
Edited by

Julio Alvarez-Builla,

Juan Jose Vaquero,
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1
Heterocyclic Compounds: An Introduction
Julio Alv�arez-Builla and Jos�e Barluenga

1.1
Heterocyclic Compounds: An Introduction

The IUPAC Gold Book describes heterocyclic compounds as:

�Cyclic compounds having as ringmembers atoms of at least two different elements,
e.g. quinoline, 1,2-thiazole, bicyclo[3.3.1]tetrasiloxane� [1].

Usually they are indicated as counterparts of carbocyclic compounds, which
have only ring atoms from the same element. Another classical reference book,
the Encyclopaedia Britannica, describes a heterocyclic compound, also called a
heterocycle, as:

�Any of a class of organic compounds whosemolecules contain one or more rings of
atoms with at least one atom (the heteroatom) being an element other than carbon,
most frequently oxygen, nitrogen, or sulfur� [2].

Although heterocyclic compoundsmay be inorganic, most contain within the ring
structure at least one atom of carbon, and one or more elements such as sulfur,
oxygen, or nitrogen [3]. Since non-carbons are usually considered to have replaced
carbon atoms, they are called heteroatoms. The structures may consist of either
aromatic or non-aromatic rings.

Heterocyclic chemistry is the branch of chemistry dealing with the synthesis,
properties, and applications of heterocycles.

Heterocyclic derivatives, seen as a group, can be divided into two broad areas:
aromatic and non-aromatic. In Figure 1.1,five-membered rings are shown in thefirst
row, and the derivative 1 corresponds to the aromatic derivative, furan, while
tetrahydrofuran (2), dihydrofuran-2-one (3), and dihydrofuran-2,5-dione (4) are not
aromatic, and their reactivity would be not unlike that expected of an ether, an ester, or
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a carboxylic anhydride, respectively. The second row shows six-membered rings,
initially in an aromatic form as pyridine (5), while piperidine (6), piperidin-2-one (7),
and 1,2,3,4-tetrahydropyridine (8) are not aromatic; their reactivity would not be very
different from that expected of an amine, amide, or enamine, respectively. In general,
the reactivity of aromatic heterocycles, which is a combination of that expected from
an aromatic system combined with the influence of the heteroatoms involved, is
usually more complex, while the reactivity of the non-aromatic systems is not too
different from the usual non-cyclic derivatives. Thus, most books on heterocyclic
chemistry are mainly devoted to the reactivity of aromatic compounds.

Tables 1.1–1.4 indicate models of the heterocyclic derivatives described in these
volumes. Table 1.1 shows simple heterocyclic systems of three or four members. In
this case, the literature examples are mainly non-aromatic, as indicated in the table,
and the expected reactivity is always related to the ring strain present in all of them,
which produces a release of energy when they are opened to give aliphatic products.

O O O O OOO

N N
H

N
H

O N
H

1 2 3 4

5 6 7 8

Figure 1.1 Examples of heterocyclic compounds.

Table 1.1 Main three- and four-membered heterocycles.

Ring size Heteroatom

N O S Other

3 N
H

Aziridine 

O

Oxirane
S

Thiirane

N
H

NH

Diaziridine 

O

O

Dioxirane
O

NH

Oxaziridine 

4 NH

Azetidine 
O

Oxetane 
S

Thietane
Se

P
R

Seletane Phosphetane
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Table 1.2 indicates five-membered heterocyclic systems, such as pyrrole, furan,
their benzo derivatives, and thiophene, and a set of heterocycles with more than one
heteroatom, as 1,2-azoles, 1,3-azoles, triazoles, oxa- and thiadiazoles, and tetrazole.

Table 1.3 shows six-membered rings, namely, pyridine, its benzo derivatives
quinoline and isoquinoline, the pyrilium cation, and, as in Table 1.2, other common
heterocycles with more than one heteroatom, such as diazines, triazines, and
tetrazines.

Finally, Table 1.4 shows the simplest seven-membered ring, that is, azepine and its
benzo derivative, as well as examples of the nitrogen bridgehead bicyclic systems,
pyrrolizine, indolizines, and quinolizinium cation.

Other additional chapters have been included with special systems relevant from
different points of view: 2-azetidinones or b-lactams, benzodiazepines, and two
general chapters on newmaterials based on heterocyclic systems and solid phase and
combinatorial chemistry related to heterocyclic derivatives.

Table 1.2 Main five-membered heterocycles.

Ring size Heteroatom

N Benzo O Benzo S

5 N
H

Pyrrole

N
H

Indole

O

Furan
O

Benzofuran

S

Thiophene

5 N
H

N

Pyrazole 

O
N

Isoxazole 

S
N

Isothiazole 

N
H

N

Imidazole 

O

N

Oxazole 
S

N

Thiazole

N
H

N

N N

N
H

N

Triazoles 

O
N

N

N

O
N

N
O

N

N

O

N

Oxadiazoles

S
N

N

N

S
N

N
S

N

N

S

N

Thiadazoles 
N

N
H

N

N

Tetrazole 
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Table 1.3 Main six-membered heterocycles.

Ring size
N Benzo O

6
N

Pyridine 

N

Quinoline

N

Isoquinoline

O
+

Pyrilium

N
N

N

N

N

N

Diazines 
Pyridazine Pyrimidine Pyrazine

N

Triazines 

N
NN

N

N

N N

N

Tetrazines 

N
N

N
N

N

N

N
N

N

N
N

N

Table 1.4 Other simple heterocycles.

Ring size Heteroatom

N Benzo

7 N
H

Azepine

N
H

Benzoazepine

5-5, 5-6, 6-6 NN N
+

Pyrroline             Indolizine          Quinolizinium 
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1.2
Structure and Reactivity of Aromatic Five-Membered Systems

As is indicated inmost handbooks of heterocyclic chemistry [3, 4], a pictorial valence
bond resonance description is used in most chapters, as a simple way to rationalize
the reactivity of the most important aromatic heterocycles. Two examples are
described in detail as representative of most of the aromatic rings considered:
pyrrole as amodel of the p-excessive rings, and pyridine as amodel of the p-deficient
ones.

Pyrrole has a structure that is isoelectronic with the cyclopentadienyl anion, but is
electrically neutral, having a nitrogen atom with a pair of electrons, which is part of
the aromatic sextet, and its resonance hybrid can be represented as a combination
of main forms I–V (Scheme 1.1), one without charge, and the others with charge
separation. As expected, not all forms contribute equally to the structure of the
pyrrole, with the order of importance being I > III, IV > II, V, that is, the major
contribution is produced by the non-charged form, and, of the charged ones, those in
which the nitrogen is using its lone pair of electrons. As a combination of all forms,
structure 9 indicates how the heteroatom bears a partial positive charge, while the
carbon positions show an increase in electronic density, compared with the typical
aromatic system, benzene. Thus, ap-excessive systemsuch as pyrrolewould be easily
attacked by electrophiles and not by nucleophiles.

Scheme 1.2 indicates how the attack of an electrophile usually proceeds. Themajor
isomer 13 is formed through intermediates 10–11–12, of which the intermediate 10
contributes most to the stabilization of the intermediate. Alternatively, a minor
isomer 16 is produced through the less stable intermediates 14 and 15.

Alternatively, Scheme 1.3 shows the attack of a nucleophile on pyrrole. Interme-
diate 17 is not stabilized, and the lone pair of electrons on the heteroatom does not
contribute to the progress of the process. The only process that usually can be
detected is deprotonation of the N–H bond to generate the pyrrolate (18), which can
beused tomake a bondwith a suitable electrophile (i.e., an alkyl halide) to produce the
N-substituted pyrrole 19.

N

H

N
+

H

N
+

H

N
+

H

N
+

H

N

H

-

--

-

δ+

δ− δ−

δ−δ−

I II III IV V

9

Scheme 1.1 Resonance hybrids of pyrrole.
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This behavior can be extended with small differences to other p-excessive
heterocycles, with the limit due to the existence or not of a N–H bond at position
1. In the case of rings like thiazole or isoxazole, the lack of the acidic bondmakes the
process 9–18–19 impossible. Attack by radicals or complex organometallic reagents
are more complex and are discussed in every chapter.

1.3
Structure and Reactivity of Aromatic Six-Membered Systems

The structure of pyridine is analogous to that of benzene, with one of the carbons
replaced by a nitrogen atom. This produces alterations in the geometry, which is no
longer perfectly hexagonal, due to the shorter CNbonds; the existence of an unshared
pair of electrons, not related with the aromatic sextet, gives the pyridine basic
character, along with a permanent dipole in the ring, due to the electronegative
character of the heteroatom compared with carbon.

Scheme 1.4 indicates the main canonical forms (I–V) that contribute to the
resonance hybrid of the structure of pyridine. Obviously, not all of them contribute
equally – the two Kekul�e forms I and II, which are not charged, are the more stable

N
H

N
H

Nu
H

N

E

Nu
_

N

_

No stabilization

NuH

E+
9

17

18
19

Scheme 1.3 Attack on pyrrole by nucleophiles.
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H

N
H
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E
H N

H
E

N
H

+

E

H

N
H

E

H

N
H

E

-H+

Minor isomer

E+

+

+

+

-H+
9

10 11
12 13

14 15
16

Scheme 1.2 Electrophilic attack on pyrrole.
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forms, followed by those in which nitrogen is negatively charged. Other forms can be
envisaged, but their contributions can be neglected. Thus, the combination of the
main forms can be represented as structure 20, in which the nitrogen bears a partial
negative charge, and positions 2, 4, and 6 are electron deficient; usually, positions
2 and 6 are themost deficient due to the inductive effect produced by the heteroatom.
Positions 3 and 5 can be considered neutral, comparable to benzene carbons. Thus,
the more characteristic reactivity of the pyridine ring would be against nucleophiles,
which would attack the more electron-deficient positions.

As expected from the structure of pyridine, Scheme 1.5 describes the attack of
a nucleophile on the system. Themain process goes through intermediates 21–22–23
to produce themajor isomer 24, substituted at position 2.Alternatively, attack can also
occur at position 4, through intermediates 25–26–27, yielding the minor isomer 28.

Scheme 1.6 describes an electrophilic attack on pyridine. The initial attack of the
electrophile usually takes place on the pyridine nitrogen. When the attacking species
can produce a stable bond, the product should be the pyridinium salt 33, but when
this product is not stable enough the process goes through intermediates 29–30–31,

NN N N N

N

I II III IV V

_
+

_

+

_
+

δ−

δ+

δ+

δ+

20
¨

Scheme 1.4 Resonance hybrids of pyridine.

N

N Nu
Nu

_
N Nu

H
N Nu

H
N Nu

H

N

H Nu

N

H Nu

N

Nu

N

HNu
_

-H

_

-H

_

_

_ _

Aromatization

_

Minor isomer

_
20

21 22 23
24

25 26
27 28

Scheme 1.5 Nucleophilic attack on pyridine.
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that is, by attacking the neutral carbons, to produce the 3-substituted derivative 32. As
a general view, the reactivity of pyridine can be taken as a model for other p-deficient
systems, and can be easily extended to diazines, triazines, or pyrilium derivatives.
Other processes, like radical attack or reaction with complex organometallic reagents
are described in every chapter.

1.4
Basic Literature on Heterocyclic Compounds

To introduce the recent literature in heterocyclic chemistry, it is necessary to indicate,
among the textbooks available [3–6], two of them: one [3] from Eicher and Haupt-
mannwith a highly structured organization, which is simple and efficient and can be
used as the basis of a heterocyclic course. The other [4], from Joule and Mills,
combines the condensed format with extensive information about the basic hetero-
cycles considered. As reference books, it is necessary to cite the collection Compre-
hensive Heterocyclic Chemistry from Katritzky and colleagues [7–9]; this is associated
with theHandbook of Heterocyclic Chemistry [10], which is regularly updated with the
Comprehensive edition. Heterocyclic series are also of great interest, becoming
readable collections that allow an update of the literature in the field. Progress in
Heterocyclic Chemistry [11] describes mostly the advances in every relevant field of
heterocyclic chemistry in a yearly volume. The series of monographs Advances in
Heterocyclic Chemistry [12], which consists of 101 volumes to date, covers in depth very
different topics in the field.

Other recentmonographs are of interest in various topics on thefield, a good guide
called Name Reactions in Heterocyclic Chemistry has been given by Li [13] and the
monograph Aromaticity in Heterocyclic Compounds [14] is also a good basic help for
heterocyclic chemists, as is the Synthesis of Heterocycles via Multicomponent Reac-
tions [15]. Other recent monographs have centered on synthetic techniques such as
palladium chemistry [16], chemistry of heterocyclic carbenes [17–19], or synthesis

N

N

E

N

E

H

N

E

H

N

E

H

N

E-H+
E+

+

E+

N-substitution

+

+ +
20

29
30 31 32

33

Scheme 1.6 Electrophilic attack on pyridine.
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with microwaves [20]. In addition, a recent monograph on general heterocyclic
chemistry emphasizes the importance of heterocyclic compounds in the field of
medicinal chemistry and natural products [21].
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2
Three-Membered Heterocycles. Structure and Reactivity
S. Shaun Murphree

2.1
Aziridines

The field of aziridine chemistry is brimming with activity and, as a consequence, it
has been the subject of multiple recent reviews [1–5]. Of particular note are the
efficient and engaging article by Sweeney [6], a brief overview of properties and
chemistry [7] and a newer monograph with a more encyclopedic sweep [8]. The
present work aims not to be comprehensive, but rather to provide a general landscape
and to capture the spirit of best practices available to the synthetic chemist, with an
emphasis on preparative utility.

2.1.1
Properties of Aziridines

The smallest andmost functionally spartan of the nitrogenheterocycles, aziridine (1),
is an isolable liquid at room temperature, but prone to polymerization and other
thermal degradation pathways because of its inherent ring strain [9]. It is weakly
basic, with a pKa of 7.98 [7], and the basicity trends of variously substituted aziridines
have been the subject of a recent theoretical study [10]. From the standpoint of
molecular geometry, aziridine describes an almost equilateral triangle, with a C–N–C
bond angle of 60.58� (Figure 2.1) [11]. The N-inversion energy is relatively high, at
almost 17 kcalmol�1; however, conjugating substituents decrease the barrier signif-
icantly [12]. The 1H-NMR signals of the methylene protons are centered at 1.4 ppm,
while the carbons resonate at about 27 ppm. Coupling constants range from 3.8Hz
for trans vicinal 1H-1H coupling, to 6.3Hz for cis vicinal 1H-1H coupling, and
168.1Hz for 1H-13C coupling [13].

Aziridine moieties are imbedded in structurally diverse natural products from
various sources (Figure 2.2), and the reader is directed to Lowden�s excellent recent
treatise on this topic [14]. Isolated from Streptomyces griseofuscus [15, 16], azinomycin
A (2) and azinomycin B (3, also known as carzinophilin) are among the most
intensely studied members of this class [17–19]. As potent antitumor agents, their

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

j11



biological activity springs from an ability to form interstrand purine base crosslinks
in duplex DNA [20–23]. Central to this behavior is the aziridine ring bound up in the
1-aza-bicyclo[3.1.0]hexane system, a structural feature also found in ficellomycin (4),
an antibacterial isolated from Streptomyces ficellus [24]. A similar 3,6-diaza-bicyclo
[3.1.0]hexane system is at the functional heart of mitomycin C (5), a notable
representative of the mitosanes extracted from Streptomyces verticillatus [25] and the
target ofmany synthetic studies [26]. For decades,mitomycinChas foundplace in the
arsenal of clinically relevant antibiotic and anti-tumor drugs, and the mitomycins
have inspired studies into many promising non-natural analogs [27].

Also equipped with a 2,3-dialkylaziridine residue is the protease inhibitor mir-
aziridine A (6), which is isolated from the marine sponge Theonella aff.mirabilis [28]
andwhich exhibits a linear peptide structure vaguely similar tomadurastatin A1 (7), a
compound demonstrated in a culture of a pathogenic Actinomadura madurae IFM
0745 strain, which shows activity against Micrococcus luteus [29]. An even more
exposed aziridine ring is seen in the azicemicins A (8) and B (9), antibacterials
isolated from Amycolatopsis sp. Mj126-NF4 [30, 31]. These naturally occurring
aziridine alkaloids have also inspired a genre of semi-synthetic and synthetic analogs
of medicinal interest [32].

2.1.2
Synthesis of Aziridines

Generally speaking, there are three major synthetic routes to the aziridines
(Scheme 2.1): (a) the addition of monovalent nitrogen species to alkenes; (b) the
addition of divalent carbon centers to imines; and (c) the N-alkylative ring closure of
amines equippedwith b-leaving groups . A fourth route (pathway d) is less frequently
encountered, but is nevertheless included here because of its potential synthetic
utility. Enantioselective protocols in the first two categories have been the subject of a
review [33], and aziridine synthesis as a whole has beenmore generally summarized
by Sweeney [34].

2.1.2.1 Aziridination of Alkenes
Analogous to epoxidation, in which olefins react with electrophilic oxygen reagents,
the aziridination of alkenes involves the addition of nitrenes (or nitrenoids) to a
b-bond. Common nitrene precursors include [N-(p-toluenesulfonyl)imino]phenylio-
dinane (PhI¼NTs),N-chloro-p-toluenesulfonamide sodiumsalt (Chloramine-T), and

Figure 2.1 Geometry of aziridine.
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its N-bromo analogue (Bromamine-T), although use of the more esoteric N-iodo-N-
potassio-p-toluenesulfonamide (TsN�KI) has also been reported [35]. These precur-
sors can be activated using various transition-metal catalysts (Figure 2.3).

Also mirroring epoxidation methodology, a common model reaction is the
aziridination of styrene (Scheme 2.2). Some illustrative examples are summarized
in Table 2.1. For example, the copper(I) complex of a fluorinated tris(pyrazolyl)borate
(or homoscorpionate) ligand forms an adductwith ethylene (12a), which catalyzes the
aziridination of styrene with great efficiency using PhI¼NTs as a nitrene precur-
sor [36]. The more readily available Chloramine-T can be used effectively in the
presence of methyl homoscorpionate complex 12b, even with equimolar charges of
olefin and nitrene precursor [37]. This catalyst motif has been incorporated into a
heterogeneous system [38]. Other interesting copper(I) catalysts include those
derived from pyridyl-1,5-diazacyclooctanes (e.g., 13) [39] and bispidones (e.g.,
14) [40]. A particularly intriguing protocol using copper(I)iodide under aqueous
phase-transfer conditions (entry 5) has also been reported [41].

Examples of copper(II) catalysts include the 1,4,7-triazacyclononane complex 15,
which requires a rather large excess of olefin [42], copper(II) acetylacetonate immo-
bilized in ionic liquids (entry 7), which can be recycled many times without loss of
activity [43], and Cu2þ exchanged zeolite Y (CuHY) in acetonitrile (entry 8), which
allows for respectable conversion using almost equimolar alkene : nitrene ratios [44].
Other transition metals can be used to advantage, as well. For example, the
fluorinated iron(III) porphyrin catalyst 16a [45], although certainly dearer to syn-
thesize, exhibits marked advantages over its older manganese-based cousin 16b [46];
and even iron(II) triflate is effective in promoting high-yielding aziridination reac-
tions [47] (Table 2.1, entry 11).

In the realm of precious metals, a novel and structurally interesting disilver(I)
complex (17) has been shown to function as a competent catalyst in aziridination, a
process that may involve high-valent silver intermediates [48]. Some polymer-
supported ruthenium porphyrin catalysts have been employed for this transforma-
tion; however, conversions tend to be low [51, 52].

The use of a metal catalyst can be circumvented in some cases. In one particularly
convenient example, a nitrene precursor is generated in situ from p-toluenesulfo-
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Scheme 2.1 General synthetic routes to aziridines.
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namide using iodobenzene diacetate. The aziridination is facilitated by substoichio-
metric quantities of iodine [49] (Table 2.1, entry 13). A conceptually related protocol is
carried out using t-butylhypoiodite, prepared in situ from t-butylhypochlorite and
sodium iodide [50] (Table 2.1, entry 14).
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Progress continues to bemade in the asymmetric aziridination of olefins using the
same general approach (Scheme 2.3), but with chiral catalyst systems (Table 2.2). For
example, impressive enantioselectivity has been reported for copper-exchanged
zeolite Y (CuHY) modified with the chiral bis(oxazoline) 18a (Figure 2.4) using
[N-(p-nitrosulfonyl)imino]phenyliodinane (PhI¼NNs) as the nitrene precursor [53].
Inferior results are obtained when [N-(p-toluenesulfonyl)imino]phenyliodinane
(PhI¼NTs) is used [54]. A one-pot homogeneous variant using bis(oxazoline) 18b
and commercially available iodobenzene diacetate has also been reported [55].
Evidence suggests that the ultimate stereochemical outcome may be affected by a
secondary reaction between the aziridines formed and other components in the
reaction mixture [56].

Table 2.1 Reaction conditions for styrene aziridination.

Entry Catalyst
(mol.%)a)

Nitrene
source

Styrene :
nitrene

Solvent Time
(h)

Yield
(%)a)

Reference

Copper(I) catalysts
1 12a (5) PhI¼NTs 1 : 1.5 CH3CN 16 99 [32]
2 12b (5) Chloramine-T 1 : 1 CH3CN n.r. 84 [33]
3 13 (5) PhI¼NTs 3.8 : 1 CH3CN 1.5 99 [34]
4 14 (3.5) PhI¼NTs 2 : 1 CH3CN 7 80 [35]
5 CuI(10) Chloramine-T 2 : 1 H2O

b) 3 91 [36]

Copper(II) catalysts
6 15 (5) PhI¼NTs 20 : 1 CH3CN 16 96 [37]
7 Cu(acac)2 (8)

c) PhI¼NTs 5 : 1 CH3CN 1 95 [38]
8 CuHY PhI¼NTs 1 : 1.5 CH3CN 3 86 [39]

Other metal catalysts
9 16a (5) Bromamine-T 5 : 1 CH3CN 12 80 [40]
10 16b (5) PhI¼NTs 100 : 1 CH2Cl2 n.r. 80 [41]
11 Fe(OTf)2 (5) PhI¼NTs 7 : 1 CH3CN 3 82 [47]
12 17 (2) PhI¼NTs 5 : 1 CH3CN 6 91 [42]

No metal catalyst
13 none TsNH2/PhI(OAc)2/

I2/t-BuOK
1 : 3 DCE 2 88 [49]

14 none TsNH2/t-BuOCl/
NaI

2 : 1 CH3CN 5 95 [50]

a) Based on nitrene source.
b) Bu4NBr used as PTC.
c) Immobilized in bmimBF4.

Ph Ph

NRconditions
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Another major avenue for enantioselective aziridination is offered through the
use of (salen)manganese(III) complexes, such as the Katsuki catalyst (19) [57].
Evidence from the Jacobsen group suggests that the high enantiofacial selectivity
observed for aryl alkenes may derive from well-defined bidentate aromatic inter-
actions between substrate and catalyst [58]. Analogous ruthenium-based catalysts
(e.g., 20) allow for the use of tosyl azide as a nitrene precursor and are effective
even at extremely low catalyst loadings [59]. Metalloporphyrin catalysts continue to
show some promise for asymmetric aziridination, although enantioselectivities
remain modest [60].

Some very convenient methodology has developed around bromine-catalyzed
aziridination reactions using Chloramine-T as the source of electrophilic nitrogen

Table 2.2 Reaction conditions for asymmetric styrene aziridination.

Entry Catalyst
(mol.%)a)

Nitrene
source

Styrene :
nitrene

Solvent Time
(h)

Yield
(%)a)

ee
(%)

Reference

1 CuHYþ 18 (7%) PhI¼NNs 1 : 1.3 CH3CN 16 82 91 [45]
2 19 (5) PhI¼NTs 1 : 5 CH2Cl2 n.r. 76 94 [49]
3 20(0.1) TsN3 1 : 1 CH2Cl2 24 78 85 [51]

a) based on nitrene source.
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Figure 2.4 Chiral catalysts for asymmetric alkene aziridination.
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(Scheme 2.4). For example, when cyclohexene is treated with Chloramine-T trihy-
drate in the presence of substoichiometric quantities of hydrogen peroxide and
hydrobromic acid, the corresponding bicyclic aziridine is produced in good yield
(Table 2.3, entry 1). The process involves the in situ generation of hypobromous acid,
which in turn gives rise to bromonium intermediates [61]. N-Bromosuccinimide is
also a competent catalyst in this regard (entry 2) [62]. Both of these protocolsmight be
seen asmodifications to an earlier report by Sharpless [63], which describes the use of
phenyltrimethylammonium bromide (PTAB) as both bromine source and phase-
transfer catalyst (entry 3).

The Sharpless protocol is in some ways complementary to prior art. For example,
methylcyclohexadiene oxide (23) can be aziridinated in good yield using Chloramine-
T trihydrate and catalytic amounts of PTAB (Scheme 2.5), a conversion that failed
usingPhI¼NTs andCu(acac)2. Interestingly, only the trans aziridino epoxide (i.e., 24)
is observed, presumably due to preferential formation of the cis-epoxy bromonium
intermediate 25, which has been calculated to lie about 2.4 kcalmol�1 lower in
energy than the corresponding trans isomer [64].

Some progress has been made in using sulfonamides as starting materials for
aziridination. Thus, the pyridinesulfonamide 26 is converted into a nitrene precursor
(i.e., 28) in situ using commercially available iodosobenzene diacetate as an oxidant,
providing aziridine 27 in very good yield (Scheme 2.6). Another notable aspect of this

catalystbromine

2.3)Table(see
2221

)( n )( n NTs
Chloramine-T

CH3 rtCN,

Scheme 2.4 Bromine-catalyzed aziridination.

Table 2.3 Reaction conditions for bromine-catalyzed aziridination.

Entry n Catalyst
(loading mol.%)

Chloramine-T
type

Olefin :
nitrene

Time
(h)

Product Yield
(%)

Reference

1 2 H2O2/HBr (20) trihydrate 1 : 1.3 5 22b 75 [53]
2 2 NBS (20) anhydrous 1 : 1.0 3 22b 82 [54]
3 1 PTAB (30) anhydrous 1 : 1.1 12 22a 86 [55]

2423

TsNClNa·3H1.1 2O

mol%)(10PTAB
CH3 rth,12CN,

67%

O O NTs

O Br
via

25

Scheme 2.5 Aziridination of epoxyalkenes.
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system is that it obviates the need for external ligands and bases, since the pyridyl
nitrogen provides intermolecular chelation. The free aziridine can be accessed by
deprotection usingmagnesium inmethanol [65]. A copper-catalyzed aziridination of
tosylamides using iodine has also been reported [66].

DuBois and Guthikonda [67] have developed a similar rhodium-based strategy for
the aziridination of sulfonamides, which they have applied to various unfunctiona-
lized alkenes.Withv-butenyl sulfonamide 29a, an intramolecular process can ensue
to provide the bicyclic aziridine in good yield (Scheme 2.7). These and other
investigations have shown the process to be stereospecific (Table 2.4, entry 2),
whereby alkene geometry is preserved in the product [68]. Moreover, existing chiral
centers can impose diastereoselectivity, as shown by the intramolecular aziridination
of alkenyl sulfonamide 29c, which proceeds with a 10 : 1 syn : anti ratio [69].

The Padwa group has reported that the analogous intramolecular aziridination of
cycloalkenyl carbamates proceeds without the need of a metal catalyst (Scheme 2.8).
Thus, cyclohexenyl carbamate 31a underwent clean conversion into the tricyclic
heterocycle 32a upon treatment with 2 equivalents of iodosobenzene [70] (Table 2.5,

2726

1.0 PhI(OAc)2

0.03 Cu(tfac)2
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12 h
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Scheme 2.6 Chelating sulfonamides.
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Scheme 2.7 Intramolecular aziridinations.

Table 2.4 Reaction conditions for intramolecular aziridinations.

Entry Substrate Catalyst (loading mol.%) Oxidant Solvent Yield (%) Reference

1 29a Rh2(tfacam)4 (1) PhI(OAc)2 Benzene 84 [59]
2 29b Cu(CH3CN)4PF6 (10) PhI¼O CH3CN 80 [60]
3 29c Rh2(Ooct)4 (2) PhI(OAc)2 CH2Cl2 84 [61]
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entry 1). A similar rhodium-catalyzed variant has been reported for N-tosyloxycar-
bamates [71] (Table 2.5, entry 2).

Electron-deficient olefins often require different conditions for efficient aziridina-
tion than their unactivated counterparts. Along these lines, while certainly not
limited to electron-poor alkenes,N-aminophthalimide (34) acts as a versatile nitrogen
donor for aziridinations under various oxidizing conditions. The classical protocol
involves the mild but environmentally questionable reagent lead tetraacetate [72],
under which conditions the active aziridinating agent is believed to be an N-acetoxy
species rather than a nitrene [73]. Meanwhile, other innovative methodologies have
evolved. For example, using the conventional oxidant of iodosylbenzene diacetate
(Table 2.6, entry 1), chalcone (33) is aziridinated in excellent yield (Scheme 2.9) [74].

Table 2.6 Reaction conditions for phthalimide aziridinations.

Entry Eq 34 Oxidant
(loading where
appropriate)

Additive Solvent Time
(h)

Yield
(%)

Reference

1 1.4 PhI(OAc)2 (1.5 eq) K2CO3 CH2Cl2 12 93 [65]
2 1.4 p-MeOPhI/mCPBA

(1.4 eq)
K2CO3 CH2Cl2 12 94 [66]

3 1.3 þ 1.80V (vs. Ag wire) Et3NHOAc CH3CN 4 83 [67]

31a, R = H
31b, R = Ts

32

(see Table 2.5)
NHR

O O O

N

O

conditions

Scheme 2.8 Intramolecular aziridination of carbamates.

Table 2.5 Reaction conditions for the intramolecular aziridination of carbamates.

Entry Substrate Conditions Yield
(%)

Reference

1 31a PhIO (2.0 eq), CH2Cl2, 40�C 75 [71]
2 31b K2CO3 (7 eq), Rh2(OAc)4

(5 mol %), acetone, 25�C
79 [72]
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These conditions have also been used to advantage for the aziridination of allylic
alcohols [75].

The hypervalent iodine reagent can also be generated in situ by combining
equimolar amounts of p-iodoanisole and m-chloroperbenzoic acid (entry 2) with no
negative impact on yield [76]. An even more atom-economical approach can be
realized using electrochemical conditions (entry 3), a stereospecific process that has
been described as a click preparation of aziridines [77], and which may proceed via a
nitrene intermediate [78–80]. A similarly efficient oxidation has been reported using
superoxide ion [81].

Addition of the chiral camphor-derived ligand 36 (Scheme 2.10) can result in an
enantioselective process. Thus, the unsaturated oxazolidinone imide 37 is converted
into the corresponding aziridine (38) in good yield and impressive enantiomeric
excess. By comparison, (þ )-tartaric acid gave only 42% ee. The choice of solvent is
important, as migration to THF results in no loss of yield but an almost total
disappearance of enantioselectivity [82].

Chiral bis(oxazoline) (BOX) ligands allow for a tunable aziridination of chalcones
(Scheme 2.11) merely by changing the connecting backbone moiety (Figure 2.5).
Thus, use of the cyclohexyl catalyst 41 provides the 2R,3S product (Table 2.7, entry 1)
with very good enantioselectivity [83], while the anthracene derivative 42 yields the
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Scheme 2.9 N-Aminophthalimide as nitrogen donor.
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Scheme 2.10 Asymmetric N-aminophthalimide-mediated aziridination.
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other antipode with even better yield and enantioselectivity (entry 2). The origin of
this interesting crossover has been rationalized on the basis of amore crowded steric
environment in the latter case [84]. The scope of the organocatalytic asymmetric
aziridination of enones has been expanded to substrates other than chalcones by
using a hydroquinine-derived catalyst and N-protected hydroxylamine tosylates as
nitrogen donors [85].

Cinnamate esters can be aziridinated using axially dissymmetric binaphthyldii-
mine copper(I) catalysts, such as those derived from salen-type ligand 43
(Scheme 2.12). Thus, trans-t-butyl cinnamate (44) was aziridinated stereospecifically
and enantioselectively to provide the product in excellent yield [86]. A later report
from another set of investigators using essentially identical conditions gave the same
high enantioselectivity but significantly lower yield [87].

PhI=NTs
CuOTf

chiral ligand

CH2Cl2
(see Table 2.7)

39 40
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Scheme 2.11 Tunable BOX-mediated asymmetric aziridination.
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Figure 2.5 cHBOX and AnBOX ligands.

Table 2.7 Reaction conditions for tunable BOX-mediated asymmetric aziridination.

Entry PhI¼NTs
(eq)a)

CuOTf
(eq)a)

Ligand
(loading
mol.%)a)

Time
(h)

Yield
(%)b)

Configuration ee (%) Reference

1 0.67 0.03 41 (4) 5 62 2R,3S 94 [71]
2 0.67 0.03 42 (4) 5 86 2S,3R 98 [72]

a) Based on olefin.
b) Based on PhI¼NTs.
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Diactivated alkenes can be converted into aziridines by a somewhat different set of
conditions. For example, in the presence of calcium oxide, ethyl nosyloxycarbamate
(46) functions as a nitrogen source that engages Knoevenagel adducts (e.g., 47) in
aziridination (Scheme 2.13), presumably via nitrene intermediates [88]. Modest
diastereoselectivities have been achieved by incorporating a menthol-derived chiral
auxiliary into the carbamate reagent. Unfunctionalized alkenes give the products of
nitrene C�H insertions under the same conditions [89].

2.1.2.2 Aziridination of Imines
Another powerful approach to the aziridine moiety is through the aziridination of
imines using carbene- or ylide-type species [90–92]. One very popular carbene
precursor is the commercially available ethyl diazoacetate (49). This species can be
induced to react with imines to form aziridines (Scheme 2.14) under various
conditions, including indium trichloride in methylene chloride [93], lanthanide
triflates in proticmedia [94], boron trifluoride in ether [95], a cyclopentadienyl iron(II)
dicarbonyl complex [96], a bis(cyclooctadienyl) iridium(II) chloride complex [97] and
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Cu(MeCN)0.05 4BF4
43 mol%)(5
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Scheme 2.12 Asymmetric aziridination of cinnamate esters.
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Scheme 2.13 Aziridination of diactivated alkenes.
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copper(II) triflate in methylene chloride or tetrahydrofuran [98]. These reactions are
often very high-yielding, as demonstrated by the tin(IV) chloridemediated reaction of
ethyl diazoacetate with N-phenylbenzaldimine (Table 2.8, entry 1), which proceeds
with aZ :E selectivity of 15 : 1 [99]. Interestingly, when the same reaction is run using
an ionic liquid as solvent (entry 2), the reaction does not require the addition of a
catalyst. In this case, the solvent itself is presumed to fulfill the role of Lewis acid [100].
An operationally attractive procedure has been reported in which the aldimine is
formed in situ using lithium perchlorate as a catalyst (entry 3), providing exclusively
the cis isomer [101].

Acive methylene compounds serve as useful carbenoid precursors (in the form of
phenyliodonium ylides) by treatment with iodobenzene diacetate and a catalytic
amount of base under very mild conditions. Thus, tosylaldimines are converted into
the corresponding aziridines in a one-pot procedure without the need for a metal
catalyst [102].

Some noteworthy asymmetric protocols have been developed using diazoesters,
particularly those employing vaulted biaryl ligands [103]. For example, a catalyst
derived from (S)-VAPOL (51) and BH3�THF complex promotes an enantioselective
aziridination reaction between ethyl diazoacetate and N-diphenylmethyl p-bromo-
benzaldimine (52) with very good yields, almost exclusive cis selectivity and excellent
enantiomeric excess (Scheme 2.15). Curiously, impure commercial samples of
BH3�THF give the best results [104]. Recent crystallographic evidence in an analo-
gous system suggests an unexpected boroxinate species as the active catalyst, the
formation of which should be facilitated by adventitious water in the commercial
boron reagent [105].
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Ph CO2Et

Ph

conditions

(see Table 2.8)

49 50

Scheme 2.14 Racemic aziridination using ethyl diazoacetate.

Table 2.8 Reaction conditions for racemic aziridinations with ethyl diazoacetate.

Entry Aldimine components Catalyst
(loading
mol.%)

Solvent Time
(h)

Yield
(%)

Reference

1 PhCH¼NPh SnCl4 (1) CH2Cl2 n.r. >90 [84]
2 PhCH¼NPh None bmimPF6 5 93 [85]
3 PhCH¼OþPhNH2 LiClO4 (10) CH3CN 4.5 89 [86]
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Analternative approach to asymmetric induction is to attach a chiral auxiliary to the
diazoester itself, as exemplified by the (R)-pantolactone derived ester 54. Using
boron trifluoride as a Lewis acid catalyst, the trifluoromethyl hemiaminal 55 is
converted into the corresponding imine and subsequently aziridinated to give
products (i.e., 56) in high yield and diastereomeric excess [106].

Other carbon donors for the aziridination of aldimines can be drawn from the
ranks of ylide haloanions. For example, the chloroethylthiazole derivative 57
(Scheme 2.16) can be deprotonated with n-butyllithium to give an anion that reacts
with N-phenylbenzaldimine (58) to provide the corresponding cis-aziridinyl thiazole
59 in good yield [107]. In an asymmetric variant of this protocol, the anion derived
from chloromethyl benzothiazole 60 adds to the chiral aldimine 61 in a highly
diastereoselective fashion [108]. In the same vein,Davis has reported the aza-Darzens
reaction between the lithiumanion of diethyl iodomethylphosphonate (63) and chiral
non-racemic arylsulfinyl imines (e.g., 64), which proceeds in good yield and excellent
diastereomeric excess [109, 110]. An analogous reaction occurs between t-butylsu-
finyl imines and the ylide derived from trimethylsulfonium iodide [111] or ylides
derived from substituted allyltetrahydrothiophenium salts, which provide access to
chiral non-racemic vinyl aziridines [112].
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Scheme 2.15 Chiral aziridination using diazoesters.
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The chiral sulfur ylide approach has been developed less for aziridine chemistry
than for epoxides; nevertheless, some very useful strategies have been pioneered,
largely byDai andAggarwal [113, 114], and newmethodologies continue to appear on
the scene. For example, the chiral S-benzyl sulfonium triflate 66 can be deprotonated
with the commercially available phosphazene base Et2P to give an ylide that
aziridinates N-tosyl pivaldimine (67) in good yield and excellent enantioselectiv-
ity [115]. Aggarwal and Vasse have applied a catalytic version of the sulfur ylide
methodology to the synthesis of the taxol side chain [116]whichuses anovel camphor-
derived ylide scaffold [117]. The cis : trans ratios in these reactions are very substrate-
dependent. A recent computational study of this reaction manifold provides a useful
theoretical framework in good agreement with observed experimental results [118].
The catalytic strategy has also been adapted to novel arsonium ylides [119].

The substrate dependent nature of cis : trans ratios is not limited to sulfur ylide
chemistry. A particularly striking example is seen in the reaction of the anion from
camphorsultam bromoacetamide 69 with various o-substituted benzaldimines 70
(Scheme 2.17). Both the phenyl and the nitrophenyl derivatives give exclusively cis-
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Scheme 2.16 The ylide/haloanion approach to aziridines.
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aziridines (Table 2.9, entries 1 & 2), whereas the o-anisole imine provides solely the
trans isomer (entry 4), and the o-tolyl analog yields an equimolar mixture of
diastereomers (entry 3). The mechanistic underpinnings for this selectivity are not
well understood, but are believed to derive froma complexmixture of polar, steric and
chelation effects [120, 121].

2.1.2.3 Ring Closure of Amines
The synthesis of aziridines via the ring closure of 2-aminoalcohols has been known
for three-quarters of a century [122], and the method has been adapted for such
activating agents as triphenylphosphine dibromide [123], diphosphorus tetraio-
dide [124], the Mitsunobu reagent [125] and molecular sieves [126, 127]. This
time-honored approach is, however, still in currency. For example, the chiral
nonracemic aminoalcohol 72 (Scheme 2.18) derived from alanine [128] undergoes
double tosylation and ring closure in one pot to provide the corresponding N-
tosylaziridine (73) in excellent yield [129]. Similarly, the N-(t-butoxycarbonyl)-N-(2-
nitrobenzenesulfonyl) aminoalcohol 74, derived from the ring-opening of an epox-
ide, undergoes a sequence of deprotection, O-mesylation and carbonate-mediated
ring closure to give aziridine 76, proceeding with inversion of configuration and no
loss in optical activity [130].

This concept of ring closure is, of course, open to any good leaving group. For
example, an interesting protocol has been reported inwhich anN-2-bromoalkylimine
(e.g., 78), prepared by the addition of the 2-bromoalkylamine hydrobromide to an
aldehyde (e.g., 77), suffers nucleophilic attack bymethoxide to give an incipient imide
anion that engages in immediate 3-exo-tet ring closure [131]. Cyclization of a 2-
bromoalkylamine is also at the heart of an aziridination of simple amines, such as
ammonia, which engages in a tandem series of conjugate addition and ring closure
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Scheme 2.17 Camphorsultam as chiral auxiliary in aziridination.

Table 2.9 Yield data for camphorsultam-mediated aziridination.

Entry R Yield (%) Cis : trans ratio

1 �H 71 100 : 0
2 �NO2 72 100 : 0
3 �Me 87 50 : 50
4 �OMe 65 0 : 100
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reactions with the chiral a-bromoamide 80 to provide aziridine 81 with good
diastereoselectivity [132]. This methodology has also been adapted to a solid-phase
protocol using Wang resin derivatives [133].

The same chiral auxiliary can be used to advantage in the synthesis of chiral
b-amino acid precursors (e.g., 82), which can be converted into the corresponding
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amino acids by zinc-copper reduction of the N�O bond and lithium peroxide
hydrolysis of the amide linkage [134]. However, in the presence of a suitable Lewis
acid, 82 is converted into aziridine 81 with remarkable efficiency [135]. Aziridinyl
esters (e.g., 85) are conveniently prepared frommethyl acrylate (83) or its derivatives
by the copper-catalyzed addition of N,N-dichlorotosyl sulfonamide and subsequent
ring closure [136]. Alternatively, these products can be accessed by treating
a,b-dibromoesters with simple primary amines [137].

2.1.2.4 Ring Contraction of Other Heterocycles
Aziridines can be accessed through the extrusion of elements from larger nitrog-
enous heterocycles, most notably triazolines. Thus, for example, azanorbornene 86
undergoes 1,3-dipolar cycloaddition with phenyl azide to yield a 2 : 3 mixture of
regioisomeric tricyclic triazolines in quantitative combined yield (Scheme 2.19).
Photolysis of these compounds in a quartz reaction vessel using a medium-
pressure mercury lamp led to efficient formation of the fused tricyclic aziridine
88 [138].

The rather sluggish initial cycloaddition is accelerated significantly by tethering the
dipole to the dipolarophile, as seen with the v-alkenylaryl azide 89a (Scheme 2.20),
which undergoes complete cycloaddition within 3 h in refluxing toluene [139]. Even
with very highly functionalized substrates (Table 2.10), the cycloaddition step
proceeds with excellent yield and complete diastereoselectivity, the latter presumably
the result of a preferred chair-like reactive conformer in which the TMS group adopts
a pseudo-equatorial attitude [140]. Subsequent irradiation with a Hanovia lamp
afforded the corresponding aziridines 91 in fair yield.
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Molteni and Del Buttero [141] have reported the direct aziridination of ethyl
acrylate (93, Scheme 2.21) using an alkyl azide supported on poly(ethylene glycol)
monomethyl ether (92), which they suggest proceeds through the intermediacy of a
triazole. In their studies of triflic acid mediated aziridination of electron-deficient
alkenes, however, Johnston and coworkers [142] propose an intriguing concerted
mechanism involving a multicentered transition state (i.e., 96).

2.1.3
Reactivity of Aziridines

The reactions of aziridines are legion, but most fit into a few broad categories: (i)
nucleophilic ring opening, (ii) N-substitution, (iii) aziridinyl anion chemistry and (iv)
ring expansion to larger heterocyclic species . Although no longer the most recent, a
review of the synthetic applications of chiral aziridines by McCoull and Davis [4] still
offers an excellent overview of the diverse field of aziridine chemistry. Amore recent
(but more specialized) chapter on aziridinecarboxylate esters is equally
worthwhile [143].

2.1.3.1 Nucleophilic Ring Opening
Perhaps themost commonof aziridine reactions is the ring opening by nucleophiles.
This topic has been reviewed recently and fairly comprehensively byHu [144], and an
interesting computational study on CN vs. CC bond cleavage has been pub-
lished [145]. Some illustrative synthetic examples are given here.

Table 2.10 Yield data for intramolecular azide addition and ring contraction.

Entry Substrate R1 R2 R3 Yield
90 (%)

Yield
91 (%)

Reference

1 89a �H �H �H 90 77 [118]
2 89b �CH2OBn �OBn �CH2OBn 99 68 [119]
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Scheme 2.21 Direct aziridination with alkyl azides.
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Ring opening can be used as a means of carbon–carbon bond formation when
carbon-based nucleophiles are employed [146]. For example, in the presence of
catalytic amounts of cuprous iodide, phenyllithium attacks the less substituted site of
the N-tosyl aziridine 98 (Scheme 2.22) to give the corresponding protected
amine [147]. The analogous addition of Grignards onto meso-aziridines (e.g., 22b)
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Scheme 2.22 Ring opening of aziridines with carbon nucleophiles.
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can exhibit impressive enantioselectivity under the influence of the Schiff base/
amino acid copper(II) complex dimer 100, although relatively high catalyst loadings
must be used [148]. Acetylide anions are also competent nucleophiles when a
copper(I) catalyst is used, as demonstrated by the high-yielding conversion of the
2-alkylaziridine 102 into the homopropargylamine 104, resulting from attack at the
less hindered carbon [149]. Wu and Zhu have used the diastereoselective addition of
an aryl Grignard onto a chiral aziridine as a key step in their total synthesis
of (–)-renieramycin M and G and (–)-Jorumycin [150].

This exclusive regioselectivity was used to advantage in an approach to 1-deoxy-
mannojirimycin analogs from deoxyglucitol-derived aziridine 105, which engages in
a very well-behaved reaction with 1,3-dithiane anion 106 [151]. Similar regiochemical
outcomes are observed for cyanide addition using stoichiometric trimethylsilyl
cyanide (TMSCN) and tetrabutylammonium fluoride (TBAF) in catalytic
amounts [152], as well as an enantioselective protocol used to alkylate active methine
compounds with unsymmetrical aziridines under mild basic conditions using a
cinchona derived phase-transfer catalyst [153].

Theregioselectivityofringopeningcanbereversedundermorecationicconditions,
however, as illustrated by the Lewis acid-promoted intramolecular ring-opening
reaction of phenypropylaziridine 108, in which the product outcome is doubly
supported by the stability of the Friedel-Crafts-like transition state and geometric
considerations [154]. The same regiochemistry is observed in the iron(III)-catalyzed
attack of electron-rich arenes onto unsymmetrical C-aryl aziridines [155].

Heteroatomic nucleophiles are equally useful in unlocking the synthetic utility of
the aziridine ring. For example, 22b reacts smoothly with aniline to provide the
corresponding diamine 110 (Scheme 2.23) under various mild conditions
(Table 2.11), including bismuth trichloride in acetonitrile [156], indium tribromide
in methylene chloride [157], and lithium perchlorate in acetonitrile [120, 158].
Aqueous conditions have been developed using a cyclodextrin catalyst [159], and
silica gel allows for a completely solventless system [160].
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NHTs
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conditions
(see Table 2.11)

PhNH2

Scheme 2.23 Ring opening of aziridines with aniline.

Table 2.11 Yield data for ring opening of aziridines with aniline.

Entry Reagent/catalyst Solvent Time (h) Yield (%) Reference

1 BiCl3 CH3CN 1.5 96 [130]
2 InBr3 CH2Cl2 5.5 90 [131]
3 LiClO4 CH3CN 5.5 90 [132]
4 b-Cyclodextrin H2O/Me2C¼O 24 89 [133]
5 Silica gel none 1 91 [134]
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The asymmetric ring-opening of meso aziridines such as 22b is a useful approach
for accessing variously substituted chiral amines, and it has been the subject of some
very good reviews [144, 146, 161]. One recently reported protocol involves the use of a
titanium binolate catalyst, which can achieve ees of 99% [162].

Still other conditions have been worked out for alkylamines, as exemplified by
addition of benzylamine (Scheme 2.24). In what may be one of the biggest catalyst
sleepers of the century, the commercially available tris(pentafluorophenyl)
borane [163] has escaped the niche of specialized polymerization catalysis and now
finds application in various other useful synthetic transformations, including the
ring opening of aziridines with simple amines (Table 2.12, entry 1). Interestingly, the
active catalytic species involves a water-borane complex [164]. Other novel protocols
for this reaction include ceric ammonium nitrate (CAN) in acetonitrile [165] and
tributyl phosphite in an organic/aqueous medium [166]. Microwave conditions have
been developed using resin-bound alkylamines in a protocol suitable for parallel
synthesis [167].

Azide is also a popular nitrogen-based nucleophile by virtue of its relatively low
basicity, high nucleophilicity and ability to undergo subsequent reduction to the
primary amine (i.e., a surrogate for ammonia). To achieve virtually neutral condi-
tions, trimethylsilyl azide can be used as the source of azide (Table 2.13, entry 1),
along with catalytic amounts of tributylammonium fluoride (TBAF) to liberate the
azide in situ [152]. Of course, sodium azide itself can be used as a reactant, with the
addition being promoted efficiently by cerium trichloride heptahydrate [168], lithium
perchlorate [169] or Oxone [170] (Scheme 2.25). Meso aziridines can be enantiose-
lectively desymmetrized using a dimeric salen yttrium catalyst in near quantitative
yield and excellent enantioselectivity [161].

Synthetically useful b-aminoalcohols and aminoethers can be obtained by using
oxygen-centered nucleophiles in the ring-opening reaction, and several mild and
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Scheme 2.24 Ring opening of aziridines with benzylamine.

Table 2.12 Yield data for ring opening of aziridines with benzylamine.

Entry Reagent/catalyst Solvent Time (h) Yield (%) Reference

1 B(C6F5)3 CH3CN 12 99 [136]
2 CAN CH3CN 3 93 [137]
3 PBu3 H2O/CH3CN 12 99 [138]
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efficientmethods have been reported to effect this transformation. For example, the
alcoholysis of phenylaziridine 11 (Scheme 2.26) is promoted by ceric ammonium
nitrate (Table 2.14, entry 1), which is effective for both alcohols [171] andwater [165];
boron trifluoride etherate (entry 2) or tin(II) triflate [172]; montmorillonite KSFclay
(entry 3), which serves as a solid-supported mild acid catalyst [174]; phosphomo-
lybdic acid (PMA) on silica gel (entry 4), which gives excellent yields with various
aziridines and alcohols [178]; and copper(II) triflate (entry 5) [175]. The water-
tolerant bismuth(III) triflate is particularly well suited to catalyze hydrolysis
reactions (entry 6) [176]. Note that in all cases the oxygen is attached to the benzylic
position. With branched alkylaziridines (e.g., cyclohexylaziridine) the regioselec-
tivity is reversed. Ring opening can also occur under basic conditions in the absence

11 114

conditions
(see Table 2.14)

Ph

Ts
N

Ph

TsN

OR
ROH

Scheme 2.26 Ring opening of aziridines with alcohols.

Table 2.13 Yield data for ring opening of aziridines with azide.

Entry Azide source Additive Solvent Time (h) Yield (%) Reference

1 TMSN3 TBAF (5mol.%) THF 6 97 [128]
2 NaN3 CeCl3�7H2O CH3CN 6 90 [139]
3 NaN3 LiClO4 CH3CN 6 90 [140]
4 NaN3 Oxone H2O/CH3CN 3 89 [141]

112 113

(see Table 2.13)

TsN
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N3

conditions

Scheme 2.25 Ring opening of aziridines with azide.

Table 2.14 Yield data for ring opening of aziridines with oxygen-centered nucleophiles.

Entry R Catalyst Solvent Yield (%) Reference

1 Me CAN MeOH 90 [142]
2 Me BF3�OEt2 MeOH 99 [143]
3 Et KSF CH2Cl2 86 [144]
4 t-Bu PMA/SiO2 MeCN 94 [145]
5 CH2CH2Cl Cu(OTf)2 HOCH2CH2Cl 87 [175]
6 H Bi(OTf)3 MeCN/H2O 88 [176]
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of a Lewis acid catalyst, in which case nucleophilic attack occurs at the less hindered
position [177].

It was discovered that the regiochemistry of the hydrolysis ofa-aminoaziridine 115
(Scheme 2.27) could be controlled by manipulation of the reaction conditions. Thus,
use of a protic acid (such as p-toluenesulfonic acid) led to attack at the terminal
carbon, presumably via the highly reactive aziridinium salt, yielding the hydroxy-
diamine 116. In contrast, if a classic Lewis acid was employed (e.g., boron trifluoride
etherate) the opposite regiochemistry predominated, providing the secondary alcohol
117. The stereochemical outcome for the latter product was rationalized on the
basis of a double inversion from anchimeric assistance by the dibenzylamino
substituent [179].

The scope is by no means limited to carbon, nitrogen and oxygen-centered
nucleophiles. The nucleophilic palette embraces sulfur-based species, such as
thiocyanates and thiols, the addition of which is promoted by a heterogeneous
recyclable sulfated zirconia catalyst [180] and poly(ethylene glycol) [181]. The regio-
chemistry tends to follow the conventional course, with benzylic attack dominating
for arylaziridines and terminal attack for alkylaziridines. Thiols can also engage in the
enantioselective ring-opening of aziridines under the catalysis of a VAPOL phos-
phoric acid derivative [182].

The aziridine ring can also be cleaved by phenylselenide [183], reductively cleaved
under transfer hydrogenation conditions [184], or opened with halides under fairly
straightforward conditions, such as tetrabutylammonium fluoride in DMF [185],
aqueous HCl in acetone [186], magnesium bromide in ether [187], and indium
triiodide in acetonitrile [188].

2.1.3.2 N-Elaboration Reactions
Aziridines bearing no N-substituent can be elaborated in various ways. For example,
cyclohexene imine (118) engages in conjugate addition onto methyl acrylate under
solvent-free conditions (Scheme 2.28, route a), although two equivalents of the
Michael acceptor is needed [164]. The same aziridine undergoes smooth palladium-
catalyzed allylation with prenyl acetate, whereby the electrophile is captured at the
more substituted terminus (route b), although this regiochemistry is substrate-
dependent [189]. N-Arylation is also possible using a palladium/BINAP protocol
(route c), in which aryl bromides and arylboronic acids act as suitable reaction
partners [190].
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Many other protocols exist in which unprotected aziridines function as nucleo-
philes, including alkylations using epoxides [191] or alkyl bromides [192] as electro-
philes. N-Acylation can be effected with acyl chlorides [193] or a combination of
carboxylic acid and dicyclohexylcarbodiimide (DCC) [3, 194] (Scheme 2.29).
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Scheme 2.28 N-Elaboration of cyclohexene imine (Table 2.15).
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Table 2.15 Conditions for N-elaboration of cyclohexene imine.

Entry Route Electrophile Catalytic system Solvent Yield (%) Reference

1 a CO2Me None Neat 89 [136]

2 c
AcO

[Pd(g3-C3H5)Cl]2, BINAP THF 89 [153]

3 b

Cl

Br

Pd(dba)3, BINAP, t-BuONa Toluene 95 [154]
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2.1.3.3 Azirdinyl Anion Chemistry
Aziridinyl anion chemistry is of growing interest, as evidenced by its inclusion in a
symposium-in-print [195]. Hodgson et al. have also authored a noteworthy review
dedicated to this topic [196], to which the reader is directed, and computational
studies on the physical properties of aziridinyl anions are emerging [197].

Protected aziridines can be deprotonated, and the resulting carbanions add to a
range of electrophiles. For example, the t-butylsulfonyl (Bus) protected pentylazir-
idine 125 (Scheme 2.30) is deprotonated at the less substituted carbon (i.e., more
stable anion) upon treatment with an excess of lithium 2,2,6,6-tetramethylpiperidide
(LTMP) at low temperature (�78 �C), and the lithiate adds smoothly to 3-pentanone to
give the aziridinyl alcohol 126 in good yield [198]. The aziridinyl anion can also exhibit
carbene-like character, so that when alkenes are tethered to the substrate (e.g., 127)
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Scheme 2.30 Reactions of aziridinyl anions.
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and the anion is formed at somewhat higher temperatures, a remarkably high-
yielding intramolecular cyclopropanation ensues [199].

When an electron-withdrawing group is attached to the aziridine ring, it directs
deprotonation and stabilizes the resulting anion. Thus, aziridine 129 is lithiated
adjacent to the trifluoromethyl group, after which treatment with 2-furaldehyde
provides the aziridinyl alcohol 130 in excellent yield [200]. Satoh and coworkers have
developed a very useful protocol involving sulfinylaziridines (e.g., 131), in which the
sulfinyl group (having served as a chiral auxiliary in the prior aziridination reaction) is
quantitatively removed in the presence of ethyl Grignard to give the corresponding
aziridinylmagnesium bromide (i.e., 132). This anion can then be cross-coupled with
alkyl iodides in the presence of cuprous iodide to give alkylated products (i.e., 133)
with net retention of configuration [201, 202].

2.1.3.4 Ring Expansions
Aziridines can serve as handy templates for access to other heterocyclic subunits, and
quite a few interesting methodologies have been reported. In the case of vinyl
aziridines, near quantitative rearrangement to 3-pyrroline derivatives is promoted by
copper(II) hexafluoroacetylacetonate in toluene at elevated temperature [203]. Anoth-
er general approach to ring expansion is through cycloaddition strategies. For
example, in the presence of zinc chloride, p-methoxyphenyl protected aziridine
134 (Scheme 2.31) engages in a formal [4 þ 2] cycloaddition with norbornene (135)
to provide the tetracyclic piperidine 136. The mechanism proceeds through a
Mannich reaction with the initially formed ylide and subsequent intramolecular
Friedel–Crafts alkylation [204]. Highly substituted pyrroles can be accessed by
reacting aziridines with electron-deficient allenes, a process that involves a formal
[3 þ 2] cycloaddition [205]. Pyrroles are also formed by the platinum(II)-catalyzed
electrophilic iodocyclization of propargylic aziridines [206].

The ylide itself can be trapped with olefins under thermal conditions [207], as
demonstrated by the intramolecular 1,3-dipolar cycloaddition of the terminal azir-
idine 137 to give the bicyclic pyrrolidine 138 [208]. Harrity and coworkers [209] have
developed a [3 þ 3] cycloaddition strategy for access to the piperidine ring system, in
which a palladium-trimethylenemethane complex (derived from acetoxy trimethyl-
silyl methylene compounds such as 139) adds to an aziridine (e.g., 98) to form
methylenepiperidines such as 140 in generally good yields. The substituent on
nitrogen greatly impacts the efficiency of this reaction, with p-tosyl and p-methox-
yphenyl-sulfonyl moieties providing the best results.

The next broad class of transformations could be characterized as carbonyl
insertion reactions (Scheme 2.32), although it encompasses the insertion of carbon
monoxide and carbon dioxide through various modes. Thus, in the presence of
sodium iodide, Boc anhydride serves as a carbon dioxide surrogate in the conver-
sion of the (þ )-pseudoephedrine-derived aziridine 141 into oxazolidinone 143, in
which the stereochemistry of the ring substituents is preserved [210, 211]. Hydro-
xymethylaziridines (e.g., 144) can be bridged with phosgene into labile fused
bicyclic oxazolidinone structures (i.e., 145), which undergo in situ nucleophilic
attack by chloride to give chloromethyloxazolidinones (e.g., 146) in excellent
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yield [212]. Also, gaseous carbon dioxide itself can be trapped by aziridines at
atmospheric pressure using lithium bromide as a catalyst, as shown by the
conversion of arylaziridine 147 into the corresponding oxazolidinone 148. The
mechanism proceeds through a series of bromide-induced ring opening, carbox-
ylation of the resulting amide anion, and alkylative ring closure [213]. This
transformation has also been shown to proceed under the catalysis of a (salen)
chromium(III)/DMAP complex [214].

