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Introduction

William Lahoz, Boris Khattatov, and Richard Ménard

This book came from a request from Springer to the editors to update knowledge
on the science of data assimilation and incorporate developments during the last
5 years. It is designed to update the science of data assimilation since the NATO
(North Atlantic Treaty Organization) Science Series Book “Data Assimilation for
the Earth System” (R. Swinbank, V. Shutyaev, W.A. Lahoz, eds.) came out in 2003,
and fill in some of the gaps in that book. The NATO Science Series Book was based
on a set of lectures presented at the NATO Advanced Study Institute (ASI) on Data
Assimilation for the Earth System, which was held at Maratea, Italy during May—
June 2002. That ASI grew out of a concern that there was little teaching available in
data assimilation, even though it had become central to modern weather forecasting,
and was becoming increasingly important in a range of other Earth disciplines such
as the ocean, land and chemistry.

Many changes have happened in the science of data assimilation over the last
5 years. They include the development of chemical data assimilation systems at
several centres world-wide, both research and operational; the increased interaction
between the research and operational communities; the use of data assimilation to
evaluate research satellite data; the use of data assimilation ideas, long applied to
weather forecast models, to evaluate climate models; the combination of theoretical
notions from variational methods and ensemble Kalman filter methods to improve
data assimilation performance; and the increased extension of data assimilation to
areas beyond the atmosphere and dynamics: chemistry, ionosphere, and other plan-
ets, e.g., Mars and Venus. There has also been a consolidation in the use of data
assimilation to evaluate future observations, and in the use of data assimilation in
areas such as the ocean and the land.

Parallel to these changes in the science of data assimilation, another remark-
able change over the last 5 years has been the increased presence of data
assimilation in teaching initiatives such as Summer Schools. These include the
now biennial ESA (European Space Agency) Earth Observation Summer School

W. Lahoz (X)
Norsk Institutt for Luftforskning, Norwegian Institute for Air Research, NILU, Kjeller, Norway
e-mail: wal @nilu.no
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(http://envisat.esa.int/envschool_2008/) and several others. It can now be said
that data assimilation has become a mainstream topic in the teaching of Earth
Observation.

The NATO Science Series book, although useful and a feature in many univer-
sity lecture courses, has some gaps. These include, for example, an overview of
data assimilation and its relationship to information, either in observations or mod-
els; a discussion of ensemble Kalman filter methods; a discussion of Observing
System Simulation Experiments (OSSEs); a discussion of tropospheric chemical
data assimilation; and a discussion of meteorology and dynamics.

This book is intended to build on the material from the NATO Science Series
book, address the above changes, and fill in the above gaps. Although there will
be inevitable gaps in this book, we think it will provide a useful addition to the
literature on data assimilation. To achieve this, we have asked world-leading data
assimilation scientists to contribute to the chapters. We hope we succeed, at least
until the next data assimilation book along these lines comes out in 5 years! Finally,
we dedicate this book to Andrew Crook (1958-2006) who was one of the original
chapter authors.

November 2009
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Data Assimilation and Information

William Lahoz, Boris Khattatov, and Richard Ménard

1 Introduction

In this introductory chapter we provide an overview of the connection between the
data assimilation methodology and the concept of information, whether embodied
in observations or models. In this context, we provide a step by step introduction to
the need for data assimilation, culminating in an easy to understand description of
the data assimilation methodology. Schematic diagrams and simple examples form
a key part of this chapter.

The plan is to first discuss the need for information; then discuss sources of infor-
mation; discuss the characteristics of this information, in particular the presence of
“information gaps”; provide an objective underpinning to methods to fill in these
information gaps; and discuss the benefits of combining different sources of infor-
mation, in this case from observations that sample in space and time the system of
interest (e.g. the atmosphere, the ocean, the land surface, the ionosphere, other plan-
ets), and models that embody our understanding of the system observed. Finally,
we bring together these ideas under the heading of “data assimilation”, provide a
schematic of the methodology, and provide three simple examples highlighting how
data assimilation adds value, the impact of spatial resolution on information, and
the impact of temporal sampling on information.

At the end of this chapter we identify the foci of this book and the order in which
they are presented in the book.

2 Need for Information
The main challenges to society, for example, climate change, impact of extreme

weather, environmental degradation and ozone loss, require information for an
intelligent response, including making choices on future action. Regardless of its

W. Lahoz (X)
Norsk Institutt for Luftforskning, Norwegian Institute for Air Research, NILU, Kjeller, Norway
e-mail: wal @nilu.no
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source, we wish to be able to use this information to make predictions for the
future, test hypotheses, and attribute cause and effect. In this way, we are able to
take action according to information provided on the future behaviour of the system
of interest, and in particular future events (prediction); test our understanding of the
system, and adjust this understanding according to new information (hypothesis test-
ing); and understand the cause of events, and obtain information on possible ways
of changing, mitigating or adjusting to the course of events (attribute cause and
effect).

We can identify a generic chain of information processing:

Gather information;

Test hypotheses based on this information;

Build methods to use this information to attribute cause and effect;
Use these methods to make predictions.

However, we still need two ingredients: a means of gathering information, and
methods to build on this information gathered. Roughly speaking, observations
(measurements) provide the first ingredient, and models (conceptual, numerical or
otherwise) provide the second ingredient. Note, however, that from the point of
view of information, observations and models are not distinct; it is the mechanism
of obtaining this information that is distinct: observations have a roughly direct link
with the system of interest via the measurement process; models have a roughly indi-
rect link with the system of interest, being an embodiment of information received
from measurements, experience and theory.

3 Sources of Information

We have two broad sources of information: measurements of the system of inter-
est (“observations”); and understanding of the temporal and spatial evolution of
the system of interest (“models”). Further details about observations and models
can be found in Part II, Observations, and Part 11, Meteorology and Atmospheric
Dynamics, respectively.

Observations (or measurements) sample the system of interest in space and time,
with spatial and temporal scales dependent on the technique used to make the mea-
surements. These measurements provide information on the system of interest and
contribute to building an understanding of how the system evolves in space and
time.

Understanding can be qualitative, e.g., how variables roughly “connect” or are
related, or quantitative, commonly expressed in equations. A rough, qualitative con-
nection can indicate that if the velocity of a particle increases, its kinetic energy also
increases. A quantitative connection based on equations assigns a numerical rela-
tionship between the velocity and the kinetic energy, so that we can make precise
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(subject to the accuracy of the calculation) the increase in kinetic energy given an
increase in velocity of the particle. Equations can come from general laws (e.g.
Newton’s laws of motion), or relations between parameters (e.g. empirical or statis-
tical). In general, quantification on the basis of laws tends to be more rigorous than
quantification on the basis of empirical or statistical relations, mainly because laws
have broad (if not universal) application, whereas empirical or statistical relations
tend to apply only to specific cases.

4 Characteristics of Information

To make use of the information embodied in observations and models it is nec-
essary to understand the characteristics of this information. In particular, we must
recognize that both observations and models have errors. We now discuss briefly
the nature of these errors.

Observations have errors which are characterized as random (also known as
precision), systematic (also known as bias) and of representativeness (or represen-
tativity). The sum of these errors is sometimes known as the accuracy. Random
errors have the property that they are reduced by averaging. Systematic errors, by
contrast, are not reduced by averaging; if known, they can be subtracted from an
observation. The representativeness error is associated with differences in the reso-
lution of observational information and the resolution of the model interpreting this
information.

Models also have errors. These errors arise through the construction of models, as
models can be incomplete due to a lack of understanding or due to processes being
omitted to make the problem tractable; and through their imperfect simulation of the
“real world”, itself sampled by observations or measurements. Thus, information,
whether in the form of observations or models has errors, and these have to be taken
into account. Further details about the nature of observational and model errors can
be found in the following chapters in Part I, Theory.

Another key feature of observations (or measurements) is that they are discrete
in space and time, with the result that the information provided by observations has
gaps (Fig. 1).

It is desirable to fill gaps in the information provided by observations: first, to
make this information more complete, and hence more useful; second, to provide
information at a regular scale to quantify the characteristics of this information.
Information at an irregular scale can be quantified, but this procedure is more
tractable when done with a regular scale.

Assuming a need to fill in the gaps in the observational information, the question
is how to do so. Conceptually, it is desirable to use information on the behaviour
of the system to extend the observations and fill in the gaps. This information is
provided by a model of how the system behaves; this model then allows one to
organize, summarize and propagate the information from observations. Note that
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Fig. 1 Plot representing ozone data at 10 hPa (approximately 30 km in altitude) for 1 February
1997 based on the observational geometry of ozone measurements from the MLS (Microwave
Limb Sounder) instrument onboard the National Aeronautics and Space Administration (NASA)
UARS (Upper Atmosphere Research Satellite) satellite. For information on UARS, see
http://mls.jpl.nasa.gov/uars/science.php. Blue denotes relatively low ozone values; red denotes
relatively high ozone values. Note the gaps between the satellite orbits. Thanks to Finn Bjgrklid
(NILU) for improving this figure

there can be differences in the resolution of the observations, and the resolution of
the models used to propagate the information in observations. This will introduce
errors when filling in the information gaps.

We now discuss algorithms to fill in the information gaps. The idea is that
the algorithm, embedded in a model, provides a set of consistent (i.e., mathe-
matically, physically or otherwise) and objective (i.e., based on impartial prin-
ciples) rules which when followed fill in the information gaps associated with
observations.

5 Objective Ways of Filling in Information Gaps

What algorithm should one use to fill in the information gaps associated with obser-
vations? There are a number of features that such an algorithm should have. The
most important ones are that it be feasible and that it be objective (and consistent).
From the point of view of feasibility, one could build a hierarchy of algorithms
of increasing complexity, starting, for example, with linear interpolation between
observations. A simple approach such as linear interpolation is feasible (because
simple) and, in cases where observations are dense enough, could be expected to be
reasonably accurate. However, although in principle consistent, it is not objective
(because not general) and, for example, in general it will not reflect how it is under-
stood systems such as the atmosphere behave. A more realistic approach would be
to fill in the gap using a model of how the system behaved. For example, for the
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atmosphere, we could use a model that embodies the equations of motion; radiative
transfer; physical processes such as convection; and chemistry. Such a model would
be more expensive to apply than a simple linear interpolation, but in principle would
provide a more accurate (and more objective) approach to filling in the information
gaps in the observations. In practice, one strikes a balance between using a model
that is feasible and using a model that is objective and consistent. Practically, one
seeks a model that is tractable and realistic.

We would like to find methods that allow the interpolation, i.e., filling in
of the observational information gaps using a model, to be done in an “intel-
ligent” way. By intelligent, we mean an “objective” way which makes use of
concepts for combining information that can be quantified. For example, by find-
ing the minimum or maximum value of a quantity that can be calculated from
the information available. In this way, we can think of the model as an intelli-
gent interpolator of the observation information: intelligent because it embodies
our understanding of the system; intelligent because the combination of the obser-
vational and model information is done in an objective way. Note that in practice,
the model (like the observations) provides information that is discrete in space and
time.

Mathematics provides rules for combining information objectively, based on
principles which aim to maximize (or minimize) a quantity (e.g. a ‘“penalty
function™), or on established statistical concepts which relate prior information
(understanding, which comes from prior combination of observations and models)
with posterior information (which comes from making an extra observation).

In particular, mathematics provides a foundation to address questions such as:
“What combination of the observation and model information is optimal?”’, and pro-
vides an estimate of the errors of the “optimum” or “best” estimate. This is known
as “data assimilation” (also as Earth Observation data/model fusion), and has strong
links to several mathematical disciplines, including control theory and Bayesian
statistics. The data assimilation methodology adds value to the observations by fill-
ing in the observational gaps and to the model by constraining it with observations
(Fig. 2 below). In this way, the data assimilation allows one to “make sense” of the
observations. Further details about the theory of data assimilation can be found in
the following chapters in Part I, Theory.

Mathematics also provides an algorithmic basis for applying data assimilation
to real problems, including, for example, weather forecasting, where data assim-
ilation has been very successful. In particular, over the last 25 years, the skill of
weather forecasts has increased — the skill of today’s 5-day forecast is comparable
to the skill of the 3-day forecast 25 years ago. Furthermore, the skill of forecasts
for the Southern Hemisphere is now comparable to that of the Northern Hemisphere
(Simmons and Hollingsworth 2002).

Mathematics also provides a theoretical and algorithmic basis for studying
the problem of data assimilation, notably by using simpler models to test ideas.
The results using these simpler models can then be used to inform data assim-
ilation developments with complex systems, such as those used for weather
forecasting.
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Fig. 2 Schematic of how data assimilation (DA) works and adds value to observational and
model information. The data shown are various representations of ozone data at 10 hPa
(about 30 km in height) on 23 September 2002. Lower left panel, “‘observations”: plot rep-
resenting the day’s ozone data based on the observational geometry of ozone measurements
from the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) instrument
onboard the European Space Agency (ESA) Envisat satellite; for information on MIPAS, see
http://envisat.esa.int/instruments/mipas/. Lower right panel, “forecast”: plot representing a 6-day
ozone forecast (1200 UTC) based on output from a DA system. Top panel, “analyses”: plot rep-
resenting an ozone analysis (1200 UTC) based on output from a DA system. The DA system
associated with the lower right plot and the top plot is based on that at the Met Office, and is
described in Geer et al. (2006). Blue denotes relatively low ozone values; red denotes relatively
high ozone values. The DA method combines the observations with a model forecast (commonly
short-term, e.g., 6 or 12 h), including their errors to produce an ozone analysis. Note how the anal-
ysis (tfop panel) fill in the gaps in the observations (lower left panel), and the analysis captures the
Antarctic ozone hole split (verified using independent data not used in the assimilation) whereas
the 6-day forecast (lower right panel) does not. In this sense, the DA method adds value to both
the observations and the model. Thanks to Alan Geer for providing the basis of this figure and for
Finn Bjgrklid for improving the figure

6 Simple Examples of Data Assimilation

We now provide three simple examples highlighting how data assimilation adds
value (Example 1); the impact of spatial resolution on information (Example 2);
and the impact of remporal sampling on information (Example 3).

Example 1 Combining observations with understanding of a system, where both
pieces of information have finite errors, should, intuitively, increase the information
about the system. There are several ways of quantifying this increase in infor-
mation, one of them being the error embodied in the information, quantified by
the standard deviation. We discuss this using a simple example where informa-
tion from two scalar quantities with Gaussian (i.e., normally distributed) errors is
combined.
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Consider two observations (x;, x») of variable x, with associated variances (o';2,
022). Now assume that the observation errors are random, unbiased and normally
distributed. It can be shown that the optimum estimate (‘“‘most probable” value) is
given by:

with variance:

We can also see from this example that:

o] —> OO, X — X2,
% < min{olz,azz}.

We can see from this simple example that the error (variance) associated with
the combined information is generally lower than the error associated with any of
the two pieces of information being combined and that, at worse, it is equal to the
minimum of the errors of the individual pieces of information, but never larger. We
can also see obvious limiting cases, when the error of one of the pieces of informa-
tion being combined becomes infinitely large, i.e., the information from this piece
becomes vanishingly small. The result in this example can be generalized to two
observations (X1, Xp) of a vector variable x, with associated matrix error covariances
(S1, S2).

Although this simple example encapsulates how information is increased, this
result concerning variances only holds for Gaussian errors. For errors that are not
Gaussian, the variance of the combined information can be larger than that of one of
the pieces of information being combined. This apparently counter-intuitive result
indicates that variance is not the best way of measuring increases in information. In
fact, one must use the concept of entropy to consider errors with general probability
distributions.

Example 2 Consider a large square room, where temperature measurements are
made at each corner. What is the temperature at the centre of the room? What is
the temperature representative for the room? These questions concern the spatial
resolution of information, and how the latter changes as the former changes.

To estimate the temperature at the centre of the room we could average the four
corner temperatures, giving each measurement equal weight. This gives the same
result assuming the temperature varies linearly between opposite corners and taking
an average of the two resulting measurements. Regardless of how the final value is
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computed, a model of how the temperature varies in the room is needed to compute
the temperature at the centre of the room.

To estimate the temperature representative for the room we could proceed as
above. In this case we would be averaging the “point” temperature information from
each corner to provide “area” temperature information for the whole room. When
we use this estimate of the “area” temperature (or any other estimate) as represen-
tative of the room temperature, we incur an error of representativeness. This was
introduced in Sect. 4 above.

The impact of spatial resolution on the estimate for the temperature at the centre
of the room can be seen as follows. If we increase the number of measurements in
the room, for example along the walls or toward the centre, we tend to get a better
estimate of the temperature at the centre of the room, either because we are sam-
pling closer to the room centre, and/or we are obtaining more information of how
the temperature varies in the room. Higher spatial observational sampling gener-
ally provides (at least initially) better information on the system by reducing the
observational gaps. However, there comes a point where we do not get further infor-
mation, e.g., sampling the temperature at close enough locations in the room gives
essentially an unchanged temperature within the error of the measuring device. This
illustrates the concept of observational information saturation with respect to other
observations, where the measurement is no longer independent and provides no new
information.

The impact of spatial resolution on the estimate for the “area” temperature of
the room can be seen as follows. Assume the spatial resolution of the algorithm
(i.e., model) used to estimate the “area” temperature remains fixed. As we reduce
the spatial dimensions of the room the observational gaps become smaller, and the
estimate of the “area” temperature as calculated above (or generally using any algo-
rithm or model) initially tends to become more accurate. However, there comes a
point where, within the error of the algorithm, we do not get further information
if we continue reducing the spatial dimension of the observational gaps. We have
observational information saturation with respect to the model.

Through representation of errors, data assimilation takes account of the spa-
tial resolutions in the model and the observations, and the information saturation
between observations, and between the observations and the model.

Example 3 Consider a person walking along a path in the forest, gathering informa-
tion about their surroundings through their eyes, and keeping their eyes closed for
regular intervals. How does this person keep on the path when their eyes are closed?
How does the time the person keeps their eyes closed affect their progress along the
path? These questions concern the rate at which information is sampled in time, i.e.,
temporal sampling.

The person gathers observational information about their surroundings through
their eyes: “the path is straight”; “the path curves to the left”. This provides infor-
mation of the path to the person, who then incorporates it into a model of their
surroundings. This allows the person to keep along the path when their eyes are

closed: “keep straight ahead”; “turn left”. When the person next opens their eyes
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they can adjust (correct) their model of their surroundings depending on the new
observational information: “turn right”; “bend down to avoid a low tree branch”.
The combination of observational and model information allows the person to walk
along the path.

However, the amount of time the person keeps their eyes closed affects the qual-
ity of observational information they get about their surroundings. If the amount of
time is relatively short, say 1 s, the quality of observational information will be rela-
tively high and the person should be able to walk along the path without mishap. By
contrast, if the amount of time is relatively long, say 1 min, the quality of observa-
tional information will be relatively low and the person would be expected to have
problems walking along the path (note, however, that this depends on the nature
of the path, see later). This shows how temporal sampling can affect the quality of
observational information received, which in turn allows the correction of model
information.

If the path is straight, the amount of time the person keeps their eyes closed can
be relatively long and still allow them to be able to keep along the path without
mishap. This is because the model of the path (built from observational informa-
tion) is relatively simple: “keep on a straight line”, and does not need relatively
high temporal sampling to adjust it. Conversely, if the path has many bends without
pattern in their handedness, the model of the path (again, built from observational
information) is relatively complex: “keep turning in the direction of the path”, and
needs relatively high temporal sampling to adjust it. This shows how the complex-
ity of the system affects the temporal sampling of observational information needed
to adjust (i.e., keep “on track”) a model describing the system. The appropriate
complexity of a model describing the system depends on the character of the obser-
vational information gathered (observation types, errors, spatial resolution, temporal
sampling).

Data assimilation, by confronting the model with observations in time and space,
keeps the model on track.

7 Benefits of Combining Information

As seen in Fig. 2 above, and the examples in Sect. 6, combining information from
observations and a model adds value to both the observations and the model: the
information gaps in the observations are filled in; the model is constrained by the
observations. Other benefits accrue from “confronting” observations and models,
as is done in the data assimilation method. These benefits include the evaluation
of both the observations and the model. This evaluation of information is crucial
in Earth Observation (observational information); Earth System Modelling (model
information, i.e., information which embodies our understanding); and in meld-
ing observations with a model, which we call “data assimilation” (merging of
information). By evaluating information, shortcomings can be identified and
remedied, with a consequent improvement in the collection, propagation and use
of information.
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8 What This Book Is About

This book develops the theme introduced in this chapter, namely, the use of data
assimilation to make sense of observations. It has six foci:

Theory (the eight chapters in Part I following this chapter);
Observations (the three chapters in Part II);

Meteorology and Atmospheric Dynamics (the three chapters in Part I1I);
Atmospheric Chemistry (the four chapters in Part IV);

Wider Applications (the three chapters in Part V);

The Longer View (the three chapters in Part VI).

These foci span several cross-cutting axes: (i) the mathematics of data assimi-
lation; (ii) observations and models; (iii) the activities of the weather centres and
the activities of the research community; (iv) the different elements of the Earth
System: atmosphere, ocean, land and chemistry; (v) evaluation and production of
added-value analyses; and (vi) the success of the data assimilation method and
future developments. These are exciting times for data assimilation and we hope
this book conveys this excitement.
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Mathematical Concepts of Data Assimilation

N.K. Nichols

1 Introduction

Environmental systems can be realistically described by mathematical and numeri-
cal models of the system dynamics. These models can be used to predict the future
behaviour of the system, provided that the initial states of the system are known.
Complete data defining all of the states of a system at a specific time are, however,
rarely available. Moreover, both the models and the available initial data contain
inaccuracies and random noise that can lead to significant differences between the
predicted states and the actual states of the system. In this case, observations of the
system over time can be incorporated into the model equations to derive “improved”
estimates of the states and also to provide information about the “uncertainty” in the
estimates.

The problem of state-estimation is an inverse problem and can be treated using
observers and/or filters derived by feedback design techniques (see, for example,
Barnett and Cameron 1985). For the very large non-linear systems arising in the
environmental sciences, however, many traditional state-estimation techniques are
not practicable and new “data assimilation” schemes have been developed to gener-
ate accurate state-estimates (see, for example, Daley 1993; Bennett 1992). The aim
of such schemes can be stated as follows.

The aim of a data assimilation scheme is to use measured observations in combination with
a dynamical system model in order to derive accurate estimates of the current and future
states of the system, together with estimates of the uncertainty in the estimated states.

The most significant properties of the data assimilation problem are that the
models are very large and non-linear, with order O(10’-10%) state variables. The
dynamics are multi-scale and often unstable and/or chaotic. The number of obser-
vations is also large, of order 0(105—106) for a period of 6 h, but the data are not
evenly distributed in time or space and generally have “holes” where there are no
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observations (see chapter Data Assimilation and Information, Lahoz et al.). In prac-
tice the assimilation problem is generally ill-posed and the state estimates may be
sensitive to errors.

There are two basic approaches to this problem. The first uses a “dynamic
observer,” which gives a sequential data assimilation scheme, and the second uses
a “direct observer,” which gives a four-dimensional data assimilation scheme. In
the first case, the observations are “fed-back” into the model at each time these
are available and a best estimate is produced and used to predict future states. In
the second case a feasible state trajectory is found that best fits the observed data
over a time window, and the estimated states at the end of the window are used to
produce the next forecast. Under certain mathematical assumptions these processes
solve the same “optimal” state-estimation problem. In operational systems, solv-
ing the “optimal” problem in “real-time” is not always possible, and many different
approximations to the basic assimilation schemes are employed.

In the next section the data assimilation problem is formulated mathematically.
In subsequent sections various techniques for solving the assimilation problem are
discussed.

2 Data Assimilation for Non-linear Dynamical Systems

A variety of models is used to describe systems arising in environmental appli-
cations, as well as in other physical, biological and economic fields. These range
from simple linear, deterministic, continuous ordinary differential equation mod-
els to sophisticated non-linear stochastic partial-differential continuous or discrete
models. The data assimilation schemes, with minor modifications, can be applied to
any general model.

We begin by assuming that for any given initial states and given inputs, the equa-
tions modelling the dynamical system uniquely determine the states of the system
at all future times. This is known as the “perfect” model assumption. In the follow-
ing subsections we define the data assimilation problem for this case and examine
its properties. Next we determine a best linear estimate of the solution to the non-
linear assimilation problem. The data assimilation scheme is then interpreted in a
stochastic framework and the “optimal” state-estimate is derived using statistical
arguments. We consider the case where the model includes errors in the system
equations in a later section of this chapter.

2.1 Basic Least-Squares Formulation for Perfect Models

Data assimilation schemes are described here for a system modelled by the discrete
non-linear equations

Xpt1 = Mpg1(xp), k=0,...,N—1, (D
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where x; € R" denotes the vector of n model states at time # and My 4+ : R" —
R" is a non-linear operator describing the evolution of the states from time #; to time
tx+1. The operator contains known inputs to the system including known external
forcing functions that drive the system and known parameters describing the system.
Prior estimates, or “background estimates,” xg, of the initial states xq at time 7
are assumed to be known, usually provided by a previous forecast.
The observations are assumed to be related to the system states by the equations

Vi = Hi(xe) + &, k=0,....N, 2)

where y, € Rk is a vector of py observations at time #; and Hy : R" — RPkisa
non-linear operator that includes transformations and grid interpolations. The obser-
vational errors €] € RP consist of instrumentation errors and representativity (or
representativeness) errors (see chapter Data Assimilation and Information, Lahoz
et al.).

For the “optimal” analysis, we aim to find the best estimates x} for the system
states Xx, k = 0, ..., N, to fit the observations y, k = 0, ..., N, and the background
state xg, subject to the model equations (1). We write the problem as a weighted
non-linear least-squares problem constrained by the model equations.

Problem 1 Minimize, with respect to Xq, the objective function

1 T
]25 (xo —XS) Bgl (xo —XS)—}—

1 _ 3)
+ 5 20 = Yo R (Hexe) = ),
k=0
subjectto x¢, k = 1,..., N, satisfying the system equations (1) with initial states x.

The model is assumed here to be “perfect” and the system equations are treated as
strong constraints on the minimization problem. The states Xy that satisfy the model
equations (1) are uniquely determined by the initial states and therefore can be writ-
ten explicitly in terms of X¢. Substituting into the objective function (3) then allows
the optimization problem to be expressed in terms of the initial states alone. The
assimilation problem, Problem 1, thus becomes an unconstrained weighted least-
squares problem where the initial states are the required control variables in the
optimization.

The weighting matrices By € R"*" and Ry € RP*Pk k= 0,1...,N, are taken
to be symmetric and positive definite and are chosen to give the problem a “smooth”
solution. They represent, respectively, the uncertainty in the background states (prior
estimates) and the observations. The objective function (3) can then be written in the
compact form:

1 , 1
J(x0) = Ellf(xo)llz = Ef(xo) f(x0), “)
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where
—1/2 b
B, " (x0 — xp)
R, ' (Ho(x0) - yo)
fixo)= | o VHOOITYol )
Ry, (Hy(xn) — yy)
and x; = Mox(x0), k = 1,...,N, satisfy the system equations (1) with initial states

X at time f( (see Lawless et al. 2005). The matrices B(; 12 and Rk_l/ 2 denote the
inverses of the symmetric square roots of By and Ry, respectively.

In this approach the initial states are treated as parameters that must be selected
to minimize the weighted mean square errors between the observations predicted
by the model and the measured observations over the time window and between the
initial and background states. The initial state is adjusted to different positions in
order to achieve the best fit, using an efficient iterative minimization algorithm.

2.2 Properties of the Basic Least-Squares Formulation

The solution xg to the least-squares problem (4) is known as the analysis. The anal-
ysis may not be well-defined if B, 1'= 0, that is, if no background state is specified.
In that case the number and locations of the observations may not be sufficient to
determine all the degrees of freedom in the optimization problem; in other words,
the system may not be “observable.” If the weighting matrix Bo is non-singular,
however, then, provided the operators M i and Hy, are continuously differentiable,
the stationary points of the least-squares problem are well-defined. The weighted
background term acts as a “regularization” term, ensuring the existence of a solution
and also damping the sensitivity of the solution to the observational errors (Johnson
et al. 2005a, b).

Under these conditions, the stationary points of the objective function (4) satisfy
the gradient equation, given by

Vol = Jf(x0) = 0, (6)

where J is the Jacobian of the vector function f defined in (5). The Jacobian can be
written in the compact form

Hy

-1/2 H M

B A 1Mo, 1

J= <ﬁ‘ll/zﬁ>,H= : , ©)
HyMo
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where R = diag{Ry} is a block diagonal matrix containing the weighting matrices
R; on the diagonal. The matrices Mo and Hy denote the Jacobians of the model
and observation operators My x and Hy, respectively; that is,

Mok
X

_ M

X0 k = 8X

Mo «

Mo k(x0)

If By is non-singular, then the Jacobian J, given by (7), is of full rank and the
stationary points satisfying the gradient equation (6) are well-defined. Stationary
points are not unique, however, and may not yield a minimum of the non-linear
assimilation problem. If a stationary point is such that the Hessian V,%OJ , of the
objective function (3) (or equivalently (4)) is positive-definite at that point, then the
stationary point is a local minimum of the assimilation problem (see Gratton et al.
2007). It should be noted that multiple local minima of the assimilation problem
may exist.

We remark that the sensitivity of the analysis to small perturbations in the data
depends on the “conditioning” of the Hessian, V,%OJ , that is, on the sensitivity of the
inverse of the Hessian to small perturbations. If small errors in the Hessian lead to
large errors in its inverse, then the computed solution to the data assimilation prob-
lem may be very inaccurate. In designing data assimilation schemes, it is important,
therefore, to ensure that the conditioning of the Hessian is as small as feasible, or to
use “preconditioning” techniques to improve the conditioning.

2.3 Best Linear Least-Squares Estimate

In general, explicit solutions to the non-linear data assimilation problem, Problem 1,
cannot be found. A “best” linear estimate of the solution to the non-linear problem
can, however, be derived explicitly. We assume that the departure of the estimated
analysis x;j from the background xg is a linear combination of the innovations dy =
Yi — Hk (xz) k = 0,1,...,N, and find the estimate for xg that solves the least-
squares data assimilation problem as accurately as possible.

To determine the estimate, we linearize the assimilation problem about the non-
linear background trajectory x! = Moy (Xg), k = 1,...,N. We denote by the
matrices Hy and My the linearizations of the observation and model operators Hy
and M, respectively, about the background trajectory; that is,

_ aMok

by =
X 0.k

" _8'Hk
k= ox b

ax
X0

The linearized least-squares objective function is then given by

N

-1 _ 1 _

J= Eango 18x0 + 3 E (HiMox8x0 — d) R, (HiMo %0 — di),  (8)
k=0
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where §xg = (xo — xg). Using the compact form of the Jacobian (7), the gradient
equation of the linearized problem may be written

Vxod =By (xo — x5) +
N
+ 3 HMop R, (HeMog (%o — x§) — (Ve — He (x7)))

k=0 Ta—1 Ta—1 ©)
= (B' + AR (xo - %) + AR 4
=0,
where d = (dg , dIT, e, d](,)T is the vector of innovations.

The optimal linear state-estimate for x{j is then the solution to the gradient
equation (9) and is given by

x¢ = x5 4 Kd, (10)
where

k= (B + AR 'R) AR =B’ (BB R) . ()
The matrix K is known as the gain matrix.

For systems where the model and observation operators are linear, the analysis
(10) and (11) is an exact, unique, stationary point of the data assimilation problem,
Problem 1. For non-linear systems multiple stationary points of the objective func-
tion (3) may exist and the analysis (10) and (11) is only a first order approximation to
an optimal solution, due to the linearization of the non-linear model and observation
operators.

The Hessian of the linearized objective function (8) at the analysis (10) and (11)
is given by

V2= (Bg1 + ﬁTﬁ_lﬁ) . (12)

If Bg is non-singular, then the matrix (12) is symmetric and positive-definite and (10)
and (11) provides the “best” linear estimate of the minimum of the data assimilation
problem, Problem 1, in a region of the state space near to the background.

2.4 Statistical Interpretation

The data assimilation problem, as formulated in Problem 1, determines a least-
squares fit of the model predictions to the observations, subject to constraints.
An estimate of the “uncertainty” in this analysis would be valuable. If additional
assumptions about the stochastic nature of the errors in the initial state estimates and
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the observations are made, then the solution to the data assimilation problem can be
interpreted in statistical terms and the uncertainty in the analysis can be derived.

To obtain a statistical formulation of the data assimilation problem, we assume
that the errors (xo—xg) between the true initial states Xo and the prior background
estimates xg are randomly distributed with mean zero and covariance matrix By €
R The observational errors 312 e RPk k=0,...,N, defined in (2), are assumed
to be unbiased, serially uncorrelated, randomly distributed vectors with zero means
and covariance matrices Ry € RP¥*Pk_The observational errors and the errors in the
prior estimates are assumed to be uncorrelated.

Under these basic statistical assumptions, given the prior estimates xg, and the
observations yx, k = 0,...,N, the “best linear unbiased estimate,” or BLUE, of
the true state Xq at time 7y equals the best least-squares estimate (10) and (11) for
the analysis x{. The uncertainty in this estimate is described by the analysis error
covariance, which is given by

A = (I, — KH)B,. (13)

Over all linear combinations of the innovations of form (10), the BLUE minimizes
the analysis error covariance and is thus the solution to the assimilation prob-
lem with minimum variance. The analysis given by (10) and (11) is therefore the
“optimal” linear estimate in this sense.

In addition to the basic statistical assumptions, the errors in the prior estimates
and in the observations are commonly assumed to have Gaussian probability distri-
butions, which are fully defined by the means and covariances specified. In this case,
the solution to the data assimilation problem, Problem 1, is equal to the maximum
a posteriori Bayesian estimate of the system states at the initial time. From Bayes
Theorem we have that the posterior probability of (xg — xg), given the departures
from the observations (y, — Hx(Xx)), k =0, ..., N, satisfies

p(x0 = xbly = k), k=0,....N) =

= ap(xo — xg) ,o(yk — Hi(xx), k=0,...,N|xo — xg) , (o

where p(xo —xg) is the prior probability of (xo —xg) and p(y, — Hi(Xk),

k=0,...,N|xo — XS) is the conditional joint probability of (y, — Hi(Xk)), k =
0,...,N, given (xo — xg). The scalar « is a normalizing constant that ensures that
the value of the posterior probability is not greater than unity. The “optimal” analysis
is then the initial state that maximizes the posterior probability.

From the assumption that the probability distributions are Gaussian, we have that

P (xo - xg) o exp |:—% (xo — X8>TB—1 (Xo — XS)]
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and
1
(¥ — Hi(Xx)) o< exp [_i(yk — Hex)) R (v — Hk(xk))i| )

fork =0,1,...,N. Taking the log of the posterior probability and using the assump-
tions that the observational errors are uncorrelated in time and uncorrelated with the
background errors, we find that

J(x0) = —In[p(x0 — X5lyx — Hk(xx),k =0,...,N)]

- —In[p(xo—x2)] - é In [p(ve — Hets)]. 1s)

(See Lorenc 1986, 1988.) The solution Xy to the data assimilation problem,
Problem 1, that minimizes J(Xo) is therefore equivalent to the maximum Bayesian a
posteriori likelihood estimate.

If the model and observation operators are linear and the errors are normally
distributed (i.e., Gaussian), then the maximum a posteriori Bayesian estimate and
the minimum variance estimate are equivalent. The BLUE, given explicitly by (10)
and (11), with zero mean and covariance (13), is thus the unique optimal in both
senses.

In practice the error distributions may not be Gaussian and the assumptions
underlying the estimates derived here may not hold. Ideally, we would like to be
able to determine the full probability distributions for the true states of the system
given the prior estimates and the observations. This is a major topic of research and
new approaches based on sampling methods and particle filters are currently being
developed.

Techniques used in practice to solve the data assimilation problem, Problem 1,
include sequential assimilation schemes and variational assimilation schemes.
These methods are described in the next two sections.

3 Sequential Data Assimilation Schemes

We describe sequential assimilation schemes for discrete models of the form (1),
where the observations are related to the states by the Eq. (2). We make the perfect
model assumption here. We assume that at some time #;, prior background esti-
mates xf for the states are known. The differences between the observations of the
true states and the observations predicted by the background states at this time,
(yk —H (XZ)) known as the innovations, are then used to make a correction to the
background state vector in order to obtain improved estimates xj, known as the anal-
ysis states. The model is then evolved forward from the analysis states to the next
time #4+1 where observations are available. The evolved states of the system at the
time ;41 become the background (or forecast) states and are denoted by xf 1 The
background is then corrected to obtain an analysis at this time and the process is
repeated.
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Mathematically this procedure may be written
X =X + Ky <Yk_Hk (Xf»» (16)

XZJFI = My +1 (XZ) . (17)

The matrix K; € R"*P, known as the “gain matrix,” is chosen to ensure that the
analysis states converge to the true states of the system over time. This is possible if
the system is “observable.” Conditions for this property to hold are known (see, for
example, Barnett and Cameron 1985).

The system (16) and (17) forms a modified dynamical system for the analysis
states that can be written

Xt = Mgt (x7) = Kept Hiet (Mt (x5)) + Ker 1Y - (18)

This system is driven by the observations and has different properties from the orig-

inal discrete system model (1). The evolution of the analysed states from time #

to time f;4 is described by a modified non-linear operator and the response of the

system depends generally upon the spectrum of its Jacobian, given by the matrix
OH

IMt1
(Mijet1 + Kip 1 Hi 1Mk er1), where H = S5 |xo and Mgy = =555 " The

choice of the gain matrices Ky, k = 0,1,..., therefore determines the behaviour
of the analysed states over time and this choice characterizes the data assimilation
scheme.

3.1 Optimal Sequential Assimilation Scheme

For the “optimal” sequential assimilation scheme, the analysis x}, given by (16), is
taken to be the best linear estimate of the solution to the least-squares assimilation
problem

X

: 1 b T B*l b 1 TRfl 19
min| > (x=x{) B! (x=x!) + 50400 - R (0 —y0 | (19)
at time #. The gain matrix Ky is then given by

—1
K¢ = B{H] (HiBiH{ +Ry) (20)

with Hy = 24|
X

k
If we assume that the background errors are randomly distributed with mean zero
and error covariance matrix

B; =5((x—x§) (X—XZ)T), 1)
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then the optimal analysis is equal to the BLUE, or best linear unbiased estimate, and
minimizes the analysis error variance given, at the optimum, by

Ar=E ((x —x9) (x — x;;)T) — (I, — K;H)By. (22)

If the random background error vector has a Gaussian distribution, then the analysis
is the maximum posterior Bayesian estimate. For linear systems, the solution (16)
and (20) gives the exact optimal analysis, but for non-linear systems this solution
gives only a first order approximation to the optimal due to the linearization Hy of
the non-linear observation operator that is used.

In evolving the “optimal” BLUE analysis sequentially, two computational diffi-
culties arise. The first is that the background covariance matrices By are required
at each time step. These matrices can be propagated forward in time from the ini-
tial background error covariance matrix By using an extended Kalman filter (EKF)
technique (Kalman 1961). It is assumed that, at time #o, prior background estimates
Xg for the states are known and the errors between the true initial states and the
background estimates are randomly distributed with mean zero and error covari-
ance By. The steps of the extended Kalman filter assimilation scheme are then given
as follows. For k =0, 1, ... find

x¢ = x} + K (v~ Ha (%)) (23)
where K = BH! (HB(H! + Ry) ', (24)
A = (I - K Hp)By, (25)

X1 = Mgt (xF) (26)

Byt = Mk,k+1AkM;€k+1~ 27

For systems where the model and observation operators are linear, the analysis
xjy produced by the Kalman filter at time fy is exactly equal to the solution X3, =
Mon (xg) to the least-squares data assimilation problem, Problem 1, at the end of
the time window. Furthermore, the analysis states produced by the Kalman filter
converge over time to the expected values of the true states. For non-linear systems,
however, the EKF only gives approximations to the optimal solution and the EKF
may even become unstable as a dynamical system. The EKF is also sensitive to
computational round-off errors (Bierman 1977).

For large geophysical and environmental systems the extended Kalman filter is,
in any case, impractical to implement due to the size of the covariance matrices that
need to be propagated. For example, for global weather and ocean systems, the EKF
requires the computation of matrices containing of the order of 10'* elements at
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every time step, making it computationally much too expensive to use for real-time
state estimation.

The second difficulty in implementing the optimal assimilation scheme (16) and
(20) sequentially is that in order to compute the analysis x} at each time step, we
must find BkH,{wz, where w{ solves the linear equations

(HBAH] + R wi = (v = 1 (%)) ). (28)

This is a very large inverse problem with O(10°—10°) variables to find. More-
over, the solution may be sensitive to small errors in the data if the matrix
(H;B(H] + Ry) is ill-conditioned.

In practice most operational sequential assimilation schemes avoid these two dif-
ficulties by using approximations that can be implemented efficiently. A summary
of these methods is given in the next subsection.

3.2 Practical Implementation

A variety of sequential data assimilation schemes has been developed for practi-
cal implementation. These differ mainly in the detailed steps of the procedures.
Sequential assimilation schemes used operationally include (Nichols 2003a):

— Successive Correction. In these schemes, the feedback gain Ky is not chosen opti-
mally, but is designed to smooth observations into the states at all spatial grid
points within some radius of influence of each observation (Bergthorsson and
Do6s 1955). An iterative process is used to determine the analysis. The Cressman
scheme is an example (Cressman 1959). The iterations converge to a result that is
consistent with observational error but may not be consistent with the dynamical
system equations. Over time the analysis states may not converge to the expected
values of the true states. These schemes are generally not effective in data sparse
regions.

— Optimal Interpolation or Statistical Interpolation. These schemes approximate
the optimal solution by replacing the background error covariance matrix By by a
constant matrix B, which has a “fixed” structure for all k. The gain matrix Ky in
(16) is then taken to be

~ - —1
K. = BH! (HkBH,{ + Rk) . (29)

(see Ghil and Malanotte-Rizzoli 1991). The matrix B is generally defined by an
isotropic correlation function (dependent only on the distance between spatial grid
points and observational points), with the correlation lengths adjusted empirically.
To simplify the inversion step, the gain is further modified to have a block structure
by using innovations only in small regions around grid points to obtain the analysis
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states. The inversion problem then reduces to solving a number of much smaller
systems of equations.

— Analysis Correction. In these schemes, approximations to the optimal analysis
states are computed iteratively, as in the Successive Correction method. The
procedure is designed, however, to ensure that the iterates converge to the approxi-
mate “optimal” analysis that is obtained by replacing the optimal gain matrix (20)
by the gain matrix (29), as in the optimal interpolation scheme (Bratseth 1986;
Lorenc et al. 1991). This scheme is effective across data sparse regions and the
analysis produced remains consistent with the dynamical equations.

— 3D-Var. These schemes apply iterative minimization methods directly to the vari-
ational problem (19) (Rabier et al. 1993). The covariance matrix By is replaced
by the approximation B, as defined for optimal interpolation. The solution con-
verges to the analysis obtained by replacing the optimal gain (20) by (29) in (16).
Minimization techniques used commonly are pre-conditioned conjugate gradient
methods and quasi-Newton methods. The properties of the analysis are similar to
those obtained by the Analysis Correction method, but the iteration procedure is
more efficient.

— 3D-PSAS and 3D-Representer. In these schemes iterative minimization methods
are applied to the dual variational problem

|1 5
min I:E (WTHkBH]{ + Rk) w—w (Hk(x) - Yk)] .

The iterates converge to the solution w{ of the system (28) with By replaced by B.

The resulting analysis states converge to X} = ﬁHZwZ, which approximates the
“optimal” solution to the variational problem (19), as in the 3D-Var scheme (Cohn
et al. 1998; Daley and Barker 2001). The advantage is that this scheme operates
in the “observation space,” which is, in general, of lower dimension than the state
space. Additional work is needed, however, in order to reconstruct the analysis
states.

In summary, most operational sequential data assimilation schemes aim to
approximate the optimal analysis by replacing the background error covariance
matrix by an approximation that is fixed over time and by simplifying the inversion
problem and/or solving the inversion iteratively. Examples illustrating the applica-
tion of these schemes to simplified models can be found in Martin et al. (1999) and
on the website of the Data Assimilation Research Centre at http://darc.nerc.ac.uk/.

3.3 Ensemble Filters and Sampling Methods

Newer approaches to sequential data assimilation known as ensemble filter meth-
ods, based on classical Kalman or square-root filtering, have recently received much
attention. These methods use reduced rank estimation techniques to approximate the
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classical filters and make the implementation feasible in real time. With these meth-
ods an ensemble consisting of a small number of analysis vectors (much less than
the number of states n) is propagated simultaneously by the non-linear model from
one observation time to the next in order to provide an ensemble of background
states. The background ensemble is updated with the observations to give a new
ensemble of analysis vectors and the “optimal” analysis state and its error covari-
ance matrix are determined using a filter similar to the classical filters. An advantage
of these methods is that the model and observation operators are not approximated
linearly. The accuracy of the estimated states depends, however, on the spread of the
ensemble, which must be sufficient to capture the true behaviour of the system.

There are many variants of this technique under development; see, for exam-
ple, Anderson (2001); Bishop et al. (2001); Burgers et al. (1998); Evensen (2003);
Houtekamer and Mitchell (1998); Nerger et al. (2005); Ott et al. (2004); Tippett et al.
(2003); Zupanski (2005). Although the implementations may suffer from some dif-
ficulties (Livings et al. 2008), these methods retain the advantages of the classical
Kalman and square-root filters while remaining feasible for application to large sys-
tems. Details of these techniques are described in a later chapter (chapter Ensemble
Kalman Filter: Cument Status and Potential, Kalnay).

Sampling and particle filter methods aim to determine the full probability dis-
tributions for the true states of the system. These methods allow for non-Gaussian
behaviour of the errors in the prior estimates and the observations and are closely
related to the ensemble methods; see for example, Anderson and Anderson (1999);
Pham (2001); Kim et al. (2003); van Leeuwen (2003); Apte et al. (2007). Although
these methods are not yet efficient for very large geophysical problems, these
approaches are promising and provide new directions for research.

4 Four-Dimensional Variational Assimilation Schemes

The least-squares data assimilation problem, Problem 1, is currently treated in
many operational centres using four-dimensional variational schemes (4D-Var)
(Sasaki 1970; Talagrand 1981; Rabier et al. 2000; Chapter Variational Assimilation,
Talagrand). In these schemes the constrained minimization problem, Problem 1,
is solved iteratively by a gradient optimization method where the gradients are
determined using an adjoint method.

4.1 4D-Var and the Adjoint Method

To solve the least-squares assimilation problem iteratively, the constrained prob-
lem, Problem 1, is first written as an unconstrained problem using the method of
Lagrange. Necessary conditions for the solution to the unconstrained problem then
require that a set of adjoint equations together with the system equations (1) must
be satisfied. The adjoint equations are given by
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Ava1 =0, (30)
Me =M i + H{R (v — Hix)), k= N,....,0, (31)

where Ax € R", k = 0,...,N, are the adjoint variables and My ;41 € R™*" and
H; € R™*Pk are the Jacobians of My x+1 and Hy with respect to x;. The adjoint
variables A; measure the sensitivity of the objective function (3) to changes in the
solutions x; of the state equations for each value of k.

The gradient of the objective function (3) with respect to the initial data xq is
then given by

Vyol =By (xo — xg) — o (32)

At the optimum, the gradient (32) is required to be equal to zero. Otherwise this gra-
dient provides the local descent direction needed in the iteration procedure to find
an improved estimate for the optimal initial states. Each step of the gradient itera-
tion process requires one forward solution of the model equations, starting from the
current best estimate of the initial states, and one backward solution of the adjoint
equations. The estimated initial conditions are then updated using the computed gra-
dient direction. This process is expensive, but it is operationally feasible, even for
very large systems.

A dual approach, used in 4D-PSAS and 4D-Representer methods, in which the
minimization is performed in observation space, is also possible (Courtier 1997,
Xu et al. 2005; Rosmond and Xu 2006). In these schemes, as in the three dimen-
sional 3D-PSAS and 3D-Representer methods, a dual four-dimensional variational
problem is solved using a gradient iteration method, and the analysis states are then
reconstructed from the dual variables.

The primary difficulty in implementing variational assimilation schemes is the
need to develop an adjoint model for the system. The adjoint equations are related
theoretically to the linearized state equations, and the system matrix of the adjoint
model is given directly by M,{k 41> Where My is the system matrix of the
linearized model. The adjoint equations can thus be generated directly from the
linearized system equations. Automatic differentiation techniques can be applied
to the forward solution code to generate the adjoint code (Griewank and Corliss
1991; Giering and Kaminski 1998). Alternatively an approximate adjoint sys-
tem can be obtained by discretizing a continuous linear or adjoint model of the
non-linear dynamics (Lawless et al. 2003). This approach has the advantage that
additional approximations can be incorporated into the linearization of the system
equations.

Other issues arising in the use of variational schemes are the need to cycle the
scheme from one analysis time to the next and the length of the window to be used
in each cycle. For each new cycle, the initial background weighting, or covariance,
matrix By should depend on the current best estimate of the state, which is taken
to be the optimal solution of the variational problem at the end of the previous
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assimilation window. The Hessian of the objective function at the end of the previous
cycle can provide this information, but this information is expensive to extract. In
practice a climatological or seasonal average is used for the weighting matrix to start
each cycle. New research is now becoming available on flow dependent covariance
matrices and on longer assimilation windows, in which the initial weighting matrix
is expected to have less influence on the analysis (see ECMWF 2007).

4.2 Incremental Variational Methods

To make the variational methods more efficient, an “incremental” approach is gen-
erally used in which the non-linear assimilation problem is replaced by a sequence
of approximate linear least-squares problems (Courtier et al. 1994).

At each step i of this method, a linear variational problem is solved to find an
increment ng) to the current best estimate of the analysis xg). From the analysis xg)
we solve the non-linear model equations (1) in order to determine the analysis states
X]((l) = Mok (X(()l)> and the corresponding innovations d,(:) =y — Hx xy) at time
tr. We then linearize the non-linear assimilation problem about the analysis state
trajectory. Initially we set XE)O) = xg, for i = 0. The linearized variational problem
becomes

1 . N , .
min > ((ng) - [xlo’ - xg)]) Bal (5X8) - [XS - xg)])

ng)
L& ; (33)
@) @) -1 0] @)
+5 2 (o — ) R (Hex — o).
k=0
subject to the tangent linear model (TLM) equations
8%} | = Mygs18x, (34)

where My s4+1 € R and Hy € R™*Pk are linearizations of the operators My k41
and Hj about the states x;:). A new estimate for the analysis xg+l) = xg) + (ng)
is obtained by updating the current estimate of the analysis with the solution to the
linear variational problem (33) and the process is then repeated.

The linearized problem (33) is solved by an “inner” iteration process. Each
inner iteration requires one forward solution of the tangent linear model equations
(34), and one backward solution of the corresponding linear adjoint equations to
determine the gradient of the objective function. The full incremental variational
procedure thus consists of an inner and outer iteration process. In practice, the inner
linear least-squares problem is solved only approximately, using a relatively small
number of inner iterations, and only a few outer loops of the process are carried out,
due to computational time constraints.
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The incremental approach is also used in the implementation of the 4D-Repre-
senter method (Xu et al. 2005). The dual of the inner linear minimization problem is
solved in observation space. The increments in physical space are then reconstructed
from the dual variables at the end of the inner iteration and the outer loop is repeated.

Recently the incremental procedure has been shown to be equivalent to an
approximate Gauss-Newton method and conditions for its convergence have been
established (Lawless et al. 2005; Gratton et al. 2007). Approximations to the tan-
gent linear model and to the corresponding adjoint may be used in the inner iteration
without loss of convergence. Furthermore, the inner linear minimization problem
does not need to be solved to full accuracy in each outer loop, thus avoiding unnec-
essary computation. Appropriate stopping criteria for the inner iteration process are
presented in Lawless and Nichols (2006).

Additional techniques for increasing the efficiency of the four-dimensional
variational methods are discussed in the next subsections.

4.3 Control Variable Transforms

In the incremental variational assimilation scheme, transformations of the “control
variables” may be applied in order to “decouple” the state variables, to simplify the
computational work and to improve the conditioning of the minimization problem.
The assimilation problem is written in terms of new variables ¥, where

(xo - xg) = Uyx,. (35)
The transformed linear variational problem (33) becomes

R ) 1 ~A—1/24 A 1/2A
mxt“[i”BO/ Uxol3 + 3 IR~ "HUx — R d||%] (36)

where ﬁ, R are defined as in (7) and d is the vector comprised of the innova-
tions. The conditioning of the optimization problem then depends on the Hessian
of the objective function. Transforming the control variables alters the Hessian and
changes the convergence properties of the inner iteration of the incremental method.
The transformation thus acts as a preconditioner on the inner linearized least-squares
problem. The transformation does not, however, affect the convergence of the outer
loop of the incremental process.

If we choose U = B(l)/ 2, where B(l)/ 2 is the symmetric square root of By, the
transformed problem (36) takes the form of a classical Tikhonov regularized inverse
problem. The Hessian is then given by

an—]n
1+B,/’HR HB”, (37)
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which is essentially a low-rank update of the identity matrix. The matrix

R_l/zl:IB(l)/ % is the observability matrix of the system and is key to the assimilation
of information from the observations (Johnson et al. 2005a, b). In the transformed
optimization problem (36), the state variables in the background (or regularization)
term are weighted by the identity matrix and thus are decoupled. From a statistical
point of view, this means that the transformed variables are uncorrelated, identically
distributed random variables. From a practical point of view, the computational work
needed in the inversion of the Hessian is simplified and the inner iteration may be
implemented more efficiently. Additional preconditioners may also be applied to the
gradient minimization algorithm in the incremental method to give further increases
in the rates of convergence.

Operationally, control variable transforms may be used implicitly to define the
background weighting, or covariance, matrix By in the least-squares formulation
of the assimilation problem. A set of control variables is selected that are assumed
from physical arguments to be uncorrelated. An appropriate transformation U from
these variables to the original variables (xo — xg) is then defined and the matrix By
is implicitly constructed from this transformation together with information about
the spatial autocorrelations of each control variable. By this method additional
constraints can be built into the transformations to ensure balance relations hold
between the variables, and spectral and other transformations can also be applied
implicitly. Flow dependence is also introduced into the weighting matrices by this
technique. The validity of this approach depends, however, on the assumption that
the transformed control variables ¥ are truly decoupled, or uncorrelated (see, for
example, Bannister et al. 2008; Katz 2007; Wlasak et al. 2006; Cullen 2003; Weaver
and Courtier 2001). Good choices for the control variables and appropriate precon-
ditioners for the gradient minimization algorithms continue to be major topics of
research and development.

4.4 Model Reduction

To increase the efficiency of the incremental methods further, the inner linear
minimization problem is often approximated using low dimensional models. The
simplest approach is to obtain the increments using a low-resolution linearized
model for the dynamical system on a coarse grid. A prolongation operator is then
used to map the low-resolution increments to the high-resolution model. Different
resolutions can be used at each outer iteration of the procedure, leading to a multi-
level approach (Trémolet 2005; Radnoti et al. 2005). These methods are now applied
in practice, but theory to support their use is needed.

An alternative technique uses projection operators determined by methods from
control theory to produce “optimal” reduced order models that most accurately cap-
ture the response of the full dynamic system. This approach allows much smaller
system models to be used for the same computational accuracy, but currently these
are expensive to derive (Lawless et al. 2008). More efficient approaches using sub-
space iteration methods and rational interpolation techniques are currently under
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development. The latter approaches are promising as they allow for the practical
reduction of unstable systems (Boess 2008; Bunse-Gerstner et al. 2007). Efficient
new approximation methods based on proper orthogonal decomposition (POD)
have also been developed recently for constructing the optimal projection operators
(Willcox and Peraire 2002).

Other new approaches aim to solve the full non-linear variational problem in
a low dimensional subspace spanned by basis functions generated using POD
schemes from control theory or other similar methods (see Cao et al. 2007, and
references therein). The accuracy and efficiency of these methods depends on how
well the dynamics of the system can be captured in the low dimensional space.
Similar techniques, which are adjoint free, have been developed for parameter esti-
mation and model calibration (Vermeulen and Heemink 2006). Research in this area
is currently active.

In summary, four-dimensional variational data assimilation schemes are in oper-
ational use at major numerical weather forecasting centres and new theory and
new implementation techniques for these schemes continue to be major areas
for research. Examples illustrating the use of these schemes on simplified mod-
els can be found in Griffith (1997) and Lawless et al. (2005). Tutorial examples
are also available on the website of the Data Assimilation Research Centre at
http://darc.nerc.ac.uk/.

5 Data Assimilation for Dynamical Systems with Model Errors

In the previous sections of this chapter, we have made the “perfect” model assump-
tion that the initial states of the model equations uniquely determine the future
states of the system. In practice, however, the non-linear dynamical model equa-
tions describing geophysical and environmental systems do not represent the system
behaviour exactly and model errors arise due to lack of resolution (representativity
errors) and inaccuracies in physical parameters, boundary conditions and forcing
terms. Errors also occur due to discrete approximations and random disturbances.
Model errors can be taken into account by treating the model equations as weak
constraints in the assimilation problem.

A general least-squares formulation of the data assimilation problem for systems
with model errors is introduced in this section. A statistical interpretation of the
problem is presented and techniques for solving the assimilation problem for models
with random forcing errors are discussed. In reality, model errors are comprised of
both systematic and random components. A framework for treating both types of
model error using the technique of state augmentation is developed (Nichols 2003b)
and applications are reviewed.

5.1 Least-Squares Formulation for Models with Errors

We assume that the evolution of the dynamical system, taking into account model
errors, is described by the discrete non-linear equations
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Xip1 = M1 (X0 + g, k=0,...,N -1, (38)

where 5, € R" denotes model errors at time f. Prior estimates, or “background”
estimates, xg, of the initial states x( are assumed to be known and the observations
are assumed to be related to the system states by the Eq. (2).

For the “optimal” analysis, we aim to find the best estimates x} of the true states
of the system, Xg, given observations yi, k = 0, ..., N, subject to the model equa-
tions (38) and prior estimates xg. The “optimal” assimilation problem is written as
a weighted non-linear least-squares problem where the square errors in the model
equations, together with the square errors between the model predictions and the
observed system states and between the background and initial states are minimized.
The data assimilation problem is defined mathematically as follows.

Problem 2 Minimize, with respect to xo and g, kK = 0,...,N — 1, the objective
function

(=)

1
J= 3 (xo—x0)" By (xo—xf) +

1 N Toe 1 N-1 Tl (39)
+§ Z (He(xe) — O R (Hi(xi) — k)+§k20 0 Qr M

subject to x;, k =0, ..., N, satisfying the system equations (38).

The model equations (38) are treated here as weak constraints on the objective
function. The initial states of the system and the model errors at every time step
are the control parameters that must be determined. The weighting matrices By €
R™" and Ry € RPF>Pk Q, € R k = 0,1...,N, are taken to be symmetric
and positive definite and are chosen to give the problem a “smooth” solution. The
choices of the weights should reflect the relative confidence in the accuracy of the
background, the observations and the model dynamics and also the structure of the
model errors over the time window of the assimilation.

