2001)

Fig. 6 Time evolution of relative errors. With permission from Khattatov et al. (2001)

Fairly simple calculations represented by Eq. (13) allow one to assess easily how
uncertainties associated with a particular set of measurements vary with time. The
case where we assume that concentrations of all model constituents are known with
a 10% error is clearly not realistic. However, calculations similar to the one per-
formed may still provide some guidance as to how much information is contained
in a particular set of measurements. Even if concentrations of some species are not
measured at all, various a priori estimates are usually available and can be utilized
provided that the corresponding variances are set to reasonably large values.
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Fig. 7 Maximum initial errors that guarantee final errors less than 10% (left panel). Actual final
errors (right panel). With permission from Khattatov et al. (2001)

We will now concentrate on an “inverse” problem and assume that we have a
set of requirements, i.e., the maximum allowed errors of prediction at the end of
the 24-h period. What are the maximum possible errors of the measurements (at the
beginning of the time interval) that guarantee maximum specified prediction errors?
For illustrative purposes we assume that the relative prediction errors at the end
of the 24-h interval have to be equal to or less than 10% and then attempt to find
maximum initial errors that satisfy this criterion. As mentioned earlier, this problem
is, in general, ill-posed and therefore semi-empirical algorithms have to be utilized
to address it. A solution obtained with the goal attainment algorithm (Gembicki
1974) is shown in Fig. 7.

The bar graph on the right of Fig. 7 shows relative errors of constituent concentra-
tions at the end of the 24-h model integration while the bar graph on the left of Fig. 7
shows the derived relative errors of initial concentrations. As required, the final rela-
tive errors of concentrations of all species do not exceed 10%, most chemicals show-
ing smaller errors. The initial errors for some species (H, OH, Cl, HOCl, NO3, O,
O(1D)) are so large that they go off the scale of the plot. The actual numerical values
correspond to hundreds of percent and indicate that initial concentrations of these
chemicals are irrelevant to determining the future state of the system for as long as
the initial guess is of the correct order of magnitude. For the rest of the chemicals,
initial errors range from about 5 to 20%. Clearly, the smaller the required initial
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Fig. 8 Final errors (right panel) for the case when all initial errors are set to 10% (left panel). With
permission from Khattatov et al. (2001)

error the more important is the role of the corresponding chemical in determining
the future system evolution. For comparison, Fig. 8 presents results of the forward
error calculations for the case when the initial relative errors for all chemicals are set
to 10%. As one can see, this does not guarantee that the final errors are 10% or less.

Uncertainties, or variances, can be considered to be a quantitative measure of
the amount of useful information about the chemical system under considera-
tion. The framework discussed above allows one to assess how this “information”
changes with time. Assuming that the initial estimates of the system state come from
measurements, this framework allows one to determine which chemicals should
be measured and with what uncertainties in order to be able to make the best
possible predictions. The above case for a typical stratospheric system is largely
academic and its results confirm quantitatively what is already known, e.g., that
concentrations of several key species or linear combinations of species (families)
control the future evolution of the system. These results are encouraging and we
believe that this framework will in practice be most useful when applied to com-
plex and poorly studied chemical systems involving possibly hundreds of chemicals.
Tropospheric chemistry in general, and boundary layer chemistry in particular, are
examples of systems where this methodology can provide quantitative guidance
and help to establish measurement priorities. Chapter Observing System Simulation
Experiments (Masutani et al.) discusses similar concepts in the context of evaluating
additions to the Global Observing System.
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4 Error Representation in 3-D Chemistry-Transport Models

The approach described in Sect. 3 for computing error evolution based on the
extended Kalman filter (EKF) assimilation technique described in Khattatov et al.
(2001) is quite suitable for 0-D (box) photochemical models in combination with
trajectory modelling. 3-D chemistry-transport models (CTMs) are much more pow-
erful tools for studying the atmosphere as they account for a variety or transport and
chemical processes within one model. Applying the same formalism described in
Sect. 3 to CTMs, however, is prohibitively expensive due to the high dimensionality
of the problem. For a CTM with a million grid points modelling 20 chemicals, the
size of the error covariance matrix (~1014 elements) becomes impossible to handle
in practice.

In this section we describe some attempts to characterize error evolution in CTMs
that rely on earlier studies by Cohn (1993), Lyster et al. (1997), Ménard et al.
(2000) and Ménard and Chang (2000), among others, to approximate the evolu-
tion of errors related to transport processes. In chemical data assimilation, model
errors can be viewed as uncertainties in the specification of the CTM “prescribed”
parameters (winds, diffusion, convection, reaction rates) and initial and boundary
distributions. Indeed, analysed wind errors can directly control the variance distri-
bution of the long-lived tracers, while estimated errors in the chemical constant
rates and temperatures define uncertainties in the distribution of the short-lived
constituents.

For simplicity of notation we will use the continuity tracer equation in the rect-
angular coordinate system with xk-axes (k = 1, 2, 3) and Uk-wind components. We
assume the non-divergent approximation for the stratospheric flow along the pres-
sure surfaces. Generalization of our derivations for spherical geometry in a hybrid
sigma-pressure vertical coordinate system is straightforward. Convection effects are
ignored here but can also be introduced relatively easily. The continuity equation
for constituent qi with chemical source Si can be written as follows:

∂qi

∂t
+

∑
k

Uk
∂qi

∂xk
− Si = 0 (15)

Assuming a decomposition of the model state (qi), temperature (T), winds
(Uk), and photochemical sources (Si) on to the ensemble averaged values <f> and
stochastic fluctuations f’, we can derive the forecast variance Vf

i equation:

∂Vi
f

∂t
+

∑
k
〈Uk〉∂Vi

f

∂xk
+

∑
k
〈Uk

′qi
′〉∂〈qi〉
∂xk

− 〈Si
′qi
′〉 = 0

Vi
f = 1

2
〈qi

′2〉
(16)

Ignoring the flow-dependent terms in the left-hand-side of Eq. (16) and trans-
forming the second order eddy terms on the left-hand-side, we obtain the variance
equation discussed in Cohn (1993):
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∂Vi
f

∂t
+

∑
k
〈Uk〉∂Vi

f

∂xk
= Qt

i + Qc
i = Qm

i , Qt
i = −

∑
k
〈Uk

′qi
′〉∂〈qi〉
∂xk

, Qc
i = 〈Si

′q′i〉
(17)

In this derivation, the model error terms Qm for stratospheric tracers are writ-
ten explicitly and associated directly with the transport and chemical errors. Several
approaches can be employed for the Qtand Qc specification. The Monte Carlo or
ensemble forecast simulations can be used as the most direct stochastic method
to estimate the tracer perturbations q’. The linearized model can be used to build
<Si

′q′> and <Uk
′q′> for various perturbations in the wind system and photo-

chemical parameters. For instance, for calculations of the Qc-term we can use the
linearization (written L here) and photochemical Jacobian (written J here) matrices
(see, e.g., Khattatov et al. 1999) to relate the multivariate cross-species covariance
to the chemical model error term Qc in the given model box:

Qc
i (t + τ ) = 〈Siqi〉 =

∑
k

JikCqq
ik (t + τ ), Cqq

ik (t + τ ) = LCqq
ik (t)LT (18)

The transport model errors can be parametrized in the spirit of macro-turbulence
theory as follows:

Qt
i = −

∑
k
〈U′

kq′i〉
∂〈qi〉
∂xk

=
∑

k
Dk

{
∂〈qi〉
∂xk

}2

, Dk = U∗kLmk (19)

The errors related to wind velocities (U∗k) and mixing length (Lmk) determine the
transport contribution to the model errors. The horizontal wind error magnitude can
be derived from the analysed wind errors. The continuity equation can be applied to
estimate the vertical wind errors from the horizontal wind uncertainties.

The formulation of the model error dynamics described above has several useful
properties. First, it supplies a natural “physical” mechanism for the model error
growth from wind errors and state dependent spatial tracer gradients. The error
growth is expected to be large in regions of strong tracer gradients and/or large
wind uncertainties. Such regions should become prime targets for making new
chemical observations. Second, this approach naturally introduces the concept of
an anisotropic model for the state dependent error specification. It can be viewed
as a theoretical basis for the empirical anisotropic forecast error correlation mod-
els discussed in Riishøjgard (1998). Third, this approach naturally links the adjoint
approach (chapter Variational Assimilation, Talagrand) with the suboptimal ver-
sions of the Kalman filter framework. The practical implementation of this scheme
uses a splitting algorithm for the transport and chemistry. It includes integration of
equations for the constituents (Eq. 15) and their variances (Eq. 16), with adaptive
calculations of the model errors at every time step (Eqs. 17, 18 and 19).

To illustrate the capabilities of this approach to represent errors in data assimi-
lation, we used a 2-D CTM driven by the January 1992 non-divergent components
of the United Kingdom Met Office winds. The chemical solver and its adjoint for
18 species have been described in Khattatov et al. (1999). The horizontal resolu-
tion of the CTM is 2.5◦× 2.5◦. The time step is 20 min. The monotonic mass
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Fig. 9 Global distributions of mixing ratios (left) and normalized model errors (right) for methane
(top) and Ox (odd oxygen, O + O3) (bottom) at 32 km on 12 January 1992. Blue denotes relatively
low values; orange/red denotes relatively high values. x-axis is longitude; y-axis is latitude

conserving flux form semi-Lagrangian (FFSL) transport scheme of Lin and Rood
(1997) is employed for the tracer and its variance advection. The correlation length
is also transported by the FFSL-scheme. The total period of integration was 1 month
starting 1 January 1992. The initial conditions for constituents correspond to the
zonal mean distribution of the SUNY-SPB 2-D photochemical model (Smyshlyaev
et al. 1998; Yudin et al. 2000).

The analysed wind errors were selected arbitrarily, because in the standard Met
Office wind product there is no information on the wind errors. We assumed a 15%
value in the relative wind error for a series of different mixing correlation lengths
(Lmk= 125, 250, 400 km). These two parameters (relative wind error and mixing
correlation length) can be chosen in a more realistic fashion for future applications.
Together, these two parameters control the rate of the model error growth and its
distribution.
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Fig. 10 As Fig. 9, but zoomed in at the region of strong meridional gradients. Blue denotes
relatively low values; orange/red denotes relatively high values

Figures 9 and 10 illustrate computed spatial distributions of CH4 and odd oxygen
and the corresponding model error source term for 12 January at 32 km. One can
clearly see that, as expected, model error values are large in the regions where there
is filamentary intrusion of the subtropical air into the mid and high latitudes, and
where strong meridional tracer gradients are observed.

5 Discussion

The primary objective of this chapter is illustration of several techniques for com-
puting approximations to the probability density functions (PDFs) in the case of
chemistry-transport models (CTMs). The main problem is the large dimensional-
ity of most practically interesting cases. This precludes computing the evolution of
the PDF explicitly and forces one to adopt a number of simplifications. Primarily,
these involve assuming Gaussian distribution of errors and the ability to linearize the
underlying model for reasonably short time periods. Still, even under these assump-
tions, the extended Kalman filter (EKF) formalism commonly used for computing
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Fig. 11 Global distributions of mixing ratios (top panels) and model variances (bottom panels)
for OH (left panels, parts per trillion by volume, pptv) and NO2 (right panels, parts per billion
by volume, ppbv) at 32 km on 15 January 1992. Blue denotes relatively low values; red denotes
relatively high values. x-axis: longitude; y-axis: latitude

the evolution of the error covariance matrices is impossible to implement in practice
due to the high dimensionality of the underlying system.

If one decouples chemical and transport processes, it is feasible to explicitly com-
pute the evolution of the error covariance matrices for the chemical processes. It is
also possible to explicitly compute the evolution of the variance (the diagonal of
the error covariance matrix) for the transport portion of the problem with seemingly
satisfactory results.

In finding numerical solutions to the mass conservation equations in CTMs it is
common to solve separately for chemical and transport processes. However, within
the limitations of the framework discussed in this chapter, one cannot explicitly
compute the evolution of the error covariance matrices by separating the two steps.
One possible approach to approximating these matrices is to compute full error
covariance matrices at the “chemical” step, then discard information about the error
covariances and only pass on the diagonals of these matrices to the “transport” step.
While clearly limited, this approach could bring us closer to being able to approx-
imate the temporal evolution of the coupled transport-chemistry error covariance
matrices.

Examples of the distributions of OH, and NO2 (Fig. 11) and their variances (see
experiment described in Sect. 4) show intrusion of mid latitude air into the winter
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polar regions as well as the position of the solar terminator in the OH distributions
at ~32 km altitude.

Note that, as expected, for short-lived species (OH, NO2) the resulting variance
fields in Fig. 11 do not resemble the shapes of the simulated concentration fields
due to chemical coupling between species. For NO2, the strong influence of the
chemical loss terms of the forecast variance equation in the daytime regions results
in substantial decrease of the concentration errors.

Significant research remains to be done (and in all likelihood accompanied by
increases in computational power) to develop an adequate framework for proper
treatment of full error covariance matrices in chemistry transport modelling. This
chapter aims to give the reader some ideas of how to approach this problem in prac-
tice without attempting to provide a rigorous or complete formulation. It is likely
that advanced ensemble filter methods combined with parallel computing represent
a reasonable avenue for practical solution to the treatment of errors in this area of
the atmospheric sciences.

Acknowledgments A large portion of this work has been funded by NASA’s UARS grant UARS
“Towards Interactive Three-dimensional chemical data assimilation”.
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Constituent Assimilation

William Lahoz and Quentin Errera

1 Introduction

Background. In the 1990s, following years of development of meteorological data
assimilation by the Numerical Weather Prediction (NWP) community, the data
assimilation methodology began to be applied to constituents, with a strong focus on
stratospheric ozone (Fisher and Lary 1995; Rood 2005; Lahoz et al. 2007a). Because
of its comparatively later application, constituent data assimilation is less mature
than meteorological data (henceforth NWP) assimilation. Nevertheless, there has
been substantial progress over the last 15 years, with the field evolving from initial
efforts to test the methodology to later efforts focusing on products for monitor-
ing ozone and other constituents. More recently, the production of ozone forecasts
by a number of operational centres has become routine. A notable feature of the
application of the data assimilation methodology to constituents has been the strong
interaction between the NWP and research communities, for example, in the EU-
funded ASSET project (Lahoz et al. 2007b). A list of acronyms can be found in the
Appendix.

There are differences between NWP and constituent data assimilation that affect
the way the assimilation is set up in the latter. These are (see also Eskes 2006; Lahoz
et al. 2007a):

• Constituent data assimilation is less mature than NWP data assimilation (see
chapter Assimilation of Operational Data, Andersson and Thépaut). An example
of this concerns parametrizations of ozone chemistry due to Cariolle and Déqué
(1986). They have been used to assimilate stratospheric ozone in the last 5 years
or so, but it is only very recently that the performance of these schemes, and their
associated errors, has been assessed in the data assimilation context (Geer et al.
2007);
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• NWP is primarily an initial value problem, whereas tropospheric constituent data
assimilation is determined by boundary conditions, emissions and removal pro-
cesses. For stratospheric constituent data assimilation, although sources and sinks
may need to be considered, the evolution of the model state is primarily controlled
by the initial state;

• Improvements in NWP can be achieved by more accurate specification of dynam-
ical variables such as temperature, winds and moisture. By contrast, in chemical
weather (see chapter Inverse Modelling and Combined State-Source Estimation
for Chemical Weather, Elbern et al.), in general concerning the troposphere, a
better forecast is achieved mainly by a better description of sources and sinks.
For stratospheric constituents, a better forecast can be achieved both by a better
description of dynamical variables (and hence transport of the constituent), and
by a better description of sources and sinks (if applicable);

• The time-scales relevant for NWP are order of days. For chemistry, there is a
very wide range of time-scales, from decades (carbon dioxide) to seconds for
very short-lived species (see chapter Introduction to Atmospheric Chemistry and
Constituent Transport, Yudin and Khattatov). Residence times of species and
removal time-scales vary substantially from one species to another;

• The spatial scales for chemical weather have a wider range than for NWP:
detailed air quality forecasts are made from the hemispheric scale down to the
scale of individual streets. Often, a hierarchy of chemical models is introduced to
describe these different spatial scales;

• Chemical equation systems are stiff, i.e., they include reactions with rates varying
by several orders of magnitude. This requires the use of sophisticated numerical
integration schemes, called stiff solvers. Stiffness manifests itself in strong error
correlations between species, and can cause error covariance matrices to become
singular. Constituent data assimilation algorithms must aim to account for these
features;

• Arguably, a combined initial value and source estimation approach is required for
forecasting air quality. This is an extension of the initial value approach in NWP.
Allied to these developments, inverse modelling techniques (see chapter Inverse
Modelling and Combined State-Source Estimation for Chemical Weather, Elbern
et al.) may be of use in improving the description of sources and sinks;

• The availability of useful satellite observations of tropospheric and stratospheric
composition is still relatively limited compared to the availability of observa-
tions of dynamical variables for NWP. Retrieval algorithms for tropospheric
constituents need further development and evaluation. Retrieval algorithms for
stratospheric constituents are, however, reasonably well established, especially
in comparison with the situation for tropospheric constituents;

• The Global Observing System (see chapter The Global Observing System,
Thépaut and Andersson) for NWP is more mature than for constituents. This
is reflected in that there are less operational instruments for constituents than
for NWP. Many satellite constituent observations are classed as “research” or
“pre-operational” (see chapter Research Satellites, Lahoz), which means that,
compared to operational NWP observations, they are usually not available in
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near-real-time; the reliability of data supply is often less robust; and observational
errors may be larger, or less well understood and characterized;

• For NWP the numerical dimension of the problem is extremely large; the typical
dimension of current NWP models is of order 107, while the number of observa-
tions available over 24 h is currently of order 106–107 (see chapter The Global
Observing System, Thépaut and Andersson). For constituents, the number of data
assimilated is generally an order of magnitude less than for NWP because fewer
instruments are used, with fewer soundings per instrument. In both cases, how-
ever, the large dimension of the problem causes a range of practical difficulties,
influencing the practical implementation of assimilation systems;

• The dimensionality of the state of stratospheric chemical models is much higher
than that of the NWP models. Assuming the same number of grid points, strato-
spheric constituent models typically need to follow between 20 and 100 different
species, i.e., variables, per grid point, as compared to under a dozen variables for
a NWP model.

One important difference between NWP and constituent data assimilation is
worth emphasizing. In principle, given accurate initial conditions, sources and sinks
and accurate dynamics, it would be possible to model constituent distributions many
months without constituent data assimilation. Furthermore, in chemistry, many situ-
ations can be modelled as a relaxation to an equilibrium state. This is very different
to the chaotic system involved in dynamical data assimilation.

This does not mean that constituent data assimilation is unnecessary. Constituent
data assimilation is needed to: (1) infer the constituent’s initial conditions (we
can only ever get these, imperfectly, from observations); (2) correct for imper-
fectly known reaction rates; (3) correct for imperfectly modelled chemistry (e.g.
not enough species, not enough reactions described, or approximate parametriza-
tions are needed); (4) correct for unknown source terms (e.g. tropospheric pollution,
troposphere-stratosphere transport); and (5) most importantly of all at the moment,
correct for errors in constituent transport, such as excessive Brewer-Dobson cir-
culations in analysed wind fields, or errors in temperature fields. Constituent data
assimilation can thus be regarded as a way of providing accurate initial conditions
(point 1), and as a way of confronting models with observations in order to evaluate
them and, in particular, correct model bias (points 2–5). The latter objective shows
that constituent data assimilation is a different kind of problem compared to NWP
data assimilation, where the goal is to get accurate initial conditions.

Motivation. The main constituents assimilated are humidity (chiefly in the tro-
posphere) and ozone (chiefly in the stratosphere). Humidity (or water vapour) is
assimilated in the troposphere by NWP centres, but only now is it starting to
be assimilated in the stratosphere. This is chiefly due to its important role in
the radiation budget of the atmosphere, especially in the upper troposphere/lower
stratosphere (UTLS) region, because it provides information on the atmospheric
circulation, because it is a source of HOx (involved in the catalytic destruction of
ozone), and because it is a constituent of the Polar Stratospheric Clouds (PSCs)
involved in polar ozone loss (Dessler 2000).
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The main aims for assimilating stratospheric ozone include the development of
ozone and UV-forecasting capabilities; the need to monitor stratospheric ozone to
track the evolution of the stratospheric composition, mainly ozone and the gases that
destroy it (WMO 2006), and assess compliance with the Montreal protocol; and the
need to evaluate the performance of instruments measuring ozone, especially those
providing long-term datasets (e.g. TOMS, GOME). The assimilation of ozone is
also important for technical reasons, including: the constraints ozone observations
provide on other constituents; the use of assimilation techniques to evaluate models
and ozone observations; the development of computer code to assimilate instrument
radiances sensitive to temperature and constituents; and the dynamical information
provided by ozone tracer distributions.

Other stratospheric constituents besides ozone that are of interest include H2O,
N2O, CH4, NO2, HNO3, ClO, BrO and aerosol (see IGACO 2004 for a more com-
plete list). Tropospheric constituents besides humidity are of interest for monitoring
and forecasting air quality; examples include ozone, NO2, CO, formaldehyde, SO2
and aerosols.

In NWP, the main motivation for constituent assimilation has been the use of con-
stituent information (in particular, water vapour and stratospheric ozone) to improve
the weather forecast (see chapter Assimilation of Operational Data, Andersson and
Thépaut). More recently, efforts in NWP have been motivated by the need to monitor
and forecast air quality.

Methodology. Tests of the data assimilation methodology have involved many
demonstrations that a number of techniques could be used to combine constituent
information from a model and from observations. These models have been gener-
ally based on general circulation models (GCMs) or on chemical models, either
chemistry-transport models (CTMs) or photochemical box models. Their chem-
istry representation varies from treating constituents as tracers to sophisticated
photochemical packages incorporating aerosols and heterogeneous chemistry (see
chapter Introduction to Atmospheric Chemistry and Constituent Transport, Yudin
and Khattatov).

Early examples of the assimilation techniques demonstrated include nudging
(Austin 1992), variational methods (Fisher and Lary 1995) and sequential meth-
ods based on variants of the Kalman filter (Khattatov et al. 1999) – the chapters
in Part I, Theory, provide details of these data assimilation techniques. Austin used
a CTM, whereas Fisher and Lary, and Khattatov et al. used a photochemical box
model. Following on from these efforts, assimilation into chemical models has been
used to test chemical theories (Lary et al. 2003; Marchand et al. 2003, 2004); to
produce ozone analyses, either height-resolved or total column (Levelt et al. 1998;
El Serafy et al. 2002; Eskes et al. 2003; Štajner and Wargan 2004; Massart et al.
2004, 2009; Segers et al. 2005; Wargan et al. 2005; Rösevall et al. 2007a, b); to pro-
duce analyses of other chemical species besides ozone, including NO2, CH4, N2O,
water vapour and aerosols (Khattatov et al. 2000; Fonteyn et al. 2000; Ménard et al.
2000; Ménard and Chang 2000; Errera and Fonteyn 2001; Chipperfield et al. 2002;
El Amraoui et al. 2004; Errera et al. 2008; Thornton et al. 2009); and to design con-
stituent measurement strategies (Khattatov et al. 2001) (Note that these examples are
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not exhaustive.). Recent reviews include those by Lary (1999), Wang et al. (2001),
Khattatov (2003), Rood (2005) and Lahoz et al. (2007a).

CTMs are used to forecast ozone and other constituents operationally; exam-
ples include the Royal Netherlands Meteorological Institute, KNMI (Eskes et al.
2002, 2005; El Serafy and Kelder 2003), the Global Modeling Assimilation Office,
GMAO (Riishøjgaard et al. 2000; Štajner et al. 2001) and the Belgian Institute for
Space Aeronomy, BIRA-IASB (http://bascoe.oma.be/archives). CTMs are also used
to monitor observations; for example, Štajner et al. (2004) describes the use of data
assimilation at the GMAO to monitor SBUV/2 data.

The above examples focus on the stratosphere. Models incorporating chem-
istry are increasingly being used for research on tropospheric pollution and air
quality. Examples (not exhaustive) include the demonstration that data assimila-
tion can improve analyses of tropospheric pollution (Elbern and Schmidt 2001),
and that inverse modelling can provide estimates of tropospheric emissions like
carbon monoxide (Müller and Stavrakou 2005) or methane (Meirink et al. 2006).
More generally, inferring sources and sinks of constituents using inverse mod-
elling provides information on transcontinental pollution (e.g. Pétron et al. 2004),
air quality (e.g. Blond and Vautard 2004) and national greenhouse gas inventories
(e.g. Bergamaschi et al. 2005).

Examples of GCM-based NWP models used for constituent data assimilation
include the European Centre for Medium-Range Weather Forecasts (ECMWF)
model, where ozone has been assimilated for forecasts (Dethof 2003) and reanalyses
(Dethof and Hólm 2004), and where research has been done on the assimilation of
limb infrared radiances sensitive to ozone and humidity (Bormann et al. 2005, 2007;
Bormann and Healy 2006; Bormann and Thépaut 2007); and the UK Met Office
model, where ozone has been assimilated for research (Jackson and Saunders 2002;
Struthers et al. 2002; Jackson 2004, 2007; Lahoz et al. 2005, 2007a, b; Geer et al.
2006a, b, 2007; Mathison et al. 2007; Jackson and Orsolini 2008). More recently,
water vapour has been also assimilated for research at both ECMWF and the Met
Office (Lahoz et al. 2007a, b; Thornton et al. 2009).

At the GMAO, ozone assimilation into the GEOS-4 GCM started with SBUV/2,
POAM-III and ILAS-II data (Štajner et al. 2006) and, more recently, includes EOS
Aura OMI and MLS data (Štajner et al. 2008). Currently, at the GMAO there is
near real time assimilation of ozone from Version 8 SBUV/2 retrievals of ozone
layers into the GEOS-5 GCM (Rienecker et al. 2008). Polavarapu et al. (2005a, b),
using the Canadian middle atmosphere model (CMAM), discuss the role of dynam-
ics on analysed stratospheric constituents, including ozone. As will be discussed in
Sect. 2, in the NWP-based approach the use of simplified chemistry is the norm. An
exception is the CMAM model, where full chemistry is used.

Other constituents besides ozone and water vapour have been assimilated into
GCM-based systems. For example, total column carbon monoxide, CO, observa-
tions from SCIAMACHY have been assimilated into the GEOS-4 GCM-based
system (Tangborn et al. 2009); radiance observations from AIRS have been used
in the ECMWF data assimilation to constrain CO2 mixing ratios (Engelen et al.
2009).
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Both chemical model and GCM-based data assimilation approaches have been
used to evaluate models and observations, in particular concerning ozone (e.g. Geer
et al. 2006a, b, 2007; Coy et al. 2007). Data assimilation not only corrects weak-
nesses in models, but also identifies model deficiencies such as biases, e.g., between
model and observations, and between different observations. Bias estimation and
correction is likely the greatest current challenge in data assimilation (Rood 2005) –
see chapter Bias Estimation (Ménard).

The above body of work shows that constituent data assimilation is feasible, pro-
vides fields for monitoring the atmosphere; provides a way of evaluating models and
observations, including bias; provides initial fields for constituent forecasts; and can
be used to infer constituent emissions (in the context of inverse modelling). In this
way, constituent data assimilation adds value to the information provided by the
observations and the models. Key to the success of constituent data assimilation is
that, as for NWP, it is an objective method based on mathematical principles (see
chapter Mathematical Concepts of Data Assimilation, Nichols).

From the point of view of an end-to-end approach to Earth Observation, from
mission pre-launch to mission post-launch, constituent assimilation also adds value
to the information provided by observations and models. In mission pre-launch, data
assimilation activities such as Observing System Simulation Experiments (OSSEs;
see chapter Observing Simulation System Experiments, Masutani et al.) provide
information on the quality of additions to the Global Observing System and the data
assimilation systems incorporating this data. In mission post-launch, data assimi-
lation activities provide information on the quality of constituent observations and
models, and of constituent analyses, in a number of ways: evaluation of observations
and models (e.g. Štajner et al. 2004; Geer et al. 2006a, b, 2007); Observing System
Experiments (OSEs) to assess the incremental value of existing observations (e.g.
Struthers et al. 2002); analyses of constituents such as ozone and humidity (e.g.
Lahoz et al. 2007a, b); and ozone reanalyses such as those from ERA-40 (Dethof
and Hólm 2004).

This chapter discusses current approaches used in constituent data assimila-
tion. We first discuss GCM-based data assimilation; then chemical model data
assimilation. We then discuss evaluation of models, observations and analyses, and
applications. Finally, we discuss future developments and identify potential key
drivers.

2 GCM-Based Approaches

2.1 Introduction

An NWP model is a complex numerical model designed to simulate the evolu-
tion of the atmospheric state over the length of a weather forecast (typically for
a few hours up to 2 weeks in the future). The dynamical core of the model is con-
cerned with solving the Navier-Stokes equations (or an approximation thereto) that
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govern the evolution of atmospheric winds and mass fields. The NWP dynamical
core must solve for humidity, as the Navier-Stokes equations are formulated with
moisture terms included. This means that mature humidity data assimilation code
has already been developed in operational NWP systems. Additional stratospheric
humidity data assimilation efforts must build on this code without unduly inter-
fering with the assimilation of tropospheric humidity data. Details are provided in
Sect. 2.2.

The equations are typically solved using finite difference or spectral methods.
Numerical models include parametrizations of a range of atmospheric physical pro-
cesses, including the formation of clouds, production of rainfall, interactions of the
flow with orography and radiative transfer processes, and, increasingly, chemistry
(see chapter The Role of the Model in the Data Assimilation System, Rood).

There is a strong common heritage linking NWP models with GCMs used for
global climate simulations (e.g. Trenberth 1992). In some cases, the same basic
model is run in different configurations for both NWP and climate simulations (e.g.
the Met Office Unified Model; Davies et al. 2005). The most complex atmospheric
GCMs are coupled with sophisticated models of the ocean and land surface, to form
Earth System models.

The development of data assimilation techniques in NWP has been strongly
focused by the pressure for continual improvements in weather forecasting. More
sophisticated techniques have led to much better use of observations to provide
the initial conditions for operational weather forecasts. A particular example is
that modern variational data assimilation systems commonly assimilate satellite
soundings as radiances rather than retrievals, allowing better use of the information.

NWP data assimilation has focused on observations of variables such as tempera-
ture, pressure, winds and humidity. Because of the vital role played by water vapour
in the atmosphere, its assimilation has always played a key role in NWP. The treat-
ment of water vapour, cloud and rainfall in NWP is a vast subject (see Hólm et al.
2002, and references therein), which we are not going to address in this chapter.

We focus on stratospheric humidity (tropospheric humidity is discussed in
chapter Assimilation of Operational Data, Andersson and Thépaut), and on the
stratospheric constituent that has received most attention over the past decade, ozone
(Rood 2003, 2005).

2.2 Assimilation of Humidity

Background. In this section, we highlight some of the key issues concerning the
assimilation of stratospheric humidity. First, the stratosphere is very dry; while con-
densation of water vapour is commonplace in the troposphere, clouds (PSCs) only
form in the stratosphere in the polar night, where extremely cold temperatures occur.
The water vapour mixing ratio varies by many orders of magnitude, from a few per-
cent (by mass) in the tropical lower troposphere to a few parts per million in the
stratosphere.
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A second key issue is the available observations of water vapour. The primary
source of moisture measurements is the radiosonde network. Radiosondes carry sen-
sors that are primarily designed to measure the high relative humidity (RH) typical
of the lower and middle troposphere. Where the humidity is low and temperature
cold, as in the stratosphere, the measurements become less accurate (relatively, if
not absolutely). Thus, routine radiosonde humidity measurements are of little or no
use in the stratosphere, even if the sondes reach that level. More recently, satel-
lite data have become more widely available, and are now used as an integral part
of the operational assimilation of moisture information (e.g. ATOVS and SSM/I).
However, the operational nadir soundings have relatively poor vertical resolution.

Implementation. The large variation in humidity between the surface and the
stratopause (4–5 orders of magnitude), together with different priorities in the tropo-
sphere (description of precipitation and identification of clouds) and the stratosphere
(description of tracer distributions), means that it is difficult to specify a control vari-
able (see chapter Mathematical Concepts of Data Assimilation, Nichols) suitable for
use throughout the domain of models that span this region.

Dee and da Silva (2003) introduce a “pseudo-relative humidity” (RH∗), defined
by scaling the mixing ratio q by the saturation mixing ratio of the background
field. An advantage of this approach is that a univariate RH∗ analysis preserves q
in the absence of moisture observations. By contrast, using unmodified RH as a
control variable implies a change in scaling if the temperature is changed, leading
to changes in q in the absence of moisture observations. In the presence of multivari-
ate observations (e.g. temperature and moisture), this approach produces analysed
humidity values that are close to those produced by a RH analysis.

In a parallel development, Hólm et al. (2002) introduced a normalized RH control
variable, in which RH is divided by (an approximation of) the background variabil-
ity. The new control variable has background errors that are more nearly Gaussian
and homogeneous. Using normalized RH, the assimilation scheme also takes bet-
ter account of the large variability in the background error covariance matrix. This
should improve the interpretation of humidity data, and the mapping of informa-
tion from radiances into temperature and humidity fields. Initial tests have been
encouraging.

Further developments are currently under way at a number of NWP centres (e.g.
ECMWF, Met Office), with the aim of developing an approach to moisture assimi-
lation that performs well in both troposphere and stratosphere, in dry conditions and
close to saturation (see Lahoz et al. 2007a, b; Thornton et al. 2009).

2.3 Assimilation of Ozone

Background. The main motivation for the inclusion of ozone data assimilation
in operational NWP has been to take better account of ozone (in particular
stratospheric ozone) when assimilating satellite radiance data, mainly from nadir
sounding instruments (see chapter Assimilation of Operational Data, Andersson
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and Thépaut). Radiance assimilation has been shown to improve the overall skill
of weather forecasts (Saunders et al. 1999; McNally et al. 2006). Many of the chan-
nels used for atmospheric temperature sounding are at least partially sensitive to
ozone, so improvements in the accuracy of ozone profiles can lead to more accurate
temperature inversions.

At the same time, the assimilated ozone data can be used by the model radiation
scheme, potentially leading to better radiative forcing of the model. Model radiation
schemes take into account the absorption and emission of both short-wave (vis-
ible and near-UV) and long-wave (infrared) radiation by a number of atmospheric
constituents. In the stratosphere, ozone is the dominant contributor to radiative heat-
ing, but the values are generally taken from ozone climatologies (e.g. Fortuin and
Kelder 1998). An estimate of the true ozone distribution is likely to improve these
calculations.

At ECMWF, ozone is already included in the forward modelling of satellite
radiances. Experiments at ECMWF, using analysed ozone in heating rate calcu-
lations, found that variations in ozone amounts of ∼10% could result in changes in
analysed UTLS temperatures of 2–4 K (Cariolle and Morcrette 2006). Model runs
with comprehensive chemistry and fully interactive ozone show significant tem-
perature differences of up to 3 K in the upper stratosphere and lower mesosphere,
compared with those with climatological ozone (Sassi et al. 2005). A prognos-
tic ozone field allows the modelling of feedbacks between radiation, chemistry
and dynamics, and this is expected to improve forecasts, especially over longer
time-scales. However, work by Morcrette (2003) suggests that coupling of the anal-
ysed ozone with the radiation scheme does not always bring improvement, and
Cariolle and Morcrette (2006) state that in order to adequately represent the ozone
radiative heating in the UTLS, ozone profiles with a vertical resolution of ∼1 km
need to be assimilated. Recent experiments at the Met Office have shown that the
inclusion of ozone-radiation feedbacks leads to an increase in the quality of tropo-
spheric temperature, wind and geopotential height forecasts (Mathison et al. 2007).
However, these changes are small and as yet not well understood, and the greatest
impact of the ozone-radiation feedback is on analysed and forecast temperatures
near the stratopause. In recent assimilation experiments in Canada, de Grandpré
et al. (2009) use a coupled model that includes a comprehensive stratospheric chem-
istry scheme. They show that incorporating the radiative feedback from ozone can
improve temperature predictability throughout the stratosphere.

An additional motivation for ozone assimilation is that the motion of ozone in
the atmosphere could give useful dynamical information. Daley (1995) pointed
out the feasibility of estimating the wind field from constituent observations,
given sufficiently dense, frequent and accurate measurements. Riishøjgaard (1996)
demonstrated the use of ozone measurements to reconstruct the flow field in a
barotropic vorticity equation model. Peuch et al. (2000) demonstrated the dynamical
impact of total ozone column observations in OSSEs using a 4D-Var data assimila-
tion system. Recently, Semane et al. (2009) have provided evidence that assimilation
of ozone observations from EOS Aura MLS together with operational observations
can improve lower stratospheric wind fields. However, the use of ozone data to
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infer dynamical information is not without its problems. An inappropriately spec-
ified background error covariance matrix can lead to unrealistic impacts of ozone
measurements on the wind fields. So, in practice, many ozone assimilation systems
treat ozone as a univariate variable, i.e., its background errors are uncorrelated with
those of other variables.

A further motivation for ozone assimilation is UV forecasting. Burrows et al.
(1994) set up a system for operational UV forecasts in Canada. First, a field of total
column ozone over the Northern Hemisphere is calculated using climatological total
ozone column data, modified using regression relationships with a range of meteo-
rological forecast fields (including vorticity, temperature and geopotential height) in
the upper troposphere and stratosphere. Second, the total column ozone is corrected
to fit ozone measurements over Canada. Finally, the clear-sky UV index is calcu-
lated using the solar zenith angle and day of the year. Other operational centres have
developed similar systems (Austin et al. 1994, for the Met Office). An operational
ozone data assimilation system could be used to replace the first two steps of the
procedure, with potentially better accuracy. The Australian Bureau of Meteorology
already does something similar (Lemus-Deschamps et al. 2005), using a simplified
analysis and forecast of TOVS total column ozone. This system, and that used at the
National Centers for Environmental Prediction, NCEP (Long 2003) have the ben-
efit of using a radiative transfer model to calculate the surface UV, rather than the
empirical methods used in Canada and the UK.

Representation of chemistry. The minimum number of species typically needed
for a good representation of chemistry range from ∼25–50 in the stratosphere to
∼50–100 in the troposphere. This reflects the increased complexity of chemistry in
the troposphere compared to the stratosphere.

In the stratosphere, ozone has a life-time ranging from ∼100 days (lower strato-
sphere) to less than 1 day (upper stratosphere) (Dessler 2000). Except in the upper
stratosphere, these time-scales are relatively long compared to the length of a typ-
ical weather forecast, which is of the order of days. So, in that context, the full
treatment of chemical sources and sinks has not been a priority. Indeed, the use of a
complex representation of ozone chemistry in an NWP system would be judged an
unjustified overhead. Instead, the usual approach has been to implement simplified
representations of ozone production and loss processes.

In early data assimilation systems, any representation of chemistry was omitted
and ozone was treated as a passive tracer. Because ozone behaves as a passive tracer
in the lower stratosphere (except under ozone hole conditions), this approach can
provide useful information on the stratospheric ozone distribution (Polavarapu et al.
2005a, b). More recent developments have incorporated simple linear parametriza-
tions of the chemical sources and sinks of ozone, typically known as Cariolle
schemes (Cariolle and Déqué 1986; McLinden et al. 2000; McCormack et al. 2004;
Cariolle and Teyssèdre 2007).

In the Cariolle scheme, the rate of change of ozone due to photochemistry (C) is
written as a first-order Taylor series expansion:

C = a+ b(χ − χ0)+ c(T − T0)+ d(�−�0). (1)
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The first term in Eq. (1), a, is the equilibrium production minus loss, at the
appropriate level and latitude. The second term accounts for differences between
the current ozone amount χ and its equilibrium value, and the third for differences
in the temperature, T. The last term allows for solar radiation by considering the
effect of the total ozone column � above the point under consideration. The coeffi-
cients a, b, c and d in Eq. (1), as well as the equilibrium values, are derived from a
full chemistry model (usually a 2-D model), so the parametrized photochemistry is
highly dependent on the particular model used. Geer et al. (2007) compare results
from a range of linear chemistry ozone parametrizations and highlight some large
differences.

The Cariolle schemes, contrary to some perceptions that they are non-rigorous,
are actually based on sound photochemical arguments (see McCormack et al. 2006,
for more details). Equation (1) springs directly from a linearized expansion of the
fundamental odd-oxygen photochemical production and loss rate equations. This
was done initially for pure oxygen (Chapman) photochemistry (Lindzen and Goody
1965), and subsequently extended to reactions involving nitrogen, hydrogen and
chlorine species (Blake and Lindzen 1973; Stolarski and Douglass 1985).

The scheme described by Eq. (1) does not take into account heterogeneous
ozone chemistry, which is dominant under ozone hole conditions (Dessler 2000).
To remedy this shortcoming, the approach expressed in Eq. (1) is modified to
include a “cold tracer” to parametrize ozone loss due to heterogeneous processes
(Hadjinicolau et al. 1997; Eskes et al. 2003). The cold tracer approach is not the
only means by which heterogeneous ozone loss is represented in ozone data assimi-
lation. Cariolle and Teyssèdre (2007) describe a version of the Cariolle scheme that
represents this ozone loss without using a cold tracer, and ECMWF uses a version
with this approach, too (Dethof 2003; Dragani and Dee 2008).

The relaxation rate τ = –1/b can be used to quantify the importance of photo-
chemistry effects. As shown by Geer et al. (2006a, 2007), the values of τ confirm
that in the lower stratosphere (τ∼ 100 days) the photochemistry could be neglected,
but in the upper stratosphere (τ ∼ 0.5 days) the photochemistry is very important.
But, it follows that, if the photochemical coefficients and equilibrium values are not
realistic, the ozone data will quickly relax to an incorrect value, ignoring informa-
tion from observations. In such circumstances, the parametrized chemistry scheme
will seriously degrade the assimilated ozone fields in the upper stratosphere, and it
may be preferable to omit the chemistry.

Results reported in the “ASSET analysis intercomparison project” (Geer et al.
2006a) where ozone analyses from several GCMs and CTMs are compared for a
fixed time period, show that, for current ozone data assimilation systems, with good
ozone observations and no chemistry one can get a good representation of the ozone
field even when the photochemistry time-scales are fast. However, above 0.5 hPa
(about 60 km in altitude), where the ozone diurnal cycle is no longer negligible,
only analyses with a detailed representation of mesospheric chemistry capture it.
Finally, provided that there are no observational gaps, the complexity of the chemi-
cal scheme tends to have little effect on the quality of the ozone analyses. However,
these results also show that observational gaps can seriously degrade the ozone
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analyses. Arguably, in the upper stratosphere (fast chemical time-scales), a better
solution than omitting chemistry would be to bias correct the Cariolle scheme (see,
e.g., Coy et al. 2007).

Implementation. The first implementation of an ozone assimilation system for
operational NWP was at the NCEP (Caplan et al. 1997; Derber et al. 1998). A uni-
variate ozone assimilation was included in the operational ECMWF 4D-Var system
in April 2002, and was also part of the 3D-Var system for the ERA-40 reanalysis
(Dethof and Hólm 2004; Uppala et al. 2005). ECMWF also currently provide analy-
ses and forecasts of ozone (Dragani and Dee 2008). Of necessity, ozone assimilation
systems for NWP are limited to using measurements that are available close to real
time. This effectively means data from SBUV/2 (retrievals) and HIRS (channel 9
radiances), both carried by the NOAA polar-orbiter satellites. However, ozone data
from research satellites can also be available in close to real time: e.g., ECMWF
have assimilated operationally ozone profile data from MIPAS on board ESA’s
Envisat.

Ozone data that have been assimilated operationally recently by ECMWF
include NOAA-16 SBUV/2 partial columns (April 2002–October 2008) and
SCIAMACHY total column ozone provided by KNMI (September 2004–December
2008). Following the results from experimental tests, in November 2007 ECMWF
started the assimilation of NOAA-17 and NOAA-18 SBUV/2 partial columns and in
June 2008 of OMI total column ozone (although this was blacklisted on 27 January
2009 due to instrument problems). Also, ECMWF hope to start assimilation of
height-resolved EOS MLS ozone data during 2009 (R. Dragani, personal communi-
cation). Finally, at ECMWF, TOMS total column ozone data have been assimilated
for reanalyses (Dethof and Hólm 2004), and GOME ozone profiles provided by the
Rutherford Appleton Laboratory (RAL) are being assimilated in the ERA-interim
reanalysis project (ECMWF 2007). Further details of ozone assimilation at ECMWF
can be found in Dragani and Dee (2008).

Ozone assimilation has also been developed at the Met Office, first using the
analysis correction scheme (Connew 1999; Struthers et al. 2002), and later 3D-Var
(Jackson 2004, 2007; Geer et al. 2006b; Jackson and Orsolini 2008) – see Fig. 1.
Other NWP centres, e.g., GMAO and KNMI have taken the approach of developing
an ozone analysis in a CTM driven by assimilated wind and temperature data (see
Sect. 3 in this chapter). However, as mentioned in Sect. 1, the GMAO have also
developed a GCM-based ozone assimilation system. This uses PSAS with GEOS-
4 (Štajner et al. 2008), and a Gridpoint Statistical Interpolation (GSI) scheme, a
variant of 3D-Var, with GEOS-5 (Rienecker et al. 2008). The GSI scheme is applied
in grid-point space to facilitate the implementation of anisotropic inhomogeneous
background error covariances.

Some of the satellite instruments used in ozone assimilation give only restricted
vertical coverage; for example, HIRS channel 9 is most sensitive to the lower-
stratosphere ozone maximum, while SBUV/2 retrievals give some profile informa-
tion above the ozone peak in the mid stratosphere. For non-operational systems (and,
increasingly, operational systems such as that of ECMWF) that assimilate research
satellite data from platforms such as ESA’s Envisat and NASA’s EOS Aura, the
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Fig. 1 Total ozone column
on 26 September 2002
(Dobson Units) from (a) the
1200 UTC
troposphere-stratosphere Met
Office analysis with the
column ozone below 200 hPa
replaced by an ozone
climatology; (b) TOMS; (c)
GOME. Red indicates
relatively high values; blue
indicates relatively low
values. Based on Geer et al.
(2006b). The x-axis is
longitude; the y-axis is
latitude. © Royal
Meteorological Society

situation is better than with traditional operational satellite data (e.g. SBUV/2, HIRS
channel 9 radiances). In this case both nadir and limb sounders are used, with the
latter providing better vertical resolution because of their viewing geometry.

There is recent evidence that adding height-resolved ozone data improves ozone
analyses in an NWP system. In the intercomparison of ozone analyses described by
Geer et al. (2006a), it is shown that assimilation of height-resolved MIPAS ozone
data improves the ECMWF NWP ozone analyses. This improvement is attributed
to the benefit coming from the relatively high vertical resolution of MIPAS, and
the fact that before this only limited ozone data were assimilated (namely, SBUV/2
ozone layers and GOME total column ozone). A similar improvement is seen in
the Met Office system, where assimilation of height-resolved EOS MLS ozone data
reduces analyses errors compared to the situation when only SBUV/2 ozone lay-
ers are assimilated (Jackson 2007). These results suggest a way forward toward
improved use of ozone data in NWP systems. Along these lines, benefit could be
expected from the assimilation of height-resolved ozone data from the Metop IASI
instrument, and from the AIRS instrument aboard the EOS Aqua platform. See
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Dragani and Dee (2008) for a discussion of experiments at ECMWF involving the
assimilation of AIRS infrared channels in the ozone band.

While ozone assimilation systems have focused almost exclusively on satellite
data, it would also be possible to use ground based ozone measurements. The
main reasons why they are not generally used is first their scarcity and second
that they have not been routinely exchanged alongside other meteorological data.
Ozonesondes are expensive to make – much more expensive than radiosondes,
themselves under economic pressure. As a result, ozonesondes tend to be flown
routinely once a week from a very limited number of stations, plus during certain
research campaigns, such as MATCH (Streibel et al. 2006). While the scarcity of
ground-based ozone data means that it is not worthwhile assimilating them rou-
tinely, they are a very valuable data set for the validation of ozone assimilation
systems. There are a larger number of Dobson measurements of total column ozone,
but these have no profile information, as well as being sparse compared to satellite
measurements.

3 Chemical Model Approaches

For constituent assimilation, there are several good reasons for avoiding the use of
NWP models, and instead using what we refer to as the chemical model approach.
First, NWP models are complex and generally expensive in terms of computer
resources. Second, they tend to focus on the dynamics of the atmosphere, so that,
typically, only constituents that interact with the dynamics are represented. This is
the case for ozone and water vapour (see Sect. 2). In NWP models, chemistry is com-
monly parametrized to simplify the system, so that in some cases (to be discussed
later) this set-up can be inappropriate.

If the goal is not to improve the weather forecast, other types of model are
more appropriate for constituent assimilation. In particular, (i) photochemical box
models along an air parcel trajectory, and (ii) three-dimensional CTMs (see chap-
ters Introduction to Atmospheric Chemistry and Constituent Transport, Yudin
and Khattatov; Representation and Modelling of Uncertainties in Chemistry and
Transport Models, Khatattov and Yudin). In both these cases, the dynamical prob-
lem is simplified because the dynamical fields are pre-calculated from a NWP-based
system. In the first case, the trajectory and the atmospheric conditions (temperature,
pressure) along it are given and a photochemical box model is used to calculate
the evolution of the composition in the transported air parcel. In the second case,
wind and temperature fields are prescribed and used to advect the constituents in the
model. The chemical scheme used by CTMs varies in complexity and depends on
the final application. If the assimilation system focuses on long-lived species (chem-
istry time-scales >> transport time-scales), e.g. methane in the lower stratosphere,
chemistry can be neglected. If the assimilation system focuses on ozone, where both
chemistry and transport can be important in the stratosphere, a parametrized chem-
ical scheme can be sufficient. If the assimilation system focuses on reactive, i.e.,
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short-lived species (chemistry time-scales << transport time-scales), e.g. NO2 in the
stratosphere, then explicit calculation of the chemical interactions is generally nec-
essary. The first two cases are cheaper in computer time than the third one. The cost
of computer time is another important factor to consider in constituent assimilation.

In general, there is more variability in the data assimilation set-up of chemical
model systems than in that for NWP systems. This is also reflected in the num-
ber of applications of the former. Currently, chemical model assimilation systems
are used to: (i) derive information on unobserved species; (ii) provide analyses
of tropospheric pollution; (iii) support the evaluation of satellite instruments; (iv)
monitor stratospheric composition; and (v) forecast stratospheric ozone. To attain
these goals, several methods are used: successive correction; optimal interpolation
(OI), the Kalman filter (KF) and variants thereof; 3-D and 4-D variational methods
(3D- and 4D-Var); and 3D-PSAS (physical space statistical analysis scheme). By
contrast, most current NWP systems are based on variational methods (3D- and 4D-
Var), although there are currently efforts underway at a number of institutions to
evaluate the performance of the Ensemble Kalman filter, EnKF, for NWP (Lorenc
2003; Houtekamer et al. 2005). These studies concluded that EnKF is not currently
competitive for NWP compared to 4D-Var, although continuing developments in
EnKF may allow the method to match the performance of 4D-Var. Chapters in Part I,
Theory, provide details of these data assimilation methods.

In the following part of this section, we review the different methods and systems
used in constituent data assimilation with chemical models. We will also point out
the major differences between these systems and the systems based on NWP models.
For example, CTM-based systems tend to not consider radiance assimilation, which
is generally the case in operational NWP systems (This is not due to a fundamental
limitation of CTMs, which can theoretically be used with complicated observation
operators – see, e.g., Müller et al. 2004.). For CTM-based systems, the observations
are previously inverted to provide profiles or total column. In the case of profiles, the
observation operator is reduced to the spatial interpolation of the model values at the
observation location. In the case of columns, the model values are integrated over
the model layers before performing the spatial interpolation. A second important
point concerns the case where CTMs use a full photochemical scheme. In this case,
the number of constituent control variables is much greater than in an NWP system.
To give an example, a modern stratospheric CTM includes ∼50 chemical species
while the current operational ECMWF NWP system includes only two constituents
(humidity and ozone).

Three methods are commonly used in constituent data assimilation with chem-
ical models: 4D-Var, approximations to the Kalman filter (generally involving
parametrizations of the error covariances), and PSAS, which can be viewed as an
approach to solve the Kalman filter, or as the dual of 3D- or 4D-Var, depending on
whether the time dimension is included (3D- PSAS, the dual of 3D-Var, is, to our
knowledge, the only form of PSAS to have been used so far on constituent assim-
ilation). Each of these methods has advantages and disadvantages. The feasibility
of 4D-Var has been demonstrated in NWP systems. Its main advantage is that it
considers observations over a time window that is generally much longer than the
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model time step: typically 24 h for chemical models, while the CTM time step is
of the order of 30 min or less. For non-linear systems (as is generally the case for
the atmosphere), this feature of 4D-Var, together with the non-diagonal nature of
the adjoint operator (see chapter Variational Assimilation, Talagrand) which trans-
fers information from observed regions to unobserved regions, reduces the weight
of the background error covariance matrix in the final 4D-Var analysis compared to
the KF analysis (for linear systems, the general equivalence between 4D-Var and
the KF implies that the same weight is given to all data in both systems). In the
case of constituent assimilation where a full photochemistry scheme is considered,
the properties of the adjoint operator allow unobserved species to be constrained by
observed species. This constraint can be expected when observed and unobserved
species chemically interact with a time-scale of the order of the assimilation win-
dow or less. A special property of the 4D-Var analysis is that in the middle of the
assimilation window it uses all of the observations simultaneously, not just those
before the analysis. Because of this, 4D-Var is said to be a smoothing algorithm.

In contrast with the above advantages of 4D-Var, three weaknesses must be men-
tioned. First, its numerical cost is very high compared to approximate versions of the
KF, and to PSAS, so that, in general, its implementation requires a supercomputer.
The cost of 4D-PSAS (the dual of 4D-Var), like the cost of 4D-Var, is determined by
the cost of the repeated integrations of the assimilating model and its adjoint (see,
e.g., Courtier 1997; Louvel 2001); thus, its cost (if implemented for stratospheric
constituent data assimilation) would not be significantly lower compared to that of
4D-Var. Second, its formalism cannot determine the analysis error directly; rather
it has to be computed from the inverse of the Hessian matrix (again, this procedure
is prohibitive in both CPU and memory). Finally, in contrast with NWP 4D-Var
systems, past assimilation experiments using CTMs have not been based on the
incremental method (Bouttier and Courtier 1999) and thus cannot take advantage of
its benefits, e.g., solving the analysis at a reduced resolution, thereby reducing the
computational cost.

The first assimilation study of constituent observations based on 4D-Var was pre-
sented by Fisher and Lary (1995). They used a trajectory box model with a reduced
stratospheric chemistry scheme involving O3, O, NO, NO2 and N2O5. They assim-
ilated O3 and NO2 data from the MLS and CLAES instruments on board NASA’s
Upper Atmosphere Research Satellite (UARS). They also performed an assimilation
experiment using synthetic, i.e., simulated, data that showed ozone observations
were able to constrain the other species. This study also introduced the concept
of the influence function which, with the help of the adjoint model, measures the
influence of a species at time t>t0 on other species at the initial time, t0.

Elbern et al. (1997) built a 4D-Var system using a trajectory box model to study
tropospheric pollution and test synthetic observations. This study, motivated by a
need to improve air quality forecasts, showed that morning ozone assimilation pro-
vides good initial conditions to forecast ozone in the afternoon and gives sufficient
information to constrain unobserved species (e.g. NO2). This work was extended by
considering a three-dimensional regional CTM and the concept of twin experiments
(Elbern and Schmidt 1999). With this set-up, they found that analyses of unobserved
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NO2 depended on the quality of the initial guess of the NO2 field above the surface.
Finally, Elbern and Schmidt (2001) studied the assimilation of real observations
during a summer episode with enhanced ozone levels. While the short-term fore-
casts (from 6 to 12 h) benefit from the optimized initial conditions, this paper also
indicates what is needed to improve the longer forecasts. The formalism developed
in this latest effort includes a background covariance matrix that takes into account
the anisotropy and inhomogeneity of the constituent fields and a better knowledge
of the emission rates. With this set-up, it is in principle possible to estimate in the
same assimilation cycle both the initial conditions and the model parameters, in
other words, perform 4D-Var and inverse modelling at the same time. More details
can be found in chapter Inverse Modelling and Combined State-Source Estimation
for Chemical Weather (Elbern et al.).

Errera and Fonteyn (2001) built a 4D-Var assimilation system for stratospheric
chemical observations. This system is based on a three-dimensional CTM with a
detailed chemical scheme including 41 species and 144 reactions. Observations are
taken from the CRISTA instrument. These include long-lived species (CH4, N2O
and CFC-11) and species with relatively shorter lifetimes (O3, HNO3, ClONO2
and N2O5) in comparison to the time-scale of the assimilation window (24 h).
Comparison with independent observations shows good agreement for observed
species (e.g. 7% for ozone against HALOE; less than 15% for HNO3 against
ATMOS), and for NOx (=NO + NO2) and HCl, two constituents that are not
observed by CRISTA (in both cases less than 25% against HALOE). It was also
shown that the HCl field is influenced by the assimilation of ClONO2 observations.

Because of the strong temperature-dependence of the chemistry of short-lived
species such as NO2 and NO3, their variability could provide information on tem-
perature. One possible application is the use of temperature as a control variable in
a chemical data assimilation system. Along these lines, the variational system built
by Marchand et al. (2003, 2004) has been used to extract temperature information
from GOMOS NO3 observations (Lahoz et al. 2007b; Marchand et al. 2007).

The two other methods commonly used for constituent data assimilation are
approximate versions of the KF, and PSAS. The KF method is formulated so that
the analyses uncertainties are determined directly and can be propagated to the next
assimilation time step. The PSAS set-up at the GMAO includes a method to compute
an approximation of the forecast error covariance matrix.

Approximate versions of the KF, and PSAS, are based on the hypothesis of model
linearity. Thus, the time window over which observations can be considered should
be chosen carefully to ensure that the linearity hypothesis is satisfied. Khattatov
et al. (1999) provided evidence that for a stratospheric photochemical box model,
the linear approximation essential to applicability of the Extended Kalman filter
(EKF) and 4D-Var is valid up to ∼10 days. This behaviour is explained as the com-
bination of two factors: (i) concentrations of many modelled short-lived constituents
are largely determined by concentrations of a few relatively long-lived constituents
such as ozone, and parameters such as total active chlorine or nitrogen; and (ii)
within the data assimilation set-up, linear approximations are generated at every
solver time step and the matrices corresponding to such linear transformations are
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multiplied to obtain a matrix approximating the evolution of the system over a 10-
day period. Due to the nature of the stiff solvers, these time steps vary by orders of
magnitude and get very small when the changes in concentration for some species
are most rapid.

Lyster et al. (1997) developed a Kalman filter system for a 2-D advection model
on an isentropic surface. Although particular effort was made to optimize the CPU
time, such a system was not found to be practical due to the large computer resources
required. Ménard et al. (2000), using the same model as Lyster et al. (1997) for the
assimilation of CH4 data, found that the standard KF formalism propagated the anal-
ysis covariance matrix inaccurately, with rapid loss of variance and an increase in
the error correlations. To remedy this shortcoming, they formulated an alternative
formalism to the KF system. This alternative formalism, described in companion
papers by Ménard et al. (2000) and Ménard and Chang (2000), estimates model
parameters using a robust method based on χ2 diagnostics which compares the
observation minus forecast (OmF) residuals with those calculated by the Kalman
filter (see also Sect. 4). The method is used to estimate three covariance parame-
ters (representativeness error, model error, and initial error – see chapters in Part I,
Theory). Because correlation length-scale parameters are found to be insensitive to
the χ2 diagnostics, they are estimated using a maximum-likelihood method. The
χ2 diagnostics have been used in other studies to estimate data assimilation sys-
tem parameters; statistics from the OmF time series are also used to estimate these
parameters.

Khattatov et al. (2000) used the χ2 diagnostics with a three-dimensional CTM
that assimilated ozone data. The multidimensional nature of the problem meant that
some simplification was required to comply with limitations in computer resources,
both in terms of CPU and memory. Khattatov et al. (2000) also showed that the
value of χ2 primarily depends on the value of the error growth and not on the corre-
lation distance. The same authors also found that the root-mean-square of the OmF
differences is mainly sensitive to the correlation length in the case where the spatial
density of observations is high.

The χ2 diagnostics methodology has been applied successfully in constituent
data assimilation (e.g. Chipperfield et al. 2002; Fierli et al. 2002; Lary et al. 2003
and, with some modifications, by El Amraoui et al. 2004 and Baier et al. 2005).
Chipperfield et al. (2002) also introduced a method to constrain unobserved long-
lived species (e.g. N2O), in which an observed long-lived species (e.g. CH4) is
used to preserve a compact tracer-tracer relationship between both constituents.
Finally, Eskes et al. (2003) developed a KF approach to produce near real time
ozone analyses and 5-day forecasts. To comply with limited computer resources
and the constraints of an operational service, Eskes et al. (2003) introduced several
approximations in the KF method. For example, they used observation minus fore-
cast (OmF) statistics to estimate the horizontal error correlations, the observation
errors and the forecast errors.