A novel rhodium-complexed dendrimer (149) is effective in promoting the
carbonylative ring expansion of aziridines to b-lactams. The near-quantitative yield
exhibited byN-t-butyl-2-phenylaziridine (150) is not unusual, although relatively high
pressures [approx. 27 atm (400 psi)] and elevated temperatures (90 �C) are required.
Nevertheless, the catalyst appears to be easily isolated and recycled without loss of
activity [215].

Nitrogen and sulfur can also be introduced via ring expansion strategies. Thus,
styrene imine derivative 11 engages in [3 þ 2] cycloaddition with acetonitrile in the
presence of boron trifluoride etherate at room temperature to give the corresponding
imidazoline (152) in good yield (Scheme 2.33) [216]. The iminothiazolidine nucle-
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us [217] can be derived from aziridines at room temperature using a palladium(II)
acetate/triphenylphosphine catalyst system. Thus, phenylisothiocyanate is inserted
into the C�N bond of vinylaziridine 153 to give the ring-expanded product 154 in
excellent yield [218].

2.2
2H-Azirines

Although the level of activity does not match that of the aziridines, research into the
chemistry of azirines is healthy and on the increase. Several reviews have appeared in
recent years. The reader is directed particularly to two excellent treatises by Palacios
and coworkers [219, 220] as well as an earlier work by Rai and Hassner [1].

2.2.1
Properties of Azirines

Also referred to as azacyclopropene (and confoundingly as 1-azirine), 2H-azirine is
the unsaturated cousin of the aziridine ring, which might well be described
metaphorically as a cyclic imine. The alternative 1H-tautomer lies some 35 kcal
mol�1 higher in energy, in part because it constitutes an antiaromatic ring sys-
tem [221–223]. It is a weaker base than aziridine, which is analogous to the trend in
corresponding open-chain amines and imines [221]. Geometrically, according to
calculation at the B3LYP/6-311þG(3df,2p) level of theory, the triangular ring is
somewhat scalene, with the C–N single bond being the longest side. Consequently,
the sp2 carbon vertex is the widest at almost 70� (Figure 2.6) [224]. The 1H-NMR
signals of the methylene protons resonate at 1.26 ppm, while the olefinic proton is
shifted significantly downfield to 14.4 ppm. The C3 carbon appears at 164 ppm [225].
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Remarkably, the azirine moiety is found in some naturally occurring compounds.
For example, azirinomycin (155, Figure 2.7), isolated from Streptomyces aureus [226],
exhibits antibiotic properties [227]. Two more biologically active azirines, dysidazir-
ine (156) and antazirine (157), were identified in extracts of the marine sponge
Dysidea fragilis [228]. While both enantiomers are found in nature, only the (R)-
isomers of each are associated with desirable cytotoxic activity, the other antipodes
being inactive [229].

2.2.2
Synthesis of Azirines

2.2.2.1 Neber Route
This syntheticmethodology has a very interesting history. TheNeber rearrangement,
first reported in 1926 [230], is the base-mediated conversion of oxime derivatives
(originally sulfonates) intoa-aminoketones (Scheme2.34).Ultimately, it represents a
useful protocol for the a-amination of ketones, which has recently been used to
advantage in the total synthesis of dragmacidin F [231, 232]. Whilemost applications
still involve this complete transformation, it became clear early on that the mech-
anism involved an azirine intermediate that could be isolated under the right
conditions [233].

Figure 2.6 Geometry of 2H-azirine.
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Generally speaking, there are two regiochemical possibilities for a-amination
proceeding, in turn, through two regioisomeric azirines. House and Berkowitz [234]
demonstrated that the regiochemistry of the Neber rearrangement is driven not by
oxime geometry (as with the Beckmann rearrangement), but rather by the relative
acidities of the a-protons. In other words, the initial tosylate displacement is effected
by the more readily formed carbanion. Thus, in Neber precursors with electron-
withdrawing groups, the active methylene almost always ends up as the saturated
carbon of the azirine. For example, treatment of phosphonatoketoxime 158
(Scheme 2.35) with triethylamine at room temperature afforded in smooth fashion
azirine 159 as the exclusive regioisomer [235]. Equally satisfactory results could be
obtained using a solid-supported triethylamine analog (i.e., 160) [236].

An unusual set of oxidative conditions has been reported for the thioacetal oxime
carbamate 163, which suffers oxidation of only one sulfide linkage in the presence of
potassium permanganate and then cyclizes to azirine 164, presumably under the
influence of hydroxide liberated during the oxidation [237].

The method is tolerant to other leaving groups on the imino nitrogen. One
frequently encountered class of compounds in this regard incorporates the quater-
nary hydrazonium moiety [238]. For example, the hydrazonium salt 165
(Scheme 2.36) derived from propiophenone is converted into the corresponding
azirine 166 in fair yield upon treatment with sodiumhydride inDMSO [239], and the
similar unsaturated system 167 gives an excellent yield of azirine 168 under identical
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conditions [240]. In these cases, the regiochemistry is unambiguous, as there is only
one set of a-protons. However, the process can be selective even when two regioi-
somers are possible. Thus, the naphthylacetone derivative 169 provides azirine 170
through sequential hydrazone formation, exhaustivemethylation anddeprotonation,
whereby the product formation proceeds via the benzylic anion [241]. Even more
subtle is the reaction course of the pregnenolone hydrazoniumsalt 171, which gives a
reasonably good yield of azirine 172, corresponding to ring closure via the more
substituted aza-enolate species. The latter case provides a striking example of the
stability of azirines, as the authors report storage in ethanol for two weeks at room
temperature without decomposition [242, 243].
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There appears to be no universally applicable approach to chiral nonracemic
azirines; however, strides are being made. In one example, the chiral amido oxime
derivative 173 (Scheme 2.37) is reported to undergo conversion into azirine 174with
exclusive diastereoselectivity [244]. It is also interesting to note here the ability to
isolate the azirine from the type of protic media usually encountered in the Neber
rearrangement, which appears promising for adapting such protocols to azirine
synthesis. The use of chiral bases hasmetwithmarginal success. In one case,modest
enantioselectivities (up to 70% ee) were achieved using a chiral phase-transfer agent,
which is assumed to form a tight ion pair with hydroxide and thus impose an
asymmetric environment around the proton-transfer transition state [245]. A chiral
base can also be usedwith good results, as demonstrated by the preparation of azirine
177 mediated by quinidine (175). Best results are obtained using stoichiometric
quantities of organic base. However, a 20mol.% loading could be used in the
presence of potassium carbonate with only a slight decrease in selectivity [246].
This strategy has also been applied to the synthesis of azirines derived from
phosphine oxides (e.g., 179) [247].

2.2.2.2 From Vinyl Azides
Smolinsky reported in 1962 that the vapor-phase thermolysis of a-aziridinylstyrene
(180, Scheme 2.38) produced substantial quantities of phenylazirine 181 [248, 249].
Subsequently, themethod was adapted to bemore amenable to the preparative scale,
as exemplified by the synthesis of the trifluoromethylphenylazirine 184, which was
carried out on a 10-gram scale [250]. The vinyl azide in this casewas synthesized from
the corresponding alkene (i.e., 182) through sequential bromination, azide displace-
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ment and dehydrobromination, a protocol used by Gilchrist and coworkers to access
azirinyl esters [251, 252].

More recently, Somfai and coworkers [253] reported a much improved yield of
azirine184 (>95%) by carrying out the thermolysis inmethylene chloride at 150 �C for
20min in a sealed tube. Even at atmospheric pressure the process can be quite high
yielding and remarkably tolerant to other functionality. Thus, heating the hexopyr-
anose-derived vinyl azide 185 in toluene for 20 h resulted in the smooth formation of
azirine 186 [254]. Perhaps the most convenient route is the neat thermolysis of aryl
vinyl azides (e.g., 187) in an open container under microwave irradiation, which
proceeds in very good to excellent yields within a matter of minutes [255].

The course of the thermolytic reaction is substrate-dependent, and Hassner has
generalized that azirines are usually formed when the substituent geminal to the
azide is an aryl, alkyl, heteroatomic or ester group, whereas unsubstituted or keto-
substituted substrates tend to form nitriles and other heterocycles upon
thermolysis [256].

The same transformation can also be mediated by photolysis. Thus, irradiation of
b-phenylethyl vinyl azide 189 (Scheme 2.39) induces loss of nitrogen and concom-
itant formation of azirine 190 in excellent yield [257]. The obvious advantage of this
approach is that the decomposition can be carried out at low temperature, thus
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affording access tomore strained products, including fused bicyclic azirines and bis-
azirines such as 192. In the latter case, the loss of nitrogen occurs stepwise, and the
intermediate vinyl azirine can be isolated [258]. One bottleneck for both the
thermolytic and photolytic methodology is access to the requisite vinyl azide sub-
strates [259]. One promising recent contribution to solving this problem is the copper
(I)/L-proline mediated coupling of sodium azide with (Z)-1-iodo-1-alkenes [260]
which, in turn, can be accessed stereoselectively via the Wittig reaction of aldehydes
with iodomethylenetriphenylphosphorane [261].

The mechanism of this reaction has been the matter of some debate. Careful
kinetic studies in solution phase point towards a concerted mechanism involving a
multi-centered transition state in which the nascent sp2 azirinyl carbon exhibits
partial positive character (Figure 2.8). This is supported byHammett studies inwhich
electron-donating substituents on the aryl ring accelerate the decomposition. Thus,
in a solvent of 1-butanol at 80 �C, the conversion of the p-methoxy derivative (R¼4-
OMe) is about 50% faster than that of the phenyl substrate (R¼H) and almost three
times faster than the m-nitro analog (R¼3-NO2) [262].

For a-aminoalkenyl azides, then, decomposition to the corresponding aminoa-
zirine is usually spontaneous and rapid even at room temperature. In fact, many
protocols simply form the vinyl azide in situ from other precursors. For example,
keteneiminium salts (194, Scheme 2.40), available from the treatment of amides
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(e.g., 193) with phosgene, add sodium azide to form transient a-aminovinyl azides
(e.g., 195) that subsequently lose nitrogen at room temperature to provide azirine
products (e.g., 196) [263]. The use of phosgene can be avoided with diphenyl
phosphorazidate (DPPA), an aziridinating agent that reacts with amidate anions to
give the corresponding azirines directly, as shown by the conversion of N-methyl-N-
phenyl amide 197 into the aminoazirine 199 in 94% yield [264]. This methodology is
tolerant of various functionalities [265], but some substrates must first be converted
into the thioamide using Lawesson�s reagent [266, 267]. Other suitable precursors
include a-chloroenamines (e.g., 200), which undergo sequential azide displacement
and rapid thermal conversion into the azirine (e.g., 202) under very mild
conditions [268].

There are also high-yielding methods for preparing azirines appended with
electron-withdrawing substituents. Thus, allenic phosphonates (204, Scheme 2.41),
which can be accessed from propargyl alcohol derivatives (203), are themselves
efficient precursors for phosphonylmethyl vinyl azides (205). Irradiation of the latter
results in extremely high-yielding photolysis to the azirine (206) [269]. As an
additional entry under the rubric of electron-withdrawing substituents, bromoazir-
inyl ester 210 is formed in almost quantitative yield from the azidoacrylate deriv-
ative 209under thermal conditions in refluxinghexane [270]. Analogous iodo azirinyl
esters can be prepared through similar methodology [271].

2.2.2.3 From Other Heterocycles
Synthetically useful yields of azirines can be obtained from the thermolysis of
isoxazoles (Scheme 2.42), as demonstrated by the thermal rearrangement of ami-
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noisoxazole 211 to azirinyl carboxamide 212 at high temperature under argon. Neat
thermolysis is the preferred mode, as the use of solvent was found to give lower
yields [272]. Alternatively, iron dichloride promotes the analogous rearrangement of
alkoxyisoxazole 213 at room temperature. The 5-alkoxy substituent is crucial, as 5-
alkyl or 5-aryl substituents lead to enaminoketones under the same conditions [273].
Benzisoxazole derivatives (e.g., 215) exhibit a regiochemically distinct mode of
thermal rearrangement. Instead of bonding to the internal a-carbon, the nitrogen
instead forms the azirine ring with the adjacent carbon of the substituent, so that
aromaticity is preserved [274].
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In a similar vein, oxazaphosphole 217 (Scheme2.43) underwent pyrolysis at 400 �C
under high vacuum to produce azirine 218, which was trapped at low temperature
and characterized by IR spectroscopy. Pyrolysis at higher temperatures (700 �C) gave
nitrile ylides instead [275]. A somewhat more synthetically friendly procedure was
reported for oxazaphospholine 220 (available in four steps from a-bromoketox-
ime 219), which decomposed at 120 �C and atmospheric pressure to provide
methylazirine 221 as a distillate in good yield [276].

Finally, azirines can be synthesized from suitably equipped aziridine precursors.
For example, aziridinyl ester 222 (Scheme 2.44) was smoothly oxidized using t-butyl
hypochlorite to give the N-chloro derivative 223 in excellent yield. Subsequent DBU-
mediated elimination to the azirine 224, however, was considerably less effi-
cient [277]. A convenient workaround to this problem was found by using Swern
conditions, which effects the same transformation in 86% overall yield [278]. Davis
and coworkers have reported an interesting eliminative pathway by treating N-
sulfinyl or N-sulfonylaziridines (e.g., 225) with lithium diisopropylamide (LDA) at
low temperature [279, 280].Methyleneaziridines can easily be isomerized to azirines,
since the latter lie about 9 kcalmol�1 lower in energy [281]. Thus, N-silyl-methyle-
neaziridine 227 quantitatively isomerizes to azirine 228 via an alumina-mediated
Brooks rearrangement at room temperature [282].

2.2.3
Reactivity of Azirines

2.2.3.1 Addition of Nucleophiles
Inasmuch as azirines incorporate an unsaturated nitrogen center within a three-
membered ring, it would be reasonable to think of their expected chemical behavior
as that of an activated imine. Consequently, nucleophilic addition to the sp2 carbon
can be a synthetically useful reaction for azirines. For example, azirinyl phosphonate
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229 (Scheme 2.45) suffers high-yielding nucleophilic allylation in the presence of
excess allyl Grignard [283]. Analogous results can be obtained in excellent yield using
allylindium reagents generated in situ from the corresponding iodide and indium
metal, as shown in the conversion of azirine 231 into allylaziridine 232. The
stereochemistry of the latter reaction depends upon the substituent at the saturated
carbon: chelating groups (i.e., keto or hydroxy moieties) led to cis-delivery of the
nucleophile, whereas alkyl and aryl groups resulted in trans-addition [284].When the
azirine is sufficiently activated, even weak nucleophiles can engage in addition to
the ring. Thus, exposure of azirinyl phosphonate 233 to acryloyl chloride results in
initial N-acylation followed by subsequent rapid addition of chloride to form
chloroaziridine 234 [285].

Aziridines can also be accessed by the stereoselective reduction of azirines with
hydride reagents. For example, sodium borohydride reacts smoothly in ethanolic
medium with azirine 229 to yield the cis-aziridine 235, resulting from the trans-
addition of hydride [286]. Alternatively, an asymmetric transfer hydrogenation
protocol using the chiral aminoalcohol 236 and a ruthenium catalyst can be used
to generate enantiomerically enriched aziridines from achiral azirine precursors.
Thus, tolylazirine 237 was converted into (S)-tolylaziridine 238 in good yield and
promising enantiomeric excess. The mechanism follows the route elucidated in
analogous reactions of ketones, in which hydride addition and proton transfer occur
simultaneously [287].

A very clever protocol has been developed by Heimgartner and coworkers, which
takes advantage not only of the propensity of the azirine to add nucleophiles but also
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of the residual ring strain in the resulting aziridine ring. Thus, aminoazirines such as
240 (Scheme 2.46) engage carboxylates in nucleophilic addition to form transient
aziridine intermediates that spontaneously rearrange to give amino acid derivatives
(e.g., 241) [288, 289]. This strategy, dubbed the �azirine/oxazolone method,� allows
quite a bit of flexibility in introducing structural variation into peptide backbones, as
exemplified by the spiroazirines 243 [290] and 245 [266]. Quite a few synthons have
been developed within this manifold, including those for 2-methylaspartate [291],
a-methylglutamate [267], as well as for dipeptides [292] such as 2-aminoisobutyric
acid/4-hydroxyproline [293] and other 2,2-disubstituted glycines [294, 295]. The
methodology has been showcased in the synthesis of Trichovirin I derivatives [296]
and has been further expanded into the realm of solid-phase synthesis [297, 298].
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Nucleophilic substitution can actually be carried out at the saturated carbon of
certain uniquely functionalized azirines. For example, the benzotriazolyl azirine 247
(Scheme 2.47) takes part in an intermolecular SN2 reactionwith thiophenolate to give
the aziridinyl sulfide 248 in fair yield. Carbon-centered nucleophiles, such as
Grignard reagents, can also be used [299]. Bromoazirine derivative 250 reacts with
o-phenylenediamine (249) in both modes (nucleophilic addition and SN2 displace-
ment) to give the disubstituted quinoxaline 251 in very good yield [300].
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2.2.3.2 Cycloadditions
Perhaps some of themost fascinating chemistry associated with the azirines springs
from their propensity to act as 2p donors in cycloaddition reactions. For example,
Diels–Alder reactions using azirines as dienophiles [301] can provide synthetically
valuable fused azabicyclo[4.1.0]heptane ring systems. In some cases, the reaction
proceeds under simple thermal conditions and in very high yield, as illustrated by the
quantitative reaction of azirinyl ester 252 (Scheme 2.48) with furan to give the
Diels–Alder adduct 253 [302]. Themethod is amenable to other electron-rich dienes,
such as bis(siloxy)diene 254 [303], as well as other dienophiles, such as aziridinyl
carboxamides [304]. The reaction rate can be dramatically accelerated and the scope
extended to alkyl and aryl aziridines (e.g., 258) by the use of Lewis acids [305]. A
particularly high-yielding result was obtained in the magnesium bromide-mediated
Diels–Alder reaction between trimethylsiloxycyclohexadiene (260) and chiral non-
racemic azirinyl ester 261, which proceeded with almost exclusive endo- and
regioselectivity (but apparently low facial selectivity) [306, 307].
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The field is not limited to [4 þ 2] methodology. For example, arylazirine 264 and
fulvene 263 engage in a formal [6 þ 3] cycloaddition catalyzed by yttrium triflate and
mediated by adventitious water, providing a novel entry into the [2]pyridine system
(Scheme 2.49) [308]. The p-nitrophenylazirine 268 was also shown to be an effective
1,3-dipolarophile in the presence of azomethine ylide 267 (generated by the thermo-
lysis of bicyclic oxazolidinone 266), forming a fused tricyclic adduct (269) that was
parlayed into an approach to 1-azacephams [309].

2.2.3.3 Rearrangements into other Heterocycles
Owing to their strain and functionality, azirines are prone to molecular rearrange-
ment. For example, under neutral thermolytic conditions the alkyl aziridinylpho-
sphonate 270 (Scheme 2.50) is converted almost quantitatively into the pyrazine 271.
The mechanism is believed to involve the dimerization of unstable nitrile ylides
generated from the initial thermal ring-opening of the azirine [310]. Furthermore,
Padwa and Stengel have reported some fascinating azirine rearrangements promot-
ed byGrubb�s catalyst. Thus, the azirinyl aldehyde 272 is transformed cleanly into the
isoxazole 273 at room temperature. Similarly, vinyl azirine 274 undergoes thermal
rearrangement to form exclusively the 2,5-disubstituted pyrrole 276, which is
complementary to photolytic rearrangement, a process providing only the 2,3-
product 275 [311, 312]. Finally, Taber has reported on the high-yielding synthesis
of indoles (e.g., 278) from arylazirines 277, which are themselves synthesized from
the oximes of aryl ketones [313].

2.3
Oxiranes

It may well be said that the field of oxirane chemistry has escaped the confines of a
brief comprehensive overview. Indeed, an encyclopedic summary of just the last
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year�s activity would occupy volumes. Several significant reviews have appeared
recently [8],many of which pertain to specific areas within epoxide chemistry andwill
therefore be cited in the appropriate context. The present chapter seeks to assemble a
sampling of the diverse applications for organic synthesis.

2.3.1
Properties of Oxiranes

Oxiranes (also known as epoxides and oxacyclopropanes) owe much of their utility,
whether as synthetic intermediates or biologically active compounds, to ring strain.
For example, oxirane itself (bp 10.5 �C) is associatedwith some27 kcalmol�1 of strain
enthalpy. Likemost of its congeners, thismolecule exhibits the very useful balance of
being stable enough for isolation, transportation and so on, while still harboring a
remarkable propensity for reaction. Geometrically, oxirane describes an almost
equilateral triangle, with a slightly relaxed bond angle at the oxygen center
(Figure 2.9). The 1H-NMR signals of the methylene protons resonate at 2.54 ppm
and the carbon atoms appear at 39.7 ppm.The increased s-character of theC�Hbond
leads to an unusually high 13C-H coupling of 176Hz [7].

The oxirane ring is found in a host of naturally occurring compounds of biological
relevance.Occasionally, the structures can be quite simple, with the oxirane being the
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dominant functional group. Such is the case for the newly discovered stilbene oxide
derivative 279 (Figure 2.10), which was isolated from the larvalG. mellonella infected
by the nematode-bacterium complex H. megidis 90/P. luminescens C9. This com-
pound displays broad antimicrobial activity against many troublesome pathogens,
including the drug-resistant strain Staphylococcus aureus RN4220 [314].

More commonly, however, the epoxide ring is imbedded within a molecule
carrying elaborate functional embellishments. A good example is altromycin B
(280), a secondary metabolite of soil Streptomyces which exhibits both antibiotic and
anticancer activity [315]. Themode of action has been traced to the inhibition of DNA
synthesis caused by the alkylation of guanine through epoxide ring-opening [316].
Another natural product sporting the oxirane and anthraquinone moieties is dyne-
micin A (281), isolated from Micromonospora chersina, which is cytotoxic at concen-
trations approaching the parts per trillion range. Here the epoxide ring functions as
the trigger for a mouse trap: nucleophilic ring opening of the epoxide results in a
conformational relaxation that allows for cyclization of the enediyne array, forming
the very reactive arene diradical [317].

Ambuic acid (282), isolated from the rain forest fungi Pestalotiopsis spp. and
Monochaetia spp., has shown activity against several plant pathogenic fungi [318].
This polyketide-derived natural product is one representative from a broad range of
cyclohexane epoxides found in nature, a class that has been the subject of a quite
recent and fairly comprehensive review [319]. The structural and biological diversity
even within this classification is impressive. Fumagillin (283), a cyclohexane spir-
oepoxide produced by Aspergillus fumigatus, is an angiogenic inhibitor that binds to
methionine aminopeptidase. Consequently, it is a promising antineoplastic agent
and may even inhibit atherosclerosis [320, 321].

Polyketide-derived oxiranyl natural products also extend into macrocyclic spe-
cies. Amphidinolide B1 (284) is one such cytotoxic 26-membered macrolide,
isolated from the marine dinoflagellate Amphidinium sp. Y-5 [322–324]. Similar
cytotoxic activity exhibited by the 16-membered macrolide epothilone A (285), a
metabolite of the cellulose-degrading myxobacterium Sorangium cellulosum (Myx-
ococcales), has made it an interesting anti-cancer candidate and subsequently the
subject of active investigation from both a synthetic organic and chemical biology
standpoint [325, 326]. Also of marine origin is the bromotyrosine-derived dimeric
spiroisoxazoline (þ )-calafianin (286), which is found in methylene chloride
extracts of the Mexican sponge Aplysina gerardogreeni n. sp (Aplysinidae). Members
in this class of compounds have demonstrated activity against Mycobacterium
tuberculosis [327, 328].

Figure 2.9 Geometry of oxirane.

2.3 Oxiranes j57



2.3.2
Synthesis of Oxiranes

The synthesis of oxiranes has been the subject of several recent reviews, encom-
passing biosynthetic routes [329] and asymmetric methodologies [330], including
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those proceeding through homo- and heterogeneous catalysis [331] and epoxidations
under the influence of chiral auxiliaries [332]. The preparation of vinyl epoxides has
also been reviewed recently [333], as have as other topical works mentioned in the
appropriate context below.

2.3.2.1 Using Dioxiranes
Epoxides can be prepared by the action of dioxiranes on alkenes under mild
conditions and low temperature [334]. For unstable epoxides, such as those derived
from enol ethers, dioxirane epoxidation is themethod of choice. Several reports have
exploited this reaction to obtain the previously unisolable acyloxo, alkoxo and
silyloxooxiranes. An example of this approach involves the preparation of epoxide
288 from enol lactone 287 (Scheme 2.51) using one of the simplest dioxirane
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derivatives, dimethyldioxirane (DMD). Similarly, DMD epoxidation of silyl enol
ethers afforded the corresponding epoxides in excellent yields. These substrates
readily undergo an acid-catalyzed rearrangement to a-trimethylsiloxy carbonyl
derivatives [335, 336]. Danishefsky has described the use of DMD for the direct
epoxidation of glycals. The 1,2-anhydrosugars produced were employed in the
stereospecific construction of b-linked oligosaccharides [337].

Epoxy isonitriles cannot be prepared by the direct epoxidation of vinyl isonitriles.
However, the DMD oxidation of a series of vinyl formamides was found to produce
epoxy formamides in good yield. These compounds were readily converted into the
epoxy isonitriles using triflic anhydride and H€unig�s base. A total synthesis of
isonitrin B (290) was carried out using this methodology [338]. Adam and coworkers
reported the first benzofuran epoxide synthesis (i.e., 292) using DMD in their study
on themutagenesis of benzofuran dioxetanes [339]. The same oxidant has been used
to advantage in accessing other labile products, including 1,2-dialkoxyoxiranes [340]
and flavone epoxides [341].

Crandall and coworkers have studied the DMD-mediated epoxidation of various
allenes 293. The corresponding 1,4-dioxiaspiro[2.2]pentanes 294 were produced in
good yields, themono- anddi-substituted allenes giving anti diastereomerswith good
stereoselectivity. These spirodiepoxides then underwent nucleophilic cleavage under
buffered conditions (Bu4NOAc/HOAc) to give highly functionalized
a,a0-dihydroxyketone derivatives [342]. Messeguer and coworkers have employed
dimethyldioxirane to prepare the diepoxide 296, a proposed metabolic intermediate
of juvenile hormone III [343].

Dioxiranes can also be employed in a catalytic fashion. Practically unrivaled in
efficiency and ease of use, DMD itself can be generated in situ from acetone in an
appropriate buffer. Thus, the dropwise addition of an aqueous solution of Oxone to a
stirredmixture of cis-carveol (297, Scheme 2.52), sodium bicarbonate, and acetone at
0 �C led to the selective formation of epoxide 298 in 92% yield [344]. This general
methodology has been expanded to include a wide variety of oxygen carriers. For
example, in the area of natural products,Marples and coworkers have used dioxiranes
generated in situ from a range of ketones to effect 5,6-epoxidation of cholesterol or its
acetate in high yield [345]. Bortonlini et al. have used sodium dehydrocholate as an
organomediator for the sodium perborate (SPB) mediated preparation of acid-
sensitive epoxides, in which the intermediacy of a steroidal dioxirane has been
suggested [346].
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Scheme 2.52 Catalytic epoxidation using DMD.
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Denmark has developed a practical phase-transfer protocol for the catalytic
epoxidation of alkenes, which uses Oxone as a terminal oxidant. The olefins
studied (e.g., 310, Scheme 2.53) were epoxidized in 83–96% yield. Of the many
reaction parameters examined in this biphasic system, the most influential were
found to be the reaction pH, the lipophilicity of the phase-transfer catalyst and the
counterion present. In general, optimal conditions feature 10mol.% of the catalyst
1-dodecyl-1-methyl-4-oxopiperidinium triflate (299, Figure 2.11) and a pH 7.5–8.0
aqueous methylene chloride biphasic solvent system [347], although these systems
are tolerant to neutral and basic pH ranges [348]. The dioxirane derived from the
bis(ammonium) ketone 300 also exhibits remarkable reactivity, stability, and water
solubility, and has been used to advantage on various substrates [349]. The
activation barrier for these reactions is drastically reduced by hydrogen bonding
in the transition state, whether by solvent or intramolecularity [350].
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The latest twist to this development is the use of chiral ketones in catalytic amounts
for the induction of asymmetry during the epoxidation [351]. However, the resultant
dioxiranes have two reacting sites, a fact that makes the prediction and execution of
asymmetric induction problematic. Yang and coworkers addressed this problem by
designing the C2 symmetric, eleven-membered ring ketone 301 as a chiral dioxirane
precursor [352]. In this case, both active sites are characterized by the same chiral
environment. In fact, a catalytic amount of ketone 301, in the presence of Oxone as a
terminal oxidant, was capable of epoxidizing trans-disubstituted and trisubstituted
alkenes in excellent yield and modest enantiomeric excess (e.g., 312 ! 313,
Scheme 2.53). Electronic and steric embellishments on the ketones (e.g., 302) can
lead to mild enhancements [353]. The main conduit of asymmetric induction is
assumed to occur via the �steric sensors� on the aromatic ring. Curiously, enantios-
electivity increases with the size of the substituent only to a certain point, then begins
to decrease again.

Shi and coworkers have successfully developed ketalized D-fructose derivatives
(e.g., 303) as chiral dioxirane precursors [354]. Excellent ees were obtained, even for
the recalcitrant trans-disubstituted alkenes (e.g., 314 ! 315, 81% yield, 90% ee) [355]
and trisubstituted alkenes (e.g., 320 ! 321, 75% yield, 95% ee) [356]. However, this
system appears to be highly substrate dependent, owing to a complex interaction of
steric and electronic factors [357–359]. There are several important features of the key
dioxirane intermediate. First, the stereogenic centers are in close proximity to the
ultimate reactive site of the dioxirane; second, the carbonyl group isflanked by a fused
ring on one side and a quaternary center on the other, preventing epimerization; and,
finally, only one face of approach is available, since the other is sterically blocked. As
for the actual transitions state, the results are consistent with a spiro configuration
(316) that is directed by steric interactions. The protocol has been optimized so that
the chiral ketone 303 can be used in catalytic quantities with Oxone as the
stoichiometric oxidant. The key to preserving the lifetime of the chiral auxiliary is
pH control during the reaction; the optimum range was found to be 10.5 or above,
which is conveniently maintained with potassium carbonate [360, 361].

The related oxazolidinone ketone catalyst 304, prepared in six steps from
D-glucose [362], has the advantage of exhibiting high ees for both cis- and terminal
olefins [363]. Interestingly, for olefins with aromatic substituents, it appears that the
transition state shows a preference for positioning the p-system proximal to the
oxazolidinone moiety (as in 319), so that aromatic groups can be efficiently differ-
entiated during the epoxidation. In studies involving the epoxidation of cis-methyl-
styrene (317), the electronic character of the oxazolidino N-aryl group was found to
influence the outcome of the reaction, presumably by modulating the interaction
between the catalyst and the aromatic substituent of the substrate [364]. Similarly,
increasing the steric demand adjacent to the amide carbonyl can improve
selectivity [365].

Other catalysts also exhibit a combination of these factors. For example, the
tropinone-derived chiral ketone 305 owes its enantioselectivity to the structurally
rigid and compact asymmetric ring structure. Incorporation of an electron-with-
drawing fluoro substituent at the a-position enhanced the catalytic reactivity. Enan-
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tiomeric excesses tend to be modest, but occasionally are quite good, as seen in the
epoxidation of phenylstilbene (312), which takes place in quantitative yield and with
83% ee [366]. The impact of these electronic effects is intriguing, and can be quite
dramatic. A particularly noteworthy example is the non-conjugated electronic inter-
actions that result from a remote substituent in the carvone-derived catalyst 306. In
the epoxidation of trans-stilbene, the series of small substituents (F, Cl, OH, OEt and
H)give ees of 42–87%, exhibiting a veryhigh correlationwith the respectiveHammett
r values. These results have been rationalized on the basis of stabilization of the
favored transition state (307) by field effects [367]. Some interesting immobilized
dioxirane precursors have also been reported, such as the novel heterogeneous
ketone 308 [368] and the fluoroketone 309, designed for use in fluorous media [369].

2.3.2.2 Using other Oxidants without Metal Catalysts
The epoxidation of alkenes without metal catalysis represents a large and diverse
group of preparative methods for oxiranes, and here the various systems can be
characterized largely by two key components: the oxygen carrier (or catalyst) and the
terminal (stoichiometric) oxidant. In this regard,m-chloroperbenzoic acid (mCPBA)
is a tried and true reagent [370], and has been adapted to the large-scale practical
synthesis of epoxides [371]. Buffered mCPBA systems are useful for epoxidations in
which the alkenes and/or resultant epoxides are acid-sensitive. For example, 2,6-di-
tert-butylpyridine was shown to give superior results in the case of certain allyl acetals
(e.g., 322, Scheme 2.54) [372]. Bicarbonate [373] and phosphate [374] buffers are also
frequently encountered in this context.

Multifunctional alkenes offer some interesting possibilities. For example, enone
324 undergoes ketone-directed epoxidation when treated with mCPBA to give
exclusively the syn epoxyketone 326. As for the mechanism, hydrogen bonding
effects were discounted on the basis of solvent insensitivity. Intramolecular attack by
some oxidized form of the ketone moiety could be operative, although 18O labeling
studies have ruled out a dioxirane intermediate as the active epoxidizing species.
Thus, the observed stereoselectivity was rationalized on the basis of intramolecular
epoxidation by an a-hydroxy peroxide (i.e., 325) or possibly by a carbonyl oxide
intermediate [375].

Whereas aminoalkenes cannot be converted into epoxides by usual methods
(competing N-oxidation), protonation by an arenesulfonic acid and subsequent
treatment with mCPBA allows for chemoselective epoxidation. Furthermore, when
properly disposed, the pendant ammonium functionality can serve as a potent
directing group for the oxidant. Thus, under these conditions cyclohexenylamine
327 affords exclusively the syn epoxide 328 [376].

In the case of dual functionality, the two sites may interact in either a constructive
or destructive fashion. Thiswas illustrated by a set of stereoselective epoxidations on a
series of allylic carbamates that were appended with a carbomethoxy group, a
hydroxymethyl group, or an acetoxymethyl group. In all cases, threo epoxides were
favored (syn to the carbamate) upon treatment with mCPBA, which reflects
the strong directing power of the carbamate group. However, the magnitude of the
syn : anti ratio was dependent upon the type and configuration of the other
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functionality. A relatively low ratio was observed when the two groups compete for
face selectivity, whereas �cooperative coordination� leads to higher selectivity. From
the magnitude of the perturbation, the following order of directing ability was
proposed: carbamate>methyl ester> homoallylic alcohol¼ acetate [377].

The reaction of allyl alcohol with peroxyformic acid has been examined extensively
using molecular modeling calculations [378]. Prompted by the observation that
peracid epoxidations can be far more selective in basic aqueous medium than in
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organic solvent [379], Washington and Houk studied transition structures from the
epoxidation of allylic alcohol with performate ion at the B3LYP/6-31þG(d,p) level of
theory in a CPCM continuum model for water [380]. Their findings indicate a
preferential hydrogen bonding of performate with the substrate hydroxyl group
rather than with water, leading to a directed epoxidation via the transition state
depicted in Figure 2.12. This reaction is similar to the corresponding cyclopropana-
tion of allylic alcohols in the presence of aqueous sodium hydroxide. To test this
model experimentally, the chiral allylic alcohol 329 was treated with monoperox-
yphthalic acid (MPPA, 330) in 1M NaOH to give the syn epoxy alcohol 332 in
quantitative yield with 98% syn/anti selectivity.

An interesting regiochemical anomaly has been reported by Fringuelli and co-
workers [381]. In the epoxidation of geraniol (332) by MPPA, the reaction could be
directed to either double bond by simplemodification to the experimental conditions.
In the presence of cetyl(trimethyl)ammonium hydroxide (CTAOH) at pH 12.5, 2,3-
epoxygeraniol (334) is formed exclusively; however, at pH 8.3 in the absence of
CTAOH, the formation of 6,7-epoxygeraniol (333) is favored. Themagnesium salt of
this reagent, magnesium bis(monoperoxyphthalate) hexahydrate (MMPP), is touted
as a less expensive and more stable surrogate for mCPBA [382].

With an eye towards industrial applications, Johnstone and coworkers have
developed 5-hydroperoxycarbonylphthalimide (335) as a new reagent for epoxidation.
An easily prepared, shock-stable, crystalline solid, this peroxy acid was designed to
exhibit all the desirable properties ofmore hazardous or expensive reagents (i.e., ease
ofwork-up, low acidity in reactionmedium, etc.). Yields, using various substrates, are
excellent [383].

Hydrogen peroxide is another frequently used terminal oxidant for epoxidations,
and its usewithmanganese [384] and palladium [385] catalysts has been the subject of
recent reviews. Garcia-Bosch and coworkers have demonstrated that metal-catalyzed
disproportionation of hydrogenperoxide in some catalytic systems canbe suppressed
by using a large excess of acetic acid as an additive, presumably facilitating the
formation of peracetic acid [386]. Alternatively, Ti(salan) compounds have been

Figure 2.12 TS for epoxidation of allylic alcohol with performate.
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applied effectively to hydrogen peroxide epoxidation systems [387, 388], as well as
boron trifluoride in the absence of metal co-catalysts [389].

Another relatively simple metal-free system for the epoxidation of tri- and cis-
disubstituted olefins (e.g., 336 ! 337, Scheme 2.55) is formamide-hydrogen per-
oxide in an aqueous medium. This reagent has the advantage of being pH-inde-
pendent, which makes it attractive for biochemically mediated transformations. No
reaction was observed in the case of trans-disubstituted and terminal olefins. With
bifunctional alkenes, the more reactive double bond is selectively epoxidized [390].

Water-soluble alkenes can be epoxidized in remarkably high yields using bicar-
bonate-activated hydrogen peroxide (BAP). Thus, epoxide 339was obtained in>95%
yield from sodium p-vinylbenzoate (338). Diol formation is a competing side reaction
with some substrates [391].

The epoxidation of olefins with hydrogen peroxide can also be promoted by the
addition of carbodiimides, presumably by the initial formation of a peroxyisourea
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species (341) [392]. Majetich and Hicks have reported on the epoxidation of isolated
olefins (e.g., 342) using a combination of 30% aqueous hydrogen peroxide, a
carbodiimide (e.g., DCC) and a mildly acidic or basic catalyst. This method works
best in hydroxylic solvents and not at all in polar aproticmedia. The type and ratios of
reagents are substrate dependent, and steric demand about the alkene generally
results in decreased yields [393]. The methodology can be adapted to asymmetric
epoxidation by using an aspartate-containing tripeptide [394].

Olefins containing free hydroxyl groups or carboxylic acidmoieties can be oxidized
rapidly and efficiently at room temperature using an easily prepared acetonitrile
complex of hypofluorous acid (HOF�CH3CN). The reagent does not induce forma-
tion of peroxides with free hydroxy groups, and aromatic rings do not interfere with
the reaction. Thus, oleic acid (344, Scheme 2.56) was epoxidized in 10min and in
90% yield [395].

Allenic alcohols 346 are converted in the presence of iodine into a mixture of (Z)-
and (E)-diiodides (347), which, upon subsequent treatmentwith base, form the trans-
iodovinyl epoxides 349 with a diastereomeric excess of >99%. This high degree of
selectivity is rationalized on the basis of steric interactions between the R group and
the iodine atom in the transition state leading to epoxide formation (i.e., 348a
vs. 348b) [396].

One of the most attractive oxidants for this chemistry is dioxygen, both from an
environmental and cost standpoint. In this vein, a metal-free epoxidation protocol
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was reported that proceeded via the in situ generation of hydrogen peroxide from O2

through a complex series of steps involving N-hydroxyphthalimide (NHPI). Once
formed, the H2O2 is activated by addition onto the somewhat esoteric solvent,
trifluoroacetone, to give 2-hydroperoxy-hexafluoropropan-2-ol (352) as the oxygen
transfer reagent. The reaction appears to be general and yields are very good.
Regardless of the starting configuration of the alkene, a strong preference for the
formation of trans-epoxides was observed (e.g., 350 ! 351) [397].

2.3.2.3 Metal-Catalyzed Epoxidation of Alkenes
The topic of metal-based catalysis for alkene epoxidation is expansive, and the reader
is directed to two excellent reviews of this chemistry byAdolfsson [398] andAdolfsson
and Balan [399], as well as an outstanding treatise on mechanism and kinetics by
Oyama [400] and an overview of asymmetric methods by Matsumoto and Kat-
suki [401]. The development of (salen)metal complexes (Figure 2.13) for the epox-
idation of alkenes has been nothing less than revolutionary, providing access to
epoxides from simple olefins in much the same way Sharpless chemistry paved the
way for the epoxidation of functionalized alkenes. An extensive review specifically on
the chromium- and magnesium-salen catalyzed epoxidation of alkenes has recently
appeared [402].

In the absence of other functionality, typical peroxyacid epoxidation of dienes
favors reaction on the more substituted double bond. However, the (salen)manga-
nese complex 353 promotes epoxidation of the less substituted double bond (e.g.,
362 ! 363, Scheme 2.57), thus providing a complement to conventional methods.
This protocol is also useful for substrates that polymerize under peracid condi-
tions [403]. Allylic alcohols are equally suitable substrates, as demonstrated by the
epoxidation of 364 using the vanadyl salen oxo-transfer catalyst 354 in supercritical
carbon dioxide with tert-butyl hydroperoxide as a terminal oxidant [404].

The lion�s share of research activity in this area has centered around asymmetric
epoxidation using chiral salen catalysts. Thus, the chiral (salen)Mn(III) complex 356,
which is readily available on a large scale in high yield from commercially available
starting materials [405, 406], is the centerpiece of Jacobsen�s enantioselective
synthesis of the taxol side chain 369 [407], in which the epoxy ester 367 is prepared
from cis-ethyl cinnamatewith very high enantiomeric excess (Scheme 2.58). Typically
under these conditions, cis-double bonds are converted stereospecifically into cis-
epoxides. However, in the case of conjugated dienes, trans-epoxides are the major
products. The crossover has been ascribed to a step-wise oxygen transfermechanism
involving an intermediate radical that undergoes bond rotation to give the observed
products. This anomalous behavior has been leveraged in a method for the regio-
selective epoxidation of cis,trans-dienes to give trans,trans-diene monoepoxides (e.g.,
370 ! 371) [408].

Cyclic and acyclic trisubstituted alkenes are also epoxidized with high enantios-
electivity under the catalysis of 356, as exemplified by the conversion of phenyl-
stilbene 312 into the (S)-epoxide 313 with 92% enantiomeric excess. The sense of
enantioselection is opposite that of disubstituted alkenes, and a global mechanistic
model has been developed to rationalize the stereochemical outcomes of this class of
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epoxidations [409]. Furthermore, a wide range of terminal oxidants have been
employed with this catalyst, including hydrogen peroxide [410], dimethyldioxir-
ane [411], periodates [403] and the organic-soluble oxidant tetrabutylammonium
monopersulfate [412].

Terminal olefins typically give relatively low enantiomeric purities, whichmight be
due to poor enantiofacial selectivity during the oxygen addition or facile rotation of a
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radical intermediate unencumbered by a-substitution. Either of these impediments
should be positively impacted by decreasing thermal energy, and this has been borne
outbyexperimental evidence [413].Katsukihas reported increasedeesbyaddingNaCl
to the aqueous hypochlorite system, thus allowing for sub-zero (�18 �C) reaction
temperatures [414]. The asymmetric induction may be further enhanced by modi-
fication of the catalyst. Replacement of the tert-butyl group with the triisopropylsiloxy
substituent affords a catalyst (i.e., 357) that is not only stericallymore defined but also
electronically attenuated, and thus is milder and more selective [415]. The diphenyl
variant 360was equally effective in epoxidizing a series of recalcitrant olefins, such as
vinylbenzoic acid 372 (Scheme 2.59) in the presence ofN-methylmorpholineN-oxide
(NMO) as an additive and mCPBA as a terminal oxidant in methylene chloride
at �78 �C [416]. These conditions were also advantageous for the epoxidation
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Scheme 2.57 Alkene epoxidations using achiral salen metal catalysts.
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of tetrasubstituted alkenes, asdemonstratedby theconversionof chromenederivative
374 into the corresponding epoxide with 97% ee [417].

Changing the metal center from manganese to chromium can have surprising
results. For example, one aggravating phenomenon associated with the (salen)Mn
complexes is that the epoxidation of trans-olefins proceeds typically with low ees.
However, the analogous chromium complexes (e.g., 359) catalyze such epoxidations
with greater selectivity than for the corresponding cis-olefins under the same
conditions. Here the mechanism is presumed to involve an electrophilic process,
which is supported by the fact that only electron-rich alkenes are effectively epox-
idized. In the case of trans-b-methylstyrene (376, Scheme 2.60), enantioselectivities
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Scheme 2.59 More alkene epoxidations using chiral salen metal catalysts.
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of up to 86% are achieved [418]. Gilheany and coworkers [419] have observed high
(>90%) enantioselectivities for trans-alkenes using stoichiometric chromium com-
plexes, albeit withmodest chemical yields, presumably resulting from the formation
of a m-oxo Cr(IV) dimer in situ. A systematic study of the effect of aromatic
substituents on enantioselectivities [420] is consistent with an oblique approach of
the substrate to a nonplanar (stepped) oxidized catalyst (Figure 2.14).

An interesting reversal of chiral induction in chromium(III)-salen complexes
using a tartaric derived alicyclic diamine moiety (i.e., 361) has been observed by
Mosset, Saalfrank and coworkers [421]. Thus, epoxidation of the chromene 378 using
catalyst 361 and an oxidant consisting of mCPBA/NMO afforded epoxide 379 in the
(3S,4S) configuration, whereas a classical Jacobsen catalyst (357) provided the
corresponding (3R,4R) enantiomer. This approach has been applied to the chiral
epoxidation of chromene 380 using the readily available chromium salen catalyst 358
in a synthesis of the novel potassium channel activator BRL55834 [422].

The Katsuki group have focused their attention on (salen)Mn(III) catalysts of a
slightly different configuration (e.g., 382–386, Figure 2.15), which are characterized
as having chiral residues at the aromatic 3,30-positions. These catalysts have been
used to advantage in the epoxidation of conjugated cis-olefins [423], including
chromenes [424, 425], benzocycloheptenes [426], dihydronaphthalenes [427] and
enynes [428]. The proposed mechanism involves a flanking attack by the substrate,
which is steered by both steric interactions (e.g., the cyclohexyl residue) aswell asp–p
repulsive forces. Generally speaking, the enantiofacial selection of cis-olefins in these
catalyst systems appears to be influenced mainly by the chirality on the ethylene-
diamine bridge,whereas trans-olefinepoxidation seems to be directedmore by theC3
and C30 substituents [429].

More subtle arguments have been invoked to rationalize the dichotomous behavior
of the so-called �second-generation�Mn-salen catalysts 384 and 385 towards unfunc-
tionalized and nucleophilic olefins. For example, higher yields and ees are obtained
with the (R,S)-complex (384) for the epoxidation of indene (387, Scheme 2.61).
However, N-toluenesulfonyl-1,2,3,4-tetrahydropyridine (389) gave better results
using the (R,R)-diastereomer (385). An analysis of the transition-state enthalpy and
entropy terms indicates that the selectivity in the former reaction is enthalpy driven,
while the latter result reflects a combination of enthalpy and entropy factors [430].

Other structuralmodifications to salen catalysts can confer operational advantages.
For example, hydrogen peroxide is attractive as a terminal oxidant due to its low cost
and ready availability, but epoxidations using this reagent tend to be less enantio-
selective and more prone to radical-induced side reactions. In some cases, these
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Figure 2.14 Stepped conformation of a salen(Cr) catalyst.
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disadvantages have been circumvented by using bioinspired models [431]. For
example, by tethering an imidazole moiety to a chiral salen-type Mn(III) catalyst,
an axial ligand is provided that imitates a peroxidase coordination sphere while still
taking advantage of the asymmetric active site of the chiral (salen)Mn(III) species.
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The resulting catalyst (391, Figure 2.16) can be used at 10mol.% loadings with dilute
hydrogen peroxide as an oxidant [432]. In a similar vein, the chiral dicarbonyliminato
manganese(III) complex 392 is effective using molecular oxygen as the terminal
oxidant [433], and the manganese-picolinamide-salicylidene complex 393 exhibits
excellent turnover using sodium hypochlorite [434]. The recently disclosed macro-
cyclic analogue 394 gives very promising results indeed. At a 5mol.% loading with
two equivalents of sodium hypochlorite as a terminal oxidant, chromene 378 is
epoxidized in quantitative yield and 93% ee [435].

No small amount of effort has been directed towards the development of
immobilized catalysts, both for ease of catalyst recovery and for application to
solid-phase combinatorial synthesis. Toward this end, the catalytic moiety has been
tethered to a solid support via either the ethylenediamine portion [436] or the
salicylaldehyde subunit [437] to give immobilized catalysts of type 395 and 396,
respectively (Figure 2.17). These are the first gel-type resins to give results rivaling
solution-phase counterparts. The backbone of Jacobsen�s catalyst has also been
immobilized on silica gel by radical grafting (e.g., 397) [438] and it has even been
prepared in polymeric form (i.e., 398) [439]. Other approaches include the use of
perfluoroalkyl-substituted catalysts (e.g., 399) in a fluorous biphasic system [440] and
the conventional Jacobsen�s catalyst 356 in a medium of the air- and moisture-stable
ionic liquid [bmim][PF6] [441].

A somewhat different approach to catalyst separation has been devised by
engineering the chiral salen catalyst to have built-in phase-transfer capability, as
exemplified by the Mn(III) complex 400 [442]. Thus, enantioselective epoxidation of
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chromene derivatives (e.g., 402) in the presence of 2mol.% catalyst 400 and pyridine
N-oxide (PNO) under phase-transfer conditions (methylene chloride and aqueous
sodium hypochlorite) proceeded in excellent yield and very good ees (Scheme 2.62).
The catalyst loading could be reduced to about 0.4% with only marginal loss of
efficiency. Finally, Smith and Liu [443] immobilized a Katsuki-type salen ligand by an
ester linkage toMerrifield�s resin to produce catalyst 401. In a test epoxidation of 1,2-
dihydronaphthalene (404) using sodium hypochlorite as an oxidant and 4-phenyl-
pyridine N-oxide (4-PPNO) as an activator, the immobilized (salen)Mn complex
sustained high enantioselectivity (>90%), even after being recycled six times.

No discussion of metal-catalyzed epoxidation could be complete without addres-
sing Sharpless chemistry. Now an imbedded part of the synthetic organic canon, this
topic has been very nicely summarized in a recent review article [444]. Two common
catalysts in this regard are VO(acac)2 and Ti(Oi-Pr)4, and although their first
applications were reported decades ago, the methodology is still very much in
currency. Thus, the vanadium-mediated diastereoselective epoxidation of allylic
alcohols, a key step in the synthesis of Cecropia juvenile hormone (i.e.,
406 ! 407, Scheme 2.63) described in 1974 [445], was employed in much the same
form in 2006 in the epoxidation of the highly functionalized allylic alcohol 408,
providing a key intermediate for an approach to the quartromicins [446]. Likewise,
the classic tartrate/titanium-mediated asymmetric epoxidation of allylic alcohols (i.e.,
410 ! 411), the scope of which was described in detail by Sharpless in 1987 [447], is
an almost indispensable tool for the synthetic chemist, as evidenced by its application
in the construction of the bicyclic ether core of (þ )-sorangicin A (i.e., 412 ! 413)
reported by Crimmins and Haley [448].

These protocols continue to provide springboards for further development and
innovation. For example, Hussain and Walsh [449] have developed a Sharpless-
inspired tandem alkylation/epoxidation of prochiral enones to provide chiral non-
racemic hydroxyepoxides. Yamamoto and coworkers [450] have developed a chiral
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hydroxamic acid (414) derived from binaphthol, which serves as a coordinative chiral
auxiliary when combined with VO(acac)2 or VO(i-PrO)3 in the epoxidation of allylic
alcohols. In this protocol, triphenylmethyl hydroperoxide (TrOOH) providesmarked-
ly increased enantiomeric excess, compared to the more traditional t-butyl hydro-
peroxide. Thus, the epoxidation of (E)-2,3-diphenyl-2-propenol with 7.5mol.%
VO(i-PrO)3 and 15mol.% of 414 in toluene (�20 �C; 24 h) provided the (2S,3S)
epoxide 416 in 83% ee. Malkov and coworkers were able to carry out the same
transformation in 92% yield and 94% ee using a cyclohexylamine-derived sulfon-
amide hydroxamic acid catalyst [451].

An alternative organic peroxide source is also at the heart of another modified
catalytic Sharpless epoxidation of allylic alcohols, in which the tertiary furyl
peroxide 417 serves as the terminal oxidant in the presence of L-diisopropyl
tartrate (L-DIPT). Thus, trans-2-methyl-3-phenylprop-2-en-1-ol (364) was converted
into epoxide 365 in 87% yield and with 97% ee using a catalyst loading of
20mol.% [452] (Scheme 2.64).
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Biological models have inspired the adaptation ofmetalloporphyrin complexes for
synthetic processes. For example, chloroperoxidase (CPO) catalyzes the epoxidation
of many simple cis-alkenes with high enantioselectivity, although bulkier substrates
tend to lead to low conversion and terminal alkenes alkylate the catalyst [453]. Amore
generally applicable analog can be found in the iron(III) tetrakis(pentafluorophenyl)
porphyrin 418a (Scheme2.65), forwhich considerablemechanistic studies have been
carried out [454, 455]. Cyclooctene (419) is smoothly epoxidized by 418a using
hydrogen peroxide as the terminal oxidant. Many interesting modifications have
been made to the porphyrin template, most notably for the purposes of asymmetric
induction, which has been the subject of a recent review [456]. Thus, the binaphthyl
strapped iron-porphyrin catalyst 424 promotes the enantioselective epoxidation of
styrene (10) with iodosylbenzene to give (R)-styrene oxide (421) in excellent yield and
enantiomeric excess [457]. Effective non-heme iron catalysts using pentadentate
bispidine ligands have also been studied [458].

Some interesting ruthenium porphyrins have also been reported, including a
dioxoruthenium(VI) species [459] and the ruthenium(II) catalyst 418b, which func-
tions as a photosensitizer capable of effecting the selective epoxidation of alkenes
(e.g., 422) using water as an oxygen source, although the method suffers from the
limitation of requiring hexachloroplatinate as an electron acceptor [460]. Metallo-
porphyrins of all stripes have been appended to solid supports, and the reader is
directed to a recent and effective review on the topic for further information [461].

Polyoxometallates (POMs) have been in the research crosshairs lately, as evidenced
by a recent review [462]; this interest stems in some portion from their ruggedness
and environmental acceptability. As an example, the sandwich-type POM
[WZnMnII2(ZnW9O34)2]

12� catalyzes the selective epoxidation of chiral allylic alco-
hols with aqueous hydrogen peroxide under mild conditions. Thus, 4-methylpent-3-
en-2-ol 425 is converted into the threo epoxide 426 in 88% yield and 84% de
(Scheme 2.66). The diastereoselectivity is highly sensitive to the substitution about
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the double bond, with trans-pent-3-en-2-ol giving a 1 : 1 mixture of threo and erythro
epoxides under the same conditions. The key intermediate is believed to be a
tungsten peroxo complex rather than an oxo-Mn species [463]. Self-assembled POM
catalysts can also be immobilizedwithin layered double hydroxides (LDH) using ion-
exchange techniques [464].

Apolyoxometallate is also at the heart of an enantioselective epoxidation of allylic
alcohols using C-2 symmetric chiral hydroperoxide 427 derived from 1,1,4,4-
tetraphenyl-2,3-O-isopropylidene-D-threitol (TADDOL). Thus, in the presence of
the oxovanadium(IV) sandwich-type POM [ZnW(VO)2(ZnW9O34)2]

12� and stoi-
chiometric amounts of hydroperoxide 427, the stilbenemethanol derivative 428 is
converted into the (2R) epoxide 429 in 89% yield and 83% ee. The proposed catalytic
cycle invokes a vanadium(V) template derived from the POM, substrate and
hydroperoxide – a hypothesis supported by the lack of enantioselectivity with
unfunctionalized alkenes. The catalytic turnover is remarkably high at about
40 000 TON [465].

Under the rubric of other metal catalysts, methyltrioxorhenium (MTO) represents
a fascinating entry. Unlike titanium catalysts (see above),MTO appears not to engage
allylic alcohols in tight metal-alcoholate binding, although hydrogen bonding with
the substrate can play a role in nonpolar solvents [466]. However, in polar protic
media alkenes proximal to a hydroxy group no longer command preferential
epoxidation. Thus, treatment of geraniol (410) with MTO affords epoxide 430 as
the major product (Scheme 2.67), providing a complementary alternative to con-
ventional methods [467]. For simple allylic alcohols (e.g., 431) formation of the threo
epoxide (e.g., 432) predominates – presumably the result of 1,3-allylic strain in the
hydrogen bonded catalyst–substrate complex. Unfunctionalized alkenes are also
efficiently epoxidized, as illustrated by the practically quantitative conversion of
vinylcyclohexane (433) into epoxide 434 [468]. Compatible oxygen donors include
hydrogen peroxide and its urea adduct (UHP) [469]; perfluoroalkanol solvents tend to
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give superior results [470]. A polymer-supported version of MTO has also been
disclosed [471].

Other noteworthy biphasic and supported metal catalyst systems [472] include
hydrotalcite with hydrogen peroxide [473], cobalt-modified hydrotalcite with molec-
ular oxygen [474], manganese dicarboxylate coordination polymers with hydrogen
peroxide [475], a binuclear manganese carboxamide array with dioxygen [476], and
aqueous sodium tungstate under phase-transfer conditions [477].

A fascinating �triphase� catalyst for epoxidation of allylic alcohols has been
prepared from the combination of phosphotungstic acid and an amphiphilic poly-
(N-isopropylacrylamide)-derived polymer,which yields amacroporous complex (435,
Scheme 2.68). Thus, treatment of allylic alcohol 436 with 0.003mol.% catalyst 435
and 2 equivalents of hydrogen peroxide in aqueous medium furnished the corre-
sponding epoxide 437 in 96% yield. The catalyst exhibits a very high turnover rate
(35 000), is easily recoverable byfiltration and is reusablewithout loss in efficacy [478].
Also in the category of organic–inorganic hybrids, titanium-silsesquioxane catalysts
have been prepared by the complexation of titanium to incompletely condensed
silsesquioxanes [479].

Lipophilic alkenes such as 404 can be epoxidized in a triphasic system using ionic
liquids, with epoxidation components being provided via an aqueous phase and the
reaction products (e.g., 405) extracted into a pentane layer [480]. Simple alkenes are
also converted into epoxides in high efficiency using a recyclable immobilized
molybdenum catalyst (438) prepared by the reaction of aminated polystyrene and
molybdenum hexacarbonyl. For example, cyclohexene (439) is quantitatively epox-
idized within 5 h using 1mol.% of catalyst 438with t-butyl hydroperoxide (TBHP) as
an oxygen donor [481].

Finally, a combination of wet copper(II) sulfate and potassium permanganate in
t-butanol (Parish conditions) represents a simple and inexpensive reagent for the
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epoxidation of cyclic alkenes. Thus, stigmasteryl acetate was selectively converted
into the 5,6-epoxide in near quantitative yield. Themechanism is believed to involve a
series of electron transfers mediated by copper(II) permanganate [482].

2.3.2.4 Epoxidation of Electron-Deficient Alkenes
Different conditions usually apply for the epoxidation of electron-poor ole-
fins [483], most of which capitalize on the susceptibility of the substrate toward
nucleophilic attack. More recent innovations in this regard include the use of
basic hydrogen peroxide in an ionic liquid/aqueous biphasic system [484] or
aqueous hydrogen peroxide in the presence of natural phosphate [485] or
hydrotalcite with ultrasound [486]. Non-aqueous systems commonly employ
TBHP, and this oxidant can be effectively catalyzed by a non-nucleophilic base,
such as the guanidine derivative 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) [487], or
even by potassium fluoride adsorbed onto alumina [488]. The methodology is not
limited to conventional nucleophilic chemistry: electron-deficient alkenes can also
be epoxidized under electrochemical conditions using a silver(III)oxo bis(2,20-
bipyridine) catalyst [489] as well as with more electrophilic oxidizing agents, such
as iodosylbenzene [490].