If we assume that the errors in the prior estimates, in the observations and in the
model equations are random variables, then the “optimal” solution to the weakly
constrained data assimilation problem, Problem 2, can be interpreted in a statistical
sense. We assume that the probability distribution of the random errors (xo - xg)
between the true initial states and the prior background estimates is Gaussian with
mean zero and covariance matrix By € R"*", The observational errors ei € RPk,
defined in (2), are assumed to be unbiased, serially uncorrelated, Gaussian random
vectors with covariance matrices Ry € RP**Pk, The model errors 3y, defined in (38),
are also assumed to be randomly distributed variables that are unbiased and seri-
ally uncorrelated, with zero means and covariance matrices given by Q; € R"*",
The model errors, the observational errors and the errors in the prior estimates are
assumed to be uncorrelated. Under these statistical assumptions, the optimal analy-
sis Xq that solves the data assimilation problem, Problem 2, is equal to the maximum
a posteriori Bayesian estimate of the system states, given the observations and the
prior estimates of the initial states.
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5.2 Optimal Solution of the Assimilation Problem

In order to find the “optimal” analysis that solves Problem 2, either sequential
schemes that use the extended Kalman filter (EKF) or variational schemes that
solve the minimization problem iteratively can be applied. The EKF propagates
the analysis and the covariance matrices forward together, taking into account the
model error statistics, in order to produce the “optimal” linear unbiased state esti-
mate at each time step, conditional on the current and all previous observations.
For linear models, the solution obtained using the EKF is the exact optimal and
is equal to the solution to the assimilation problem at the end of the time period.
For non-linear systems, approximate linearizations of the model and observation
operators are introduced in the extended filter, and the optimality property is not
retained.

Variational techniques, in contrast, solve the optimal assimilation problem,
Problem 2, for all the analysis states in the assimilation window simultaneously.
A direct gradient iterative minimization procedure is applied to the objective
function (39), where the descent directions are determined from the associated
adjoint equations. The full set of adjoint equations provides gradients of the
objective function with respect to the initial states and with respect to all of the
model errors at each time step. A forward solve of the model equations, fol-
lowed by a reverse solve of the adjoint equations is needed to determine the
gradients. Alternatively, the optimal assimilation problem can be solved by a
dual variational approach in which the minimization is performed in observation
space.

For very large stochastic systems, such as weather and ocean systems, these
techniques for treating model errors are not practicable for “real-time” assimilation
due to computational constraints. The four-dimensional variational and extended
Kalman filter data assimilation schemes are both generally too expensive for oper-
ational use due to the enormous cost of estimating all of the model errors in the
variational approach or, alternatively, propagating the error covariance matrices in
the Kalman filter.

Promising practical approaches to solving the assimilation problem for mod-
els with stochastic forcing errors include the sequential ensemble filter methods
and the dual variational methods. The ensemble methods take the model errors
into account in the low order equations for propagating the ensemble statistics.
The dual variational methods solve the assimilation problem in observational
space and estimate the model errors implicitly during the reconstruction of the
states from the dual variables. Reduced order approaches to solving the vari-
ational problem in physical space also allow model errors to be taken into
account.

In practice, model errors do not, however, satisfy the statistical assumptions
made here. The model error is expected to depend on the model state and hence
to be systematic and correlated in time. A more general form of the model
error that includes both systematic and random elements is described in the next
subsection.
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5.3 Systematic Model Error and State Augmentation

The problem of accounting for systematic model errors in a cost-effective way has
recently received more attention. Techniques for treating bias errors in the fore-
cast using sequential and four-dimensional variational assimilation schemes (Dee
and da Silva 1998; Derber 1989; chapter Bias Estimation, Ménard) and for treating
time-correlated stochastic errors (Zupanski 1997) have been investigated. A gen-
eral formulation for the treatment of systematic model errors has also been derived
(Griffith and Nichols 1996).

We present here a framework for treating systematic, time-correlated model
errors based on the formulation of Griffith and Nichols (1996, 2000). Simple
assumptions about the evolution of the errors are made, enabling the systematic
error to be estimated as part of the assimilation process. The model equations are
augmented by the evolution equations for the error and standard data assimilation
techniques can then be applied to the augmented state system.

To take into account the systematic components of the model errors, we assume
that the evolution of the errors in the model equations (38) is described by the
equations

N = Tr(er) + qg, (40)
eir1 = Grht1(Xx, €k), 41

where the vectors e; € R’ represent time-varying systematic components of the
model errors and q, € R" are random errors. The random errors are commonly
assumed to be unbiased, serially uncorrelated, and normally distributed with known
covariances. The effect of the systematic errors on the model equations is defined
by the operators Ty : R” — R”. The operators G r+1 : R* x R"” — R’, describing
the systematic error dynamics, are to be specified. The evolution of the errors may
depend on the current states of the system.

In practice little is known about the form of the model errors and a simple form
for the error evolution that reflects any available knowledge needs to be prescribed.
The most common assumption is that the errors constitute a constant bias in each of
the model equations. In this case the evolution of the errors is given by ey = e,
with Ty = 1. Other forms include linearly evolving error and spectral forms varying
on a given time-scale (see Griffith 1997; Griffith and Nichols 2000). These forms are
expected to be appropriate, respectively, for representing average errors in source
terms or in boundary conditions, for representing discretization error in models
that approximate continuous dynamical processes by discrete-time systems, and for
approximating the first order terms in a Fourier or spherical harmonic expansion of
the model error.

Together the system equations and the model error equations (38), (40) and
(41) constitute an augmented state system model. The aim of the data assimila-
tion problem for the augmented system is to estimate the values of the augmented
states (x,{, e,{)T, for k = 0,...,N — 1, that best fit the observations, subject to the
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augmented state equations. Assuming that the errors in the initial states, the obser-
vations and the random components of the model errors, are unbiased, normally
distributed, serially uncorrelated and uncorrelated with each other, then the solu-
tion delivers the maximum a posteriori estimate of the augmented system states.
Although this formulation takes into account the evolution of the systematic model
errors, the data assimilation problem remains intractable for operational use. If,
however, the augmented system is treated as a “perfect” deterministic model, then
solving the augmented data assimilation problem becomes feasible. The aim of the
data assimilation, in this case, is to estimate the systematic components of the model
error simultaneously with the model states.
The “perfect” augmented system equations are written

Xpr1 = Mgt (%) + Tr(er), (42)
ec+1 = Gkst1(Xk, €) 43)
fork =0,...,N — 1, where the observations are related to the model states by the

Eq. (2), as previously. It is assumed that prior estimates, or “background estimates,”
xg and eg of xg and eq are known.

The augmented data assimilation problem is to minimize the weighted square
errors between the model predictions and the observed system states, over the
assimilation interval. The problem is written

Problem 3 Minimize, with respect to (x}, €})”, the objective function

1
J= (%0 - X7, (eg — e YW, H(x0 — x5)7, (eg — e))T
| N (44)
+3 2 (= Hax) R (v = Halow)

subject to the augmented system equations (42) and (43).

The augmented system equations (42) and (43) are treated as strong constraints
on the problem. The initial values xy and ey of the model states and model errors
completely determine the response of the augmented system and are taken to be the
control variables in the optimization. The weighting matrices Wy e R+ (47
and Ry € RPF*Pk k = 0,1,...,N, are assumed to be symmetric and posi-
tive definite. Since the matrix Wy is non-singular, the problem is well-posed and
may be solved by any of the standard data assimilation schemes described in this
chapter.

We remark that if a sequential method is used, then the initial weighting matrix
Wy must contain cross-variable terms relating the states and the model errors or
the observations may have no effect on the error estimates. In the variational meth-
ods, the weighting matrices (or covariance matrices) are implicitly propagated and
this is not a problem. Furthermore, in the sequential methods, since the error esti-
mates are updated at every observation point, the error estimates may not behave
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smoothly. The variational method tends to average the analysis updates over time,
automatically smoothing the estimates. For the variational methods, however, an
additional set of adjoint equations must be solved to determine the gradient of the
objective function with respect to the initial model errors ey.

Various applications of this approach to model error estimation, using both
sequential and four-dimensional assimilation methods, are described in the litera-
ture for simplified models (Griffith 1997; Martin 2001; Martin et al. 1999; Griffith
and Nichols 1996, 2000). These techniques have been applied successfully in prac-
tice to estimate systematic errors in operational equatorial ocean models (Martin
et al. 2001; Bell et al. 2004).

5.4 Data Assimilation for Parameter Estimation

Model errors also arise from inaccurate parameters in the model equations. The
parameters generally enter the problem non-linearly, but since the required param-
eters are constants, the dynamics of the model errors in this case are simple. The
error vector is usually also of small dimension relative to the dimension of the state
variables. Using augmented forms of the equations, data assimilation can be applied
directly to the estimation and calibration of the parameters. The augmented model
equations take the form

Xir1 = M1 (X, €p), (45)
€11 = €, (46)

where the vector e represents the unknown parameters in the model. The estima-
tion problem is then to minimize the objective function (44), subject to the model
equations (45) and (46).

The standard sequential and variational assimilation schemes can be applied to
solve the problem. In the sequential methods, the form of the weighting (or covari-
ance) matrices becomes important due to the non-linearity of the system equations.
On the other hand, in the variational methods, the adjoint equations take a simple
form and only the adjoints of the states are needed in order to find the gradients
of the objective function with respect to both the states and the model errors. An
application of a sequential scheme to the estimation of parameters in a simplified
morphodynamic model for forecasting coastal bathymetry is described in Smith
et al. (2008).

In summary, assimilation techniques for estimating random and systematic com-
ponents of model errors along with the model states are described here. These
techniques are effective and can lead to significantly improved forecasts (see chapter
Assimilation of Operational Data, Andersson and Thépaut). For different types of
error, different forms for the model error evolution are appropriate. Efficient meth-
ods for taking into account both random and systematic model errors are currently
major topics of research.
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6 Conclusions

The aims and basic concepts of data assimilation for geophysical and environmen-
tal systems are described here. Two approaches to the problem of data assimilation,
sequential and variational assimilation, are introduced. A variety of assimilation
schemes for discrete non-linear system models is derived and practical implementa-
tion issues are discussed. For all of these schemes, the model equations are assumed
to be “perfect” representations of the true dynamical system. In practice the mod-
els contain both systematic errors and random noise. In the final section of the
chapter we discuss data assimilation techniques for treating model errors of both
types. Significant approximations are needed in order to implement these methods in
“real-time,” due to computational constraints. Further research on data assimilation
schemes is needed and there remain many open problems for investigation. Details
of current work on data assimilation schemes are given in subsequent chapters of
this book.
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Variational Assimilation

Olivier Talagrand

1 Introduction

The expression variational assimilation designates a class of assimilation algo-
rithms in which the fields to be estimated are explicitly determined as minimizers
of a scalar function, called the objective function, that measures the misfit to
the available data. In particular, four-dimensional variational assimilation, usually
abbreviated as 4D-Var, minimizes the misfit between a temporal sequence of model
states and the observations that are available over a given assimilation window. As
such, and contrary to the standard Kalman filter and, more generally, to sequential
algorithms for assimilation, it propagates the information contained in the data both
forward and backward in time.

From a numerical point of view, variational algorithms require the minimiza-
tion of a scalar function defined over a large dimensional space. That is possible in
practice through the systematic use of the adjoint of the assimilating model.

We first describe variational assimilation in the context of statistical linear esti-
mation, which also underlies the theory of the Kalman filter (Sect. 2). This leads
to the definition of a general form for the objective function to be minimized.
Minimization methods and the adjoint approach for computing gradients, are then
succinctly described (Sect. 3), as well as practical implementation of variational
assimilation (Sect. 4). A number of problems, associated in particular with the
strong non-linearity of the governing equations, are discussed (Sect. 5). The adjoint
approach is further discussed, concerning in particular uses other than variational
assimilation (Sect. 6). Conclusions follow in Sect. 7.

A large part of what follows is derived in the framework of Bayesian and statis-
tical estimation. £[ ] will denote statistical expectation, and N (a, C) the Gaussian
probability distribution (either scalar or vector) with expectation a and covariance
C. The superscript ” will denote transposition.
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2 Variational Assimilation in the Context of Statistical
Linear Estimation

For an elementary introduction, consider the following situation. One wants to deter-
mine an unknown scalar quantity x’ (i.e. true state) from two observations of the
form

7 =x+¢e (1a)
%) =)Ct+82. (1b)

In these expressions, €1 and & are observational errors, whose exact values
are unknown, but whose statistical properties are known. More precisely, it is
assumed that these errors are centred (£[e1] = E[e2] = 0), mutually uncorrelated
(E[e182] = 0), and have respective variances E[e 121 = 51 and E[£22] = 2. We look
for an estimate of x, of the form x* = a1z; + 222, (a1+ap = 1), with @1 and oy
chosen so as to minimize the statistical quadratic estimation error s = E[(x* — x)2].
The answer is

oo Satsin
s1+ 52

(@)

that is each of the two measurements is weighted in inverse proportion to the vari-
ance of the error on that measurement. The corresponding quadratic estimation
error, which minimizes s, and which we denote s, is given by

1 1 1
— = 3)
S¢S ;2
The same estimate x* would be obtained by considering z; as a “background”
estimate for x, and zp as an “observation” (or the reverse), and then applying the
standard formulas for the Kalman filter.
The same estimate can also be obtained as the minimizer of the function

x—>Jx) =

“)

1 [(x —u)? | (- zz)z}
2 851 52

The meaning of this expression is clear. The squared deviation of x from either
one of the two observations is weighted in inverse proportion of the variance of
the error on that observation. Minimization of J(x) therefore imposes that x must fit
either observation to within its own accuracy. This leads to the estimate given by
Egs. (2) and (3).

Variational assimilation, as it is implemented at present in meteorological
and oceanographical applications (see chapters Numerical Weather Prediction,
Swinbank; Ocean Data Assimilation, Haines), minimizes a function which gener-
alizes Eq. (4). In particular, in the linear case, and as in the elementary example
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above, it minimizes the statistical quadratic estimation error (on any component of
the estimated fields individually), and is actually another algorithm for solving the
same problem as the Kalman filter.

Consider the following more general estimation problem. Estimate an unknown
vector x’ (with components x;’, i =1,. . ., n), belonging to state space S, with dimen-
sion n, from a known data vector z (with components z;, j =1, . . ., m), belonging to
data space D, with dimension m, of the form

z=Tx +e. (5)

In Eq. (5), T is a known linear operator from S into D, called the data operator,
and represented by an m X n-matrix. € is a random vector in D, called the error
vector. The problem is, therefore, to invert the operator I', taking into account, as
far as possible, the statistical properties of the error €. The estimate of X’ is sought
in the form of a linear (and a priori non-homogeneous) function of z, viz.

x‘ =a+ Az, (6)

where a is a vector of S, and A is a linear operator from D into S. a and A are to be
determined under the following two conditions:

(i) The estimate x“ is invariant in a change of origin in state space (for instance,
if the unknown x’ contains temperatures, the result must be independent of
whether those temperatures are expressed in degrees Celsius or in Kelvins);

(ii) For any component x;/ of x| the statistical expectation of the square of the
corresponding estimation error x{ — x! is minimized.

The solution to this problem is given by
x =T@’'S7'D)7'r’s 'z — p) (7

lie, A = (I’S'r)'I’S! and a = -Ap], where p = &[e] and
S = &[(e — w)(e — )T are, respectively, the expectation and covariance matrix
of the error €. It is seen that A is a left-inverse of I' (i.e., ATl = I,,, where I, is
the unit matrix of order n), with the consequence that the estimate x“ is unbiased,
(E[x* — x'] = 0), and that the corresponding estimation error has covariance

P =[x —x)x* —x) ] = @Ts7Ir) L (®)

Condition (ii) above means that the trace of P4 is the minimum trace that can be
obtained among all possible linear estimates of x.

Equations (7) and (8) generalize Egs. (2) and (3). The estimate x* is called the
Best Linear Unbiased Estimate (BLUE) of x from z (the term Best Linear Unbiased
Estimator is also used). Its explicit determination requires the knowledge of (at
most) the expectation p and the covariance matrix S of the data error e.
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Taking Eq. (7) at face value, the unambiguous definition of the BLUE requires
the matrix S, and then the matrix T7S™IT, to be invertible. The need for invert-
ibility of S is only apparent (without going into full details, S is singular when
some components of X are exactly observed; it then suffices to restrict the estimation
to those components that are not exactly observed). The condition for invertibility
of TTS7IT, once S is invertible, is on the other hand real. It is equivalent to the
condition that the null space of the data operator I is restricted to the O-vector

I'x=0&x=0 ©)]

or, equivalently, that I' has rank equal to the dimension n of x. This means that the
data vector z contains information, either directly or indirectly, on every component
of x. The problem of determining x from z is overdetermined. This requires that
m > n. There must be at least as many scalar data in z as there are scalar parameters
to be determined. We will set m = n + p. The condition given by Eq. (9) will be
called the determinacy condition.

The BLUE possesses a number of important properties.

e As already mentioned, the operator A is a left-inverse of I'. This means that, if
the data are exact (¢ = 0 in Eq. 9), then so is the estimate x“;

e The BLUE is invariant in a change of origin in either data or state space. It
is also invariant in any invertible linear change of coordinates in either space.
This means, for instance, that a profile of observed temperatures can be trans-
formed, through the hydrostatic equation, into a profile of geopotential values
without altering the estimated fields. It also means that the horizontal wind can
be estimated in terms of geometrical coordinates, or in terms of its divergence and
vorticity. The result will be the same. This condition of invariance also means that
the BLUE is independent of the choice of a scalar product, either in state or data
space. For instance, for any symmetric definite positive matrix C, the quantity
(x?—x)TC(x"—x), which is one (among infinitely many) measure of the magni-
tude of the estimation error (x*—x), is minimized by the BLUE. The invariance
of the BLUE in any invertible change of linear coordinates can also be expressed
by saying that Egs. (7) and (8) are more than vector-matrix equations. They are
tensor equations, valid in any system of linear coordinates;

e When the data error & is Gaussian, € ~N(, S), the BLUE achieves Bayesian
estimation, in the sense that the conditional probability distribution for the state
vector X, given the data vector z, is the Gaussian distribution with expectation x*
and covariance matrix P%, as given by Egs. (7) and (8). In condensed notation,

P(x|z) = N (x4 P%).

It is easily verified that the BLUE x“ can be obtained as the minimizer of the
following scalar function, defined over state space

x — J(x) = %[I‘x —z-w]'S'Ix—z—p). (10)
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This expression generalizes Eq. (4). Its significance is clear. For any vector x in
state space, I'x is what the data operator I would produce if it was applied on x. J(x)
is then a measure of the magnitude of the discrepancy between I'x and the unbiased
data vector z—j. Through the inverse covariance matrix S~!, that measure possesses
two notable properties. First, it weights the data according to their accuracy. Second,
it is physically non-dimensional, making it possible to combine in a consistent way
data of a different physical nature.

Variational assimilation, as it exists at present in meteorology and oceanography,
minimizes objective functions of the form of Eq. (10), with the only difference, to
be discussed later, that moderately non-linear operators I' are used. What follows
is a more detailed description of how variational assimilation is implemented in
practice, and of the main results it produces.

The first step in the minimization of a function such as that given by Eq. (10) is
to remove the bias in the data by subtracting the error expectation w from the data
vector. Unless specified otherwise, it will be assumed below that this has been done,
and the expectation p will not appear any more explicitly in the equations. But it
must be kept in mind that implementation of variational assimilation requires the
prior knowledge, and subtraction from the data, of the error expectation, or bias.
Failure to properly remove the bias in the data will, in general, result in the presence
of residual biases in the estimated fields (chapter Bias Estimation, Ménard, discusses
bias in data assimilation).

When the determinacy condition (Eq. 9) is verified, the data vector z can always
be transformed, through linear invertible operations, into two components of the
following form. First, an explicit estimate of the true state vector x’, of form

X’ =x' + &, (1)

b

where €” is an error; second, an additional set of data, of the form

y = Hx' + &, (12)

with dimension p = m — n. In this equation, H is a linear operator, represented by
ap x n-matrix, and € is an error. In addition, the transformations that lead to Egs.
(11) and (12) can always be defined in such a way that the errors e? and e are
uncorrelated

g [ab(e")r] =0 (13)

It is in the form of Egs. (11) and (12) that data are most often available in
meteorological and oceanographical applications. The component x” is a prior, or
background estimate of the unknown state vector x at a given time k (usually a recent
forecast, or a climatological estimate). As for the additional vector y, it consists of
observations depending on the state vector through the observation operator H.
The uncorrelation hypothesis (Eq. 13), although certainly disputable, is often (if not
always) made. Equations (11) and (12), together with Eq. (13), are also assumed in
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the standard Kalman filter. We stress here that Egs. (11) and (13) are no more restric-
tive than, but exactly equivalent to, Eq. (5) together with the determinacy condition,
Eq. (9).

Introducing the covariance matrices of the errors £’ and &°

Pb Eg[eb(eb)T], RE(”:[EO(EO)T], (14)

Equations (7) and (8) take the following form, used in particular in the Kalman
filter

x‘ = x” + PPH'[HP’H + R]"!(y — Hx?) (15a)
P* = P* — PPH'[HP’H” + R]"'HP”. (15b)

‘We recall that the vector
d=y-Hx" (16)

is called the innovation vector, and that the matrix HP?H” + R, the inverse of which
appears in Eqgs. (15a) and (15b), is the covariance matrix of d

HP’H” + R = £[dd"]. (17)

As for the objective function (Eq. 10), it takes under decomposition of Egs. (11)
and (12) the following form

J(x) = %(x — )P (x — xP) + %(Hx ~-y'R'Hx—-y).  (18)

The meaning of this expression is clear. The first term on the right hand side of
Eq. (18) is a measure of the deviation of x from the background, while the second
term is a measure of the deviation from the observation.

Several situations are encountered in the practice of meteorology and oceanogra-
phy, which we are going to describe in some detail, giving more explicit expressions
for the general form (Eq. 18) of the objective function.

The simplest situation is when a background x”, of form given by Eq. (11), is
available at some time k, together with observations, of form given by Eq. (12), that
have been performed at the same time (or over a period of time short enough so
that the flow can be considered stationary). Minimization of the objective function
(Eq. 18) will produce an estimate of the state of the flow at time 7. One then speaks
in that case of three-dimensional variational analysis, often abbreviated as 3D-Var.

A different, more complex, situation is encountered when one wants to assimilate
observations that are distributed over a period of time over which the evolution of
the flow cannot be neglected. Let us assume observations are available at successive
times k =0, 1,.. ., K, of the form



Variational Assimilation 47
v = Hix, + €9, (19)

where x}c is the exact true state of the flow at time k, Hy is a linear observation
operator, and &} an observational error with covariance matrix Ry. The observational
errors are assumed to be uncorrelated in time. It is assumed in addition that the
temporal evolution of the flow is described by the equation

X = Mixj + 1y (20)

with known model linear operator My, and random model error .

Assume in addition that a background xo?, with error covariance matrix Py?,
and error uncorrelated with the observational errors in Eq. (19), is available at time
k=0.

If the model error is ignored, any initial condition X( at time k = O defines a
model solution

Xp+1 = Mgxxy k=0,...,K—1. 21
The objective function

- K

s = 5 (xo—x8) [B8] (30— x6) + 5 2 tHoss — v (Rl (Bl — 3
k=0

@2)

which is of the general form given by Eq. (10), measures the distance between the
model solution (Eq. 21) and the data. Minimization of J(xo) will define the initial
condition of the model solution that fits the data most closely. Following a ter-
minology first introduced by Sasaki (1970a, b, c), this is called strong constraint
four-dimensional variational assimilation, often abbreviated as strong constraint
4D-Var. The words “strong constraint” stress the fact that the model identified by
Eq. (21) must be exactly verified by the sequence of estimated state vectors.

If the model error is taken into account, Eq. (20) defines an additional set of
“noisy” data. We assume the model error n; in Eq. (20) to have covariance matrix
Q. to be uncorrelated in time and to be uncorrelated with observation and back-
ground errors. Equation (10) then gives the following expression for the objective
function defining the BLUE of the sequence of states {x;, k=0, ..., K}

1 T —1
J(x0,X1,...,Xg) = 3 (xo — xg) [Pg] (xo — xg)

K
1 T —1
+3 ; (Hiexe — ) [Re] ™" (Hiexe — y) 23)
1 K—1
+3 (Xes1 — Mexo) [Qi] ™" (et — Mixi).

~
Il
=}
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The objective function is now a function of the whole sequence of states {xy,
k=0, ..., K}. Minimization of an objective function of the form given by Eq. (23),
where the model equations are present as noisy data to be fitted by the analysed
fields like any other data, is called, again according to the terminology introduced
by Sasaki (1970a, b, c), weak constraint four-dimensional variational assimilation,
abbreviated as weak constraint 4D-Var.

Equations (22) and (23), with appropriate redefinition of the state and observation
spaces, are particular cases of Eq. (10). Another type of variational algorithm can
be defined from Eq. (15a), which can be written as

x* =x” + PPH w, (24)

where the vector w = [HPb H” + R]™! d minimizes the objective function

1
K(v) = sz[HPHT +Rlv—dv. (25)

This function is defined on the dual of the observation space, which has dimen-
sion p. Minimization of Eq. (25) corresponds to the dual approach to variational
assimilation, by opposition to the primal approach, given by Eq. (18). The dual
approach is also known as defining the Physical Space Assimilation System (PSAS,
pronounced “pizzazz”; the word Physical is historical). Just as Eqs. (18), (22),
and (23) are particular forms of Eq. (10), the dual approach can be used in any
of the situations corresponding to those three equations. Depending on the con-
ditions of the problem, and especially on the relative dimension of the state and
observation space, it may be more advantageous to use the primal or the dual
approach. A significant difference is that the dual approach uses the error covari-
ance matrices P? and R in their direct forms, while the primal approach requires
their inverses. Another difference is that the dual approach requires an explicit
background x”, while the primal approach can be implemented, in the general form
given by Eq. (10), without an explicit background (it only requires the determinacy
condition, Eq. 9).

All forms of variational assimilation given by Eqs. (18), (22), (23), and (25) have
been used, or at least extensively studied, for assimilation of meteorological and
oceanographical observations. The theory of the BLUE requires the data operators
(T, H and My in the above notations) to be linear. In practice, this condition is rarely
verified. In particular, variational assimilation of form given by Eq. (22) or (23) is
almost always implemented with a non-linear model. From a heuristic point of view,
it is clear that, if the non-linearity is in a sense sufficiently small, variational assim-
ilation, even if it does not solve a clearly identified estimation problem, is likely to
produce useful results (this point will be further discussed in Sect. 5 below). The
dual approach, on the other hand, explicitly uses the transpose observation operator
H7, and requires exact linearity.
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3 Minimization Methods: The Adjoint Approach

3.1 Gradient Methods for Minimization

Variational assimilation aims at minimizing an objective function of one of the
forms defined in the previous section. The objective functions we will consider can
be exactly quadratic or not. We will make a slight change of notation, and will sys-
tematically denote by x, and will call control variable, the argument of the function
to be minimized; in Eq. (23), the control variable is the whole sequence Xy, . . ., Xk,
while it is v in Eq. (25). The control variable belongs to the control space, whose
dimension will be denoted by N. We will denote by dJ/dx the gradient of J with
respect to X, i.e., the N-vector whose components are the partial derivatives of J
with respect to the components x; of X, viz.,

o (3] 06)

,,,,,

The gradient is equal to 0 at the minimum of the objective function. One way to
determine the minimum could conceivably be (as is actually often done in simple
small dimension problems) to determine analytical expressions for the components
of the gradient, and then to solve a system of N scalar equations for the minimizing
components of x. In meteorological and oceanographical applications, the complex-
ity of the computations defining the objective function (in 4D-Var, these calculations
include the temporal integration of a numerical dynamical model of the flow over
the assimilation window) makes it totally inconceivable even to obtain analytical
expressions for the gradient. Another way to proceed is to implement an iterative
minimization algorithm, which determines a sequence of successive approximations
x® of the minimizing value of x, viz.,

XD — xO _ p. @7

where D) is at every iteration an appropriately chosen vector in control space.
One possibility is to choose D) along the direction of the local gradient 9J/dx.
Algorithms which are based on that choice, called steepest descent algorithms, turn
out, however, not to be numerically very efficient. In other algorithms, the vector DO
is determined as a combination of the local gradient and of a number of gradients
computed at previous steps of the iteration, Eq. (27) (see, e.g., Bonnans et al. 2003).
All minimization methods that are efficient for large dimensions are of the form
given by Eq. (27), and require the explicit determination, at each iteration step, of
the local gradient 8J/0x. They are called gradient methods. Since one cannot hope to
obtain an analytical expression for the gradient, it must be determined numerically.
One possibility could be to determine it by finite differences, by imposing in turn a
perturbation Ax; on all components x; of the control vector, and approximating the
partial derivative dJ/0x; by the difference quotient
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9] _ J(x+ Ax) — J(x)
3)6,' Ax,' '

(28)

This, however, would require N explicit computations of the objective function,
i.e., in the case of four-dimensional assimilation, N integrations of the assimilat-
ing model. Although that has actually been done for variational assimilation of
meteorological observations, in an experimental setting, and with a relatively small
dimension model (Hoffman 1986), it would clearly be impossible in any practical
application.

3.2 The Adjoint Method

The adjoint method allows numerical computation of the gradient of a scalar func-
tion at a cost that is at most a few times the cost of the direct computation of that
function. Adjoint equations are an extremely powerful mathematical and numerical
tool. They are central to the theory of optimal control, i.e., the theory of how the
behaviour of a physical system can be controlled by acting on some of its compo-
nents (see for instance the book by Lions 1971). Adjoint equations can also be used
for solving mathematical problems in their own right. The use of adjoint equations
in meteorological and oceanographical applications was advocated by the Russian
school of mathematics at an early stage of development of numerical modelling
of the atmosphere and ocean (see, e.g., Marchuk 1974). We are going to demon-
strate the method of adjoint equations in the special case of strong constraint 4D-Var
(Eq. 22), in the most general case where the model and observation operators can
be non-linear.

In order to stress the possible non-linearity of the model and observation oper-
ators, we now introduce the non-linear model operator, My(), and the non-linear
observation operator, Hy( ). The notation for operators used hitherto in this chapter,
M and Hy (denoting linear model and observation operators, respectively), being
reserved hereafter for the Jacobians (matrices of partial derivatives) of My() and
Hi (), respectively. We rewrite Egs. (21) and (22) with non-linear operators as

K
1 T =1 1
Jxo) =3 (xo =) [Bf]  (x0—x)+3 2t 030 (R~ 030
- (29a)
with

Xpr] = Mip(xx), k=0,...,K—1. (29b)
Our purpose is to determine the gradient dJ/0xo of J with respect to x¢. That

gradient is characterized by the property that, for any perturbation §x¢y of Xq, the
corresponding variation of J is, to first order with respect to §xp, equal to
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as\"
5 = (—> 5%0. (30)
3X0

The perturbation §x¢ results at later times in perturbations which, through
differentiation of Eq. (29b), are given to first order by

OXp+1 = Mydxk, k=0,...,K—1, 3D

where, as said, M is the Jacobian of x4 with respect to x;. Equation (31) is called
the tangent linear equation of Eq. (29b). Although the dependence is not explicit in
Eq. (31), it must be kept in mind that the Jacobian My will, in general, depend in the
non-linear case on the local value of x;.

As for the first order variation of the objective function J, it is given by
differentiation of Eq. (29a), viz.,

B K
5J = (xo — xg)T [pg] Dsxo + 3 (Hixo) — y0 R Hidxe,  (32)
k=0

where Hy is the local Jacobian of Hy, and where the §x;’s are given by Eq. (31).

8J is a compound function of §x( through the 5x;’s. Our purpose is to “skip” the
intermediate 5x;’s, and to obtain a direct dependence of §J with respect to §xg of
form given by Eq. (30). To that end, we introduce at each time k = 1,.. ., K a vector
Mk, belonging to the dual of state space (and therefore with dimension 7), and to be
defined more precisely later. We form the products X,{((Sxk — Mj,_16X¢_1), which,
according to Eq. (31), are equal to 0. Subtracting those products from the right-hand
side of Eq. (32) yields

K

T —1
8J = (xo - xg) [pg] 5%0 + 3 (Hi(xi0) — yo) Ry 'Hidxg
k=0
(33)
K
= > M (6% — Mio18%e-1)
k=0

(subtracting rather than adding the products is of course arbitrary, but convenient).
We now transform Eq. (33) by first using the fact that the transpose of a matrix
product is the product of the corresponding transposes, taken in reversed order. For

T
instance, the product (H(xg) — yk)TRllek is equal to ([HZRk_] (Hr(xg) — yk)])
(where use has been made of the fact that the covariance matrix Ry is symmet-
ric), thus transforming the (scalar) quantity (H(X)x — yk)TRk_lHk(Sxk into the scalar

product of the two n-vectors H,{R,:l (Hi(xk) — y;) and 8x. Performing that opera-
tion on all terms in Eq. (33) and gathering all terms with common factor §x; yields
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T
= {[P ] X0 —Xg) +H5R61(HO(XO) —yo)+ng1} X
K—1 -
+ 3 [BIR e — v = e+ MDhen | o (34)

1

k=
+ [HER! (Hicxi) — v — x| bk
This expression is valid for any choice of the A;’s. It is seen that choosing
g = HRR ' (Hx(xg) — ¥g) » (352)
and then recursively
Meo=MI ey + HIR ! (Hi(xe) —yy) fork=K —1,...,1, (35b)

eliminates all §x; terms in Eq. (34), except the §x¢ term. Defining further

—1
Xo=Mfx +[P] (%o = xb) + HIRG (Ho(xo) — yo) (35¢)
there remains
8J = A 8xo, (36)

which shows that A is the required gradient of the objective function with respect
to the initial condition xq (see Eq. 30).

Equations (35a), (35b), and (35¢) make up the adjoint of the tangent linear equa-
tion, Eq. (31). The word “adjoint” comes from the fact that Eqgs. (35a), (35b), and
(35c) are built on the transpose matrices HZ and MZ which are particular cases
of the more general notion of adjoint operators. The adjoint equation is defined
for the particular solution x; of the basic equation (29b) for which the gradient is
to be determined. It depends on that solution through the terms Hy(xx) — y; and,
in the case of either a non-linear model operator M} or a non-linear observation
operator Hy, through the transpose Jacobians M,{ and/or H,{ It is often said for
convenience that Eqs. (35a), (35b), and (35¢) define the adjoint of the basic model
given by Eq. (29b), but it must be kept in mind that the adjoint equation is defined
for a particular solution of that model.

The computations to be performed for determining the gradient 9J/0x for given
initial condition x¢ are now clearly defined:

(1) Starting from xo, integrate the basic equation (29b). Store the corresponding
solution X in memorys;

(2) Starting from the “final” condition (Eq. 35a) at time K, integrate the adjoint
equations (35b) and (35¢) backward in time. The required gradient is ho. The
direct solution xj is necessary for computing the terms HZRk_l(Hk(xk) - Yo
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and, in case the basic model (Eq. 29b) is non-linear, for determining the
transpose Jacobian M7 .

The determination of the gradient therefore requires one forward integration of
the basic model (Eq. 29b), followed by one backward integration of the adjoint
model (Eqgs. 35a, 35b, and 35c). The latter is a modified form of the direct model,
and the corresponding cost must be of similar magnitude to the cost of integrating
the direct model. It can be rigorously shown that, in terms of the number of arith-
metic operations to be performed, the cost of one adjoint computation of the gradient
aJ/9xg is at most four times the cost of one computation of the objective function,
J. In meteorological and oceanographical applications, the cost of one adjoint inte-
gration (in terms of elapsed computer time) is typically twice the cost of one direct
integration. This ratio is basically independent of the dimension N of the control
variable, and makes the adjoint computation of a gradient much more economical
than the N direct model integrations that would be required if the gradient was to be
computed by explicit perturbations. It is this fact that made variational assimilation
possible at all in the first place.

Not surprisingly, there is a price to be paid for this major reduction in com-
puting time. The price, as seen above, is the necessity to store in memory the
direct solution x;. More precisely, what has to be kept in memory (or else to
be recomputed in the course of the adjoint integration) are all quantities that are
arguments of non-linear operations in the direct integration. Relaxing the storage
constraint, for instance by using a more economical approximate adjoint, is diffi-
cult. Experience shows that minimization algorithms, especially efficient ones, are
very sensitive to even slight misspecification of the gradient. The question of how
the cost of variational assimilation can be reduced will be discussed in the next
section.

The description that has just been given of the adjoint method is fundamentally
sufficient for 4D-Var. It obviously covers the case of 3D-Var (minimization of an
objective function of form given by Eq. 18), which does not involve a dynamical
model of the flow. In that case, of course, only the transpose Jacobian HT of the
observation operator is needed.

The first attempt at using the adjoint approach for variational assimilation of
meteorological observations was made by Penenko and Obraztsov (1976), on a sim-
ple one-level linear atmospheric model, and with synthetic data. Later attempts were
made by Lewis and Derber (1985), Le Dimet and Talagrand (1986) and Talagrand
and Courtier (1987). Courtier and Talagrand (1987) first used real data, while
Thacker and Long (1988) made the first attempt at using adjoint equations for vari-
ational assimilation of oceanographical observations. Thépaut and Courtier (1991)
first used a full primitive equation meteorological model. These early works showed
that variational assimilation of meteorological or oceanographical observations
was numerically feasible at an acceptable cost, and produced physically realistic
results. Variational assimilation was progressively applied to more and more com-
plex numerical models. It was introduced in 1997 in operational prediction, in the
strong-constraint formulation, at the European Centre for Medium-Range Weather



54 O. Talagrand

Forecasts, ECMWF (Klinker et al. 2000), and in 2000 at the French Meteorological
Service (Météo-France). In both places, operational implementation of variational
assimilation has resulted in significant improvements of the ensuing forecasts (see
chapter Assimilation of Operational Data, Andersson and Thépaut). Some of these
improvements were due to side effects not directly linked to the variational charac-
ter of the assimilation, but others, especially in a number of specific meteorological
situations, were due to better consistency between the assimilated states and the
dynamics of the atmospheric flow. Since then, other meteorological services, such as
the Japan Meteorological Agency, the Meteorological Office (United Kingdom), the
Meteorological Service of Canada and the China Meteorological Administration,
have introduced variational assimilation in their operational prediction system. All
these schemes are of the strong-constraint form, and use a 6-h assimilation win-
dow (12-h in the case of ECMWF). In addition, ECMWE, after having produced
several sets of reanalysed past observations, all based on sequential assimilation
algorithms, is now running a new reanalysis project (the ERA-Interim project,
http://www.ecmwf.int/research/era/do/get/era-interim) based on variational assim-
ilation. A specific advantage of variational assimilation in the case of reanalysis
of past data is that it propagates information both forward and backward in time,
thus allowing the use of observations that have been performed after estimation
time.

Similar developments have taken place in oceanography, and variational assimi-
lation using the adjoint of oceanographic circulation models is now commonly used
for many diverse applications (although not so far for operational oceanographic
prediction). Those applications include determination of the initial conditions of the
flow, as described above (see, e.g., Weaver and Anderson 1997; Vialard et al. 2003;
Ricci et al. 2005), but also identification of “parameters”, such as wind stress at
the surface of the ocean (Vossepoel et al. 2004). Egbert et al. (1994) and Louvel
(2001) used the dual approach through minimization in dual observation space of
an objective function of form given by Eq. (25). In that approach, each iteration of
the minimization process requires first a backward integration of the adjoint model,
followed by a forward integration of the tangent linear model. Variational assimi-
lation has also extended to other fields of geophysics and environmental sciences,
such as atmospheric chemistry (Fisher and Lary 1995; Errera and Fonteyn 2001;
Elbern et al. 2007; Lahoz et al. 2007 — see also chapters in Part IV, Atmospheric
Chemistry), or surface hydrology (Reichle 2000 — see chapter Land Surface Data
Assimilation, Houser et al.). Other extensions of the variational methodology, that
have largely benefited from the experience in meteorology, have been to terrestrial
magnetism (Fournier et al. 2007; Sun et al. 2007) and seismology (Tromp et al.
2005).

4 Practical Implementation
If the principle of variational assimilation and of the adjoint method is conceptually

perfectly clear and rigorous, practical implementation of variational assimilation
raises a number of serious problems. We will discuss below the specific problems
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associated with the development and validation of a code for performing the adjoint
computations defined by Eq. (35), and are going to consider first a number of purely
numerical problems.

4.1 The Incremental Approach

The developments of the previous section seem to require that it is the adjoint of
the complete model (Eq. 29b) that has to be used for the computation of the gradi-
ent of the objective function. A Numerical Weather Prediction (NWP) model is an
extremely complex and lengthy code, and the ensuing “all-or-nothing” choice (take
the complete adjoint of the model, or else do nothing) seems particularly imprac-
tical. Simplifying the adjoint equation as such, without modification of the direct
model nor of the objective function, is not an appropriate solution. That would lead
to an approximate gradient of the objective function, and, as has already been said,
experience shows that minimization algorithms, especially efficient ones, are very
sensitive to even slight misspecification of the gradient. A convenient and versatile
solution, known as the incremental approach to variational assimilation, has been
introduced by Courtier et al. (1994). Several variants of that approach exist. We are
going to describe the one that is conceptually the simplest.

The basic idea is to simplify the dynamical model (Eq. 29b) to a form that is both
more economical and more manageable, in particular as concerns the adjoint. But
that is not done on the model (Eq. 29b) itself, but rather on the tangent linear model
(Eq. 31). A reference solution x;\9) of the basic equation (29b) having been deter-
mined (emanating for instance from the background xo? = x((?), the corresponding
tangent linear model (Eq. 31) is modified to

O0Xk+1 = Lidxk, k=0,...,K—1, 37)

where Ly is, at any time k, an appropriately chosen ‘“simpler” operator than the
Jacobian M. Consistency then requires to modify the basic model (Eq. 29b) in such
a way that the tangent linear equation corresponding to solution x;? is Eq. (37).
This is achieved by making the initial condition xo = xo® + §xq evolve into x; =
x: O + 8x, where 8x; itself evolves according to Eq. (37). That makes the basic
dynamics linear.

As for the objective function (Eq. 29a), several possibilities exist, at least when
the observation operators are non-linear. One possibility is to linearize those opera-
tors just as the model operator M has been linearized. This leads to replacing the

quantity Hy(xx) by Hy <x£0)> + Ni8xy, where Ny is an appropriate simplified linear
operator (possibly, but not necessarily, the Jacobian of Hy, at point x;). The objective
function (Eq. 29a) is then replaced by

T —1
Nxo) =5 (8x0+x" = x5) [PE] " (8%0 + %) — x0)

1

2
| X (33)

+5 D (Nebxi — d) Ry (Nubxi — d),

k=0
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where the 6x;’s are subject to Eq. (37), and where d; = y, — Hx (XiO) ) is the

innovation at time k.

The function given by Eq. (38) is an exactly quadratic function of the initial per-
turbation 6xo. The minimizing perturbation §Xxq ,, defines a new initial state xoD =
x0? + 80, from which a new solution x;(!) of the basic equation (Eq. 29b) is
computed. The process is then repeated for solution x; (1.

This defines a system of two-level nested loops for minimization of the orig-
inal objective function (Eq. 29a). The fundamental advantage of the incremental
approach is that it allows one to define at will the simplified linearized operators Ly
and N;. Many degrees of freedom are available for ensuring an appropriate trade-
off between practical implementability and meteorological accuracy and usefulness.
The simplified dynamics in Eq. (37) can itself be modified in the course of the
minimization, by progressively introducing more and more complex dynamics or
“physics” in the successive outer loops.

It is the incremental method which, after the adjoint method, makes varia-
tional assimilation feasible. It is implemented, either in the form that has just been
described or in slightly different variants, in most (if not all) operational NWP sys-
tems that use variational assimilation. At ECMWE, it is implemented with two outer
loops, the approximations introduced in the linearized dynamics (Eq. 37) consist-
ing first, of a reduced spatial resolution (from triangular spectral truncation T799 to
T255 for the second outer loop) and, second, of a simplified “physical” package.

An obvious question is whether the nested-loop process of the incremental pro-
cess converges and, if it does, to what it converges. In the case where the linearized
operators Ly and Ny vary from one outer loop to the next, the possible convergence
of the process can depend on the way those operators vary. In particular, conver-
gence to the minimum of the original objective function (Eq. 29a) is possible only
if the linear operators Ly and N; converge to the corresponding Jacobians My and
H; at that minimum. The question of the convergence of the incremental process
has been studied in some detail by Trémolet (2007) on the ECMWF 4D-Var system.
Numerical tests show that the process does not converge asymptotically, at least in
the conditions in which it is implemented at ECMWE. The way the incremental
approach is implemented, at ECMWEF and elsewhere, is largely based on empirical
tuning.

4.2 First-Guess-At-the-Right-Time 3D-Var

An extreme case of the incremental approach is what is called First-Guess-At-the-
right-Time 3D-Var, or FGAT 3D-Var. It can be described as a process of form of
Egs. (37) and (38) in which the simplified linear operator Ly is taken as the identity
operator. This process is four-dimensional in that the observations distributed over
the assimilation window are compared with their analogues in a time-evolving ref-
erence integration of the assimilating model. But it is three-dimensional in that the
minimization of the objective function (Eq. 38) does not use any explicit dynamics



Variational Assimilation 57

other than the trivial dynamics expressed by the unit operator, and that the numer-
ical implementation is in effect three-dimensional. The FGAT 3D-Var approach,
which is implemented through a unique minimization (no nested loops), has been
shown to improve the quality of the assimilated fields, simply through the fact that is
effectively uses a more exact innovation vector than does standard 3D-Var, in which
all observations over the assimilation window are compared to the same first-guess
field.

5 Further Considerations on Variational Assimilation

Independently of its numerical and algorithmic properties, the major advantage of
variational assimilation is that it takes into account, through the adjoint equation,
the temporal evolution of the uncertainty in the state of the flow, at least over the
assimilation window. Although (contrary to the Kalman filter) it does not explicitly
compute the evolution of the uncertainty as such (and, in particular, does not pro-
duce an explicit estimate of the uncertainty in the estimated fields), it determines an
approximation of the minimizing solution of the objective function (Eq. 29), which
depends on the dynamics of the flow, and of the temporal evolution of the uncer-
tainty. This was shown in full detail by Thépaut et al. (1993), who compared the
impact of individual observations in a 3D-Var process, which ignores the temporal
evolution of the uncertainty, and a 4D-Var process. The impact was significantly
different, and strongly dependent on the dynamical state of the flow, in the latter
case.

Significant impact does not of course mean positive impact. All operational
implementations of 4D-Var have been preceded by the development and implemen-
tation of a 3D-Var system. This is very convenient in that it allows progressive
introduction of the various components of the full 4D-Var system. But it also
provides the opportunity for systematic comparison of 3D-Var and 4D-Var. The
comparison has always shown the superiority of 4D-Var, in particular in terms of
the quality of the ensuing forecasts. Similar comparisons have also been performed,
with the same conclusions, on other, non-operational assimilation systems. See also
Lorenc and Rawlins (2005) for a detailed discussion of 3D-Var and 4D-Var.

All operational implementations of 4D-Var have so far been of the strong con-
straint form. In spite of the constant improvement of NWP models, the hypothesis of
a perfect model is of course highly disputable. Weak-constraint assimilation, which
corresponds to minimization of an objective function of form given by Eq. (23),
would certainly be desirable. It however requires a quantitative estimate, in the form
of the covariance matrix Qy, of the model error. A reliable estimate may be diffi-
cult to obtain. Derber (1989) has suggested identifying a possible systematic bias in
the model by introducing that bias in the control variable. Other authors (Zupanski
1997; Trémolet 2006) have studied algorithms of the general form given by Eq. (23).
There is some indication (M. Fisher, personal communication) that weak constraint
variational assimilation could be useful over longer assimilation windows (24 h or
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more) than used in strong constraint assimilation. That is easily understandable in
view of the fact that the perfect model hypothesis becomes less and less valid as the
length of the assimilation window increases.

The primal weak-constraint objective function (Eq. 23) becomes singular in
the limit of a perfect model (Qx=0). As already said, the dual approach uses the
data error covariance matrices in their direct form, so that the dual objective func-
tion (Eq. 25), as defined for weak constraint variational assimilation, is regular for
Qi = 0. This means that the same dual algorithm can be used for both strong-
and weak-constraint variational assimilation. This is an attactive feature of the dual
approach.

Courtier (1997) has shown that, subject to an appropriate preconditioning of the
dual variable v in Eq. (25), the numerical conditioning (and therefore the numerical
cost) of the dual algorithm is the same as that of the primal approach. In varia-
tional assimilation, it is actually the repeated numerical integrations of the direct
and adjoint models that takes the major part of the computations, and the numeri-
cal cost of strong- and weak-constraint variational assimilation is fundamentally the
same. This point is discussed in more detail in Louvel (2001).

The dual approach requires strict linearity of the operator H in Eq. (25)
which, in the case of variational assimilation, means strict linearity of the model
and observation operators. Auroux and Blum (2002, 2004) have introduced a
double-loop algorithm (which has some similarity with the incremental approach
described above) in which successive linear problems of form given by Eq. (25)
are solved, each one being based on a linearization about the result of the
previous one.

More generally, and independently of the particular numerical algorithm that is
used, the validity of the linear approach defined by Eqgs. (7) and (10) is question-
able in meteorological and oceanographical applications. It has already been said
that, from a purely heuristic point of view, the linear approach must be valid if the
non-linearities are in a sense small enough. A more accurate description of the real
situation that is encountered in meteorology and oceanography is given, rather than
by Egs. (11) and (12), by

x’ = x' + &, (39)
y=H'x)+e, (40)

where H*(H — star) denotes a non-linear observation operator. In the case of 3D-
Var, H* is the observation operator at estimation time. In the case of 4D-Var, the
vector y denotes the complete temporal sequence of observations, and the operator
‘H* includes the (non-linear) dynamical model. The knowledge of the data (Eqgs. 39
and 40) is equivalent to the knowledge of Eq. (39) together with what can be called
the non-linear innovation vector

d=y - H'&") = H'x) - H* ) + . (41)
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If the background x” is close enough to the real unknown state x’, d can be
approximated by

d~Hx —x") +e, (42)

where H is here the Jacobian of the full operator H* at point x”. If the so-called
tangent linear approximation defined by Eq. (42) is valid, Egs. (39), (40), (41), and
(42) define an estimation problem that is linear with respect to the deviation x’—x”
of the real state with respect to the background x?. Equations (15) and (18) are then
valid, H being the Jacobian of H*. In the case of 4D-Var, this leads to minimization
of an objective function of the incremental form given by Egs. (37) and (38), where
the operators L; and Nj replace the exact Jacobians My and Hj along the (full
non-linear) reference model solution.

Both direct (see, e.g., Lacarra and Talagrand 1988) and indirect evidence shows
that the tangent linear approximation is valid for large scale geostrophic atmo-
spheric flow (scales larger than 200 km) up to about 24-48 h. This limit, however,
rapidly decreases with decreasing spatial scales, to be of the order of a few hours
for convective scales. For oceanic geostrophic flow (scales larger than a few tens of
kilometres), the limit is a few weeks.

The developments of this chapter are therefore fully valid within those limits. It is
to be stressed, however, that in circumstances where the tangent linear approxima-
tion is known or hypothesized to be valid, the linearization in Eq. (42) is rarely
performed explicitly. Either fully non-linear operators are kept in the objective
function to be minimized, or (as is actually the case in the incremental approach
described above) approximations that go further than Eq. (42) are implemented. The
only case where the linearization given by Eq. (42) seems to have explicitly been
implemented is in the above-mentioned works of Auroux and Blum (2002, 2004)
relative to the dual approach, which requires exactly linear operators.

But the question arises of what is to be done in circumstances when the tan-
gent linear approximation is not valid. In the context of 4D-Var, there are actually
two different questions, depending on the strength of the non-linearities. If the non-
linearities are weak, the minimization of an objective function of the general form
given by Eq. (29) remains numerically feasible, but may not be justified on the basis
of estimation theory. If the non-linearities are strong, even the numerical minimiza-
tion of the objective function, owing for instance to the presence of distinct minima,
can raise difficulties.

These questions have not been discussed so far in much depth. One can men-
tion the work of Pires et al. (1996), who studied variational assimilation for a
strongly chaotic non-linear system (specifically, the celebrated three-parameter sys-
tem of Lorenz 1963). These authors have shown that the objective function given
by Eq. (29) possesses an increasing number of local minima with increasing length
of the assimilation window. This can be easily understood in view of the repeated
folding in state space that is associated with chaos. They have defined a proce-
dure, called Quasi-Static Variational Assimilation (QSVA), in which the length of
the assimilation window, starting from a value for which the objective function
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(Eq. 29) possesses a unique minimum, is progressively increased. Each new mini-
mization is started from the result of the previous one. This allows one to keep track
of the absolute minimum of the objective function, at least if the temporal density
of observations is in a sense high enough. QSVA has been implemented on a quasi-
geostrophic atmospheric model by Swanson et al. (1998) who have been able to
usefully extend variational assimilation (in the hypothesis of a perfect model) to
assimilation windows as long as 5 days. This is largely beyond the limit of validity
of the tangent linear approximation. QSVA, or a similar algorithm, could possibly be
implemented in operational practice, for instance by using successive overlapping
assimilation windows.

Other developments have taken place recently at the research level. Carrassi et al.
(2008) have defined a 3D-Var system in which the control variable, instead of con-
sisting of the whole state vector, is restricted to the deviations from the background
along the (relatively few) unstable modes of the system. This approach is now being
extended to 4D-Var (Trevisan, personal communication). A somewhat similar work
has been performed by Liu et al. (2008), who have developed a low-order incremen-
tal 4D-Var system. The background error covariance matrix Po? (Eq. 38) is defined,
not on the basis of an a priori statistical model, but on the basis of the dispersion
of an ensemble of background forecasts. As in Carrassi et al. (2008), the control
space is not the entire state space, but the state spanned by the background fore-
casts. Taking advantage of the relatively small dimension of the control space, and
of the linearity associated with the incremental character of the procedure, it is not
necessary to use an adjoint code for computing the gradient of the objective func-
tion. That can be achieved through simple transposition of an appropriate matrix.
The results obtained are competitive with a fully-fledged 4D-Var. The “ensemble”
feature of those works give them similarity with the Ensemble Kalman filter (see
chapter Ensemble Kalman Filter: Current Status and Potential, Kalnay).

Both those works suggest that it could be possible to achieve substantial numeri-
cal gain, without significant degradation of the final results (and even maybe without
the use of an adjoint), by restricting the control variable to an appropriate subspace
of the whole state space.

All the algorithms that have been described above are based on the minimization
of an objective function of the general form given by Egs. (10), (18) or (29), which
is quadratic in terms of the data-minus-unknown differences, with weights equal to
the inverse of the covariance matrices of the corresponding errors. Equations (10)
and (18) correspond to least-variance statistical linear estimation, while Eq. (29)
corresponds to an extension to weakly non-linear situations. Other forms for the
objective function have also been considered. In particular, Fletcher and Zupanski
(2006) and Fletcher (2007), following a general Bayesian approach, propose to max-
imize the conditional probability density function for the state of the flow, given the
data. In the case of linear data operators and Gaussian errors, this leads to mini-
mization of an objective function of form given by Eq. (10). Those authors consider
the case of lognormal distributions, which are more appropriate for bounded vari-
ables such as humidity. This leads to a significantly different form for the objective
function.
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6 More on the Adjoint Method

The adjoint method has been demonstrated above in the particular case of the objec-
tive function given by Eq. (29). It is actually very general, and defines a systematic
approach for computing the (exact) gradient of a differentiable scalar function with
respect to its arguments. Although this may not be obvious from the above devel-
opments, the adjoint method consists in a systematic use of the chain rule for
differentiation of a compound function. Proceeding backward through the origi-
nal sequence of computations, it recursively computes the partial derivatives of the
scalar function under consideration with respect to the variables in those computa-
tions (see, e.g., Talagrand 2003). As such, the adjoint method can be used not only
for optimization purposes, as in variational assimilation, but (actually more simply)
for determination of gradients as such, and for sensitivity studies.

The advantages and disadvantages of variational assimilation will be further dis-
cussed in the Conclusions below (Sect. 7). But its major disadvantage (at least for
variational assimilation as it exists at present) is probably the need for developing
the adjoint code which performs computations in Eq. (35). Not only must the adjoint
code be developed, but it must be carefully validated, since experience shows that
even minor errors in the computed gradient can significantly degrade the efficiency
of the minimization (if not totally inhibit it). In addition, NWP models are con-
stantly modified, and the corresponding modifications must be made on the adjoint
code. Writing the adjoint of a code at the same time as the direct code involves
only a rather small amount of additional work (10 or 20%). But developing the
adjoint of an already existing code can require a substantial amount of work, and
can be a very tedious and time-consuming task. On the other hand, the fact that
adjoint computation is in essence a systematic use of the chain rule for differentia-
tion leads to perfectly defined “adjoint” coding rules, which make the development
of an adjoint code, if lengthy and tedious, at least totally straightforward. These rules
are described in, e.g., Talagrand (1991), Giering and Kaminski (1998) or Kalnay
(2002).

Those same rules are at the basis of “adjoint compilers”, i.e., software pieces
that are designed to automatically develop the adjoint of a given code (see, e.g.,
http://www.fastopt.de/; Hascoét and Pascual 2004). The adjoint of a particular piece
of code is independent of the rest of the code, and automating the derivation of
the adjoint instructions for a sequence of coding instructions, which is a purely
local operation, is relatively easy. Other aspects, such as the choice and management
of non-linear variables to be kept in memory from the direct integration, or to be
recomputed in the course of the adjoint integration, require a global view of the
code, and are more difficult to automate. For that reason, the use of these software
pieces still requires experience of adjoint coding as well as some preparatory work,
but they are nevertheless extremely useful, and very substantially reduce the amount
of time and work necessary for developing the adjoint of an atmospheric or oceanic
circulation model.

The adjoint approach is used in assimilation of meteorological and oceanograph-
ical observations for numerically solving, through an iterative minimization process,
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an optimization problem. Now, as said above, what the adjoint equations really do
is simply compute the gradient of one scalar output of a numerical process with
respect to (potentially all) the input parameters of that process. As such, the adjoint
approach can be used for sensitivity studies of outputs with respect to inputs, inde-
pendently of any optimization or minimization. It will be useful to use the adjoint
approach when the number of output parameters whose sensitivity is sought is
smaller than the number of input parameters with respect to which the sensitivity
is sought (in the inverse case, direct perturbation of the input parameters will be
more economical).

Actually, the first proponents of the use of the adjoint approach in meteorol-
ogy and oceanography had primarily sensitivity studies in mind (Marchuk 1974;
Hall et al. 1982). Adjoint models have been used to perform sensitivity studies
of many different kinds: sensitivity of the atmospheric flow with respect to ini-
tial or lateral boundary conditions (Errico and Vukisevic 1992; Rabier et al. 1992;
Gustafsson et al. 1998); sensitivity of the global oceanic circulation to parame-
ters (Marotzke et al. 1999); sensitivity of biogeochemical processes (Waelbroeck
and Louis 1995); and sensitivity of atmospheric chemical processes (Zhang et al.
1998). See also the special issue of Meteorologische Zeitschrift (Ehrendorfer and
Errico 2007) devoted to Adjoint Applications in Dynamic Meteorology. Two spe-
cific types of applications are worthy of particular mention. The first one has to
do with the identification, for a particular situation, of the unstable components of
the flow. In its simplest form, this amounts to determining the so-called singular
vectors of the flow, i.e., the perturbations that amplify most rapidly, over a period
of time, in the tangent linear approximation (Lacarra and Talagrand 1988; Farrell
1989; Urban 1993). This has been extended by Mu and colleagues (Mu 2000; Mu
et al. 2003) to Non-Linear Singular Vectors (NLSVs), i.e., perturbations that amplify
most rapidly in the full non-linear evolution. A condition must then be imposed on
the initial amplitude of the perturbation, which leads to a (technically more difficult
to solve) constrained optimization problem. Both linear and non-linear singular vec-
tors allow accurate diagnostic and analysis of instability (Moore and Farrell 1993;
Mu and Zhang 2006; Riviere et al. 2008). A related, but more specific, application
is the identification of the components of the flow to which a particular feature of
the future evolution of the flow (such as, for instance, the deepening of a depres-
sion) is most sensitive. This allows one to “target” observations in order to optimize
the prediction of the feature under consideration. This has been implemented suc-
cessfully on the occasion of specific campaigns (see, e.g., Langland et al. 1999;
Bergot and Doerenbecher 2002). Observation targeting through adjoint methods
is further discussed in Buizza et al. (2007). Another, potentially very promising,
application of the adjoint method is the determination of the sensitivity of analysed
and predicted fields to observations. It is then the adjoint of the whole assimilation
and prediction process, and not only of the assimilating model, that has to be used
(Langland and Baker 2004). This has led to very useful diagnostics of the value
and usefulness of various types of observations (Langland and Cardinali, personal
communication).
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7 Conclusion

Variational assimilation has now become a basic tool of numerical meteorology and
oceanography, and a major component of operational NWP in several major meteo-
rological services. Together with the Ensemble Kalman filter (see chapter Ensemble
Kalman Filter: Current Status and Potential, Kalnay), it is one of the two most
advanced and powerful assimilation methods. The specific advantages of variational
assimilation are rather obvious. It is very versatile and flexible, and allows for easy
introduction of a new type of observation in an assimilation system. It suffices to
specify the corresponding observation operator and the first- and second-order sta-
tistical moments of the associated error. It automatically propagates information
both forward and backward in time, and makes it easy to take into account tempo-
ral correlation between errors (either observation or model errors). To the author’s
knowledge, this last possibility has been used so far on only one occasion, for taking
into account temporally correlated errors in high frequency observations of sur-
face pressure (Jarvinen et al. 1999). But it can be extremely useful, especially for
the treatment of model error and of the associated temporal correlation (time will
presumably come when this will be necessary).