As can be seen from the above examples, approximate versions of Kalman fil-
ter methods are very popular for constituent assimilation. This popularity is due to
their low demand for computer resources in comparison to 4D-Var. An alternative



Constituent Assimilation 467

to approximate versions of the KF is the PSAS method used at the GMAO. It has
the advantage that it solves the analysis in the observation space, which, for con-
stituent assimilation, is typically much smaller in size than the model space. It thus
reduces the computer resources needed. This approach is used in the Goddard Earth
Observation System (GEOS) ozone data assimilation system described by Štajner
et al. (2001). This system, based on a 3-D CTM with parametrized ozone chem-
istry, also uses the χ2 diagnostics to estimate the system parameters. The system
became operational in 1999, providing stratospheric ozone analyses using SBUV/2
and TOMS (Štajner et al. 2001). Other combinations of ozone datasets have been
assimilated in experimental versions of the GMAO CTM-based system: SBUV/2
and POAM-III (Štajner and Wargan 2004), SBUV/2 and MIPAS (Wargan et al.
2005).

Finally, as well as considering the performance of the NWP-based and chem-
ical model approaches, one also needs to address the relative costs. While cost
differences depend on the complexity of different model components, one can still
highlight some key factors.

First, it is significantly cheaper to use a transport model than a coupled chem-
istry/dynamics model, if dynamical fields are available already. In a test with the
Met Office Unified Model, the dynamics took ∼25% of the total model time, while
advection of three tracers took 6% (A. Malcolm, personal communication). The
advection of a single tracer is relatively simple and cheap compared with the sophis-
tication required by the dynamics of the Met Office model. Similarly, the cost
of the univariate assimilation of a single constituent will be simpler and cheaper
than the proportionate cost of a dynamical variable that is treated multivariately.
Furthermore, the smaller data volume of constituent observations makes constituent
data assimilation relatively cheaper than data assimilation of dynamical variables
(e.g. temperature, winds, humidity).

On the other hand, costs of the constituent data assimilation include the cost of
the required chemistry model. While this could be simple (or even non-existent for
constituents such as stratospheric methane), a complex chemical model is likely to
be a major component of a sophisticated chemical data assimilation system. While
we have outlined a range of cost considerations, it is worth stressing that the costs
are highly dependent on the type of data assimilation method, transport model, and
chemistry employed.

4 Evaluation of Models, Observations and Analyses

Both NWP-based and chemical model data assimilation approaches (see Sects. 2
and 3) are used to evaluate models and observations, in particular concerning ozone
(e.g. Štajner et al. 2004; Geer et al. 2006a, b, 2007; Coy et al. 2007). Data assimila-
tion not only corrects weaknesses in models, but also identifies model deficiencies
such as biases (e.g. between model and observations; between different observa-
tions). In this section we provide further details – see also chapter Evaluation of
Assimilation Algorithms (Talagrand).
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A crucial element of data assimilation is the evaluation of the quality of the obser-
vations, the model and the analyses, and the test of several assumptions built into
data assimilation algorithms, e.g., Gaussian errors; unbiased observations and mod-
els. Several diagnostics have been developed to do this (Talagrand 2003). Broadly
speaking, these consist of: self-consistency tests, and independent tests. We first
discuss self-consistency and independent tests in general. We then provide illustra-
tive examples of how constituent data assimilation can be used to evaluate satellite
instruments.

Self-consistency tests. Self-consistency tests provide useful information for eval-
uating the quality of the data assimilation ingredients and the assumptions built
into assimilation algorithms. Histograms of OmA (observation minus analysis) and
OmF (observation minus forecast) differences are computed for a range of spatial
and temporal scales to test whether the observations, forecast and analysis fields,
and their errors, are consistent with each other. For example, the OmA histogram
should be more peaked than that for OmF, as the analyses should be closer to the
assimilated observations than the forecast. Furthermore, the OmF histogram should
be Gaussian, if both the observation and forecast are assumed to have Gaussian
errors. Time averages of the standard deviation of OmA can also be used to test
whether the assimilation system is consistent with the concept of the Best Linear
Unbiased Estimate, BLUE (Talagrand 2003). Other tests check whether there are
biases between observation and forecast, or between observation and analysis.
Application of these tests is discussed in Errera and Fonteyn (2001), Štajner et al.
(2001), Struthers et al. (2002) and Segers et al. (2005). See Fig. 2 for an example.
Tests for Gaussian errors can also include tests of skewness and kurtosis (Geer et al.
2006b).

Time series of OmA and OmF differences test whether the observation, forecast
and analysis fields, and their errors, are consistent with each other. A well-behaved
data assimilation system will have time series with mean OmA and OmF values that
are close to zero and do not vary much over time. If this is not true, a bias between
the model and the data (or a subset of the data) is present. Also, if the standard devi-
ation about the mean of the OmA time series is larger than the observational error,
this indicates that the system is not properly set up. For example, the observation
and background error covariance matrices, R and B, respectively, could be poorly
characterized. Desroziers et al. (2005) suggest a simple method to evaluate R and B
separately; Chapnik et al. (2006) describe a way of quantifying errors and biases of
both model and observations in the process of tuning a data assimilation scheme for
internal consistency.

Time series of OmA and OmF differences can also be used to monitor the per-
formance of satellite instruments; changes in their values can indicate a change in
the instrument algorithm, or a degradation of the instrument. For example, Štajner
et al. (2004) uses the OmF time series provided by the GEOS ozone data assimila-
tion system to validate the NOAA-14 SBUV/2 retrieval algorithm. Furthermore, at
the start of a data assimilation experiment, it can take some time for the system to
spin-up; this spin-up time is shown by the time it takes for OmA or OmF differences
to converge towards a constant value (Struthers et al. 2002).
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Fig. 2 Evaluation of analyses using histograms of OmF differences (normalized by the obser-
vation error) averaged for the stratosphere, the globe and August 2003 for six stratospheric
constituents: O3 (top left), H2O (top right), CH4 (middle left), N2O (middle right), HNO3 (bot-
tom left) and NO2 (bottom right). The constituent observations are from ESA MIPAS off-line
retrievals. The frequency of the histograms is normalized to lie between 0 and 1. The black line
is a Gaussian fit to the histograms; the red line is a Gaussian fit from a model run without assimi-
lation. The results support the assumption of Gaussian errors in the observations and the forecast,
and show the analyses are closer to the observations than simulations from the model run without
assimilation. The experiments were performed at BIRA-IASB. With permission from Lahoz et al.
(2007a)

If the OmF differences have a Gaussian distribution, its inner product normal-
ized by its covariance is a random variable that has a χ2 distribution with p degrees
of freedom, where p is the number of observations. This result can be used to test
whether the OmF differences are consistent with assumptions made in the assimi-
lation algorithm, and to monitor the observations (Ménard et al. 2000; Ménard and
Chang 2000; Štajner et al. 2004).

If the data (observation and background) errors are Gaussian, the minimum of
the penalty function, Jmin, follows a χ2 distribution with p degrees of freedom, and
must be equal on average to p/2. This last result is also true if the errors are not
Gaussian, but the assimilation scheme remains linear. Thus, in these cases, Jmin/p
should on average be 0.5 (Talagrand 2003). In practice, Jmin/p is often significantly
different from 0.5. This discrepancy can arise from an incorrect estimate of B or R
(mainly the representativeness error in the case of R).

Comparison of observations with short-term forecasts is also used to evaluate the
consistency of the observations and the model prior to assimilation of the observa-
tions. This quality control is an important element of data assimilation algorithms
(see, e.g., Lorenc and Hammon 1988).
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Several robust correlations between pairs of long-lived tracers have been
observed in the atmosphere (Plumb and Ko 1992). A particular example is the
correlation between CH4 and N2O (Chipperfield et al. 2002). When two or more
long-lived tracers are assimilated, the quality of the analyses can be assessed through
the consistency of the tracer-tracer correlations.

Independent tests. These tests involve comparison of analyses with data that are
independent from the analyses, i.e., data not assimilated to provide the analyses.
Independent datasets used to evaluate ozone analyses include ozonesondes (Logan
1999) or satellite data which is not commonly assimilated (e.g. from the UARS
HALOE instrument, Russell et al. 1993). Independent data can provide information
on whether the analyses are realistic and can help attribute biases to observations,
forecast and analysis; note that self-consistency tests cannot be used to perform this
attribution. Estimating the bias in the analyses by comparison against independent
data is only possible when the error characteristics of the latter are well known.
Application of these tests is discussed in Khattatov et al. (2000), Struthers et al.
(2002) and Segers et al. (2005). See Fig. 3 for an example.

When analyses are compared against independent data it is important to take
account of the observation characteristics of each dataset. This can be accomplished
by making use of averaging kernel information, which accounts for the informa-
tion content, including the vertical resolution, of the observations (Migliorini et al.
2004). This is difficult in practice, as the averaging kernel information is not always
readily supplied by the measuring instrument specifications.

Fig. 3 Evaluation of ozone analyses using independent data at four locations: (a) Ny Ålesund
(78.9◦N, 11.9◦E) on 27th April 1997; (b) Payerne (46.8◦N, 7.0◦E) on 25th April 1997; (c) Lauder
(45.05◦S, 169.7◦E) on 16th April 1997; and (d) South Pole (90◦S) on 18th April 1997; all plots at
1200 UTC. The analyses (stars) are compared against ozonesonde data (line) that have not been
used in the assimilation. The ozone data used to initialize the assimilation are shown as diamonds.
The results show reasonable agreement between the analyses and the ozonesondes, and the lack of
influence of the initial ozone conditions after the spin-up period. Units are mPa. With permission
from Struthers et al. (2002)
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In general, comparison against independent data is much more significant than
comparison against the assimilated observations. Thus, independent data are the
ultimate arbiter of the quality of analyses. In Sect. 5 we discuss the quality of humid-
ity and ozone analyses from NWP- and CTM-based assimilation systems, based on
the intercomparison of analyses between themselves and against independent data.
We also mention briefly early efforts to carry out these intercomparisons for other
stratospheric constituents.

Illustrative examples. The use of constituent data assimilation to evaluate instru-
ments is numerous. Assimilation of long-term data set can be used to detect and
characterize changes in the observation errors (e.g. Štajner et al. 2004 – see above).

In the next two examples, data assimilation has been used to evaluate two sci-
entific instruments onboard Envisat: GOMOS and MIPAS. GOMOS is a stellar
occultation instrument that measures, among other species, stratospheric nighttime
profiles of O3, NO2 and, for the first time, NO3. This last species has a very short
life-time. During the daytime, its concentration is close to zero because it is photol-
ysed in the presence of sunlight. During the night, its chemistry is very simple and
strongly coupled to O3 and NO2. Marchand et al. (2004) have assimilated GOMOS
O3 and NO2 in a photochemical model using a variational approach. Figure 4 shows
the NO3 analysis plotted against the corresponding GOMOS observations averaged
over 7 isentropic levels: 735, 900, 990, 1,100, 1,210, 1,350 and 1,510 K. NO3 obser-
vations that correspond to NO2 observations with an higher error than 30% are not
taking into account. Based on this comparison, Marchand et al. (2004) validate the
self-consistency of GOMOS O3, NO2 and NO3 measurements, and the nighttime
NO3 chemistry (see Fig. 4).

Within the validation framework for MIPAS, Vigouroux et al. (2007) have com-
pared MIPAS N2O and HNO3 with ground based FTIR measurements for 2003.
They use a co-location criterion of 1,000 km around ground-based stations. In
order to increase the number of co-locations, they also use MIPAS N2O and HNO3
analyses produced by the Belgian Assimilation System for Chemical ObsErvation,

Fig. 4 GOMOS NO3
measurement against
analysed NO3 averaged over
isentropic levels. The
standard deviations of the
isentropic means of GOMOS
NO3 and of mean analysed
NO3 are indicated by vertical
and horizontal lines,
respectively. With permission
from Marchand et al. (2004)
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BASCOE (previously the Belgian Assimilation System for Chemical Observations
from Envisat). This paper also discusses under what conditions these analyses can
be considered a good proxy for MIPAS observations. In the case of N2O, the
agreement between BASCOE analyses and the MIPAS and FTIR data is excellent.
Comparison with FTIR shows a bias ranging from –5 to +1%, and standard devia-
tions ranging from 2 to 7%. Compared to the MIPAS random errors, these values are
not significant. BASCOE appears to have more difficulty in producing proxies for
MIPAS HNO3 profiles but the estimated standard deviations, less than 10% between
BASCOE and FTIR, appear reasonable.

5 Applications

5.1 Tropospheric Pollution

Efforts to apply assimilation systems to the more complex system of the troposphere
(Monks 2003) draw heavily on the NWP and chemistry model heritage from the
assimilation of stratospheric constituents. These efforts are being directed at tack-
ling a number of technical problems specific to the troposphere, including: more
chemical variables than in the stratosphere; extracting chemical information in the
presence of clouds; the need for higher spatial resolution to capture mesoscale phe-
nomena such as fronts and pollution plumes; and the need to reassess balance at
higher spatial resolution.

In contrast to stratospheric constituent data assimilation and NWP data assimi-
lation, the evolution of the tropospheric model state is not primarily controlled by
the initial state. Instead, emissions are a strong controlling factor, and exert a direct
influence over short time-scales (ranging from seconds to days). Furthermore, cur-
rently, emission rates are not sufficiently well known. Thus, emission rates must be
considered as another parameter to be optimized in the data assimilation process.
Tropospheric data assimilation must also take account of the differences in spa-
tial scale between satellite data retrievals and point-like emissions. For more details
see chapter Inverse Modelling and Combined State-Source Estimation for Chemical
Weather (Elbern et al.)

During the last decade, tropospheric CTMs (global and regional) have become
increasingly more accurate. The number of observations available has also increased
and this has favoured the development of tropospheric assimilation systems for the
study of tropospheric pollution.

Lamarque et al. (2002) derived global tropospheric ozone column (TOC) from
the assimilation of ozone profiles from UARS MLS and ozone total column from
TOMS. This study was based on the suboptimal KF method and used the MOZART
CTM. Daily analyses of TOC show that this method is useful for the study of the
transport of pollutants such as biomass burning plumes.

Using the same system, Lamarque and Gille (2003) assimilated carbon monox-
ide. In this case, the observations are taken directly from the troposphere, and are
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provided by the MOPITT instrument. This study takes into account the bias between
observations and the forecast field in the CTM. This is done by the implementation
of a bias estimator in the suboptimal KF. Results show that the method significantly
improves the assimilated field, with a reduction of the global mean OmF statistic.

Finally, the group at the University of Köln (e.g. Elbern et al. 1997; Elbern and
Schmidt 1999, 2001) has developed an assimilation system for air quality forecasts.
Using a regional CTM and 4D-Var, Elbern and Schmidt (2001) showed that assim-
ilation of surface ozone can improve the forecast (note that Lahoz et al. 2007b;
Elbern et al. 2007 discuss more recent developments). However, these improve-
ments are limited by uncertainties in model parameters such as boundary values,
deposition velocities and surface emission rates. In fact, in tropospheric assimi-
lation, these parameters affect the analyses on the time-scale of the assimilation
window. All things being equal, this makes tropospheric constituent assimilation
systems harder to implement than stratospheric constituent assimilation systems,
where such parameters have little effect on the analyses at the time-scale of the
assimilation window.

5.2 Analyses of Constituents

Objective evaluation of analyses can be obtained by the intercomparison of analy-
ses produced using different data assimilation systems. If the systems assimilate a
common observational dataset, differences between the analyses can be attributed
to differences in the models and/or the assimilation system. Furthermore, by
confronting these analyses against others and against independent data (i.e., not
assimilated) it is possible to both gain an understanding of their strengths and weak-
nesses, and to make new developments. Finally, these intercomparisons provide
more information (and faster) than if each participant assessed their own system
independently.

In this section we use the analyses intercomparison approach to assess the accu-
racies of humidity analyses in the stratosphere-mesosphere (Lahoz et al. 2007a, b;
Thornton et al. 2009), and the accuracy of ozone analyses in the stratosphere-
mesosphere (Geer et al. 2006a). Intercomparison of analyses of stratospheric
constituents other than humidity and ozone are currently underway. For example,
Errera et al. (2007, 2008) discusses the performance of NO2 analyses using the
BASCOE chemical model and observations from MIPAS and GOMOS.

Humidity analyses. Accuracies of sample humidity analyses in the stratosphere-
mesosphere are discussed by Lahoz et al. (2007a, b) and, more recently, Thornton
et al. (2009). We summarize the results from Thornton et al. below.

For 1 month period (29 August–29 September 2003), MIPAS water vapour pro-
files were assimilated into four models: ECMWF and Met Office, GCM-based;
BASCOE (from BIRA-IASB) and MIMOSA (from Service d’Aeronomie), CTM-
based. The resultant analyses were compared against the original MIPAS observa-
tions and with independent water vapour data: HALOE, SAGE-II and POAM-III.
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Met Office results were not considered in the analyses comparison due to their
poor performance. Because many of the problems associated with the Met Office
humidity assimilation may be linked to the specification of the background error
covariances, tests with different specifications of the background error covariances
were implemented. This is discussed in more detail below.

Comparison of the ECMWF, BASCOE and MIMOSA analyses with the inde-
pendent data highlights areas where the analyses are either realistic or require
further improvement. In general, these three analyses compare favourably with
the UARS climatology (http://code916.gsfc.nasa.gov/Public/Analysis/UARS/urap/
home.html). The main features of the stratospheric water vapour field are captured
(Fig. 5), for example, the tropical water vapour minimum, the Southern Hemisphere
polar vortex water vapour minimum and the vertical distribution of water vapour
associated with the Brewer-Dobson circulation (see also SPARC 2000). In the meso-
sphere, the analyses are wetter than the UARS climatology and reflect the wet bias
of the MIPAS observations relative to other satellite data in this region. Thornton
et al. provides detailed quantitative information on the performance of the ECMWF,
BASCOE and MIMOSA water vapour analyses.

The region of the stratosphere-lower mesosphere that the assimilation schemes
find hardest to simulate is the Southern Hemisphere polar vortex between 100
and 20 hPa. Most of the analyses have difficulty correctly capturing the moisture
minimum within the vortex core, and the strong horizontal and vertical humidity
gradients at the vortex boundary, resulting in large dry biases in this region. The
water vapour minimum in the tropical lower stratosphere associated with tempera-
ture minima at the tropopause, and the horizontal transport of this dry air to higher
latitudes, is also difficult for the assimilation systems to represent, with most sys-
tems showing a dry bias. BASCOE was found to have a particularly large dry bias
in the Southern Hemisphere polar vortex; this is most likely explained by an over-
active PSC parametrization scheme. The MIPAS observations only had a limited
effect, as many were rejected due to their large deviation from the erroneously dry
background field.

In the upper stratosphere, the ECMWF, BASCOE and MIMOSA analyses have
assimilated the MIPAS observations well, with small biases and standard deviations.
Larger biases exist when compared to independent observations, especially HALOE
data, which can in part be explained by the relatively large MIPAS bias relative
to HALOE in this region. The strong latitudinal water vapour gradient at 2 hPa
associated with the Brewer-Dobson circulation does, however, produce a peak in
the biases in the upper stratosphere. The MIPAS observations have also been well
assimilated in the lower mesosphere and small biases are found against independent
data below 0.5 hPa for both ECMWF and BASCOE.

Although the MIMOSA analyses often have smaller biases with respect to the
MIPAS observations, the analyses are unrealistically noisy. This most likely reflects
the lack of data quality control and the background error covariance dependence
on potential vorticity, PV (El Amraoui et al. 2004). The water vapour analyses of
ECMWF and BASCOE are smoother and the relatively low horizontal resolution of
the BASCOE grid amplifies this homogeneity.
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Fig. 5 Monthly zonal mean specific humidity analyses for September 2003 for (a) ECMWF, (b)
BASCOE, and (c) MIMOSA; (d) UARS climatology. MIPAS water vapour profiles have been
assimilated in the ECMWF, BASCOE and MIMOSA analyses. Blue denotes relatively low specific
humidity values; red denotes relatively high specific humidity values. Units: parts per million by
volume, ppmv. Based on Thornton et al. (2009)

As discussed above, the Met Office stratospheric water vapour analyses studied
in Thornton et al. were poor, with large dry biases at most latitudes and altitudes
relative to all observation types considered. Investigations have shown that the poor
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assimilation of MIPAS profiles is related to an unrealistic humidity background
error covariance matrix, rather than to any dynamical feature of the model. The
humidity background error covariances were found to have excessively deep vertical
error correlations and error variances that were larger than the background humidity
values. Modification of the error covariance matrix failed to sufficiently improve the
assimilation capability.

The water vapour analyses comparison in Thornton et al. has highlighted the
following: (1) the role of the background error covariance matrix is crucial in pro-
ducing a realistic mid atmosphere water vapour analysis; (2) quality control of the
observations assimilated can avoid poor observations degrading the analyses; and
(3) the assimilation schemes compared (ECMWF, BASCOE, MIMOSA) have suc-
ceeded in producing reasonable mid atmosphere water vapour analyses, although
the schemes have difficulty in reproducing regions with strong humidity gradients.

The Met Office has investigated the impact of varying the control variable in the
assimilation of MIPAS humidity data. The objective is to develop a humidity con-
trol variable that has the desirable properties that it is usable in both the troposphere
and the stratosphere; has approximately Gaussian background errors; that tempera-
ture and humidity increments are decoupled; and that allows realistic vertical error
correlations. To achieve this, the Met Office have combined the ideas of Dee and
da Silva (2003) and Hólm et al. (2002), and defined a normalized relative humidity
variable.

Lahoz et al. (2007b) describe three different experiments by the Met Office where
the humidity control variable is either relative humidity (RH), normalized RH or
normalized specific humidity. All three experiments show fairly reasonable specific
humidity profiles for levels below 5 hPa. However, at higher levels the fit to the
MIPAS observations is less good, with the analyses being consistently too dry. The
experiment with the normalized specific humidity control variable has a more rea-
sonable lower mesospheric specific humidity, but is still too dry when compared to
the MIPAS observations.

Recently, Eckermann et al. (2008), using a prototype system based on the opera-
tional US Navy models, have assimilated water vapour (and ozone) to high altitudes
(water vapour to mesosphere, ozone to stratopause). Interestingly, they avoid the
water vapour noise problems mentioned in Thornton et al. (2009).

Ozone analyses. The accuracy of ozone analyses from NWP- and CTM-based
systems is discussed in detail in the intercomparison by Geer et al. (2006a). It
is shown that the best performing analyses are capable of producing very good
agreement with ozonesonde, HALOE and MIPAS ozone data. From the lower
stratosphere to the lower mesosphere (100–0.5 hPa), these analyses show biases less
than ±10% with respect to HALOE ozone data and ozonesondes. Standard devia-
tions can be less than 10% above 50 hPa and less than 20% in the lower stratosphere
(100–50 hPa). This shows that current assimilation techniques are capable of pro-
ducing ozone analyses that have good agreement with independent data (see Fig. 6).

The enhanced skill of the best performing analyses can usually be attributed to
better modelling of ozone chemistry or transport processes. The worse performing
systems could often be easily improved by following similar modelling techniques.
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Fig. 6 Top: Mean of analysis minus HALOE differences (in percent), normalized by climatology,
for the period 18 August–30 November 2003. Bottom: Colour key for top part of figure. The
numbers in brackets indicate the HALOE/analysis coincidences within each latitude bin. Based on
Geer et al. (2006a)

For example, this can apply to regions where there are limitations with the ozone
data assimilated, where as shown by Geer et al. (2006a), CTMs and GCMs with
chemistry generally do better. The intercomparison finds few differences that can
be attributed to the assimilation technique or the model used (GCM or CTM). It
would require focused experiments, rather than an intercomparison, to reveal such
differences. Overall, the study by Geer et al. (2006a) shows that the first priority for
ozone data assimilation systems is to improve the modelling of ozone chemistry and
transport.

The work of Geer et al. (2006a, b) on the quality of ozone analyses has high-
lighted the importance of observational and model bias in data assimilation. Besides
providing information on observational bias, data assimilation can provide informa-
tion on, and be affected by, model bias. For example, Geer et al. (2006b), using
the Met Office Unified Model, found that vertical transport of ozone in the tropical
pipe, and transport in the Brewer-Dobson circulation, is much too fast as a result of
known problems in the tracer transport scheme. This was manifested in that ozone
forecasts above the ozone peak (10 hPa) tended to be biased high against the MIPAS
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values (negative OmF values), and ozone forecasts around the ozone peak tended to
be biased low against the MIPAS values (positive OmF values).

The Brewer-Dobson circulation is also degraded by problems with the assimila-
tion of dynamical variables (Douglass et al. 2003; Schoeberl et al. 2003; Tan et al.
2004). This reflects that it is very hard for data assimilation to handle slow processes,
on time-scales much longer than typical assimilation cycles. Problems with strato-
spheric tracer transport are seen in many data assimilation systems (Oikonomou and
O’Neill 2006), and this remains a major focus of investigation.

Work by Monge-Sanz et al. (2007) shows that ECMWF ERA-interim reanalyses
(ECMWF 2007) can be used to provide realistic stratospheric transport over multi-
annual time-scales with an off-line CTM; in particular, the CTM’s age of air agrees
reasonably well with observations. The improvement, in comparison with forcing
the CTM with ERA-40 reanalyses or troposphere-stratosphere analyses from the
Met Office, is attributed mainly to the use of 4D-Var and an improved balance oper-
ator, together leading to more balanced flow and reduced mixing in the subtropics.
In addition, an improved implementation of the bias correction of satellite radi-
ances is thought to have helped reduce the analysed strength of the Brewer-Dobson
circulation.

Finally, several papers (Levelt et al. 1998; Chipperfield et al. 2002; Juckes 2006,
to name a few) show analysed constituent datasets that are closer to independent data
than the assimilated observations or the simulated fields, thereby providing evidence
that the data assimilation method can add value to constituent information, either
from observations or from a model. Jackson (2007) shows that assimilation of EOS
MLS ozone data reduces mean analyses errors in the lower stratosphere. Compared
to control simulations where no ozone data are assimilated, mean errors (evalu-
ated against HALOE ozone data) dropped by 5–25% in the Southern Hemisphere
extra-tropics, and by ∼10% in the Northern Hemisphere extra-tropics; mean errors
(evaluated against ozonesondes) dropped by ∼50% in the tropical UTLS.

Along these lines, Struthers et al. (2002) demonstrate that the combined assimi-
lation of UARS MLS ozone profiles and GOME total column ozone gives analysed
constituent datasets that are closer to independent data than either of the analyses
derived from the assimilation of UARS MLS ozone profiles, or of GOME total
column ozone. Thus, in this case, combined assimilation has added value to the sin-
gle assimilation of these ozone datasets. Note, however, that this is not always the
case, as there could be inconsistencies in the assimilation system, for instance in
the treatment of biases (Rood 2005). Thus, there is scope for improving the use of
observations in constituent data assimilation.

5.3 Stratospheric Ozone Monitoring

Monitoring the stratosphere is done routinely by satellite instruments in order to
track the evolution of the stratospheric composition, mainly ozone and the gases
that destroy it (WMO 2006). Currently, products from different data assimilation
groups are used to help this monitoring effort and assess protocols.
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ECMWF use their NWP operational system to monitor satellite ozone data by
passive data assimilation, i.e., the ozone data are passed through the assimilation
system and evaluated, but are not allowed to affect the analyses. For example, Dethof
(2004) describes the monitoring of ozone profiles from the MIPAS and GOMOS
instruments, and total column ozone from the SCIAMACHY instrument. As of
February 2009, ECMWF monitored the following ozone products: partial columns
from the three SBUV/2s; total column from SCIAMACHY, OMI, SEVIRI and
GOME-2; and ozone profiles from GOMOS (R. Dragani, personal communication).
If the monitored data prove satisfactory, they are moved to active assimilation into
the ECMWF operational system, and thus are allowed to affect the meteorological
analyses (as well as the ozone analyses).

NCEP have set up an operational ozone monitoring and forecasting system
within the NCEP Global Forecasting System (GFS). They use the CHEM2D-OPP
chemistry module (McCormack et al. 2006). As of September 2007, the system
assimilated several ozone products, including SBUV/2 partial ozone columns from
NOAA-16 and NOAA-17, and total column ozone from OMI (Long et al. 2007).
Operational assimilation of NOAA-18 SBUV/2, and total column ozone from OMI
and GOME-2 is expected to begin in late 2009. Parallel tests assimilating NOAA-19
SBUV/2, and ozone profiles from OMI and EOS Aura MLS will continue through
2010 (C. Long, personal communication).

Ozone is not assimilated operationally at the Met Office, but recent work has been
carried out using ozone data assimilation to investigate the impact of different ozone
representations on tropospheric weather forecasts (Mathison et al. 2007), and to
estimate stratospheric ozone loss (Jackson and Orsolini 2008). Currently, the work
on 3D-Var is being extended to 4D-Var, and ozone profile data from GOME-2 are
being assimilated. Finally, during 2010 the Met Office hope to develop a new ozone
control variable, using a concept similar to the humidity variable developed by Hólm
et al. (2002) (D. Jackson, personal communication).

Since 2000, KNMI produce near real time total ozone assimilation (Eskes et al.
2003). This system is constrained by total ozone observations provided by a vari-
ety of satellite instruments (TOMS, SBUV, GOME, SCIAMACHY, OMI, GOME-2
depending on the time period) and has delivered global maps of total ozone since
August 1995 (http://www.temis.nl). This database is being used to evaluate the
change of total ozone since the 1960s (WMO 2006).

Stratospheric constituent assimilation using a full chemistry model and 4D-
Var is underway at DLR and BIRA-IASB. In the framework of the ESA-funded
PROMOTE project, these two institutions will provide reanalyses of stratospheric
ozone from 1992 (i.e., soon after the launch of the UARS satellite) to the present,
using ozone data from different sensors (see the “Stratospheric Ozone Profile
Record” project, http://www.gse-promote.org for more details). In addition to
ozone, they expect to provide analyses of several parameters related to ozone chem-
istry: ClOx, NOx, PSCs, ozone depletion rate and Cly (total available chlorine).
These reanalyses and analyses will be used by international organizations such
as SPARC (Stratospheric Processes And their Role in Climate) in the framework
of the Chemistry-Climate Model Validation (CCMVal) and WMO-GAW (World
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Meteorological Organization – Global Atmospheric Watch) projects to assist in the
evaluation of compliance with the Montreal protocol.

5.4 Ozone Forecasting

Ozone forecasts are useful for predicting high UV-flux events. They can be used to
warn populations near the Antarctic when the ozone hole moves above these areas.
They can also be used to plan observation campaigns. Ozone forecasts are oper-
ational at ECMWF since 2002 (Dethof 2003), and became operational at GMAO
and KNMI in, respectively, 1999 (Štajner et al. 2001) and 2000 (Eskes et al. 2003).
The ECMWF system is GCM-based; these KNMI and GMAO systems are CTM-
based. There is currently a GCM-based system at GMAO used for near real time
assimilation of ozone (Rienecker et al. 2008).

The ECMWF products have been based on different ozone datasets, depend-
ing on their availability; see Sects. 2.3 and 5.3 for the status of operational ozone
assimilation at ECMWF as of February 2009. The KNMI products are based on
total column ozone measurements from multiple instruments: GOME on ERS-2,
SCIAMACHY on Envisat, GOME-2 on MetOp, OMI on EOS Aura, the NASA
TOMS instruments, and the SBUV instruments on the NOAA satellites. GMAO
products are based on TOMS total column ozone and SBUV/2 partial column ozone
measurements. The ECMWF system is based on its NWP system, and includes
parametrized ozone chemistry. The KNMI CTM-based system, and the GMAO
CTM- and GCM-based systems also use parametrized ozone chemistry. The CTM-
based systems are forced by off-line winds and temperature from the ECMWF
(KNMI) and GEOS (GMAO) models. The ozone forecasts from these CTM-based
systems are produced using wind and temperature forecasts from the ECMWF
(KNMI) and GEOS (GMAO) models.

BIRA-IASB also set up an ozone forecasting service using the BASCOE system
(http://bascoe.oma.be/archives). The system is based on a CTM with full chem-
istry and a scheme that explicitly calculates the microphysics of PSCs. The CTM
is forced by off-line winds and temperature from the ECMWF model. The con-
straining observations are MIPAS near real time ozone profiles as well as five other
chemical species (NO2, HNO3, N2O, CH4 and H2O). In addition to ozone 10-day
forecasts, this service also produced forecasts of ClOx, N2O, HNO3 and ClONO2
volume mixing ratio, and PSC surface area density. This service was operational
for 11/2 years, and ended in March 2004 when delivery of MIPAS near real time
profiles was interrupted due to problems with the MIPAS instrument. This difficulty
with the MIPAS instrument highlights the weakness of using near real time products
from research instruments for operational services.

Eskes et al. (2002) estimate that useful ozone forecasts can be obtained up to
about 1 week for the extra-tropics with the KNMI system. In the tropics, the forecast
skill is less good (useful forecasts out to ∼2 days) due, mainly, to the lack of tropo-
spheric chemistry in the KNMI CTM. Two examples illustrate the skill of the KNMI
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Fig. 7 Ozone total column on 26 September 2002, provided by the KNMI operational ozone
assimilation system. From left to right: 9-, 7-, 5-day forecasts, and the corresponding analysis.
With permission from Eskes et al. (2005)

system. The first concerns low ozone events (also known as ozone mini-holes) that
are observed during winter over the Atlantic and Northern Europe, and last for
1–2 days (Orsolini and Nikulin 2006). These events are due to dynamical trans-
port of low ozone from the subtropics to the extra-tropics. For these events, 5-day
ozone forecasts are found to be qualitatively good; 3-day forecasts are found to be
quantitatively equivalent to the analyses, the latter being close to the observations
(GOME total column ozone). The second example concerns the Antarctic polar
vortex split of September 2002. During this unprecedented event, associated with
a stratospheric warming (Eskes et al. 2005), the vortex split into two parts before
decaying. As a result of this, the ozone hole also split into two parts. Figure 7 shows
the ozone total column on 26 September over Antarctica calculated by the KNMI
analysis and 5-, 7- and 9-day forecasts of the total ozone column. The analysis for
this day shows the ozone hole split with two distinct regions of low total column
ozone (values less than 200 Dobson Units, DU). For this event, forecasts out to 7
days perform well, and differences from the analyses are small. The 9-day forecast
captures elements of the ozone hole split.

These two cases highlight the maturity of the KNMI ozone forecast service.
However, the high accuracy of the forecasts would not have been possible with-
out high quality dynamical fields, in this case from ECMWF. The success of the
KNMI forecasts shows that the underlying dynamical processes were well captured
by the ECMWF NWP system (Simmons et al. 2005).

6 Future Directions

Constituent data assimilation has developed enormously during the last 15 years to
a position where incorporation of constituents in NWP (especially ozone) is rou-
tine. This effort has benefited from collaboration between operational and research
institutions to identify shortcomings in the different assimilation approaches, for
example within the EU-funded ASSET project (Lahoz et al. 2007b) and, in particu-
lar, the ASSET ozone intercomparison project (Geer et al. 2006a). The importance
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of maintaining and developing these collaborations has been noted (McLaughlin
et al. 2005).

Two approaches have been commonly used in constituent data assimilation:
GCM-based NWP models and chemical models, either CTMs or photochemical box
models. Recently, the NWP and CTM approaches have started to be combined in
coupled NWP/CTM data assimilation, e.g., in collaboration between Environment
Canada, other Canadian partners and BIRA-IASB, where the chemical scheme of
the BASCOE CTM is coupled to the Canadian GEM-strato GCM; early results are
promising (Ménard et al. 2007; see also de Grandpré et al. 2009). The CMAM data
assimilation set-up at Met Service Canada (MSC) described by Polavarapu et al.
(2005a, b) uses a GCM with full chemistry and can also be described as a coupled
system.

Key drivers in constituent data assimilation for the future are likely to include the
need to monitor the environment (e.g. stratospheric ozone; tropospheric pollution);
the need to comply with international treaties such as the Montreal protocol; and
the need to comply with environmental legislation concerning, e.g., air quality. This
is illustrated by the PROMOTE project (http://www.gse-promote.org), one of the
GMES service elements set up by ESA. PROMOTE is a user-oriented project, which
aims to use the assimilation of constituent data to provide services on global ozone,
greenhouse gases and air quality.

Another area of increasing importance will be the relationship between chemistry
and climate. While this is naturally mainly the focus of coupled chemistry-climate
models (see Eyring et al. 2006 and references therein), it does increase the impor-
tance of the compilation of assimilated constituent data for the study of recent
climate variations and evaluation of climate simulations; climate/chemistry inter-
actions will thus be one of the leading drivers for the development of coupled
chemistry/dynamics assimilation systems. The inclusion of ozone in the recent
ERA-40 reanalysis (Dethof and Hólm 2004) illustrates the importance of these
considerations. The EC and ESA initiative on GMES illustrates the perceived
importance on more general environmental monitoring. The ECMWF-led GEMS
project (Hollingsworth 2005; Hollingsworth et al. 2008), part of GMES, illus-
trates the widening the scope of data assimilation to include not just atmospheric
dynamics but a widening range of atmospheric constituents. The EU-funded MACC
project, due to start in 2009, will build on EU and ESA investments in GEMS and
PROMOTE.

In developing further constituent data assimilation, choices will have to be made
concerning issues such as the type of model, the complexity of the chemistry com-
ponent in the model and the assimilation set-up. These choices will depend on
the application (see, e.g., Eskes 2006; Lahoz 2006). Challenges concerning issues
such as bias, what datasets to assimilate, the usefulness of satellite observations of
tropospheric constituents, the need for ancillary datasets (e.g. cloud and aerosol
information), representation of the model physics and chemistry, the suitability
of the NWP approach to constituent data assimilation and air quality forecasts,
and the nature and evolution of the Global Observing System will have to be
tackled.
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1 Introduction

1.1 General Remarks

Air quality data assimilation aims to find a best estimate of the control parameters
(see chapters in Part I, Theory) for those processes of the atmosphere which gov-
ern the chemical evolution of biologically relevant height levels, typically located
in the the lowermost atmosphere. As in data assimilation (see chapters in Part I,
Theory), we have to resort to numerical models to complement usually sparse obser-
vation networks; these models serve as system constraints. Several research groups
are developing data assimilation methods similar to those applied to meteorological
applications. Techniques range from nudging to advanced spatio–temporal meth-
ods such as four-dimensional variational (4D-Var) data assimilation and various
simplifications of the Kalman filter (KF).

The different observation methodologies (see chapters in Part II, Observations)
imply heterogeneities in terms of accuracy, spatial representativity and density, sam-
pling frequency, and various retrieval techniques. Similarly for the range of models
and the information they provide. The appropriate approach to bring together
(fuse) and analyse this observational and model information involves advanced data
assimilation and inverse modelling techniques.

Remotely sensed Earth Observation data, primarily from polar orbiting platforms
(see chapters in Part II, Observations), are scattered in space and time, providing
only a very little fraction of the data at a single point in time. Therefore, a pre-
requisite for a full exploitation of these sensors is the use of numerical models for
spatio–temporal interpolation by assimilation of data.
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1.2 Features of Tropospheric Chemical Data Assimilation

In tropospheric chemistry data assimilation, a variety of aspects has to be consid-
ered; these differ considerably from traditional atmospheric data assimilation. As
usual in atmospheric chemistry, the number of parameters per grid point is much
higher than in meteorology. For example, a state-of-the-art air quality model prog-
noses more than 50 constituents in the gas phase only. If aerosol dynamics and
chemistry are included, this number can easily double.

Furthermore, the underlying chemistry models are only an approximation to the
most important constituents. For example, hydrocarbons, referred to as volatile
organic compounds (VOCs) occur in a variety of components which cannot be
accounted for in a complete way. Also, aerosol particles differ in their size, shape,
chemical composition and complexity of reactions, which makes them hard to
account for in models.

When the focus of the chemistry analysis is the Earth’s surface, shorter temporal
scales and smaller spatial scales become increasingly important. Local air quality is
forced by local emissions, with background values controlled by transport processes
at larger spatial scales. As a consequence, a sequence of spatial scales should be
covered from the long range, even intercontinental transport of pollutants, down
to a representation of emissions from point and line sources like chimney stacks
and streets. In practice, different chemical regimes co-exist at the smaller spatial
scales. Sinks act by surface uptake from soil and vegetation, again imposing a much
finer spatial pattern, analogous to that exhibited by typical mesoscale meteorological
features.

Figure 1 presents an example of the different spatial scales involved. Note the res-
olution factor of 27 between both graphics. Simulations of tropospheric chemistry
must be able to span this range of spatial scales.

Fig. 1 Simulated ozone state for July 20, 1998. Ozone field at 10 km height over Europe with
54 km horizontal resolution (left panel), and nitrogen oxide (NO) field of the greater Berlin
(Germany) area with 2 km resolution (right panel)
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For atmospheric chemistry data assimilation, as in meteorology, initial state
variables of the model are usually the parameters optimized. Hence, these ini-
tial values are implicitly assumed to be the least well known parameters and
a critical factor for improved analysis or forecast skill. Because tropospheric
chemistry–transport models (CTMs) solve an initial–boundary value problem which
is strongly dependent on surface parameters, the restriction to initial value opti-
mization only is no longer justified. Furthermore, it is well known that under
favourable conditions, freshly emitted surface pollutants can easily enter the free
and upper troposphere. Therefore, better knowledge of emission strengths and mete-
orological conditions is likely to be at least as important as knowledge of initial
values.

Errors in emission rate estimates can be considered as one of the main sources of
uncertainty in predictions of pollution. Consequently, emission rates must be con-
sidered as an optimization parameter. Figure 2 demonstrates the limited memory
of analyses based on initial value optimization only, and the deficiencies of only
using emission rate optimization. In the second case, to compensate for an emis-
sion bias, compliance with observations can only be approximated by over-tuning
of the model, with resulting forecast failures. Thus, combined and balanced initial

Fig. 2 Ozone forecasts at the measurement site of St. Poelten (Austria) after assimilation of data
inside the time interval 0000–0600 UTC, June 4, 2003 (shaded area). The forecasts are based on
initial value optimization (green dotted line), emission rate optimization (pink dash-dotted line),
and combined emission rate/initial value optimization (bold blue line). The control run without
data assimilation is shown for reference (black dashed line). Observations are shown in red, with
error bars indicated by red vertical lines
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value/emission rate optimization appears to provide the best solution. Using simi-
lar arguments, deposition velocities, if poorly known, could also be considered as a
variable to be optimized.

A thorough assessment of uncertainties in ozone forecasts due to uncertainties in
various input parameters has been provided by various studies, e.g., Hanna et al.
(1998), Hanna et al. (2001), Schmidt and Martin (2003). While parameters like
photolysis rates and meteorological conditions are important, emissions are still
the most important control parameters in the state vector (see chapters in Part I,
Theory).

In summary, we seek a data assimilation algorithm, which is able to combine
heterogeneous observations (scattered in space and time, and having variable spatial
and temporal representativity) with an air quality model system. This requires the
application of space-time data assimilation algorithms preserving the BLUE (Best
Linear Unbiased Estimate) property (Talagrand 1998).

1.3 Observations

Ground-based in situ observations of chemical constituents are the backbone of the
observation suite; they are usually provided by regional national or European envi-
ronmental protection agencies. Typically, ozone, nitrogen dioxide, sulphur, carbon
monoxide and particulate matter integrated up to 10 μm (PM10) or 2.5 μm (PM2.5)
are measured. While these measurement sites operate on a regular basis (sometimes
the data can be provided in near real time), the deployment strategy of site locations
is not adapted to data assimilation needs, unlike for meteorological data assimilation
(see chapter Assimilation of Operational Data, Andersson and Thépaut). In partic-
ular, locations are often not spatially representative of model grid sizes larger than
10 km resolution, and the density of measurement sites is biased toward densely
populated areas. These facts must be considered when interpreting chemical data
assimilation results. As a critical consequence of the different scales and chemi-
cal regimes (see above), legacy surface in situ observations are not only sparse, but
are also hampered by this spatial representativity problem in populated areas. The
available ozone radiosonde network is even much sparser.

On special occasions, there are campaign data available, with a much larger
quantity of measurements. However, typically, these data sets are spatially and
temporally limited.

Satellite data are a highly valuable complement to in situ data. However,
the following has to be considered. Tropospheric satellite data are limited to
only very few species and often only given in terms of tropospheric columns.
Available data include nitrogen dioxide, elevated levels of sulphur dioxide and
formaldehyde, mostly retrieved from GOME, Global Ozone Monitoring Experiment
(onboard the ERS-2 platform) or SCIAMACHY (Scanning Imaging Absorption
spectrometer for Atmospheric CHartographY), aboard Envisat (e.g., Eskes and
Boersma 2003; Heue et al. 2005). Recently, further tropospheric column data
has become available through OMI (Ozone Monitoring Instrument) and GOME-2
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sensors onboard EOS Aura and METOP, respectively. Carbon monoxide sound-
ings from MOPITT (Measurements Of Pollution in The Troposphere) sensors
(Deeter et al. 2003) as well as neural network retrieved ozone profiles are available
(Müller et al. 2003). A full overview is presented in chapter Research Satellites by
Lahoz.

Finally, in situ observations from commercial aircraft, in the framework of the
MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft)
activity (Thouret et al. 2000) can be assimilated. The MOZAIC initiative (Marenco
et al. 1998) consists of automatic and regular measurements by long range passen-
ger airliners flying all over the world. A special element of this observing system
are vertical profiles of observations obtained during the take-off and landing phases.
Target species are O3, water vapour, CO and total reactive nitrogen, NOy, measure-
ments. The next generation of aircraft data will be provided by IAGOS (Integration
of routine Aircraft measurements into a Global Observing System). A survey on
observations for data assimilation is presented in chapter The Global Observing
System (Thépaut and Andersson).

Section 2 presents a brief review of advanced tropospheric chemistry data assimi-
lation. Section 3 features the theoretical approach of the complexity reduced Kalman
filter and 4-dimensional variational data assimilation (4D-Var), and an implemen-
tation of a comprehensive system. These two methods are regarded as the most
advanced methods of the data assimilation canon. Sample results are provided in
Sect. 4.

2 Spatio-Temporal Data Assimilation Studies

2.1 Tropospheric Gas Phase Data Assimilation

We present a short and non-exhaustive survey of studies performed in tropo-
spheric data assimilation, emphasizing the algorithms developed. We focus on the
methodological differences between tropospheric chemistry data assimilation and
meteorological and upper atmosphere chemistry data assimilation, hence partly
complementing chapter Assimilation of Operational Data (Andersson and Thépaut).

Early attempts to analyse tracer fields were based on monovariate kriging tech-
niques of surface concentrations (e.g., Fedorov 1998). These methods produce
chemical state estimates, frequently referred to as analyses. When applying purely
spatial techniques, there are very little significant differences between chemistry
data assimilation and meteorological data assimilation. This is in contrast to tro-
pospheric chemistry spatio-temporal data assimilation, where there are notable
differences. Attempting to combine observations made at different times, intermit-
tently applied spatial data assimilation procedures cannot make best use of known
physical and chemical laws as constraints. The ability to do so would not only
enlarge the observational data base for data assimilation with measurements made
over a full time interval but, depending on the model set-up, would also enforce a
degree of chemical consistency.
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From a theoretical viewpoint, only advanced spatio-temporal data assimilation
or inversion techniques are candidates for a solution to this problem. These methods
are able to combine model information with data in a consistent way while, at the
same time, providing a Best Linear Unbiased Estimate (BLUE). One underlying
assumption of the BLUE is the validity of Gaussian probability density functions.
Under not very stringent conditions, the BLUE property is satisfied by the 4D-Var
technique and the Kalman filter (This is also true for the variants of the Kalman
filter commonly applied.).

In the framework of an identical twin set-up, a first implementation of the
4D-variational technique for emission optimization including reactive chemistry is
described in Elbern et al. (2000). A first real-world application with a fully fledged
CTM, the EURAD (EURopean Air pollution Dispersion) model, is given in Elbern
and Schmidt (2001). By including all emitted species at each surface grid point,
the typical optimization space of initial values for atmospheric chemical state con-
stituents is replaced by a scaled emission rate space in Elbern et al. (2007). An
example on the assimilation of satellite data in tropospheric chemistry models is
given by a dedicated section in Lahoz et al. (2007).

A practical application on the microscale has been presented by Quélo et al.
(2005) for NOx emissions and their diurnal profile, using the Polair3D model.
Another regional tropospheric 4D-Var assimilation system is STEM-2K1 (Chai
et al. 2006). Dedicated flight missions also provide measurements for spatio-
temporal data assimilation. The measurements obtained during the NASA Transport
and Chemical Evolution over the Pacific (TRACE-P) airborne mission (see, e.g.,
Talbot et al. 2003) were the first tropospheric airborne data assimilated using the
chemical 4D-Var method. Chai et al. (2006) made use of the limited area Sulfur
Transport Eulerian Model, version 2K1 (STEM-2K1) and its adjoint. The assim-
ilation set-up simplifies the background error covariance matrix to a diagonal
formulation. To assess the added value of the STEM-2K1 model, see Carmichael
et al. (2003) for a discussion of TRACE-P related model experiments. Comparison
of model simulations of the TRACE-P mission with and without advanced data
assimilation, exhibited several interesting features. For example, the authors found
that assimilating ozone observations from one of two independent flights improved
model prediction of the other flight which used ozone measurements withheld for
validation. Specifically, after only assimilating NOy observations, the adjusted ini-
tial fields led to better predictions of NO, NO2, and PAN (peroxyacetyl nitrate),
based on a comparison with the withheld measurements. In addition, the model pre-
dictions of NOy improved significantly after assimilating the observations of the
aforementioned chemical species, which are independent of the withheld NOy mea-
surements. Adopting the variational inversion technique at the global scale, Müller
and Stavrakou (2005) assimilate tropospheric column retrievals of CO and NO2, to
assess emission rates at continental scales.

In the Netherlands, two CTMs have been coupled to sophisticated variants of
the complexity reduced Kalman filter. These include the reduced rank square root
Kalman filter of the Long Term Ozone Simulation (LOTOS) model (van Loon et al.
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2000) and the EUROS model (Hanea et al. 2004). The reduced rank square root
approach is set up to factorize covariance matrices using a few principal compo-
nents (Verlaan and Heemink 1995). Further elaboration of this technique by its
combination with an ensemble Kalman filter method resulted in additional skill
(Hanea et al. 2004). Optimization parameters include emission rates, photolysis
rates, and deposition rates, corrections for which are formally introduced as “noise”
parameters in the Kalman filter formulation.

Other very recent applications of the ensemble Kalman filter are due to
Constantinescu et al. (2007a, b). In this approach, the covariance matrix is not con-
structed by the ensemble directly, but by autoregressive modelling. Nevertheless,
implementation of special measures has proved necessary to avoid “ensem-
ble collapse” effects with “filter divergence”, an effect due to the insufficient
spread of the ensemble members and an inadequate model error covariance
formulation.

Independently of activities termed “data assimilation”, research on the solution
of inversion problems to provide source and sink estimates has been well established
over the last few decades. In most cases, inversion with respect to quasi-passive trac-
ers has been performed. Newsam and Enting (1988) and Enting and Newsam (1990)
addressed the global problem of the distribution of sources and sinks of carbon
dioxide by the inversion of a diffusion equation, formally solved using associated
Legendre functions.

Following this work, a variety of other studies were made, all based on a very
limited number of flask measurements (Bousquet et al. 1999a, b; Enting et al. 1995;
Fan et al. 1998; Gloor et al. 1999; Gurney 2002). The variational approach has
been also adopted for source and sink estimates, with the aim of providing a better
specification of greenhouse gas budgets (Kaminski et al. 1999a, b; Houweling et al.
1999).

In order to optimize model parameters, Kaminski et al. (2002) assimilated 41
CO2 measurement sets into a simplified terrestrial biosphere model using the 4D-
Var technique, thereby achieving more realistic flux simulations. To overcome the
limitations of CO2 in situ observations, satellite data from the Atmospheric Infrared
Sounder (AIRS) have been assimilated into the European Centre for Medium-range
Weather Forecasts (ECMWF) model using the 4D-Var technique by Engelen et al.
(2004). As results were only satisfactory in the tropical regions, improved global
source and sink estimates cannot be expected with current database and assimilation
system configurations.

At the mesoscale, Robertson and Langner (1992) used variational data assim-
ilation for source estimation in the framework of ETEX (European Tracer
Experiment). Using adjoint modelling ideas, Issartel (2003) applied the concept of
retro-plumes for source identification. A different approach was taken by Bocquet
(2005a, b), the maximum entropy principle was invoked to estimate the position,
time, and strength of emission sources.

All emission source studies cited above have focused on source or sink estimates
of a single passive tracer, without modelling reactive chemistry. Only a few attempts
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have been made to solve the source inversion problem for reactive chemistry,
where precursor sources are estimated using observational data from product
pollutants.

2.2 Tropospheric Aerosol Data Assimilation

In recent years, both model based chemistry data assimilation and complex aerosol
modelling using fully-fledged air quality models have become increasingly impor-
tant. As both disciplines are challenging in terms of development and computational
demands, the attempt to combine state-of-the-art data assimilation methods with
state-of-the-art aerosol modules, in turn combined with advanced satellite retrieval
methods, has not yet been made. Instead, all these lines of work have evolved sepa-
rately. Two examples are given to demonstrate the current state of affairs. In Collins
et al. (2001) the authors applied the MATCH model, in which sulphate, black
carbon, organic carbon and mineral dust are predicted while sea salt aerosols are
diagnosed. Optimal interpolation is applied as the assimilation scheme. The assimi-
lation parameter is the aerosol optical depth (AOD) retrieved from NOAA AVHRR
(Advanced Very High Resolution Radiometer) over the oceans. By contrast, van
Loon et al. (2000) used a Reduced Rank Square Root Kalman filter (RRSRKF) to
assimilate AOD from ATSR-2 (Along Track Scanning Radiometer) into the LOTOS
model, which crudely estimates the model AOD by doubling the value resulting
from modelled SO2−

4 , NO−3 , and NH+4 . A variational approach for aerosol dynamics
in a box model is presented by Sander et al. (2005), who use an adjoint formu-
lation of the integro-differential equation for coagulation, growth, and nucleation
processes. More fundamental studies on the feasibility of variational aerosol data
assimilation are, for example, presented in Henze et al. (2004). While in Collins
et al. (2001) emphasis is placed on modelling a more sophisticated aerosol optical
depth using state-of-the-art modules, the OI assimilation scheme applied satisfies
the BLUE property only when used as a purely spatial algorithm.

Data assimilation has also been extended to inverse modelling of biomass burn-
ing emissions. Zhang et al. (2005), using a Bayesian inversion technique, found
special sensitivity of the results to a priori emissions and to the altitude of the
aerosol layer. In a 4D-Var context, Benedetti and Fisher (2007) introduced the NMC
(National Meteorological Center) method to assess the background error statistics of
global aerosol distributions for earth system monitoring, using both satellite aerosol
retrievals and in situ data. A similar operational variational AOD data assimilation
system is described by Zhang et al. (2008). Yumimoto et al. (2008) coupled a 4D-
Var data assimilation system to the regional dust model RAMS/CFORS-4DVAR to
carry out an adjoint inversion of a heavy dust event over eastern Asia; the verti-
cal profiles of the dust extinction coefficients derived from a Lidar network were
directly assimilated. The authors demonstrated significant improvements for dust
emission inversion.

A comprehensive review of the emerging field of advanced chemical data
assimilation can be found in Carmichael et al. (2007).
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3 Advanced Methods in Tropospheric Chemistry
Data Assimilation

The tropospheric chemistry data assimilation (TCDA) problem described above
has implications for the data assimilation methodology to be selected. Chemistry-
transport models are typically forced by 3-D meteorological analyses and, unless
care is taken, chemical or other imbalances can result. Detrimental effects include
the generation of spurious relaxations toward a chemical state which is no longer
subject to the constraint of an objective quality criterion. To solve this problem, the
chemical kinetic equations of the model can, as part of the assimilation algorithm,
be used as a constraint to estimate both a balanced and most probable chemical state
or, analogously, parameter values. In this way, the system at least potentially satis-
fies the BLUE property. An advantage of this approach is that the BLUE property
allows for hypothesis testing.

There are two families of algorithms satisfying the BLUE property in a spatio-
temporal context: the four-dimensional variational data assimilation (4D-Var), and
Kalman filtering (KF). In both cases, the methodology involves the extension of the
state vector to include sources and their uncertainties.

3.1 Kalman Filter Equations

The Kalman filter method is based on the Kalman filter equations. The forecast
equation propagating the model state xf from time i− 1 to i by the model resolvent
or linear integration operator M(ti, ti−1) reads

xf (ti) = M(ti, ti−1)xa(ti−1), (1)

where superscripts a and f indicate analysis and forecast, respectively. Adopting the
standard notation, the forecast error covariance matrix Pf

i at time step i is estimated
by

Pf
i = M(ti, ti−1)Pa

i MT (ti, ti−1)+Q, (2)

involving the analysis error covariance matrix Pa
i and model error covariance matrix

Q. Given the vector of observations yi, and the forecast model equivalent obtained
by the linear observation operator H applied to the forecast state xf (ti), the optimal
estimate of the state

xa(ti) = xf (ti)+Ki(yi −Hxf (ti)), (3)

is computed using the Kalman gain matrix

Ki := Pb
i HT

i (HiPb
i HT

i + Ri)
−1 ∈ Rn×pi . (4)
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The analysis error covariance matrix Pa
i is given by

Pa
i = (I−KiH)Pb

i . (5)

The Kalman filter equations given above are computationally too costly, in par-
ticular (2). Thus, for practical problems, the Ensemble Kalman Filter (EnKF) and
the Reduced Rank Square Root Kalman filter (RRSRKF) are used, as they allow
for a feasible spatio-temporal data assimilation approach, while approximating the
BLUE property. Hanea et al. (2004) successfully implemented both methods for
tropospheric chemistry data assimilation, and Constantinescu et al. (2007a, b) the
EnKF.

3.2 Ensemble Kalman Filter

The practical realisation of the EnKF is described in Hamill (2006) and is given here
for completeness. An ensemble matrix Xf is composed of ensemble members

Xf := (xb
1, . . . , xb

m), (6)

with ensemble mean

x̄f := 1

m

m∑
i=1

xb
i . (7)

Introducing the perturbation of the ith member x′bi := xb
i − x̄f, the matrix of the

ensemble perturbations then reads

X′f := (x′b1 , . . . , x′bm) (8)

Let P̃
f

denote the ensemble estimate of the forecast error covariance matrix Pf. Then,
this is calculated by

P̃
f = 1

m− 1
X′f X′bT . (9)

For the stochastic update algorithm

xa
i = xb

i +Ki(yi −H(xb
i )), (10)

we generate m sets of “perturbed observations”

yi = y+ y′i, i = 1, . . . , m, (11)

where the y′i ∝ N (0, R) have a Gaussian error distribution.
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With H being the non-linear observation operator, the elements of the Kalman gain
matrix can then be calculated as follows

H(xf ) := 1

m

m∑
i=1

H(xb
i ) (12)

P̃
f
HT := 1

m− 1

m∑
i=1

(xb
i − x̄f )(H(xb

i )−H(xf ))T (13)

and

HP̃
f
HT := 1

m− 1

m∑
i=1

(H(xb
i )−H(xf ))(H(xb

i )−H(xf ))T . (14)

We thus obtain for the analysis mean

x̄a(ti+1) = x̄f (ti+1)+Ki+1(y−H(x̄b
i )), (15)

and for the individual perturbations

x′a(t+1) = x′b(t+1) +Kt+1H(x′bi ), (16)

from which the analysis error covariance matrix Pa can be calculated analogously
to (9).

3.3 Reduced Rank Square Root Kalman Filter

The approach of Hanea et al. (2004) approximates the n×n covariance matrices Pf ,a

by a product of suitably selected n×q, q � n, low ranked matrix Sf ,a. The q leading
eigenvectors are the basis for the determination of S. With the eigenvector decom-
position Pf ,a = Vf ,a(D f ,a)(Vf ,a)T , D denoting the diagonal matrix of eigenvalues,
matrix Sf ,a = Vf ,a(D f ,a)1/2 complies with this requirement. The same procedure is
applied to the system noise matrix Q, factorised by T with n× r, r � n. Hence, we
have

P ≈ SST , Q ≈ TTT . (17)

The forecast step (3) remains unchanged. However, the calculation of the forecast
error covariance matrix only uses 2 × p model integrations:

Sf SfT = MSaSaTMT + TTT . (18)

With model errors, we have Sf = [MSa, T], and using the definition ψ := HSf , the
Kalman gain matrix reads
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K = SfψT (ψψT + R)−1.