As with epoxidation protocols in general, vigorous activity has surrounded the
asymmetric synthesis of epoxides from electron-deficient alkenes, and many chiral
catalysts and auxiliaries have been developed for this purpose (Figure 2.18). A
common test reaction for comparing yields and enantioselectivities is the epoxidation
of chalcone (453, Scheme 2.69); Table 2.16 summarizes some illustrative contribu-
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Scheme 2.68 Other immobilized metal epoxidation catalysts.
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tions to this methodology. For example, Cinchona-derived phase-transfer catalysts
(e.g., 441–444) are effective in aqueous organic systems (entries 1–3) [491–493]. As a
further demonstration of chiral pool inspired catalysts, proline-derived aminoalco-
hols (e.g., 445) promote asymmetric epoxidation of enones through non-covalent
catalysis [494, 495]. Oligopeptides also show promise as chiral auxiliaries [496], as
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Figure 2.18 Chiral catalysts and auxiliaries for electron-deficient alkenes.
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illustrated by the novel poly(ethylene glycol)-supported oligo(L-leucine) catalyst 447
used to carry out the Juli�a–Colonna epoxidation of chalcone through a continuously
operated �chemzyme� membrane reactor with urea-hydrogen peroxide as the
terminal oxidant [497].

The chiral ytterbium complex formed from Yb(i-PrO)3 and 6,60-diphenyl-BINOL
(450) catalyzed the epoxidation in 91%yield and 97%eeusing cumenehydroperoxide
as the oxygen source [498]. A similar outcome, but a muchmore rapid conversion, is
achieved using the lanthanoid-BINOL-triphenylarsine complex 451, which provides
complete epoxidation in three minutes [499]. This protocol was used as a key step in
the synthesis of (þ )-decursin from commercially available esculetin [500]. Solid-
supported catalysts have also been reported, including the complex formed by
treating binaphthyl polymers (e.g., 452) with diethyl zinc [501].

The tridentate aminodiether ligand 446 has been used with lithium cumene
hydroperoxide to give fair to good enantioselectivities in the epoxidation of certain
enones (e.g., 456, Scheme 2.70), presumably through a tetracoordinate lithium
complex [502]. The chiral peroxide 448 was effective in the epoxidation of 2-
methylene-1-tetralone derivatives, such as 458 [503], as was the immobilized syn-
thetic peptide poly-L-leucine (i-PLL) in the presence of urea-peroxide and DBU in a
solvent of isopropyl acetate [504]. As is the case with unfunctionalized alkenes,
electron-deficient olefins are also subject to asymmetric epoxidation using chiral
dioxirane reagents [505]. Interestingly, the chiral cationic manganese bis(pyridyl)
catalyst 449 provided for very little asymmetric induction, although it was neverthe-
less quite efficient in promoting the epoxidation of enones such as cyclohexenone

453

Ph Ph

O

Ph Ph

O
O

Ph Ph

O
Oor

(+)-454 (-)-454

conditions

(see Table 2.16)

Scheme 2.69 Asymmetric epoxidation of chalcone.

Table 2.16 Yield data for the asymmetric epoxidation of chalcone.

Entry Catalyst Oxidant Solvent Yield (%) ee (%) Conf. Ref

1 442 NaOCl Toluene 98 86 (þ ) [424]
2 443 H2O2/LiOH Bu2O 97 84 (þ ) [425]
3 444 NaOCl Toluene 91 60 (þ ) [426]
4 445 TBHP Hexane 90 91 (�) [494]
5 447 Urea-H2O2 >99 94 (�) [428]
6 450 CHP THF 91 97 (�) [429]
7 451 TBHP THF 95 97 (þ ) [430]
8 452/Et2Zn TBHP Et2O 95 74 (�) [432]
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(460). When both electron-rich and electron-poor olefins are affixed to the same
substrate, the former are preferentially oxidized [506].

In the realm of on-board chiral auxiliaries, proline-derived cinnamides (e.g., 462,
Scheme 2.71) were epoxidized with lithium t-butyl hydroperoxide with excellent
diastereoselectivity, although in moderate yield [507]. Use of a 2,2-dimethyloxazo-
lidine chiral auxiliary (e.g., 464) led to superior yields but somewhat attenuated
diastereomeric excess [508]. The nucleophilic epoxidation of c-hydroxy-vinyl sulfox-
ide derivatives (e.g., 466) proceeds both in high yield and exclusive diastereoselec-
tivity. The latter outcome has been rationalized by invoking a geometrically con-
strained chair-like transition state [509].

2.3.2.5 Epoxidation of Carbonyl Compounds
Just as aziridines can be prepared by the addition of carbenes (or carbene equivalents)
across imines, so too can epoxides be synthesized from carbonyl compounds,
particularly aldehydes. A recent review has brilliantly captured the synthetic utility
of this approach [90]. One prototypical example is the conversion of 4-chloroben-
zaldehyde (468) into the corresponding styrene oxide (469) by treatment with
diiodomethane and methyllithium at 0 �C. The mechanism is believed to proceed
through a sequence of lithium–halogen exchange, carbonyl addition and rapid ring
closure of the intermediate iodoalkoxide [510].

The Corey–Chaykovsky synthesis [511], by now a standardmethod, is nevertheless
still the subject of current innovation [512]. This reaction, likemost othermethylena-
tions, relies upon an intermediate sulfur ylide to serve as a methylene transfer
reagent. Recent reports have shown that dry mixtures of trimethylsulfonium iodide

456

t-Bu Ph

O

t-Bu Ph

O
O446

CHP/LiCHP
yield76%
ee71%

457

459458

O

t-Bu
448

KOH
MeCN
-40°C

yield90%
ee90%

O

t-Bu

O

461460

O O

O

449

CH3CO3H
MeCN

min5r.t.,
yield88%

ee10%<
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and sodiumhydride forma shelf-stable source of �instantmethylide� upon treatment
with carbonyl compounds in a polar aprotic solvent. Thus, combination of 4-
methylacetophenone (470, Scheme 2.72) with the �instant methylide� reagent in
dimethyl sulfoxide (DMSO) resulted in the high-yielding formation of the corre-
sponding epoxide 471 [513]. The Corey–Chaykovsky epoxidation has also been
adapted for use in an ionic liquid medium, such as (bmim)PF6 [514].

Some methylides are conveniently available through a novel thermal decarboxyl-
ation of carboxymethylsulfonium betaines. Thus, treatment of the sulfonium bro-
mide 472 with silver oxide affords the corresponding betaine 473, which exhibits a
half-life of 5 h in chloroform at room temperature, but can be stored for months neat
at <0 �C. At elevated temperatures, however, a rapid decarboxylation provides the
methylide 474, which reacts with 2,6-dichlorobenzaldehyde (475) to give the epoxide
476. Unsurprisingly, electron-deficient aldehydes give higher yields, with benzalde-
hyde itself failing to provide any epoxide at all, presumably due to competing thermal
decomposition of the ylide 474 [515].

Synthetically useful alkynyl epoxides can be accessed through the treatment of
aldehydeswith propargyl ylides in the presence of trialkylgalliumbases, which lead to
(Z)-stereoselectivity [516]. These products are also available through a non-ylide route
by treating carbonyls with 1-bromoalkynes and t-butoxide. In this interesting cascade
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reaction, the 1-bromoalkyne is believed to function as both electrophilic halogen
source and acetylide equivalent [517].

Asymmetric variants of this protocol have been reported using chiral organic
sulfides (Figure 2.19) that are converted into the corresponding ylides, usually either
stoichiometrically in a separate step or catalytically in situ. The conversion of
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benzaldehyde (485) into trans-stilbene oxide (486) is a convenient test system for such
procedures (Scheme 2.73). The 2,5-dimethylthiolane (477) was used in a one-pot
stoichiometric variant of this reaction (Table 2.17, entry 1), providing the (S,S)-
epoxide in excellent yield and good enantioselectivity [518]; even higher optical purity
was obtained simply by using the diethyl analog 478 [519].

One challenge for this general approach is ready access to chiral auxiliaries in
optically pure form. The ideal precursors, therefore, should be available in relatively
few steps and on large scale from the chiral pool. The bis-sulfide 482, obtained from
(R,R)-tartaric acid (481), arguably satisfies these criteria. However, the level of
asymmetric induction (Table 2.17, entry 3) falls somewhat short of synthetic utility,
most likely because of its conformational flexibility [520]. However, the more rigid
tricyclic sulfide 484, derived from D-mannitol (483), provides excellent enantioselec-
tivity (albeit with moderate yields) while operating in a catalytic one-pot
environment [521].

A highly enantioselective synthesis of glycidic amides has been reported using
stoichiometric amounts of the chiral sulfide 480, which is available in three steps and
in high yield from camphor. Thus, optically pure sulfonium bromide 488 was
prepared by treatment of sulfide 480 with bromoamide 487 (Scheme 2.74). Further
exposure to benzaldehyde under basic conditions affords glycidic amide 489 in
excellent yield and optical purity [522].

One other major route from carbonyls to epoxides involves the addition of metal-
stabilized carbenoids to carbonyls. For example, the donor–acceptor rhodium
carbenoids derived from aryldiazoacetates 490 add across the carbonyl moiety of
a,b-unsaturated aldehydes, such as trans-crotonaldehyde (491), to give vinyl epoxides

O

485

PhCH2Br

conditions
(see Table 2.17)

O

Ph Ph

O

Ph Ph
or

(S,S )-486 (R,R)-486

Scheme 2.73 Sulfur-mediated asymmetric epoxidation of benzaldehyde.

Table 2.17 Yield data for the sulfur-mediated epoxidation of benzaldehyde.

Entry Precursor Base Solvent Yield (%) de (%) ee (%) Conf. Reference

1 477 KOH t-BuOH/H2O 92 88 84 (S,S) [446]
2 478 KOH t-BuOH/H2O 97 88 93 (S,S) [447]
3 482 NaOH t-BuOH/H2O 22 48 68 (R,R) [448]
4 484 NaOH MeCN/H2O 42 82 94 (R,R) [449]
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(e.g., 492) in good to excellent yield (Scheme 2.75) [523]. Modification of these
conditions to include triphenylarsine leads to the formation of intermediate arso-
niumylides that function as the active carbon-transfer reagents, resulting in excellent
trans-selectivities [524]. Asymmetric protocols are also available. Thus, treatment of
benzaldehyde (485) with a slight excess of the tosyl hydrazone sodium salt 497 in the
presence of catalytic amounts of rhodium acetate and 20mol.% of the camphor-
derived sulfide 496 furnishes 1,2-diarylepoxide 498 with 89% ee [525]. However,
when the substrate is a heteroaromatic, n-alkyl aliphatic, a,b-unsaturated or acety-
lenic aldehyde, stoichiometric quantities of the preformed chiral sulfur ylidemust be
used [526].

2.3.2.6 Ring-Closing Reactions
One of the oldest techniques for preparing epoxides is the base-promoted ring
closure of halohydrins, used by Wurtz to synthesize ethylene oxide from b-chlor-
oethanol as early as 1859 [527]. The same procedure is still routinely used
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with various modifications. For example, in their approach to the taxol side chain
antipodes, Stewart and coworkers treated the optically pure chlorohydrin 499
(Scheme 2.76) with potassium carbonate in DMF to obtain the cis-epoxide 500 in
almost quantitative yield [528]. A sequential process was used as an early-stage key
step in the total synthesis of ovalicin, in which the doubly protected cyclic triol 502
undergoes mesylation, deprotection and ring closure to give the spirocyclic epoxide
503 [529]. A similar procedure assembled the epoxide ring late in the total synthesis
of the neocarzinostatin chromophore aglycone [530]. The development of biocat-
alytic methods for preparing chiral non-racemic chlorohydrins from a-chloroke-
tones has opened a potentially useful pathway towards chiral epoxides by this
route [531].
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Ring closure methodology can be employed as a nice complement to other
concerted oxygenations. For example, in their total synthesis of (�)-kendomycin,
Smith and coworkers carried out a cis-dihydroxylation on themacrocyclic alkene 504
to give the corresponding diol. Mesylation of the secondary alcohol afforded the
hydroxy mesylate 505, which suffered ring-closure with inversion under phase-
transfer conditions. In this way, a cis-alkenewas efficiently and controllably converted
into the trans-epoxide [338].

2.3.3
Reactivity of Oxiranes

2.3.3.1 Nucleophilic Ring Opening
Cleavage of the epoxide ring by various nucleophiles is one of the most frequently
encountered behaviors of this system, both biologically and synthetically. In the latter
realm, the extreme versatility of this simple reaction lends it considerable preparative
power. The nucleophilic palette runs the gamut, and protocols are being developed
continually to direct the nucleophilic ring opening in an enantioselective
fashion [532].

Unadorned carbon nucleophiles may be used, as exemplified by the one-pot
conversion of alkenyl epoxide 507 (Scheme 2.77) to the homologous silyl ether 508
using a system of trimethylaluminium and silyl triflate. The methyl group is
delivered via backside attack on the less substituted terminus of the epoxide, and
the alkoxide so formed is silylated in situ [533]. An ethyl group can be appended in like
fashion using triethylaluminium catalyzed by triphenylphosphine [534]. Similar ring
openings also can be carried out using indoles with lithium perchlorate [535] or
ruthenium trichloride [536], lithium enolates [537], vinyl magnesium bromide [538],
aluminum ester enolates [539], and silyl enol ethers catalyzed by titanium tetrachlo-
ride [540]. Vinyl epoxides undergo ring opening at the allylic position using
diethylzinc catalyzed by trifluoroacetic acid [541] and alkyllithium reagents catalyzed
by boron trifluoride [542].

Alkynyl anions react smoothly with epoxides, as well. For example, Kumar and
Naida used this strategy to stitch together the functionalized lithium acetylide
derivative 509 and epoxide 510 in their total synthesis of microcarpalide [543]. Other
conditions for this reaction include the use of alkynyllithiums with catalytic tri-
methylaluminium [544] and lithium TMS-acetylide in dimethyl sulfoxide [545]. The
addition of vinyl anions per se is not a general reaction; however, there are some
interesting vinyl anion equivalents such as trimethylsulfonium iodide, which con-
verts the tetrahydrofuranyl epoxide 512 into the corresponding allyl alcohol
(513) [546]. Confoundingly, the counterion can play an enormous role in the overall
reaction yields; in many cases, the trifluoromethylsulfonyl anion can give superior
results [547].

The cyanide anion is a common carbon nucleophile that is also capable of epoxide
ring opening. For example, treatment of the terminal epoxide 514with trimethylsilyl
cyanide (TMSCN) in the presence of lithium perchlorate resulted in the delivery of
cyanide to the less substituted position in excellent yield [548]. The binaphthyl derived
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gallium catalyst 516 represents an asymmetric variant of this process, promoting the
addition of cyanide to meso epoxides (e.g., 440) in good yield and excellent
enantioselectivity [549].

In the category of nitrogen-based nucleophiles, simple amines add smoothly to
epoxides in predictable ways. For example, benzylamine attacks the less hindered
carbon of the epoxyether 518 (Scheme 2.78) under the influence of lithium bis-
trifluoromethanesulfonimide to give the aminoalcohol 519 in 95% yield [550]. When
the epoxide ring bears an aromatic substituent, the regiochemistry is often reversed,
as shown by the ring-opening of styrene oxide (421) with aniline in the presence of
zinc chloride [551]. Amines can also be added using calcium triflate in acetoni-
trile [552], and in water with erbium(III) triflate as a catalyst [553], with no catalyst
under conventional conditions [554], or with the assistance of ultrasound [555].
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The addition of aromatic amines can be catalyzed by stannic or cupric triflate [556,
557]; b-cyclodextrin [558]; zirconium(IV) chloride [559] or bismuth trichloride [560,
561] in acetonitrile; and zinc oxide [562], ytterbium(III) nitrate [563], or amesoporous
silica immobilized cobalt complex [564] under solvent-free conditions. A ruthenium
catalyst in the presence of tin chloride also results in an SN1-type substitution
behavior with aniline derivatives (e.g., 522), but further provides for subsequent
cyclization of the intermediate amino alcohol, thus representing an interesting
synthesis of 2-substituted indoles (e.g., 523) [565]. Certain meso-epoxides can be
desymmetrized with aromatic amines under catalytic conditions, for example, using
a proline-based N,N�-dioxide-indium tris(triflate) complex [566].

Azide represents a simple, versatile and selective nitrogen nucleophile. In the
presence of catalytic quantities of samarium(III) chloride in a medium of N,N-
dimethylformamide (DMF), sodium azide attacks the terminal epoxide carbon of
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epichlorohydrin (524) to give the highly functionalized three-carbon fragment
525 [567]. Azide addition can also be promoted by the use of lithium tetrafluoroborate
in t-butanol [568] and lithium perchlorate in propionitrile [569]. Attack at the more
substituted position is favored by some conditions, including diethylaluminium
azide [570] and sodium azide in the presence of ceric ammonium nitrate [571]. Like
cyanide, azide can be used to desymmetrize meso-epoxides, as shown by the
asymmetric azidolysis of the bicyclic epoxide 526 using TMS-azide and catalytic
amounts (2mol.%) of the salen-chromium complex 358 [572, 573].

Oxygen-centered nucleophiles are also of synthetic importance in this regard, and
the reactions of alicyclic epoxy compounds with these nucleophilic species are the
subject of a review [574]. Arguably the most readily available oxygen-centered
nucleophile for epoxide ring opening is water, but the course of the hydrolysis
reaction is dependent upon the reaction environment and structural features of the
substrate [575]. Conditions can be exceedingly mild, as shown by the high-yielding
hydrolysis of spiroepoxide 528 (Scheme 2.79) using tetrabutylammonium bisul-
fate [576]; catalytic bismuth triflate in wet acetonitrile can also be used to advan-
tage [176]. In fact, many epoxides can be hydrolyzed simply by heating in water
without any catalyst at all [577]. The conversion of epoxides into diols in this manner
is the basis for an enormously important method for preparing optically pure
epoxides from racemic mixtures through hydrolytic kinetic resolution (HKR) [578].
Chiral nonracemic diols are also available from the hydrolytic desymmetrization of
meso-epoxides (e.g., 440) using an oligomeric Jacobsen-type catalyst (530) [579].

Alcohols can be added with equal efficiency. Thus, phenoxymethyl epoxide 532
suffers nucleophilic attack by methanol in the presence of catalytic amounts of
potassium dodecatungstocobaltate to provide hydroxyether 533 in quantitative
yield [580]. As with other nucleophiles, when an aromatic group is attached to the
epoxide ring, attack often predominates at the benzylic position. For example,
treatment of stilbene oxide (421) with methanol under the catalysis of TiO(TFA)2
yields the primary alcohol 534. The electrophilic center is cleanly inverted in the
process [581]. This addition can also be carried out using ferric perchlorate [579],
molybdenum(VI) dichloride dioxide [582], hydrazine sulfate [583], amberlyst-15
resin [584], copper(II) tetrafluoroborate [585], and aminopropylsilica gel (APSG)
supported iodine [586]. The hydroperoxide anion functions as a competent nucle-
ophile under the catalysis of silica-supported antimony trichloride [587].

The scope of oxygen nucleophiles extends to carboxylic acids, as illustrated by the
titanium-catalyzed addition of pivalic acid to the terminal epoxide 535 [588]. Chro-
mium(III) acetate is a useful catalyst for such additions of carboxylic acids in
industrial processes [589]. Finally, nitrates can also be coaxed into serving as
oxygen-centered nucleophiles by reagents such as bismuth(III) nitrate [590] and
tetranitromethane [591].

Other oxygen-containing heterocycles with varying degrees of structural complex-
ity are conveniently prepared by the intramolecular ring-opening of epoxides [592].
An illustrative example is foundwith the titanium-promoted cyclization of the highly
oxygenated bicyclic epoxide 537 to give the spiroketal 538 with retention of config-
uration [593]. Similar intramolecular processes have been catalyzed by caesium
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carbonate [594] and p-toluenesulfonic acid [595]. In one such intramolecular epoxide
ring opening – a key step in the diastereoselective synthesis of a-tocopherol – anhy-
drous hydrochloric acid in ether/acetonitrile was chosen to promote the disfavored 6-
endo-tet ring closure mode [596].

Among sulfur-centered nucleophiles, thiocyanate is frequently encountered. For
example, theepoxyester540 (Scheme2.80) is smoothly converted into the thiocyanato
adduct 541 using stoichiometric ammonium thiocyanate and a quaternized amino
functionalized cross-linked polyacrylamide (539) as a solid–liquid phase-transfer
catalyst in acetonitrile [597]. Hydroxysulfones can be prepared �on water� by the
action of sodium benzenesulfinate on epoxides with no added catalyst [598]. Thio-
phenol is anotheruseful species that addsunder verymild conditions, as shownby the
ring-openingof the cyclohexadieneoxidederivative542 catalyzedby ytterbiumtriflate
in toluene, whereby the thiophenol moiety attacks the allylic site of the epoxide
ring [599]. In another example, unfunctionalized epoxides (e.g., 544) can be trans-
formed into allylic alcohols 547 through an initial epoxide ring-opening with thio-
phenol in hexafluoroisopropanol (HFIP) and in situ oxidation to the sulfoxide (546),
followed by pyrolysis in the presence of potassium carbonate [600]. Thiols can also be
added using tributylphosphite [166], lithium perchlorate [601, 602], montmorillonite
K-10 clay under solvent-free microwave conditions [603], in water [604], and in ionic
liquidswithout additional catalysts [605].TheadditionofRongalite� allows for theuse
ofdisulfide thiolprecursors [606], and theentantioselective cleavageofmeso-epoxides
with thiophenol can be achieved using a heterobimetallic Ti-Ga-salen catalyst [607].

Finally, halides are interesting nucleophiles inasmuch as they preserve the
electrophilic character of the center they substitute. As a representative example of
these additions, chloride can be introduced using bis-chlorodibutyltin oxide in
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chloroethanol, as shown in the conversion of phenylmethyl epoxide 521
(Scheme 2.81) into chlorohydrin 548 [608]. Similarly, the terminal epoxide 549 is
converted almost quantitatively into the bromohydrin 550 with lithium bromide in
the presence of silica gel in methylene chloride [609]. Bromide-mediated ring-
opening can also be executed using a combination of N-bromosuccinimide, triphe-
nylphosphine and dimethylformamide [610]. Most nucleophilic of all, iodide readily
attacks styrene oxide (421) to give the iodohydrin 551, and the use of b-cyclodextrin
directs the addition to the less-substituted carbon, presumably due to steric hin-
drance caused by guest–host complexation [611]. In the realm of asymmetric
synthesis cyclic meso-epoxides can be desymmetrized by chloride attack using
silicon tetrachloride catalyzed by PINDOX [612].

2.3.3.2 Rearrangements
Epoxides can be isomerized to allylic alcohols using hindered bases. For example,
a-pinene oxide 552 (Scheme 2.82) undergoes eliminative ring opening upon
treatment with lithium diethylamide. The transformation proceeds in higher yields
in the presence of lithium t-butoxide, which is believed to disrupt aggregation of the
anion [613]. Similarly, the optically pure bicyclic epoxide 554 is converted into the
methylenecyclohexenol derivative 555 in excellent yield using diethylaluminium
2,2,6,6-tetramethylpiperidide (DATMP) in toluene [614]. Milder bases can be used
when activating groups are nearby. Thus, the hydroxyepoxide 556 is smoothly
oxidized to the corresponding ketone under Dess-Martin conditions, making the
a-protons acidic enough to remove with sodium hydroxide, leading to the enone
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product 557 [615]. Finally, the isomerization can occur under essentially neutral
conditions using titania-supported gold nanoparticles [616].

The enantioselective isomerization of meso epoxides to allylic alcohols continues
to be a promising route for the preparation of thesematerials in high optical purity. In
an extension of their ongoing work in this area with lithium amide bases [617],
Andersson and coworkers have designed the optically active (1S,3R,4R)-[N-(trans-2,5-
dimethyl)pyrrolidinyl]-methyl-2-azabicyclo[2.2.1]heptane (559), which exhibits
superior chiral induction in catalytic quantities using lithium diisopropylamide
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(LDA) as the stoichiometric base. Thus, the challenging substrate cyclopentene oxide
(560) was cleanly isomerized to the chiral cyclopentenol 561 in 81% yield and with
96% ee – a significant improvement over the 49% ee obtainedwith higher loadings of
the earlier generation catalyst 558 [618]. Diamines derived from (R)-phenylglycine
have also given promising results [619]. The chiral amide approach has also been
applied to the catalytic kinetic resolution of racemic epoxides. For example, exposure
of the tricyclic epoxide 562 to 10mol.% 558 and stoichiometric LDA at 0 �C led to the
recovery of the chiral spiro[4.5]decenol 563 with 90% ee and in 45% isolated yield,
compared to the theoretical 50%maximum [620]. Chiral nonracemic aminoepoxides
are isomerized stereoselectively to aminoalcohols using the superbasic mixture of n-
butyllithium, diisopropylamide and potassium t-butoxide (LIDAKOR) [621].

In addition to b-elimination, the epoxide moiety also undergoes rearrangement to
a carbonyl group, and this reactivity can be quite synthetically useful. The course of
the rearrangement is highly dependent upon the nature of the substrate. Generally,
the regiochemistry is driven by two factors: (i) the stability of the nascent carbocation
generated from ring opening and (ii) the migratory aptitude of the adjacent sub-
stituents. For example, the simplemonoalkyl-substituted epoxide 564 (Scheme 2.83)
undergoes regioselective rearrangement in the presence of iron(III)tetraphenylpor-
phyrin to give the corresponding aldehyde (565) via a 1,2-hydride shift onto an
incipient secondary cationic center [622], a process also promoted by sodium
periodate under ambient conditions [623]. Terminal epoxides react with tetraallyltin
in the presence of bismuth(III) triflate to give homoallylic alcohols 568. The reaction
involves an initial 1,2-shift to form aldehyde 567, which is then attacked by the allyl
tin species [624]. A similar but operationally more straightforward protocol is
available by combining allyl bromide with indium metal, followed by the addition
of epoxide [625].

When trans-stilbene oxide (569, Scheme 2.84) is treated with bismuth triflate,
aldehyde 570 is formed through a process of benzylic cation formation and subse-
quent phenyl migration [626]. However, the structurally very similar epoxide 571
provides a ketone upon treatment with Lewis acid, which reflects a more facile
hydride shift to the cationic center [627]. Certain alkoxymethyl groups can also easily
migrate, as seen in the rearrangements of epoxides 573 [628] and 575 [629]. In the
latter example, the siloxymigrationwas an unwanted (albeit efficient) side reaction of
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a desired cationic ring closure; changing to a trimethylsilylethoxymethyl (SEM)
protecting group resolved this problem. An analogous rearrangement can occur in
epoxyalcohols of type 577, which cleanly produced the hydroxyketone 578 in almost
quantitative yield after 3 h upon exposure to 20mol.% ytterbium triflate inmethylene
chloride [630].

This process canbeused to advantage to access cyclic ketones, aswell. For example,
the cyclopentene oxide derivative 579 (Scheme 2.85) opens up to the more stable
benzylic carbocation (i.e., 580), which then provides the cyclopentanone derivative
581 via 1,2-methyl migration in 93% yield [631]. An analogous mechanistic step
begins the organoaluminium-promoted cyclization of olefinic epoxides (e.g., 583),
whereby the initially formed aldehyde (584) undergoes a highly stereoselective Lewis
acid-catalyzed intramolecular ene reaction to give the methylenedecalone 585 in the
presence of methylaluminium bis(4-bromo-2,6-di-t-butylphenoxide) (MABR). This
strategy is proposed as a route for the stereoselective synthesis of various
terpenes [632].
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The rearrangement sometimes occurs with concomitant ring contraction, as seen
in the conversion of cyclohexene oxide derivative 586 (Scheme 2.86) into the
cyclopentanealdehyde product 587 [633]. In a similar vein, Kita and coworkers [634]
have used a novel acid-promoted rearrangement of cyclic a,b-epoxy acylates (e.g.,
588) for the stereoselective synthesis of spirocyclanes (e.g., 589), a technique which is
also found in the total synthesis of (–)-pseudolaric acid B by Trost et al. [635], and
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which promises broad application to the preparation of optically active compounds of
this type.

Ring expansions are also possible. For example, treatment of the cyclopentylep-
oxide 590 (Scheme 2.87) with boron trifluoride etherate induces a cascade reaction
involving desilylation of the alcohol and rearrangement to the cyclohexanone
derivative 591 [636]. Similarly, cyclohexyl epoxides (e.g., 592) expand to form
tropinones (593) [637]. Finally, although the process proceeds through a mechanis-
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tically distinct pathway, the iodide-mediated rearrangement of the spiroepoxide 594
produces the ring-expanded cyclohexanone 595 [638]. This was used in a very clever
way to access both antipodes of phenylcyclopentanone (598) from spiroepoxide 596.
The anionic iodide pathway led to smooth conversion into the (R)-isomer, while
Lewis acid catalysis provided equally high optical purity of the (S)-enantiomer [639].

2.3.3.3 Radical Chemistry
Li has authored an excellent overview of the radical reactions of epoxides, towhich the
reader is directed [640]. While this field encompasses some fascinating chemistry,
yields and selectivities tend to be rather widely distributed. Exceptions to this
generalization are found in specifically functionalized epoxides. For example, the
vinyl epoxide 600 (Scheme 2.88) suffers radical addition of tributyltin radical to give
an a-epoxy radical, which immediately opens to the allylic alkoxy radical 601. This
species engages in radical ring closure onto the pendant alkene to give, after
hydrolysis, the bicyclic alcohol 604 in 89% yield [641, 642]. Samarium iodide
promotes similar reactivity in ketoepoxides such as 605. Thus, single electron
transfer from SmI2 to the carbonyl moiety gives the typical radical anion, which
then isomerizes to the allylic alkoxy radical 607. Trapping of the samarium stabilized
enolate 608 with phenylpropionaldehyde gives the dihydroxyketone 609 in excellent
yield [643].

Titanocene-mediated radical cyclization of epoxides has been reviewed very
recently [644], and this area is rapidly expanding in synthetic utility.Here a titanocene
reagent such as Cp2TiCl engages the epoxide ring itself in single electron transfer,
typically cleaving the weakest C�O bond and forming the more substituted carbon-
centered radical, which can take part in further reactivity. For example, the epox-
ynitrile 610 is smoothly converted into the hydroxymethylcyclohexanone derivative
613 through a cascade of radical ring opening and subsequent cyclization onto the
nitrile [645] (the intermolecular version of this methodology is promoted by titano-
cene [646]). Similarly, the propargylic epoxide 614undergoes ring cleavage to give the
secondary radical (615), which proceeds through 6-exo-dig radical cyclization to
provide the methylenetetrahydropyran derivative 617 in high yield [647].

2.3.3.4 Reduction and Deoxygenation
Epoxides can undergo reductive ring opening using various reagents [648, 649]. One
extremely mild protocol involves the use of bis(cyclopentadienyl)titanium(III) chlo-
ride. Significantly, the regioselectivity of the epoxide cleavage is often quite high,
being determined by the stability of a radical intermediate, and sometimes opposite
towhat is expected for a classicalSN2 epoxide ring opening. For example, treatment of
spiroepoxide 618 (Scheme 2.89) with Cp2TiCl leads to an intermediate carbon radical
that can be trapped by a H-atom donor (in this case cyclohexadiene) to give the
secondary alcohol 620. By comparison, a �classical� reductive ring opening with
lithium triethylborohydride gives only the tertiary alcohol 619 [650]. Iyer [651] and
Dragovich [652] have independently reported the regiospecific ring opening of
epoxides by way of a palladium-catalyzed transfer hydrogenolysis using ammonium
formate as the hydrogen source. Under these conditions, hydride attacks at the less
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hindered carbon atom (e.g., 621 ! 622), except in the case of aryl-substituted
epoxides, where ring opening occurs exclusively at the benzylic position
(e.g., 421 ! 623). Lithium aluminium hydride has been used for the regio- and
diastereoselective reductive ring opening of chiral nonracemic epoxides, such as
624 [653] (a key step featured in the enantiospecific synthesis of (þ )-hernandul-
cin [654]), and racemic epoxides can be reduced to an enantiomerically enriched
mixture of alcohols by treatment with zirconium tetrachloride–sodium borohydride
in the presence of L-proline as a chiral auxiliary [655].
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The net reversal of the epoxidation reaction, namely the eliminative deoxygenation
of epoxides, has been carried out in various ways. For example, tungsten reagents
react with epoxides to form tungsten(IV)-oxo complexes that ultimately lead to the
corresponding olefins with predominant retention of configuration [656]. Glycidyl
acetates 626 (Scheme 2.90) undergo deoxygenation and concomitant deacetylation
upon treatment with lithium telluride, which is conveniently prepared in situ from
tellurium metal and lithium triethylborohydride [657]. Another extremely mild
epoxide deoxygenation protocol involves the use of bis(cyclopentadienyl)titanium
(III) chloride, which promotes homolytic cleavage of the epoxide C�O bond. The
mildness of this reagent is showcased in the deoxygenation of epoxide 628, which
gives the highly sensitive methoxydihydrofuran derivative 629 in 66% yield [650].

Electrophilic halogen reagents are also useful in this regard. Thus, the system of
iodine and triphenylphosphine in dimethylformamide effected the quantitative
deoxygenation of the allyloxymethyl epoxide 630 [658a]. In addition, a novel deox-
ygenation protocol has been reported for the conversion of epoxyketones into the
corresponding enones using thiourea dioxide as a reducing agent under phase
transfer conditions [658b]. Essentially neutral conditions are obtained using molyb-
denumhexacarbonyl in refluxing benzene. Themechanism proceeds through initial
loss of carbonmonoxide followed by a complexation of themolybdenum center with
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the epoxide oxygen to provide an activated species (i.e., 633) that collapses to form the
alkene (i.e., 634) [659]. The low-valent titanium catalyst Cp2TiCl, readily available by
the in situ reduction of Cp2TiCl2with activated zinc, has also been used for this type of
deoxygenation [660, 661].

2.3.3.5 Oxiranyl Anions
Epoxides can be deprotonated on the ring, and the anions thus formed undergo
interesting and synthetically useful chemistry, much of which has been summarized
in recent review articles [196, 662, 663]. When electron-withdrawing groups are
present, these stabilized oxiranyl anions engage in smooth SN2 reaction with various
electrophiles. Thus, the sulfonyl epoxide 635 (Scheme 2.91) is deprotonated using
n-butyllithium inHMPA/THFat low temperature and treated with triflate 636 to give
the highly functionalized adduct 637 in 81% yield. This protocol was used for the
construction of the ABCDEF-ring systems of yessotoxin and adriatoxin [664]. Similar
sulfonyl oxirane strategies have been used in other synthetic applications [665–668].
The oxazolinyl group also provides a useful stabilizing moiety for such alkylations
(e.g., 638 ! 639) [669].

In certain cases, even non-stabilized oxiranyl anions can be coaxed into well-
behaved conversions. Hodgson and coworkers [670] have reported on a convenient
method of deprotonating terminal oxiranes with lithium 2,2,6,6-tetramethylpiper-
idide (LTMP), followed by trapping of the anion with silyl-based electrophiles, to
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provide a,b-epoxysilanes in good yield. For example, chloro-epoxide 640 underwent
clean conversion into epoxysilane 641 at 0 �C. This approach improves upon an
earlier method, which employed sparteine derivatives at very low temperature
(�90 �C) [671]. The initial proton–lithium exchange can be facilitated by diamines,
such as dibutylbispidine (DBB, 642). Thus, dodecene oxide 643 was deprotonated
with sec-butyllithiumand then treatedwith benzaldehyde to give the epoxyalcohol 644
in 75% yield [672, 673].

Often, though,whenno stabilizing group is present, oxiranyl anions tend to exhibit
significant carbenoid behavior, as indicated by resonance structure 646
(Scheme 2.92). Indeed, a-alkyloxyepoxide 647 can be regioselectively deprotonated
(presumably under chelation control) to form an oxiranyl anion that undergoes
a-eliminative ring opening and alkyl insertion to give cyclic allylic alcohols 648 in
good to excellent yield. The carbenoid nature of the intermediates was supported by
the isolation of the tricyclic alcohol 650, the product of intramolecular trapping by an
olefin [674]. Other examples of such cyclopropanation reactions include the allylic
epoxide651, which is deprotonated by phenyllithium to give ahighly strained tricyclic
intermediate (652) that hydrolyzes to provide spirocyclic ketone 653 [675]. Lithium
tetramethylpiperidide (LMTP) is also effective in the deprotonation, as shown in the
conversion of alkenyl epoxide 654 into the fused bicyclic epoxide 655 [676].

As is the case with other carbene species, the carbene-like oxiranyl anions can
engage in C�H insertion reactions. Hodgson and Lee [677] have devised a clever
method for accessing enantiopure bicyclic alcohols from meso-epoxides by such a
reaction. For example, treatment of cyclononene oxide (656) with isopropyllithium in
the presence of an excess of (�)-sparteine leads to an enantioselective a-deprotona-
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tion, followed by intramolecular C–H insertion, to give bicyclononanol 657 in 77%
yield and 83% enantiomeric excess.

2.4
Thiiranes

2.4.1
Properties of Thiiranes

Thiiranes [678] (also known as episulfides and thiacyclopropanes) can be thought of
as row 3 epoxide analogs. For example, thiirane itself (bp 55 �C) exhibits a ring strain
enthalpy of about 20 kcalmol�1, which is about 7 kcalmol�1 less than oxirane. This
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increased stability can be attributed tomoreflexible geometry about the sulfur center,
which is manifested in the extremely acute C–S–C bond angle of less than 48�

(Figure 2.20). The 1H-NMR signals of the methylene protons resonate at 2.27 ppm
and the carbon atoms appear at 18.1 ppm. The protonNMRshows vicinal coupling of
about 6Hz and geminal coupling of less than 1Hz [6].

Thiiranes are produced in nature. For example, 3,4-epithiobutanenitrile, also
known as 4ETN, is found in many cruciferous vegetables and may function as a
weak biological alkylating agent [679], and humulene-4,5-episulfide is one of the
components in the essential oil of hops [680]. Acanthifolicin (660, Figure 2.21) is an
antibiotic polyether carboxylic acid isolated from the extracts of the marine sponge
Pandaros acanthifolium [681], the activity of which is linked to protein phosphatase
inhibition [682]. Synthetic episulfides have also been designed as mechanism-based
matrix metalloproteinase inhibitors [683].

2.4.2
Synthesis of Thiiranes

2.4.2.1 From Epoxides
Preparatively, the broadest and most useful technique for obtaining episulfides is to
launch from an existing epoxide, essentially exchanging an oxygen atom for a sulfur.
One common reagent used to effect this transformation is thiourea, which is
preferred for its relative stability and ease of handling, and quite a few experimental
conditions have been developed for its use. For example, cyclohexene oxide (440,
Scheme 2.93) is cleanly converted into the corresponding episulfide using thiourea at
elevated temperatures in the absence of solvent (Table 2.18, entry 1) [684]. The
reaction also proceeds in methylene chloride under the catalysis of silica gel [685], in

Figure 2.20 Geometry of thiirane.

660, acanthifolicin

O

O
HO

O

OH

H

S

O

O

O O

O

OH

H

H
OH

H

H H

OH

Figure 2.21 Natural occurrence of thiiranes.
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acetonitrile with silica-supported aluminium chloride [686] and in water using
b-cyclodextrin as a catalyst [687].

Notably, this sulfurization proceeds with inversion of configuration, and the
degree of stereospecificity depends upon the reaction conditions. Thus, when
(R)-styrene oxide (421, Scheme 2.94) is treated with thiourea without solvent, very
little optical purity is lost during the reaction. However, inmethylene chloride at 0 �C
the enantiomeric excess drops to 70% [685].

Ammonium thiocyanate is another convenient sulfur donor for these processes,
and a very practical method has been described using cyanuric chloride as a co-
reagent. Thus, when styrene oxide (421, Scheme 2.95) is treated with stoichiometric
ammonium thiocyanate and cyanuric chloride in the absence of solvent, the
episulfide 659 is produced in almost quantitative yield within 15min. The mech-
anism involves nucleophilic ring opening of the epoxide to give an alkoxide
intermediate (660); reaction with cyanuric chloride activates the oxygen towards
displacement by sulfur, yielding a cyanatoepisulfenium species (662), which under-
goes hydrolysis and subsequent loss of carbon dioxide to provide the observed

O S
conditions

(see Table 2.18)

440 658

(NH2)2C=S

Scheme 2.93 Conversion of epoxides into episulfides using thiourea.

Table 2.18 Yield data for the conversion of epoxides into episulfides using thiourea.

Entry Activator Solvent Temp (�C) Time Yield (%) Ref

1 None Neat 120 25min 92 [577]
2 SiO2 CH2Cl2 r.t. 30min 92 [578]
3 SiO2-AlCl3 MeCN 45 1.3 h 89 [579]
4 b-Cyclodextrin H2O r.t. 6 h 82 [580]
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ee90%

Scheme 2.94 Enantiospecific preparation of episulfides from epoxides.
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product [688]. Magnesium hydrogen sulfate has also proven to be an effective
activating agent [689].

The addition of thiocyanate is also catalyzed by poly(allylamine) (PAA) under
slightly basic aqueous conditions. For example, phenyloxymethyl epoxide 532
(Scheme 2.96) is converted into the corresponding episulfide in excellent yield under
these conditions (Table 2.19) [690]. Very good yields have been reported using
potassium thiocyanate in a biphasic medium of ionic liquid and water with no
additional catalyst [579]. Finally, elemental sulfur can be employed as the donor using
diethylphosphite, ammonium acetate and alumina in the absence of solvent under
microwave irradiation. The mechanism involves a thiophosphate species [691].
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Scheme 2.95 Activation of epoxides using cyanuric chloride.

664532

PhO
O

PhO
Sconditions
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Scheme 2.96 Epoxide–episulfide conversion using other sulfur sources.

Table 2.19 Yield data for epoxide–episulfide conversions.

Entry S source Additives Solvent Temp
(�C)

Time Yield
(%)

Reference

1 NH4SCN PAA/NaOH H2O 45 70min 93 [583]
2 KSCN None [bmim]

PF6-H2O
45 1.3 h 89 [579]

3 S/HP(O)(OEt)2 NH4OAc/Al2O3 neat mw 2min 68 [584]
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2.4.2.2 From Alkenes
If episulfideswere strictly analogous to their cousin epoxides, their preparationwould
spring predominantly from the direct sulfurization of alkenes. This is, however, not
thecase.Thefewdirectmethodshavebeennicelysummarizedinarecentreview[692].
Nevertheless, there are some protocols that merit special attention. For example, the
sultene 665 (Scheme 2.97), an isolable cycloadduct from fluorinethione-S-oxide and
trans-cyclooctene, has been shown to exhibit promising sulfur-transfer capabilities.
Thus, treatment of norbornene (666) with sultene 665 in the presence of catalytic
quantities of trifluoroacetic acid furnishes exo-episulfide 667 in 83% yield [693]. The
dithiophosphate molybdenum complex 668 actually catalyzes the transfer of sulfur
from one episulfide to another alkene. This allows the use of a more readily available
substrate (e.g., 659) as a sulfur donor, as shown in the episulfidation of trans-
cyclononene 669 [694]. Thiatriazole 671 also functions as a stoichiometric sulfur
transfer reagent for a wide range of alkene substrates (e.g., 672 ! 673) [695].
Dinitrogen sulfide has been implicated as the active sulfur-transfer species [696].

2.4.2.3 From Haloketones
One very intriguing method that has received surprisingly little attention is
the conversion of a-haloketones into episulfides using the commercially available
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O,O-diethyl hydrogen phosphodithioate as a sulfur donor under microwave condi-
tions. The procedure appears to be fairly general and high yielding. Thus, bromoa-
cetophenone 674 (Scheme 2.98) provides excellent yield of the corresponding
episulfide (659) within 3min. The mechanism is thought to involve a sequence of
nucleophilic displacement, phosphorus transfer and cyclization (inset Scheme 2.98).
For substrates that yield 1,2-disubstituted episulfides, diastereoselectivity is very
high, with trans : cis ratios generally being greater than 10 : 1, as shown in the
preparation of diethylepisulfide 677 [697].

2.4.3
Reactivity of Thiiranes

2.4.3.1 Nucleophilic Ring Opening
Like the epoxides, episulfides are prone to ring-opening reactions induced by
nucleophiles, whereby the C�S bond is cleaved.However, sulfur stabilizes a negative
charge better than oxygen and therefore functions as amore active leaving group. The
sulfide so-formed is also more nucleophilic than the analogous alkoxide. Further-
more, sulfur supports radical centersmore readily than oxygen. Taken together, these
behaviors contribute to the fact that the ring opening of episulfides is usually attended
by some degree of uncontrolled polymerization and other yield-reducing processes.
However, many well-behaved conversions are known, and those outlined below are
meant to provide a general impression of synthetic possibilities.

Acetate is a frequently employed nucleophile. For example, in their protocol for
preparing sulfur-containing disaccharides, Santoyo-Gonz�alez and coworkers [698]
heated a mixture of episulfide 678 (Scheme 2.99), sodium acetate and acetic
anhydride in acetic acid to obtain diacetate 679 in very good yield. Similarly, the
thiiranyl acetal 680 undergoes ring opening in the presence of silver(I) acetate and
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triphenylmethyl chloride to provide the acetoxythiol 681, a key intermediate in the
asymmetric total synthesis of thietanose [699]. These ring openings can also trigger
subsequent cyclizations from the sulfur center. Thus, the thiiranyl acetonide ester
682 suffers attack by acetate to give an intermediate sulfide, which engages in
intramolecular attack of the ester carbonyl to yield the thiolactone 683 [700]. A similar
strategy was used to access the acetoxymethyl thiobutyrolactone derivative 685 [701].

Amines are also competent nucleophiles in these reactions. For example, the
benzyloxymethylthiirane (686, Scheme 2.100) is attacked by dibenzylamine at the
less substituted position, providing aminothiol 687 in good yield [702]. In like
fashion, spiroepisulfide 688 undergoes aminolysis by 4-hydroxypiperidine (689) in
solventless thermal conditions to give excellent yield of the b-aminoethanethiol
690 [703]. A twist on this protocol has been reported for the synthesis of taurine
derivatives from episulfides. Thus, dibenzylthiirane 691 was treated with ammonia
in the presence of silver nitrate to give a silver-chelated adduct that was sequentially
treated with hydrogen sulfide (generated in situ from sodium sulfide and hydro-
chloric acid), sodium hydroxide and performic acid (generated in situ from formic
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acid and hydrogen peroxide), ultimately generating the 1,1-disubstituted taurine 692
in good overall yield [704].

High-yielding processes using other nucleophiles have also been reported. For
example, treatment of the terminal episulfide 693 (Scheme 2.101) with lithium
aluminium hydride in ether resulted in hydride-mediated reductive ring opening to
give 2-hexanethiol (694) in good yield. The internal thiirane 695 underwent nucleo-
philic ring openingwith allylGrignard, forming thehydroxythiol 696. The regiochem-
istryof theattackcanberationalizedbychelationcontrol in thiscase [705].Evenhalides
can engage in this process when appropriate activating agents are employed. Thus,
thiiranyl acetal 697 was converted into the disulfide 698 using methanesulfenyl
bromide in a medium of tetramethylurea (TMU) and methylene chloride through a
process of electrophilic S-activation followed by nucleophilic ring-opening by bro-
mide [706].Asimilarprocess ispromotedbyacylchlorides,asshowninthequantitative
conversion of terminal episulfide 699 into the chlorothioester 700 upon treatment
with acetyl chloride and catalytic tetrabutylammonium bromide (TBAB) [707].

2.4.3.2 Desulfurization
Thiiranes can be converted into alkenes through a process of desulfurization, often in
very high yields. For example, methyltrioxorhenium (MTO) catalyzes the stereospe-
cific removal of sulfur by triphenylphosphine, as shown in the quantitative conver-
sion of alkenyl sulfide 701 (Scheme 2.102) to 1,5-hexadiene (702). Performance is
enhanced when the catalyst is pretreated with hydrogen sulfide; a ReV species has
been implicated as the catalytically relevant species [708]. An extremely efficient
copper-mediated desulfurization was used as the key step in the synthesis of C2-
symmetric dibenzosuberane (DBS) helicene 704, which is of interest as a potential
chiroptical switch [709].

Alkyllithium reagents, such as n-butyllithium and phenyllithium, have been
known for some time to function as desulfurization agents, as exemplified by the
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butyllithium-mediated conversion of cyclohexene oxide 658 into the parent
alkene 439. The mechanism involves initial ring-opening by attack on sulfur to give
an a-thio anion (i.e., 705) that rapidly undergoes elimination of butyl sulfide to form
the observedproduct [710]. Tributyltin hydride also effects a reductive desulfurization
in the presence of a radical initiator, such as triethylborane at low temperature or
AIBN at elevated temperatures. Under these conditions, the thiiranyl alcohol 706 is
converted into the corresponding allylic alcohol (707) in excellent yield and without
the need for protecting group chemistry [711]. Calculations have shown that
triethylphosphite should function as a desulfurizing agent through a concerted
process, thus promising high stereospecificity [712].

2.5
Diaziridines

2.5.1
Properties of Diaziridines

Diaziridines can be thought of as the smallest cyclic hydrazine derivatives. At
25.5 kcalmol�1, the calculated ring strain for diaziridine itself is slightly less than
that of oxirane; and just as the open-chain analog, hydrazine, is more stable toward
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interheteroatom cleavage than hydrogen peroxide so too is diaziridine less prone to
undergoN�N ring opening than dioxiranes are to suffer O�O scission. Calculations
have also indicated a proton affinity for diaziridine similar to that of ammonia.
Geometrically, the diaziridine ring describes an almost equilateral triangle
(Figure 2.22), with the N–C–N bond angle opening about 2� wider than the other
two; consequently, the N�N bond is slightly longer than the C�N bond [713]. The
1HNMR signals of the methylene protons resonate at about 2.2 ppm [714].
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From aphysical organic perspective, diaziridine is a fascinating species. As there is
about a 23 kcalmol�1 barrier to inversion about the nitrogen center (Figure 2.23),
diaziridines exist as isolable cis- and trans-isomers, the latter lying about 5 kcalmol�1

lower in energy. For N,N-dialkyl derivatives, this barrier is even higher. For the di-t-
butyl variant, it has been calculated at 30 kcalmol�1 [715]. As a result, trans-N,N-
disubstituted diaziridines have been recognized as novel C2-symmetric compounds,
and efforts have been made to elaborate methods for their resolution [716, 717].
Diaziridines have also been investigated as possible high-energy materials (although
not particularly promising in this regard) [713], and there is at least one report of
diaziridine derivatives exhibiting psychotropic activity, particularly with respect to
monoamine oxidase inhibition and antidepressant behavior [718].

2.5.2
Synthesis of Diaziridines

The synthesis ofmonocyclic diaziridines and their fused derivatives is the subject of a
recent review [719]. Some of the more common synthetic routes are outlined below.

2.5.2.1 Oxidative Methods using Hypohalites
One of the more common routes for accessing diaziridines is the oxidative ring
closure of aminals, which are usually formed in situ from the respective amines and
carbonyl compounds. Thus, N,N-dibutyldiaziridine (710, Scheme 2.103) is pre-
pared in good yield by combining n-butylamine and formaldehyde in the presence
of aqueous sodium hypochlorite [720]. The method can be applied to diamine
substrates, such as propylenediamine (711) to construct fused bicyclic derivatives
(e.g., 712) in excellent yield. Furthermore, the diamines can be condensed onto
substituted aldehydes (e.g., 714) and ketones (e.g., 716) with equal efficiency. The
pH of the reaction medium can have an impact on yields and product
distributions [721].

The aminals can be formed from other precursors, as demonstrated by the
aminoalkylimine 718 (Scheme 2.104), which produces the fused tricyclic diaziridine
719 in the presence of aqueous sodium hypochlorite [722]. The benzimidamide 720
serves as a precursor for diazirines in similar oxidizing environments; however, an
intermediate chlorodiaziridine (721) has been identified in the reactionmixture, and
it is stable enough to isolate [723]. Similarly, diaziridinimines such as 723 can be
prepared in good yield by subjecting tosyl guanidine 722 to sequential treatment by
t-butyl hypochlorite and t-butoxide [724].
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Figure 2.23 Cis–trans isomerism in diaziridine.
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2.5.2.2 Via Hydroxylamine Derivatives
Another alternative for diaziridine synthesis is presented in the use of O-sulfonated
hydroxylamine derivatives, which offers the advantage of a much less oxidizing
environment. As an example, the cyclic imino ester 724 (Scheme 2.105) is converted
into diaziridine 725 upon treatment with hydroxylamine O-sulfonic acid [725], and
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the same method is effective in preparing the glycosylidene-derived diaziridine 727,
which serves as a precursor for the corresponding diazirine and thus a glycosylidene
carbene [726]. An operationally more straightforward variant of themethodology can
be used for preparing various 2,2-disubstituted derivatives. Thus, a ketone such as
acetone (716) is treated with hydroxylamine O-sulfonic acid in the presence of
aqueous ammonia to give the desired diaziridine (728) in one pot [727].

2.5.2.3 Other Methods
Although the generality of themethods has not beenfirmly established, twoprotocols
merit special attention. The first is the direct electrochemical synthesis of diazir-
idines from amines and aldehydes in a bicarbonate buffered solution, which is
directly analogous tomethods described in Section 2.5.2.1 but obviating the need for
chemical oxidants. Thus, propylenediamine (711, Scheme 2.106) and formaldehyde
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cleanly provided bicyclic diaziridine 712under these electrochemical conditions. The
current efficiency reached 85%under optimumconditions [728]. The secondmethod
is the photolysis of tetrazolone derivatives (e.g., 729) to give diaziridinones (e.g., 730),
which could be obtained in high purity [729].

2.5.3
Reactivity of Diaziridines

2.5.3.1 Diaziridines
Like their open-chain analogs, diaziridines are nucleophilic species that engage in
well-behaved reaction with various electrophiles. For example, 3,3-dimethyldiazir-
idine (728, Scheme 2.107) is smoothly N-acylated with 3-phenyoxybenzyl chloro-
formate (731) in the presence of triethylamine in amedium ofmethylene chloride to
give the carbamate 732 in 63% yield. The remaining nitrogen was further functio-
nalized to produce the diazapyrethroid analog 733, and the diaziridinemoiety proved
to be remarkably stable to the experimental conditions (particularly zinc in acetic
acid) [727]. Diaziridines also engage in conjugate addition onto traditional Michael
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acceptors, such as DMAD [730] and dibenzoylacetylene [731]. The intermediate
diaziridinium species formed by the initial addition suffers ring-opening through
scission of the C�N bond to give a hydrazone derivative (e.g., 736). In fact, under
acidic conditions diaziridines spontaneously decompose to form the component
hydrazines and carbonyl compounds, as shown by the recovery of N-isopropylhy-
drazine (738) in 95% yield upon exposure of the precursor diaziridine 737 to oxalic
acid [732, 733]. The cyclic N�N bond is not totally inert, however. For example,
palladium catalyzes the insertion of carbonmonoxide into the N–N bond, converting
diaziridines (e.g., 739) into the corresponding azalactam derivatives (e.g., 740) [734].

2.5.3.2 Diaziridinones and Diaziridinimines
Diaziridinones also exhibit some interesting chemistry. For example, they too have
been reported to engage in carbonyl insertion reactions in the presence of a nickel
catalyst to give diazetidine-2,4-diones (e.g., 742, Scheme 2.108) in reasonable
yields [735]. Usually, however, their reactivity involves the nucleophilic attack of the
carbonyl carbon, as illustrated by the reaction of N,N-di-t-butyldiaziridinone (741)
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with the sodium salt of cyanopyrrole 743, which engages in nucleophilic addition to
the carbonyl, followed by ring-opening to provide the acylhydrazine 744 in 85%
yield [736]. A similar addition event is the first step of many in the Lewis acid-
catalyzed conversions of diaziridines into oxadiazinones (e.g., 746) by a-hydroxy
ketones (e.g., 745) [737]. Finally, the analogous diaziridinimes (e.g., 747) are
thermally unstable, rearranging to N-cyanohydrazine derivatives (e.g., 748) at ele-
vated temperatures [724].

2.6
3H-Diazirines

2.6.1
Properties of Diazirines

With a literature age of less than 50 years old [738, 739], diazirines are relative
youngsters among their companion three-membered heterocycles, and an interest-
ing lot they are. Although this ring systemmight intuitively appear quite unstable, the
strain energy has been calculated at a remarkably low 21 kcalmol�1 [740]. This,
combinedwith very low basicity, is largely responsible for the observed stability (even
in vivo) of the diazirine ring at room temperature. The double bond character between
the two nitrogens results in a short N¼N bond distance (1.23A

�
), which, in turn,

significantly compresses the N–C–N bond angle (Figure 2.24) [741]. Likewise, the
diaziridine moiety is planar and symmetrical. Since molecular nitrogen can be
rapidly extruded under thermal or photochemical conditions, neat diazirines should
be afforded the respect in handling that all potentially explosive compounds deserve.

2.6.2
Synthesis of Diazirines

The lion�s share of protocols for the preparation of diazirines proceed through a
diaziridine intermediate. For example, 4-aziadamant-1-amine (750, Scheme 2.109)
was synthesized by the chromium(VI) mediated oxidation of the corresponding
diaziridine (749) [742]. However, diaziridine precursors can serve as suitable sub-
strates for various one-pot procedures. Thus, the camphor-derived iminium salt 751
was converted into the sterically hindered chiral diaziridine 2-azicamphane 752 by

Figure 2.24 Geometry of 3H-diazirine.
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treatment with hydroxylamine O-sulfonic acid in methanolic ammonia, followed by
oxidation with iodine in the presence of triethylamine [743]. Ketones can also be used
to advantage in this regard, as illustrated by the construction of the diaziridinyl cluster
mannoside 754 from ketone 753 [744]. Alkoxy substituted diazirines can be prepared
from alcohols. Thus, norboranol 755 was treated with cyanamide and methanesul-
fonic acid to afford an intermediate isouronium salt (756) that was oxidized with
hypochlorite to give the diazirine 757 [745]. Diazirines have also been prepared by the
partial hydrolysis of nitriles, followed by hypochlorite oxidation [746].

Since they have desirable end-application properties, 3-trifluoromethyldiazirines
are of particular interest, and these are prepared in similar fashion. For example, the
diazirinyl antiotensin II analogue 759 (Scheme 2.110) was produced in very good
yield from the silver(I) oxide mediated oxidation of diaziridine 758 [747]. An equally
efficient diazirine synthesis was achieved launching from the O-tosyl oxime 760,
whichwas converted into the diaziridine by treatmentwith liquid ammonia. After the
fluoride-mediated desilylation of the alcohol functionality, PDC oxidation afforded
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the desired diazirine 762 in remarkably good overall yield. The target was used as the
centerpiece for the construction of a vitamin D analog, a testament to the robustness
of the diazirinyl moiety toward various experimental conditions [748].

Ultimately, the trifluoromethyl group is usually introduced by way of an activated
trifluoroacetic acid derivative. For example, the aryl Grignard derived from
m-bromoanisole (764) smoothly added to N-trifluoroacetylpiperidide (763) to give
the trifluoroacetophenone derivative 765, which was converted into the correspond-
ing oxime (764) in excellent yield using conventional methods. Subsequent
O-tosylation and treatment with ammonia afforded the diaziridine 767, which was
oxidized to the diazirine 768 using t-butyl hypochlorite [749].

2.6.3
Reactivity of Diazirines

Diazirines with leaving groups at the 3-position can undergo substitution reactions
without affecting the azo moiety [750]. As one example, the bromodiazirine 769
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(Scheme 2.111) is converted into the fluoro analog 770 upon treatment with
anhydrous tetrabutylammonium fluoride (TBAF) under solvent-free condi-
tions [751]. It would be fair to state, however, that the spotlight shines on diazirines
for their propensity to extrude molecular nitrogen to form reactive carbene inter-
mediates [752, 753]. Thus, the 3-acyldiazirine 771 suffers loss of nitrogen under
thermal conditions in the presence of alkenes to yield products of carbene–olefin
cycloaddition [754].