Variational assimilation is costly in that it requires the development, validation
and maintenance of the adjoint of the assimilating model, as well as of the various
observation operators. This is a time-consuming task. However, owing to the gain in
experience and expertise, and to the continuous improvement of adjoint compilers,
that task progressively becomes easier and easier. And, as discussed in the previous
section, adjoints, once they are available, can be used for many other applications
than assimilation, and in particular to powerful diagnostic studies.

Assimilation of meteorological and oceanographical observations may be at a
turning point. It seems that the limits of what can be obtained from statistical linear
estimation (i.e., from Eq. (7) and its various generalizations to weakly non-linear
situations) are being reached. The only exception is likely Quasi-Static Variational
Assimilation, discussed in Sect. 5, which is based on minimization of objective func-
tions of form given by Eq. (29), but whose limits have not been identified. Statistical
linear estimation is at the basis of variational assimilation and of the “Kalman” com-
ponent of the Ensemble Kalman filter. It can legitimately be said that the ultimate
purpose of assimilation is to achieve Bayesian estimation, i.e., to determine the con-
ditional probability distribution for the state of the atmosphere (or the ocean), given
all the relevant available information. In view of the large dimension of the state of
the atmosphere, the only possible way to describe the conditional probability dis-
tribution seems to be through an ensemble of points in state space, as indeed the
Ensemble Kalman filter already does. A basic question is then to determine whether
it is possible to develop methods for ensemble variational assimilation, which would
produce a Bayesian ensemble, while retaining the specific advantages of variational
assimilation, namely easy propagation of information both forward and backward
in time, and possibility to easily take error temporal correlations into account. Some
results suggest that this should be possible.
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Ensemble Kalman Filter: Current Status
and Potential

Eugenia Kalnay

1 Introduction

In this chapter we give an introduction to different types of Ensemble Kalman filter,
describe the Local Ensemble Transform Kalman Filter (LETKF) as a representative
prototype of these methods, and several examples of how advanced properties and
applications that have been developed and explored for 4D-Var (four-dimensional
variational assimilation) can be adapted to the LETKF without requiring an adjoint
model. Although the Ensemble Kalman filter is less mature than 4D-Var (Kalnay
2003), its simplicity and its competitive performance with respect to 4D-Var suggest
that it may become the method of choice.

The mathematical foundation of data assimilation is reviewed by Nichols
(chapter Mathematical Concepts of Data Assimilation). Ide et al. (1997) concisely
summarized the sequential and variational approaches in a paper introducing a
widely used notation that we follow here, with bold low-case letters and bold
capitals representing vectors and matrices, respectively. Non-linear operators are,
however, represented in bold Kunster script (as in other chapters in this book).
Since variational methods (chapter Variational Assimilation, Talagrand) and sequen-
tial methods basically solve the same problem (Lorenc 1986; Fisher et al. 2005)
but make different approximations in order to become computationally feasible for
large atmospheric and oceanic problems, it is particularly interesting to compare
them whenever possible.

In this chapter we briefly review the most developed advanced sequential method,
the Ensemble Kalman filter (EnKF) and several widely used formulations (Sect. 2).
In Sect. 3 we compare the EnKF with the corresponding most advanced variational
approach, 4D-Var (see chapter Variational Assimilation, Talagrand). Because 4D-
Var has a longer history (e.g. Talagrand and Courtier 1987; Courtier and Talagrand
1990; Thépaut and Courtier 1991), and has been implemented in many operational
centers (e.g. Rabier et al. 2000), there are many innovative ideas that have been

E. Kalnay (=)
University of Maryland, College Park, MD 20742-2425, USA
e-mail: ekalnay @atmos.umd.edu

W. Lahoz et al. (eds.), Data Assimilation, DOI 10.1007/978-3-540-74703-1_4, 69
© Springer-Verlag Berlin Heidelberg 2010



70 E. Kalnay

developed and explored in the context of 4D-Var, whereas the EnKF is a newer
and less mature approach. We therefore present in Sect. 3 examples of how specific
approaches explored in the context of 4D-Var can be simply adapted to the EnKF.
These include the 4D-Var smoothing property that leads to a faster spin-up, the outer
loop that increases the analysis accuracy in the presence of non-linear observation
operators, the adjoint sensitivity of the forecasts to the observations, the use of lower
resolution analysis grids, and the treatment of model errors. Section 4 is a summary
and discussion.

2 Brief Review of Ensemble Kalman Filtering

The Kalman filter equations (Kalman 1960) are discussed by Nichols (chapter
Mathematical Concepts of Data Assimilation, Sect. 3.1). Here we summarize key
points of an alternative derivation of the Kalman filter equations for a linear per-
fect model due to Hunt et al. (2007) based on a maximum likelihood approach
which provides additional insight about the role that the background term plays in
the variational cost function (see Nichols, chapter Mathematical Concepts of Data
Assimilation, Sect. 2; Talagrand, chapter Variational Assimilation, Sect. 2).

We start by assuming that the analysis X, valid at time #,_ has Gaussian errors
with covariance PZ_I so that the likelihood of the true state x’ is

- 1 i - X
p(x' — X% _|) o eXP{_E(XI_XZ—l)T[PZ—l] I(XI_XZ—I)}’

where the overbar represents the expected value (cf. chapter Mathematical Concepts
of Data Assimilation, Nichols, Sect. 2.4). The past observations y; from time #; to
th—1 (.e.j=1,...,n—1)are also assumed to have a Gaussian distribution with error
covariances R;, so that the likelihood of a trajectory of states {x(¢)|j = 1,...,n—1}
given the past observations is proportional to

n—1

1
[Tex [—§<yj — Hx() 'Ry (y; H,-x(t,-))],
j=1

where H; is the linear observation operator that transforms the model into the corre-
sponding observation. To maximize the likelihood function, it is more convenient,
however, to write the likelihood function as a function of the state at a single
time rather than for the whole trajectory. Let M;; be the linear forecast model that
advances a state from x(#;) to x(¢;), we can then express the likelihood function as a
function of the state x at a single time say #,—1, as follows

n—1

1 _
1_[ exp |:_§(yj — HM,,—1; Xn—l)TRj Ny, —HM,_1 Xn—l)i|~
j=1
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Note that in this derivation we allow f; to be less than #,_1, although integrat-
ing the model backward in time is problematic, it is used here only to derive the
algorithm — in the end the algorithm will not require the backward integration of
the model. Such an issue about time integration is found in the derivation of most
Kalman smoother algorithms (see for instance Jazwinski 1970).

The analysis ’_‘Zfl and its covariance PZ_I are the mean and covariance of a
Gaussian probability distribution representing the relative likelihood of a state x,,—1
given all previous observations, so that taking logarithms of the likelihoods, for
some constant c,

n—1
DIy — HM, g % 1Ry — HM, %] "
j=1

= [Xp—1 — X 1T )7 Xy — %41+

The Kalman filter determines X and Pj such that an equation analogous to
Eq. (1) holds at time #,. In the forecast step of the Kalman filter the analysis X{
and its covariance are propagated to time #, with the linear forecast model M,,_1
and its adjoint Mr{_l’n creating the background state and its covariance:

b -
X, = Mn—l,n XZ,]

b a ngl (2)
P’=M, ,P‘M

n—1,n

Propagating Eq. (1), using Eq. (2), we get a relationship valid for states at time
t, (see Hunt et al. 2007 for further details), showing that the background term rep-
resents the Gaussian probability distribution of a state, given the past observations
up to t,—1:

n—1
D Iy) —HM, xRy — HM,, ] =[x, — X017 P ' [x, — ] +¢ (3)
j=1

When the new observations at time #, are obtained, we use Eq. (3) to obtain an
expression equivalent to Eq. (1) valid at time £, for another constant ¢’

%, = %)@ 3 — 31 + [y — Huxal 'R, [y — Hix,] @
=[x, — X" P~ [x — X1 + ¢
The analysis state that minimizes the variational cost function

J(x) = [%, — X7 (P [x, — %214 [y — Huxa) R, y2 — Hox,]

is the state with maximum likelihood given all the observations (cf. chapter
Mathematical Concepts of Data Assimilation, Nichols, Sect. 2.4). Equation (3)
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shows that in this cost function the background term represents the Gaussian dis-
tribution of a state with the maximum likelihood trajectory (history), i.e., )"(2 is the
analysis/forecast trajectory that best fits the past data available until #,,_1.

Equating the terms in Eq. (4) that are quadratic and linear in x, the Kalman filter
equations for the analysis step are obtained:

-1 -1 -1
P¢ = [(pg) +H,{R;1Hn] = [I+P§H£R;1Hn] P Q)

—1
)_(Z _ Pz |:(Pz) )—(z 4 HnTRnlij| = )_(2 + PzHZR;l (yz - Hniz> (©)

The Remark 1 of Ide et al. (1997) “[In sequential methods] observations are
processed whenever available and then discarded” follows from the fact that the
background term is the most likely solution given all the past data, i.e., if the Kalman
filter has already spun-up from the initial conditions, the observations are to be used
only once (but see the discussion on spin-up in Sect. 3).

The Kalman gain matrix that multiplies the observational increment y% — H, X’
in Eq. (6) can be written as

—1
K, = P'H'R! = P’H7 (H,,PﬁH,{ + Rn>

For non-linear models M,,_1 ,, the Extended Kalman filter (EKF) approximation
uses the non-linear model in the forecast step to advance the background state, but
the covariance is advanced using the model linearized around the trajectory )_(Z, and
its adjoint (e.g. Ghil and Malanotte-Rizzoli 1991; Nichols, chapter Mathematical
Concepts of Data Assimilation, Nichols, Sect. 3):

i = My n(xn 1) )
P =M,_1,P;_, Mn_ln

The cost of advancing the background error covariance with the linear tangent
and adjoint models in Eq. (7) makes the EKF computationally unfeasible for any
atmospheric model of realistic size without major simplifications.

Evensen (1994) suggested that Eq. (7) could be computed more efficiently with
an Ensemble Kalman filter (EnKF) for non-linear models. The ensemble is created
running K forecasts, where the size of the forecast ensemble is much smaller than
n, the dimension of the model, K <« n. Then Eq. (7) can be replaced by

K
Mn 1n(X Z
b 1 K b .y b ®
Pn%K_Z(Xnk_X)(Xnk_X)T
k=1

where the overbar now represents the ensemble average.
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Because the background error covariance is estimated from a relatively small
ensemble, there are sampling errors at long distances, so that Houtekamer and
Mitchell (2001) and Hamill et al. (2001) introduced the idea of localizing Pl ie.,
multiplying each term of the covariance by an approximation of the Gaussian func-
tion exp(—rizj / 2L2) (Gaspari and Cohn 1999). Here, r;; is the distance between two
grid points ,j, and L is the localization scale, so that the effect of localization is that
long distance correlations are damped to zero. Mitchell et al. (2002) pointed out that
this localization introduces imbalances in the analysis. Hunt (2005) and Miyoshi
(2005) used an alternative localization multiplying the inverse of the observation
error covariance R™! by the Gaussian function, thus assuming that long distance
observations have larger errors and reducing their impact on the grid point analyses.
Because, unlike Pﬁ, R is generally either diagonal or block diagonal, this “observa-
tion localization” may be less prone to generate imbalances (Greybush et al. 2009).

There are two basic approaches to the EnKF, perturbed observations and square-
root filters. In the perturbed observations EnKF, Burgers et al. (1998), Houtekamer
and Mitchell (1998), Keppenne (2000), Keppenne and Rienecker (2002), Evensen
and van Leeuwen (1996), Houtekamer et al. (2005) and others used ensembles of
data assimilation systems with randomly perturbed observations (Evensen 2003).
Perturbing the observations assimilated in different ensembles is required in this
approach in order to avoid an underestimation of the size of the analysis error covari-
ance, but it may introduce an additional source of sampling errors (Whitaker and
Hamill 2002).

An alternative to the perturbed observations (or stochastic) approach are the
ensemble square-root filters that generate an analysis ensemble mean and covari-
ance satisfying the Kalman filter equations for linear models (Tippett et al. 2003;
Bishop et al. 2001; Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004,
Hunt et al. 2007). We will focus in the rest of the chapter on square-root (or deter-
ministic) filters. Houtekamer and Mitchell (2001) pointed out that observations with
uncorrelated errors can be assimilated serially (one at a time), with the background
for a new observation being the analysis obtained when assimilating the previous
observation. Tippett et al. (2003) discuss the differences between several square-
root filters that derive computational efficiency by assimilating observations serially.
Another Monte Carlo method that avoids using perturbed observations is described
in Pham (2001).

Different square-root filters are possible because different analysis ensemble
perturbations can have the same analysis error covariance. Of the three schemes
discussed in Tippett et al. (2003), the Ensemble Adjustment Kalman Filter (EAKF)
of Anderson (2001) has been implemented into the flexible Data Assimilation
Research Testbed (DART) infrastructure and has been applied to many geophys-
ical problems (http://www.image.ucar.edu/DAReS/Publications/). The square-root
filter of Whitaker and Hamill (2002) results in simple scalar assimilation equations
when observations are assimilated serially, and has also been adopted for a number
of problems, such as the assimilation of surface observations (Whitaker et al. 2004),
and for the regional EnKF of Torn and Hakim (2008) where only non-satellite data
are assimilated. We note that the application of EnKF to regional models requires
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including appropriate perturbations in the boundary conditions to avoid a reduction
in variance in the interior (Nutter et al. 2004). Torn et al. (2006) showed that in the
absence of a global EnKF system to provide consistent perturbed boundary condi-
tions, several perturbation methods could give results comparable to those obtained
with a global ensemble boundary conditions, thus making regional EnKF practically
feasible for many groups without access to global EnKF. The third square-root filter
discussed in Tippett et al. (2003) is the Ensemble Transform Kalman Filter, ETKF
(Bishop et al. 2001), which introduced the computation of the analysis covariance by
a transform method also adopted by Hunt et al. (2007). Zupanski (2005) proposed
the Maximum Likelihood Ensemble Filter (MLEF) where a 4D-Var cost function
with possibly non-linear observation operators is minimized within the subspace of
the ensemble forecasts. In this system, the control forecast is allowed to have higher
resolution than the rest of the ensemble. A review of EnKF methods is presented in
Evensen (2003), and a comparison of EnKF with 4D-Var results for several models
in Kalnay et al. (2007a).

Ott et al. (2002, 2004), and Hunt et al. (2007) developed an alternative type
of square-root EnKF without perturbed observations by performing the analyses
locally in space, as did Keppenne (2000). This is computationally efficient because
the analyses at different grid points are independent and thus can be done in par-
allel. Since observations are assimilated simultaneously, not serially, it is simple to
account for observation error correlations.

In this chapter we present results mostly based on the Local Ensemble Transform
Kalman Filter (LETKF) as a representative prototype of EnKF. The LETKF
algorithm is summarized below (see Hunt et al. 2007, for full details).

LETKF Algorithm

This summary description is written as if all the observations are at the analysis
time (i.e., for the 3D-LETKF), but the algorithm is essentially the same for the 4D-
LETKF (Hunt et al. 2007). In 4D-LETKEF (discussed below) the observations are
in a time window that includes the analysis time and the non-linear observation
operator H is evaluated at the observation time. M is the non-linear model forecast.

(a) LETKF forecast step (done globally) for each ensemble member k:
X = MuiaXe_ ) k=1,....K
(b) LETKEF analysis step (at time t,, so the subscript n is dropped):

X =[xb—xb, ... xb — %] PP = XO(XD)T
Ve =HE): Y =[y) =5 vk ]

These computations can be done locally or globally, whichever is more efficient.
Here the overbar represents the ensemble average.
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Localization: choose for each grid point the observations to be used. Compute
for each grid point the local analysis error covariance P” and analysis perturbations
W in ensemble space:

The square-root required for the matrix of analysis perturbations in ensemble
space is computed using the symmetric square root (Wang et al. 2004). This square-
root has the advantage of having a zero mean and being closer to the identity than
the square-root matrix obtained by Cholesky decomposition. As a result the analysis
perturbations (chosen in different ways in different EnKF schemes) are also close to
the background perturbations (Ott et al. 2002). Note that W* can also be considered
a matrix of weights since multiplying the forecast ensemble perturbations at each
grid point by W gives the grid point analysis ensemble perturbations.

Local analysis mean increment in ensemble space:

Wa — f)a(Yb)TR—l(yO _ yb)

Note that the forecast ensemble at each grid point multiplied by the vector of
weights w* gives the grid point analysis x“. The ensemble space analysis W* is
added to each column of W to get the analysis ensemble in ensemble space: W¢ <«
Wa 69 ‘_Vd

The new ensemble analyses are the K columns of

X4 — waa + )—{b

Global analysis ensemble: The analysis ensemble columns for each grid point are
gathered together to form the new global analysis ensemble X{ x, and the analysis
cycle can proceed.

3 Adaptation of 4D-Var Techniques into EnKF

4D-Var and EnKF are essentially solving the same problem since they minimize the
same cost function in Eq. (2) using different computational methods. These differ-
ences lead to several advantages and disadvantages for each of the two methods (see,
for example, Lorenc 2003; Table 7 of Kalnay et al. 2007a; discussion of Gustafsson
2007; response of Kalnay et al. 2007b).

A major difference between 4D-Var and the EnKF is the dimension of the sub-
space of the analysis increments (analysis minus background). 4D-Var corrects the
background forecast in a subspace that has the dimension of the linear tangent and
the adjoint models used in the minimization algorithm, and this subspace is gener-
ally much larger than the local subspace of corrections in the EnKF of dimension
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K—1 determined by the ensemble size. It would be impractical to try to overcome
this apparent EnKF disadvantage by using a very large ensemble size. Fortunately,
the localization of the error covariances carried out in the EnKF in order to reduce
long distance covariance sampling errors, substantially addresses this problem by
greatly increasing the number of degrees of freedom available to fit the data. As
a result, experience has been that the quality of the EnKF analyses with localiza-
tion increases with the number of ensemble members, but that there is little further
improvement when the size of the ensemble is increased beyond about 100. The
observation that 50-100 ensemble members are sufficient for the EnKF seems to
hold for atmospheric problems ranging from the storm-scales and mesoscales to the
global-scales (Fuqing Zhang, personal communication).

There are a number of attractive properties of 4D-Var developed over the years.
They include the ability to assimilate observations at their right time (Talagrand
and Courtier 1987); the fact that within the data assimilation window 4D-Var acts
as a smoother (Thépaut and Courtier 1991); the availability of an adjoint model
allowing the estimation of the impact of observations on the analysis (Cardinali
et al. 2004) and on the forecasts (Langland and Baker 2004); the ability to use long
assimilation windows (Pires et al. 1996); the computation of outer loops correct-
ing the background state when computing non-linear observation operators and the
ability to use a lower resolution simplified model in the inner loop (see Fig. 3 dis-
cussed later); and the possibility of accounting for model errors by using the model
as a weak constraint (Trémolet 2007). In the rest of this section we discuss how
these advantageous methods that have been developed and implemented for 4D-Var
systems can also be adapted and used in the LETKEF, a prototype of EnKF.

3.1 4D-LETKF and No-Cost Smoother

Hunt et al. (2004) developed an extension of the Local Ensemble Kalman Filter
(LEKF; Ott et al. 2004) to four dimensions (4-D), taking advantage of the fact
that the observational increments are expressed as linear combinations (weights)
of the forecast ensemble perturbations at the time of the observation. ! This allows
using the same coefficients to “transport” the observational increments either for-
ward or backward in time to the time of the analysis. We note that within this 4-D
formulation it is possible to account for observation errors correlated in time, as
Jarvinen et al. (1999) have done within 4D-Var. Hunt et al. (2007) showed that the
4-D extension is particularly simple within the LETKF framework, requiring the
concatenation of observations performed at different times within the assimilation
window into the vectors y°, ¥ and the vertical columns of Y? and of a block error

1 Strictly speaking the combinations are not linear since the weights depend on the forecasts
(Nerger et al. 2005).
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4D-LETKF o)

1 - >
1,1 time t,

Fig. 1 Schematic showing that the 4D-LETKEF finds the linear combination of the ensemble fore-
casts at t,, that best fits the observations throughout the assimilation window t,_ — t,,. The white
circles represent the ensemble of analyses (whose mean is the analysis X%), the full lines represent
the ensemble forecasts, the dashed line represents the linear combination of the forecasts whose
final state is the analysis, and the grey stars represent the asynchronous observations. The cross at
the initial time of the assimilation window t#,_| is a no-cost Kalman smoother, i.e., an analysis at
t,—1 improved using the information of “future” observations within the assimilation window by
weighting the ensembles at ,_1 with the weights obtained at #,,. The smoothed analysis ensemble
at t,—1 (not shown in the schematic) can also be obtained at no cost using the same linear com-
bination of the ensemble forecasts valid at #, given by W¢. Adapted from Kalnay et al. (2007b)

covariance R with blocks corresponding to the same observations. Note that 4D-
LETKEF determines the linear combination of ensemble forecasts valid at the end of
the assimilation window that best fits the data throughout the assimilation window.

This property allows creating a “cost-free” smoother for the LETKF with anal-
ogous smoothing properties as 4D-Var (Fig. 1): the same weighted combination of
the forecasts with weights given by the vector w” is valid at any time of the assim-
ilation interval. It provides a smoothed analysis mean that (as in 4D-Var) is more
accurate than the original analysis because it uses the future data available within
the assimilation window (Kalnay et al. 2007b; Yang et al. 2009a). As in 4D-Var, the
smoothed analysis at the beginning of the assimilation window is an improvement
over the filtered analysis computed using only past data. At the end of the assimi-
lation interval only past data is used so that (as in 4D-Var) the smoother coincides
with the analysis obtained with the filter.

It should be noted that in the same way we can use the weights w* to provide
a mean smoother solution as a function of time, we can use the matrix W¢ and
apply it to the forecast perturbations X"W¢ to provide an associated uncertainty
evolving with time (Ross Hoffman, personal communication). The updating of the
uncertainty is critical for the “Running in Place” method described next, but the
uncertainty is not updated in the “outer loop” approach.

3.2 Application of the No-Cost Smoother to the Acceleration
of the Spin-Up

4D-Var has been observed to spin up faster than EnKF (e.g. Caya et al. 2005), pre-
sumably because of its smoothing properties that allow finding the initial conditions
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at the beginning of the assimilation window that will best fit all the observations. The
fact that we can compute a no-cost smoother allows the development of a new algo-
rithm, called Running in Place by Kalnay and Yang (2008) that should be useful in
rapidly evolving situations. For example, at the time radar measurements first detect
the development of a severe storm, the available EnKF estimate of the atmospheric
state and its uncertainty are no longer very useful. In other words, while formally
the EnKF members and their average are still the most likely state and best estimate
of the uncertainty given all the past data, these EnKF estimates are no longer likely
at all. At the start of severe storm convection, the dynamics of the system changes
substantially, and the statistics of the processes become non-stationary. In this case,
as in the spin-up case in which there are no previous observations available, the
running in place algorithm ignores the rule “use the data and then discard it” and
repeatedly recycles the new observations.

Running in place algorithm: This algorithm is applied to each assimilation
window during the spin-up phase. The LETKF is “cold-started” with any initial
ensemble mean and perturbations at 7p. The “running in place” loop at time #,
(initially 7o) is as follows:

1. Integrate the ensemble from #, to #,+1, perform a standard LETKF analysis and
obtain the analysis weights for the interval [t,,7,,1], saving the mean square
observations minus forecast (OMF) computed by the LETKF;

2. Apply the no-cost smoother to obtain the smoothed analysis ensemble at f,, by
using these weights;

3. Perturb the smoothed analysis ensemble with small zero-mean random Gaussian
perturbations, a method similar to additive inflation. Typically, the perturbations
have an amplitude equal to a small percentage of the climate variance;

4. Integrate the perturbed smoothed ensemble to #,4;. While the forecast fit to the
observations continues to improve according to a criterion such as

OMF?(iter) — OMF?(iter + 1)
>
OMF?(iter)

5

go to step 2 and perform another iteration. If not, replace #, with 7,41 and go to
step 1;

5. If no additional iteration beyond the first one is needed, the running in place anal-
ysis is the same as the standard EnKF. When the system converges, no additional
iterations are needed, so that if several assimilation cycles take place without
invoking a second iteration, the running in place algorithm can be switched off
and the system returns to a normal EnKF.

The purpose of adding perturbations in step 3 is twofold: it avoids reaching the
same analysis as in the previous iteration, and it increases the chances that the
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Analysis error of potential temperature
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Fig. 2 Comparison of the spin-up of a quasi-geostrophic model simulated data assimilation when
starting from random initial conditions. Observations (simulated radiosondes) are available every
12 h, and the analysis root-mean-square (RMS) errors are computed by comparing with a nature run
(see the chapter Observing System Simulation Experiments, Masutani et al.). Black line: original
LETKF with 40 ensemble members, and no prior statistical information, blue line: optimized 4D-
Var, red line: LETKF “running in place” with ¢ = 5% and 40 ensemble members, green line: as
the red line but with 20 ensemble members

ensemble will explore unstable directions of error growth missed by the unper-
turbed ensemble and not be “trapped” in the “unlikely” subspace of the initial
perturbations.

Running in place was tested with the LETKF in the quasi-geostrophic, QG,
model of Rotunno and Bao (1996) (Fig. 2 adapted from Kalnay and Yang 2008).
When starting from a 3D-Var (three dimensional variational) analysis mean, the
LETKEF converges quickly (not shown), but from random initial states it takes 120
cycles (60 days) to reach a point in which the ensemble perturbations represent the
“errors of the day” (black line in Fig. 2). From then on the ensemble converges
quickly, in about 60 more cycles (180 cycles total).

By contrast, the 4D-Var started from the same initial mean state, but using as
background error covariance the 3D-Var B scaled down with an optimal factor, con-
verges twice as fast, in about 90 cycles (blue line in Fig. 2). The running in place
algorithm with ¢ = 5% (red line) converges about as fast as 4D-Var, and it only takes
about 2 iterations per cycle (i.e., one additional assimilation for each window). The
green line is also for ¢ = 5%, but with K = 20 ensemble members, not K = 40 as
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used in the other experiments and also gives good results, but experiments with K =
10 failed to spin-up faster with this technique. With ¢ = 1% (not shown) the initial
convergence (in real time) is faster, but it requires about 5 times more iterations. It
is interesting that when the number of iterations is fixed to 10 (not shown), the data
are over-fitted so that the system quickly converges to a final level of error about
twice as large than when the iterations are chosen adaptively.

3.3 “Outer Loop” and Dealing with Non-linear Ensemble
Perturbations

A disadvantage of the EnKF is that the Kalman filter equations used in the analysis
assume that the ensemble perturbations are Gaussian, so that when windows are rel-
atively long and perturbations become non-linear, this assumption breaks down and
the EnKF is not optimal (Harlim and Hunt 2007a, b). By contrast, 4D-Var is recom-
puted within an assimilation window until the initial conditions that minimize the
cost function for the non-linear model integration in that window are found. In many
operational centres (e.g. the National Centers for Environmental Prediction, NCEP,
and the European Centre for Medium-Range Weather Forecasts, ECMWF) the min-
imization of the 3D-Var or 4D-Var cost function is done with a linear “inner loop”
that improves the initial conditions minimizing a cost function that is quadratic in
the perturbations. In the 4D-Var “outer loop” the non-linear model is integrated
from the initial state improved by the inner loop and the linearized observational
increments are recomputed for the next inner loop (Fig. 3).

The ability of including an outer loop increases significantly the accuracy of both
3D-Var and 4D-Var analyses (Arlindo da Silva, personal communication), so that it
would be important to develop the ability to carry out an equivalent “outer loop”
in the LETKF. This can be done by considering the LETKF analysis for a window
as an “inner loop” and, using the no-cost smoother, adapting the 4D-Var outer loop
algorithm to the EnKF. As in 4D-Var, we introduce into the LETKF the freedom
of the inner loop to improve the initial analysis (i.e., the mean of the ensemble) but
keep constant the background error covariance, given by the ensemble initial per-
turbations. This re-centres the initial ensemble forecasts about the value improved
by the inner loop, and another “outer loop” with full non-linear integrations can be
carried out. > Note that this algorithm is identical to “running in place”, except that
only the mean is updated, not the perturbations about the mean at ¢,.

This algorithm for an outer loop within the EnKF was tested with the Lorenz
(1963) model for which comparisons between LETKF and 4D-Var were made,
optimizing simultaneously the background error covariance and the length of the
window for 4D-Var (Kalnay et al. 2007a). For short assimilation windows, the
3-member LETKF gives analysis errors similar or smaller than 4D-Var, but with

2 Takemasa Miyoshi (personal communication) has pointed out that Jazwinski (1970) proposed
the same “outer loop” algorithm for Extended Kalman filter (see footnote on page 276).
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Fig. 3 Schematic of how the 4D-Var cost function is minimized in the ECMWF system. From
Yannick Trémolet, August 2007 class on Incremental 4D-Var at University of Maryland summer
Workshop on Applications of Remotely sensed data to Data Assimilation

long assimilation windows of 25 steps, when the perturbations grow non-linearly,
Kalnay et al. (2007a) were not able to find an LETKF configuration competitive
with 4D-Var. However, as shown in Table 1 below, the LETKF with an outer loop
is able to beat 4D-Var. We note that “running in place” (with up to one additional

Table 1 Comparison of the RMSE (RMS error, non-dimensional units) for 4D-Var and LETKF
for the Lorenz (1963) 3-variable model. 4D-Var has been simultaneously optimized for the window
length (Kalnay et al. 2007a; Pires et al. 1996) and the background error covariance, and the full
non-linear model is used in the minimization. LETKF is performed with 3 ensemble members (no
localization is needed for this problem), and inflation is optimized. For the 25 steps case, “running
in place” further reduces the error to about 0.39

LETKF with less than 3

“outer loop” iterations
Experiment details 4D-Var LETKEF (inflation factor) (inflation factor)
Window = 8 steps 0.31 0.30 (1.05) 0.27 (1.04)

(perturbations are
approximately linear)
Window = 25 steps 0.53 0.66 (1.28) 0.48 (1.08)
(perturbations are
non-linear)
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analysis) can further improve the results for the case of 25 steps, reducing the RMS
(root-mean-square) analysis error of 0.48 obtained using the outer loop to about
0.39, with inflation of 1.05. As in the case of the spin-up, this re-use of observations
is justified by the fact that for long windows and non-linear perturbations, the back-
ground ensemble ceases to be Gaussian, and the assumption of statistical stationarity
is no longer viable.

These experiments suggest that it should be possible to deal with non-linearities
and obtain results comparable or better than 4D-Var by methods such as an outer
loop and running in place.

3.4 Adjoint Forecast Sensitivity to Observations Without
Adjoint Model

Langland and Baker (2004) proposed an adjoint-based procedure to assess the obser-
vation impact on short-range forecasts without carrying out data-denial experiments.
This adjoint-based procedure can evaluate the impact of any or all observations
assimilated in the data assimilation and forecast system on a selected measure of
short-range forecast error. In addition, it can be used as a diagnostic tool to monitor
the quality of observations, showing which observations make the forecast worse,
and can also give an estimate of the relative importance of observations from dif-
ferent sources. Following a similar procedure, Zhu and Gelaro (2008) showed that
this adjoint-based method provides accurate assessments of the forecast sensitivity
with respect to most of the observations assimilated. Unfortunately, this powerful
and efficient method to estimate observation impact requires the adjoint of the fore-
cast model which is complicated to develop and not always available, as well as the
adjoint of the data assimilation algorithm.

Liu and Kalnay (2008) proposed an ensemble-based sensitivity method able to
assess the same forecast sensitivity to observations as in Langland and Baker (2004),
but without adjoint. Following Langland and Baker (2004), they define a cost func-
tion Aet2 = (etT|0 €10 — etT|—6 €;—¢) that measures the forecast sensitivity at time ¢ of

the observations assimilated at time 0. Here e;9 = )‘({‘0 — X is the perceived error

of the forecast started from the analysis at # = 0, verified against the analysis valid
at time ¢, and e;_¢ = i’;l% — x{ is the corresponding error of the forecast starting
from the previous analysis at + = —6 h. The difference between the two forecasts is
only due to the observations yq assimilated at 7 = 0: X — i8|_6 = K(yg— H(igl_())),
where K is the gain matrix of the data assimilation system. There is a slight error in
Eq. (10) in Liu and Kalnay (2008) so that we re-derive here the forecast sensitivity

equation (Hong Li, personal communication):

Ae?= (e,T‘oet|0_e[][_6et|—6) = (050—85_6)(ez|0+et\—6) = (_,|0—54};‘_6)T(et|0+ €/-6)

T T
ae} ~ [MGG - %) (en0+eq-0) = [MKy = Hxhy_o)] (eno +e-0)
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where M is the linear tangent forecast model that advances a perturbation from 0-h
to time 7.

Langland and Baker (2004) compute this error sensitivity by using the adjoint of
the model and of the data assimilation scheme:

T
Aetz,LB = [y - H(xg\_&] K "M (e,0 + e/-6)

In the EnKF we can take advantage of the fact that the Kalman gain is
computed as K = PH'R™! = (K — I)"'X4X)TH'R™!, so that MK =
MX‘XHTHTR™ /(K- 1) ~ XflO(Y“)TR*‘ /(K —1), with X{‘O, the forecast differ-
ences at time 7 computed non-linearly rather than with the linear tangent model. As
a result, for EnKF the forecast sensitivity is computed as

T
A e = [y = MG o) | RTYO ) (@0 + e4-6)/(K — 1)

Because the forecast perturbation matrix X{|0 is computed non-linearly, the fore-
cast sensitivity and the ability to detect bad observations remains valid even for
forecasts longer than 24 h, for which the adjoint sensitivity based on the adjoint
model M7 ceases to be accurate. As in Langland and Baker (2004) and Zhu
and Gelaro (2008), it is possible to split the vector of observational increments
y— H(X8|—6) into any subset of observations and obtain the corresponding forecast
sensitivity.

Figure 4 shows the result of applying this method to the Lorenz (1996) 40-
variables model. In this case observations were made at every point every 6 h,
created from a “nature” run by adding Gaussian observational errors of mean zero

e observation impact from LB (grey)
adjoint method (plus), ensemble method (closed b B sk Rt o Egmk)

circles) and actual forecast error (open circles)
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Fig. 4 Left: Domain average variability in the forecast impact estimated by the adjoint method
(plus symbols), the EnKF sensitivity (closed circles) and the actual forecast sensitivity. Right:
Time average (over the last 7,000 analysis cycles) of the contribution to the reduction of the
1-day forecast errors from each observation location. The observation at the 11th grid point has
0 = 8 random errors rather than the specified value of 0.2. Adjoint sensitivity (grey plus), EnKF
sensitivity (black). Adapted from Liu and Kalnay (2008)
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and standard deviation 0.2. The left panel shows that both the adjoint and the EnKF
sensitivity methods are able to estimate quite accurately the day-to-day variabil-
ity in the 24-h forecast sensitivity to the observations when all the observations
have similar Gaussian errors. A “bad station” was then simulated at grid point 11
by increasing the standard deviation of the errors to 0.8 without “telling” the data
assimilation system about the observation problems in this location. The right panel
of Fig. 4 shows the time average of the forecast sensitivity for this case, indicat-
ing that both the adjoint and the ensemble-based sensitivity are able to identify that
the observations at grid point 11 have a deleterious impact on the forecast. They
both show that the neighbouring points improved the forecasts more than average
by partially correcting the effects of the 11th point observations.

The cost function in this example was based on the Eulerian norm, appropriate
for a univariate problem, but the method can be easily extended to an energy norm,
allowing the comparison of the impact of winds and temperature observations on the
forecasts. Although for short (1-day) forecasts the adjoint and ensemble sensitivities
have similar performances (Fig. 4), the (linear) adjoint sensitivity ceases to identify
the wrong observations if the forecasts are 2-days or longer. The ensemble sensitiv-
ity, which is based on non-linear integrations, continues to identify the observations
having a negative impact even on long forecasts (not shown).

We note that Liu et al. (2009) also formulated the sensitivity of the analysis to the
observations as in Cardinali et al. (2004) and showed that it provides a good qualita-
tive estimate of the impact of adding or denying observations on the analysis error,
without the need to run these costly experiments. Since the Kalman gain matrix is
available in ensemble space, complete cross-validations of each observation can be
computed exactly within the LETKF without repeating the analysis.

3.5 Use of a Lower Resolution Analysis

The inner/outer loop used in 4D-Var was introduced in Sect. 3.3 above, where we
showed that a similar outer loop can be carried out in EnKF. We now point out that
it is common practice to compute the inner loop minimization, shown schematically
in Fig. 3, using a simplified model (Lorenc 2003), which usually has lower resolu-
tion and simpler physics than the full resolution model used for the non-linear outer
loop integration. The low-resolution analysis correction computed in the inner loop
is interpolated back to the full resolution model (Fig. 3). The use of lower resolution
in the minimization algorithm of the inner loop results in substantial savings in com-
putational cost compared with a full resolution minimization, but it also degrades
the analysis.

Yang et al. (2009b) took advantage that in the LETKF the analysis ensemble
members are a weighted combination of the forecasts, and that the analysis weights
W are much smoother (they vary on a much larger scale) than the analysis incre-
ments or the analysis fields themselves. They tested the idea of interpolating the
weights but using the full resolution forecast model on the same quasi-geostrophic
model discussed before. They performed full resolution analyses and compared the



Ensemble Kalman Filter: Current Status and Potential 85

results with a computation of the LETKF analysis (i.e., the weight matrix W¢) on
coarser grids, every 3 x 3,5 x 5 and 7 x 7 grid points, corresponding to an analy-
sis grid coverage of 11, 4 and 2%, respectively, as well as interpolating the analysis
increments. They found that interpolating the weights did not degrade the analy-
sis compared with the full resolution, whereas interpolating the analysis increments
resulted in a serious degradation (Fig. 5).

The use of a symmetric square-root in the LETKF ensures that the interpolated
analysis has the same linear conservation properties as the full resolution analysis.
The results suggest that interpolating the analysis weights computed on a coarse
grid without degrading the analysis can substantially reduce the computational cost
of the LETKF. Although the full resolution ensemble forecasts are still required,
they are also needed for ensemble forecasting in operational centres.

We note that the fact that the weights vary on large scales, and that the use of a
coarser analyses with weight interpolation actually improves slightly the analysis in
data sparse regions, suggest that smoothing the weights is a good approach to filling
data gaps such as those that appear in between satellite orbits (Yang et al. 2009b;
Lars Nerger, personal communication). Smoothing the weights, both in the horizon-
tal and in the vertical may also reduce sampling errors and increase the accuracy of
the EnKF analyses.
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Fig. 5 The time series of the RMS analysis error in terms of the potential vorticity from different
data assimilation experiments. The LETKF analysis from the full-resolution is denoted as the black
line and the 3D-Var derived at the same resolution is denoted as the grey line. The LETKF analyses
derived from weight-interpolation with different analysis coverage are indicated with blue lines.
The LETKF analyses derived after the first 20 days from increment-interpolation with different
analysis coverage are indicated with the red lines. Adapted from Yang et al. (2009b)
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3.6 Model and Observational Error

Model error can seriously affect the EnKF because, among other reasons, the pres-
ence of model biases cannot be detected by the EnKF original formulation, and
the ensemble spread is the same with or without model bias (Li 2007). For this
reason, the most widely used method for imperfect models is to increase the multi-
plicative or additive inflation (e.g. Whitaker et al. 2008). Model biases can also be
taken into account by estimating the bias as in Dee and da Silva (1998) or its sim-
plified approximation (Radakovich et al. 2001) — see also chapter Bias Estimation
(Ménard). More recently, Baek et al. (2006) pointed out that model bias could be
estimated accurately augmenting the model state with the bias, and allowing the
error covariance to eventually correct the bias. Because in this study the bias was
assumed to be a full resolution field, this required doubling the number of ensemble
members in order to reach convergence.

In the standard 4D-Var, the impact of model bias cannot be neglected within
longer windows because the model (assumed to be perfect) is used as a strong
constraint in the minimization (e.g. Andersson et al. 2005). Trémolet (2007) has
developed several techniques allowing for the model to be a weak constraint in
order to estimate and correct model errors. Although the results are promising, the
methodology for the weak constraint is complex, and still under development.

Li (2007) and Li et al. (2009a) compared several methods to deal with model
bias (Fig. 6), including a “Low-dimensional” method based on an independent esti-
mation of the bias from averages of 6-h estimated forecast errors started from a
reanalysis (or any other available good quality analysis). This method was applied
to the SPEEDY (Simplified Parameterizations primitivE-Equation DYnamics)
model (Molteni 2003) assimilating simulated observations from the NCEP-NCAR
(National Centers for Environmental Prediction-National Center for Atmospheric
Research) reanalysis, and it was found to be able not only to estimate the bias, but
also the errors in the diurnal cycle and the model forecast errors linearly dependent
on the state of the model (Danforth et al. 2006; Danforth and Kalnay 2008).

The results obtained by Li (2009a) accounting for model errors within the
LETKEF, presented in Fig. 6, indicate that: (a) additive inflation is slightly better
than multiplicative inflation; and (b) methods to estimate and correct model bias
(e.g. Dee and da Silva 1998; Danforth et al. 2006) should be combined with infla-
tion, which is more appropriate in correcting random model errors. The combination
of the low-dimensional method with additive inflation gave the best results, and was
substantially better than the results obtained assuming a perfect model (Fig. 6).

We note that the approach of Baek et al. (2006) of correcting model bias by
augmenting the state vector with the bias can be used to determine other parameters,
such as surface fluxes, observational bias, nudging coefficients, etc. It is similar to
increasing the control vector in the variational approach, and is only limited by the
number of degrees of freedom that are added to the control vector and sampling
errors in the augmented background error covariance.

With respect to observation error estimations, Desroziers et al. (2005) derived
statistical relationships between products of observations minus background,
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Fig. 6 Comparison of the analysis error averaged over 2 months for the zonal velocity in the
SPEEDY model for several simulations with the radiosonde observations available every other
point. The yellow line corresponds to a perfect model simulation with the observations extracted
from a SPEEDY model “nature run” (see chapter Observing System Simulation Experiments,
Masutani et al.). The red is the control run, in which the observations were extracted from the
NCEP-NCAR reanalysis, but the same multiplicative inflation was used as in the perfect model
case. The blue line and the black solid lines correspond to the application of optimized multiplica-
tive and additive inflation, respectively. The long-dashed line was obtained correcting the bias with
the Dee and da Silva (1998) method, and combining it with additive inflation. The short-dashed
is as the long-dashed but using the Danforth et al. (2006) low-dimensional method to correct the
bias, and the green line is as the long-dashed line but using the simplified Dee and da Silva method.
Adapted from Li (2007)

observations minus analysis, and analysis minus forecasts and the background and
observational error covariances. Li (2007) took advantage of these relationships to
develop a method to adaptively estimate both the observation errors variance and
the optimal inflation of the background error covariance. This method has been
successfully tested in several models (Li et al. 2009a; Reichle et al. 2008).

4 Summary and Discussion

4D-Var and the EnKF are the most advanced methods for data assimilation. 4D-
Var has been widely adopted in operational centres, with excellent results and much
accumulated experience. EnKF is less mature, and has the disadvantage that the
corrections introduced by observations are done in spaces of lower dimension that
depend on the ensemble size, although this problem is ameliorated by the use
of localization. The main advantages of the EnKF are that it provides an esti-
mate of the forecast and analysis error covariances, and that it is much simpler to
implement than 4D-Var. A recent WWRP/THORPEX Workshop in Buenos Aires,
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10-13 November 2008, was dedicated to 4D-Var and Ensemble Kalman Filter Inter-
comparisons with many papers and discussions (http://4dvarenkf.cima.fcen.uba.ar/).
Buehner et al. (2008) presented “clean” comparisons between the operational 4D-
Var and EnKF systems in Environment Canada, using the same model resolution
and observations, showing that their forecasts had essentially identical scores in
the Northern Hemisphere, whereas a hybrid system based on 4D-Var but using a
background error covariance based on the EnKF gave a 10-h improvement in the
5-day forecasts in the Southern Hemisphere. This supports the statement that the
best approach should be a hybrid that combines “the best characteristics” of both
EnKF and 4D-Var (e.g. Lorenc 2003; Barker 2008). This would also bring the main
disadvantage of 4D-Var to the hybrid system, i.e., the need to develop and maintain
an adjoint model. This makes the hybrid approach attractive to operational centres
that already have appropriate linear tangent and adjoint models, but less so to other
centres.

In this review we have focused on the idea that the advantages and new tech-
niques developed over the years for 4D-Var, can be adapted and implemented within
the EnKF framework, without requiring an adjoint model. The LETKF (Hunt et al.
2007) was used as a prototype of the EnKF. It belongs to the square-root or deter-
ministic class of the EnKF (e.g. Whitaker and Hamill 2002) but simultaneously
assimilates observations locally in space, and uses the ensemble transform approach
of Bishop et al. (2001) to obtain the analysis ensemble as a linear combination of
the background forecasts.

We showed how the LETKF could be modified to include some of the most
important 4D-Var advantages. In particular, the 3D-LETKF or 4D-LETKF can be
used as a smoother that is cost-free beyond the computation of the filter and storing
the weights. This allows a faster spin-up in the “running in place” method, so that the
LETKEF spins up as fast as 4D-Var. This is important in situations such as the forecast
of severe storms, which cannot wait for a slow ensemble spin-up. Long assimilation
windows and the consequent non-linearity of the perturbations typically result in
non-Gaussianity of the ensemble perturbations and, as a result, a poorer perfor-
mance of LETKF compared to 4D-Var. The no-cost smoothing method can be used
to perform the equivalent of the 4D-Var “outer loop” and help deal with the problem
of non-linearity. One of the most powerful applications of the adjoint model is the
ability to estimate the impact of a class of observations on the short range forecast
(Langland and Baker 2004). Liu and Kalnay (2008) have shown how to perform the
same “adjoint sensitivity” within the LETKF without an adjoint model. Yang et al.
(2009b) showed that the analysis weights created by the LETKF vary smoothly on
horizontal scales much larger than the analyses or the analysis increments, so that
the analyses can be performed on a very coarse grid and the weights interpolated
to the full resolution grid. Because these weights are applied to the full resolution
model, Yang et al. (2009b) found that the weight interpolation from a coarse reso-
lution grid did not degrade the analysis, suggesting that the weights vary on large
scales, and that smoothing the weights can increase the accuracy of the analysis. Li
et al. (2009a) compared several methods used to correct model errors and showed
that it is advantageous to combine methods that correct the bias, such as that of
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Dee and da Silva (1998) and the low-dimensional method of Danforth et al. (2006),
with methods like inflation that are more appropriate to account for random model
errors. This is an alternative to the weak constraint method (Trémolet 2007) to deal
with model errors in 4D-Var, and involves the addition of a relatively small num-
ber of degrees of freedom to the control vector. Li et al. (2009b) also showed how
observation errors and background error inflation can be estimated adaptively within
EnKF.

In summary, we have emphasized that the EnKF can profit from the methods
and improvements that have been developed in the wide research and operational
experience acquired with 4D-Var. Given that operational tests comparing 4D-Var
and the LETKF indicate that the performance of these two methods is already very
close (e.g. Miyoshi and Yamane 2007; Buehner et al. 2008), and that the LETKF
and other EnKF methods are simpler to implement, their future looks bright. For
centres that have access to the model adjoint, hybrid 4D-Var-EnKF may be optimal.
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Error Statistics in Data Assimilation:
Estimation and Modelling

Mark Buehner

1 Introduction

As already discussed in previous chapters in Part I, Theory, the purpose of data
assimilation is to use observations to compute an “optimal” correction to a back-
ground state by using estimates of the uncertainty associated with the background
state and the observations. The uncertainty is typically characterized by covariance
matrices for the error in the background state and the observations. These covari-
ance matrices determine the level of influence each observation has on the analysis
and how this influence is distributed spatially, temporally and among the different
types of analysis variables. The optimality of any assimilation approach based on
linear estimation theory depends on the validity of a set of assumptions, includ-
ing that the errors in the background state and observations are Gaussian with both
zero bias and precisely known covariances. The estimation of these covariances is
a difficult problem, partly due to a lack of knowledge of the statistical properties
of background and observation error. As pointed out by Dee (1995), the number
of available observations of the atmosphere or ocean is generally many orders of
magnitude less than that required to estimate the full error covariances. In addi-
tion, especially for the case of background errors, the computational challenge of
estimating the full covariance matrix of a random vector containing at least 0(106)
elements also poses a significant challenge. This chapter outlines the theory and
some practical approaches used to estimate and model background and observation
error statistics. Because most data assimilation approaches currently used for realis-
tic atmospheric and oceanographic applications rely on the assumption of Gaussian
error distributions, our focus here is restricted to the estimation of error covariances
and not the higher-order statistical moments or the full probability distributions.
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1.1 Source of Statistical Information

Errors in the background state and the observations are defined with respect to the
true state of the system (e.g. atmosphere or ocean), respectively, as

el =xt —x,

e =y—HX),
where y is a vector containing the observations, H is the observation operator, X’ is
the true state and x” is the background state. Since we do not know the true state
of the system, it is impossible to directly compute the background and observation
errors. Assuming for the moment that we do precisely know the observation operator
'H, the only useful quantity from which we can compute the required error statistics
is the innovation vector, defined as

D

d=y-HE) =¢"+ HE) - Hx' + ") ~ e’ —He’ )

where H is the linearized version of H. Clearly, the observation and background
errors cannot both be obtained from this single equation. By making the common
assumption that the background and observation errors are uncorrelated with each
other, the innovation covariance matrix is given by

S =R+ HBH’, ©)

where R is the observation error covariance matrix, B is the background error covari-
ance matrix and the superscript 7 represents matrix transposition. Practically, the
covariance matrix S can be estimated by averaging over time, if the observing net-
work remains relatively fixed and the error covariances are assumed stationary in
time. However, again it is impossible to obtain both terms on the right-hand side
from this single equation. This represents a fundamental problem in estimating the
error probability distribution functions (PDFs) for data assimilation. Only by rely-
ing on additional assumptions about the background and observation error PDFs,
can the two components that contribute to S be separated. Furthermore, these addi-
tional assumptions cannot be directly validated, but must be based on information
independent from the actual values of the background state and observations (see,
e.g., Dee 1995; Talagrand 1999).

1.2 Importance of Background and Observation Error Statistics
in Data Assimilation

The importance of the background error covariances can be seen by examining the
linear analysis equation (see, e.g., Gelb 1974)

Ax=BH' (HBH’ +R) 'd, “

where Ax is the analysis increment. If we take the case where only a single
observation is assimilated, then the quantities in parentheses in Eq. (4) are scalars
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and the resulting analysis increment is proportional to BH’, where H” is a column
vector. Consequently, for a given type of observation the spatial and multivari-
ate structure of the analysis increment depends strongly on the background error
covariances.

Moreover, as seen in the chapter Mathematical Concepts of Data Assimilation
(Nichols), the weight given to an observation is governed by the relative amplitude
of background and observation error variances. In general, a larger background error
variance results in a larger correction to the background state and more weight given
to the observation. Similarly, a larger observation error variance results in a smaller
correction to the background state. The effect of the background and observation
error correlations is to determine how the relative importance of the background
state and observations varies as a function of the spatial or temporal scale. For
example, broad monotonically decreasing spatial correlations have the effect of con-
centrating more of the error variance in the large-scale component of the error and
less in the small-scale component (Daley 1991, Sect. 4.8). As a result, the relative
weight given to the observations can vary as a function of scale (either in space
or time) if the background and observation errors have different spatial or tempo-
ral correlations. For example, when the specified background error correlations are
broader than the observation error correlations, the large-scale component of the
background state is considered to be less accurate than the small-scale component
relative to the observations. Consequently, the analysis increment tends to be smooth
because more weight is given to the large-scale component of the observations.

2 Estimation of Background and Observation Error Statistics

Background and observation error statistics are typically estimated from either a
statistical study of the innovations (Hollingsworth and Lonnberg 1986) or an ad hoc
method such as the NMC (National Meteorological Center) method (Parrish and
Derber 1992). Another approach is to use Monte Carlo simulations to approximate
the effect of observation and model errors (assuming their PDFs are known) in the
forecast-analysis cycle to obtain random realizations of background error. Using an
ensemble of such error realizations, the background error PDF can be estimated.
An example of this is the Ensemble Kalman filter (EnKF) (see chapter Ensemble
Kalman Filter: Current Status and Potential, Kalnay; Evensen 1994). In this section
several approaches for estimating the background and observation error covariances
are described.

2.1 Estimation of Background and Observation Error Statistics
Jrom Innovations

As already mentioned, the innovations represent the only direct source of informa-
tion for estimating the background and observation error statistics. A frequently
employed approach for using innovations to estimate the error statistics was
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developed for use with conventional radiosonde observations (Hollingsworth and
Lonnberg 1986). The principle assumption on which the method is based is that
the errors in the observations originating from distinct balloons are uncorrelated.
In addition, the horizontal spacing of the observations must be sufficiently small
to resolve the background error correlations and the background and observation
error statistics are assumed to be horizontally homogeneous. The innovation covari-
ances are then estimated for a particular pressure level as a function of the horizontal
separation distance. It is usually necessary to assume the error statistics are station-
ary in time so that data over a time period of several weeks can be used to obtain a
sufficiently large sample size. The covariances from distinct balloons (non-zero sep-
aration distance) are then extrapolated to zero separation distance. The extrapolated
value represents an estimate of the background error variance and by subtracting
this from the innovation variance an estimate of the observation error variance is
obtained. The horizontal background error correlations can also be estimated from
the horizontal innovation covariances, with the estimated observation error variance
removed at zero separation distance. Due to the limited and heterogeneous distri-
bution of radiosonde observations over the globe, the approach can only provide
information on the background error covariances over particular regions and for a
limited range of spatial scales. Also, the application of this approach to satellite
observations that are more uniformly distributed may be difficult due to the pos-
sibility of horizontally correlated observation errors and the limited horizontal and
vertical resolution of the observations.

Another type of approach uses an existing variational data assimilation system
or components of that system to estimate elements of the error covariances from the
innovations. With this approach, the lack of consistency of the covariance matrices
specified in the data assimilation system and the innovations is used to tune a small
set of covariance parameters. For example, it may be assumed that the specified
background and observation error correlations are correct and that only the variances
need be scaled by a set of horizontally constant factors. The level of consistency
between the specified covariances and the innovations is measured by comparing the
value of a component of the cost function with its expected value computed using
a randomization method (Desroziers and Ivanov 2001; Chapnik et al. 2004, 2006).
Alternatively, a likelihood function can be constructed using the innovations and the
covariance matrix S and an iterative scheme used to find the covariance parameters
that maximize the likelihood (Dee 1995). In the case where only the variances are
tuned, the accuracy of the estimated values depends strongly on the assumption of
accurate error correlations. For example, Chapnik et al. (2004) showed that if the
observation error is assumed to be uncorrelated, but the real error is correlated, then
the approach will underestimate the observation error variance (sometimes giving a
value as small as zero) and overestimate the background error variance.

More recently, Desroziers et al. (2005) demonstrated how covariance parame-
ters could be estimated by simply computing particular statistics from the routine
output of a data assimilation system. For example, the expected value for the obser-
vation error covariance matrix should be equal to cov(y — Hx?, y — Hx?), where
x¢ is the analysed state. A similar relation is also easily computed for the expected
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value of the background error covariances after they are projected into observation
space. An inconsistency between the expected covariance and the covariance speci-
fied in the assimilation system, for example, a particular observation error variance,
would mean that this error variance should be adjusted. Desroziers et al. (2005)
showed, in an idealized setting, that an iterative scheme involving the data assimila-
tion system itself can be constructed that converges towards the true error variance.
The advantage of this approach over the others mentioned above is that it requires
very minimal changes to an existing data assimilation system. However, as with
the other approaches, any incorrect assumption regarding the structure of the error
covariances (e.g. spatially uncorrelated observation errors) will likely result in
convergence towards incorrect variance estimates.

2.2 Estimation of Background Error Covariances
with the Lagged-Forecast (NMC) Method

Several Numerical Weather Prediction (NWP) centres employ variational assim-
ilation systems with stationary background error covariances estimated using the
“NMC method” or lagged-forecast difference method (Parrish and Derber 1992;
Gauthier et al. 1998; Rabier et al. 1998; Derber and Bouttier 1999). Following this
method, the differences between pairs of forecasts valid at the same time, but having
different lead times, are taken to be representative of background error. Such fore-
cast differences can easily be computed for a past period using the archived output
of an operational forecasting system. For example, at the Canadian Meteorological
Centre, the differences between 48- and 24-h forecasts taken over a period of
2-3 months are used (Gauthier et al. 1998). However, a lack of correspondence
between these lagged forecast differences and 6-h forecast error necessitates mod-
ification of the computed covariances, especially the variances. The variances may
be tuned using a method based on the innovations as outlined in the previous
section.

2.3 Estimation of Background Error Covariances with Monte
Carlo Approaches

Methods based on Monte Carlo simulation have been developed to address the prob-
lem of how errors in the inputs to a data assimilation system lead to errors in the
background (and analysed) state. If the PDFs of both the observation and model
error are known, then these approaches, such as the EnKF, provide an estimate of the
PDF (and therefore the covariances) of the resulting background error. An ensemble
of analysis-forecast experiments are run, each using a set of observations and short-
term model integrations perturbed with an independent realization of errors drawn
from their known observation and model error PDFs. If the error PDF remains
close to Gaussian, the resulting ensemble of background states is representative
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of a random sample drawn from the background error PDF (Burgers et al.
1998).

In the EnKF, the analysis step for each ensemble member is performed using
background error covariances estimated from the ensemble spread of forecasts valid
for that specific analysis time. Typically at least O(100) ensemble members are
used to obtain a sufficiently accurate estimate of the error statistics. A simpler
approach used to estimate the stationary background error covariances is similar
to that described by Houtekamer et al. (1996) and was recently used in place of
the NMC method at several NWP centres (Fisher and Andersson 2001; Buehner
2005; Buehner et al. 2005; Belo Pereira and Berre 2006). In that approach, the anal-
ysis step for each ensemble member employs a previous, usually static, estimate
of the background error covariances. Unlike the EnKF, such approaches have been
employed with only a small number of parallel analysis-forecast experiments, but
where the background error realizations are pooled over a sufficiently long time
period to obtain an estimate of the stationary, or slowly varying, component of the
error statistics. However, like with the NMC method, this approach can only be
used to estimate the background error covariances after an initial assimilation sys-
tem with its own background error covariances is available. A major challenge for
all approaches based on Monte Carlo simulation is the specification of the model
error PDF. Approaches have been examined to adaptively tune a parametrized form
of the model error covariances with some success in idealized settings (e.g. Mitchell
and Houtekamer 2000).