The analysis error covariance matrix can then be rewritten

SaSaT = (I−KH)Sf SfT

= Sf [I− ψT (ψψT + R)−1ψ]SfT .
(19)

In practice, all calculations can be performed without actually calculating the full
matrices P, and only the square root representation is needed and supported by
the algorithm. Hence, the positive semi-definiteness of the covariance matrices is
maintained. This is implemented by the square root form

Sa = Sf [I− ψT (ψψT + R)−1ψ]1/2. (20)

Several methods exist to carry out the measurement updates. Hanea et al. (2004)
adopted a scalar update formalism, where each measurement is processed individ-
ually. Defining γ := (Ψ TΨ + R)−1 for each time step, the above formula can be
rearranged to give

Sa = Sf −Kψ
[
1+ (γR)1/2

]−1
. (21)

3.4 4D Variational Data Assimilation

In the case of 4D-Var, examples of a spatio-temporal BLUE applied in tropo-
spheric chemistry include Elbern et al. (2007), with the EURAD–IM (EURopean
Air pollution Dispersion–Inverse Model).

The most notable aspect in this implementation is the additional inversion
for emission rate optimization and for non-observed species. Here, deviations of
the background chemical state x(t0) − xb = δx(t0) and the emission inventory
e(t0) − eb = δe(t0) may be combined to define an incremental formulation of a
cost function, objective function, or distance function J as follows (see for example
Elbern et al. 2000 for a more detailed description):

J(δx(t0), δe) =1

2
(δx)TB−1δx+ 1

2

∫ tN

t0
(δe)TK−1δedt+

1

2

∫ tN

t0
(d(t)−H(t)δx(t))TR−1(d(t)−H(t)δx(t))dt

(22)

where J is a scalar functional defined on the time interval t0 ≤ t ≤ tN , and dependent
on the vector valued state variable x(t). d(t) := y(t)− H(t)δxb(t) is the observation
minus model discrepancy at time t, when the first guess initial values and emission
inventory values are taken. The error covariance matrices are defined as follows:
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for the first guess or background values B ∈ R
N×N with N the number of model

variables; for the emission factors K ∈ R
E×E with E the number of emitting grid

points times the emitted species. Observation errors are denoted R ∈ R
M(t)×M(t),

with M(t) the number of available observations at time t. Operator H(t) calculates
the model equivalent for each observation.

We want to determine the gradient of J with respect to the joint chemical state
and emission rate variable z = (δx, δe)T , and compute the gradient ∂J/∂(δx, δe)T .
The gradient of the cost function J is given by

∂J/∂(δx, δe)T =− B−1(δx(t))−
tN∑
t0

MT (t0, t)HT (t)R−1(d−H(t)δx(t))

−
tN∑
t0

K−1(eb(t)− e(t)),

(23)

where MT (t0, t) denotes the adjoint (= transposed, T) model operator, formally inte-
grating from time t backwards in time to the initial time t0. With the square root
factorizations B = B1/2(B1/2)T and K = K1/2(K1/2)T we define new variables v
and w by (where u is the amplitude of the emissions e)

v := B−1/2δx, w := K−1/2δu, (24)

leading to a minimization problem equivalent to Eq. (22). The cost function is then
given by

J(v, w) = 1

2
vTv+ 1

2
wTw+

1

2

T∑
i=0

(di −Hδxi)
T R−1 (di −Hδxi).

(25)

The gradient of J with respect to (v, w)T can be shown to be

∇(v,w)T J = −
(

v
w

)
−

(
B1/2 0

0 K1/2

)
×

T∑
m=0

MT (t0, tm)HTR−1(d(tm)−Hδx(tm)),

(26)

This optimization problem can be solved by a quasi-Newton minimisation proce-
dure, for example L–BFGS.
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3.5 Implementation of a Chemical 4D-Var System

In the EURAD–IM, a comprehensive tropospheric Eulerian model operating on con-
tinental to local scales, the CTM calculates the transport, diffusion, and gas phase
transformations of about 60 chemical species with more than 150 reactions. For a
CTM, the differential equation can be written as:

∂ci

∂t
+ ∇ · (vci)− ∇ ·

(
ρG∇ ci

ρ

)
−

R∑
r=1

⎛
⎝k(r)(si(r+)− si(r−))

U∏
j=1

c
sj(r−)
j

⎞
⎠ = Ei + Di

(27)

where ci is the concentration of species i, v is the wind velocity, s ∈ N0 is the
stoichiometric coefficient, k(r) is the reaction rate of reaction r, either productive
(r+) or destructive (r−) for species i, U is the number of species in the mechanism,
Ei is the emission rate of species i, Di is the deposition rate of species i, the air
density is denoted by ρ, and G is the symmetric eddy diffusivity tensor.

After application of the variational calculus, the adjoint formulation of (27) reads

− ∂δc
∗
i

∂t
− v∇δc∗i −

1

ρ
∇ · (ρK∇δc∗i )+

∑R

r=1

(
k(r)

si(r−)

ci

∏U

j=1
cj

sj(r−)
∑U

n=1
(sn(r+)− sn(r−))δc∗n

)
= 0

(28)

with δc∗i the adjoint variable of ci, while Di is held fixed.
The variational chemistry data assimilation algorithm has four components:

1. The forward model;
2. The adjoint of its tangent-linear form;
3. The background error covariance matrices;
4. The minimization routine.

4 Examples

The 4D-Var technique allows for the assimilation of a wide variety of data types.
A careful estimation of the error of (spatial) representativity is however a prereq-
uisite for success. Specifically, model grid resolutions of about 50 km, widely used
for continental scale integration domains, admit only a limited number of species to
be assimilated using point measurements. For example, quickly oxidizing point and
line sources of emitted NOx ∈ {NO, NO2} should only be assimilated by observa-
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tion sites situated at background locations, which are rarely available. In practice,
gaseous constituent assimilation using coarse grid models mostly applies to ozone
observations.

4.1 Nested Application of 4D-Var

In order to also exploit measurements of NOx species, a nesting technique is
implemented for adjoint modelling and applied to the 1998 urban plume cam-
paign BERLIOZ (Volz-Thomas et al. 2003) around the metropolitan area of Berlin,
Germany. Assimilated species are O3, NO, NO2, CO and SO2 within an assimilation
window of 14 h, from 0600 to 2000 UTC on July 20, 1998. The nesting proce-
dure includes a coarse grid simulation with horizontal grid size of 54 km and three
recursively nested grids with a nesting ratio of three. Hence, there is a 2 km final
resolution. Figure 3 demonstrates the assimilation performance for 2 measurement
stations found within the greater Berlin area, as achieved by the 6 km resolution grid
(nested level 2) using analyses from a joint emission rate and initial value optimiza-
tion (see next section). When using an analysis from a nested 4D-Var, a significant
improvement in the forecast can be seen beyond the assimilation interval. Thus, it
can be concluded that, for the conditions studied, a 6 km horizontal resolution allows
for satisfactory exploitation of the suburban NOx observation sites.

Figure 4 demonstrates the improvement achieved through a longer-running (10
days) 4D-Var nesting application for a suite of observed species, in this case for the
VERTIKO campaign in June 2003 (Bernhofer and Köstner 2005). The simulation
set-up has three domain levels with a coarse grid resolution of 125 km and a nesting
ratio of 5. Improvements are given in cost function values normalized by the con-
trol run values at each nested level, and averaged over the whole simulation period.

Fig. 3 Assimilation results for stations in the Berlin area obtained with a grid resolution of 6 km.
(left panel: Wedding/Prenzl.B-Beh, NO2; right panel: Neukölln-Nansenstraße, NO) Green line:
first guess run, using an analysis obtained on a 18 km grid. Blue line: assimilation result based on
an analysis on a 6 km grid. Black line: results for no data assimilation. Observations are given in
red, and their error estimates as vertical red bars. Only the grey shaded time interval has been used
for the assimilation; other observations are only used for quality control
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Fig. 4 Relative reduction of
the root-mean-square errors
for ozone, carbon monoxide
and nitrogen oxide due to
nested grids (N0 to N2) with
increasing horizontal
resolution (from 125 to
5 km). A normalization value
of 1 is given for the coarse
grid (125 km) simulations
without data assimilation

Ozone, carbon and nitrogen oxide exhibit different levels of performance at the dif-
ferent nesting levels. Ozone analyses are already quite reasonable at coarser grids
(25 km), reflecting the smoother distribution pattern of a secondary pollutant. In
contrast, NO shows improved performance as one goes from a coarser to a finer grid
resolution. Even for a grid resolution of 5 km, the source distribution and relatively
short lifetime of NO cannot be completely represented (see previous paragraph);
this requires additional nesting levels. Carbon monoxide exhibits a behaviour which
mixes elements of that of ozone and NO, reflecting a primarily emitted constituent
with a relatively longer lifetime in the troposphere (compared to NO).

4.2 Emission Rate Estimates

As a unique feature, the adjoint calculus has the potential to optimize initial values
as well as emission rates. The impact of emission rate optimization is demonstrated
by Figure 5, which shows SO2, CO, NO2, and xylene optimization factors over the
integration domain of the finest BERLIOZ grid (2 km resolution). The inversion
process at each grid level passes the result to the next finer grid, allowing for an
increasingly better resolved emission estimate, provided the necessary observational
density is achieved.

As Berlin is mostly a large urban island within a more rural environment, sul-
phur emissions are confined to the greater metropolitan area. The upper left panel
of Figure 5 clearly indicates a slightly reduced emission rate over the densely pop-
ulated areas, likely indicating moderately larger success in reduction efforts than
estimated by the emission inventory. In the case of CO, similar effects can only be
claimed for the area east of Berlin.
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Fig. 5 SO2 (upper left panel), CO (lower left panel), NO2 (upper right panel), and xylene (lower
right panel) optimization factors over the integration domain of the finest grid (2 km resolution)
over the greater Berlin area. The factors are for the surface layer. Coloured squares indicate the
impact areas of the individual nested areas, ranging from 54 to 2 km resolution, involving 4 nested
levels

While emission rates do not vary much for NO2, xylene appears to be underes-
timated by the emission inventory, with an amplification factor of about 1.2. In all
exhibited cases, the inversion results remain well within the error bars of the inven-
tory. Emission rate optimization of SO2 and CO is mainly based on observations
of concentrations of these species. In the case of other emissions, which are rarely
observed, inference can only be made based on measurements of other observed
species, mainly ozone. This capability to infer information on non-observed species
from observed species is another prominent feature of the 4D-Var technique. In this
context it should be noted that short campaigns like BERLIOZ may be insufficient
to build up reliable quantitative statistics for emission inversion, as underlying error
covariance statistics need longer estimation times; these estimation times, in turn,
depend on meteorological conditions.
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4.3 Tropospheric Satellite Data Assimilation

Satellite retrievals from tropospheric height levels are an emerging issue in Earth
Observation, although there is a limited number of species like SO2, NO2 and
formaldehyde, which are presently amenable for retrieval. Moreover, in these cases,
data are presented in terms of tropospheric columns. See also chapter Constituent
Assimilation (Lahoz and Errera).

The conceptual flexibility of the variational technique must be invoked where
data assimilated, like tropospheric columns, have no direct correspondence to a
model parameter. In the case of tropospheric columns, data are given in terms of
molecules per cm2. The model correspondence (operator H in the cost function) can
then be calculated, along with its adjoint, and included in the algorithm. Making
use of the technique of preconditioning (see Elbern et al. 2007), the optimization

Fig. 6 NO2 tropospheric column assimilation of GOME using averaging kernels for July 20, 1998.
Upper panel shows first guess (left) and retrieved tropospheric columns by KNMI, the Royal Dutch
Meteorological Institute (right); lower panel gives the model equivalent after 4D-Var assimilation.
Both model equivalent fields (upper left panel and lower panel) are at 0800 UTC; optimization of
initial values is at 0600 UTC. Units are given in terms of 1015 molecules/cm2
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procedure of the assimilation can adapt the model column to the retrieval in a
manner consistent with the model and the specified error covariances. Figure 6 gives
an example of the assimilation of NO2 tropospheric columns obtained from KNMI
(Eskes and Boersma 2003). Spain, France, and the Ruhr area are areas with discrep-
ancies between the retrievals and the model, prior to assimilation. The final analysis
largely removes these discrepancies, which can be attributed to the model. However,
in situ observations of NO2 are included as well, and this explains the elevated levels
found in the analysis over the UK.

4.4 Aerosol Assimilation

Key components of the EURAD–IM model system are inorganic and secondary
organic aerosol modules. The Modal Aerosol Dynamics model for Europe (MADE)
has been developed for the EURAD model as an extension to the EURAD CTM to
allow for a detailed treatment of aerosol effects in the model. Due to the complex-
ity of the atmospheric aerosol system, an approach has been chosen which is fast

Fig. 7 PM10 concentrations [μg/m3] at July 13, 2003, 1100 UTC, as forecast without assimilation
(upper left). Available observations, both in situ and SYNAER retrievals, are shown in the lower
panel; assimilation results based on all observations are shown upper right
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enough for this application and also provides sufficient information on the particle
size distribution. In MADE, the particle size distribution of the aerosol is repre-
sented by three overlapping lognormal modes: the Aitken mode, the accumulation
mode and the coarse mode; all cases are provided with variable mean values. Due
to the complexity of the aerosol model, no full adjoint is available yet. Therefore,
a 3D-Var algorithm has been implemented, which only involves the adjoint of the
observation operator (Nieradzik and Elbern 2006).

The analysis presented makes use of SYNAER retrievals (Holzer-Popp et al.
2002), providing for two ENVISAT sensor based particulate matter retrievals. This
allows for freely adjustable integrated aerosol sizes, and provides size distributed
aerosol mass information. On July 13, 2003, when a SCIAMACHY footprint cov-
ered the United Kingdom, there was a comparably dense aerosol measurement
network for comparison. The assimilation procedure has been conducted with avail-
able ground based in situ data; only with satellite data; and with both observational
sets combined. Figure 7 shows that the model forecast (without data assimilation)
gives too low aerosol loads. Both the satellite and situ data enforce higher (and more
realistic) values in the analyses.

5 Outlook

Both, Kalman filtering and the 4D-Var data assimilation method prove useful for
applications in air quality simulations. Looking for analogies with meteorological
weather forecasting, the problems for air quality applications resemble the chal-
lenges associated with low level humidity assimilation, where the following issues
must be addressed: markedly non-isotropic and inhomogeneous correlation lengths,
especially in the boundary layer; frequent violation of the assumption of the tan-
gent linear approximation; and significant violation of the perfect model assumption
due to deficiencies in the knowledge of near ground highly resolved meteorological
parameters. In addition, emission rates are at least as important as initial values, and
should be included as an optimization parameter.

For many regions, deposition rates should also be included as an optimization
parameter. With an augmented set of optimization parameters, the optimization
problem becomes more ill-posed and enhanced precision of estimates of the error
covariance matrices is the only possible way to address this problem. The most obvi-
ous way to solve this issue would be to perform operational runs of the assimilation
system, which would allow compilation of the relevant statistics.

A further fundamental issue are the covariances of the chemical species involved
in the models. Only when these are introduced comprehensively to the data assimi-
lation algorithm will non-observed species be able to be analysed from chemically
coupled observed species. While Kalman filtering is theoretically able to provide
information on non-observed species, observations are too sparse and the diurnal
cycle too short for a Kalman filter to spin-up to useful levels of skill. Finally, we
note that a priori information is useful to the data assimilation problem, as it is
available for updating.
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Part V
Wider Applications



Ocean Data Assimilation

Keith Haines

1 Introduction to the Ocean Circulation

The oceans form a key component of the Earth’s weather and climate system. As
well as being important to forecast in their own right to facilitate human activities,
such as shipping, fishing, drilling for oil and coastline management and leisure, it
is thought that an active ocean model is necessary for all atmospheric predictions
on time-scales of a month and longer (Mansfield 1986). Another great challenge for
oceanographers is to understand how and where the oceans are absorbing half of all
the anthropogenic CO2 being released (Battle et al. 2000), and whether this state of
affairs will continue indefinitely. Ocean modelling and ocean data assimilation can
play an important role in understanding the changing climate through the reanalysis
of historical ocean data. We will return to some of these applications later in the
chapter. It is not the intention here to cover all aspects of ocean data assimilation;
in particular much of the theory is generic and can be found elsewhere in this book
or in many good reviews (e.g. Bennett 1992; Wunsch 1996; Haines 2003a, b, c; see
chapters in Part I, Theory). Instead we focus on particular applications and problems
related to ocean data assimilation and try to give a perspective on some of the current
and future challenges.

From a volumetric perspective the oceans are dominated by cold (∼2◦C), rela-
tively fresh water (∼34 psu, practical salinity units) whose properties are determined
by near surface processes at high latitudes in the Arctic, and around the Antarctic
continent. Water from these regions spreads equatorward and fills the deep ocean
basins which are typically around 5 km deep. Waters from the Arctic need to pass
across a number of straits and sills as they flow into the North Atlantic, and are thus
modified by mixing in the process, whereas Antarctic waters are less modified and
therefore tend to retain higher densities and to form the deepest “bottom waters” in
the world oceans. In middle and lower latitudes a layer of warmer, slightly saltier,
waters typically around 1 km deep, sits on top of these cold polar waters. These
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upper waters are called the “thermocline waters” and are characterized by strong
temperature and density gradients. The circulation in these thermocline waters tends
to be wind driven. Wind stresses encourage these warm waters to pool together into
thick layers in some areas while in other areas they are much thinner. This leads to
large horizontal temperature and density gradients which in turn lead to large hor-
izontal pressure gradients and complex geostrophic current systems. This variation
in thermocline thickness also represents available potential energy, and temporal
variations of this potential energy storage and release can lead to low frequency
variability in the ocean circulation which would be very useful to forecast. Both El
Niño events in the tropical Pacific, and variations in the North Atlantic and North
Pacific subtropical gyre strength, may be driven by such processes (Goddard and
Philander 2000).

In mid latitudes the warm water pools tend to gather on the western sides of the
ocean basins between the latitudes of the strongest westerly winds and the east-
erly trade wind belts in the tropics, for reasons to do with vorticity conservation
(Stommel 1948). Here they form strong anticyclonic subtropical gyres with strong
boundary currents flowing poleward along the coastline at their western edge. The
Gulf Stream is such a typical boundary current which flows up the eastern coast
of the USA. When these currents leave the coast and flow into the ocean interior,
the strong front between the warm waters on the equatorward side of the current
and the much colder waters poleward of them represents stored available potential
energy which can be released through baroclinic instability. The Gulf Stream mean-
ders greatly and forms cut-off rings and eddies via this instability; these may drift
in the ocean for periods up to a year or more. Initializing and forecasting the for-
mation and movement of such meanders and rings is one important application of
ocean data assimilation. These rings carry water masses for large distances and the
vertical motions around them and their associated fronts are important for surface
nutrient supply and hence ocean biology and fisheries.

In the tropics warm water pools tend to form in the western side of ocean basins
due to the Trade Winds, in particular in the western equatorial Pacific Ocean around
Indonesia large volumes of very warm water can build up over a period of years,
with a much thinner thermocline layer existing in the eastern Pacific. Every few
years (irregularly) the available potential energy represented by this warm water
pool is released by El Niño events which see the warm water layer flow eastward
along the Equator into the mid and eastern Pacific causing great changes in the ocean
and atmospheric circulation. These El Niño events involve coupled ocean and atmo-
spheric processes on a large scale, and it is through initializing the ocean component
of coupled models that these events have been successfully forecast on periods out
to 6 months ahead. This seasonal forecasting application of ocean data assimilation
is now a major focus for a number of operational agencies around the world, e.g.,
European Centre for Medium-Range Weather Forecasts, ECMWF (Stockdale et al.
1998); Japanese Meteorological Agency, JMA (Ishii et al. 1998); National Centers
of Environmental Prediction, NCEP (Barnston et al. 1999).

The various phenomena in the ocean that we wish to model and forecast through
data assimilation techniques thus have a wide range of spatial and temporal scales



Ocean Data Assimilation 519

and this has a big influence on the approaches taken to modelling and to build-
ing data assimilation systems. The forecasting of near surface ocean currents and
the mesoscale eddy field have much in common with the forecasting of atmo-
spheric storms, with the underlying baroclinic instability process being similar in
each. However, when studying climate time-scale phenomena, the properties of
water masses, i.e., the volume of water with a particular set of temperature and
salinity properties, are of more interest. The large range of important dynami-
cal scales involved in the ocean also represents a major computational modelling
challenge.

The structure of the rest of this chapter is as follows. Section 2 will discuss
ocean modelling and highlight a few of the challenges that make it different from
atmospheric modelling. We look at some of the current issues and model require-
ments for operational oceanography, seasonal forecasting to medium range climate
prediction, and ocean reanalyses. Section 3 will look at some of the ocean obser-
vations that are available, both in the past and the current and planned systems
which are part of the GOOS (Global Ocean Observing System; http://www.ioc-
goos.org/). In particular, we will focus on altimeter sea level anomalies and geoid
data from the new gravity satellites, and we will consider the Argo float array
(http://www.argo.ucsd.edu) and the in situ water property data it provides. Section
4 is a general introduction to the current issues and applications associated with
ocean data assimilation techniques. Section 5 will focus on the important area of
altimeter data assimilation; Sect. 6 will discuss in situ temperature and salinity data
assimilation. Section 7 will conclude with a forward look on ocean assimilation
challenges.

2 Ocean Modelling Methods

A key objective in modelling the ocean is to determine the circulation. Ocean state
estimation, Wunsch (1996), is first and foremost a modelling method to determine
the time mean currents and ocean transports of mass, heat and freshwater. These
transports are integrated quantities that cannot be measured directly and yet are
critical to understanding how the ocean functions as part of the climate system.
Full depth observations of temperature (T) and salinity (S), at high accuracy, are
needed for the calculations and the World Ocean Circulation Experiment (WOCE),
1990–2002, sampled many regions of the deep ocean for the first time. Figure 1
shows the set of WOCE sections from the Atlantic. Ocean inverse theory is the
data assimilation method used to combine these data into a self-consistent set of
transports across all the available sections.

Ocean state estimation is limited in that it does not model the time-evolving circu-
lation. Following developments in Meteorology (see chapter The Role of the Model
in the Data Assimilation System, Rood), much of the early work on time-dependent
ocean modelling, and certainly much of the work on ocean data assimilation in
such models, was carried out with quasi-geostrophic models, seeking to simulate
the wind driven upper ocean circulation, typified by the subpolar and subtropical
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Fig. 1 Location of Atlantic cruises where high quality top to bottom hydrographic data were
gathered during the World Ocean Circulation Experiment (WOCE), 1990–2002

gyres (e.g. Bryan 1963; Holland 1978; Marshall 1984). While these models suc-
cessfully capture the geostrophic aspects of the mid latitude upper ocean circulation
(typified by small Rossby number flows) the quasi-geostrophic equations assume
a uniform background stratification over the whole domain and thus are deficient
in representing the large changes in stratification going from the tropical to the
polar oceans (In contrast, tropospheric stratification changes much less between
the tropics and the poles.). As ocean stratification reduces towards the poles, the
Rossby deformation radius also reduces leading to a smaller mesoscale eddy field
dominating the energetics and mixing processes in the ocean. In the atmosphere,
although mesoscale cyclones do get smaller towards the poles (e.g. Polar Lows), the
range of dynamical scales is not as great. This great range of important dynamical
scales in the oceans has meant that full global ocean modelling is very expensive
computationally. Only very recently have there been serious attempts to model the
global oceans while retaining scales necessary to represent the ocean mesoscale
(Hurlburt et al. 2008, and references therein). This computational challenge has also
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stimulated particular oceanographic interest in advanced modelling techniques,
including finite element models, curvilinear coordinate models (e.g. The Princeton
Ocean Model, POM; Blumberg and Mellor 1987; Mellor 1996) and unstructured
meshes (e.g. The Imperial College Ocean Model, ICOM; Piggott et al. 2008).
Recently, atmospheric modellers have also renewed their interest in much higher
resolution in order to model the dynamics of organized convective complexes within
large-scale general circulation models (GCMs).

Today, modelling aimed at operational ocean forecasting is a relatively new
activity which is picking up the challenges that operational meteorological fore-
casting faced 30 years ago. A strong operational ocean forecasting activity
is seen as guaranteeing the continuation of a global ocean observing system
(GOOS) and providing an invaluable source of data for improved understand-
ing of many aspects of ocean and climate behaviour. As an example, the
European consortium MyOcean (a project for the European Marine Core Service;
http://myocean.oceanobs.com/html/about-us_en.html) is building a hierarchy of
nested ocean models to allow ocean forecasting to cover a full range of scales from
global 1/12◦ models to coastal models going down to 1–2 km resolution, and pro-
viding simulations of ice-ocean interactions in the Nordic and Arctic seas. Typically,
these models are used for forecasting from 1 to 2 weeks ahead, with this time-scale
likely limited by the accuracy in forecasting the meteorological winds required to
drive them.

A common modelling framework, NEMO (Nucleus for European Modelling of
the Ocean; http://www.locean-ipsl.upmc.fr/NEMO/) has been adopted in Europe to
allow for collaborative and strategic model development of the wide range of impor-
tant processes. Many of the applications of operational oceanography lie in the shelf
seas and near coasts, and it is an ongoing challenge to understand what aspects
of the shelf and coastal waters can be forecast, and which observations are most
needed to make such forecasts successful. The emphasis has been on forecasting of
ocean currents, mainly but not exclusively near surface, and studying the impact
of interannual variations in upper ocean circulation on biogeochemistry, in the
form of phytoplankton blooms and fish stocks.

In contrast to operational oceanography, modelling for seasonal forecasting has
mainly focused on tropical oceans and in particular on the tropical Pacific where
coupled models are needed to simulate the onset of El Niño events. Key ocean
component requirements appear to be a reasonably high (1/3◦ or better) meridional
resolution near the Equator in order to correctly represent the equatorial waveguide.
Challenges here involve initializing the coupled models in such a way that the atmo-
sphere and ocean are in balance so that large shocks to the boundary layer are not
present at the beginning of each forecast (Stockdale 1997; Mochizuki et al. 2007).
Seasonal forecasts are typically run for periods out to 6 months ahead, over which
time the model biases and drift become important. Bias is typically corrected for by
subtracting a pre-determined model drift from the forecasts (Stockdale 1997), but
there may be more rigorous ways of achieving such corrections using data assim-
ilation, e.g. Dee (2005) (briefly discussed later; see also chapter Bias Estimation,
Ménard). The atmospheric behaviour out to 6 months ahead has a large chaotic
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component so that seasonal forecasts are based on ensembles of coupled model runs
which sample uncertainty in the evolving coupled state and seek to forecast only
those elements of the forecast ensemble which are robust. Recently, the impact of
model biases has also been reduced through the ensemble method by creating multi-
model ensembles which use several different models to average out these model bias
impacts on the forecasts (Palmer et al. 2004).

New challenges for ocean modelling and assimilation are now emerging in
the need to analyse and forecast changes in climate. There are two challenges in
particular worth highlighting. The first concerns the capability to extend coupled
models from a seasonal to an interannual or medium-range climate forecasting role,
and to properly understand the potential to forecast non-ENSO (El Niño Southern
Oscillation) related signals. The recent paper by Smith et al. (2007) demonstrates
the possibilities for a decadal prediction system. The sensitivity of all aspects of
the coupled system to initial conditions in the ocean, land and cryosphere needs
to be explored more fully. This will be the only route to making forecasts out to a
few years ahead which would provide valuable input to policymakers. The second
challenge is to use modelling and data assimilation to reconstruct critical aspects of
the ocean circulation which have importance to climate. This could be called ocean
synthesis, or ocean reanalysis if done in the context of an operational ocean analysis
system. The time mean and time varying circulation and transports in the ocean are
key quantities to be obtained by these methods. A good example of a key quantity
of interest is the Atlantic meridional overturning circulation (MOC) and the extent
to which it can be derived from current and past ocean observations combined with
ocean modelling, Balmaseda et al. (2007).

3 Observational Ocean Data

If the objective is to use ocean assimilation for decadal hindcast studies, or for
ocean reanalysis, then the record of historical ocean observations can be very sparse.
Most data consist of vertical profiles of temperature, salinity and, occasionally,
other quantities taken from ships at regular or irregular intervals along cruise tracks.
The scientific focus of making hydrographic measurements was often on identify-
ing water masses by their temperature and salinity properties. The “Core” method
of Wust (1935) was then used to infer the time-mean ocean circulation from the
spreading pathways of water. This involves identifying maxima or minima in prop-
erties such as salinity or oxygen in vertical profiles and then tracing these extrema
back to their intersections with the surface or mixed layer. Figure 2 is the WOCE
section A16 from Fig. 1, and it shows a trans-Atlantic section of water property mea-
surements suitable for analysis. More sophisticated methods such as end-member
analysis (Tomczak 1981) provide further information on the origin and circulation
pathways of water masses. These methods rely on the long lifetimes, and hence
Lagrangian tracer properties, of the water masses once they are out of touch with
the ocean mixed layer. This contrasts with the much shorter lifetime of meteorolog-
ical air masses, essentially because the lack of penetrative radiational heating into
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Fig. 2 Temperature (top plot, ◦C), salinity (middle plot, psu) and silicate (bottom plot, μmol
kg–1), measured during WOCE (World Ocean Circulation Experiment) cruise A16 running approx-
imately North-South through the Atlantic (see inset). Property values indicate the spreading of
waters through the deep ocean. Antarctic Intermediate water (AIW – dark blue at∼1,000 m depth,
south of the Equator), North Atlantic Deep water (NADW – bright green between ∼1,000 m and
∼4,000 m depth, north of 20◦S) and Antarctic Bottom water (ABW – dark green at ∼5,000 m
depth, south of the Equator) are clearly distinguished in the middle plot. The highest temperatures,
salinity and silicate values are marked in red. The lowest temperatures, salinity and silicate values
are marked in purple. See Haines (2003a)

the ocean means that the ocean circulation is being driven from the top, compared
to the atmosphere being primarily driven from below.

However, most of the ocean observations in the historical databases such as
WOA (World Ocean Atlas; Conkwright et al. 2002) are made up of temperature
measurements alone, and so do not permit such detailed water property analyses.
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Nonetheless, temperature primarily determines the ocean density, and hence the
immediate geostrophic circulation, through most of the upper 1 km, except in polar
regions where salinity becomes more important (Gill 1982). Ocean temperature also
determines the solubility of gases such as CO2. The ocean temperatures and heat
content also need to be understood from a global warming perspective and because
the thermosteric signal largely determines ocean sea level changes, see chapter 5
of the IPCC 4th Assessment (IPCC 2007). Assimilation of these measurements can
therefore potentially help in the quantification of these effects.

Before the 1970s most temperature measurements were made by Mechanical
Bathythermographs (MBTs) covering only the top 200–450 m in depth, and with
most measurements being made within a few 100 km of coastlines. Expendable
Bathythermographs (XBTs), measuring down to 800 m, came into wider use
in the 1970s and were deployed to be operated by Voluntary Observing Ships
(VOS) along normal trade routes. This widened the coverage, but still produced
a heavy North Atlantic and North Pacific bias in distribution. In the late 1980s
and 1990s the Tropical Atmosphere Ocean (TAO; http://www.pmel.noaa.gov/tao/)
array of bottom moored buoys was put in place in the tropical Pacific to moni-
tor upper ocean temperatures to provide understanding and warning of El Niño
events. The success of TAO later lead to the deployment of a similar tropical
Atlantic array, PIRATA (formerly the Pilot Research Moored Array in the Tropical
Atlantic, now Prediction and Research Moored Array in the Tropical Atlantic;
http://www.pmel.noaa.gov/pirata/), recognizing the huge importance of tropical
oceans around the globe in influencing atmospheric behaviour (Philander 2002).

However, only with the development of the Argo programme of ∼3,000
autonomous profiling (down to 1.5–2 km) floats deployed throughout the world
oceans (starting around the year 2000 and reaching completion in 2007), has a truly
global and regular set of ocean temperature and salinity (and hence density) mea-
surements become available. An example of the typical Argo coverage of data in
a single month is shown in Fig. 3, for June 2008. These measurements provide a
new source of data against which ocean models can really be tested in considerable
detail. The challenge for data assimilation is to show that the models can success-
fully interpret all of these data and derive circulation patterns with greater accuracy
than hitherto.

Although profile observations such as those discussed above provide the only
way of properly sampling the three-dimensional (3-D) structure of the oceans,
satellite observations now also play a vital role in understanding the oceans. The
accuracy and long lifetime of the TOPEX/Poseidon altimeter satellite (1992–2005)
transformed the synoptic measurement of the ocean. With its successor satellites
JASON-1 and JASON-2 being successful, it has now provided continuous measure-
ment of ocean dynamic topography (sea level) changes, with an accuracy of a few
cm for over 17 years. Horizontal gradients in sea level relative to the Earth’s geopo-
tential surface, or geoid, determine the surface geostrophic currents. Unfortunately,
we do not know the geoid as well as is needed for this calculation, with Fig. 4 show-
ing a recent estimate of mean sea level variations directly from satellite altimeter and
gravity data. This map is fairly smooth because it is only on the larger scales that
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Fig. 3 Current Argo observations (June 2008). The distribution is dominated by subsurface float
data

Fig. 4 Surface mean dynamic topography from the Danish National Space Centre, units of metres.
Gradients in this field give the mean surface geostrophic ocean circulation. Red indicates positive
values; blue indicates negative values

the geoid is known with sufficient accuracy (Hughes and Bingham 2008; Bingham
et al. 2008). However, the time varying component of the altimeter signal can be
used to give the time varying component of surface currents with better accuracy.
This continuous record of altimeter data has been the main stimulus to operational
oceanography over the last decade and has been the key driver for most ocean data
assimilation research. We will return to this later in the chapter.
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In the last few years there has been an effort to resolve the missing geoid by the
development of new gravity satellites GRACE (GRAvity and Climate Experiment)
and GOCE (Gravity and Ocean Circulation Explorer) – see chapter Research
Satellites (Lahoz). GRACE has already provided a much better global geoid than
has been available before, giving a better resolution on ocean gyre scales (Tapley
et al. 2005). GOCE (launched in March 2009) should increase the resolution of
this geoid down to useful scales of ∼100 km, and help resolve many individual
ocean currents (Drinkwater et al. 2007). The ability to assimilate a combination of
altimeter and ocean geoid information is a new challenge to the ocean assimilation
community (Drecourt et al. 2006; Lea et al. 2008), to which we return later in the
chapter.

Finally, satellite measurements of ocean surface temperature can also provide
important information about ocean current pathways, and should also provide
information about air-sea interactions. The record of infra-red (IR) measurements
from AVHRR (Advanced Very High Resolution Radiometer) goes back more
than two decades. These products are combined with in situ data to produce
regular SST (sea surface temperature) products such as that from Reynolds and
Smith (1994), which are then commonly used in ocean and seasonal assimila-
tion work at several operational centres (e.g. ECMWF). The accuracy of these
IR measurements was greatly increased (to 0.1 K) by the ATSR (Along Track
Scanning Radiometer) instrument series (starting in 1993 on ERS-1, the first
European Remote Sensing satellite) which use a dual path measurement to pro-
vide atmospheric corrections. Skin temperatures (i.e., changes in temperature within
microns of the sea surface) still cause some problems for IR measurements, as
does the inability to measure through cloud (Merchant et al. 2008). Recently,
microwave measurements have permitted global SST maps to be produced con-
tinuously, as microwaves can penetrate clouds. Microwave SST accuracies are
influenced by the sea state (roughness on cm scales corresponding to the microwave
wavelengths); however, combined products using ATSR accurate IR informa-
tion along with the global microwave coverage has made big advances possible.
For example, the Global Ocean Data Assimilation Experiment (GODAE) High
Resolution SST project (GHRSST; see http://www.ghrsst-pp.org/index.htm), has
recently started to generate accurate global SST products in an operational sys-
tem, e.g., OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis;
http://ghrsst-pp.metoffice.com/pages/latest_analysis/ostia.html). It is expected that
the assimilation of these products into both atmospheric and ocean forecasting
systems will have important impacts on forecast skill.

The above discussion covers the major ocean observational datasets used in
physical ocean modelling and data assimilation work at the present time. A clear
omission, and an area that is becoming increasingly important, is the applica-
tion of data assimilation to marine biological modelling. Here, the key data sets
are in situ measurements from maintained mooring sites which can measure var-
ious nutrient concentrations, as well as sampling biological parameters such as
phytoplankton and zooplankton concentrations. On a more global scale, ocean
colour satellites, in particular SeaWIFS (Sea-viewing Wide Field-of-view Sensor;
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http://oceancolor.gsfc.nasa.gov/SeaWiFS/), have provided a continuous record since
1999, and these data are a main target for modelling and data assimilation studies.

We finish this section by providing a representative list of past, current and future
data sources for ocean data assimilation.

(i) In situ measurements:

• Temperature profiles: Mostly from Expendable bathythermographs (XBTs)
from Voluntary Observing Ships. From 1950 to 1970 only the top 200–
450 m were normally sampled, but more recently this has increased to
800 m. A typical annual global distribution (1993) is shown in Fig. 5
(which includes Tropical Atmosphere-Ocean, TAO, buoy array data from
the tropical Pacific);

• Conductivity Temperature Depth (CTD) instruments measure temperature
and salinity (and hence density), sometimes to full ocean depth, with high
accuracy from research vessels. Historically there are a much lower number
of observations. Fixed moorings, also measuring temperature and salin-
ity, are becoming more widespread for special observing or monitoring
campaigns, e.g. in the Arctic straits (ASOF 2008), across the Atlantic
at 26◦N (the Atlantic Meridional Overturning Circulation, AMOC array;
Cunningham et al. 2007), or in the straits of the Indonesian archipelago.
Eventually, all these data should become available for model validation and
assimilation;

• The Argo neutrally buoyant float programme now provides temperature (T)
and salinity (S) profiles in the top 2,000 m, surfacing every 2 weeks and
transmitting data via satellite. They have a nominal 5-year deployment life-
time. Real time Argo data are available from www.ifremer.com.fr/coriolis. In

Fig. 5 Locations of all the temperature profile data available for 1993. A total of 69,980 profiles
were used. See Haines (2003b)
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future, gliders will provide steerable automated in situ observing platforms,
although it is not clear whether they could be developed cheaply enough to
replace Argo technology.

(ii) Satellite Measurements (see chapter Research Satellites, Lahoz):

• Satellite Sea Surface Temperatures (SSTs): These are measured by pas-
sive IR (AVHRR, ATSR) or microwave (SSM/I, Special Sensor Microwave
Imager; TRMM, Tropical Rainfall Measuring Mission) instruments. The
data have been little used for assimilation so far due to problems with rapid
diurnal variations in surface temperature, and skin temperature effects which
are not well represented in ocean models; however, with the new combined
products such as OSTIA, there will be a high priority to use these data at the
operational centres;

• New satellites measuring the Earth’s gravity field, GRACE and GOCE mis-
sions, will greatly improve knowledge of the Earth’s geoid. These data will
be very important for inverse calculation of the ocean circulation, as well as
assimilation into time dependent models. More information can be found at
http://www.csr.utexas.edu/grace/ and http://www.esa.int/export/esaLP/goce.
html;

• Satellite altimeters have provided continuous global coverage since 1992.
The altimeter instrument is a microwave radar measuring sea level relative
to the satellite with an accuracy of 2–3 cm. Corrections for atmospheric sig-
nal delays, and inverse barometer and tidal sea level variability are required.
Altimeter sea level slopes relative to the geoid indicate surface geostrophic
currents. Data are available along tracks or as maps, usually every 10 days;
these data can be assimilated to provide mesoscale upper ocean current
variations.

4 Ocean Data Assimilation: Applications and Current Issues

In this section we briefly list some of the issues that arise in the applica-
tion of data assimilation techniques to the modelling of the large scale ocean.
Later sections focus on two particular open ocean data assimilation problems:
assimilation of altimeter data (Sect. 5); and in situ temperature and salin-
ity data assimilation (Sect. 6). First, two important ocean assimilation appli-
cations, associated with surface waves and with coastal sea level, are men-
tioned very briefly for completeness. These applications have the following
characteristics:

• Ocean wave forecasting: This is run as an operational service for ships and oil
platforms and relies very strongly on meteorological conditions. Models of sur-
face wave spectra and propagation directions contain representations of “Wind
Sea” and “Swell”. Satellite altimeters (see Sect. 6) can give wave height mea-
surements for assimilation but the spatial/temporal coverage is relatively poor
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on meteorological timescales. A multi-altimeter mission might improve this. A
good although now dated overview of surface wave modelling and assimilation
is given in Komen et al. (1994);

• Tidal/Storm surge forecasting: This is operational for coastlines, estuaries,
lagoons and tidal rivers. There is a strong meteorological dependency with
wind driven Ekman and Inverse Barometer (–1 hPa atmospheric pressure
change = +1 cm sea level change) effects building up the sea level during
storms. Data from tide gauges along coasts can be assimilated (surges propa-
gate anti-clockwise around basins in the Northern Hemisphere). Altimeter data
assimilation for storm surge modelling is still being researched. Coverage is lim-
ited at the short time-scales involved and there are difficulties relating mean sea
level with the height system reference for the tide gauges; this may be over-
come with improved geoid data in future. Examples of forecasting systems
include the Adriatic (Venice Lagoon), and the North Sea (the Thames Flood
barrier).
Both of the above examples are mature areas, with well-understood dynamical

models that are essentially two-dimensional, so that optimal methods of error treat-
ment, such as the Kalman filter, are tractable (see chapter Mathematical Concepts of
Data Assimilation, Nichols). However as for many environmental forecasting sys-
tems, the real challenges lie in predicting extreme (i.e., dangerous) events, which
is much more difficult. The above two areas are intimately bound up with the
problems of meteorological forecasting (see chapter Numerical Weather Prediction,
Swinbank).

The open ocean data assimilation sections to follow focus on the interaction
between assimilation and physical processes in ocean or coupled models, rather
than on the formulation of the error characteristics, the main features of which are
covered elsewhere in the book (see chapter Error Statistics in Data Assimilation:
Estimation and Modelling, Buehner). Note that one particular physical difference
between the ocean and atmospheric assimilation problems is that the longer time-
scales of thermodynamic processes in the ocean (already alluded to in Sect. 2)
mean that careful treatment of conservative or Lagrangian properties of the water
masses during the assimilation cycle has proved a valuable constraint which can be
exploited to constrain covariances between physical quantities and improve ocean
assimilation results.

Issues in ocean data assimilation include:

(i) Operational oceanography applications (see also Sect. 5):

• Combined assimilation of altimeter sea level anomalies and mean dynamic
topography (MDT) data from geoid measurements (Rio and Hernandez
2004);

• Assimilation accounting for biases (observational and/or forecast; e.g. Dee
and da Silva 1998; Dee 2005, for atmospheric applications);

• Assimilation of sea level data at higher latitudes;
• Differences between sequential approaches (e.g. Kalman filtering) and

variational approaches (e.g. 4-D variational, 4D-Var) – see Lea et al. (2008).
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(ii) Seasonal forecasting applications:

• Ensemble assimilation and forecasting methods (e.g. Ensemble Kalman
filter, EnKF);

• Balancing increments for assimilation of in situ data (e.g. Weaver et al.
2005);

• Multi-model skill versus single-model skill;
• Extension to systems encompassing interannual to decadal forecasting

(e.g. the Hadley Centre Decadal Prediction System, DePreSys), and which
include assimilation of observed ocean and atmospheric anomalies (Smith
et al. 2007).

• Benefits of Earth system assimilation, i.e., direct assimilation into the
coupled system;

• 4D-Var applications to the coupled system (e.g. Awaji et al. 2002).

(iii) Assimilation for climate reanalyses:

• Comparison of the long-window 4D-Var ECCO (Estimating the Circulation
and Climate of the Ocean; http://www.ecco.ucsd.edu) consortium approach
against the 3D-Var and sequential assimilation (optimal interpolation, OI;
Kalman filter) approaches used in operational applications;

• The problem of chaos in the long-window 4D-Var approach (Lea et al.
2000);

• Balancing increments and the construction of water mass variability;
• Attribution of ocean reanalysis changes to changes in surface forcing, e.g.

Stammer et al. (2004).
• Assimilation of sea surface salinity (SSS), see, e.g., Durand et al. (2002)

(see also Sect. 7).

(iv) Biological ocean assimilation:

• The need for assimilation of high resolution information, i.e., mesoscale
eddies (e.g. Oschlies and Garcon 1998);

• Needs of operational biological modelling versus carbon cycle modelling;
• The use of semi-prognostic methods for bias correction and shock reduction

(e.g. when mixing different water masses; Eden and Oschlies 2006);
• Interactions between biogeochemical cycles and marine food webs (e.g.

the IMBER, Integrated Marine Biogeochemistry and Ecosystem Research,
project; http://www.imber.info);

• Developing fast and efficient climate-carbon models that incorporate
the biogeochemistry of the oceanic carbon cycle (see, e.g., Palmer and
Totterdell 2001).

(v) General Comments:

• There is a need to demonstrate the added value of ocean data assimilation
(beyond simply statistical interpolation) in the recently data rich era (3,000
Argo floats and up to 4 altimeters flying);
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• There is a need to demonstrate the value of surface ocean prediction for
medium range weather forecasting;

• The potential of Observing System Simulation Experiments (OSSEs; see
chapter Observing System Simulation Experiments, Masutani et al.) to plan
the GOOS needs further exploration – this is also an aspiration for activities
beyond GODAE (see below);

• Operational analyses from the international GODAE programme can now
be found through a number of websites (www.godae.org; www.mersea.
eu.org). Data portal technology, e.g. www.reading.ac.uk/mersea, is also
allowing easy browsing of these products. Assimilated data comes from
altimeters, from Voluntary Observing Ships (VOS) and from Argo profil-
ing floats (see Haines 2003b). Uses for GODAE products include pollution
monitoring, fishing and tourism – see Koblinsky and Smith (2001);

• GODAE ended in 2008 but the community activities are continuing under
GODAE OceanView. Aspirations for activities include: (i) transition to
operational systems, from the demonstration of valuable services to the
provision of operational services with high availability and reliability;
(ii) continuous improvements of systems through scientific and techno-
logical advances, including extending existing capabilities to the coastal
zone and ecosystems, and studying the coupled ocean-atmosphere sys-
tem and climate; (iii) development of operational services and further
links with applications; (iv) ensuring a suitable sustained ocean observ-
ing system through the demonstration of the value of observations (e.g.
via OSSEs and Observing System Experiments, OSEs). A GODAE jour-
nal special issue has been published in Oceanography (2009), Vol 22(3)
(see http://www.godae.org/GODAE-Special-Issue.html).

5 Altimeter Data Assimilation

This section and the next describe in more detail, from an oceanographic perspec-
tive, how the two most important sources of ocean data may be assimilated.

5.1 General Considerations

If sea level variations can be measured relative to the surface of constant geopo-
tential called the geoid, which we will identify as z = 0, then they are equiva-
lent to pressure variations which are related geostrophically to the surface flow.
Interestingly, Hughes and Bingham (2008) have suggested recently that the geopo-
tential could instead be measured at the position of the sea level, thus avoiding some
of the complications involved in defining the geoid. Mean sea level is used in the
meteorological community as if it were a geopotential surface, however it is not.
The true geopotential surface deviates from mean sea level by up to 1 m (irrele-
vant in meteorology but very important for determining ocean currents). Figure 6
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Fig. 6 The top left panel shows the EGM96 geoid height relative to a reference ellipsoidal Earth.
The top right panel shows the mean sea level determined by altimeter data relative to the same
ellipsoid as EGM96. This mean sea level was produced by Hernandez and Shaeffer (2000). The
lower panel shows the difference (sea level minus geoid). All units are in m. In the top panels,
red indicates values larger than the reference ellipsoid; blue indicates values lower than the ref-
erence ellipsoid. In the bottom panel, red indicates positive differences; blue indicates negative
differences. See Haines (2003b)

(left panel) shows one of the better global geoids, EGM96 (although products from
GRACE have now superceded this), as variations from a reference ellipsoidal Earth.
Figure 6 (middle panel) shows the mean sea level determined by altimeter data rel-
ative to the same ellipsoidal Earth (Hernandez and Shaeffer 2000). Figure 6 (right
panel) shows the difference, which should be a stream function for the mean surface
geostrophic flow (Fig. 4 was calculated in a similar manner). Although the large-
scale features are reasonably consistent with this, the small mesoscale features are
completely unrealistic due to inaccuracies in the geoid data at these scales.

Although the true geoid is not known accurately enough at the mesoscale, the
time varying component of the altimeter signal, or the sea level anomaly, can still
be assimilated with mesoscale accuracy. This must be compared with an equivalent
“anomaly” sea level from the model, and to define this from the full sea level we
need a separate definition of mean sea level. Several ways have been used to define
this mean sea level:
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1. A previous run of the ocean model without data assimilation is often used to
determine a mean sea level over some period (this period should really be the
same as that used to define the altimeter sea level anomalies). A disadvantage is
that it is often known that this model mean sea level is biased in some areas and
this bias will be preserved;

2. A previous run of the ocean model can be performed without altimeter data
assimilation but with assimilation of hydrographic data. The resulting sea level
can be used for a subsequent assimilation run over the same period with both
hydrographic and altimeter data assimilated (Fox and Haines 2003);

3. An independent sea level anomaly can be determined from hydrographic and
other data. Fox et al. (2000) and Killworth et al. (2001) used only clima-
tological hydrography with a dynamic height calculation. More recently, Rio
and Hernandez (2004) have combined hydrography with surface drifter infor-
mation and satellite geoid data to define a mean dynamic topography. Niiler
et al. (2003) have defined mean dynamic topography from surface drifter data
alone;

4. It is possible to calculate independent local geoids using geodetic data alone with
the necessary small-scale accuracy, e.g. Hunegnaw et al. (2009), but these have
not been used up to now in ocean assimilation studies.

Of the methods introduced above, (2) or (3) are perhaps the most reliable,
although small scales may still be absent or incorrectly represented where very
few in situ data are available (e.g. the Southern Ocean). We now look at the prob-
lem of recovering subsurface information from altimeter surface topography data by
considering the physical relationships between variables of altimeter data.

5.2 Physical Relationships Between Variables

Knowledge of the covariance relationships between sea level anomalies and anoma-
lies in other quantities (e.g. temperature, salinity, currents at depth) is needed in
some form for any altimeter assimilation method. What we emphasize here is that
there are different ways of representing this information, and some ways are more
succinct and easier to verify empirically than others.

Sea level or pressure variations on the geoid p(z = 0) can be broken down into
pressure variations at the sea floor (z = –H) and hydrographic variations from the
water column density (assuming hydrostatic balance):

p(0) = p(−H)− g

0∫
−H

ρ(z)dz. (1)

Large-scale rapid variations in p(0) tend to be barotropic and have variations at
p(–H) similar in magnitude and well correlated with p(0) variations. Smaller scale
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more persistent variations in p(0) tend to be strongly baroclinic with only weak
correlations with p(–H). It is necessary to be able to make this distinction if obser-
vations of sea level p(0) variations are to be correctly assimilated into a model. In
what follows it will also be useful to define:

D(x, y) = −g

0∫
−z0

ρ(x, y, z)dz, (2)

the dynamic height at the sea surface relative to some level –z0, which is determined
entirely from hydrographic data. Provided that all horizontal pressure variations at
level –z0 are negligible (i.e., the level of no motion assumption) then p(0)= D(x, y).

Methods for obtaining subsurface quantities by projection of sea level anomalies
below the surface can be broadly broken into two classes, empirical projection and
dynamical projection. Much of the discussion below is based on that given in Haines
(1994).

Empirical projection. This should be based on concurrent observations of local
hydrographic or current meter data and sea level over a long period of time.
However, usually this criterion cannot be met. A way of developing relationships
is with Empirical Orthogonal Functions (EOFs). To illustrate this method we look
at some early results from De Mey and Robinson (1987). They used 1 year of data
from the POLYMODE current meter array in the North-West Atlantic to develop
EOFs of the vertical pressure variability, shown in Fig. 7. The first two modes rep-
resent 81.5 and 16.7% of the pressure variance, respectively. They reasoned that
if only sea surface height data are available it makes sense to project them onto
the surface enhanced first EOF mode and thereby to recover the pressure variations
at depth. De Mey and Robinson (1987) used this method to assimilate the surface

Fig. 7 First three vertical
Empirical Orthogonal
functions (labelled 1, 2 and 3)
of pressure variations in the
POLYMODE experiment
from De Mey and Robinson
(1987). See also Haines
(2003b)
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data alone from POLYMODE and managed to partly recover deeper pressures and
currents.

The problem with this method is that the vertical modes can be very variable
spatially and possibly also in time, depending on the vertical thermocline structure.
Hurlburt et al. (1990) developed a much wider set of correlation functions to relate
sea level variability at one location with three-dimensional pressure variations. The
problem here is that the only way to develop these full covariances is by using model
output data, which may well be strongly biased.

Variations on the EOF theme can be found where sea level is correlated directly
with hydrographic water properties, temperature and salinity (Mellor and Ezer 1991;
Ezer and Mellor 1994). Figure 8 shows correlations of sea surface height variations
and density variations at several depths within Mellor and Ezer’s limited area high
resolution model of the Gulf Stream along the US East coast. The correlations are
high even down 1,000 m below the surface, making it feasible to use these correla-
tions for assimilation of sea level data. One big advantage is that the temperature,

Fig. 8 Correlations between surface height variance and subsurface density variance at different
levels below the surface. Contour intervals are 0.1 apart and the 0.8 contour is in bold. From Mellor
and Ezer (1991). See also Haines (2003b)
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salinity and density are the appropriate state variables for full primitive equation
ocean models, while the pressure field correlations are really only suitable for quasi-
geostrophic models. However, the correlations still have to be derived from a model
and are not, therefore, necessarily realistic.

Oschlies and Willebrand (1996) used vertical current correlations obtained from
a primitive equation model of the North West Atlantic. This is rather similar to
calculating pressure correlations; however, they also calculated consistent changes
in density (via the thermal wind relation) with the temperature-salinity character-
istics preserved in the model. This makes the method similar in some respects to
the methods discussed below under dynamical projection. There does not obviously
seem to be much to distinguish between these empirical methods, however in the
next section we show that there are other ways to project altimeter data.

Dynamical projection. These ideas were originally developed around quasi-
geostrophic theory and it is still useful to review some results in this framework.
The key result is that a change of state vector will lead to new coordinates in which
knowledge about the ocean variability at depth can be more succinctly expressed in
terms of the sea level.

Haines (1991) used an idealized 4-layer quasi-geostrophic ocean gyre model to
illustrate the assimilation of sea level data. Figure 9 shows the stream function ψ
and the potential vorticity q in each layer at some instant. The flow in the model
broadly represents subtropical and subpolar gyres with a strong current between
them penetrating an ocean basin and going unstable (cf. the Gulf Stream). Altimeter
sea level data is equivalent to observations of ψ1, the top layer stream function. The

Fig. 9 Stream function (left four panels) and potential vorticity (right four panels) fields from a
4-layer quasi-geostrophic ocean box model. The surface layer field is in the top left of each group,
second layer top right, third layer bottom left and the fourth layer in the bottom right. Note the very
different covariance relations between anomalies in the different fields. From Haines (1991). See
also Haines (2003b)
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fields are related by:

q1 = ∇2ψ1 + βy− γ 2
1,2(ψ1 − ψ2), (3a)

q2 = ∇2ψ2 + βy− γ 2
2,1(ψ2 − ψ1)− γ 2

2,3(ψ2 − ψ3), (3b)

q3 = ∇2ψ3 + βy− γ 2
3,2(ψ3 − ψ2)− γ 2

3,4(ψ3 − ψ4), (3c)

q4 = ∇2ψ4 + βy− γ 2
4,3(ψ4 − ψ3), (3d)

where β is the northward Coriolis gradient and γ are the Rossby deformation radii
between layers. The point of showing these fields is that qi (i = 1–4) provides an
alternative state vector for describing the system and yet the correlations in the
vertical are completely different for ψ and q. In particular, q is virtually uncorre-
lated vertically, due largely to its Lagrangian properties and the fact that q gradients
have been mixed away below the surface. Haines (1991) suggested a mixed state
vector representation for data assimilation purposes using ψ1 from observations
and q2, q3, q4 from the a priori model. This mixed description is complete in the
sense that all the other fields may be found, and it removes the need to use vertical
correlations in ψ .

Figure 10 illustrates the convergence of an identical twin assimilation experiment
(see chapter Observing System Simulation Experiments, Masutani et al.). Note par-
ticularly that, although q2, q3, q4 are not changed at all during each assimilation,
their errors decrease over time as the model runs forward, so that deep property

Fig. 10 Convergence of the stream function (left four panels) and potential vorticity (right four
panels) root-mean-square (RMS) errors during a data assimilation twin experiment in which sur-
face stream function data are assimilated (representing surface altimeter data) every 40 days. The
layers are as described in Fig. 9. From Haines (1991). See also Haines (2003b)
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fields (q in this case) are recovered over time despite the lack of correlation with the
surface stream function. This is a powerful and attractive idea when considering the
importance of deep tracer fields (see Haines 2003a).

Cooper and Haines (1996) extended this idea to a primitive equation framework
of the oceans, in which potential vorticity is given by:

q = f

ρ0

∂ρ

∂z
. (4)

Now, using the a priori model q for the deep oceans means keeping the stratification
δρ/δz constant as a function of ρ. The only way to do this, while still changing the
density field, is to vertically displace the water column; see Fig. 11. To close the
problem it was assumed that the sea level anomalies are essentially baroclinic, so a
constraint of no change to the deep pressure field was imposed:

�p(0) = g

0∫
−H

�ρ(z)dz, where �ρ(0) = ∂ρ

∂z
�h, (5)

for small vertical displacements �h. It should be noted that the constraint of no
change to the deep pressure is different from the solution found in Haines (1991)
in the quasi-geostrophic framework. In the quasi-geostrophic framework this con-
straint is equivalent to taking ψ1 from observations, and q2, q3 and ψ4 from the
model a priori, and it would be an interesting exercise to carry out such a study in
the idealized framework.

The dynamical approach to the vertical projection of altimeter data, described
above, makes a virtue out of not changing certain quantities in the model at all and
thus dispensing with multivariate covariance functions completely. The idea can be
compared to the constraints imposed during ocean state estimation where minimal
changes to water properties within regions are sought (Wunsch 1996). However,
the necessary recasting of the state vector can also be used to develop a covariance

Fig. 11 Schematic altimeter
assimilation by vertical
displacement of the
thermocline. The vertical
displacements δh are
calculated to cancel the sea
level change leading to no
change in pressure at the
ocean floor. From Cooper and
Haines (1996). See also
Haines (2003b)
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approach. Gavart and De Mey (1997) studied the empirical covariances of sea level
and the depth of isopycnals. Since the depth of all density (or temperature) surfaces
contains precisely the same information as the density (or temperature) as a function
of depth, the two descriptions are obviously equivalent. However the covariance
information looks quite different for the two descriptions. Empirical orthogonal
functions were calculated from hydrographic profiles measured around the Azores
current (SEMAPHORE project; Eymard et al. 1996) using different descriptions of
the data (see Fig. 12). Note, particularly, that the first EOF of vertical displacement
is very uniform with depth, providing support for the Cooper and Haines (1996)
method. When the hydrographic data were projected only onto the first mode z-level
EOF, and dynamic heights calculated from the result, then 8.4 cm2 of sea level vari-
ance is left as a residual. In contrast when a projection onto the first mode isopycnal
EOF is made, only 3.6 cm2 of residual sea level variance remains. Thus, the isopyc-
nal coordinate system provides a more compact representation of the hydrographic
variance, which can be used in the altimeter data assimilation process.
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Fig. 12 Empirical Orthogonal functions (EOF) describing the vertical variance of temperature
(◦C) and salinity (psu) in the Azores box (top panel). The bottom left two panels show the first 3
EOFs as a function of depth. The bottom right two panels show the first 3 EOFs of temperature on
an isopycnal and depth of an isopycnal. The residuals below (8.4 cm2; 3.6 cm2) show the dynamic
height (sea level) variance not explained by the 3 EOFs above. From Gavart and De Mey (1997).
See also Haines (2003b)
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This brief description of the vertical projection issue for assimilating sea level
information is still a topic of considerable interest in the operational ocean fore-
casting community, see for example Isern-Fontanet et al. (2008). It may be with the
recent advent of Argo float data across the world oceans that a better understanding
of the connection between sea level variability and the subsurface fields can be
achieved which would help to improve further the approaches to assimilating altime-
ter data. We look at issues associated with assimilating in situ hydrographic data in
the next section.

6 In Situ Temperature and Salinity Assimilation

In this section we look at the assimilation of subsurface temperature and salinity
profile data. Particular attention is paid to covariances between temperature and
salinity. In the past, most subsurface data has consisted of temperature (T) profiles
(as a function of depth, z) only without coincident salinity; however, the Argo float
programme now provides regular salinity measurements. As discussed in Haines
(2003b), the vast majority of T profile data from Expendable Bathythermographs
(XBTs) or from moorings, tend to be of limited depth and focused on the upper
ocean heat content. The TAO mooring data in particular are the main resource
for ocean assimilation for seasonal forecasting activities and we shall illustrate the
methods used by reference to results from the ECMWF seasonal forecasting system.