Photolysis of diazirines also generates carbenes, and this procedure is more
significant in terms of application [755]. Once the carbene intermediates are formed,
the reactivity is much the same as for carbenes generated by any other method. For
example, when the aryl diazirine 773 is photolyzed in ethanol, the major product
(774) results from the insertion of carbene in the O�H bond of the solvent [756].
Similar behavior is observed in aqueous media (i.e., 775 ! 776) [757]. Photolysis of
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2-azi-5-hydroxyadamantane (777) in the gas phase results in the quantitative forma-
tion of the intramolecular 1,3 C�H insertion product 778. When the same substrate
is photolyzed in an organic solvent, then the intermolecular process dominates, as
illustrated by the cyclohexane adduct 779 [758]. This behavior is fairly general – the
carbene derived from arylchlorodiazirine 780 also quantitatively traps THF when
generated in that solvent [759].

To summarize, diazirines can be synthesizedwith a high degree of regioselectivity,
launching from various readily available functional groups. The diazirines them-
selves have a very long half-life at room temperature and under a broad range of
conditions. Reaction can be triggered by photolysis in a manner that engages few, if
any, other functionalities. It can be assumed that carbene generation is practically
quantitative, and these carbenes react quickly with a wide variety of substrates. This
particular confluence of behaviors has earned these substrates an important niche,
namely within the realm of photoaffinity labels (PAL), an application that has been
nicely summarized in a recent review [760].

Interestingly, for the same reasons, diazirines have been investigated as materials
surface modifiers. In their study of the underlying chemistry of these processes,
Hayes and coworkers photolyzed the fluorenone-modified diazirine 782 in the
presence of acetic acid, n-butylamine, and N-butylbutanamide as models of the
functional group environment encountered in a medium of nylon 6,6 (and, inci-
dentally, proteins in vivo). In all cases, they observed extremely efficient (>95%)
insertion reactions, leading to the products 783, 784, and 785, deriving from O�H
insertion, amine N�H insertion, and amide N�H insertion, respectively [761]
(Scheme 2.112).
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2.7
Oxaziridines

2.7.1
Properties of Oxaziridines

The oxaziridine moiety incorporates an oxygen, nitrogen and carbon within a cyclic
three-atom array (Figure 2.25). The conventional strain energy (CSE) for the parent
compound has been calculated at 27.6 kcalmol�1, lying between those of cyclopro-
pane and cyclobutane [762]. Each bond in the ring is unique, with lengths ranging
from 1.40A

�
(C�O) to 1.50A

�
(N�O). It follows that the bond angles are also non-

identical, with theN–C–Oangle being thewidest [763]. These physical characteristics
are responsible in part for the fascinating reaction diversity exhibited by this class of
compounds. Aside from their synthetic utility, oxaziridines have excited interest due
to their potential as antifungal [764], antibiotic [765] and antitumor agents [766, 767].

2.7.2
Synthesis of Oxaziridines

There are reports of oxaziridine preparation from nitrones [768], and a calculational
study has been carried out regarding this isomerization [763]. Oxaziridines are also
the products of oxidative amination of ketones [769]. However, these methods have
not found wide application in synthetic methodology. Instead, almost all preparative
protocols launch from the oxidation of imines. Nevertheless, there is considerable
diversity even within this one general category.

The N-alkoxysulfonyl oxaziridine 787 (Scheme 2.113) was efficiently prepared
from the precursor imine 786 using the fairly traditional oxidantm-chloroperbenzoic
acid (mCPBA) [770]. The sulfinylimine 788 was converted into sulfonyloxaziridine
789 in short order and in excellent yield using mCPBA in first acidic and then basic
medium [771]. A trichloroacetonitrile–hydrogen peroxide system was found to
convert imines such as 790 into oxaziridines in very high yield and exclusive (E)-
stereochemistry under essentially neutral conditions [772]. Several other near-neutral
systems are also available. For example, pyridylimine 792 was oxidized using a
buffered monophasic Oxone system [773], and phase-transfer conditions were
applied to the mild and quantitative conversion of arylaldimine 794 into the
corresponding oxaziridine (795) using tetrabutylammonium Oxone in acetoni-
trile [774]. The combination of storage-stable urea-hydrogen peroxide adduct (UHP)
and maleic anhydride in methanolic solution was also effective in the high-yielding

Figure 2.25 Geometry of oxaziridine.
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oxaziridination of N-benzylimine 796 [775]. Even molecular oxygen can be used as
the terminal oxidant, using a cobalt catalyst (e.g., 798 ! 799), although the catalyst
must be preformed for optimum yields [776].

2.7.3
Reactivity of Oxaziridines

Oxaziridines have quickly become very important synthetic reagents [777–780].
Furthermore, the related oxaziridium ions, which bear a quaternary nitrogen center,
are significant in their own right, both as stoichiometric reagents [781] and putative
intermediates in catalytic cycles [782–784]. However, the present chapter is limited to
neutral oxaziridines.

2.7.3.1 Nitrogen Transfer Reactions
An interesting aspect of oxaziridine chemistry is that either heteroatom can be
transferred to other compounds, depending upon the nature of the substrate and the
substituents on the oxaziridine [785]. Common oxaziridines used in nitrogen
transfer reactions include the spirocyclic derivative of cyclohexanone (800,
Figure 2.26), as well as those prepared from electron-deficient carbonyls, such as
trichloroacetaldehyde (i.e., 801) and diethyl oxomalonate (i.e., 802). An overview of
the oxaziridine-mediated electrophilic amination of organic compounds can be
found in a review from the not-too-distant past [786].

Aziridination has been reported using oxaziridines as nitrogen donors, although
this reaction is not general. For example, certain styrene derivatives (803,
Scheme 2.114) are aziridinated in moderate yield under thermal conditions in the
presence of oxaziridine 800 [787], but many other substrates give complex mixtures.
The structural influence of this variable behavior has been studied computational-
ly [788]. A more common outcome is the amination of active methylene groups.
Thus, treatment of barbituric acid (805) with oxaziridine 800 in a medium of dilute
sodium hydroxide led to the production of the 5-aminobarbituric acid (806) in 78%
yield [787]. Similarly, deprotonation of phenylacetonitrile 807 with lithium hexam-
ethyldisylazide (LiHMDS), followed by treatment with oxaziridine 802, provided the
Boc-protected benzylamine 808 in 46% yield [785]. Oxaziridine 802 alsomediates the
stereospecific conversion of allylic sulfide 809 into the allylic N-Boc-sulfimide 810, a
process that involves a [2,3]-sigmatropic rearrangement [789].

Nitrogen can also be transferred to amines. For example, phenethylamine (811,
Scheme 2.115) is aminated by oxaziridine 802 under verymild conditions, providing
the Boc-protected hydrazine derivative 812 in good yield. These compounds were
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Figure 2.26 Some common oxaziridines used for nitrogen transfer.

2.7 Oxaziridines j131



then converted into pyrazoles in a one-pot reaction [790]. Hannachi and co-
workers [791] have applied this methodology to synthesize orthogonally diprotected
L-hydrazino acids (e.g., 814), which are useful in the biological and structural studies
of pseudopeptides containing the N�N�C�C¼O fragment.
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2.7.3.2 Oxygen Transfer Reactions
Some very exciting and synthetically useful methodology is available from the
oxaziridine-mediated oxygen transfer onto organic compounds, and inmany regards
this technology is complementary to other methods. Oxygen-donating oxaziridines
are generally of the 3-alkyl or 3-aryl variety (Figure 2.27), although there are examples
of a given oxaziridine exhibiting both O-donating and N-donating behavior under
different experimental conditions.

In isolated cases, oxaziridines can engage in epoxidation reactions, both in an
intramolecular sense [792] and as a bimolecular event, as illustrated by the high-
yielding conversion of 1,1-diphenylethene (818, Scheme 2.116) into the correspond-
ing epoxide (819) [793]. However, this reaction is not general, and it is usually carried
out more conveniently using conventional epoxidation conditions. In contrast,
oxaziridines are superb reagents for selectivea-hydroxylation reactions. For example,
in their synthetic approach towards the microbial immunosuppressive agent
FR901483, Weinreb and coworkers [794] employed the readily accessible oxaziri-
dine 815 for the diastereoselective a-hydroxylation of the bicyclic lactam 820.
Asymmetric hydroxylations are also possible using chiral oxaziridines, such as the
camphor derived reagents 816 and 817. As an illustrative example, the sodium
enolate of phenylacetophenone (822) was treated with (þ )-(10-camphorsulfonyl)
oxaziradine (817) to provide the a-hydroxyketone 823 in 80% yield and 94% ee. This
reagent was also useful in the diastereoselective preparation of 132-hydroxylated
chlorophylls (e.g., 825) [795].

Oxaziridines occupy another synthetic niche in the realm of sulfur chemistry, as
they engage in some very specific and selective sulfur oxidation reactions. For
example, oxaziridine 815 oxidized the lithium salt of 4-fluorothiophenol (826)
selectively to the sulfinate salt, which could be trapped with active electrophiles
such asmethyl iodide (Scheme 2.117). This particular strategywas used to access 11C-
labeled methyl sulfones [796]. Of particular synthetic utility is the oxaziridine-
mediated asymmetric oxidation of prochiral sulfides to chiral nonracemic sulfoxides,
which are receiving increasing attention in their own right. Thus, 4-methylthioto-
luene (829) is converted into (S)-methyl tolyl sulfoxide (830) in excellent yield and
enantiomeric excess under essentially neutral conditions [797].

2.7.3.3 Rearrangements
Some interesting metal-mediated rearrangements of oxaziridines have been
reported, although none appear to be widely general in their scope. For example,
the copper(I) catalyst [Cu(CH3CN)4]PF6 induces the conversion of oxaziridine 831
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into the dihydro-2H-pyrrole 832 through a fascinating mechanistic sequence involv-
ing initial N–O bond cleavage by single electron transfer, followed by radical
cyclization, phenyl migration and loss of acetaldehyde [798]. When the 3-substituent
is secondary (or presumably tertiary), the intermediate radical can collapse with
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concomitant C�C bond cleavage to give amide derivatives. Thus, the 3-isopropyl
oxaziridine 833 yields amide 834 under the same conditions [799]. Under the
influence of Lewis acids, the oxaziridine ring can be opened by nucleophiles. For
example, the 3-methoxyphenyl-oxaziridine 835 suffers nucleophilic attack at the ring
carbon by O-benzylhydroxylamine (Scheme 2.118, inset) in the presence of alumin-
ium trichloride, ultimately leading to the liberation of the oxaziridinyl N�O frag-
ment, which is subsequentlyO-protected by the tri(isopropyl)silyl group in situ [800].

2.8
Dioxiranes

2.8.1
Properties of Dioxiranes

Dioxiranes are cyclic peroxides, and inmany respects their chemical behavior can be
described as activated peroxy species, or what Greer has dubbed �unusual
peroxides� [801]. The strain energy of the parent compound (Figure 2.28) has been
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calculated at 19.6 kcalmol�1. However, this figure drops by almost half to 10.6 kcal
mol�1 in the case of 3,3-dimethyldioxirane (DMD) [802, 803]. Geometrically, the
unsubstituted dioxirane ring describes a mildly distorted triangle [804].

2.8.2
Synthesis of Dioxiranes

A survey of the preparative synthetic methods for dioxiranes is a little peculiar,
because the field is dominated by virtually a single technique. There are certainly
isolated alternative conditions that lead to the formation of the dioxirane system, such
as the photolytic oxidation of diaryl diazoalkanes (e.g., 837 ! 838,
Scheme 2.119) [805]; however, to date they have not been widely adopted by the
synthetic laboratory.

In fact, most procedures involving dioxiranes as reactive intermediates are
designed to generate these species in situ, usually as part of a catalytic cycle, and
usually by oxidizing a ketone precursor. This not only brings the obvious benefit of
requiring less than stoichiometric amounts of the ketone precursor (some of which
are quite dear), but it also obviates the need to isolate, store and continually titrate
mixtures of unstable dioxiranes. Nevertheless, it is sometimes convenient, or even

Figure 2.28 Geometry of dioxirane.
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Scheme 2.119 Preparation of dioxiranes.
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necessary, to work with �isolated� dioxirane reagents. Toward this end, dilute
solutions of dimethyldioxirane (DMD) are available by treating acetone with Oxone
in an aqueous bicarbonate buffer at low temperature, after which the dioxirane is
distilled at reduced pressure (Scheme 2.119). The distillate so-obtained contains
about a 0.1M solution of DMD in acetone (towards which the dioxirane is sta-
ble [806]), and this is usually titrated before use [807, 808]. The dilution factor can be
inconvenient [809], although some practical modifications have been disclosed [810,
811], including phase-transfer conditions, which can be applied even to large-scale
preparations [812].

Generally, almost all synthetically relevant dioxiranes are prepared by thismethod;
however, the reader is directed to Murray�s excellent review of dioxiranes for more
detailed information and an historical perspective on the development of dioxirane
preparations [813].

2.8.3
Reactivity of Dioxiranes

2.8.3.1 Epoxidation of Alkenes
Arguably the most high-profile member of the dioxiranes reactive portfolio, the
epoxidation of alkenes is treated in Section 2.3.2.1. The reader is also directed to an
outstanding comprehensive reviewbyAdam,Saha-M€oller andZhao [814], aswell as a
more recent overview by Srivastava [815].

2.8.3.2 Hydroxylation of Alkanes
Another fascinating (and remarkably underutilized) reactionmediated by dioxiranes
is the hydroxylation of alkanes, a process that canbequite clean andhigh-yielding. For
example, treatment of 2,3-dimethylbutane (840, Scheme 2.120) with 3-methyl-3-
trifluoromethyldioxirane (841) (TFD) at low temperature results in rapid and almost
quantitative conversion to tertiary alcohol 842 [816]. In general, tertiary sites are
preferred to secondary, a phenomenon underscored by the oxidation of adamantane
(843) with excess TFD, in which only tertiary sites are affected [817]. In a selectivity
study,Curci andcoworkers [818] found that thesebridgeheadsiteswere alsopreferred
to cyclopropane methylene positions, as demonstrated by the smooth conversion of
the spiro cyclopropyladamantane 846 into the monohydroxy derivative 847.

Secondary sites are not immune to oxidation. In fact, careful kinetic studies have
shown that the reactivity exhibits an almost perfect Hammett correlation to the
electron density of the C�H sigma bond [819], which strongly suggests a concerted
insertion mechanism. Computational studies also support this idea, although a
diradical mechanism cannot be ruled out [804]. In any event, lability towards
oxidation is enhanced by adjacent heteroatoms. For example, ethyl t-butyl ether
(848) suffers practically quantitative oxidative degradation to t-butanol (850) and
acetaldehyde (851) via an initially formed hemiacetal intermediate (849) [820], which
explains the previously reported observation that DMD solutions lose titer in the
presence of adventitious ether contaminants [821]. Through a similar mechanism,
dioxiranes convert alcohols into ketones, as illustrated by the oxidation of epoxyal-
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cohol 852 to the corresponding ketone (853) in excellent yield upon treatment with
TFD in methylene chloride and trifluoropropanone (TFP) [120].

Interestingly, this oxidation can be carried out in an intramolecular fashion – a sort
of remote functionalization. For example, when the trifluoromethyl ketone 854
(Scheme 2.121) is treated with Oxone in buffered medium, it forms a dioxirane that
oxidizes the d-methylene position. The hydroxyketone so formed subsequently
cyclizes to the stable hemiacetal 855 [822]. In this intramolecular manifestation,
geometric factors override electronic preferences. Thus, the dioxirane generated
from ketone 856 also engages the secondary d-position over the adjacent tertiary
position, ultimately forming the bicyclic hemiacetal 857 [823].

2.8.3.3 Oxidation of Sulfur
Dioxiranes have been applied to the selective oxidation of sulfides to sulfoxides [824].
For example, the thiochromanone 858 (Scheme 2.122) is converted into the corre-
sponding sulfoxide (859) upon treatment with a slight excess of DMD at near-0 �C
temperatures. For best selectivity, the reaction was halted at partial conversion (about
75%); longer reaction times and higher loadings of DMD led to excellent yields of
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Scheme 2.120 Dioxirane-mediated hydroxylation.
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sulfone derivatives [825]. These oxidations can be quite diastereoselective. Thus, the
DMD oxidation of 2,3-dihydro-1,5-benzothiazepinone 860 provided an overwhelm-
ing majority of the trans-sulfoxide 861 [826], and the epoxy thiochromanone 862
provided the trans/cis-sulfoxide 863 exclusively [827]. The same diastereomeric bias
was observed even with the opposite epoxide stereochemistry, which seems to point
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Scheme 2.121 Intramolecular dioxirane-mediated hydroxylation.
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toward a pivotal role of the a-substituent. Enantioselective sulfoxidation using chiral
ketone precursors appears promising [828], although results are highly variable and
substrate-dependent.
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3
Four-Membered Heterocycles: Structure and Reactivity
G�erard Rousseau and Sylvie Robin

3.1
Azetidines

3.1.1
Introduction

This chapter deals with azetidines, which are four-membered rings containing one
nitrogen atom. The particular case of azetidin-2-ones (b-lactams) is examined in
Chapter 24. Different important reviews have already been reported on their
preparation and reactivity [1–3].

Different natural products of terrestrial ormarine origins having an azetidine ring
have been isolated. We indicate in this chapter only some representative examples.
The simple (R) and (S)-azetidine-2-carboxylic acids 1 were found in numerous
plants [4, 5]. N-Alkyl derivatives such as nicotianamine (2) [6] (isolated from a culture
of Streptomyces) and mugineic acid (3) (isolated from a plant) [7] have also been
reported.
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Some C-alkyl derivatives are known, such as penaresidine-B (4) isolated from
various sponges [8] and cis-polyoximic acid (5) isolated from a culture of Streptomy-
ces [9, 10].
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Thenucleusazetidineisalsopresentinmorecomplexproducts,suchaspolyoxinA(6,
isolated from culture broth of Streptomyces cacaoi var. asoensis) [11], gelsemoxonine (7)
isolatedfromthecreeperGelsemiumelegansandvioprolidesA(n¼ 1)andB(n¼ 2)8 [12],
obtained by fermentation of a strain of the myxo bacterium Cystobacter violaceus [13].

HN

O

N

O

OHOH

O

OH

ON

N
H

CO2H

O

O

NH2

OH

OH

O

H2N

6
7

N

Me NH

O

O
N

S

N

O

H Me

NH

O
NH

Me

O
i.Pr

N

O
HN

O

HO
Me

(  )n

H

O

O

OH

8

N O

OMe

N
H

OOH
H

O H

Me

Me

Agrochemical applications of azetidine derivatives have been reported [3]. Actions
on the central nervous system with various activities (antiepileptic, anticonvulsant,
antihypertensive, antidepressant, analgesic, etc.) have been also described [3]. A
promising compound appears to be ABT-594 (9), synthesized from (þ )-epibatidine
(10), present in frogs [14]. Compound 9proved to bemore powerful thanmorphine as
a painkiller [15].
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The preparation of 1,3,3-trinitroazetidine (11) has been reported [16]. This
compound was evaluated as a substitute for TNT, due to its high thermal stability.
However, its cost of preparation and its high volatility limit its utilization as explosive
or propellant.
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3.1.2
Physicochemical Data

Azetidines appear to be thermally stable. They are unreactive towards numerous
reagents and can be prepared without special precautions. They can be analyzed
using gas chromatography or liquid chromatography over silica gel, for example.
Their reactivities appear closer to these of higher cyclic amines than aziridines. The
strain in azetidines explains their difficult formation by cyclization, which is
comparable to these of azepines [17]. Electron diffraction and X-ray crystallographic
studies have shown the non-planarity of the ring. For azetidine, the angle between the
planes formed by the CCC and CNC bonds is 37�, which is similar to that found for
cyclobutane. Inversion of the pyramidal nitrogen is very easy for these heterocycles
(DG#� 10 kcalmol�1).

Azetidines have been studied by NMR spectroscopy. In the absence of
substituents the chemical shift of the hydrogens fixed on the carbon at the 2-
position are in the range 2.5–3.5 ppm and the hydrogens fixed on the carbon at
the 3-position 1 ppm higher. In general the magnitude of the coupling constants
for vicinal hydrogens is in the range 6–8Hz for the cis stereoisomers and 2–4Hz
for the trans stereoisomers. With 3-hydroxyazetidine derivatives, the determi-
nation of the stereochemistries could be come very difficult. Structural identi-
fication was reported to be possible when the 1H NMR spectra were recorded out
in the presence of known amounts of Eu(Fod)3 [18]. In 13C NMR, the carbon
shifts in 2,4 positions are close to those of carbons in five- and six-membered
cyclic amines. Figure 3.1 shows some representative examples of these chemical
shifts. The 15N chemical shift of azetidine (from NH3) was reported to 25.3 ppm.
N-Substituted azetidines showed chemical shifts comparable to other nitrogen
heterocycles [19].
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Figure 3.1 Representative examples of chemical shifts.
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3.1.3
Synthesis

This chapter reports the mainmethods that lead to azetidines with acceptable yields.
Some less synthetically useful methods can be found in previous reviews. These
preparations can be divided into three groups: formation (i) by cyclization, (ii) from
other heterocycles and (iii) by [2þ 2] cycloadditions.

3.1.3.1 Cyclization Reactions

3.1.3.1.1 Formation of a C�N Bond

RingClosure of c-AminoDerivatives Apowerfulandsimplepreparationofazetidinesis
theintramoleculardisplacementofaleavinggroupfixedonacarbonbyac-aminogroup.
Bromo, iodo, tosyloxy,mesyloxy and triflyloxyweremainly used as leaving groups, and
alkyl,arylandtosylwereusedasprotectinggroupsonthenitrogenatom(Scheme3.1)[3].

This approach was reported as the key step in a synthesis of penaresidine B (4)
(Scheme 3.2) [20]. It was subsequently reported that diastereoselective cyclizations of
the mesylates lead to similar results (Scheme 3.3) [21].
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Scheme 3.3

Amodification of this method has been investigated. It was shown that utilization
of Mitsunobu conditions (X¼OH in Scheme 3.1) could be very efficient [22]. This
cyclization was applied to the preparation of substituted azetidines, without any
epimerization of the chiral centers (Scheme 3.4) [23].
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Cyclization of protected 1-azidopropan-1-ols was also reported to lead to the
formation of azetidines. This cyclization occurredwhen the azido groupwas reduced
usingRaney-nickel (Scheme 3.5) [24]. Thismethod appearsmore efficient thanwhen
using PPh3 as reducing agent [25].

This cyclization was found to be easy with 3-chloroalkylamines obtained by
reaction of 1-aminoalkyl chloromethyl ketones with organocerium reagents. The
cyclizations occurred during evaporation of the reaction solvents (Scheme 3.6) [26].
These isolable azetidinium salts were subsequently transformed into azetidines by
catalytic hydrogenation. Chloromethyl ketones react with ester enolates in similar
fashion (Scheme 3.7) [27].
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Formation of 3-azetidinones from 1-aminoalkyl chloromethyl ketones was also
reported to occur by reaction with tributyltin hydride (Scheme 3.8) [28].
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Another interesting preparation of 3-azetidinones involves carbenoid insertion
into a N�H bond. 1-Aminoalkyl a-diazomethyl ketones reacts with rhodium acetate
to give optically active 2-substituted 3-azetidinones (Scheme 3.9) [29]. These ketones
allowed highly diastereoselective additions of nucleophilic reagents or Wittig reac-
tions (Ph3P¼CHCO2Me). Utilization of copper acetylacetonate as catalyst has been
subsequently reported [30].

Azetidines can be obtained by MgBr2 catalyzed isomerization of aminomethylox-
iranes. A mixture of diastereomers was generally obtained (Scheme 3.10). With
the trans epoxide substituted by an alkyl group, only one azetidine was detected [31].
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Utilization of sodium hydroxide to carry out ring opening of oxiranes was reported to
be possible, if the epoxide functionwas b of the amino group (4-exomode cyclization)
(Scheme 3.10) [32].

Ring Closure of 1,3-Functionnalized Propane Derivatives with Amines 1,3-Dielectro-
philes react with primary amines to afford azetidines (Scheme 3.11).

1,3-Dihalopropane derivatives have been usedwithmore or less success, due to the
possible formation of side products [3]. However, satisfactory yields were obtained
when the halogen atoms were in activated positions (Scheme 3.12) [33].

Better yields were observed with 1,3-triflates (Scheme 3.13, reactions carried out a
1 kg scale) [34], 1,3-ditosylates [35] or 1,3-dimesylates (Scheme 3.14) [36].

3-Hydroxyazetidines have also been prepared by the reaction of epichlorohydrin
with primary amines. The intermediate formation of c-chloro-b-hydroxyamines or
amino methyl oxiranes is a function of the reaction conditions and the nature of the
amines. In some cases these two-step reactions were conducted as one-pot reactions
(Scheme 3.15).
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For example, the reaction of epichlorohydrin with 1-silylalkylamine leads to the
formation of 3-hydroxyazetidines in excellent yields. This method was used in a new
preparation of 1-methyl-3-hydroxyazetidine (Scheme 3.16) [37]. N-Substituted aze-
tidinols were also obtained by heating aminomethyloxiranes in the presence of
triethylamine (Scheme 3.17) [38].

Another approach to azetidines implies the addition of nucleophiles such as
cyanide, hydride or organolithium reagents (Scheme 3.18) to b-chloroimines [39].
When the nucleophile is KOtBu, 2-methyleneazetidines are obtained if the work-ups
are carried out in the absence of water (Scheme 3.18) [40].
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Electrophilic cyclization of N-cinnamyl tosylamides affords azetidines in good
yields. These 4-endo mode cyclizations are diastereoselective (Scheme 3.19) [41].

4-Exo mode cyclizations of unsaturated amines have also been reported using
iodine [42], NBS [43] and selenium reagents (Scheme 3.20) [44].

An interesting method for the preparation of enantiopure azetidines is the
intramolecular amination of b-aminoallenes catalyzed by Pd(PPh3)4 (Scheme 3.21).
When the protecting group on the nitrogen atom was a tosyl, a mixture of alkenyl
azetidine and tetrahydropyridine was obtained (R2X¼ aryl iodide, e.g. PhI). How-
ever, with enol triflate as alkylating agent, the exclusive formation of azetidines was
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observed (35–40%) [45]. This is also the case when the protecting group was a
mesitylenesulfonyl (Scheme 3.21) [46].

3.1.3.1.2 Formation of a C–C Bond Intramolecular reaction of a-aminocarbanions
with activated carbon–carbon double bonds is an excellent method by which to
prepare functionalized azetidines. Mixtures of diastereomers have been obtained
froma-aminonitriles. Better diastereoselectivities were observed froma-aminoesters
(Scheme 3.22) [47, 48].

Intramolecular cyclization can also be observed if the carbon b of the amino group
bears a leaving group (Scheme 3.23) [49]. This method has been applied to the
preparation of cis and trans 3-phenyl-azetidine-2-carboxylic acids [49], azetidine-2-
carbonitriles, [50] and diethyl azetidine-2-phosphonates (Scheme 3.24) [51].

Anotherdiastereoselectivepreparationofsubstitutedazetidineshasbeenreportedby
aphotochemically inducedcyclizationofchirala-aminoketones(Scheme3.25) [52,53].
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Fused azetidine derivatives have been obtained by irradiation of dihydropyridines
(Scheme3.26) [54a]. Thismethodology has been applied to the formationof an analog
ofABT-594 [54b].However, this compound appeared less efficient than epibatidine as
nicotine agonist.

Irradiation of 3-allyl or 3-benzyl-2-acyl perhydrobenzoxazine furnishes azetidin-3-
ol derivatives in moderate chemical yields (50–60%). However, the diastereoselec-
tivity of these cyclizations are good (up to 96%). The menthol part was then removed
in low overall yields to give enantiopure azetidin-3-ol derivatives (Scheme 3.27) [55].

Electroreduction by intramolecular coupling of chiral a–iminoesters in the
presence of chlorotrimethylsilane affords cis-2,4-disubstituted azetidin-3-ones in
good yields (Scheme 3.28) [56].

3.1.3.2 Ring Transformations

3.1.3.2.1 Ring Expansions of Aziridines Reactions of N-arenesulfonylaziridines
with dimethyloxosulfonium methylide afford azetidines. These ring expansions
are stereoselective. The cis-aziridines yield trans-azetidines, and reciprocally, via a
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SN2-type reaction, followed by an intramolecular nucleophilic substitution [57]. This
reaction has also been reported using dimethylsulfonium methoxycarbonyl methy-
lide (Scheme 3.29) [58].

1-Substituted 3-azabicyclo[1.1.0]butanes are easily prepared using themethod first
developed by Funke [59]. These compounds react with numerous electrophiles to
afford azetidines (Scheme 3.30). More recent reports give improved conditions for
the preparation of the bicycloaziridines, and their reactions with electrophilic
reagents [60–62].

3.1.3.2.2 Ring Contractions 5 ! 4 Ring contractions appear rather rare. The
reaction of a thiazolidine with Raney-nickel has been reported to lead to yield an
azetidine (Scheme 3.31) [63].

Two interesting examples of 6 ! 4 ring contractions have been also reported. They
used the transformation of cyclic carbamates. Heating tetrahydro-3-benzyl-5,5-
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dimethyl-1,3-oxazin-2-one at 250 �C in the presence of LiCl affords the corresponding
azetidine [64]. 1,2,2,4-Tetrasubstituted azetidines have been prepared using this
method. Reaction of a carbamate with a palladium(0) salt led to a comparable
decarboxylation. This reaction has not been studied further (Scheme 3.32) [65].

3.1.3.2.3 From b-Lactams

Reductions Reductions of b-lactams into azetidines have been reported with com-
mon reducing agents such as LiAlH4, LiAlH4-AlCl3, ClAlH2, Cl2AlH, AlH3, BH3 and
DIBAL-H [66–69]. With optically active lactams, these reactions occur in general
without loss of enantiomeric purity. However, these reagents were not compatible
with the presence of ester groups. In this case, diphenylsilane in the presence of a
rhodium salt (Scheme 3.33) could be efficient [70].
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Reduction of azetidine-2,4-dione by AlH3 into azetidine has also been
reported [71], while the reduction of 2-azetidinethiones is possible using Raney-
nickel (Scheme 3.34) [72].

Olefinations Stabilized ylides react with 2-azetidinones to afford 2-methyleneaze-
tidines. This olefination does not take place with unstabilized ylides or when a
substituent is present at the 3-position [73]. In such a case, methylenation is possible
using dimethyltitanocene (Scheme 3.35) [74, 75].

3.1.3.3 Cycloadditions
[2þ 2] Cycloadditions of imines or imino compounds with ethylenic derivatives can
afford azetidines. However, the yields were generally low [3] until, relatively recently,
improved conditions were found. Imines react with allylsilanes catalyzed by Lewis
acids to give azetidines in good yields (Scheme 3.36) [76]. Mixtures of diastereomers
were obtained. N-Tosylimines have also been reported to react with a-allenic esters
and a-allenic ketones in the presence of DABCO (Scheme 3.36) [77].

The reaction of a-imino esters with 1-methoxyallenylsilanes has been achieved by
means of copper tetrafluoroborate. In the presence of (R)-Tol.BINAP, optically active
azetidines with high enantiomeric excesses were obtained (Scheme 3.37) [78].

1-Aryl-4-phenyl-1-azadienes undergo [2þ 2] cycloadditions, after more than 40
days, with allenic esters at room temperature. Attempts to decrease the reaction time
by heating gave rise to the exclusive formation of [4þ 2] adducts (Scheme 3.38) [79].
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The cycloaddition of benzyne with N-aryl imines occurs in good yields
(Scheme 3.39) [80]. This is also the case for the [2þ 2] cycloadditions of alkoxy
imines with phenyl ketene [81].

3.1.4
Reactivity and Useful Reactions

3.1.4.1 Reactions at the Nitrogen Atom

3.1.4.1.1 Reaction with Carboxylic Acid Derivatives Reactions of carboxylic acid
chlorides with azetidine derivatives lead to N-acyl derivatives in high yields. These
reactions were carried out in the presence of bases such as K2CO3 [82], NEt3 or
pyridine [3]. Recently, a solid-phase approach has been described for the preparation
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of malondiamides. 2-Methoxyethylamine was fixed on a Bal-resin, and successive
reactionswith 2,2-dimethylmalonyl dichloride and azetidine lead to themalonamide.
Cleavage with trifluoroacetic acid gives rise to the mixed malonamide in high yield
(Scheme 3.40) [83].

N-Acetylazetidines can also be obtained by reaction with carboxylic anhydrides in
the presence of DMAP (Scheme 3.41) [84], by reaction with ester in the presence of
Horse Liver esterase [85], or by reaction with acid activated by reagents such as 1-[(3-
dimethylamino)propyl]-3-ethylcarbodiimide (DMAP) [86] or 1H-1,2,3-benzotriazol-
1-ol (HBTU) derivatives (Scheme 3.41) [87–89].

3.1.4.1.2 Reaction with Aldehydes and Ketones Aldehydes react in the presence of
NaBH3CN in acetic acid to furnish N-alkylazetidines (Scheme 3.42) [90]. Formic acid
was sometimes preferred as the reducing agent [91].
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These N-alkyl azetidines have been also obtained from the corresponding N-acyl
compounds by carbonyl reduction after transformation into thioamides
(Scheme 3.43) [88].

The reaction of (S)-azetidine 2-carboxylic acid with pivaldehyde gives a bicyclic
compound. When this reaction is catalyzed by CF3COOH, a racemic product is
obtained [92]. With trimethylsilyl-trifluoromethanesulfonate as catalyst, though,
racemization was not observed and enantiomerically pure product was obtained
(Scheme 3.44) [93].

The reaction of azetidines with ketones affords the corresponding enamines.
Kinetic studies have shown that these amines aremore reactive than pyrrolidine [94].

3.1.4.1.3 N-Alkylations N-Aryl azetidines can be obtained by the arylation of N-
unsubstituted azetidines with aryl bromide, catalyzed by palladium salts
(Scheme 3.45) [36a].

Another interesting method used the SNAr substitution of the fluorine on
fluoroaryl. These reactions were carried out under sonication of the reactionmixture
(Scheme 3.46) [95].
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An original preparation of (phosphorothioyl)oxycarbonyl azetidine has been
reported by reaction of azetidines with diphenylphosphinothioic chloride [Ph2P(S)
Cl] in the presence of K2CO3. This reaction was greatly improved when carried out
under carbon dioxide in the presence of crown ether (Scheme 3.47) [96].

3.1.4.2 Oxidizing Reactions
Oxidations of azetidin-3-ols into azetidin-3-ones with commonCrO3, Swern or Dess-
Martin reagents have been reported to occur in high yields. No cleavage or degra-
dation of the four-membered ring was noticed [3, 97].

Microbial oxidations of azetidines lead to the formation of azetidin-3-ols
(Scheme 3.48) [98, 99]. Oxidations a of the nitrogen-atom (formation of b-lactams)
have been performed with a RuO2-NaIO4 mixture (Scheme 3.48) [100] and
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KMnO4 [101]. Transformations of azetidin-2-carboxylic acids and esters into of
b-lactams using oxygen have been also reported [102].

3.1.4.3 Reactions with Nucleophiles and Bases
N-ChloroazetidinescanreactwithDBUtofurnishstableazetines (Scheme3.49) [103].
Azetines were also obtained when the leaving group was in the 3-position. The
reaction of 3-mesylazetidines with potassium tbutylate leads to the formation of
azetines that can be transformed by flash-thermolysis into 1-aza-1,3-dienes. By
smooth heating, these later give rise to bicyclic compounds (Scheme 3.50) [104].

The reaction of 3,3-dichloroazetidines with NaOMe or NaH also leads to azetines.
The presence of an aryl substituent at the 2-position seems to increase their
reactivities; subsequent reactions lead, finally, to aziridines (Scheme 3.51) [105].
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Instead of elimination, substitution occurs when 3-arylsulfonate-azetidines are
reactedwith benzylamine (Scheme3.52) [106]. These substitutions, which occurwith
retention of configurations (due to the participation of the ring nitrogen) were also
reported with sodium cyanide [107].

3.1.4.4 Reactions of C-Metallated Azetidines
Lithiation ofmethyl azetidine-2-carboxylate ina of the ester functionhas been carried
out with LiHMDS as base [108].Metallation of the azetidine ring of amethyl azetidin-
2-ylidenecarboxylate with KHMDS is also effective. Subsequent addition of electro-
philes yields 3-substituted azetidines (Scheme 3.53) [109].

Organozinc compounds, formed by the reaction of 3-iodoazetidine with zinc,
couple with aryl chlorides in the presence of palladium salts or with allyl bromide in
the presence of CuCN to give 3-substituted azetidines in satisfactory yields
(Scheme 3.54) [110].

3.1.4.5 Ring Expansions
Ring expansions of azetidines into five-, six- and eight-membered heterocycles
have been reported. Pyrrolidin-2-ones have been isolated during the preparation

N SO2PhPhO2SO

BnNH2, THF, reflux

N SO2PhBnHN

N
MsO

Me

Ph

Ph

NaCN, DMF

N
NC

Me

Ph

Ph81%

41-50%

65 °C, 6 h

Scheme 3.52

N

CO2
tBu

CO2Me
F3C

KHMDS, THF, -78 °C

N

CO2
tBu

CO2Me
F3C

E

then electrophile

68-75%

E = Me, PhCH(OH), 

3,5-F2C6H3CH2

Scheme 3.53

N BocI

 Zn, THF, rt, 0.75 h

then DMA,  RCl, Pd2(dba)3

P(2-furyl)3, 2 h, 80 °C
N BocR

46-63%

R = Ph, 4-CNC6H4, 1-pyridyl,

2-pyridyl, 3-pyridyl, 5-pyrimidyl, allyl

Scheme 3.54

182j 3 Four-Membered Heterocycles: Structure and Reactivity



of azetidin-2-carbonyl chlorides (Scheme 3.55) [111] or 2-(azetidin-3-yl)acetyl
chloride [112].

Imidazolidines can also be obtained by Beckmann rearrangement of 3-(mesylox-
yimino)- or 3-(tosyloxyimino)azetidines (Scheme 3.56) [113].

Heating of 2-(phenylselenyl)methyl azetidines [114], 2-(methanesulfonyl)methy-
lazetidines [115] or 2-(chloromethyl)azetidines (Scheme 3.57) [115] affords pyrroli-
dines in excellent yields. These rearrangements appeared highly diastereoselective.
Ring expansions are also possible by treatment of azetidinium salts with bases [116],
or by reaction of azetidines with cyclic olefins in the presence of Lewis acids [117].

Photochemical rearrangement of 3-benzoylazetidines leads to pyrroles
(Scheme 3.58) [118]. Preparation of pyrroles is also possible by the reaction of 3-
phenoxy (or 3-isopropylidene) 2-thioacetal-azetidines of cis-stereochemistry with
AlEt2Cl (Scheme 3.58) [119]. When the substituents at the 3-position were phenyl or
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methyl groups, the reactions yield pyrrolidines. With cyclic acetals or thioacetals,
bicyclic pyrrolidines are obtained [119].

Another interesting preparation of pyrrolidinones is by the cobalt carbonyl
catalyzed carbonylation of azetidines. The regioselectivity of the CO insertion
depends on the substituent fixed to the nitrogen atom (Scheme 3.59) [120].

2-Hydroxymethylazetidines react with m-chloroperbenzoic acid (mCPBA) to fur-
nish the corresponding N-oxides with high diastereoselectivity. Upon heating, these
N-oxides rearrange quantitatively into the 1,2-oxazinan-6-ol (Scheme 3.60) [121].

Piperidines, formed by [4þ 2] cycloadditions, have been isolated by reaction of
azetidines with methylene-cycloalkanes (Scheme 3.61) [117]. [4þ 2] Cycloadditions
have also been reported in the reaction of azetidines with nitriles (Scheme 3.61) [122].
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Piperidines are also obtained by the reaction of 1,3-butadienyl-azetidines with a
palladium(0) salt. The 1,3-butadienyl entity appears necessary for the rearrangement
(Scheme 3.62) [123].

The reaction of 2-alkenyl-azetidines with cobalt carbonyl leads to azepinones
instead of piperidinones, as in the case of 2-unsaturated substituents (Scheme 3.63,
cf. Scheme 3.59) [120].

Azocanes can be obtained by thermal rearrangement of 1,2-divinylazetidines
(Scheme 3.64) [69].
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3.1.4.6 Cleavage of the Azetidine Ring

3.1.4.6.1 Fragmentation Reactions Flash thermolysis at 900 �C of azetidine gives
ethylene and N-methylenemethanamine [124]. However, heating under less drastic
conditions leads to cleavage of only one of the N–C bonds (Scheme 3.65) [125] to
afford unsaturated amines.

3.1.4.6.2 Reaction with Nucleophilic Reagents Azetidin-2-carboxylic acid deriva-
tives react with thiophenol (pH 8) to afford a mixture of 3-amino-2-phenyl- and 2-
amino-3-phenylthiopropanoic acids [126]. Similarly, 3-hydroxyazetidines can be
cleaved with phenols. These reactions are highly stereospecific if a substituent was
present in the 2-position (Scheme 3.66) [127].

The opening of azetidinium salts with nucleophiles such as NaN3, butylamine or
AcONa has also been examined. The regiochemistry of the cleavage appears to be a
function of the substituents fixed on the azetidine ring (Scheme 3.67) [128].

3.1.4.6.3 Reaction with Electrophilic Reagents The reaction of N-alkylazetidines
with N2O5 gives 1,3-nitroamine-nitrates (Scheme 3.68) [129].

3.1.4.7 Enzymatic Resolutions of Azetidines
Racemic methyl azetidin-2-carboxylate has been resolved using Candida antartica as
lipase in tbutanol saturated with ammonia. Excellent enantiomeric excesses were
obtained for the remaining ester and the amide formed (Scheme 3.69) [130].
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Anazetidinewith high enantiomeric excess has also been obtained by resolution of
a meso-2,4-diol derivative. For a conversion of around 55%, a compound of high
enantiomeric purity could be obtained (Scheme 3.70) [131] using porcine pancreas
lipase (PPL) immobilized on Celite. Under these conditions, resolution of the
racemic trans-2,4-diol gave a mixture of mono- and diacetate of lower enantiomeric
excesses.
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3.2
Oxetanes

3.2.1
Introduction

Oxetanes are four-membered oxygenated cycles. Their carbonyl-substituted analo-
gues are named oxetanones and, in particular, the 2-oxetanone family is commonly
referred as b-lactones (Figure 3.2).

The search for effective enantioselective methods of preparation is now the most
common challenge. Nonetheless, new syntheses are still a topical question due to the
frequent presence of these four-membered cyclic ethers in biologically active sub-
stances. These compounds have aroused much interest by their large range of
reactivities. The ring strain common in both the oxetane and the oxetanone cycles
causes significant susceptibility to thermal cleavage. The basicity of the ring oxygen
makes the oxetanes sensitive to electrophile reagents and/or consequently to
nucleophilic attacks at carbon. Oxetanes can be subject to polymerization. The 2-
oxetanones mainly undergo nucleophilic addition at the carbonyl carbon, with or
without electrophilic catalysis.

3.2.2
Physicochemical Data

Microwave, electron diffraction and X-ray diffraction methods have permitted a
precise determination of bond lengths and angles in several oxetanes [132]. Table 3.1
reports the bond lengths and angles of oxetane and 2-oxetanone.

Notably, the C�O bond is longer than in other types of compounds: (Csp3�O¼
1.41A

�
). The oxetane ring may be either coplanar or puckered, depending on the

substituents present. A rocking motion allows the substituents to attain a less

O O
O

oxetane 2-oxetanone

Figure 3.2 Four-membered oxygenated heterocycles.

Table 3.1 Bond lengths and angles of oxetane and 2-oxetanone.

Bond Oxetane (A
�
) 2-Oxetanone (A

�
)

O
1

2

3

4

C4�O1 1.449 1.45

O
O

1

2
3

4

C3�C4 1.549 1.53
C2�O1�C4 91.8� 89�

C2�C3�C4 84.55� 83�
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hindered conformation but is opposed by the resulting increase in bond angle
deformation. The 2-oxetanone having a carbonyl group in place of amethylene group
is strictly planar.

3.2.2.1 NMR Data
The protonNMR spectroscopy of oxetanes is largely understood [132]. Table 3.2 gives
the chemical shifts of various compounds in deuterochloroform. A substituent can
have special effects on the proton chemical shifts due to their proximity in the small
ring. This could be also induced by changes in the puckering of the ring.

Table 3.3 gives some representative 13C chemical shifts relative to TMS in
deuterochloroform [133].

17O NMR spectra of oxetanes and 2-oxetanones referenced to water show values of
�13 ppm for the oxetane ether O and 347 ppm (C¼O) and 241 ppm (ether O) for the
two oxygens in 2-oxetanone [133].

3.2.2.2 Infrared Spectroscopy
A strong absorption band at about 980 cm�1 is characteristic of oxetane [132]. The far-
IR spectrum of oxetane has been obtained at 205K. The band of ring puckering
transitionwas assigned at 52.92 cm�1. 2-Oxetanones present an intense absorption at
1840–1820 cm�1 due to carbonyl stretching.

3.2.3
Natural or Bioactive Compounds

The oxetane ring appears in some biologically active compounds. We report in
this chapter some representative examples. Taxol 12, isolated from Taxus brevifolia
and its derivative the taxotere, is an important drug in cancer chemotherapy [134].

Table 3.2 Chemical shifts of various compounds in deuteriochloroform.

HA HB HC HD HE HF (ppm)

OF

E
D

C

B

A

Oxetane 4.73 4.73 2.72 2.72 4.73 4.73
2-Me-oxetane 1.35(Me) 4.85 2.24 2.63 4.37 4.49
4-Me-oxetanone 1.53(Me) 4.57 2.98 3.50 — —

Table 3.3 Representative 13C chemical shifts relative to TMS in deuterochloroform.

C2 C3 C4 Me

O
1

2

3

4

Oxetane 72.8 23.1 72.8 —

2-Me-oxetane 78.3 29.0 66.6 24.1
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Montanin D (13) has antifeedant activity. This substance has been extracted from the
plant Teucrium tomentosum [135].

(�)-Tetrahydrolipstatin (14) is a triglyceride mimic, an analogue of lisptatin
isolated from Streptomyces toxytricimi. It is a potent and irreversible inhibitor of
pancreatic lipase, used as an antiobesity agent under the name Xenical [136]. The
antibiotic oxetanocinA (15) is a fermentation product ofBacillusmegaterium. It is also
known as an anti-HIV compound [137]. Curromycin A (16) is an antibiotic produced
by a genetically modified strain of Streptomyces hygroscopicus [138].

Anisatin 17 and neoanisatin 18 are convulsant principles isolated from the fruits of
the toxic plant Illicium anisatumL [139]. Salinosporamide A (19) is a bioactive product
of a marine microorganism [140].
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3.2.4
Synthesis of Oxetanes and Oxetan-2-ones

3.2.4.1 [2þ 2] Paterno–B€uchi Cyclizations
The [2þ 2] photocycloaddition of carbonyl compounds with alkenes, the Paterno–
B€uchi reaction, is a useful method in organic synthesis. The challenge in this area is
the regio and stereocontrol of the reaction. Bach et al. have reported significant facial
diastereoselectivities in the reaction with silyl enol ethers carrying a chiral substit-
uent. The carbonyl compound is directed to the less shielded face. With large and
polar substituents at the stereogenic center, the facial selectivity leads to diaster-
eomerically pure oxetanes (Scheme 3.71) [141].

Photocycloaddition of chiral N-acyl enamines with benzaldehyde produces the cis-
diastereomers predominantly, with facial diastereomeric excess from 30 to 62%
(Scheme 3.72) [142].

AN-benzylenecarbamate has been irradiated in the presence of various aldehydes.
The cis-diastereoselectivity is always predominant [143]. This method has been
applied to the synthesis of diastereomerically pure 1,2-amino alcohols. A diastereos-
electivity of 62% has been observed in the reaction of benzaldehyde with an
atropisomeric enamide (axial chirality) (Scheme 3.73) [144].
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A high facial diastereoselectivity in the photocyclization of a chiral aromatic
aldehyde and an enamide has been induced by intermolecular hydrogen bonding.
The simple diastereoselectivity led solely to cis-isomers and the facial diastereos-
electivity was 95 : 5, when the reaction was carried out at low temperature in toluene
(Scheme 3.74) [145]. The same reaction with enantiomerically pure aldehyde
produced the oxetane with 95% of enantiomeric excess [146]. Bach et al. have studied
the Paterno–B€uchi reaction with 2,3-dihydropyrrole anda-alkylated enecarbamate as
well [147, 148].

Griesbeck et al. have worked on the photocycloadditions of oxazole with carbonyl
compounds [149]. The 4-unsubstituted 5-methyloxazole gave the cycloadducts with
aromatic or aliphatic aldehydes, in high yield and excellent exo-diastereoselectivities
(98 : 2) (Scheme 3.75). The cycloadducts are precursor of a-amino b-hydroxycar-
boxylic acid esters [150]. The [2þ 2] cycloaddition ofmethyl pyruvate with 4-alkylated
5-methoxyoxazoles led to the exo-adducts with high diastereoselectivity. When the
reaction was run with phenylglyoxylate, oxetanes were formed with moderate
diastereoselectivity (79 : 21) [151]. The same authors also studied the Paterno–B€uchi
reaction of enols with carbonyl compounds [152]. Hydrogen bonding effect has been
explored in the reaction of allylic alcohols [153–155].
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Abe et al. have described the formation of 2-siloxy-2-alkoxyoxetanes, which can
easily lead to aldol-type adducts, by photoreaction of cyclic ketene silyl acetals with 2-
naphthaldehyde (Scheme 3.76) [156].

Reaction of aromatic aldehydes with silyl O,S-ketene acetals produced 3-siloxyox-
etanes with high regioselectivity due to a S-directed approach (Scheme 3.77) [157].
The same group has also studied the reactivity of furan derivatives in the
Paterno–B€uchi reaction [158, 159].

3.2.4.2 Catalyzed [2þ 2] Cyclizations
[2þ 2]Cycloaddition can also be performed in a catalyticmanner.Oxetanes have been
prepared by zirconium(IV) chloride promoted cycloaddition of allylsilane to alde-
hydes (Scheme 3.78). Previous work was limited to activated carbonyl compounds
such as a-ketoesters or a-diketones [160].

Akiyama and Kirino have developed a stereoselective construction of oxetanes by
titanium(IV) chloride promoted [2þ 2] cycloaddition of allylsilane to a-ketoesters.
Best results were obtained with bulky substituents on the silicon and toluene as
solvent. The diastereoselectivity was up to 96% (Scheme 3.79) [161].
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Polyfluorinated oxetanes have been prepared by the reaction between hexafluor-
oacetone and fluorinated ethylenic compounds. The reaction is catalyzed by alu-
minium chlorofluoride as Lewis acid. Hydrofluoroethylenes HXC¼CF2 (X¼H, F,
Cl, Br) led to only one regioisomer (Scheme 3.80) [162].

3.2.4.3 Ring Contraction of Butanolides
Ring contractions of c-lactones into oxetanes have been studied and are used in the
synthesis of oxetin or oxetanocin analogues (Scheme 3.81) [163, 164].

Suzuki and Tomooka have found a new anionic ring contraction reaction. They
obtained oxetanes by treating cyclic acetal systems with an excess of alkyl lithium
(Scheme 3.82) [165]. The four-membered rings are obtained with high diastereo-
isomeric excesses.
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b-Lactones have been obtained by contraction of butanolides via an intramolecular
nucleophilic displacement of an activated group by the carboxylate anion. De Angelis
et al. have produced the total inversion of configuration of the (S)-b-hydroxy-
c-butyrolactone via a b-lactone intermediate. This last product was also presented
as a versatile chiral synthon (Scheme 3.83) [166].

3.2.4.4 Oxirane Ring Opening by Carbanionic Attacks
Mordini et al. have synthesized oxetanes by the isomerization of oxiranes using an
equimolar mixture of butyllithium/diisopropylamine/potassium tert-butoxide
(LIDAKOR) [167]. The reaction occurred when Y is a phenyl or a propargyl group,
and the substituted oxetanes were produced in anti-(2,3)-configurations
(Scheme 3.84) [168].

3.2.4.5 Williamson Reactions
The intramolecular Williamson reaction has often been used for the preparation of
cyclic ethers like oxetanes (Scheme 3.85). This SN2 displacement of a leaving group
(halogen, mesylate, tosylate, etc.) by the alkoxides moiety can be performed
with considerable variation in the choice of base (DBU, KOH, tBuOK, NaHMDS,
etc.) [132, 133]. No recent work has been published about this reaction in particular.

3.2.4.6 Isomerization of Oxiranyl Hydroxyls
Since an epoxy oxygen atom can serve as a good leaving group, the isomerization of
oxiranyl hydroxyls has been used for oxetane preparation in total syntheses
(Scheme 3.86). This reaction can be performed under acidic (BF3�Et2O) or basic
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(KOH) conditions [132, 133]. No new studies of this ring opening reaction have been
published recently.

3.2.4.7 Oxirane Ring Expansions
Oxetanes can be obtained by treating oxiranes with dimethyloxosulfoniummethylide
(Scheme 3.87) [132, 133]. This well-known reaction has not receive renewed interest
in recent years.

3.2.4.8 Electrophilic Cyclizations
This reaction, which can be performed with mild experimental conditions, is often
used in total synthesis. Few methodological studies have been done. Rousseau et al.
have published the preparation of oxetanes via a 4-endo cyclization process on allylic
alcohols [169, 170] and via a 4-exo cyclization process on homoallylic alcohols [171],
using the electrophilic reagent bis(sym-collidine)bromine(I) hexafluorophosphate
(HBB) or hexafluoroantimonate. This reaction was also used to prepare b-lactones
starting from a,b-unsaturated acids (Scheme 3.88) [169].
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3.2.4.9 [2þ 2] Cycloaddition of Ketene and Carbonyl Compounds
The [2þ 2] cycloaddition of ketenes with carbonyl compounds is an expedient way to
substituted b-lactones. Silylketenes are reactant of choice due to their better stability.
Themost common reagent as Lewis acid is BF3�Et2O, but the goal in this area is now
the use of chiral Lewis acid catalysts. Asymmetric [2þ 2] cycloadditions of ketene
with aliphatic aldehydes have been catalyzed by chiral aluminium Lewis acids to
afford optically active 4-substituted oxetan-2-ones inmoderate enantiomeric excesses
(Scheme 3.89) [172].

Romo and Yang have developed Ti-TADDOL catalysts such as 20, which provide
good reactivity andmoderate enantioselectivity (9–80% ee) in the asymmetric [2þ 2]
cycloadditions of silylketenes and aldehydes [173].

The same group has also employed chelation controlled [2þ 2] cycloadditions of
trimethylsilyl ketene to chiral a and b-benzyloxyaldehydes to provide a highly
diastereoselective route to functionalized b-lactones. The Lewis acid MgBr2.Et2O
gave the highest selectivities and yields (Scheme 3.90) [174].
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Yamamoto et al. have disclosed a highly diastereoselective cyclization under the
influence of bulky methyl aluminium bis(4-bromo-2,6-di-tert-butylphenoxide)
(MABR) as Lewis acid (Scheme 3.91) [175]. No trace of the trans isomer could be
detected.

Bis(oxazoline)-Cu(II) complexes have been used by Evans et al. to catalyze the
enantioselective cycloaddition between silylketenes and chelating carbonyl sub-
strates. b-Lactones have been produced in excellent yields and selectivities
(Scheme 3.92) [176].

3.2.4.10 Acyl Halide–Aldehyde Cyclocondensations
The acyl halide–aldehyde cyclocondensation can be classified between the [2þ 2]
cycloaddition of ketenes to carbonyl compounds and the catalyzed aldol-lactonization
reaction. Actually, the reaction can progress via in situ ketene formation or via an
ammonium enolate (Scheme 3.93). This aldol-addition reaction equivalent has
induced much interest, especially in its catalyzed asymmetric version. The use of
tertiary amines as both base to effect dehydrochlorination and nucleophile to
promote the reaction of ketenes and aldehydes has been demonstrated.

Romo and Tennyson have taken their inspiration from the Wynberg proce-
dure [177] for the synthesis of optically active dichlorinated b-lactones via an in situ
generated ketene. Di-chlorinated aldehydes were reacted with acetyl chloride in the
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presence of Hunig�s base and 2mol% of quinidine A (21). Dichlorinated b-lactones
were obtained with 93–98% enantiomeric excesses (Scheme 3.94) [178].

Romo et al. have also investigated an intramolecular aldol-lactonization reaction.
Chiral bicyclic b-lactones have been obtained with high enantiomeric excess from
non-activated aldehydes in the presence of 10mol% of catalyst 21
(Scheme 3.95) [179].
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In a first stage, Nelson et al. have presented an Al(III)-catalyzed acyl halide–alde-
hyde cyclocondensation reaction. A catalytic quantity of Al(SbF6)3 in concert with di
(isopropyl)ethylamine constituted the most successful reaction promoter [180].They
continued with asymmetric cyclocondensations catalyzed by chiral Al(III) triamine
derivatives 22 or 23 [181, 182]. This methodology can be applied to a large range of
aldehydes and to substituted ketenes. 3,4-Disubstitutedb-lactones are accessiblewith
excellent optical purity (Scheme 3.96).

In attempting to expand the scope of Wynberg�s original ketene–aldehyde
cycloadditions, Nelson et al. have developed a cinchona alkaloid–Lewis acid catalyzed
acid chloride–aldehyde cyclocondensation. TheTMSQ/LiClO4 catalyst systemallows
the reaction with a-branched aldehydes or withmethyl ketene. The 3,4-disubstituted
b-lactones are obtained in excellent enantiomeric excess (Scheme 3.97) [183].

3.2.4.11 C–H Insertions
Intramolecular C�H insertion in the catalytic decomposition of diazomalonic esters
has often been used in the preparation of b- and c-lactones. However, this reaction
depends on the substitution pattern of insertion centers and the conformational bias
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of metallocarbenes, leading to a mixture of both b- and c-lactones [184, 185]. Balaji
and Chanda have shown that steric effectsmay play amajor role in the C–Hinsertion
of inactivated a-diazo-a-aroyl esters, catalyzed by rhodium(II) carboxylates. The
reaction of a-diazo-a-benzoyl esters catalyzed by various rhodium carboxylates
yielded b-lactones as the only products (Scheme 3.98) [186].

C�H insertion reactions catalyzed with immobilized dirhodium(II) salt having
mixed chiral ligands have been reported by Doyle et al. They observed that the
enantioselectivity was slightly increased with the most selective azetidinone-ligated
homogeneous catalyst 25 (Scheme 3.99) [187].

3.2.4.12 Carbonylative Ring Expansion Reactions
Alper et al. have described the carbonylation of epoxides with a new catalyst,
PPNCo(CO)4 [PPN¼bis(triphenylphosphine)iminium], used in conjunctionwith
BF3�Et2O. Carbonylations occurred selectively at the unsubstituted C�O bond of
the epoxide rings. These reactions tolerate various functional groups such as
alkenyls, halides, hydroxyls and alkyl ethers. The b-lactones are obtained in good
yields without polymeric by-products (Scheme 3.100) [188].