2.4 Other Approaches for the Estimation of Background
Error Covariances

Some other approaches have been examined for obtaining low-rank estimates of the
true flow-dependent background error covariances such as would be obtained, in a
linear context, with a Kalman filter.

An approximate reduced-rank Kalman filter was developed and tested at the
European Centre for Medium-Range Weather Forecasts (ECMWF) with the goal
of providing an improved background error covariance matrix for the operational
4D-Var (four dimensional variational) assimilation system (Fisher 1998; Fisher and
Andersson 2001; see chapter Variational Assimilation, Talagrand). The approach
uses partially evolved singular vectors to define the background error covariances in
a low-dimensional subspace. In the orthogonal subspace that spans the remainder of
the analysis space, the standard stationary background error covariances are used.
The singular vectors are computed with a 48-h optimization time and an initial-time
norm defined using the inverse of an approximation to the analysis error covariance
matrix at the previous analysis time. The result is a set of vectors that eventually
evolve into the leading eigenvectors of the 48-h forecast error covariance matrix,
under the assumption that the error growth can be described by linearized dynamics
and that the contribution from model error is negligible. After extensive testing in



Error Statistics in Data Assimilation 99

a realistic NWP context, it was found that the reduced-rank Kalman filter did not
lead to consistent improvements to forecast quality. Possible explanations given for
the lack of positive impact include that the estimate of the analysis error covariance
matrix may not have been sufficiently accurate.

A related approach uses the gradient, with respect to the initial conditions, of
some specified scalar function of the future state of the system (Hello and Bouttier
2001). Like the reduced-rank Kalman filter described above, the gradient vector is
used to specify the background error covariances in a low-dimensional subspace (in
this case just a single direction); the standard background error covariances are used
for the remaining orthogonal subspace. By employing the sensitivity to initial condi-
tions of a series of 48-h forecasts of cyclones, Hello and Bouttier (2001) were able
to improve the forecasts of these cyclones as compared with the standard 3D-Var
(three-dimensional variational; see chapter Variational Assimilation, Talagrand)
approach. This is despite the fact that, unlike the singular vectors employed by
Fisher and Andersson (2001), the calculation of the gradient vector involves solely
the dynamics and does not include any statistical information concerning the
errors.

2.5 Estimation of Observation-Error Correlations

Compared with background errors, approaches for estimating the correlations of
observation error have not been examined as extensively. However, to make opti-
mal use of the ever increasing volume of available satellite data, it is becoming
necessary to obtain accurate estimates of both their spatial and inter-channel error
correlations. When employing a four-dimensional assimilation approach it may
even be necessary to account for temporal error correlations for both satellite and
conventional data.

To date, a common approach for dealing with correlated errors is to simply thin
the data either temporally, spatially, or with respect to the radiance frequency chan-
nel. The thinned data is then assimilated under the hypothesis that the observation
errors are uncorrelated. While this approach effectively reduces the error correla-
tions among the data that survive the thinning procedure, it also may eliminate a
significant amount of useful information on the small-scale structure of the atmo-
spheric or oceanic state. For example, let us assume that a particular observation
type has errors that are positively correlated in the horizontal direction. Properly
accounting for these correlations (instead of assuming uncorrelated errors) in the
data assimilation procedure would increase the weight given to the small-scale com-
ponent while reducing the weight given to the large-scale component. Horizontally
thinning the data also results in decreased weight given to the large-scale compo-
nent, but it does so at the expense of reducing the information content of the data at
the small scales. In fact, data with smooth positive error correlations are more accu-
rate with respect to the small-scale component than data with uncorrelated errors,
assuming the spatial resolution and error variance are equal (Daley 1991, Sect. 4.8).
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The problem of horizontally correlated errors associated with atmospheric
motion vector (AMV) data derived from satellite observations of cloud or
humidity field motion has been studied by Bormann et al. (2003). The AMV data
are co-located with radiosonde wind observations and the covariances of their
difference estimated as a function of horizontal separation distance. The covari-
ances for non-zero separation distance are then extrapolated to zero separation, like
in the approaches described in Sect. 2.1 above for separating innovation covariances
into the contributions from observation and background errors. Under the assump-
tion that the radiosonde observation errors are horizontally uncorrelated, the AMV
error correlations are estimated from the horizontally correlated component of the
covariances.

A similar approach, used by Garand et al. (2007), allows the inter-channel
error correlations to be estimated for AIRS (Atmospheric InfraRed Sounder) data.
First, the inter-channel covariances for all possible pair-wise channel combina-
tions of the innovation vector are computed as a function of horizontal separation
distance. For each channel pair, the covariances for non-zero horizontal separa-
tion distance are extrapolated to zero separation distance. Then, the assumption
is made that the covariances for non-zero separation distance are dominated
by the background error. Consequently, the difference between the covariances
computed at zero separation distance and the values obtained by extrapola-
tion represent an estimate of the observation error variances for each channel
and the inter-channel error covariances for all pair-wise channel combinations.
The inter-channel error correlations are then obtained by normalizing the inter-
channel covariances by the product of the corresponding error standard deviations.
Even though the approach relies on the assumption that errors associated with
AIRS data are horizontally uncorrelated, which has yet to be independently ver-
ified, the results appear physically realistic. Error correlations are generally high
among the water vapour sensing channels and among surface sensitive channels.
In contrast, they are negligible for channels within the main CO; absorption
band.

With the increasing use of four-dimensional assimilation schemes for both
atmospheric and oceanic state estimation, accounting for temporal correlations of
observation error is becoming increasingly important. Properly incorporating esti-
mates of temporal error correlations when assimilating time series of data would
increase the weight given to the time tendency (high frequency component) and less
weight to the time mean (low frequency component) of the data. This was demon-
strated by Jirvinen et al. (1999) for the case of time series of surface pressure data
in a 4D-Var assimilation system. In that study the temporal error correlations were
assumed to have a particular functional form and associated decorrelation time-
scale, since objective approaches for estimating temporal error correlations had not
yet been demonstrated.

In summary, the issue of accurately estimating spatial and temporal observation
error correlations is becoming increasingly important. They will be necessary to
make optimal use of the growing volume of both satellite and conventional data to



Error Statistics in Data Assimilation 101

extract information on the small spatial and temporal scales at which the errors are
often significantly correlated.

3 Modelling Error Covariances

For realistic NWP or oceanographic applications, a series of simplifying assump-
tions must be employed to obtain useful estimates of the background and observa-
tion error covariances. This is necessitated by both a lack of precise information on
the background and observation errors (as addressed in the previous section) and
the computational expense of utilizing the full covariance matrices in data assim-
ilation systems. A typical NWP system, for example, could have background and
observation error covariance matrices with O(10'%) elements. To be practical, any
approach for modelling the covariances must significantly decrease the number of
parameters required to define the covariances and also decrease the computational
expense of employing the covariances in a data assimilation system. In addition,
any approach must still capture the most important aspects of the true covariance
structure. The main challenge to date has been to model the spatial correlations of
the background errors, whereas observation errors have typically been assumed to
be uncorrelated in most assimilation systems. Consequently, only approaches for
modelling background error correlations are briefly discussed in this section.

3.1 Spectral Representation: Homogeneous and Isotropic Error
Correlations

A very efficient approach for modelling the background error correlations is to
employ a spectral representation together with the assumption of homogeneity and
isotropy for the horizontal correlations. Under these assumptions, the correlation
matrix for a sphere in spectral space has a simple diagonal structure with elements
that depend only on the total wavenumber (Courtier et al. 1998). Consequently,
a full-rank matrix with reasonably smooth and robust correlations can be estimated
from relatively few error samples. This representation for the horizontal correlations
is often combined with vertical correlations in a way that does not require separabil-
ity between the horizontal and vertical correlations. The resulting three-dimensional
correlation matrix has a block diagonal structure given by

~ ~ A 1/2
Cn ki ko) =[G k) Con k) | €yl ko) ®)

where é‘h is the spectral horizontal correlations, Cy is the vertical correlation matrix
for each horizontal total wavenumber (7)), and k represents the vertical level index.
The non-separability of the correlations results in the dependence of the vertical
correlations on the horizontal scale. Consequently, the horizontally small-scale
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contribution to the errors typically has sharper vertical correlations than components
at larger scales. This dependence is necessary to simultaneously obtain the correct
correlations for wind and mass fields (Phillips 1986).

The original analysis variables can be transformed into a set of variables for
which the assumptions of homogeneity and isotropy are more valid. For example,
modelling wind correlations in terms of vorticity and divergence (or streamfunction
and velocity potential) is often more accurate than using velocity components for
which the correlations can be significantly anisotropic.

3.2 Physical-Space Representation

Alternatively, the error covariances can be estimated without constraining the corre-
lations to be horizontally homogeneous and isotropic. However, if the correlations
are estimated directly from a small sample of background-error realizations with-
out imposing any additional constraints, the rank of the resulting correlation matrix
cannot exceed the sample size. In addition, the correlations often have a noisy struc-
ture and do not approach zero at long separation distances, even with unrealistically
large correlations on the opposite side of the globe. To overcome these problems,
a procedure for spatially localizing the correlations was proposed by Gaspari and
Cohn (1999) and examined in the context of an EnKF by Houtekamer and Mitchell
(2001) and Hamill et al. (2001). The technique for efficiently employing a spa-
tially localized ensemble representation of the background error correlations in a
variational assimilation framework was described by Lorenc (2003) and Buehner
(2005). While reducing or eliminating distant correlations, spatial localization also
increases the rank of the correlation matrix estimated from a given sample size of
error realizations.

Another approach for reducing the problem of estimating the full correlation
matrix from a small sample is to compute the weighted mean of such a correlation
matrix with another matrix for which the assumptions of homogeneity and isotropy
are imposed. This hybrid approach was used in the context of an EnKF by Hamill
and Snyder (2000). In the variational context, a convenient approach is to combine
two correlation matrices by augmenting the control vector used by minimization
algorithm as described by Buehner (2005). Alternatively, a Householder transforma-
tion can be used to separate the analysis increment into the part that projects onto
the subspace spanned by the sample of error realizations and the complementary
subspace (Fisher 1998).

Efficient approaches for modelling spatial background-error correlations with
various classes of functional forms in physical space have also been examined.
Weaver and Courtier (2001) showed how the application of a diffusion operator can
be used to efficiently implement spatial correlations that are generally Gaussian-
shaped. Similarly, recursive filters have been used to model correlations efficiently,
while partially relaxing the assumptions of homogeneity and isotropy (Derber and
Rosati 1989; Wu et al. 2002; Purser et al. 2003).
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3.3 Spectral/Physical-Space Representation

As described above, imposing the constraint that the correlations are to some extent
local, either in the spatial or spectral domain is often necessary to obtain a use-
ful covariance estimate. However, spectral localization has typically only been
employed in the limiting case of the correlations being diagonal. Since diagonal
correlations in spectral space correspond to homogeneous correlations in physical
space, it is natural to consider what a more moderate amount of spectral localization
would produce in physical space. This has been studied in the context of using a set
of wavelets to define a space in which the correlations are assumed to be diagonal
(Fisher and Andersson 2001; Deckmyn and Berre 2005; Pannekoucke et al. 2007)
and also through explicit localization of correlations in spectral space (Buehner and
Charron 2007). In both cases, the moderate localization of correlations in spectral
space is shown to allow a certain amount of inhomogeneity of the correlations in
physical space while still having a smoothing effect on the correlations. In effect,
increasing amounts of spectral localization is equivalent with spatially averaging the
local correlation functions in physical space over increasingly large areas (Buehner
and Charron 2007). Of course, the limiting case where the spectral correlations
become diagonal corresponds with an averaging of the local correlation functions
over the entire domain. There likely exists an optimal level of combined spectral
and spatial localization that depends on several factors, including the size of the
sample of error realizations and the level of spatial inhomogeneity and typical spa-
tial length scale of the true correlations. Some examples of the effect of spectral and
spatial localization are shown in Sect. 4.

3.4 Theoretically-Based Correlation Modelling

The approaches discussed so far are mostly empirical approaches that rely on
assumptions about the statistical properties of the background errors. In this sec-
tion, examples of approaches for modelling error correlations are described that rely
on theoretical assumptions concerning the dynamical properties of the errors. Due
to their being based on dynamical relationships, the resulting correlations may be
flow-dependent. Such approaches are often used to transform a set of intermediate
variables that are assumed to have simpler (possibly stationary, homogeneous and
isotropic) correlations into the actual analysis variables.

A common example of such theoretically-based correlation models involves a
so-called balance operator to construct between-variable correlations. For example,
in several operational NWP data assimilation systems the temperature and surface
pressure increments are constructed by adding the increments of unbalanced and
balanced components of these variables, where the latter is computed from the
streamfunction (or vorticity) increment via a balance operator for geostrophy (e.g.
Gauthier et al. 1998; Derber and Bouttier 1999). For example, the three-dimensional
temperature increment field is computed using
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AT = AT, + GrAYV, (6)

where AT, is the analysis increment of the unbalanced component of temperature
and Gr is the balance operator for obtaining the geostrophically balanced compo-
nent of temperature from the streamfunction. This implies correlations between the
wind and mass field increments that are consistent with geostrophy and the hydro-
static relationship. Additional balance operators are also usually employed to create
correlations between the rotational and divergent components of the wind field near
the surface (cf. Ekman balance). The result is that the background error covariance
matrix is represented as a series of separate matrices or operators:

B = GV'/2C,(V/3HTGT @)

where C, is the correlation matrix for the set of independent variables with hori-
zontally homogeneous and isotropic correlations, V is a diagonal matrix containing
the error variances, and G, which includes Gr, transforms the unbalanced variables
into the full quantities for temperature, surface pressure, and velocity potential (or
divergence) using the balance operators. Consequently, the effective correlations
in B are neither horizontally homogeneous nor isotropic due to the spatial depen-
dence of the balance operators. The temperature correlations at the Equator are
mostly determined by the correlations of the unbalanced temperature, whereas in
the extra-tropics they are a combination of the unbalanced and balanced tempera-
ture correlations. In turn, the balanced temperature correlations are derived from the
streamfunction (or vorticity) correlations. Figure 1 shows the fraction of tempera-
ture variance explained by a simple linear balance with streamfunction when either
the NMC method or a Monte Carlo approach applied to a 3D-Var assimilation sys-
tem is used to generate the error sample. Note that the temperature and wind fields
are more strongly in balance when using the NMC method than when using the
6-h spread of background states from a Monte Carlo simulation. The results were
obtained using the Canadian 3D-Var system described by Chouinard et al. (2001).
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Fig. 1 The zonally averaged ratio of balanced temperature variance normalized by the full tem-
perature variance from the background error covariances estimated using (a) the NMC method and
(b) a Monte Carlo approach applied to a 3D-Var assimilation system
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If a linear balance is used to compute the balanced component of temperature,
then the operator G does not depend on the flow. However, the use of the non-linear
balance

VZPy =~V - (vy - Vv +fk X V) , ®)

where Py, is the balanced pressure variable and v; is the rotational wind vector,
results in a balance operator that, when linearized with respect to the background
state, is flow-dependent (Fisher 2003). Therefore, G depends on the background
state itself and, therefore, so does the correlation structure in B of temperature in the
extra-tropics. Similarly, to compute a more realistic balanced component of diver-
gence, Fisher (2003) evaluated using the quasi-geostrophic omega equation, and
Byrom and Roulstone (2003) examined using Richardson’s equation.

Another approach for introducing a theoretically-based correlation model that
is flow-dependent relies on the coordinate transformation described by Dee and
Gaspari (1996). The idea is to take advantage of the efficiency of using a homo-
geneous and isotropic correlation model, but to apply it in a space with transformed
spatial coordinates. This transformation can be chosen so that when transformed
back into the original coordinate system, the resulting correlations are heteroge-
neous, anisotropic and possibly flow-dependent. They used a simple coordinate
transform to obtain a latitudinal dependence of the horizontal correlations, that is,
with a larger length-scale in the tropics than in the extra-tropics. Desroziers (1997)
used a similar approach and a coordinate transformation based on semi-geostrophic
theory to obtain more realistic correlations in the vicinity of frontal structures.

4 Illustrative Examples

In this section, several examples are shown to illustrate some of the approaches for
estimating and modelling error statistics discussed previously. All have been taken
from Canadian operational or experimental atmospheric data assimilation systems
used for NWP.

4.1 Estimated Error Variances

Figure 2 shows the estimated background error standard deviation (stdev) of tem-
perature obtained from using the NMC method and the EnKF of Houtekamer et al.
(2005). Note that the stdev field obtained with the NMC method is zonally invariant,
because the original estimates have been zonally averaged. Without this averaging,
the estimated stdev fields tend to have unrealistic spatial variations, with larger val-
ues downstream of well-observed areas and lower values near data sparse regions.
Even though the EnKF can be used to estimate flow-dependent background error
covariances for each analysis time, here the variances obtained from the ensemble
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Fig. 2 Estimated background error stdev of temperature near 500 hPa computed using: (a) the
NMC method and (b) a temporal average of the background ensemble spread variances from the
EnKF. Figure adapted from Buehner (2005)

spread of background states are temporally averaged over 1 month. When com-
pared with the NMC method, the EnKF produces more realistic spatial variations
with higher values over the oceans than over the continents.

4.2 Single Observation Experiments

The analysis increment resulting from the assimilation of a single observation
provides a partial view of the background error covariances by showing how infor-
mation from the observation is distributed both spatially and among the different
analysis variables. From the linear analysis equation, the analysis increment from
assimilating a single observation is proportional to BH”, where H is reduced to a
row vector. For observation types closely related to one of the variables represented
in the background error covariances, the analysis increment is simply proportional to
a column of B. This is especially convenient when the background error covariances
are modelled using a series of operators and therefore cannot be easily computed
explicitly.

Non-stationary features such as strong horizontal gradients and regions of
instability can significantly influence the background error statistics. As already
discussed, the EnKF is able to capture this flow dependence. To demonstrate this,
a single temperature observation 1 K greater than the background temperature
near 900 hPa was assimilated within a strong near-surface temperature front that
appeared over the North Pacific on 27 May 2002 at 1200 UTC (adapted from
Buehner 2005). All analyses were performed with a variational analysis system
using either the homogeneous and isotropic background error correlations estimated
with the NMC method or the spatially localized ensemble correlations estimated
from the output of the EnKF. The analysis increment produced using the back-
ground error covariances from the 3D-Var (Fig. 3a) is clearly unaffected by the
local meteorological conditions (the background temperature is shown in the dark
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Fig. 3 Analysis increment of temperature (shaded contours, contour increment of 0.15 K) and
wind (vectors) from a single temperature observation near 900 hPa located in a strong near-surface
temperature front at 1200 UTC, 27 May 2002. The experiment was performed using: (a) the homo-
geneous and isotropic background error correlations estimated with the NMC method in 3D-Var,
(b) the spatially localized background error correlations estimated with the EnKF, and (c¢) the same
background error covariances as the first panel, except in a 4D-Var system with the observation
occurring 6 h after the beginning of the assimilation window. The background temperature field is
shown as black unshaded contours with a contour interval 10 times larger than for the temperature
increment

contours). The temperature increment decays in a nearly isotropic fashion away
from the observation location and the wind increment is nearly zero at the location of
the temperature observation. In contrast, when using covariances estimated from the
EnKF ensemble of background states valid for the same analysis time (Fig. 3b), the
temperature increment is slightly elongated along the front and the wind increment
is larger with vectors oriented parallel with the background temperature gradient at
the observation location.

Finally, a 4D-Var analysis was performed with the beginning of the assimilation
window occurring 6 h before the time of the temperature observation. The same
background error covariances are used as in 3D-Var, but in 4D-Var they are implic-
itly propagated throughout the assimilation window with the linearized version of
the atmospheric forecast model. The result is an analysis increment (Fig. 3c) that is
slightly modified relative to the result with 3D-Var. However, the change in the wind
increment demonstrates that the covariance propagation has introduced qualitatively
similar local correlations between temperature and wind as in the EnKF covariances
such that the winds are again parallel to the background temperature gradient near
the observation location.

The next series of examples demonstrate different approaches for modelling
background error correlations (adapted from Buehner and Charron 2007).

Figure 4 shows the zonal cross-section of the meridional wind analysis incre-
ment from using 3D-Var to assimilate a single zonal wind observation located over
the southern Pacific ocean at 60°S, 180°E and 300 hPa. The background error
covariances were estimated using a Monte Carlo simulation approach applied to
a 3D-Var assimilation system. The error sample was obtained from differences
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Fig.4 Zonal cross-sections of the zonal wind covariances with respect to 60°S, 180°E and 300 hPa
with: (a) homogeneous and isotropic correlations, (b) correlations with spectral localization, and
(¢) correlations with no localization. The covariances are normalized to have a maximum value of
one, the contour interval is 0.1 and dashed contours denote negative values

between the background states from an assimilation experiment that assimi-
lated perturbed observations and an experiment employing unperturbed observa-
tions. The error realizations were pooled over a 1-month period to estimate the
covariances.

For the first result, the correlations were modelled as being horizontally homo-
geneous and isotropic, that is, diagonal in spectral space (Fig. 4a). In the second
result, the same correlations were used after applying only a moderate amount of
spectral localization (Fig. 4b). Finally, the sample estimate of the correlations with
no localization was used to produce the third result (Fig. 4c). Note how the use of
horizontally homogeneous and isotropic correlations produces a spatially smooth
covariance structure. Conversely, when no localization is applied, the covariances
are quite noisy. When spectral localization is applied with a localization radius that
sets to zero correlations with a difference in total wavenumber greater than 10, the
covariance structure is slightly more noisy than with the diagonal spectral corre-
lations, but significantly smoother than when no localization is applied. With no
localization, the correlation structure is sharper in the zonal direction and broader
in the vertical direction relative to the homogeneous correlations. The spectrally
localized correlations appear to also exhibit this difference with the homogeneous
correlation, although to a lesser degree.

Figure 5 shows the same type of result as Fig. 4, except the location is at the
Equator. Again, the spectrally localized correlations result in a spatially smoother
covariance structure (Fig. 5b) than the raw sample estimate (Fig. 5c), but slightly
noisier than when employing horizontally homogeneous and isotropic correlations
(Fig. 5a). For this location the homogeneous correlations again differ from the
previous results. Now the correlations with spectral localization or no localiza-
tion both exhibit a correlation structure that is broader in the zonal direction and
sharper in the vertical direction. This is in the opposite sense compared to the
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Fig. 5 Same as Fig. 4, but for a location at the Equator

covariances at 60°S and, presumably, is a robust result related to differences in the
extra-tropical versus tropical atmospheric dynamics. Similar latitudinal variations
were also demonstrated by Ingleby (2001).

5 Summary

This chapter has provided an overview of the relevant issues and common
approaches used for estimating and modelling the error covariances required for
data assimilation, with an emphasis on approaches used for NWP. The discussion
of error covariance estimation highlighted the fundamental theoretical limitation
encountered when trying to estimate the covariances of both the observations and
the background state from a single quantity, the innovation (that is, the differ-
ence between the observations and the background state projected into observation
space). This limitation necessitates the introduction of external assumptions and
the different approaches described vary with respect to the assumptions adopted.
Examples of these include assuming the observation errors are spatially uncorre-
lated (allowing the variances and background error correlations to be estimated)
or assuming the observation and model error statistics are known (allowing the
background error covariances to be estimated with a Monte Carlo technique). The
chapter Evaluation of Assimilation Algorithms (Talagrand) provides further details.

Approaches for modelling the error covariances, especially of the background
error, must be computationally feasible, in terms of both memory and time lim-
itations. Due to the high dimensionality of the problem and a lack of sufficient
observation data to explicitly estimate and use the complete covariances, assump-
tions also must be employed regarding the structure of the error covariances. The
most common assumptions are that the spatial correlations are either partially or
completely horizontally homogeneous (possibly for a set of transformed analysis
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variables) and/or that they are to some extent spatially local such that the corre-
lations become zero at a specified distance. By employing one or both of these
assumptions, a robust estimate of the covariances can usually be obtained with a
relatively small sample of error realizations and used within a data assimilation sys-
tem. However, the quality of the resulting analysis depends on how well the imposed
assumptions decrease the sampling error in the covariance estimate while preserving
the essential aspects of the covariances.

Current research on data assimilation for application to NWP is generally focused
on two approaches: the variational approach, namely 3D-Var and 4D-Var, and vari-
ations of the EnKF. Typically, applications of these two approaches employ very
different assumptions regarding the estimation and modelling of background error
covariances. Variational approaches commonly use temporally static covariances
with horizontally homogeneous and isotropic correlations (for a specific set of
transformed analysis variables) with theoretically-based balance relationships and
estimated with an ad hoc method. Applications of the EnKF use time-dependent
covariances estimated from an ensemble of model states where usually the only
assumption is that the spatial correlations are to some extent local. It is interesting to
note that despite the large differences in the resulting background error covariances
employed by each approach, both can produce analyses of comparable quality (as
of yet unpublished results presented at “WMO-sponsored workshop on 4D-Var and
EnKF inter-comparisons”: http://4dvarenkf.cima.fcen.uba.ar). This suggests that an
in-depth comparison of the way background error covariances are estimated and
modelled in applications of the two approaches may help identify which aspects
of each are most beneficial with respect to analysis quality. By combining aspects
of each approach, it is possible that new approaches for estimating and modelling
background error covariances may be obtained that result in better analyses than
those produced by either of the original two approaches.
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Bias Estimation

Richard Ménard

1 Introduction

One of the standard assumptions in data assimilation is that observation and model
errors are purely random, i.e., they do not contain systematic errors (see chapter
Mathematical Concepts of Data Assimilation, Nichols). In reality, the distinction
between random errors and systematic errors is somewhat academic. Because of
non-linearities and the complexity in the different processes involved, model errors
and observation errors arise both as random and systematic. Model errors originate
from parametrizations, unrepresented model physics, inaccurate boundary forc-
ing, and resolution, among others sources. With satellite observations, the forward
model often gives rise to large systematic errors. Conventional observations can
also be contaminated by missing or inadequate representation of physical processes.
Removing systematic errors from observations or models requires considerable
effort and is made, basically, by improving the representation of physical processes
involved. As such, it is never complete.

Data assimilation schemes built on the standard assumptions that the errors are
purely random, cannot produce analyses with no bias if either observations or the
model have systematic errors — no matter how the error variances are specified (Dee
and da Silva 1998). The problem of dealing with biases is thus unavoidable.

The detection of bias is made by comparing models or observations with inde-
pendent data that are trusted as accurate and unbiased. This comparison is best
made when spatial and temporal co-location is used. Then, from those residuals
and with appropriate modelling assumptions, a model representation of the bias can
be obtained and bias correction can be applied.

In this chapter we are going one step further by considering bias estimation and
correction as an integral part of data assimilation. From the point of view of estima-
tion theory, combining bias and state estimation is performed by using an augmented
system where bias parameters are added to the state vector. Although this may sound
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simple, the proper mathematical formulation of this problem has been obtained only
recently. In earlier attempts the problems of bias in observations and bias in models
were dealt separately. With recent advances in the theory, it is now possible to for-
mulate the complete problem of estimation in presence of bias. This theory will be
presented in Sect. 3. The application of these schemes have also made encouraging
progress: First, by implementing such schemes in an operational data assimilation
system, the real issues of implementation and the determination of the input infor-
mation is now being investigated; Second, as the theory has progressed, a better
understanding of these schemes is obtained which, in turn, has provided further
insights for its application.

Before we turn to the main development of this chapter, it may be useful to give
some clarification about the terminology. Bias in data assimilation broadly refers to
the presence of systematic errors, while in statistics it is a property of an estimator.
Specifically, in statistics we say that X is an unbiased estimator of x, if £[x|x] = x
when x is deterministic or £[x] = &[x] when x is stochastic. We can reconcile the
statistical definition with its usage in data assimilation by considering that observa-
tions, model forecasts and analyses all aim at determining the true state, and in that
sense and broadly speaking, they can be considered as estimators of the true state.
Biases in that context refer to the mean differences between the estimator and true
state, i.e., the systematic error.

2 Detection of Bias

Although biases are usually diagnosed by comparison with independent and trusted
unbiased data sets, and for models by forecast drift, the question arises “How do
we detect biases in a data assimilation cycle?” This section will address specifically
this issue. The detection of bias has been discussed at length and presented in
several applications by Dee (2005), for which we owe much of the discussion
presented here.

2.1 Bias Detection Using Innovations

Statistics of observed-minus-background residuals (also called innovations) provide
information on systematic errors in model and observations. Routine monitoring of
observations-minus-background residuals in operational assimilation centres pro-
vides a wealth of information on the biases and performance of the assimilation
system. Non-zero-mean residuals (see chapter Mathematical Concepts of Data
Assimilation, Nichols, for notation):

(y_fo>=<so)_ H<sf>=b"—Hbf, (D
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indicate the presence of bias in either model forecast or observations (or both) but
cannot identify the source. However, a closer analysis of the residuals can reveal the
source of bias. For example, an abrupt change in a particular channel or observa-
tion is indicative of instrument malfunction. An objective method to detect artificial
and local changes in an observation network is the standard normal homogeneity
test (SNHT; Alexandersson and Moberg 1997). The idea behind this method is
that natural changes are similar in time series at different stations, whereas artifi-
cial irregularities are site-specific. This method was applied to diagnose problems
with the radiosonde network that occurred in the ERA-40 reanalysis (Haimberger
2007). Time series of the analysis of observed-minus-background residuals are also
useful as they can reveal sources of bias. Such an analysis applied to the radiosonde
temperatures in the NCEP (National Centers for Environmental Prediction) global
assimilation system revealed excessive power in periods longer than 10 days, as
well as a strong peak in the diurnal cycle which pointed to model underestima-
tion of mean surface diurnal temperature variations (Dee 2005). The inspection of
observed-minus-background residuals is also useful for revealing biases in radia-
tive transfer models. Saunders (2005) investigated the origin of systematic errors
by looking at biases of observed-minus-background residuals in radiation spectral
space for the AIRS (Atmospheric InfraRed Sounder — see Appendix for a list of
acronyms) instrument. As different bands and wavelengths are associated with dif-
ferent gases, different aspects of the spectroscopy and its modelling, insights on
problems with the radiative transfer modelling can thus be obtained.

2.2 Bias Detection Using Analysis Increments

Analysis-minus-forecast residuals, called analysis increments, also provide infor-
mation on systematic errors. Using a BLUE (Best Linear Unbiased Estimate), the
average analysis increment is

(x“ —x > = <K(e” —He! )> )

in fact, closely related to mean observed-minus-background residuals or mean inno-
vations. It can be argued that if the averaging procedure (e.g. zonal time-mean) used
to obtain the observation and background error statistics is the same as that used to
compute the analysis increments, and if the observation network is fairly uniform in
the averaging sense (e.g. an observation network that is zonally uniform and regular
in time, and is represented by zonal time-mean statistics), then the gain matrix K
can be factored out

<x"— xf>%K<s"—Hef)= K(b’ — Hb/). 3)

The average analysis increment gives, however, the false impression that it pro-
vides bias information on the model space, whereas in essence it only contains bias
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information in observation space. Moreover, wrong conclusions about the bias can
occur if the Kalman gain is somehow erroneous, by projecting erroneous incre-
ments away from the observation locations (see Polavarapu et al. 2005 for further
discussion). Nevertheless, the average analysis increments provide a useful tool to
collectively assemble the biases (obtained in observation space) onto the model
space. We remark also that the analysis increment is one of the two components
of the Data-minus-Analysis (DmA) vector (see chapter Evaluation of Assimilation
Algorithms, Talagrand). As noted in this chapter by Talagrand there is a one-to-one
correspondence between DmA and OmF (the innovations), so that basically these
quantities are equivalent. The diagnostic based on analysis increments is thus chosen
as a matter of convenience.

Figure 1 shows the zonal monthly mean analysis increments of temperature from
two assimilation systems. The left panel shows the result produced from the ERA-
40 reanalysis for the month of August 2002, and the right panel from the Canadian
GEM-BACH model (Ménard et al. 2007) for a similar time period (September 2003)
but with no observation bias correction on the AMSU-A stratospheric channels
11-14. Strong biases of slightly over 1 K and of alternating signs are noted in the
stratospheric polar and tropical regions.

Although the mean analysis increments indicate the presence of large biases in
the stratosphere, their origin is unclear. In free running mode, models are known to
have large systematic errors in the stratosphere. The main source of stratospheric
data in the ERA-40 reanalysis is TOVS/ATOVS (left panel, Fig. 1). The assimilated
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Fig.1 Zonal mean time-averaged temperature increments. Left panel, from ERA-40 reanalysis for
August 2002. Right panel, from the Canadian model GEM-BACH without AMSU bias correction
on channels 11-14 (Reproduced from Dee 2005; © Royal Meteorological Society)
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radiances have been corrected for biases by correcting for scan angle systematic
errors and air-mass dependence using an off-line procedure (see Sect. 4). To account
for state-dependent systematic errors in radiative transfer calculations, a regression
of the residuals with model layer-mean temperatures is made. Lacking unbiased
observations in the stratosphere to anchor the stratospheric analyses, it is possible,
therefore, that model biases and observations become interdependent. The striking
similarity of the bias patterns with those of the right panel in Fig. 1, where a different
model was used and no radiance correction was applied on the stratospheric chan-
nels (compare the left and right panels in Fig. 1), suggests that analysis increments
originate primarily from observation bias and that the observation bias correction
and the model temperature bias become interdependent in the stratosphere.

3 Bias Analysis

We have seen that the basic information from which biases can be estimated arises
from innovations. In this section we derive the analysis equation following Lea et al.
(2008) where for the first time both observation and model have biases. As in Lea
et al. (2008) the derivation contains both variational and sequential formulations, but
to simplify the development we do not address the issue of representativeness error.
The derivation uses simple and clear assumptions in a Bayesian formulation. To
apply this method requires, however, some knowledge about the model and observa-
tion bias characteristics as well as knowledge of the bias error covariances — which,
in the current state of knowledge, we are severely lacking. The ability to distin-
guish the model bias and observation bias from the innovation information needs to
be developed. We hope, nevertheless, that having the problem well posed to begin
with, will help make further steps in this important problem for data assimilation.

To set the stage, let us introduce the equations for the state, the measurement, the
model bias, and the observation bias,

¥ =x'+¢e+é&

y =HE)+b +&°
e =e +ev

b =b' + e

“)

The parameters on the left hand side of the equations, the forecast x/, the obser-
vation y, the model bias forecast or model bias prior e/, and the observation bias
forecast or observation bias prior b/ are known. H() is the non-linear observation
operator. The true state x/, the (true) model bias e’ and (true) observation bias b’
are to be estimated, and the epsilon (&) variables represent zero-mean normally-
distributed errors associated with each variable: &' is the forecast (random) error
with covariance P/ ; €% is the observation (random) error with covariance R; €9 is
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the model (random) error with covariance Q; and &” is the random error of the
observation bias with covariance S.

3.1 Variational Formulation

Following Lea et al. (2008) we make three fundamental assumptions, which permit
us to well-pose the analysis equation in presence of both observation and model
error biases. For convenience, we have dropped the superscript ¢ to denote the truth
in this subsection:

1. The observation y is independent of the model bias e. If p denotes the (condi-
tional) probability density function, then

p(ylx,b,e) = p(y|x,b); &)

2. The model state x is independent of the observation bias b, i.e.,

p(x|b,e) = p(xe); (6)

3. The model bias is independent of the observation bias, that is
p(b,e) = p(ble) p(e) = p(e[b ) p(b) = p(b) p(e). (7

In this general context, the analysis consists in finding the maximum a posteriori
estimate of the state, the observation bias and the model bias, given the observations
and any prior knowledge of the state and biases. The starting point is the calculation
of the conditional probability density function p(x, b, e|y). Using Bayes’ theorem,
we have

p(ylx,b,e) p(x,b,e)
’ b7 = 8
p(x, b, ely) o) (8)

According to assumption 1 (Eq. 5), the first factor in the numerator simplifies to

p(ylx,b,e) = p(y|x,b). 9)

Using again Bayes’ theorem, the second factor in the numerator can be re-written
as

p(x,b,e) = p(x|b,e) p(ble) p(e), (10)

and using assumption 2 (Eq. 6), and assumption 3 (Eq. 7), this simplifies to

p(x,b,e) = p(x|e) p(b) p(e), (1)
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so that the posterior probability density function is

px.b.ely) = p(yIx,b) p(x|e) p(b)p(e)_ (12)
P(y)

Assuming a normal distribution, the probability densities are expressed as:

1 Tp—1
p(yIx,b) = N(H(x)+b,R) = o exp [—E(Y —Hx)—b)'R™(y — H(x) — b)} ,

13)
where o is a constant that does not depend on any of the estimated variables, x, b,
or e, and similarly

MMw=N@ﬂwfﬁ=memﬂ%m—ﬁ+aﬁﬁﬁ@—%+w}(M)
p(b) = N(®/,S) = azexp [—%(b—bf)TS_l(b—bf)}, (15)

1
p(e) = N(@,Q) = ay exp [—E(e—efﬂQl(e—ef)]. (16)

The probability density p(y) does not depend on any of the estimated parameters x, b
or e, but only on their priors. Maximizing the a posteriori probability is equivalent to
minimizing the following cost function (this is quadratic if the observation operator
is linear):

S5 b€ = 35— HO0 — DR (y — H — b)

+ l(x —¥ + el [P1'x—¥ +e
2
" | (17)
+ §(b —bH's ' -v)

+ %(e—ef)TQ*‘(e—ef).

A remark is worth making with regard to Eq. (14) and the resulting cost function
given by Eq. (17). In a dynamically evolving system, the forecast is not indepen-
dent of the model bias since it depends on the model bias in the previous time step.
A cross covariance between x and e should be introduced accordingly. A better
approach is to account for the time dependence in the estimation problem and intro-
duce the model bias as a tendency on the state. For the purpose of this derivation, we
will neglect the cross-covariance term. This issue will be treated later in this chapter.
We should also remark that assumption (6) should not be confused with the fact that
b usually depends on x. Assumption (6) only says that the true state does not depend
on the observation bias. The dependence of b on x can introduce a cross-covariance
term in the cost function. It is possible however, to avoid such a term by making b
depend on ¥’ rather than x’ which for all practical purposes should be sufficient (one
should consult the Appendix in Ménard et al. 2000 for an example).
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3.2 Sequential Formulation
The equations for the sequential formulation are found by setting to zero the partial

derivatives of J with respect to x, b, and e. When H is linear we obtain a set of
coupled linear equations,

[(P)'+H' RT'H]x+H'R"b+ @) le=@®) ¥ +H'R 'y (18)
R'HX +®R'+SHb =R 'y+s (19)

Yl +I@HYT+Qlle=®) ¥ +Q7Y (o)

where X, f), € are the estimated or analysis values, and H is the Jacobian of the obser-
vation operator (see chapter Mathematical Concepts of Data Assimilation, Nichols);

H is the transpose of H. Multiplying Eq. (19) by H' and using Egs. (18) and (20)
we can eliminate X from the system and we get

H'S 'b-b)+Q '@—¢)=0. Q21

Using the matrix inversion lemma or the Sherman-Morrison-Woodbury formula
(see, for instance, Lewis et al. 2006), Eq. (18) can be rewritten as

f=x —¢+Kly—b—Hx —&)] (22)

K=PH HPH +R), (23)

which requires knowledge of the model bias estimate € and the observation bias

estimate b. The model bias estimate € can be obtained by eliminating X from Egs.
(22) and (20),

é=¢ —Lly—b-Hx —¢)] (24)

L = QH'(HP'H" + HQH' + R)™', (25)

but then it depends on the knowledge of the observation bias estimate. Finally, the

observation bias estimate can be obtained from Egs. (24) and (21) by eliminating €,
and we get an expression that depends only on forecast (or prior) values,

b=b+My—b —H — &), (26)
M =SHPH +HQH” + R+ S)"\. (27)
In this semi-coupled solution, the system is first solved by estimating the observation

bias, then the model bias, and then the state. We note, however, that it requires the
inversion of three different error covariances.
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An entirely uncoupled system solution and much more practical form can be
obtained by substituting Eqgs. (26) and (27) into Egs. (24) and (25) and using the
following identity (S — X)~'(SX~! —I) = X~ ! to obtain,

é=¢ —L*y—b - HK —¢)] (28)

L* = QH'HP'H” + HQH” + R+ )7/, (29)
and, similarly, by substituting Eqs. (26), (27), and (29) into Eqgs. (22) and (23) to get

x=x —¢ + K[y —b —H — &) (30)

K* =P + QH'HP'H’ + HQH” + R+ S)"". 31)

The presence of Q in the first term in parentheses in Eq. (31) comes from the use of
model forecast bias rather than model analysis bias as in Eq. (22).

In this new formulation (Egs. 26, 27, 28, 29, 30, and 31), the same observation
residuald =y — b — H(xf —e ) is used in all equations. Also, only one matrix,
ie., X = HPHT + HQHT + R + S, needs to be inverted. The appearance of the
observation in the analysis equations for the state, model bias and observation bias
does not mean that the information content of the observation is used three times, as
was noted in Dee and Todling (2000); Egs. (26), (27), (28), (29), (30), and (31) can
in fact be rewritten in the following form

— QH'S (b — b)) (32)

which shows clearly that the observation information, d, the innovation vector, is
used only once.

Schemes where only the model is biased or only the observations are biased are
easily derived from this general formulation. The form given by Eq. (32) also shows
clearly that the bias can be estimated separately from the state estimate, the so-called
bias-separation property (Dee and da Silva 1998). It is important to note, however,
that the bias-separation property found by Friedland (1969) actually referred to the
separation of the propagation of error covariances in a Kalman filter, which only
occurs for a constant model bias with no stochastic forcing. The bias-separation
property in the state-bias variables in form given by Eq. (32) (see Dee and da Silva
1998) seems to occur in any optimal linear system, and is just a reflection of the fact
that the observation information is only used once.
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4 Observation Bias Correction Schemes

An important, and actually one of the first, application of bias estimation has
been for correcting satellite observations. Radiance observations from satellites
usually have large systematic errors. It is essential to remove these biases in the
measurement to properly extract the information content for data assimilation.

Consider the typical problem of temperature remote sensing. Systematic errors
in measurements and radiative transfer are typically much larger than the model’s
short-term forecast (e.g. 6 h) bias. The mean observation residual is then a good
approximation of the observation bias

(y — H(x)) ~ (&°). (33)

In the troposphere, the model short-term forecast error is constrained and, to a
certain extent, negligible due in part to the fact that other accurate observations such
as radiosondes are used in the assimilation. In the middle and upper stratosphere and
for other components of the Earth system that are not so well sampled by accurate
observations, the property (2) (Eq. 6) may not be valid.

Following Eyre (1992), a parametric form is used to represent the observation
bias as a scan angle bias B¢ and an air mass correction represented as regression
of N atmospheric predictors, and which is introduced to account for the fact that
radiative transfer systematic errors are state-dependent,

N
b=+ Z Bipi(x), (34

i=1

Typically, only a few predictors are chosen in order to avoid overfitting. It is usual
to have as predictors:

e geopotential thickness of the layer 1,000-300 hPa;
e geopotential thickness of the layer 200-50 hPa;

e geopotential thickness of the layer 50-5 hPa;

e geopotential thickness of the layer 10-1 hPa.

Different approaches have been proposed to estimate the parameters §;: a static
scheme; an adaptive off-line scheme; and an adaptive on-line or variational bias
correction scheme.

4.1 Static Bias Correction Scheme

In the static scheme, the optimal values of the parameters are calculated from a
set of observations and background x” from a control assimilation over a period
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of typically a month. The parameters are then fixed and applied to all subsequent
analyses.
This scheme is implemented by minimizing the cost function,

18 =305 [ve— () —b®)] R [y -7 () b)) 69
k

Figure 2 illustrates the effect of this scheme for AMSU-B of NOAA-16 (Garand
et al. 2006). Panel (a) shows the raw radiances without any bias correction for
channels 2-5 as a function of scan angle. Panel (b) shows the radiances after the
scan position bias correction. Panel (c) displays the radiances after scan angle bias
correction and air-mass correction. Panel (d) shows the standard deviation.

Note how the curvature of the mean observation residual line has been eliminated
after the scan angle correction. We also observe that the air-mass correction reduces
the observation bias by almost an order of magnitude. Finally, we note also that, in
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Fig. 2 Mean AMSU-B observation residuals (O-P, observation minus forecast) versus scan posi-
tion. (a) Raw radiance data; (b) after scan angle bias correction; (c) after bias correction and
air-mass correction. Corresponding standard deviations are given by (d). First and last 7 scans
not used
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practice, the bias correction is made for each channel individually so, in principle,
the value of R is irrelevant in the minimization.

4.2 Adaptive Off-Line Bias Correction Scheme

Changes in the nature of the bias such as during contamination, instrument prob-
lems or changes in data processing, cannot be accounted for properly by the static
bias correction scheme. An adaptive bias correction scheme is an off-line bias cor-
rection scheme similar to the static scheme but where the parameters pi are updated
continuously (but not the predictors nor the scan-angle correction). Typically, the
updates are made at each analysis cycle and the correction is made prior to each
new analysis, by minimizing the cost function,

1
T =5 [Vt = Mot (1) = bBO] R [y = Mot (x{,) — b(By)]

+ %(Bk — B ) =T B — B
(36)
k increases by one after each analysis cycle. X is equivalent to S, but for the param-
eter value space, and controls the quasi-stationarity of the bias parameters. The
second term in Eq. (36) acts like an inertia constraint (i.e., B; does not change easily
with time) but the value of X is somewhat arbitrary.

The off-line adaptive scheme cannot distinguish observation bias from model
bias. As shown by Auligné et al. (2007), if a model bias is present, the information
that pulls away the model from its biased solution is gradually removed by the bias
correction as it gets contaminated by the model bias, and the scheme converges
eventually to the model biased solution.

4.3 Adaptive On-Line Bias Correction Scheme or Variational
Correction Scheme

A better approach is to update the bias inside the assimilation system by finding

corrections that minimize the radiance departure while simultaneously improving

the fit to other observed data inside the analysis cycle. This is achieved by including

the bias parameters in the control state vector of the variational analysis problem.
The cost function to minimize is of the form,

1
I, B) = Sy —Hx) - bR [y — H(x) — b()]
+ %(x—xf)T[Pf]*l(x—xf) (37)

1
+5B =B =B -8
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This approach was first developed at NCEP (Derber and Wu 1998) and
then implemented at the European Centre for Medium-Range Weather Forecasts,
ECMWEF (Dee 2004). The adjustment balances the uncertainty of the state forecast,
the observations and the inertia constraint on the bias parameters. It accounts nat-
urally for all observations simultaneously inside the analysis. This approach shows
some robustness in presence of model bias (Auligné et al. 2007) but, most impor-
tantly, goes a long way towards the automation of satellite bias corrections, which is
becoming critical in numerous weather prediction centres as more and more satellite
observations are assimilated.

Finally, we add that other bias models other than the scan angle-air mass factor
correction are in use. The so-called gamma-delta method introduced by Watts and
McNally (2004) is based on the assumption that the main bias comes from system-
atic errors in the radiative transfer model that can be modelled by a multiplier of the
total optical depth.

5 Model Bias Correction Schemes

Model systematic errors can be estimated and incorporated in the state estimation
using data assimilation. Model error is generally represented by an added term to
the model forecast and is either a deterministic or stochastic term. Several meth-
ods have been proposed; they fall into two main categories, static estimation and
dynamical estimation schemes, depending on whether the bias evolution of errors
(either implicit as in 4D-Var or explicit as in a Kalman filter scheme) is accounted
for (dynamical) or not (static) in the optimization scheme.

5.1 Static Schemes

Static schemes have constant error covariances. The background (or forecast) error
covariance and the bias error covariances are not propagated in time nor updated
as a result of observations, but the model bias is allowed to evolve in time. Static
schemes were first developed by Dee and da Silva (1998), where it was assumed
that the observation errors have no biases. It is a special case of the more general
bias analysis derived in Sect. 3 above. As in the general case, these schemes can be
formulated either as a sequential or parallel scheme, which takes the following form
in the case of no observation bias:

e In a sequential form, the bias estimate is computed first

é=¢ —Lly—H¥ —¢)] (38)

L=QH'HPH" + HQH” + R)~!, (39)
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It uses a bias prior or bias forecast ¢ which can be estimated from the previous
analysis in the case of a constant bias, or a forecast bias following an evolution
law. Once € is computed then the state estimate can be computed as

$=¥ —é+Kly-Hx —&)] (40)
K =PH/'HPH +R)!, (41)

This scheme has the advantage of using the same gain matrix as the usual
unbiased estimation problems;

e In a parallel form, both state and bias estimates can be computed independently
of each other. It uses Eqgs. (38) and (39) for the model bias estimate, and

=¥ —¢ + K[y —Hx —¢&)] (42)
K* = (P + QH/HP'H + HQH” + R)"!, (43)

for the state estimate. Contrary to the sequential scheme, the observation-minus-
model residuals are the same in both bias and state analysis equations. Also,
the matrix to be inverted is the same in both cases. In a PSAS (Physical Space
Assimilation System; see chapter Variational Assimilation, Talagrand) algorithm
the conjugate gradient step need only be solved once.

The equivalent 3D-Var scheme derives directly from Eq. (17) letting b = 0 and
has no S penalty term. In practice, Q is unknown, but Dee and da Silva (1998)
suggested making the assumption that the model bias correlation scales are roughly
the same as those of the random components of the error covariance and, thus, an
approximation of the form

Q=yP, (44)

can be used. Furthermore, if we assume that the model systematic error is small
compared to the random forecast errors, i.e., y < 1, the bias gain matrix L can then
be approximated as,

L =yPH'[(1 +y)HPH + R]"! ~ yK. (45)

This can reduce the computational cost since only one gain matrix needs to be
computed. Note that an optimum interpolation type of analysis solver would benefit
from this latter approximation, but a conjugate gradient solver in PSAS would not.

A successful implementation of the static scheme was performed by Dee and
Todling (2000) for the moisture analysis, and using a constant bias. The parameter
was tuned to reduce the energy of the long-wave portion of the spectrum of bias
corrected observed-minus-forecast residuals so as to become as flat as possible. It is
interesting to note that the bias-corrected observation-minus-forecast residuals were
fairly white in the mid troposphere but showed degradation near the surface and
higher up near the tropopause.
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While some model errors are persistent, others are cyclical, and others, although
not cyclical, are predictable. In an ocean data assimilation problem, Chepurin et al.
(2005) used an EOF (Empirical Orthogonal Function) analysis of observed-minus-
forecast statistics to model the model bias. Leading EOFs that evolved in time were
used as the bias evolution model. To untangle the random component from the sys-
tematic component of the forecast errors, they assumed that the spatial scales of the
systematic errors were basin-wide while random forecast errors had shorter length
scales in comparison. This assumption is completely different from that of Eq. (44),
but the results showed an improvement in the analyses.

The effectiveness of the bias correction strongly depends on the actual form of
the bias model used. In a land surface model a skin temperature bias correction
that accounts for diurnal variation was shown to be very effective (Radakovich et al.
2004). In the context of model ozone bias, Dee (2005) was able to construct a predic-
tive bias model using analysis increments and a fit to a lag-6 autoregressive moving
average model. In the simple context examined by Dee (2005) the bias correction
indicated an improvement in the RMS (root-mean-square) analysis error, but, unfor-
tunately, the scheme was never implemented. The question of using an additive bias
model was also revisited with simplified models in the context that the truth model
and forecast model may have different attractors (Baek et al. 2006).

5.2 Dynamical Schemes

Dynamical schemes account for the evolution of the state and model bias in the
optimization problem. Kalman filtering, the Ensemble Kalman filter (EnKF), and
4D-Var (strong and weak constraint) algorithms have been developed to address
this problem (see chapter Mathematical Concepts of Data Assimilation, Nichols,
for details of these assimilation schemes). To set the stage let us assume that the
evolution of the state can be described by

X = Myt (%) + Tr-1€f_y, (40)

and that of the model bias by

€ = Gi1 (1 X 1) @7)

T represents the transformation of the bias parameter space to the model state
space. The transformation Ty is used when a limited number of bias parameters
are estimated (in association with an appropriate bias evolution equation), other-
wise we assume that Ty = I when the bias parameters are identical to the model
variables. A zero-mean white noise can also be added to either one or both of
these equations. Such a term in the state equation (Eq. 46) represents the stan-
dard model error in Kalman filtering. A random noise added to the bias evolution
(Eq. 47), reflects the fact that the bias evolution equation is not perfect. In current
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state-of-the-art bias evolution models this is quite a valid assumption. The error
covariance of this random noise was introduced earlier in Sect. 3, as the covariance
matrix Q.

The modelling of bias evolution is fairly recent, and only simple forms have
been investigated so far — typically a product of a spatial function with a tempo-
ral function, which in the simplest case is just flat and thus represents a constant
bias, although with spatial dependence. Strong and weak constraint variational for-
mulations have been investigated with atmospheric models of diverse complexity
ranging from simple models to complex operational models. A limited number of
studies with generally simple models have also been conducted using a Kalman
filtering approach.

The feasibility of estimating model error bias using a strong constraint variational
method was first examined by Derber (1989). Using a low resolution limited area
quasi-geostrophic model and controlling only the model bias (and not the initial
conditions) with a bias model

& =fd(x,y, ), (48)

that has a prescribed time evolution, Derber (1989) was able to get consistently a
better fit to the control analyses and a superior forecast compared to a variational
assimilation problem controlled by the initial conditions only. The model was some-
what crude and, as expected, showed large biases in comparison with errors due to
initial conditions. With more sophisticated atmospheric models, it is expected that
the effect of the initial error will become more important. It is then necessary to
estimate both initial conditions and the model bias. Zupanski (1993) generalized
the variational assimilation problem of Derber (1989) to include a control over the
initial conditions, and the study was conducted with an operational weather pre-
diction model. Interestingly, in this approach the gradient of the cost function with
respect to the initial conditions depends on the adjoint variable at the initial time
as in the standard 4D-Var framework, and the gradient of the cost function with
respect to the model bias is evaluated in the same fashion as in Derber (1989). In the
experiments of Zupanski (1993), optimum interpolation analyses were used in place
of observations, thus introducing model information in the data. The results were
somewhat disappointing, showing that better results were obtained when a 4D-Var
estimation of the initial conditions was conducted first, rather than doing a simul-
taneous model bias and initial condition estimation. Griffith and Nichols (1996)
and Nichols (2003) explored further this approach by investigating other simple
bias models and touched upon the weak constraint problem, although only for a
special case.

A simple derivation of the adjoint equations when biases are considered can
be obtained using the Lagrange multiplier method. Consider for instance the cost
function,
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J(x0,€0) = % i — M) Ry [y — Ha(xo)]
k=0
% (xo - XO + eo)T B! (xo — x’(; + e0> (49)
#3(0-d) @' (-4

subject to the strong constraint,

= My—1 (Xf_y) + €, (50)
e = ,. (51)
The constrained optimization problem can be turned into an unconstrained prob-

lem by introducing 2N Lagrange multipliers \;(i = 1,...,N), ;i = 1,...,N),
and optimizing the new cost function

L(x0, €0, Xk, €, M, ki) = J(Xg, €p)

N
+ Y M Ixe — Mi—1(xe—1) + €11
; ‘ (52)

N
+ Z o (ex — ex—1).

k=1

The gradient of L with respect to each variable is

oL _ -
axo B! (Xo - X{) - eO) ~HjR; 'Iyo — Ho(x0)] — MgA,
JaL

:-B*‘( o ) 71( _ef)—x—
a_eo X0 —X;—¢€) +Q €0 0 1
0L _ _yrg-! H A — M
a—x]{ = —Hp Ry [yk - k(xk)] + k — k M1

9L (53)
— = =M1+ R — By

aek

oL Tr—1

Pl —HyRy [yy — HvGEN)] + My
XN

oL

den =Ry

From the end condition at k = N we get Ay41 = pyy | = 0. The first equation
in Eq. (53) above can be rewritten as
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oL
9L _p! (xo —x) 4 eo) — %o (54)
BX()

and to obtain the gradient of L with respect to eg, we need to iterate backward the
fourth equation of Eq. (53) from k = N to k = 0 to get an expression for v,

N
i=1
and then we get
a—L——B_l(x —xf—e>+Q_1(e —ef)—ix- (56)
3eo = 0 0 0 0 0 i

i=1

The introduction of ey in the model background penalty term (i.e., Jp) introduces
a direct coupling between xg and e in Egs. (54) and (56). It is interesting to note
that if we had not introduced this dependence in Jp, the resulting minimization con-
ditions would have been the same as for the weak constraint case with a constant
model bias considered in Griffith and Nichols (1996).

Unexplained model biases are unavoidable and they dictate the use of a weak
constraint approach. Neglecting to include random model errors may result in over-
fitting the analyses and degrading the forecast skill, as was first demonstrated by
Wergen (1992). Ménard and Daley (1996) diagnosed the effect of a strong constraint
in 4D-Var using Kalman smoother theory. The variational formalism of weak con-
traints was first introduced by Sasaki (1970). The first implementation was done
by Bennett and co-workers (Bennett 1992; Bennett et al. 1993, 1996, 1997) using
the representer method which reduced the size of the assimilation problem to the
number of observations. Amodei (1995) and Courtier (1997) also introduced an
extension of the 4D-PSAS that accounts for random model error, by increasing the
size of the control state vector. Zupanski (1997) applied a weak constraint 4D-Var
to an operational limited area model with model error represented by a first-order
Markov process but in which the estimated random component is defined at a
coarser resolution in time and space.

At ECMWEF a research effort on weak constraint 4D-Var spanning several years
was conducted by Trémolet (2003, 2006, 2007). Using a simple bias evolution
model, namely a piece-wise constant, Trémolet investigated issues related to oper-
ational implementation such as the reasons for the limited success of model error
estimation. He first noted that the model bias error covariance proposed by Dee
and da Silva (Eq. 44) has little noticeable impact on the forecast, as the cumulative
effect of the model-error forcing approximately compensates for the differences in
initial conditions. Using the parallel form of the bias estimation problem (Egs. 38,
39, 42, and 43) Trémolet noted that the basic difference between the model bias
increment and the state increment comes from the leftmost matrix appearing in the
gain matrices L and K*. If Q is taken to be proportional to P/, the initial condition
increment and the model bias increment are constrained in the same direction and
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Fig. 3 Horizontal temperature correlations for the background error (panel a) and for the model
error (panel b) (Trémolet 2007; © Royal Meteorological Society)
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are of opposite sign. The model bias is restricted to the same subspace as the initial
condition increments and they differ only in their relative amplitude. An alternative
method was presented by Trémolet. Since model error arises as a tendency in the
model prognostic equation, model tendencies derived from an ensemble of forecasts
should represent a distribution of the possible evolutions of the atmosphere from the
true state. The spread of these tendencies may be a good first guess for the model
error covariance. Figure 3 shows an example of the model error covariance hori-
zontal correlation for temperature (panel b) as a function of height compared with
the background error covariance (panel a). The model error covariance has much
smaller scales than the background error covariance and thus provides an additional
source of information for the model bias estimation.