The starting point for T profile assimilation at ECMWF is an optimal interpola-
tion (OI) method. Observed To(z) profiles are compared with model Tm(z) profiles.
The misfits (To–Tm)(z) are then spread out over some influence radius, with some
weighting, and the calculated innovations are added to the model fields, slowly over
a period of days to reduce the assimilation shocks. The details are not important
but it is important to note that early schemes (a) made no change to the tempera-
ture below the deepest observed To(z) (only 450 m for Tropical Atmosphere-Ocean,
TAO data) and (b) made no updates to the salinity field. The consequences of these
omissions have been shown to be quite severe. Of course, if sufficient observations
existed, covariance matrices could perhaps be used to update the salinity and deeper
temperature fields, but these data are not available.

Troccoli and Haines (1999) offered an alternative method of updating the deeper
temperatures in a model, as well as a way of updating the salinity, that has now been
adopted at ECMWF. Figure 13 illustrates the problem clearly. Unstable density pro-
files can easily be created at the base of an observed T profile, or even within the
range of the observed T profile, by a standard univariate T assimilation method. The
solution suggested is to vertically displace the model water column to ensure a tem-
perature match at the deepest level of the temperature analysis. In addition, within
the upper ocean the salinity is modified to preserve the T/S relationships present in
the model water column. These two constraints ensure that the final analysed water
column is continuous in T and S at all levels and is also guaranteed to be statically
stable (see Fig. 13). This scheme was incorporated into the ECMWF seasonal fore-
casting model and run to produce ocean analyses over a 10-year period. The impacts
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Fig. 13 Schematic of assimilation of an observed temperature profile into an a priori model, shown
on the left. Bracketed terms show (T, S) of the waters. Lower right shows the simplest assimilation,
which directly imports the T data. The values to the right of the water columns show potential
density. Upper right shows the analysis of the water-mass conserving scheme of Troccoli and
Haines (1999). See also Haines (2003c)

on the T and S fields in the tropical Pacific are illustrated in Fig. 2 from Troccoli et al.
(2002). The new method appears to reduce the strong mixing of the temperature and
salinity fields that otherwise occur around the Equator. There is also some evidence
that this allows some improvements in the ability of the coupled model to make El
Niño forecasts (Segschneider et al. 2001).

The relationship between salinity and temperature can, of course, conventionally
be represented in terms of a T/S covariance function which itself would be a function
of depth. However the method described above can also be seen as another example
of the use of alternative state vectors to represent the variability in observations.
Troccoli and Haines (1999) illustrated this in a study of variances from an intensive
conductivity-temperature-depth (CTD) campaign undertaken in a small region of
the tropical Pacific. Figure 14 shows data from 104 T and S profiles taken over
a period of 10 days. Clearly, there is considerable variability in both the T and S
profiles as a function of depth, z. However the S(T) relationship shows less variance
and if the salinity variance is measured as a function of temperature and projected
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Fig. 14 Comparison of 104 CTD (conductivity-temperature-depth) profiles from a region of the
western tropical Pacific taken over 10 days in 1992. Top left: temperature profiles; top right: salinity
profiles; bottom left: T-S diagram; bottom right: S(z) and S(T) root-mean-square (RMS) variance
comparison for all profiles. Note that to plot S(T) variance as a function of z in bottom right, the
mean T profile from top left has been used. From Troccoli and Haines (1999). See also Haines
(2003c)

back to depth levels using the average T(z) profile then the effective reduction of
variance is very clearly seen.

The result of the above assimilation method is to preserve the T/S relation during
assimilation of T profiles. This can be regarded as having a similar justification to
the preservation of the deeper potential vorticity fields during altimeter assimilation
discussed in Sect. 5. Both T and S are Lagrangian conserved properties of the water
and are therefore likely to vary together whenever the cause of variation is associated
with advection. Most wave processes in the ocean, whether internal waves or Rossby
waves, produce variability of this type. The T/S properties are therefore preserved
over long time-scales and only change in the ocean interior due to mixing processes.
This also applies to an ocean model in which assimilation is performed using these
constraints in the assimilation schemes.

These adjustments to the salinity field during temperature profile assimilation
were incorporated into a more general assimilation framework by Ricci et al. (2005),
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and the methods can also be seen as a particular oceanographic example of the
use of balanced and unbalanced variables within the assimilation procedure (Derber
and Bouttier 1999; Weaver et al. 2005). Recently, the Troccoli and Haines (1999)
scheme was extended to include an improved method for assimilating salinity
observations (see Haines et al. 2006; Smith and Haines 2009). Whereas salinity
balancing increments ensure that the T/S water mass properties are not altered when
only temperature data are available, the Haines et al. (2006) method advocates
assimilation of salinity observations along isotherms, i.e., directly assimilating inno-
vations to S(T) between model and observations. This ensures that the new salinity
increments are orthogonal, and additive, to the balancing salinity increments. Haines
et al. (2006) also argue that larger space/time covariance scales can be used to give
a greater impact on the ocean state analysis.

A further issue of relevance to hydrographic data assimilation is the treatment
of model bias. We will not treat this in detail here but important discussions and
methodology can be found in Bell et al. (2004), Balmaseda et al. (2007) and
Chepurin et al. (2005). These papers deal with hydrography bias issues, mainly in
the tropical Pacific, in the context of operational oceanography, seasonal forecasting,
and ocean reanalysis, respectively.

7 Future Prospects for Ocean Data Assimilation

These are exciting times for ocean data assimilation. The global observing net-
work for the ocean is in place now; models and computers are becoming more
fit for purpose. The challenges for ocean data assimilation include: the develop-
ment of operational oceanography; pushing the limits of medium-range forecasting,
seasonal to decadal forecasting and ocean reanalyses; learning to improve ocean
models on the basis of data assimilation (there is a better chance of this in the oceans
because of the longer time-scales of thermodynamic processes). Data assimilation
will be crucial for linking observations that are separated spatially and temporally
over long periods. The oceans will also play an increasing role in longer range
weather and climate forecasting based on initial conditions. This will require efforts
to improve assimilation into coupled atmosphere-ocean models and efforts to main-
tain a good observing system. Finally, ocean data assimilation will play an important
role in monitoring climate change (see, e.g., the Rapid Climate change, RAPID,
programme; http://www.noc.soton.ac.uk/rapid/rapid.php).
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Land Surface Data Assimilation

Paul R. Houser, Gabriëlle J.M. De Lannoy, and Jeffrey P. Walker

1 Introduction

Accurate knowledge of spatial and temporal land surface storages and fluxes are
essential for addressing a wide range of important, socially relevant science, edu-
cation, application and management issues. Improved estimates of land surface
conditions are directly applicable to agriculture, ecology, civil engineering, water
resources management, rainfall-runoff prediction, atmospheric process studies,
climate and weather prediction, and disaster management (Houser et al. 2004).

While in situ observational networks are improving, the only practical way to
observe the land surface on continental to global scales is via satellite remote sens-
ing. Though remote sensing can make spatially comprehensive measurements of
various components of the land surface system, it cannot provide information on
the entire system (e.g. deep moisture stores), and the measurements represent only a
snapshot in time. Land surface process models may be used to continuously predict
the temporal and spatial land system variations, but these predictions are often poor,
due to model initialization, parameter and forcing errors, and inadequate model
physics and/or resolution.

Thus, satellite observations provide an incomplete snapshot of land surface con-
ditions, while models provide a continuous estimate of land surface conditions
subject to the model’s simplifications. Therefore, an attractive prospect is to com-
bine the strengths of land surface models and observations (and minimize the
weaknesses) to provide a superior land surface state estimate. This is the goal of
land surface data assimilation.

Data assimilation is the application of recursive Bayesian estimation to combine
current and past data in an explicit dynamical model, using the model’s prognostic
equations to provide time continuity and dynamic coupling amongst the fields (see
chapters in Part I, Theory). Land surface data assimilation aims to utilize both our
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Fig. 1 Schematic description of the land surface data assimilation process

knowledge of land surface processes as embodied in a land surface model, and infor-
mation that can be gained from observations, to produce an improved, continuous
land surface state estimate in space and time.

Figure 1 illustrates the land surface data assimilation challenge to optimally
merge the spatially comprehensive but limited remote sensing observations with
the complete but typically poor predictions of a land surface model to yield the
best possible hydrological system state estimation. Limited point measurements are
often used to calibrate the model(s) and validate the assimilation results (Walker and
Houser 2005).

2 Background: Land Surface Observations

Earth observing satellites have revolutionized our understanding and prediction of
the Earth system over the last 3 decades, particularly in the meteorological and
oceanographic sciences. However, historically, remote sensing data have not been
widely used in land surface modelling and prediction. This can be attributed to: (i) a
lack of dedicated land surface state (water and energy) remote sensing instruments;
(ii) inadequate retrieval algorithms for deriving global land surface information from
remote sensing observations; (iii) a lack of suitable distributed land surface models
for digesting remote sensing information; and (iv) an absence of techniques to objec-
tively improve and constrain land surface model predictions using remote sensing
data. Four ways that remote sensing observations have been used in distributed land
surface models are: (i) as parametric input data, including soil and land cover prop-
erties; (ii) as forcing input data, mainly precipitation, (iii) as initial condition data,
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such as initial snow water storage; and (iv) as time-varying land state data, such as
soil moisture content, to constrain model predictions.

The historic lack of hydrological missions and observations has been the result
of an emphasis on meteorological and oceanographic missions and applications,
due to the large scientific and operational communities that drive those fields.
However, significant progress has been made over the past decade on defining
hydrologically-relevant remote sensing observations through focused ground and
airborne field studies. Gradually, satellite-based hydrological data are becoming
increasingly available, although little progress has been made in understanding their
observational errors. Land surface skin temperature and snow cover data have been
available for many years, and satellite precipitation data are becoming available at
increasing space and time resolutions. In addition, land cover and land use maps,
vegetation parameters (albedo, leaf area index, and greenness), and snow water
equivalent data of increasing sophistication are becoming available from a number
of sensors. Novel observations such as saturated fraction and changes in soil mois-
ture, evapotranspiration, water level and velocity (i.e., runoff), and changes in total
terrestrial water storage are also under development. Furthermore, near-surface soil
moisture, a parameter shown to play a critical role in weather, climate, agriculture,
flood, and drought processes, is currently available from non-ideal sensor configu-
ration observations. Moreover, two missions targeted at measuring near-surface soil
moisture with ideal sensor configuration are expected before the end of the decade
(SMOS, SMAP; see Table 1).

Table 1 Characteristics of hydrological observations potentially available within the next decade
(see Appendix for details of sensor acronyms)

Hydrological
quantity

Remote sensing
technique Time scale Spatial scale

Accuracy
considerations

Examples
of sensors

Precipitation Thermal infrared Hourly
1 day
15 days

4 km
1 km
60 m

Tropical
convective
clouds only

GOES,
MODIS,
AVHRR,
Landsat,
ASTER

Passive
microwave

3 h 10 km Land
calibration
problems

TRMM,
SSMI,
AMSR-E,
GPM

Active
microwave

Daily 10 m Land
calibration
problems

TRMM, GPM

Surface soil
moisture

Passive
microwave

1–3 days 25–50 km Limited to
sparse
vegetation,
low
topographic
relief

AMSR-E,
SMOS,
SMAP
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Table 1 (continued)

Hydrological
quantity

Remote sensing
technique Time scale Spatial scale

Accuracy
considerations

Examples
of sensors

Active
microwave

3 days
30 days

3 km
10 m

Significant
noise from
vegetation
and
roughness

ERS, JERS,
RadarSat

Surface skin
temperature

Thermal infrared 1 h
1 day
15 days

4 km
1 km
60 m

Soil/vegetation
average,
cloud con-
tamination

GOES,
MODIS,
AVHRR,
Landsat,
ASTER

Snow cover Visible/thermal
infrared

1 h
1 day
15 days

4 km
500 m–1 km
30–60 m

Cloud con-
tamination,
vegetation
masking,
bright soil
problems

GOES,
MODIS,
AVHRR,
Landsat,
ASTER

Snow water
equivalent

Passive
microwave

1–3 days 10 km Limited depth
penetration

AMSR-E

Active
microwave

30 days 100 m Limited
spatial
coverage

SnoSat, SCLP,
Cryosat-2

Water
level/velocity

Laser 10 days 100 m Cloud
penetration
problems

ICESAT,
ICESAT2,
SWOT,
DESDynI

Radar 30 days 1 km Limited to
large rivers

TOPEX/
POSEIDON

Total water
storage
changes

Gravity changes 30 days 1,000 km Bulk water
storage
change

GRACE,
GOCS,
GRACEII

Evaporation Thermal infrared 1 h
1 day
15 days

4 km
1 km
60 m

Significant
assumptions

GOES,
MODIS,
AVHRR,
Landsat,
ASTER

3 Background: Land Surface Modelling

Our knowledge about land surface processes is embedded in land surface models.
Models are built upon the analysis of signals entering and leaving the system; they
simulate relationships between physical variables in a natural system as a solu-
tion of mathematical structures, like simple algebraic equations or more complex
systems of partial differential equations (PDEs). Land surface processes are part
of the total of global processes controlling the earth, which are typically repre-
sented in global general circulation models (GCMs). The land component in these



Land Surface Data Assimilation 553

models is represented in (largely physically-based) land surface models (LSMs),
which simulate the water and energy balance over land. The major state vari-
ables of these models include the water content and temperature of soil moisture,
snow and vegetation. These variables are referred to as prognostic state variables.
Changes in these state variables account for fluxes, e.g., evapotranspiration, which
are referred to as diagnostic. Most LSMs are soil-vegetation-atmosphere transfer
(SVAT) models, where the vegetation is not a truly dynamic component. Recently,
coupling of hydrological or SVAT models with vegetation models has received
some attention, to serve more specific ecological, biochemical or agricultural
purposes.

Most LSMs used in GCMs view the soil column as the fundamental hydrological
unit, ignoring the role of, e.g., topography on spatially variable processes (Stieglitz
et al. 1997) to limit the complexity and computations for these coupled models.
During the last decades, LSMs were built with a higher degree of complexity in
order to better represent land surface atmosphere interactions within GCMs or to
meet the need for knowledge of the local state and processes in, for example, envi-
ronmental or agricultural management studies. This includes, e.g., the treatment of
more physiological processes, the improvement of the representation of subgrid het-
erogeneity and the development of distributed models. Ideally, an improved process
representation (system model structure) should result in parameters that are easier
to measure or estimate. However, a more complex process representation results in
more parameters to be estimated and several authors (Beven 1989; Duan et al. 1992)
have stated that LSMs are over-parametrized given the data typically available for
calibration.

Land surface models need to be tuned to the specific circumstances under study,
mainly to limit systematic prediction errors. Model calibration or parameter esti-
mation relies on observed data and can be defined as a specific type of data
assimilation. For large scale land surface modelling, full calibration is nearly impos-
sible. For example, the National Aeronautics and Space Administration (NASA)
Land Information System (LIS) allows large scale simulation of land processes
with a number of land surface models, which are typically fully parametrized and
forced with observation-based datasets. Some examples of widely used LSMs are
the Community Land Model (CLM), the Variable Infiltration Capacity Model (VIC),
the NOAH Model, the Catchment LSM, and the TOPLATS (TOPMODEL-based
Land Atmosphere Transfer Scheme) model.

4 History of Land Surface Data Assimilation

In earth sciences, Charney et al. (1969) first suggested combining current and past
data in an explicit dynamical model, using the model’s prognostic equations to
provide time continuity and dynamic coupling amongst the fields. This concept
has evolved into a family of techniques known as data assimilation (see chapter
Mathematical Concepts of Data Assimilation, Nichols). In essence, land surface
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data assimilation aims to utilize both our hydrological process knowledge as embod-
ied in a land surface model, and information that can be gained from observations.
Both model predictions and observations are imperfect and we wish to use both syn-
ergistically to obtain a more accurate result. Moreover, both contain different kinds
of information, that when used together, provide an accuracy level that cannot be
obtained when used individually.

For example, a hydrological model provides both spatial and temporal near-
surface and root zone soil moisture information at the model resolution, including
errors resulting from inadequate model physics, parameters and forcing data. On the
other hand, remote sensing observations contain near-surface soil moisture infor-
mation at an instant in time, but do not give the temporal variation or the root zone
moisture content. While the remote sensing observations can be used as initializa-
tion input for models or as independent evaluation, providing we use a hydrological
model that has been adapted to use remote sensing data as input, we can use
the hydrological model predictions and remote sensing observations together to
keep the simulation on track through data assimilation (Kostov and Jackson 1993).
Moreover, large errors in near-surface soil moisture content prediction are unavoid-
able because of its highly dynamic nature. Thus, when measured soil moisture data
are available, their use to constrain the simulated data should improve the overall
estimation of the soil moisture profile. However, this expectation is based on the
assumption that an update in the upper layer is well propagated to deeper layers.
This requires that the model correctly defines the relationship between the upper
layer soil moisture and the deeper profile soil moisture (Arya et al. 1983) and that
the error correlations between the soil moisture predictions in the upper layer and
those in deeper layers are well captured.

Data assimilation techniques were pioneered by meteorologists (Daley 1991)
and have been used very successfully to improve operational weather forecasts for
decades (see chapter Assimilation of Operational Data, Andersson and Thépaut).
Data assimilation has also been widely used in oceanography (Bennett 1992)
for improving ocean dynamics prediction (see chapter Ocean Data Assimilation,
Haines). However, hydrological data assimilation has just a small number of case
studies demonstrating its utility and has very distinct features, when compared to the
more chaotic atmospheric or oceanographic assimilation studies. Fortunately, we
have been able to develop hydrological data assimilation by building on knowledge
derived from the meteorological and oceanographic data assimilation experience,
with significant advancements being made over the past decade and an increased
interaction between the different earth science branches.

Progress in land surface data assimilation has been primarily limited by a lack
of suitable large-domain observations. With the advent of new satellite sensors and
technical advances, land surface data assimilation research directions are changing
(Margulis et al. 2006). Walker et al. (2003) gave a brief history of hydrologi-
cal data assimilation, focusing on the use and availability of remote sensing data,
and stated that this research field in hydrology is still in its “infancy”. Walker
and Houser (2005) gave an overview of hydrological data assimilation, discussing
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different data assimilation methods and several case studies in hydrology. van Loon
and Troch (2001) gave a review of data assimilation applications in hydrology
and added a discussion on the challenges facing future hydrological applications.
McLaughlin (1995) reviewed some developments in hydrological data assimila-
tion and McLaughlin (2002) transferred the options of interpolation, smoothing
and filtering for state estimation from the engineering sciences to hydrological
research.

Soil moisture and soil temperature have been the most studied variables for esti-
mation in land surface models, because of their well-known impact on weather
forecasts (Zhang and Frederiksen 2003; Koster et al. 2004) and climate predictions
(Dirmeyer 2000). Besides these variables, also snow mass and vegetation properties
have received attention. The land surface state variables are highly variable in all
three space dimensions. A complete and detailed assessment of these variables is,
consequently, a difficult task. Therefore, most studies have focused on data assim-
ilation in one or two dimensions (e.g. soil moisture profiles or single layer fields)
and/or relatively simple models.

4.1 Early Land Surface State Estimation Studies

The study by Jackson et al. (1981) was among the first to directly update soil
moisture predictions using near-surface soil moisture observations. In this appli-
cation, the soil moisture values in both layers of the United States Department
of Agriculture Hydrograph Laboratory model were substituted with observed
near-surface soil moisture observations as they became available. The model’s
performance improvement was evaluated by annual runoff values. Ottlé and Vidal-
Madjar (1994) used a similar approach but with the assimilation of thermal infrared
derived near-surface soil moisture content.

Another early study based on the direct insertion assimilation method was that
of Bernard et al. (1981). Here, synthetic observations of near-surface soil mois-
ture content were used to specify the surface boundary condition of a classical
one-dimensional soil water diffusion model, in order to estimate the surface flux.
They found that large soil moisture content variations resulting from rainy peri-
ods required special handling of the upper boundary condition. Prevot et al. (1984)
repeated this study with real observations and a similar approach was used by
Bruckler and Witono (1989). A more popular approach for the improved estimation
of land surface fluxes has been the assimilation of screen-level measurements of
relative humidity and temperature (Bouttier et al. 1993; Viterbo and Beljaars 1995).

The first known studies to use an “optimal” assimilation approach were those of
Milly (1986) and Milly and Kabala (1986). In the first study, a Kalman filter (a statis-
tical assimilation approach) was used to update a simple linear reservoir model with
near-surface soil moisture observations. In the second study, an integration of mod-
els and remote sensing temperature data using an Extended Kalman filter (EKF) was
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proposed. It was not until Entekhabi et al. (1994) that this approach was extended,
when synthetically-derived vertical and horizontal polarized passive microwave and
thermal infrared observations were assimilated into a one-dimensional soil moisture
and temperature diffusion model using the Kalman filter. This synthetic study was
further extended by Walker et al. (2001a, b). Since then, there has been a plethora
of one-dimensional Kalman filter and variational assimilation studies.

The use of the Kalman filter for larger scale and multi-dimensional applications
was early explored by Georgakakos and Baumer (1996), who used it to update a
hydrological basin model with two layers of soil moisture with near-surface basin-
integrated soil moisture measurements. Results showed that even when the surface
observations carried substantial measurement errors, estimation of soil moisture
profiles and total soil moisture storage was possible with an error that was smaller
than that achieved without the use of remotely sensed data. Houser et al. (1998)
was the first detailed study of several alternative assimilation approaches in a dis-
tributed model set-up, including direct insertion, statistical correction, Newtonian
nudging and optimal interpolation. Both the Newtonian nudging and optimal inter-
polation approaches, pathological cases of the Kalman filter, showed the greatest
improvement. Walker et al. (2002a) were among the first to use a three-dimensional
Kalman filter based assimilation in a small catchment distributed hydrological
model, while Reichle and McLaughlin (2001) were at the cutting edge with an
advanced four-dimensional “optimal” variational assimilation algorithm, which
included a radiative transfer model to directly include remotely sensed brightness
temperature.

4.2 Data Assimilation Beyond State Estimation

So far in our discussion, data assimilation was meant for state estimation, but we
stress that this term can be used for any use or assimilation of observational infor-
mation for model updating (WMO 1992). Basically, there are four methods for
“model updating”, depending on what factor is considered to be responsible for
the discrepancy between observed and modelled variables:

• Input updating: if model input is erroneous or incorrectly defined, then cor-
rections (e.g. through reanalysis) of the input can improve the model accuracy
(improvement of the input forcing);

• State updating: if the model suffers from deficiencies because of a bad state ini-
tialization then one could alter the state of the model so that it comes closer to
the observations (state estimation, data assimilation in the narrow sense);

• Parameter updating: if the model suffers from deficiencies because of an inef-
ficient parameter choice, one could change the parameters to better adjust the
models to the current information (parameter estimation, calibration);

• Error correction: sometimes, the model output should be corrected by an
integrated error term in order to approach the observations (e.g. bias correction).
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State updating can be justified by lack of knowledge about the initial conditions
for a model, but with unconstrained state updating, the logic of models is foregone,
while this is exactly the main strength of dynamic assimilation and modelling. If an
intensive update of the state is needed for good results, the model may simply not be
able to produce correct state or flux values. In such cases, assimilation for parameter
estimation is better advised. The static parameters obtained through off-line calibra-
tion, prior to the actual forecast simulations, may not always result in a proper model
definition, because of the state and time dependency of parameters or problems in
the model structure or input. Often the model validation residuals show the presence
of bias, variation in error (heteroscedasticity) and a correlation structure. Several
papers reported the use of filtering techniques for parameter estimation (e.g. Katul
et al. 1993; Chen and Zhang 2006). Likely, a combined state and parameter estima-
tion (Thiemann et al. 2001) opens most perspectives for good model simulations.
Two options can be considered for such an approach: (i) joint estimation of state
and parameters, where the state vector is augmented with a parameter vector (Bras
and Rodriguez-Iturbe 1985; Evensen 2003), or the objective function for parame-
ter optimization is extended for state estimation (De Lannoy et al. 2006); and (ii)
dual estimation, using two interactive filters or optimization procedures (Hebson
and Wood 1985; Moradkhani et al. 2005; Gove and Hollinger 2006; Vrugt et al.
2006). The chapter Inverse Modelling and Combined State-Source Estimation for
Chemical Weather (Elbern et al.) discusses these ideas in the context of chemical
data assimilation.

Another option is to estimate the forecast bias, as an integrated value for all errors
in the parameters, the forcings and the model structure along with the state esti-
mation, as originally presented by Friedland (1969) and Dee and da Silva (1998).
Among the first studies on forecast bias estimation in land surface models were
Bosilovich et al. (2007) for skin temperature assimilation and De Lannoy et al.
(2007a, b) for soil moisture data assimilation.

In the remainder of this chapter, we mainly limit data assimilation to state
estimation.

5 General Concept of Land Surface Data Assimilation

The data assimilation challenge is: given a (noisy) model of the system dynamics,
find the best estimates of system states x̂ from (noisy) observations y. Most current
approaches to this problem are derived from either the direct observer (i.e., sequen-
tial filter) or dynamic observer (i.e., variational through time) techniques. Figure 2
illustrates schematically the key differences between these two approaches to data
assimilation. To help the reader through the large amount of jargon typically asso-
ciated with data assimilation, a list of terminology has been provided (Table 2).
We adopt the convention of lowercase bold symbols for vectors and uppercase bold
symbols for matrices. Non-linear operators are in bold Kunstler script; their lin-
earization is represented as for a matrix. This section complements material in the
chapters in Part I, Theory.
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Fig. 2 Schematic of the (a) direct observer and (b) dynamic observer assimilation approaches

Table 2 Commonly used data assimilation terminology

State Condition of a physical system, e.g. soil moisture
State error Deviation of the estimated state from the truth
Prognostic A model state required to propagate the model forward in time
Diagnostic A model state/flux diagnosed from the prognostic states – not

required to propagate the model
Observation Measurement of a model diagnostic or prognostic
Covariance matrix Describes the uncertainty in terms of standard deviations and

correlations
Prediction Model estimate of states
Update Correction to a model prediction using observations
Background Forecast, prediction or state estimate prior to an update
Analysis State estimate after an update
Innovation Observation-minus-prediction, a priori residual
Gain matrix Correction factor applied to the innovation
Tangent linear model Linearized (using Taylor’s series expansion) version of a non-linear

model
Adjoint Operator allowing the model to be run backwards in time

5.1 Direct Observer Assimilation

The direct observer techniques sequentially update the model forecast x̂b
k (a priori

simulation result), using the difference between observation yk and model predicted
observation ŷk, known as the “innovation”, whenever observations are available.
The predicted observation is calculated from the model predicted or “background”
states, indicated by the superscript b. The correction, or analysis increment, added
to the background state vector is the innovation multiplied by a weighting factor
or gain K. The resulting estimate of the state vector is known as the “analysis”, as
indicated by the superscript a.

x̂a
k = x̂b

k +Kk
(
yk − ŷk

)
(1)

The subscript k refers to the time of the update. For particular assimilation tech-
niques, like the Kalman filter, the gain represents the relative uncertainty in the
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observation and model variances, and is a number between 0 and 1 in the scalar
case. If the uncertainty of the predicted observation (as calculated from the back-
ground states and their uncertainty) is large relative to the uncertainty of the actual
observation, then the analysis state vector takes on values that will closely yield
the actual observation. Conversely, if the uncertainty of the predicted observation
is small relative to the uncertainty of the actual observation, then the analysis state
vector is unchanged from the original background value. The commonly used direct
observer methods are: (i) direct insertion; (ii) statistical sorrection; (iii) successive
correction; (iv) analysis correction; (v) nudging; (vi) optimal interpolation/statistical
interpolation; (vii) 3-D variational, 3D-Var; and (viii) Kalman filter and variants.

While approaches like direct insertion, nudging and optimal interpolation are
computationally efficient and easy to implement, the updates do not account for
observation uncertainty or utilize system dynamics in estimating model background
state uncertainty, and information on estimation uncertainty is limited. The Kalman
filter, while computationally demanding in its pure form, can be adapted for near-
real-time application and provides information on estimation uncertainty. However,
it has only limited capability to deal with different types of model errors, and nec-
essary linearization approximations can lead to unstable solutions. The Ensemble
Kalman filter (EnKF), while it can be computationally demanding (depending on the
size of the ensemble) is well suited for near-real-time applications without any need
for linearization, is robust, very flexible and easy to use, and is able to accommodate
a wide range of model error descriptions.

5.2 Dynamic Observer Assimilation

The dynamic observer techniques find the best fit between the forecast model state
and the observations, subject to the initial state vector uncertainty Pb

0 and obser-
vation uncertainty R, by minimizing over space and time an objective or penalty
function J, including a background and observation penalty term, such as

J(x0) = 1/
2

(
x0 − x̂b

0

)T
Pb−1

0

(
x0 − x̂b

0

)
+1/

2

N−1∑
k=0

(
yk − y0

k

)T
R−1

k

(
yk − y0

k

)
, (2)

where the superscript b refers to the initial or “background” estimate of the state
vector, the subscript k refers to time, N is the number of time steps, and T denotes
the transpose. The term y0

k in the observation penalty is based on the result of
propagating the state guess x0 to future time steps: for a particular estimated state
realization x̂a

0, y0
k becomes ŷk. To minimize the objective function over time, an

assimilation time “window” is defined and an “adjoint” model is typically used to
find the derivatives of the objective function with respect to the initial model state
vector x0. The adjoint is a mathematical operator that allows one to determine the
sensitivity of the objective function to changes in the solution of the state equa-
tions by a single forward and backward pass over the assimilation window. While
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an adjoint is not strictly required (i.e., a number of forward passes can be used
to numerically approximate the objective function derivatives with respect to each
state), it makes the problem computationally tractable. The dynamic observer tech-
niques can be considered simply as an optimization or calibration problem, where
the state vector – not the model parameters – at the beginning of each assimilation
window is “calibrated” to the observations over that time period.

The dynamic observer techniques can be formulated with: (i) strong constraint
(variational); (ii) weak constraint (dual variational or representer methods). Strong
constraint is where the model is assumed perfect, as in Eq. (2), while weak constraint
is where errors in the model formulation are taken into account as process noise.
This is achieved by including an additional term in Eq. (2) so that

J(x0) = 1/
2

(
x0 − x̂b

0

)T
Pb−1

0

(
x0 − x̂b

0

)

+1/
2

N−1∑
k=0

(
yk − y0

k

)T
R−1

k

(
yk − y0

k

)+ 1/
2

N−1∑
k=0

ηT
k Q−1

k ηk

, (3)

where η is the model error vector and Q is the model error covariance matrix.
Dynamic observer methods are well suited for smoothing problems, but pro-

vide information on estimation accuracy only at considerable computational cost.
Moreover, adjoints are not available for many existing hydrological models, and the
development of robust adjoint models is difficult due to the non-linear nature of
hydrological processes.

5.3 Features of Data Assimilation

The potential benefit of data assimilation for hydrological science is tremendous and
can be summarized as follows (adapted from Rood et al. 1994). Data assimilation:

• Organizes the data by objectively interpolating information from the obser-
vation space to the model space. The raw observations are organized and
given dynamical consistency with the model equations, thereby enhancing their
usefulness;

• Supplements the data by constraining the model’s physical equations with par-
simonious observations, which can be used to estimate unobserved quantities.
This allows the progress of research that would be impossible without assimila-
tion, because it allows for a more complete understanding of the true state of a
hydrological system (see Fig. 3a);

• Complements the data by propagating information into regions of sparse obser-
vations using either observed spatial and temporal correlations, or the physical
relationships included in the model (see Fig. 3b);

• Quality controls the data through comparison of observations with previous fore-
casts to identify and eliminate spurious data. By performing this comparison
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Fig. 3 Example of how data assimilation supplements data and complements observations: (a)
Numerical experiment results demonstrating how near-surface soil moisture measurements are
used to retrieve the unobserved root zone soil moisture state using (left panel) direct inser-
tion and (right panel) a statistical assimilation approach (Walker et al. 2001a); (b) Six Push
Broom Microwave Radiometer (PBMR) images gathered over the USDA-ARS Walnut Gulch
Experimental Watershed in Arizona were assimilated into the TOPLATS hydrological model using
several alternative assimilation procedures (Houser et al. 1998). The observations were found to
contain horizontal correlations with length scales of several tens of km, thus allowing soil moisture
information to be advected beyond the area of the observations

repeatedly, it is possible to calibrate observing systems and identify biases or
changes in observation system performance;

• Validates and improves the hydrological models by continuous model confronta-
tion with real data. This helps to identify model weaknesses, such as systematic
errors, and correct them.

5.4 Quality Control for Data Assimilation

One of the major components of any data assimilation system is quality control of
the input data stream. Quality control is a pre-assimilation rejection or correction of
questionable or bad observations, which begins where the remote sensing product
quality control activities end. The observational data from remote sensing systems
contain errors that can be classified into two types:

• Natural error (including instrument and representativeness error);
• Gross error (including improperly calibrated instruments, incorrect registration

or coding of observations, and telecommunication error).

These errors can be either random or spatially and/or temporally correlated with
each other; inversion techniques and instrument biases can be correlated in time and



562 P.R. Houser et al.

space, and calibrations of remote sensing instruments can drift. To address these
problems a number of quality control operations are performed.

The quality control process consists of a set of algorithms which examine each
data item, individually or jointly, in the context of additional information. Their
primary purpose is to determine which of the data are likely to contain unknown
(incorrigible) gross errors, and which are not. Quality control proceeds in a three
step process: (i) test for potential problem observations; (ii) attempt to correct the
problem observation; and (iii) decide the fate of the observation (data rejection).
The quality control algorithms can be categorized as follows:

• Quality control flags are used to check the data for inconsistencies noted during
the measurement, transmission, pre/post processing and archiving stages;

• Consistency or sanity checks see if the observation absolute value or time rate
of change is physically realistic. This check filters such things as observations
outside the expected range, unit conversion problems, etc.;

• Buddy checks compare the observation with comparable nearby (space and time)
observations of the same type and reject the questioned observation if it exceeds
a predefined level of difference;

• Background checks examine if the observation is changing similarly to the model
prediction. If it is not, and the user has some reasonable confidence in the model,
the observation may be questioned.

5.5 Validation Using Data Assimilation

The continuous confrontation of model predictions with observations in a data
assimilation system presents a rich opportunity to better understand physical pro-
cesses and observational quality in a structured, iterative, and open-ended learning
process. Inconsistencies between observations and predictions are easily identified
in a data assimilation system, providing a basis for observational quality control and
validation. Systematic differences between observations and model predictions can
identify systematic errors. This methodology clearly illustrates the importance of a
good quality forecast and an analysis that is reasonably faithful to the observations.
If the hydrological model makes reasonably good predictions, then the analysis must
only make small changes to an accurate background field.

The validation of observations in a data assimilation system is centred on:
(i) comparisons of new observations with the model forecast and the data assim-
ilation analysis; and (ii) interpretation of the forecast error covariances. The data
assimilation validation algorithms can be categorized as follows:

• Innovation evaluation compares the observation with the model prediction as
either a single point in time or change over time; large or obvious deviations from
the model prediction are likely wrong. Means, standard deviations, and time evo-
lution of observed minus predicted fields are examined with the goal of detecting
abrupt changes. This allows the estimation of forecast and/or observation bias;



Land Surface Data Assimilation 563

• Analysis residual evaluation compares the observation with the data assimila-
tion analysis. Examination of the means, standard deviations, and time evolution
of observed minus predicted fields will help to diagnose systematic or abrupt
observation system changes. This technique is useful to diagnose the perfor-
mance of the analysis, and test if the observations are being used effectively
(Hollingsworth and Lönnberg 1989). Filter optimization can be achieved through
adaptive filtering, using residual information;

• Observation withholding is a stringent method for validation in an assimilation
system where some of the observational data are withheld from the analysis pro-
cedure in data-dense regions. This allows the analysis to be validated against the
withheld observations;

• Error propagation is undertaken and changes in the regional distribution or
absolute value of these errors could indicate observational problems;

• Model and observation bias is generally assumed to be zero and uncorrelated
in space. These assumptions work reasonably well for in situ observations, but
satellite observations are usually biased by inaccurate algorithms, and their errors
are usually horizontally correlated because the same sensor is making all the
observations. With recent work by Dee and Todling (2000) the bias of the model
and observations can be continuously estimated and corrected for. Evaluation of
these bias estimates in space and time may lead to additional insights on the
observational characteristics.

6 Land Surface Data Assimilation Techniques

The text in Sect. 6 complements that in several chapters in Part I, Theory.

6.1 Land Surface System

Land surface hydrology process models are typically non-linear, and can be consid-
ered to forecast the system state vector x at time k+1 as a function of the system state
vector estimate at the previous time step k and a forcing vector u. The model state
forecast is subject to a model error vector η, which represents errors in the model
forcing data, initial conditions, parameters and physics. As a result the state is a
random variable and cannot be calculated as a classical solution of the deterministic
system equations. The state propagation equation is given by

xk+1 =Mk (xk, uk)+ ηk, (4)

Where M is a non-linear operator and η is assumed additive for simplicity. This
equation can be linearized to obtain the “tangent linear model” as

xk+1 = Mkxk + Bkuk + ηk. (5)
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with M and B the linear state transition matrix and the linear matrix relating the
input to the state. The state space equation is subject to the initial state vector

x̂0 = x0 + δ0, (6)

which is an approximation of the truth x and an error vector δ at time step
k = 0. All subsequent forecasts x̂b

k+1 (predictions, background information for data
assimilation) are estimated through the model propagation by:

x̂b
k+1 =Mk

(
x̂a

k , uk
)
, (7)

with x̂a
k the analysis state obtained through data assimilation at the previous time

step, or, if the analysis is unavailable, then x̂a
k is replaced by the best a priori estimate

(prediction) x̂b
k at the previous time step.

Often the state variables are not measured directly, but some other related output
from the system is observed. The observation equation is given by

yk = Hk (xk)+ εk, (8)

where H is a non-linear operator which relates the system state to the output obser-
vation, y is the actual observation and ε is an error vector (assumed additive for
simplicity). This equation can also be linearized as

yk = Hkxk + εk. (9)

The observation predictions ŷk are a transformation of the model forecasts to the
observation space:

ŷk = Hk(x̂b
k). (10)

A typical observation system in hydrological applications is the transformation Hk

of land surface model state variables (x̂b
k , e.g., soil moisture) to the actual values

measured by satellites (ŷk, e.g., brightness temperature), based on radiative transfer
theory.

Data assimilation aims at using the difference between the observation pre-
dictions ŷk and the actual observations yk to update the model state. Several
assimilation techniques explicitly take into account information on the error charac-
terization. The key assumptions of the linear optimal assimilation approaches that
will be discussed in this chapter, are that the error terms η, δ0 and ε are uncorrelated
(white) through time and have zero mean Gaussian distributions as represented by
their covariance matrices Q, P0

b and R, respectively. That is

E
(
ηk

) = 0 E
(
ηkη

T
k

) = Qk

E (δ0) = 0 E
(
δ0δ

T
0

) = Pb
0

E (εk) = 0 E
(
εkε

T
k

) = Rk

(11)
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where E(.) is the expectation operator. The assumption that observational and model
errors are unbiased relative to each other and the “truth” is the most restrictive
assumption, the most commonly violated assumption, and the most detrimental
assumption in terms of predictive performance.

6.2 Direct Observer Data Assimilation

One key question in the direct observer data assimilation technique, and the funda-
mental difference between the various methods, is the choice of the gain matrix K
in equation

x̂a
k = x̂b

k +Kk
(
yk − ŷk

)
(12)

Ultimately Kk should be chosen such that x̂a
k approaches the expectation of xk,

as k approaches infinity (as an approximation of the theoretical ensemble mean of
the stochastic process). Under the assumption of perfect knowledge of the error
characteristics and for linear systems, this can be achieved by choosing K as the
optimal least squares estimator or Best Linear Unbiased Estimate (BLUE) analysis
as used for the Kalman gain in the linear Kalman filter (see below). The optimal
gain can be shown analytically to be (Jazwinski 1970; Maybeck 1979)

Kk = Pb
kHT

k

(
HkPb

kHT
k + Rk

)−1
, (13)

where HkPb
kHT

k = R̂k is the error covariance matrix of the predicted observation ŷk.
However, approximations to the optimal filter equations and/or alternative method-
ologies of solving the key equations have been sought to limit some difficulties in
the practical numerical approximation of this optimal solution.

Direct insertion: One of the earliest and most simplistic approaches to data assim-
ilation is direct insertion. As the name suggests, the forecast model states are directly
replaced with the observations by assuming that K = I, the unity matrix. This
approach makes the explicit assumption that the model is wrong (has no useful
information) and that the observations are right, which both disregards important
information provided by the model and preserves observational errors. The risk of
this approach is that unbalanced state estimates may result, which causes model
shocks: the model will attempt to restore the dynamic balance that would have
existed without insertion. A further key disadvantage of this approach is that model
physics are solely relied upon to propagate the information to unobserved parts of
the system (Houser et al. 1998; Walker et al. 2001a).

Statistical correction: A derivative of the direct insertion approach is the statis-
tical correction approach, which adjusts the mean and variance of the model states
to match those of the observations. This approach assumes the model pattern is cor-
rect but contains a non-uniform bias. First, the predicted observations are scaled by
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the ratio of observational field standard deviation to predicted field standard devi-
ation. Second, the scaled predicted observational field is given a block shift by the
difference between the means of the predicted observational field and the observa-
tional field (Houser et al. 1998). This approach also relies upon the model physics
to propagate the information to unobserved parts of the system.

Successive correction: The successive corrections method (SCM) was developed
by Bergthorsson and Döös (1955) and Cressman (1959), and is also known as obser-
vation nudging. The scheme begins with an a priori state estimate (background field)
for an individual (scalar) variable x̂b

k ∈ x̂b
k , which is successively adjusted by nearby

observations in a series of scans (iterations, n) through the data. The analysis at time
step k is found by passing through the following sequence of updates:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂a,0
k = x̂b

k

x̂a,1
k = x̂a,0

k +k1T

k (yi −Hk(x̂a,0
k ))

...

x̂a,n
k = x̂a,n−1

k +knT

k (yi −Hk(x̂a,n−1
k ))

(14)

with Hk(x̂a,n
k ) the value of the state estimate at the nth iteration, evaluated at all

observation points (Hk is the non-linear interpolation operator), yi the vector of all
observations within a predefined influence radius Rn

k and kn
k is a vector of weights

for all observations within the predefined radius of influence. The elements kn
j, k ∈ kn

k
(j = 1,. . ., m for all observations) are given by:

kn
j, k =

cn
j,k

q2 +
m∑

j=1
cn

j,k

(15)

with q an estimate of the ratio of the observation error to the background error
covariance, cn

j,k any sort of weights. Different weighting functions could be pro-
posed, but for the Cressman scheme, the observations are assumed to be perfect
(q2 = 0) and the weights are given by:

cn
j,k =

⎧⎨
⎩

Rn2
k −d2

j

Rn2
k +d2

j

dj < Rn
k

0 dj ≥ Rn
k

(16)

with Rn
k the radius of influence, which is mostly shrinking for successive iterations

n, so that the field is corrected to larger scale features during the first iterations, and
conforms to smaller scale features during later iterations; dj is the distance between
the jth observation point and the grid point for the analysis.

For the estimation of the complete state vector x̂a
k (i.e., multiple grid points), the

equation would be as follows for each iteration n:
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x̂a,n
k = x̂a,n−1

k +Kn−1
k

(
yk − ŷk

) = x̂a.n−1
k +Kn−1

k

(
yk −Hk(x̂a,n−1

k )
)

, (17)

with K a matrix containing an empirically derived weighting, that takes into account
the spatial distribution of observations.

The advantage of this method lies in its simplicity. However, in case of obser-
vational error or different sources (and accuracies) of observations, this scheme is
not a good option for assimilation, since information on the observational accuracy
is not accounted for. Mostly, this approach assumes that the observations are more
accurate than model forecasts, with the observations fitted as closely as is consis-
tent. Furthermore, the radii of influence are user-defined and should be determined
by trial and error or more sophisticated methods that reduce the advantage of its sim-
plicity. The weighting functions are empirically chosen and are not derived based
on physical or statistical properties. Obviously, this method is not effective in data
sparse regions. Some practical examples are discussed by Bratseth (1986) and Daley
(1991).

Analysis correction: This is a modification to the successive correction approach
that is applied consecutively to each observation s from 1 to sf as in Lorenc et al.
(1991). In practice, the observation update is mostly neglected and further assump-
tions make the update equation equivalent to that for optimal interpolation (Nichols
2001).

Nudging: Nudging or Newtonian relaxation consists of adding a term to the prog-
nostic model equations that causes the solution to be gradually relaxed towards
the observations. Nudging is very similar to the successive corrections technique
and only differs in the fact that through the numerical model the time dimension
is included. Two distinct approaches have been developed (Stauffer and Seaman
1990). In analysis nudging, the nudging term for a given variable is proportional to
the difference between the model simulation at a given grid point and an “analysis”
of observations (i.e., processed observations) calculated at the corresponding grid
point. For observation nudging, the difference between the model simulation and
the observed state is calculated at the observation locations.

The nudging approach approximates the gain matrix by the empirical function

K ≈ G
(
WT�W

)
(WI)−1 , (18)

where G is a nudging factor that gives the magnitude of the nudging term and has
a value from 0 to 1, # is an observational quality factor with a value from 0 to 1,
I is the identity matrix and W is a temporal and spatial weighting function, also
with a value from 0 to 1. The function W is given by wxywzwt, where wx y is a
horizontal weighting function (i.e., Cressman), wz is a similar vertical weighting
function, and wt is a temporal weighting function. Each of these temporal/spatial
weighting functions has a value from 0 to 1.

Optimal interpolation: The optimal interpolation (OI) approach, sometimes
referred to as statistical interpolation, approximates the “optimal” solution from
Eq. (12) by choosing
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Kk = P′bHT
k

(
HkP′bHT

k + Rk

)−1
(19)

where P′b is an approximated background covariance matrix, often with a “fixed”
structure for all time steps, given by prescribed variances and a correlation function
determined only by distance (Lorenc 1981). Sometimes, the variances are allowed
to evolve in time, while keeping the correlation structure time-invariant.

3-D Var: 3D-variational assimilation directly solves the iterative minimization
problem given by Eqs. (2) or (3) for N = 1 (Parrish and Derber 1992). The same
approximation for the background covariance matrix as in the optimal interpolation
approach is typically used.

Kalman filter: The optimal analysis state estimate x̂a
k for linear or linearized

systems (Kalman or Extended Kalman filter, EKF) can be found through a lin-
ear update equation with a Kalman gain that aims at minimizing the analysis error
(co)variance of the analysis state estimate (Kalman 1960). As indicated earlier, the
optimal gain can be shown analytically to be

Kk = Pb
kHT

k

(
HkPb

kHT
k + Rk

)−1
, (20)

The updated (analysis) state uncertainty (analysis error covariance) is given by:

Pa
k = (I−KkHk)Pb (I−KkHk)

T +KkRkKT
k , (21)

which reduces to

Pa
k = (I−KkHk)Pb

k , (22)

if, and only if, the optimal Kalman gain is used.
The essential feature which distinguishes the family of Kalman filter approaches

from more static techniques, like optimal interpolation, is the dynamic updating of
the forecast (background) error covariance through time. In the traditional Kalman
filter (KF) approach this is achieved by application of standard error propagation
theory, using the (tangent) linear model in Eq. (5). (The only difference between the
Kalman filter and the Extended Kalman filter is that the forecast model is linearized
using a Taylor series expansion in the latter; the same forecast and update equations
are used for each approach.). The state covariance forecast equation is

Pb
k+1 = MkPb

kMT
k +Qk, (23)

where Mk is the linear operator from Eq. (5) and Q is the model error covariance
matrix given in Eq. (11). Thus, the (Extended) Kalman filter requires propagation of
the state covariances along with the states, which might be computationally expen-
sive and approximative, because of the system linearization. While the approach
gives an optimal analysis for the assumed statistics – see Eq. (11), the initial state
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error covariance matrix P0 and, more seriously, the model error covariance matrix
Q are difficult to define, and often assumed ad hoc.

Equations (1), (7), (10), (12), and (21) form the basis of the Kalman filter
approach (Kalman 1960) to data assimilation. On the assimilation time interval
k∈ [0, N], the analysis x̂a

k given by the Kalman filter should be equal to the converged
solution obtained by the variational adjoint method at time k = N.

The standard Extended Kalman filter update and state covariance forecast
equations can be applied directly with a non-linear state forecast model after lin-
earization. This is achieved by numerically approximating the Jacobians M and H
at each time step k as required by

Mk =

⎡
⎢⎢⎢⎢⎣

∂M1

∂x1
· · · ∂M1

∂xn
...

. . .
...

∂Mn

∂x1
· · · ∂Mn

∂xn

⎤
⎥⎥⎥⎥⎦

(x̂b
k ,uk ,wk=0)

≈ ∂ x̂b
k+1

∂ x̂b
k

and (24a)

Hk =

⎡
⎢⎢⎢⎢⎣

∂H1

∂x1
· · · ∂H1

∂xn
...

. . .
...

∂Hn

∂x1
· · · ∂Hn

∂xn

⎤
⎥⎥⎥⎥⎦

(x̂b
k ,vk=0)

≈ ∂ ŷk

∂ x̂b
k

. (24b)

However, the cost of doing this is n+1 times the standard model run time, where n
is the number of state variables to be updated by the assimilation. Note that only
states with significant correlation to the observation need be included in the state
covariance forecast and update (Walker and Houser 2001). Walker et al. (2001b)
avoided the Taylor expansion linearization by adopting a Crank-Nicholson scheme
to represent the state propagation.

A further approach to estimating the state covariance matrix is the Ensemble
Kalman filter (EnKF). As the name suggests, the covariances are calculated from
an ensemble of state forecasts using the Monte Carlo approach rather than a sin-
gle discrete forecast of covariances. In this case, N ensemble members of model

predicted states x̂b
k (each containing n state variables) are stored as X̂

b
k using differ-

ent initial conditions and forcing (Turner et al. 2007), different parameters and/or
models, different model error (e.g. additive/multiplicative), etc., in order to get a
representative spread of state forecasts amongst the ensemble members. While this
is quite straightforward, the question of what model error η to apply, and how, is still
a major unknown. Moreover, special care is required when the number of ensembles
N is less than the number of observations m.

Using this approach, the background state covariance matrix is calculated as

Pb
k =

(
X̂

b
k − ¯̂Xb

k

) (
X̂

b
k − ¯̂Xb

k

)T

N − 1
. (25)
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where ¯̂Xb
k is a matrix with all identical columns of ensemble mean state estimates.

This could then be used in Eq. (12) directly, except some mathematical techniques
are typically used so only matrices of size (n × m) are required (Evensen 1994;
Houtekamer and Mitchell 1998). Thus, Pb is never calculated explicitly. Here the
analysis equation for each member j is presented as

x̂a
j,k = x̂b

j,k + BT
k bj,k, (26)

where

BT
k = Pb

kHT
k (27a)

bj,k =
(

HkPb
kHT

k + Rk

)−1 (
yk − ŷj,k

)
. (27b)

By rearranging Eq. (27a) and introducing a zero mean random observation error
term εk with covariance matrix R for the solution of each ensemble member j (to
assure sufficient spread), b is solved for each ensemble from

(
HkPb

kHT
k + Rk

)
bj,k =

(
yk + εj,k − ŷj,k

)
, (28)

where

HkPb
kHT

k =
qkqT

k

N − 1
(29)

and

qk = Hk

(
X̂

b
k − ¯̂Xb

k

)
=

(
Ŷk − ¯̂Yk

)
. (30)

The matrix Ŷk contains the predicted observation vector for each of the respective
ensemble members. In this case it is not necessary to solve for H either, and the
updates are made individually to each of the ensemble members. Finally, B can be
estimated from

BT
k =

(
X̂

b
k − ¯̂Xb

k

)

N − 1
qT

k . (31)

Reichle et al. (2002b) applied the Ensemble Kalman filter to the soil moisture
estimation problem and found it to perform as well as the numerical Jacobian
approximation approach to the Extended Kalman filter, with the distinct advan-
tage that the error covariance propagation is better behaved in the presence of large
model non-linearities. This was the case even when using only the same number
of ensembles as required by the numerical approach to the Extended Kalman filter,
i.e., n+1.
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6.3 Dynamic Observer Assimilation Methods

4D-Var: In its pure form, the 4-D (3-D in space, 1-D in time) “variational”
(otherwise known as Gauss-Markov) dynamic observer assimilation methods use an
adjoint to efficiently compute the derivatives of the objective function J with respect
to each of the initial state vector values x0 (see the chapter Variational Assimilation,
Talagrand). This adjoint approach is derived by defining the Lagrangian functional
L as the adjoining of the model to the cost function J – Eq. (3), using Lagrange
multipliers λ

L = J +
N−1∑
k=0

λT
k+1

[
xk+1 −Mk (xk, uk)

]
, (32)

where ideally the second term is zero; this term guides the state estimates within
the range specified by the model dynamics. Thus the Lagrange multiplier is chosen
such that �L = 0 and λN = 0, yielding (i.e., backward pass)

λk = MT
k λk+1 −HT

k R−1
k

(
yk − ŷk

)
. (33)

The derivative of the objective function is given from the Lagrange multiplier
at time zero by −λT

0 (Castelli et al. 1999; Reichle and McLaughlin 2001; Reichle
et al. 2001). Note that MT, the adjoint operator, is derived from the tangent lin-
ear model in Eq. (5), and effectively needs to be saved during the forward pass
(Bouttier and Courtier 1999). Solution to the variational problem is then achieved
by minimization and iteration. In practical applications the number of iterations is
usually constrained to a small number. While “adjoint compilers” are available (see
http://www.autodiff.com/tamc/) for automatic conversion of the non-linear forecast
model into a tangent linear model, application of these is not straightforward. It is
best to derive the adjoint at the same time as the model is developed.

Given a model integration with finite time interval, and assuming a perfect model,
4D-Var and the Kalman filter yield the same result at the end of the assimilation time
interval. Inside the time interval, 4D-Var is more optimal, because it uses all obser-
vations at once (before and after the time step of analysis), i.e., it is a smoother.
A disadvantage of sequential methods is the discontinuity in the corrections, which
causes model shocks. Through variational methods, there is a larger potential for
dynamically based balanced analyses, which will always be situated within the
model climatology. Operational 4D-Var assumes a perfect model: no model error
can be included. With the inclusion of model error, coupled equations are to be
solved for minimization. Through Kalman filtering it is in general simpler to account
for model error.

Both the Kalman filter and 3D/4D-Var rely on the validity of the linearity
assumption. Adjoints depend on this assumption and incremental 4D-Var is even
more sensitive to linearity. Uncertainty estimates via the Hessian are critically
dependent on a valid linearization. Furthermore, with variational assimilation it is
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more difficult to obtain an estimate of the quality of the analysis or of the state’s
uncertainty after updating.

In the framework of estimation theory, the goal of variational assimilation is the
estimation of the conditional mode (maximum a posteriori probability) estimate,
while for the Kalman filter the conditional mean (minimum variance) estimate is
sought.

Hybrid assimilation methods have been explored in which a sequential method is
used to produce the a priori state error or background error covariance for variational
assimilation.

6.4 Challenges in Land Surface Data Assimilation

In order for the “optimal” assimilation techniques to be truly optimal, the error
characterization should be almost flawless. Therefore, recent studies have focused
on the first and second order error characterization in land surface modelling.
Typically, either model predictions or observations are biased. Studies by Reichle
and Koster (2004), Bosilovich et al. (2007) and De Lannoy et al. (2007a, b)
scratch the surface of how to deal with these biases in land surface modelling. The
second order error characterization is of major importance to optimize the anal-
ysis result and for the propagation of information through the system. Tuning of
the error covariance matrices has, therefore, gained attention with the exploration
of adaptive filters in land surface modelling (Reichle et al. 2008; De Lannoy et al.
2009).

Furthermore, it is important to understand that land surface data assimilation
applications are dealing with non-closure or imbalance problems, caused by exter-
nal data assimilation for state estimation. In a first attempt to attack this problem,
Pan and Wood (2006) developed a constrained Ensemble Kalman filter which opti-
mally redistributes any imbalance after conventional filtering. They applied this
technique over a 75,000 km2 domain in the US, using the terrestrial water balance
as constraint.

7 Assimilation of Land Surface Observations

Estimation of the land surface state has mainly been focused on the soil and snow
water content and temperature. The observations used to infer state information
range from direct field measurements of these quantities to more indirectly related
measurements like radiances or backscatter values in remote sensing products. A
few studies have also tried to assimilate state-dependent diagnostic fluxes, like dis-
charge or remotely sensed heat fluxes. The success of assimilation of observations
which are indirectly related to the state is largely dependent on a good characteriza-
tion of the observation operator, H(.). This section refers to terminology discussed
in the chapter Mathematical Aspects of Data Assimilation (Nichols).
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7.1 Soil Moisture Observations

7.1.1 Direct Insertion

At the point scale, Heathman et al. (2003) directly inserted daily gravimetric ground
measurements of surface soil moisture (0–5 cm) as a surrogate for remote sens-
ing data to estimate the profile water content (0–60 cm) at four locations in a large
watershed. Four soil layers were modelled of 15 cm each and an additional fifth
layer was a top 5 cm layer. The results were compared to time domain reflectometer
(TDR) measurements. They found no significant improvement in soil water esti-
mates below 30 cm depth. They also stated that daily observations were needed for
good results.

Montaldo et al. (2001) presented an operational assimilation framework for
crudely assimilating surface soil moisture measurements in a simple SVAT model:
biases between observed and modelled time rates of change of surface soil mois-
ture were used to quantify biases between modelled and actual root-zone-average
soil moisture contents. They tested the framework for misspecification of a param-
eter, the saturated hydraulic conductivity, and for uncertain initial conditions, and
found improvements through assimilation. The assimilation frequency was found
to be of limited importance: infrequent corrections were reported to be sustained
by the internal model dynamics. It should be noted that data assimilation intervals
of 3–120 h only were considered. In a subsequent study, Montaldo and Albertson
(2003) recognized that large errors in the saturated hydraulic conductivity resulted
in persistent bias in the predictions and proposed a multi-scale (in time) assimila-
tion system in which the root zone soil moisture was updated at the observation
time scale and the parameter was adjusted at a coarser time-scale, since it would be
questionable to adapt parameters as frequent as observations would be available.

At a coarser scale, Li and Islam (1999) assimilated gravimetric measurements
of soil moisture as a surrogate for remote sensing data through daily hard-updating
over a single unit region in a four-layer model. They used site-averaged data over
an area of 15 × 15 km2. They focused on the role of surface soil moisture assimila-
tion in the partitioning of fluxes and found that assimilation of surface soil moisture
had a positive impact, under the assumption of zero error in the observations and
forcings. For deeper layers the improvement in profile predictions decreased. They
speculated that in the presence of commonly encountered random measurement
errors, daily assimilation of microwave measurements of soil moisture would not
improve the profile estimate and the partitioning of the fluxes. They studied three
different frequencies of assimilation: 12, 24 and 48 h and found a limited sensitivity
to the data assimilation frequency, with slightly better results for more intensive data
assimilation.

7.1.2 Statistical Correction, Nudging, Optimal Interpolation

Houser et al. (1998) compared different assimilation strategies with TOPLATS,
using off-line inverted remotely sensed microwave observations in a distributed
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model set-up. They found that Newtonian nudging assimilation was preferable to
statistical corrections assimilation and optimal interpolation. Pauwels et al. (2001)
assimilated real ERS images in TOPLATS to assess the impact on discharge pre-
dictions. Through comparison of results from a nudging and a statistical correction
technique in both a lumped and a distributed model version, they found that assim-
ilating the statistics (spatial mean and variance) of remote sensing data in lumped
models sufficed to improve discharge predictions. Paniconi et al. (2003) used the
Newtonian nudging technique in a pure synthetical study over an idealized artificial
study area to assimilate surface soil moisture in a 3-D Richards equation-based dis-
tributed model. They stated that four-dimensional weighting functions used in the
nudging approach provide a simple way to incorporate knowledge on characteristic
length scales and spatio-temporal variability of the state variables. Hurkmans et al.
(2006) tested the sensitivity of this dynamical relaxation technique for the different
nudging parameters.