Ph O

O O

N2

O
O

Ph
O

H
H

Rh2(OAc)4

CH2Cl2, reflux

55%

Scheme 3.98

O

N2

O O
O

Ph

Me

Me
10 mol% of 24 or 25

CH2Cl2

N

O

O
O

N

CO2Me

O

Rh2

3

71-83%
ee: 33-42%

N

CO2Me

O

4

Rh2

24 25

Scheme 3.99

3.2 Oxetanes j201



Coates et al. have developed three catalyst for the carbonylation of substituted
epoxides: [(salph)Al(THF)2][Co(CO)4] (26) [189], [Cp2Ti(THF)2][Co(CO)4] (27) [190]
and [(TPP)Cr(THF)2][Co(CO)4] [28, withTHFin the axial positions (not shown)] [191].
Catalyst 28 is the most active and selective with a wide range of epoxides.
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3.2.4.13 b-Hydroxy Acid Cyclizations
The cyclization of b-hydroxy acids is largely used in the synthesis of molecules
possessing a b-lactone moiety. This reaction can be executed following an addition–
elimination process or a nucleophilic substitution process [132, 133]. In the
addition–elimination way, Adam�s method (pyridine/ArSO2Cl; Ar¼Ph, 4-MePh,
4-NO2Ph) [192] is the most commonly used, but different reactants can also activate
the carboxylic acid, such as Et3N/BOPCl [bis-(2-oxo-3-oxazolidinyl)phosphonic chlo-
ride], DCC/HOBt, EDC/HOBt, etc. The intramolecular nucleophilic substitution can
be pursued by the Mitsunobu reaction (PPh3/DEAD or DMAD) [193].

3.2.5
Reactivity

3.2.5.1 b-Lactones
The reactivity of b-lactones has been already [194]. It can be broken down into four
areas:

. nucleophilic attack with ring opening;

. Lewis acid promoted rearrangement;
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. decarboxylation;

. enolate formation and reaction toward electrophiles.

3.2.5.1.1 Nucleophilic Attacks It has already been demonstrated that the ring
opening of b-lactones can occur through two different pathways. Attack via an
addition–elimination process at the carbonyl residue affords access to b-hydroxy
adducts. A nucleophilic substitution reaction at the C4 atom can produce b-substi-
tuted carboxylic acid derivatives (Scheme 3.101).

Organomagnesium and organolithium reagents attack b-lactones at the carbonyl,
leading to oxygen–acyl cleavage. Organocuprates induce the oxygen alkenyl cleavage.
Ring opening of b-lactone by hetero-nucleophiles has beenmuch studied. Goodman
et al. [195], inspired by Vederas� results [196], have synthesized lanthiomine deri-
vatives by ring opening of a protected serine b-lactone by the thiolate anion ofmethyl
Boc-(S)-cysteinate derivatives (Scheme 3.102).

Palomo et al. [197] have obtained dipeptides by coupling an a-dichloro b-lactone
with (S)-leucine or (S)-phenylalanine and subsequent dechlorination (Scheme
3.103).

Ring opening of b-lactones by hydrazone anions, followed by dehydroamination
cyclizations of the b-ketohydrazone intermediates in the presence of amberlyst-15
acid resin, yields dihydropyrones (Scheme 3.104) [198].
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Nelson et al. [199] have demonstrated that primary and secondary amines promote
a ring opening by addition–elimination to deliver b-hydroxyamides (Scheme 3.105).
Sodium azide reacts in an SN2 manner to produce b-azido acids, and sulfonamide
anions give rise to b-amino acids.

Acylation of aromatic compoundswith chiral b-trichloromethyl b-propiolactone in
the presence of Lewis acid has been investigated by Fujisawa et al. [200]. The
Friedel–Crafts products retain completely the stereochemical integrity of the starting
b-lactone. This method has been applied to the synthesis of a precursor of enalapril,
an angiotensin converting enzyme (ACE) inhibitor (Scheme 3.106).

The utility of b-lactones as intermediates for asymmetric synthesis has been
limited by the difficulty for their preparation in enantiomerically pure form. Nelson
and Spencer [201] have examined enzymatic resolution for the preparation of
enantiomerically enriched b-lactones (Scheme 3.107). This method allows the
preparation of 4-substituted b-propiolactones with high enantiomeric excesses
simultaneously with enantiomerically enriched b-hydroxy esters.
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3.2.5.1.2 Lewis Acid Promoted Rearrangements Ring expansion of b-lactones to
afford c-lactones can be performedwith various Lewis acids, p.TsOH,ZnCl2, BF3.OEt
or Ti(O-iPr)4. The best catalyst appears to be MgBr2 (Scheme 3.108) [202].

This dyotropic rearrangement involves simultaneous positional interchange of
two adjacent atoms having an anti-coplanar stereochemistry relationship. Inversion
of stereochemistry at C4 atom is always observed [203]. Black et al. have prepared
spiro [204] and cis-fused c-lactones (Scheme 3.109) [205] via such b-lactones
rearrangements. b-Elimination can occur in place of rearrangement when the C4
atom is tertiary [206].

3.2.5.1.3 Decarboxylations The thermal decomposition of b-lactones into alkenes
takes place between 80 and 160 �C. The reaction is a stereospecific cis-elimination:
cis-disubstituted b-lactones lead to a (Z)-olefins whereas trans-disubstituted b-lac-
tones lead to (E)-olefins. These reactions can be regarded as alternative to Wittig
reactions. Dolbier et al. have used this method to synthesize 1,1-difluoroalkenes via
a,a-difluoro-b-lactones (Scheme 3.110) [207, 208].
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Adam et al. [209] have obtained allyl amines and sulfides by conjugate addition of
amine and thiol nucleophiles to a-methylene b-lactones and subsequent decarbox-
ylation (Scheme 3.111).

With the same strategy the conjugate addition of ester and ketone enolates to
a-methylene b-lactones followed by decarboxylation leads to c,d–unsaturated esters
with complete stereoselectivity (Scheme 3.112) [210].

3.2.5.1.4 Enolate Formation and Reaction Towards Electrophiles The enolate of
b-lactones can be generated by treatment with lithium diisopropylamide and trapped
with various electrophiles such as alkyl-, allyl- or propargyl halides, aldehydes,
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dimethylmaleate, etc. Diastereoselective reactions take place when oxetan-2-ones are
b-substituted, leading to the trans-disubstituted products (Scheme 3.113) [194].

As the alkylation of b-lactones unsubstituted at the a-position leads to low yields, a
desilylation–alkylation method has been introduced by Mead et al. [211]. Kocienski
et al. have used this modified procedure, in the synthesis of the hypocholesterolemic
agent 1233A, to introduce a hydroxymethyl group a to the carbonyl, via the tetra-
butylammonium enolate of a b-lactone (Scheme 3.114) [212].

3.2.5.1.5 Polymerization of b-Lactones Polymerization of b-lactones has aroused
interest as biodegradable polymer products can be applied in biomedical applica-
tions [213–215]. Pohl et al. [216] have synthesized chiral polyesters by protic acid-
catalyzed polymerization of b-lactones. A stereogenic site repeated in eachmolecular
unit can change the polymer properties, in comparison with the racemic polymers
(Scheme 3.115).

3.2.5.1.6 Miscellaneous Methyl ketene dimer has been used to prepare b-ketoe-
sters or b-ketoamides by nucleophilic attack on the carbonyl function by lithium
amides or amines (Scheme 3.116) [217].
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3.2.5.2 Oxetanes

3.2.5.2.1 Nucleophilic Attacks Two positions (C2 and C4) in the oxetane are
amenable to nucleophilic attack. Bach et al. [218] have studied intramolecular ring
opening reactions of 2-phenyl-3-oxetanols. They have obtained tetrahydropyrans,
thiotetrahydropyrans or piperidines by anionic attack at the C4 carbon atom of a
heteroatom attached at the C3 position via an alkyl or aryl chain (Scheme 3.117).

A second ring-opening reaction proceeds by attack at the C2 position upon
activation by acid reagents. Boc-protected 3-oxetanols have been transformed into
cyclic carbonates as a mixture of diastereomers (Scheme 3.118) [218].
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Howell and Hashemzadeh [219] have carried out reductive cleavage of 3,3-
dimethyl-2-methylene-4-phenyl oxetane with lithium and 4,40-di-tert-butylbiphenyl
(DTBB). The resulting dianion reacts with aldehydes and ketones to give aldol
adducts (Scheme 3.119).

The ring opening of oxetanes by samarium diiodide and acyl chloride has been
investigated, but the regioselectivity was not always satisfactory. In general, amixture
of iodo products was obtained. In the particular case of 2-phenyloxetane, only the
deiodinated product was isolated (Scheme 3.120) [220].

Kellogg et al. [221] have studied the acid catalyzed ring opening reactions of
optically pure 2-aryl-3,3-dimethyloxetanes. The aqueous or alcoholic sulfuric acid
catalyzed ring opening reaction occurs at the benzylic position with partial inversion
of configuration (Scheme 3.121).
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Lewis acid catalyzed nucleophilic ring opening with alkyl lithiums or lithium
thiolates occurs at the less hindered carbon with preservation of the stereochemical
integrity. Benzyl alcohols are obtained in enantiomerically pure form, with good
yields (Scheme 3.122) [221]. Grignard reagents or amines with or without acid
catalyst were not successful in the ring opening.

Bach et al. [222] have shown that substituted oxetane rings could be opened at the
more hindered carbon with LiAlH4. To induce this regioselectivity they attached a
hydroxyl group at the arene C2 substituent (Scheme 3.123).
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3.2.5.2.2 Ring Expansions Nozaki andNoyorifirst reported in 1966 the asymmetric
ring expansion of oxetanes to tetrahydrofurans using chiral copper catalyst
(Scheme 3.124) [223].

Katzuki has established that this copper-catalyzed reaction proceeds with good
stereoselectivity in the presence of bipyridine ligands [224]. Reaction of 2-aryl
substituted oxetanes with tert-butyl diazoacetate in the presence of a chiral Cu
complex furnishes 2,3-disubstituted furan derivatives with high enantiomeric
excesses (Scheme 3.125).

This enantiospecific ring expansion method has been applied to formal syntheses
of the natural products (�)-avenaciolide (29) and (�)-isoavenaciolide (30).
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Fu et al. [225] have explored this reactionwith aCu(I) bisazaferrocene catalyst. Both
trans- and cis-disubstituted tetrahydrofurans with good enantiomeric excesses are
obtained when (R,R) or (S,S) catalysts 31 are used respectively (Scheme 3.126).

An unusual ring expansion of 2-methyleneoxetane has been observed by Howell
et al. [226] in the presence of lithium and 4,40-di-tert-butylbiphenyl (Scheme 3.127).
The resulting lactone was postulated to arise from a coupling between a radical
enolate derived from 2-methyleneoxetane and the acetaldehyde enolate, a decom-
position product of THF.

Hara et al. [227] have focused on the stereoselective synthesis of fluorinated cyclic
ethers, since their derivatives seemed to be involved in biochemical mechanisms.
They have reported the ring expansion of oxetanes using 4-iodotoluene difluoride.
Fluorinated furanswere obtained in good yield and as a single stereoisomer from2,4-
substituted oxetanes (Scheme 3.128).
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3.2.5.2.3 2-Methylene Oxetanes Ring Openings Howell et al. [228] have worked on
2-methyleneoxetane derivatives. This ring system contains several potential reactive
features: the ring strain, an exocyclic double bond, electron-rich enol ether and a
latent enolate leaving group. They demonstrated that 2-methyleneoxetanes under-
went regioselective ring opening at the C2 position when treated with trimethyla-
luminiumand either phenyl- or butyllithium. The homopropargylic alcohol was then
isolated as a single product in good yield. The reaction in the presence of LDA, the
additive was not necessary (Scheme 3.129).

The same group then achieved nucleophilic ring opening of 2-methyleneoxetanes
at C4 [229]. Stabilized carbanionic nucleophiles and heteroatom nucleophiles
provided C4 ring opening, leading to b-functionalized ketones (Scheme 3.130).

3.2.5.2.4 Thermolysis and Photolysis Thermolysis of oxetane derivatives can lead to
multiple products from unsymmetrically substituted rings. The lack of regioselec-
tivity has been attributed to similar bond dissociation energies for the carbon–carbon
and carbon–oxygen bonds (Scheme 3.131) [132, 133].

Photolytic fragmentation of oxetane is the formal reverse of the Paterno–B€uchi
reaction. This reaction has attracted some interest as it appears to be involved in the
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photoenzymatic repair of the (6–4) photoproducts of DNA dipyrimidine sites by the
enzyme photolyase [230].

3.2.5.2.5 Polymerizations Kakuchi et al. [231] have prepared a fused 15-crown-4
polymer, a novel ladder polymer, by a two-step polymerization of an oxetanyl oxirane.
This polymer showed metal cation binding properties (Scheme 3.132).

3.3
Thietanes

3.3.1
Introduction

Thietanes have received much less attention than azetidines and oxetanes. Some
reviewshave, though, been published on their chemistry [232–234]. The ring strain of
thietane (80 kJmol�1) is comparable to that of thiirane (three-membered ring). This
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explains their difficult formation by ring closure and, conversely, their easy cleavage
by electrophilic and nucleophilic reagents.

3.3.2
Physicochemical Data

Conformations of 3-substituted thietanes 1-oxide have been studied [235]. Ab initio
SCF calculations (G-31G� level) of thietanes examined the change of C–C bond
lengths and angular deformations [236] compared to sulfur heterocycles of higher
ring sizes. Calculations on the reaction of thietane with NH3 explained the greater
reactivity of this compound compared to oxetane [237]. Calculations concerning the
ring closure of HS(CH2)3S- to thietane were also reported [238].

Details concerning the NMR spectroscopy of thietane derivatives have been
reported in previous reviews [232, 233]. The a-protons of thietane appear at d
3.21 ppm (4.09 for thietane 1,1-dioxide). The 13C NMR chemical shifts have been
reported to be at 25 ppm for thea-carbons and 27 ppm for theb-carbon. Thea-carbon
shifts in thietanes appear in general at higher field than those of the b-carbon [233].
The 33S NMR spectra of thietane, thietane 1-oxide and thietane 1,1-dioxide have been
recorded [239]. In mass spectra, the main fragmentation includes retro [2þ 2]
cycloaddition for thietanes, thiolactones and iminothietanes, and loss of, respectively,
SO and SO2 for thietane 1-oxides and thietane 1,1-dioxides [232].

3.3.3
Natural and Bioactive Compounds

Mono and dialkyl thietanes 32–35 have been detected in anal gland secretions of
small mammals (ferrets, polecats, stoats, minks, weasels, kiores, voles, etc.).
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3.3.4
Synthesis of Thietanes

3.3.4.1 Synthesis by Formation of a S–C Bond

3.3.4.1.1 Formation from 3-Halo Thiol Derivatives The reaction of S-benzyl-N-
phthaloylcysteinyl chloride with two equivalents of AlCl3 affords the corresponding
thiolactone (Scheme 3.133) [241]. Similar result was obtained for the free thiol
function.

Intramolecular reaction of thiolate, generated by base cleavage of thioacetate, on a
secondary bromide leads to a bridged thietane [242] (Scheme 3.134). This approach to
thietanes has been little studied.

3.3.4.1.2 Formation from 3-Hydroxy Thiol Derivatives Cyclization of 4-thio-4-
methylbutanol into 2,2-dimethylthietane occurs in high yield when diethoxytriphe-
nylphosphorane is used as reagent (Scheme 3.135) [243].

Sulfur analogues of thromboxane A2 are obtained when the alcohol function is
activated as mesylate [244] (Scheme 3.136). Nucleoside derivatives have also been
obtained by a similar procedure [245].

Flash vacuum pyrolysis (500–750 �C) of (2-mercaptophenyl)methanol derivatives
leads to the formation of thietanes, generally in good yields. For example, heating at
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750 �C of (3,6-dimercapto-1,2-phenylene)dimethanol furnishes 4,9-dithiatricyclo
[6.2.0.02,5]deca-1,5,7-triene, which appears to be stable under 90 �C
(Scheme 3.137) [246].

Such thermal formation of thietanes was shown to be possible when benzotria-
zoles [247] or acids [248] were present as reaction groups instead of alcohol functions
(Scheme 3.138).
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Thietan-2-ones are formed by the reaction of 3-mercaptocarboxylic acids with
DCC [249], ibutyl chloroformate [250], methyl chloroformate [251], Ac2O [252],
diethyl cyanophosphonate [253] or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDAC) (Scheme 3.139) [254].

An original preparation of thietan-2-one has also been reported: the reaction of 3-
iodopropanoyl chloride with an ammonium tetrathiomolybdate salt
(Scheme 3.140) [255].

3.3.4.1.3 Formation from Other 3-Functionalized Thiol Derivatives a-Bromomethyl
thioesters react with cobalt oximes to give the corresponding organocobalt com-
pounds that, under photolysis, afford thietanes. This method appears synthetically
useful only for the structure reported in Scheme 3.141 [256].
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Reaction of ethyl 2-mercaptoacetate with LDA followed by addition of a dichlor-
odiimine gives a 2,3-diiminothietane derivative (Scheme 3.142) [257]. When the R
groups fixed at the nitrogen atoms were phenyl or 4-methoxyphenyl, the 2,3-
diiminothietanes were not isolated, due to their ring opening in the reactionmixture.

1,4-Addition of O,O-diethyl hydrogen dithiophosphate on the carbon–carbon
double bond of chalcones affords a compound that then, under microwave irradi-
ation in the presence of nucleophiles, gives thietanes (Scheme 3.143) [258]. This
reactionwas previously reported to occur byheating in thepresence of aNaH–NaBH4

mixture [259].

5-Substituted 2-thiooxoimidazolidin-4-ones react with sodium tert-butylate to yield
bicyclothietenes (Scheme 3.144) [260].

Thietanes are rarely formed by electrophile-induced cyclizations of unsaturated
sulfides [261]. A thietane is obtained in mixture with other products by reaction of a
c-unsaturated thiol with bromine (Scheme 3.145). Utilization of the corresponding
disulfide allowed exclusive formation of the expected thietane [262].
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The dianion of 1-(prop-2-ynyl)benzene reacts with phenyl thioisocyanate to give a
thioimidate that, by reaction with potassium tbutylate, leads to the formation of a
thietane (Scheme 3.146) [263].

An efficient preparation of thietanes in two steps occurs by reaction of 1,3-diols
with dibenzoxazol-2-yl disulfide and tributylphosphine, followed by treatment of the
resulting 2-(3-hydroxyalkylthio)benzoxazoles with KH (Scheme 3.147) [264]. The
thio-Mitsunobu reaction applied to thioamides gives rise to the formation of
a-iminothietanes (Scheme 3.147) [265].
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The formation of thietanes is also possible by electroreduction in the presence of
Ni(II) salem as catalyst (Scheme 3.148) [266].

3.3.4.2 Synthesis by Formation of a C–C Bond
Under phase transfer catalysis conditions, 1-bromomethylsulfonyl-2-phenylethane
affords, in the presence of sodium hydroxide, 2-phenylthietane-1,1-dioxide, via
intramolecular cyclization of the benzyl anion. The Ramberg–B€acklund product is
not observed (Scheme 3.149) [267].

Thietanols can be formed by fluoride-mediated cyclization of (Z)-a-silyl vinylsul-
fides (Scheme 3.150) [268].

3.3.4.3 Synthesis by Formation of Two S–C Bonds
The oldest method for the preparation of thietanes involves the reaction of 1,3-
dihalides with sodium sulfide. Numerous conditions have been studied [232, 233].
Excellent results have been reported for phase transfer conditions
(Scheme 3.151) [269]. A spiro thietane is formed upon reaction of a 1,3-dibromo
derivative with Na2S in DMF [270].
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Derivatives of 1,3-diol benzoates (Scheme 3.152) [271], mesylates [272] and
tosylates (Scheme 3.152) [273] were also efficient in these preparations.

1,3-Diols protected as carbonates can also lead to thietanes by reaction with KSCN
at high temperature. This method has been reported for the preparation of (S)-2-
propylthietane, which is a natural product (Section 3.3.3) (Scheme 3.153) [274]. This
procedure was usedmore recently in the case of a 1,2,3-propane triol derivative [275].
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Reactions of b-halo epoxides with different sulfur reagents give rise to 3-thietanols
in good yields. The first sulfur reagent used was H2S in the presence of sodium
ethoxide (Scheme 3.154) [276], or Ba(OH)2 [277].

Reactions of Li2S [278] and benzyltriethylammonium tetrathiomolybdate [279],
ammonium thiocarbamates (Scheme 3.155) [280] and thioacetate [281] with
b-halooxiranes are very efficient.

Thiols react with epichlorohydrin to give the corresponding addition products,
which are then transformed into thietanes when reacted with sodium methoxide
(Scheme 3.156) [282].

The formation of thietanes by reaction of c-hydroxyoxiranes with potassium
thiocyanate has been also reported (Scheme 3.157) [283].

Thietanes can also be formed by radical addition of dimethyl disulfide on 1,3-
dienes, by heating in the presence of iodine (Scheme 3.158) [284].

Electrophilic addition of SCl2 [285], amixture of POCl3 (or POBr3)/thiobismorpho-
line [286] or SO2 (Scheme 3.159) [287] with norbornadiene produces thietane
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derivatives. The reaction of SCl2 with d-diketones leads to thietanes in good yields
(Scheme 3.159) [288].

3.3.4.4 Synthesis from Other Sulfur Heterocycles

3.3.4.4.1 Formation from Thiirane Derivatives The reaction of 2-(chloromethyl)
thiirane with sodium acetate gives the corresponding thietane in 82% yield [289].
Similar ring expansionswere reportedusing ammonium thiocyanate (Scheme3.160)
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[290], sulfonamides [291] and phenates [291], or from (thiiran-2-yl)methanol under
the conditions of the Mitsunobu reaction [292]. Addition of allyl lithium compounds
with thiiranes gives rise to thietanes in good yields (Scheme 3.160) [293].

An optically active thiirane has been transformed into a thietane, without epimer-
ization of the chiral centers, in two steps by reaction with silver acetate followed by
cyclization of the resultant 3-mercaptoacetal by camphor sulfonic acid (CSA)
(Scheme 3.161) [294].

Iminothiiranes react with isocyanates to afford 2,4-diiminothietanes
(Scheme 3.162) [295]. This rearrangement of thiiranes into thietanes has also been
reported during the reaction of diphenyl diazomethanewith acyl isothiocyanate [296].

3.3.4.4.2 Formation from Thiolanes and Derivatives 3-Chlorotetrahydro-2-
methylthiophene reacts with water to give the 2-substituted thietane
(Scheme 3.163) [297]. This reaction is reversible, since under acidic conditions
(HCl) the tetrahydrothiophene was reformed.
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4-Diazodihydrothiophen-3(2H)-one derivatives undergo ring contraction to thie-
tan-2-ones upon heating in isooctane [298], irradiation in an alcohol [299] or in the
presence of rhodium diacetate (Scheme 3.164) [300].

Flash-thermolysis of benzothiophen-2(3H)-one (Scheme 3.165; X¼ 2H) [299] or
benzothiophen-2,3-dione (Scheme 3.165: X¼O) [301] gives rise to the correspond-
ing thietanes in excellent yields.

Treatment of a 4-thiofuranose derivatives with diethylaminosulfur trifluoride
(DAST) leads to the formation of the ring contraction product (Scheme 3.166) [302].

Rearrangement of thiazolotriazoliums, formed by electrophilic addition of bromine
on3-methallylthiotriazoles in basic conditions, affords thietanes (Scheme3.167) [303].
The same rearrangement was observed with benzimidazole, benzothiazole and
imidazole derivatives.
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Monodesulfurization of 1,2-dithiolanone with triphenylphosphine or tris(diethy-
lamino)phosphine gives the thietanone in medium yields (Scheme 3.168) [304]. An
attempt to use this method for the preparation of optically active thietanes was
unsuccessful [305].

Reaction of benzyne with a thiophen-2,4-dithione gives a 2-thioacetal thietane in
good yield (Scheme 3.169) [306].

3.3.4.4.3 Formation for Thiopyranes and Higher Ring Size Thio Heterocycles Irradi-
ation at low temperature of a 1,3-oxathian-6-one has been reported to lead to an
unstable thianone, which leads to the formation of a dimer at room temperature
(Scheme 3.170) [301].

CO2 is extruded during the flash-thermolysis of 1,3-oxathian-2-ones, affording
thietanes that have been isolated in good yields (Scheme 3.171) [307].
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Ultraviolet irradiation of 1-aza-8-thiacylo[4.2.1]non-2,4-diene-8,8-dioxide yields an
unusual tricyclic compound (Scheme 3.172) [308].

3.3.4.5 Synthesis by [2þ 2] Cycloaddition
Photochemical cycloadditions of thiones with unsaturated compounds have received
considerable attention. Aromatic, aliphatic and a,b-unsaturated thioketones react as
well with electron-poor rather than electron-rich olefins [232–234]. The more recent
result concerns the reaction of silyl thioketones, which can be seen as an equivalent of
thioaldehydes, with olefins. Irradiation of phenyl triphenylsilyl thioketone in acry-
lonitrile, methyl acrylate and cis- or trans-1,2-dichloroethene give the silylthietanes
with high regio- and stereoselectivity (Scheme 3.173) [309]. Lower yields and
selectivities are observed during the reaction with vinyl ether. Subsequent protio-
desilylation reactions take place with predominant inversion of configuration at the
carbon bearing the silicon group. The intramolecular cyclization of thiones was
reported to be very efficient (Scheme 3.173) [310].

Photochemical additions of olefins on the thiocarbonyl function of thioxo-3,4-
dihydroisoquinolinones (Scheme 3.174) [311], benzooxazole-2-thione [312] and 5-
thioxopyrrolidinones (Scheme3.174) [313] have been reported. [2þ 2]Cycloadditions
of thiopivalophenones were also reported by reaction with benzyne
(Scheme 3.175) [314].
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Intramolecular cyclizations of unsaturated N-ethanethioylacetamide derivatives
have also furnish tricyclic thietanes (Scheme 3.176) [315]. Cycloaddition of 2,4-
dioxopenta-3-thione with allyltributyltin occurs at room temperature [316].

Thietene-1,1-dioxides, which are precursors of thietanes, can be obtained by
reaction of enamineswithmethanesulfonyl chloride in the presence of triethylamine
(Scheme 3.177) [317]. Cycloadditions of acrylates with alkyl(chlorosulfonyl)acetate
was reported to lead to 2-carboxylate thietanes [318].
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3.3.4.6 Synthesis by Miscellaneous Methods
Isomerization of cyclobutane-1,3-dithiones into thietanones occurs in the presence
of strong bases [319]. Utilization of tetrabutylammonium fluoride, allows a trans-
formation under milder conditions (Scheme 3.178) [320]. The same product is
obtained by reaction of the cyclobutane-1,3-dione with P4S10 at reflux in
pyridine [321].

Isoxazolidine-3-thiones react with ZnI2 in chloroform to give 2-iminothietanes
(Scheme 3.179) [322].

An interesting preparation of thietan-1-oxides involves the reaction of tbutyl sulfide
with peroxydodecanoic acid (Scheme 3.180). Mixtures of diastereomers were
obtained [323].
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3.3.5
Reactivity and Useful Reactions

3.3.5.1 Reactions with Electrophilic Reagents
Thietanes react with ethyl diazoacetate [324] or diethyl diazomalonate [325] in
the presence of rhodium acetate to give ring expansion products. When the carbenes
are generated from diaziridines, ring-opening compounds are obtained
(Scheme 3.181) [326].

The reaction of 2- or 3-substituted thietanes with cobalt or ruthenium carbonyl
[Co2(CO)8 or Ru3(CO)12] produces dihydrothiophenones in good yields [327]. More
recently, it has been shown that platinum salts can catalyze this CO insertion
(Scheme 3.182) [328]. However, these reactions were not observed with 2,4-disub-
stituted thietanes.

Thietanes undergo ring opening by reaction with chloro reagents [232]. However,
mono- or di-chlorinations and brominations of thietane-1,1-dioxides occur easily
on C3 by irradiation [329]. 2-Iodination has also been reported by reaction with
butyllithium, followed by addition of triethylaluminium and iodine (Scheme 3.183)
[330].

3.3.5.2 Reactions with Oxidizing Agents
Oxidations of thietanes to thietanes-1-oxides and thietane-1,1-dioxides have been
reported with the reagents generally used in the case of dialkyl sulfides: KMnO4,
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mCPBA, NaIO4, H2O2 in CH3COOH or in presence of WO3-H2O, CrO3 [232, 233].
Other reagents have been testedwith success, such as cat. OsO4-4-methylmorpholine
N-oxide [331], 2-(phenylsulfonyl)-3-phenyl-oxaziridine [332], monoperphthalic
acid [333], tpentyl hydroperoxide in the presence of MoCl5 [334], oxone (Scheme
3.184) [309b] or 1-butyl-4-aza-1-azoniabicyclo[2.2.2]octane dichromate [335].

The diastereoselectivity of the formation of thietane-1-oxides from thietanes has
been examined using mCPBA [336]. Better selectivities have been reported using
H2O2 in the presence of TiCl3 (Scheme 3.185) [337].

The potassium enolate of a thietan-2-one reacts withMoO5 to give the correspond-
ing a-hydroxythietanone (Scheme 3.186) [253].
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3.3.5.3 Reactions with Nucleophilic Reagents
Thietane-1,1-dioxides have been reduced to thietanes by reaction with LiAlH4

(Scheme 3.187) [317]. Reduction of thietane-1-oxides and sulfimides have been
reported with a mixture MeSiCl2-Zn [338].

2-Thietanones react with stabilized phosphoranes to give the corresponding (E)-
and (Z)-2-alkylidenethietanes (Scheme 3.188) [339]. 3-Thietanones are easily trans-
formed into the corresponding N-hydroxyimines; subsequent reaction with NaBH4

led to 3-aminothietanes (Scheme 3.188) [340].

Additions of nucleophiles or 3-chlorothieten-1,1-dioxide affords products without
cleavage of the thietane ring. By reaction of sodium ethanoate the corresponding 3-
acetal was obtained, while with sodium dimethyl malonate, the 3-alkylidenethietane
was formed (Scheme 3.189) [329b].

3.3.5.4 Reactions with Bases
Thietanes are readily opened by reactionwith sodiumhydroxide to give linear sulfurs
or polymerization products, depending on their structure [341]. With 3-hydroxythie-
tane-1-oxides, ketones were obtained (Scheme 3.190).
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Thiiranes have been formed by pyrolysis of lithium salts of hydrazones formed
from thietan-3-ones (Scheme 3.191) [342].

Thietanes react with lithium diphenylphosphine to give the opened products in
modest yields (Scheme 3.192) [275].

Reaction of 2-phenylthietane with 4,40-di-t-butylbiphenyllithium (DTBB-Li) has
been reported to produce a dianion, which can react with electrophiles
(Scheme 3.193) [343]. This reaction was not observed when starting with 2-
methylthietane. With CO2 as electrophile, dihydro-3-phenylthiophen-2(3H)-one was
formed.

Thietane-1-oxides undergo Pummerer rearrangements, when treated with Lewis
acids in the presence of amino bases. This method has been used for the preparation
of thietane nucleosides (Scheme 3.194) [264, 267, 344].

3.3.5.5 Reactions with Metal Complexes and Salts
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were reported for the formation of the 12S3 crown ether (Scheme 3.195) [345]. This
transformation is possible with 2- and 3-methylthietanes and 3,3-dimethylthietanes.
Starting from (R)-2-methylthietane, the corresponding optically active crown ether
has been obtained [346].

Mannosyl iodide reacts with thietane in the presence of MgO to give mainly the
thio b-anomer (Scheme 3.196) [347].

3.3.5.6 Electrocyclic Reactions
Retro [2þ 2] cycloadditions of thietanes occur at high temperature to generate
ethylenic compounds and thioaldehydes. This fragmentation is also possible by
irradiation at low temperature. With thietan-3-one, the formation of ketene has been
detected [2]. These retrocycloadditions were observed for substituted thietanes. For
example, enol ethers are formed during irradiation of 3-alkoxythietanes
(Scheme 3.197) [348]. These reactions also lead to the formation of thioketones or
thioaldehydes.

Irradiations of thietan-2-ones in methanol lead, by Norrish I rearrangements, to
five-membered heterocycles (Scheme 3.198) [349]. Dithiolactones give rise to the
same kind of rearrangements [350].
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2-Iminothietanes can be formed by cycloadditions of keteneimines with diphenyl
thioketone inmethylene chloride. Upon smooth heating, these compounds (R2¼H)
are transformed into unsaturated thioamides (Scheme 3.199) [351].

Benzothiete undergoes, by heating or irradiation, an isomerization into methy-
lenecyclohexadienethione. This compound can be trapped by various dienophiles
(Scheme 3.200) [299]. In the absence of dienophile, a dimer of methylenecyclohex-
adienethione is formed. Reaction of this compound with C60 [352], imines and
diazenes [353] has also been reported.
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3.3.5.7 Cleavage and Other Reactions
Thietane reacts with benzyl bromide in acetonitrile to give the ring cleavage product
(Scheme 3.201) [354].

Mercaptothiolic acids have been formed by the reaction of thietan-2-ones with
H2S [355]. These acids can be transformed into 1,2-dithiolan-3-ones by reaction with
FeCl3 [253, 356] or HIO3 (Scheme 3.202) [357].

2,3-Diiminothietanes react with the dianion of ethyl mercaptoacetate to give
bisthioles, while reaction with dimethyl acetylenedicarboxylate leads to thiopyran
derivatives (Scheme 3.203) [358].

Intramolecular induced ring opening of 2-iminothietanes, in which the imino
group bears a phenol function, occurs by simple heating (Scheme 3.204) [359].

Enzymatic resolution of 3-methylthietan-2-one has been studied in the presence of
lipases. Best results were reported using Pseudomonas cepacia lipase (E> 100)
(Scheme 3.205) [360].
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3.4
Other Four-Membered Heterocycles

3.4.1
Selenetanes

3.4.1.1 Introduction
The chemistry of four-membered heterocyclic compounds containing one selenium
atom has been until recently very little studied. These compounds appear to be stable
enough to be synthesized and their reactivity examined, even if they have a relatively
low thermal stability.

CNDO/2 calculations have been performed to determine the conformation of the
parent compound [361]. Experiment valuesweremeasured by 1H NMR in the case of
3,3-dimethylselenetane complexed by palladium(II) halides [362] IR and Raman
spectra of this compound have been studied and the different vibrations
assigned [363]. 1H and 13C NMR spectra of some selenetanes have been reported.
Chemical shifts of protons and carbons appear comparable to those reported for
thietanes. The 13C-77Se coupling has been used recently as a criterion of formation of
selenetanes, even if the natural abundance of 77Se is only 7% [364]. The X-ray
structure of a selenetane has been reported [365]. In mass spectra, the parent ion
corresponds to the retro [2þ 2] cycloaddition. All ions containing a Se atom are
characteristic due to the particular isotopic abundance of selenium [366].

No natural product containing a selenetane ring has yet been reported. Derivative
37 has been tested as an antiviral compound [367].
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OPh

tBuCH2 Se

37

3.4.1.2 Synthesis of Selenetanes
Although much less studied than thietanes, preparations of these compounds have
often been made by similar methods.

3.4.1.2.1 Synthesis by Formation of Two Se–C Bonds The first attempt to prepare
selenetanes was by the reaction of 1,3-dibromopropane with Na2Se [368]. The
selenetane was not characterized due its easy polymerization. This method was
reinvestigated and applied to the preparation of various selenetanes
(Scheme 3.206) [369]. The parent compound was obtained in low yield (5%). This
approach was recently used in the preparation of nucleosides (Scheme 3.206) [364].

Heating cyclic carbonates at high temperature (170–220 �C) in the presence of
KSeCN gives selenetanes in satisfactory yields (Scheme 3.207) [370].

Reaction of an excess of NaSeH with 2-hydroxy-1,3-dibromopropane gives the
corresponding di-selenoate. This then leads to the formation of 3-hydroxyselenetane
by reaction with NaBH4 or a mixture Hg(CN)2–Na2S (Scheme 3.208) [371]. The
reaction of 2-hydroxy-1,3-dibromopropane with NaSeH under phase transfer con-
ditions has been reported to give 3-hydroxyselenetane in 56% yield [372].
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3-Hydroxyseletanes have also been prepared by the reaction of 2-chlorooxiranes
with Li2Se, prepared in situ (Scheme 3.209) [372]. Utilization of H2Se in the presence
of SnCl4 gives similar results [373]. The oxirane ring opening has been applied to the
preparation of a taxol derivative [374] and nucleosides [375]. Opening of oxiraneswith
the formation of selenetanes is also possible if the leaving group is in the c position
(Scheme 3.209) [376]. 3-Hydroxyselenetane was also obtained by electrochemical
opening of epichlorohydrin in the presence of selenium. The best results were
obtained when the graphite electrode was doped with selenium [377].

Electrophilic addition of SeBr4 to norbornadiene leads to the formation of a 1,1-
dibromoselenetane (Scheme 3.210) [378].

3.4.1.2.2 Synthesis by Formation of One Se–C Bond 3,3-Dimethylselenetane-1,1-
dioxide can be obtained by heating sodium 3-chloro-2,2-dimethylseleninoate
(Scheme 3.211) [369].
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2-Selenoalkenylbenzoimidazole derivatives lead to the formation of selenetanes by
the sequence indicated in Scheme 3.212 [302].

Another interesting preparation of selenetanes uses the reaction of c-seleno
alcohols with KH; good yields were generally obtained (Scheme 3.213) [379].

3.4.1.2.3 Formation by Ring Regression A selenetane has been prepared in low yield
by reaction of a diseleno compound with hexamethylphosphotriamine
(Scheme 3.214) [380]. The 1,3-oxaselenetane derivative was obtained in 72% yield
when the reaction was carried out in the presence of triphenylphosphine.

An attempt to prepare benzoselenete by photolysis of 3-diazobenzoselenophenone
has been reported. A dimer was isolated, the formation of which was postulated to
occur by dimerization of the unstable benzoselenete. Calculations show that benzo-
selenete is 49.5 kcalmol�1 less stable than benzothiete (Scheme 3.215) [381].
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3.4.1.2.4 Formation by Cycloaddition Stable benzoselenetes, characterized by X-ray
crystallography, have been obtained by cycloaddition of sterically hindered seleno
ketones with benzyne (Scheme 3.216) [365].

Benzoselenoaldehyde stabilized as a tungsten complex reacts with enol ethers at
low temperature to give stable selenetanes (Scheme 3.217) [382].

3.4.1.3 Reactivity
The reaction of 3,3-dimethylselenetane with electrophiles such as MeI, Br2, I2,
SO2Cl2 gives ring cleavage products [383]. Additions of nucleophiles to the reaction
mixture allow subsequent reactions. With ozone or hydrogen peroxide, insertions of
an oxygen atom in the four-membered cycle are observed (Scheme 3.218).

Seleno crown ethers have been formed by the reaction of 3,3-dimethylselenetane
with a rhenium carbonyl complex (Scheme 3.219) [384].

Oxidation of 3-hydroxyselenetane with the Dess-Martin reagent gives selenetan-3-
one in quantitative yield [372]. However, this ketone was reported to be highly
instable. In the presence of sodium hydroxymethanesulfonate (Rongalite), 3-phenyl-
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3-hydroxyselenetane leads to the formation 2-phenylallylic alcohol [372]. The reac-
tivity of tungsten-stabilized selenetanes with KSCN and KSeCN has been examined.
In thefirst case a 1,3-selenazinone-2-thione is obtained (Scheme3.220) [385],while in
the second case a 1,2-diselenolane is formed [382b].
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3.4.2
Telluretanes

The chemistry of telluretanes is almost unknown, even though the first attempt to
obtain the parent compound was reported in 1945 [386]. Reaction of 1,3-dibromo-
propane with Na2Te gave, apparently, the unstable tellurane and only a polymer was
isolated duringwork-up of the reaction.A similar reportwasmadeon the reaction of a
tellurate [387]. The reaction of epichlorohydrin derivatives with Na2Te was also
fruitless [372]. However, a telluretane derivative has been reported by reaction of
norbornadiene with TeBr4 (Scheme 3.221) [378].

3.4.3
Phosphetanes

Four-membered phosphorus compounds have been known since 1957. Phosphorus
(III) heterocycles have in general a low stability and are stabilized as P(V) derivatives
(oxides, sulfurs, boranes, etc.). Chiral phosphetane derivatives have been studied as
ligands in catalytic reactions (hydrosilylation, hydrogenation). Their synthesis and
chemistry have been reviewed [388–390]. Chapter 23 of this book is devoted to
phosphorous heterocycles.

3.4.4
Arsetanes

Arsetanes, also called arsacyclobutanes, have beenknown since 1977 [391]. Structural
data on arsetene have been explored by PM3 semi-empirical studies [392]. These few
compounds studied appear moderately stable at room temperature under inert
atmosphere.

The first reported preparation of arsetanes involves reaction of (3-chloropropyl)
iodo-arsines with sodium (Scheme 3.222) [391]. This method was subsequently
modified, and it was reported that the ring closure of (3-chloropropyl)arsines could be
carried out using potassium tert-butylate starting from iron(II) complexes of
arsines [393]. 1-Phenylarsetane has been also prepared, by the reaction of dilithium
phenyl arsenide with 1,3-dichloropropane [393].

An arsetene has been obtained by reaction of a methylenearsorane derivative
complexed by iron with dimethyl fumarate. This arsetene has been characterized by
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spectroscopic analysis and byX-ray diffraction [394]. Similar cycloaddition, leading to
an arsetane, has been reported from fumaronitrile (Scheme 3.223) [395].

An original preparation of an arsetene involves metal exchange between titanium
and arsenium, starting from a titanium cyclobutane derivative (Scheme 3.224) [396].

3.4.5
Siletanes

3.4.5.1 Introduction
Siletanes, also called silacyclobutanes, have been known since 1954 [397]. As this
family of compounds has been reviewed [398], the present chapter focuses on new
aspects of their preparation and reactivity. Siletanes have been studied by numerous
theoretical methods. The geometry of 1,1-dimethylsiletane has been reported using
gas electron diffraction [399]. Ab initio calculations shows that the barrier to
inversion of 1-methylsiletane is comparable to that of methylcyclobutane [400].
NMR (1H, 13C and 32Si), IR and UV spectra of substituted siletanes have been
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reported [398]. In mass spectra, the main fragmentation corresponds to [2þ 2]
retrocycloadditions [398].

3.4.5.2 Preparation of Siletanes

3.4.5.2.1 Preparation from Chlorosilanes Cyclization of 1-chloro-(3-chloropropyl)
silanes by the Wurtz reaction using magnesium is an efficient method to obtain
siletanes (Scheme 3.225) [398]. Utilization of other metals (Li, Na, Na-K alloy) and
electrochemical conditions extend this method [401].

Dichlorosilanes react similarly with 1,3-dimetallic species to form polycyclic
silacyclobutanes (Scheme 3.226) [402].

3.4.5.2.2 Other Intramolecular Cyclizations 1,2-Bissilylalkanes lead,with alkenes, in
the presence of palladium(II) catalyst to the formation of 1,2-bis(organosilyl)alkanes
by the addition of a Si–Si bond across C–C double bonds. With 1,2-bissilylalkenes,
intramolecular additions have been observed that give rise to silacycloalkanes. When
the substituent fixed on one of the silicon atoms is a 3-butenyl chain, siletanes of low
stability were formed by 4-exo cyclizations (Scheme 3.227) [403].

R1 Si Cl

R1

Cl

R2

R3

Mg, Et2O
Si

R1

R1 R2

R3

Scheme 3.225

Li Li
Cl2SiR2

Si

R R

R = 
s
Bu, CH2SiMe3 

44-71%

Et2O, rt

Scheme 3.226

Si
Si

Ph

Me Ph Ph

Me Me

toluene, 35 °C SiSi

Ph Ph

Me

Ph

Me Me

(cis-trans: 16-84)

76%

CNPd(OAc)2,

Scheme 3.227

246j 3 Four-Membered Heterocycles: Structure and Reactivity



Substitutions of silicon by sterically overcrowded substituents allow the prepara-
tion of stable silylenes. When one of the substituents is a silicon aryl substituted
group, simple heating leads to rearrangement of these compounds into siletanes
(Scheme 3.228) [404].

Intramolecular insertion of carbenes intoC–Hbonds is also possible by irradiation
of a-silyl-a-diazoacetates (Scheme 3.229) [405]. If one of the substituents of the silyl
group is an allyl group, a bicyclic silacyclobutane is observed [406].

3.4.5.2.3 [2þ 2] Cycloadditions Reaction of trichlorovinylsilanewith t-butyl lithium
produces, by 1,2 elimination of LiCl, reactive silenes (Si¼C bond). In the presence of
enol ethers, elimination does not take place, and the lithio intermediate undergoes an
addition on the C¼C double bond, leading by 1,4 cyclization to siletanes
(Scheme 3.230) [407].
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3.4.5.2.4 Preparation from Other Heterocyclic Compounds Siliranes (silacyclopro-
panes) react with diazomethane to give siletanes in good yields [408]. These
compounds give rise to similar ring expansions by reaction with isocyanate
(Scheme 3.231) [409]. For monosubstituted silacyclopropanes a good regioselectivity
in the formation of siletane is observed [409b].

Sterically hindered 1,2-disiletanes lead to the formation of silenes by heating at
60–100 �C. When the reaction is carried out in the presence of styrene, a siletane is
formed in excellent yield (Scheme 3.232) [410].

Irradiation of 1,2-disilolane in the presence of isobutene furnishes a stable tricyclic
siletane if one of the substituents fixed on the silicon atoms is a phenyl
(Scheme 3.233) [411]. Irradiation of a sterically hindered 9-silaanthracene in benzene
leads to the formation of a bicyclo[2.2.0] compound of low stability (Scheme
3.233) [412]. On standing at room temperature, the starting anthracene derivative
is reformed.
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3.4.5.3 Reactivity
Pyrolysis or photolysis of siletanes leads to the formation of silenes [413]. Polymer-
ization of silacyclobutanes has also been studied intensively, and compounds with
alternating silicon and trimethylene groups have been obtained [414]. Polymers in
which the siletane unit was introduced have also been reported [415]. The presence of
siletane cycles instead of trialkylsilanes in functionalized compounds increases their
reactivity, allowingmuch easier reactions. For example, reaction of silyl ketene acetals
with carbonyl compounds occurs without any catalyst if a siletane is present
(Scheme 3.234) [416]. This increase in reactivity has also been reported for cross-
coupling reactions of vinyl- and arylsilanes [417].

Silacyclobutanes are opened by the action of nucleophilic and electrophilic
reagents, sometimes with polymerization [398, 414]. This cleavage can be con-
trolled [418, 419]. For example, in the presence of platinum salts and 1 equivalent
of triethylsilane, opening of a benzosiletane occurs cleanly (Scheme 3.235). In the
presence of a catalytic amount of triethylsilane, cyclic oligomers or polymers are
obtained [418].

Insertion of a functionalized chain in one of theC–Hbonds in the 3-position of 1,1-
dimethylsiletane is realized by reaction with diazoacetates in the presence of
rhodium diacetate (Scheme 3.236) [420].
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Reactions of siletanes with carbenoids of type CHX2Li lead to the formation of
silacyclopentane derivatives (Scheme 3.237) [421]. Ring expansions are also observed
by reaction of 1-(1-iodoalkyl)siletanes withMeLi, tBuOK or AgOAc and by reaction of
1-oxiranylsiletanes with MeLi (Scheme 3.237) [422]. The insertion of sulfur in 1,1-
dimethysiletane is very efficient in the presence of KFand crown ethers, giving rise to
1,2-thiasilolanes [423].

Insertion of the carbonyl function of aldehydes in the cycle of siletanes is possible
in the presence of tBuOK [424].With 1,1-diphenyl-3-methylenesiletane, tBuOK is not
necessary and the reaction occurs by simple heating. It was subsequently reported
that this reaction is also possible with aryl ketones (Scheme 3.238) [425].

Insertions of SO2, SO3 and phosphorus ylides similarly lead to six-membered
heterocycles [398]. With acid chlorides and acetylenic compounds, these insertions
occur only in the presence of palladium(II) catalysts (Scheme 3.239) [426, 427].

Insertion of the carbonyl function of CF3COOH into the C�Si bond of 2-
iminosiletanes, instead of the expected hydrolysis, has been reported (Scheme 3.240)
[409b]. In the presence of an aqueous solution of CuSO4, ring opening of these
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substrates is observed. Heating of these 2-iminosiletanes leads to isomerization of
the C�N double bond, to give the corresponding enamines [409b].

The silicon atom of silacyclobutanes has reactivity comparable to that of other
silanes, and is not reported in this chapter. An interesting example concerning the
reactivity of such compounds has been reported. Reactions of 1(c-haloalkoxy)-1-
methylsilacyclobutanes with magnesium leads to the formation of 1-(v-hydroxyalk-
oxy)-1-methylsilacyclobutanes in good yields, by intramolecular Grignard reagent
attack on the silicon atom, followed by alcoholate elimination (Scheme 3.241) [428].
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3.4.6
Germetanes

3.4.6.1 Introduction
The chemistry of germetanes has been less examined than that of siletanes, since the
first report in 1966 [429]. Only limited spectra data are available concerning these
compounds. In the IR spectrum, a vibration at 1120 cm�1 seems characteristic of this
heterocycle [429]. These compounds appear to be stable at room temperature, and the
mechanism of thermal decomposition of 1,1-dimethylgermetane has been exam-
ined. The formation of cyclopropane, propene and 1,2-digermacyclobutane was
observed [430]. The structure of 1,1,3,3-tetramethylgermetane has been studied by
gas electron diffraction and ab initiomolecular orbital calculations (HF/6–31G� and
MP2/6–31G�) [431]. An ab initio study has been made on the mechanism of
formation of germetane by cycloaddition of alkylidenegermylene and ethylene [432].

3.4.6.2 Preparations
The first method reported for the preparation of germetanes consists in the
cyclization of chloro-(3-chloropropyl)germanes with sodium or sodium/potassium
alloy (Scheme 3.242) [429].

In more recent studies, the reaction of 1,1-dichlorogermanes with 1,3-dimetallo
compounds has been preferred [433]. This method has been applied to the prepa-
ration of benzo- [434] and tricyclic germetane derivatives (Scheme 3.243) [435].
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Intermolecular hydrogermanylation has been reported to afford 1,1-dimethylger-
metane [436]. Heating of dihydrogermylprop-2-en-1-ols was reported to give 2-
hydroxygermetanes in low yields, by intramolecular cyclization (Scheme 3.244) [437].

Highly strained germetanes have been obtained by rearrangement of germany-
lenes [438] and ethylenidene germanes (Scheme 3.245) [439].

3.4.6.3 Reactivity
Germatanes react with electrophilic or nucleophilic reagents to give ring cleavage
products. Ring cleavages were reported with halogens, LiAlH4, acids, bases [429],
hydrosilanes (Scheme 3.246) [440], phenylphosphinidene [441] and alcohols [442].
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Heating at 160 �C of 1,1-dimethylgermetane leads to formation of a polymer [436],
while irradiation of 1,1-diphenylgermane in cyclohexane gives rise to the 1,3-
digermanocyclobutane derivative (Scheme 3.247) [442].

When heated (250 �C) in the presence of sulfur, an insertion in oneGe–Cbond of a
sulfur atom occurs (Scheme 3.248). The same insertion is observed on heating at
260 �C in the presence of selenium [443]. Comparable insertion was reported with
dichlorocarbene, generated from the Seyferth reagent [444]. Reactions with SO2 and
SO3 led, as with siletanes, to the formation of six-membered heterocycles [445].

3.4.7
Bismetanes and Stibetanes

These four-membered ring compounds are still unknown.
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4
Five-Membered Heterocycles: Pyrrole and Related Systems
Jan Bergman and Tomasz Janosik

4.1
Introduction

The history of pyrrole 1 dates back to 1834, when Runge observed the presence of
a compound that caused red coloration of a wood splinter moistened with mineral
acid, in a fraction obtained through distillation of coal tar. He named the substance
pyrrole [1] – a name maintained by Anderson, who later isolated a pure sample by
distillation of bone oil [2]. Several years later, the correct structure was established by
Baeyer and Emmerling [3]. The biological relevance and intriguing reactivity patterns
of pyrrole derivatives have triggered intense interest in their chemistry, which has
been exhaustively treated in several excellent monographs covering the advances of
most essential aspects of the topic [4–6].

A general review with a practical perspective is included in Science of Synthe-
sis [7]. Annual coverage detailing more recent achievements in synthetic pyrrole
chemistry is provided in Progress in Heterocyclic Chemistry [8], whereas more
comprehensive accounts on structure [9], ring synthesis [10], reactivity [11] and
applications [12] are available in the second edition of Comprehensive Heterocyclic
Chemistry. Since the scope of this chapter does not permit in-depth coverage of
all aspects of pyrrole chemistry, and will be mainly restricted to 1H-pyrroles,
which will hereinafter simply be referred to as pyrroles, readers may also want to
consult the above mentioned reference works. Additional useful accounts
highlighting special topics in pyrrole chemistry are cited in appropriate sections
of this chapter.

4.1.1
Nomenclature

The IUPAC numbering convention for pyrrole (1H-pyrrole) is shown in structure 1,
including the commonly used designation of the 2(5)-positions as a, and the 3(4)-
positions asb. The two remaining conceivable tautomeric forms 1a and 1b are known
as 2H-pyrroles and 3H-pyrroles, respectively. Trivial names are relatively rare in the
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pyrrole series, but are still used for some derivatives of natural origin. The general
IUPAC rules are now generally applied to most pyrrole derivatives. Carbon contain-
ing substituents, such as carboxylic acid, nitrile, aldehyde, but also sulfonic acid, as
well as derivatives thereof, should be incorporated into names as suffixes, although
prefixes, for instance cyano-, may sometimes be encountered. Nomenclature that
applies to special classes of pyrrole derivatives, such as partially saturated systems,
will be evident from appropriate sections of the text.

N
H

1

1

2 ( )

3 ( )4

5
N

1a

2
N

1b

3

4.2
General Reactivity

4.2.1
Relevant Physicochemical Data, Computational Chemistry, and NMR Data

Pyrrole is a colorless liquid [mp�23 �C, bp 130 �C (760 Torr)] that darkens in contact
with air. It has limited water solubility, but is miscible with many common organic
solvents. Although some simple pyrroles are oils, many derivatives with higher
molecular weights are solids. Pyrrole displays weakly acidic properties (pKa¼ 17.25
in aqueous medium [13], 17.51 in aqueous hydroxide solution [14] and 23.05 in
DMSO [15]). The dipolemoment (m) of pyrrole is 1.74� 0.02D,with thenegative pole
directed towards the ring carbon atoms [16].

The planar C2v symmetric molecular structure of pyrrole has been determined
based onmicrowave spectra [16]; Table 4.1 provides selected bond lengths and angles.
Although it has for some time been possible to calculate quite accurate structural
parameters for the structure of pyrrole [9], the increasing level of refinement of
modern theoretical methods has enabled even better estimations. Some represen-

Table 4.1 Selected experimental and calculated bond lengths (A
�
) and angles (�) of pyrrole (1).

N–C2
(A
�
)

C2–C3
(A
�
)

C3–C4
(A
�
)

C2–N–C5
(�)

N–C2–C3
(�)

C2–C3–
C4 (�)

Reference

Experimental 1.370 1.382 1.417 109.8 107.7 107.4 [16]
MM3 1.380 1.382 1.417 110.1 107.1 107.8 [18]
B3P86 1.368 1.374 1.419 109.9 107.6 107.4 [19]
B3LYP/
6-311G(2df,p)

1.370 1.373 1.421 109.8 107.7 107.4 [20]
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tative values are included in Table 4.1. Computational methods involving complex
pyrrole containingmolecules are now commonplace, facilitating for instance studies
of ligand–receptor interactions. The fundamental physicochemical properties of
pyrroles, including the advances in spectroscopic and theoreticalmethods, have been
compiled in several reviews [6, 9, 17].

Asa�p-excessive�five-memberedaromaticheterocyclewithsixp-electrons,pyrrole
displays many features that are usually associated with such systems, such as high
resonance energy, and a tendency to participate in substitution reactions. Both
experimental and theoretical aspects of the aromaticity of pyrroles have been studied
over the years, sometimes arousing controversy; this topic has been reviewed and
discussed in considerable detail. The generally accepted relative aromaticity scale for
the common five-membered heterocycles featuring one heteroatom versus benzene
is: benzene> thiophene> selenophene> pyrrole> tellurophene> furan [21, 22].

Since detailed spectroscopic data, occasionally including complete assignments,
are now included in virtually every research paper devoted to pyrroles, there is an
immense wealth of information available on the subject [6, 9]. The chemical shifts of
the protons attached to the carbon atoms of 1H-pyrroles reflect the aromatic character
of this ring system, typically appearing in the range 5.5–7.8 ppm. Concentration and
solvent dependence accounts for the considerable range of measured values for the
proton attached to the nitrogen atom, which is often observed as a broad, sometimes
even barely discernible peak.

Likewise, much information on 13C NMR spectroscopy on pyrroles has been
collected and evaluated in detail. The 13C resonances of 1H-pyrroles lie in the
aromatic region, and the shifts depend on the electronic effects transferred from the
substituents. Alkyl- [9] or aryl [23] substituents at the nitrogen atomusually have only
limited influence on the ring carbon chemical shifts regardless of their properties,
whereas the presence of electron-withdrawing groups can cause relatively large
downfield shifts of the resonances; the magnitude of this effect increases with the
electron-withdrawing power of the N-substituent [24]. The tetrahedral carbon of 2H-
pyrroles usually resonates at 78–98 ppm, in contrast to its counterpart in 3H-pyrroles,
which appears in the range 49–70 ppm. The resonances originating from the C¼N
carbon in 2H- and 3H-pyrroles appear at 161–185 and 173–191 ppm, respectively [9].

The continuous development of two dimensional NMR experiments, such as
gradient enhanced 15N-HMBC, allows practical measurement of 15N chemical shifts
and 1H�15N couplings in pyrrole derivatives. The 15N chemical shifts of pyrroles fall
in the approximate d range between�186 and�236 ppm, andmay vary considerably
due to influence from the solvent; this should be kept inmind when data recorded in
different media are compared [25].

4.2.2
Fundamental Reactivity Patterns

The propensity of pyrrole to react by electrophilic substitution imparts a dominant
effect on its general reactivity patterns. Pyrrole itself, as well as simple non-
deactivated derivatives thereof, is susceptible to undergo reactions with electrophiles
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predominantly at C2 (a-position). Certain substituted pyrroles will, however, react
with electrophiles selectively at C3, provided that an electron-withdrawing group is
present at the nitrogen or at C2, or when botha-positions are blocked. Consequently,
electrophilic substitution is a very useful tool for elaboration of pyrrole derivatives. An
inspection of the Wheland intermediates resulting from attack on a suitable
electrophile (Eþ ) at C2 (2) or C3 (3) gives an explanation to the preferred C2
substitution pathway observed for simple pyrroles, as the intermediate 2 is stabilized
to a higher degree by more extensive delocalization of the positive charge
(Scheme 4.1). Computational data on the differences in the total energy of pyrrole
and the possible cationic s-complexes formed upon its protonation, performed using
for example the ab initio RHF/6-31G(d) and the DFT B3LYP/6-31G(d) methods [26],
are in coherence with the experimental observations.

The electron rich nature of most pyrroles is further manifested by their reluctance
to participate in nucleophilic substitution reactions. The intrinsically low reactivity of
pyrroles towards nucleophilic regents may, however, be enhanced upon protonation,
or introduction of strongly electron-withdrawing substituents. Synthetically useful
reactions of pyrrolesmay also be performedwith radical reagents, leading to selective
substitution at C2 under special conditions (Section 4.5.7).

Pyrrole reacts readily with strong bases giving the pyrrolyl anion 4 (Scheme 4.2).
This ambident nucleophile is also of considerable synthetic importance, as it allows
introduction of substituents in particular at the nitrogen atom, but also at the
carbon atoms. In contrast, pyrroles possessing appropriate N-blocking substituents
are usually metallated at C2, providing access to a wide variety of 2-substituted
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derivatives upon quenching with suitable electrophiles. Metallation of pyrroles at C3
is conveniently accomplished by halogen–metal exchange using 3-halopyrroles
incorporating a bulky N-protecting group, which effectively blocks access to C2.
Owing to its aromatic character, pyrrole itself does not participate in Diels–Alder
reactions, instead giving a-substitution products. However, this reactivity path may
be precluded by introduction of an electron-withdrawing group on the nitrogen atom,
thereby transforming the pyrrole nucleus into a useful diene component in Diels–
Alder reactions. Examples of reactions where pyrroles act as dienophiles are quite
rare, but have nevertheless found some applications.