6 Conclusions

A standard assumption in data assimilation is that neither observations nor the model
have systematic errors, i.e., biases. In reality, models and observations often have
systematic errors that cannot be neglected in comparison with the error standard
deviation. In some cases, as in satellite remote sensing, systematic errors can be
as large as the random component. When observations or the model have biases,
an assimilation scheme based on the standard assumption will produce analyses
that are still biased although it may be somewhat reduced. The presence of biases
does in effect reduce the ability of observations to be used effectively in a model
no matter how the error statistics are prescribed. Removing biases at the source
or by a bias correction scheme is one way to produce an analysis that is unbi-
ased. Over the years and, particularly recently, significant progress has been made
to include on-line bias estimation and correction schemes in the assimilation sys-
tem. Although data assimilation theory can be formulated where both observations
and models have systematic errors, the outstanding issue of bias estimation is the
problem of identifying model and observation bias from innovation statistics which
can only be solved by using additional information. The experience with opera-
tional models that is now building up may provide further insights on this particular
problem, and on the error statistics that are needed to address the problem of bias
estimation.

From a mathematical point of view, bias estimation of model error and observa-
tion error on-line with state estimation can be formulated in Kalman filtering form,
3-D variational (3D-Var) form, and 4-D variational (4D-Var) strong and weak con-
straint forms. In a Kalman filter form, the estimation can be formulated either as a
sequential process where the bias estimation is performed first and then state esti-
mation follows, or in parallel where both bias and state estimates are computed
concurrently and independently of each other. No special property or assumption
aside from linearity is needed for sequential and parallel estimation steps to occur.

The so-called bias separation introduced by Friedland (1969) actually refers to
the Kalman filter evolution of the error covariances of the bias parameters that can
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be separated from the evolution of the state and cross state-bias error covariances
which occur in the case of a constant bias treated as a strong constraint. The parallel
form of the estimation problem has allowed clarification of some theoretical and
practical issues about the bias estimation problem. In particular, it has been shown
that, in effect, the observations are not used twice (once for the bias estimation
and once for the state estimation) despite the fact that the observations may appear
twice in the combined state-bias estimation algorithm. Also, it is now clear that if
the model bias covariance error is based on the background error covariance, the
correction of the state actually compensates to a large extent the correction on the
model bias, and results in very little improvement in the forecast. It is thus important
that the subspaces spanned by the bias error covariance and state error covariance be
different. These new findings may shed some light on the outstanding issue of bias
estimation — how can we separate observation bias from model bias? More work in
that direction needs to be done and implementation in an operational system should
provide insights to this fundamental problem. The application of robust estimation
theory to the bias estimation problem (e.g. Kitanidis 1987; Simon 2006; Gillijns and
De Moor 2007) may be a promising avenue, as it would reduce our dependence on
unknown or poorly known error statistics.

Acknowledgments The author wishes to thank Stephen Cohn for the careful review of the
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The Principle of Energetic Consistency in Data
Assimilation

Stephen E. Cohn

1 Introduction

The preceding chapters have illustrated two essential features of data assimila-
tion. First, to extract all the information available in the observations requires
all the sources of uncertainty — in the initial conditions, the dynamics, and the
observations — to be identified and accounted for properly in the data assimila-
tion process. This task is complicated by the fact that the non-linear dynamical
system actually being observed is typically an infinite-dimensional (continuum)
system, whereas at one’s disposal is only a finite-dimensional (discrete) numerical
model of the continuum system dynamics. Second, to formulate a computation-
ally viable data assimilation algorithm requires some probabilistic assumptions and
computational approximations to be made. Those made in four-dimensional varia-
tional (4D-Var) and ensemble Kalman filter (EnKF) methods have been discussed in
Chapters Variational Assimilation (Talagrand) and Ensemble Kalman Filter: Status
and Potential (Kalnay), respectively.

The need to make assumptions and approximations makes it difficult in practice
to distinguish whether uncertainties perceived by a data assimilation scheme are
genuine, arising from the initial conditions, continuum dynamics and observations,
or are instead artificial uncertainties that arise from assumptions and approxima-
tions made in the algorithmic formulation of the scheme itself. It is even possible
that the latter dominate. For instance, in an EnKF for atmospheric data assimila-
tion, Houtekamer et al. (2005) have found that the “model error” perceived by the
filter — the total uncertainty accumulated from all sources not represented explicitly
in the filter formulation — is quite large. Houtekamer and Mitchell (2005, pp. 3284—
3285) go on to report that, when measured in a linearized total energy norm, this
uncertainty is comparable to what would be incurred by neglecting model “physics”
entirely. They conclude that much of it may originate in the analysis step, i.e., in
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assumptions and approximations made in the EnKF formulation for assimilating the
observations themselves. Considering that this uncertainty likely stems from a mul-
titude of sources beyond the discrete dynamical model, Houtekamer and Mitchell
(2005, p. 3285) suggest referring to it as “system error’ rather than model error.

This example serves to illustrate the fact that current data assimilation method-
ologies lack a mechanism for distinguishing clearly between artificial and genuine
sources of uncertainty. Such a mechanism would require a general principle depend-
ing only on known properties of the continuum system being observed, not on any
assumptions or approximations made in the formulation of the data assimilation
scheme itself. The present chapter states such a principle, called here the principle
of energetic consistency (PEC), demonstrates its validity for a wide range of non-
linear continuum dynamics, and illustrates its application to distinguishing sources
of uncertainty in EnKF methods. This and related applications of the PEC are dis-
cussed in Sect. 2, while supporting theoretical results are deferred mostly to Sects.
3,4, and 5 and three appendices. Concluding remarks are given in Sect. 6.

1.1 Applications

The key assumption of the PEC is that the non-linear continuum system being
observed has total energy as a scalar invariant property, and which can be expressed
in some state variables, called energy variables of the system, as the square of the
norm on a separable Hilbert space. For example, for the hydrostatic atmospheric
primitive equation dynamics discussed in Sect. 2.1, one set of energy variables is
comprised of s1 = u/px, 52 = V/Ps, 53 = /Ips and 54 = /ps, where u and
v are the zonal and meridional wind components, respectively, T is temperature,
and p, = ps — pr, with py the surface pressure and p; the (constant) top pressure.
The PEC can be made to apply also to systems having only total mass as a scalar
invariant, for instance to the assimilation of any number of chemically
interacting tracers, by taking the square root of the mass density of each tracer as a
state variable.

Applying the PEC to a data assimilation scheme requires the state variables of
the scheme to be chosen to be (discretized) energy variables. As discussed in Sects.
2.2 and 2.4, this requires no explicit change of variables in an existing numerical
model of the continuum dynamics, but it does require the observation operators
to be expressed in terms of energy variables. When the state variables of a data
assimilation scheme are chosen to be energy variables, the norm in which quantities
are measured represents actual total energy rather than a linearized total energy.

The principle of energetic consistency is stated precisely in Sect. 2.1. Briefly, sup-
pose that the state variables used to describe the continuum system being observed
are energy variables for the system, for instance s = (s1, 52, 53, S4)T in the example
above, where the superscript T denotes transposition. Then the total energy of the
continuum system at time 7 is E(f) = ||s(r)||?, where || - || denotes a Hilbert space
norm, and being a scalar invariant, E(t) is a property of the system itself, not of the
choice of state variables. The PEC states that
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where §(¢) and P(¢) are, respectively, the mean and covariance operator of s(¢), the
symbol tr denotes the trace operator, £ is the expectation operator, and it is assumed
that EE(f) < oo. The trace of the covariance operator is called the total variance,
or total uncertainty, in the system state s(#). Thus the PEC partitions the expected
value of the total energy of the system into two parts, a “certain” part, namely the
total energy [|S(r)||> of the mean state, and an “uncertain” part, namely the total
variance tr P(f). By way of this partitioning, the PEC says that the mean state and
the covariance operator must be energetically consistent. Mathematically, the PEC
is the extension to second-order Hilbert space-valued random variables (defined in
Appendix 1) of the familiar result that ¥* 4 0> = £x for a scalar random variable
x with mean X = Ex and variance o2 = £(x — X).

The principle of energetic consistency is a general statement that requires little
in order to be valid. It is not a statement about any particular continuum dynamics,
but rather about a large class of dynamics. However, if the dynamics are also con-
servative, i.e., if E(f) = E(to) for every initial state, where t > o and 1y is the initial
time, then the PEC implies immediately that

IS()II* + tr P(r) = [[8(t0)||* + tr P(zo).

This statement of energy conservation is an exact dynamical link between just the
first two moments of the continuum system state. It says that the total variance of
the continuum state can increase (decrease) only as a result of extracting energy
from (inserting energy into) the mean state, with the change in total variance bal-
anced exactly by the change in total energy of the mean state. Special cases of
the PEC written essentially as this statement of energy conservation have been
recognized and used for different purposes by Kraichnan (1961), Epstein (1969),
Fleming (1971), Cohn (1993, pp. 3131-3132), and Cohn (2009).

In Sect. 2.2 of the present chapter, it is shown that a conditional version of the
PEC holds:

IS5 011 + e PE(r) = EEDY),

where §k(t) and PX(r) are, respectively, the conditional mean and conditional covari-
ance operator of s(#). Here the conditioning is on arbitrary observation vectors
y, = yt).,i = 1,...,k, and yk = (le,...,y,{)T denotes the vector of all the
observations up to time #;. Like the PEC itself, the conditional version is a gen-
eral statement, requiring little for validity, in particular requiring no assumptions on
the relationship between the observations and the continuum state.

Ensemble Kalman filters are designed to calculate a discrete approximation to
the conditional mean and covariance operator, under a number of assumptions (e.g.
Anderson and Anderson 1999). The generality of the conditional version of the
PEC is what makes it useful for distinguishing genuine and artificial sources of
uncertainty in EnKF schemes. The conditional version of the PEC does not apply
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directly to 4D-Var methods, however, because these are designed to approximate the
conditional mode, under a number of assumptions, rather than the conditional mean.
Some remarks on application of the PEC to 4D-Var methods are given in Sect. 6.

It is shown also in Sect. 2.2 that, as in the finite-dimensional case, the conditional
mean state is the minimum variance state estimate: it minimizes the expected value
of the total energy of the estimation error, under the sole assumption that this expec-
tation is finite. More generally, for any choice of state variables that are not energy
variables, the conditional mean state still minimizes the expected value of linearized
energy norms of the estimation error. However, unlike the actual total energy of the
estimation error, a linearized energy norm does not measure an intrinsic property of
the observed continuum system, but only a property of the choice of state variables.
Thus the fact that the conditional mean state is the minimum variance state estimate
provides by itself a good reason to choose the state variables of an EnKF scheme to
be energy variables.

Section 2.3 gives relationships that the PEC implies for arbitrary discretizations
of the continuum dynamics, and Sect. 2.4 applies these to provide relationships that
are supposed to be satisfied by EnKF schemes. The relationships corresponding to
those that hold for conservative continuum dynamics are especially useful for testing
the effect of the various assumptions and approximations made in EnKF schemes.
When what is supposed to be a conservative continuum environment is simulated
numerically, for instance in the case of an atmospheric model by turning off the
model physics and simulating only the dynamics, these relationships can be used
to verify whether or not a given assumption or approximation creates an artificial
energetic source (or sink) of uncertainty. This kind of diagnostic test is completely
analogous to energy conservation tests run on a numerical model of the dynamics
during model development.

Section 2.4 uses these relationships to obtain theoretical results on some com-
mon approximations as artificial sources or sinks of uncertainty, including limited
ensemble size, use of the sample covariance, covariance localization, the linear
Kalman-type analysis update, and perhaps most importantly, use of a discrete
dynamical model. Section 2.4 concludes with an analysis showing that a significant
loss of total variance can occur as a result of even slight, but spurious, numeri-
cal dissipation typical of discrete model dynamics. The analysis shows further that,
because the assimilation of observations continues to feed energy into small spa-
tial scales, only to be dissipated away again, spuriously, during subsequent model
integration of each ensemble member, the total variance can decay exponentially.
Thus the interaction between spurious model dissipation and the assimilation of
observations can cause ensemble collapse and filter divergence if left untreated.

This spurious loss of total variance, compounded by the assimilation of obser-
vations, is a problem not only for ensemble Kalman filtering per se. It has been
observed to occur also for a full-rank Kalman filter in a study of stratospheric con-
stituent data assimilation by Ménard et al. (2000) and Ménard and Chang (2000),
making itself evident in that case by the presence of total mass as a supposedly
conserved scalar. This problem may explain much of the need for the large “sys-
tem error’” term invoked by Houtekamer and Mitchell (2005, p. 3285), and for the
“covariance inflation” factor proposed by Anderson and Anderson (1999, p. 2747)
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which has become a common design feature in EnKF schemes. The analysis of Sect.
2.4 suggests a way to remedy this problem directly, in essence by undoing the spu-
rious dissipation that acts on the ensemble perturbations. That the proposed remedy
can be properly “tuned” is assured by the statement of energy conservation provided
by the PEC.

1.2 Theory

The essential requirement for the principle of energetic consistency to be valid is for
the state of the non-linear system being observed to exist as a second-order Hilbert
space-valued random variable over a closed time interval. The remaining sections of
this chapter give general hypotheses under which this is the case. The emphasis is on
continuum dynamical systems that are deterministic and may conserve total energy,
but have a random initial state, since it is in the conservative case that the PEC has
the most immediate applications indicated above. In the language of partial differ-
ential equations, this means that of primary interest in the rest of the chapter is the
stochastic initial-value problem for non-linear hyperbolic systems. The parabolic
case is encountered more frequently than the hyperbolic case in the literature on
stochastic partial differential equations, but parabolic systems are usually not con-
servative and have a fundamentally different character than hyperbolic ones. Loss
of total variance due to spurious dissipation in an otherwise conservative system is
an illustration of this difference.

Section 3 gives the main theoretical results for stochastic initial-value prob-
lems on an arbitrary separable Hilbert space. Section 3.1 describes the abstract
problem setting, and Sect. 3.2 summarizes the theory of Hilbert space-valued ran-
dom variables which is given in more detail in Appendix 1. Theorem 1 in Sect.
3.3 states hypotheses under which the stochastic initial-value problem defines a
second-order Hilbert space-valued random variable over a closed time interval, with
conservative dynamics as a special case. Section 3.4 discusses the simplification of
Theorem 1 that occurs if it is assumed that the total energy of every realization of
the initial state is bounded by a constant. Such an assumption yields a convenient
characterization of the system state, and also restricts the class of probability distri-
butions that the system state can have at any time. For instance, the state cannot be
Gaussian-distributed under such an assumption.

Section 4 shows how Theorem 1 is applied to verify the PEC for classical solu-
tions of non-linear systems of differential equations. The stochastic initial-value
problem for ordinary differential equations is treated in Sect. 4.1, and for symmet-
ric hyperbolic partial differential equations in Sect. 4.2. For the hyperbolic case,
well-posedness of the stochastic initial-value problem turns out generally to require
boundedness of the total energy of every realization of the initial state. Thus the
solution is not Gaussian-distributed at any time, but it can be characterized in a
convenient way.

The results of Sect. 4.2 are applied to the global non-linear shallow-water equa-
tions as a concrete example in Sect. 5. For the shallow-water equations, 51 = uv e,
s> = vo/@® and s3 = @, where @ is the geopotential, comprise a set of energy
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variables. Smoothness conditions satisfied by every realization of the solution
s = (s1,52,53)0 of the stochastic initial-value problem are given. Every realiza-
tion of the geopotential field is bounded from below by a single positive constant,
and a characterization of the solution is used to show how such a random field can
be constructed for the initial condition. The trace of the covariance operator can be
expressed as

trP(t) = / tr P(x,X) a” cos ¢ dep da,
S

where the integration is over the sphere S of radius a, P; is the 3 x 3 covariance
matrix of the stochastic shallow-water state at time z, X = (A, ¢) denotes location on
the sphere with X the longitude and ¢ the latitude, and tr C denotes the trace, or sum
of the diagonal elements, of a matrix C.

Appendix 1 covers the theory of Hilbert space-valued random variables,
Appendix 2 treats the theory of families of Hilbert spaces which are needed to han-
dle spherical geometry, and Appendix 3 summarizes mathematical concepts and
definitions used in the text.

2 The Principle of Energetic Consistency: Some Applications

2.1 The Principle of Energetic Consistency

Denote by s = (s1, . .. ,s,,)T the state vector of the continuum system whose state is
to be estimated. Assume that the state variables s, ...,s, are energy variables for
the system. By this it is meant that there is a real, separable Hilbert space H, with
inner product and corresponding norm denoted by (-, -) and || - ||, respectively, such
that the total energy E = ||s||? is a scalar invariant of the system, i.e., a property of
the system itself and not of any choice of state variables.

For example, n = 4 in the case of hydrostatic atmospheric dynamics mentioned
in the Introduction, and 5| = u/ps, 52 = V\/Px, 53 = /Tps and s4 = /p, are
energy variables. This is seen by writing the total energy integral for a (shallow)
hydrostatic atmosphere as

1
E=/// s’ Asdo a?dS,
0

where s = (s1, 52, 53, S4)T, A is the diagonal matrix

A= édiag (%, %,cp,(ﬁs) ,

g is the acceleration due to gravity, ¢, is the specific heat of (dry) air at constant
pressure, ¢ is the surface geopotential, a is the Earth radius, the double integral is
over the sphere with element of surface area a>dS, and o = (p—p;)/px is the vertical
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coordinate where p is pressure; cf. Kasahara (1974, Eq. 5.18 and p. 516).! In this
case, H is the Hilbert space of real 4-vectors with fourth component independent of
the vertical coordinate o, with inner product

1
(f,g):/// 7 Agdo a*dsS
0

and corresponding norm | g|| = (g, 2)!/2 < oo, forall f,g € H. Similarly, n = 3
for shallow-water dynamics, and s; = uv/®@, s» = v/® and 53 = @ are energy
variables. As discussed further in Sect. 5, in this case H is the Hilbert space of real

3-vectors with inner product
o= [ [fedas

and corresponding norm ||g|| = (g, 2)!/2 < oo, forall f, g € H.

Let (2, F, P) be a complete probability space, and assume that the system state
s = s(¢) is an H-valued random variable, for all time ¢ in a closed time interval
T = [ty, T]. This means that, for each t € 7 and each g € H, (g,s(?)) is a scalar
(real) random variable on (€2, F, P). Randomness of the system state may arise, for
instance, from a random initial condition s(fy), from uncertain parameters in the
system dynamics, or from stochastic forcing of the system dynamics.

Since s(¢) is an H-valued random variable, the total energy E(f) = ||s(t)||2 is
a scalar random variable, for all r € 7. Assume that £E(f) < oo forall t € T,
where £ denotes the expectation operator, which is defined only for scalar random
variables on (€2, F, P). It follows (see Appendices la—1c for details) from the stated
assumptions that, for all 7 € 7, there exists a unique element §(¢) € H such that

(8.5(1) = £(g,s(1)) ey

for all g € 'H, called the mean of s(¢), and a unique bounded linear operator P(¢) :
‘H — H such that

(£, P(g) = & [(£,s(1) — 8(1))(g, s(1) — 5(1)] )

I'Staniforth et al. (2003) point out that the total energy of such an atmosphere is actually E + E/,
where E’ is the constant

1 1
E’:f/// qﬁsp,daazdS:&//(bsazdS,
g 0 g

and they give corresponding expressions for E and E’ for deep and/or non-hydrostatic atmospheres.
Also, note that a moisture variable is not considered to be an atmospheric state variable for the
purposes of this chapter, since moisture in the atmosphere contributes only indirectly to the total
energy integral. Thus, choosing state variables to be energy variables does not imply a choice of
moisture variables. Dee and da Silva (2003) discuss the many practical considerations involved in
the choice of moisture variables.
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for all f,g € H, called the covariance operator of s(¢), and further that these are
related by

I5(0)]1> 4 tr P(t) = EE(). 3)

The covariance operator is self-adjoint and positive semidefinite, and also trace
class. That is, the trace of P(t), defined for all t € 7 by

P =) (g PO)g),

i=1

where {g;}7°, is any countable orthonormal basis for 7, is finite and independent of
basis. Further,

trP(t) = Els(t) — s, 4

forallze 7.

Equation (3) is the principle of energetic consistency (PEC) in its strong form.?
It says that the sum of the total energy of the mean state and the total uncertainty in
the system, as measured by the total variance tr P(f), equals the expected value of
the total energy of the system. It is clear that each of the three terms in Eq. (3) is a
property of the dynamical system itself, not of the choice of state variables.

If ||s(¢)||* is not a scalar invariant but the other two assumptions are satisfied for
all t € 7, ie., if s(¢) is an H-valued random variable, with H a real, separable
Hilbert space, and if £ ||s(t)||2 < 00, then the mean state and covariance operator
still exist uniquely and satisfy

SO + tr P(r) = E|Is0)]
for all + € 7. This is a weak version of the PEC. It is weak because none of the

terms here has an intrinsic physical meaning: each measures a property only of the
state variables s1, . .., s, chosen to describe the dynamical system, not a property of

2To derive the PEC in the finite-dimensional case, apply the expectation operator to the identity

lIslI* = II81* + 2G.s") + [Is'I|*

where s’ = s — § and the time argument has been omitted, to obtain

5117 + E1I8I1> = E]lsl*.

Since (f,g) = f7Bg for some symmetric positive definite matrix B and all vectors f,g € H in
case H is finite-dimensional, it follows from the definition given by Eq. (2) that in this case the
covariance operator P has matrix representation P = £s's’7B, where the expectation operator
applied to a matrix of random variables is defined to act elementwise as usual. Therefore

EIISI? =&™Bs = Etrs's"B = tr&s's"B = trP.
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the system itself. In particular, the total variance tr P(¢) is not an intrinsic property
of the system if Is(1)]|2 is not a scalar invariant of the system.

The assumption that ||s(r)|| is a scalar invariant makes the principle of energetic
consistency (Eq. 3) a strong statement about the dynamical system itself. It is also
a general statement: no assumptions have been made on the system dynamics other
than the simple ones stated above, whose purpose is mainly to guarantee existence
of two moments of the system state. Similarly, the probability distribution function
of (g,s(t)) for any g € H and r € 7 has been left essentially free.

That only the first two moments of the system state appear in the PEC is due to
the fact that, by definition, the total energy E(f) = [|s(¢)||? is quadratic in the energy
variables s1, .. ., s,. Note that the total energy integral for a hydrostatic atmosphere
happens to be a cubic polynomial in the variables u, v, T and p*, which are typical
model variables for hydrostatic models. Also, for the shallow-water equations, the
total energy integral happens to be a cubic polynomial in the variables u, v and
@. It is not difficult to show that for a total energy integral that is an mth-order
polynomial in some state variables 51, .. .,s,, there is a relationship much like the
PEC among moments of these state variables up to order m only, provided all the
moments up to order m exist, and the expected value of the total energy. A theory
based on such a relationship would lack the simplicity of the one presented in this
chapter, which relies heavily on the assumption that the total energy is the square
of a Hilbert space norm. More importantly from a practical point of view, 4D-Var
and EnKF methods are designed to approximate the evolution of just the first two
moments of the system state: the PEC as stated is suited specifically to current data
assimilation practice. Further, choosing the state variables to be energy variables
is natural in the case of EnKF methods, because these are based on the minimum
variance optimality criterion, as discussed next.

2.2 Minimum Variance State Estimation

In addition to the assumptions stated in Sect. 2.1, assume now that for all € 7, the
state vector s(¢) is jointly distributed with some real, random p;-vectors y; = y(;),
i =1,...,k, called observation vectors, where f; < --- < f; are time instants in
T . This means simply that the p; components of each vector y; are scalar random
variables on the probability space (£2, F, P). This is the case, for instance, if the
observations are related to the state according to

y(#;) = hy(s(z;); w(z;)) 5
fori = 1,...,k, where w(t1), ..., w(#) are real random vectors, provided that the
observation operators h;,, . .., h;, are continuous in both arguments. Note that obser-

vation operators that are linear in variables such as winds, temperature or surface
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pressure are non-linear in the energy variables. The time #; can be thought of as rep-
resenting the current observation time. Let y* = (y],...,y/)T denote the random
pk-vector consisting of all the observations up to time #;, where pk = Z?:l Di-

Recall that if r is a scalar random variable, then the conditional expectation
E(rly®) is also a scalar random variable. Thus, £((g,s(r))|y*) is a scalar random
variable, for each g € H and all r € 7. In fact, since EE(t) = E|s(1)||> < oo for
all r € T, it follows that there exists an H-valued random variable §k(t), called the
conditional mean of s(¢), such that forallg € Handr € 7,

EIF*0I1? < o0,
and

(2,5 (1) = E((g, s(t)Iy") (6)

with probability one.®> Similarly, there exists a bounded, self-adjoint, positive
semi-definite, trace class, random linear operator Pk(t) . H — 'H, called the
conditional covariance operator of s(¢), such that for all f,g € H and t € 7,

€ P = & | (Es0) — 5 D). s(0) — S OIy | )

with probability one, and also

3This follows from Appendix 1d. Note first that
gl = E(@ YY),

where the time argument has been omitted, defines a random linear functional on . Let {g;}7°, be
a countable orthonormal basis for 7. Then

(12 < £ 921y
by the Schwarz inequality, and taking expectations gives

£ (+181)” < £ge?,
fori =1,2,.... Therefore,

N (Sk[gi])2 <) s’ =€) (2,9 =Ellsll* < oo.
i=1

i=1 i=1

Hence by the construction of Appendix 1d, there exists an H-valued random variable 5 such that
EII5°)1? < oo and, forall g € H,
@59 =gl

with probability one. The construction shows that 5* is defined uniquely on the set of & € £2 where
prad (sk [gl-])2 < 0o, which must have probability measure one.
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< 2
uPh@) = E(ls() — 5O 11y") ®)

with probability one.*
It follows that, forallt € T,

IS511* + P = EE@)YY) )

with probability one. Equation (9) extends the principle of energetic consistency
(Eq. 3) to include the effect of observing the dynamical system. Each of the terms
in Eq. (9) is a scalar random variable, accounting for the observations, and each
measures a property of the observed dynamical system. If ||s(r)|| is not a scalar
invariant but the remaining assumptions are satisfied, with £||s(r)||> < oo for all
t € T, then the corresponding weak version

IS O1* +  PX() = E(Is)]1*1y")
still holds, with probability one, for all # € 7. However, the terms here then have no
intrinsic physical meaning.

Now let §%(¢) be any H-valued random variable depending on the observations
yk , such that

EIRF@II* < 00 (10)

4To see this, first define the conditional covariance functional
it gl = €[ s — s — ¥

where the time argument has been omitted. The functional C* is a symmetric, positive semidefinite,
random bilinear functional on H. As in Eq. (64) of Appendix lc,

| Uitz = el gl £qlls = 541121y

for all f,g € H. Therefore, for each w € §2 where £(||s — §k|\2|yk) < 00, there exists a unique
bounded linear operator Pk . H — H such that (f, Pkg) = CH[f, g] for all f,g € H, and this
operator is self-adjoint, positive semidefinite, and trace class, with

Pk = &(lIs — 517155 .
But £(||s — 5|1 2|y¥) < oo with probability one, since
Ells — 88117 < 2&]1sl1* + 2€[84]1* < o0

by the parallelogram law. Thus the set of w € 2 where £ (lls — Ek\lzlyk) = 00 has probability

measure zero. Upon defining ¥ to be the zero operator on this set, it follows that ¥ is bounded,
self-adjoint, positive semidefinite and trace class for all w € €2, and that Eqs. (7) and (8) hold with
probability one.
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for all + € 7, which will be called an estimate of the system state s(f). It follows
from the parallelogram law (see Appendix 3d) that

Ells(t) =557 < 2EE@®) + 2E150)))? < o0.

The scalar random variable ||s(r) —$¥(7)||? is the total energy of the estimation error
s(1) —“'k(t). An estimate of s(¢) is called a minimum variance estimate if it minimizes
the expected value of the total energy of the estimation error, & ||s(f) — 50|12, over
all estimates §%(r). Thus, by definition, the property of being a minimum variance
estimate is an intrinsic property of the observed dynamical system.

The conditional mean state §¥(z) is an H-valued random variable depending on
yk, and it was already shown to satisfy Eq. (10). Thus the conditional mean state is
an estimate of the system state. Furthermore, by essentially the same argument as
in the finite-dimensional case (e.g. Jazwinski 1970, p. 149, Theorem 5.3 or Cohn
1997, pp. 282-283), one has

Ells(t) =35 011> = ElIs(r) — 55 @) 1> + EN15°() — 3F ()|

for all t € 7.5 Therefore,

SThis follows by taking expectations on the identity
lls =311 = [Is — §"]1” + 2(s — 5,5 =3 + |5 - %41,

where the time argument has been omitted, and noting that £(s — 5%, 5F — %) = 0 since

£ [(s — 5 & —E*)|yk] =0

with probability one. The latter equality can be shown in the infinite-dimensional case as follows.
Let {g;}7°, be a countable orthonormal basis for . Then

€ [(s —s 5 —“s*)|y’<] =¢ {Z(gi,s —§9(g;. 5" —E*)ka}
i=1
=Y ¢ [@s - @ s -]
i=1

since

- e <k ok w2\ 2 (onek 2} ?
€Y I(gns — s~ = (Ells—517) (I =3112) T < o
im1
cf. Doob (1953, Property CEs, p. 23). But foreachi = 1,2,.. .,

¢ s — e 8 — 5] = (@5 ~ 39 ¢ [(@is - 1Y ] =0

with probability one, since 5 — § depends only on y* and since & [(gns —sy* ] = 0 with
probability one.
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<k 2 <k 2
Ells(t) =" DII” = ElIs(r) —s" @)
for all t € 7, with equality if, and only if, Ek(t) = §k(t) with probability one. Thus
the conditional mean state is always a minimum variance state estimate, and any
minimum variance state estimate is identical to the conditional mean state with
probability one.

The conditional mean state has the following additional properties. First, taking
expectations in Eq. (6) and using Eq. (1) gives

E(g55) = E(g. () = (2.5(1))

for all g € H and ¢+ € 7. Thus the conditional mean state §k(t) has mean §(7).
Equivalently, the conditional mean state is an unbiased estimate of the system state.
It follows that

NS @ —s11* = EIB* D11 — 1501
for all r € 7. Taking expectations in Eq. (9) gives
EISF D% + £ uw PR() = EE®) (11)

for all + € 7, which is yet another extension of the PEC. Combining these two
results with Egs. (3) and (4) gives

Ells(t) —sD|)? = P& = E Pk + €550 — 50>

Therefore,

EuPr) < P®) (12)

for all + € 7. This means that in the expected value sense, the act of observing can
only reduce total variance or, possibly, leave it unchanged. Also,

EIE @ —5(0)1% < Ells(r) — 501 (13)

for all # € 7. This means that the conditional mean state can only be more concen-
trated about its mean than is the system state itself or, possibly, as concentrated. The
inequalities given by Egs. (12) and (13) still hold if ||s(r)||? is not a scalar invari-
ant, but in that case the inequalities have no physical interpretation intrinsic to the
dynamical system.
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2.3 Discretization

The principle of energetic consistency (Eq. 3) and its extension to include the effect
of observations (Eq. 9) are general relationships that apply independently of the
continuum dynamics and the observations. However, they are not yet quite in a
form directly applicable to computational methods for data assimilation, which are
necessarily discrete. To maintain generality, a generic discretization will now be
introduced.

Let H" be an N-dimensional subspace of H. For instance, H" could be the space
of all g € H that are constant on grid boxes of a numerical model of the contin-
uum dynamics, or the space of all g € H obtained by a fixed spectral truncation.
Then " is a (finite-dimensional) Hilbert space, under the same inner product and
corresponding norm as that of .

Let IT be the orthogonal projection operator from H onto H". Thus g € HN
and (I1f, g — I1lg) = O for all f, g € H. Denote by s,(r) = I1s(¢) the “resolved” part
of the state s(f) and by s, (f) = s(f) — s,(¢) the “unresolved” part, for all # € 7. Then
the total energy E(¢) = Is(1)||2 is the sum of the total energy in the resolved scales,
E, (1) = ||s+(1)||?, and that in the unresolved scales, E, (1) = ||s.(?)]|*:

E@t) = Ex(1) + Eu(1),
for all € 7. The components si, ..., sy of s,(¢) will be called discretized energy
variables.

From the definition of s,(7) and the fact that s(¢) is an H{-valued random variable
it follows that s,(¢) is an H"-valued random variable, and further that

Ells,(D11> = EEA(1) < EE(1) < o0

for all € 7. Therefore, s,(f) has mean §,(f) € H" and covariance operator P,(t) :
HN — HN, defined uniquely for all € T by the relationships

(g,5-(1) = E(g,s,(1) (14)
and
(£, Pr()g) = E [(£,8:(1) — 5:())(g, 8,(t) — 5,(1))] (15)

respectively, for all f,g € H". It follows that the principle of energetic consistency
holds for s,(7):

I8-(D)1* + tr Pr(r) = EE(1) (16)

for all t € 7, where
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N
trPA0) =) (g, PADE) = Ells-(1) — 5,0,

i=1

and {gi}f.vz | is any orthonormal basis for HN.

The discretized PEC (Eq. 16) can be written in some equivalent ways. For
instance, it can be verified that s,(r) = TIs(r) and that P,(z) = ITP(7), where
P(@t) : HY — H denotes the restriction of P(r) to HY, i.e., P(t)g = P(r)g for
all g € HN. Also, viewing elements of H" as real N-vectors, the inner product on
HY must be given by a real, symmetric positive definite matrix B,

(f.g) =fBg,
with corresponding norm ||f|| = (f,£)!/2, for all f,g € HN.® Then s,() is viewed
as a vector of real random variables and it follows from the definition given by
Eq. (14) that

S (1) = Esp(1),

where the expectation operator applied to a vector of random variables is defined to
act componentwise, so that

I15,()1> = 5L (1)B5,(7)

for all t € 7. Further, it follows from the definition given by Eq. (15) that P,(¢) has
matrix representation

P,(1) = E[(s,(t) = 5:(0)(s,(1) —5,(1) | B,

where the expectation operator applied to a matrix of random variables is defined to
act elementwise, so that

SFor instance, if HY consists of the elements of H that are constant on grid volumes V; of a
numerical model of hydrostatic atmospheric dynamics with an unstaggered grid, then the matrix B
is the block-diagonal matrix with diagonal blocks

szfffAdaa2dS,
Vi

where the diagonal matrix A was defined in Sect. 2.1. In the general case, H" is isometrically
isomorphic to the Hilbert space GV of real N-vectors with the stated inner product and correspond-
ing norm; cf. Reed and Simon (1972, Theorem I1.7, p. 47). Thus, viewing the elements of HN as
real N-vectors means it is understood that an isometric isomorphism has been applied to elements
of H" to obtain elements of GV. Then H-valued random variables become G"-valued random
variables, because an isometric isomorphism is norm-continuous.
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tr Pr(t) = tr P.(¢)

forallt e 7.
Just as Eq. (9) followed from Eq. (3), it follows from Eq. (16) that

SO +u Pk = & (Eoly") (17)

with probability one, for all # € 7. Here the conditional mean §’§(t) of s,(7) is an
HN-valued random variable with £ ||§]; (0]1* < 0o and satisfies

(2.550) = & (@ sy)

with probability one, for all # € 7 and g € H". The conditional covariance operator
Pf(t) : HN — HY of s,(¢) is a bounded, self-adjoint, positive semidefinite, trace
class, random linear operator satisfying

(£ PL0g) = &[5, — 5O 5:0) — SO

and

wPho) =€ (lis, ()~ SHOIPY) |

both with probability one, for all r € 7 and f, g € H". The equivalent ways of writ-
ing Eq. (16) described in the preceding paragraph apply similarly to Eq. (17). For
instance, the discrete conditional mean state can be defined as §lr‘(t) = 1'I§k(t), and
the discrete conditional covariance operator Pf () can be represented as a random
matrix, i.e., a matrix of random variables. It is clear that the discrete conditional
mean state is an unbiased estimate of the discrete system state s,(f).

Finally, let ”s"; (1) denote any " -valued random variable depending on the obser-
vations yX, such that 5||§],‘(t)||2 < oo forall r € 7. As in Sect. 2.2, it follows that the
expected value of the total energy of the estimation error s,(f) — 's”’;(t) is given by

Ellsr(t) =357 = Ellsn(r) — 550117 + EIB5 ) — 351> < 00

for all t € 7, and is therefore minimized (uniquely, with probability one) over all
estimates “s"r‘(t) by the discrete conditional mean state §Ir‘ (#). With this minimization
as the optimality criterion, the objective of data assimilation is thus to calculate §lj(t).
Taking expectations in Eq. (17) gives

EIFF@I? + Eu Py = EE (1)
for all t € 7, from which discrete counterparts of Egs. (12) and (13) follow.

One difficulty in attempting to calculate Ef(t) through data assimilation is that
the observations, for instance as given by Eq. (5), depend on both the resolved and
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unresolved parts of the continuum system state s(7). This dependence leads in turn
to the observation error due to unresolved scales, which is part of the so-called
representativeness error (e.g. Janji¢ and Cohn 2006, and references therein).

2.4 Application to Ensemble Kalman Filter Methods

2.4.1 General Formulation

Suppose now that a discrete model of the non-linear continuum dynamics is given,
in the general form

Xl‘,' = Mt,‘,l,',l(xtl‘,l)

fori =1,...,K, with tx > t, where M, , : Dx — Dy is continuous and Dx
is a domain (a connected open set) in RY. Typically the state variables x1,...,xy
are not discretized energy variables as defined in the preceding subsection, but
there is a known, continuous and invertible transformation X = X(x) from Dy to
a domain Dg € RY, with continuous inverse x = x(X), such that %1, ...,%y are
discretized energy variables. For instance, the simple transformation from typi-
cal atmospheric model variables (u, v, T, p,) defined on the model grid to gridded
energy variables (i./p«, v\/Ps» /TP« /P+) has the required properties, provided
that T and p, remain bounded from below by positive constants. Then the given
model is equivalent to the model

;ifi = Mfiyli—l &Ti—l )

fori =1,...,K, where M, ; , : Dy — Dg is continuous and is obtained as the
composition

My =Xo0 My oX,

fori = 1,...,K. Applying the principle of energetic consistency to a given model
thus requires no real change to the model, but only a change of variables before
and after each observation time to process the observations, which in general are
related non-linearly to the energy variables as in Eq. (5). Henceforth the tildes will
be omitted, including that for the domain Dk, and it is to be understood that the
model variables are discretized energy variables.

Denote by GV the Hilbert space of real N-vectors with inner product (f, g) = f’ Bg
and corresponding norm ||f|| = (f,f)l/z, for all f,g € GV, where B is the real,
symmetric positive definite matrix defined in the preceding subsection. Note that
the same symbols are used for the inner product and norm on H, but no confusion
should arise because the context will be clear. View the H"-valued random variable
s-(to) of the preceding subsection as a GV -valued random variable and let
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Xty = 8r(0)
where it is assumed that s,(fp) € Dx. Denote by
_ 2
Eq(ti) = [|X4]]

the total energy of the resulting discrete model state, fori = 0,..., K. Since M;,;,_,
is continuous, Xy, is a GV -valued random variable and E4(#;) is a scalar random
variable, fori=1,...,K.

Suppose now that the non-linear continuum dynamics are conservative, E(f) =
E(tg) forall t € T = [19, T], as is the case for dry hydrostatic atmospheric dynamics
and for shallow-water dynamics. In this case the principle of energetic consistency
(Eq. 3) reads

II8()I? + tr P(1) = EE(to) = const..
Suppose also for now that the given discrete dynamical model is conservative,
My B = 11611
for allf € Dy and fori =1,...,K. Then
EE4(t;) = EE4(ty) = EE(tg) < 00 (18)

fori = 1,...,K. It follows immediately that the mean state X;, = £x,, € G" and
covariance matrix Py, : GN — GV defined by

Pf,' = g [(Xt,' - it,‘)(xl[ - it,’)T] B
exist fori = 0, ..., K, and that they are related by
%, 11> + tr P, = EE,(19) = const. , (19)

fori =0,...,K. Thus, for both the continuum state and the modelled discrete state,
the sum of the total energy of the mean state and the total variance is constant in
time. Equation (19) is somewhat at odds with Eq. (16), whose right-hand side need
not be constant in time when the continuum dynamics are conservative.

It follows similarly from Eq. (18) that

=2+ P = £ (Eoly) (20)

with probability one, fori = 0,..., K. Here ift and Pﬂ‘i are, respectively, the mean
state and covariance matrix of x;; conditioned on the observations yk, and are defined
as in Sects. 2.2 and 2.3. The right-hand side of Eq. (20) is independent of the time
t;, so that in particular,
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<k 2 k <k 12 k
I=E 12+ Ph = (1=K |17+ o PE 1)

with probability one. In traditional filtering notation this is written
2 2
e A

with probability one, where x{ and P} are, respectively, the conditional mean anal-

ysis and conditional analysis error covariance matrix at time #, and XJ,: 41 and PZ 1

are, respectively, the conditional mean forecast and conditional forecast error covari-
ance matrix to time fx4+1, where all the conditioning is on the observations up to
time fy.

2.4.2 Ensemble Behaviour Between Observation Times

An ensemble version of Eq. (21) is satisfied exactly, independently of ensemble

size L, by an appropriately formulated EnKF scheme. Assume that ifk € Dy with
probability one.” Then let {x (l)}lL: , be a sample of the GV-valued random variable
X} withx () € Dyfor /= 1,...,L, and define

X]t(k+1 (= Mlk+1slk (ka (l))

forl=1,...,L. Also, fori = kand i = k + 1, define
| L
ok 1 ko2
B = l}_l X2,

L
1
R =72 %0,
=1

and

L
s _ 1 Koy ok (ke k)]
P = ; (k0 —%) (0 -=) B,
By manipulating the sums it follows that

' =~k
Ef = R} + P, (22)

fori=kandi=k+1.But |x; (D> = lx; (D] forl=1,...,L, since My,
is conservative, and therefore

71t Dx is convex then X;; € Dy fori = 0,...,K (e.g. Cohn 2009, p. 454), and therefore i’,‘i € Dx
with probability one, fori =0, ...,K.
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This statement of energy conservation thus reads

=k =k
%5 1>+ P X, |I° + P, (23)

1 I

which corresponds to Eq. (21).
Equation (22) does not hold if the conditional covariance estimate /lsfl is replaced

there by the sample covariance L/(L — l)ﬁi. Therefore, Eq. (23) does not generally
hold if either or both conditional covariance estimates there are replaced by the cor-

responding sample covariances. The sample covariance L/(L— I)ﬁ{kJr , has been used
traditionally in EnKF schemes, on the grounds that it is unbiased as an estimator of
PfH ,» but it is clear that this violates energy conservation by artificially increasing
the total energy EfH , of the ensemble at each observation time. This increase can be
significant for typically small ensemble sizes. For instance, for L = 100 it is about

0.1% per observation time, or more than 4% per 10 days with observations every

6 h, in case trﬁfk+] = 0.1|[%}__, II*. Von Storch and Zwiers (1999, p. 87) give other
reasons why the sample covariance should be used only with caution in general.

Now let C be an N x N correlation matrix, i.e., a symmetric positive semidefinite
matrix with unit diagonal. Then since the trace of a square matrix is the sum of its
diagonal elements, it follows that

tr (CoP)=1trP

for any N x N matrix P, where the symbol o is used to denote the Hadamard (ele-
mentwise) product of two matrices. Thus, Eq. (23) still holds if ﬁfm is replaced

there by a “localized” conditional covariance estimate

~k =k
Ptk+1 =Co Pfk+1 :

The covariance localization approach introduced by Houtekamer and Mitchell
(2001, Eq. 6) and studied further by Mitchell et al. (2002) approximates this for-
mula, reducing computational effort, but the degree to which the approximation
might in effect violate energy conservation is not known. The effect of the alter-
native localization approach of Ott et al. (2004) on energy conservation is also not
known.

2.4.3 Ensemble Behaviour at Observation Times

To see what is supposed to happen at observation times, assume for the moment that
E(tp) is simply a constant, i.e., is not a random variable. Thus each realization of the
continuum system state has the same total energy at the initial time 7y, hence at all
times ¢ € 7 since the continuum dynamics were assumed to be conservative. Then
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assume that E;(t9) = E,(tp) is also a constant. Thus each realization of the modelled
discrete state has the same total energy,

|Ix4]1* = Ea(ti) = Ea(to) = const.

fori =0,...,K, since the discrete model was also assumed to be conservative. On
taking conditional expectations it follows that

E(I%,1*1y") = Ea(to) = const. (24)

with probability one, for i = 0, ..., K, independently of the relationship between
the observations and the continuum state. For an EnKF scheme, this means that
the analysis update is supposed to leave the total energy of each ensemble member
unchanged, at each observation time, regardless of how any assumed relationship
between the observations and the discrete state is modelled. The assumption that
E,(1p) is constant can be implemented in an EnKF scheme by normalizing the total
energy of each ensemble member to a constant at the initial time.
It follows from Eq. (24) that

1517 + Py = %I+ Py (25)

with probability one, where ii‘;l and Pﬂ‘k_l are, respectively, the mean state and
covariance matrix at time #¢, both conditioned on the observations up to time #;_1.

In traditional filtering notation, this is written
2 2
X117 + tr P = |17 + P

with probability one. It can be verified that the usual Kalman-type analysis update
formula for discrete linear observation operators does not satisfy this relationship.
The reason it does not is that, interpreted probabilistically, the Kalman formula
assumes that the discrete state is Gaussian-distributed, which is not possible if its
total energy is a constant. On the other hand, on taking expectations in Eq. (25), it
follows that

EIRE P+ EuPy =R P+ EaPi!, (26)

which is satisfied for the linear Kalman update formula. Ensemble implementations
of the Kalman formula do not leave the total energy of each ensemble mem-
ber unchanged at observation times, and do not satisfy the ensemble version of
Eq. (25), viz.,

<~k (2 oK k=112 Hk—1
X, |1” +uP, =[x [I”+uP,

but at least they should satisty



158 S.E. Cohn

=k _ =k—1
EIRE 1P+ EuP, =R IP+EuP, . (27)

Verifying Eq. (27) would require carrying out numerical experiments with many
random samples of the discrete initial state.

More generally now, suppose that there are constants Epj, and Epax such that
Enmin < E4(ty) < Emax. This is the case if it is assumed that the total energy of every
realization of the continuum initial state is bounded from above. It follows that

<k—12 —1
Emin < ||Xf,\ [[©+tr Pfk < Enax
and
Emin < IR 1> +uP* <E 28
min = ”th” +tr % = Lmax (28)

both with probability one, independently of the relationship between the obser-
vations and the continuum state or the discrete state, actual or assumed. Again,
ensemble implementations of the Kalman update formula cannot satisfy

=k
Emin < Ilfi\fkllz + trP;k < Enax
because a Gaussian-distributed state cannot have total energy bounded from above
by a constant. However, Eq. (28) implies that

<k 12
Emin < 5||ka|| —‘,—gtrPkk < Enax

which is satisfied for the linear Kalman update formula. Therefore, an ensemble
implementation of this formula should satisfy

2 ok
Emin < EH&\ZH +gtrP;k < Enmax -

2.4.4 Ensemble Behaviour for Dissipative Models

Numerical models almost always exhibit some spurious dissipation. Typical numer-
ical dissipation is mild and may be self-limiting in the context of deterministic
prediction (e.g. Lin and Rood 1997, p. 2490; Lin 2004, p. 2303), but it can pose
a serious problem in the context of filtering. Ménard et al. (2000, pp. 2658-2661)
have found for a full Kalman filter for assimilating tracer observations on isentropic
surfaces that a small, spurious dissipation in the numerical advection model causes a
large, state-dependent loss of total variance (with the total variance defined slightly
differently there than in the present chapter), even without assimilating the observa-
tions. Ménard and Chang (2000, p. 2676) found, moreover, that this spurious loss
of variance is made worse by the assimilation of observations. That the loss of total
variance due to spurious numerical dissipation is a generic problem for filtering can
be understood in the EnKF context in the following way.
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The individual ensemble members {x';k(l)}[L=1 are supposed to be spatially some-
what rough, particularly near the observations, since they are supposed to be samples
from a probability distribution that includes the effect of observation error, which is
local. The ensemble meani\fk is more spatially smooth than the individual ensemble
members since it is their average. Thus the spurious loss of total energy of each of
the ensemble perturbations {xfk(l) - 322 lel up to the next observing time is usually
far more than for a “typical” state, such as the ensemble mean, since a significant
fraction of the total energy of each of the ensemble perturbations is supposed to be
concentrated near grid scale, where numerical dissipation usually acts most strongly.
The total variance is just the ensemble average of the total energy of the ensemble
perturbations, and thus is usually lost to spurious numerical dissipation much more
rapidly than is the total energy of the ensemble mean. Moreover, this loss of total
variance need not be self-limiting, because the ensemble analysis update is supposed
to inject energy into the perturbations, from the observation error near grid scale, at
each observation time, only to be dissipated away again. If this argument is correct,
then for large times #; — fo one should expect an exponential decay of total variance.

Meénard et al. (2000) addressed the problem of loss of total variance due to spu-
rious numerical dissipation by utilizing the fact that for tracer dynamics there is a
partial differential equation for variance evolution that can be discretized directly.
This was found to give results superior to simply adding an artificial “model error”
term for instance (Ménard and Chang 2000, p. 2682). Unfortunately, such an equa-
tion does not exist for much more general dynamics. The argument above can
be formalized in the following way, which also leads to a general approach for
addressing the problem.

Suppose that the given discrete model is dissipative, in the sense that

2 2
||Mtk+|,tk(x)|| = ||X||

for all x € Dy. Here M, ;, will be thought of as the solution operator from time
1 to time #¢41 for a system of ordinary differential equations,

dx

0 +1(x,n) =dx, 1),

where dx/d¢ 4+ f=0 is a conservative model of the continuum dynamics, (x, f(x, #))
= 0 for all x € Dy, and where d is dissipative and defined throughout GV,

(x,d(x,7)) <0 (29)
for all x € GV Thus,

%IIXII2 = %(X, X)=2 (X %) =2(x,d(x,n)) < 0.

The ensemble members {X(l)}lL=1 are supposed to satisfy the equation
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dx(/)
5t f(x(D) = d(x(D)),
t
where time arguments are omitted for notational convenience. Then the ensemble

meanX = L 31| x() satisfies

S

+1=4d,

where f = % ZIL:I f(x(1)) and d = % ZIL:1 d(x(])). Assume that d is linear in a
neighbourhood of X that includes all the ensemble members, i.e.,

d(x()) = dX) + D(x(l) — X) (30)
for/ =1,...,L, where D is the Jacobian matrix
od
D=—p; = 29X G1)
X [y—g

Taking ensemble averages in Eq. (30) gives d= d(X), and therefore

dx() —%)

- +£(x(1)) — f = D(x() = %) (32)

forl=1,...,L. Thus,

d ~ - = -
m Ix(D) = RII* = =2(x(1) = X, fx() — ) + 2(x() — %, D(x(}) — X))

for/ =1,...,L. Since the total variance is

L
~ 1
P = Z;nx(z) —3I?,

and since (x(/), f(x(/))) = 0forl =1,...,L, it follows that

1duP
2 dt

L
=®D+ % ;x(z) —%,Dx() —%)). (33)

Note that in case f is linear, then (X, ) = (X, f(X)) = 0.

Now, if d is linear over all of GV, then the Jacobian matrix D is independent of X,
and also D(x(/) —X) = d(x(!) —X). Therefore, if Eq. (29) holds as a strict inequality
for at least one of the ensemble perturbations, i.e., if

x() =X, d(x() =%)) <0
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for at least one [ € [1, L], then

x(D) =X, D0 —X) = (x() =X, dx() — %)) <0
for at least one / € [1, L], so it follows from Eq. (33) that

1duP
2 dr

<®9. (34)

Thus the effect of linear model dissipation is to reduce the total variance trP.
However, spurious numerical dissipation is typically non-linear, particularly when
expressed in terms of energy variables. Also, Ménard et al. (2000, Fig. 1) found the
loss of total variance to depend strongly on the state estimate, which in the present
context requires the Jacobian matrix D to depend on the ensemble mean X. Thus
d has been allowed to be non-linear, and is assumed for the purpose of this analy-
sis to be linear only in a neighbourhood of the ensemble mean. This local linearity
assumption (Eq. 30) can be justified if the total energy of each of the ensemble
perturbations is small relative to the total energy of the ensemble mean.
Instead of taking d to be linear, assume that

e~ =

L
> x(.dx(D) < (1 + &)X, dX)) (35)
I=1

for some time-independent constant ¢ > 0, i.e., that the non-linear dissipation acts
more strongly on the ensemble members, on average, than on the ensemble mean,
for all time, as should be the case if the ensemble members are periodically updated
with observation error near grid scale. Then from Eq. (30) and the fact that d = d(X)
it follows that

L L
% > (x() —%Dx() ~ %) = % > () — % dx() — d®)

=1 =1

1 L (36)
=7 Z(x(l), dx()) — &, dRX))
=1

< eX, dX)).

If Eq. (29) holds as a strict inequality for the ensemble mean, i.e., if

X, d(x) <0,

then it follows from Egs. (33) and (36) that Eq. (34) still holds, and thus that the
effect of the non-linear dissipation is indeed to reduce the total variance tr P.

To see why the effect can actually be an exponential loss of total variance,
suppose that in fact there is a time-independent constant § > 0 such that
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It follows that there is a time-independent constant C > 0 such that

CtrP < —-®,dRX).

Combining this result with Egs. (33) and (36) yields

1d ~ —~ —~
——turP <X, f)—eCtrP.
2dt =&®D

In case f is linear, so that (’i,f') = 0, it follows that
trﬁi < e_zgc(’k_’())trﬁz.

In the general nonlinear case, if |(X,f)| < o for some time-independent constant «,
then

= o
trPZ == [1 _ e—zsC(zk—zO)] n e—ZsC(tk—to)tr’l;g).

Non-linearity can thus prevent decay to zero, although even the crude bound «/eC
may be small.
Spurious loss of total variance can be eliminated by undoing the spurious dis-

. . =k
sipation that acts on the ensemble perturbations. Denote by P,  ~the ensemble
covariance matrix that would have been obtained in case D = 0, starting from

IN)I;( = ’I;fk Then it follows from Eq. (32) that, to first order in Aty = fry1 — t,

k
liet1

— (I — AgD)PF

P oy = AGD"), (37)

Sk . . . o .
where P, is the ensemble covariance matrix obtained with dissipation, I is the
identity matrix, and D* is the adjoint of D with respect to the inner product on GV,

D* =B~ 'D'B.

The dissipation correction formula (Eq. 37) can be thought of as a generalization of
the idea of covariance inflation (Anderson and Anderson 1999, p. 2747). Covariance
inflation addresses general filter divergence problems simply by multiplying ﬁfw
by a number o = a(Aty) slightly larger than one, thus amplifying all spatial scales
equally. Covariance inflation did not perform well in experiments of Ménard et al.
(2000, p. 2666), because it led to too much growth of variance away from the sparse

observations. In the dissipation correction formula, the amplification is selective,
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acting most strongly on the scales that have been most damped by spurious numer-
ical dissipation, and only weakly or not at all on the larger scales where numerical
models have little or no spurious dissipation.

For complex models, arriving at an appropriate formulation for the matrix
D = Dg may not be a simple matter, and surely would involve some trial and error.
However, an appropriate formulation would guarantee that the principle of ener-
getic consistency is satisfied in the form of Eq. (23) extremely well on replacing

k L =k .
P, ., with P, provided that |(X} ,d(X; )| < IIX 1.

Ti+1

3 The Principle of Energetic Consistency

3.1 Problem Setting

Let H be a real, separable Hilbert space, with inner product and corresponding norm
denoted by (-, -) and || - ||, respectively. Recall from Appendix 3d that every separable
Hilbert space has a countable orthonormal basis, and that every orthonormal basis of
a separable Hilbert space has the same number of elements N < oo, the dimension
of the space. Let {hi}ﬁ\’: | be an orthonormal basis for H, where N = dimH < oo is
the dimension of H.

Let S be any non-empty set in B(H), where B(H) denotes the Borel field gen-
erated by the open sets in H, i.e., B() is the smallest o -algebra of subsets of H
containing all the sets that are open in H. In particular, S C H, S can be all of H,
and S can be any open or closed set in H.

Let f9 and T be two times with —00 < #p < T < 00, and let 7 be a time
set bounded by and including #yp and T. For instance, 7 = [fo, T] in the case of
continuous-time dynamics, and 7 = [tg,?1,...,tx = T] in the discrete-time case.
The set 7 is allowed to depend on the set S, 7 = 7(S).

Let Ny, be a map from S into H (written Ny;, : S — H) for all times ¢ € 7,
i.e., foralls;y € Sandt € T, Ny (s;) is defined and

St = Ni1o(S19) (38)

isin M, so that ||s;|| < co. Assume that N, 4, is continuous and bounded forallr € 7.
Continuity means that for every t € 7, s,y € S and ¢ > 0, there is a § > 0 such that
if ||ss, — s{o | < & and S;O € S, then [Ny, (sy,) — Nz,tO(S;O)H < &. Boundedness means
that there is a constant M = M, s, such that

[IN£ro (eI < My 101184, 11

for all s;; € S and t € 7. Continuity and boundedness are equivalent if N, is a
linear operator.

In the applications of Sect. 4, N;,, will be the solution operator of a well-
posed initial-value problem, for the state vector s of a non-linear, deterministic
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system of partial (N = dim’H = o00) or ordinary (N = dimH < oo) differ-
ential equations (7 = [#p, T]). Recall that continuity of the solution operator is
part of the (Hadamard) definition of well-posedness of the initial-value problem for
continuous-time or discrete-time dynamical systems: not only must there exist sets
S and 7 = 7(S), taken here to be defined as above, and a unique solution s, € H
for all s;, € S and t € 7, which taken together define the solution operator, but the
solution must also depend continuously on the initial data. In Sect. 4.1 on ordinary
differential equations,  will be Euclidean space RY and the set S for the initial
conditions will be an open subset of RV, In Sect. 4.2 on partial differential equa-
tions, H will be the space L*(D) of square-integrable vectors on the spatial domain
D of the problem, and S will be an open subset of an appropriate Sobolev space
contained in L(D).
The operator N; 4, is called isometric or conservative (in the norm || - || on 'H) if

[INZ,10 (St = 1184, 11

for all s;, € S and t € 7, and the differential (or difference) equations that express
the dynamics of a well-posed initial-value problem are called conservative if the
solution operator of the problem is conservative. With s, € H defined for all s;, € S
and t € 7 by Eq. (38), the quantity

E = |Isil? = (s1,81) < o0 (39)

satisfies E; < M,%,OE,0 for all + € 7 under the assumption of boundedness, and is
constant in time, E; = E;, for all r € 7, in the conservative case.

It will be seen in Sect. 3.3 that, in essence, the principle of energetic consistency
is a statement about continuous, bounded transformations of Hilbert space, with
conservative transformations as an important special case. Thus, applied to bounded
solution operators, it becomes a statement about well-posed initial-value problems.
It is important to recognize that the quantity E; defined in Eq. (39) is quadratic in s;.
For non-linear systems of differential equations that express physical laws, there is
often a choice of dependent (state) variables such that E; is the physical total energy,
in which case the dynamics are conservative in the norm on H if the physical system
is closed. However, in the rest of this chapter it will not be assumed that E; represents
a physical total energy, nor that it is a scalar invariant. Rather, it will be simplest to
proceed with the abstract hypotheses stated in the present subsection, and to treat
the conservative case as special.

3.2 Scalar and Hilbert Space-Valued Random Variables

Before stating the principle of energetic consistency in the setting of Sect. 3.1, some
probability concepts will first be summarized. For details, see Appendices la—1c
and 3c.



The Principle of Energetic Consistency in Data Assimilation 165

Let (£2, F, P) be a complete probability space, with © the sample space, F the
event space and P the probability measure. The event space consists of subsets of
the set €2, called events or measurable sets, which are those subsets on which the
probability measure is defined. Denote by £ the expectation operator.

A (scalar) random variable is a map r : £2 — R¢ that is measurable, i.e., an
extended real-valued function r, defined for all w € §2, that satisfies

{we 2 :riw)<x}eF

for all x € R. Thus, if r is a random variable then its probability distribution function

Fr(x) = P({w € 2 : r(®) < x})

is defined for all x € R. If  is a random variable then 2 is a random variable.