7.1.3 Kalman Filter

Point profile estimation: Entekhabi et al. (1994) were among the pioneers to estimate
time-dependent 1 m soil moisture and temperature profiles under bare soil from
synthetic measurements of microwave and infrared radiation, using an EKF. The
direct use of emitted radiation by including a complex observation model, i.e., a
radiative transfer model (RTM), in the Kalman filter procedure was a key significant
feature of their study. They found that starting from an intentionally poor initial
guess and with hourly updates, the estimates improved in time and, eventually, the
dynamics of the true profile were captured down to depths far beyond the penetration
depth of the observations. This work, with inclusion of an RTM in the estimation
procedure, was extended by Galantowicz et al. (1999) using daily field data of L-
band radio brightness over a period of 8 days at a Beltsville Agricultural Research
Center bare soil test plot, and synthetic data over a 4 month period at an observation
interval of 3 days. They studied a soil column of 1 m depth with 31 layers. They
initialized the a priori state error covariance matrix Pb as a diagonal matrix with
large diagonal values. Through time, deeper soil moisture could be retrieved as the
interdepth covariances had been adapted through modelled moisture percolation and
redistribution (i.e., the off-diagonal elements increased). Likewise, Crosson et al.
(2002) estimated soil moisture distributions by assimilating brightness temperatures
with a Kalman filter incorporating an RTM. Each time brightness temperature data
were available, the modelled soil moisture profiles were used as input in a forward
RTM and combined with the observations to update the soil profile.

Active microwave observations were assimilated by Hoeben and Troch (2000) in
a synthetic study to estimate the soil profile with an EKF. They studied the effect
of system and observational noise and found that in the presence of realistic system
noise, the retrieval is feasible with an acceptable accuracy, but for observational
noise which approaches the real world satellite errors, the accuracy of the profile
retrievals drops to the level of the reference run without data assimilation. Based
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on their investigation of the update interval (from hourly to every 2 days), they
suggested that daily radar images would be necessary for accurate updates.

Wendroth et al. (1999) applied a Kalman filter to the surface layer of a 3-layer
(10, 30 and 50 cm) soil profile and found that assimilation of pressure head observa-
tions improved the soil moisture estimates for deeper layers, even when the model
showed clear shortcomings in the simulation of evapotranspiration.

Walker et al. (2001a) discussed a 1-D soil moisture profile retrieval by assimi-
lation of synthetic near-surface soil moisture ground measurements, which greatly
simplified the observation operator. The KF scheme was found to be superior to a
direct insertion scheme. They found that the observation interval was not impor-
tant for profile estimation with a Kalman filter, when the forcing data was accurate
(to ensure correct predictions). The observation depth did not have a significant
effect on the profile retrieval time with a Kalman filter. This synthetic study was
extended by a study using real field data from the Nerrigundah catchment. Walker
et al. (2001b) developed a simplified soil moisture model (ABDOMEN) and studied
assimilation of near-surface soil moisture measurements for profile soil moisture
retrieval. They found that the presence of bias hampered the success of the Kalman
filter procedure and that less frequent updating improved the total soil moisture pro-
file, while near-surface soil moisture was poorly predicted. Therefore, they stressed
the need for an appropriate forecasting model and suggested that assimilation of
near-surface soil moisture would be useful only to correct for errors in soil moisture
forecasts as result of errors in initial conditions and/or atmospheric forcing data, and
not as a result of errors in the physics of the soil moisture model.

Lumped spatial field estimation: Georgakakos and Baumer (1996) used the
Kalman filter to assimilate basin-integrated ground surface soil moisture observa-
tions to estimate soil moisture in a deeper layer with a simple conceptual 2-layer
model. Through a sensitivity study, they found that even when the upper soil water
measurements contained substantial (added) noise, the estimates of lower soil water
contents were improved.

In the framework of the European AIMWATER project on the Seine catchment,
the assimilation of Synthetic Aperture Radar (SAR) observations was considered
(Francois et al. 2003), mainly aiming at updating discharge flows. Oudin et al.
(2003) concluded that the current SAR instruments have a repeat time that is too
low to enhance their parameter updating procedure efficiency. In a very simple study
on four subcatchments of the Seine catchment, they also found that the optimal soil
moisture depth (of TDR measurements) for parameter updating was dependent on
the subcatchment considered. Streamflow and soil moisture were estimated for the
same study area by a sequential Kalman filter by Aubert et al. (2003). They sim-
ulated time repetitivity of remote sensing data by eliminating part of their TDR
measurements and found that through assimilation the efficiency remained higher
than without assimilation for a repeat time as high as 1 week.

Crow (2003) found successful results through daily assimilation of brightness
temperature observations via an EnKF to correct for the impact of poorly sampled
rainfall data on land surface predictions of root-zone soil moisture and surface
energy fluxes. Plot-scale simulations were run with the TOPLATS SVAT on 2
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sites, both for 2 approaches: using synthetic data in an identical twin data assim-
ilation experiment (these experiments are discussed in chapter Observing System
Simulation Experiments, Masutani et al.), and using real data obtained during the
Southern Great Plains 1997 (SGP97) experiment. They indicated that an increased
observation frequency (up to once every 5 days) reduced the sensitivity of the results
to the frequency in rainfall observations. The filter performance was evaluated with
regard to the assumptions that underlie the optimality of the KF update equations.
Crow and Wood (2003) also applied an EnKF to assimilate remotely sensed soil
brightness temperatures using point-scale TOPLATS results at 2 sites to compen-
sate predictions in surface latent heat flux and root-zone water storage for errors
due to use of climatological rainfall data. They discussed inadequacies in model
physics, and the contrasts of spatial support between model predictions and sensor
retrievals. They found little improvement when increasing the ensemble sizes and
suggested that for larger ensemble sizes, alternative error sources and shortcomings
in the reference results themselves are more important than the errors arising from
finite ensemble sizes.

Wilker et al. (2006) conducted a single column (single site) SGP97 assimilation
experiment with an EKF and the operational Numerical Weather Prediction (NWP)
system of the European Centre for Medium-Range Weather Forecasts (ECMWF).
They showed that, in the case of non-uniform soil moisture profiles, the typical top
layer vertically integrated simulated soil moisture will introduce errors, because the
top surface layer is not resolved properly to represent the soil moisture correspond-
ing (through a forward operator) to the observed brightness temperature. Therefore,
they advised to correct the observations for this representativeness error.

Distributed spatial field estimation: Distributed applications of the Kalman
filter are often limited by computational constraints and hence reformulated as a
collection of individual 1-D applications.

Reichle et al. (2002a, b) compared synthetic experiments results using an EnKF
to the variational approach and the Extended Kalman filter, respectively. They gave
insights into the theoretical and practical aspects of these techniques, and illustrate
them for distributed case studies with different LSMs over different testbed regions
in the northern USA.

Margulis et al. (2002) discussed the EnKF in a field test with assimilation of
real brightness data into a 1-D model, applied over the study area of the SGP97
experiment. They aggregated the observational data to 4 × 4 km2 pixels to reduce
the computational load. Through assimilation, they found that surface soil moisture
and latent heat flux estimates were nearly always closer to ground truth measure-
ments and more consistently within the measurement error bars than the open loop
simulations (i.e., without data assimilation).

While most studies on soil moisture assimilation focused on filtering tech-
niques, Dunne and Entekhabi (2005) argued that the soil moisture estimation
problem should be treated as a reanalysis-type problem, as observations beyond
the estimation time still provide useful information, as long as subsequent pre-
cipitation events are avoided. Dunne and Entekhabi (2005) compared the perfor-
mance of an Ensemble Kalman smoother to that of an EnKF in an Observing
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System Simulation Experiment (OSSE; see chapter Observing System Simulation
Experiments, Masutani et al.), using a 1-D model (uncorrelated grid cells) and an
RTM to merge model results with synthetic brightness data. Because of the occur-
rence of precipitation, a hybrid smoother/filter approach was presented to break the
study interval into a series of smoothing windows of single drydowns. They found
that including future observations could improve the initial conditions at depth,
resulting in improved latent heat flux estimates. Dunne and Entekhabi (2006) com-
pared the EnKF and its smoother variant for estimation of soil moisture and surface
energy fluxes by assimilation of real L-band brightness data over the SGP97 study
area.

Walker and Houser (2001) avoided spin-up of a land surface model by initial-
izing soil moisture through a 1-D EKF of synthetic near-surface soil moisture data
over the North American continent. This study illustrated the essential goal of data
assimilation for state estimation, i.e., find the best state (analysis, initial condition)
to initiate future predictions.

Walker and Houser (2004) addressed requirements for soil moisture satellite
accuracy, repeat time and spatial resolution through a twin experiment with a 1-D
EKF in the Catchment model with 3 moisture prognostic variables. Each catchment
(average area of 4,400 km2) was taken as a calculation unit. The resolution and
accuracy requirements were found to be much more important than repeat time.
They found that the soil moisture observations should have accuracy better than
5 vol%; the resolution of the assimilated data should be less than the resolution of
the land surface model; and repeat times should be from 1 to 5 days.

Crow and van Loon (2006) applied TOPLATS to a watershed, assuming that
sub-basin scale variability in water table depth was solely driven by the local soil-
topography index. In a synthetic filtering experiment (without any need for detailed
spatial validation), they showed possible pitfalls with adaptive filtering, the conse-
quences of an improper selection of model error and the benefit of combined soil
moisture and runoff data for adaptive filtering.

Some studies have tried to approximate the full 3-D problem by sophisticated
mathematical techniques. Reichle and Koster (2003) compared the performance of
a 1-D and 3-D EnKF in a synthetic twin experiment with the Catchment model, con-
sidering only 3 state variables related to soil moisture per catchment. Since non-zero
off-diagonal elements would necessitate a simultaneous update for all catchments or
grid cells, this would require immense computational effort. However, for continen-
tal or global soil moisture fields, the scale for horizontal error correlations is much
smaller than the domain size, and covariance localization can be used in combina-
tion with a parallel implementation. They found that information was spread from
observed to unobserved catchments, when taking into account the horizontal error
correlations.

Walker et al. (2002) applied a 3-D KF to assimilate near-surface measurements
from the Nerrigundah catchment for soil moisture profile estimation in a full 3-D
soil moisture model. Because the spatial coupling necessitated a computationally
efficient methodology to propagate the state error covariances, a simplified system
dynamics approach was used.
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De Lannoy et al. (2009) implemented a full 3-D adaptive EnKF system, which
was parallellized both in the forecast part and the update part, but not in the
calculation of the Kalman gain. This allowed finding spatial error correlations
between individually simulated soil profiles, which could then be used to propagate
observational information in a single profile to all other profiles in a small-scale
field.

7.1.4 3D/4D-Var

Point scale estimation: Calvet et al. (1998) assimilated field measurements of
surface soil moisture through a (strong constraint) variational data assimilation
approach, and found that 4 or 5 observations spread over an assimilation window of
15 days were enough to retrieve total soil water content by inverting the Interactions
between Soil, Biosphere and Atmosphere (ISBA) scheme, given correct knowledge
of the forcings. Use of the soil temperature was more of a problem, because it was
not always found to be sensitive to the total water content. Their study was con-
ducted at one site at the point scale and used averaged gravimetric soil moisture
measurements (0–5 cm) during an intensive observation period (IOP) of 30 days.
Wingeron et al. (1999) used the same ISBA model in combination (variational) with
a surface soil moisture data set of 3 months during the vegetation cycle of soybean
to study requirements for the use of remote sensing measurements of soil moisture
to accurately estimate the root zone soil moisture.

Lumped spatial field estimation: Li and Islam (2002) applied a model inversion
technique suggested by Calvet et al. (1998) for assimilation of surrogate remotely
sensed data (averaged gravimetric samples) over a 15 × 15 km2 area, and found
that the estimation of surface soil moisture was very sensitive to the initialization of
deeper layer soil moisture. They also found that initialization of the soil moisture
profile in such a way that it optimizes the error in the surface soil moisture, may not
lead to optimal estimation of surface fluxes and accurate retrieval of deeper layer
soil moisture. This was attributed to a decoupling of the surface and deeper soil
moisture.

Pathmathevan et al. (2003) estimated 1-D soil moisture profiles through daily
variational assimilation of microwave radiometer measurements in the Land Surface
Scheme (LSS) of the Simple Biosphere Model 2 (SiB2) with 3 layers of soil mois-
ture. No adjoint model was developed, and a heuristic optimization technique,
simulated annealing, was used instead to minimize a variational cost function.

Distributed spatial field estimation: Reichle and McLaughlin (2001) discussed
a pioneering synthetic study on the feasibility of a 4-D variational assimilation
algorithm, where they used a representer method to account for both model and
observational error. They developed a relatively simple model to allow develop-
ment of a numerically well-behaved adjoint model. A non-linear radiative transfer
model (RTM) was included on-line in the assimilation procedure to allow direct
assimilation of brightness temperatures. In a closely related 4-D weak constraint
variational data assimilation study, Reichle et al. (2001) showed that synthetic radio
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brightness measurements could be used to estimate soil moisture at scales finer than
the resolution of the brightness images, provided that information on land surface
characteristics and micro-meteorological inputs were available.

7.2 Soil Temperature Observations

Soil temperature can be used to update the total land surface state, including soil
moisture, and its dependent land surface fluxes, like evapotranspiration. Lakshmi
(2000) used surface temperature to validate model surface temperatures and adjust
model simulated soil moisture. A two-layer land surface model was applied to 66
1◦ × 1◦ pixels over the area of the Red-Arkansas study region. For a period of 1
year, radiance data, which were available as gridded fields and converted to temper-
ature data, were equally weighted with model simulations twice a day to obtain an
adjusted estimate of the soil temperature. They found that, through assimilation, on
average (over the studied area) improved estimates for soil moisture were found and
the effect of errors in the forcings was reduced. Spatially distributed comparisons of
soil moisture fields showed a reduced difference between observed (satellite bright-
ness data converted to soil moisture through an RTM) and simulated soil moisture,
and also a reduced standard deviation in the difference.

Land surface temperature may be used to provide estimates of components of the
surface energy balance and land surface control on evaporation. Kumar and Kaleita
(2003) used an EKF to assimilate top layer temperature measurements for the esti-
mation of a soil temperature profile at a 1-point site at the western edge of the Little
Washita River Watershed. Data were assimilated at 1/2 and 24-h increments in a soil
column of 6 layers. When data were available every 1/2 h, the lower layers responded
much more rapidly to the inclusion of observed data. They also found that the cor-
relation structure between the different layers was more complicated than could be
described with a simple diagonal matrix.

Castelli et al. (1999) applied a variational methodology with an adjoint to
assimilate area-averaged soil surface temperature for retrieving surface fluxes
and a soil moisture index, which depended on soil wetness and aerodynamic
conditions.

Caparrini et al. (2004) discussed the determination of turbulent heat fluxes by
variational assimilation of remotely sensed land surface temperature into a surface
energy balance model and showed an application to a large area within the US Great
Plains. They showed how to assimilate measurements with varying scales and with
overlapping coverages.

Boni et al. (2001) assimilated half-hourly in situ ground temperature observations
to generate a reference (validation truth) to explore the value of satellite data assim-
ilation by a variational technique with an adjoint. The performance was found to
vary with the timing of the satellite overpass and the estimation was most improved
when measurements were available close to the time of peak ground temperature.
The study was conducted on 2 sites (not distributed in space) within the SGP97
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experiment area. The satellite brightness data were area-averaged and converted to
temperatures off-line, before assimilation.

7.3 Low-Level Atmospheric Observations

Research on the assimilation of screen-level measurements of relative humidity and
temperature (Bouttier et al. 1993; Viterbo and Beljaars 1995) has mostly focused
on variational studies, which tried to find an optimal initial state by searching for
a best match between the resulting model simulations and the observations. These
low-level atmospheric data have been used because they are widely available and
very sensitive to soil moisture. Generally, soil moisture estimates have been inte-
grated over the root zone. Mahfouf (1991) introduced the assimilation of low-level
atmospheric variables such as relative humidity and air temperature to initialize
soil moisture for improved short- and medium-range weather forecasts. He tested
a strong constraint variational approach and a sequential nudging approach, which
was a statistical algorithm based on linear regressions. Based on this work, several
authors investigated these two approaches with atmospheric observations. Bouttier
et al. (1993), Hu et al. (1999), Douville et al. (2000), Pleim and Xiu (2003), for
example, explored and adapted the sequential nudging technique, while the stud-
ies of Callies et al. (1998), Bouyssel et al. (1999) and Hess (2001) followed the
variational approach. Douville et al. (2000) found that the nudging technique was
very sensitive to model bias. Rhodin et al. (1999) applied the technique of Callies
et al. (1998) to a regional weather forecast model, while neglecting all horizontal
correlations to facilitate the 3-D assimilation problem. It should be remarked that
in all these studies, soil moisture has little physical meaning and it is rather used
as a parameter in NWP models. Assimilation of atmospheric variables is interest-
ing because these data are readily available in an operational system for NWP, but
Bouyssel et al. (1999), for example, reported that operational implementation of
surface analyses is difficult with these kind of data in general weather conditions
including precipitation, cloudy conditions or large-scale advection. Seuffert et al.
(2004) found that synergistic assimilation of screen-level parameters and microwave
brightness temperatures yielded more consistent results than assimilation of either
observation type separately.

7.4 Land Surface Flux Observations

To date, only a few studies have explored the assimilation of remotely sensed land
surface flux observations. Schuurmans et al. (2003) converted 1 × 1 km2 resolu-
tion remotely sensed data into latent heat flux estimates to assimilate them into a
distributed hydrological model to improve the model water balance. They applied
an optimal interpolation scheme (constant gain Kalman filter), to study the spatial
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distribution of model latent heat flux estimates and found improvements in areas
with higher elevations.

7.5 Vegetation-Based Observations

Specification of seasonal variations of vegetation properties can significantly affect
the simulation of several near-surface variables. Mahfouf and Viterbo (2001) indi-
cated that the difficulty in capturing the variability of vegetation is the relation
between satellite reflectances to input parameters, such as leaf area index (LAI)
and albedo in land surface schemes. Pauwels et al. (2007) have shown that through
assimilation of LAI values and soil moisture observations the results from coupled
hydrological/crop growth models can be improved.

7.6 Discharge Observations

The possibility to use discharge data to update the state variables of a hydrological
model has been explored, either using only discharge data (Pauwels and De Lannoy
2006; Vrugt et al. 2006; Komma et al. 2008), or a combination of discharge and soil
moisture data (Aubert et al. 2003).

A fundamental difference between the assimilation of runoff rates and the assim-
ilation of other variables (for example soil moisture values) is the fact that observed
catchment runoff rates are the integrated result of runoff generating processes occur-
ring between the moment of the observation and a number of time steps before the
observation. This implies that, if a discharge observation at a certain time is assim-
ilated, the state variables of a number of time steps before the assimilation need to
be updated as well, to assure fully optimized discharge forecasts.

7.7 Snow Water Equivalent/Snow Cover Observations

Snow on land is an important variable affecting the global energy and water budgets,
because of its high albedo, low thermal conductivity, considerable spatial and
temporal variation and medium-term capacity for water storage. The amount of
water in snow, i.e., the snow water equivalent (SWE), can be observed in situ or
derived from brightness temperatures, e.g. obtained from the Advanced Microwave
Scanning Radiometer – EOS (AMSR-E) or Special Sensor Microwave/Imager
(SSM/I). Another commonly used observation is the snow cover area or fraction
(SCA or SCF), which can be measured relatively accurately through remote sens-
ing, e.g. with the Moderate Resolution Imaging Spectroradiometer (MODIS). Some
challenges related to snow assimilation have been discussed by Walker and Houser
(2005).
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Cosgrove and Houser (2002) showed that large water balance errors could occur
when directly inserting SWE observations into imperfectly modelled snow melting
processes. Assimilation of remotely sensed SWE was studied in a synthetic study
with a 1-D EKF by Sun et al. (2004). Slater and Clark (2006) assimilated real SWE
data in a conceptual model with an Ensemble Square Root Kalman filter and showed
that merging of information was better than either the model results or interpolated
observations. Durand and Margulis (2006) conducted a feasibility study using a vari-
ety of point-scale synthetically generated observations in combination with a LSM
and a RTM to assess the contribution of each channel (brightness temperature Tb of
SSM/I, Tb of AMSR-E, and broadband albedo from MODIS satellite products) to
recovering the true SWE. Other interesting follow-up studies on SWE assimilation
were reported by Durand and Margulis (2007, 2008). Dong et al. (2007) used a 1-D
EKF to assimilate SWE data, which were obtained after conversion of Scanning
Multichannel Microwave Radiometer (SMMR) brightness temperature to SWE.
They excluded data with potential high errors. Andreadis and Lettenmaier (2006)
found that assimilation of AMSR-E SWE data into the VIC model was not very
successful, due to errors in the AMSR-E product. De Lannoy et al. (2010) success-
fully downscaled AMSR-E-scale synthetic SWE to retrieve fine-scale variability in
several 1-D and 3-D EnKF setups.

Modelling results by Déry et al. (2005) showed improved runoff timing and
runoff amounts when MODIS fractional snow cover data were incorporated. Rodell
and Houser (2004) used satellite-derived MODIS SCA to update the SWE in a land
surface model by a rule-based assimilation scheme, but they found that SCA con-
tained very little information about SWE. Andreadis and Lettenmaier (2006) applied
an EnKF to update SWE by assimilation of SCA from MODIS data and used a
simple snow depletion curve as the observation operator to relate SWE to SCA.

7.8 Ground Water Storage Observations

Subsurface observations have only seen limited use to estimate the land sur-
face state, most likely because using these observations only yields a limited
observability of the land surface system (the information content in the observa-
tions does not allow to fully reconstruct the land surface state). Zaitchik et al.
(2008) assimilated Gravity Recovery and Climate Experiment (GRACE)-derived
monthly terrestrial water storage (TWS) anomalies for each of the four major sub-
basins of the Mississippi into the Catchment Land Surface Model (CLSM) using
an Ensemble Kalman smoother, and obtained improved water storage and fluxes
dynamics.

Several applications of the Kalman filter in the field of groundwater mod-
elling have been studied by Eigbe et al. (1998) and Porter et al. (2000), but most
studies do not consider the land surface state, but rather focus on the inverse
problem of determining the hydraulic properties, assuming a perfect groundwater
model.
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8 Case Studies

Significant advances in hydrological data assimilation have been made over the past
decade from which we have selected a few case studies to demonstrate the utility of
hydrological data assimilation.

8.1 Case Study 1: Soil Moisture Assimilation

The estimation of soil moisture profiles has received considerable attention, because
a correct assessment of the soil moisture state is crucial to estimate the partition-
ing of surface fluxes, for weather predictions and climate analyses. For this case
study, the EnKF was used with the Community Land Model (CLM2.0) to assim-
ilate ground measurements for soil moisture profile estimation (De Lannoy et al.
2007a). The focus was on the determination of the best observation conditions for
assimilation and on the optimization of the method with real data.

An Ensemble Kalman filter for state estimation and a dynamic bias estimation
algorithm was applied to estimate individual soil moisture profiles in a small corn
field with the CLM2.0 model through the assimilation of measurements from capac-
itance probes. Both without and with inclusion of forecast bias correction, the effect
of the assimilation frequency, the assimilation depths, and the number of observa-
tions assimilated per profile, were studied. Assimilation of complete profiles had
the highest impact on deeper soil layers, and the optimal assimilation frequency
was about 1–2 weeks, if bias correction was applied (Fig. 4). Without bias correc-
tion, a higher assimilation frequency always further improved the results (Fig. 4).
Bias correction on top of state estimation extracts more information from the obser-
vations and thus a limited assimilation frequency is sufficient for optimal results.
The optimal assimilation depth depended on the calibration results. Assimilation in

Fig. 4 Mean (and spatial standard deviation over 36 field profiles) relative profile-integrated
RMSE (root mean square error) for profile assimilation with (left) EnKF and (right) EnBKF (with
inclusion of dynamic forecast bias estimation) as a function of varying numbers of observations in
time. Assimilation intervals a, b, c, d, e, f and g are 1, 2, 4 days, 1, 2, 4 and 8 weeks, respectively
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Fig. 5 Spatially interpolated fields of (left) observations, (middle) ensemble mean forecasts and
single-profile EnKF analysis at the indicated point location only and (right) full 3-D adaptive EnKF
analyses after assimilation at the indicated point location only. The black dots indicate observed
locations. The full ellipses show areas with an improved impact through adaptive 3-D EnKF filter-
ing. The simulated (middle panel) moisture is underestimated in the dashed circular area and the
adaptive 3-D filter (without bias estimation) cannot overcome the large bias

the surface layer had typically less impact than assimilation in other layers. In gen-
eral, the correct propagation of the innovations for the bias-blind state as well as for
the bias filtering from any layer to other layers was insufficient. The approximate
estimation of the a priori (bias) error covariance and the choice of a zero-initialized
persistent bias model made it impossible to accurately estimate the bias in layers for
which no observations were available.

In a subsequent study by De Lannoy et al. (2009), horizontal propagation of
assimilated profiles information in space was achieved after optimizing (training)
spatial forecast error covariances in an adaptive three-dimensional (3-D) EnKF. In
Fig. 5 an interpolated field of point-scale measurements is shown, together with a
one-profile EnKF analysis and a 3-D EnKF analysis after spatial error covariance
training. The one-profile EnKF updates all observed and unobserved profile layers
only at the assimilation location. The full 3D EnKF spreads this information to all
unobserved locations in space.

These studies show the importance of both a good first and second order error
characterization for Kalman filtering with real data, i.e. soil moisture forecast bias
estimation and spatial forecast error covariance estimation.

8.2 Case Study 2: Streamflow Assimilation

Rüdiger et al. (2005) have shown the potential for assimilating streamflow mea-
surements to retrieve soil moisture. A synthetic study was undertaken on three
nested catchments (sequentially draining into each other) within the Goulburn River
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experimental catchment in south-eastern Australia (Rüdiger et al., 2007). Three sce-
narios are presented: (i) only streamflow observations are available for the outlet
of the lowest catchment; (ii) streamflow observations are not available and surface
soil moisture observations are only available for one of the catchments under the
assumption that the other two catchments are too densely vegetated to allow a reli-
able retrieval of soil moisture; and (iii) streamflow observations are available for the
lower catchment and surface soil moisture observations for the middle catchment.
This synthetic study identifies the potential of using different observations, where
and when available, for the retrieval of soil moisture initial states. The assimila-
tion type here is performed as an initial state optimization through minimizing an
objective function penalizing the deviation from the observed soil moisture and/or
streamflow over some assimilation window.

The assessment is based on a comparison between assimilated, truth and non-
assimilated (control) simulations in Fig. 6. In the control simulation, the root zone
soil moisture content was subjected to a wet bias. It was found that the assimilation
of streamflow has a significant improvement in the retrieval of profile and root zone
soil moisture in all three catchments, but displays limitations in retrieving the sur-
face soil moisture state. In contrast, the assimilation of surface soil moisture in the
lower catchment alone does not have any effect on the upstream catchments, as there

Fig. 6 Assimilation results for root zone soil moisture and runoff for (R1) discharge (observed
at the lower catchment) assimilation only, (SM1) soil moisture (observed at the lower catchment)
assimilation only, and (RS1) simultaneous assimilation of soil moisture (observed in the middle
catchment) and discharge (lower catchment). Individual catchments are shown in rows (upper,
middle, and lower catchments). C1 represents the control run without assimilation
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is no feedback between the downstream and upstream soil moisture and respective
runoff. Finally, the joint assimilation of both streamflow and surface soil moisture
observations leads to a further improvement from the streamflow assimilation alone.

The comparison between the results from the degraded and the assimilation runs
show a good improvement of the overestimated soil moisture and runoff values
through streamflow assimilation. The best performance is observed for the lower
catchment, with slight inaccuracies for the two upstream catchments. The main dif-
ference between the “truth” observations and the assimilation run is the retrieval of
the surface soil moisture content, which is underestimated. This is due to the ini-
tial surface soil moisture content not having a significant impact on the runoff and,
hence, the objective function, when the profile moisture is well retrieved. While
the infiltration capacity excess mechanism is still the main process contributing
to runoff (runoff is only produced when saturation of the surface soil moisture is
achieved), there is no runoff occurring in the first 10 days of the assimilation win-
dow, so that changes to the initial soil moisture states cannot generate runoff events.
The precipitation events causing runoff occur over a short period, but during these
events sufficient water is introduced into the catchment to wet up the surface layer
to the point of saturation and allow runoff to be produced. Because the root zone
soil moisture is accurately retrieved, all subsequent soil moisture values are close
to the true observations, and, therefore, the initial value of the surface soil moisture
before its saturation during the first precipitation event is irrelevant.

The study of Rüdiger et al. (2005) was undertaken as a proof-of-concept twin-
study for streamflow assimilation, in which only the initial states were perturbed. In
Rüdiger et al. (2007) wet and dry biases and white noise were added to the forcing
data to simulate uncertainties in the observational data base, while assuming that
there is no knowledge about observational or background errors.

8.3 Case Study 3: Snow Assimilation

Accurate prediction of snowpack status is important for a range of environmen-
tal applications, yet model estimates are typically poor and in situ measurement
coverage is inadequate. Moreover, remote sensing estimates are spatially and tempo-
rally limited due to complicating effects, including distance to open water, presence
of wet snow, and presence of thick snow (Dong et al. 2005). However, through
assimilation of remote sensing estimates into a land surface model, it is possible to
capitalize on the strengths of both approaches (Dong et al. 2007). In order to achieve
this, reliable estimates of the uncertainty in both remotely sensed and model simu-
lated snow water equivalent (SWE) estimates are critical. For practical application,
the remotely sensed SWE retrieval error is prescribed with a spatially constant but
monthly varying value, with data omitted for: (1) locations closer than 200 km to
significant open water; (2) times and locations with model-predicted presence of
liquid water in the snowpack; and (3) model SWE estimates greater than 100 mm.
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Fig. 7 SMMR passive microwave SWE retrieval root mean square (RMS) error of the in situ
SWE estimates (left panel), average monthly daytime temperature (middle panel), and “distance”
to water (right panel). The light grey dots show all the data and dark gray dots show the data
remaining after omitting pixels closer than 200 km to water and with an average monthly daytime
temperature above 2◦C; the lines show the mean values respectively. The pluses represent data for
pixels including 5 or more ground stations

The model error is estimated using standard error propagation with a calibrated spa-
tially and temporally constant model error contribution. The SWE estimates from
assimilation were found to be superior to both the model simulation and remotely
sensed estimates alone, except when model SWE estimates rapidly and erroneously
crossed the 100 mm SWE cut-off early in the snow season.

Based on an extensive evaluation of SMMR SWE estimates Dong et al. (2005)
suggest that SMMR SWE retrievals should not be used for: (1) regions within
200 km of significant open water bodies due to mixed pixel contamination; (2) times
when monthly mean air temperature is above 2◦C due to potential meltwater con-
tamination; and (3) times and locations where in situ SWE values are above 100 mm
due to microwave signal saturation (Fig. 7). Restricting the use of remotely sensed
SWE on this basis was found to result in a nearly unbiased SWE estimate with a
seasonal maximum RMS (root-mean-square) median error of 20 mm.

A set of numerical experiments were undertaken by Dong et al. (2007) to evaluate
the impact of assimilating quality controlled SMMR SWE retrievals on snowpack
state variables. The first simulation is a straight model simulation run (i.e., with-
out data assimilation, and referred to as the open-loop run) to show how the model
performed in the absence of assimilation. The second and third simulations are two
Extended Kalman filter (EKF) assimilation experiments (referred to as assimilation
run-I and run-II), started with the same initial conditions as the open-loop run, but
assimilating the remotely sensed SMMR SWE estimates when available. The dif-
ference between these two runs is that run-I assimilates all available SMMR SWE
data while run-II only assimilates quality-controlled data. The median predicted and
observed SWE estimates for pixels with five or more in situ stations are shown
in Fig. 8. For the simulations starting in the middle of winter, it was found that
assimilation run-II outperformed both of the other snowpack simulations, with the
results from assimilation run-I approaching the unmasked SMMR SWE values. This
was expected, as erroneous SWE observations when not eliminated (as in run-I),
or adequately characterized by their error covariances, act to degrade the snowpack
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Fig. 8 Comparison of the median SWE for pixels including five or more stations; ground observa-
tions (black dots), SMMR observations (plus symbols), model forecast (dash lines), model forecast
with assimilation run-I (dotted lines) and run-II (solid lines) from: (a) January to March in 1979
(left panel), and (b) July 1986–June 1987 (zoomed to the winter months from October 1986 to
April 1987 – right panel). The vertical lines show the plus one and minus one standard deviation
from the median of the ground observations

simulation through their assimilation. The open-loop simulation significantly under-
estimates the snowpack SWE throughout the entire simulation due to the zero snow
initialization. The resulting median estimates from assimilation run-II are in close
agreement with the ground observations. Statistical analysis shows that bias error
has been largely reduced, and RMS error has been slightly reduced.

8.4 Case Study 4: Skin Temperature Assimilation

The land surface skin temperature state is a principal control on land-atmosphere
fluxes of water and energy. It is closely related to soil water states, and is eas-
ily observable from space and aircraft infrared sensors in cloud-free conditions.
The usefulness of skin temperature in land data assimilation studies is limited by
its very short memory (on the order of minutes) due to the very small heat stor-
age it represents. Radakovich et al. (2001) have demonstrated skin temperature
data assimilation in a land surface model using three-hourly observations from the
International Satellite Cloud Climatology Project (ISCCP) – see Fig. 9. Incremental
and semi-diurnal bias correction techniques based on Dee and da Silva (1998) were
developed to account for biased skin temperature forecasts. The assimilation of
ISCCP-derived surface skin temperature significantly reduced the bias and standard
deviation between model predictions and the National Centers for Environmental
Prediction (NCEP) reanalysis (Kalnay et al. 1996). However, the assimilation of
ISCCP-derived surface skin temperature has a substantial impact on the sensible
heat flux, due to an enhanced gradient between the surface and 2 m air temperatures.
If the near-surface air temperature were interactive, as in a coupled land-atmosphere
model, then it would respond to this enhanced flux rather than maintaining the
artificial temperature gradient.
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Fig. 9 Differences between simulated and reanalysis (top left), assimilated and reanalysis (bottom
left) mean skin temperatures (K), and the resulting differences between simulated and reanaly-
sis (top right), and assimilated and reanalysis (bottom right) mean sensible heat fluxes (Wm–2)
for September–November 1992. Global terrestrial mean bias and standard deviation (SD) for
September–November are also noted (Radakovich et al. 2001)

This study was extended by Bosilovich et al. (2007), where remotely sensed
surface temperature was assimilated into a coupled atmosphere/land global data
assimilation system, with explicit accounting for biases in the model state. In this
scheme, an incremental bias correction term is introduced in the model’s surface
energy budget. The method was validated against the assimilated observations, as
well as independent near surface air temperature observations. In many regions, not
accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude
of background model air temperature. Energy fluxes collected through the Co-
ordinated Enhanced Observing Period (CEOP) were used to more closely inspect
the surface energy budget. In general, sensible heat flux is improved with the sur-
face temperature assimilation, and two stations show a reduction of bias by as much
as 30 Wm–2.

9 Summary

Hydrological data assimilation is an objective method to estimate the hydrologi-
cal system states from irregularly distributed observations. These methods integrate
observations into numerical prediction models to develop physically consistent esti-
mates that better describe the hydrological system state than the raw observations
alone. This process is extremely valuable for providing initial conditions for hydro-
logical system prediction and/or correcting hydrological system prediction, and for
increasing our understanding and improving parametrization of hydrological system
behaviour through various diagnostic research studies.
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Hydrological data assimilation has still many open areas of research.
Development of hydrological data assimilation theory and methods is needed to:
(i) better quantify and use model and observational errors; (ii) create model-
independent data assimilation algorithms that can account for the typical non-linear
nature of hydrological models; (iii) optimize data assimilation computational effi-
ciency for use in large operational hydrological applications; (iv) use forward
models to enable the assimilation of remote sensing radiances directly; (v) link
model calibration and data assimilation to optimally use available observational
information; (vi) create multivariate hydrological assimilation methods to use mul-
tiple observations with complementary information; (vii) quantify the potential of
data assimilation downscaling; and (viii) create methods to extract the primary
information content from observations with redundant or overlaying information.
Further, the regular provision of snow, soil moisture, and surface temperature obser-
vations with improved knowledge of observational errors in time and space are
essential to advance hydrological data assimilation. Hydrological models must
also be improved to: (i) provide more “observable” land model states, parame-
ters, and fluxes; (ii) include advanced processes such as river runoff and routing,
vegetation and carbon dynamics, and groundwater interaction to enable the assim-
ilation of emerging remote sensing products; (iii) have valid and easily updated
adjoints; and (iv) have knowledge of their prediction errors in time and space. The
assimilation of additional types of hydrological observations, such as streamflow,
vegetation dynamics, evapotranspiration, and groundwater or total water storage
must be developed.

As with most current data assimilation efforts, we describe data assimilation pro-
cedures that are implemented in uncoupled models. However, it is well known that
the high-resolution time and space complexity of hydrological phenomena have
significant interaction with atmospheric, biogeochemical, and oceanic processes.
Scale truncation errors, unrealistic physics formulations, and inadequate coupling
between hydrology and the overlying atmosphere can produce feedbacks that can
cause serious systematic hydrological errors. Hydrological balances cannot be ade-
quately described by current uncoupled hydrological data systems, because large
analysis increments that compensate for errors in coupling processes (e.g. precipita-
tion) result in important non-physical contributions to the energy and water budgets.
Improved coupled process models with improved feedback processes, better obser-
vations, and comprehensive methods for coupled assimilation are needed to achieve
the goal of fully coupled data assimilation systems that should produce the best and
most physically consistent estimates of the Earth system.
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Assimilation of GPS Soundings in Ionospheric
Models

Boris Khattatov

1 Introduction

The ionosphere, usually defined to extend upward from about 80 km, is the region
of the Earth’s atmosphere where concentration of ionized particles becomes suf-
ficiently high to become easily observable. Below 80 km absorption of solar
radiation by the atmosphere above decreases the probability of a neutral atmospheric
molecule being ionized and results in negligible concentration of ionized particles.
At altitudes higher than about 400 km, the density of neutral particles that are subject
to ionization decreases substantially and absolute concentration of charged particles
gets smaller with altitude.

Unlike the low and middle atmosphere, forecasting ionospheric conditions must
involve forecasting the external drivers, primarily solar activity in the form of solar
flux and coronal mass ejections (CMEs). Accurate deterministic forecasting of solar
behaviour is an extremely difficult task due to both complexity of the physical
processes involved and lack of observations. Therefore, practical ionospheric data
assimilation systems mainly focus on nowcasting rather than forecasting. Efforts are
underway to apply methods of data assimilation to solar physics and the magneto-
sphere; however such efforts are not the subject of this chapter. Even the relatively
simpler objective of nowcasting the ionospheric conditions is made difficult by the
short characteristic time-scales (often minutes and sometimes seconds) and scarcity
of observations.

Accurate knowledge of the ionospheric conditions was historically a low priority.
This situation changed when our increasing reliance on ground-space communi-
cations became important for both military and civilian infrastructure. Adverse
ionospheric effects on certain types of communications led to an increased need for
knowing the current ionospheric state, primarily electron densities. This, in turn,
resulted in an increased investment in observing and accurate modelling of the
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ionosphere, naturally spawning efforts to involve data assimilation methodologies;
for details of these methodologies see chapters in Part I, Theory.

In this chapter we discuss basic processes controlling ionospheric composition
and dynamics at low and mid latitudes; give an overview of the numerical modelling
approaches; describe Global Positioning System (GPS) observations available for
assimilation into models; and discuss some practical uses of reliable ionospheric
specification.

2 Background

For the purpose of this chapter we define the ionosphere as the region of the Earth’s
atmosphere where charged particles, ions and electrons, become sufficiently abun-
dant to noticeably influence dynamics and chemistry of the atmosphere. The primary
source of ions (and electrons) is ionization of neutral particles by solar short wave
ultraviolet (UV) radiation. At altitudes lower than about 80 km, the intensity of
the UV radiation is small due to absorption by the dense neutral atmosphere and
thus concentration of charged particles is low. At high altitudes the concentration
of neutral particles that can be ionized decreases exponentially with altitude lead-
ing to a decrease in the concentration of charged particles. These conditions result
in a pronounced peak of ion density at 200–400 km known as the F-region of the
ionosphere.

Assimilation of observations in ionospheric physics-based models is a relatively
new area of research. First practical attempts to apply data assimilation meth-
ods common in numerical weather prediction (see chapter Numerical Weather
Prediction, Swinbank) to the ionosphere took place in early 1990s. There are a
number of reasons for this late adoption of the data assimilation methods.

The scarcity of observations available for assimilation into ionospheric models
naturally affected adversely the introduction of data assimilation methods to iono-
spheric modelling. Making observations of the ionospheric state is a difficult task
due to the high altitude of the ionosphere and relatively low concentration of ions
compared to neutral particles.

Development of practical, affordable, and reliable means of observing the iono-
sphere was a low priority until our communication and navigation infrastructure
became vulnerable to adverse ionospheric conditions. Indeed, arguably the largest
volume of data related to ionospheric conditions is currently derived from mea-
suring ionosphere-induced dispersion that adversely affects the accuracy of GPS
operations.

Yet another reason is that unlike meteorological conditions in the troposphere or
the stratosphere, where initial conditions largely determine the future system state,
ionospheric conditions are strongly influenced by external forcing. This is similar
to forecasting chemical weather in the troposphere, where one has to take account
of sources and sinks (see chapter Inverse Modelling and Combined State-Source
Estimation for Chemical Weather, Elbern et al.).

Generally, any meaningful medium- or long-term ionospheric forecast must be
capable of forecasting this forcing. The external forcing comes primarily in two
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forms – increased intensity of UV and X-ray radiation from the Sun due to solar
flares, and impact of clouds of plasma emitted by the Sun as a result of coronal
mass ejections. The first process results in enhanced density of ionized particles in
the ionosphere, the second one can potentially alter the ionospheric magnetic field in
a drastic manner and lead to highly anomalous ionospheric transport, which in turn
affects the composition and temperature of ionospheric charged particles. Since both
processes are generally poorly understood, and since near real time observations
of the solar activity suitable for forecasting are even less abundant than observa-
tions of the ionosphere, reliable deterministic forecasting of such events is currently
impossible.

While efforts are under way to include methods of data assimilation for now-
casting and forecasting solar influences and magnetospheric conditions, these
efforts are outside the scope of this chapter. Here we will focus on describing
challenges involved in nowcasting ionospheric conditions, primarily estimating
three-dimensional (3-D) electron densities, using a numerical model of ionospheric
composition and GPS observations.

As of February 2009 the author was aware of only four physics-based assim-
ilation systems designed for nowcasting and eventually forecasting ionospheric
conditions. Development of all four has been funded by either or both the US Navy
and the US Air Force Research Laboratory. One such system that uses a sequential
assimilation approach has been developed at Utah State University (Schunk et al.
2004; Scherliess et al. 2004). The Jet Propulsion Laboratory, in collaboration with
the University of Southern California, developed both sequential and variational
assimilation systems (Pi et al. 2003; Hajj et al. 2004). Fusion Numerics Inc has
built an operational system (Khattatov et al. 2005) consisting of a numerical time-
dependent model and a sequential data assimilation scheme based on the approach
described in Ménard et al. (2000) and Khattatov et al. (2000).

In this chapter we briefly describe elementary ionospheric processes control-
ling ionospheric composition and dynamics at low and middle latitudes (Sect. 3),
numerical modelling procedures (Sect. 4), GPS data (Sect. 5), challenges with
data assimilation for the ionosphere (Sect. 6), the impact of the ionosphere on
telecommunications (Sect. 7), and practical utilization of ionospheric specifications
obtained in the process of data assimilation (Sect. 8). Section 9 discusses future
directions.

3 Overview of Ionospheric Processes

3.1 Elementary Processes

Here we present a short overview of elementary ionospheric processes. For a more
comprehensive description the reader is referred to the excellent descriptions in
Banks and Kockarts (1973) or Schunk and Nagy (2000).

Solar radiation, in particular short-wave ultra violet radiation, is the primary
source of ionization in the atmosphere. Absorption of a photon by a neutral particle,
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either atom or a molecule, results in the appearance of an ion and one or more
electrons, e.g. (where O is an oxygen atom and O+ an oxygen ion):

O+ hν → O+ + e

Only a few neutral particles have ionization absorption spectra that result in
noticeable ionization yields; these particles are N (nitrogen atom), O (oxygen atom),
He (Helium atom), N2 (nitrogen molecule), and O2 (oxygen molecule). However,
once an ion particle has been produced, it can transfer its charge to another neu-
tral particle when it collides with a neutral particle. Typically, the following charge
transfer reactions are taken into account in modern ionospheric models (e.g. Huba
et al. 2000):

H+ + O → O+ + H

He+ + N2 → N+2 + He

He+ + N2 → N+ + N+ He

He+ + O2 → O+ + O+ He

He+ + O2 → O+2 + He

N+ + O2 → NO+ + O

N+ + O2 → O2
+ + N(2D)

N+ + O → O+ + N

N+ + NO → NO+ + O

O+ + H → H+ + O

O+ + N2 → NO+ + N

O+ + O2 → O2
+ + O

O+ + NO → NO+ + O

N2
+ + O → NO+ + N(2D)

N2
+ + O2 → O2

+ + N2

N2
+ + O2 → NO+ + NO

N2
+ + NO → NO+ + N2

O2
+ + N → NO+ + O

O2
+ + N(2D) → N+ + O2
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O2
+ + NO → NO+ + O2

O2
+ + N2 → NO+ + NO.

When an ionized particle collides with a free electron, it can become neutral
again via the charge recombination reaction (e.g. Huba et al. 2000):

H+ + e = H

He+ + e = He

N+ + e = N

O+ + e = O

N2
+ + e = N2

NO+ + e = NO

O2
+ + e = O2.

While other ionized particles are present in the Earth’s atmosphere, the iono-
sphere primarily consists of seven ions that constitute the majority of charged
particles in this region (H+, He+, N+, O+, N2

+, NO+, and O2
+), with O+ being the

most abundant overall.
Once charged particles originate in the atmosphere due to the ionization, they

begin to interact with other charged and neutral particles. Collisions and other types
of interactions impose a drag on the ions and electrons. The magnitude of the drag
is proportional to the difference between the velocity of the ion and the velocity of
the interacting particle:

∂vj

∂t
= νij.(vi − vj)

In the above equation, vi and vj are the velocities of the particle imposing the
drag, which can be another charged or neutral particle, and of the ionized particle
itself, respectively; νij is the collision drag coefficient.

Collisions between ionized and neutral particles also result in a variety of heat-
ing processes which include ion-neutral frictional heating; ion-ion and ion-electron
collisional heating; elastic and non-elastic heating; and rotational, vibrational, fine
structure and photoelectron heating/cooling for electrons. Parametrizations approx-
imating the effect of these quantum mechanical processes have been developed
(e.g. Banks and Kockarts 1973) and are widely used in numerical models of the
ionosphere. Such parametrizations aim at estimating the time derivative of the tem-
perature of a particular charged particle j as a function of its temperature (Tj) and
the temperatures of other charged particles, Ti:
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∂Tj

∂t
=

∑
i

Qij · f (Ti, Tj)

In addition to these processes, heat transfer must also be modelled using the
standard heat transfer equation with particle-specific thermal diffusivity coefficients.

3.2 Transport and Solar Effects

Transport of charged particles is primarily driven by their interaction with the
Earth’s magnetic field and the superimposed external magnetic fields originating
from space. These effects are dramatically different in the neighbourhood of mag-
netic poles, where extraterrestrial charged particles can enter the atmosphere, and at
low and middle latitudes, where the Earth’s magnetic field shields the atmosphere
from space plasma.

Primarily, charged particles move along the magnetic field lines. Neutral parti-
cles, whose dynamics is determined mainly by solar heating, rotation of the Earth,
and wave-driven momentum transfer between the troposphere and upper atmo-
sphere, affect the ionosphere through neutral-ion drag. When neutral particles drag
charged particles across the magnetic field lines, either originating from the Earth’s
own magnetic field or superimposed by space plasma, under the influence of the
Lorentz force the charged particles move in a direction perpendicular to both the
magnetic field lines and the drag direction.

The horizontal component of the neutral winds is significantly larger than the
vertical one, at least at ionospheric altitudes. Since the Earth magnetic field lines are
oriented mainly vertically near the poles, the Lorentz force makes charged particles
move in a horizontal direction, forming vortex-like cells. External magnetic fields
due to solar wind and coronal mass ejections significantly influence these circula-
tion patterns in a complex fashion. Data on the spatial and temporal behaviour of
the solar plasma is scarce and efforts have been undertaken to develop parametriza-
tions aiming at describing the superimposed magnetic field as a function of easily
observable solar activity, such as the solar flux at 10.7 cm and other parameters (e.g.
Weimer 2001). An example of horizontal trajectories of electrons in the ionosphere
over the North Pole resulting from such processes, and computed using the Weimer
parametrization is shown in Fig. 1.

The complexity of ionospheric processes at high altitudes results in a somewhat
artificial, but often practically necessary, separation of numerical modelling efforts
into high latitude, and mid and low latitude parts. In this chapter we focus on the low
and mid latitude modelling. For a description of high latitude processes, the reader
is referred, for example, to Schunk (1988) and Schunk and Nagy (2000).

At low latitudes and the magnetic Equator, the Earth magnetic field lines are
aligned nearly horizontally. The neutral winds alternate between easterlies and
westerlies at day and night. This results in plasma being driven upward by the
Lorentz force during the day and downward at night (the so-called “E × B drift”).
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Fig. 1 Examples of
trajectories of electrons
moving in the ionosphere
over the North Pole computed
using the Weimer (2001)
parametrization

The magnitude of this effect decreases with altitude as the density of the neutral
atmosphere decreases. Once the plasma is transported upwards by this so-called
equatorial fountain, it descends northward and southward along the Earth’s mag-
netic field lines forming two pronounced maxima, located at about ±15◦ off the
magnetic Equator. An example of the spatial distribution of the plasma densities
obtained in the described numerical model is shown in Fig. 2.

In order to avoid complexities arising from modelling these electromagnetic
interactions from first principles, parametrizations have been developed allowing
one to readily approximate the vertical velocity of the equatorial plasma as a func-
tion of neutral wind velocity, time of day, and solar flux (e.g. Fejer and Scherliess
1995).

Fig. 2 A 3-D iso-surface of
electron densities in the
ionosphere illustrating the
effect of the equatorial
fountain. Note the two
pronounced maxima located
north and south of the
magnetic Equator. The
calculation uses the Fejer and
Scherliess (1995) empirical
model
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Ionospheric numerical models must take into account both the elementary pro-
cesses and transport processes described above in order to approximate the spatial
distribution and temporal behaviour of the ionospheric plasma. In the following
sections we describe a practical implementation of a numerical system taking these
processes into account and a related data assimilation methodology.

4 Modelling the Ionosphere

The ionospheric model described here is a numerical global model of the ionosphere
loosely based on the description given in Bailey and Balan (1996), Fuller-Rowell
et al. (1996), Millward et al. (1996), and Huba et al. (2000). More information about
the model and its validation can be found in Khattatov et al. (2005).

The model computes the spatial distribution and temporal evolution of seven
major ions (H+, O+, He+, O2

+, NO+, N2
+ and N+) and electrons. Other prognostic

variables include ion and electron temperatures and velocities.
The model solves the plasma dynamics equations for the seven ion species

and electrons, and the energy conservation equation for the three major ions and
electrons. It includes chemical interactions with neutral particles and ion-ion and
ion-neutral collision rates, photoionization, and several different types of heating.
The model variables are described in Table 1 below.

The model domain covers all latitudes and longitudes; however, polar transport
and source terms are currently turned off. As is customary in ionospheric appli-
cations, the dynamic equations are solved in magnetic coordinates since in the

Table 1 Model variables and constants

Symbol Quantity

Ni Density of ion i
Vi Field-aligned velocity of ion i
T i Temperature of ion i
Ne Electron density
Ve Electron field aligned velocity
Te Electron temperature
Pi Chemical production for ion i
Li Chemical loss for ion i
I Magnetic inclination angle
D Magnetic declination angle
Un Zonal neutral velocity
Vn Meridional neutral velocity
Vij Ion-ion collision frequency
Vin Ion-neutral collision frequency
Q,F Ion heating rates
g Acceleration of gravity
mi Mass of ion i
κ Thermal conductivity
k Boltzmann constant
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absence of electric fields plasma predominantly moves parallel to the direction of the
magnetic field. A detailed discussion of the coordinate transformation and related
equations can be found, for instance, in Millward et al. (1996). Here we give only a
brief overview for the benefit of readers not familiar with this subject.

The Earth’s magnetic field is approximated as that of a tilted eccentric dipole.
The first magnetic coordinate is magnetic longitude. For each magnetic longitude
we consider a “stack” of magnetic field lines characterized by the distance of the
apex of each line from the Earth’s centre at the magnetic Equator. This distance,
normalized by the Earth’s radius, is the second magnetic coordinate, p. Finally, for
each field line the distance from the apex to a particular point along the line gives
the third coordinate, s.

A portion of the model grid for low latitudes only is shown in Fig. 3 below. For
clarity, only select gridpoints are shown; the regular model configuration is 100 ×
100 × 100.

Once the field-aligned transport is solved for, the model computes the plasma
evolution due to cross-field transport. As discussed above, cross-field transport (the
so-called “E × B transport”) is forced by electric fields either imposed externally
from the magnetosphere or generated internally from the action of the neutral wind.
In the lower thermosphere the mobility of the ions is inhibited by collisions with
the neutral atmosphere. The dynamo action of the neutral winds drives currents that
through continuity create polarized electric fields. The ions respond to these elec-
tric fields by drifting perpendicularly to both the electric and magnetic fields. In
non-fully coupled models, like the one described here, the E × B plasma veloc-
ity is specified from external empirical models (e.g. Fejer and Scherliess 1995).
Once this velocity is known, solving the plasma advection equation is relatively
straightforward.

Fig. 3 A portion of the 3-D
model grid
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The densities and velocities of neutral particles in the model domain are obtained
from the well-known empirical models of Hedin (1991) and Hedin et al. (1996).

We now look at some specific features of the model.
Continuity equation for each ion: The numerical solution of the continuity equa-

tion should generate an ion density Ni given all related variables at time t. This
equation can be written in the magnetic coordinates as follows

∂Ni

∂t
− b2

s

∂
(

NiVi
bs

)
∂s

+ Ni · ∇V⊥ + ∇Ni · V⊥ = Pi − Li · Ni

where

bs =
√

1+ 3 cos2(eccLat) ·
(

Re

eccRadius

)3

∇V⊥ = 6 · Veq
⊥ sin2(eccLat) · (1+ cos2(eccLat))

p · Re · (1+ 3 · cos2(eccLat))2

eccRadius and eccLat are the radius and latitude of a particular point on the field line
in eccentric coordinates (for definition of eccentric coordinates see, for example,
Bailey and Balan 1996) and Veq

⊥ is the value of E × B drift at the magnetic Equator.
Momentum conservation equation: The numerical solution of the momentum

conservation equation generates the ion velocity Vi given all related variables at
time t. In general,

Vi = 1
N_Neutrals∑

n=1
νin +

N_Ions∑
j=1

νij

·

⎡
⎢⎢⎣
−g sin I + bski

mi

(
Ti

Ni

∂Ni

∂s
+ Te

Ne

∂Ne

∂s
+ ∂(Ti + Te)

∂s

)

+
N_Neutrals∑

n=1
νin(Vn cos D− Un sin D) cos I +

N_Ions∑
j=1

νijVj

⎤
⎥⎥⎦

Energy conservation equation: The solution of this equation generates an ion
temperature Ti(t+Δt) given all related variables at time t.

3

2
kNi

(
∂Ti

∂t
+ V⊥∇Ti

)
= kNiTib

2
s
∂

∂s

(
Vi

bs

)
− kNiTi · ∇V⊥

+ b2
s
∂

∂s

(
κ
∂Ti

∂s

)
+ 3

2
kNiVibs

∂Ti

∂s
+ Q+ F

Since the plasma heating rates Q and F are, generally, non-linear, this equation
has to be solved iteratively.
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Electron temperature equation: The electron temperature equation is similar to
the ion temperature equation (see immediately above), except that the conductivities
(κ) and heating rates (Q, F) are computed for electrons.

Electron density equation: The electron density is computed using the assump-
tion that overall the plasma is neutral, that is, electrons mainly originate when a
neutral particle is ionized. Thus electron densities are simply a sum of the densities
of all ion particles.

Ne =
Number of Ions∑

i=1

Ni

Electron velocity equation: The electron velocity equation assumes that there are
no field-aligned currents:

Ve =

Number of Ions∑
i=1

ViNi

Ne

5 GPS Data

Continuous soundings of the ionosphere by the Global Positioning System (GPS)
yield a convenient source of data for assimilation into ionospheric models. The
GPS (Parkinson and Spilker 1996) consists of several segments. As of mid 2008,
the space part of the GPS is a constellation of 30 satellites located in orbits about
20,000 km above the Earth’s surface. At any given time at least 4 satellites are
visible from most locations on Earth. Put simply, each GPS satellite emits a sig-
nal that contains a unique identification code (pseudo random number, PRN),
accurate time from an onboard atomic clock, satellite position, clock corrections,
and auxiliary information. A GPS receiver that has 4 or more GPS satellites in
view can, by “triangulation” in space and time, determine both precise time and
position.

The ground-based portion of the GPS consists of a network of several hundred
stations hosting highly accurate receivers whose locations are known to within a
millimetre. The stations continuously receive GPS satellite signals and deliver the
received data to several GPS computing centres. These centres utilize precise station
coordinates and the received GPS data in order to estimate GPS satellite ephemeris,
satellite clock corrections, satellite and station differential code biases (described
below), and other parameters. At regular intervals this information is uploaded to
each GPS satellite for broadcasting to end users.

GPS L-band frequency signals are delayed by the ionosphere by a time approx-
imately proportional to the total integrated electron content along the line of sight
between a receiver and a GPS satellite. These delays can result in positional errors
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of tens and occasionally hundreds of metres. To mitigate this effect GPS satellites
and high-end GPS receivers use signals at 2 different frequencies referred to as L1
and L2. Since the ionosphere is a dispersive media at these frequencies, it is possible
to estimate and remove the ionospheric delays and therefore estimate the slant total
electron content (TEC) for each dual-frequency receiver-satellite pair.

Estimation of the slant TEC using dual-frequency GPS receivers is made difficult
by the presence of so-called differential code biases (DCBs) in both satellite trans-
mitters and the receivers. Slight differences in the hardware channels of the antennas
and the receiver or transmitter introduce additional propagation time differences to
signals at the L1 and L2 frequencies. Satellite DCBs are generally small, equivalent
to several centimetres. GPS receiver DCBs can be quite large, often reaching metres
or tens of metres. Traditionally, these biases are estimated in the off-line mode after
accumulating a time series of measurements from a number of reference stations
(e.g. Mannucci et al. 1998). A combination of a 3-D numerical model with a spe-
cialized data assimilation scheme allows one to estimate these biases on-line, for
example in a scheme where the unknown state (electron densities at each model
grid point) is augmented with the DCB values for each utilized receiver.

6 Ionospheric Data Assimilation

The data assimilation approach adopted here resembles that of Khattatov et al.
(2000). Let us assume that model estimates of electron densities at all grid points
at time t are arranged in a vector x with dimension Nx. Formally, integration of the
non-linear model M can be written as

xt+�t =M(t, xt) (1)

Let vector y contain observations of a quantity linearly related to electron densi-
ties at the same time. In the case of GPS reference station data such quantities are
slant TEC from each station to all satellites in view.

The connection between x and y is established via linear interpolation and
integration of the non-linear observation operator H as follows:

y = H(x). (2)

Under assumptions of linearity (e.g. H is replaced by the linear H, M is replaced
by the linear M) and Gaussian statistics, the optimal value of x that inverts Eq. (2)
given a set of observations y and model estimates of x is given by the Kalman filter
(for example, see chapter Mathematical Concepts of Data Assimilation, Nichols):

xa
t = xt +K(y−Hxt) (3)

K = BtHT(HBtHT +O+ R)−1 (4)
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Here Bt is the forecast error covariance at time t. O is the error covariance matrix
of the observations and R is the representativeness error covariance associated with
errors of interpolation and discretization. Matrix K is called the Kalman gain matrix.

The analysis error covariance is expressed as:

Ba
t = Bt − BtHT(HBtHT +O+ R)−1HBt. (5)

Once inversion of Eq. (2) is performed, the derived electron densities, xt
a, can be

used as the initial condition for the model M to predict electron densities at a later
time (at the beginning of the next assimilation window) according to Eq. (1).

Since the model domain contains about 106 points, direct matrix manipula-
tions described by Eqs. (3), (4), and (5) are generally impossible to implement
explicitly in practice. As customary in large-scale Kalman filter implementations
in NWP and other areas of atmospheric sciences (see, e.g., chapter Constituent
Assimilation, Lahoz and Errera), we track only the evolution of the diagonal of
the background error covariance matrix and parametrize the off-diagonal elements.
If we also assume that correlations between variations of electron densities at two
different points become negligible at certain distances (i.e., we assume compactly
supported error covariance models), the matrices become sparse and the above-
mentioned calculations become possible. Further details can be found in Khattatov
et al. (2000).

We argue that since plasma equations are solved in magnetic coordinates, in order
for the background error covariance to be separable, the correlation lengths and
distances between points need to be specified in magnetic rather than geographic
coordinates. This is the approach adopted here.