Taken together, these fundamental reactions, combined with reductions, oxida-
tions, classical functional group interconversions, pyrrole ring syntheses, as well as
modern developments, such as transition metal catalyzed couplings, constitute
a powerful arsenal of tools for the preparation and elaboration of a wide array of
pyrrole derivatives. Additional aspects on the reactivity of the pyrrole nucleus are
discussed in appropriate sections of this chapter.

4.3
Relevant Natural and/or Useful Compounds

The pyrrole nucleus is an essential component of several naturally occurring
macrocyclic complexes of various metals of utmost importance for living systems
by virtue of its ability to participate in coordination of metals. One molecule
belonging to this class, chlorophyll-a (5), is a crucial prerequisite for sustaining life
on our planet by its ability to participate in the conversion of carbon dioxide into
carbohydrates with concomitant liberation of molecular oxygen by photosynthesis.
The total synthesis of chlorophyll-a (5) conducted byWoodward constitutes one of the
most prominent achievements in organic chemistry [27]. This, and several related
pigments, is biosynthesized from the common building block porphobilinogen
(6) [28–30]. Likewise, the amino acid L-proline is ubiquitous in biologically important
peptides and proteins, as well as other natural products. In addition, numerous
naturally occurring compounds incorporating derivatives of proline have been
identified [31]. Detailed mechanisms for some of the intricate biosynthetic pathways
responsible for pyrrole ring formation and incorporation of pyrrole units in natural
products have been formulated [32].
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There are many other pyrrole based molecules of natural and of synthetic origin
that exhibit various biological activities. The cytotoxic pyrrole alkaloid roseophilin
(7) [33] is an excellent example of such a compound, and has also attracted
considerable attention as a challenging target for total synthesis [34]. An increasing
group of naturally occurring pyrrole derivatives feature the tetramic acidmotif as the
main structural element [35, 36], as illustrated by the plasmodial pigment fuligorubin
A (8) isolated from the slime mold Fuligo septica [37]. The field of monopyrrolic
natural products, including tetramic acid derivatives, has been comprehensively
reviewed [38]; an account detailing recent synthetic strategies towards antitumor
pyrroles bearing oxygenated aryl groups is also available [39]. Distamycin (9), an
antiviral and antimitotic natural product isolated from a Streptomyces sp. [40], has
served as amodel compound for fruitful studies towards synthetic pyrrole containing
polyamides for recognition [41–44] and sequence specific alkylation [45] of DNA.
The development of ketorololac (10), a drug with potent anti-inflammatory and
analgesic properties [46, 47], demonstrates the importance of synthetic pyrroles in
medicinal chemistry.
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Pyrrole polymers constitute yet an additional group of derivatives that have
captured considerable interest, for instance as newmaterials for electrocatalysis [48],
or conducting polymer nanocomposites [49]. Accounts concerning syntheses (e.g.,
by electropolymerization [50]), properties and applications of polypyrroles are also
available [51, 52].

4.4
Pyrrole Ring Synthesis

Numerous different approaches for the construction of pyrrole derivatives from
acyclicmaterials have arisen fromover one century of intense research activity in this
particular field. Nevertheless, new developments, as well as further extensions of
knownmethods still continue to attract the attention of synthetic chemists, providing
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additional effective routes to previously known pyrroles, as well as novel, and more
exotic, derivatives. This section focuses particularly on general processes of practical
importance. Selected syntheses of more specialized derivatives, such as oxypyrroles,
aminopyrroles, pyrrolines and pyrrolidines, are incorporated in the sections devoted
to these systems. A review detailing many recent advances in pyrrole ring synthesis
since 1995 is available [52], whereas a more specialized account provides a survey of
routes to pyrroles bearing two aryl or heteroaryl groups on adjacent positions [53].

4.4.1
Paal–Knorr Synthesis and Related Methods (4þ 1 Strategy)

The Paal–Knorr pyrrole synthesis [54, 55] deserves particular recognition as one the
most valuable of all pyrrole ring forming reactions, as it relies on the condensation of
1,4-dicarbonyl compounds with primary amines or their equivalents, both of which
are quite common and readily available materials. In an illustrative example, the 2,5-
dioxohexanoate derivatives 11 are efficiently converted into the corresponding
pyrroles 12 upon treatment with appropriate amines in the presence of acetic acid
(Scheme 4.3) [56].

The versatility of the Paal–Knorr reaction is neatly demonstrated by the conversion
of cyclododecane-1,4-dione into a pyrrole containing cyclophane [57], or transfor-
mation of the c-ketoaldehyde 13 into the bicyclic system 14 in a key step of a synthesis
of the bacterial tripyrrole pigment metacycloprodigiosin (Scheme 4.4) [58]. Modern
applications emerge continuously, and allow for instance synthesis of 1-aminopyr-
role derivatives by usingmonoprotected hydrazines [59] orN-aminophthalimide [60]
as the amine components. A variant employing amine hydrobromides in refluxing
pyridine is available [61], and an efficient synthesis of cyclopenta[b]pyrroles from
suitable diketoneswith hexamethyldisilazane (HMDS) as the ammonia equivalent in
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the presence of Al2O3 has also been described [62]. Other useful extensions involve
montmorillonite KSF clay [63], titanium isopropoxide [64] or iodine [65] as the
catalysts. The Paal–Knorr synthesis has recently been performed under microwave
irradiation [66–68], and has also been adapted to the solid phase employing
immobilized 1,4-diketones [69]. A solution phase combinatorial approach has also
been presented, involving construction of the 1,4-diketones from methyl esters by
reaction with an excess of vinylmagnesium bromide in the presence of CuCN,
followed by oxidation of the alkene unit in the resulting homoallylic ketones using
O2/PdCl2/CuCl in aqueous DMF [70].

The mechanism of the Paal–Knorr condensation has been scrutinized in detail,
here exemplified by the conversion of the substituted 2,5-hexanediones 15 into the
2,5-dimethylpyrrole derivatives 16, which appears to involve the intermediacy of
the aminals 17, which undergo cyclization to the diols 18, followed by elimination
of two equivalents of water (Scheme 4.5). These conclusions were supported by
meticulous kinetic studies [71], as well as probing of the influence of the stereo-
chemistry of the starting 1,4-dicarbonyl compounds [71, 72]. The reversibility of this
series of events has recently been demonstrated by conversion of various pyrroles
into the corresponding 1,4-dicarbonyl compounds by heating at pH 3, which allows
exchange of the N-substituent [73].

This versatile method may also be utilized for the synthesis of 2H-pyrroles, as
demonstrated by conversion of the 1,4-diketone 19 into the product 20 (Scheme 4.6).
The series of events leading to this outcome involves the intermediacy of the
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3H-pyrrole 21, whichundergoes rearrangement to the 2H-pyrrole 20due to the acidic
reaction conditions in combination with heating. Nonetheless, this approach can in
certain cases enable isolation of the 3H-tautomers [74]. A review detailing the early
advances in the chemistry of 2H- and 3H-pyrroles is available [75].

A useful extension of the Paal–Knorr reaction is based on the cyclization of 2,5-
dimethoxytetrahydrofuran (22) with primary amines, providing facile access to N-
substituted pyrroles (e.g., 23) (Scheme 4.7) [76, 77]. This process is further facilitated
by using phosphorus pentoxide as the catalyst [78], or by heating in acetic acid under
microwave conditions [79]. It has also been demonstrated that cyclizations involv-
ing 22 and amine components incorporating sensitive substituents proceeds in
acceptable yields when carried out in a medium containing acetic acid and pyridine
via a path featuring acid–base catalysis [80]. Application of arylsulfonamides as the
amine synthons constitutes a useful route to 1-(arylsulfonyl)pyrroles [81]. Likewise,
heating of 2,5-dimethoxytetrahydrofuran-3-carbaldehydewith ethyl carbamate [82] or
p-toluenesulfonamide [83] under acidic conditions gives the corresponding N-
substituted pyrrole-3-carboxaldehydes. Treatment of the related four-carbon precur-
sor 2,5-dimethoxy-2,5-dihydrofuran with amines in 10% aqueous HCl gives the
corresponding N-substituted 3-pyrroline-2-ones in good yield [84]. Initial hydrolysis
of 22 in water to 2,5-dihydroxytetrahydrofuran, followed by reaction with primary
amines in an acetate buffer, constitutes an additional modification that permits a
broader range of N-substituents because of the less acidic conditions [85].

Relatively mild conditions have also been employed in some related syntheses,
wherein exposure of 1,4-dichloro-1,4-dimethoxybutane (24) to amino acids [86], or
primary amides [87], led for example to the pyrrole 25, or 1-acylpyrroles, respectively
(Scheme 4.8).

The Paal–Knorr condensation has also been incorporated as the key step in multi-
component approaches to pyrroles. A one-pot procedure, involving initial formation
of the highly substituted 1,4-dicarbonyl compounds 26 from acylsilanes and a series
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of a,b-unsaturated ketones in the presence of the thiazolium salt 27 as the catalyst, is
completed by ring closure using primary amines to the target pyrroles 28
(Scheme 4.9), featuring for example multiple aryl substituents [88]. A similar
approach includes palladium-catalyzed coupling of aryl halides with propargylic
alcohols, giving a,b-unsaturated ketones, which thereafter undergo thiazolium salt
catalyzed Stetter reactions with aldehydes to provide the requisite 1,4-diketone
precursors [89].

4.4.2
Other Cyclizations of Four-Carbon Precursors (5þ 0 and 4þ 1 Strategies)

Apart from the classical and modern variants of the Paal–Knorr reaction outlined
above, several related approaches involving cyclization of four-carbon precursors are
available. Generation of the c-nitroketones 29 bearing an additional ester function-
ality geminal to the nitro group by Michael addition of ethyl nitroacetate to suitable
enones, and subsequent cyclization thereof with formamidinesulfinic acid and
triethylamine, gives the pyrrole-2-carboxylates 30 (Scheme4.10), via the intermediacy
of the oximes or imines 31 (X¼NOH or NH) [90].

In contrast, reductive cyclization of the precursors 32, available by conjugate
addition of 2-nitropropane to a,b-unsaturated ketones, gives the pyrrolidines 33,
which may thereafter be converted into the corresponding 2H-pyrroles 34
upon dehydrogenation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
(Scheme 4.11) [91].

Suitable four-carbon precursorsmay also be prepared from the a-aminoaldehydes
or -ketones 35, which are readily available from N-Boc-a-amino acids by conversion
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intoWeinreb amides, followed by reduction with LiAlH4 or treatment with Grignard
reagents, respectively. Thus exposure of 35 to lithiumenolates of ketones, followed by
cyclization of the resulting aldol adducts 36, produced the set of pyrroles 37
(Scheme 4.12), including several fused derivatives, in low to moderate yields [92].
Reductive cyclization of similar aldol intermediates available from a-(N,N-dibenzyl)
amino aldehydes or ketones has been utilized in a related, more high-yielding
approach to N-benzylpyrroles [93]. Acid-induced cyclodehydration of Boc-protected
c-amino-a,b-enals or -enones derived from N-Boc-a-aminoaldehydes via Wittig
reactions provides a route to various 1-(tert-butoxycarbonyl)pyrrole derivatives [94].

An approach based on a microwave assisted domino process involving primary
amines and the alkynoates 38, which are derived from two equivalents of methyl
propiolate and suitable aldehydes (R1CHO), results in the pyrroles 39 (Scheme 4.13).
The series of events leading to this outcomewere suggested to involve rearrangement
of 1,3-oxazolidine intermediates as the key feature [95]. A set of structurally related
substrates has also been converted into pyrroles bearing multiple substituents by
initial silver-catalyzed isomerization of the propargyl moiety to an allene, followed by
condensation of the resulting intermediates with primary amines, and final gold-
catalyzed 5-exo-dig cyclizations [96].
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It has been known for some time that pyrrolesmay be obtained from the reactions
of azaallylic anions with suitable a-haloketones [97]. A new application of azaallylic
anions in pyrrole synthesis has been realized by conversion of the a-haloimines 40
into the intermediates 41, which in turn are cyclized to the 1-pyrrolines 42, eventually
giving the pyrroles 43 (Scheme 4.14), including the 3-chloro derivative (R2¼Ph,
R3¼Cl) [98].

Several approaches based on cyclization of propargylamines and homologues
thereof have emerged in recent years. Base induced cyclization of the benzotriazol-1-
yl (Bt) substituted precursors 44, which are readily available from 1-propargylbenzo-
triazole, gives the corresponding pyrroles 45, presumably via allene intermediates
(Scheme 4.15) [99]. Rhodium-catalyzed hydroformylation of 1,3-disubstituted pro-
pargylamines affording 2,4-disubstituted pyrroles has also been accomplished [100].

Homopropargylamines, which are available, for instance, by addition of pro-
pargylic Grignard reagents to Schiff bases, are also useful precursors, as exemplified
by the silver(I) mediated conversion of 46 into the pyrroles 47 (Scheme 4.16) [101]. A
synthetic route to pyrroles involving cyclization of homopropargylamines generated
in situ by ring opening of ethynylepoxides with amines has also been described [102].

Annulation of the homopropargylic sulfonamides 48 (R¼Ph, 2-furyl, 2-thienyl),
which are prepared by alkylation of the benzophenone imine ofmethyl glycinatewith
propargyl bromide, followed by sequential hydrolysis, tosylation and Sonogashira
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coupling at the terminal acetylene unit, has been reported to give the substituted 4-
iodo-2,3-dihydropyrrole derivatives 49 via a 5-endo-dig process, eventually leading to
the b-iodopyrroles 50 (Scheme 4.17) [103, 104], whereas cyclization of related alkenyl
derivatives provides access to b-iodopyrrolidine derivatives [105].

Azadienes 51may also serve as starting materials for construction of pyrroles, as
C-alkylation thereof provides the intermediates 52, which undergo annulation to the
pyrroles 53 upon heating in toluene or ethanol. A subsequent hydrolysis step
completes this synthesis, resulting in the 3-acetylpyrrole derivatives 54 in excellent
overall yields (Scheme 4.18) [106, 107]. An approach to, for instance, 1,2,3,5-tetra-
substituted pyrroles, utilizing thermally induced cyclization of iminoalkyne inter-
mediates derived from various substituted 4-pentynones and suitable amines, has
also been reported [108, 109].

4.4.3
Knorr Synthesis and Related Routes (3þ 2 Strategy)

The Knorr pyrrole synthesis [110], which relies on the condensation of an a-ami-
noketone with a carbonyl compound possessing acidic a-hydrogens (each contrib-
uting with a two-carbon fragment to the pyrrole ring) is also of considerable synthetic
importance. Since a-aminoketones are rather reactive and difficult to handle, the
practical procedures often involve generation thereof in situ from a suitable synthetic
equivalent, as illustrated by the classical example below (Scheme 4.19), in which
addition of one equivalent of sodium nitrite to two equivalents of ethyl acetoacetate
(55) generates an oxime, which, upon reduction with zinc dust [110, 111] or
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dithionite [112], undergoes condensation with the remaining equivalent of 55 to
furnish the pyrrole 56 in excellent yield (Scheme 4.19).

It has also been demonstrated that this reaction may follow a different path if a
b-diketone is used as one of the reactants, as treatment of diethyl oximinomalonate
(57) with 2,4-pentanedione (58) under reductive conditions will afford ethyl 3,5-
dimethylpyrrole-2-carboxylate (59) [113]. Since this process involves the intermediacy
of diethyl aminomalonate (60), the reductive conditions can be avoided by using this
very reagent. The mechanism is considered to feature an initial formation of the
aminal 61, followed by elimination of water to form the enamine 62, which will
cyclize on the ketone carbonyl carbon to provide 63, eventually leading to the final
product 59 (Scheme 4.20) [114, 115]. The use of unsymmetrical 1,3-diketones instead
of 2,4-pentanedione usually gives mixtures of regioisomeric pyrroles, unless rela-
tively bulky groups (i-Pr, t-Bu, Ph) are present at the terminal carbon [116]. Many
substituted pyrrole-2-carboxylate derivatives obtained using these proceduresmay be
readily converted into further derivatives by decarboxylation (Section 4.6.2).

A modern modification of the Knorr pyrrole synthesis involves elaboration
ofWeinreb amides, for instance 64, derived fromphenylalanine, giving the protected
a-aminoketone 65, which can subsequently be deprotected and condensed with 2,4-
pentanedione to provide the pyrrole 66 (Scheme 4.21) [117]. Reaction of similar
Weinreb amides lacking the Boc group with enamines gives N-methoxy-N-methyl-
a-enaminocarboxamides, which take part in related conversions into a-enaminoke-
tones, and ensuing annulations to pyrroles [118].
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In a related approach involving an initial C�N bond formation between two C2-
fragments, addition of the a-aminoketones 67 to dimethyl acetylenedicarboxylate
(DMAD) yields the intermediates 68, which finally undergo cyclization to give
pyrroles 69 (Scheme 4.22) [119]. A related procedure involving initial reactions of
a-amino acid esters with DMAD, and cyclization of the intermediate enamines with
sodium methoxide in methanol rendering 3-hydroxypyrroles 69 (R1¼OH), has also
been reported [120].

A series of 2-substituted 3-nitropyrroles (70) has been prepared by displacement of
a methylthio group of the nitroalkene 71, followed by treatment of the resulting
products 72 with aminoacetaldehyde dimethylacetal to furnish the intermediate
enamines 73, which underwent a final ring closure in acidic medium
(Scheme 4.23) [121]. Intermediates similar to 73 featuring a trifluoroacetyl group
instead of the nitro functionality have previously been prepared from b-(trifluor-
oacetylvinyl) ethers and aminoacetaldehyde dimethylacetal, and were cyclized to the
corresponding 3-trifluoroacetylpyrroles in aqueous TFA [122].
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4.4.4
Hantzsch Synthesis and Related Approaches (2þ 2þ 1 or 3þ 2 Strategy)

A conceptually related process involving two C2-fragments and an amine component
is the Hantzsch pyrrole synthesis (Scheme 4.24) [123]. In a typical procedure,
a mixture consisting of an a-halo carbonyl compound (74) and ethyl acetoacetate
(75) is treated with ammonia. This initially gives the enamine 76 derived from the
b-ketoester, which will subsequently undergo cyclization with 74 to provide pyrrole
77 [124]. Application of b-aminoacrylonitriles as the enamine counterparts has been
used to prepare 5-(trifluoromethyl)pyrrole-3-carbonitrile derivatives [125]. A solid
phase variant utilizing an immobilized enamino component has also been
developed [126].

It has also been demonstrated that titanium mediated annulation of substrate 78,
which is available in two steps from the appropriate 1,3-dicarbonyl compound, gives
a good yield of 2,3,5-triphenylpyrrole (79) (Scheme4.25). Similar precursors have also
been cyclized in the presence of a preformed titanium–graphite reagent [127].

4.4.5
Syntheses Involving Glycine Esters (3þ 2 Strategy)

Several useful routes to pyrroles are based on the reactions of glycine esters or related
compounds with suitable C3-synthons. For example, condensation of ethyl glycinate
hydrochloride (80) with the 1,3-diketone 81 provides access to the pyrrole 82 [128] via
the enaminoketone intermediate 83 (Scheme 4.26). Such intermediates may also be
isolated in a stepwise approach involvingmilder conditions [129], whereas cyclization
of related condensation products generated from 3-ethoxyacrolein derivatives and
N-substituted glycine esters gives 2,4-disubstituted pyrroles [130].

Et

Br

N
H

Me

CO2EtEt

OHC

Me

OEt

O

O
NH3, H2O

Et

Br

OHC

Me

OEt

O

H2N 45%

77675747 74

Scheme 4.24

N
H

Ph

Ph

Ph

HN

Ph

O

Ph
TiCl3, Zn, THF

reflux, 3 h

78%

9787

O

Ph

Scheme 4.25

284j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



Likewise, it has been demonstrated that p-toluenesulfonylglycine esters 84 under-
go addition to a,b-unsaturated ketones 85 to render pyrrolidines 86, which will
eventually furnish pyrroles 87 by sequential elimination of water and p-toluenesul-
finate, via the suggested 3-pyrroline intermediates 88 (Scheme 4.27) [131, 132].

Glycine derivatives may also give pyrroles upon treatment with various iminium
salts. For example, the reaction of ethyl glycinate hydrochloride (80) with the
vinamidinium perchlorates 89 provides 3-arylpyrrole-2-carboxylates (90) in good
yields [133]. A related reaction involving the salt 91, which is readily available from
3-acetylthiophene, leads to the thienylpyrrole 92 (Scheme 4.28) [134]. Similar
chemistry has also been employed for the preparation of 5-arylpyrrole-2-carboxy-
lates [135] and of various 3,4-disubstituted pyrrole-2-carboxylates [136].

4.4.6
Van Leusen Method (3þ 2 Strategy)

Since its introduction, the van Leusen pyrrole synthesis has enjoyed considerable
popularity, as it provides convenient access to 3,4-disubstituted pyrroles from the

NH2·HCl N
H

EtO2C

Ph
CO2Et

Ph

Ph

O

O

2818

DMF, reflux

Ph

Ph

HN

O

EtO2C
74%

Ph

3808

Scheme 4.26

TsHN

N

CO2R4

R3

R1O

85

84

R2 Ts

R1

R2 R3

OH

CO2R4

DBU
THF

N

Ts

R1

R2

CO2R4

R3

POCl3
pyridine

N
H

R1

R2

CO2R4

R3
DBU
PhMe
reflux

878868

11-70%
overall

Scheme 4.27

NH2·HCl

CO2Et

80

NMe2

Cl PF6

NaH, DMF

75%

S

N
H

CO2Et

S

92

91

Me2N NMe2

HClO4

Ar

NaOEt, EtOH

75-87%

N
H

CO2Et

Ar

89

90

Scheme 4.28

4.4 Pyrrole Ring Synthesis j285



readily available building blocks p-toluenesulfonylmethyl isocyanide (TosMIC) (93)
and electron deficient alkenes. Treatment of the anion of TosMIC with the
a,b-unsaturated ketones 94 initially gives the intermediate Michael adducts 95.
After cyclization to 96, followed by tautomerization to 97, p-toluenesulfinate is
eliminated giving the 3H-pyrroles 98, which eventually tautomerize to the final
products 99 (Scheme 4.29) [137]. Application of methyl 3-arylacrylates in this
approach gives methyl 4-arylpyrrole-3-carboxylates, which may be further converted
into the corresponding 3-arylpyrroles by saponification and decarboxylation [138]. A
variant involving aryl- or heteroarylalkenes, TosMIC and sodium tert-butoxide in
DMSO allows direct access to 3-aryl- or heteroarylpyrroles, respectively, in moderate
yields [139]. When acrylonitriles are used as the alkene reactants, pyrrole-3-carboni-
triles are produced [137], whereas application of nitroalkenes [140, 141] or tert-butyl
(E)-4,4,4-trifluorobutenoate [142] gives the corresponding b-nitropyrrole- or b-(tri-
fluoromethyl)pyrrole derivatives, respectively. Extensions involving substituted
TosMICderivatives offer direct routes to 2,3,4-trisubstituted pyrrole derivatives [143],
including 2-stannylpyrroles [144]. The closely related reagent benzotriazol-1-yl-
methyl isocyanide (BetMIC) has also been evaluated in similar reactions, and may
in some cases give better yields [145].

In a further extension of this valuable method, reaction of the 1-isocyano-1-tosyl
alkenes 100 with nitromethane in the presence of potassium tert-butoxide enables
efficient preparation of the 3-nitropyrroles 101 (Scheme 4.30) [146]. Similar trans-
formations involving suitable substituted ketones instead of nitromethane yield
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various 3,4-disubstituted pyrroles, even such lacking electron-withdrawing substi-
tuents [147]. It is also noteworthy that alkenes generated from aldehydes and alkyl
isocyanoacetates in the presence of DBU may react with an additional equivalent of
the isocyanoacetate component, affording 2-substituted alkyl pyrrole-2,4-dicarbox-
ylates in a convenient one-pot operation [148].

The reactions of TosMIC (93) or themethyl derivative 102with dienes, for instance
103 [141] or 104 [149], furnish the corresponding substituted 3-vinylpyrroles, 105 and
106, respectively (Scheme 4.31). Treatment of 1,4-disubstituted 2,3-dinitrobuta-
dieneswithTosMICunder similar conditions gives 3-alkynylpyrrole derivatives [150].

4.4.7
Barton–Zard Synthesis (3þ 2 Strategy)

The equally versatile Barton–Zard synthesis features an initial conjugate addition of
isocyanoacetate esters 107 to nitroolefins 108 in the presence of a base (e.g., DBU),
generating the adducts 109, which thereafter undergo cyclization to afford 110. An
ensuing isomerization of 110 to 111, followed by elimination of nitrite, provides the
3H-pyrroles 112, which finally tautomerize to the target pyrrole-2-carboxylate
derivatives 113 (Scheme 4.32). Sensitive nitroolefins are preferably formed in situ
from the corresponding b-nitroacetoxyalkanes [151, 152]. Application of benzyl
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isocyanoacetate in this approach allows efficient preparation of benzyl pyrrole-2-
carboxylates [153, 154]. Alternatively, the nitroolefin components may be replaced by
a,b-unsaturated sulfone derivatives [155–157] or by acetate precursors bearing
a vicinal nitro group [158]. A variant of this reaction involving polymer supported
reagents has also been developed [159].

Synthesis of the fused pyrrole derivatives 114 and 115 from 9-nitrophenanthrene
(116) constitutes an interesting application of the Barton–Zard approach
(Scheme 4.33) [160, 161]. Other condensed nitroaromatics, such as 3-nitrobenzothio-
phene, also give fused pyrrole derivatives under these conditions [162]. In cases
where relatively unreactive nitroaromatics are involved, the use of a strong phos-
phazene base may give improved yields [163].

4.4.8
Trofimov Synthesis (3þ 2 Strategy)

Various pyrroles have been prepared over the years using the Trofimov synthesis,
which relies on cyclization of ketoximes with acetylenes in a strong basic medi-
um [164, 165]. For example, exposure of oxime 117 to acetylene in the presence of
KOH in DMSO at elevated pressure and temperature gives the fused pyrrole 118 in
excellent yield (Scheme 4.34) [166]. However, the formation of mixtures of N-
vinylated products and the corresponding parent pyrroles is a common outcome
of this reaction. The N-vinylation may be suppressed by addition of water (about 5%)
to the reaction mixture, whereas optimal conditions for synthesis of N-vinylpyrroles
require the use of a large excess of KOH [165]. A recent application of this method
provided access to 2,6-bis(pyrrol-2-yl)pyridines [167]. Several pyrroles incorporating
sulfur containing moieties have been prepared using the Trofimov reaction [168].
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4.4.9
Cycloaddition Reactions and Related Approaches (3þ 2 Strategy)

1,3-Dipolar cycloadditions between mesoionic compounds and suitable dipolaro-
philes, for example alkynes, constitute another useful approach to pyrroles [169, 170].
Thus the alkyl- or aryl-substitutedm€unchnones 119, which are readily available from
a-amino acids, participate in cycloadditions with acetylene derivatives (e.g., diesters)
to provide pyrroles 120, often in excellent yields, through expulsion of carbon dioxide
from the intermediate adducts 121 (Scheme 4.35). M€unchnones may also be
generated in situ from N-acyl-a-amino acids and acetic anhydride. Preferably, one
of the reactants should be symmetrically substituted, thus avoiding formation of
mixtures containing isomeric pyrroles [171, 172]. Nevertheless, regiospecific reac-
tions involving polyfluoro-2-alkynoic acid esters have been reported [173]. The use of
N-acylm€unchnones provides access to N-acylpyrroles as mixtures of isomers [174],
whereas 2-arylthio- or alkylthio-substituted 5-amino-1,3-thiazolium salts give 2-
arylthio- or 2-alkylthiopyrrole derivatives, respectively, upon reaction with dimethyl
acetylenedicarboxylate (DMAD) via extrusion of isothiocyanates [175]. Modern,
multi-component variants that presumably involve m€unchnones feature generation
of the dipoles from imines, acid chlorides, and carbon monoxide via palladium
catalysis [176], or by annulation of products derived from Ugi four-component
reactions involving carboxylic acids, primary amines, aldehydes and 1-isocyanocy-
clohexene [177]. A solid phase version using polymer bound m€unchnones has also
been described. [178] Various aspects concerning the regioselectivity of 1,3-dipolar
cycloadditions involving m€unchnones have been discussed in detail; the outcome
appears to be influenced by the electronic nature and location of the substituents on
the dipole [179], as well as steric factors [180]. In connection with investigations of
regioselective cycloadditions of a certain m€unchnone with a carbohydrate derived
nitroolefin, it was concluded that predictions using frontier molecular orbital
theory in combination with semi-empirical studies are not applicable for such
processes, and that this particular example proceeded through a concerted, although
somewhat asynchronous, transition state, as implied by results from ab initio MO
calculations [181].

Pyrroles may also be made by cycloaddition of dimethyl 1,2,4,5-tetrazine-3,6-
dicarboxylate (122) with electron rich alkenes, followed by ring contraction of
the resulting 1,2-diazines [182, 183]. In a representative procedure, 122 reacts with
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1,1-dimethoxyethylene to give intermediate 123, which is subsequently reduced to
the pyrrole 124 (Scheme 4.36) [184]. The alkene components may also be replaced
with acetylene derivatives [185]. Advances in ring contraction methodology for the
construction of pyrroles have been discussed in detail in a specialized review [186].

Generation of dipoles from aziridines, and reaction thereof with suitable acet-
ylenes, offers a route to pyrroles [187] thatmight be otherwise difficult to access. This
method has been employed for the synthesis of the 3,4-disilylpyrrole 125 by dipolar
cycloaddition of 2-cyano-1-trimethylsilylaziridine (126) with bis(trimethylsilyl)acet-
ylene, followed by N-desilylation of the intermediate product 127 in methanol
(Scheme 4.37) [188]. Azomethine ylides generated by desilylation of suitable
immonium salts have been demonstrated to add to alkynes, giving pyrroles, or to
alkenes to render 2-pyrrolines, which could in turn be further converted into the
corresponding pyrroles by treatment with DDQ [189]. Based on a previously reported
procedure [190], an approach to pyrroles has been devised that relies on reactions
involving alkynes and imines in the presence of Ti(i-OPr)4, i-PrMgCl and carbon
monoxide at atmospheric pressure, via azatitanacyclopentene derivatives as
intermediates [191].

An elegant route to pyrroles from isocyanides and electron deficient acetylenes has
also become available. In an illustrative example, pyrrole 128 was obtained upon
reaction of ethyl isocyanoacetate with alkyne 129 in the presence of dppp [192]. The
regioselectivity may be reversed by changing the catalyst to Cu2O, giving instead
the product 130 (Scheme 4.38) [193]. A related synthesis of pyrroles involving
addition of metallated isocyanides to acetylenes, featuring an intramolecular cyclo-
addition of an alkene unit with the isocyanide moiety in the initially formed
intermediates as the key step, has also appeared [194].
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4.4.10
Multi-Component Reactions (2þ 2þ 1 Strategy)

Multi-component processes, which are carried out in a one pot operation, have
become increasingly popular tools for pyrrole synthesis in recent years. Someof these
approaches employ well-known principles for pyrrole ring formation, for example
the Paal–Knorr reaction [88], or dipolar cycloaddition of alkynes to m€unchnones
[176, 177] (see above). Samarium-catalyzed three-component coupling of amines,
aldehydes and nitroalkanes has been demonstrated to furnish modest to moderate
yields of the pyrroles 131 (Scheme 4.39). Two aldehyde units are incorporated in the
final products. The aldehydes may also be replaced by a,b-unsaturated aldehydes or
ketones in a similar pyrrole ring forming reaction that does, however, not require
the use of a catalyst [195]. Likewise, reactions between amines, a,b-unsaturated
aldehydes or ketones and nitroethane in the presence of silica [196], or alternatively
amines, aldehydes or ketones and nitroalkenes mediated by Al2O3 [197] under
microwave irradiation, also produce useful yields of various pyrroles. The latter set
of components may also be converted into pyrroles by heating in molten tetrabu-
tylammonium bromide [198].

4.4.11
Miscellaneous Transition Metal Catalyzed Methods (3þ 2 and 5þ 0 Strategies)

Transition metal catalyzed/mediated transformations of acyclic precursors to pyr-
roles have also attracted considerable attention. Although conceptually and mech-
anistically very interesting, some of these developments still appear to suffer from
lack of practical synthetic applicability, involving rather complex starting materials
and catalysts. Nevertheless, such procedures are now acknowledged as valuable tools
for the preparation of exotic pyrroles having unusual substituents, substitution
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patterns or oxidation states, which are not easily available via the �classical� proce-
dures. For example, the rhodium-catalyzed reaction of 3-fluoropentane-2,4-dione
(132) with ethyl isocyanoacetate furnished the fluoropyrrole 133 (Scheme 4.40),
whereas the use of unsymmetrical 1,3-diketones gave, in most cases, mixtures of
regioisomeric pyrroles [199].

Metallation of N-allylbenzotriazole 134, followed by treatment with imines
provided the intermediates 135, which were thereafter converted into the 1,2-
diarylpyrroles (136) by palladium-catalyzed annulation (Scheme 4.41) [200]. This
approach resembles a previous route featuring lithiation of 1-(3-morpholinoprop-2-
enyl)benzotriazole, wherein the final cyclization could be effected under acidic
conditions [201].

Copper assisted cycloisomerization of the alkynylimines 137 gave useful yields of
1,2-disubstituted pyrroles 138. This reaction tolerates substituents with rather sen-
sitive moieties, such as TBS-ethers [202]. In a similar process, starting from related
alkynylimines 139 possessing an additional arylthio- or alkylthio-substituent geminal
to R2, 2-alkyl-3-thio-substituted pyrroles 140 were produced in good yields via 1,2-
migration of the thio group in intermediate thioallenylimines (Scheme 4.42) [203].
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The (Z)-(2-en-4-ynyl)amines 141 undergo Pd(II) [204, 205] or Cu(II)-catalyzed
cycloisomerization to the pyrroles 142 (Scheme 4.43). The copper-catalyzed reactions
require higher temperatures. Interestingly, the less stable of the substrates 141
(R4¼H, Ph, CH2OTHP) underwent spontaneous cycloisomerization to the target
heterocycles [205].

4.5
Reactivity

4.5.1
Reactions with Electrophilic Reagents

4.5.1.1 General Aspects of Reactivity and Regioselectivity in Electrophilic Substitution
As indicated in Section 4.2.2, pyrrole is prone to undergo electrophilic substitution
predominantly at the a-position (C2). Introduction of substituents alters both
regioselectivity and reactivity by changing the electronic properties of the pyrrole
nucleus by inductive effects, and sometimes also by steric interactions with the
incoming electrophile. The transmission of electronic substituent effects in pyrroles
appears to occur through the carbon atoms rather than via the ring nitrogen [206]. For
example, it has been demonstrated that 2-methylpyrrole (R2¼Me; Figure 4.1) under-
goes trifluoroacetylation at C5 some 23.8 times faster than pyrrole itself [207],
whereas the reactivity of 1-methylpyrrole (R1¼Me; Figure 4.1) towards trifluoroacetic
anhydride in 1,2-dichloroethane at 75 �C is only 1.9 times higher than that of the
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parent heterocycle [208]. Pyrroles having an electron releasing group at C3 (R3)
display enhanced reactivity both at C2 and C4, but the C2 position is still the most
active because of the influence of the ring nitrogen. The introduction of a bulky
N-substituent, for instance triisopropylsilyl (TIPS) [209] or trityl [210], gives access to
C3 substituted or C3, C4 disubstituted products by blocking the intrinsic a-reactivity
by steric interference. Substitution with high selectivity at C3 may also often be
obtained with pyrroles having powerful electron-withdrawing substituents at the
nitrogen, for example the phenylsulfonyl group [211]. Such electron deficient
substrates are also considerably less reactive towards electrophiles than non-deac-
tivated pyrroles. The presence of a strong �meta� directing, electron-withdrawing
groups (Z2) at C2 [212] or at C3 (Z3) will direct substitution to C4 or C5, respectively.
The general effects of various directing groups in monosubstituted pyrroles are
summarized in Figure 4.1 (R¼alkyl, Z¼electron-withdrawing substituent). Addi-
tional examples, as well as special cases that deviate from the common pathways are
discussed in appropriate sections below.

Prediction of the regioselectivity of electrophilic substitution of disubstituted
pyrroles is more complicated, as the outcome is dependent on the combined
influence of the substituents. There are also cases when the effects of sterically
demanding substituentsmust be taken into account. Detailed studies of the reactivity
of such systemshave been conducted [213, 214]; Figure 4.2 depicts the general trends.

4.5.1.2 Protonation
In acid solution, pyrrole (1) undergoes reversible protonation, predominantly at C2,
giving the thermodynamically favored 2H-pyrrolium cation 143, which is stabilized
bymesomeric delocalization of the charge (Scheme 4.44). The pKa of�3.80 has been
determined for protonation in dilute sulfuric acid solution [215]. It has also been
demonstrated that protonation of pyrrole with the mild acids C4H9

þ and NH4
þ in

the gas phase occurs at C2, as well as at C3, giving the isomeric 3H-pyrrolium cation
144, and that the affinity for protonation is higher at C2 [216]. The virtually non-
existent N-basicity of pyrrole may be rationalized in terms of the absence of
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Figure 4.2 General trends of regioselectivity of electrophilic substitution of disubstituted pyrroles.
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mesomeric charge delocalization in the putative 1H-pyrrolyl cation, and the unavail-
ability of the electron pair on the pyrrole ring nitrogen due to its contribution to the
aromatic p-electron sextet. This is supported by the fact that the dipole moment of
pyrrole is directed into the ring, as opposed to its tetrahydro derivative pyrrolidine,
which displays a dipole moment direction towards the nitrogen atom [4].

Based on observations during protonation studies involving various substituted
pyrrole derivatives [215, 217], it is clear that the basicity is markedly increased by
introduction of alkyl groups by stabilizing the corresponding cations. The presence of
tert-butyl groups even allows isolation of stable 2H-pyrrolium salts, for example 145,
which was obtained in quantitative yield as a crystalline solid from pyrrole 146
(Scheme 4.45) [218].

Although the 3H-pyrrolium cation 144 is the less stabilized, and thus also the less
abundant of the twoC-protonated species, it is nevertheless very important, as it plays
a major role in the acid-catalyzed oligomerization and polymerization of pyrrole
because of its higher reactivity. The electrophilic cation 144 undergoes attack by
pyrrole (1), thereby forming the unstable dimeric enamine 147 (Scheme 4.46).
Protonation thereof generates a new electrophilic intermediate 148, which reacts
with an additional equivalent of pyrrole (1), rendering the isolable trimer 149 (ratio
trans : cis of 2 : 1) [219], which may subsequently participate in further reactions,
eventually giving polymeric products [220], for example fully aromatic polypyr-
role [221], unless careful control of the conditions is maintained, and, therefore,
the reaction allowing isolation of 149 is performed at 0 �C in 20% aqueousHCl [219].
The propensity of non-deactivated pyrroles to undergo polymerization makes such
substrates unsuitable for reactions that involve strongly acidic conditions.

4.5.1.3 Halogenation
Many electron rich halogenated pyrroles are rather unstable compounds that
decompose readily upon exposure to air. Hence, in the early days, the availability
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of such pyrrole derivatives was severely limited, although syntheses of several
relatively stable iodinated pyrroles, for example 2,3,4,5-tetraiodopyrrole [222], as
well as some other bromo- or iodopyrroles featuring additional electron-withdrawing
substituents were described [223, 224]. An early study on the bromination of methyl
pyrrole-2-carboxylate and pyrrole-2-carboxaldehyde under various conditions clearly
demonstrated that formation ofmixtures containing several halogenation products is
a common course of many of these reactions, thus illustrating yet another compli-
cating factor [225]. The labile 1-chloropyrrole, generated in 65–72% yield by chlo-
rination of pyrrole with NaOCl, was shown to rearrange readily to give mixtures
containing several species, such as 2-choro- and 3-chloropyrrole, when subjected to
acidic conditions or heated in methanol [226]. Previous findings indicated that both
2-chloro- and 2-bromopyrrole undergo rapid degradation, 2-chloropyrrole being
somewhat more stable. Introduction of 1-alkyl substituents increases the stability
of these compounds, whereas the presence of C-alkyl groups appears to lead to even
faster decomposition. Since hydrogen chloride, which is formed during degradation
of 2-chloropyrrole, also catalyzes the decomposition, the process is probably auto-
catalytic. Stabilization can be effected to some extent by storage in the presence of
a suitable base [227]. Consequently, practical halogenations of pyrroles are generally
performed under mild conditions that avoid generation of acidic by-products.
Bromination of some 1-alkylpyrroles with one or two equivalents of N-bromosucci-
nimide (NBS) in THF provides the corresponding 2-bromo- or 2,5-dibromopyrrole
derivatives, respectively. Chlorination withN-chlorosuccinimide (NCS) in THFgives
similar results, albeit with lower selectivity [228]. Interestingly, treatment of 1-methyl-
pyrrole with NBS at �78 �C to �10 �C in THF employing PBr3 as the catalyst
selectively gives 3-bromo-1-methylpyrrole, whereas the use of one equivalent of
triethylamine as the additive allows regiospecific synthesis of 2-bromo-1-methylpyr-
role [229]. Notably, however, treatment of 1-alkylpyrroles with NCS in chloroform
with orwithoutNaHCO3 leads instead to introduction of theN-succinimidemoiety at
C2 [230]. Application of N-halosuccinimides in DMF provides convenient access to
a series of 2,5-disubstituted or 2,4,5-trisubstituted 3-chloro-, 3-bromo- and 3-iodo-
pyrrole derivatives [231]. The selective rearrangement of 1-benzyl-2,5-dibromopyr-
role (150) with p-toluenesulfonic acid into the product 151 (Scheme 4.47) is also
worth mentioning in this context [232]. In general, 3,4-dihalopyrroles, even such
lacking additional electron-withdrawing groups, are stable compounds, which have
been studied in detail [233].

NBr Br

Bn

p-TsOH, MeCN, PhH

51% N

Bn

Br Br

15 10 51

Scheme 4.47

296j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



As implied above, the introduction of electron-withdrawing groups increases
the stability of halogenated pyrroles. Halogenation of a series of substituted 3-acet-
ylpyrroles with CuBr2 in acetonitrile gave the corresponding 3-acetyl-4-bromopyrrole
derivatives in moderate to high yields [234]. Similar bromination of rather densely
substituted pyrrole-3-carboxylates 152 furnished the 4-bromo derivatives 153, which
could in turn be converted into the 3,4-dibromopyrroles 154 with concomitant
decarboxylation (Scheme 4.48) [235]. 1-Methyl-2-(trichloroacetyl)pyrrole undergoes
regioselective bromination upon treatment with NBS in chloroform at �10 �C,
rendering 4-bromo-1-methyl-2-(trichloroacetyl)pyrrole in 79% yield [236].

Stable and synthetically useful simple halogenated pyrroles have become readily
available by introductionof theBoc protecting group (Scheme4.49, cf. Section4.5.1.6).
Efficient preparation of 2-bromo-1-(tert-butoxycarbonyl)pyrrole 155, as well as the
related 2,5-dibromo derivative, has been accomplished by bromination of pyrrole with
1,3-dibromo-5,5-dimethylhydantoin 156, followed by installation of the Boc-group
on the intermediate 2-bromopyrrole 157 (Scheme 4.49) [237, 238]. On the other hand,
2,5-dibromo-1-(tert-butoxycarbonyl)pyrrole has also been obtained in 61% yield by
exposure of 158 to NBS [239]. An alternative route to 155 encompasses conversion of
1-(tert-butoxycarbonyl)pyrrole (158) into the 2-stannyl derivative 159, which thereafter
undergoes a stannyl–bromo exchange reaction. 2-Bromo-1-(phenylsulfonyl)pyrrole
may also be prepared in a similar manner [240]. The closely related 2-bromo-1-
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(p-toluenesulfonyl)pyrrole is readily available in twosteps frompyrroleviabromination
with 1,3-dibromo-5,5-dimethylhydantoin, followed by N-tosylation [241].

The presence of a bulky, removable N-substituent on the pyrrole nucleus enables
introduction of halogen atoms at C3 and C4 even in the absence of stabilizing/
blocking groups at C2 and/or C5. Initial studies on the bromination of the sterically
hindered 1-(triisopropylsilyl)pyrrole (160) with two equivalents of NBS gave 3,4-
dibromo-1-(triisopropylsilyl)pyrrole (161), along with the 2,3-dibromo derivative 162
in a 1 : 1 ratio. The use of only one equivalent of NBS afforded predominantly the 3-
brominated derivative 163, together with minor amounts of the 2-bromo isomer
(ratio 97 : 3) [209, 242]. Improved conditions, featuring a portion-wise addition of
NBS at�78 �C, allow selective preparation of 163 in 78% yield [243]. It was also later
emphasized that careful temperature control is essential to suppress the formation of
side products [244]. Consequently, useful and high-yielding procedures for the
synthesis of 163 are available [244, 245]. Investigation of the synthetic potential
of 160 also revealed that attempted chlorination with NCS gives complex mixtures of
products and unchanged startingmaterial, whereas iodination with elemental iodine
in the presence of mercuric acetate provides 164 in 61% yield [244]. Blocking of the
normal a-substitution pathway by a bulky N-substituent has also been employed in
themonobromination of 1-tritylpyrrolewith pyridiniumbromideperbromide,which
proceeds cleanly to afford 3-bromo-1-tritylpyrrole (165) in 75% yield [210]. Treatment
of the pyrrole 166 with NBS gives the 3-bromo derivative 167 via ipso-bromination.
Similarly, ipso-iodination of 166 to provide 168 can be achieved employing iodine in
the presence of silver trifluoroacetate [246, 247]. In addition, 3,4-dibromo-1-(p-
toluenesulfonyl)pyrrole (169) has been prepared in 43% yield by treatment of
1-(p-toluenesulfonyl)pyrrole with bromine in refluxing acetic acid [248].
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Direct fluorination of pyrroles is a process of rather limited applicability, as the
strongly oxidizing properties of most common fluorinating agents exert a highly
destructive influence on the pyrrole nucleus. Nonetheless, XeF2 has been employed
successfully to convert pyrroles possessing an electron-withdrawing group into the
corresponding a-fluoro derivatives in low to moderate yields [249, 250]. Other
miscellaneous approaches include fluoro-decarboxylation of pyrrole-2-carboxylates
with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)
inmodest yields [251], or photolysis of a pyrrole-b-diazonium tetrafluoroborate [252].

Halogenation on an a-methyl group of certain polysubstituted pyrroles with
sulfuryl chloride in ether [253] or bromine in acetic acid [254] gives the corresponding
a-(chloromethyl)- or a-(bromomethyl)pyrrole derivatives, respectively. Such haloge-
nation processes have been suggested to occur via an initial electrophilic attack of the
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pyrrole ring, followed by a rearrangement rendering the final a-(halomethyl)pyrrole
products [255, 256].

4.5.1.4 Nitration
Because of the sensitivity of simple pyrroles towards strongly acidic media, nitration
must be conducted under relatively mild conditions, or involve deactivated sub-
strates. Nitration of pyrrole itself with nitric acid in acetic anhydride normally gives
mixtures of 2-nitropyrrole and 3-nitropyrrole in a ratio of approximately 4 : 1 over
a wide temperature range. The reactivities at C2 and C3 are 1.3� 105 and 3� 104

times higher than for benzene, respectively [257]. A similar reactivity pattern was
observed in the case of 1-alkyl- and 1-aryl-pyrroles, with C2/C3 nitration ratios
ranging between 3.15 : 1 for 1-methylpyrrole and 0.25 : 1 for 1-(tert-butyl)pyrrole,
depending on the electronic and steric properties of the N-substituent. The high
reactivity of pyrrole is further manifested in the easy formation of di-, tri-, and even
tetranitropyrrole derivatives [258]. Introduction of a deactivating acyl group either on
the nitrogen atom or at C2 also proved to be insufficient for selective nitration [259].
Selective and efficient (80% yield) conversion of pyrrole into 2-nitropyrrole has more
recently been accomplished using (NH4)2Ce(NO3)5�4H2O in acetic anhydride [260].

Other practical procedures are based on pyrroles having strategically located,
strongly deactivating or bulky N-substituents. For example, 2-(trichloroacetyl)pyrrole
(Section4.5.1.6)maybenitratedwith90%HNO3at�50 �Ctoprovide the correspond-
ing 4-nitro derivative as the major product in 77% yield [212]. In addition, b-acylated
pyrroles are cleanly converted into the corresponding 4-acyl-2-nitropyrroles upon
treatment with nitric acid in acetic anhydride at�15 �C [259]. Likewise, an extensive
series of 1,5-dialkyl-4-nitropyrrole-2-carboxylates has been prepared involving nitra-
tionofsuitableprecursorsatC4[261].Nitrationof1-(phenylsulfonyl)pyrrole (170)with
nitricacid inaceticanhydrideprovidesaselective route to3-nitropyrrole171 [211,262].
The parent 3-nitropyrrole (172) can thereafter be obtained after removal of the
phenylsulfonyl group with base [262]. In addition, the readily available 1-(triisopro-
pylsilyl)pyrrole (160) can serve as an excellent precursor to 3-nitropyrrole (172), as
demonstrated by nitration of 160with cupric nitrate trihydrate in acetic anhydride to
give 173 (77% yield), which may subsequently be efficiently desilylated [244].
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4.5.1.5 Reactions with Sulfur-Containing Electrophiles
Sulfonation of pyrrole with the sulfur trioxide–pyridine complex has long been
recognized to give pyridinium pyrrole-2-sulfonate (174) [263, 264]. A more recent
reinvestigation of this reaction provided, however, strong evidence that substitution
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seems instead to occur at C3, leading to the isomeric pyridinium pyrrole-3-sulfonate
(175), the formation of which was verified by detailed NMR studies of the corre-
sponding sodium salt 176, and preparation of several pyrrole-3-sulfonamides [265].
This intriguing preference for selective C3 substitution has yet to be rationalized in
detail. When the pyrrole nucleus is already deactivated, sulfonation using acidic
reagents is feasible, as illustrated by the transformation of the pyrrole 177 into the
sulfonyl chloride 178 in 81% yield using chlorosulfonic acid [266]. Likewise,
sulfonation of 1-(arylsulfonyl)pyrroles with chlorosulfonic acid in acetonitrile
gives practical access to the corresponding pyrrole-3-sulfonyl chlorides in
moderate yields [267]. Similar regioselectivity was observed upon treatment of 1-
(phenylsulfonyl)pyrrole with dimethylsulfamoyl chloride in the presence of bismuth
(III) trifluoromethanesulfonate, providing N,N-dimethyl-1-(phenylsulfonyl)pyrrole-
3-sulfonamide in 49%yield. Asnoted in connectionwith studies of the latter reaction,
one has to consider the possibility that the 3-substituted products may arise by
a rearrangement of the conceivable 2-substituted products (see below), and further
studies are required to gain deeper insight into the mechanistic pathways of such
transformations [268].
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The reaction of pyrrole and 1-methylpyrrole with alkyl- or aryl-sulfinyl chlorides at
0 �C offers a route to the 2-sulfinylpyrroles 179 (R1¼H or Me) in moderate to good
yields, provided that the products are protected from the influence of the liberated
hydrogen chloride. Without that precaution, rearrangement of the kinetic pro-
ducts 179 affords the corresponding C3 substituted isomers 180 as the major
products. This outcome could be ascribed to an initial protonation of 179 to generate
the intermediate 181, which may thereafter undergo a sigmatropic rearrangement,
followed by loss of a proton to give 180. Crossover experiments also indicated the
possibility of an intermolecular process involving dissociation of the complex 181.
Clean conversion of 179 into 180 can be effected by treatment with p-toluenesulfonic
acid [269] or TFA [270]. Introduction of the phenylsulfinyl group at C2 may also be
accomplished using N-(phenylsulfinyl)succinimide [269].
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Several different approaches are available for the synthesis of (alkylthio)- or
(arylthio)pyrroles. Treatment of pyrrole with the N-chlorosuccinimide–dimethyl
sulfide adduct 182 (formed in situ) afforded the salt 183, which could then
subsequently be converted, by thermal decomposition, into 2-(methylthio)pyrrole
184 in 58% overall yield [271]. Reaction of 1-alkylpyrroles with 1-(methylthio)
morpholine in the presence of acid, or, even better, excess pyridine, gives access
to 2,3,4,5-tetra(methylthio)pyrroles [272]. Exposure of 2-thiocyanatopyrrole (see
below) to phenyl- [273] or alkylmagnesium bromides [274] provides useful routes
to 2-(phenylthio)pyrrole or the corresponding 2-(alkylthio)pyrroles, respectively.
Notably, the alkylthio unit serves as a protecting group for the a-position of
pyrrole in a new approach to dipyrromethanes [274]. A synthesis of densely
substituted 3,30-dipyrrolyl sulfides possessing electron-withdrawing groups by
treatment of suitable pyrroles having a vacant b-position with sulfur dichloride
has also been reported [275].
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In analogy to the behavior of the sulfoxides 179 (see above), the 2-(alkylthio)
pyrroles 185 undergo rearrangement to furnish the isomeric C3 substituted deri-
vatives 186 exclusively in good yields upon heating in a 1 : 1 mixture of TFA and 1,2-
dichloroethane (Scheme 4.50) [276]. This behavior contrasts with the propensity of
unprotected or N-methylated 2-(alkylthio)pyrroles and 3-(alkylthio)pyrroles to under-
go acid induced equilibration under mild conditions [277]. The events leading to the
conversion of 185 into 186 have been suggested to involve an initial protonation to
provide the intermediate 187, subsequent rearrangement via the episulfonium salt
188 to the C3-substituted intermediate 189, and a final deprotonation. This mech-
anistic rationale was supported by crossover experiments, as no crossover products
could be detected [276].

Thiocyanation of pyrroles with cupric thiocyanate [278, 279], thiocyanogen chlo-
ride [276] or, more conveniently, ammonium thiocyanate in the presence of iodine in
methanol [280] or CAN [281], provides access to 2-thiocyanatopyrroles.
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4.5.1.6 Acylation
Several useful procedures forN-acylation of pyrroles are available, for example by acyl
transfer from 1-acetylimidazole, which offers an efficient route to 1-acetylpyr-
role [282]. Alternative attractive methods for N-acylation rely on the use of acetic
anhydride [283], or acyl chlorides in the presence of and triethylamine and DMAP as
the catalyst [284]. Exposure of pyrroles to di(tert-butyl)dicarbonate in the presence of
DMAP in acetonitrile solution gives access to many useful 1-(tert-butoxycarbonyl)
pyrroles in high yields [285].

Formylation of pyrrole is most conveniently accomplished using the Vilsmeier–
Haack reaction. Both pyrrole (1) [286, 287], 1-methylpyrrole (190) [287], as well as
several C-methyl derivatives thereof [288], provide excellent yields of the correspond-
ing pyrrole-2-carboxaldehydes 191 and 192 via the intermediates 193 and 194,
respectively, upon treatment with the reagent 195 [289], which is readily generated
in situ from POCl3 and DMF (Scheme 4.51). The presence of N-alkyl groups larger
than methyl leads to mixtures of products formylated at C2 and C3, while sterically
demanding N-substituents favor substitution at C3 over C2. Thus, for instance, for
1-tert-butylpyrrole the ratio of products is 14 : 1 in favor of 1-(tert-butyl)pyrrole-3-
carboxaldehyde. The reactivity differences in the 1-arylpyrrole series are less pro-
nounced (with prevalence for the C2 products), and are influenced by both steric and
electronic effects. Formylation of 1-acetyl-, 1-benzoylpyrrole and ethyl pyrrole-2-
carboxylate leads exclusively to substitution at C2 [290]. Interestingly, Friedel–Crafts
acylation of intermediates such as 193 and 194, followed by hydrolysis, provides
a one-pot procedure to 4-acylpyrrole-2-carboxaldehydes due to the strong �meta�-
directing properties of the iminium substituent [291]. Salts related to 193 have also
been exploited in reactions with bromine or SO2Cl2, eventually yielding various
pyrrole-2-carboxaldehyde derivatives halogenated at C4, or C4 and C5 [292]. Vils-
meier–Haack-type reagents generated from pyrophosphoryl chloride lead to
increased preference for substitution at C3 due to more pronounced steric interac-
tion with N-substituents [293]. Likewise, treatment of 1-(triisopropylsilyl)pyrrole
with iminium salts gives substitution at C3 [294]. When extended to lactams, the
Vilsmeier–Haack reaction allows preparation of imines such as 196 [295], whereas
the use of N,N-dimethylamides, for instance DMA, provides an effective route to 2-
acylpyrroles [296]. In addition, exposure of pyrroles to Vilsmeier–Haack reagents
generated fromaroylamides gives good yields of 2-aroylpyrroles [297]. An approach to
3,4-dialkylpyrrole-2,5-dicarboxaldehydes relying on treatment of 3,4-dialkylpyrrrole-
2-carboxylic acids with triethyl orthoformate in TFA has also been described [298].
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Pyrroles are readily acylated at C2, as exemplified by the selective conversion of
pyrrole itself into 2-(trichloroacetyl)pyrrole 197 (Scheme4.52). Thismaterial provides
easy access to pyrrole-2-carboxylic acid (198) upon alkaline hydrolysis [299]. Likewise,
treatment of pyrrole with TFAA in the presence of N,N-dimethylaniline gave the
corresponding trifluoroacetyl derivative, which could also be efficiently converted
into 198 [300]. Alcoholysis of 2-(trichloroacetyl)pyrroles enables preparation of the
corresponding esters, for example, methyl pyrrole-2-carboxylate (199). This reaction
is, however, synthetically useful only with primary alcohols [301]. Acetylation with
acetic anhydride is not practical, as it has been reported to give 2-acetylpyrrole in 39%
yield, andminor amounts (8%)of theC3acetylated isomer [302]. In contrast, acylation
of pyrrole with cyanoacetic acid in acetic anhydride allows smooth introduction of a
cyanoacetyl functionality, giving 200. Alkylpyrroles are also cyanoacetylated at C2,
unless both C2 and C5 are substituted, leading instead to 3-(cyanoacetyl)pyrrole
derivatives in good yields [303]. Both pyrrole itself, as well as 1-methylpyrrole, are also
effectively acylated at C2 using N-acylbenzotriazoles in the presence of TiCl4 [304].

Studies on the acid mediated rearrangements of acylpyrroles under anhydrous
conditions revealed that 2-acylpyrroles possessing an N-methyl group (201) undergo
conversion into the corresponding 3-acylpyrroles (202). In contrast, the parent 2-
acylpyrroles (203) give equilibrium mixtures containing 203 and 204 under similar
conditions (Scheme 4.53). Experiments aimed at explaining this discrepancy failed to
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give conclusive results, although it seems likely that a 1,2-acyl shift of a C2-protonated
intermediate is involved [305].