Suppose that r is a random variable. Then the expectation £|r| is defined and
E|r] < oo. If £]r| < 00, then the expectation Er is defined and called the mean of r,
and |Er| < E|r| < 0o. If £r? < oo, then r is called second-order, the mean 7 = Er
and variance o2 = £(r — 7)? of r are defined, and

Er =7 +0o2. (40)
An H-valued random variable is a map r : 2 — H such that
{we 2 :r(w)eB}eF

for every set B € B(H). Amapr : 2 — H is an H-valued random variable if, and
only if, (h,r) is a scalar random variable for every h € H, that is, if and only if

{we 2:(rw)<xleF

for allh € H and x € R. If r is an H-valued random variable then ||r| is a scalar
random variable. An H-valued random variable r is called second-order if |r| is
a second-order scalar random variable, i.e., if £|r|> < oo. If r is a second-order
‘H-valued random variable then (h, r) is a second-order scalar random variable, i.e.,
E(h,1r)? < oo, forallh € H.

Suppose that r is a second-order H-valued random variable. Then there exists a
unique element ¥ € H, called the mean of r, such that £(h,r) = (h,T) for all h € H.
Also, r' = r — T is a second-order H-valued random variable with mean 0 € H, and

Ellrl1? = [IFl1* + EN[12.

Furthermore, there exists a unique bounded linear operator P : H — H, called the
covariance operator of r, such that
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E(g.r')(h,x') = (g, Ph)

for all g,h € H. The covariance operator P is self-adjoint and positive semidefinite,
i.e., (g, Ph) = (Pg,h) and (h,Ph) > O for all g,h € H. It is also trace class, i.e.,
the sum Zé\;l(hi, ‘Ph;) is finite and independent of the orthonormal basis {hi}f\/: 1
N = dim H < oo, chosen for . This sum is called the trace of P:

N
trP = (h;,Ph;) < oo.

i=1

113 addition, there exists an orthonormal basis for H which consists of eigenvectors
{h}¥ | of P,

Pﬁ,’ = )\,'fl,'

fori =1,2,...,N, and the corresponding eigenvalues {Ai}fy: | are all non-negative.
It follows that

A = (h;, Phy) = E(h;, ¥')* = o7,

where o*i2 is the variance of the second-order scalar random variable (ﬁi,r), for
i=1,2,...,N, and that

N
uP =Y of =&
i=1

Thus the trace of P is also called the total variance of the second-order H-valued
random variable r, and

N
Elrl? = IFI> + EIX 1> = [IFI* + Yo = [F|* +uP. (41)
i=1

Equation (41) generalizes Eq. (40), which holds for second-order scalar random
variables, to the case of second-order H-valued random variables.

Suppose that R € B(H). An R-valued random variable isamapr : 2 — R
such that

{we 2 :r(w)eCeF
for every set C € Br(H), where

Br(H)={B € B(H): B C R}.



The Principle of Energetic Consistency in Data Assimilation 167

Every R-valued random variable is an H-valued random variable, and every
‘H-valued random variable r with r(w) € R for all ® € 2 is an R-valued random
variable. An R-valued random variable r is called second-order if ||r| is a second-
order scalar random variable. Thus every second-order R-valued random variable
is a second-order H-valued random variable, and every second-order H-valued ran-
dom variable r with r(w) € R for all w € £2 is a second-order R-valued random
variable. Finally, if r is an R-valued random variable and N is a continuous map
from R into H, then N(r) is an H-valued random variable.

3.3 The Principle of Energetic Consistency in Hilbert Space

Referring now back to Sect. 3.1, consider for s;, not just a single element of S,
but rather a whole collection of elements s;,(w) indexed by the probability variable
w € £2. Suppose at first that s;, is simply a map s;, : £2 — S, i.e., that s;(®) is
defined for all w € £2 and s;)(w) € S for all w € §2. Then since N4, : S — H for
all t € 7, it follows that s, = N;;,(s,,) : £2 — H forall r € 7, with

S{(@) = Ny (815 (@))

and ||s;(w)]| < oo, forallw € 2 andtr e 7.

Suppose further that s;, is an S-valued random variable. Then it follows from the
continuity assumption on Ny, that s; is an H-valued random variable, and therefore
that E, = ||s;||? is a scalar random variable, for all € 7.

Suppose still further that s, is a second-order S-valued random variable, £E;, =
Ellsy |2 < co. Then from the boundedness assumption on Ny,

lIsi(@)|* < M7, lIsi (@)
forall w € §2 and r € 7, it follows that
EE, = Ellsi|* < M} Ellsyl1* < 00

for all t € 7. Therefore, s; is a second-order H-valued random variable, with mean
§; € 'H, covariance operator P; : H — H, and

Ells > = [I8:]* + 0 Py,

for all € 7. Thus the principle of energetic consistency has been established:

Theorem 1 Let H, S, T and Ny, be as stated in Sect. 3.1, with Ny, continuous
and bounded for all t € T, and let £ be the expectation operator on a complete
probability space (82, F, P). If s, is a second-order S-valued random variable, then
forallt € T, (i) s; = Nyy(8y,) is a second-order H-valued random variable, (ii)
E, = ||st||2 is a scalar random variable, (iii) s; has mean s; € H and covariance



168 S.E. Cohn
operator Py : H — H, (iv)
EE = |[si|* + tr Py,
and (v)
I5:1% + tr P < M7, (IS0 11> + trPy) . (42)

If, in addition, N, is conservative, then (vi)

I51% + tr Py = [I55, 1> + 17 Py (43)

forallt e T.

It is in the conservative case that the principle of energetic consistency is most
useful, because in that case, Eq. (43) provides an equality against which approximate
moment evolution schemes can be compared, as discussed in Sect. 2.4 and in Cohn
(2009). In case Ny, is only bounded, for example in the presence of dissipation, or
for initial-boundary value problems with a net flux of energy across the boundaries,
Eq. (42) still provides an upper bound on the total variance tr P;.

3.4 A Natural Restriction on S

Suppose for the moment that s;, is an S-valued random variable, not necessarily
second-order. When the squared norm on H represents a physical total energy, it
is natural to impose the restriction that every possible initial state s,,(w), ® € £2,
has total energy less than some finite maximum amount, say E, < oo, i.e., that
S C Hg,, where H is defined for all E > 0 as the open set

He={seH:|ls|* <E}. (44)

Otherwise, given any total energy E, no matter how large, there would be a non-zero
probability that s;, has total energy greater than or equal to E:

P({w € 2 : [Is()||* = E}) > 0.

Of course, it can be argued that since this probability would be very small for E
very large, it may be acceptable as an approximation not to impose this restriction.
On the other hand, as discussed in Sect. 4.2 and illustrated in Sect. 5, for classical
solutions of hyperbolic systems of partial differential equations, it is necessary to
require that S C Hg, for some E, < oo just to ensure well-posedness. Thus the
restriction is often not only natural, but also necessary. It also simplifies matters, as
discussed next, for it makes s;, second-order automatically and gives s; = Ny, (s;,)
some additional desirable properties, and it also yields a convenient characterization
of s;, and s;.
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Suppose that s, is an S-valued random variable, and that S C Hg, for some
E, < oo. Thus ||s,0(a))||2 < E, for all w € £2, and therefore c‘,’lls,OH2 < Ey, ie., sy
is a second-order S-valued random variable. Therefore, for all t € T, s; = N 4,(Sz,)
is a second-order H-valued random variable, in fact with s,(w) € Hg for all w € 2,
where £ = E, in the conservative case and £ = M%,OE* in the merely bounded
case. Since Hg is an open set in H, Hg € B(H). Therefore, for all t € 7, s; is an
Hg-valued random variable. Further, forall p > O and t € T, £||s/||’ < EP/?. Thus
|Is¢ || has finite moments of all orders, for all t € 7.

Now suppose that s is an Hg-valued random variable, for some E < oo. Then
since s is also an H-valued random variable, (h;, s) is a scalar random variable for
i=1,...,N, where {h,~}fy:1 is any orthonormal basis for  and N = dimH < oo.
Since s(w) € H for all w € §2, s(w) has the representation

N
s(@) = Y _(h;, s()h;

i=1
for each w € £2, and by Parseval’s relation,

N

lIs@)I =Y (hi,s(@))* < E

i=1

for each w € $2.
N
1

It is shown in Appendix 1d that if {s;};_, is any collection of scalar random

variables with vazl Sslz < 00, where N = dim’H < oo, then there is a second-
order H-valued random variable § such that (h;, $(w)) = sj(w) fori = 1,...,N and
for all w € £2 with Zf’z | sl.z(a)) < 00. Therefore, if {si}f\’: | is any collection of scalar
random variables with vazl s%(a)) < E for all w € £2, then there is a second-order
‘H-valued random variable § such that (h;,S(w)) = sj(w) fori = 1,...,N and for
all w € £2, in which case S(w) = Zf\]:] si(w)h; for all ® € £2, and so by Parseval’s
relation, this § is an Hg-valued random variable.

Thus, amap s : 2 — 'H is an Hg-valued random variable if, and only if,
N
s@) =Y sih;

i=1

for all w € £2, where {si}g\': | is a collection of scalar random variables with

N
Z s%(a)) <FE
i=1

for all w € £2, in which case
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si(w) = (hy, s(w))
fori = 1,...,N and for all w € £2. In particular, |s;(w)| < EYV2fori=1,...,N

and for all w € £2, which is a strong restriction on the scalar random variables
s; = (h;, s). It implies immediately that the probability distribution functions

Fhs)(x) = P({w € £2 : (h;,s(w)) < x})

must satisfy

0ifx < —EY2
Fh s(x) = -
09D =) e 12
fori = 1,...,N. Thus (h;,s) cannot be Gaussian-distributed, for instance, for any

i=1,...,N. Also, since ||s(w)|| < E'/? for all w € £2, the probability distribution
function

Fs)(x) = P({w € £2 : [[s(w)]] < x})

of the scalar random variable ||s|| must satisfy

0ifx<0

Fisn =9, 2 g1y

The characterization of Hg-valued random variables given above will be used
in Sect. 5 to construct an Hg-valued random variable s, for the shallow-water
equations. This will guarantee directly that the random initial geopotential field is
positive.

4 The Principle of Energetic Consistency for Differential
Equations

4.1 Ordinary Differential Equations

Consider a non-linear system of ordinary differential equations
ds
— +f(s,1) =0, 45
P (s, 1) (45)

where f : S| x T; — RV, with S| an open connected set in RY, possibly all of RV,
and with 77 = [fo,T1]and 0 < Ty — ty < 0o. Take H = RV, with (-, -) denoting
the Euclidean inner product, (g,h) = g’h for all g,h € R, and || - || the Euclidean
norm, ||h|| = (h"h)!/2 for all h € RV.
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Assume that f is of class C(S; x 7p), i.e., that f is continuous on its domain of
definition S| x 7;. Assume also that f is bounded on S x 77:

[[f(s, DI < Ci

for some constant Cy, for all s € S and 7 € 77. Note that the latter assumption fol-
lows from the former one if S C Hg for some E < oo, where Hg was defined
in Eq. (44). Assume finally that f is Lipschitz continuous in its first argument,
uniformly in time, i.e., that there is a constant C; such that

|[£Cr, 1) — £(s, DI = CafIr — 5|

forallr,s € S;jandt € 7.

A real N-vector function s = s(¢) defined on an interval 7, = [fo, Tx], T« €
(t9, T1], is called a (continuous) solution of Eq. (45) if, for all ¢ € 7, (i) s(¢) € S,
(ii) s(?) is continuous, and (iii) s(7) satisfies Eq. (45) pointwise. It follows from the
continuity assumption on f that if s is a solution on an interval 7, then ds/df is
continuous on 7, and so

i||S||2 = g(S s)=2 (S §> = —2(s,f(s, 1)) (46)
dr T dr ) T T

is also continuous on 7, hence integrable on 7,. Similarly, if r and s are two
solutions on an interval 7, then by the Schwarz inequality,

dffr —s||

” = |(r —s,f(r, 1) — f(s, )| < |Ir — s]| [|f(r,7) —£(s, D)

llr—Sll‘

for all + € 7, and so by integrating it follows from the Lipschitz continuity
assumption that

le(5) — s < e |x(1) — s(10)||

for all ¢t € 7. Thus, if r(t9) = s(fo) then r(r) = s(¢) for all € 7,.: for each s;; € S
there exists at most one solution s(f) defined on an interval 7, such that s(f9) = s,.
The inequality also shows that if such a solution exists, then it depends continuously
on s, forall t € 7.

The continuity and boundedness assumptions on f together imply that, for each
S, € Si1, there does exist a solution s(¢) with s(fp) = s;,, and that it remains in
existence either until time # = T or the first time that the solution hits the boundary
081 of Si, where f may not be defined, whichever is smaller (e.g. Coddington and
Levinson 1955, pp. 6, 15). Thus, if S| = RY, then the solution exists until time
T;. This time can be arbitrarily large, for instance if f is independent of time. More
generally, a minimum existence time can be found by noting that the solution s(¢)
with s(tp) = s;, € S1 must satisfy the integral equation
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t
s(t) = ¢y — / f(s(t), r)dr,
1

0

and so

[Is(t) — si |l < C1(t — 10)

by the boundedness assumption on f, for as long as the solution exists. Denoting by
p(sy,) the Euclidean distance from any s;, € S; to 951,

S;,) = inf ||h—s; ||,
p(sty) hei)SlH Al

it follows that ||s() — ;|| < p(Sy,) if £ — o < p(S4,)/C1, and so the solution exists
on 7, = [ty, Ty] for

Ty = Ti(syy) = min(Ty, 19 + p(S4))/C1) -

Note that p(ss,) > 0 for each s;, € S since Sy is an open set, and therefore T > 1.

The principle of energetic consistency requires a set S € B(H) = B(RY) for the
initial data and a time interval 7 = [fy, T] such that, for every s;, € S, the corre-
sponding solution exists on 7, i.e., every solution must exist for the same minimum
amount of time 7 — #o > 0, independently of the location of s, € S. If §; = RY,
then take S = RN and T = [fo, T ]. Otherwise, let S be any open set in RY which is
contained in the interior of S, and denote by ps the minimum Euclidean distance
from the boundary of S to that of S;. Then

p(84) > ps = inf p(s) > 0
seS
for all s;, € S, and setting
T =Ts =min(Ty, 10 + ps/C1)
and 7 = 7(S) = [tg, T}, it follows that the unique solution s(f) corresponding to
each s;, € S exists for all # € 7. Denoting this solution by s; = N, 4,(s;,), it follows
that Ny, is defined uniquely on S, as a continuous map from S into H = R¥, for
allte 7.
It follows from Eq. (46) that the solution operator N, 4, is conservative if

(s, f(s,1)) =0

for all s € &1 and ¥ € 7. More generally, it follows that if there is a constant C3
such that

I(s, £(s, )| < C3Is]|?
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foralls € Sy and t € 7, then N, 4, is bounded, with

C —_
8¢ = [Ny s (510)l] < €30 |5 ||

for all # € 7. Note that if (s, ) depends linearly on s near the origin of coordinates
0 € RV, orif 0 ¢ Sy, then by the boundedness assumption on f there is a constant
Cs such that ||f(s,7))|| < Cs|ls| foralls € S; and t € 7, so that by the Schwarz
inequality,

|(s. f(s, )| < Is]] |If(s, )] < C3lls?

forall s € Sy and ¢ € 7, and therefore N, 4, is bounded forall z € 7.

4.2 Symmetric Hyperbolic Partial Differential Equations

4.2.1 The Deterministic Initial-Value Problem

Consider now a non-linear system of partial differential equations

2 yes=o, 47)
where G = G(s) = G(s, X, 1) is a linear differential operator of first order in space
variables X = (x1, .. .,x7),

- 9
G= J;Aj(s, X, z)a—xj + Adgp1(s,X, 1),

and Aj,...,Ay4+1 are real n x n matrices. For simplicity assume that the d-
dimensional spatial domain D of the problem is

D={xeR:|x|<L,j=1,...,d},
with periodic boundary conditions at the endpoints x; = £L;,j = 1,...,d. Consider
endpoint x; = L; to be identified with endpoint x; = —L;, foreachj=1,...,d, so
that a continuous function on D satisfies the periodic boundary conditions automat-

ically. (Spherical geometry will be treated in Sect. 5.) Take H = L*(D), the Hilbert
space of real, Lebesgue square-integrable n-vectors on D, with inner product

(g.h) = /D g’ (xh(x)dx; - - - dxg

for all g,h € L2(D), and corresponding norm |/h|| = (h, h)!/2 for all h € L2(D).
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Assume that the matrices A, ..., Ag41 are defined on all of R” x D x 7, where
71 = [to,T1]and 0 < T} — typ < oo. Assume further that each matrix is of class
C®°(R" x D x Ty), i.e., that all of the matrix elements and all of their partial deriva-
tives are continuous functions on R"” x D x 77 and satisfy the periodic boundary
conditions in the space variables. Assume finally that A1, ..., Ay (butnot Az ) are
symmetric matrices.

A real n-vector function s = s(x, t) defined on D x 7, with 7, = [fy, Ts] and
T, € (to,T1], is called a classical solution of the symmetric hyperbolic system
(Eq. 47) if () s € C'(D) N C'(T,) and (ii) s satisfies Eq. (47) pointwise in D x 7.
The condition s € C'(D) N C'(7,) means that the components of the vector s and
their first time and space derivatives are continuous on D for each fixed ¢ € 7, are
continuous on 7, for each fixed x € D, and satisfy the periodic boundary conditions.
The initial condition for a classical solution is a real n-vector function s, € C! (D).

Suppose for the moment that s = s(x, 7) is a classical solution on D x 7. Then

g||s||2 = i(s s)=2 <s §> = —2(s, G(s)s) (48)
dr Codr T “or) ’

is continuous on 7. Also, by using the symmetry of Ay, ...,A; and the periodic
boundary conditions, an integration by parts gives

(5, G(s)s) = / sT(x, £)B(x, Ns(x, 1) dx; - - - dxg (49)
D

for all r € 7, where

d
B(X’ t) = Ad+1(sv X, t) - % Z

Jj=

dA(s, X, 1)
" j

and

a; oA A,

dxj i1 BS,‘ 3)Cj ax]‘ '

Further, since s € C'(D) N C'(7y,), the components of s and their first partial deriva-
tives with respect to the space variables are bounded functions on D x 7. Define

Bo = Po(s) by

n

Bo = max E |si(x, )|,
DxT, 4 ;
=

and B; = Bj(s) by
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n

asi(x, 1)
Bj = max ,
DxT, “ axj'
i=1
forj = 1,...,d. Then it follows from Eq. (49) and the continuity assumption on
the matrices Ay, ..., Ag4 that there is a continuous function C; = C1(Bo, . - ., Bd)

such that

(s, G(s)s)| < C1llsl|?

for all ¢ € 7,. Equation (48) then implies that
IsC, Dl < e IsC., o) (50)

for all r € 7.

A similar argument shows that if r and s are two classical solutions on D x 7,
then there is a continuous function Cy = C(Bo(r), .. ., Ba(r), Bo(S), . . ., Ba(s)) such
that

Ie(, 1) — sC, )| < e 0||x(-, 1) — s(-, 10) (51)

for all + € 7. Therefore, for each s;, € C (D), there exists at most one classical
solution s on D x 7, such that s(x, fo) = s,,(x) for all x € D. This inequality does
not imply that if such a solution exists, then it depends continuously on s, in the
norm || ||, unless C, can be made to depend only on ry, and s,. This is accomplished
by means of the existence theory itself, discussed next.

Denote by H* = Hk(D), fork = 0,1,..., the Sobolev space of real n-vectors on
D with k Lebesgue square-integrable derivatives on D. The spaces H* are Hilbert
spaces, with inner product

k
@hp=) > (D'g,Dh

=0 l1+-+ly=I
forallg,h € H*, where
1
o=
8xll' e Bxij’

and corresponding norm |[h||x = (h, h)g,f for all h € H*. Note that H" ¢ H* C

H® = H for 0 < k < m. The Sobolev lemma (e.g. Kreiss and Lorenz 1989,
Appendix 3, pp. 371-387) says that if h € H* and k > [%] + 1, where [y] denotes

the largest integer less than or equal to y, then h is a bounded function on D, with
bound
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n
max Zl i x)| < tell] (52)
=
where the constant o depends on Ly, ..., Ly but not on h. It follows that if h € H*

and k > [%] + [ + 1 for some positive integer /, then all of the Ilth-order partial
derivatives of h are bounded functions on D, with bound

n
max 21: ID'hi(x)| < ag ||z, (53)
1=

and in particular, h € cl-! (D), since otherwise the /th-order partial derivatives of
h are not defined as bounded functions. Thus, for any non-negative integer [, H* =

HKD) c ClDyifk = [§] +1+2

Suppose now that s, € HF with k > [%] + 3. According to the existence theory

for linear and quasi-linear symmetric hyperbolic systems (e.g. Courant and Hilbert
1962, pp. 668-676), there is a time interval 7, C 77 for which Eq. (47) has a solution
se H"NnC 1(T,) with s(x, 1p) = $1,(x) for all x € D, which is the classical solution
since H* ¢ C I(D), and the solution remains in existence as long as ¢+ < 77 and
s(-,1) € H*. This is completely analogous to the situation for ordinary differential
equations: the first time ¢ such that the solution s(-, #) & H*, if such a time is reached,
is the first time the solution hits the “boundary” of H¥, ||s(-,?)|| gk = oo. Typically
the first partial derivatives of the classical solution become unbounded in finite time,
even if s;, € C*°(D) (e.g. Lax 1973, Theorem 6.1, p. 37).

A minimum existence time for the solution s € H* N C! (1), k > [%] + 3, can

be found in the following way. For any s € H* N C'(T5,),

d
5||s||§,k = —2(s, G($)8)

is continuous on 7y, as in Eq. (48). An integration by parts using the symmetry of
the matrices Ay, ..., Ay, along with the Sobolev inequalities of Egs. (52) and (53),
shows that there is a function ¢ € C 1([0, 00)) such that

(s, G()$) gt | < d(lIsll g[8l e 5

see Kreiss and Lorenz (1989, pp. 190-196) for details. It follows that the solution
s(-, 7) exists in H* as long as t < T and the solution y(z) of the ordinary differential
equation dy/dr = ¢(y) with y(t9) = [IS;, ||y« remains finite. Further, there is a time
T, > 1y depending continuously on ||y, [l gk, T2 = Ta(llssllgx) < T, for which
lIs(-, )| g« can be bounded in terms of ||sy, || ¢, say
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l1C, Dll e < V2l e

for all ¢ € [#g, T2] (e.g. Kreiss and Lorenz 1989, Lemma 6.4.4, p. 196). Then by the
continuity of To(]|S, [l g«), it follows that if s, is restricted to be in any bounded set
in H, say if s,, € HX for some E < oo, where

Hf ={heH" : ||}, <E},

then 7> becomes independent of s, (but depends on E), and the solution s
corresponding to any s, € Hg satisfies

|IsC, D7 < 2E

for all ¢ € [19, T]. Also, since Hg is open as a set in H¥, and since ||h|| < |h|| g« for
allh € H, HZ is open as a set in L*(D), and therefore HZ € B(L*(D)).

4.2.2 The Solution Operator

Thus take S = Hg for any E < co and k > [%] + 3, and take 7 = 7(S) = [19, T>].

Then S € B(H) = B(L*(D)), and the unique classical solution s(-, ) corresponding
to each s, € S exists in HS, C H* C ‘H = L*(D) for all t € 7. Denoting this
solution by s; = N 4,(s;,), it follows that N; 4, is defined uniquely on S, as a map
from S into H, for all ¢ € 7. Further, since s; € H’2‘E for all r € 7T, it follows from
the Sobolev inequalities that the function C in Eq. (51) depends only on E and o,
and therefore the map N, is continuous in the norm || - ||, for all # € 7. Note that
S = HE C Mg, where Hg was defined in Eq. (44), since ||h|| < |/h[| for all
h e H*. It was necessary to define S as a bounded set in H¥, and therefore as a
bounded set in L2(D).

The solution operator N, , is bounded not only as a map from S into H, with the
function C in Eq. (50) now being a constant depending only on E and o, but also
as a map from S into H*, with

sl = 1Ny (810 | < V2 [ l

for all t+ € 7. According to Eq. (48), the solution operator is conservative if the
differential operator G is skew-symmetric,

(5,G(r)s) =0

for all r(-,1),s(-,1) € H* and t+ € 7. This conservation condition is met for an
important class of symmetric hyperbolic systems (Lax 1973, p. 31), but often a
change of dependent variables which destroys symmetry of the matrices Ay, ..., Ay
is necessary to obtain conservation in H = L*(D), as will be the case for the shallow-
water equations.
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It has been shown that, for each s,, € S = H],g, with E < o0, k > [%’] +14+2

and [ > 1, the unique corresponding solution s = s(x, ) is of class C/(D) N C'(7),
for 7 = [tp, T] and an appropriately defined T depending on ¢y and E, and that
||s(~,t)||zk < 2F for all + € 7. It is important to have a condition to guarantee

further that s € C!(D x T), particularly for the shallow-water example. To this end,
denote by L*(D x T') the Hilbert space of real, Lebesgue square-integrable n-vectors
on D x 7T, with inner product

T
(g.h)7 = / (g h) dr
0]

for all g,h € L*(D x T), and corresponding norm |[h||7 = (h, h)l%2 for all h €
LZ(D x T). Also, denote by H™(D x 7T), form = 0, 1,..., the Sobolev space of
real n-vectors on D x 7 with m Lebesgue square-integrable mixed space and time
partial derivatives on D x 7, with the Sobolev inner product and norm. Thus, for

any non-negative integer [, H"(D x T) C C(D xT)ifm > [%] + 14 2.
Now, the differential equations (Eq. 47) can be used to express all mixed space-time

partial derivatives of the solution up to any order m in terms of pure spatial partial
derivatives up to order m. But

T
f |ISC. D)1 74 dt < 2E(T — 1) < 00
fo

since ||s(o,t)||%{k < 2Eforall t € T, and therefore s € H*(D x 7). Thus, for each
S €S = Hg, with £ < 00, k > [d%l] +[+2and ! > 1, the unique corresponding

solution s = s(x, #) is of class C/(D x 7).

4.2.3 The Stochastic Initial-Value Problem

With H = 12(D), S = HE, E < o0,k = [4] + 1+ 2and I = 11et T = [19.7]
and N;,, be as defined in Sect. 4.2.2, let t € 7, and suppose that s, is an S-valued
random variable. Since S C Hg, it follows from the discussion of Sect. 3.4 that s, is
a second-order S-valued random variable. Therefore by Theorem 1, s; = N; 4, (Sz,)
is a second-order H-valued random variable, with mean s; € H and covariance
operator P; : H — ‘H, which are related by

|I5:11% + tr P < T[54 tr Pyy)
where C is the constant in Eq. (50). In fact,

lIsi(@)|1* < lIsi@)l 25 < 2lIsi(@)][7, < 2E
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forall w € , and so s, is a second-order H¥-valued random variable with
Ellsi| > = 118117 + e Pr < ElIsl|?y < 2|81 174 < 2E
[Ise|1= = lIsel|” + P < Ellsellpn < 2E] I8¢ lln < 2E.

The covariance operator P, can be expressed in the following tangible way, which
will lead also to a simple expression for tr P;. Since P; is a trace class operator, P;
is also a Hilbert-Schmidt operator. Since H = L*(D) and P; : H — H, it follows
(e.g. Reed and Simon 1972, Theorem VI.23, p. 210) that there is a real n x n matrix
function P, € L2(D x D), called the covariance matrix of s;, such that

(Pih)(x) = /D P, (x, y)h(y) dy

for all h € 'H, where dy = dy - - - dy4, and moreover, that

/ / tr P(x, y)PtT(x, y)dxdy = Z A?(t) < 00, 54
DJD

i=1

where tr A denotes the trace of a matrix A and {)\i(t)}?i | are the eigenvalues of the
covariance operator P;. Thus

&(g.si —s)(h,s, —5) = (g, Ph) = /D /D g  (OP/(x, yh(y) dxdy  (55)

for all g, h € H. Since P; is self-adjoint, the covariance matrix P; has the symmetry
property P,T(x, y) = Pi(y,x) forall x,y € D.

Now let {fli(-, t)}?i | denote the orthonormal eigenvectors (eigenfunctions) of P;
corresponding to the eigenvalues {1;(1)}°,,

Phi(-, 1) = LiOhi(-, 1)
fori = 1,2,.... The eigenvalues are all non-negative since the covariance operator
is positive semidefinite, and the eigenvectors form an orthonormal basis for H since

the covariance operator is Hilbert-Schmidt. From Eq. (55) and the orthonormality
of the eigenvectors, it follows that

f / , (x, P (x, Y)i(y. 1) dx dy = (y(-,0), Pl 1) = Ai(1)8;
D JD

for i,j = 1,2,..., where §;; is the Kronecker delta. Therefore, P; has the
representation

P(x.y) = 3 MO, 0b; (v.1). (56)

i=1
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where the convergence is in L?>(D x D) as indicated in Eq. (54). Since the
eigenvectors form an orthonormal basis for H and since 7 is trace class,

o
tr'P; = Zki(z‘) < 00.
i=1

But according to Eq. (56),

P = Y 20k (x Dhi(x, 1),
i=1

and therefore

fD trP,(x,x)dx = Z Ai(D)

i=1

by the normality of the eigenvectors. Thus,
trP, = / trPy(x, x) dx. (57)
D

Now recall that s; is a second-order H*-valued random variable. Therefore §; €
H*, P, maps H* into H, and

2 < 112
gHSt”Hk = ||St||Hk +tl"Pt.

Also, §; € Cl(D) since H* C CI(D). Further, since P, maps H* into H*, the
eigenvectors of P; form an orthonormal basis for H*, and therefore they are all
in CY(D).

Finally, let {hi}gﬁl be an orthonormal basis for H. Since Sy, 1S an Hg-valued
random variable, it follows from the discussion of Sect. 3.4 that

sip(@) = Y _(hy, s, (@)gihy

i=1
for all w € £2, with

9]

st (@) 17 = > _(hisiy (@) < E.

i=1

for all @ € £2. It follows also that if {s;}7°, is any collection of scalar random
variables with
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o
st
si(w) < E
i=1

for all w € §2, then Z;ﬁl si(w)h; is an Hg-valued random variable.

5 The Shallow-Water Equations

The global non-linear shallow-water equations written for the zonal and meridional
velocity components and geopotential, u, v and @, respectively, are the system

ou 1 8@_

u
— 4+ V.-Vu-— -t — =0
at + " (f+a an¢)v+acosq§ aA
av u 109
a—t+V-Vv+(f+‘—1tan¢)u+Z£=0

0P
where V is the wind vector, ¢ the latitude, A the longitude, a the Earth radius, and
f the Coriolis parameter. The change of variable @ = w?/4 yields the symmetric

hyperbolic system

as 1 0 10
—+ A —+B-—+C|s=0, (58)
at acos ¢ dA adg
where s = (u, v, w),
[ u O%W_
A= 0uoO 5
_%WO u |
(v 0 0 7
B=|0v %w R
_O%w v
r 0 —(f+%tang) 0
C=|f+4%tan¢ 0 0
i 0 —%%tand) 0

Now let H = L3(S), the Hilbert space of real square-integrable 3-vectors on
the sphere of radius a, with inner product (-,-) and corresponding norm | - ||.
Appendix 2b establishes a Sobolev-type lemma for the family of Hilbert spaces
(@) = Dp(S).p = 0},

@) = (h e L*(S) : ||I = AY'h]| < oo},
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where A is the Laplacian operator on the sphere, with inner product

(g.h), = (I — AYg.( — AYh)
for all g,h € &, and corresponding norm |/h||, = (h, h),l/2 for all h € @,. Thus if
h € @, and p is a positive integer or half-integer, then all partial derivatives of the
components of h up to order 2p are square-integrable. The spaces @,, are convenient
for spherical geometry since the Laplacian operator is coordinate-free. The exis-
tence and uniqueness theory of Sect. 4.2 based on Sobolev spaces and inequalities
carries over to the sphere using the spaces @), for integers and half-integers p.
Tentatively let

S=t(hed,:|h|; <E}
for some E < oo. It follows from Appendix 2b that
Sc o, ccls),

as expected from Sect. 4.2.1. It follows from Sect. 4.2.2 that for the symmetric
hyperbolic system (Eq. 58) there is a time interval 7 = 7(S) = [to, T] such that,
corresponding to each s;, € S, there exists a unique classical solution s; € @, for
all r € 7, and further that s € C'(S x 7).

However, since w = 2+/®, this solution does not solve the original shallow-water
system unless w > 0 on S x 7. The differential equation for w is

b
a—v:—i—V-Vw—}—%wV-V:O,

and therefore along the curves x = x(¢) = (A(t), ¢(¢)) defined by

& vs 59
a_ (X’)s ( )

the solution w satisfies the ordinary differential equation

dw

This guarantees that if w > 0 initially, then w > O for all € 7. Thus redefine S as
S={(hed,:|h|3<EN{uv,w)ed:w>0}.

Note that the latter set is open in L*(S) since it is open in ®,, and therefore S
B(L*(S)) since the intersection of two open sets is open. Also note that the initial-
value problem for Eq. (59) is well-posed since V € C'(§ x 7).

The classical solutions of the shallow-water equations satisfy the energy equation
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ad
= [<D(u2 ) q>2] +V. {[cb(uz )+ 2q>2] V} —0.
This suggests introducing a new set of dependent variables, the energy variables
s = (a, B, @) witha = u®'/? and B = v@!/2. In the energy variables, the physical
total energy is just %||s||2, and it is conserved. It can be verified that in terms of the
energy variables, the shallow-water system can be written as

0s
— +Gs=0, 60
3t+ s (60)

where G = G(s) has the form

G=A

1 0 10 1 1 JA  9Bcos
+B + <—+—¢>+C,

acosq)ﬁ 5% Eacosqﬁ aA ap
with
a0 2 0t ]
A= 0 a® 2 0 ,
4 51/2 2. p—1/2
LR A
Cpo—1/2 0 0 ]
B= 0 po-l2 Loz ||
45172 2 —-1/2
L 0 fo!'/2 2ol ]
0 —(f + éa@’l/ztanqﬁ) 0
C= f—f—%ad)_l/ztan(p 0 %édﬂﬂtamp
0 —%£¢1/2tan¢ 0

For the system given by Eq. (60) to yield the solution of the original shallow-
water system requires being able to recover u = «® /2 and v = & ~1/2 from «,
B and @. Now, products of scalars in @, are also scalars in @, since the elements
of @, are all bounded, continuous functions. But @ ~!/2 is not in @, unless @ is
bounded from below by a positive constant. Thus for the energy variables, the initial
space S is defined as S = S, where

S, =thedy:|h|5 <E}N{(,B,P)edr: D > y)

for some constant y > 0. It follows for the energy variables that for all t € 7, the
unique solution s; corresponding to each s, € S, is in Ss for some constant § > 0.
The symmetry of the matrices A and B, the skew-symmetry of the matrix C, and
the form of the differential operator G imply immediately that, for all § > 0, Gis a
skew-symmetric operator on Ss:

(5,G(r)s) =0
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for all r,s € Ss. This of course implies energy conservation, as noted in Sect. 4.2.2.

Now suppose for the energy variables that s, is an S, -valued random variable.
Thus s, is also second-order, and it follows from Theorem 1 that's; = N, (s;,) is
a second-order L(S)-valued random variable, with mean s, € L?(S) and covariance
operator P; : L2 S) —> L2(S), which are related by

|8e112 + tr Py = |8y |12 +tr Py < E

for all + € 7. The results of Sect. 4.2.3 show further that, forallt € 7T,s; € &, C
cl(),

Ellsd)? = I8l + P < Ellsyll3 < E,

and
trPy = / tr P,(x, X) a” cos ¢ deodar,
S

where P; is the covariance matrix of s;.

The discussion at the end of Sect. 4.2.3 gives the general form of @;-valued
random variables with bounded @, norm. The Sobolev-type inequality (Eq. 73) of
Appendix 2b then suggests a way of ensuring that such a random variable s;, is an
Sy -valued random variable. Let

¢lo (CL)) = 5[0 + ¢[/0 (CL))

for all w € 2. The series expansions in Appendix 2b give the form of every scalar
in @;. Suppose that ®,, € &, with @, > > y > 0. Equation (73) shows how to
ensure that |q§,’0(a))| < u —y forall w € £2, and therefore that @;,(w) > y for all
w € £2.

6 Concluding Remarks

This chapter has formulated the principle of energetic consistency (PEC), demon-
strated its validity for a wide range of non-linear dynamical systems, and illustrated
its application to distinguishing between artificial and genuine uncertainties in
ensemble Kalman filter (EnKF) methods. It has been argued that because EnKF
methods rely at least tacitly on the minimum variance optimality criterion, it is nat-
ural to choose the state variables in EnKF schemes to be energy variables for the
dynamical system being observed. This requires only that the observation operators
be expressed in terms of energy variables. Once the state variables are chosen to be
energy variables, the PEC can be applied.
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The PEC has been used to show that some of the assumptions and approximations
made in EnKF schemes give rise to artificial energetic sources or sinks of uncer-
tainty, while others are energetically neutral. It has also been shown that the PEC
can be implemented numerically to determine the magnitude of artificial sources
and sinks, which is problem-dependent.

The PEC was used to show, in particular, that the spurious numerical dissipation
typical of discrete dynamical models generally gives rise to an artificial energetic
sink of uncertainty, which can easily result in exponential decay of total variance —
ensemble collapse — if left untreated. The simple hypotheses under which this
behaviour was shown to occur indicates that this is a generic problem, not only for
ensemble filters, but for filtering schemes in general. That this has not yet been obvi-
ous for EnKF schemes is perhaps because such artificial sinks of uncertainty cannot
be clearly identified and distinguished from genuine ones unless the state variables
are chosen to be energy variables. Since the state variables have not traditionally
been chosen to be energy variables, such sinks have usually been compensated for
by an artificially large “model error” term or by “covariance inflation.”

The general remedy suggested in Sect. 2.4.4 for this spurious loss of variance
is simply to pre- and post-multiply the ensemble conditional covariance matrix by
appropriate operators that directly counteract the spurious numerical dissipation,
according to Eq. (37). Weak-constraint, long-window 4D-Var methods approximate
the estimation error covariance evolution of the extended Kalman filter (Cox 1964,
Egs. 40, 41, 42, and 43; Fisher et al. 2005). To the extent that the covariance matrix
of the extended Kalman filter approximates the conditional covariance matrix, Eq.
(37) then applies to long-window 4D-Var methods, and could be implemented in
4D-Var simply by pre-multiplying the tangent linear model by the matrix I — A#D,
where the matrix D is obtained by linearizing about the 4D-Var trajectory instead
of the ensemble mean state as in Eq. (31). Such a resolution of the variance loss
problem may be necessary for weak-constraint 4D-Var methods (Trémolet 2006,
2007) to function properly as filters when used with a long time window. It should
be noted, however, that as an approximation to the extended Kalman filter rather than
the full second-moment closure dynamics, 4D-Var methods omit the so-called non-
linear bias term in the second-moment closure equation for the mean state (Cohn
1993, pp. 3131-3132), and therefore lack energetic consistency (Cohn 2009).

Among the results of the more theoretical sections of this chapter that may
have important practical implications for data assimilation is the breakdown of the
Gaussian hypothesis. It has been shown that the stochastic initial-value problem for
symmetric hyperbolic systems is well-posed under natural hypotheses, but that in
general the state cannot be Gaussian-distributed at any time. This result is due not
to the fact that there are often state variables that are restricted to be positive, and
which therefore can only be Gaussian-distributed as an approximation, sometimes a
good one, but is rather a consequence of well-posedness and of boundedness of the
solution operator. Also, the usual Kalman-type observation update formula, which
for its probabilistic interpretation is based on an assumption that the conditional
mean state is Gaussian-distributed, lacks energetic consistency except in the sense
of expectation. Similarly, the probabilistic interpretation of 4D-Var is based on an
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assumption that the initial state is Gaussian-distributed. Thus it will be worthwhile
to try to formulate generalized observation updates for use in EnKF methods, and
also generalized versions of 4D-Var methods. Data assimilation is still a young field,
and it is clear that much work lies ahead.
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Appendix 1: Random Variables Taking Values in Hilbert Space

Appendix la defines Hilbert space-valued random variables and gives some of their
main properties. Appendices 1b—1d give the definition, main properties and gen-
eral construction, respectively, of Hilbert space-valued random variables of second
order. Definitions of basic terms used in this appendix are provided in Appendix 3.
Further treatment of Hilbert space-valued random variables, and of random vari-
ables taking values in more general spaces, can be found in the books of It (1984)
and Kallianpur and Xiong (1995).

Hilbert space-valued random variables, like scalar random variables, are defined
with reference to some probability space (£2, F, P), with Q the sample space, F
the event space and P the probability measure. Thus throughout this appendix, a
probability space (£2,F, P) is considered to be given. The expectation operator is
denoted by £. It is assumed that the given probability space is complete.

A real, separable Hilbert space H is also considered to be given. The inner prod-
uct and corresponding norm on H are denoted by (-, -) and || - ||, respectively. The
Borel field generated by the open sets in H is denoted by B(H), i.e., B(H) is the
smallest o-algebra of sets in H that contains all the open sets in . Recall that
every separable Hilbert space has a countable orthonormal basis, and that every
orthonormal basis of a separable Hilbert space has the same number of elements
N < o0, the dimension of the space. For notational convenience it is assumed in this
appendix that 7 is infinite-dimensional, with {h;}?°, denoting an orthonormal basis
for 'H. The results of this appendix hold just as well in the finite-dimensional case,
by taking {h,-}ﬁ.V: 1» N < 00, as an orthonormal basis for H, and by replacing infinite
sums by finite ones.

la H-Valued Random Variables

Recall that if X and Y are sets, f is a map from X into Y, and B is a subset of Y, then
the set
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f'[Bl={x e X : f(x) € B}

is called the inverse image of B (under f). Recall also that the event space F of
the probability space (£2, F, P) consists of the measurable subsets of §2, which are
called events.

Let (Y, C) be a measurable space, i.e., Yis a set and C is a o -algebra of subsets of
Y. Amapf: 2 — Yiscalled a (Y,C)-valued random variable if the inverse image
of every set C in the collection C is an event, i.e., if 1 [C] € F forevery set C € C
(e.g. 1td 1984, p. 18; Kallianpur and Xiong 1995, p. 86; see also Reed and Simon
1972, p. 24).

Thus an (H, B(H))-valued random variable is a map s : 2 — H such that

{we 2:s(w)eB}eF

for every set B € B(H). Hereafter, an (H, B(H))-valued random variable is called
simply an H-valued random variable, with the understanding that this always means
an (H, B(H))-valued random variable. An equivalent definition of H-valued random
variables, expressed in terms of scalar random variables, is given in Appendix 1b.

Let S be a non-empty set in 3(H). It follows that the collection Bs(H) of all sets
in B(H) that are subsets of S,

Bs(H) ={B € B(H): B C S},

is a o-algebra of subsets of S, namely, the collection of all sets C of the form C =
BN S with B € B(H). Hence (S, Bs(H)) is a measurable space, and an (S, Bs(H))-
valued random variable is a map s : £2 — S such that

{we 2:s(w)eCeF

for every set C € Bs(H). Hereafter, an (S, Bs(H))-valued random variable is called
simply an S-valued random variable, with the understanding that this always means
an (S, Bs(H))-valued random variable.

It follows by definition that every S-valued random variable is an H-valued ran-
dom variable, for if s : 2 — S and s™'[C] € F for every set C € Bs(H), then
s~I[B] = s~ [BN S] € F for every set B € B(H). Also, every H-valued random
variable taking values only in S is an S-valued random variable, for if s : 2 — S
and s—1[B] € F for every set B € B(H), then in particular s~![C] € F for every set
C € Bs(H).

Finally, let N be a continuous map from S into 7. It follows that if s is an S-
valued random variable, then N(s) is an H-valued random variable, i.e. that

{we 2 :N@s(w) eB) e F

for every set B € B(H). To see this, note first that
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{we 2 :N(sw) € B} =s ' IN![B]],

and consider the class of sets E in H such that N~ [E] € Bs(H). It can be checked
that this class of sets is a o-algebra. Moreover, this class contains all the open sets
in H, because if O is an open set in 7 then N™'[0] is also an open set in H by the
continuity of N (e.g. Reed and Simon 1972, p. 8) and so

C=N"'01=N"'01nS € Bs(H).

But B(H) is the smallest o-algebra containing all the open sets in H, hence this
class includes B(H), i.e., N"'[B] € Bs(H) for every set B € B(H). If sis an S-
valued random variable then s~![C] € F for every set C € Bs(H), and therefore
g1 [N*] [B]] € F forevery set B € B(H), i.e., N(s) is an H-valued random variable.

1b Second-Order H-Valued Random Variables

If s is an H-valued random variable and h € H, then by the Schwarz inequality,
|(h, s(w))| = [Ih]l Is(@)]| < o0 (61)

for all w € £2, so for each fixed h € H, the inner product (h,s) is a map from €2 into
R. In fact, it can be shown (e.g. Kallianpur and Xiong 1995, Corollary 3.1.1(b), p.
87) thatamap s : 2 — H is an H-valued random variable if, and only if, (h,s) is a
scalar random variable for every h € H. Thatis, amap s : £2 — H is an H-valued
random variable if, and only if,

{we 2:(hsw) <a}leF

for every h € H and every « € R.
It follows that if s is an H-valued random variable, then ||s||? is a scalar random
variable, that is,

{we 2:||s)?<a}eF

for every o € R. To see this, observe that if s is an H-valued random variable, then
(h;,s) fori = 1,2, ... are scalar random variables, hence

n

sn=y (h;,s)*

i=1

are scalar random variables with 0 < s, < 5,41 forn = 1,2, ..., and by Parseval’s
relation,
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o0
2 2 :
lIs@)|* =Y (hi.s(@)* = lim s,()
n—oo
i=1
for all @ € £2. Thus ||s||? is the limit of an increasing sequence of non-negative
scalar random variables, and is therefore a (non-negative) scalar random variable.
Ifamaps : £2 — H is an H-valued random variable, then since Isl2 > 0 is

a scalar random variable, it follows that £||s||? is defined and either £||s||*> = oo or
E|Isl> < oo. An H-valued random variable s is called second-order if £|s||*> < oc.

Ic Properties of Second-Order H-Valued Random Variables

In this subsection let s : 2 — H be a second-order H-valued random variable.
Since &||s||> < oo, it follows from Eq. (61) that

Eh,s)* < [Ih|* E[ls]* < oo (62)
for each h € H. Thus, for each h € H, (h,s) is a second-order scalar random

variable, and therefore its mean is defined and finite. The mean of (h,s) will be
denoted by

mlh] = E(h,s),

for each h € H. Since &||s||2 < oo, ||s| is a second-order scalar random variable,
. . 1/2
and its mean M = E||s| satisfies 0 < M < (£|s[|?) /2 < 5. Now

Im[h]| = [E(h,s)| < € |(h,s)| < M|[h]]

for each h € 'H, by Eq. (61), and also

mlag + ph] = am(g] + Bm[h]

for each g,h € H and o, B € R. Thus m|[-] is a bounded linear functional on H, and
by the Riesz representation theorem for Hilbert space (e.g. Royden 1968, p. 213;
Reed and Simon 1972, p. 43) this implies that there exists a unique element S € H,
called the mean of s, such that

m[h] = (h,5)

for each h € H. Thus the mean S of s is defined uniquely in H, and satisfies (h,S) =
E(h,s) for every h € H.
Now let 8'(w) = s(w) — s for each w € £2. Since
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|Is" (@) < lIs(@)I| +1[8]] < o0

for each w € 2,5 = s — §is a map from € into H. Furthermore, for every h € H,
(h,s) is a scalar random variable, |(h,S)| < oo, and |(h, s(w))| < oo for each w € £2.
Therefore (h,s’) = (h,s) — (h,s) is a scalar random variable for every h € H, and
hence s’ is an H-valued random variable. Also,

E(h,s") = E(h,s) — (h,5) =0

for every h € H, so the mean of 8’ is 0 € H. Thus
ElsI? = EG+5,5+5) = 51>+ EIs'II (63)

and, in particular, £||s’ I < EJIs||?> < oo. Therefore s’ : 2 — H is a second-order

‘H-valued random variable, and ||s’|| is a second-order scalar random variable.
Since s’ is a second-order H-valued random variable, (g,s’) and (h,s’) are

second-order scalar random variables, for each g,h € H. Therefore the expectation

Clg, h] = £(g,s))(h,s")

is defined for all g,h € H, and in fact

172 12
Clg bl < € [&s)hs)| < [£@ s [ems)?] ™ < gl bl €151
(64)
The functional C, called the covariance functional of s, is also linear in its two argu-
ments. Thus C[-, -] is a bounded bilinear functional on H x H. It follows (e.g. Rudin
1991, Theorem 12.8, p. 310) that there exists a unique bounded linear operator
P : 'H — 'H, called the covariance operator of s, such that

Clg,h] = (g, Ph)

for each g, h € H. The covariance operator P is self-adjoint, i.e., (Pg,h) = (g, Ph)
for all g, h € H, since the covariance functional is symmetric, C[h, g] = C[g, h] for
all g,h € H. The covariance operator is also positive semidefinite, i.e., (h, Ph) > 0
for all h € ‘H, since

(h, Ph) = C[h,h] = E(h,s)> > 0

forallh € H.
Now consider the second-order scalar random variable ||s’||. By Parseval’s
relation,
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IS @) =) (h;,s ()

i=1

for all w € §2, and therefore
o0
ENS'IP =) Ehi,s)’,
i=1

because {(h;, s’)z}g’o1 is a sequence of non-negative random variables. Furthermore,

E(hy,8")? = (h;, Ph;) (65)

fori =1,2,..., by definition of the covariance operator P, and therefore
o
ENIS'II* = (h;, Phy).
i=1

The summation on the right-hand side, called the frace of P and written tr P, is
independent of the choice of orthonormal basis {h;}?°, for H, for any positive,
semidefinite bounded linear operator from H into H (e.g. Reed and Simon 1972,
Theorem VI.18, p. 206). Thus

oo
P =" (h;. Phy) = £]is'|* < oo,

i=1

and Eq. (63) can be written as
Ellsl* = [81* + P, (66)

which is a generalization of Eq. (80) to second-order H-valued random variables.

Since tr P < oo, P is a trace class operator, and therefore also a compact oper-
ator (e.g. Reed and Simon 1972, Theorem VI.21, p. 209). Since P is self-adjoint in
addition to being compact, it follows from the Hilbert-Schmidt theorem (e.g. Reed
and Simon 1972, Theorem VI.16, p. 203) that there exists an orthonormal basis for
‘H which consists of eigenvectors {fl,’}?il of P,

Pfl,’ = )\,'fl,'

fori =1,2,..., where the corresponding eigenvalues A; = (h;, Phy) fori =1,2,. ..
are all real numbers and satisfy A; — 0 as i — oo. In fact, the eigenvalues are
all non-negative since P is positive semidefinite, and therefore A; = I|Pﬁi|| for
i =1,2,.... Further, it follows from Eq. (65) that
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A = (h;, Ph)) = E(hy;,8')? = o7,

where aiz is the variance of the scalar random variable (fli, s), fori = 1,2,.... By
the definition of tr P,

oo oo
EIS'IP=uP =" (h,Ph) =) 1 <oo.

i=1 i=1

Thus the eigenvalues {1;}7°, of P are the variances {aiz};?ol and have finite sum tr P.

Equation (66) can then be rewritten as

o
Ellsl® = I81* + ) o7, (67)
i=1
which is another generalization of Eq. (80).
Since every h € H has the representation h = Z;ﬁl (h;, h)h;, and since Ph € 'H
for every h € 'H, taking h; = h; and using the fact that

(h;, Ph) = (Ph;, h) = ;(h;,h) = o (h;, h)

fori=1,2,..., gives the following representation for P:

Ph =" o7 (h;, hh; (68)

i=1

for every h € H. Thus the expectation £(g, s')(h, s') is given by the convergent series

£(g.5)(h.s) = Clg.h] = (g. Ph) = Y _ o2 (h;, g)(h;, h),

i=1

for every g,h € H.

Finally, since P is a positive semidefinite bounded linear operator from H into H,
there exists a unique positive semidefinite bounded linear operator P/2 : H — H,
called the square root of P, that satisfies (Pl/ 2)2 = P (e.g. Reed and Simon 1972,
Theorem VL9, p. 196). Since P is also self-adjoint and trace class, P'/? is self-
adjoint and Hilbert-Schmidt (e.g. Reed and Simon 1972, p. 210), with the same
eigenvectors as P and with eigenvalues that are the non-negative square roots of the
corresponding eigenvalues of P. That is,

P'/*h; = oih;,
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where o; = )»3/2 = [E(fli,s’)z]l/z, fori = 1,2,.... Therefore o; = (ﬁi,Pl/zﬁi) =
| P1/2h| fori = 1,2,..., and P1/2 has the representation

o
P'*h = " oi(h;, hh; (69)
i=1

forevery h € H.

1d Construction of Second-Order 'H-Valued Random Variables

It will now be shown how essentially all second-order H-valued random variables
can be constructed. This will be accomplished by first reconsidering, in a suggestive
notation, the defining properties of every second-order H-valued random variable.
The construction given here is by 1t6’s regularization theorem (It6 1984, Theorem
2.3.3, p. 27; Kallianpur and Xiong 1995, Theorem 3.1.2, p. 87) applied to H, and
amounts to formalizing on H the usual construction of infinite-dimensional random
variables through random Fourier series.

For the moment, fix a second-order H-valued random variable s, and consider
the behaviour of

sth] = (h,s)
as a functional of h € 'H, that is, as h varies throughout H. The functional s[-] has

three important properties. First, on evaluation at any h € H, it is a scalar random
variable, with

s[h]l(w) = (h, s(w))
for each w € §2, since s : 2 — H is an H-valued random variable. Thus s[-] is a
map from H into the set of scalar random variables on (§2, F, P). Second, this map
is linear,

slag + Bh] = as[g] + Bs[h]

forall g,h € H and «, B € R, by linearity of the inner product. Third, according to
Eq. (62),

(Es*h)Y? < y ||, (70)
where

y = (EllsIH'? < 00,
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since the H-valued random variable s is second-order. Thus s[-] is a linear map from
‘H into the set of second-order scalar random variables on (§2, F, P).

Now recall the space LZ(.Q, F,P), whose elements are the equivalence classes
of second-order scalar random variables, where two scalar random variables are
called equivalent if they are equal wpl (with probability one; see Appendix 3c).
The space L?(£2, F,P) is a Hilbert space, with the inner product of any two ele-
ments 7,5 € L*(£2, F, P) given by £75 and the corresponding norm of any element
5 € L*(2, F, P) given by (£5%)!/2. The inequality given by Eq. (70) states that the
functional s[-] is bounded, when viewed as a map from H into L>(£2, F, P).

A map s[-] from H into the set of scalar random variables on (§2, F, P), which is
linear in the sense thatif g,h € H and «, 8 € R then

slag + Bh] = as[g] + Bs[h] wpl,

is called a random linear functional (e.g. 1t6 1984, p. 22; Omatu and Seinfeld 1989,
p. 48). Observe that the set of @ € §2 of probability measure zero where linearity
fails to hold can depend on «, 8, g and h. If linearity holds for all w € £2, for all
g,h € H and o, B € R, then the random linear functional is called perfect. If s[-] is
a random linear functional and there is a constant ¥ € R such that Eq. (70) holds
for all h € H, then the random linear functional is called second-order. Thus, given
any particular 7{-valued random variable s, the map s[-] defined for all h € H by
s[h] = (h,s) is a perfect random linear functional, and if s is second-order then so
is s[-].

Now it will be shown that a random linear functional s[-] is second-order if, and
only if,

> &5’y < oo. (1)

i=1

In particular, a collection {s;}2°, of scalar random variables with } 7%, £s? < oo
can be used to define a second-order random linear functional, by setting s[h;] = s;
fori = 1,2,.... It will then be shown how to construct, from any given second-order
random linear functional s[-], a second-order H-valued random variable s such that,
forallh e H,

(h,s) = s[h]wpl.

Such an H-valued random variable s is called a regularized version of the random
linear functional s[-] (Itd 1984, Definition 2.3.2, p. 23).

Let s[-] be a second-order random linear functional. Given any h € H and
positive integer n, it follows from the linearity of s[-] that

s [Z(hi, h)hi] =Y (h;, hysthi]wpl,
i=1

i=1
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where the set of probability measure zero on which equality does not hold may
depend on h and on the orthonormal basis elements {h;};_,. By the boundedness of
s[-] it follows that

2

n 2
£ (Z(hi,h)s[hf]> <y’ ,

i=1

> (h;, hh;
i=1

for some constant y € R which is independent of h and n. Taking the limit as
n — 00 gives

00 2
£ (Z(hi,ms[hi]) <7l < oo,

i=1

for all h € H. Thus the series Z?il(hi’ h)s[h;] converges in [2(2,F,P), ie., there
exists a unique element s[h] € L*(82, F, P) such that

n 2
lim € <§[h] - Z(hi,h)s[hi]> =0,

i=1

for all h € H. Equivalently, since a series converges in a Hilbert space if, and only
if, it converges in norm,

M2

(e ) =3 ol (2m) < oo,
i=1

i=1

for all h € H. By the Riesz representation theorem applied to the Hilbert space of
square-summable sequences of real numbers, and since

> (hi,hy? = ||h|]?

i=1

by Parseval’s relation, the series Z?il(h,-, h)s[h;] therefore converges in Lz(.Q, F,
P), for all h € H, if, and only if, Eq. (71) holds, in which case

5 el (£%m) < iy [i esz[h,-]}l/2 < oo,
i=1 i=1

by the Schwarz inequality. Thus, if s[-] is a second-order random linear functional,
then Eq. (71) holds, for every orthonormal basis {h;}7°, of H.

Conversely, suppose that Eq. (71) holds for a random linear functional s[-], for
some orthonormal basis {h;}7°, of . Since every h € 'H has the representation
h= Zgl(hi’ h)h;, it follows from the linearity of s[-] that if h € H then
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o0
sth] =) (h;, h)sh;] wpl ,
i=1
and therefore
o0
s’[h] < ||h|[* ) s*[h;] wpl,
i=1

by the Schwarz inequality and Parseval’s relation. Thus

Es’[h] < [[h[]* ) Es[hil,

i=1

for every h € H, i.e., Eq. (70) holds with

o0
y2 = Zé’sz[hi] < 00,
i=1

by Eq. (71), and therefore s[-] is a second-order random linear functional.
Furthermore, since s[-] is a second-order random linear functional, Eq. (71) holds
for every orthonormal basis {h;}7°, of H.