Let us now recall that measurements of slant TECs by GPS reference stations
often contain large unknown biases. Formally, slant TEC measured by a particular
station is a sum of “true” and “unknown” slant TEC and receiver and satellite biases
(denoted by br and bs, respectively):

yobserved = ytrue + br + bs

Depending on the local time, the magnitude of these biases is often signifi-
cantly larger than the actual slant TEC. Clearly, in order for the data to be useful,
these biases need to be determined and accounted for (see chapter Bias Estimation,
Ménard). This can be accomplished by augmenting the state vector x with satellite
and receiver biases. Since the size of x is ~106, the number of satellite biases is ~30
(corresponding to the number of operational GPS satellites), and the number of GPS
stations we currently use is ~100, this does not lead to any significant increase in
the number of unknowns.

In principle, both satellite and station biases can be continuously computed using
this method. At this stage in the development process we choose to use fixed broad-
cast satellite biases and only determine receiver DCBs. This can be justified by
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noting that satellite biases are perceived to be generally better known than the
receiver biases and are slower varying.

The assimilation system consisting of the numerical model and the GPS data
assimilation scheme described above has been extensively validated using vari-
ous methodologies. Further discussion, including validation results can be found
in Khattatov et al. (2005).

7 Impact of Ionosphere on Telecommunications, Scintillations

High frequency (metre length) electromagnetic waves can bounce off the iono-
sphere to the surface and back several times, thus potentially travelling thousands
of kilometres between the transmitter and a receiver and enabling very-long range
communications. On the other hand, when ionospheric conditions are disturbed
and the radio signal is absorbed or scattered instead of being reflected, such a
propagation mode may not be possible.

The need for such long-range communications decreased with the advent of
ground-to-satellite and satellite-to-ground communications. Yet the ground-space
communications also are affected by the ionosphere, at least at some frequencies. In
particular, our increasing reliance on the GPS makes adverse ionospheric conditions
interfering with such communications particularly perceptible. This has driven the
need for accurate nowcasting and forecasting of ionospheric conditions.

One of the most disruptive phenomena affecting transmission of electromag-
netic signals in the ionosphere are scintillations, or plasma bubbles. These are small
scale perturbations of the ambient electron densities that, under certain conditions
(Rayleigh-Taylor instability), can rapidly grow and result in partial or complete fad-
ing of the GPS signal. This effect is akin to not being able to see through a body of
water when waves are present at the surface.

An example of such interruption is shown in Fig. 4. The figure depicts slant
electron content between a stationary GPS receiver and several GPS satellites over
24 h. Different lines correspond to different GPS satellites. As the satellites appear
above the horizon or move to lower elevation angles the TEC values are large. At
local night time (hours 15–24 in Fig. 4) the TEC values are quite low. Near sunset, at
around 1200 UTC, the GPS signals are completely interrupted. This is followed by
period of abrupt variability in the GPS signal, indicative of ionospheric disturbances.

Thus, the capability to forecast scintillations and to warn the end user about
possible upcoming service interruptions can be rather valuable.

One can separate approaches to modelling and forecasting scintillations into two
major classes. The first approach aims at explicitly resolving growth and evolution
of these instabilities with very high-resolution fluid dynamics code, and diagnosing
favourable conditions for appearance of scintillations. This approach is likely not to
be practically feasible on a global scale for a number of years due to the necessity
to resolve very small spatial scales.

The “probabilistic” second approach (e.g. Sultan 1996; Secan et al. 1995) uses
ambient properties of the ionospheric plasma such as ion and electron densities,
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Fig. 4 Slant TEC estimates from the model (solid lines) and GPS receiver (dots) as a function of
GPS time for August 24, 2005. Note the sharp onset of scintillations at GPS time (UTC time) 1100
just after the local sunset

and density gradients; ion and density collision frequencies; recombination rates;
inclination and declination of the magnetic field lines; and ion velocities and tem-
peratures, to compute the linear growth rate of plasma instabilities as a function of
geographic location and time. The greater the growth rate, the higher the likelihood
of severe scintillations.

Fig. 5 A map showing diagnosed scintillation growth rates. Relatively higher rates are marked in
red
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Since all the necessary parameters are routinely computed in the assimilative
numerical model described here, it is relatively straightforward to diagnose the scin-
tillations’ growth rates. An example of the calculated average growth rates is shown
in Fig. 5. Regions evidenced clearly distinguishable in the picture have favourable
conditions for occurrence of scintillations.

8 Application to Single-Frequency GPS Positioning

One of the main practical applications of the developed ionospheric specification
system is the augmentation of positioning capabilities of single-frequency GPS
receivers. Free electrons in the ionosphere delay the group velocity and advance the
phase velocity of the GPS signals emitted by GPS satellites. This and other sources
of errors (e.g. offsets in satellite clocks, inaccurate ephemeris) impact the accuracy
of the derived distance between the receiver and a satellite (the “pseudorange”).
Since the ionosphere is normally non-homogeneous, ionospheric delays are differ-
ent for different visible GPS satellites. If these delays are not properly accounted for,
they will interfere with the GPS receiver’s ability to accurately compute its position.

Slant electron content of 1 TEC unit (1016 electrons m–2) between a receiver
and a GPS satellite results in approximately a 16 cm positioning error on the L1
frequency along the line of sight between the receiver and the satellite. Thus, a
relatively common slant ionospheric electron content of 50 TEC units results in
approximately an 8 m positioning error, which is significant for many applications.
Ionosphere-induced signal propagation delays are the major source of errors for
single-frequency GPS receivers.

Dual-frequency receivers can estimate and remove ionospheric delays from their
measurements; however, this process requires additional time. This is related to the
fact that the TEC estimated from pseudorange measurements is very noisy. In order
to obtain usable TEC values, pseudorange-derived TEC needs to be smoothed using
phase measurements in a process called “phase levelling” (see Blewitt 1990 for
a discussion). This process can require between 10 and 60 min of data collection
during which the receiver will not be able to compute its position accurately.

Therefore, externally-supplied accurate estimates of slant delays between a
GPS receiver and visible GPS satellites can be very useful to users of both
single-frequency and dual-frequency receivers.

The ionospheric assimilation system described in Sect. 6 has been used in a GPS
augmentation system consisting of several integrated components:

• A software package that communicates with a user’s GPS receiver attached
to a laptop or a PDA (Personal Digital Assistant). The software collects raw
pseudorange and phase data from the GPS receiver;

• A software package that communicates this collected data to a backend com-
puting server via the Internet and receives processed results from the backend
server;

• An ionospheric modelling and assimilation system that generates ionospheric
delays for the approximate receiver location to visible GPS satellites;
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Fig. 6 A photograph of a
Pharos single frequency GPS
receiver attached to a
notebook computer

• A positioning engine (courtesy of GPS Solutions Inc) that computes accurate
receiver coordinates, accounting for ionospheric delays and precise GPS satellite
orbits and clocks.

The augmentation system’s primary application is enhancing accuracy and
robustness of positioning with inexpensive single frequency receivers such as those
produced by Pharos or Garmin manufacturers. Preliminary results have demon-
strated meaningful practical improvements in positioning quality. The rest of this
section outlines the system design and presents sample positioning results.

At the hardware level, the end user has a laptop computer or a PDA device with a
single frequency GPS receiver attached to it via a USB cable or Bluetooth. Results
shown here demonstrate positioning functionality with an off-the-shelf $200 Pharos
GPS receiver shown in Fig. 6. The setup used to collect data in the field is illustrated
in Fig. 7.

Fig. 7 Collecting data in the
field with a Pharos receiver
attached to a laptop computer
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The end-user software allows the user to start and stop the collection of raw
data from the GPS receiver and shows visible GPS satellites. After completing data
collection the user can upload collected data files to the server via the Internet.
This can be done either in the field, if the user has wireless Internet connection,
or later in a post-processing mode. The software running on the backend server
authenticates the user, and archives the collected data files and related metadata.
It then invokes a program that computes slant total electron content between the
approximate user receiver position and all visible GPS satellites at that time, from
archived 3-D distributions of the ionospheric electron content.

Once slant TEC values are computed, these data together with the receiver raw
data and metadata files are passed on to the positioning engine. The positioning
engine uses predicted precise GPS satellite orbits and clock corrections to compute
satellite positions and then computes an accurate user position after adjusting raw
receiver data for ionospheric delays. The computed position together with graphical
auxiliary data is transmitted back to the user.

Figure 8 shows typical errors in the positioning solutions computed by the
receiver itself (blue dots) and by the described augmentation service (red dots). Each
dot corresponds to a single receiver measurement, normally reported every second.

Note that the receiver solution shown here was not aided by the US Federal
Aviation Administration’s Wide Area Augmentation Service (WAAS). Clearly, the
service is capable of significantly improving positioning accuracy. Figure 9 shows
similar data, but in the case when the receiver was receiving the WAAS signal.

Fig. 8 Positioning errors (metres) of standalone receiver (blue) the augmentation service (red).
No WAAS augmentation is employed by the receiver. x-axis: East-West position error; y-axis:
North-South position error
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Fig. 9 Similar to Fig. 8 but with WAAS augmentation

As these results show, inexpensive single frequency GPS receivers can be used
to achieve positioning accuracy of 1–2 m with appropriate augmentation relying on
data from ionospheric assimilation models and using precise GPS orbits and clock
corrections.

9 Future Directions

A lot of research, resources and time are required for proper forecasting of the solar
drivers that affect ionospheric conditions. Thus, mature medium- to long-term fore-
casting of the ionosphere, which is a very worthy scientific and engineering goal,
is only likely to be realized far into the future. Yet, as we show here, nowcasting
and accurate post-processing are achievable at the present time and have practical
uses. In this author’s opinion near future advancement of ionospheric assimilation
will likely proceed along the following directions:

• Increasing amounts of assimilated GPS data: This is dependent on installing new
ground GPS stations and making their data available to users. Since significant
financial expenditure is needed for installing a station, this process is likely to be
gradual;

• Assimilation of data from new sources, primarily GPS occultation measure-
ments such as those obtained from the recently launched COSMIC (Constellation
Observing System for Meteorology Ionosphere and Climate) satellite (see, e.g.,
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Rocken et al. 2000). Addition of occultation and in situ measurements will pro-
vide a wealth of information on the vertical distribution of electron densities
which is not readily obtained from ground-based GPS data;

• Making ionospheric assimilation models operational and their results readily
available to interested end users: As is well known from numerical weather
forecasting, which has evolved from a research setting to a robust and reli-
able operational implementation, this evolution is a non-trivial engineering task
that requires significant human and technical resources. Yet such evolution is
necessary in order to make ionospheric nowcasting usable in practice;

• Decreasing data latencies: A large class of GPS users are interested in having
ionospheric information in real time for purposes such as surveying, high-
precision agriculture, construction and others. Yet a majority of freely available,
public GPS observations that can be assimilated into models are available with
delays ranging from minutes, to hours to days. Many brands of modern geodesic
quality GPS receivers can simply be “plugged in” to the Internet and stream their
data in real time. However, in practice, even if the owner of such a receiver
decides to make the data publicly available, authentication and data access to
a network of such receivers present a hurdle. The recently developed NTRIP
protocol (http://igs.bkg.bund.de/ntrip/NTRIP.htm) and related software provide a
way for moving toward a solution to this problem. In addition, obtaining such
data, assimilating it, and delivering to users the resulting product with very short
latencies (~1–10 s) is a complex engineering task.
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Reanalysis: Data Assimilation for Scientific
Investigation of Climate

Richard B. Rood and Michael G. Bosilovich

1 Introduction

Reanalysis is the assimilation of long time series of observations with an unvarying
assimilation system to produce datasets for a variety of applications; for example,
climate variability, chemistry-transport, and process studies. Reanalyses were orig-
inally proposed for atmospheric observations as a method to generate “climate”
datasets from “weather” observations. As the satellite records of chemical, land
and oceanic parameters build with time, “reanalyses” are being developed for other
types of observations. Coupled reanalyses, for example atmospheric-ocean reanaly-
ses, are possible. In addition, very long reanalyses that use no satellite observations
are being planned (e.g. Compo et al. 2006). Reanalysis datasets have become one
of the most important datasets for scientific and application communities. As of
July 2009, the Kalnay et al. (1996) paper, which describes one of the first reanaly-
sis datasets, has more than 6,600 recorded citations. In this chapter discussion will
be drawn from the experience of atmospheric reanalysis, and the issues raised are
relevant to all types of reanalysis.

The provision of reanalyses was advocated by Bengtsson and Shukla (1988) and
Trenberth and Olson (1988) in order to provide homogeneous datasets for climate
applications and to encourage research in the use of satellite observations with-
out the operational constraints of Numerical Weather Prediction. Trenberth and
Olson (1988) calculated derived products, such as the Hadley circulation, from
assimilation analyses used in operational weather forecasting. They found large
discontinuities in time series of these derived quantities. The discontinuities were
clearly linked to changes in the assimilation system, such as changes in the forecast
model. Given the four-dimensional (time and space) nature of assimilated datasets
and the success of assimilation in providing initial conditions for weather forecast-
ing, it was logical to propose using a single, non-varying assimilation system to
generate a long time series for the purpose of investigating the Earth’s climate.
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Kalnay and Jenne (1991) proposed that a reanalysis be performed as a part-
nership between the National Meteorological Center (NMC, now part of the
National Centers of Environmental Prediction, NCEP) and the National Center for
Atmosphere Research (NCAR). This project required the preparation of the input
datasets, the definition of the analysis system, and a data distribution plan. The anal-
ysis system was a version of the operational system used for weather prediction, but
at lower resolution.

Three organizations performed a first generation of reanalyses in the spirit
of Bengtsson and Shukla (1988) and Kalnay and Jenne (1991). Aside from the
NCEP/NCAR reanalysis (Kalnay et al. 1996), the European Centre for Medium-
Range Weather Forecasts (ECMWF) executed the ERA-15 project (Gibson et al.
1997) and the Data Assimilation Office (DAO, now the Global Modeling and
Assimilation Office, GMAO) at NASA’s Goddard Space Flight Center provided
the 17-year Goddard Earth Observing System, Version 1 (GEOS-1) reanalysis
(Schubert et al. 1993). These three reanalyses have been cited in many studies,
which document successes as well as identifying a series of shortcomings that stand
at the core of future research. New reanalyses have come from these and additional
organizations.

The quality of the first-generation reanalyses is documented in the proceedings
from two workshops (WCRP 1998, 2000; see also, Newson 1998). Kistler et al.
(2001) gives an excellent overview of the NCEP/NCAR reanalysis project, and
the discussions in that paper are relevant to all of the projects. Quantities that are
directly constrained by the observations, i.e., temperature, geopotential, and the
rotational component of the wind, are consistent across the three reanalyses. At
the other extreme, quantities that are only weakly constrained by the observations
or are dependent upon the physical parametrizations of the assimilating models
differ greatly. Further, these derived quantities, which include the divergent compo-
nent of the wind, precipitation, evaporation, clouds, fresh-water runoff, and surface
fluxes, have significant uncertainties, as revealed either by independent validation
or through applications in scientific studies.

Following this first set of reanalyses there is a second generation that strives to
address some of the deficiencies of the first generation of reanalyses as well as to
extend the reanalyses to earlier times. Kanamitsu et al. (2002) describe the incre-
mental evolution of the original NCEP/NCAR reanalysis, which was performed
in partnership with the United States Department of Energy (hence, NCEP/DOE
reanalysis). ECMWF produced a 40 year reanalysis (Uppala et al. 2005) with sig-
nificant incorporations of lessons learned. Both of these reanalyses did benefit from
improvements to the assimilation system and from better treatment of the observa-
tions. However, there remain in these datasets some deficiencies that are, perhaps,
intrinsic to reanalysis datasets. These deficiencies are related to the variability of
the observational data stream and to the representation of the hydrometeorological
and energy cycles. These subjects will be explored in more detail in this chapter.
Reanalysis datasets, especially those generated at NASA’s GMAO, have been used
extensively in constituent transport applications (e.g. Bey et al. 2001; Douglass et al.
2003). Like studies involving the hydrometeorological cycle, constituent transport
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studies require closed, physically consistent budgets. That is, the reanalysis products
need to satisfy fundamental conservation equations. The results from these studies
highlight that assimilated datasets do not satisfy conservation principles and, hence,
are not physically consistent. The development of physically consistent assimilated
datasets remains a research challenge (see chapter The Role of the Model in the Data
Assimilation System, Rood).

In addition to the extensions of the original reanalysis efforts, there have been
new reanalysis efforts. The JRA-25 was generated by the Japan Meteorological
Agency and described by Onogi et al. (2007). This reanalysis has paid specific atten-
tion to improvement of precipitation, and the representation of global precipitation
is improved relative to the ERA-40 and NCEP/DOE reanalyses. Mesinger et al.
(2006) document NCEP’s North American Regional Reanalysis (NARR), which is
a high resolution regional reanalysis that uses the global reanalysis as the boundary
conditions for a regional model-assimilation system.

Recently, first results from two new products were released. These are NASA’s
Modern Era Retrospective-analysis for Research and Applications (MERRA) and
ECMWF’s ERA-Interim (Links are provided at the end of the chapter.). These
reanalyses have had significant attention paid to the input data stream, data qual-
ity control, bias correction, and the interface between the model and the analysis
system. They are designed to address many of the problems discussed below. The
first results suggest significant progress has been made.

Trenberth et al. (2008b) and Bengtsson et al. (2007) summarize the state of the art
at the time of this writing and argue for continuing research to improve reanalysis.
Based on the successes of reanalysis in climate science, there is broad agreement
that the improvement, the extension, and the production of reanalyses are an essen-
tial element of the business of climate research. This is a rapidly changing field,
with much of the current information found online from institutional and project
websites. A snapshot of these activities is given at the end of this chapter to provide
an introduction into current information. The chapter will next highlight some of the
special aspects of the problem of data assimilation intended to be used in the sci-
entific investigation of climate and constituent transport. This will be followed by
sections on hydrometeorological applications of reanalysis and constituent transport
applications. Finally, a discussion of the challenges for future reanalysis projects
is presented. The references and examples here are expository and by no means
comprehensive.

2 Special Aspects of the Reanalysis Problem

This section presents, first, lessons learned from reanalysis activities. Then two
related aspects that provide difficult challenges to reanalysis, heterogeneity of the
input data stream and bias, are discussed. The impact of data heterogeneity and bias
on trends derived from assimilated datasets is then highlighted.

Lessons learned. The lessons learned from the first-generation reanalyses
provided the foundation for a second generation of reanalyses. These lessons can
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be summarized as general success in defining the major modes of variability on
synoptic and planetary scales, as well as credible representation of the variabil-
ity associated with longer-term, large-scale phenomena: e.g. monsoons, El Niño
– La Niña, and the Madden-Julian oscillation. The deficiencies include fundamental
problems in the hydrological cycle and the general circulation as well as artifacts in
the reanalysis datasets that are directly related to changes in the observing network.
The representation of tropical meteorological features is not as robust as the repre-
sentation of the middle latitudes. The quality in the Arctic and Antarctic is highly
variable (Bromwich et al. 2007).

Most of the primary references that describe reanalysis datasets and workshop
reports have stated that reanalyses are not appropriate for trend studies (WCRP
1998, 2000; Newson 1998; Kistler et al. 2001). This is attributed, first, to the sensi-
tivity of the assimilated dataset to changes in the observing system. Variables that
are prescribed by the physical parametrizations are more sensitive to variability in
the observing system than those variables that are directly specified. Furthermore,
as was revealed by the deliberations of the Ozone Trends Panel (1988), the best
trend determination is often determined by explicitly computing the behaviour of
separate observational streams. Bengtsson et al. (2004) and Santer et al. (2004)
perform trend analyses with reanalysis datasets; their work will be discussed more
thoroughly below.

An important product from the first and second generation reanalyses is the
quality-controlled input data record (Onogi 2000; Haimberger 2006). This examina-
tion of the input data record comes from comparing the input data stream with model
estimates of expected values as well as with neighbouring observations. Information
is provided on both global and local observing systems. For instance, it is possible to
establish jumps in mean quantities as satellite instrumentation changes as well as to
quantify changes in instrument performance. For the radiosonde network measure-
ment differences between the instruments used by different countries and provided
by different vendors are quantified. For other types of observations, for example
shipboard observations, it is possible to identify systematic errors that establish that
the observing sensor is not at the reported altitude above the sea’s surface. The
quality control information obtained from reanalysis projects is a potentially rich
research product that is underutilized. As institutions push forward with new reanal-
yses, they are committed to sharing these quality-controlled input datasets. This will
improve the robustness of future conclusions drawn from reanalysis datasets as one
source of non-geophysical variability will be reduced.

There are other unique lessons learned from the reanalysis activities. One is that
modern assimilation systems applied to the historical observations improve fore-
casts. A number of notable forecast failures in the pre-satellite era have been studied
and forecast quality is greatly improved (see Kistler et al. 2001). This validates
that research investments in model development and the evolution of assimila-
tion methodology have beneficial impact. Another result of note is that methods
of data treatment that have been applied in weather prediction might have to be
reconsidered in climate applications. For instance, direct consideration of aerosol
radiative effects on infrared observations might be important during periods of vol-
canic activity to assure the accurate use of radiances. Finally, the reanalyses help
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to focus attention of those observations needed to address the key uncertainties in
energy, moisture and constituent budgets, providing guidance for future observing
systems.

Heterogeneity of the input data stream. The input observations used in reanal-
ysis come from many sources. Historically, the bulk of the measurements to be
assimilated are extracted from those collected, operationally, for weather forecast-
ing. These measurements include observations of the surface conditions over land
and ocean, observations from weather balloons and airplanes, and remotely sensed
observations from satellites. The instruments used to make these observations
were not designed with calibration standards to establish long-term, climate-quality
datasets. Further, observing systems deployed by different countries and different
agencies within countries were not (and are not) procured and deployed in a way to
assure consistent accuracy.

Added to the observations collected for operations are those observations col-
lected for research. A present and growing practice is to use research observations
in operational applications (see chapter Research Satellites, Lahoz). Reanalysis
projects are ideally suited to include research-data streams that were not appro-
priate for real-time applications when they were originally collected. Some of
these research observations were collected in campaigns of limited temporal span
and spatial extent. Others have been collected during multiyear satellite missions.
Data archeology, pioneered by Roy Jenne at the National Center for Atmospheric
Research in the United States, recovers some of these research data so they can
be brought to bear on reanalysis problems. These recovered datasets are especially
important for the quality of the reanalyses prior to 1960.

One of the most obvious discontinuities in the observing system is the beginning
of the record in 1979 of operational, polar-orbiting satellites. Prior to this time, the
upper air observing system was dominated by order 105 radiosonde observations
per day. The radiosonde observations were (and are) concentrated in the Northern
Hemisphere. Besides differences in spatial and temporal coverage, the jump in 1979
is related to specific characteristics of the profile-by-profile observations. For exam-
ple, the vertical resolution of the radiosondes is much higher than that of the satellite
observations. One result of this is that near the tropical tropopause the poorer res-
olution of the satellite observations manifests itself as a positive temperature bias.
There are numerous sources of bias between radiosonde and satellite temperature
observations, and these vary with space and time.

A specific, subtle example of the impact of input data heterogeneity is from
the radiosonde network itself (Lait 2002; Redder et al. 2004; Haimberger 2006).
Radiosondes provide what some consider to be the single most important class
of observations of the upper air. This might be arguable in the current era of
high quality satellite observations and as satellite assimilation techniques improve,
but there is no argument that the radiosonde network is of paramount importance
prior to the satellite era (see chapter The Global Observing System, Thépaut and
Andersson). The radiosonde measurements have benefited from much scrutiny, and
strategies to develop climate quality datasets have been exercised. Different coun-
tries use different types of radiosondes, and within a country, several manufacturers
of radiosondes are used. There is no consistent calibration of radiosondes.
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Radiosondes
Colour-coded
By manufacturer

Difference from
Zonal mean
Geopotential

Fig. 1 From Lait (2002). The left panel shows the distribution of radiosondes observations
over eastern Europe, colour-coded by manufacturer. The right panel shows the difference of
the radiosonde heights from the zonal mean analysis. The different types of radiosondes group
together, and a spurious circulation separates the different types of radiosondes. See also Rood
(2003)

Lait (2002) examines the impact of the heterogeneity of the radiosonde network
on the quality of the assimilation analysis. Lait subtracts the zonal mean geopoten-
tial height from that of the radiosonde observation. This reveals persistent anomalies
clustered by radiosonde type. A regional aspect of this impact is shown in Fig. 1. The
left panel shows the radiosondes over eastern Europe, colour coded by manufacturer.
The right panel shows the difference of the geopotential height from the zonal mean,
still, colour coded by manufacturer. The eastward lying observations are between 30
and 40 geopotential metres higher than the westward lying observations. This height
gradient is persistent with altitude. A wind error of order 5 ms–1 is consistent with
this height gradient in a part of the atmosphere where the expected wind speed is
order 10 ms–1. Lait (2002) identifies persistent wind patterns, seemingly spurious
rivers of air, surrounding regions of differing radiosonde instrumentation. Again,
this is directly related to biases in the observations of fundamental geophysical
parameters (see chapter Bias Estimation, Ménard).

The discussion above brackets the extremes of the issues associated with data
heterogeneity. At one extreme, when a new global observation type is added to the
observing system, large changes in the assimilated data product are realized. In the
case of the radiosondes, subtle biases between different types of radiosondes were
shown to have large enough impact on the analysis of wind to impact the quan-
tification of atmospheric transport. Between these two extremes are a whole set of
impacts that might be expected when new data types are introduced. For example,
the introduction of scatterometry data to define the ocean surface winds or precipita-
tion observations to define the hydrological cycle will, no doubt, improve the quality
of the assimilated data product. However, these improvements will be accompanied
by changes in mean quantities such as surface pressure, precipitation, and outgoing
longwave radiation; hence, leaving a signal in the reanalysis time series that is not
of geophysical origin.
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Alternatively, the exquisite sensitivity of the reanalysis to the input data stream
suggests that the assimilation process is an outstanding monitor of the quality of the
observing system. Štajner et al. (2004) provide one example of using assimilation to
monitor the observing system by detecting variability as a function of satellite scan
angle, changes in retrieval techniques, and orbital degradation.

Impact of bias. Data assimilation theory has been implemented, primarily, under
the assumption that the information from the observations is unbiased relative to the
information from the model (see chapters in Part I, Theory). That is, given a parame-
ter such as temperature, the time mean of the observations subtracted from the mean
of the model prediction is zero. However, as the previous discussion on heterogene-
ity in the observing system shows, the observations themselves are biased relative to
each other even within the same nominal instrument type, e.g. the radiosondes and
the succession of operational satellites. Different observing systems measuring the
same geophysical parameter are expected to have bias between each other. There are
systematic errors in the models. These systematic errors have regional and temporal
dependencies. The assimilation quality is impacted by the bias between model pre-
diction and observations as well as the bias between different pieces of the observing
system.

One of the classic bias problems of data assimilation is known as the “spin-up”
problem. Precipitation is determined to first order by the estimation of temperature
and humidity and the use of these estimates by the physical parametrizations of
the model. In the absence of assimilation the model determines precipitation based
upon the model’s temperature and humidity. Often when the observation-corrected
temperature and humidity that comes from the assimilation are used, precipitation
far in excess of that which is observed is estimated. This biased estimate of precip-
itation suggests that fundamental processes in the model are not well represented
on the scale of the observations; i.e., there is substantial model error. In this case,
since temperature is relatively smooth and estimated well by the model, the errors
can be linked to the moisture field. It is often the case that the vertical structure of
the moisture field is in error. Specifically, there is a discrepancy between amount of
moisture modelled and observed in the planetary boundary layer, as contrasted with
the upper troposphere. Over the course of the forecast, excess moisture rains out and
the model “spins up” to a balance.

From the point of view of short-term prediction, directly assimilating informa-
tion that corrects the physical parametrizations can have a large positive impact. Hou
et al. (2001, 2002) have shown that assimilating satellite precipitation observations
improves both forecast skill and the estimate of important metrics of the climate
system, for example, outgoing longwave radiation. Still, however, the physical pro-
cesses in the model are always tending towards their biased state, and the correction
by the insertion of observations is not without consequence. The general circula-
tion, the time averaged, spatially averaged dynamics of the atmosphere, is where
the consequence is usually realized (see, for example, Chen et al. 2008a). This will
be discussed more thoroughly in the section on constituent transport modelling.

Ultimately, the quality of assimilation analyses will be dependent on eliminating
the bias between the model and the observations. Assuming that the observations
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can be corrected in some way to eliminate the bias between different instru-
ment types, the elimination of bias between the model and observations relies on
improved model quality. Much of this improvement will come from better physical
parametrizations and will require reformulation of physical parametrizations. Such
development will be based on improved, more complete observations and modelling
algorithms that can utilize the observed information. In the meantime, however,
there is potential benefit derived from bias correction.

Figure 2 demonstrates a prescribed, idealized system and an estimate of that sys-
tem by model-data assimilation. The smooth line shows the known mean state, i.e.,
climate. The segmented line shows a series of model forecasts corrected intermit-
tently by a set of observations that, over time, are randomly distributed around the
known mean state. In the top plot the model forecast is unbiased; in the bottom
plot the forecast is biased. In both plots the observations are unbiased. At a given
time, 1979, the observing system is changed so that more observations are taken.
This is symbolic of the increase in temporal and spatial resolution that occurred
when satellite observations became operational. In the top plot when the model pre-
dictions are unbiased, the mean error in the analysis remains essentially the same
before and after the change in the observing system. In the bottom plot, where the
model prediction is biased, the increase in density of the observations reduced the
mean error in the analysis by half, leaving a jump in the estimate of the mean state.
Therefore, even if the mean state of the observations is homogenized prior to assimi-
lation through some calibration procedure, as long as there is model error, reanalyses
will be subject to errors based simply on improved data coverage.

Dee (2005) investigates the role of bias in assimilation. Dee posits that all compo-
nents in the assimilation system are a potential source of bias and can propagate and

Fig. 2 This figure is adapted from Dee (2005). The solid line represents a known true state of an
idealized climate system. The red dots are observations of the system. The blue lines are model
forecasts of the mean state following assimilation of the observations into the model. In the top
frame the model is not biased. In the bottom frame the model is biased. Figure courtesy of D.P.
Dee; see also Rood (2003)
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enhance bias. Techniques to account for the bias require the use of ancillary informa-
tion that may come from independent observations of known quality or theoretical
evaluation of the source of the bias. In some cases it is not difficult or expensive
to estimate bias and apply a correction algorithm (Dee and da Silva 1998). This
can improve the quantitative integrity of the assimilated dataset and have positive
impact, especially on prediction of parameters that are being assimilated. However,
the bias correction is ultimately compensating for shortcomings in the system. This
often implies that the model physics (or chemistry) are not correct, and this will
ultimately manifest itself somewhere in the assimilated dataset.

Dee (2005) investigates the development of bias-aware assimilation techniques.
With consideration of the possible sources of bias, it is possible to develop adap-
tive techniques to compensate for the bias. This is a formidable and, sometimes,
imprecise task as bias is known to have multiple sources with spatial and temporal
variability. As pointed out by Dee such techniques will “by construction, reduce the
mean analysis increments, but not necessarily for the right reasons.” The role of bias
in data assimilation remains a fundamental problem (see chapter Bias Estimation,
Ménard), and it is of particular importance to the development of reanalyses for
climate and constituent transport applications.

The temporal averaging or smoothing that is intrinsic in the 4D-Var
(four-dimensional variational) assimilation technique (see chapter Variational
Assimilation, Talagrand) can reduce the effects of certain types of bias; however,
there is nothing intrinsic in 4D-Var that eliminates the effect of bias through first
principles. The type of bias that is most impacted is that where the model forecast
is accurate and the statistics of the observations are such that a temporal average
over the time interval of the forecast-assimilation cycle are unbiased relative to the
model. Persistent biases that are related to the inadequacies of model representation
of variables or instrumental characteristics will continue to impact negatively the
assimilated data product in 4D-Var systems.

Impact of data heterogeneity and bias on trend determination. Simmons et al.
(2004) investigate surface temperature trends in reanalyses and surface station
observations and find complex relationships between the observation system and
spatial and temporal scales. Bengtsson et al. (2004) assess the ability to deter-
mine trends with the ERA-40 reanalysis for several geophysical parameters. They
investigate directly constrained variables (temperature), weakly constrained vari-
ables (integrated water vapour), and derived parameters (kinetic energy). If trends
are calculated without regard to the observing system, then large spurious trends
are found in all of the parameters. If the datasets are split into segments where
the observing system is quasi-homogeneous then more convincing trends are deter-
mined. With special scrutiny, it is possible to provide corrections that improve the
trend determination. Still, this study concludes “that there is significant uncertainty
in the calculations of trends from present reanalyses data.” (Bengtsson et al. 2004).

Bengtsson et al. (2004) studied, primarily, global trends. The global average has
the potential for errors to compensate in the averaging process. Bromwich et al.
(2007) compare ERA-40, NCEP/NCAR, and JRA-25, with a focus on represen-
tation of high latitudes; they also provide a good introductory summary of the
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attributes of the different products. They note that the reanalyses are more accurate
in the Arctic than the Antarctic, introducing the idea that there is regional hetero-
geneity in the quality. Further, they show that the summertime is more accurate
than the wintertime, especially before the availability of satellite data. Hence, there
is temporal heterogeneity in reanalysis products. There are significant differences
between the reanalysis products. In the case of the Polar Regions, there are signif-
icant differences in atmospheric circulation and the propagation of weather-scale
waves. Bromwich et al. (2007), also, point out significant sensitivity to the details of
the satellite observing system revealed in the preparation for NASA’s Modern Era
Retrospective-Analysis for Research and Applications (MERRA); it is not simply a
matter of satellite/no satellite.

In the case of the MERRA reanalysis, the Special Sensor Microwave/Imager
(SSM/I) is a significant change in the satellite data observing system, being a new
instrument yielding profiles of moisture and temperature. Onogi et al. (2007) show a
change in precipitation (an improvement) with the availability of SSM/I. Bosilovich
et al. (2008) tested the impact of SSM/I in July/August 1987, when it is initially
available. Figure 3 shows that there is a change in the character of precipitation in the
MERRA system. This leads to a 10% increase in tropical (15ºS–15ºN) precipitation
when SSM/I radiances are assimilated.

Santer et al. (2004) use both first and second generation reanalysis products to
investigate possible trends in tropopause height and the attribution of that trend to
greenhouse gas global warming. This study provides a summary of the strengths and
weaknesses of reanalysis products, and emphasizes the importance of the coher-
ent dynamical structure provided by the reanalyses in determining trends. This
coherency helps to define correlative behaviour between geophysical parameters
and contributes to the definition of “fingerprints”, which can be used to distinguish

Fig. 3 Data impact test of the inclusion of Special Sensor Microwave/Imager (SSM/I) in the
GEOS-5 data assimilation system to be used for MERRA. August 1987 monthly mean precipita-
tion difference between two experiments, with and without SSM/I radiance assimilation is shown.
Units are mm day–1. Red indicates positive differences (experiment with SSM/I radiance assim-
ilation has higher values); blue indicates negative differences (experiment with SSM/I radiance
assimilation has lower values)
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cause and effect mechanisms for observed trends in warming. Santer et al. (2004)
compare the temperature provided by the reanalyses with standard observational
datasets that are used in trend detection. Using this comparison to verify the per-
formance of the reanalysis, they derive the behaviour of the tropopause height. The
data assimilation provides the estimate of the tropopause height, which is correlated
with the temperature observations used in the verification process. This use of exter-
nal observations and careful examination of correlated physics serves as an example
of a strategy for applying reanalysis datasets to trend studies.

Chen et al. (2008a) demonstrate the complexities of using reanalysis products in
the determination and attributions of trends. They explicitly discuss the impact of
data discontinuities on the quality of the reanalysis. Using the idea that the reanal-
yses provide a dynamically coherent estimate of spatial and temporal variability,
Chen et al. develop a technique to remove El Niño – La Niña variability from the
longer-term time series. With this method they estimate the part of the temperature
change due to global warming, including regional estimates. A fascinating result
from the Chen et al. (2008a) study is that the NCEP/NCAR reanalysis shows an
atmospheric response in the Walker Circulation, and the ECMWF ERA-40 shows
the atmospheric response in the Hadley Circulation. These features of the general
circulation, which are related to the divergence of the wind and the dissipation of
waves, are the most difficult for assimilated datasets to represent.

3 Lessons from Applications

The following two applications, hydrometeorology and constituent transport mod-
elling, will be used to demonstrate the scientific challenges that remain for reanal-
ysis. Both of these problems are characterized by the fact that effective quantitative
analysis requires the conservation of key physical variables: mass, momentum, and
energy. The challenges that are faced and the deficiencies that are revealed demon-
strate that in reanalysis datasets the insertion of the observations is a significant
source or sink term in the conservation equation. In both applications, the conserva-
tion budgets with a non-assimilating model are more consistent, physically, than in
the case of assimilated data. This fact points directly at the role of bias. To be clear,
assimilated datasets are not consistent from a physical point of view as long as biases
are being corrected by the insertion of observed information. The correction of bias
through assimilation propagates and enhances biases throughout the system (see
Dee 2005). The geophysical quantities from an assimilated dataset are constrained
or informed by observations, perhaps they are a better match to observations than
the unconstrained quantities, but the fabric that connects the variables, the correlated
physics, is not the same as in the atmosphere. How well or how poorly correlated
behaviour is represented is a function of both spatial and temporal scales. In par-
ticular, slow processes in the atmosphere – those features that are associated with
residual circulations like the Hadley cell, the Brewer-Dobson circulation, and the
Walker circulation (see chapter General Concepts in Meteorology and Dynamics,
Charlton-Perez et al.), are not likely to be well represented.



634 R.B. Rood and M.G. Bosilovich

Hydrometeorology. One of the key utilities in a reanalysis is that the output gener-
ated from the model physics provides information about variables that are not easily
observed, but are informed by the analysed observed information. Uncertainties are
a complex mix associated with observations, models, and implementation of analy-
sis techniques. Betts et al. (2006) and Bengtsson et al. (2007) summarize strengths,
weaknesses and the utility of reanalyses, especially regarding hydroclimate stud-
ies. Trenberth and Smith (2008, 2009) and Trenberth et al. (2008a) investigate,
thoroughly, the energy budget in reanalyses. Betts (2004) provides a framework
for using the correlated physics of hydrometeorological observations to analyse
the underlying quality of global modelling and assimilation systems. This frame-
work connects surface processes, radiative transfer, clouds, water, precipitation, and
evaporation. While the method shows promise both in understanding the model and
assimilation systems as well as the Earth’s processes, challenges remain in verifying
the connective processes. Betts and Bosilovich (2008) investigated the hydromete-
orological connections in preliminary MERRA data compared to ERA-40. Figure 4
shows that coupling in the Amazon is quite different between the two systems.
MERRA exhibits a wide dynamic range of evaporative fraction with little sensi-
tivity to cloud fraction, while ERA-40 evaporative fraction increases steeply with
cloud fraction. They caution that the coupling is also regionally dependent, and the
differences between the systems indicate that users should take time to evaluate the
processes in their region of interest.

Precipitation is an important validation metric for the climatology of reanalyses,
being coupled into the energy and water cycles, as well as the dynamic circulation.
Kalnay et al. (1996) classified precipitation as subject to large uncertainty. From a
hydrometeorological perspective, observations are assimilated into reanalysis sys-
tems and the model parametrizations each affect the resulting estimate or forecast
of precipitation. Newman et al. (2000) showed that there is internal consistency of
precipitation, outgoing longwave radiation and upper level divergence within three
different reanalyses, but the consistency between the reanalyses was very low.

Chen et al. (2008a, b) isolated the long-term trends in the NCEP/NCAR and
ERA-40 reanalyses, evaluating the changes in both dynamics and thermodynamics.
Figure 5 shows the long-term trend of the Hadley (top) and Walker (bottom) circu-
lations. The Hadley circulation in ERA-40 has changed significantly in time, and
this may be related to a spurious trend in latent heating by precipitation and the
variations of the observing system. On the other hand, the NCEP/NCAR reanalysis
shows change in the Walker circulation, correlated to changes of sea surface tem-
peratures, which are prescribed by observations. The representation of these tropical
circulations requires accurate representation of both dynamics and heating. The rela-
tionship between vertical motion and latent heating directly connects the divergence
of the horizontal wind and the physical parametrizations. Both of these quantities
are difficult to calculate. Precipitation is an integrated measure of this balance.

Bosilovich et al. (2009) used eight operational assimilation systems to inves-
tigate the uncertainties of the precipitation and outgoing longwave radiation. An
ensemble average and variance were produced. Figure 6 shows the comparison
of each of the analyses and ensemble average precipitation with precipitation
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Fig. 4 Functional relationships between lifted condensation level (LCL; top plots) and cloud
albedo (closely related to top of atmosphere, TOA, albedo; bottom plots) with evaporative fraction
(EF) and precipitation (PR) for MERRA (a; left-hand plots) and ERA-40 (b; right-hand plots).
Note that the MERRA data is a short preliminary experiment, compared to a longer time series for
ERA-40

from the Global Precipitation Climatology Project (GPCP, Adler et al. 2003,
http://precip.gsfc.nasa.gov/). The global ensemble of analyses has lower error than
any of the contributing members. Since, essentially the same observations are used
in all of the analyses, the correlated features related to the observations should
remain (both positive and negative). Uncorrelated model errors in the analyses can
be minimized through the ensemble average. This suggests that an ensemble of
reanalyses may provide some benefit. However, since this is a statistical formula-
tion, it remains to be seen the degree to which such an ensemble may adhere to the
physical principles that govern the Earth’s processes.

Terrestrial drainage is a primary source of fresh water for the Arctic Sea, and so
is an important component of the climate system (see chapter Land Surface Data
Assimilation, Houser et al.). Several studies have applied reanalysis precipitation as
forcing for river discharge models. Serreze and Hurst (2000) found reasonable spa-
tial patterns at large scales and high northern latitudes in reanalyses. There were
some notable seasonal biases (better in winter, worse in summer). Precipitation
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Fig. 5 The circulation changes (black vectors) associated with the global warming trend mode in
the zonal mean meridional-vertical cross section (upper row) and the 10ºS–10ºN meridional mean
zonal-vertical cross section (lower row). Left column: NCEP/NCAR reanalysis data. Right column:
ERA-40 reanalysis data. The climatology is drawn in green vectors. In the upper plots, showing the
Hadley circulation, the horizontal component of the vectors is meridional wind with unit 1 ms–1,
and the vertical component of the vectors is negative ω with unit –1/60 hPa s–1. In the lower plots,
showing the Walker circulation, the horizontal component of the vectors is zonal wind with unit
1 ms–1, and the vertical component of the vectors is negative ω with unit –1/120 hPa s–1. The
arrow lengths of the vectors are scaled as shown on the top of each row. From Chen et al. (2008a)

bias was related to high incoming shortwave radiation, which provided energy for
evaporation and then precipitation. Pavelsky and Smith (2006) used two reanal-
yses and two observed precipitation data products, showing that a few positive
aspects in the reanalyses were offset by substantial errors in variability and trends
of the data. At high latitudes the quality and completeness of the direct observations
have significant problems; for example, blowing snow leads to an underestimate
of precipitation. Serreze et al. (2003) conclude that, while needing improvements,
reanalyses are useful to study the high latitude water cycle. Cullather et al. (1998)
find that reanalyses generally agree on the main features of Antarctic precipitation,
but focusing on any region may lead to discrepancies. Teleconnections between
ENSO (El Niño-Southern Oscillation) and Antarctic precipitation are influenced
by how effectively observations input to the reanalysis are used (Bromwich et al.
2000).
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Fig. 6 Standard deviation of the monthly global differences of eight operational analyses (identi-
fied by colour – see right hand of plots) and their ensemble average (labeled MAC) from the Global
Precipitation Climatology Project (GPCP, Adler et al. 2003 http://precip.gsfc.nasa.gov/) (top plot)
and spatial correlation to GPCP (bottom plot). The Climate Prediction Center Merged Analysis
of Precipitation (CMAP, http://www.cpc.noaa.gov/products/global_precip/html/wpage.cmap.html)
global precipitation observations are provided as a measure of observational uncertainty
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Basin scale studies in well-instrumented regions allow comprehensive budget
studies and the potential for independent observations to validate reanalysis sys-
tems. Hagemann and Gates (2001) used large basin scale discharge to compare
reanalyses and identify weaknesses in the physics parametrizations. Fekete et al.
(2004) also computed runoff from observed and reanalysis precipitation, and found
the largest errors and sensitivity in arid and semi-arid regions. Basin scale studies
allow for the evaluation of the coupling of the water and energy cycles in reanaly-
ses (Roads and Betts 2000), but also the assessment of the impact of observations
through the data assimilation and the spin-up in the subsequent forecast (Viterbo
and Betts 1999). Schubert and Chang (1996) used multiple linear regression and
the time series of analysis increments of atmospheric water and the atmospheric
water budget to attribute the analysis increment contributions back to corrections
of precipitation and evaporation. This method was later applied to monthly mean
reanalysis water budgets with favourable comparisons to observations (Bosilovich
and Schubert 2001).

Major issues remain in trying to improve the hydroclimate of reanalyses; these
require continued research if they are to be addressed. One strategy takes advantage
of the physical consistency realized in the stand-alone climate models. Then limited
observing systems are used to constrain a particular attribute of the model. The
model then evolves with this limited constraint. An example of this strategy is to
use an ensemble of reanalyses using only surface pressure to provide 100 years of
reanalyses data and include uncertainty estimates (Compo et al. 2006).

Constituent transport modelling. Rood et al. (1989) first used winds and temper-
atures from a meteorological assimilation to study stratospheric transport. Since that
time there have been productive studies of both tropospheric and stratospheric trans-
port. However, a number of barriers have been met in recent years, and the question
arises – has a wall been reached where foundational elements of data assimilation
are limiting the ability to do quantitative transport applications? Stohl et al. (2004;
and the references therein) provide an overview of some of the limits that need to be
considered in transport applications. Chapters Constituent Assimilation (Lahoz and
Errera) and Inverse Modelling and Combined State-source Estimation for Chemical
Weather (Elbern et al.) discuss the assimilation of constituents.

In transport applications, winds and temperatures are taken from a meteorolog-
ical assimilation and used as input to a chemistry-transport model. The resultant
distributions of trace constituents are then compared with observations. The con-
stituent observations are telling indicators of atmospheric motions on all time-scales.
Ultimately, how constituents are distributed in the atmosphere is related to the gen-
eral circulation of the atmosphere. This is linked to the divergent component of the
wind and/or vertical motion. The general circulation is determined by the dissipa-
tion of dynamical features. Data assimilation for weather prediction focuses on the
propagation of dynamical features, and the dissipation of these features occurs on
time-scales that are long compared with the forecast time-scale. In fact, dissipation
often occurs outside of the model domain (e.g. the stratosphere), and dissipation is
highly sensitive to the insertion of observations. There are fundamental, conflicting
requirements of data assimilation for weather prediction and for climate diagnostics.
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Constituent observations are often of very high quality and come from many
observational platforms. They are markers of motion. As a community, rigor-
ous quantitative Earth science has been significantly advanced by comparison
of constituent observations and model estimates. Overall, it is found that the
meteorological analyses do a very good job of representing variability associ-
ated with synoptic and planetary waves. This has been invaluable for accounting
for dynamical variability, and allowing the evaluation of constituents from multi-
ple observational platforms. On the other hand, those geophysical parameters that
rely on the representation of the general circulation, for instance the lifetimes of
long-lived constituents are poorly represented.

Douglass et al. (2003) and Schoeberl et al. (2003) each provide detailed studies
that expose some of the foundational shortcomings of the physical consistency of
data assimilation. In their studies they investigate the transport and mixing of atmo-
spheric constituents in the upper troposphere and the lower stratosphere. Figure 7
from Douglass et al. (2003) shows ozone probability distribution functions in two
latitude bands from four experiments using a constituent transport model. In three
of these experiments, Panels B, D, and E, winds and temperatures are taken from an
assimilation system. In Panel C are results from an experiment using winds from a
general circulation model (GCM) simulation; that is, a free-running model without
assimilation. Panel A shows ozonesonde observations; the sondes reflect similar dis-
tributions in the two latitude bands. In all of the numerical experiments, the means
in the two latitude bands are displaced from each other, unlike the observations. In
the three experiments using winds from different data assimilation systems (DAS),
the half-width of the distributions is much too wide.

GCM-drivenDAS-driven

Means displaced

Half-width ok

Means displaced

Spread too wide

A B C D E

Fig. 7 From Douglass et al. (2003). Probability distribution functions of ozone from: Panel (A)
ozonesondes; and Panels (B–E) constituent-transport models, CTM, experiments. DAS-driven is
from experiments using winds from a data assimilation system. GCM-driven is from experiments
using winds from a general circulation model without data assimilation
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There are a number of points to be made in this figure. First, the winds from the
assimilation system in Panel B and the model in Panel C both use the finite-volume
dynamics of Lin (2004). Therefore, these experiments are side-by-side comparisons
that show the impact of inserting data into the model. Aside from developing a
bias, the assimilation system shows much more mixing. As Douglass et al. show,
the instantaneous representation of the wind is better in the assimilation, but the
transport is worse. This is attributed to the fact that there are consistent biases in the
model prediction of the tropical winds and the correction added by the data insertion
causes spurious mixing. Tan et al. (2004) also investigate the dynamical mechanisms
of the mixing in the tropics and the subtropics and find systematic errors consistent
with these results. Second, the assimilation systems used for Panels D and E, have
a different assimilation model, and their representation of transport is worse than
that from the finite-volume model. This improvement is attributed to the fact that
the finite-volume model represents the physics of the atmosphere better, in partic-
ular, the representation of the vertical velocity. Third, the results in Panel B show
significant improvement compared to the older assimilation systems used in Panels
D and E. Older assimilation systems have had enough deficiencies that scientists
have shied away from doing tropical transport studies. Thus, this example demon-
strates both the improvements that have been gained in recent years and indicate
that the use of winds from assimilation in transport studies might have fundamental
limitations.

Figure 8 is from Schoeberl et al. (2003). The Schoeberl et al. study is simi-
lar in spirit to the Douglass et al. study, but uses Lagrangian trajectories instead

Fig. 8 From Schoeberl et al. (2003). The dispersion of a tracer released at the tropopause from
five numerical experiments. UKMO is from the United Kingdom Meteorological Office (now, The
Met Office) assimilated data. DAO is from Data Assimilation Office (now, Global Modeling and
Assimilation Office) assimilated data. GCM is from the general circulation model used in the DAO
assimilation. Kinematic refers to vertical velocity calculated from the divergence of the horizontal
wind. Diabatic refers to vertical velocity calculated from the thermodynamic equation
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of Eulerian advection schemes. This allows Schoeberl et al. to address, directly,
whether or not the spurious mixing revealed in the Douglass et al. paper is related
to the advection scheme. In this figure the results from two completely independent
assimilation systems are used. The two assimilation systems are labelled UKMO
(United Kingdom Meteorological Office, now, the Met Office) and DAO (Data
Assimilation Office, now, the Global Modeling and Assimilation Office). The DAO
system uses the finite-volume dynamical core and the panel labeled GCM (general
circulation model) uses the finite-volume GCM. Vertical winds are calculated two
ways. They are calculated diabatically using the heating rate information from the
assimilation system and they are calculated kinematically, through continuity, using
the horizontal winds from the assimilation.

The figure shows, first, the impact of the method of calculating the vertical wind
using the diabatic information. When the diabatic information is used there is much
less transport in the vertical. While this is, indeed, generally in better agreement
with observations and theory, the diabatic winds no longer satisfy mass continu-
ity with the horizontal winds. This result points to a self-limiting aspect of using
diabatic winds in Eulerian calculations such as the ones of Douglass et al. (2003).
Second, the Schoeberl et al. calculations show that even with the diabatic vertical
winds, there is, still, significant horizontal mixing, which is compressed along isen-
tropic surfaces. Third, the final panel shows that for the simulation, the free-running
model, there is much less dispersion, which is in better agreement with both obser-
vations and theory. Schoeberl et al. attribute the excess dispersion in the assimilation
systems to noise that is introduced by the data insertion.

These two studies point to the fact that the data insertion impacts the physics
that maintains the balances in the conservation equations of momentum, heat, and
mass. Both bias and the generation of noise have an impact. Both problems are
difficult to address, with the problem of bias having fundamental issues of tractabil-
ity. Again, while the data assimilation system does indeed provide better estimates
of the primary variables, as the impact of data insertion is adjusted through the
physics represented in the model, the derived parameters are often degraded. While
there may be greater discrepancies in the absolute, day-to-day representation of con-
stituents with free-running models, the consistent representation of the underlying
physics allows more robust study of transport mechanisms and those features in the
constituent data which are directly related to dynamics. The ultimate success of data
assimilation for climate applications will be to preserve the physical consistency of
the underlying model simulation in the presence of the insertion of observational
information.

Note that recently, Pawson et al. (2007) have shown using NASA’s Goddard
Earth Observing System version 4 (GEOS-4) that the use of 6-h averaged wind
fields instead of instantaneous analyses can substantially reduce problems in strato-
spheric transport associated with excessive mixing and an overstrong residual
circulation. Also the ERA-Interim reanalysis significantly improves the disper-
sion of stratospheric tracers and calculations of the age of air (D. Dee, personal
communication).
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4 Summary

There is no doubt that reanalysis datasets play a central role in the modern practice of
the scientific investigation of climate. Reanalyses are also used as lateral boundary
conditions for regional climate models and dynamical downscaling experiments.
There are thousands of references to the publications that describe the reanalysis
datasets. In fact, the prominent use of “observations” that are, actually, a melding
of model and observational information is a subject of interest to historians (P.N.
Edwards, personal communication).

One reason the reanalysis datasets are widely used is that they provide an
ordered and complete representation of the atmosphere that is nearly continuous
in time. Reanalyses compile more observations from disparate spatial and temporal
scales than individual researchers could accomplish. Furthermore, the data assimila-
tion provides additional quality checking of those observations. Assimilation based
analyses interpolate and extrapolate observational information using the physical
principles of fluid dynamics to transport information. The success of the reanal-
ysis datasets to represent atmosphere winds and temperatures in middle latitudes
is remarkable. With this information it is possible to estimate dynamical variabil-
ity and to bring observations scattered in space and time to a common framework.
The successes are greatest for middle latitude problems and for problems with the
intrinsic time-scales of weather forecasting – days.

For problems of longer and shorter time-scales, for problems in the tropics and
the poles, for problems that rely upon the subscale physical parametrizations in the
model, a set of deficiencies is revealed in the reanalysis datasets. Many of these defi-
ciencies are related to bias in the assimilation system. There are tractable strategies
for addressing some sources of bias. For other forms of bias, it is not clear that they
can be fully eliminated. For this reason it is required that scientists maintain a critical
scrutiny of reanalysis datasets in applications that require the calculation of mass,
momentum, and energy budgets or the identification of temporal trends. Of special
note, the ability of reanalysis datasets to provide robust geophysical information
will vary by region and season. The propagation of biased information through the
reanalysis system means that reanalysis datasets are not geophysically consistent.

The reanalysis datasets reflect with exquisite sensitivity the heterogeneity of the
observation network. The act of performing a reanalysis does not eliminate the gran-
ularity of the observing system or relegate the granularity to being small enough to
ignore. In fact, the sensitivity to granularity in the observing system is another factor
motivating the development of a calibrated climate observing system (see, for exam-
ple, Trenberth et al. 2002). Of course, we do not have the luxury of building a climate
observing system for the past, and climate science requires long time series of obser-
vations. Reanalysis systems have the ability to extend information from modern
observing systems to the past; they can contribute to the calibration of observing
systems. This requires scientific investigation to optimize the use of subsets of the
observations; this is a research path that is only beginning to be followed.

Following the summary of Bromwich et al. (2007), Bengtsson et al. (2004,
2007), Santer et al. (2004), Trenberth et al. (2008b) and many others, reanalyses
are a powerful tool for climate studies, which must be used with a critical eye that



Reanalysis: Data Assimilation for Scientific Investigation of Climate 643

recognizes their limitations. The newest reanalyses, MERRA and ERA-Interim (see
links at the end of the chapter), are just becoming available. They were designed to
address many of the problems addressed here, and early indications are that they are
an important step forward. However, it is not likely that these will eliminate all of
the uncertainties in the systems. The development of reanalysis systems and tech-
niques to address climate issues are an ongoing process, as models and data quality
improve.

5 Web Resources

3rd WCRP International Conference on Reanalyses, Jan 26-Feb 1, 2008:
http://jra.kishou.go.jp/3rac_en.html

United States Climate Change Science Program Synthesis and Assessment
Product 1.3: Re-analyses of historical climate data for key atmospheric
features. Implications for attribution of causes of observed change:
http://www.climatescience.gov/Library/sap/sap1-3/default.php

NCEP/NCAR Reanalysis: http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.
shtml

NCEP/DOE Reanalysis 2: http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis2.
html

ERA-40: European Centre for Medium-Range Weather Forecasts:
http://www.ecmwf.int/

ECMWF Interim Reanalysis: European Centre for Medium-Range Weather
Forecasts: http://www.ecmwf.int/products/data/archive/descriptions/ei/index.
html

http://www.ecmwf.int/publications/newsletters/pdf/115.pdf
http://www.ecmwf.int/publications/newsletters/pdf/111.pdf
JRA-25: Japan Meteorological Agency (JMA): http://www.jreap.org/
NARR: NOAA North American Regional Reanalysis: http://wwwt.emc.ncep.

noaa.gov/mmb/rreanl/index.html
MERRA: NASA Modern Era Retrospective-Analysis for Research and

Applications http://gmao.gsfc.nasa.gov/merra/
ASR: Arctic System Reanalysis: http://polarmet.mps.ohio-state.edu/PolarMet/

ASR.html
Ocean Reanalyses: http://www.clivar.org/data/synthesis/directory.php
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1 Definition and Motivation of OSSEs

Observing System Simulation Experiments (OSSEs) are typically designed to use
data assimilation ideas (see chapter Mathematical Concepts in Data Assimilation,
Nichols) to investigate the potential impacts of prospective observing systems
(observation types and deployments). They may also be used to investigate current
observational and data assimilation systems by testing the impact of new observa-
tions on them. The information obtained from OSSEs is generally difficult, or in
some contexts impossible, to obtain in any other way.

In an OSSE, simulated rather than real observations are the input to a data assimi-
lation system (DAS for short). Simulated observational values are drawn from some
appropriate source (several possibilities have been considered; see Sect. 3). These
values are generally augmented by implicitly or explicitly estimating respective val-
ues of observational errors to make them more realistic (see Sect. 4). The resulting
values are then ingested into a DAS (that may be as complex as an operational
one) just as corresponding real observations would be. Simulations of both analy-
ses and subsequent forecasts are then produced for several experiments, with each
considering a distinct envisioned observing system; i.e., a distinct set of observation
types and characteristics. The analysis and forecast products are then compared to
evaluate the impacts of the various systems considered.

OSSEs are closely related to Observing System Experiments (OSEs). For an
observing system in operational use, the OSE methodology consists of:

• A control run in which all observational data currently used for every-day
operations are included;

• A perturbation run from which the observation type under evaluation is excluded
while all other data are kept as for the control;

• A comparison of forecast skill between the control and perturbation runs.
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OSEs are effectively Data-Denial Experiments (DDEs, discussed in Sect. 7.1).
They reveal specifically what happens when a DAS is degraded by removing partic-
ular subsets of observations and thus measure the impacts of those observations.

The structure of an OSSE is formally similar to that of an OSE with one impor-
tant difference: OSSEs are assessment tools for new data, i.e., data obtained by
hypothetical observing systems that do not yet exist. The methodology of an OSSE
consists of:

• Generation of reference atmospheric states for the entire OSSE period. This is
usually done with a good-quality, realistic atmospheric model in a free-running
mode without data assimilation. This is often called the Nature Run (NR for
short), providing the proxy “truth,” from which observations are simulated and
against which subsequent OSSE assimilation experiments are verified;

• The generation of simulated observations, including realistic errors, for all
existing observing systems and for the hypothetical future observing system;

• A control run (or experiment) in which all the data representing the current
operational observational data stream are included;

• A perturbation run (or experiment) in which the simulated candidate observations
under evaluation are added;

• A comparison of forecast skill between the control and perturbation runs.

The most common motivation for OSSEs regards estimating the potential impact
of proposed new observation types. Although a new type may be highly accurate
and robust, it does not provide complete, instantaneous global coverage with per-
fect accuracy. All new observation types therefore will be used in conjunction with
other, mostly already existing, observation types and a background derived from a
short-term model forecast. Since data assimilation is a blending of all such useful
information, the impact of a new type can only be estimated by considering it in the
context of all the other useful types. It is therefore necessary to investigate potential
impacts in a complete and realistic DAS context.