Pyrroles acylated at C2 are valuable precursors for elaboration to more complex
derivatives. As a result of the deactivating and �meta� directing properties of the
trichloroacetyl group, 2-(trichloroacetyl)pyrrole 197 undergoes electrophilic substi-
tution at C4 with various reagents, producing the substituted methyl pyrrole-2-
carboxylates 205 (E¼Cl, Br, I, COMe) in good overall yields after subsequent
methanolysis [212]. The scope and limitations of Friedel–Crafts acylation reactions
of ethyl pyrrole-2-carboxylate (206) using acyl chlorides have been evaluated in detail,
leading to the conclusion that selective C4 acylation or aroylation is best achieved
employingAlCl3 as the catalyst, as the use ofweaker Lewis acids, such as zinc chloride
or boron trifluoride etherate, affords mixtures of C4 and C5 substituted products.
This approach allows efficient syntheses of potentially useful pyrroles, for instance
207 [306]. Chlorination of 199with two equivalents of SO2Cl2 in chloroform gives the
corresponding 4,5-dichloro derivative, which may be subsequently iodinated at C3
using iodine in the presence of silver trifluoroacetate to provide methyl 4,5-dichloro-
3-iodopyrrole-2-carboxylate, a useful partner for regioselective Suzuki reactions
(Section 4.5.11) [307]. Pyrrole-2-carbonitrile, which is readily available by treatment
of pyrrolewith chlorosulfonyl isocyanate followed bywarming inDMF [308], displays
similar reactivity, affording 4-substituted pyrrole-2-carbonitriles [308, 309]. Likewise,
ethyl pyrrole-2-thiolcarboxylate (208) (readily prepared by the action of ethyl chlor-
othiolformate on pyrrolyl magnesium halides) also takes part in electrophilic
substitution reactions, providing good yields of 2,4-disubstituted pyrroles, for
example 209. These products can thereafter be converted into the corresponding
3-substituted pyrroles by treatment with Raney nickel [310] or to 3-alkylpyrroles by
Wolff–Kishner reduction with concomitant decarboxylation [311]. A detailed study
describing the applicability of b-acylpyrroles as useful substrates for Friedel–Crafts
reactions leading to 2,4-diacylpyrroles is also available [312].
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In an interesting application of Friedel–Crafts chemistry, treatment of 206 with
succinic anhydride in the presence of AlCl3 gave the 2,4-disubstituted pyrrole 210.
Reduction of the ketone functionality of 210 afforded 211, which was eventually
subjected to an acid induced intramolecular acylation, leading to the fused system
212 in 60% overall yield (Scheme 4.54) [313].

The synthetic potential in acylation reactions of pyrrole derivatives possessing
removable, strongly electron withdrawing, or bulky N-substituents, is nicely dem-
onstrated by the selective and efficient conversion of 1-(phenylsulfonyl)pyrrole 170
(Section 4.5.1.4) into the corresponding C3 acylated products 213 (Scheme 4.55)
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upon treatment with acyl chlorides or carboxylic acid anhydrides in the presence of
AlCl3. An ensuing base-induced cleavage of the N-phenylsulfonyl group provides
excellent overall yields of pyrroles 214 (R¼alkyl or aryl) [211, 262, 314, 315].
However, there are cases when mixtures of C2 and C3 acylated products have
been encountered in connection with related reactions involving relatively electron
rich aroyl chlorides [316, 317]. Even though similar selectivity problems were noted
during the reaction of 170 with 1-naphthoyl chloride in the presence of AlCl3,
selective C3 substitution was achieved by using nitromethane as the co-solvent [318].
Acylation at C3 may also be conveniently performed employing 1-(triisopropylsilyl)
pyrrole as the substrate [244]. 1-(Triisopropylsilyl)pyrrole may be selectively acylated
at C3 upon reaction with 1-acylbenzotriazoles assisted by TiCl4 in refluxing
CH2Cl2 [304].

In contrast, when BF3�OEt2 instead of AlCl3 is used as the catalyst during acylation
of 170, a dramatic change in regioselectivity is induced, as exclusive formation of the
2-substituted products 215 takes place (Scheme 4.56), providing an alternative route
to the parent 2-acylpyrroles after removal of the protecting group under basic
conditions. Although attempts to rationalize these differences in regioselectivity in
terms of kinetic, steric or electronic factors have been made, no clear conclusions
could be drawn [315]. A new contribution to this field allows selectivea-acylation of 1-
(p-toluenesulfonyl)pyrroles with carboxylic acids and TFAA, presumably involving
mixed anhydrides as the acylating agents [319]. Friedel–Crafts acylation of 3-alkyl-1-
(phenylsulfonyl)pyrroles with acetic anhydride also proceeds with pronounced
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selectivity, provided that the alkyl group at C3 is not too bulky, giving 2-substitution
with AlCl3, and 5-substitution with BF3�OEt2 [320].

4.5.1.7 Reactions with Aldehydes, Ketones, Nitriles and Iminium Ions
The reactions of pyrroles with aldehydes and ketones have been studied extensively,
as some of these transformations constitute powerful tools for the construction of the
important porphyrin skeleton. Treatment of pyrrolewith aldehydes in the presence of
acid initially generates the intermediate carbinols 216 (Scheme 4.57), which readily
lose water to provide the highly electrophilic 2-alkylidenepyrrolium (azafulvenium)
ions 217 (Section 4.5.10).

Such condensation reactions eventually lead to the formation of porphyrins
(Scheme 4.58) [321, 322], along with other oligomeric or polymeric products [323],
for instance so-called �N-confused porphyrins,� which are porphyrin isomers
featuring a pyrrole unit linked through its a and b0 positions [324–327]. A widely
used older procedure for the preparation of meso-tetraarylporphyrins 218 involves
heating of pyrrole with an appropriate benzaldehyde in propionic acid
(Scheme 4.58) [328]. This process involves the intermediacy of the porphyrinogens
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219, which subsequently spontaneously undergo a rate limiting air oxidation step
leading to 218 [329]. More recently it has been demonstrated that pyrrole and
benzaldehydes react reversibly at ambient temperature in the presence of an acid
catalyst to provide porphyrinogens, which may subsequently be irreversibly con-
verted into the corresponding porphyrins by addition of an oxidant. Consequently,
the method of choice relies on initial reaction of pyrrole with an appropriate
benzaldehyde in anhydrous CH2Cl2 in the presence of BF3�OEt2 or TFA at room
temperature, followed by treatment of the resulting mixture with p-chloranil at
reflux [330]. Reactions involving aliphatic aldehydes generate relatively stable meso-
tetraalkylporphyrinogens (220), the conversion of which into the corresponding
meso-tetraalkylporphyrins (221) requires an additional forced oxidation step [331,
332]. Likewise, condensation of pyrrole and acetone in the presence of acid gives
a good yield of a cyclic tetramer [333, 334]. In contrast, the reactions between pyrrole
and ortho esters under acidic conditions give rise to tris(pyrrol-2-yl)alkanes [335, 336].
Moreover, condensation reactions between suitable pyrrole fragments and pyrrole-2-
carboxaldehyde derivatives constitute a common strategy to numerous dipyrrins and
dipyrrinones [337].

Under carefully controlled conditions, the reaction of pyrrole with formaldehyde
may give bis(pyrrol-2-yl)methane (dipyrromethane) (222), which is a useful
precursor for the synthesis of 5,15-disubstituted porphyrins, for example 223
(Scheme 4.59) [335]. Exposure of aldehydes to excess pyrrole, in the presence of
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TFA or BF3�OEt2 as catalysts, constitutes an effective protocol (yields up to 86%) for
the preparation of meso-substituted dipyrromethanes [338]. Alternatively, such
systems are also effectively generated in 5min from pyrrole and aldehydes (ratio
25 : 1) in the presence of TFA (0.1 equiv.) [339], or in water solution with catalytic
amounts of HCl [340]. Treatment of pyrrole with formalin under basic conditions
permits isolation of the dialcohol 224, which can subsequently react with two
equivalents of pyrrole to provide trimer 225, which is an excellent precursor to the
parent macrocycle 226 [341].

In a related process, the 2-acylpyrroles 227 (R¼CF3, CO2Et) have been exposed
to paraformaldehyde in the presence of HCl under anhydrous conditions, leading to
efficient and selective chloromethylation to render the disubstituted pyrroles 228
(Scheme 4.60) [342].

Application of a nitrile as the electrophilic reagent has been utilized in a concise
one-pot synthesis of the monarch butterfly pheromone danaidone (229), wherein
N-alkylation of 3-methylpyrrole (230) with acrylonitrile in the presence of DBU gave
the intermediate 231, which subsequently underwent intramolecular cyclization,
followed by hydrolysis of the intermediate imine (Scheme 4.61) [343].

Pyrroles also react readily with iminium ions, generated in situ from formalde-
hyde and dialkylamines in acetic acid, to provide 2-(dialkylaminomethyl)pyrroles,
which are useful synthetic intermediates (Section 4.5.10), or with the Vilsmeier–
Haack reagent, affording pyrrole-2-carboxaldehydes (Section 4.5.1.6). Likewise,
pyrrole (1) may be converted in high yield into 2-(dimethylaminomethyl)pyrrole 232
via the Mannich reaction (Scheme 4.62) [344]. It has also been found that pyrrole
adds upon heating (neat) to 1-pyrroline 233, leading to 2-(pyrrolidin-2-yl)pyrrole
(234) [345].
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4.5.1.8 Conjugate Addition to a,b-Unsaturated Carbonyl Compounds
Pyrroles are useful nucleophiles in conjugate addition reactions (Scheme 4.63). For
instance, pyrrole has been alkenylated efficiently by treatment with (E)-4-(phenyl-
sulfinyl)-3-buten-2-one to furnish the alkenyl derivative 235. This reaction probably
proceeds via a sequence featuring a Michael addition, followed by elimination of
phenylsulfenic acid [346]. Addition of pyrrole to 1-acyl-2-bromoacetylenes in the
presence of silica gives rise to modest yields of di(pyrrol-2-yl)ethenes, for example
236, as themajor products [347].When the silica is replaced by alumina under solvent
free conditions, pyrroles ethynylated at C2 are produced in useful yields [348].
Addition of pyrrole to methyl acrylate occurs in the presence of BF3�OEt2, providing
the diester 237 [349]. Other Lewis acids, such as InCl3, can also catalyze such
processes efficiently, as illustrated by the synthesis of 238 [350]. Silica supported zinc
chloride has been demonstrated to promote conjugate addition of pyrrole to methyl
a-acetamidoacrylate under microwave irradiation to give the amino acid derivative
239 in considerably better yield than under conventional thermal conditions [351].
Michael addition of pyrroles to a series of electron deficient alkenes undermicrowave
irradiation has also been performed without solvent in the presence of silica gel only,
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whereas reactions involving some more sluggish substrates required the use of
catalytic amounts of BiCl3 [352]. A further development includes the efficient
addition of pyrroles to electron deficient alkenes in water catalyzed by aluminium
dodecyl sulfate trihydrate [353].

An interesting modern contribution to this field is the asymmetric Friedel–Crafts-
type alkylation of pyrroles with a,b-unsaturated carbonyl compounds, which has,
for example, been achieved employing organocatalysis by chiral imidazolinones,
as illustrated by the conversion of 1-methylpyrrole (190) into the product 240
(Scheme 4.64) [354]. A study of additions of pyrroles to a set of a,b-unsaturated
2-acylimidazoles demonstrated that such reactions can also proceed with high yields
and enantioselectivity using a bis(oxazolinyl)pyridine scandium(III) triflate complex
as the catalyst [355].

4.5.2
Reactions with Oxidants

Powerful oxidants usually have a severely destructive effect on pyrroles, often leading
to extensive decomposition or rather complex product mixtures [356]. Consequently,
most useful transformations involving pyrroles and oxidizing agents require careful
matching of substrates and reagents. A reaction belonging to this category is the
oxidation of a-methylpyrroles to the corresponding carboxaldehydes, which can be
effected by using Pb(OAc)4/PbO2 as the oxidant system [357]. Certain 2-methylpyr-
roles have also been successfully oxidized employing Pb(OAc)4 [358]. The oxidation
of pyrrole a-methyl groups with ceric ammonium nitrate (CAN) provides a reliable
and selective route to the corresponding carboxaldehydes, as exemplified by the
conversion 242 into the aldehyde 243 (Scheme 4.65) [359]. An extension of this
approach allows, for example, preparation of the 2-(methoxymethyl)pyrrole derivative
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244 using ceric triflate in methanol [360]. Substituted pyrrolecarboxaldehyde deri-
vatives have also been accessed by oxidation of the corresponding a-methylpyrroles
with IBX in DMSO [96]. An alternative route to pyrrole-2-carboxaldehydes involves
oxidative cleavage of 2-(polyhydroxyalkyl)pyrroles with CAN [361]. In cases where
the pyrrole nucleus is strongly deactivated, oxidation of an aldehyde functionality at
C2 to the corresponding carboxylic acid may be achieved using the strong oxidant
KMnO4 [362].

A useful oxidative coupling reaction has been elaborated, providing access to
quarter-, penta- and sexipyrrole derivatives. For instance, coupling of the 2,20-
bipyrrole 245 with K3FeCN6 afforded the system 246 (Scheme 4.66), which
could thereafter be converted into its reduced form by treatment with NaBH
(OAc)3 [363].

Treatment of the 1-(p-toluenesulfonyl)pyrroles 247 with phenyliodine bis(trifluor-
oacetate) (PIFA) and BF3�OEt2 in the presence of TMSCN gives the pyrrole-2-
carbonitrile derivatives 248 (Scheme 4.67). This cyanation reaction was suggested
to involve initial formation of a pyrrole radical cations, which thereafter react with
cyanide ions by a one-electron oxidation, giving the final products after deprotona-
tion [364]. Similar radical cation intermediates are presumably involved in the
PIFA/TMSBr (bromotrimethylsilane) mediated oxidative coupling of electron rich
pyrroles to bipyrroles [365].

The action of benzoyl peroxide on 1-alkyl- or 1-arylpyrroles leads tomixtures of the
corresponding 2-hydroxy- and 2,5-dihydroxypyrrole-O-benzoates, whereas pyrrole
itself gives only intractable mixtures under the same conditions [366]. Careful
oxidation of pyrrole with hydrogen peroxide gives a modest yield of 3-pyrrolin-2-
one (Section 4.6.3).
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4.5.3
Reactions with Nucleophiles

Owing to their electron rich properties, most pyrroles are relatively unreactive
towards nucleophilic reagents, with the exception of some derivatives or intermedi-
ates having strongly electron-withdrawing substituents, or carrying a positive charge
resulting from, for instance, protonation (Section 4.5.1.2).

Treatment of the nitropyrroles 249 with ethylene oxide provides a route to the
pyrrolo[2,1-b]oxazoles 250 via intramolecular displacement of the nitro group in the
intermediates 251 (Scheme 4.68) [367]. Intramolecular displacement of methane-
sulfinate- or bromide ions at C2 in electron deficient pyrroles by sodium enolates
constitutes an alternative approach to [1,2-a]-fused pyrrole derivatives [271].

The rather electron deficient molecule 1-methyl-2,5-dinitropyrrole (252) reacts
with piperidine in DMSO to produce the substitution product 253 (Scheme 4.69). A
similar reaction occurs more readily with methoxide [368], and the rate is further
enhanced by the presence of an additional electron-withdrawing substituent (NO2,
CN) at the adjacent C3 position [369]. Likewise, exposure of 1-methyl-2,3-dinitro-
pyrrole to sodium methoxide in methanol furnishes 2-methoxy-1-methyl-3-nitro-
pyrrole in 93% yield [370]. The treatment of 1-alkyl-2-nitropyrroles with Grignard
reagents gives mixtures of C3- and C5 alkylated products [371], whereas treatment of
the anion of chloromethyl phenyl sulfone affords the corresponding 5-substituted
1-alkyl-2-nitropyrrole derivatives via vicarious nucleophilic substitution [372]. It has
also been established that the bromine atom in 2-acetyl-5-bromo-1-methyl-4-nitro-
pyrrolemay be displacedwith various nucleophiles, such as azide, cyanide, alkoxides,
thiophenols or amines [373].
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Anunusual example of nucleophilic attack has been observeduponheating pyrrole
with sodiumhydrogen sulfite, affording the pyrrolidinederivative 254 (Scheme4.70).
This transformation presumably involves the intermediacy of a C3 protonated
pyrrole [374].

4.5.4
Reactions with Bases

4.5.4.1 N-Metallated Pyrroles
As a consequence of itsweakly acidic properties [13–15], pyrrolewill react readilywith
virtually any strong base to generate a reactive ambident pyrrolyl anion, which can
either undergo reaction with electrophiles at the nitrogen atom or at C2/C3. The
reaction site is dependent on the properties of the metal–nitrogen bond, and on the
solvating power of the solvent used. In general, N-substitution is favored by
increasing ionic character of the metal–nitrogen bond, and by stronger solvating
power (polarity) of the solvent [375, 376]. Treatment of pyrrole (1) with potassium
metal gives the salt 255 [377], which can thereafter be converted into a wide variety
of N-substituted derivatives, for instance the useful 1-(arylsulfonyl)pyrroles 256
(Scheme 4.71) [378]. Such procedures have now in most cases been supplanted by
modern methods, and the pyrrole anion is now usually generated by treatment of
pyrrole with commercially available alkyl lithiums [377, 379]. N-Alkylation of 255
formed by deprotonation of pyrrole by KOH in DMSO offers a high-yielding route to
1-alkylpyrroles [380], although several more convenient and effective procedures rely
on phase transfer conditions using 18-crown-6 as the catalyst, in combination with
KOH in anhydrous benzene [381], or with potassium tert-butoxide in diethyl
ether [382]. Phase transfer alkylation of pyrrole by alkyl halides with aqueous NaOH
in CH2Cl2 in the presence of tetrabutylammonium bromide constitutes a useful
alternative [383]. Interestingly, 2,5-dialkylpyrrolyl anions generated in the superbase
system KOH–DMSOwill instead react at C3 with carbon disulfide, providing a route
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to pyrrole-3-carbodithioates [384]. The pyrrolyl anion is also easily converted into the
corresponding 1-silylated pyrroles by treatment with triisopropylsilyl chloride
(TIPSCl) [244] or tert-butyldimethylsilyl chloride (TBSCl) [385], as well as with other
trialkylsilyl chlorides [386]. The high reactivity of the pyrrolyl anion is neatly
demonstrated by the reaction of pyrrolylsodium with hexafluorobenzene, which
gives hexa(pyrrol-1-yl)benzene via a SNAr mechanism [387]. Pyrrolylthallium(I),
prepared from pyrrole and thallium(I) ethoxide, can also be utilized for N-alkylation
of pyrroles [388], but should perhaps be avoided because of its toxicity.

Pyrrolylmagnesium halides, which are easily prepared by the action of alkylmag-
nesium halides on pyrrole, display more complex reactivity patterns towards most
alkylating agents, renderingmixtures ofC2 andC3 substituted products, aswell as di-
and tri-alkylpyrroles [383, 389]. In contrast, acylation of pyrrolylmagnesiumhalides is
more selective, giving 2-acylpyrroles as the prevailing products [390]. Excellent
selectivity for C2 acylation of pyrrolylmagnesium chloride 257undermild conditions
can be achieved by treatment with readily available 2-pyridylthiol esters, which gives
high yields of the corresponding 2-acylpyrroles 258 (Scheme 4.72), probably as
a result of coordination of the pyridine nitrogen atom to the magnesium [391]. The
reaction of 257 with alkyl bromoacetates is an efficient way for selective synthesis of
the alkyl (pyrrol-2-yl)acetates 259, which is in this case mediated by coordination
between the metal and the carbonyl oxygen of the alkylating agent [392]. A series of
(pyrrole-2-yl)acetone derivatives have been prepared by employing a new heteroar-
ylation reaction involving the pyrrolyl anion and suitable enolates in the presence of
a Cu(II) oxidant [393]. Transmetallation of pyrrolylsodium with ZnCl2 gives pyrro-
lylzinc chloride, which undergoes perfluoroalkylation at C2 upon exposure to
perfluoroalkyl iodides in the presence of PdCl2(PPh3)2 (10mol.%) and PPh3 [394].

4.5.4.2 C-Metallated Pyrroles
Pyrroles possessing suitable N-blocking substituents undergo C-metallation upon
treatment with sufficiently strong bases. Initial studies early established that
1-methylpyrrole (190) is slowly metallated at C2 using BuLi in ether to give 2-
lithio-1-methylpyrrole (260) (Scheme 4.73) [379], but the yield of the lithiopyrrole is
improved significantly ifN,N,N0,N0-tetramethylethylenediamine (TMEDA) is used as
the additive [395]. It was later demonstrated that quantitative and selective generation
of 260 is easily achieved using 2.5 equivalents of BuLi in hexane at ambient
temperature in the presence of TMEDA [396], while a larger excess (4.5 equivalents)
of BuLi and elevated temperatures promotes increasing formation of 2,5- and 2,4-
dilithio- derivatives [396, 397].Generation of 260may also be carried out usingBuLi at
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ambient temperature in THF–hexane (2 : 1). This lithiopyrrole will subsequently
react readily with a wide variety of electrophiles [398], and may for example also be
converted into the 2-alkyl-1-methylpyrroles 261 by treatment with trialkylboranes,
followed by addition of iodine or NCS [399, 400]. Quenching of 2-lithio-1-methyl-5-n-
octylpyrrole withN-fluorodibenzenesulfonamide has been used to prepare the labile
2-fluoro-1-methyl-5-n-octylpyrrole [401]. Transmetallation of 260 formed from 1-
methylpyrrole and t-BuLi with MgBr2 or ZnCl2 gives the corresponding metallated
pyrroles 262 and 263, which can subsequently participate in palladium-catalyzed
cross-coupling reactions leading to 2-arylpyrroles, or to the 2-pyridylpyrrole 264 [402].
A procedure for selective C2 metallation and functionalization of 1-vinylpyrrole
employing the base system BuLi/t-BuOK catalyzed by i-Pr2NH, followed by addition
of LiBr and suitable electrophiles, has also been described [403].

Selective C2 mercuration of pyrroles is effected by exposure of 1-acetyl- or 1-
(phenylsulfonyl)pyrrole to mercuric chloride. The corresponding diorganomercury
compounds, which are useful for the synthesis of pyrrole containing transitionmetal
complexes, can thereafter be obtained after treatment with sodium iodide [404]. For
N-H pyrroles, mercuration with mercury(II) acetate leads to N-mercuration, while
various N-substituted pyrroles are mercurated at C2 or C3. Such C-mercurated
pyrroles undergo Heck-type reactions with alkenes [405].

The development of directed metallation techniques has allowed facile access to
a multitude of 2-substututed pyrroles that were previously difficult to prepare. The
ideal N-protecting and directing group should be easily installed and cleaved, and
induce high regioselectivity during metallation. The tert-butoxycarbonyl (Boc) group
fulfils all these requirements, and has consequently proven to be extremely useful.
For example, 1-(tert-butoxycarbonyl)pyrrole (158) [285] is efficiently lithiated at C2 by
LiTMP, and subsequent quenching with aldehydes or acid chlorides gives the
corresponding pyrrol-2-yl methanols 265 (Scheme 4.74) and 2-acylpyrroles, respec-
tively. The Boc group may be removed by treatment with sodium methoxide in
methanol [406], under thermal conditions [407] or using acid, which may, however,
not always be compatible with electron rich substrates. Similar metallation of 158
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followed by quenching with trimethyl borate and subsequent hydrolysis provides
a route to the useful boronic acid 266 [239]. An excellent recent review covers the
advances in pyrrole protection strategies [408].

An alternative route permits introduction of two a-substituents by halogen–metal
exchange on 2,5-dibromo-1-(tert-butoxycarbonyl)pyrrole (267) (Section 4.5.1.3), even-
tually producing the corresponding 2,5-disubstituted pyrroles, for instance 268
(Scheme 4.75) [237, 239]. Moreover, mono-lithiation of 267 offers access to 2-
bromopyrroles having an additional substituent at C5 (e.g., 269) [239].

Pyrroles that are N-protected with the N-tert-butylcarbamoyl group are also very
useful substrates for C2 lithiation; the directing group can subsequently be removed
by LiOH in MeOH–THF [409]. Generation of the dilithio species 270, followed by
quenching with suitable electrophiles, and final acidic work up which cleaves the
carbamate, constitutes a one-pot protocol for preparation of C2 functionalized
pyrroles 271 (Scheme 4.76) [410].

Lithiation of 1-(p-toluenesulfonyl)pyrrole (272) also occurs at C2 with high selec-
tivity, and subsequent quenching with PhSSO2Ph gives the sulfide 273
(Scheme 4.77) [276]. Similar techniques can also be utilized in synthesis of other
chalcogen containing systems, as illustrated by the conversion of 272 into the
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ditelluride 274 [411]. Magnesium can be introduced at C2 in 1-(phenylsulfonyl)
pyrrole by the action of 3 equivalents of i-PrMgBr in the presence of 5mol.% i-PrNH;
ensuing treatment with electrophiles gives the corresponding 2-substituted pyrroles
in moderate yields [412].

The N-protected pyrroles discussed above are neatly complemented by 1-[2-(tri-
methylsilyl)ethoxymethyl]pyrrole (1-SEM-pyrrole) (275), which is available by depro-
tonation of pyrrole with NaH in DMF, followed by treatment with SEMCl [413].
Lithiation is also in this case directed toC2, rendering the lithiopyrrole 276, treatment
ofwhichwith appropriate electrophiles affords the 2-substitutedN-protected pyrroles
277 inmoderate to good yields (Scheme 4.78). The electron releasing SEMgroupmay
thereafterbe conveniently cleavedusing tetrabutylammoniumfluoride (TBAF)under
conditions that tolerate sensitive functionalities [414]. Even structurally rather com-
plex and sterically congested electrophiles may be used in this approach, providing
useful yields of unusual 2-substituted pyrroles [415]. Notably, lithiation of 1-(N,N-
dimethylamino)pyrrole also occurs at C2, and this electron releasing directing group
can subsequently be removed by treatment with Cr2(OAc)4�2H2O [416].

Metallation of pyrroles at C3 has enabled convenient preparation of derivatives that
were prepared previously by cumbersome means [417]. Selective C3 metallation is
achieved conveniently by halogen–metal exchange on 3-bromo-1-(triisopropylsilyl)
pyrrole (163) by virtue of the steric bulk of the TIPS group (Scheme 4.79) [245].
Subsequent treatment of the so-obtained 3-lithiopyrrole 278 with suitable electro-
philes, followed by desilylation with TBAF gives the corresponding 3-substitued
pyrroles 279 via the 1-TIPS derivatives 280 [242]. Intermediate 278 may also be
generated by lithiation of 3-iodo-1-(triisopropylsilyl)pyrrole (164), and converted into,
for example, the boronic acid 281 or the stannyl derivative 282, which are useful
substrates in palladium-catalyzed coupling reactions (Section 4.5.11) [418]. Similar
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techniques have been employed for the synthesis of 3-fluoro-1-TIPS-pyrrole in 50%
yield by quenching of 3-lithio-1-TIPS-pyrrole by N-fluorobenzenesulfonimide [419].
Conversely, lithiations involving pyrroles having a trimethyl or triethylsilyl groups at
the nitrogen are more difficult to control in terms of regioselectivity, and are under
certain conditions further complicated by migration of the silyl groups [420].
Treatment of dimethoxyethyl protected 4-iodopyrrole-2-carbonitrile with i-PrMgCl
and subsequent quenching with electrophiles provides a route to 4-substituted
pyrrole-2-carbonitriles in good yields [421].

4.5.5
Reactions with Radical Reagents

Synthetically useful reactions of pyrroles with radical reagents were not been studied
inmuch detail until it was demonstrated that effective and regioselective synthesis of
2-alkylpyrrole derivatives can be accomplished by radical substitution. The pyrrole-2-
acetic acid derivatives 283 are readily available by treatment of the pyrroles 1 or 190
(Scheme 4.80) with radicals generated from a-carbonyl-, a,a0-dicarbonyl- and
a-cyano-alkyl iodides [422]. Alternative procedures for the synthesis of pyrrole-2-
acetic acid derivatives involve generation of radicals from various iodoacetates
induced by stannanes [423] or under conditions avoiding stannanes, by irradiation
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in the presence of Na2S2O3 as the I2 reductant, Bu4NI to aid in solubility, and
propylene oxide [423, 424] or epoxydecane as the HI trap [425]. Pyrroles possessing
electron-withdrawing groups at C2 undergo related alkylation reactions at C5 with
a-acetyl or a-acetonyl radicals generated by exposure of suitable xanthate based
precursors to dilauroyl peroxide [426].

Similar intramolecular processes provide routes to fused pyrroles, as illustrated
by the manganese(III) acetate generated in situ induced conversion of the 2-aroyl-
pyrrole 284 into the fused system 285 (Scheme 4.81), a useful precursor to the
analgesic molecule ketorolac (10) [427]. In addition, [1,2-a]-fused pyrroles are also
available via intramolecular radical cyclization of 1-(bromoalkyl)pyrroles induced by
Bu3SnH in the presence of AIBN [428, 429], annulation of 1-(iodoalkyl)pyrroles with
theH2O2/Fe(II) system (vide supra) [430], or employing electroreductionwith aNi(II)
complex as the electron-transfer catalyst [431]. Intramolecular cyclization of acyl
radicals onto pyrroles leading to [1,2-a]-fused pyrrole derivatives inmodest yields has
also been reported [432].

It has been known for some time that 2-(perfluoroalkyl)pyrroles are formed in low
yields upon heating of pyrroles in the presence of perfluoroalkyl iodides under
forcing conditions [433]. Application of the H2O2/Fe(II) protocol offers a practical
procedure for the preparation of, for example, the perfluoroalkylpyrroles 286 from
pyrrole-2-carboxaldehyde (191) and perfluoroalkyl iodides via a homolytic substitu-
tion process (Scheme 4.82) [434]. In contrast, perfluoroalkylation of pyrroles at C2
using bis(perfluoroalkanoyl) peroxides follows a different mechanistic path, which
appears to proceed via coupling of perfluoroalkyl radicals with pyrrole cation
radicals [435].

Addition of the 3-pyridyl radical generated from N-nitroso-N-(3-pyridyl)-isobutyr-
amide to ethyl pyrrole-1-carboxylate gives 287 in 23% yield [436]. More efficient
radical C2 arylations of pyrroles having an electron-withdrawing substituent at the
nitrogen atom have been afforded using anilines in the presence of amyl nitrite in
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warm acetic acid [437]. Intramolecular radical arylations involving pyrroles are useful
tools for the construction of more complex systems, such as the tricyclic derivative
288, which was derived from the precursor 289 by exposure thereof to tributyltin
hydride in the presence of AIBN in refluxing toluene [438, 439]. Related cyclization
reactions may also produce spiropyrrolidinyloxindoles, depending on the properties
of the pyrrole protecting group [440].
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A radical displacement reaction at C2 of 1-phenylsulfonyl-2-(p-toluenesulfonyl)
pyrrole with stannyl radicals generated by the reagent combination Bu3SnH/AIBN in
refluxing benzene, resulting in the corresponding 2-stannylpyrrole derivative, has
also been described [441].

4.5.6
Reactions with Reducing Agents

It has long been established that reduction of pyrroles 290 with zinc in hydrochloric
acid gives 2,5-dihydropyrroles (3-pyrrolines) 291 (Scheme4.83) [442, 443], although it
was later found that the material obtained from the reduction of pyrrole itself is
frequently contaminated with pyrrolidine, which is difficult to separate from the
desired product [444]. The synthetic utility is further compromised by the fact that the
formation of both cis and trans products occurs upon reduction of 2,5-dimethylpyr-
role [445]. Nevertheless, this procedure seems to be useful in certain applications,
and a modified version thereof has been applied successfully for the reduction of
some 1,2-disubstituted pyrroles to give the corresponding 3-pyrroline derivatives en
route to the antibiotic (�)-anisomycin [446]. Treatment of pyrrole-2-carboxamide with
phosphonium iodide in fuming hydroiodic acid affords 3,4-dehydroprolinamide as
the major product, provided that careful control of the reaction conditions is
maintained [447]. A similar reduction using the combination H3PO2/HI in acetic
acid has been used for the conversion of pyrrole-2-carboxylic acid into 3,4-dehydro-
proline in 74% yield on a large scale [448]. Reduction of C2 or C3 substituted

N
H

290

N
H

291

R1 R2 R1 R2
Zn, HCl (aq.)

Scheme 4.83

320j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



1-phenylsulfonylpyrroles with NaCNBH3 in TFA leads to the corresponding 3-pyr-
rolines in good yields, offering a convenient complement to the procedures discussed
above [449].

Catalytic hydrogenation of pyrroles leads to pyrrolidines, and can be performed
under various conditions, often proceeding exclusively with cis-stereoselectivity.
Useful catalysts for this application are 5% Rh on Al2O3 [450–452], PtO2 or 10%
Pd/C in 6N aqueous HCl [453] or alternatively Pd/C in the presence of catalytic
amounts of H2SO4 [454]. Moreover, catalytic hydrogenation of pyrroles at atmo-
spheric pressure offers a convenient procedure for the synthesis of cis-2,5-disubsti-
tuted pyrrolidines, as illustrated by the conversion of pyrrole 292 into pyrrolidine 293
(Scheme 4.84) [455].

Birch reduction of pyrroles has not been explored until recently, but has already
attracted considerable attention as a tool for preparation of interesting 3-pyrrolines
and 2,3-dihydropyrroles (2-pyrrolines). Initial studies demonstrated that pyrroles
possessing electron-withdrawing groups, for instance 294, undergo efficient con-
version into 3-pyrrolines 295 upon Birch reduction and subsequent alkylation
(Scheme 4.85) [456, 457]. Diastereoselectivity at C2 may be induced in alkyl-
ation [458] or protonation [459], by using for example pyrrole-2-carboxylates or
pyrrole-2-carboxamides, respectively, containing chiral moieties as substrates. A
variant featuring a reductive aldol reaction has also been developed [460]. It was
later established that such reductions may also be conveniently performed
by employing lithium in THF in the presence of bis(methoxyethylamine) and
naphthalene [461, 462], or 4,40-di-tert-butylbiphenyl (296, see below) [463], thus
supplanting the classical Birch conditions. Further extensions of this methodology
allow reductive acylation [462], and aldol reactions with excellent anti-selectivi-
ty [464, 465].
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Arecent contribution to thisfield concerns the enantioselective partial reduction of
pyrroles involving chiral protonation using (�)-ephedrine. Thus, diester 297 under-
went conversion into a 1 : 1 mixture of the cis- and trans-diastereomers 298a
and 298b, the latter of which was found to be formed with an enantiomeric excess
of 74%. A simple recrystallization of 298b provided material with >94% ee
(Scheme 4.86) [466].

Pyrroles bearing amide or ester functionalities at the b-position also undergoBirch
reduction, and ensuing alkylation provides the corresponding 4,4-disubstituted 2-
pyrrolines [467]. The 3,4-disubstituted pyrrole 299 (Adoc¼adamantyloxycarbonyl) is
converted into cis-pyrrolidines 300 under similar conditions (Scheme 4.87). Sequen-
tial alkylation with two different electrophiles gives access to unsymmetrically
substituted derivatives [468].

4.5.7
Cycloaddition Reactions

Cycloaddition reactions involving pyrroles constitute a powerful tool for crafting
rather complex heterocyclic structures from simple precursors. It was early recog-
nized that some pyrroles, for example 1-methylpyrrole, give mainly C2 substituted
products resulting from Michael-type addition to maleic anhydride [469]. Interest-
ingly, the reaction of 1-methylpyrrole with dimethyl acetylenedicarboxylate (DMAD)
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gives a product for which an indolic structure was proposed [470] – the true identity
was later elucidated by Acheson [471]. Further studies of these reactions suggested
that Michael additions are favored in the presence of a proton source, whereas under
neutral conditions and at elevated temperaturesDiels–Alder additionswill take place.
The adducts, however, being rather unstable, undergo retro Diels–Alder reactions to
the starting materials, yield further pyrrole derivatives via extrusion of acetylene
derivatives, or react further with DMAD to givemore complex indolic products [472].
Based on the results of ab initio calculations on the reaction of 1-methylpyrrole with
DMAD, which support the preferential formation of Diels–Alder products instead of
Michael adducts, a step-wise mechanism involving a zwitterionic intermediate was
suggested, rather than a concerted pericyclic process [473].

Even though elimination of acetylene from intermediate Diels–Alder adducts of
thedeactivatedmethyl pyrrole-1-carboxylatewithDMADhas also beenobserved [474,
475], stable addition products could nevertheless be isolated in very low yields from
the reactions of 1-benzylpyrrole [476] or methyl pyrrole-1-carboxylate [477] with
acetylenedicarboxylic acid. A different decomposition path is in operation during
reactions of 1-aminopyrroles with DMAD, which give substituted benzene deriva-
tives as the final products [478]. Conditions for practical Diels–Alder reactions
involving deactivated pyrroles soon became available, permitting the synthesis of
adduct 301 in a moderate yield upon heating of the pyrrole 302 in neat DMAD
(Scheme 4.88) [479], whereas the same reaction performed inCH2Cl2 in the presence
of five equivalents of AlCl3 at 40 �C is much faster and gives the adduct in 93%
yield [480]. The use of high pressure (15 kbar) also leads to high yields of 301, but,
even under these conditions, pyrrole itself undergoes mainly C2-substitution [481].

Deactivated pyrroles also give good yields of Diels–Alder adducts with alkenes at
elevated pressure, as demonstrated by the synthesis of the endo-adduct 303
from 1-acetylpyrrole (304) and N-methylmaleimide (Scheme 4.89). In some cases,
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mixtures of exo- and endo-adducts are produced, and it has been proposed that
the endo-isomers are in some cases formed under kinetic control and isomerize to
the exo-products [482].Mixtures of exo- and endo-adducts have also been encountered
during high pressure reactions of methyl 3-methylthio- or 3-phenylthiopyrrole-1-
carboxylate with N-phenylmaleimide or methyl acrylate [483]. However, it appears
that 1-acylpyrroles do not participate in Diels–Alder reactions with alkenes at
atmospheric pressure [484].

An intramolecular cycloaddition reaction involving the precursor 305 (Ns¼2-
nitrophenylsulfonyl), incorporating a deactivated pyrrole as the diene component has
been used in an elegant synthesis of the tricyclic system 306 (Scheme 4.90). This
study was extended to the efficient construction of several conformationally strained
analogues, featuring stereoselective generation ofmultiple stereogenic centers [485].

Diels–Alder reactions involving pyrroles and acetylenes are the key feature of
several total syntheses of the powerful analgesic natural product epibatidine (307)
(Scheme 4.91). The common 4p-component 1-(tert-butoxycarbonyl)pyrrole (158)
undergoes efficient conversion into the bicyclic system 308 upon heating with the
electron deficient dienophile (p-toluenesulfonyl)acetylene [486]. A similar reaction
involving 158 and methyl pyrrole-1-carboxylate has previously been demonstrated to
give excellent results [487, 488]. The intermediate 308 proved to be a useful precursor
for the synthesis of epibatidine (307) [489, 490]. Other related approaches to 307
employ Diels–Alder reactions of methyl pyrrole-1-carboxylate with (p-toluenesulfo-
nyl)acetylene [491], or a (6-chloro-3-pyridyl)acetylene derivative [492]. Likewise,
heating of the pyrrole 158 with the dienophile methyl 3-bromopropiolate gives the
adduct 309, which is also a useful vehicle for further manipulations that eventually
lead to 307 [493, 494].
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Allenes may also participate in Diels–Alder reactions with electron deficient
pyrroles, and high selectivity can be attained, depending on the choice of starting
materials and conditions. For example, 1-(tert-butoxycarbonyl)pyrrole (158) gives
exclusively the endo-isomer 310 with diethyl allene-1,3-dicarboxylate 311
(Scheme 4.92). Under similar conditions, 1-methyl- or 1-benzylpyrrole give only
C2 substitution products [495]. Variants involving endo-selective Diels–Alder addi-
tion of 158 to an optically active allene-1,3-dicarboxylate [496], or 1-(benzenesulfonyl)-
1,2-propadiene to provide 312 [497], have also been disclosed.

The reactions of 1-methylpyrrole or 1-benzylpyrrole with benzyne give rather
unstable adducts that could only be isolated in low yields as the methiodide or the
picrate, respectively, as they readily react further with benzyne, finally rendering
carbazole derivatives [498, 499], or rearrange to 2-naphthylamines [500]. In contrast,
1-(tert-butoxycarbonyl)pyrrole (158) reacts with benzyne, to afford a stable adduct
(313) in moderate yield (Scheme 4.93) [501], as do 1-alkyl-2,3,4,5-tetramethylpyr-
roles [502, 503]. Tetrafluorobenzyne also adds readily to for, example, 1-methylpyrrole
to form a stable adduct [504], whereas the reaction of the benzyne generated from
1-bromo-2,5-difluorobenzene with 1-(trimethylsilyl)pyrrole (314) gives 315 with
concomitant desilylation [505]. Related addition products have also been obtained
upon addition of tetrachlorobenzyne to 1-alkylpyrroles [506].

Although the photooxygenation of pyrroles was discussed already in 1912 [507],
evidence for themechanismwas not available until almost 70 years later, when it was
demonstrated that addition of singlet oxygen to 1-methylpyrrole (190) provides the
unstable endoperoxide 316, which undergoes a subsequent rearrangement or reacts
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with water to furnish, among other products, the oxypyrrole 317 (Scheme 4.94). The
intermediacy of 316 was suggested on the basis of low-temperature NMR
measurements [508].

Owing to their aromatic character, the applicability of pyrroles as the 2p reactants
in normal electron demand Diels–Alder reactions has been quite limited, requiring
harsh conditions and giving only moderate yields of products as mixtures of
regioisomers [509]. Recently, however, it was demonstrated that pyrroles possessing
the strong electron-withdrawing trifluoromethylsulfonyl (Tf) group plus an acetyl
group can indeed act as dienophiles at elevated pressure, as illustrated by the
conversion of 318 into 319 (Scheme 4.95) [510, 511].

Pyrroles may also play the role of dipolarophiles in cycloaddition reactions. Thus
for instance, the reactions of certain 1-alkylpyrroles with nitrileimines have been
demonstrated to give pyrrolo-fused pyrazoles [512, 513], whereas intramolecular
cyclization of nitrile oxide functionalities onto pyrroles involved unstable pyrrolo-
fused isoxazole adducts that underwent ring opening of the isoxazole ring [514]. It has
also been established that a series of osmiumpyrrole complexes, for example 320 [Os
(II)¼[Os(NH3)5](OTf)2], participate as dipoles in cycloadditions with alkenes, for
instance providing the endo-adduct 321 in good yield along with minor amounts
of the exo-isomer (Scheme 4.96) [515, 516].

Inverse electron demandDiels–Alder reactions have beenused successfully for the
synthesis of the pyrrolo[2,3-d]pyrimidines 322 from the 2-amino-4-cyanopyrroles 323
and the 1,3,5-triazine 324 (Scheme 4.97). This process is remarkable, as it proceeds
readily even at ambient temperature [517]. Based on a theoretical study of the reaction
between 2-aminopyrrole and 1,3,5-triazine, it appears that these transformations
involve an initial nucleophilic attack of the aminopyrrole on the triazine to form
a zwitterionic intermediate, which is in equilibriumwith a neutral species, eventually

N

Me

N

Me

O

O

1O2

N

Me

OHO
H2O

190 316 317

Scheme 4.94

N

318

Tf

Me

Me

N

Tf

Me

Me

H

ZnCl2 (10 mol%), CH2Cl2
16 kbar, 50 °C

80%

319

Me
O

O

Me

Scheme 4.95

326j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



undergoing a rate determining cyclization step [518]. The related reaction between 1-
methylpyrrole and 4,5-dicyanopyridazine gave only a low yield of 5,6-dicyano-1-
methylindole [519].

An intramolecular inverse electron demandDiels–Alder reaction involving pyrrole
as the dienophile component has been employed for conversion of the pyrrole-
tethered 1,2,4-triazine 325 into the tricyclic system 326 in good yield
(Scheme 4.98) [520]. Likewise, 1-acyl- or 1-benzoylpyrroles have been used as 2p-
components in cycloadditions to masked o-benzoquinones [521].

Since the initial reports that 1-alkyl- and 1-aryl-2(3)-vinylpyrroles may serve as
diene components in Diels–Alder reactions leading to indoles with interesting
substitution patterns [522, 523], several studies exploiting this strategy have emerged.
Heating of 1-triisopropylsilyl-(E)-2-(2-phenylsulfinylvinyl)pyrrole with suitable
acetylenecarboxylic acid derivatives furnished TIPS protected 4-acylindoles in good
yields [524]. A more practical approach involves the readily available 3-vinylpyrrole
327, which gives the adduct 328 upon reaction with N-phenylmaleimide and
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subsequent isomerization (Scheme 4.99). Similar reactions yielding isomeric
adducts were performed using 1-(phenylsulfonyl)-2-vinylpyrrole [525]. Other related
indole syntheses encompass the use of silyl enol ethers of 2-acylpyrroles [526, 527], or
a diene generated by S-alkylation of 1-methyl-3-thioacetylpyrrole [528] as the 4p-
components. It is also noteworthy that some sterically hindered N-substituted
2-vinylpyrroles give mainly Michael-type addition at C5, as the required cisoid
conformation is disrupted by steric interaction between the group at the pyrrole
nitrogen and the substituted vinyl moiety [529].

4.5.8
Reactions with Carbenes and Carbenoids

Although it was established early on that pyrroles readily undergo substitution
reactions with carbenes [530] the synthetic utility of this reaction appears to be
severely limited, as simple pyrroles, for example 1-methylpyrrole, givemixtures of C2
and C3 substituted products [531–533]. Interestingly, in this context, the reactivity
rate of pyrrole versus naphthalene towards thermally generated (ethoxycarbonyl)
carbene at 150 �C is 23 times higher [534]. A useful ring expansion reaction occurs
when 2,5-dimethylpyrrole (329) is exposed to dichlorocarbene under neutral aprotic
conditions, rendering the pyridine 330. Under basic protic conditions, very little
of 330 is formed, along with even lower amounts the 2H-pyrrole 331 [535]. A similar
mixture of products, although in considerably higher total yield, is obtained under
basic conditions in the presence of a phase transfer catalyst [536]. The pyridine
product may result from a rearrangement of the dichlorocyclopropane intermediate
332, in analogywith observations during studies on similar reactions of 2-tert-butyl-5-
methylpyrrole [537].
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N

SO2Ph

NO O

Ph

PhMe, 

327

N

PhO2S
N

O

O

Ph

328

76%

Scheme 4.99

328j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



product 334 (Scheme 4.100) [538, 539]. An analogous outcome giving cyclopropa-
nated products can be observed upon CuCl-catalyzed decomposition of diazo-
methane in the presence of 302 [539, 540]. Similar conditions involving CuOTf
1/2C6H6 as the catalyst allow cyclopropanation of 1-acylpyrroles with methyl diazoa-
cetate in up to 44% yield [541].

Further studies also indicated that 333 undergoes rearrangement to the dihydro-
pyridine derivative 335 by heating at 285 �C. This is also true for the diazomethane
adduct 336, which is completely converted into 337 within 30min under the
same conditions (Scheme 4.101) [539]. Based on detailed mechanistic studies,
these transformations were suggested to proceed through the intermediate acyclic
azatrienes 338/339, which give the dihydropyridines 335/337 after final 6p-electro-
cyclization [539, 542].

Stabilized vinyl carbenes also add readily to deactivated pyrroles, for example 340,
providing the expected cyclopropanated intermediates 341, which, however, can not
be isolated, as an ensuing Cope rearrangement leads directly to the tropane skeleton
342 (Scheme 4.102) [543, 544]. In analogy with previous findings (see above), pyrrole
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itself gives instead a mixture of C2 and C3 substitution products under similar
conditions [543].

4.5.9
Photochemical Reactions

The photochemistry of pyrroles has been studied relatively scantily, and only few
synthetically useful procedures have appeared over the years. Interestingly, during
the irradiation of pyrrole-2-carbonitrile (343) in methanol solution the isomeric
pyrrole-3-carbonitrile 344 was isolated in 55% yield as the major product
(Scheme 4.103) [545]. This intriguing isomerization has been suggested to encom-
pass initial generation of the unstable Dewar pyrrole 345, and a subsequent
rearrangement involving the aziridine nitrogen to form intermediate 346 [546]. The
N-ethoxycarbonyl derivative of the parent ring system of 345 has, interestingly, been
generated and trapped as an adduct with 1,3-diphenylisobenzofuran [547], although
the formation and reactions of tetrakis(trifluoromethyl) derivatives thereof had been
reported previously [548, 549].

The photo-induced reaction of pyrroles with aldehydes or ketones provides a route
to C3 substituted pyrroles, as illustrated by the conversion of 190 into 347
(Scheme 4.104). Based on NMR studies of the reaction mixture, the oxetane 348
was proposed as a conceivable intermediate [550]. Similar reactions of 1-benzoyl-
pyrrole with 3- or 4-benzoylpyridine led to the isolation of low yields of related
bis-adducts [551].

Light-induced cyclizations of suitable pyrrole containing precursors offer useful
routes to more complex fused pyrroles. Thus the heterocyclic stilbene analog 349
undergoes conversion into the system 350 upon irradiation in the presence of Pd/C
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as the dehydrogenating catalyst (Scheme 4.105) [552]. Photochemical annulation
reactions of related precursors may also be performed in the presence of iodine with
access to air, or alternatively by employing iodine and excess propylene oxide under
an argon atmosphere [553].

4.5.10
Pyrryl-C-X Compounds: Synthesis and Reactions

Pyrrolyl-C-X compounds constitute an important class of derivatives, as pyrroles
possessing aminomethyl- or hydroxymethyl substituents are excellent substrates in
reactions with nucleophilic reagents. Conversion of the readily available 2-(dimethy-
lamino)pyrrole 232 into the methoiodide 351, followed by treatment with NaCN
provides convenient access to (pyrrol-2-yl)acetonitrile (352, Scheme 4.106) [554],
whereas a similar displacement with the anion of diethyl phosphite gives the useful
diethyl (pyrrol-2-yl)methylphosphonate in 91% yield [555]. This type of eliminatio-
n–addition processes with N-substituted pyrroles has been implied to involve the
intermediacy of azafulvenium ions [287] (Section 4.5.1.7), or in the case of pyrrole
itself the azafulvene 353 [556, 557], both of which are prone to attack by nucleophiles
at the exo-cyclic carbon. Likewise, 2,5-bis(dimethylaminomethyl)pyrrole may, for
example, be converted into the corresponding 2,5-bis(phenylthiomethylene)pyrrole
via an intermediate quaternization with iodomethane in good overall yield [558].
However, products that presumably resulted from nucleophilic attack at C5 of
1-methylazafulvenium ions have also been observed [555, 559].

Pyrroles containing acetoxymethyl groups at C2 are particularly useful for the
construction of di(pyrrol-2-yl)methanes [560–562]. The reaction of the 2-(acetoxy-
methyl)pyrrole derivative 354 with 355 leading to the molecule 356 (Scheme 4.107)
serves as an excellent illustration of the applicability of such approaches [561]. Related
transformations may also be carried out using 2-(hydroxymethyl)pyrroles [341, 563],
as well as 3-(hydroxymethyl)pyrroles, which display similar behavior, and may
for instance be converted into the corresponding 3-(cyanomethyl)pyrroles upon
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treatment with NaCN [564]. Introduction of the strong electron-withdrawing (tri-
fluoromethyl)sulfonyl group at the nitrogen of 2-(hydroxymethyl)pyrroles blocks the
pathway involving azafulvenium ions, thus enabling Mitsunobu-type reactions at
the hydroxymethyl moiety [565].

Di(pyrrol-2-yl)methanes have also been prepared under non-acidic conditions, as
demonstrated by the reaction of a magnesium derivative of 357 with the 2-(chlor-
omethyl)pyrrole 358 to afford the product 359 (Scheme 4.108). The compound 358 is
readily available from pyrrole-2-carboxaldehyde by N-protection, followed by reduc-
tion, yielding a 2-(hydroxymethyl)pyrrole, and treatment thereof with methanesul-
fonyl chloride in the presence of H€unig�s base [566]. 2-(Haloalkyl)pyrroles may also
be used in displacement reactions with, for example, azide ions [567], pyridine or
alkoxide ions [568], giving additional useful synthetic intermediates.

Pyrroles bearing an (benzotriazol-1-yl)methyl (Bt) substituent at C2, for example
360,may also serve as versatile substrates for conversion intomore exotic derivatives,
employing a route featuring initial metallation and alkylation to give 361, followed by
nucleophilic displacement of the benzotriazol-1-ylmoiety to furnish thefinal product
362 (Scheme 4.109) [102]. Similar reactions involving a,b-unsaturated aldehydes or
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ketones instead of alkyl halides as the electrophiles, eventually leading to indole
derivatives, have also been reported [569].

Reduction of 3-acyl-1-(p-toluenesulfonyl)pyrroles with 0.5 equivalents of NaBH4 in
refluxing dioxane containing 1 equivalent of i-PrOH gives the corresponding
intermediate 1-(pyrrol-3-yl)methanol derivatives, which undergo dehydration in hot
DMSO, rendering 3-vinylpyrroles [570]. C-Vinylpyrroles are useful in various appli-
cations, for example cycloaddition reactions (Section 4.5.7), and comprehensive
reviews highlighting the preparation [571] and synthetic uses of these compounds
have appeared quite recently [572].

4.5.11
Transition Metal Catalyzed Coupling Reactions

The availability of stable halopyrroles, stannylpyrroles and pyrroleboronic acids has
opened new possibilities for functionalization of the pyrrole nucleus by transition
metal catalyzed reactions, enabling the synthesis of derivatives otherwise difficult to
access [573]. A few reactions involving transition metal catalyzed C�H activation in
pyrroles have also emerged.

There are only a few examples of N-arylation of pyrrole itself using aryl bromides,
performed in the presence of t-BuONa and catalytic amounts of Pd(OAc)2 and
diphenylphosphinoferrocene (DPPF) and a suitable base [574], or employing the
combination Pd(dba)2/P(t-Bu)3/Cs2CO3 [575]. Pyrrole has also been N-arylated with
an aryl iodide using CuI/trans-1,2-cyclohexanediamine in the presence of K3PO4 as
the catalytic system [576]. 2-Acetylpyrrole, as well as pyrrole-2-carboxaldehydes
possessing an additional electron-withdrawing substituent at C4, undergoes efficient
N-arylation with arylboronic acids at ambient temperature using stoichiometric
amounts of Cu(OAc)2 [577]. Treatment of pyrroles with vinyl triflates in the presence
of the system Pd2(dba)3/Xphos/K3PO4 constitutes a new route to 1-vinylpyr-
roles [578]. It has also been reported that N-alkynylation of electron deficient pyrroles
can be achieved using alkynyl bromides in the presence of catalytic amounts of
CuSO4�5H2O and 1,10-phenanthroline [579].

The readily available N-protected 2-bromopyrrole 155 is an excellent partner
for Suzuki couplings, offering a convenient route to the 2-arylpyrroles 363
(Scheme 4.110) [580, 581]. An alternative approach is based on coupling of the
pyrrole-2-boronic acid 266with aryl bromides or iodides [582]. Suzuki reactions have
also been performed using 1-(phenylsulfonyl)pyrrole-2-boronic acid [583], 2-bromo-
1-(p-toluenesulfonyl)pyrrole [241] and 2-iodo-1-(phenylsulfonyl)pyrrole [412]. In
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addition, it has been demonstrated that electron deficient di- or tribrominated
pyrroles undergo selective Suzuki reactions at the a-position with phenylboronic
acid derivatives [584]. Heck reactions at the a-position of iodinated pyrroles
involving vinylbenzene derivatives [585, 586], as well as Pd(0)-catalyzed couplings
with alkynes [587], have also been reported.

Suzuki coupling of the triflate 364 with the boronic acid 266 has been employed
as the final step in an elegant synthesis of undecylprodigiosin (365)
(Scheme 4.111) [588], as well as during preparation of a series of analogues
thereof [589].

A new arylation reaction of pyrrolylsodium (366) (Section 4.5.4.1) has been
developed. In a representative set of conditions, exposure of 366 to various aryl
chlorides or bromides andZnCl2 in the presence of Pd(OAc)2 and 2-(di-tert-butylpho-
sphino)biphenyl (367), afforded 2-arylpyrroles368 in high yields (Scheme4.112). The
products 368 may also be subjected to further arylation under similar conditions at
the remaining free a-position, providing access to various 2,5-diarylpyrroles [590]. It
has also been known for some time that palladium mediated arylation of 1-acylpyr-
roles with arenes occurs at the a-position. However, this requires stoichiometric
amounts of the palladium source [591]. A recent interesting contribution involving
C�H activation features regioselective palladium-catalyzed oxidative alkenylation
of N-protected pyrroles at C2 or C3 using alkenes under aerobic conditions. The
regioselectivity is highly dependent on the steric and electronic properties of the N-
substituent of the substrate. For instance, the use of 1-(tert-butoxycarbonyl)pyrrole
gives C2 alkenylated products, whereas implementation of 1-TIPS-pyrrole leads to
functionalization at C3 [592].
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Cross-coupling techniques may also be applied to the preparation of various
3-substituted pyrroles. The pyrrole-3-boronic acid 281, which is derived from
1-triisopropylsilyl-3-iodopyrrole, takes part in Suzuki couplings with both electron
rich and electron deficient aryl halides (X¼Br or I) to provide useful yields of the
3-arylpyrroles 369 (Scheme 4.113). Stille reactions of 1-triisopropylsilyl-3-(tributyl-
stannyl)pyrrole with suitable aryl halides constitute an alternative route to pyrroles of
type 369, whereas palladium-catalyzed coupling of 1-triisopropylsilyl-3-iodopyrrole
with terminal acetylenes gives high yields of the corresponding 3-ethynylpyrroles.
The TIPS group in all products may be removed efficiently by treatment with
Bu4NF [418]. In connection with studies on Suzuki couplings involving ethyl 4-
bromopyrrole-2-carboxylate, a competing dehalogenation of the halopyrrole was
observed. This side reaction was, however, suppressed by using the corresponding
N-Boc-protected derivative, leading to good yields of ethyl 4-arylpyrrole-2-carboxy-
lates with a concomitant removal of the Boc-group during the process [593]. Other
useful developments in this area encompass palladium-catalyzed coupling of 1-(p-
toluenesulfonyl)-4-(tributylstannyl)pyrrole-2-carboxaldehyde with aryl- and hetero-
aryl halides giving the corresponding 4-arylpyrrole-2-carboxaldehydes [594], and
synthesis of 3-vinylpyrroles by Stille reactions between various 3-iodopyrroles
and vinyltributyltin [595]. In addition, Suzuki couplings involving the triflate derived
from 1-benzylpyrrolidine-3-one are accompanied by concomitant dehydrogenation,
giving access to 3-aryl-1-benzyl-pyrroles [596]. Finally, both 2-iodo-1-(phenylsulfonyl)
pyrrole and its 3-iodo isomer are efficiently cyanated using CuCN in the presence of
catalytic amounts of Pd2(dba)3 and dppf [597].

In an interesting approach towards unsymmetrically 3,4-disubstituted pyrroles,
the 3,4-disilylated pyrrole derivative 125 was N-protected, followed by an ipso-
iodination to provide the key intermediate 370, which was in turn subjected to
various cross-couplings, providing, for example, the products 371 via the Sonoga-
shira reaction (Scheme 4.114) [246, 247], or the corresponding aryl derivatives
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employing Suzuki conditions. A second ipso-iodination and subsequent palladium-
catalyzed coupling reactions give access to further derivatives [247]. Moreover,
phosphine-free Suzuki reactions involving methyl 4,5-dichloro-3-iodopyrrole-2-car-
boxylate occur selectively at C3, giving access to 3-arylpyrrole-2-carboxylates after
final removal of the chlorine atoms by catalytic hydrogenation [307].

4.6
Pyrrole Derivatives

4.6.1
Alkyl Derivatives

N-Alkylation of pyrroles is a well documented process that is conveniently accom-
plished by treatment of pyrrolyl anions with suitable alkylating agents under various
conditions (Section 4.5.4.1).

Direct C-alkylation is often not particularly practical, as it has been demonstrated
that treatment of pyrrolyl anions with allyl-, crotyl- and benzyl-halides gives mixtures
of N- and C- monoalkylated products, along with disubstituted derivatives [375].
The methods of choice for the synthesis of alkylpyrroles rely on pyrrole ring
formation from acyclic precursors (Section 4.4), or reduction of readily available
2- or 3-acylpyrroles (Section 4.5.1.6). Reduction of 2-benzoylpyrrole (372) with
NaBH4 in boiling 2-propanol gives a high yield of 2-benzylpyrrole (373)
(Scheme 4.115) [598]. An alternative procedure employs a tert-butylamine–borane
complex in the presence of AlCl3 as the reducing system, enabling for example
effective transformation of the N-protected 2-acylpyrrole 374 into the corresponding
2-alkylpyrrole 375. This approach is also useful for the reduction of 1-phenylsulfo-
nylpyrrole-2-carboxaldehyde to the corresponding 2-methylpyrrole derivative [599].