Now let s[-] be a given second-order random linear functional. Since
oo o
£> sl =) Es’[h] < o0,
i=1 i=1
the sum Z;ﬁl s2[h;] must be finite wpl, i.e., if
o0
E = {w eR:)y shilw) < oo}

i=1

then E € F and P(E) = 1, where the set E may depend on {hi};?il. Define s(w) for
each w € 2 by

[ Y% histhj](w) ifw € E
S(w)_{ o ifogE "

By Parseval’s relation it follows that

s [ X2 s hil(e) ife € E
lIs()| —{ 0 e
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and therefore ||s(w)||> < oo for all w € £2. Thus s is a map from € into H, and for
any h € H,

(h,s(w)) = Z(hi, h)s(h;](w) (72)
i=1
for each w € E. Now, if h € H then
sth] =) (h;, hys[h;] wpl
=1

and so there is a set Ey, € F with P(Ep) = 1, that may depend on {h;}7°, as well as
on h, such that

o
sthl(@) = > (hi, h)s[hil(e)
i=1
for each w € Ey,. Therefore, for allh € H,
(h, s(w)) = s[h](w)
for each w € EN Ey, and P(E N Ey) = 1. Since the probability space (£2, F, P) was
assumed to be complete, and since s[h] is a scalar random variable for each h € H,

it follows that (h,s) is a scalar random variable for each h € H. Therefore the map
s : 2 — 'H is an H-valued random variable. Since

(o8] o
EllslP =€) sl =) Es’[hy] < oo,
i=1 i=1

s is a second-order H-valued random variable. Since s[-] is bounded as a map from
H into L2(2, F, P),

2
n
Tim £ (s[h] - i, h)s[hi]) =0
i=1
for all h € H, and since Eq. (72) holds for all h € H and w € E, it follows that
€ (sth] — (h,))> = 0

for all h € H. Therefore, for all h € H, (h,s) = s[h]wpl.
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Appendix 2: The Hilbert Spaces @,

Let H be a real, separable Hilbert space, with inner product and corresponding norm
denoted by (-,-) and || - ||, respectively. Denote by B(H) the Borel field generated by
the open sets in H. For convenience it will be assumed in this appendix that H is
infinite-dimensional.

Appendix 2a uses a self-adjoint linear operator on H to construct a special family
of Hilbert spaces {®,,p > 0}. The inner product and corresponding norm on @, are
denoted by (-,-), and || - ||, respectively, for each p > 0. These Hilbert spaces have
the following properties: (i) @9 = H; (ii) for each p > 0, &, C H, and therefore
@, is real and separable; (iii) for each p > 0, @), is dense in H, and therefore @), is
infinite-dimensional; and (iv) if 0 < ¢ < 7, then |h|| = |hljo < [h]l, < ||h], for
allh € @,, and therefore H = @9 D @, D P, In view of property (iv), the family
{Dp,p > 0} is called a decreasing family of Hilbert spaces. The construction given
here follows closely that of Kallianpur and Xiong (1995, Example 1.3.2, pp. 40-42).
For various concrete examples and classical applications of decreasing families of
Hilbert spaces constructed in this way, see Reed and Simon (1972, pp. 141-145),
1td (1984, pp. 1-12), Kallianpur and Xiong (1995, pp. 29-40), and Lax (2006, pp.
61-67).

Appendix 2b discusses the spaces @, in case H = L?(S), the space of square-
integrable vector or scalar fields on the sphere S, when the operator L used in the
construction of the spaces @, is taken to be L = —A, where A is the Laplacian
operator on the sphere.

2a Construction of the Hilbert Spaces ¥,

Let L be a densely defined, positive semidefinite, self-adjoint linear operator on H,
and let I denote the identity operator on H. It follows from elementary arguments
(e.g. Riesz and Sz.-Nagy 1955, p. 324) that the inverse operator (I + L)™' is a
bounded, positive semidefinite, self-adjoint linear operator defined on all of H, in
fact with

I+ 1)~"h|| < [[h]|

for all h € H. Assume that some power p; > 0 of (I+L)~! is a compact operator on
‘H. Then it follows from the Hilbert-Schmidt theorem (e.g. Reed and Simon 1972,
Theorem VI.16, p. 203) that there exists a countable orthonormal basis for H which
consists of eigenvectors {g;}?°, of (I+L)7"1,

I+L)™"g = g
for i = 1,2,..., where the corresponding eigenvalues {,u,-}?"l satisfy 1 > pu; >
wo > ---, with u; — 0 asi — oo. Moreover, u; > 0 fori = 1,2,...,
for suppose otherwise. Then there is a first zero eigenvalue, call it wps41, since
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the eigenvalues decrease monotonically toward zero. Therefore (I + L)™”! has
finite rank M, hence I + L is defined everywhere in H and also has rank M. But
rank (I + L) > rankI = oo since L is positive semidefinite and H was assumed
infinite-dimensional, a contradiction.

Now define {1;}7°, by (1 +A;)™"" = ;. Then0 < Ay < Ay < ---, with 4; — 00
asi — oo,and A; < oo fori = 1,2,...since u; > 0 fori = 1,2,.... Since the
function A() = w~'/P' — 1 is measurable and finite for € (0, 1], it follows from
the functional calculus for self-adjoint operators (e.g. Riesz and Sz.-Nagy 1955, pp.
343-346; Reed and Simon 1972, pp. 259-264) that

Lg; = %ig;
fori=1,2,..., and similarly for all p > 0 that

I+LYg =+ 1)g;

fori=1,2,..., with (I + L) densely defined and self-adjoint in H for all p > 0.
For each p > 0, denote by ®,, the domain of definition of (I + L)?, i.e.,

@, =the™H:||I+LyYh| <oo}.

In particular, @y = H. Now

1@+ Lyh|? = Y (@ +Lyhg)* = > (b, A +Lyg)’

i=1 i=1

=) (I +21Yg) =) (1+21)"(hg)’

i=1 i=1

for each p > 0, where the first equality is Parseval’s relation and the second one
is due to the fact that (I + L)? is self-adjoint. Thus for each p > 0, @, is given
explicitly by

o
®,=theH: ) (1+r)P(hg) < oo} :
i=1

Using this formula, it can be checked that for each p > 0, @), is an inner product
space, with inner product (-, -), defined by

(gh), =) (1 +1)7(g g)(h,g) = (I+Lyg, A+ LYh)

i=1

for all g,h € &, and corresponding norm || - ||, defined by
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|Ih[l> = (h, h), = |0+ LYh||?

forall h € @, It follows also that if 0 < g < r, then ||h|| = |h|lo < ||h]l; < [h]|,
forallh € @,, and therefore that ®, C &, C 'H.
Each inner product space ®@,, p > 0, is in fact a Hilbert space, i.e., is already

complete in the norm | - ||, To see this, suppose that {h,}7°, is a Cauchy sequence

in @, for some fixed p > 0, ie. that ||h, — hy|, — 0 asn,m — oo. Since
[hy, —hy |l < [lhy, —hy,||, for all n,m > 1, it follows that {h,}’° , is also a Cauchy
sequence in H, and since H is complete, the sequence converges to a unique element
hy, € H. It remains to show that in fact h, — hy, € @ asn — oo.

Now

o0
Iy = hyll> = [[A+ LY (h, — b P =) (1 + 2P (h, — hy,g).

i=1

Thus, that {h,}}2, is a Cauchy sequence in @, means that, given any & > 0, there
exists an M = M(¢g) such that, for all n,m > M,

1
D (4 2)7(h, —hy,g)° <&
i=1

forany I > 1. Butforeachi =1,2,...,
|(hm — hoo, 8] < [[hy — ool 11g;]| = [[hm — hoo|| = O as m — oo,

hence (hy,, g;) = (hso, g;) as m — 00, and therefore

1
> (142" (h, —hoo,g)” <&

i=1

forallnm > M and I > 1. Letting I — oo then gives

o0
Ihy = hoo 2 = > (1 + 1) (h, —hoo.g)* < ¢

i=1

for all n > M, and therefore h, — hy, € @, asn — oo.

Thus, for each p > 0, @, is a Hilbert space, with inner product (-, -), and cor-
responding norm || - ||,. It can be checked that {(1 + 1;)7Pg;}7°, is an orthonormal
basis for @), for each p > 0.8

81t follows that, for any sequence {rn};’o:() withO <rp<rp<m<-+—>00® = ﬂ,ﬁo‘pm
is a separable Fréchet space, and since the norms || - ||, are Hilbertian seminorms on @, also a
countably Hilbertian space. If (I4+L) ™! is not just compact but in fact Hilbert-Schmidt, and if, for
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2b The Case H = L*(S) with L = —A

Now let H = L2(S), the Hilbert space of real, Lebesgue square-integrable scalars
on the unit 2-sphere S, with inner product

6, 9) = /S SOV (x) dx

for all ¢, ¥ € L3(S), where X = (x1,x2) denotes spherical coordinates on S and dx
denotes the surface area element, and with corresponding norm ||¢|| = (¢, ¢)/2 for
all ¢ € L*(S). Let L = —A, where A is the Laplacian operator on L2(S). Thus L is a
densely defined, positive semidefinite, self-adjoint linear operator on L*(S). Denote
by I the identity operator on L%(S).

It will be shown first that for all p; > 1/2, (I — A)™P! is a Hilbert-Schmidt
operator on L*(S), hence a compact operator on L>(S). By Appendix 2a, this allows
construction of the decreasing family of Hilbert spaces {®, = ®,(S),p > 0},

D, = {p € LX) : || — AP < 00},

with inner product

(@, V) = — AV, (I — AVY)
for all ¢,y € @, and corresponding norm |[|¢, = (¢, (])),1,/2 for all ¢ € &,. Thus
if € @, and p is a positive integer or half-integer, then all partial (directional)
derivatives of ¢ up to order 2p are Lebesgue square-integrable.
Second, a Sobolev-type lemma for the sphere will be established, showing that if
¢ € D124 with g > 0, then ¢ is a bounded function on S, with bound

2 1 1 2
max (001 < 2= (14 25) 191 2 - (73)

It follows that if ¢ € @4, with ¢ > 0, then the first partial derivatives of ¢ are
bounded functions on the sphere, and in particular that @14, C C%(S), the space
of continuous functions on the sphere. It will be shown that, in fact, if ¢ € @144
with ¢ > 0, then ¢ is Lipschitz continuous on S. Thus, for any ¢ > 0 and any
non-negative integer [, @14/2+4 C Cl(S), the space of functions with / continuous
partial derivatives on the sphere, and in fact all of the partial derivatives up to order
[ of a function ¢ € @124 are Lipschitz continuous.

instance, p, = np1, then @ = N2 @, is a countably Hilbertian nuclear space, and it is possible
to define @’-valued random variables, where @’ is the dual space of @. Such random variables are
useful for stochastic differential equations in infinite-dimensional spaces (see the books of 1td 1984
and Kallianpur and Xiong 1995), but are not immediately important for the principle of energetic
consistency developed in this chapter.
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These results carry over to vectors in the usual way. Thus denoting by L(S)
also the Hilbert space of real, Lebesgue square-integrable n-vectors on S, the inner
product is

(g.h) = / T(x)h(x)dx—Z(g,,m
i=1

for all g, h € L*(S), and the corresponding norm is |[h|| = (h, h)!/? for all h € L(S).
Thus for n-vectors on S, the Hilbert spaces @,, p > 0, are defined by

@, ={h € L*(S) : || — AYh|| < oo},

with inner product
n
(gh), = (I — AYg,(I — AVh) = > (g, hi),

for all g,h € &, and corresponding norm |/h||, = (h, h)p/ forallh € @,.
To establish that (/ — A)™? is a Hilbert-Schmidt operator on L2(S) 1f p>1/2,
note first that

o0
214+ 1 1
S N T 74
§[1+z<z+1> <o 7%

if ¢ > 0. To obtain this inequality, let

2x + 1
[1 4 x(x + 1)]1+2e

for x > 0 and ¢ > 0. Then fis monotone decreasing for x > 1/2, and f(0) > f(1),
and so

fl) =

> 2041 1
IX:W —f(0)+lzlf<l> <f(0)+/ fOdr=1+ .

The sum in Eq. (74) diverges logarithmically for ¢ = 0.
Now let C = (I — A)™” with p > 0. Thus C is a bounded operator from L%(S)

into L2(S), with ||Co|| < ||¢| for all ¢ € L3(S). The real and imaginary parts of the
spherical harmonics ¥;" form an orthonormal basis for L2(S), and

AY = —I(l+ D)Y}"

for [ > 0 and |m| < I. Thus
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m __ ymym
CYy =AY,

with eigenvalues 1}" = (Y]",CY;") = [1 + (I + 1)]7P for [ > 0 and |m| < I. But

[e¢) 1 00
2l+1

PO CTI S P —

1=0 m——1 S+ I+ DI

and so this sum is finite for p > 1/2 by Eq. (74). Hence C is Hilbert-Schmidt for
p>1/2.

To establish the bound of Eq. (73), suppose that ¢ € @;/244 with g > 0. Thus
I — A 2+‘1¢ € L*(S) and has a spherical harmonic expansion

o0 I
(= a)PHag =" 3" gy,

1=0 m=—1
where the convergence is in L2(S), with
o) I
1150y = 1T = D)2 T2 =" " | < o0, (75)
=0 m=—1
Therefore
0 l
¢=> > [L+II+ DI >apryy, (76)

=0 m=—1

where the convergence is in @1/244. It will be shown that this series converges
absolutely, hence pointwise, so that

00 l

¢ =Y Y [0+ DIV )

=0 m=—1

for each x € S. This will also give Eq. (73).

Now,
) l
Bl < D L+ 1A+ D127 3 1Py,
=0 m=—1
and so

00 172 l

1
] < Y ML+ 10+ D127 Y g >opP

=0 m=—1 m=-—1

172
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by the Schwarz inequality. The spherical harmonic addition theorem says that

Pi(cosy) = 21+ ] Z Ym(X)Yz )

for [ > 0, where P; is the /th Legendre polynomial and y is the angle between x
and y. This implies that

2[ 1
Z PR ==

m=—I

for all x € S, and so

) I 172
! < J%_n g[zu Y20+ 10+ D171 m;w;“ﬁ
Another application of the Schwarz inequality then gives
1 > —1-2¢ e m2 1/2
9l < —= lgoj[zl+1][1+l(l+1)] gm;lﬂll :

or, using Eq. (79),

1 21+ 1
2 2 § :—
|¢| = 4]T||¢”1/2+q — [1 +l(l+ 1)]1+2q.

Therefore, by Eq. (74), the sum in Eq. (76) converges absolutely, and Eq. (73) holds.
Now suppose that ¢ € @Pj1, with ¢ > 0. To establish that ¢ is Lipschitz
continuous on S, note first that by the previous result,

00 1
px) =D > (1411 + DT Y (x)

=0 m=-1

for each x € S, where

[ee) 1
IplTy, =11 = A7 =" 3" |/") < 00 (77)

1=0 m=-1

Therefore,
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o0 I
px) — | < D D L+ I+ DIT B 1Y) — Y]'()l

=0 m=—1
for each x,y € §, and so by the Schwarz inequality,

172 172

1

pX)—p(y)| < D [1+1(+1)]~ Z 18" PR ACSER Ak

=0 m=-—1 m=—1

By the spherical harmonic addition theorem,

1 1
> = PR = Y [P - 2RV @Y, @) + [0
m=—I m=—I

21+1

- [1 = Picosy)],

where y = y(X,y) is the angle between x and y. Therefore,

1/2
141\ /2
lp(x) — <¢>(y)|<2[1+1(1+1)r1 ’1< 2+ ) [1 - Picos )]/ {Z Iﬂ’"lz} ,
=0 m=—I1

and so by Eq. (77) and the Schwarz inequality,

0 1/2
1
[pX)—p(Y)| < — { [1+ I+ DI7272921 + D1 — Py(cos J/)]} NAl1+q -
21 ; 1

Now, P;(1) = l,P;(l) =I(l+1)/2, and PQ’(I) = [l(l+ l)—2]P;(1)/4 > 0forl > 0.
It follows that for y sufficiently small,

1 — Pi(cosy) < (1 —cosy)P(1) = I(l + 1)sin* &,
and so

sin

lp(x) — d(Y)| =

loll1+g

V(’;, y) (78)

Jz_

where
=Y L+ U0+ DIT22QI+ DI+ 1)
=0

This series converges for ¢ > 0 since the terms decay like /~'*9, and Eq. (78)
shows that ¢ is Lipschitz continuous.
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Appendix 3: Some Basic Concepts and Definitions

This appendix summarizes background material used elsewhere in this chapter. For
further treatment see, for instance, Doob (1953), Royden (1968), and Reed and
Simon (1972).

3a Measure Spaces

Let X be a set. A collection C of subsets of X is called a o -algebra, or Borel field, if (i)
the empty set @ is in C, (ii) for every set A € C, the complementA ={xeX:x&A}
of Ais in C, and (iii) for every countable collection {A;}?°, of sets A; € C, the union
U, A; of the sets is in C. Given any collection A of subsets of X, there is a smallest
o-algebra which contains 4, i.e., there is a o-algebra C such that (i) A C C, and
(ii) if B is a o-algebra and A C B then C C B. The smallest o-algebra containing
a given collection A of subsets of X is called the Borel field of X generated by A.
A measurable space is a couple (X, C) consisting of a set X and a o-algebra C of
subsets of X. If (X, C) is a measurable space and Y € C, then (¥, Cy) is a measurable
space, where

Cy={AeC:ACY},

i.e., Cy consists of all the sets in C that are subsets of Y.

The set R¢ of extended real numbers is the union of the set R of real numbers and
the sets {oo} and {—oo}. Multiplication of any two extended real numbers is defined
as usual, with the convention that O - co = 0. Addition and subtraction of any two
extended real numbers is also defined, except that oo — oo is undefined, as usual.

Let Y and Z be two sets. A function g is called a map from Y into Z, written
g:Y — Z, if g(y) is defined for all y € Y and g(y) € Z for all y € Y. Thus a map
g : R — Ris areal-valued function defined on all of the real line,amapg: ¥ — R
is a real-valued function defined on all of ¥, and a map g : ¥ — R¢ is an extended
real-valued function defined on all of Y.

Let (X,C) be a measurable space. A subset A of X is called measurable if A € C.
A map g : X — R¢is called measurable (with respect to C) if

xeX:glx)<a}el,
for every « € R. If g : X — R° is measurable then |g| is measurable, and if
h : X — R¢is another measurable map then gh is measurable. A measure | on

(X,C)isamap u : C — R€ that satisfies (i) u(A) > 0 for every measurable set A,
(ii) u(?) = 0, and (iii)

n (U E,) = wED,
i=1 i=1
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for every countable collection {E;}7°, of disjoint measurable sets, i.e., for every
countable collection of sets E; € C with N2 E; = #. A measure space (X,C, j1) is a
measurable space (X, C) together with a measure u on (X, C).

Let (X,C, n) be a measure space. A condition C(x) defined for all x € X is
said to hold almost everywhere (a.e.) (with respect to n) if the set E = {x € X :
C(x) is false} on which it fails to hold is a measurable set of measure zero, i.e.,
E € C and u(E) = 0. In particular, two maps g : X — R¢and & : X — R¢ are said
to be equal almost everywhere, written g = h a.e., if the subset of X on which they
are not equal is a measurable set of measure zero.

A measure space (X, C, ) is called complete if C contains all subsets of mea-
surable sets of measure zero, i.e., if B € C, u(B) = 0, and A C B together imply
that A € C. If (X,C, ) is a complete measure space and A is a subset of a mea-
surable set of measure zero, then w(A) = 0. If (X,C, ) is a measure space then
there is a complete measure space (X, Co, o), called the completion of (X,C, ),
which is determined uniquely by the conditions that (i) C C Cy, (ii) if D € C then
w(D) = po(D), and (iii) D € Cp if and only if D = A U B where B € C and
A C C € C with u(C) = 0. Thus a measure space can always be completed by
enlarging its o-algebra to include the subsets of measurable sets of measure zero
and extending its measure so that the domain of definition of the extended measure
includes the enlarged o -algebra.

An open interval on the real number line Risaset (o, 8) = {x e R: o < x < g}
with o, 8 € R and o < B. Denote by B(R) the Borel field of R generated by the
open intervals, and denote by Z(R) C B(R) the sets that are countable unions of
disjoint open intervals. For each set I = U® (i, Bi) € Z(R), define

m* () =Y (B — i),
i=1

and for each set B € B(R) define
m*(B) = inf m*(I),

where the infimum (greatest lower bound) is taken over all those / € Z(R) such that
B C I. Then m* is a measure on the measurable space (R, B(R)). The completion of
the measure space (R, B(R), m*) is denoted by (R, M, m). The sets in M are called
the Lebesgue measurable sets on R, and m is called Lebesgue measure on R.

Let (X,C, n) be a complete measure space, and let g : X — R¢and h : X — R°
be two maps. If g is measurable and g = h a.e., then & is measurable.

3b Integration

In this subsection let (X, C, i) be a measure space. The characteristic function xa
of a subset A of X is the map x4 : X — {0, 1} defined for each x € X by
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) = lifxe A
AV =V10iftx g A

A characteristic function x4 is a measurable map if, and only if, A is a measurable
set. Amap ¢ : X — R¢is called simple if it is measurable and takes on only a finite
number of values. Thus the characteristic function of a measurable set is simple,

and if ¢ is simple and takes on the values o1, ...,®;, then ¢ = Z?:] o XE;, where
Ei={xeX:¢x) =0} eCfori=1,...,n If ¢ is simple and the values
af,...,0p, it takes on are all non-negative, the integral of ¢ over a measurable set £

with respect to measure u is defined as

/Ecﬁdu =Y oiuENE),

i=1

where E; = {x € X : ¢(x) = o} fori = 1,...,n. Itis possible that [ ¢ du = oo,
for instance if o1 # 0 and w(E; N E) = 0o, or if ®; = oo and w(E; N E) # 0.

Let E be a measurable set and let g : X — R be a map which is non-negative,
i.e., g(x) > O for all x € X. If g is measurable, the integral of g over E with respect

to u is defined as
/gdu=sup/¢du,
E E

where the supremum (least upper bound) is taken over all simple maps ¢ with 0 <
¢ < g. Function g is called integrable (over E, with respect to p) if g is measurable
and

/gd,u<oo.
E

If {h;}7°, is a collection of non-negative measurable maps from X into R®, then
h =72, h; is a non-negative measurable map from X into R and

o
hdp = /h‘dpd,
Joran =2 fon

and in particular, / is integrable if and only if Y72, [ hidu < oo,

Let E be a measurable set and let g : X — R¢ be a map. The positive part g% of
g is the non-negative map g+ = g v 0, i.e., g7 (x) = max{g(x), 0} for each x € X,
and the negative part g~ is the non-negative map g~ = (—g) V0. Thus g = g+ — g~
and |g| = g™ + g~. If g is measurable, so are g™ and g~, as well as |g|. Function g
is called integrable (over E, with respect to ) if both g™ and g~ are integrable, in
which case the integral of g is defined as

/gdu=/g+du—/g‘du.
E E E
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Thus g is integrable over F if, and only if, |g| is integrable over E, in which case

e
E

If g is integrable over X, then |g| < oo a.e., g is integrable over E, and

/IgldMS/IgIdM<OO-
E X

[ te1au =0
X
if, and only if, g = O a.e.

Let E be a measurable set and let g : X — R¢ and h : X — R° be two maps. If
g% and h? are integrable over E then gh is integrable over E, and

12 12
/ghdu S/Ighlduf (/gzdu> (/hzdu> <oo0. (79
E E E E

If g and £ are integrable over E and g = h a.e., then

/gdu:/hdu.
E E

If the measure space is complete, and if g is integrable over E'and g = h a.e., then h

is integrable over E and
/ gdu = / hduw .
E E

Now consider the complete measure space (R, M, m), where M is the o-algebra
of Lebesgue measurable sets on R and m is Lebesgue measure on R. If g : R — R*
is measurable with respect to M, and is either non-negative or integrable over R
with respect to m, the integral of g over a Lebesgue measurable set E is called the
Lebesgue integral of g over E, and is often written as

/gdm:/g(x)dx.
E E

A Borel measure on R is a measure defined on the Lebesgue measurable sets
M that is finite for bounded sets. If F is a monotone increasing function on R that
is continuous on the right, i.e., if F(8) > F(a) and limg_,, F(8) = F(a) for all
a, B € Rwith o < 8, then there exists a unique Borel measure ¢ on R such that

sflgldu<00-
E

If g is measurable, then
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pl(a, B]) = F(B) — F(a)

for all o, 8 € R with @ < B, where («,8] = {x € R : « < x < B}. Let F be
a monotone increasing function that is continuous on the right, and let u be the
corresponding Borel measure. If g : R — R€ is measurable with respect to M, and
is either non-negative or integrable over R with respect to the Borel measure u, the
Lebesgue-Stieltjes integral of g over a Lebesgue measurable set E is defined as

/g(x)dF(x)=/ng-
E E

3¢ Probability

A probability space is a measure space (£2, F, P) with P(£2) = 1. The set £2 is called
the sample space, the o-algebra F of measurable sets is called the event space, a
measurable set is called an event, and P is called the probability measure. For the
rest of this subsection, let (£2, F, P) be a probability space.

A measurable map from £2 into R€ is called a (scalar) random variable. Thus a
map s : 2 — R¢is a random variable if, and only if,

{we R2:s(w) <x}eF
for every x € R. In particular, if s is a random variable then the function
Fy(x) = P({w € £2 : s(w) = x}),

called the probability distribution function of s, is defined for all x € R. The distri-
bution function of a random variable is monotone increasing and continuous on the
right. If the distribution function Fy of a random variable s is an indefinite integral,
ie., if

Fy) = / £ dy

for all x € R and some Lebesgue integrable function f;, then f; is called the proba-
bilty density function of s, and dFy/dx = f; a.e. (with respect to Lebesgue measure)
in R.

The expectation operator £ is the integration operator over §2 with respect to
probability measure. Thus if s is a random variable then £|s| is defined, since |s| is
a random variable and |s| > 0, and

£ls| =/ s1dP < oo,
2
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while a random variable s is integrable over £2 if, and only if, £|s| < oo, in which

case
5s=/ sdP
2

and |Es| < &|s| < oo. If s is a random variable with £|s| < oo, thens = Es is called
the mean of s, and the mean can be evaluated equivalently as the Lebesgue-Stieltjes
integral

o
Es = / xdFg(x),
—00

where F is the distribution function of s, hence

Es = /00 xfs(x) dx

—00

if also s has a density function f;, where the integral is the Lebesgue integral.

If s is a random variable then Es? is defined, since s2 > 0 is a random variable,
and either £s2 = 0o or Es* < o0o. A random variable s is called second-order if
Es? < oo. If r and s are random variables then &|rs| is defined since s is a random
variable, and &|rs| < oco. If r and s are second-order random variables, then

Elrs| < (51’2)1/2 (5s2)1/2 < 00

by Eq. (79), hence Ers is defined and |Ers| < & |rs| < oo. In particular, on taking
r = 1 and using the fact that

51:/ 1dP=P(2) =1,
2

it follows that if s is a second-order random variable then its mean s = s is defined,
with

1/2
0<[s|=|Es| <Els| < (5s2) <00,

The variance 0> = E(s — 5)° of a second-order random variable s is therefore also
defined, and finite, with

0502=5<s2—2§s+§2>=€sz—§2<oo,
and

E=5+02. (80)



212 S.E. Cohn

A condition C(w) defined for all w € £2 is said to hold with probability one
(wpl), or almost surely (a.s.), if it holds a.e. with respect to probability measure.
Thus if s is a random variable, then s = 0 wpl if, and only if, £|s| = 0. If sis a
random variable with £|s| < o0, i.e., if the mean of s is defined, then |s| < co wpl.
If r and s are two random variables with £|r| < co and £|s| < oo, and if r = s wpl,
then r and s have the same distribution function and, in particular, Er = Es. If the
probability space is complete, and if s is a random variable, r : 2 — R®andr = s
wpl, then r is a random variable and has the same distribution function as s, and if,
in addition, £|s| < oo, then £|r| < oo and £r = Es.

3d Hilbert Space

A non-empty set V is called a linear space or vector space (over the reals) if ag +
Bh € Viorall g,h € Vand o, 8 € R. A norm on a linear space V is a real-valued
function || - || such that, forall g,h € Vand o € R, (i) ||h|| > 0, (ii) ||h|| = 0 if, and
only if, h = 0, (iii) ||oh|| = || ||h]|, and (iv) ||g+h]|| < ||g||+ [|h]l. An inner product
on a linear space V is a real-valued function (-, -) such that, for all f,g,h € V and
a € R, (1) (h,h) > 0, (ii) (h,h) = 01if, and only if, h = 0, (iii) (g, «h) = «(g, h), (iv)
f,g+h) = (£, g) + (f h), and (v) (g, h) = (h,g). A normed linear space is a linear
space equipped with a norm, and an inner product space is a linear space equipped
with an inner product. Every inner product space V is a normed linear space, with
norm | - || given by ||h|| = (h,h)!/2 for all h € V, where (-, -) is the inner product on
V. A normed linear space V is an inner product space if, and only if, its norm || - ||
satisfies the parallelogram law

llg + hlI* + llg — hi* = 2(lIg|/* + [Ih] %),

for all g,h € V. On every inner product space V, the inner product (-, -) is given by
the polarization identity

(g.h) = 1(llg+h|* — |lg —h|»),

for all g,h € V, where || - || is the norm corresponding to the inner product, i.e.,
||| = (h,h)!/2 for all h € V. The Schwarz inequality

(g, )| < [l l[h]] < o0,

for all g,h € V, holds on every inner product space V, where (-,-) is the inner
product on V and || - || is the corresponding norm.

A subset O of a normed linear space V is called open in V if for every g € O,
there exists an ¢ > 0 such thatifh € Vand ||g—h| < ethenh € O. A subset Bofa
normed linear space V is called dense in V if for every h € V and ¢ > 0, there exists
an element g € B such that ||g — h|| < ¢. A normed linear space is called separable
if it has a dense subset that contains countably many elements.
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A sequence of elements hy, hy, ... in a normed linear space V is called a Cauchy
sequence if ||h,, —h,|| — 0as m,n — oco. A sequence of elements hy,hy,... in
a normed linear space V is said to converge in V if there exists an elementh € V
such that ||h — h,|| — 0 as n — o0, in which case one writes h = lim,_, - h;,.
A normed linear space V is called complete if every Cauchy sequence of elements
in V converges in V. A complete normed linear space is called a Banach space. A
Banach space on which the norm is defined by an inner product is called a Hilbert
space. That is, a Hilbert space is an inner product space which is complete in the
norm defined by the inner product.

Let H be a Hilbert space, with inner product (-, -) and corresponding norm || - ||.
A subset S of H is called an orthogonal system if g # 0, h # 0 and (g,h) = 0, for
every g, h € H. An orthogonal system S is called an orthogonal basis (or complete
orthogonal system) if no other orthogonal system contains S as a proper subset. An
orthogonal basis S is called an orthonormal basis if ||h| = 1 for every h € S. There
exists an orthonormal basis which has countably many elements if, and only if, H is
separable. If H is a separable Hilbert space then every orthonormal basis for H has
the same number of elements N < oo, and N is called the dimension of H.

Let H be a separable Hilbert space, with inner product (-, -), corresponding norm
I - |I, and orthonormal basis § = {hi}ﬁ\’: 1» N < oo. If h € H then the sequence of
partial sums Y 7, (h;, h)h; converges to h, i.e.,

n
Tim [[h— “(hi. h|| =0,

i=1

and so every h € H has the representation

N
h= Z(hi,h)hi.

i=1

Furthermore,

N
(gh) =) (h,g)(h;h),

i=1

for every g, h € H. Therefore, for every h € 'H,

N
IIh|* = "(h;,h)?,
i=1

which is called Parseval’s relation.

An example of a separable Hilbert space of dimension N < oo is the space
212\, of square-summable sequences of N real numbers, with inner product (g,h) =
ngzl gihi, where g; and h; denote element i of g € 612\, and h € 612\,, respectively. An
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orthonormal basis for €3, is the set of unit vectors {ej}]N: |» Where element i of e; is

lifi =jand 0if i # j. In case N < oo, the elements of 612\, are usually written as
(column) N-vectors g = (g1, ..., gN)T, the inner product is then (g,h) = gTh, and
the columns of the N x N identity matrix constitute an orthonormal basis.

Let (X,C, ) be a measure space. Denote by £'(X,C, i) the set of integrable
maps from X into R?, and consider the function || - || defined for all g € £1(X,C, 1)
by

llgll =/ lgldw.
X

The set £'(X,C, i) is a linear space, and the function | - || is by definition real-
valued, i.e., ||g]| < oo forall g € £L1(X,C, ). The function || - || also satisfies all
of the properties of a norm, except that ||g]| = O does not imply g = 0. However,
llgll = O does imply that g = 0 a.e., and g = 0 a.e. implies that || g|| = 0, for all
g € LY(X,C, ). Two maps g and h from X into R¢ are called equivalent, or are
said to belong to the same equivalence class, if g = h a.e. If g and h are equivalent,

and if g,h € LY(X,C, ), then |g|| = |h|l. That is, || - || assigns the same real
number to each member of a given equivalence class of elements of L',I(X, C, ),
and thereby the domain of definition of the function || - || is extended from the

elements of £'(X,C, i) to the equivalence classes of elements of £!(X,C, ). The
set LI(X,C, w) of equivalence classes of elements of cix,c, W) is a linear space,
and || - || is a norm on this space. The Riesz-Fischer theorem states that L'(x,cC, 17
is complete in this norm, i.e., that LY(X,C, ) is a Banach space under the norm || - ||.
The elements of LI(X, C, i), unlike those of £1(X, C, i), are not defined pointwise
in X, and therefore are not maps.

Denote by £2(X,C, i) the set of square-integrable maps from X into R¢, and
consider the function || - || defined for all g € £>(X,C, 1) by

1/2
lgll = (/ gzdu) .
X

Again, the function || - || assigns the same real number to each member of any given
equivalence class of elements of EZ(X, C,1), i.e., to each g,h € EZ(X, C, iu) such
that g = h a.e., and in particular, ||g|| = O if and only if g = 0 a.e. Thus the domain
of definition of the function || - || can be extended to the equivalence classes. The
set L2(X,C, ) of equivalence classes of elements of L£2Xx,C, W) is a linear space,
| - |l is a norm on this space, and L>(X,C, i) is complete in this norm. Therefore
L2(X,C, ) is a Banach space under the norm || - ||. Moreover, this norm satisfies
the parallelogram law, and therefore L*(X, C, 1) is a Hilbert space. The polarization
identity yields the inner product (-, -) on LZ(X ,C, ), viz.,

@m=/mw,
X
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for all g,h € L*(X,C,u). Again, the elements of L*(X,C,u) are not defined
pointwise and are not maps. The Schwarz inequality holds on L*(X,C, 1) since
L*(X,C, 1) is an inner product space, and gives Eq. (79) when restricted to the
elements of £2(X, C, ).

Let V| and V; be two normed linear spaces, with inner products || - ||; and || - ||2,
respectively, and let H be a Hilbert space, with inner product (-, -). A bounded linear
operator from V| into V is a map 7 : Vi — V; such that (i) 7(ag + Bh) =
aTg+ BThforall g,h € V] and o, 8 € R, and (ii) there exists a constant y € R
such that [|[7h| < y|h|; for all h € V;. A bounded linear operator 7 : H — H
is called self-adjoint if (7g,h) = (g,7h) for all g,h € H, and is called positive
semidefinite if (h, 7h) > 0 for allh € H.

At the beginning of this subsection, the field of scalars for linear spaces V was
taken to be the real numbers, and inner products were therefore defined to be real-
valued. Thus the Hilbert spaces defined here are real Hilbert spaces. It is also
possible, of course, to define complex Hilbert spaces. One property that is lost by
restricting attention in this chapter to real Hilbert spaces is that, while every pos-
itive semidefinite operator on a complex Hilbert space is self-adjoint, a positive
semidefinite operator on a real Hilbert space need not be self-adjoint (e.g. Reed and
Simon 1972, p. 195). Covariance operators on a real Hilbert space are necessarily
self-adjoint as well as positive semidefinite, however, as discussed in Appendix lc.
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Evaluation of Assimilation Algorithms

Olivier Talagrand

1 Introduction

The theory of statistical linear estimation (Best Linear Unbiased Estimate, or
BLUE — the term Best Linear Unbiased Estimator is also used), upon which a large
number of presently existing assimilation algorithms are based, has been described
in chapter Variational Assimilation (Talagrand). On the face of Eq. (7) of that
chapter (which is the same as Eq. (2) below), determination of the BLUE requires
the a priori specification of the expectation i and the covariance matrix S of the
errors affecting the data. A number of questions naturally arise in this context:

Q1. How is it possible to objectively evaluate the quality of an assimilation
algorithm?

Q2. Is it possible to objectively determine the expectation . and covariance S,
whose explicit specification is, at least apparently, required for determining
the BLUE?

Q3. Is it possible to objectively verify if an assimilation algorithm is optimal in a
given precise sense, for instance in the sense of least error variance?

These questions are discussed in this chapter. Answers, at least partial, are given.
It is stressed that any procedure for achieving any of the above goals requires
hypotheses that cannot be objectively validated on the basis of the data only. Section
2 summarizes the main elements of the theory of the BLUE, as already described
in chapter Variational Assimilation, and gives additional elements. The three ques-
tions above are dealt with in Sects. 3, 4, 5 and 6, with Sect. 5 being more specifically
devoted to objective evaluation of internal consistency of an assimilation algorithm.
Conclusions and comments are given in Sect. 7.

The notations are the same as in chapter Variational Assimilation, with the excep-
tion that the notation £ will be used, as will be explained below, for denoting a
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particular type of statistical expectation. For any integer ¢, I, will denote the unit
matrix of order g.

2 Reminder on Statistical Linear Estimation

An unknown true state vector X!, belonging to state space S, with dimension n,
is to be determined from a known data vector z, belonging to data space D, with
dimension m, of the form

z=TIx +e. )
In this expression, I' is a known operator from & into D, called the data opera-
tor, represented by an m x n-matrix, while € is an unknown m—dimensional error,

assumed to be a realization of a vector random variable in data space. We look for
an estimate of x (the “analysis”) of the form

x’ =a+ Az,

where the n—vector a and the n x m-matrix A are to be determined under the
following two conditions:

(1) The estimate x“ is independent of the choice of the origin in state space;
(2) For any component of x, the statistical expectation of the squared estimation

error is minimum.

The solution to this problem is

X =@’'s'D)'r’'s'z—p) )

i.e.,
A=T’s7'r)~'r’s! (3a)
a=—Ap, (3b)

where p = E[e]and S = E[(e — p)(e — |L)T] are, respectively, the expectation and
covariance matrix of the data error &.
The corresponding estimation error x*—x’ has zero expectation

Elx? —x1=0, @
and has covariance matrix

P4 =[x — x)x? —xH 1= @Ts~ )~ 5)
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The estimate x“ is the Best Linear Unbiased Estimate (BLUE) of x from z. Its
explicit determination requires, at least in view of Eq. (2), the explicit specification
of both the expectation p and the covariance matrix S of the error .

The BLUE is unambiguously defined if, and only if, the matrix T is of rank n,
i.e., if, and only if, the condition I'x = 0 implies x = 0. This is called the determi-
nacy condition. It implies that m > n. We set m = n + p, p > 0. The determinacy
condition depends only on the data matrix I', and says nothing as to the accuracy of
the estimate, which depends on the covariance matrix S (Eq. 5).

The BLUE x“ can also be obtained as the minimizer of the following scalar
objective function, defined on state space

xeD - JKX) = %[l"x —z-w]'S7'Irx—(z - p). (6)

Variational assimilation is based on explicit minimization of objective functions of
form given by Eq. (6). The Kalman filter, although being of a totally different algo-
rithmic form, also amounts to minimizing an objective function of form given by
Eq. (6).

Equations (2), (5) and (6) are invariant in a change of origin, as well as in any
invertible linear change of coordinates, in either state or data space. In particular, the
product x;7S™!x,, being invariant in a linear change of coordinates, defines a proper
scalar product for any two vectors x; and X; in data space. That scalar product
is called the Mahalanobis scalar product associated with the covariance matrix S.
Expression (6) shows that the image I'x® of the BLUE x“ through I is the point in
the image space I'(S) that lies closest, in the sense of the S-Mahalanobis norm, to
the unbiased data vector z-pw. The BLUE is thus seen to be the output of the three
following operations:

(1) Remove the bias in the data vector z by subtracting the mean error p;

(2) Project the unbiased data vector onto the subspace I'(S) orthogonally with
respect to the S-Mahalanobis scalar product;

(3) Take the inverse of the projection through I'. The determinacy condition
rank(I") = n ensures that the inverse is uniquely defined.

It is seen that the component of z that is S-Mahalanobis orthogonal to I'(S) has
no impact on the result of the estimation process. More precisely, project the data
space D onto the subspace I'(S), and the subspace LI'(S) that is S-Mahalanobis
orthogonal to I'(S), and denote w| and w, the corresponding respective components
of a vector w in D. The data operator I' now becomes

T = (1,07

where I'{ is an n x n invertible operator from S onto I'(S). The data vector z
decomposes into
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21 =Tx+¢ (7a)
) = &) (7b)
It is now seen that the analysed estimate is equal to
X =T @ — ) =x+T]'(e1 —wy).

The determination of x“ therefore requires the knowledge of only the orthogonal
subspace L I'(S) and of the component p jof the mean error p.
As for the covariance matrix S, it decomposes into the block diagonal matrix

S = diag(S1,82),

where S| and S; are symmetric definite positive matrices. It is seen from Eq. (5)
that the analysis error covariance matrix is equal to

—_ 71 -7
P =T;'sT;7,

where I'; Tdenotes the transpose of I’ L

It results from the above that, contrary to what Eqgs. (2), (5) or (6) apparently
suggest, the BLUE x“ and associated estimation error covariance matrix P do not
depend on the full expectation p and covariance matrix S of the error . They depend
only on the orthogonal subspace L I'(S) and of the components p; and S;of p and
S along I'(S). Both x? and P“?are independent of the components w, and S, along
1 T(S).

We will consider assimilation systems of the general form given by Eq. (2), for
given, not necessarily exact, bias w and covariance S. Such systems also provide
an estimate of the corresponding error covariance matrix, in the form given by Eq.
(5). Since the assumed p and S are not necessarily exact, the corresponding esti-
mate is not necessarily the BLUE. One major point of this chapter is precisely to
discuss the possibility of identifying possible misspecifications in either the expecta-
tion or covariance of the data error, and of determining exactly those quantities (see
chapters Error Statistics in Data Assimilation: Estimation and Modelling, Buehner;
Bias Estimation, Ménard).

For convenience, as well as for consistency with usual notations, we will asume
that the mean error p (or more precisely what is thought to be the mean error)
has been substracted from the data vector z. That mean error will not therefore
appear explicitly in the equations any more. But the possibility exists that it was not
correctly specified in the first place.

The matrix A = (F’S™'T)"'T7S lis a left-inverse of I'. Conversely, any left-
inverse A of T is of the form (I'"X~'I')"'I7x-!, with an appropriately chosen
m x m definite-positive symmetric matrix X. To see that, let us first note that, if
the state and data spaces have the same dimension (m = n), I', which has rank n,
is exactly invertible, with inverse T' ~!. (T7X~!'T)~'T7%-! is then equal to T' ~!for
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any X. If m > n, A has a null-space Ker(A) with dimension p = m — n. In a way
similar to what has been done above, project the data space onto the image space
I'(S) and the kernel Ker(A). Any definite-positive matrix X that decomposes in that
projection into

T = diag(Z1, X»),

defines an operator (T7X~!'T)"'T7X~! which, in addition to being a left-inverse of
I', has null space Ker(A). That operator is therefore identical with A. It is seen
that ¥; and X, can be arbitrary. In particular, if multiplication by A is used for
obtaining the BLUE of X, the corresponding estimation error covariance matrix will
be equal to

P=r;'z1;".

Since X can be arbitrary, so can P%. The knowledge of the left inverse operator
that defines the BLUE does not bring any information on the associated estimation
error. Contrary to what one might be tempted to think, the knowledge of the matrix
(FT2-'T)~'TTZ-! does not bring, even for known T, any information on the matrix
(FTZ-'T)~!. Any left-inverse of T' can coexist with any estimation error covariance
matrix P%

We will, therefore, consider estimation schemes of the form

x° = Az, ®)

where A° is a left-inverse of I (the superscript e stresses the fact that the estimate
x° may not be optimal). The scheme will be associated with an estimated error
covariance matrix P®. As mentioned above, one particular purpose of this chapter is
to determine whether the possible optimality of the scheme given by Eq. (8) can be
established on objective grounds. In agreement with the fact that there exists no link
in the optimal case between the quantities A and P no link will be assumed here
between A¢ and P°.

As discussed in the chapter Variational Assimilation (Talagrand) it is always pos-
sible, when the determinacy condition is verified, to transform the data vector z,
through linear invertible operations, into two components of the form

X’ =x'+ ¢’ (9a)

y = Hx' + &°. (9b)

The vector x?, which has dimension 7, is an explicit estimate of the unknown state
vector X, called the background estimate of x. The vector y, which has dimension
P, is an additional set of data, linked to the real state vector x through the (linear)
observation operator H, represented by a p x n-matrix.
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In the format of Eq. (9), the data operator is T' = (I,,, H)”. It is in the format
of Eq. (9) that data are usually available in meteorological and oceanographical
applications. The expressions given by Egs. (2), (3) and (5) for the BLUE x“ and the
estimation error covariance matrix P¢ then assume the form

x¢ =x" — £lePdT1{€1ddT ]} (y — HxD), (10a)
P’ = £[eP(e")T] - ElePdT1(E[ad ) E[d (D), (10b)

where d = y — Hx” is the innovation vector. Contrary to what was done in the
chapter Variational Assimilation, we do not assume for the time being that the back-
ground and observation errors &” and €° are uncorrelated, so that Egs. (10) above
are more general than Eqs. (15) of chapter Variational Assimilation.

In the format of Eq. (7), the left-inverses of T' = (I,,, H')T are of the form

x’.y) > x* =x” + K(y — Hx"), (11)

where the gain matrix K can be any n x p matrix. A given gain matrix K can coexist
with any estimated error covariance matrix P?.

Forms given by Eqgs. (2) and (11) are exactly equivalent. At any point below, we
will use the form that is most convenient for our purpose.

3 Objective Evaluation of Assimilation Algorithms

The purpose of assimilation is to estimate as accurately as possible the state
of the atmospheric or oceanic flow (see chapters Numerical Weather Prediction,
Swinbank; Ocean Data Assimilation, Haines). The ultimate validation criterion is,
therefore, the accuracy with which the flow is estimated, and is naturally quantified
by the statistical difference between the estimated values and the corresponding real
values of the various physical parameters that define the state of the flow. It is pre-
cisely the expectation of the square of that difference that the BLUE is intended to
minimize. In most situations, the real values of the quantities to be evaluated will,
however, not be available, even a posteriori. The validation can, therefore, be per-
formed, at best, against observations or estimates that are themselves affected by
errors. Consider the simple case when a scalar quantity x (n = 1) is to evaluated
from two scalar data (m = 2) of the form

z1=x+e¢ (12a)
2 =x+¢. (12b)
This is of form given by Eq. (1), with z = (z1, 2, T =, D, and e = (g1, &2)T.

We assume the errors to be unbiased (£[e1] = E[e2] = 0), mutually uncorrelated
(Ele1e2] = 0), and to have the same variance s (5[8%] = 5[8%] = 5), so that S =sl,.
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The BLUE is then x* = (1/2) (z1+ z2), and the estimation error covariance matrix P4
reduces to the scalar s/2. Consider a linear estimate x¢ of the form

X =a1z1 + a2z,

with a; + ap= 1 (that is the condition that A¢ is in Eq. (8) a left-inverse of I'). We
want to check the possible optimality of x® by comparison to an observation (or a
different estimate) x° of the form

X =x+n,

where 1 is a random error. In the logic of least-square statistical mini-
mization taken here, the quantity x° can legitimately be used for valida-
tion if the mean quadratic error E[(x® — x%)2], considered as a function
of the estimate, x°, is minimum when x° is equal to the BLUE x“. This
requires that x° be unbiased (if it had a non-zero bias, £[n], the estimate
x* + &[n] would achieve a better quadratic fit to x° than the BLUE x%).
It also requires the error 1 to be uncorrelated with the data error e. It is obvious
that if n has variance s, but is for instance strongly and positively correlated with ¢1,
but not with &, a better fit to x? will be obtained if a; > a than if a; = a». More
precisely, it can be shown that the linear function of z which optimally estimates, in
the sense of minimum statistical quadratic error, the quantity x° is equal to

-2
2s

1% = x4+ Eel1STHS = TPTTS 'z = x% + En(er — e2)]

It is different from x* when the errors n and € are mutually correlated, with E[n(e; —
)] # 0.

If the conditions of unbiasedness and decorrelation from data error are verified
for the validating observation x°, the mean quadratic difference between x¢ and x°
is equal to

E[(x¢ —x°)?] = E[(x — 021 + £,

and it is minimum for x¢ = x¢.

This shows that an estimate x° can be usefully validated only against observations
(or other estimates) that are unbiased and affected by errors that are themselves
uncorrelated with the errors affecting the data used for producing x°. In particular,
the fit of the analysed fields to the data that has been used in the analysis cannot
be a proper diagnostic of the quality of the analysis. It can actually be shown that
the fit of the analysed fields to any particular piece of data can be made arbitrarily
small by simply decreasing the assumed variance for the error affecting that piece
of data.

As a consequence, objective comparison between the results of two different
assimilation systems can be performed only against observations or estimates that
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are uncorrelated with data used in either one of the two systems. A practical diffi-
culty is, of course, that the decorrelation between the data used in the assimilation
and in the validation can never be objectively verified, and has to be hypothesized
on the basis of, at best, physical knowledge, experience and good judgment.

4 Estimation of the Statistics of Data Errors

How is it possible to objectively determine the expectation p = £[e] and the covari-
ance matrix S = &£ [(e—p,)(e—u)T]? One way could be to proceed by trial and error
experimentation, namely to vary p and S, and to determine, through comparison
against unbiased and independent data, which combination leads to the best statisti-
cal fit to those data. One could even envisage that an explicit statistical optimization
process could be implemented for determining the optimal values of p and S.
The sheer numerical dimension of the meteorological or oceanographical problems
clearly shows that there can be no hope to entirely and accurately determine p and S
through such procedures. But empirical tuning of parameters has always been an
important part of the development of assimilation systems. Empirical tuning can be
systematized in the form of cross validation. A typical example is as follows. For a
particular class of instrument, assumed to produce unbiased observations with the
same constant error variance, the assumed variance is varied in a series of assimila-
tion experiments in order to determine the value for which the fit to independent data
is optimized. In spite of a number of instructive studies of cross validation, and of its
extension called generalized cross validation (see, e.g., Wahba et al. 1995), this type
of method has not been so far extensively used in meteorological or oceanographical
applications.

New meteorological observations are available every day, and a natural question
is whether it is possible to determine the quantities p and S through appropriate sta-
tistical processing of the observations. It is seen from the background-observation
decomposition given by Eq. (9) that the only combination of the data that is
independent of the unknown state vector X is the innovation

d=y—Hx’ = —He® + &°. (13)

Within the world of data and assimilation, the innovation is the only objective source
of information on the errors affecting the data. The question we consider here is,
therefore: Which knowledge on w and S can be obtained from statistical processing
of the innovation vector?

Consider the Data-minus-Analysis (DmA) difference vector, viz.,

d=z-TIx" (14)

It is the a posteriori misfit between the raw data and the estimated state vector x°. By
the definition given by Eq. (8) of x°, 8 is X-Mahalanobis orthogonal to the image
subspace I'(S), where X is any one of the covariance matrices associated with the
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left-inverse in Eq. (8). In background-observation format of Eq. (9), it decomposes
into & = [(x"—x°)T, (y-Hx*)T]”. Now, it is seen from Eq. (13) that

x’ — x* = —Kd
y — Hx’ = (I, — HK)d.

Given §, these equations are invertible for d, and show that, for any analysis scheme
given by Eq. (11), the innovation and DmA vectors d and § are in one-to-one
correspondence. As far as accumulating statistics is concerned, that can be done
equivalently either a priori on the innovation vector or (after the analysis has been
performed) on the DmA difference. Now, the DmA difference z — I'x° is the com-
ponent of the data vector that has been seen to be “rejected” in the analysis, and
to have no impact on the analysis, nor on the estimated analysis error. The conclu-
sion is that no information on the data error that could be useful for the estimation
process can be obtained by only statistical processing of the innovation. Prior infor-
mation obtained from external knowledge of the process that produces the data, and
from experience, good judgment or educated guess will always be necessary.

Now, appropriate external information always exists to some extent. To take a
simple example, let us assume that (as has actually happened) the innovation corre-
sponding to one type of observation in a particular meteorological station shows a
specific statistical feature (a systematic bias, to fix ideas) that is not present in the
innovations corresponding to similar observations performed with similar instru-
ments in stations in the same region. It is obvious that the origin of the bias is to
be looked for in the observation, and not in the numerical model that produces the
innovation. But that conclusion, as obvious as it is, uses external knowledge relative
to the observation and prediction system, and could not be obtained from only blind
statistical processing of the innovation.

We will discuss at some length in Sect. 7 the implications of the conclusion that
has been obtained above. We only mention at this stage that the existence of a one-
to-one correspondence between the innovation and the DmA difference could have
been inferred without computation by simply noting that both those quantities are
obtained by eliminating the unknown x from the data z. The result of the elimination
must be independent of how the elimination is performed.

S Diagnostics of Internal Consistency

The question arises, in view of the conclusion of the previous section, of what, if
anything, can be done in terms of objective evaluation of the statistics of the data
error. It is clear that, if some parameters of those statistics are known, other parame-
ters can be obtained by differences from the accumulated statistics of the innovation.
As an example, Daley (1993) considered the horizontal covariance function of the
innovation for radiosonde geopotential observations, which he made homogeneous
and isotropic through averaging over geographical location and direction. If the
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observational error is spatially uncorrelated, and uncorrelated with the background
error, it will appear in the covariance function as an additional Dirac term with cor-
relation distance 0. Extrapolating the observed covariance to distance 0, Daley thus
obtained an estimation of the variance of the observational error. Many similar diag-
nostics studies can be, and have been, performed. They are necessarily based on a
priori assumptions as to a number of parameters of the probability distribution of
the data errors. They will normally lead to new estimates of other parameters. This
estimation process can be iterated.

A systematic approach is as follows. Any assimilation system of form given
by Eq. (8) relies on a priori specification of the expectation p and the covariance
matrix S. These define in turn an expectation and a covariance matrix for the inno-
vation d. If p is for instance assumed to be zero, then necessarily £[d] = 0. In
addition, if, as is usually done, the background and observation errors are assumed
to be uncorrelated, with respective covariance matrices (see chapter Variational
Assimilation, Talagrand)

P’ = €[ (e?)T], R = £[e%(e)], (15)
then
£ldd"1 = HP’H” + R.

Comparison of the a posteriori observed statistics of the innovation with the a priori
assumed statistics may reveal inconsistencies, which one may resolve by appropri-
ately redefining the data error expectation and covariance matrix. In view of the
one-to-one correspondence between the innovation and the DmA difference 8, the
same diagnostics can be done alternatively on the latter. The information will be
the same, and the choice is only a matter of convenience. But it must be stressed
that, in view of the result proved in the previous section, consistency between the
a priori assumed and the a posteriori observed statistics is neither a necessary nor
a sufficient condition for optimality of the assimilation process. It is not a suffi-
cient condition because the knowledge of the expectation and covariance of the
innovation does not define the covariance matrices £[&? dT] and E[e?(e?)T] that are
necessary for determining x° and P* (Egs. 10). And it is not a necessary condition
because a possible inconsistency can always be “explained out” by assuming that
it entirely originates in the DmA difference, without modification of the orthogo-
nal space LI'(S). As mentioned in the previous section, that will modify neither
the estimate x°, nor the associated estimated estimation error covariance matrix
P¢. For a fully explicit example, consider again the case of data of form given
by Eq. (12)

71 =x +ey,

2 =x+e.
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The estimation is performed under the hypothesis that the errors ¢; and e, are
unbiased and mutually uncorrelated, and have same variance s. The corresponding
estimate is

1
Xt = E(Zl + 22), (16a)

and is expected to be associated with quadratic error
s¢= . (16b)

As for the innovation, which is here the difference d = z1— z3, it is expected to have
expectation 0 and variance 2s. Assume statistics performed on the data show the
innovation to have respective expectation and mean square

Eld]l = m, (17a)
Eld*) = m® + 20, (17b)

where the subscript e means that £, denotes a posteriori observed statistical means.
Equations (17) are in contradiction with the hypotheses that have been made on ¢
and &, if m # 0 and/or o # s. The image space I'(S) is in the present case the
direction z; = zp, while the space that is S-Mahalanobis orthogonal to T'(S) is the
direction z;+z2 = 0. Projecting the error vector & onto those two directions, and
concentrating as mentioned above the inconsistency on the latter, leads for the error
components to the expectations

m
Ele1]l = =€le2] = —5 (18a)
and covariance matrix
1l (s+0 s—0
S_E(s—as+a>' (18b)

It is easily verified that these expressions, while being compatible with Egs. (17),
lead to the estimate of Eq. (16a) and the corresponding estimation error, Eq. (16b).
That is absolutely general, and it is always possible to specify the error expectation
i and covariance matrix S so as to make them compatible with any expectation
and covariance matrix for the innovation, as well as with any expressions for the
BLUE x° and associated estimation error covariance matrix P¢. That may, on the
other hand, require conditions that, in view of the available external knowledge on
the data, may be very unlikely, if not impossible. In the above example, accommo-
dation of a bias m requires the biases in €1 and ¢, to be exactly opposite of each
other (Eq. 18a), and accommodation of an a posteriori observed variance o that is
different from the a priori assumed variance s requires correlation between €1 and &5



228 O. Talagrand

(Eq. 18b). That may be known from other sources to be very implausible, or simply
impossible.

The reader may wonder at this stage what would change the analysis. That would
be to modify the error covariance matrix S in such a way that the orthogonal space
1 T(S) is changed. Keeping LI'(S) unchanged, but modifying the component S;of
S along I'(S) would not modify the analysis, but would modify the estimation error
covariance matrix.

Keeping in mind that reliable interpretation of possible inconsistencies can only
come from external knowledge, we describe below a number of diagnostics that can
be, and have been, implemented for identifying possible inconsistencies between a
priori assumed and a posteriori observed probability distributions of the innovation.
Some of those diagnostics are implemented either on the innovation itself, others on
the DmA difference, and still others on combinations of both.

A first obvious diagnostic is to test for the possible presence of a bias in either
the innovation or the DmA difference. The presence of a statistically significant
bias in either one of those two quantities is the signature of an improperly-taken-
into-account bias in either the background or the observations (or both). One can
argue that systematic check of a presence of a residual bias in either the innovation
or the DmA difference is likely the first consistency diagnostic to be performed
on an assimilation system. This problem is discussed in more detail in the chapters
Error Statistics in Data Assimilation: Estimation and Modelling (Buehner) and Bias
Estimation (Ménard). In these chapters algorithms are presented for evaluating, in
particular, possible drifts in observational biases.

A second simple diagnostic bears on the covariance of the DmA difference 8. It
is seen from Egs. (2) and (14) that 8 is equal in a consistent system to

8§ =(S—TPTT)S le,
and has covariance matrix
£33’ =S —rper’. (19)

Noting that the second term on the right-hand side of Eq. (19) is the covariance
matrix of the vector I'(x?— x?), this equation can be written as

El(z—TxNz-Tx)] = E[(z—TxY)(z—Tx) T |+E[(Mx—Tx)(Tx*—T'x)T]. (20)

The Pythagorean form of this expression shows that the triangle with vertices {z,
I'x?, T'x’} has a right angle (in the sense of orthogonality defined by statistical
covariance) at point I'x?, or equivalently, that the difference I'(x?—x") is statistically
uncorrelated with the DmA difference, z —I'x“.

Equations (19) and (20) also show that the analysed fields must fit the data to
within the accuracy assumed on the latter — Hollingsworth and Loénnberg (1989)
have called efficient an assimilation system that possesses this particular property.
This, with the check of unbiasedness of the innovation or DmA difference, is one
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basic consistency check to perform on an assimilation system. Experience shows
that systems that have been used in operations for a long time, and have been pro-
gressively improved through, mostly, comparison with independent observations,
are consistent as concerns the particular diagnostic considered here. Newly devel-
oped systems, on the other hand, may be off by a factor as large as one order of
magnitude. Such an inconsistency is the signature of a gross misspecification in the
error covariance matrix S, although the check does not say where the misspecifica-
tion lies, nor even, in all mathematical rigour, that the system is not optimal because
of the misspecification.