New observation types that do not yet exist cannot provide observational values
to be assimilated. If a prototype does exist but is not already deployed as envisioned,
impacts that can be currently measured may be unrepresentative of future potential
impacts or not statistically significant. The latter is always an issue with data assimi-
lation because the data analysis problem is fundamentally statistical due to unknown
aspects of observational and modelling errors. Under these conditions, the only way
of estimating the potential impact of new observations is by appropriately simulating
them; i.e., performing an OSSE of some kind.

Besides estimating the impact, and therefore the value, of an augmentation to
the observing system, an OSSE can be used to compare the effectiveness of com-
peting observation designs or deployment options. What is the cost to benefit ratio,
for example, between using a nadir-looking versus a side-scanning instrument on
a satellite? Or, for a lidar, what are the relative benefits of using various power
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settings for the beams? An OSSE can aid the design before putting an instrument
in production. Thus, well-conducted OSSEs can be invaluable for deciding trade-
offs between competing instrument proposals or designs: the cost of an OSSE is
a tiny fraction of the cost of developing and deploying almost any new observing
system.

Furthermore, by running OSSEs, current operational data assimilation systems
can be tested, and upgraded to handle new data types and volume, thus accelerating
use of future instruments and observing systems. Additionally, OSSEs can hasten
database development, data processing (including formatting) and quality control
software. Recent OSSEs show that some basic tuning strategies can be developed
before the actual data become available. All of this accelerates the operational use of
new observing systems. Through OSSEs future observing systems can be designed
to optimize the use of data assimilation and forecast systems to improve weather
forecasts, thus giving maximum societal and economic impact (Arnold and Dey
1986; Lord et al. 1997; Atlas 1997).

There is another motivation for OSSEs that has been less often discussed. It
exploits the existence of a known “truth” in the context of an OSSE. For a vari-
ety of purposes, including validating or improving an existing DAS or designing
perturbations for predictability studies or ensemble forecasting, it is useful to char-
acterize critical aspects of analysis errors. Evidence to guide such characterization
is generally elusive since the DAS-produced analyses themselves are often the best
estimates of the atmospheric state (by design) and, therefore, there is no inde-
pendent dataset for determining errors. All observations have presumably been
used, accounting optimally (to some degree) for their error statistics and account-
ing for their mutual relationships in time (using a forecast model for extrapolation
or interpolation) or in space (e.g. quasi-geostrophy and spatial correlations) and
thus robust independent datasets for verification are usually absent (although, e.g.,
research data such as ozonesondes and ozone from some instruments are not com-
monly assimilated, and thus are available for independent verification). While
some information about DAS errors can be derived from existing data sources, it
necessarily is incomplete and imperfect. Although any OSSE is necessarily also
an imperfect simulation of reality, the analysis and forecast errors can be com-
pletely and accurately computed and thus fully characterized within the simulated
context.

The fact that they are widely used and relied upon does not mean that OSSEs,
or the experimental results created by them, are free of controversy. Because of the
wide-ranging consequences of decisions on major Earth Observing Systems, any
OSSE results on which these decisions are based will have to withstand intense
scrutiny and criticism. One goal of this chapter is to suggest ways in which OSSEs
can be made robust and credible.

In this chapter we present the basic guidelines for conducting OSSEs. A historical
review is provided, and experiences from OSSEs conducted at the National Centers
for Environmental Prediction (NCEP OSSE) are presented; finally, conclusions and
the way forward are outlined.
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2 Historical Summary of OSSEs

The OSSE approach was first adopted in the meteorological community to assess
the impact of prospective observations, i.e., not available from current instruments,
in order to test potential improvements in numerical weather prediction, NWP (Nitta
1975; Atlas 1997; Lord et al. 1997; Atlas et al. 2003a). In a review paper, Arnold
and Dey (1986) summarize the early history of OSSEs and present a description of
the OSSE methodology, its capabilities and limitations, and considerations for the
design of future experiments. Meanwhile, OSSEs have been performed to assess
trade-offs in the design of observing networks and to test new observing systems
(e.g. Stoffelen et al. 2006).

In early OSSE studies, the same model used to generate the “Nature Run” or truth
was used to assimilate the synthetic data, and to run forecasts (Halem and Dlouhy
1984). In these so-called “identical twin” OSSEs the physical parametrizations and
discretized dynamical processes in the assimilating model exactly represent those
in the surrogate atmosphere. Model errors due to parametrization and numerical
implementation are thus neglected and a free model forecast run from given initial
conditions would provide identical results for the Nature Run and the DAS model.
Consequently, forecast errors arising from deficiencies in the forecast model repre-
sentation of the real atmosphere are not accounted for; only forecast errors due to
errors in the initial conditions are represented. This limitation has been noted to lead
to overly optimistic forecast skill in the OSSE DAS.

Another effect of the neglected model errors is that the differences between
observations, both existing and future ones, and background (i.e., forecast), O-B,
tend to be smaller in case of an identical twin OSSE than in operational prac-
tice (Atlas 1997; Stoffelen et al. 2006). As a result, both the observation minus
analysis (O-A) differences and analysis impact of the observations, A-B (analysis
less background), tend to be smaller than expected. Several ways exist to test the
reduced observation impact and overly optimistic forecast skill: e.g., by comparing
the O-B and O-A distributions, single observing system impacts, and forecast skill
metrics in the OSSE and operational practice (calibration). The chapter Evaluation
of Assimilation Algorithms (Talagrand) provides details of methods used to evaluate
the assimilation process.

Since the DAS background model error space in identical twin OSSEs is limited
with respect to an operational model’s error space, fewer observations are needed
to correct the model state in the analysis step. In fact, the simulated observation
set, unlike the real observations, has systematic characteristics consistent with the
model formulation (e.g. scales of motion, mass-wind balance). Therefore, just a few
observations could potentially correct the initial state errors and provide improved
forecasts in an identical twin OSSE. On the other hand, as Atlas et al. (1985) point
out, due to the simplified error space, observation “saturation” in the DAS will
tend to occur at lower data volumes in an identical twin OSSE than in the case
of assimilation of the real observations. This saturation may lead to underestimation
of the impact of observing systems with extensive coverage (e.g. satellite systems).
Moreover, observing systems that tend to correct errors due to numerical truncation
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of the dynamics or due to physical parametrization, may be undervalued. This poten-
tial non-linear effect of sampling on identical twin OSSE forecast scores, makes the
above-mentioned calibration tests (involving, e.g., O-A and O-B distributions) on
the OSSE data assimilation system increasingly relevant.

Arnold and Dey (1986) recommend “fraternal twin” OSSEs as a way to address
the shortcomings of “identical twin” OSSEs. In fraternal twin OSSEs, the NWP
model used to simulate the observations is different from the forecast model in the
OSSE data assimilation system, but not as different as the true atmosphere is from
an operational forecast model. Examples can be found in Rohaly and Krishnamurti
(1993), Keil (2004) and Lahoz et al. (2005). It is clear that the problems noted
above with identical twin experiments will be reduced, but not absent for fraternal
twin experiments. Stoffelen et al. (2006) test the absence of unrealistic observation
impact in a fraternal twin OSSE. To avoid potential fraternal twin problems, the
Nature Run and atmospheric data base may be produced at one NWP centre (Becker
et al. 1996), while the impact experiments are run by another independent NWP
centre (Masutani et al. 2006, 2010).

Another reported measure to reduce identical twin effects is to produce the
Nature Run at high resolution and run the OSSE data assimilation system at lower
spatial resolution. While useful for some studies, a potential disadvantage is that the
observing system impact of a prospective system is tested at a resolution which is
obsolete by the time the new observing system will be operationally implemented.

Atlas et al. (1985) report on the exaggerated OSSE impact of satellite-derived
temperature soundings. At that time, the fraternal twin problem was raised as one
cause, although these satellite soundings are rather abundant (see above). Other, and
with hindsight perhaps more plausible, noted causes are:

– Simplified observation error characteristics. Observing systems can have compli-
cated relationships (geophysical, spatial, and temporal) with the forecast model’s
atmospheric state and special care is needed to simulate them;

– The simulated observation coverage is over-optimistic. For example, the degree of
cloud contamination of the measurements may be underestimated (e.g. Masutani
et al. 1999);

– The simplifying assumption, usually made in OSSEs, that the distribution of
observation errors is perfectly known;

– Temperature data are both simulated and assimilated, with no error from the
Radiative Transfer Model (RTM) involved.

Again, comparison of observation impact and forecast skill, e.g., by comparing
the O-B and O-A distributions; single observing system impacts; and forecast skill
metrics in the OSSE and operational practice involving OSSE calibration, should
reveal such problems.

Various simulation experiments have been attempted which use real data for
existing instruments and only simulate future instruments. These methods do not
require a Nature Run and allow experimentation on a specific (extreme) weather
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event. Observing System Replacement Experiments (OSREs) could, for example,
be used to test the impact of existing wind profile observations over Northern
Hemisphere land and how these may be replaced by another observing system
(Cress and Wergen 2001). Although an OSRE indicates how one could replace
existing observing systems, it is, however, not a priori clear how to extrapolate these
results to faithfully test new observation capabilities, e.g., like the DWL (Doppler
Wind Lidar) capability to resolve the incomplete wind profile coverage over the
oceans. To test new observation capabilities, Marseille et al. (2008a, b, c) devel-
oped a method called the Sensitivity Observing System Experiment (SOSE). In a
SOSE, adjoint sensitivity structures are used to define a pseudo-true atmospheric
state for the simulation of the prospective observing system. In a SOSE the forecast
error is projected back onto the initial state, thereby setting the maximum achiev-
able forecast improvement. An alternative method, the Analysis Ensemble System
(AES) (Tan et al. 2007) uses the spread in the ensemble as a proxy for the analy-
sis and background uncertainty based on arguments of error growth (Fisher 2003).
Since the background, analysis and observation errors are larger in the AES than in
the real DAS, it is not clear whether the same set of observations in both systems
remain optimal for reducing the background uncertainty. In order to test the realism
of the OSRE, SOSE and AES, both the analysis and forecast impacts need to be
carefully calibrated, just as in an OSSE.

In this chapter, the term OSSE (sometimes full OSSE to distinguish from other
simulation experiments) refers to a simulation experiment with a Nature Run model
significantly different from the NWP model used for data assimilation. This pro-
vides a truth independent of the data assimilation system NWP model and of the
Global Observing System (GOS) data coverage and quality. In an OSSE, all obser-
vations used for the DAS have to be simulated from the Nature Run. In a SOSE,
OSRE or AES, only the future observations are simulated from analysis or forecast
fields. These fields used may have limitations in comparison with a Nature Run in
terms of biases and temporal consistency due to the GOS, DAS and NWP (adjoint)
model involved. It is considered that simulation of all observations is a significant
initial investment for an OSSE, but that interpolating observations is part of a DAS.
In OSSEs, all the usual analysis and forecast verification metrics can be used to
evaluate data impact, and the simulated data can be tested with several different
data assimilation systems with minor modification to the operational systems. The
data impact for OSSEs (and their variants) often varies with verification metric and
DAS used. Note, however, that a truth is available for further verification of the DAS
characteristics. Although a SOSE, OSRE or AES allow quick study of real extreme
events, the SOSE requires an adjoint model to generate the new observations and
the AES requires an established ensemble system. Calibration and interpretation of
the results is complicated and needs to be tested carefully for the SOSE, OSRE
and AES. Full OSSEs with a long Nature Run allow quantitative assessment of the
analysis and forecast impact. Note, however, that there are many OSSEs conducted
without calibration. Furthermore, during the early years of OSSEs, identical twin
OSSEs or fraternal twin OSSEs were often conducted due to the lack of variety in
state-of-the-art NWP models.
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To conclude, although initial investment is required for a full OSSE, it is today
the most reliable strategy to use full OSSEs for impact assessment of prospective
observing systems.

3 The Nature Run

The Nature Run is a long, uninterrupted forecast by a NWP model whose statis-
tical behaviour matches that of the real atmosphere. The ideal Nature Run would
be a coupled atmosphere-ocean-cryosphere model with a fully interactive lower
boundary. However, it is still customary to supply the lower boundary conditions
(sea surface temperature, SST, and ice cover) appropriate for the span of time
being simulated. Meteorological science is approaching this ideal, but such cou-
pled systems are not yet mature enough to be used for Nature Runs. Although fully
coupled systems are available, their usefulness and accuracy for OSSEs is unknown.
Preliminary tests, however, suggest that coupled systems may be good enough for
operational NWP in the near future (Saha et al. 2006; Kistler et al. 2008).

The advantage of using a long, free-running forecast to simulate the Nature Run
is that the simulated atmospheric system evolves continuously in a dynamically
consistent way. One can extract atmospheric states at any time. Because the real
atmosphere is a chaotic system governed mainly by conditions at its lower boundary,
it diverges from the real atmosphere a few weeks after the simulation begins. This
does not matter provided that the climatological statistics of the Nature Run match
those of the real atmosphere. A Nature Run should be a separate universe, ultimately
independent from but with very similar characteristics to the real atmosphere.

3.1 Characteristics of the Nature Run

One of the challenges for an OSSE is to demonstrate that the Nature Run does
have the same statistical behaviour as the real atmosphere in every aspect relevant
to the observing system under scrutiny. For example, an OSSE for a wind-finding
lidar on board a satellite requires a Nature Run with realistic cloud climatology
because lidars operate at wavelengths for which thick clouds are opaque. The cloud
distribution thus determines the location and number of observations.

The Nature Run is central to an OSSE. It defines the true atmospheric state
against which forecasts using simulated observations will be evaluated. This con-
cept deserves more explanation. In 1986, Andrew Lorenc suggested the following
definition of the “truth”: the projection of the true state of the atmosphere onto the
model basis. As an example, if a spectral model produces a Nature Run, the true
atmospheric state might be represented by spectral coefficients corresponding to tri-
angular truncation at total wave number n (Tn) on L vertical levels. Atmospheric
features too small to be captured by the model resolution are not incorporated in
this truth.
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The Nature Run is also the source of simulated observations. For each observing
system, existing or future, a set of realistic observing times and locations is devel-
oped along with a list of observed parameters. An interpolation algorithm looks at
the accumulated output of the Nature Run, goes to the proper time and location
and then extracts the value of the observed parameter. If the Nature Run does not
explicitly provide an observed parameter, the parameter is estimated from related
variables that the model does provide. Because observations extracted from the
Nature Run are the same as the defined truth (they are “perfect”), various sources of
error must also be simulated and added to form observations with realistic accuracy
with respect to the Nature Run itself.

Some OSSEs have used a succession of atmospheric analyses as a substitute for a
Nature Run (Keil 2004; Lahoz et al. 2005). A succession of analyses is a collection
of snapshots of the real atmosphere. For example, in the case of four-dimensional
variational assimilation (4D-Var, see chapter Variational Assimilation, Talagrand),
although the analyses may each be a realizable model state, they all lie on different
model trajectories. The background (first guess) lies on the same model trajectory
as the previous analysis because, in 4D-Var the analysis is a realizable model state
(it does not require separate initialization or balancing). Once this background is
adjusted by new data in 4D-Var, the model lies on a new trajectory, which may be
close to the old one (the one that the background was on) but is nonetheless dif-
ferent. Each analysis marks a discontinuity in model trajectory, determined by the
information content extracted by a DAS from the existing global observing systems
(see chapter The Global Observing System, Thépaut and Andersson). Furthermore,
residual systematic effects due to the spatially non-uniform and often biased obser-
vations, the DAS or the model state, may either favourably or unfavourably affect
the potential of new observing systems to improve the forecasts. Thus, considering
a succession of analyses as truth seriously compromises the attempt to conduct a
“clean” experiment.

3.2 Evaluation and Potential Adjustment of the Nature Run

No Nature Run is perfect and its shortcomings need to be investigated by com-
parison with real-world climatology and, if the shortcomings can compromise a
particular OSSE, adjustments to the Nature Run may be needed.

Several NCEP OSSEs (Masutani et al. 2006, 2010) have used the Nature Run
with T213 horizontal resolution and 31 vertical levels (T213 NR) provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF) and described
in Becker et al. (1996). For the T213 NR, quadratic grids with 60 km horizontal
resolution were used to compute the physics. Note the corresponding linear grid
space would be 90 km, which is more representative of the scale resolved by the
T213 NR. A 1-month model run starting on 5 February 1993 was saved every 6 h.

It is important that the Nature Run contain realistic clouds for evaluation of
Doppler Wind Lidar (DWL) and cloud motion vector (CMV) data and simula-
tion of radiances. Doppler Wind Lidar data can be retrieved only if the DWL
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shots hit the target. Clouds are important targets for a DWL but they also inter-
fere with the DWL shots at lower atmospheric levels. Therefore, large differences in
the Nature Run cloud amount will affect the sampling of simulated data. Realistic
clouds are also necessary for generating realistic cloud track winds from geosta-
tionary platforms. Clouds moreover affect the sampling and simulation of radiance
data.

The observed estimates for total cloud cover come from three different
sources: the USAF Real-Time Nephanalysis (RTNEPH; Hamill 1992; Henderson-
Sellers 1986); the International Satellite Cloud Climatology Project (ISCCP);
and the NESDIS experimental product, Clouds from the Advanced Very high
Resolution Radiometer (CLAVR-phase; http://cimss.ssec.wisc.edu/clavr). The dif-
ferences between the total cloud cover (TCC) in the three observational sources and
the Nature Run are within the variability of the observations. In the T213 NR, the
High-level Cloud Cover (HCC) amount seems larger than the satellite observed esti-
mate across all areas of the globe. The amount of Low-level Cloud Cover (LCC) in
the T213 NR over the ocean is less than observed and the amount of LCC over snow
is too high. After careful investigation, it was found that, due to the lack of reliable
observations, there is no strong evidence for an over-estimation of HCC and polar
cloud by the T213 NR. However, the under-estimation of low level stratocumulus
clouds over the oceans and its over-estimation over snow was clearly evident, and
adjustments were consequently applied (see Masutani et al. 1999).

Although the OSSE using the T213 NR produced many valuable results, it also
had limitations. First of all, due to advances in model development, it is neither
realistic nor suitable to use a Nature Run produced by a NWP model more than
10 years old to test a current DAS. Second, since there is a significant drift from
analyses in the tropics during the first several weeks of the Nature Run, the 1-month
long Nature Run cannot be used to evaluate data impact in the tropics. The T213
NR employed fixed SSTs; although fixed SSTs were not found to jeopardize the
OSSEs, this is still a serious limitation of the T213 NR. Note that a more recent
T511 Nature Run produced by ECMWF (Reale et al. 2007) showed a reduction of
tropical convective rainfall during the first few weeks of the Nature Run period. This
may mean that the Nature Run has much less convective rainfall compared to the
real atmosphere, or that the analysis has too much convective rainfall compared to
the real atmosphere. For the Nature Run to be useful, its statistics must lie within
the climatological variability in the real analyses.

Producing accurate tropical forcing is a challenge for current NWP models.
Nevertheless, the recent T511 NR produced by ECMWF (see above) faithfully
reproduces many aspects of the tropical atmosphere, at least in a statistical sense
(Reale et al. 2007). For example, it reproduces the African Easterly Jet and African
Easterly Waves in good agreement with observations.

There is great interest in OSSEs for studying forecasts of tropical waves and
tropical cyclones (TCs). A prerequisite for such studies is a Nature Run that
generates realistic tropical disturbances, e.g., hurricanes with well defined warm
cores and realistic tracks. However, there are still significant differences between
model produced tropical cyclones and observations, and the interaction of TCs with
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SSTs requires further study (Tsutsui and Kasahara 1996). Finally, the properties of
tropical cyclones relevant to the evaluation of a DAS are still to be investigated.

Mid latitude cyclone statistics in the Nature Run must also be realistic. The basic
measures commonly used to compile mid latitude cyclone statistics are:

• Distribution of cyclone strength across a wide range of pressures;
• Cyclone lifespan;
• Cyclone deepening;
• Regions of cyclogenesis and cyclolysis;
• Distribution of cyclone speed and direction.

3.3 Requirements for a Future Nature Run

The preparation of the Nature Run and the simulation of data from it consume sig-
nificant resources. It is of practical importance to have one or two good-quality
Nature Runs shared by many OSSEs. OSSEs with different Nature Runs are diffi-
cult to compare but OSSEs using different data assimilation systems and the same
Nature Run can provide valuable cross-validation of data impact results. If Nature
Runs are widely accessible, the Nature Runs and simulated data ought to be shared
between many of the institutes carrying out the actual OSSEs.

The primary specifications of a Nature Run based on past experience of OSSEs
are:

a. Employ a NWP model with demonstrated forecast skill;
b. Simulation span: since the data impact depends on the season, it is important that

future Nature Runs cover long periods, preferably a whole year to allow selection
of interesting subperiods for closer study;

c. Simulation sample: a temporal resolution higher than the OSSE analysis cycle.
If more than one DAS is involved, this would ideally be a resolution higher than
that of all participating data assimilation systems;

d. Simulation should resolve scales compatible with the main observing systems;
e. It is desirable that they should be based on an atmosphere-ocean coupled model;

or at least, the Nature Run must be forced by an analysis incorporating frequently
updated SST and sea ice;

f. Data archiving should be user-friendly and shareable with the community;
g. Simulation should agree with the real analyses in a statistical sense;
h. Chemistry and aerosol information which affect the data should be evaluated;
i. There should be a trade-off between the resolution and the complexity of the

model;

The set of archived Nature Run variables should be enhanced to accommodate
the need for OSSEs. For example, geopotential height at model levels is very desir-
able. Archiving of this variable will help the simulation of observations based on
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height coordinates, such as those from DWL and profilers. Low resolution pressure
level data and isentropic level data output on a standard grid are also very useful for
OSSEs, as they can be used for verification of the experiments. However, producing
these verification datasets can take up significant resources at the initial stages of
setting up an OSSE.

A main requirement of full OSSE experiments is to avoid the identical or fra-
ternal twin (“incest”) problem, as discussed in Sect. 2. If the model from which
hypothetical observations are extracted is the same as the assimilating model, the
OSSE results will show unrealistic observation impact and overly optimistic fore-
cast skill (Arnold and Dey 1986; Stoffelen et al. 2006). Thus the forecast model
used for the Nature Run should not be used later on for DAS experiments in the full
OSSE.

4 Assignment of Realistic Observation Errors

The following definitions concern data assimilation in general – see also chapter
Mathematical Concepts of Data Assimilation (Nichols). In the definitions below, x,
y and ε are vectors, and H is a non-linear operator.

(a) The observation: y = yt + εm

y is the observed value, measured by some instrument, and εm is the obser-
vation error. The subscript t refers to the true atmospheric value. We define the
true value as the weighted average of the true atmospheric values within the vol-
ume sampled by the instrument. Petersen (1968) defined the “true” observation
in this way, but quantitatively by means of an integral. Different instruments
sample different volumes so that the true value of temperature appropriate for a
radiosonde may not match the true value appropriate for the AMDAR (Aircraft
Meteorological DAta Relay) system aboard a commercial jet, even if the two
observations are assigned to the same location and time. Thus, the observed
“truth” is very much scale-dependent, but defining it in this way is consistent
with the definition of truth with respect to model resolution as proposed by
Lorenc (1986) and discussed immediately below.
εm refers to errors incurred during measurement or subsequent data processing.
The errors can be random or systematic (i.e., biased).

(b) The model state: x = xt + εf

εf is the model state error. The state of a DAS model is defined by a set of
parameters stored at the points of a model grid, or, alternatively, by a set of
spectral coefficients. As noted above, we follow Lorenc (1986), in defining the
true model state xt as the true atmospheric state containing all scales from long
waves down to cloud microphysics, but spectrally truncated at the model grid.
Scales of motion that cannot be captured by the model grid (or the spectral
truncation) are not included in the definition of the true state. The numerical
model forecasts the state x, but the forecast is subject to error εf , which is the
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result of truncation associated with finite differencing, imperfect dynamics, and
errors in the representation of physical processes, whether parametrized or not.

(c) The forward model: H(x)
Forecasts are usually verified against observations (sometimes against an

analysis). Because observations hardly ever coincide with model grid points,
it is necessary to map the model forecast to the observations in order to make
a direct comparison. The forward model H does this. Another name for H is
the observation operator, because H operates on the model grid to generate a
pseudo-observation, a best estimate of the observed value. It relies on the param-
eters computed by the model on the model grid in order to make a best estimate
of the observed value. Sometimes the calculation is as simple as 3-D linear
interpolation, but if the observed quantity does not match one of the predicted
quantities, then H will also involve a transformation of variables. For example,
the model may predict relative humidity, but the observed quantity is column
integrated water vapour. In this case, in addition to interpolation, the forward
model has to convert the predicted relative humidity and temperature to a spe-
cific humidity and integrate the specific humidity vertically from the surface to
the top of the model atmosphere.

(d) Representativeness: yt = H(xt)+ εr

If the forward model H could be applied to the true values xt (unknown in
practice) on the model grid, we would have an observation that still lacks a
representativeness error εr. The representativeness error has two causes:

(1) The model grid volume does not match the atmospheric volume that is the
object of measurement. If the observed volume is small compared to the
model grid volume, the measurement will represent scales of motion that
the model grid cannot resolve. From the model’s point of view, the observa-
tion contains subgrid scale noise, and this will contribute to the value of εr.
In other words, because the representation of xt is spectrally truncated, the
projection H(xt) does not capture the subgrid scale atmospheric variance
inherent in the observation. If the observed volume is larger than the model
grid volume (e.g. a measurement of radiance in the microwave portion of
the electromagnetic spectrum could involve a volume of atmosphere larger
than the model grid volume), then the forward model will be an averag-
ing operator rather than an interpolation operator. From the model’s point
of view, the observation is too smooth and εr will relate to how well the
model average spatially and temporally represents y.

(2) If a transformation of variables is included in H, the relationship is imper-
fectly known or it is approximated in order to minimize the number of
computations, e.g., in case of radiance observations. This also contributes
to εr. In fact, any operation incorporated in H may contribute an error
component to εr.

To summarize, representativeness error arises from the mismatch between the
DAS model grid volume and the volume sampled by the instrument, and also
from a mismatch between the observed and predicted variables.
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Some aspects of the representativeness error are not random but systematic.
Even if we exclude subgrid effects that may be small if the model resolution
is high enough, a computationally fast radiative transfer model applied to an
atmospheric profile will generally yield imperfect radiances compared to the
real atmosphere. This error will be almost identical whenever the atmospheric
profiles are the same, since the model and physics remain unchanged. If such
imperfections are complex functions of the atmospheric state, they may appear
as random errors when computed from collections of states although they are
in fact systematic. Modelling the representativeness error as though it were ran-
dom may therefore introduce unrealistic effects if some aspect of the systematic
nature of the error is important.
In all aspects of the data assimilation problem, representativeness error appears
combined with instrument error. The combined error is called the “observation
error”, and its covariance (denoted by R) is a key statistic that determines the
analysis error covariance. If the instrument and representativeness errors are
uncorrelated, then R = E + F, where E and F are the covariances of instrument
and representativeness errors, respectively:

E = E[(εm − 〈εm〉)(εm − 〈εm〉)T ] and

F = E[(εr − 〈εr〉)(εr − 〈εr〉)T ]

where 〈 〉 denotes an average, E [.] denotes expectation value, and the super-
script T means vector transpose. The R, rather than E or F, is actually specified
in the DAS. E, F and R are matrices.
Techniques to estimate R are imperfect. A poor specification will yield a sub-
optimal system; i.e., one with larger analysis error variance than otherwise.
Generally, some further tuning of the error estimates is conducted so that the
R incorporated in the system experiments appears close to optimal. These are,
therefore, generally the values that must be duplicated as the observational
errors in the OSSE if the responses in the real and simulated systems are to
appear similar.

(e) Application to OSSEs:

In practice, real observations come with only an instrument error; they are inher-
ently representative of the volume of atmosphere sampled. The representativeness
error arises from the forward operator and has the two components mentioned
above. We account for instrument error and, to be rigorous, also for the representa-
tiveness error, when we specify the observation error covariance in the DAS penalty
function that is part of the variational analysis. In practice, we compute H(x), not
H(xt).

By contrast, in an OSSE, one uses a forward model to generate an observation.
After the forward model is applied to the grid point values of the Nature Run, we
must add a random contribution εr to the forward model output. The finer the reso-
lution of the Nature Run and the more accurate the forward model, the smaller the
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representativeness error will be. Finally, we must also add an appropriate instrument
error to improve realism. In summary, we must compute:

y = yt + εm = H(xt)+ εr + εm.

The random contribution εr accounts for the missing subgrid scale variance, say
εr

s and any error associated with a transformation in the forward model, say εr
H =

Ht(xt) − H(xt) (so εr = εr
s + εr

H), where Ht is a hypothetical perfect forward
model that operates on the NWP model defined truth. We find that:

y = H(xt)+ εS
r −H(xt)+Ht(xt)+ εm = Ht(xt)+ εS

r + εm

Note that y represents the Nature Run transformed through the hypothetical
perfect forward model. Additionally, one should consider whether the difference
Ht(xt) − H(xt) might have a systematic component (i.e., a bias), since a normal
random error distribution is assumed above in εr.

5 Simulation of Observations

5.1 Basic Guidelines

Although a particular OSSE may be motivated by evaluation of a single instrument,
it is still generally necessary to simulate all observations that are expected to be used
along with it. Even a poor observing system will be better than none at all since
the atmosphere is chaotic. Irrespective of how close to the real atmosphere a data
assimilation experiment begins, without the constraint of further observations, after
15 days or so it will diverge to states expected to be as dissimilar to the atmosphere
as two states randomly selected for the same month but different years. Thus, using
a single observation type in an OSSE with other observations excluded results in
a very large impact compared with no assimilation at all, but a much smaller and
more realistic impact if other observations are considered.

Current observations quite effectively constrain the atmospheric analysis. In
many places, the expected error variance of the analysis is less than that of most
observations that have been employed in the analysis of the DAS model state (Note
that many observations contain more information about the local atmosphere than
the analysis; however, in the truncated model domain, the errors of these observa-
tions are larger, due to the representativeness error.). The analysis is better because
it has used all nearby observations, including those implied by the background,
accounting for the error statistics of each, at least in a crude but still useful way.
The weighting of a new observation within the DAS will be determined by the pres-
ence of other observations. The impact of any additional observation essentially
competes with that of all others. When the impacts of any single observation type
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are measured, therefore, the improvements to the analysis or forecasts are generally
quite small. Progress occurs when innovative instruments are added to those already
used, but by small steps rather than great leaps.

Once the Nature Run is sufficiently validated, observations may be simulated. To
do so, it is necessary to understand the relationship between the observations and the
atmosphere, both the real atmosphere and the one represented by the Nature Run.
Furthermore, at the next step in preparing the OSSE, simulated errors are generated
to add to the corresponding simulated observations. The accuracy with which the
DAS can reproduce the Nature Run in the OSSE will depend strongly on the char-
acteristics of the errors associated with the observations. Prior to selecting a method
for simulating the observations, it is therefore prudent to also understand the nature
of all the types of error realistically associated with them.

Various observing instruments are designed to respond to differing atmospheric
characteristics. Here, two such instruments will be contrasted: (i) a radiosonde, and
(ii) a satellite instrument that measures infrared radiances. Together they represent
several of the various aspects that must be considered when simulating observations
and their errors.

The radiosonde is a comparatively simple instrument with a thermo-resistor
used to measure temperature as the balloon ascends. The measurement is made
along short segments of the trajectory of the balloon, with their length deter-
mined by the response and reporting times of the instrument. Compared with the
much coarser resolution represented by the Nature Run, these may be considered
as (almost) point values that are affected by all spatial scales. A function must
therefore be developed to relate the observed value to the atmosphere as repre-
sented by the assimilating model (i.e., a function for the spatial representativeness
error).

The other instrument is on board a satellite designed to measure infrared radi-
ances coming from the Earth and atmosphere below. The satellite actually measures
the energy of photons over some range of electromagnetic wavelengths collected
on an antenna (see chapter Research Satellites, Lahoz). For the purpose of NWP as
opposed to climate monitoring, data assimilation is mainly concerned with atmo-
spheric fields: temperature, wind, pressure and constituents (e.g. water vapour,
ozone, and perhaps minor species and aerosols). The observed radiances must be
related to these fields if they are to be useful. Presumably an appropriate relationship
exists; otherwise the observation would not be used for this purpose. The antenna
collects radiances emitted from a possibly large volume of the atmosphere and is
therefore most accurately related to some kind of average (with spatial weights
determined by the viewing characteristics of the antenna and the orbiting satellite).
This average will not in general correspond to that defining a grid volume aver-
age in a model data representation. Thus, some spatial interpolation or integrating
relationship must also be defined.

For any observation types already used within a DAS, a useful relationship
between what is observed and the representation of fields being analysed necessar-
ily already exists. In the standard notation used for atmospheric data assimilation,
this is the operator H that acts on the background field during the assimilation cycle
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(see Sect. 4). For a new instrument not yet used, this operator needs to be developed.
Development can be either empirical or physically based.

In general, H can be expanded into a sequence of one to several distinct functions
acting on the state x; e.g., as:

H(x) = S(F (I(x)))

The function I denotes a possible interpolation from grid-point (or other dis-
crete data representation) to observation locations; F denotes a possible physical
(or other) relationship such as radiative transfer relating temperature and moisture
to satellite-observed radiances; S denotes a possible integration of values, such as
along a line of sight or within an antenna footprint. Any of S, F , or I may be absent
for a particular observation type, and some types may be better described by a dif-
ferent sequence of operators or the employment of additional ones. The equation
should therefore be considered as schematic, although for some observation types
the presentation may be precise.

The more realistic the relationship between values representing the model state
and the observed quantity, the more useful the real observation will be to the DAS
and, correspondingly, the more realistic the simulated observation will be in the
OSSE. A problem is that the time to develop the most accurate relationships may
be prohibitive, and the benefits may be tiny compared to other shortcomings in the
system. A relationship must be designed to be “good enough” for the intended pur-
pose. Results must be carefully interpreted mindful of these criteria. The way these
choices are evaluated will depend on the purpose. Inaccuracies in the results when
compared to the “true” physical relationship can be handled to some degree by the
statistical approach to representing errors in the DAS.

The H is designed with speed as well as accuracy in mind, especially if the
DAS solves a large variational problem. In that case, a tangent linear version of
H and its adjoint (see chapter Variational Assimilation, Talagrand) are generally
applied to every iteration of the analysis increments (i.e., the difference between
the analysis and the forecast). Thus, some compromises may be made that are not
necessary when speed is not an issue. An example of this latter case is the generation
of simulated observations from the Nature Run; these need only be produced once
to be used in all subsequent relevant OSSEs. Thus, the simulation of observations
from the Nature Run need not be done in the same way as the assimilation model.
In fact, there are good reasons for selecting a different algorithm. These and other
considerations are described in the next section.

5.2 Specific Issues Related to Different Observational Types

Standard and simple forward models are used for extracting observed quantities
from the “true” (i.e., Nature Run) background fields as the basis for the simulation of
observations for use in OSSE experiments. This procedure will inevitably omit some
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fraction of the error (from instrument variability and lack of model representative-
ness) to be found in real observations. Thus, simulation of observations for OSSE
work is usually thought of as the synthesis of a signal from the background truth
field (often referred to as a “perfect” observation), and some appropriate amount
of noise, or “error.” If the noise or error is indeed appropriate, then the impact of
simulated observations on an OSSE will be similar to the impact that real-world
observations have on operational assimilation. Although the instrument errors are in
most cases fairly well defined, the derivation of the total error levels appropriate for
application to perfect observations is a complex subject. This section describes some
of the issues surrounding the creation of the perfect part of simulated observations.

5.2.1 Simulation of Conventional Observations

In order to create perfect observations, it is only necessary to locate the observation
type to be simulated in the space and time coordinates of the background field. The
most straightforward approach to this problem, for the case of simulating existing
data sources, is just to use the locations of real observations for any given time and
place. In the case of conventional observation sources (for example, TEMP, PILOT,
SYNOP, AIREP, SHIP, BUOY, SATOB; see chapter The Global Observing System,
Thépaut and Andersson) real world data patterns are readily available, and the spec-
ification of realistic simulated data patterns for these data types is simple. For the
purposes of many OSSE experiments already conducted, this technique of locat-
ing conventional observing patterns is sufficient. However, in the set of simulated
observations, the effects of observation circumstances and the expected evolution of
the observing system should also be taken into account. Below we discuss several
examples.

Radiosonde launch points can be located from existing real world datasets, but
the balloon ascent and drift will depend on the atmosphere being sampled. The track
of each radiosonde can be calculated using relatively simple transport models. For
maximum realism, the calculation should be stepped at intervals sufficiently small to
obtain information from the full vertical resolution of the Nature Run true fields. The
resulting simulated profiles might be used without change in OSSE experiments, but
would more likely be transformed into the more recognizable pattern of mandatory
and significant vertical levels as presented to an operational DAS.

Surface land observations (for example, SYNOPs, METAR) present several
issues to be considered for achieving realistic simulations. The question of loca-
tion involves mainly the surface elevation and the measuring height. Although most
real-world analogues contain some measure of the observation height, it may be
advantageous in some cases to use a very high resolution digital elevation model
and tables of particular instrument measuring heights to locate these data. There is
also a need to interpolate surface values from the Nature Run background fields on
a smoothed topography to a realistic topography of simulated observation points.

Commercial aircraft, the source of most aircraft observations, fly routes which
use wind patterns to save fuel cost and avoid turbulence. Ideally, flight tracks for
the OSSE should be formulated for simulated aircraft in the same way as they are
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for real cases. However, the location of jets and turbulence can be very different
for the Nature Run and the real world; the flight planning software is complicated,
proprietary and even unique to individual airlines. It may be possible and worth-
while to develop a simplified generalized approach to formulating simulated flight
track planning based on some general principles, in lieu of using the actual software
employed by the airlines.

Cloud-tracked wind observations, and their unique observing errors, will depend
on the specification and perception of cloud fields from the Nature Run. Satellite-
borne instruments and observations of all types have unique relationships with
various types of clouds, so this is a very important aspect for realistic simulation
of satellite-based observations.

In general, it seems desirable to make use of synoptic features from the back-
ground truth fields to determine realistic locations for all simulated observations,
at least to the extent this can be accomplished without exerting undue effort, or
employing unrealistic assumptions. Many more OSSE experiments will need to be
designed, conducted, and carefully examined in order to determine how important a
realistic distribution of simulated observation locations is.

5.2.2 Simulation of Radiance Data

For the NCEP OSSE (see Sect. 9), the use of different Radiative Transfer Models
(RTMs) for simulation and assimilation helps understand the errors associated with
RTMs. Radiative transfer models used for simulation have been generally based on
the RTTOV-6 (Radiative Transfer for TOVS) algorithm (Saunders et al. 1999). At
NCEP, the OPTRAN model developed by NESDIS was used in the assimilation
(Kleespies et al. 2004). Brightness temperatures were simulated and level-1B radi-
ances synthesized with correlated measurement errors; the impact of clouds was
also considered (Kleespies and Cosby 2001). Currently, the Community Radiative
Transfer Model (CRTM) (Han et al. 2006; Weng 2007) and RTTOV are widely used
in operational data assimilation systems. The SARTA (Stand-alone AIRS Radiative
Transfer Algorithm) model (Strow et al. 1998) is also available and has been rou-
tinely used to simulate radiance data. These models allow the implementation of
OSSEs using different RTMs for simulation and assimilation.

The simulation of radiances involves many procedures: simulation of orbits,
evaluation of cloudiness, and assignment of surface conditions. Various properties
such as surface emissivity and spectral response function have to be evaluated for
each instrument. The characteristics of the instruments can change after launch,
requiring a different set of coefficients at each stage. Ideally, the radiance data
would be simulated as the Nature Run is produced. However, it is safer to save
the Nature Run output frequently and simulate the radiance data afterwards,
since radiances have to be simulated repeatedly with various conditions and error
assignments.

If only clear-sky radiance data are used, a subgrid-scale sampling algorithm has
to be developed when the radiances are simulated. If the footprint sizes are smaller
than the Nature Run grid spacing, clear radiance data through small holes within the
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cloudy grid have to be simulated. Using a probabilistic procedure to simulate cloud
porosity is a possible way to produce the correct statistics. A functional relationship
between clear sky probability and cloud fraction profile has to be derived to obtain a
reasonable distribution (e.g. Marseille and Stoffelen 2003). If the cloud cover is used
simply as a cut-off criterion for clear sky radiances, much of the clear sky radiance
data from the porous areas of cumulus clouds are eliminated and large amounts of
radiance data from above the clouds will be eliminated. Note that there are many
stratospheric channels which are never affected by cloud.

Although both the OPTRAN and RTTOV models can simulate cloudy radiances,
cloudy radiances have not been used in data assimilation systems (McNally et al.
2000). Further development of RTMs will include cloudy radiances in data assim-
ilation systems (Liu and Weng 2006a, b). Cloudy radiances allow the simulation
of imagery and moisture channels. While most of these channels may not be used
for data assimilation, imagery and moisture channels can be used with observations
to evaluate the Nature Run as well as the RTM itself. Note that since the Nature
Run does not resolve cloud scales, even when radiances are modelled through cloud
fraction, subgrid-scale clouds still need to be represented appropriately (e.g. in a
statistical sense). Modelling the subgrid-scale cloud remains important to simulate
cloudy radiances and for assimilation of radiance data. Testing RTMs with clouds is
an important area for OSSEs.

Calibration of the radiance data includes a sampling algorithm which produces a
similar distribution of observations as the real data. The adjoint technique (Zhu and
Gelaro 2008) is especially useful in the calibration of radiance data, as it allows the
skill of an individual channel to be assessed. The skill has to be evaluated for various
conditions, as real errors are likely to be a function of geography, local atmospheric
flow, season, and viewing angle. These errors are also likely to be correlated. The
bias, variance, error correlation, and distribution function for the errors have to be
modelled to be used by any data assimilation system. Bias correction is now a part
of data assimilation systems (see chapter Bias Estimation, Ménard). As a result, one
can bias correct the Nature Run radiances or implement the bias correction in the
DAS itself.

5.2.3 Simulation of Doppler Wind Lidar (DWL) Data

As noted in the introduction (Sect. 1), one of the primary uses of OSSEs is to investi-
gate and quantify the potential impact of a new observing system or combination of
observing systems not currently being used together. No other instrument has been
subjected to OSSE evaluation more than the Doppler Wind Lidar (DWL). With only
radiosondes and a few radar wind profilers providing complete vertical profiles of
the horizontal wind vector, gaining insight into the impact of a new wind profiler,
especially over oceans and sparsely populated land areas, requires simulating the
performance of the sounder without the benefit of a heritage instrument. Issues
of observation errors including measurement errors and error of representative-
ness must be addressed. The DWL instrument is critically affected by both clouds
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and aerosols. While clouds are represented reasonably well by current numerical
models, aerosols are not.

In the United States, NASA and the Department of Defense (DoD) have sup-
ported the development of a Doppler Lidar Simulation Model, DLSM (Wood et al.
2000; Emmitt and Wood 2001). The DLSM was designed specifically to operate
with the Nature Runs generated for OSSEs. Much attention has been given to incor-
porating cloud effects on the scale of the lidar beams (~100 m) and representing
subgrid-scale turbulence that would affect the precision of the DWL line-of-sight
(LOS) measurement (Emmitt and Wood 1989, 1991a).

A major role for OSSEs in preparing for a space-based DWL mission has been
the generation of data requirements and subsequently derived instrument design
specifications (Atlas et al. 2003b). Instrument designers have used the DLSM to
conduct NWP impact trade-off studies related to orbit, instrument wavelengths, laser
pulse energies, and signal processing strategies (Emmitt and Wood 1991b). NASA
and NOAA have conducted numerous OSSEs using DWL observations simulated
by the DLSM (Atlas and Emmitt 1995; Lord et al. 2002; Masutani et al. 2003;
Riishøjgaard et al. 2003; Woollen et al. 2008).

In Europe, a similar Doppler Lidar In-space Performance Atmospheric Simulator
(LIPAS) has been developed (Marseille and Stoffelen 2003) in support of the
ADM-Aeolus mission to fly a space-borne DWL in 2011 (Stoffelen et al. 2005)
– see chapter Research Satellites (Lahoz). LIPAS has been used to conduct OSSEs
(Stoffelen et al. 2006) and simulates aerosol variability, vertical overlap of clouds
and all relevant instrument performance characteristics.

The usual OSSE process involves a team composed of representatives of the
operational weather forecasting community, instrument specialists and data stake-
holders. The availability of models such as the DLSM and LIPAS allows the
optimistic perspective of the instrument proposers and the more cautious expecta-
tions from the NWP communities to be explored over a range of assumed instrument
performance within a realistic model and data assimilation environment. In the case
of the DWL, the competition with other sources of wind information (including
wind information contained in the background state) leads to an integrated impact
which is usually more modest than that expected by the technologists. On the other
hand, synergies with other sources of wind information (e.g. scatterometers and
cloud motion vectors) are illuminated in ways not easily quantified without the
OSSE.

6 Initial Conditions and Spin-Up Period

6.1 Initial Conditions

The initial conditions for an OSSE must be generated carefully to reduce noise due
to the difference between the Nature Run and the NWP model used for OSSEs. If
an appropriate initial condition is not used, the OSSE will be contaminated by noise
from the initial conditions and it will be hard to assess the data impact.
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When starting a limited-period OSSE at some point within the Nature Run, initial
conditions have to be generated carefully. If the initial conditions are generated from
a different model, large biases between the models have to be removed, and some
model variables may have to be estimated. Possible strategies to generate initial
conditions include:

(i) Generate the initial conditions by interpolation from the Nature Run: It is possi-
ble to interpolate the initial conditions from the Nature Run to an OSSE model
grid and use this as the initial conditions. As there is a large amount of noise
produced from inconsistent initial conditions, it usually takes a few weeks for
the OSSE to settle down. This procedure requires careful development of the
interpolation procedure. Both the differences between the model variables and
the bias between the Nature Run and the OSSE data assimilation system have
to be carefully handled.

(ii) Take the initial conditions from a precursor analysis: In this approach one gen-
erates a precursor analysis starting from the same time and date as the Nature
Run and uses the analysis as the initial conditions with the same DAS used for
the OSSEs. The precursor analysis does not have to be of a high resolution but
should be provided at the lowest resolution used for the OSSE. Not all opera-
tional data have to be included, but there should be enough data over the ocean
to provide a reasonable description of large scale features, particularly in the
Southern Hemisphere.

If the DAS used for the precursor run is the same as the OSSE data assimilation
system, but has a higher resolution than the precursor analysis, the transition from
the precursor analysis to the OSSE will be smooth. However, it takes a few time
steps for the OSSE system to show the full resolution features.

If the OSSE DAS is different from the DAS used for the precursor run, an interpo-
lation has to be performed. Exchanging analyses between different DAS is routinely
done in real operational forecasting. This process can also be evaluated by OSSEs.

6.2 Spin-Up Period

A real analysis is used for the initial conditions of the Nature Run. During the first
2–3 weeks, a drift occurs from the real atmosphere to the model atmosphere, par-
ticularly in the tropics. This period (called the spin-up period) should not be used
for an OSSE because it lies within the limit of predictability (at least for the largest
scales) and still contains traces of the real atmospheric conditions.

The Nature Run NWP model and initial analysis have errors that depend on the
real atmospheric state due to data distribution, and DAS and NWP model specifica-
tion. When the Nature Run state has evolved to one which is unrelated to the real
atmosphere, these errors can be assumed to have disappeared. One can use trends
in the O-B (observation minus background) and O-A (observation minus analysis)
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differences to determine whether the Nature Run errors are independent of those
of the real atmosphere. Depending on the type of experiment, the time for error
independence to occur could be less than 2–3 weeks (see above).

7 Evaluation of OSSE Results

The data impact in an analysis and forecast could be very different. For exam-
ple, if the model is not performing well, large differences between the background
(forecast) and observations will create a large analysis impact; however, that
improvement will not be maintained in the forecast skill. On the other hand, a
small analysis impact may become a large forecast improvement in areas where
the model is performing well. The areas showing data impact in the analysis and
forecast may not be the same. Improvements can also propagate between regions:
e.g., improvements in upper level wind will propagate towards lower levels in the
forecast.

Data impact varies with spatial and time scales. For example, the impact in the
mass fields could be very different from the impact in the wind fields. Below we
discuss various aspects of data impact.

7.1 Data Denial (or Adding) Experiments (DDEs)

The most common method used to test the impact of specific data is to compare
the analysis and forecast skill with and without the specific data. Many diagnostic
methods used to evaluate the Nature Run can also be used to evaluate the forecast
and analysis. With real data the impact is measured as the forecast skill without
the specific data compared against the best analysis or fit to observations. Usually,
the analysis with the most data is considered to be the best and used as the control
(defined in Sect. 1). Various skill scores for simulated experiments can be evaluated
against either the control experiment or the Nature Run itself, while experiments
with real data can be evaluated only against the control.

There are many evaluation methods, but it is important to produce a consistent
evaluation for all experiments when the results are compared. Many diagnostic tech-
niques used to evaluate the Nature Run can also be used to evaluate the results.
Examples are given below.

(1) Root Mean Square Error (RMSE). Root mean square error does not require cli-
matology; therefore, this is the easiest evaluation that can be performed, and is
often the first evaluation to be implemented. In a real system, RMSE is com-
puted as the departure from the control experiment, which is usually the analysis
with the most observations. For simulated experiments, RMSE can be computed
from the departure from the Nature Run. The RMSE can be evaluated with the
zonal mean or the time mean removed;
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(2) Anomaly correlation (AC). Anomaly correlation is affected by the climatology
used, so it is important to use the same climatology for all skill comparisons. It
is better to use a less than perfect climatology than to use different climatologies
in skill comparisons. Traditionally, the AC of the 500 hPa geopotential height
has been used, but Masutani et al. (2006, 2010) showed that other levels and
variables need to be evaluated. Calculating ACs for different spatial scales is
also crucial;

(3) Storm track and intensity. Evaluations are done to determine the improvement
in the storm track for selected events;

(4) Fit to observations. This requires a forward model (see Sect. 4). For the NCEP
OSSEs, an evaluation against Nature Run will replace this method. It is still
important to compare the fit to observations during the calibration process, i.e.,
test the realism of the O-B and the O-A distributions (see chapter Evaluation of
Assimilation Algorithms, Talagrand);

(5) Evaluation of the realism of a Nature Run by assessing the likelihood of
extremes lying outside the normal range of analysed or measured values;

(6) Amplitude, wavelength and propagation speed (or phase) of waves;
(7) Comparisons which may shed light on the realism of disturbances in the model

and identify possibly unrealistic or spurious scales of motion;
(8) Evaluating the analysis and forecast of precipitation using, e.g., threat scores TS

(TS = AC/(AF + AO – AC), where AC = area correct, AF = area forecast, AO
= area observed);

(9) The statistics of analysis increments. Errico et al. (2007) showed that the
spectral decomposition of analysis increments reveals the performance of
a DAS.

7.2 Adjoint–Based Techniques

An adjoint–based technique (ADJ) to estimate the impact of observations on NWP
analyses has been developed and is described in detail in Langland and Baker
(2004) – see also chapter Variational Assimilation (Talagrand). This is a powerful
method that describes the contributions from different observations. This technique
allows detection of impact, be it positive or negative, from any observation. There
are advantages and disadvantages compared with Data Denial Experiments (DDEs)
(Zhu and Gelaro 2008; Gelaro and Zhu 2009):

• The ADJ measures the impacts of observations in the context of all other observa-
tions present in the assimilation system, while the observing system is modified
in the DDE (i.e., gain matrix differs for each DDE member);

• The ADJ measures the impact of observations separately at every analysis cycle
versus the background, while the DDE measures the total impact of removing
data information accumulated in both the background and analysis;
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• The ADJ measures the response of a single forecast metric to all perturbations of
the observing system, while the OSE measures the effect of a single perturbation
on all forecast metrics;

• The ADJ is restricted by the tangent linear assumption (valid ~1–3 days), while
the DDE is not;

• The ADJ and DDE techniques produce a similar qualitative pattern on the short-
term forecast with some exceptions;

• The ADJ may help our understanding in the interactions and redundancies among
various observing systems.

8 Calibration of OSSEs

Calibration of OSSEs verifies the simulated data impact by comparing it to real
data impact. In order to conduct an OSSE calibration, the data impact of existing
instruments has to be compared to their impact in the OSSE.

The simulated impact experiments should mimic the equivalent real experiments.
In any case, the observation-minus-background (i.e., forecast) difference is the sum
of three terms: the measurement error, the representativeness error, and a back-
ground error transformed by H. Realistic estimates of the variances and spatial
covariance of these errors must be made for an effective OSSE. One way to ensure
that measurement errors, representativeness errors, and forecast (background) errors
are all properly specified is to compare the statistical properties of y − H(x) (the
innovation) of the OSSE with those of the real world assimilation y−H(x) for each
observing system; they should match. Similarly, the statistical properties of the anal-
ysis increments for the OSSE and the real world assimilation should match. Thus,
distributions of observation minus background (O-B) differences and observation
minus analysis (O-A) differences for each observation type in the simulation should
be similar to the statistics in an equivalent experiment with real data. In effect, the
simulated observations should force the OSSE model state toward the Nature Run
in the same way that real observations force the operational model state toward the
projected true atmospheric state.

One way of calibrating an OSSE is to use a DDE (see Sect. 7.1) to find out
whether the assimilation of a specific type of observation has the same statistical
effect on a forecast within the simulation as it does in the real world. For example,
if automated aircraft reports are withheld from an operational data assimilation sys-
tem, will the statistical measures of forecast degradation be the same as they would
be in a system where all observation types are simulated and the Nature Run pro-
vides truth? An alternative method of calibration is to use the ADJ (see Sect. 7.2)
to adjust the observational error so as to achieve a similar data impact with real
observations.

When calibrating the OSSE, similarity in the amount of impact from existing data
in the real and simulated atmospheres needs to be achieved. If the impacts are differ-
ent this needs to be explained. For example, synoptic systems in the Nature Run and
the real world are different, and that will cause differences in the data impact. If the
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differences are caused by the procedure used in simulating the data, the simulation
of the data has to be repeated until a satisfactory agreement is achieved.

Ideally, a complete calibration would be performed every time the DAS changes.
However, we would spend our entire resources on calibration if we try for perfec-
tion. Of course, we will never reach the perfect calibration. Thus, we need to select
test sets of experiments to use for calibration and for verification.

9 Experiences from the NCEP OSSE

9.1 Background of the NCEP OSSE

Various types of OSSEs have been performed (see Sect. 2); however, to our knowl-
edge, the OSSE performed at the National Centers for Environmental Prediction
(NCEP) is the most extensive one so far, and one where calibrations have been per-
formed and presented in a regular manner. The calibration of data impact has been
performed by comparing the data impact with both real and simulated data. Without
calibration, the simulated data impact cannot be related to the real data impact. The
NCEP OSSE is also the first OSSE where radiance data from satellites were simu-
lated and assimilated. A forecast run with a version of the ECMWF model was used
to produce the Nature Run, instead of using an analysis or using the same NWP
model used for the assimilation (see Sects. 1, 2 and 3).

Since the DWL is one of the most costly instruments, various simulation experi-
ments have been funded and performed. In the NCEP OSSE, instead of evaluating a
specific instrument, four representative types of DWL were evaluated (see Sect. 9.3
below for details). The results show a potentially powerful impact from DWL, but
also show that without a careful design of the observing system and a significant
effort in developing the data assimilation system, DWL will not be utilized to its
best potential.

9.2 Calibration Performed for NCEP OSSE

The calibrations were performed on existing instruments, such as the denial
of RAOB (radiosonde observations) wind, RAOB temperature, and TIROS
Operational Vertical Sounder (TOVS) radiances in various combinations. The geo-
graphical distribution of time-averaged Root Mean Square Error (RMSE) shows
generally satisfactory agreement between real and simulated impacts. In both the
real and simulated analysis, a large analysis impact in the tropics is seen to decrease
in the forecast fields. In the Northern Hemisphere mid latitudes, the RMSE dis-
tribution of forecasts shows similar spatial patterns in the real and simulated
analyses.

Figure 1 shows anomaly correlation (AC) skill in the 72-h 500 hPa geopotential
height forecasts verified against the analysis from control experiments. The analysis
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Fig. 1 500 hPa height anomaly correlation, time averaged between February 13 and 28. Seventy
two-hour forecast fields are verified against the control analysis. Control runs include all conven-
tional data and TOVS radiances. For each run the RAOB winds, RAOB temperatures and TOVS
radiance are withdrawn in turn (experiments NWIN, NTMP, NTV, respectively). The left two pan-
els are for the Northern Hemisphere and the right two panels for the Southern Hemisphere. The
top two panels are for simulation experiments and the bottom two are for real experiments. With
permission from Masutani et al. (2010)

of the control experiments (CTL) includes conventional observations and TOVS.
TOVS (NTV experiment), RAOB wind (NWIN experiment), and RAOB tempera-
ture (NTMP experiment) are withdrawn, and the real and simulated data impacts are
compared.

In both real and simulated experiments, the RAOB wind has the most impact:
overall for the Northern Hemisphere; very slightly more than RAOB temperature
for the Southern Hemisphere. Its impact and the magnitude and spatial pattern of
the impact are in good agreement for real and simulated experiments. However, the
effect of withholding TOVS data in the Southern Hemisphere is much greater in
reality than in simulation. Note that a time-varying real SST was used in the assim-
ilation and a constant SST in the simulation. In order to investigate the cause of this
inconsistent result, eight experiments were compared: real or simulated analysis,
constant or real SSTs, and with or without TOVS data. The consistency in response
between the simulated and real atmosphere to the two different SSTs was confirmed.
These results suggest that if the SST has a large temporal variability, the impact of
TOVS data becomes more important. When TOVS data are used, the analyses with
the two different SSTs become closer because TOVS data contain information about
SSTs. Although using constant SSTs to generate the Nature Run is not desirable, we
conclude that the data impact of slowly varying SSTs in the Southern Hemisphere
can be tested with the T213 NR (see Sect. 3.2).

These results suggest that a realistically variable SST is required for a more reli-
able OSSE. Ideally, an ocean-atmosphere coupled model is desirable for producing
a better Nature Run, but this may require further development of current coupled
models.
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9.3 Evaluation of DWL Impact Using the NCEP OSSE

In the NCEP OSSE, instead of evaluating a specific type of the DWL instrument,
four representative types of DWL are evaluated. The data impact from a specific
type of DWL is expected to be estimated from the data impact of these four types
of DWL. After these idealized experiments, a more realistic DWL will be simulated
and evaluated. The four types of DWL are as follows:

• DWL with scanning, while sampling is from all vertical levels;
• DWL without scanning, while sampling is from all vertical levels and in only one

direction;
• DWL with scanning, while sampling is from upper levels;
• DWL with scanning, while sampling is from lower levels and clouds.

Upper and lower level sampling represent DWL measurements of molecular and
aerosol particle returns, respectively.

First, many experiments were done to illustrate the impact of conventional and
DWL data over the first few days of the period under investigation. Then, selected
sets of experiments, including model forecasts, were extended to the whole Nature
Run period. The impact of DWL was assessed using AC (anomaly correlation) for
500 hPa geopotential heights; then the results of time-averaged geographical dis-
tributions and a time series of RMSE were also studied. Traditionally, the AC for
500 hPa geopotential height is used to evaluate the data impact, but it was soon
evident in this study that the impact on 500 hPa geopotential height is very limited.

The meridional wind (v) is mainly used to assess the performance of the DWL.
Note that the evolution of atmospheric phenomena at the shorter time and smaller
spatial scales is dominated by the wind field, while for longer time and larger spatial
scales the mass (temperature) field is dominant (Stoffelen et al. 2005; Kalnay 1985).
In the Northern Hemisphere, excellent skill at the global scale is mostly achieved by
existing data (conventional and TOVS). Therefore, the impact of DWL is expected
at the synoptic scales. The skill to predict temperature (T) comes mainly from plan-
etary scale events, while the skill to predict v comes mainly from the synoptic scale.
The zonal wind (u) and meridional wind (v) contain the information about relative
vorticity at the synoptic scale, while u and T contain information about the wave
guide (Hoskins and Ambrizzi 1993). Therefore, v depicts information about relative
vorticity. The large scale u component can be inferred from temperature, T, observa-
tions in the extratropics, while DWL wind observations mainly define the synoptic
scale wave which is represented in relative vorticity and the meridional wind, v.

The data impact further depends on the resolution of the DAS. There are many
reasons to expect that the data impact might be reduced with higher resolution mod-
els (or better forecast models), because they can provide much better background
(forecast) fields and there is less room for data to improve the analysis. On the other
hand, a higher resolution model will be able to effectively utilize data in finer detail,
and that may lead to a higher data impact. Moreover, the smaller scales evolve faster
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than the larger scales, so their evolution needs to be analysed more often with new
observations.