Consider a sub-matrix of S that is diagonal, corresponding, for instance, to
radiosonde observations that are at mutually sufficiently large distance for the cor-
responding representativeness errors to be uncorrelated. The analysis error will be
spatially correlated, mainly because of an assumed correlation in the background
error. The off-diagonal terms in S will be 0, and Eq. (19) then shows that the
DmA difference will be negatively correlated at short distances. Hollingsworth and
Lonnberg (1989) have described an example of a positive short-distance correla-
tion of the DmA difference in the ECMWF (European Centre for Medium-Range
Weather Forecasts) assimilation system. That was the signature of a misspecifica-
tion somewhere in the matrix S. Later checks showed a negative correlation. The
sign of the DmA difference spatial correlation does not seem to have been recently
checked in operational assimilation systems.

The check defined by Eq. (19) does not, of course, provide a measure of the qual-
ity of the assimilation system. On the contrary, assume that, as a result for instance
of an increase in the number of observations, the accuracy of the analysis increases,
while observation error variances remain constant. The term that is subtracted on
the right-hand side of Eq. (19), which is a measure of the quality of the analysis,
will decrease. As a consequence, the variance of the DmA difference will increase
to tend asymptotically, as it must obviously do in the limit of a perfectly accurate
analysis, to the variance of the data error. That constitutes a definitive proof, if one
is needed, that the fit of an analysis to the data used in that analysis cannot be a
measure of the quality of the analysed fields.

The objective function given by Eq. (6) assumes at its minimum the value

Jinin = J(x4) = %(I‘x“ —2)'S™I(rx* — 2). (21)

It is (half) the squared S—-Mahalanobis norm of the DmA difference 8. In the {I'(S)—
1TI'(8)} decomposition of the data space D, Eq. (21) reads (see Eq. 7)

1 _
Jmin = Eegs 16‘2.

Since &, is in one-to-one linear correspondence with the innovation d, and S, =
I ([ezsg ], invariance of the Mahalanobis scalar product in a linear transformation
implies that
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1
Jinin = EdTg[ddT]—ld. (22)

The value of the objective function at its minimum is (half) the squared Mahalanobis
norm of the innovation, with respect to its own covariance matrix. This is a deter-
ministic result, valid for any realization of the minimization process. It is readily
seen that Jyj, is also the value of the dual objective function (see Eq. 25 of chapter
Variational Assimilation, Talagrand) at its minimum.

Equation (22) being valid in any system of coordinates, it is convenient to con-
sider as coordinates the principal components d; (i = 1, ..., p) of d, in which
the covariance matrix £[dd”] is the unit matrix I,[€1d; dj] = &, where §j; is the
Kronecker symbol]. Equation (22) then reads

1L
2
Jmin =5 D _d7, (23)
i=1
which shows that, for a consistent system, Jy,in has expectation

Elmin] = ‘5’. (24)

The expectation of the objective function at its minimum is half the number of obser-
vations. This provides a very simple overall check of consistency of an assimilation
system. If the observed expectation of Jy, is smaller (resp. larger) than p/2, this
means that the assimilation system is inconsistent, and that the covariance matrix
£[dd"], as specified by the system, is too large (resp. too small). Note that the pres-
ence of a residual bias in the innovation (which can of course be directly checked)
would lead to an increase of Jiin.

Jmin 18 a direct output of variational algorithms, both in their primal and dual
forms. It can also be computed, although at some numerical cost, in other assimila-
tion algorithms, such as Kalman filtering (see, e.g., Ménard and Chang 2000). The
criterion given by Eq. (24) seems to have been first described and used, in the context
of oceanography and meteorology, by Bennett (1992). Since then, the test given by
Eq. (24) has been performed for a fairly large number of assimilation systems. One
can mention, among others, the works of Ménard and Chang (2000), Talagrand and
Bouttier (2000), Caiiizares et al. (2001), Muccino et al. (2004), Sadiki and Fischer
(2005), Chapnik et al. (2006) and Elbern et al. (2007). A remark similar to the one
that has been made about Eq. (19) can also be made here. Systems that have gone
through extended operational validation and tuning, even if they have never been
subject to the particular check given by Eq. (24), usually show a value of E[Jpin]
that differs from its theoretical value p/2 by a factor of, at most, a few units.

The test given by Eq. (24) is often called the y’—fest. The x2 probability dis-
tribution of order p is the distribution of the sum of the squares of p independent
Gaussian variables, each with expectation 0 and variance 1. It has expectation p and
variance 2p. It is seen from Eq. (23) that, if the data error (and therefore the inno-
vation) is Gaussian, the quantity 2/, follows a X2 distribution of order p. Both
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the expectation and variance of Jy, are then equal to p/2. But it is also seen from
the above that the expectation of Ji, is equal to p/2 independently of whether the
data error is Gaussian or not. However, for large p, and even if the innovation is not
Gaussian, the central limit theorem (which states that the sum of a large number of
independent random variables is Gaussian) ensures that 2Jy,;, must approximately
follow a X2 distribution of order p, The distribution of Jy,, which has expectation
p/2 and standard deviation /(p/2), is then very strongly peaked. Experience shows
that a few realizations of an assimilation system are sufficient for reliable estimation
of [J min]'

The objective function given by Eq. (6) will most often be the sum of a number
of independent terms, viz.,

K
J60 =) i),
k=1
where

1
Ji(x) = E(rkx —z)"S; (Tix — zp). (25)

In this equation, z; is an my—dimensional component of the data vector z
(Xrmy = m), and the rest of the notation is obvious. The inverse estimation error
covariance matrix is easily obtained from Eq. (5) as

P! = Z r’s;'ry. (26)
k
Left-multiplying by P“, and then taking the trace of the result, yields

1 _ 1 ~12 ~12
1==> " u®Tls Ty =~ > ws,/’r,pr]s
ni r( S To) ni (S, k kD% )

where use has been made, for obtaining the last equality, of the fact that the trace of
the product of two matrices is not modified when the order of the factors is reversed.
This expression shows that the quantity

172 —12

1
I(z) = ~u(S; "I PTlS, /%) 27)
n

(which, being the trace of a symmetric definite positive matrix, is necessarily posi-
tive) is a measure of the relative contribution of the subset of data z; to the overall
accuracy of the analysis, or of the (relative) information content of subset z;. In
particular, in case of a background-observation decomposition of form given by
Eq. (10) (for the background, I'y = I,,, and Sy = P?),
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1x") = %tr[P"(Pb)_l] =1— %tr(KH)

1
1(y) = —te(KH)

Rodgers (2000) calls the quantity I/(zy) Degrees of Freedom for Signal, or for
Noise, depending on whether the subset z; belongs to observations or background.
Equation (27) is absolutely general, and is valid for any subset of data, including
subsets that may consist of data coming from both the background and the observa-
tions. That is clearly seen from the fact that, given any subset v of the data, the data
vector z can always be transformed, through linear and invertible operations, into
7 — (VT, wT)T, where the errors affecting w are uncorrelated with the errors affect-
ing v. In that transformation, the objective function J(x) becomes the sum of two
terms corresponding to v and w respectively, from which the information contents
I(v) and I(w) are clearly defined.

The relative information content /(z;) is in essence the sum of the weights
assigned in the assimilation to the components of z;, normalized in such a way
as to allow consistent comparison between data that have been produced by differ-
ent operators I'x. Everything else being equal, /(z;) increases with decreasing error
Sk. Figure 1, extracted from Chapnik et al. (2006), shows the information content

TEMP_U TEMP_T TEMP_Q PILOT SATOB AMSU AIREP_U | Olat=20*
cpann 59 s
ISR m-20°<lat<20°
= Blat<-20°
sol e
GIRARD
3000 — — AIREP_T |
GIRARD SO
biranp 5%
2000 4 — 1 — -
GIRARD
soi JGIRARD  SOI
GIRARD
1000 - H —1 M H == =
. 181

Fig. 1 Relative information content (Eq. 27) for eight different subsets of observations, as esti-
mated for the variational assimilation system of Météo-France. For each type of observations, the
two bars correspond to two different algorithms for computing the relative information content (see
text). Each bar is divided into three parts, corresponding respectively, from fop to bottom, to the
Northern Hemisphere (20°N-90°N), the tropical belt (20°S—-20°N) and the Southern Hemisphere
(20°S-90°S). For TEMP U and AIREP U (wind observations from radiosondes and aircraft respec-
tively), observations of both horizontal components of the wind vector are included (© Royal
Meteorological Society)



Evaluation of Assimilation Algorithms 233

of eight subsets of observations, as determined for the variational assimilation algo-
rithm of the ARPEGE Numerical Weather Prediction system of Météo-France. Each
vertical bar is divided into three parts, corresponding respectively, from top to bot-
tom, to observations performed northward of latitude 20°N, between latitudes 20°N
and 20°S, and southward of latitude 20°S (for each type of observations, the two
bars correspond, as will be explained below, to two numerical algorithms for the
computation of the information content).

It is seen that the largest information content corresponds to observation subsets
which contain the largest number of observations: radiosonde wind measurements
TEMP U (which contain measurements of both horizontal components of the wind),
and satellite observations (SATOB and AMSU). The impact of the geographical
distribution of the observations is also clearly visible. The information content of
the Northern Hemisphere dominates in the radiosonde (TEMP), pilot (PILOT) and
aircraft (AIREP) observations, which are much more numerous in the Northern
Hemisphere. For satellite observations, the impact of both hemispheres is the same,
with larger relative impact of the tropical belt for SATOB (wind estimates for geo-
stationary satellites) than for AMSU observations (infrared radiation measurements
performed from satellites on polar orbits).

Figure 2 shows the same information contents as in Fig. 1, divided now by the
number of individual observations in each of the eight subsets. It is the intrin-
sic information content of individual observations, independent of the number of
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Fig. 2 Same as Fig. 1, but averaged for individual observations in each class
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observations in a given subset. It is seen that it is the radiosonde measurements of
humidity that have here highest individual information content.

Different, but fundamentally similar diagnostics have been defined and stud-
ied by other authors (see, e.g., Fisher 2003). These types of diagnostics are very
useful. Not only do they provide instructive a posteriori information, but they can
be used for a priori estimation of information content. They have been used, for
instance, by Rabier et al. (2002) for selecting the most informative channels in satel-
lite radiance measurements. More generally, they can be used as part of Observing
System Simulation Experiments (OSSEs) for a priori estimation of the gain that
can be expected from new instruments (see chapter Observing System Simulation
Experiments, Masutani et al.).

On the other hand, these diagnostics are based on the assumption that the
expectations and variances of data errors have been correctly specified. That is,
of course, not necessarily the case and these diagnostics may, in consequence, be
misleading. In particular, they cannot be used in isolation for detecting a possible
misspecification of the required expectations and variances.

It can be shown (Talagrand 1999; Desroziers and Ivanov 2001) that the expecta-
tion of the term Jx(x) (Eq. 25) at the minimum of the objective function is equal to

EEY] = %[mk — tr(Sk_%I‘kP“I‘ZS]: %)], (28)

where the same trace is present on the right-hand-side as in Eq. (27). Equation (28)
includes Eq. (24) as a particular case. It shows that, everything else being equal,
E [Jr(x*)] will be smaller for more accurate data (smaller norm for S). It is obvious
that the fit of the analysis must be closer to more accurate data. But Eq. (28) shows
that this remains true even when the fit to the data is divided by the covariance
matrix of the data error.

Equation (28) also provides the basis for further evaluation of the consistency
of an assimilation scheme. It suffices to compare the trace of Sk_l/ 2l"kP“F,{Sk_1/ 2,
as computed directly and as determined statistically, through Eq. (28), from results
of assimilation experiments. Desroziers and Ivanov (2001) have shown that, if the
observation error is supposed to be uncorrelated in space and uncorrelated with the
background error, Eq. (28) can be used for estimating the observation and back-
ground error variances. This is, in essence, a systematic extension of the already
mentioned work by Hollingsworth and Lonnberg (1989) and Daley (1993). Along
the same lines, Chapnik et al. (2006) have used Eq. (28) to tune the variances of the
observational errors in the various channels of the TOVS instrument, carried by the
satellites of the NOAA series (Appendix lists acronyms.). This has led to a signif-
icant change for several of the variances (reduction by a factor of 9 in one case).
It has also led to a modest, but distinct, improvement in the quality of the ensuing
forecasts.

As a side remark, Eq. (28) also provides what is likely the simplest way of
computing the trace tr(S,Zl/zI'kPal",{S;l/z). The matrix S,;l/zl"kP"I‘,{S,:]/2 has
dimension my x my, where my can reach values of order 0(106). Computing the
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trace of large matrices that are not explicitly available (which is the case in assimila-
tion of meteorological or oceanographical observations) raises specific difficulties.
A simple way to compute the trace tr(Sk_l/ ZFkP“F,{Sk_U %) is to run the assimila-
tion code from unbiased synthetic data affected with errors that have covariance
matrix Sg, and to determine the trace from the sample average of J¢(x%). Experience
shows that, for large values of my (and similarly to what has been said above con-
cerning the test given by Eq. 24), a sample of a few elements is sufficient for
determination of E[J(x?)]. It is that particular method that has been used for deter-
mining the values marked SOI (for Simulated Optimal Innovation) in Fig. 1 (the
method identified as Girard is also a Monte Carlo type method, described in Girard
1987).

We have described a number of diagnostics, in particular diagnostics of inter-
nal consistency, that can be implemented on an assimilation system. Many other
such diagnostics can be defined, all based on statistics of the innovation or of the
DmA differences. Two particular diagnostics have been defined by Desroziers et al.
(2005). Assuming the background and observation errors to be uncorrelated, and
to have respective covariance matrices P? and R (see Eq. 15), then, in a consistent
system

EMHE — x")dT] = HPPHT,
Elly — HxHd'1 =R.

This allows direct comparison with the a priori specified values for P? and R
(although of course, an inconsistency in, say, the second of those equations, does
not mean that the misspecification lies only in R; actually, it does not even mean
that R is mispecified at all).

It is worth making a few additional remarks concerning the information content
given by Eq. (27). As a simple example, consider the case of a scalar x that evolves
in time ¢ according to the equation

Xi+1 = QXy

with o > 0. Assume two equally accurate observations of x have been performed
at times ¢ and ¢ + 1. The corresponding information contents are easily seen to be
in the proportion (1/¢, «). For stable systems (o > 1), the later observation is more
informative; it is less informative for unstable systems (o < 1). The two quantities
x:and xz41 being in one-to-one correspondence, this is true independently of the time
at which x; is to be estimated.

Given two data subsets vi and v, with respective information contents /(v{) and
I(v3), the information content /(v) of the union set v = (v{ 7, vo7)7 is equal to I(v{) +
I(vy) if the errors affecting v and vpare uncorrelated. If that is not the case, v; and
vy can be said to be positively, or negatively correlated depending on whether /(v) <
I(vy) + I(v2) or I(v) > I(v1) + I(v2). This defines a sign (and actually a magnitude) for
the correlation between two subsets of data. The information content being invariant
in a linear transformation in data space (and in particular in a change of sign in any
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of the individual data), that correlation is not systematically related to the sign of the
numerical correlations between the components of the errors affecting v; and v (in
general, those correlations make up a whole matrix, with no unambiguous sign).

The information content /(z;) quantifies the relative contribution of subset z; to
the overall accuracy of the estimate of the state vector x. That notion can be extended
to the measure of the contribution of z; to the accuracy of the estimate of any subset,
say uj, of x. To see that, denote n; the dimension of uj, and decompose the state
vector x into (u;?, wp”)” where u, is the projection of x onto the subspace that
is P“~Mahalanobis orthogonal to u;. In that decomposition, the estimation error
covariance matrix P? reads

P = diag(P}, P%)

with
1 = El] —up(uf —u)'],
4 = E[(ug — uh)(u§ —ub)’],

(where the superscript a denotes, as before, analysis). As for the data operator I'g,
it decomposes into

Iy =Tk, Tip),

where I'y 1 (I'x2) defines the contribution of u; (uy) to the data subset z;. Equation
(5) decomposes in turn into

LAY VAT AN (29a)
k

Pyt = Z | S T (29b)
k

The same derivation that has led from Eqs. (26) and (27), started this time from
Eq. (29a), leads to defining

1/2 —12

L(z) = %tr(Sk_ T PT] S, /9, (30)
as being the relative contribution of the data subset z to the accuracy of the estima-
tion of u;. One can thus define the relative contribution of any subset of the data (for
instance, the infrared radiances in a given channel over a given geographical area)
to the accuracy of the estimate of any subset of the analysed fields (for instance, the
estimate of humidity over that same area).

Numerical determination of /1(z;) seems, however, to raise serious problems,
since it requires the identification, in one form of another, of the subspace in S that
is P“~Mahalanobis orthogonal to u;. It is not clear how that could be achieved in
practice.
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6 Diagnostics of Optimality of Assimilation Algorithms

The various diagnostics that have been presented in the previous sections allow
objective comparison of the quality of different assimilation schemes, or evaluation
of the internal consistency of a given scheme. They say nothing as to the optimality,
or otherwise, of a given scheme. The BLUE is defined on conditions of statisti-
cal unbiasedness and minimum estimation error variance. As a consequence, the
estimation error x“—x’, in addition to being unbiased, must be statistically uncorre-
lated with the DmA difference or, equivalently, with the innovation vector. This is
expressed by Eq. (10a), where the second term on the right-hand side is the orthog-
onal projection, in the sense of covariance, of (minus) the background error x'— x?
onto the space spanned by the innovation y — Hx” (see also Eq. 20). The optimality
condition is often expressed, in an exactly equivalent way, by saying that a sequen-
tial algorithm for assimilation is optimal if, and only if, the temporal sequence of
innovation vectors is unbiased and uncorrelated (Kailath 1968).

This optimality condition can be objectively checked against independent obser-
vations. Let us consider an observation of the form

q=Dx+y,

where D is a known linear operator, and the error p is assumed to be unbiased and
uncorrelated with the data error €, and therefore with the innovation d. Optimality
of the estimate q = Dx“ of w is equivalent to the conditions that it be statistically
unbiased

Elq —Dx]1 =0, (€2))
and uncorrelated with the innovation
El(q —DxHd"1 =o. (32)

If the unbiasedness condition given by Eq. (31) is usually checked in assimilation
systems, the uncorrelatedness condition given by Eq. (32), in spite of its simplicity,
has so far been rarely used. One of the few examples is a work by Daley (1992), who
computed the correlation of the innovation sequence for the sequential assimilation
system that was then in use at the Canadian Meteorological Centre (that system
is described by Mitchell et al. 1990). He found significantly non-zero correlations,
reaching values of more than 0.4 for the 500 hPa geopotential innovation, at a time-
lag of 12 h. Similar tests, performed more recently on a system for assimilation of
oceanographical observations, led to correlation values around 0.3 (Miller, personal
communication).

The diagnostic given by Eqgs. (31) and (32), if used alone, is actually a “one-
way” diagnostic. If the observed correlation is found to be significantly different
from 0, as in the two examples above, that is a proof that the assimilation system is
suboptimal, and can be improved. But if the correlation is found to be statistically
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undistinguishable from 0, that does not mean that the system cannot be improved.
To see that, consider a system which uses as background a short-range forecast
produced by a high-quality Numerical Weather Prediction model, and suppose the
system uses as background error covariance matrix P? the matrix of climatologi-
cal covariances. That is not erroneous, since the long term statistical distribution
of the background must be close to the climatological distribution. And, provided
the covariance matrix of observation error is correctly specified, one can expect
that the covariance (Eq. 32) will be 0. However, in view of the quality of present
short range numerical weather forecasts, it is clear that such a system could be sig-
nificantly improved. Actually, a system that is suboptimal by the criterion given
by Eq. (32) can very well produce much more accurate estimates than an optimal
“climatological” system.

This first shows that the diagnostic given by Eq. (32) does not have much mean-
ing if it not associated with diagnostics of the magnitude of the difference q —Dx“.
That is not a problem inasmuch as such diagnostics are performed routinely. But this
short discussion also shows that it is impossible to objectively determine, at least on
the basis of diagnostics of form given by Eqgs. (31) and (32), whether an assimilation
system makes the best possible use of the available data.

On the other hand, that certainly does not mean that diagnostics of form Eq. (32)
should not be used at all. As mentioned, they have rarely been used so far, but they
can objectively detect suboptimality, and would certainly be a useful complement to
other commonly used diagnostics.

7 Conclusions

We have studied in some detail, in the context of the BLUE, the three questions
stated in the Introduction. The answer to the first question (Q1), relative to the pos-
sibility of objectively evaluating the quality of an assimilation algorithm, is fairly
obvious. Such an evaluation can be made only against unbiased observations that
have not only not been used in the assimilation, but are affected by errors that are
uncorrelated with the errors affecting the data that have been used in the assimila-
tion (in the general case of a non-linear estimation scheme, the condition would be
that the errors affecting the verifying observations must be statistically independent
of the errors affecting the data that have been used in the assimilation).

The second question (Q2) was relative to the possibility of objectively deter-
mining the probability distribution of the errors affecting the data (the expectation
i and the covariance matrix S in the case of the BLUE). It has led to the con-
clusion that (except for trial and error tuning, which cannot be exhaustive in
meteorological or oceanographical applications) this will always require external
hypotheses, i.e., hypotheses that cannot be objectively validated on the basis of
the data only (incidentally, the author does not know if this result, which has been
shown here on the basis of a fundamentally linear argument, extends to non-linear
estimation). Appropriate external information is always available in meteorological
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and oceanographical applications, but is largely unsufficient to entirely define the
required quantities i and S. Now, there is no other choice in practice than mak-
ing hypotheses about the statistics of the errors affecting the data. It is important
to distinguish as clearly as possible between hypotheses that are very unlikely to
be ever modified (such as, for instance, that errors in radiosonde observations per-
formed a long distance apart are uncorrelated), from hypotheses that are reasonable
but probably disputable (such as, for instance, that observation errors are statisti-
cally uncorrelated with background errors), and from hypotheses that are made for
convenience, but are very presumably erroneous (such as, for instance, that model
errors are absent, or even only uncorrelated in time). Ideally, one might wish to
define a minimum set of reliable hypotheses such that all remaining necessary error
statistics can be objectively determined from statistics of the innovation. That goal
seems, however, to be somewhat elusive in the present state of assimilation of mete-
orological and oceanographical observations. On the other hand, methods such as
generalized cross validation (Wahba et al. 1995), which are ultimately trial and error
experimentation, but are based on a solid methodological approach, have certainly
not received enough attention in meteorological and oceanographical applications.

Note that systematic comparison between a priori assumed and a posteriori
statistics of the innovation (or equivalently of the DmA difference) can reveal incon-
sistencies for which they cannot be unambiguous interpretation, but which can, if
used with good judgment, help improve the a priori specification of w and S.

Concerning objective estimation of the optimality of an assimilation algorithm
(03), the decorrelation criterion (Eq. 32) is valid only for least squares estimation
(but can extend to non-linear least squares estimation). Although it can prove noth-
ing as to the accuracy of the assimilation, it can nevertheless be useful, and has
likely also not received enough attention.
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Initialization

Peter Lynch and Xiang-Yu Huang

1 Introduction

The spectrum of atmospheric motions is vast, encompassing phenomena having
periods ranging from seconds to millennia. The motions of interest to the fore-
caster typically have timescales of a day or longer, but the mathematical models used
for numerical prediction describe a broader span of dynamical features than those
of direct concern. For many purposes these higher frequency components can be
regarded as noise contaminating the motions of meteorological interest. The elimi-
nation of this noise is achieved by adjustment of the initial fields, a process called
initialization.

The natural oscillations of the atmosphere fall into two groups (see e.g. Kasahara
1976). The solutions of meteorological interest have low frequencies and are close
to geostrophic balance. They are called rotational or vortical modes, since their vor-
ticity is greater than their divergence; if divergence is ignored, these modes reduce
to the Rossby-Haurwitz waves. There are also very fast gravity-inertia wave solu-
tions, with phase speeds of hundreds of metres per second and large divergence. For
typical conditions of large scale atmospheric flow (when the Rossby and Froude
numbers are small) the two types of motion are clearly separated and interac-
tions between them are weak. The high frequency gravity-inertia waves may be
locally significant in the vicinity of steep orography, where there is strong thermal
forcing or where very rapid changes are occurring; but overall they are of minor
importance.

A subtle and delicate state of balance exists in the atmosphere between the wind
and pressure fields, ensuring that the fast gravity waves have much smaller ampli-
tude than the slow rotational part of the flow. Observations show that the pressure
and wind fields in regions not too near the Equator are close to a state of geostrophic
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balance and the flow is quasi-non-divergent. The bulk of the energy is contained
in the slow rotational motions and the amplitude of the high frequency compo-
nents is small. The existence of this geostrophic balance is a perennial source of
interest; it is a consequence of the forcing mechanisms and dominant modes of
hydrodynamic instability and of the manner in which energy is dispersed and dissi-
pated in the atmosphere. For a recent review of balanced flow, see Mclntyre (2003).
The gravity-inertia waves are instrumental in the process by which the balance
is maintained, but the nature of the sources of energy ensures that the low fre-
quency components predominate in the large scale flow. The atmospheric balance
is subtle, and difficult to specify precisely. It is delicate in that minor perturba-
tions may disrupt it but robust in that local imbalance tends to be rapidly removed
through radiation of gravity-inertia waves in a process known as geostrophic
adjustment.

When the basic equations are used for numerical prediction the forecast may
contain spurious large amplitude high frequency oscillations. These result from
anomalously large gravity-inertia waves which occur because the balance between
the mass and velocity fields is not reflected faithfully in the analysed fields. High
frequency oscillations of large amplitude are engendered, and these may persist for
a considerable time unless strong dissipative processes are incorporated in the fore-
cast model. It was the presence of such imbalance in the initial fields which gave
rise to the totally unrealistic pressure tendency of 145 hPa/6 h obtained by Lewis
Fry Richardson in the first-ever objective numerical weather forecast (Richardson
1922, Lynch 2006).

Although they have little effect on the long-term evolution of the flow, grav-
ity waves may profoundly influence the way it changes on shorter time-scales.
Figure 1 schematically depicts the pressure variation over a period of 1 day. The
smooth curve represents the variation due to meteorological effects; its gentle slope
(dotted line) indicates the long-term change (Phillips 1973). The rapidly varying
curve represents the actual pressure changes when gravity waves are superim-
posed on the meteorological flow: the slope of the oscillating curve (dashed line)
is precipitous and, if used to determine long-range variations, yields totally mis-
leading results. What Richardson calculated was the instantaneous rate of change
in pressure for an atmospheric state having gravity wave components of large
amplitude.

If the fields are not initialized, the spurious oscillations which occur in
the forecast can lead to various problems. In particular, new observations are
checked for accuracy against a short-range forecast. If this forecast is noisy,
good observations may be rejected or erroneous ones accepted. Thus, initial-
ization is essential for satisfactory data assimilation (see other chapters in
Part I, Theory, for a discussion of data assimilation). Another problem occurs
with precipitation forecasting. A noisy forecast has unrealistically large verti-
cal velocity. This interacts with the humidity field to give hopelessly inaccu-
rate rainfall patterns. To avoid this spin-up, we must control the gravity wave
oscillations.
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Fig. 1 Schematic illustration of pressure variation over a 24 h period. The thick line is the mean,
long-term variation, the thin line is the actual pressure, with high frequency noise. The dotted line
shows the rate of change, at 12 h, of the mean pressure and the dashed line shows the corresponding

rate of change of the actual pressure (after Phillips 1973)

2 Early Initialization Methods

2.1 The Filtered Equations

The first computer forecast was made in 1950 by Charney, Fjgrtoft and Von
Neumann (Charney et al. 1950). In order to avoid Richardson’s error, they modified
the prediction equations in such a way as to eliminate the high frequency solutions.
This process is known as filtering. The basic filtered system is the set of quasi-
geostrophic equations. These equations were used in operational forecasting for a
number of years. However, they involve approximations which are not always valid,
and this can result in poor forecasts. A more accurate filtering of the primitive equa-
tions leads to the balance equations. This system is more complicated to solve than
the quasi-geostrophic system, and has not been widely used.

2.2 Static Initialization

Hinkelmann (1951) investigated the problem of noise in numerical integrations and
concluded that if the initial winds were geostrophic, high frequency oscillations



244 P. Lynch and X.-Y. Huang

would occur but would remain small in amplitude. He later succeeded in integrating
the primitive equations, using a very short timestep, with geostrophic initial winds
(Hinkelmann 1959). Forecasts made with the primitive equations were soon shown
to be clearly superior to those using the quasi-geostrophic system. However, the
use of geostrophic initial winds had a huge disadvantage: the valuable information
contained in the observations of the wind field was completely ignored. Moreover,
the remaining noise level is not tolerable in practice. Charney (1955) proposed that
a better estimate of the initial wind field could be obtained by using the non-linear
balance equation. This equation — part of the balance system — is a diagnostic
relationship between the pressure and wind fields. It implies that the wind is non-
divergent. It was later argued by Phillips (1960) that a further improvement would
result if the divergence of the initial field were set equal to that implied by quasi-
geostrophic theory. Each of these steps represented some progress, but the noise
problem still remained essentially unsolved.

2.3 Dynamic Initialization

Another approach, called dynamic initialization, uses the forecast model itself to
define the initial fields (Miyakoda and Moyer 1968). The dissipative processes in
the model can damp out high frequency noise as the forecast proceeds. We integrate
the model first forward and then backward in time, keeping the dissipation active all
the time. We repeat this forward—backward cycle many times until we finally obtain
fields, valid at the initial time, from which the high frequency components have
been damped out. The forecast starting from these fields is noise-free. However, the
procedure is expensive in computer time, and damps the meteorologically signifi-
cant motions as well as the gravity waves, so it is no longer popular. Digital filtering
initialization, described below, is essentially a refinement of dynamic initialization.
Because it used a highly selective filtering technique, it is computationally more
efficient than the older method.

2.4 Variational Initialization

An elegant initialization method based on the calculus of variations was introduced
by Sasaki (1958). We consider the simplest case: given an analysis of the mass
and wind fields, how can they be minimally modified so as to impose geostrophic
balance? This problem can be formulated as the minimization of an integral rep-
resenting the deviation of the resulting fields from balance. The variation of the
integral leads to the Euler-Lagrange equations, which yield diagnostic relationships
for the new mass and wind fields in terms of the incoming analysis. Although the
method was not widely used, the variational method is now at the centre of modern
data assimilation practice. In Sect. 6 below we discuss the use of a digital filter as
a weak constraint in four-dimensional variational assimilation (4D-Var; see chapter
Variational Assimilation, Talagrand).
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3 Atmospheric Normal Mode Oscillations

The solutions of the model equations can be separated, by a process of spectral
analysis, into two sets of components or linear normal modes, slow rotational com-
ponents or Rossby modes, and high frequency gravity modes. We assume that the
amplitude of the motion is so small that all non-linear terms can be neglected. The
horizontal structure is then governed by a system equivalent to the linear shallow
water equations which describe the small-amplitude motions of a shallow layer of
incompressible fluid. These equations were first derived by Laplace in his discus-
sion of tides in the atmosphere and ocean, and are called the Laplace tidal equations.
The simplest means of deriving the linear shallow water equations from the primitive
equations is to assume that the vertical velocity vanishes identically.

3.1 The Laplace Tidal Equations

Let us assume that the motions under consideration can be described as small per-
turbations about a state of rest, in which the temperature is a constant, Ty, and the
pressure p(z) and density p(z) vary only with height. The basic state variables sat-
isfy the gas law and are in hydrostatic balance: p = RpTp and dp/dz = —gp. The
variations of mean pressure and density follow immediately:

p(z) = poexp(—z/H), p(2) = poexp(—z/H),

where H = po/gpo = RTp/g is the scale-height of the atmosphere. We consider
only motions for which the vertical component of velocity vanishes identically,
w = 0. Let u, v, p and p denote variations about the basic state, each of these
being a small quantity. The horizontal momentum, continuity and thermodynamic
equations, with standard notation, are (see chapters The Role of the Model in the
Data Assimilation System, Rood; General Concepts in Meteorology and Dynamics,
Charlton-Perez et al.)

apu _ ap
Rt 2 =0 1
oy TSPVt ey
apv _ ap
it 2 =0 2
a7 +fpu+ oy 2
0
P yviv=0 3)
ot
19 10
—P__P_ (4)
yp ot  p ot

Density can be eliminated from the continuity equation, Eq. (3), by means of the
thermodynamic equation, Eq. (4). Now let us assume that the horizontal and vertical
dependencies of the perturbation quantities are separable:
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The momentum and continuity equations can then be written
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where V = (U, V) is the momentum vector and h = yH = yRTy/g. This is
a set of three equations for the three dependent variables U, V, and P. They are
mathematically isomorphic to the Laplace tidal equations with a mean depth /. The
quantity A is called the equivalent depth. There is no dependence in this system on
the vertical coordinate z.

The vertical structure follows from the hydrostatic equation, together with the
relationship p = (ygH)p implied by the thermodynamic equation. It is determined
by

iz Z
“Lz o, 9
dz+yH ©

the solution of which is Z = Zyexp(—z/yH), where Zj is the amplitude at z = 0.
If we set Zyp = 1, then U, V and P give the momentum and pressure fields at the
Earth’s surface. These variables all decay exponentially with height. It follows from
Eq. (5) that # and v actually increase with height as exp(k z/H), but the kinetic energy
decays.

3.2 Vorticity and Divergence

We examine the solutions of the Laplace tidal equations in some enlightening lim-
iting cases. Holton (1992) gives a more extensive analysis, including treatments of
the equatorial and mid-latitude S-plane approximations. By means of the Helmholtz
Theorem, a general horizontal wind field V may be partitioned into rotational and
divergent components

V=Vy+V, =kxVy+Vy.
The stream function i and velocity potential x are related to the vorticity and

divergence by the Poisson equations V2 = ¢ and VZx = &, respectively. It
is straightforward to derive equations for the vorticity and divergence tendencies.
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Together with the continuity equation, they are

3
a—i—i—er—i—,Bv:O (10)
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F =0 (12
8r+g o )

These equations are completely equivalent to Egs. (6), (7), and (8); no additional
approximations have yet been made. However, the vorticity and divergence forms
enable us to examine various simple approximate solutions.

3.3 Rossby-Haurwitz Modes

If we suppose that the solution is quasi-non-divergent, i.e., we assume |6 < |¢],
the wind is given approximately in terms of the stream function (u, v) ~ (=¥, V),
and the vorticity equation becomes

V2 + B = 0(), (13)

and we can ignore the right-hand side. Assuming the stream function has the wave-
like structure of a spherical harmonic, Y]'(A, ¢) = PJ'(sin ¢) exp(imA), we substitute
the expression ¥ = ¥ Y)'(A, ) exp(—ivt) in the vorticity equation and immediately
deduce an expression for the frequency:

2Qm
nn+1)°

(14)

V=1VR =

This is the celebrated dispersion relation for Rossby-Haurwitz waves (Haurwitz
1940). If we ignore sphericity (the S-plane approximation) and assume harmonic
dependence ¥ (x,y, 1) = Yo expli(kx + €y — vt)], then Eq. (13) has the dispersion
relation

v B
kT ey

which is the expression for phase-speed found by Rossby (1939). The Rossby or
Rossby-Haurwitz waves are, to the first approximation, non-divergent waves which
travel westward, the phase speed being greatest for the waves of largest scale. They
are of relatively low frequency — Eq. (14) implies that |[v| < € — and the frequency
decreases as the spatial scale decreases.

To the same degree of approximation, we may write the divergence equation, Eq.
(11), as
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V2P —ft — By = 0). (15)

Ignoring the right-hand side of Eq. (11), we get the linear balance equation
VP =VfVY, (16)
a diagnostic relationship between the geopotential and the stream function. This
also follows immediately from the assumption that the wind is both non-divergent
(V = k x V) and geostrophic (fV = k x VP). If variations of f are ignored, we

can assume P = fi. The wind and pressure are in approximate geostrophic balance
for Rossby-Haurwitz waves.

3.4 Gravity Wave Modes
If we assume now that the solution is quasi-irrotational, i.e. that |{| < |§], then

the wind is given approximately by (#,v) ~ (xx, xy) and the divergence equation
becomes

V2x: + Bxx + VP = 0(0)

with the right-hand side negligible. Using the continuity equation to eliminate P, we
get

VX + B — ghVix = 0.

Seeking a solution x = xoY)''(A, ¢) exp(—ivt), we find that

2 ( 2Qm ) . n(n+ 1)gh _0 (17)

Cn(n+ 1) a?

The coefficient of the second term is just the Rossby-Haurwitz frequency vg
found in Eq. (14) above, so that

1 1 n(n+ 1)gh
v::t,/vé+(§vR)2—§vR, where VGE‘/a—zg'

Noting that |vg| > |vg], it follows that
Vi X dg,
the frequency of pure gravity waves. There are then two solutions, representing

waves travelling eastward and westward with equal speeds. The frequency increases
approximately linearly with the total wavenumber n.
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4 Normal Mode Initialization

The model equations, Egs. (10), (11), and (12) can be written schematically in the
form

X +iLX+NX)=0 (18)

with X the state vector, L a matrix and A/ a non-linear vector function. If L is diag-
onalized, the system separates into two subsystems, for the low and high frequency
components (LF and HF, respectively):

Y +iAyY +N(Y,Z)=0 (19)
Z+iAzZ+N(Y,Z)=0 (20)

where Y and Z are the coefficients of the LF and HF components of the flow, referred
to colloquially as the slow and fast components respectively, and Ay and Az are
diagonal matrices of eigenfrequencies for the two types of modes.

Let us suppose that the initial fields are separated into slow and fast parts, and
that the latter are removed so as to leave only the Rossby waves. It might be hoped
that this process of “linear normal mode initialization”, imposing the condition

Z=0 at t=0

would ensure a noise-free forecast. However, the results of the technique are disap-
pointing: the noise is reduced initially, but soon reappears; the forecasting equations
are non-linear, and the slow components interact non-linearly in such a way as to
generate gravity waves. The problem of noise remains: the gravity waves are small
to begin with, but they grow rapidly (see Daley 1991; Chap. 9).

Machenhauer (1977) examined gravity wave dynamics in simple systems and
found that the amplitude of the high-frequency components is quasi-stationary. To
control the growth of HF components, he proposed setting their initial rate of change
to zero, in the hope that they would remain small throughout the forecast. Baer
(1977) proposed a somewhat more general method, using a two-timing perturbation
technique. The forecast, starting from initial fields modified so that Z=0att=0
is very smooth and the spurious gravity wave oscillations are almost completely
removed. The method takes account of the non-linear nature of the equations, and
is referred to as non-linear normal mode initialization:

Z=0 at t=0.

The method is comprehensively reviewed in Daley (1991).

In Fig. 2, we show the evolution of surface pressure for three 24-h forecasts
(Williamson and Temperton 1981). The solid lines (in both panels) are the pressure
variation for forecasts from uninitialized data. Forecasts from linearly initialized
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Fig. 2 Pressure variation over a 24-h period for forecasts from uninitialized data (solid lines, both
panels, LNMI data (dashed line, left panel) and NNMI data (dashed line, right panel). LNMI =
linearly initialized data; NNMI = non-linearly initialized data. From Williamson and Temperton
(1981)

data (LNMI) are shown by the dashed line in the left panel. Forecasts from data
that is non-linearly initialized (NNMI) are shown by the dashed line in the right
panel. It is clear that LNMI is ineffective in removing spurious oscillations. NNMI
is excellent in this regard.

5 Digital Filter Initialization

Normal mode initialization, or NMI, has been used in many NWP (Numerical
Weather Prediction) centres, and has performed satisfactorily. Its most natural con-
text is for global models, for which the horizontal structure of the normal modes
corresponds to the Hough functions, the eigenmodes of the Laplace tidal equations.
For limited area models, normal modes can also be derived, but the lateral bound-
aries force the introduction of simplifying assumptions. An alternative method of
initialization, called digital filter initialization (DFI), was introduced by Lynch and
Huang (1992). It was generalized to allow for diabatic effects by Huang and Lynch
(1993). The latter paper also discussed the use of an optimal filter. A much simpler
filter, the Dolph-Chebysheyv filter, which is a special case of the optimal filter, was
applied to the initialization problem by Lynch (1997). A more efficient formulation
of DFI was presented by Lynch et al. (1997).

Digital filter initialization (DFI) uses filters similar to those arising in signal pro-
cessing. The selection principle for these is generally based on the frequency of the
signal components. There are a number of ideal types — lowpass, highpass, band-
pass and bandstop — corresponding to the range of frequencies which pass through
the filter and those which are rejected. In many cases the input consists of a low fre-
quency (LF) signal contaminated by high frequency (HF) noise, and the information



Initialization 251

in the signal can be isolated by using a lowpass filter which rejects the noise. Such
a situation is typical for the application to meteorology discussed below.

The method of digital filter initialization has significant advantages over alterna-
tive methods, and is now in use operationally at several major weather prediction
centres (see chapter Numerical Weather Prediction, Swinbank). In DFI there is no
need to compute or store normal modes; this advantage becomes more pronounced
as the number of degrees of freedom of the model increases. There is no need to
separate the vertical modes; NMI requires the introduction of an auxiliary geopo-
tential variable, and partitioning of its changes between the temperature and surface
pressure involves an ad hoc assumption. DFI is free from this problem. There is
complete compatibility with model discretization, eliminating discretization errors
due to grid disparities. DFI is applicable to exotic grids on arbitrary domains, facili-
tating its use with stretched or irregular model grids. There is no iterative numerical
procedure which may diverge; therefore, all vertical modes can be initialized effec-
tively. The simplicity of the method makes it easy to implement and maintain. The
method is applicable to all prognostic model variables; thus, DFI produces initial
fields for these variables which are compatible with the basic dynamical fields. Last
but not least, DFI filters the additional prognostic variables in non-hydrostatic mod-
els in a manner identical to the basic variables. The DFI method is thus immediately
suitable for non-hydrostatic models (Bubnova et al. 1995; Chen and Huang 2006).

5.1 Design of Non-recursive Filters

Consider a function of time, f{f), with low and high frequency components. To filter
out the high frequencies one may proceed as follows:

[1] Calculate the Fourier transform F(w) of f(7);
[2] Set the coefficients of the high frequencies to zero;
[3] Calculate the inverse transform.

(See Fig. 3). Step [2] may be performed by multiplying F(w) by an appropriate
weighting function H(w).

Suppose that fis known only at discrete moments #, = nAt, so that the sequence
{- e oS0 fis o } is given. For example, f;, could be the value of some
model variable at a particular grid point at time #,. The shortest period component
that can be represented with a time step At is ty = 2At, corresponding to a max-
imum frequency, the so-called Nyquist frequency, wy = 7 /At. The sequence { n}
may be regarded as the Fourier coefficients of a function F(9):

FO)= Y fue™, 1)

n=—oo
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Fig. 3 Schematic representation of the equivalence between convolution and filtering in Fourier
space.

where 6 = wAt is the digital frequency and F(0) is periodic, F(0) = F(6 + 2m).
High frequency components of the sequence may be eliminated by multiplying F(0)
by a function H(0) defined by

1 10] < 16c1;
H©) = 22
©) {o, 101 > 16, @2)
where the cutoff frequency 6. = w.At is assumed to fall in the Nyquist range

(—m,m) and H(P) has period 27. This function may be expanded:

o
. 1 T .
HOY= ) me™ 5 = | H©)"do. (23)
—7T

n=—0oo

The values of the coefficients 4, follow immediately from Eqgs. 22 and 23:

sin né,
n — ——

(24)
nim

Let {f} denote the low frequency part of {f,}, from which all components with
frequency greater than 6, have been removed. Clearly,

H(®®)-F©®) = Z frem

The convolution theorem for Fourier series now implies that H(#) - F(0) is the
transform of the convolution of {/,} with {f, }:

== hfus (25)

k=—00

This enables the filtering to be performed directly on the given sequence { ,,}.
In practice the summation must be truncated at some finite value of k. Thus, an
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approximation to the low frequency part of { fn} is given by

N

=Y hifur (26)

k=—N

A more sophisticated method uses the Chebyshev alternation theorem to obtain a
filter whose maximum error in the pass- and stop-bands is minimized. This method
yields a filter meeting required specifications with fewer coefficients that the other
methods. The design of non-recursive and recursive filters is outlined in Hamming
(1989), where several methods are described, and fuller treatments may be found in
Oppenheim and Schafer (1989).

5.2 Application of a Non-recursive Digital Filter to Initialization

An initialization scheme using a non-recursive digital filter has been developed by
Lynch and Huang (1992) for the HIRLAM (High Resolution Limited Area Model)
model. The uninitialized fields of surface pressure, temperature, humidity and winds
were first integrated forward for 3 h, and running sums of the form

* 1 N
F7O) = Shofo + 3 hon, 27)

n=1

where f, = f(nAt), were calculated for each field at each gridpoint and on each
model level. These were stored at the end of the 3 h forecast. The original fields
were then used to make a 3 h “hindcast”, during which running sums of the form

1 —N
F30) = Shafo+ 3 hoaty (28)

n=—1

were accumulated for each field, and stored as before. The two sums were then
combined to form the required summations:

J70) = f£0) + f3(0). (29)

These fields correspond to the application of the digital filter Eq. (26) to the original
data, and will be referred to as the filtered data.

Complete technical details of the original implementation of DFI in the HIRLAM
model may be found in Lynch et al. (1999). A reformulation of the implementation,
with further testing and evaluation, is presented in Huang and Yang (2002).
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5.3 Initialization Example

A detailed case study based on the implementation in HIRLAM was carried out to
check the effect of the initialization on the initial fields and on the forecast, and
to examine the efficacy of DFI in eliminating high frequency noise. The digital
filter initialization was compared to the reference implicit normal mode initialization
(NMI) scheme, and to forecasts with no initialization (NIL). Forecasts starting from
the analysis valid at 1200 UTC on 10 February, 1999 were compared.

We first checked the effect of DFI on the analysis and forecast fields. The max-
imum change in surface pressure due to initialization was 2.2 hPa, with a RMS
(root-mean-square) change of about 0.5 hPa. The changes to the other analysed
variables were in general comparable in size to analysis errors, and considerably
smaller in magnitude than typical changes brought about by the analysis itself: the
RMS change in surface pressure from first guess to analysis was about 1 hPa. The
RMS and maximum differences between the uninitialized 24-h forecast (NIL) and
the filtered forecast (DFI) for all prognostic variables were examined. When we
compare these values to the differences at the initial time they were seen to be gen-
erally smaller. The changes made by DFI are to the high frequency components;
since these are selectively damped during the course of the forecast, the two fore-
casts were very similar. After 24-h the maximum difference in surface pressure was
less than 1 hPa and the RMS difference is only 0.1 hPa.

The basic measure of noise is the mean absolute value of the surface pressure
tendency

s
at |-

m=(R)%

For well-balanced fields this quantity has a value of about 1 hPa/3 h. For unini-
tialized fields it can be an order of magnitude larger. In Fig. 4 we plot the value of
N for three forecasts. The solid line represents the forecast from uninitialized data:
we see that the value of Ny at the beginning of the forecast is about 12 hPa/3 h. This
large value reflects the lack of an effective multivariate balance in the analysis. It
takes about 6 h to fall to a reasonable value. The dashed line is for a forecast starting
from data initialized using the implicit normal mode method (NMI). The starting
value is about 3 hPa/3 h, falling to about 1.5 hPa/3 h after 12 h. The final graph
(the dotted line) is for the digitally filtered data (DFI). The initial value of Nj is now
about 1.5, and remains more or less constant throughout the forecast. It is clear from
this measure that DFI is more effective in removing high frequency noise than NMI.

The measure N; indicates the noise in the vertically integrated divergence field.
However, even when this is small, there may be significant activity in the internal
gravity wave modes. To see this, we look at the vertical velocity field at 500 hPa
for the NIL and DFI analyses. The left panel in Fig. 5 shows the uninitialized ver-
tical velocity field, zoomed in over western Europe and the eastern North Atlantic.
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Mean Pressure change. Solid: NIL, Dashed: NMI , Dotted: DFI
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Fig. 4 Mean absolute surface pressure tendency for three forecasts. Solid: uninitialized analysis
(NIL). Dashed: Normal mode initialization (NMI). Dotted: Digital filter initialization (DFI). Units
are hPa/3 h.

S L7 . -

Fig. 5 Vertical velocity at 500 hPa over western Europe and the eastern North Atlantic. (Left)
Uninitialized analysis (NIL); (Right) after digital filtering (DFI)

There is clearly substantial gravity wave noise in this field. In fact, the field is phys-
ically quite unrealistic. The right panel shows the DFI vertical velocity. It is much
smoother; the spurious features have been eliminated and the large values with small
horizontal scales which remain are clearly associated with the Scottish Highlands,
the Norwegian Mountains and the Alps. Comparison with the NMI method (see
Lynch et al. 1999, for details) indicates that DFI is more effective than NMI in deal-
ing with internal gravity wave noise. It is noteworthy that stationary mountain waves
are unaffected by digital filtering, since they have zero frequency. This is a desirable
characteristic of the DFI scheme.
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5.4 Benefits for the Data Assimilation Cycle

In Lynch et al. (1999), a parallel test of data for one of the FASTEX (Fronts and
Atlantic Storm Track EXperiment) intensive observing periods showed that the DFI
method resulted in slightly improved scores compared to NMI. As it is not usual
for an initialization scheme to yield significant improvements in forecast accuracy,
some discussion is merited. We cannot demonstrate beyond question the reason
for this improvement. However, the comparative results showed up some definite
defects in the implicit normal mode initialization as implemented in the reference
HIRLAM model. It was clear that the NMI scheme did not eliminate imbalance at
lower model levels. Moreover, although the noise level indicated by the parameter
N fell to a reasonable level in 6 h, there was still internal gravity wave noise, not
measured by this parameter. Any noise in the 6 h forecast will be carried through
to the next analysis cycle, and will affect the quality control and assimilation of
new observational data. It is believed that the DFI scheme, with its superior abil-
ity to establish atmospheric balance, results in improved assimilation of data and
consequently in a reduction of forecast errors.

6 Constraints in 4D-Var

We conclude with a discussion on the application of a digital filter as a weak con-
straint in four-dimensional variational assimilation (4D-Var; see chapter Variational
Data Assimilation, Talagrand). The idea is that if the state of the system is noise-free
at a particular time, i.e., is close to the slow manifold, it will remain noise-free, since
the slow manifold is an invariant subset of phase-space (Leith 1980). We consider a
sequence of values {xo,x1,x2, - - xy} and form the filtered value

N
X = Zhnxn- (30)
n=0

The evolution is constrained, so that the value at the mid-point in time is close to
this filtered value, by addition of a term

1 =2
Je = syllxnz —xl|

2
to the cost function to be minimized (y is an adjustable parameter). It is straight-
forward to derive the adjoint of the filter operator (Gustafsson 1992). Gauthier and
Thépaut (2001) applied such a constraint to the 4D-Var system of Météo-France.
They found that a digital filter weak constraint imposed on the low-resolution incre-
ments efficiently controlled the emergence of fast oscillations while maintaining a
close fit to the observations. As the values required for input to the filter are already
available, there is essentially no computational overhead in applying this procedure.
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The dynamical imbalance was significantly less in 4D-Var than in 3D-Var (three-
dimensional variational assimilation). Wee and Kuo (2004) included a J. term in
the MMS5 4D-Var. They found that the weak contraint not only reduces the dynamic
imbalance in the 4D-Var solution, but also improves the quality of the analysis and
forecast significantly.

To illustrate the impact of the J. constraint, experiments are carried out using the
WRF (Weather Research and Forecasting) 4D-Var system Huang et al. (2009), (a)
without and (b) with the penalty term in the minimization. The cost functions (J,,
Jp and J.) are shown in Fig. 6. In both panels, J. is computed with y = 0.1. It is
clear that the unconstrained 4D-Var analysis contains a significant amount of noise,
with J. large, and the weak constraint J,. is able to control the noise level. In most
of our experiments, J,. also helps the convergence of the minimization.

To further demonstrate the noise control effect of J., we computed N; during
the forecasts from WRF 4D-Var analyses using different y. The results from five
experiments are shown in Fig. 7. NoJcDF: forecast start from a WRF 4D-Var anal-
ysis without J. or y = 0. JcDF(0.1): forecast start from a WRF 4D-Var analysis
with J, and y = 0.1. JcDF(1): forecast start from a WRF 4D-Var analysis with
Je and y = 1. JcDF(10): forecast start from a WRF 4D-Var analysis with J. and
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Fig. 6 Cost functions for experiment (a) without J. and (b) with J, in the minimization
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Fig. 7 Mean absolute surface pressure tendency for 5 forecasts

y = 10. FGS: forecast start from first guess, which is a 3-h forecast from previous
analysis cycle and can be considered as a noise-free forecast. The larger the weight
we assign to J,. in the 4D-Var minimization, the lower the noise level becomes in
the subsequent forecast. However, a larger weight in J, may compromise the fit to
observations (a larger J,, at the end of minimization). The tuning of y is necessary.

7 Conclusion

We have described several methods of eliminating noise from the forecast by
removal of spuriously large-amplitude gravity-wave components from the initial
data. This is essential for practical reasons and, in particular, for avoidance of prob-
lems in the assimilation cycle. The benefits of initialization are clear. However, it
is noteworthy that modern variational assimilation methods are capable of produc-
ing fields in good balance, so that a separate initialization stage is less important
now. Constraints to ensure good balance can be incorporated directly into varia-
tional assimilation schemes. The digital filter method is particularly attractive in
this respect, and is a natural choice for variational analysis.
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Part 11
Observations



The Global Observing System

Jean-Noél Thépaut and Erik Andersson

1 Introduction

In this chapter we describe the main components of what is commonly known as the
World Weather Watch Global Observing System (GOS), and review the different
techniques to observe the atmosphere, the ocean and land surfaces. It should be
stressed that the various observing systems generally tend to be complementary
to one another, and that redundancy where it exists is valuable as it enables cross
checking and inter-comparison of data. The emphasis is on the main observation
types and those regularly used in Numerical Weather Prediction (NWP) systems.
It thus complements the chapter Assimilation of Operational Data (Andersson and
Thépaut) on one hand, which concentrates on the assimilation of operational data,
and the chapter Research Satellites (Lahoz) on the other hand, which provides an
overview of available and forthcoming research satellites. The different types of
observations are here divided into two broad categories: in situ observations and
remote sensing observations. We shall see that the different observing systems have
different characteristics that need to be accounted for in assimilation of the data.

A number of acronyms are used in this chapter. The full list of acronyms is
provided in the Appendix.

2 In Situ Observations

Those observation types that were in general use before the satellite era are some-
times referred to as “conventional observations”. For the most part they are in
situ measurements of meteorological parameters such as temperature, wind, pres-
sure and humidity. In situ observations are generally considered to be point-wise
and instantaneous, which are generally accurate assumptions in the context of
operational NWP where the assimilating models typically have resolutions of
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50 km or less in the horizontal, from a few 100 m (in the stratosphere) to a
few tens of metres or less (in the boundary layer) in the vertical, and a few
hours temporally. Each instrument and measurement technique is nevertheless asso-
ciated with its own space- and time-scales due to its sampling characteristics.
Instruments that travel through the atmosphere attached to a balloon or an air-
craft may average over a relatively long distance in a short time, whereas stationary
instruments may sample the same small volume of air over a longer period of time.
Some in situ observations provide integrated information of the entire atmospheric
column.

2.1 Surface and Marine Observations

Near-surface measurements of temperature, wind and humidity have been made for
centuries, forming an invaluable record of the climate (Compo et al. 2006), and pro-
viding a cornerstone for NWP. Stevenson screens are used to house thermometers
to measure temperature at a standard height of 2 m and a wet bulb thermometer
to determine dewpoint depression and hence humidity. A barometer, usually placed
indoors, measures the air pressure. Wind velocity is measured at a standard height
of 10 m with an anemometer. To aid comparison of pressure measurements from
different stations they are normally adjusted to mean sea level, which is problematic
in mountainous areas; assumptions have to be made about the temperature profile
of the fictitious air column that would extend from the station location down to
the sea level. In a further effort to aid comparison of measurements it is required
that the surface observations are made simultaneously at four specific times during
the day: the main so-called synoptic times are 0000, 0600, 1200 and 1800 UTC.
Some stations are making 3-hourly observations, predominantly during day-time.
As more stations are being automated hourly data are becoming more widely avail-
able. At the same time as reading the instruments, the observer (at manual stations)
makes visual observations of clouds, visibility, and current weather. While all these
data are very valuable to forecasters, it is still hard to use all parts of a surface
observation report in a data assimilation system designed for NWP (see chapter
Numerical Weather Prediction, Swinbank) as due to resolution and physics limita-
tions, numerical models do not represent these observables very well. However, the
situation is evolving, especially with the progress made in the development of very
high resolution regional NWP systems.

Surface observations (SYNOP) are available over much of the densely populated
regions of the world, particularly in the Northern Hemisphere, although there are
extensive data voids over parts of Africa (Fig. 1, red markers). Surface observations
from airports (METAR, available during the airfields’” hours of operation) are shown
with blue markers. Similar types of observations are also made from many ships,
which helps fill the gaps over those parts of the ocean that are well covered by com-
mercial shipping routes (cyan markers in Fig. 1). In recent years many drifting (and a
few moored) buoys have been deployed to help fill the data voids (Fig. 2), not least
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Fig. 1 Typical data coverage of surface observations, 20070301 0900-1500 UTC, showing 16,550
SYNORP (red), 1,937 SHIP (cyan) and 12,383 METAR (blue)

Fig. 2 Typical data coverage of buoy observations, 20070301 0900-1500 UTC, showing 5,686
drifting buoys (red) and 140 moored buoys (cyan)

in the southern oceans. The buoys provide frequent surface pressure observations
(hourly or in some cases every 10 min) which is particularly valuable to determine
the intensification rate and movement of storms (Jarvinen et al. 1999).

2.2 Radiosondes

First attempts at making observations of the upper atmosphere (in this context, the
free troposphere, i.e., above the boundary layer) were made during the second half
of the nineteenth century. Labitzke and van Loon (1999) give some fascinating
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accounts of early exploration of upper levels of the atmosphere, with particular
emphasis on discoveries related to the stratosphere. Radiosondes came to be a
crucial part of the Global Observing System following the International Geophysical
Year, or IGY (1957).

Radiosondes are generally launched twice a day (at 0000 and 1200 UTC) from
radiosonde stations across the world. As in the case of surface data, the stations
tend to be concentrated in the main populated areas of the Northern Hemisphere
(Fig. 3). Each radiosonde consists of a balloon carrying an instrument package,
from which measurements are relayed to the ground station. The instrument package
makes in situ measurements of pressure, temperature and humidity. Radar, or more
recently GPS (Global Positioning System) navigation, is used to track the balloon
and so ascertain the wind at the height of the balloon. In a radiosonde sounding,
weather elements are reported at standard pressure levels. The reports also include
“significant levels” to allow details of the measurement profile to be reconstructed
between the standard pressure levels.

Radiosondes are a crucial part of the observation network. They are still heav-
ily used by forecasters, particularly in developing countries. They make a major
contribution to the NWP forecast performance (Bouttier and Kelly 2001), primarily
because it is more difficult to use satellite data over land than ocean. Radiosondes
are also essential for the calibration and bias correction of satellite data.

Since there are many fewer radiosonde observations than surface data, the data
voids are even more severe. Some radiosonde ascents are also made from special
weather ships, but, because of their high cost, they are being replaced to some
degree by ASAP (Automated Shipboard Aerological Programme) systems that can
automatically launch radiosonde balloons from commercial ships (cyan markers,
Fig. 3). Radiosondes are also complemented by pilot balloons (red markers, Fig. 4),
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