Masutani et al. (2006, 2010) showed that improvements in AC (anomaly corre-
lation) scores caused by the insertion of DWL winds are less in a higher-resolution
DAS than for a lower-resolution DAS because the first guess field from a higher
resolution forecast model is more accurate and leaves less room for improvement.
At the larger spatial scales, improvements in the model are more important, but
wind data clearly improve the analysis and forecast at the smaller spatial scales.
The results very much depend on the spatial scale considered. The NCEP OSSE
also showed that the data impact depends on the DAS. Therefore, OSSEs performed
using various DAS will be needed to establish confidence in the evaluation of future
instruments.

Finally, data impact is also tested using various thinning strategies. For example,
data are thinned to 10% in various ways:

• Uniformly;
• 10 min on followed by 90 min off;
• Targeted to areas with large analysis error;
• Targeted to data void areas;
• Comparison between thinning and increase in observational error.

The NCEP OSSE results show that OSSEs are a very powerful tool for assessing
the effect of data distribution.

10 Summary and Concluding Remarks for OSSEs

Credible OSSEs may be performed that realistically evaluate the impact of prospec-
tive observations. The challenges of OSSEs, such as differences in character
between the Nature Run and real atmosphere, the process of simulating data and
the estimation of observational errors all affect the results. Evaluation metrics more-
over affect the conclusions. Thus, consistency in results is important. Some results
may be optimistic and some pessimistic. However, it is important to be able to eval-
uate the sources of errors and uncertainties. As more information is gathered, we
can perform more credible OSSEs. If the results are inconsistent, the cause of the
inconsistency needs to be investigated carefully. Only when the inconsistencies are
explained, interpretation of the results becomes credible.

The NCEP OSSEs (Masutani et al. 2006, 2010) have demonstrated that carefully
conducted OSSEs are able to provide useful recommendations which influence the
design of future observing systems. Based on this work, OSSEs can be used to
investigate:

• The effective design of orbit and configuration of an observing system;
• The effective horizontal and vertical data density;
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• The evolution of data impact with forecasts;
• The balance between model improvement and improvements in data density and

quality;
• The combined impacts of mass (temperature) data and wind data;
• The development of bias correction strategies.

As models improve, there is less improvement in the forecast due to the obser-
vations. Sometimes the improvement in forecasts due to model improvements
can be larger than the improvement due to observations. However, even in the
Northern Hemisphere, forecasts at the subsynoptic scales require much better
observations. In the tropics, models need to be improved to retain the analysis
improvement for more than a few days of the forecast (Žagar et al. 2008). OSSEs
will be a powerful tool for providing guidelines for future development in these
areas.

(i) Value of OSSEs: Operational centres are busy getting the best possible value out
of existing instruments. We expect that carefully designed OSSEs will enable
scientists to make strong and important contributions to the decision making
process for future observing systems. Time will be saved in using the new data
when compared to the work required to use observing systems that were built
without any guidance from OSSEs. However, there is a serious dilemma in
spending resources on OSSEs. If a NWP centre devotes resources to getting
the greatest benefit out of existing data sources, it misses the opportunity to
assess critical future observing systems, with the result that it must live with
whatever new observing systems appear in the future rather than influence their
development. If it devotes its resources entirely to OSSEs, it may not be paying
enough attention to today’s valuable data.

(ii) Challenges of OSSEs: OSSEs are a challenge to weather services. OSSEs
require strong leaders with a clear vision, because many of the efforts offer
long-term rather than short-term benefits. Although operational systems should
benefit from carefully executed OSSEs through lower cost of implementation,
there are immediate costs to OSSEs.

OSSEs are very labour intensive. The Nature Run has to be produced using
state-of-the-art NWP models at the highest resolution. Simulating data from a
Nature Run requires large computational resources, and simulations and assim-
ilations have to be repeated with various configurations. OSSEs also require
extensive knowledge of many aspects of the NWP system. Expert knowledge
is also required for each instrument. Efficient collaborations are thus essential
for producing timely and reliable results.

(iii) Role of stakeholders: OSSEs will be conducted by various scientists with dif-
ferent interests. Some will want to promote particular instruments. Others may
want to aid in the design of the global observing system. Specific interests may
introduce bias into OSSEs but they may also introduce strong motivations.
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Operational centres will perform the role of finding a balance among conflict-
ing interests to seek an actual improvement in weather predictions. They may
be regarded as unbiased and thus be best placed for this role; on the other hand,
difficulties in finding resources may hamper their effort.

(iv) Recommendations: Ideally, all new instruments should be tested by OSSEs
before they are selected for construction and deployment. OSSEs will also be
important in influencing the design of the instruments and the configuration
of the global observing system (see chapter The Global Observing System,
Thépaut and Andersson). While the instruments are being built, OSSEs will
help prepare the DAS for the new instruments. Developing a DAS to assimilate
a new type of data is a significant task. However, this effort has traditionally
been made only after the data became available. The OSSE effort demands
that this same work be completed earlier; this will speed up the actual use
of the new data and proper testing, increasing the exploitation lifetime of an
innovative satellite mission.

From the experience of performing OSSEs during recent decades, we real-
ize that using the same Nature Run is essential for conducting OSSEs to deliver
reliable results in a timely manner. The simulation of observations requires
access to the complete model data and a large amount of resources; thus it is
important that the simulated data from many institutes be shared among all the
OSSEs. By sharing the Nature Run and simulated data, multiple participants
in OSSEs will be able to produce results which can be compared; this will
enhance the credibility of the results.

(v) Final word: NCEP’s experience with OSSEs demonstrates that they often
produce unexpected results. Theoretical predictions of the data impact and
theoretical backup of the OSSE results are very important as they pro-
vide guidance on what to expect. On the other hand, unexpected OSSE
results will stimulate further theoretical investigations. When all efforts come
together, OSSEs will help with timely and reliable recommendations for future
observing systems.
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Data Assimilation for Other Planets

Stephen R. Lewis

1 Introduction

The application of data assimilation methodology to terrestrial problems in meteo-
rology, atmospheric physics and physical oceanography has already been described
extensively within this book. Data assimilation, the combination of observations
and numerical models which provide physical constraints, organize and propagate
the observational information which is introduced, also offers significant poten-
tial advantages for the analysis of atmospheric data from other planets. The Solar
System provides seven examples of thick neutral atmospheres in addition to that
of the Earth: Mars, Venus and Saturn’s moon Titan, which all have relatively large
rocky cores surrounded by thinner atmospheres, like the Earth, and four largely
gaseous Giant Planets, Jupiter, Saturn, Uranus and Neptune. In recent years satel-
lites have been placed in orbit about Mars in particular, but also Venus, Jupiter and
Saturn, in contrast to the relatively rapid fly-by missions in the initial stages of the
exploration of the Solar System. These spacecraft provide the potential for long
sequences of atmospheric observations. Together with the necessary advances in
numerical modelling of planetary atmospheres, these new missions have provided
an opportunity for the application of data assimilation techniques for the analysis of
planetary observations. As described in this chapter, data assimilation has now been
employed with some success in the context of the atmosphere of Mars and more
ambitious studies are planned for the future. Assimilation in these unfamiliar and,
compared to Earth, data-poor environments also provides valuable lessons for the
development of terrestrial assimilation, especially in situations where it is vital to
extract the maximum information from a limited observational record.
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2 Motivation for the Assimilation of Extra-Terrestrial Data

The motivation behind the application of data assimilation to atmospheric data from
other planets is in principle very similar to the motivation for its use on the Earth.
Typical spacecraft observations of radiances at various wavelengths, most com-
monly in the infrared, must be interpreted and used to constrain the thermodynamic
and dynamic state of the atmosphere under observation in a systematic way. In the
past, this has typically been done by the retrieval of individual temperature pro-
files, for example, and by mapping and interpolation in space and time of either
observed radiances (or brightness temperatures) or sets of individual retrieved pro-
files to obtain global fields. Simple balance relationships, such as the gradient wind
approximation, have been used to derive estimates of further quantities such as zonal
winds from longitudinally-averaged temperatures. Such straightforward procedures
are justified in the case of relatively sparse observations of a planetary atmosphere
which may be much less well understood than that of the Earth. As seen earlier in the
book, in recent years the terrestrial meteorological and oceanographic community
have benefited greatly from the application of more sophisticated data assimila-
tion techniques to the relatively large number of observations available to them (see
chapters in Part II, Observations). It is natural that planetary scientists would pro-
pose similar analyses to maximize the valuable information that can be extracted
from the relatively smaller data sets that are available to them, as was done by sev-
eral teams for Mars in the 1990s (e.g. Banfield et al. 1995; Lewis and Read 1995;
Lewis et al. 1996, 1997; Houben 1999; Kass 1999; Zhang et al. 2001).

Planetary scientists do not yet have the strong motivation provided by the reg-
ular requirement to provide initial states for near-future weather forecasts, which
has provided much of the impetus behind the development of data assimilation
techniques for Earth (see chapter Numerical Weather Prediction, Swinbank). As
a consequence, the resources available for planetary modelling and data assimila-
tion are much smaller and to date schemes have generally been developed by only
a handful of individuals and small teams of researchers. Aside from this practical
limitation, the atmospheres of other planets are simply much less well-understood
than that of the Earth and in many cases no sufficiently realistic general circulation
model (GCM) exists which may be constrained by observations. Observational and
model error characteristics, error growth and inherent biases have all received very
limited study, if they have been considered in the literature at all.

Data assimilation does, however, offer many potential benefits to planetary sci-
ence, not least in offering the prospect of a systematic reanalysis of past and
present spacecraft data. By using a physically self-consistent atmospheric model,
data assimilation is also able to extract information about variables not directly
observed, for example to provide a self-consistent set of global temperatures, winds
and surface pressure even where only one or two of these atmospheric fields may
be observed, or, more likely, the observations are in the form of radiances which
require inversion to derive temperatures. In these cases, assimilation effectively
offers a good “first guess” in the form of a model forecast of the atmospheric state
which might be used with a forward model to predict radiances, or as the basis for a
conventional atmospheric inversion.
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As in terrestrial atmospheric science and physical oceanography, at the same time
data assimilation provides a systematic method of testing and validating models,
for example by the identification of regions or fields where the model predicts a
consistent misfit with the observations (see chapter The Role of the Model in the
Data Assimilation System, Rood). This is of particular value in planetary science
where models are often at a quite early stage of development and it is not necessarily
the case that experience of the Earth will carry over directly. Data assimilation also
permits the intercomparison of observations made of different fields, or at different
time and places by separate instruments, permitting the extraction of the maximum
information by combining two different data sets in an objective way.

Having noted the use of assimilation for improving models, it is important that
while the maximum information is extracted from the valuable and limited obser-
vational record for another planet, at the same time this record is not over-used. For
example, a set of observations could be used to improve the model itself or to esti-
mate the model state, but not both in a recursive fashion. It is possible that uncertain
model parameters can be included formally in the model state and that both may be
estimated at once. A practice in terrestrial numerical weather prediction is to accu-
mulate records of model output statistics and to perform a linear regression between
the prediction and subsequent verification as a means of improving the model based
on very large numbers of observations (e.g. Kalnay 2003). This may not yet be
possible for other planets, owing to the more limited observational record.

Although short-term weather forecasting for the near-surface meteorology of
another planet is still a distant prospect, forecasts of some atmospheric properties
and, perhaps most importantly, their likely variance are vital now for spacecraft and
instrument design and planning. Uses include predictions of upper atmosphere den-
sity for satellite aerobraking and aerocapture (this is the use of the atmospheric
friction around 100 km altitude and above to decelerate spacecraft to aid their cap-
ture into low planetary orbits), entry, descent and landing studies for atmospheric
entry vehicles, and estimates of the range of surface conditions which will be experi-
enced in the lifetime of landed spacecraft. Such forecasts are often made on the basis
of past experience and climatology, but for other planets the latter can be unknown
or involve unwarranted extrapolations from previous mission data relevant to dif-
ferent locations and times of year. Models are starting to be used as the basis for
generating more comprehensive climatologies for Mars (Lewis et al. 1999; Justus
et al. 2002), in particular for regions of the atmosphere, or under conditions which
have not yet been observed in detail. Data assimilation will play an increasingly
important role here as the means of constraining and improving these models at
times when some observations are available.

3 Data Assimilation for the Atmosphere of Mars

The atmosphere of Mars is the most obvious first extra-terrestrial target for data
assimilation, motivated both by its similarities to the atmosphere of the Earth and
by the regular launch of spacecraft missions over the last decade, resulting in an
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increased observational data set and an increased need to better understand the atmo-
sphere for mission operations, in particular for aerobraking, aerocapture and entry
descent and landing.

Like the Earth, Mars is a largely solid planet with a radius of 3,389 km, surface
gravity of 3.72 ms–2 and a solar day (sol) of 88,775 s, around 40 min longer than
the day on Earth. The rotation axis of Mars is tilted at a similar angle to the plane of
the ecliptic, 25.2◦ compared to 23.5◦ for Earth, and so Mars experiences a similar
pattern of seasons over the year of 668.6 sols, almost twice as long as a year on
Earth. The atmosphere is also largely transparent, but is composed of 95% carbon
dioxide with a typical surface pressure of 610 Pa (the typical surface pressure on
Earth is 101,300 Pa, or 1,013 hPa). Temperatures can reach above the freezing point
of water on a warm, summer’s afternoon, but can also fall to 145 K in polar night,
at which point carbon dioxide freezes out around the Winter Pole forming a large
seasonal ice cap containing up to a third of the total mass of the atmosphere. Despite
the differences in atmospheric composition and mass, the atmospheric pressure scale
height is only a little larger (roughly 10 km compared to 7.5 km on Earth) and the
horizontal deformation radius is about 1,000 km in both cases; the lower gravity on
Mars compared to Earth is compensated by the lower specific gas constant for the
carbon dioxide rich atmosphere, resulting in a rather similar static stability for the
lower atmosphere on both planets.

Transient, baroclinic weather systems are observed in martian mid latitudes,
especially in the Northern Hemisphere (Barnes 1981, 1980; Collins et al. 1996;
Wilson et al. 2002; Banfield et al. 2004), on a similar scale to those seen on Earth
but with typically one to four high and low pressure systems around a latitude circle
owing to the smaller planetary radius. Intriguingly, these travelling waves on Mars
appear to be much more regular, and sometimes almost periodic, than typical ter-
restrial mid latitude weather systems (Barnes 1980, 1981; Collins et al. 1996; Read
and Lewis 2004).

The similarities of martian atmospheric dynamics to that of the Earth have led
to the development of several Mars GCMs from the late 1960s onwards, typically
derived from terrestrial models (for reviews see, e.g., Zurek et al. 1992; Lewis 2003;
Read and Lewis 2004 and references therein). The most advanced of these models
are comparable in complexity with a terrestrial global model used for numerical
weather prediction or for climate studies (see chapters The Role of the Model in
the Data Assimilation System, Rood; Reanalysis: Data Assimilation for Scientific
Investigation of Climate, Rood and Bosilovich).

Despite its similarities with the atmosphere of the Earth, at least two factors make
that of Mars different from the perspective of data assimilation. Firstly, the lower
atmospheric density, and hence lower heat capacity, on Mars means that the atmo-
sphere responds very much more quickly to changes in radiative forcing. This is
particularly true at times when the atmosphere of Mars contains large amounts of
suspended dust, which absorbs visible radiation and heats the atmosphere. A typi-
cal radiative relaxation time scale for the lower martian atmosphere is around two
sols (Goody and Belton 1967; Gierasch and Goody 1967, 1968), and may be as
low as one sol when the atmosphere is dusty, an order of magnitude shorter than
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radiative relaxation times for the Earth’s atmosphere. This means that a Mars GCM
will respond very quickly to its own radiative forcing scheme and, if this is not
precisely correct together with an accurate spatial and temporal dust distribution,
the GCM may rapidly “forget” information introduced by assimilation of past data
where there is an absence of current observations. It should be noted that there are
considerable uncertainties in the radiative properties and size distribution of mar-
tian dust and consequently dust heating parametrizations in GCMs are likely to be
subject to substantial errors.

Secondly, the observation that errors grow roughly exponentially with time in
accordance with deterministic chaos theory on Earth (e.g. Ehrendorfer 1997; Toth
2001) may not necessarily be true on Mars, at least at some times of year when
model simulations indicate that error growth can decay with time and the atmo-
sphere appears highly predictable (Newman et al. 2004). The implications of this
potentially greater predictability on Mars are yet to be fully explored.

In addition to a realistic numerical model, data assimilation requires a stream
of observations and several early assimilation efforts for the martian atmosphere
were motivated by the launch in 1992 of the ill-fated NASA Mars Observer (MO)
spacecraft (Cunningham et al. 1992), lost around the time of orbital insertion in
1993. Like several subsequent NASA missions, MO was intended for a two-hourly
sun-synchronous low polar orbit, passing over the Equator at 2:00 am and 2:00 pm
local time, and it was this regular, repetitive mapping of the atmosphere that made
data assimilation for Mars an attractive option. MO was followed by Mars Global
Surveyor (MGS), launched in 1996, which re-flew some of the MO instruments,
including notably for atmospheric observations the Thermal Emission Spectrometer
(TES) (Christensen et al. 1992), which is an infrared sounder operating mainly in
nadir mode, though with some limb observations. TES has produced a spectacular
dataset covering almost three complete martian years from 1999 to 2004 and is the
subject of several current data assimilation studies. TES nadir soundings typically
allow the retrieval of temperature profiles between the surface and about 40 km
with a vertical resolution of one scale height (10 km) or greater and total column
opacities of dust and water ice (Conrath et al. 2000, 2002; Smith et al. 2000, 2001;
Smith 2004), as well as various surface properties.

A second instrument from MO, the limb-sounding Pressure Modulator InfraRed
Radiometer (McCleese et al. 1992) was re-flown on a second unsuccessful mission,
Mars Climate Orbiter in 1998, but a new version of the limb-sounding radiometer,
Mars Climate Sounder (MCS) (McCleese et al. 2007) is presently in orbit about
Mars aboard the Mars Reconnaissance Orbiter. MCS has been mapping the mar-
tian atmosphere over at least one seasonal cycle. The principal advantages MCS
will offer over TES for atmospheric assimilation are routine limb-sounding, with
coverage up to about 80 km and half-scale height, 5 km, vertical resolution, with
the ability to differentiate between dust, condensates and water vapour and to pro-
file each in the vertical. Several groups are preparing to assimilate MCS data in the
coming years.

It should also be noted that two other Mars spacecraft, NASA’s 2001 Mars
Odyssey (Saunders et al. 2004) and ESA’s 2003 Mars Express (Schmidt 2003) have
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both provided fascinating remote sensing observations revealing much about the
martian climate and surface, but to date observations from either mission have not
been assimilated into a Mars GCM.

In direct contrast to Earth, at the time these orbital spacecraft have been operat-
ing there have been few, if any, surface-based in situ meteorological observations,
with the notable exceptions of the instruments on the NASA Phoenix polar lander,
operating 5 months in 2008, and the Mini-TES instruments on the Mars Exploration
Rovers (Smith et al. 2006) which provide lower atmosphere profiles up to a few km
in height. Crucially, there have been no systematic surface pressure measurements
other than from Phoenix, from Mars Pathfinder or a few months in 1996 (Schofield
et al. 1997) and the longer, multi-annual record from the Viking Landers in the late
1970s (Hess et al. 1980). This lack of pressure data makes it difficult to constrain
the mass budget of the Mars GCMs and brings novel difficulties in data assimila-
tion compared to the Earth, where surface pressure is a fundamental observation to
be included in any meteorological analysis. Indeed, it might be argued that surface
pressure is the most important observable quantity for constraining the whole tro-
posphere in terrestrial atmospheric data assimilation (e.g. Anderson et al. 2005) and
this emphasizes the need for more martian surface observations in future, although
it is highly unlikely that there will be a sufficiently dense network of surface stations
on Mars to constrain a model on their own in the foreseeable future.

3.1 Data Assimilation Schemes for Mars

Two approaches have been taken in developing data assimilation schemes to work
with martian observations. On one hand, new schemes have been developed tailored
specifically to exploit the characteristics of the data which are expected; normally
remotely sensed temperature profiles from a regular two-hourly, polar orbit. On the
other hand, terrestrial schemes with heritage in the numerical weather prediction
community have been adapted and re-tuned for martian conditions.

Banfield et al. (1995) exploited the repetitive nature of the polar orbit to propose
a variant on the full sequential Kalman filter (Kalman 1960), which is made com-
putationally economic by only calculating the gain matrix once, and then holding
it steady in time (For a discussion on the Kalman filter see chapter Mathematical
Concepts of Data Assimilation, Nichols). The steady-state gains are computed once
at the start of each assimilation experiment by an iterative technique and then
applied throughout to each observation, making the gains a function of relative lon-
gitude between observation and model points. This was shown to work well in a
highly idealized, single-layer primitive equation model, observing the mass field
but not the velocity field.

The steady-state Kalman filter was later applied to TES mapping phase data
(Zhang et al. 2001) using the NASA Ames Mars GCM (Pollack et al. 1990; Haberle
et al. 1993). This study only assimilated ten sols of MGS mapping phase TES data,
but was able to show a small improvement in the agreement between model and
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observations; although the success was only limited and the model response was
degraded in south Polar Regions. There also seemed to be little evidence that the
assimilation was converging sufficiently well to capture the transient waves. The
problems experienced were attributed to problems with the assumed dust opacity
and distribution in the GCM.

An alternative approach was taken by Houben (1999), who employed a Mars
GCM with relatively low resolution, a spectral model with 17 Legendre modes in
latitude, 7 waves in longitude and 16 vertical levels, and with highly simplified
physical parametrizations including linear Newtonian cooling in place of a full radi-
ation scheme. Houben was thus able to reduce the complexity of the model so that
it could be constrained with the number of MGS observations available in one sol.
Assimilation was accomplished by a four-dimensional variational technique, 4D-
Var (Talagrand and Courtier 1987; Courtier and Talagrand 1987) (For a discussion
on 4D-Var see chapter Variational Assimilation, Talagrand.). This study is notably
complementary to other assimilation techniques which employ a full Mars GCM
and assimilate data using a more empirical technique.

Kass (1999) used the NASA Ames Mars GCM, but with a form of assimilation
based on optimal interpolation, OI (Bengtsson and Gustafsson 1971; Rutherford
1972). Kass assimilated TES temperature profiles over a 25-sol, 17-orbit period
during MGS aerobraking using optimal interpolation. He found that the Winter
Hemisphere jet was moved polewards and that the amplitude of waves became
stronger compared to an independent experiment with the Mars GCM. He was
also able to demonstrate that the transient component of the surface pressure field
was modified in response to the assimilation of temperature data, in an interest-
ing contrast to the terrestrial meteorological experience which suggests that surface
pressure observations are crucial and tend to drive behaviour in the atmosphere
above.

Another scheme which draws heavily on terrestrial experience with some suc-
cess was developed by Lewis et al. (Lewis and Read 1995; Lewis et al. 1996, 1997)
based closely on the analysis correction scheme (Lorenc et al. 1991), in operational
use at the Meteorological Office (UK) at the time. This scheme is a form of the suc-
cessive corrections method which has proved simple and robust in many trial studies
with artificial data under martian conditions. Observations are spread in both space
and time by the use of empirically-tuned functions and the relatively inexpensive
data assimilation scheme is paired with a fully comprehensive Mars GCM (Forget
et al. 1999; Lewis et al. 1999). Assimilation of the TES data using this technique
during the MGS aerobraking hiatus has been described (Lewis et al. 2007), as has an
analysis of the thermal tidal behaviour throughout the MGS mapping phase (Lewis
and Barker 2005). The mapping phase assimilation has been validated by a cross-
comparison of model temperature profiles sampled at the same time and place as
profiles obtained by radio occultation, also using the MGS spacecraft (Montabone
et al. 2006a). Focused studies have included investigations of martian dust storms
(Montabone et al. 2005) and detailed reconstructions of the atmosphere at the time
of recent entry probes (Montabone et al. 2006b). The results of this assimilation pro-
cedure are further validated by comparing the planetary waves in the assimilation
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with those from direct synoptic mapping analyses of the TES retrievals. The output
from this assimilation over the full three martian years observed by MGS/TES is
being made freely available and is the subject of many ongoing atmospheric inves-
tigations. For example, Wilson et al. (2008) use the statistical differences between
the output of the assimilation and independent model experiments to infer potential
longitudinal-mean errors in the model radiation budgets, in this case ascribed to the
absence of equatorial water ice clouds in the independent model experiments.

With new MCS data in prospect and with the vast TES data set not yet fully
exploited, new martian data assimilation schemes are also under development.
These include applications of both variational and Ensemble Kalman filter schemes,
which are now widely used at leading terrestrial data assimilation centres (e.g.
Rabier 2005; Houtekamer and Mitchell 2005) – see also chapter Mathematical
Concepts of Data Assimilation (Nichols). Research is also ongoing into direct assim-
ilation of observed radiances rather than using pre-retrieved temperature profiles as
most of the martian studies described above have done. Removing the need for a
separate retrieval and linking the observed infrared radiance directly to the atmo-
spheric state has many attractions, but is a challenging prospect particularly with a
limb-sounding radiometer such as MCS. Chapters Assimilation of Operational Data
(Andersson and Thépaut) and Constituent Assimilation (Lahoz and Errera) discuss
the direct assimilation of radiances from operational and research satellites on Earth.

3.2 Results from Martian Data Assimilation

Some early results from martian data assimilation are illustrated in this section based
on the assimilation of TES observations throughout the aerobraking hiatus and sci-
entific and extended mapping phases, a period of almost three martian years, using
the analysis correction scheme of Lewis et al. (2007). The full assimilation period
is summarized by Fig. 1, which shows the assimilated dust optical depth in the vis-
ible, averaged over all longitudes and converted to an equivalent optical depth at
a standard reference pressure of 610 Pa. The Mars Years (MY) are numbered here
following an arbitrary scheme (following Clancy et al. 1995), and the time of year
is indicated by areocentric longitude, LS, an angle varying from 0◦ to 360◦, where
LS = 0◦ is spring equinox, LS = 90◦ is summer solstice, LS = 180◦ is autumn
equinox and LS = 270◦ is winter solstice (seasons are for the Northern Hemisphere
of Mars). Figure 1 includes the aerobraking hiatus period (MY23, LS = 190◦–260◦),
during which time the spacecraft orbital period was being reduced from 45 to 24 h
and the configuration was more difficult for atmospheric assimilation owing to
the long orbital period and irregular and intermittent observational coverage. The
subsequent 2-h scientific mapping phase orbit provided more regular observations
throughout almost three Martian years of operation (MY24, LS = 141◦ to MY27,
LS = 72◦).

The impact of the assimilation on the zonal mean state of the atmosphere, even
in the least optimal aerobraking hiatus period is illustrated by the zonal-mean tem-
perature and zonal winds in the assimilation during the Noachis dust storm period,
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Fig. 1 Assimilated dust optical depth at 610 Pa from the full period for which TES observations
are available. Each panel shows one martian year, Mars Years (MY) 23–26 from upper panel down,
with summer solstice at the left-hand edge (aerocentric longitude = 90◦). The hatched regions
indicate where there are few, if any, total opacity observations (the mean surface temperature is
below 160 K and there is insufficient thermal contrast between the atmosphere and surface to
retrieve total atmospheric opacities)

a regional, moderate dust storm that began around MY23, LS = 225◦ in the mar-
tian Southern Hemisphere. Figure 2 shows the zonal mean state in the assimilation
and Fig. 3 the differences between this and a model run with a dust state which
is a close match to the mean conditions before the dust storm. Enhanced warming
throughout the middle atmosphere at most latitudes is apparent, as is a strong polar
warming above the North Pole, and enhancement of the polar westerly jet, thanks to
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Fig. 2 (a) Zonal-mean temperature and (b) zonal-mean zonal wind, time-averaged over the period
LS = 225◦–233◦. The horizontal, dashed line indicates the approximate level above which no tem-
perature data from the nadir soundings was available. The zero contour is dotted and negative
contours dashed. Log-pressure height is defined as −10 log(p/610 Pa) km as an approximate con-
version from pressure p to height above the 610 Pa level. Reprinted from Lewis et al. (2007), with
permission from Elsevier

the enhanced meridional circulation in the model; no observations were available in
this region at this time.

One major motivation for using assimilation techniques is in order to investi-
gate the transient wave behaviour on Mars, which is difficult to interpret when
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Fig. 3 Differences, assimilation minus a model run with no dust storm, in (a) zonal-mean tem-
perature and (b) zonal-mean zonal wind, averaged over the period shown in Fig. 2. Positive values
indicate that the assimilation gives higher values than the model. Reprinted from Lewis et al.
(2007), with permission from Elsevier

the observations are made asynchronously from a single orbiting spacecraft. Lewis
and Barker (2005) described the atmospheric thermal tide behaviour, an analysis
which is extended by Figs. 4 and 5 here to show the diurnal and semidiurnal tidal
amplitudes respectively throughout the MGS mapping phase. These amplitudes are
difficult to analyse from the data directly, since at low latitudes only two local times
of day are observed, but the model responds to the changing dust optical depth and
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Fig. 4 The normalized amplitude of the surface pressure signature of the diurnal tide, shown as a
function of latitude and time during the MGS mapping phase, the same period as the lower three
panels of Fig. 1 (Mars Year, MY 24, LS = 141◦ to Mars Year, MY 27, LS = 72◦)

exhibits very variable tidal behaviour compared to a model run with a steady, pre-
scribed dust field. The correlation between the semidiurnal tide and optical depth
(Fig. 1) is striking.

A principal advantage of data assimilation of data from a single, polar orbiting
satellite is in its ability to reconstruct transient waves. The Hovmoller diagrams in
Fig. 6 show (a) transient temperature on the 50 Pa pressure surface (~25 km alti-
tude) and (b) transient pressure, corrected to the Mars reference datum to remove
topographic signals. Both variables are shown at 62.5◦N over the entire Northern
Hemisphere winter period, LS = 180◦–360◦, of MY 24, the 1st year of the MGS sci-
entific mapping phase period. The temperature and pressure have been time-filtered
to remove tides and quasi-stationary features.

Transient waves can be seen to propagate eastwards in both panels of Fig. 6.
These waves have low zonal wavenumbers, primarily 1–3, with wavenumber 1
dominating throughout much of this period. Of interest is the period around
LS= 220◦–260◦, when the atmospheric temperature shows a strong, long-period
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Fig. 5 The normalized amplitude of the surface pressure signature of the semidiurnal tide, as
Fig. 4

wavenumber 1 signal. This is equivalent to a wobble in the polar vortex, the region
of strong westerly winds which circulate the Winter Pole (for the analogue on Earth,
see chapter General Concepts in Dynamics and Meteorology, Charlton-Perez et al.).
If this moves to a position not centred over the geographic pole, it will appear as a
wavenumber 1 wave as seen at any mid to high latitude. The long-period wavenum-
ber 1 signal is detached from the weaker, shorter period (2–10 days) waves seen
near the surface in the pressure signal. A modulation from these waves can still be
seen in the temperature signal. At other times the waves are broadly coherent over
this altitude range.

It is also notable that the waves near the surface are stronger after the autumn
equinox and before the spring equinox, whereas the 50 Pa temperature signal peaks
around winter solstice. This solsticial pause in the near-surface waves is seen to
recur in all 3 years analysed.

There is a strong topographic influence on the strength of the waves, with maxima
being consistently seen at longitudes corresponding to lowlands in Acidalia, Utopia
and Arcadia Planitia, which break the longitudinal symmetry of Mars into regions
reminiscent of storm zones on Earth.
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(a) (b)

Fig. 6 (a) Transient temperature (K) on the 50 Pa pressure surface (~25 km altitude) and (b)
transient pressure (Pa), corrected to the Mars reference datum to remove topographic signals at
62.5◦N over the period, LS = 180◦–360◦, of MY 24

4 Future Prospects for Other Planets

To date, a formal process of data assimilation has not been attempted for any other
planetary atmospheres, though the observations that are available are naturally used
to inform and to constrain models. The most likely next application beyond Mars
is to the atmosphere of Venus, with new ESA Venus Express observations now
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available (Titov et al. 2006) and recent advances in Venus GCMs (Yamamoto and
Takahashi 2003, 2006; Lee et al. 2005, 2007; Hollingsworth et al. 2007; Lebonnois
et al. 2010). The Venus models still have simplified physical parametrizations com-
pared with the Mars and terrestrial GCMs and are not yet able to make accurate,
quantitative predictions of, for example, equatorial winds. Venus, with its very
long radiative relaxation timescale (varying from around an Earth day at the cloud
tops to many years in the lower atmosphere) and slow rotation rate, which means
that assumptions about geostrophic balance will not apply (see chapter General
Concepts in Meteorology and Dynamics, Charlton-Perez et al.), will offer new
challenges for data assimilation.

Data assimilation for the atmospheres of the Giant Planets is also a challenging
prospect. Again, there are few complete global atmospheric models (Dowling et al.
1998, 2006), but there is now a substantial observational data set from the Galileo
mission to Jupiter (Young 1998, 2000) and the Cassini mission to Saturn (Mitchell
2007). These missions have not provided the very repetitive coverage of the satellites
observing Mars and Venus, but they have made multiple orbits and observed some
atmospheric features repeatedly, so limited-area assimilations may become feasible
at some point in the future.

5 Implications for Terrestrial Data Assimilation

Although data assimilation for other planets is presently only in a nascent state,
advances are happening rapidly. Planetary data assimilation has examples of both
building on older, established terrestrial techniques and developing new ideas
tailored to specific problems. In particular it demonstrates assimilation scheme per-
formance in a very data-poor environment, perhaps more analogous to physical
oceanographic applications than to terrestrial numerical weather forecasting. There
are particular challenges in a planetary context, often with only poor knowledge
of the dominant physical processes and with highly simplified models without a
well-known climatology. A notable feature of the martian data assimilation studies
outlined in this chapter, and most likely future planetary data assimilation stud-
ies, is their reliance on remotely-sensed observations from a single satellite at any
one time with the lack of contemporaneous in situ measurements. That there has
been at least some limited success reported is interesting with regard to the terres-
trial problem. On Earth, surface and near-surface measurements are clearly of great
importance for determining the state of the lower atmosphere and satellite obser-
vations have been introduced to terrestrial data assimilation schemes for numerical
weather prediction at a later stage. The planetary problem is almost being tackled
in reverse, with models now incorporating satellite data assimilation being used to
form climate databases to assist in the entry, descent and landing process for space-
craft which will hopefully make the surface and in situ atmospheric measurements
in future.

Acknowledgments The author is grateful to W. Gregory Lawson for his insightful comments on
the first draft of this chapter.



696 S.R. Lewis

References

Anderson, J.L., B. Wyman, S. Zhang and T. Hoar, 2005. Assimilation of surface pressure observa-
tions using an ensemble filter in an idealized global atmospheric prediction system. J. Atmos.
Sci., 62, 2925–2938.

Banfield, D., B.J. Conrath, P.J. Gierasch, R.J. Wilson and M.D. Smith, 2004. Traveling waves in
the martian atmosphere from MGS TES nadir data. Icarus, 170, 365–403.

Banfield, D., A.P. Ingersoll and C.L. Keppenne, 1995. A steady-state Kalman filter for assimilating
data from a single polar orbiting satellite. J. Atmos. Sci., 52, 737–753.

Barnes, J.R., 1980. Time spectral-analysis of mid-latitude disturbances in the martian atmosphere.
J. Atmos. Sci., 37, 2002–2015.

Barnes, J.R., 1981. Mid-latitude disturbances in the martian atmosphere – a 2nd Mars year.
J. Atmos. Sci., 38, 225–234.

Bengtsson, L. and N. Gustafsson, 1971. Experiment in assimilation of data in dynamical analysis.
Tellus, 23, 328–336.

Christensen, P.R., D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl,
J. Carpenter, N. Bandiera, F.G. Brown and S. Silverman, 1992. Thermal emission spectrometer
experiment – Mars observer mission. J. Geophys. Res., 97, 7719–7734.

Clancy, R.T., S.W. Lee, G.R. Gladstone, W.W. McMillan and T. Rousch, 1995. A new model for
Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from
Mariner 9, Viking, and Phobos. J. Geophys. Res., 100, 5251–5263.

Collins, M., S.R. Lewis, P.L. Read and F. Hourdin, 1996. Baroclinic wave transitions in the martian
atmosphere. Icarus, 120, 344–357.

Conrath, B.J., J.C. Pearl, M.D. Smith and P.R. Christensen, 2002. MGS TES results: Atmospheric
structure, aerosols, and dynamics. Highlights Astron., 12, 638–641.

Conrath, B.J., J.C. Pearl, M.D. Smith, W.C. Maguire, P.R. Christensen, S. Dason and M.S.
Kaelberer, 2000. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations:
Atmospheric temperatures during aerobraking and science phasing. J. Geophys. Res., 105,
9509–9519.

Courtier, P. and O. Talagrand, 1987. Variational assimilation of meteorological observations with
the adjoint vorticity equation. 2. Numerical results. Q. J. R. Meteorol. Soc., 113, 1329–1347.

Cunningham, G.E., A.L. Albee and T.E. Thorpe, 1992. Mars Observer as a precursor to intensive
exploration of Mars. Acta Astronautica, 28, 259–275.

Dowling, T.E., M.E. Bradley, E. Colon, J. Kramer, R.P. LeBeau, G.C.H. Lee, T.I. Mattox,
R. Morales-Juberias, C.J. Palotai, V.K. Parimi and A.P. Showman, 2006. The EPIC atmospheric
model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182, 259–273.

Dowling, T.E., A.S. Fischer, P.J. Gierasch, J. Harrington, R.P. LeBeau and C.M. Santori, 1998. The
explicit planetary isentropic-coordinate (EPIC) atmospheric model. Icarus, 132, 221–238.

Ehrendorfer, M., 1997. Predicting the uncertainty of numerical weather forecasts: A review.
Meteorol. Z., 6, 147–183.

Forget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read
and J.P. Huot, 1999. Improved general circulation models of the martian atmosphere from the
surface to above 80 km. J. Geophys. Res., 104, 24155–24175.

Gierasch, P. and R. Goody, 1967. An approximate calculation of radiative heating and radiative
equilibrium in the martian atmosphere. Planet. Space Sci., 15, 1465–1477.

Gierasch, P. and R. Goody, 1968. A study of the thermal and dynamical structure of the martian
lower atmosphere. Planet. Space Sci., 16, 615–636.

Goody, R. and M.J.S. Belton, 1967. Radiative relaxation times for Mars – a discussion of martian
atmospheric dynamics. Planet. Space Sci., 15, 247–256.

Haberle, R.M., J.B. Pollack, J.R. Barnes, R.W. Zurek, C.B. Leovy, J.R. Murphy, H. Lee and
J. Schaeffer, 1993. Mars atmospheric dynamics as simulated by the Nasa Ames general-
circulation model .1. The zonal-mean circulation. J. Geophys. Res., 98, 3093–3123.



Data Assimilation for Other Planets 697

Hess, S.L., J.A. Ryan, J.E. Tillman, R.M. Henry and C.B. Leovy, 1980. The annual cycle of
pressure on Mars measured by Viking-Lander-1 and Viking-Lander-2. Geophys. Res. Lett.,
7, 197–200.

Hollingsworth, J.L., R.E. Young, G. Schubert, C. Covey and A.S. Grossman, 2007. A simple-
physics global circulation model for Venus: Sensitivity assessments of atmospheric superrota-
tion. Geophys. Res. Lett., 34, L05202.

Houben, H., 1999. Assimilation of Mars global surveyor meteorological data. Adv. Space Res., 23,
1899–1902.

Houtekamer, P.L. and H.L. Mitchell, 2005. Ensemble Kalman filtering. Q. J. R. Meteorol. Soc.,
131, 3269–3289.

Justus, C.G., B.F. James, S.W. Bougher, A.F.C. Bridger, R.M. Haberle, J.R. Murphy and S. Engel,
2002. Mars-GRAM 2000: A Mars atmospheric model for engineering applications. Adv. Space
Res., 29, 193–202.

Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Trans. ASME J.
Basic Eng., 82D, 35–45.

Kalnay, E., 2003. Atmospheric Modeling, Data Assimilation and Predictability, Cambridge
University Press, New York, 341 pp.

Kass, D.M., 1999. Change in the Martian Atmosphere, Ph.D. Thesis, Planetary Science, California
Institute of Technology, Pasadena, CA.

Lebonnois, S., F. Hourdin, V. Eymet, A. Crespin, R. Fournier and F. Forget, 2010. Superrotation
of Venus’ atmosphere analysed with a full General Circulation Model. J. Geophys. Res.,
(accepted).

Lee, C., S.R. Lewis and P.L. Read, 2005. A numerical model of the atmosphere of Venus. Planet.
Atmos., Ionospheres Magnetospheres, 36, 2142–2145.

Lee, C., S.R. Lewis and P.L. Read, 2007. Superrotation in a Venus general circulation model.
J. Geophys. Res., 112, E04S11.

Lewis, S.R., 2003. Modelling the martian atmosphere. Astron. Geophys., 44, 6–14.
Lewis, S.R. and P.R. Barker, 2005. Atmospheric tides in a Mars general circulation model with

data assimilation. Adv. Space Res., 36, 2162–2168.
Lewis, S.R., M. Collins and P.L. Read, 1997. Data assimilation with a martian atmospheric GCM:

An example using thermal data. Adv. Space Res., 19, 1267–1270.
Lewis, S.R., M. Collins, P.L. Read, F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand

and J.P. Huot, 1999. A climate database for Mars. J. Geophys. Res., 104, 24177–24194.
Lewis, S.R. and P.L. Read, 1995. An operational data assimilation scheme for the martian

atmosphere. Adv. Space Res., 16, 9–13.
Lewis, S.R., P.L. Read and M. Collins, 1996. Martian atmospheric data assimilation with a

simplified general circulation model: Orbiter and lander networks. Planet. Space Sci., 44,
1395–1409.

Lewis, S.R., P.L. Read, B.J. Conrath, J.C. Pearl and M.D. Smith, 2007. Assimilation of thermal
emission spectrometer atmospheric data during the mars global surveyor aerobraking period.
Icarus, 192, 327–347.

Lorenc, A.C., R.S. Bell and B. Macpherson, 1991. The meteorological office analysis correction
data assimilation scheme. Q. J. R. Meteorol. Soc., 117, 59–89.

McCleese, D.J., R.D. Haskins, J.T. Schofield, R.W. Zurek, C.B. Leovy, D.A. Paige and F.W. Taylor,
1992. Atmosphere and climate studies of Mars using the Mars observer pressure modulator
infrared radiometer. J. Geophys. Res., 97, 7735–7757.

McCleese, D.J., J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy,
D.A. Paige, P.L. Read and R.W. Zurek, 2007. Mars climate sounder: An investigation of thermal
and water vapor structure, dust and condensate distributions in the atmosphere, and energy
balance of the polar regions. J. Geophys. Res., 112, E05S06.

Mitchell, R.T., 2007. The Cassini mission at Saturn. Acta Astronautica, 61, 37–43.
Montabone, L., S.R. Lewis and P.L. Read, 2005. Interannual variability of martian dust storms

in assimilation of several years of Mars Global Surveyor observations. Adv. Space Res., 36,
2146–2155.



698 S.R. Lewis

Montabone, L., S.R. Lewis, P.L. Read and D.P. Hinson, 2006a. Validation of martian meteoro-
logical data assimilation for MGS/TES using radio occultation measurements. Icarus, 185,
113–132.

Montabone, L., S.R. Lewis, P.L. Read and P. Withers, 2006b. Reconstructing the weather on Mars
at the time of the MERs and Beagle 2 landings. Geophys. Res. Lett., 33, L19202.

Newman, C.E., P.L. Read and S.R. Lewis, 2004. Investigating atmospheric predictability on Mars
using breeding vectors in a general circulation model. Q. J. R. Meteorol. Soc., 130, 2971–2989.

Pollack, J.B., R.M. Haberle, J. Schaeffer and H. Lee, 1990. Simulations of the general circulation
of the martian atmosphere. 1. Polar processes. J. Geophys. Res., 95, 1447–1473.

Rabier, F., 2005. Overview of global data assimilation developments in numerical weather-
prediction centres. Q. J. R. Meteorol. Soc., 131, 3215–3233.

Read, P.L. and S.R. Lewis, 2004. The Martian Climate Revisited: Atmosphere and Environment of
a Desert Planet, Springer-Praxis Publisher, Berlin, New York, 402 pp.

Rutherford, I., 1972. Data assimilation by statistical interpolation of forecast error fields. J Atmos.
Sci., 29, 809–815.

Saunders, R.S., R.E. Arvidson, G.D. Badhwar, W.V. Boynton, P.R. Christensen, F.A Cucinotta,
W.C. Feldman, R.G. Gibbs, C. Kloss, M.R. Landano, R.A. Mase, G.W. McSmith, M.A. Meyer,
I.G. Mitrofanov, G.D. Pace, J.J. Plaut, W.P. Sidney, D.A. Spencer, T.W. Thompson and C.J.
Zeitlin, 2004. 2001 Mars Odyssey mission summary. Space Sci. Rev., 110, 1–36.

Schmidt, R., 2003. Mars Express – ESA’s first mission to planet Mars. Acta Astronautica, 52,
197–202.

Schofield, J.T., J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy,
A. Seiff and G. Wilson, 1997. The Mars Pathfinder atmospheric structure investigation
meteorology (ASI/MET) experiment. Science, 278, 1752–1758.

Smith, M.D., 2004. Interannual variability in TES atmospheric observations of Mars during
1999–2003. Icarus, 167, 148–165.

Smith, M.D., J.C. Pearl, B.J. Conrath and P.R. Christensen, 2000. Mars Global Surveyor Thermal
Emission Spectrometer (TES) observations of dust opacity during aerobraking and science
phasing. J. Geophys. Res., 105, 9539–9552.

Smith, M.D., J.C. Pearl, B.J. Conrath and P.R. Christensen, 2001. Thermal Emission Spectrometer
results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res., 106,
23929–23945.

Smith, M.D., M.J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P.R. Christensen, G.A. Landis
and S.W. Squyres, 2006. One martian year of atmospheric observations using MER Mini-TES.
J. Geophys. Res., 111, E12S13.

Talagrand, O. and P. Courtier, 1987. Variational assimilation of meteorological observations with
the adjoint vorticity equation. 1. Theory. Q. J. R. Meteorol. Soc., 113, 1311–1328.

Titov, D.V., H. Svedhem, D. McCoy, J.P. Lebreton, S. Barabash, J.L. Bertaux, P. Drossart,
V. Formisano, B. Haeusler, O.I. Korablev, W. Markiewicz, D. Neveance, M. Petzold,
G. Piccioni, T.L. Zhang, F.W. Taylor, E. Lellouch, D. Koschny, O. Witasse, M. Warhaut,
A. Acomazzo, J. Rodrigues-Cannabal, J. Fabrega, T. Schirmann, A. Clochet and M. Coradini,
2006. Venus express: Scientific goals, instrumentation, and scenario of the mission. Cosmic
Res., 44, 334–348.

Toth, Z., 2001. Ensemble forecasting in WRF. Bull. Amer. Meteorol. Soc., 82, 695–697.
Wilson, R.J., D. Banfield, B.J. Conrath and M.D. Smith, 2002. Traveling waves in the northern

hemisphere of Mars. Geophys. Res. Lett., 29, 1684, doi:10.1029/2002GL014866.
Wilson, R.J., S.R. Lewis, L. Montabone and M.D. Smith, 2008. Influence of water ice

clouds on martian tropical atmospheric temperatures. Geophys. Res. Lett., 35, L07202, doi:
10.1029/2007GL032405.

Yamamoto, M. and M. Takahashi, 2003. The fully developed superrotation simulated by a general
circulation model of a Venus-like atmosphere. J. Atmos. Sci., 60, 561–574.

Yamamoto, M. and M. Takahashi, 2006. An aerosol transport model based on a two-moment micro-
physical parameterization in the Venus middle atmosphere: Model description and preliminary
experiments. J. Geophys. Res., 111, E08002.



Data Assimilation for Other Planets 699

Young, R.E., 1998. The Galileo probe mission to Jupiter: Science overview. J. Geophys. Res., 103,
22775–22790.

Young, R.E., 2000. Correction to “The Galileo probe mission to Jupiter: Science overview”.
J. Geophys. Res., 105, 12093–12093.

Zhang, K.Q., A.P. Ingersoll, D.M. Kass, J.C. Pearl, M.D. Smith, B.J. Conrath and R.M. Haberle,
2001. Assimilation of Mars global surveyor atmospheric temperature data into a general
circulation model. J. Geophys. Res., 106, 32863–32877.

Zurek, R.W., J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman and C.B. Leovy, 1992.
Dynamics of the atmosphere of Mars. In Mars, Matthews, M.S. (ed.), University of Arizona
Press, Tucson, AZ.



Appendix

List of Acronyms

AATSR: Advanced Along Track Scanning Radiometer
ACE: Atmospheric Chemistry Experiment
ACVT-MA: Atmospheric Chemistry Validation Team – Modelling and Assimilation
ADEOS: Advanced Earth Observing Satellite
ADM: Atmospheric Dynamics Mission
AIRS: Atmospheric InfraRed Sounder
AMSR: Advanced Microwave Sounding Radiometer (AMSR-E on EOS Aqua, AMSR-2

on GCOM-W)
AMSU: Advanced Microwave Sounding Unit
ASAR: Advanced Synthetic Aperture Radar
A-SCOPE: Advanced Space Carbon and climate Observation of Planet Earth
ASSET: ASSimilation of Envisat daTa
ASTER: Advanced Spaceborne Thermal Emission and reflection Radiometer
ATMOS: Atmospheric Trace MOlecule Spectroscopy
ATOVS: Advanced TOVS
BASCOE: Belgian Assimilation System for Chemical ObsErvation (previously the Belgian

Assimilation System for Chemical Observations from Envisat)
BIRA-IASB: Belgisch Instituut voor Rüimte Aeronomie - Institut d’Aeronomie Spatiale de

Belgique (Belgian Institute of Space Aeronomy)
BLUE: Best Linear Unbiased Estimate (also Best Linear Unbiased Estimator)
CALIPSO: Cloud Aerosol Lidar and Infrared Path finder Satellite Observation
CAMELOT: Composition of the Atmospheric Mission concEpts and sentinel Observation

Techniques
CAPACITY: Composition of the Atmosphere: Progress to Applications in the user

CommunITY
CCMVal: Chemistry-Climate Model Validation
CERES: Clouds and the Earth’s Radiant Energy System
CLAES: Cryogenic Limb Array Etalon Spectrometer
CMA: China Meteorological Administration
CMAM: Canadian Middle Atmospheer Model
CNES: Centre National d’Études Spatiales
CONAE: COmisión Nacional de Actividades Espaciales (National Space Activities

Commission) – Argentina Space Agency
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CoReH2O: COld REgions Hydrology high-resolution Observatory
CrIS: Cross-track Infrared Sounder
CRISTA: CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere
CSA: Canadian Space Agency
CTM: Chemistry-Transport Model
DA: Data Assimilation
DARC: Data Assimilation Research Centre, UK
DLR: Deutsches zentrum für Luft-und Raumfahrt, Germany
DMSP: Defense Meterological Satellite Program
DORIS: Doppler Orbitography and Radiopositioning Integrated by Satellite
DU: Dobson Units
EarthCARE: Earth Clouds And Radiation Explorer
EC: European Commission
ECMWF: European Centre for Medium-Range Weather Forecasts
ECV: Essential Climate Variable
EKF: Extended Kalman Filter
EnKF: Ensemble Kalman Filter
EOS: Earth Observing System
EOS MLS: EOS Microwave Limb Sounder
EP: Earth Probe
EPS: EUMETSAT Polar System
ERA: ECMWF ReAnalysis
ERS: European Research Satellite
ESA: European Space Agency
ESSA: Environmental Survey Satellite
EU: European Union
EUMETSAT: EUropean organisation for the exploitation of METeorological SATellites
FCDR: Fundamental Climate Data Record
FGAT: First Guess at the Appropriate Time
FLEX: FLuorescence Explorer
FTIR: Fourier Transform InfraRed
GCM: General Circulation Model
GCOM: Global Change Observation Mission
GCOS: Global Climate Observing System
GEMS: Global Earth system Monitoring using Space and in-situ data
GEO: Group on Earth Observations
GEOS: Goddard Earth Observing System
GEOSS: Global Earth Observing System of Systems
GERB: Geostationary Earth Radiation Budget experiment
GHRSST: Global Ocean Data Assimilation Experiment (GODAE) High Resolution SST

project
GLI: GLobal Imager
GMAO: Global Modeling Assimilation Office (previously the Data Assimilation Office,

DAO)
GMES: Global Monitoring for Environment and Security
GOCE: Gravity field and steady-state OCEan circulation
GODAE: Global Ocean Data Assimilation Experiment
GOES: Geostationary Operational Environmental Satellite
GOME and
GOME-2:

Global Ozone Monitoring Experiment

GOMOS: Global Ozone Monitoring by Occultation of Stars
GOS: Global Observing System
GOSAT: Greenhouse gas Observing SATellite
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GSI: Gridpoint Statistical Interpolation
HALOE: HALogen Occultation Experiment
HIRDLS: High Resolution Dynamics Limb Sounder
HIRS/4: High resolution Infrared Radiation Sounder/4
HRDI: High Resolution Doppler Imager
HSB: Humidity Sounder for Brazil
IASI: Infrared Atmospheric Sounding Interferometer
IGACO: Integrated Global Atmospheric Chemistry Observations
ILAS: Improved Limb Atmospheric Spectrometer
IR: InfraRed
ISAMS: Improved Stratospheric And Mesospheric Sounder
JAXA: Japan Aerospace space eXploration Agency
KF: Kalman Filter
KNMI: Koninklijk Nederlaands Meteorologisch Instituut (The Royal Dutch

Meteorological Institute)
LEKF: Local Ensemble Kalman Filter
LETKF: Local Ensemble Transform Kalnam Filter
LIMS: Limb Infrared Monitor of the Stratosphere
LRR: Laser RetroReflector
MACC: Monitoring Atmospheric Composition and Climate
MAESTRO: Measurements of Aerosol Extinction in the Stratosphere and Troposphere

Retrieved by Occultation
MERIS: MEdium Resolution Imaging Spectrometer
MIPAS: Michelson Interferometer for Passive Atmospheric Sounding
MISR: Multi-angle Imaging SpectroRadiometer
MLS: Microwave Limb Sounder
MODIS: MODerate resolution Imaging Spectroradiometer
MOPITT: Measurements Of Pollution in The Troposphere
MOZART: Model of OZone And Related Tracers
MSC: Met Service Canada
MSG: Meteosat Second Generation
MTG: Meteosat Third Generation
MWR: MicroWave Radiometer
NASA: National Aeronautics and Space Administration
NCAR: National Center for Atmospheric Research
NCEP: National Centers for Environmental Prediction
NCEP GFS: NCEP Global Forecasting System
NIES: Japanese National Institute for Environmental Studies
NILU: Norsk Institutt for Luftforskning (Norwegian Institute for Air Research)
NMC: National Meteorological Center
NMHCs: Non-Methane HydroCarbons
NOAA: National Oceanic and Atmospheric Administration
NPOESS: National Polar-orbiting Operational Environmental Satellite System
NWP: Numerical Weather Prediction
OCO: Orbiting Carbon Observatory
OI: Optimal Interpolation
OmA: Observation minus Analysis
OmF: Observation minus Forecast
OMI: Ozone Monitoring Instrument
OMPS: Ozone Mapping and Profiler Suite
OSIRIS: Optical Spectrograph and InfraRed Imager System
OSE: Observing System Experiment
OSSE: Observing System Simulation Experiment
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OSTIA: Operational Sea Surface Temperature and Sea Ice Analysis
PARASOL: Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled

with Observations from a Lidar
PIRATA: Prediction and Research Moored Array in the Tropical Atlantic (formerly the Pilot

Research Moored Array in the Tropical Atlantic)
POAM: Polar Ozone and Aerosol Measurement
POLDER: POLarization and Directionality of the Earth’s Reflectance
PREMIER: PRocess Exploration through Measurements of Infrared and milli-metre wave

Emitted Radiation
PROMOTE: PROtocol for MOnitoring for The GMES service Element
PSAS: Physical-space Statistical Analysis Scheme
PSC: Polar Stratospheric Cloud
RA-2: Radar Altimeter 2
RH: Relative Humidity
RT: Radiative Transfer
RTM: Radiative Transfer Model
SAR: Synthetic Aperture Radar
SBUS: Solar Backscatter Ultraviolet Sounder
SBUV/2: Solar Backscatter Ultra-Violet/2
SCIAMACHY: Scanning Imaging Absorption spectrometer for Atmospheric CHartographY
SEVIRI: Spinning Enhanced Visible and InfraRed Imager
SGLI: Second generation GLI
SMAP: Soil Moisture Active and Passive
SMOS: Soil Moisture and Ocean Salinity
SMR: Sub-Millimeter Radiometer
SNSB: Swedish National Space Board
SPARC: Stratospheric Processes And their Role in Climate
SPEEDY: Simplified Parameterizations primitivE-Equation Dynamics model
SSM/I: Special Sensor Microwave Imager
SSMIS: Special Sensor Microwave Imager/Sounder
SWIFT: Stratospheric Wind Interferometer For Transport studies
TES: Tropospheric Emission Spectrometer
TIROS: Television and InfraRed Observations Satellite
TMI: TRMM Microwave Imager
TOMS: Total Ozone Mapping Spectrometer
TOU: Total Ozone Unit
TOVS: TIROS Operational Vertical Sounder
TRAQ: TRopospheric composition and Air Quality
TRMM: Tropical Rainfall Measuring Mission
UARS: Upper Atmosphere Research Satellite
UKMO: UK Meteorological Office (now The Met Office)
UNFCCC: United Nations Framework Convention on Climate Change
UTLS: Upper Troposphere / Lower Stratosphere
UV: UltraViolet
VAR: VARiational
WMO: World Meteorological Organization
WMO-GAW: WMO – Global Atmospheric Watch
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correction, 115, 118–119, 124–127, 129,
134, 266, 384, 478, 530, 556, 583,
588–589, 625, 630–631, 665, 675

Biological ocean assimilation, 530
BLUE, see Best linear unbiased estimate/Best

linear unbiased estimator (BLUE)
Borel field, 165, 188, 200, 208–209
Box chemical model, 432–437
Brewer-Dobson circulation, 340–347, 451,

474, 477–478, 633

C
CAMELOT study, 313–314
Canadian Middle Atmospheer Model

(CMAM), 453, 482
Canadian Space Agency (CSA), 304, 306, 308,

310–311
CAPACITY

report, 313–316
study, 314, 316

Carbon dioxide, 272, 327, 341, 410, 450,
497, 684

Cariolle scheme, 458–460
Cauchy sequence, 202, 215
Centre National d’Études Spatiales (CNES),

306, 308
Channel selection, 271–274
Characteristic function, 209–210
Characteristics of information, 5–6
Charney-Drazin theory, 342
Chemistry, 347, 409–429, 431–447, 462–467,
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Chemistry-climate model (CCM), 432,
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Chemistry-Climate Model Validation
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Chemistry-transport model (CTM), 314, 317,
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Cloud Aerosol Lidar and Infrared Path finder

Satellite Observation (CALIPSO),
275, 305–306, 314, 316
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detection, 102
Clouds and the Earth’s Radiant Energy System

(CERES), 305
COld REgions Hydrology high-resolution

Observatory (CoReH2O), 307
COmisión Nacional de Actividades Espaciales

(CONAE), 311
Community Land Model (CLM), 553, 583
Conditional covariance operator, 141, 148, 154
Conditional mean operator, 141, 154
Conditional probability, 44, 60, 63, 120
Conservation equations, 352–353, 355, 359,

361, 366, 368, 371–373, 446, 606,
608, 625, 633, 641

Conservative dynamics, 143
Constituent (chemical) data assimilation,

142, 317, 410, 429, 442, 449–451,
453–454, 463–468, 471–472, 478,
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Continuity equations, 247–250, 353, 360–361,
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Continuum system dynamics, 139
Control

operator, 562
run, OSSEs, 87, 493, 505, 585,

647–648, 672
space, 49, 60, 387
variable, 15, 28–29, 34, 49, 53, 57, 60, 387,
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Cross-covariance function, 121
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Cryogenic Limb Array Etalon Spectrometer
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D
Data assimilation

dual approach, 48, 58–59
dual variational problem, 24
four dimensional, 25–30
in linear systems, 123, 431, 464, 565
in non-linear systems, 166, 464
sequential, 20–25, 601
See also Kalman filter (KF), variational;

Variational assimilation
Data Assimilation Research Centre, UK
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Data denial experiments, 82, 648, 669
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Data space, 43–44, 220–222, 231, 237
Data vector, 43–45, 220–223, 227, 233–234
Defense Meterological Satellite Program

(DMSP), 272, 274
Derived products, 354–355, 360, 363, 366, 623
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Stochastic prediction, 396–397
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Stratosphere
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558, 563, 568, 571
Teleconnections, 340, 636
Television and InfraRed Observations Satellite,

TIROS, Operational Vertical
Sounder (TOVS), 118, 236, 279,
285, 456, 458, 664, 671–673

Temperature/salinity (ocean), 540–543
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