These reductions are neatly complemented by the possibility of crafting a sec-
ondary alkyl substituent, as illustrated by the conversion of the 3-acylpyrrole 376 into
the 3-alkylpyrrole 377, which proceeds via the unstable tertiary alcohol 378
(Scheme 4.116) [598]. A somewhat related approach involving addition of organo-
metallic reagents to 2-acylpyrroles, followed by reduction with lithium in liquid
ammonia, has also been described [600].
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4.6.2
Pyrrole Carboxylic Acids and Carboxylates

Many pyrrole carboxylic acids are readily available compounds, which are quite prone
to decarboxylation. This particular characteristic is very attractive from a synthetic
point of view, extending the scope of those pyrrole ring syntheses that give pyrrole
carboxylates (Section 4.4). Pyrrole-2-carboxylates are useful substrates for further
functionalization bymeans of electrophilic substitution, as the substituent is strongly
�meta� directing, thereby allowing selective synthesis of 2,4-disubstituted pyrroles
(Section 4.5.1.6). It is also worth mentioning that amides derived, for instance, from
pyrrole-2,5-dicarboxylic acids have recently attracted interest as anion receptors and
membrane transport agents for HCl [601].

Decarboxylation of pyrrole-3-carboxylic acids may, for example, be effected by
heating [602], whereas ethyl pyrrole-3-carboxylates can be hydrolyzed and decarboxy-
lated in one pot by heating with aqueous NaOH at 175 �C in a sealed vessel [124].
Based on kinetic studies, the mechanism of the decarboxylation of pyrrole-2-
carboxylic acid 198 in acidic media has been suggested to proceed through the
intermediate 379, which eventually releases carbon dioxide (Scheme 4.117) [603]. A
striking feature during saponification of pyrrolecarboxylates is the relatively high rate
constant for pyrrole-2-carboxylates compared to that of the C3 substituted isomers.
This behavior has been ascribed to the possibility of intramolecular hydrogen
bonding in the intermediate resulting from the attack of a hydroxide ion on the
carbonyl carbon in the C2 isomers [604, 605].
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4.6.3
Oxy Derivatives

1-Hydroxypyrrole derivatives are available by several routes, for example employing
hydroxylamine in the Paal–Knorr pyrrole synthesis [606], by thermolysis of 1-(tert-
butyl)-3-pyrrolin-1-oxide to 1-hydroxy-3-pyrroline [607] or via treatment of suitable
monooximes derived from 1,2-dicarbonyl compounds with sodium hydride,
followed by vinyltriphenylphosphonium bromide, which gives 2,3-disubstituted 1-
hydroxypyrroles [608]. Deuterium exchange studies with D2O in CDCl3 performed
on 1-hydroxy-2,3-diphenylpyrrole (380) indicated incorporation of deuterium at C4
and C5 along with the expected deuterium exchange at the oxygen, suggesting
contributions from the tautomeric forms 381 and 382 (Scheme 4.118) [608].

Oxidation of pyrrole employing hydrogen peroxide gives a modest yield of the
tautomeric 2-oxypyrroles 383 and 384, the former being the prevalent component as
judged from NMR data (ratio 383 : 384¼ 9 : 1 in acetone-d6) (Scheme 4.119) [609].
Purified samples of 383 remain rather stable for several weeks upon storage at
�10 �C, whereas the isomer 384 undergoes much faster isomerization [610]. After
initial N-protection of 383, access to a useful synthetic intermediate is gained by
trapping of the corresponding 2-hydroxypyrrole tautomer as the silyl ether 385, which
reacts with aldehydes, rendering for example the 5-substituted pyrroline-2-one
386 [611, 612]. The oxypyrrole 385 has also been efficiently prepared on multi-
kilogram scale via cyclization of racemic 4-amino-3-hydroxybutyric acid with HMDS
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in the presence of pyridine to 4-(trimethylsiloxy)pyrrolidine-2-one, which underwent
subsequent Boc-protection, desilylation and elimination to yield 1-(tert-butoxycarbo-
nyl)-3-pyrroline-2-one. This material could then be efficiently converted into 385
using TBSOTf in the presence of triethylamine [613]. It is also noteworthy
that electrolytic fluorination of 2-cyano-1-methylpyrrole with Et3N�3HF in acetoni-
trile, followed by treatment with water, gives 5,5-difluoro-1-methyl-3-pyrrolin-2-one,
a useful starting material for the construction of some gem-difluorinated
heterocycles [614].

The reaction of ethyl N-ethoxycarbonyl glycinate with ethyl fumarate in the
presence of sodium in benzene solution, followed by decarboxylation, provides
convenient access to the 3-oxypyrrole derivative 387 [615]. This material may for
instance be further converted into the substituted 3-methoxypyrrole 388 by ketaliza-
tion and dehydrogenation over Pd/C with concomitant cleavage of the carbamate
functionality (Scheme 4.120) [616]. 3-Alkoxypyrroles have also been prepared by
cyclization of alkyl 4-bromo-3-alkoxy-2-butenoates with suitable amines to 4-alkoxy-3-
pyrrolin-2-ones, and subsequent treatment thereof with diisobutylaluminium
hydride [617].

Cyclization of the precursors 389, which are readily available from glycine esters
and diethyl ethoxymethylenemalonate, provides a route to the stable 3-hydroxypyr-
role derivatives 390 (Scheme 4.121). The C4 substituent may be selectively removed
by alkaline hydrolysis, followed by decarboxylation [618].

In an approach based on intramolecular Wittig olefination, alkylation of, for
example, N-acetylacetamide (391) with the reagents 392 (X¼Br or Cl) afforded the
precursor 393, which was in turn cyclized to the 3-oxypyrrole derivative 394 under
thermal conditions (Scheme 4.122) [619].

Apart from the examples mentioned above, 3-oxypyrroles are also available by for
instance flash vacuum pyrolysis of N,N-disubstituted aminomethylene derivatives of
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Meldrum�s acid [620]. A representative member of this class, 1-phenyl-1H-pyrrol-3
(2H)-one, exists as mixtures of the tautomeric forms 395 or 396 depending on the
medium. In general, polar solvents favor the enol form 396, whereas in the solid state
the keto tautomer 395 alone was detected (Scheme 4.123) [621]. The enol form was
also detected as the prevalent species in DMSO solution in the case of the parent 3-
hydroxypyrrole [622]. In addition, preference for the enol tautomers has been
observed in connection with studies of derivatives containing an ester functionality
at the adjacent C4 position [623]. Regiospecific O-alkylation of 3-hydroxypyrroles can
be accomplished in polar aprotic solvents such as dimethylimidazolidinone (DMI),
using the hard alkylating agent methyl p-toluenesulfonate to give, for example,
pyrrole 397. In contrast, the use of soft alkylating agents, such as iodomethane in
relatively nonpolar solvents, leads to increased amounts of C-alkylated products [624].

Derivatives of tetramic acid (398) constitute a relatively large class of oxygenated
pyrroles, which has been studied in considerable detail [35, 625]. The parent
compound 398 is a relatively weak acid, (pKa¼6.4 in water), which exists in the
keto from in the solid state, whereas in aqueous solution a minor contribution
from the enol 399 may be discerned [626]. The enolization behavior of 3-acetylte-
tramic acids is more complex; studies involving for instance the 3-acetyl-5-isopropyl
derivative revealed a considerable contribution from the exo-enol tautomer 400 [627].
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Themost practical and widely used approach to tetramic acid derivatives has been
developed by Lacey, and involves Dieckmann cyclization of N-acyl-a-amino esters.
For example, the precursor 401, which is available by treatment of ethyl glycinatewith
diketene, gives 3-acetyltetramic acid 402 upon treatment with sodium methoxide
(Scheme 4.124) [628]. Application of these conditions to substrates derived from
optically active amino acidsmay cause racemization, which can, however, be avoided
by conducting the cyclization in the presence of TBAF in THF, or potassium tert-
butoxide in tert-butanol during short periods of time. These modified routes also
involve generation of the acyclic precursors from b-ketothioesters and amino
acids [629]. Suitable precursors to tetramic acids may also be prepared by treatment
of hippuric acid [630] or aceturic acid [631] derivativeswith anions of activemethylene
compounds. The Dieckmann cyclization strategy has also been utilized in a solid
phase approach starting from amino acid derivatives attached to the resin by an ester
linkage [632]. A recent contribution to this field encompasses preparation of 5-
substituted teramic acid derivatives by cyclocondensation of amidines with DMAD,
followed by alkaline hydrolysis of the intermediate 5-amino-4-pyrrolin-3-ones [633].

The methyl tetramate 403, as well as several similar compounds, is available by
treatment of methyl 4-bromo-3-methoxy-2-butenoate 404 with methylamine [634],
and may be converted into the corresponding 3-alkoxypyrroles, for instance 405, by
treatmentwith diisobutylaluminiumhydride (Scheme4.125) [617]. Furthermore, the
representative tetramate 403 undergoes metallation at C5 upon exposure to butyl-
lithium, and the resulting lithio derivative gives access to various C5 substituted
products after subsequent treatmentwith suitable electrophiles [635]. It has also been
established thatmethyl tetramates of type 403having an isopropylmoiety [636] or two
substituents [637] at C5may be acylated at C3 via lithiation, followed by introduction
of aldehydes, and oxidation of the intermediate alcohols. The active methylene unit
of tetramates may also participate in condensation reactions with aldehydes in the
presence of sodium hydroxide in aqueous DMSO [588].
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4.6.4
Aminopyrroles

Simple aminopyrroles are highly electron rich and thus often labile species, but the
stability may be improved considerably by the presence of electron-withdrawing
substituents. A series of 1-aminopyrroles, including 406, has been prepared by N-
amination of the corresponding NH-pyrroles with anhydrous ethereal NH2Cl in the
presence of NaH [638]. Recently, a more convenient N-amination protocol for
pyrroles has been realized under phase transfer conditions using in situ generated
chloramine as the electrophilic aminating agent [639]. Interestingly, 1-(N,N-dimethy-
lamino)pyrrole (407) can be easily prepared by heating 2,5-dimethoxytetrahydrofuran
and N,N-dimethylhydrazine in acetic acid, and is cleanly lithiated at C2 [416].

N N

NH2

CO2Et

CF3EtO2C

NMe2

406 407

The parent 2-aminopyrrole (408) was generated from the (pyrrole-2-yl)phthalimide
409 [640], which is in turn available by treatment of 1-trimethylsilylpyrrole with
chlorophthalimide followed by aqueous workup (Scheme 4.126) [230, 641]. The
aminopyrrole 408, as well as 1-alkyl- and 1-aryl derivatives thereof, have to be kept in
acid solution. A fast proton exchange at C5 in this series was observed in glacial
acetic acid [640], and further NMR studies indicated that the conjugate acids of the 2-
aminopyrroles exist as protonated imines under these conditions [641]. It has also
been demonstrated that 2-aminopyrroles incorporating an electron-withdrawing
substituent at the adjacent b-carbon can undergo protonation at either the exocyclic
nitrogen atom or C5, depending on the conditions, but react at the exocyclic nitrogen
only with acylating agents, thus behaving like typical aromatic amines rather than
enamines [642].

A useful approach featuring a pyrrole ring synthesis involves treatment of the
readily available aminoacetaldehyde dimethyl acetals 410 with malononitrile under
acidic conditions to provide facile access to the 2-aminopyrrole-3-carbonitriles 411 in
moderate yields (Scheme 4.127). Similar productsmay also be prepared from ethyl 3-
cyanopyrrole-2-carboxylates using a route based on the Curtius rearrangement [643].
2-Aminopyrroles have also been obtained by base induced condensation reactions

N
H

N

O

O

409

1. NaBH4, i-PrOH

2. AcOH, 80 °C

3. NaOH

N
H

NH2

O

O

408

Scheme 4.126

342j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



between acetylaminoacetone and substituted acetonitriles [644], or from N-acetyl-
a-aminoketones and malononitrile [645].

Yet another contribution to aminopyrrole chemistry is represented by a procedure
for palladium-catalyzed amination of 2-acetyl-5-bromo-1-methylpyrrole (412), which
can be performed using various primary and secondary amines, giving for example
the 2-aminopyrrole derivative 413 (Scheme 4.128) [646]. An effective amidation
of methyl 4-bromo-1-methylpyrrole-2-carboxylate with tert-butyl carbamate in the
presence of the combination CuI/K3PO4/N,N0-dimethylethylenediamine has also
been reported [236].

3-Aminopyrroles featuring electron-withdrawing moieties have attracted some
interest as building blocks for pyrrolo[2,3-d]pyrimidines [647, 648]. Consequently,
several synthetic approaches to such derivatives have been described. The a-cyanoal-
dehydes414,whicharederivedfromsuitablealdehydesbybase inducedcondensation
with 3,3-dimethoxypropionitrile, followed by hydrolysis of the acetal and catalytic
hydrogenation, serve as excellent substrates for the generation of enamine inter-
mediates 415 by treatment with diethyl aminomalonate (Scheme 4.129). A final
cyclization step afforded the 3-aminopyrrole derivatives 416 in moderate to good
overall yields [648]. A route based on cyclization of similar enamine intermediates has
been used for the synthesis of methyl 3-amino-4-arylpyrrole-2-carboxylates [649].
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A different substitution pattern is displayed in the pyrroles 417, which were
prepared by tosylation of the cyanoacetyl compounds 418 rendering the precursors
419 (Scheme 4.130). These intermediates were in turn converted into the target
heterocycles by reaction with diethyl aminomalonate hydrochloride in the presence
of ethoxide [650]. Treatment of benzyl 4-oxoproline-2-carboxylate derivatives pro-
tected at the nitrogen by the 9-(9-phenylfluorenyl) group with primary or secondary
amines in the presence of catalytic amounts of p-TsOH provides an efficient route to
4-aminopyrrole-2-carboxylates [651].

3-Amino-1-tritylpyrrole (420) has beenprepared from the correspondingpyrrole-3-
carboxylic acid in several steps using a route involving the Curtius rearrangement,
and was demonstrated to exist exclusively as the 3-imino tautomer 421 in CDCl3
solution [210]. A series of 1-arylpyrroles, as well as 1-methylpyrrole, has recently been
shown to undergo amination, providing the interesting derivatives 422 in good yields
using N-(p-toluenesulfonyl)imino-phenyliodinane (PhI¼NTs) in the presence of
a ruthenium(II) porphyrin catalyst [652].
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4.6.5
Dihydro- and Tetrahydro-Derivatives

The scope of this chapter only allows inclusion of selected examples of procedures
involving dihydro- and tetrahydro derivatives, but it is important to emphasize
that many significant compounds belong to these thoroughly studied systems, for
instance the amino acid L-proline. Both 2- and 3-pyrrolines (2,3-dihydro- and 2,5-
dihydropyrroles), as well as pyrrolidines (tetrahydropyrroles), are available by reduc-
tion of pyrrole derivatives (Section 4.5.6). The reverse transformation, that is,
conversion of pyrrolidines into pyrroles, may be accomplished for instance by
dehydrogenation with MnO2 in refluxing THF [653].

In more recent years, several useful ring syntheses of partially, or completely
saturated pyrrole derivatives have emerged, for example 2,5-disubstituted pyrroli-
dines [654]. Several practical approaches rely on the cyclization of suitable diol
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derivatives, for instance 423, which gives the trans-pyrrolidine 424 upon treatment
with benzylamine (Scheme 4.131) [655]. Base induced annulation of mesylates
derived from suitable chiral c-aminoalcohols constitutes an alternative procedure
for the stereoselective preparation of cis- or trans-2,5-disubstituted pyrrolidines [656].

Reductive amination of 1,4-diketones with ammonium acetate [657] or amines in
the presence of NaCNBH3 provides routes to pyrrolidines as mixtures of cis- and
trans-isomers, the former being favored by increasing size of the amine
reactant [658]. A related one-pot approach giving the 1-(2-naphthyl)methylene-
or 1-(3,4-dimethoxybenzyl)pyrrolidines 425 involves reductive cyclization of the
four-carbon precursors 426, which are in turn available by conjugate addition
of the a-(alkylideneamino)nitriles 427 to the a,b-unsaturated ketones 428
(Scheme 4.132) [659].

Pyrrolidines containing sensitive substituents have been prepared under mild
conditions using a tandem cationic aza-Cope rearrangement–Mannich process.
Thus, treatment of the substituted 3-butenamines 429 with appropriate aldehydes
in benzene or toluene affords moderate to excellent yields of the substituted
3-acetylpyrrolidines 430 (Scheme 4.133) [660].

N

Bn

C4H9H11C5C4H9

H11C5

OMs

OMs
BnNH2, rt

423 424

77%

Scheme 4.131

R2 N R1

CN

R3

R4
R5

O

1. DBU, THF

N
R5

R1

R2

NC

OR3

R4

NaCNBH3

N R5R2

R1

R3 R4

36-84%

425

427

2.

426428

Scheme 4.132

N
HMeRO

R1

·HBF4

R5CHO

24-110 °C

429 R = H or Me

NR5

OR

Me

NR5

OR

Me

NR5

R1R1
R1

54-97%

O

Me

430

Scheme 4.133

4.6 Pyrrole Derivatives j345



A general approach to pyrrolidines involves 1,3-dipolar cycloadditions of alkenes
and azomethine ylides, which are for instance available by desilylation of a-silyl
iminium salts [661]. This strategy has been exploited in construction of the system
431, which resulted from a reaction of the ylide 432 with N-methylmaleimide
(Scheme 4.134) [662]. The various routes to enantiopure pyrrolidine derivatives
based on cycloaddition reactions involving azomethine ylides have been recently
summarized in a review [663].

The pyrrolidines 433 incorporating an exocyclic double bond have been synthe-
sized by cycloaddition of the N-tosylimines 434 with a palladium complex derived
from the precursor 435 (Scheme 4.135). Similar syntheses of various pyrrolidine
derivatives may also be performed starting from aliphatic N-tosylimines (readily
generated from the corresponding aldehydes by treatment with chloramine-T and
elemental selenium), nitrimines or other electron deficient imines [664].

Based on a previous approach for palladium-catalyzed cyclization of 3-alkynyla-
mines yielding 1-pyrrolines [665], the precursors 436, derived from a propargylgly-
cine derivative via Sonogashira coupling, were deprotected under acidic conditions,
followed by silver-catalyzed cyclization, providing a route to the 1-pyrrolines 437
(Scheme 4.136) [666]. Palladium-catalyzed ring closure of related precursors may
instead give 2-pyrrolines, whereas the application of 4-alkynylamines in similar
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processes gives pyrrolidines incorporating an exocyclic double bond [667]. Densely
substituted 1-pyrrolines may also be accessed by 1,3-dipolar cycloaddition reactions
between acrylamide derivatives and nitrile ylides generated from imidoyl chlor-
ides [668]. Preparative routes and transformations involving 1-pyrrolines have been
reviewed [669].

A traditional approach to 1-pyrrolines relies on addition of Grignard reagents to
c-halonitriles, which gives rise to the 2-substituted systems [670, 671]. It was later
demonstrated that application of hydrocarbon/ether solvent mixtures for such
reactions constitutes a practical modification [672]. Addition of but-3-enylmagne-
sium bromide to benzonitriles 438, followed by treatment with NBS, leads to
formation of 1-pyrrolines 439 (Scheme 4.137) [673], whereas chlorination using
NCS gives the related 5-(chloromethyl)-1-pyrroline derivatives [674].

Ring closing metathesis (RCM) of the enamides 440 (R1¼Ts, Bz, CO2Et) has been
employed for the preparation of the 2-pyrrolines 441 using the catalyst 442
(Scheme 4.138). In some cases, better yields were obtained using a related, Ru–i-
midazoline RCM catalyst [675].

Likewise, RCMmethodology is also applicable for the construction of 3-pyrrolines,
as illustrated by the synthesis of 443 from the diene 444 (Scheme 4.139) [676]. In a
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related RCM approach to 3-pyrrolines, a suitable set of N-SES protected dienes were
constructed from 2-(trimethylsilylethane)sulfonamide, aldehydes and methyl acry-
late in an aza-Baylis–Hillman reaction [677]. On the other hand, the cyclization of
diallylamines using the second generation Grubbs� catalyst (10mol.%) in combina-
tion with RuCl3�H2O (2mol.%) gives rise to pyrroles in moderate yields [678]. An
alternative route to 3-pyrrolines relies on triphenylphosphine-catalyzed [3þ 2] cyclo-
addition reactions of methyl 2,3-butadienoate with N-tosyl aldimines [679].

As a typical secondary amine, pyrrolidine displays pronounced basic character, and
reacts readily as an N-nucleophile, affording, for example, amides. A well known
application of pyrrolidines is its condensationwith carbonyl groups to give enamines,
whichmay subsequently be alkylated or acylated, providing an excellent and versatile
route to a-substituted carbonyl compounds after a final hydrolysis step [680].

Reactions at the carbon atoms of simple pyrrolidines have been less studied.
Nevertheless, several synthetically useful transformations have beendescribed. It has
for example been established that deprotonation and subsequent silylation ofN-Boc-
pyrrolidine (446) gives the intermediate 447 (Scheme 4.140) [681]. This material was
subjected to a second lithiation/silylation cycle to provide the pyrrolidine derivative
448. After removal of the Boc-group, followed by N-benzylation, the resulting
pyrrolidine 449 was converted into the azamethine ylide 450, which was trapped
with ethyl propiolate to furnish adduct 451 [682]. An enantioselective cycloaddition
between 450 and a chiral alkene has also been described [683]. Deprotonation of
methyl 3-pyrroline-1-carboxylate with LDA at C2, and subsequent quenching with
suitable electrophiles, provides an example of the functionalization of 3-
pyrrolines [684].

In an interesting example of enantioselective functionalization at C2, N-Boc-
pyrrolidine 446 was treated with sec-BuLi in the presence of (�)-sparteine (452) to
produce the chiral lithio derivative 453, which upon quenching with suitable
electrophiles gave the 2-substituted derivatives 454 (Scheme 4.141) [685, 686]. Two
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sequential lithiations of 446, each followed by quenching with dimethyl sulfate,
furnished the corresponding trans-2,5-dimethylpyrrolidine derivative [686]. The
species 453may also be used for enantioselective ring opening of epoxides, provided
that one equivalent of BF3�OEt2 is added directly after the electrophile [687].
Transmetallation of 453 with CuCN�2LiCl generates a corresponding cuprate with
retention of configuration, and subsequent reactions thereof with, for example, vinyl
iodides or triflates give vinylated products with excellent enantioselectivity [688].

Pyrrolidine derivatives may also be functionalized via conversion into N-acylimi-
nium ions, as illustrated by the conversion of the pyrrolidine 455 into the product 456
(cis : trans ratio 7 : 3) employing SnCl4 and TMSCN, via the intermediate 457
(Scheme 4.142) [689].

4.7
Addendum

Even a rather superficial glance at the most recent literature of organic chemistry
clearly reflects the tremendous amount of effort currently invested in research
activities focusing on pyrrole based molecules. This addendum highlights some
selected new developments reported during the production process of this book, as
well as some related relevant studies. As usual, an annual summary of the most
important recent advances in Progress in Heterocyclic Chemistry provides an excellent
source of information [690]. In addition, the new edition of Comprehensive Hetero-
cyclic Chemistry has appeared, covering various aspects of pyrrole chemistry explored
during the last decade [691–694]. Several specialized reviews have also emerged,
discussing for example some synthetic aspects of pyrroles bearing multiple sub-
stituents [695], or asymmetric synthesis of pyrrolidines by [3þ 2] cycloadditions of
azomethine ylides [696]. Because much novel pyrrole chemistry is directed towards
synthesis and applications of macrocycles, topics such as carbaporphyrins and
related porphyrinoids [697], acyclic oligopyrroles [698], expanded porphyrins [699],
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and their transition metal complexes [700], and nonlinear optical properties of
porphyrins [701], as well as synthetic work towards porphyrins involving the
Barton–Zard reaction [702], have received treatment. In addition, the pyrrole alka-
loids lamellarins and their relatives have been discussed in detail [703].

Mechanistic aspects of the Paal–Knorr synthesis have been addressed in a density
functional theory study [704], supporting the previously suggested pathway [71] that
involves a cyclization of a hemiaminal intermediate in the rate-limiting step
(Section 4.4.1). Although the extensive arsenal of well-established routes for pyrrole
ring synthesis gives access to a wide variety of products, there is a continuous stream
of new approaches that attempt to target pyrroles with rare substitution patterns,
or serve as complementary methods for construction of known groups of useful
derivatives.

Numerous routes rely on reactions of substrates containing all the necessary
carbon atoms. It has been shown that PtCl4 catalyzes cyclization of homopropargyl
azides in the presence of a bulky pyridine as the base, affording for instance 2,5-
substituted pyrroles, or tetrahydroindole derivatives [705]. The recent surge in gold-
or silver-catalyzed organic transformations has also exerted some impact on
heterocyclic chemistry, as illustrated by the conversion precursor 458 into the pyrrole
459 by exposure to benzyl amine in the presence of silver trifluoromethanesulfonate
(Scheme 4.143). Such transformations can also be performed using the catalytic
system AuCl/AgOTf/PPh3 [706]. Moreover, palladium-catalyzed reactions between
N-protected c-aminoalkenes and functionalized aryl bromides in the presence of
a phosphine ligand and a base have furnished a set of multiply substituted
pyrrolidines [707]. A series of potentially useful pyrroles has also been prepared by
CuI-catalyzed cyclization of 1,4-dihalo-1,3-dienes with tert-butyl carbamate [708].

Azidodienes are readily available by condensation of azidoacetic acid esters with
a,b-unsaturated aldehydes, and contain all the atoms necessary for a construction of
a pyrrole ring. This fact was exploited in the conversion of precursor 460 into the
pyrrole-2-carboxylate 461 in good yield upon treatment with catalytic amounts of zinc
iodide, providing a representative illustration of this route (Scheme 4.144). The
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procedure could be applied for the preparation of various pyrrole-2-carboxylates
bearing aryl, heteroaryl, and alkyl groups [709]. Likewise, pyrrole derivatives have also
been constructed by initial reactions of 1,3-dicarbonyl anions with a-azidoketones,
and ensuing annulation of the resulting intermediates employing the Staudinger–
aza-Wittig reaction [710]. Precursors for similar reductive cyclizations may also be
assembled from 1,3-bis-silyl enol ethers and 1-azido-2,2-dimethoxyethane in the
presence of TMSOTf [711].

The elaboration of new [3þ 2] strategies, as well as the development of new aspects
of the classical methods, continues, as illustrated by a new variation of the Barton–-
Zard pyrrole synthesis (Section 4.4.7), which has been applied for construction of
pyrrolic Weinreb amides en route to pyrrole-2-carboxaldehydes and pyrroline-3-ones.
For example, the isocyanide 462, which is available in four steps from Boc-glycine,
was converted upon reaction with the b-nitroacetate 463 into theWeinreb amide 464
(Scheme 4.145) [712]. The use of ketene S,S- or S,N-acetals in Barton–Zard reactions
provides a route to substituted pyrroles bearing methylthio- or amino groups at C3.
Such systems could also be prepared employing the related van Leusen method
(Section 4.4.6) for the pyrrole ring formation [713]. A practical one-pot route to 4-
substituted pyrrole-3-carboxylates on a multi-kilogram scale has been presented,
featuring aHorner–Wadsworth–Emmons reaction of aliphatic or aromatic aldehydes
with trimethyl phosphonoacetate, followed by a van Leusen pyrrole synthesis
involving TosMIC [714].

It has been demonstrated that the vinyl azides 465 may serve as an excellent
starting point for pyrrole synthesis, as heating of such substrates with acetylacetone
in toluene produced pyrroles 466 (Scheme 4.146). Interestingly, a related copper-
catalyzed reaction involving instead ethyl acetoacetate proceeded with different
regioselectivity, to provide the ethyl pyrrole-3-carboxylates 467, thereby widening
the scope of this strategy [715].
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Palladium-catalyzed pyrrole ring synthesis from the halogenated aminoester 468
with various acetylenes has been examined. For instance, reaction between 468 and
diphenylacetylene in the presence of Pd(OAc)2 affords pyrrole 469with concomitant
loss of the acyl group (Scheme 4.147). However, some similar cyclizations gave
products where the acyl group was untouched. The use of certain unsymmetrical
alkynes (e.g., 1-phenyl-2-trimethylsilylacetylene) can give rise to regioselective for-
mation of pyrroles [716].

Pyrrolidines (Section 4.6.5) may be produced efficiently by cycloaddition reactions
involving azomethine ylides [696]. An organocatalytic application of this approach
has nowbecame available, utilizing the catalyst 470, which could for instancemediate
the efficient and enantioselective [3þ 2] cycloaddition of components 471 and 472,
affording the pyrrolidine 473 (Scheme 4.148) [717]. It should also be mentioned that
application of a-(alkylideneamino)nitriles in reactions with nitroalkenes provides
a useful pyrrole synthesis, which relies on elimination of HCN and HNO2 as the
driving force for aromatization. This pathway involves a stepwise annulation
mechanism rather than a cycloaddition [718]. In addition, a series of 4-hydroxypyr-
role-2,3-dicarboxylates have been prepared by reactions of a-amino acids with
acetylenedicarboxylates in the presence of cyclohexyl isocyanide or N,N0-dicyclohex-
ylcarbodiimide as the coupling reagents [719].

The largely neglected Piloty–Robinson [720–722] pyrrole synthesis has been
adapted to microwave conditions [723], providing a route to 3,4-dialkylpyrroles, in
particular 3,4-diethylpyrrole, a building block for construction of octaethylporpyr-
ins [724, 725]. Thus, the intermediate azine 474 was generated by exposure of
butyraldehyde to hydrazine hydrate in diethyl ether. Subsequent heating of 474 in the
presence of benzoyl chloride in pyridine in a microwave apparatus gave the
N-substituted product 475 (Scheme 4.149), which could subsequently be hydrolyzed
to the desired 3,4-diethylpyrrole [723].

MeO2C
H
N

Ac

I

468

PhPh

Pd(OAc)2 (5 mol%)

LiCl, K2CO3, DMF, 65 °C
N
H

Ph

Ph

CO2Me

469

77%

Scheme 4.147

Ph N CO2Et

CO2Et

n-Bu
CHO

470 (20 mol%)

H2O (4 equiv.)

THF, 4 °C

N
H

OHC n-Bu

Ph
CO2Et

CO2Et

88% (99% ee)

374274174

N
H

Ph

OH
Ph

470

Scheme 4.148

352j 4 Five-Membered Heterocycles: Pyrrole and Related Systems



Several new direct pyrrole syntheses based on multicomponent reactions (Sec-
tion 4.4.10) have emerged recently, featuring for instance imines, diazoacetonitrile,
and alkynes as the reactants in the presence of a rhodium(II) catalyst. The sequence of
events leading to pyrroles presumably involves initial decomposition of the diazo
compound, formation of an intermediate azomethine ylide upon reaction with
the imine, and finally cycloaddition with the alkyne [726]. Similar sets of starting
compounds, namely, imines, acid chlorides, and alkynes, may also be converted into
pyrroles in the presence of either isocyanides [727] or phosphines [728]. The latter
approaches have been suggested to proceed via cycloaddition reactions between
mesoionic intermediates with the alkyne components [727, 728]. Intermediate
m€unchnones can also be generated by a palladium-catalyzed reaction between
certain a-amidoethers with carbon monoxide, eventually affording pyrroles via
cycloadditions with suitable alkynes [729]. Additional efforts resulted in conversion
of 1,3-dicarbonyl compounds, arylglyoxals, and ammonium acetate into 2-alkyl-5-
aryl-4-hydroxypyrroles in water as the reactionmedium [730], and preparation of 4,5-
dimethylpyrrole-2,3-dicarboxylates by cyclizations of butane-2,3-dione with ylides
derived from acetylenedicarboxylates and ammonium acetate in the presence of
triphenylphosphine [731].

Some useful developments for modification of existing pyrrole rings have also
appeared, such as an efficient procedure for CuI-catalyzed arylation of pyrroles with
aromatic or heteroaromatic halides in the presence of simpleN-hydroxyimides [732].
Moreover, a protocol for assembly of various 2,20-bipyrrole-5,50-dicarboxaldehydes by
homocoupling of 5-iodopyrrole-2-carboxaldehyde precursors employed palladium
on carbon and activated zinc dust as the catalyst [733]. Classical cross-coupling
techniques have also found new applications, further demonstrating their extraor-
dinary synthetic potential in pyrrole chemistry. For example, tetramic acid triflates
have been demonstrated to participate in Suzuki couplings at C4, giving access to 3,4-
diarylpyrrolin-2-ones [734], whereas Suzuki reactions have been employed in regio-
selective conversion of 1-methyltetrabromopyrrole into its 5-aryl-2,3,4-tribromo- or
2,5-diaryl-3,4-dibromo- derivatives [735], or transformations involving 1-phenylsul-
fonyl-3,4-dibromopyrrole [736]. A reaction sequence featuring an initial iridium-
catalyzed borylation of 1-tert-butoxycarbonyl-2-trimethylsilylpyrrole at C4, followed
by Suzuki coupling, as well as an intramolecular palladium-catalyzed C�H bond
functionalization at C5, has been implemented in an elegant synthesis of the alkaloid
rhazinicine [737]. Efficient conditions for generation of pyrrole-3-boronate esters by
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palladium-catalyzed reactions of pinacol borane with 3-bromopyrroles, and their
subsequent Suzuki reactions in the presence of a monophosphine based catalyst,
have also been established [738].

A series of 2,20-bipyrroles has been obtained by regioselective oxidative coupling of
pyrroles in the presence of phenyliodine(III) bis(trifluoroacetate) (PIFA) and bromo-
trimethylsilane (TMSBr), whereas for instance N-benzylpyrrole gave a 2,30-coupled
product in good yield under different conditions where BF3�OEt2 was used instead of
TMSBr [739]. Intermolecular radical alkylation of some 3-substituted pyrroles with
xanthatesmediated by dilauroyl peroxide occurs at C2 inmoderate to good yieldswith
high regioselectivity, as shown by preparation of the product 476 from 3-phenylpyr-
role 477 (Scheme 4.150) [740].

Catalytic hydrogenation of 2- or 3-nitropyrroles in the presence of carboxylic acid
anhydrides has resulted in a new useful route to the corresponding series of
pyrrolylamides or pyrrolylimides [741]. Alternatively, similar chemistry may also be
accomplished using tin or indium as the reducing agents [742], while application of
1,4-diketones instead of anhydrides has provided efficient access to 1,20- and 1,30-
bipyrroles [743].

Finally, it should also be mentioned that determination of the second-order rate
constants of the reactions of a series of pyrroles with benzhydrylium ions in
acetonitrile provided the basis for a nucleophilicity scale, where 1-triisopropylsilyl-
pyrrole was the least nucleophilic member and 3-ethyl-2,4-dimethylpyrrole was the
strongest nucleophile, comparable to enamines in its reactivity [744]. A systematic
reinvestigation of an acylation, where a solution of 1-(p-toluenesulfonyl)pyrrole and
AlCl3 as the Lewis acid in 1,2-dichloroethane as the solventwas quenchedwith an acyl
halide, led to the conclusion that this process may involve the initial formation of
pyrrolic organoaluminium species, which thereafter react with the highly reactive
electrophile at C3 via a reactant-like transition state [745]. This is in contrast with
earlierfindings,which gave no evidence of complex formation of the closely related 1-
(phenylsulfonyl)pyrrole with AlCl3 in CH2Cl2 [315]. On the other hand, reactions
featuring weaker Lewis acids such as EtAlCl2 or Et2AlCl, or less than equimolar
amounts of AlCl3, gave considerable amounts of products substituted at C2,
proceeding via a normal Friedel–Crafts mechanism, where the pyrrole undergoes
acylation by a complex generated from the Lewis acid and an acyl chloride [745].
Clearly, these very useful, but mechanistically complex, reactions are not yet
completely understood, and further studies are necessary to provide a complete
picture accounting for the observed outcomes.
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5
Five-Membered Heterocycles: Indole and Related Systems
Jos�e Barluenga and Carlos Vald�es

5.1
Introduction

5.1.1
General Introduction

Indole (1H-indole) (1) is the benzopyrrole with the ring fusion through the 2 and 3
positions of pyrrole. It is one of the most abundant heterocycles found in natural
products and biologically active molecules. In fact, it can be regarded as the most
important of all the privileged structures in medicinal chemistry [1]. For this reason,
research in the different areas of indole chemistry has been, and continuous to be,
extraordinarily intense. Many excellent reviews, covering advances in specific topics
in the chemistry of indoles, are available and will be referred to throughout this
chapter. The present chapter covers the developments in indole chemistry that
appeared in the literature until mid-2006 (some subsequent developments are given
in theAddendum). For further information themonographs cited inReferences [2, 3]
are recommended.

N
H

Indole
1H-Indole

1

The discovery and structure elucidation of indole dates from1866, whenAdolf von
Baeyer synthesized indole by zinc-dust pyrolysis of oxindole (2), which had
been obtained by reduction of isatin (3), a product of the oxidation of the natural
blue pigment Indigo (4) [4]. Consequently, the name Indole derives from that
of Indigo.

Modern Heterocyclic Chemistry, First Edition.
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5.1.2
System Isomers and Nomenclature

The tautomers of 1H-indole are 2H-indole and 3H-indole (Figure 5.1). Both systems
are highly unstable, although 3H-indole has been characterized spectroscopically,
and its derivatives have been isolated [5]. High level quantum chemical DFT
calculations predict an energy difference of 5.20 and 24.1 kcalmol�1 between 1H-
indole and 3H-indole, and 1H-indole and 2H-indole respectively [6].

The other isomeric benzopyrroles are isoindole and indolizine. Indoline is the
name for 2,3-dihydro-1H-indole.

N
H

Parent compound Radical

1

2

3
4

5

6

7

3a

7a N

2

3
4

5

6

7

3a

7a

Indole Indoyl 
(1-indoyl shown)

N
1

2

3
4

5

6

7

3a

7a N
2

3
4

5

6

7

3a

7a

2H-Indole 2H-Indoyl 
(2H-indol-2-yl shown)

N

1

2

3
4

5

6

7

3a

7a

Isoindole Isoindoyl 
(2-isoindoyl shown)

N

1

3
4

5

6

7

3a

7a

N
1

2

3
4

5

6

7

3a

7a N
2

3
4

5

6

7

3a

7a

3H-Indole 3H-Indoyl 
(3H-indol-2-yl shown)
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Figure 5.1 Indole, tautomers and isomers with conventional numbering.

378j 5 Five-Membered Heterocycles: Indole and Related Systems



5.2
General Properties

5.2.1
Physicochemical Data

Indole is a crystalline solid (mp¼ 54–54 �C, bp¼ 253–254 �C) with a fecal smell. The
main commercial source of indole comes from the 220–260 �C fraction of coal-tar
distillation. It is soluble in organic solvents such as diethyl ether, ethanol and
benzene, and also in hot water.

The crystal structure of indole [7] and of several simple derivatives is available [8].
In addition, state of the art quantum chemical DFTcalculations provide very accurate
results regarding structural [9], electronic [10] and chemical properties of indole and
indole derivatives (Figure 5.2) [11]. DFT calculations of the magnetic properties, to
estimate the aromaticity of the indole ring, reveal a stabilization due to the p-molec-
ular orbital delocalization of 10 electrons between the two aromatic rings [12].

The 1H NMR spectra of indole feature all the resonances for the hydrogens in the
aromatic region, and corroborate the aromaticity of the ring (Figure 5.3). The upfield
shifts observed for H3 and C3 in the 1H and 13C NMR spectra indicate the higher
electron density around C3. Substitution on the indole ring may cause important
variations in the chemical shifts of H2 andH3, which can be rationalized in terms of
resonance and inductive effects (Table 5.1).

5.2.2
General Reactivity

Indole is a p-excessive aromatic heterocycle with ten p-electrons. The lone pair of the
nitrogen atom (which features sp2 hybridization) completes the ten p-electrons
delocalized across the ring. As in pyrrole, the p-excessive nature of the aromatic ring
governs its reactivity and chemical properties.

Indole is a weak base (pKa¼�2,4 for the conjugated acid), as protonation of the
nitrogen atom would disrupt the aromaticity of the five-membered ring. In contrast,
as ap-excessive aromatic heterocycle, electrophilic aromatic substitution is one of the
most characteristic reactions. Unlike pyrrole, addition of electrophiles takes place
preferentially at C3. A simple explanation for this can be deduced by analysis of the
Wheland intermediates resulting from the attack of a nucleophile at C2 and C3
(Scheme 5.1).

N

1.37

1.38
1.381.391.39

1.41

1.38 1.40 1.44

109º1.43

Figure 5.2 Indole structural parameters at the B3LYP/6-311þG(2p,d) level of theory.
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The intermediate of the attack at C3 is stabilized by delocalization of the positive
charge. However, no delocalization is possible in the intermediate derived from
attack at C2 without disrupting the aromaticity of the six-membered ring.

FrontierMolecular Orbital theory considerations provide an alternative theoretical
explanation for this reactivity trend. Indole features a relative high-energy HOMO,
with the highest value at C3 (Figure 5.4).Moreover, the condensed Fukui function for
electrophilic attack f �q [17], takes values of 0.08, 0.05 and 0.15 for N, C2 and C3,
respectively, pointing to the higher reactivity of C3 towards soft electrophiles [12].

N

H

H

HH

H

H

H
7.81

7.64

7.27

7.18

7.12

7.05

6.52

N

H

102.2

124.3

111.1

119.7

121.9

120.6

127.7

135.7

Figure 5.3 1H and 13C NMR chemical shifts in CDCl3 (d, ppm) for indole.

Table 5.1 Chemical shifts for H-1 and H-2 in substituted indoles (CDCl3).

Substituent d H2 (ppm) d H3 (ppm)

None 7.05 6.52
1-Me 6.90 6.43
2-Me — 6.20
3-Me 6.85 —

1-CO2Me [13] 7.55 6.57
2-CO2Me [14] — 7.15
3-CO2Me [15] 7.93 —

2-Cl [16] — 6.41
3-Cl 7.44 —

N
H

H

E
H

N
H

H

E
H

N
H

E

N
H

E+ -H+

N
H

N
H

N
H

E+ -H+

H

E

H
E

Scheme 5.1 Possible regioisomers in the electrophilic attack on the indole ring.
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Typical electrophilic aromatic substitution reactions that allow for the introduction
of functionalized side-chains at C3 are Friedel–Crafts acylations, Vilsmeier–Haack
reaction, Mannich type alkylations and halogenations (Scheme 5.2).

Electrophilic substitution at C2 can be achieved in 3-substituted indoles, although
the reaction usually starts with electrophilic attack at C3, followed by rearrangement
or reversal of the reaction to produce the substitution at C2 (Scheme 5.3).

Figure 5.4 Graphical representation of indole frontier orbitals.

N
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CH2=O, R2NH

N

H

NR2

DMF, POCl3

N

H

CHO

Ac2O, LA

N

H

Ac

N

H

Cl

NCS

Scheme 5.2 Some typical electrophilic substitution reactions of indole.
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Scheme 5.3
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The indole N�H is weakly acidic and, thus, can be deprotonated by strong bases
(pKa 16.7 in water) to provide the indolyl anion. Therefore, substitution at the
nitrogen can be achieved through base-promoted processes, such as alkylations,
acylations and, more recently, transition metal catalyzed arylations (Scheme 5.4).

The most reliable method to carry out the substitution at C2 is the heteroatom
assistedmetallation at C2 ofN-acyl orN-sulfonylindoles, followed by reactionwith an
electrophile (Scheme 5.5).

Metal catalyzed cross-coupling reactions represent nowadays one of themainways
tomodify the substituents in both rings of indole. All kinds of Pd catalyzed processes
(Stille, Suzuki and Buchwald–Hartwig) can be achieved successfully from properly
substituted indole species (Scheme 5.6).

N

H

Base

N

N
R-X

R

RCOX

N

COR

N

Ar

Ar-X
Metal cat.

Scheme 5.4
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BuLi
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H
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O

Ph

Li

H

R-CHO
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SO2Ph

H

OH

R

SO2Ph

Scheme 5.5
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Pd cat

Scheme 5.6
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5.3
Relevant Natural and/or Useful Compounds

The indole nucleus is present in the essential amino acid tryptophan (5), in many
metabolites derived from tryptophan and also in natural molecules with high
structural complexity.

Amongthenaturallyoccurringmoleculesthatfeaturetheindoleringintheirstructure,
twoworthnoting: (i) the family of tryptamines [18], such as serotonin 6, a very important
neurotransmitter with numerous functions in the human body, and melatonin 7, a
hormone that participates in the regulation of the circadian rhythms (sleep–wake); (ii)
the auxins, a group of plant growth substances, such as the natural auxin indole
3-acetic acid (8) and the synthetic auxin indole-3-butyric acid (9) (Figure 5.5) .

The indole structure is also present in structurally complex indole alkaloids with
biological activity. To name a few: the hallucinogen D-lysergic acid diethyl amide
(LSD) (10); the strichnous family of alkaloids (e.g., strychnine, 11); the family of
marine indole alkaloids isolated fromblue-algae such as Fischer-indole I (12) [19], the
bisindole alkaloids vinblastine (13) and vincristine (14), which are extremely potent
cytotoxic agents, used in the therapy of leukemia and lymphoma tumor types [20, 21];
and reserpine 15, a pentacyclic alkaloid that is a central nervous system depressant
employed in the treatment of hypertension andpsychiatric disorders (Figure 5.6) [22].

6

N
H

CO2H

Indole-3-acetic acid

N
H

CO2H

Indole-3-butyric acid

N
H

serotonin 
(5-hydroxytryptamine)

NH2
HO

N
H

melatonin

NHAcMeO

7

8 9

5

N
H

CO2H

NH2

L-Tryptophan

Figure 5.5 Some important simple indole natural products.
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In contrast, several synthetic drugs currently in use contain the indole nucleus, for
instance Sumatriptan, a synthetic tryptamine used in the treatment of migraine [23],
and the non-steroidal anti-inflammatory drugs Indomethacin and Etodolac
(Figure 5.7).

5.4
Indole Synthesis

5.4.1
Introduction

Indole is one of the most important heterocycles, as a result of its abundance in
natural products and pharmaceuticals. For this reason, the synthesis of the indole
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Figure 5.6 Some important indole alkaloids.
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Figure 5.7 Indole-containing drugs currently in use.
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ring has attracted great attention in synthetic organic chemistry, and, in turn, an
extraordinary large number of different approaches to the synthesis of the indole ring
have been devised over the years [24]. Despite the ample repertoire of methods
available to build the indole ring, it continues to be an area of active research due to
the enormous interest in the indole structure. Moreover, while most classic
approaches to the indole ring usually rely on a final cyclization through a conden-
sation reaction, the development of newmethodologies for transition catalyzed C�C
and C�N bond-forming reactions has led to a new family of methods in which the
cyclization step is a metal-catalyzed process. In this area, the Pd-catalyzed reactions
have a prominent position. This subject has been reviewed andmonographs dealing
with this particular subject are available [25, 26]. In addition, the rise of combinatorial
approaches to drug discovery has motivated the development of newmethodologies,
and the adaptation of solution phase chemistries into solid phase synthesis. Specific
reviews on this topic are also available [27]. The variety of different approaches to the
indole ring is enormous, and an exhaustive coverage would largely exceed the aim of
this book. For this reason, this chapter is restricted to the classical methods that still
find application in the preparation of indoles and the more recent advances in the
area, with particular attention to transition metal catalyzed processes.

From a retrosynthetical point of view, the indole ring can be constructed by two
main strategies: formation of the pyrrole ring onto a properly substituted benzene
precursor and formation of the benzene ring by annelation of a substituted pyrrole.
By far, the strategies that start froma substituted benzene have beenmore extensively
used (Scheme 5.7).

5.4.2
Synthesis of the Indole Ring from a Benzene Ring

In an attempt to organize the many methods, they have been classified according to
the formation of the last bond in the cyclization process (Scheme 5.8). Of particular
importance in the construction of the indole ring are methods involving a sigma-
tropic rearrangement: the Fischer indole synthesis and related process, which will be
covered in a specific section.

5.4.2.1 Indole Synthesis Involving a Sigmatropic Rearrangement
Indole ring syntheses that include a sigmatropic rearrangement are particularly
appealing strategies since no o-substitution is required in the starting aniline
(Scheme 5.9). The C�C bond is formed during the rearrangement. The most
prominent member of this family of methods is the Fischer indole synthesis.
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5.4.2.1.1 Fischer Synthesis The Fischer indole synthesis [28], which was first
discovered in 1883, is still considered as the most popular, and one of the most
general and efficient approaches to the indole ring. It consists of the acid-catalyzed
cyclization of aryl hydrazones 18with loss of ammonia. The aryl hydrazones are easily
obtained by condensation of a ketone (17) with an aryl hydrazine (16) (Scheme 5.10).

The mechanism accepted for the overall reaction was already formulated by
Robinson and Robinson back in 1924. It involves a [3,3] sigmatropic rearrangement
of the ene-hydrazine tautomer 20 of the arylhydrazone 18, with cleavage of the N�N
bond and formation of a C�C bond. Aromatization of 21 to give the intermediate 22,
followed by cyclization and NH3 elimination provides the indole 19 (Scheme 5.11).

The Claisen-like sigmatropic rearrangement is strongly accelerated by an acid
catalyst. Bothprotic andLewis acids are effective catalyst for theFischer indolizidation.
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Sulfuric and hydrochloric aqueous, alcoholic or acetic acid solutions have been used to
promote the Fischer cyclization, as well as p-toluenesulfonic acid and phosphorous
trichloride. Among the Lewis acids, ZnCl2 is the most frequently used catalyst. Very
recently, solid supports such as montmorillonite AK10/ZnCl2 have been used to
promote the indolizidation, in combination with microwave heating. This technique
allows for the preparation of indoles unavailable through the standard conditions [29].

The nature of the substituents on the aromatic ring exerts a remarkable influence
on the rate of the overall reaction: electron-donating substituents accelerate the
reaction, while electron-releasing substituents slow the cyclization. For further
information, detailed reviews covering all these topics are available [3].

The regioselectivity in the indole synthesis is an issue of major importance when
unsymmetrical ketones or m-substituted aromatic rings are involved in the cycliza-
tion. For instance, the cyclization of hydrazones of type 24, derived frommethyl alkyl
ketones, can deliver regioisomeric indoles 25 and 26 (Scheme 5.12).

Usually, under standard conditions, the major (or unique) product obtained is
indole 25, the one derived from themore highly substituted ene-hydrazine 27, which
is considered the thermodynamically controlled product. Therefore, for indole 25 to
be themajor isomer, the [3,3] rearrangementmust be the rate-determining step of the
whole sequence (Scheme 5.13).
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Nevertheless, it has been possible to obtain selectively 3-unsubstituted indoles
such as 31 by reacting hydrazine 29 with the unsymmetrical methylketone 30 under
kinetic conditions by employing very strong acids such as Eaton�s acid (P2O5/MeSO3)
(Scheme 5.14) [30].

Mechanistic studies have suggested that under kinetic conditions the reaction
proceeds through the doubly protonated intermediate 32. The activation barrier for
the [3,3] rearrangement in this casemust be lower (since no aromaticity is lost during
the rearrangement) and therefore, the formation of the ene-hydrazine intermediate
(and not the rearrangement) becomes rate determining (Scheme 5.15) [31].

In some instances the cyclization can be carried out thermally, in the absence of
acid catalyst, although it requires much harsher conditions and a protic solvent as a
proton source. In contrast, preformed N-trifluoroacetyl enehydrazines 33 undergo
cyclization without the need acid catalyst or very high temperatures to provide 2,3-
disubstituted indole 34 [32] (Scheme 5.16).
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The Fischer indolizidation is a very general process that proceeds with yields
ranging frommoderate to quantitative, depending on the substrate.Moreover, a large
array of functional groups are tolerated by the reaction conditions, including the
relatively sensitive, amide, ester or hydroxy. Schemes 5.17–5.20 depict some repre-
sentative recent examples of the application of the Fischer indole synthesis.

An interesting variation of the Fischer indolizidation gives rise directly to trypta-
mines 36, a particularly important type of indole, due to their biological activity. This
so-called Grandberg indole synthesis employs 4-halobutenals 35 as carbonyl com-
ponents. The nitrogen atom, which is usually liberated as ammonia in the Fischer
indolizidation, is incorporated to the molecule, likely through the pathway repre-
sented in Scheme 5.20 [36].

N
N

R3

R2

H

N
N

R3

R2
H

H

R1

H

N

R2

R1
R3

rate-determining 
step

[3,3]

N
N

R3

R2

H

R1

H H

H

rapid 
equilibrium

N
N

R3

R2
H

R1

H H

H
H

fast

H H

H

32

Scheme 5.15

N
N

COCF3

THF

65 ºC, 4h
N

69 %

33 34

Scheme 5.16

N
H

NH2

O Ph

NHAc

+

HCl/AcOH

reflux N
H

NHAc

Ph

95%

Scheme 5.17 [33].

5.4 Indole Synthesis j389



Several examples of the Fischer indole synthesis in the solid phase have been
described [37]. A very elegant traceless synthesis has been reported that employs a
solid supported hydrazine (37) [38], which participates in the Fischer indolizidation
upon treatment with a ketone in the presence of TFA. Interestingly, during the
cyclization step, indole 38 is released from the resin in a traceless manner
(Scheme 5.21).
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A library of structurally diverse indomethacine analogs (45) have been prepared by
a �resin-capture-release� strategy, a technique that combines solid-supported and
solution chemistry. Aryl hydrazine 39 is �captured� by an aldehyde functionalized
resin (40), and the unprotected N�H is acylated, to build an array of solid supported
protected acylhydrazines (42). Treatment with trifluoroacetic acid (46) releases the
hydrazine 43, which then reactswith a ketone, to provide hydrazone 44, which suffers
the indolizidation to deliver the corresponding indole 45 (Scheme 5.22) [39].
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Cyclic enol-ethers and enol-lactones 47 have been used as synthetic equivalents of
aldehydes and ketones, giving rise directly to functionalized indoles 48
(Scheme 5.23) [40].

5.4.2.1.2 Japp–Klingemann Reaction The condensation of carbonyls (or synthetic
equivalents) with aryl hydrazines is not the only route to the aryl hydrazones required
for the Fischer indolizidation. The coupling of aryldiazonium salts (49) with the
enolates of ketones 50 – the Japp–Klingemann reaction [41] – represents an
alternative that has been employed extensively. Hydrazone 52 is formed after a
deacylation step of the intermediate diazo compound 51 (Scheme 5.24).

b-Ketoesters are the usual substrates for the Japp–Klingemann reaction. For
instance, ketoester 53 reacts with benzenediazonium chloride in an alkaline solution
to form hydrazone 54. Indolizidation of hydrazone 54 under standard Fischer
conditions affords 2,3-disubstituted indole 55, which can be decarboxylated to give
3-substituted indole 56 (Scheme 5.25) [42].

When cyclic b-ketoesters (e.g., 57) are used, deacylation by ring opening occurs
under the basic conditions of the reaction, to provide the carboxylic acid 58. Fischer
indolization of 58 gives rise to 2,3-disubstituted indoles 59 [43] (Scheme 5.26).
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5.4.2.1.3 Hydroamination-Based Fischer Indole Synthesis Recently, an interesting
variation to the traditional Fischer approach has been introduced that uses alkyne
hydroamination as an alternative way to access the intermediate arylhydrazone.
Scheme 5.27 presents a one pot approach to the indole framework based on
intermolecular titanium amide-catalyzed hydroamination reactions of alkynes 61
with 1,1-disubstituted hydrazines 60. Subsequent addition of 3–5 equiv ZnCl2 is
necessary to convert the generated hydrazone 62 into the corresponding indole
63 [44].

The Grandberg strategy has been combined with the hydroamination to prepare
tryptamine analogs 66 (Scheme 5.28) [45]. The Ti-catalyzed hydroamination of
terminal chloroalkynes 64 gives rise directly the hydrochloric salt of aminoindoles 65.
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This one pot process involves a titanium-catalyzed Markovnikov hydroamination to
furnish the correspondinghydrazone, which can follow the same reaction pathway as
that proposed in the original Grandberg route.

Another interestingmodification of the hydroaminationmakes use of inexpensive
TiCl4 as precatalyst for the hydroamination reaction, and it also serves as Lewis acid
for the cyclization process. This methodology allows for the preparation of 1,2,3-
trisubstituted indoles 70 from unsymmetrical alkynes 68 (Scheme 5.29) [46].

The aryl hydrazones required for the Fischer cyclization have also been prepared
through a novel rhodium-catalyzed hydroaminomethylation of olefins [47]. Thus,
reaction of aliphatic olefins 71 with synthesis gas (CO :H2, 1 : 1) and aryl hydrazines
72 in the presence of rhodium phosphine catalysts leads to the corresponding
hydrazones 73, which can be subsequently transformed into indole 74 by treatment
with ZnCl2 in a one pot process (Scheme 5.30) [48].

As an alternative method, the Buchwald–Hartwig amination has been applied
for the synthesis of the arylhydrazines required for the Fischer synthesis [49]. Thus,
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Pd-catalyzed cross-coupling of aryl bromides 76 with benzophenone hydrazone (75)
furnishes N-arylbenzophenone hydrazone 77, which is hydrolyzed to the arylhy-
drazine 78 by treatment with acid. If the hydrolysis is carried out in the presence of a
carbonyl compound, indole 79 is formed in a one pot process, without isolation of any
of the intermediates (Scheme 5.31).

5.4.2.1.4 Gassman Synthesis A [2,3] sigmatropic shift of anilinosulfonium ylide
80 is the key step in the Gassman synthesis [50]. The sulfur substituted indoles 81
so-obtained can be easily reduced with Raney Ni (Scheme 5.32).

In the original Gassman procedure the indole is formed directly from the
corresponding aniline 82 in a one pot–three step procedure that involves the formation
of chloramine 83, which then reacts with a a-thioketone to form the anilinosulfo-
nium salt 84. Low temperature rearrangement of 84 yields the 3-thioindole 85
(Scheme 5.33).

The anilinosulfonium salt 86 can be accessed also by a modified procedure that
avoids the use of tBuOCl and provides slightly better yields. This strategy has been
employed in the synthesis of oxyindoles 87 (Scheme 5.34) [51].
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5.4.2.1.5 Bartoli Synthesis In the Bartoli synthesis, 7-substituted indoles 89 are
obtained from 2-substituted nitrobenzene 88 upon treatment with 3 equivalents of
vinylmagnesium chloride (Scheme 5.35) [52]. The availability of the starting materi-
als and its simplicity make this reaction one of the most efficient methods for the
preparation of 7-substituted indoles. The necessity of an ortho-substituent on the
aromatic ring is the main limitation. Nevertheless, Br is a very suitable substituent
that can enforce the sigmatropic rearrangement as requested by the mechanism
(see below), and can be easily removed or transformed thereafter.

Scheme 5.36 depicts the mechanism proposed for the Bartoli reaction. The
reaction starts with the addition of the first equivalent of vinyl Grignard to an oxygen
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atomof the nitro groupof 88, with subsequent elimination of acetaldehyde enolate, to
generate nitrosobenzene derivative 90. Then, the second equivalent attacks the
oxygen atom of the nitroso functionality. The intermediate 91 generated suffers a
Claisen-like [3,3]-sigmatropic rearrangement, with cleavage of the N�O bond,
followed by heterocyclization to form the five-membered ring. A third equivalent
of the Grignard is required to abstract a proton on 92 before the final elimination
takes place.

Slightly modified Bartoli protocols [53], including a solid phase version [54], have
been implemented more recently.

Other examples of [3,3] sigmatropic rearrangement-based indoles synthesis have
been described [55, 56].

5.4.2.2 Cyclization by Formation of the N�C2 Bond
The construction of the indole ring with formation of the N�C2 bond includes the
most popular approaches other than the Fischer synthesis.

N N

An important class ofmethods for indole ring synthesis involves a cyclization of an
aminoketone (93) with formation of the C2�N bond (Scheme 5.37). Usually, the
precursor that suffers the intramolecular condensation has to be preformed in a
preliminary step, andmust contain a carbonyl or masked carbonyl (imine, enamine,
enolether) functionality.

Many different approaches have been investigated to generate the cyclization
precursor. Among them, those that rely on the reductive cyclization of o-substituted
nitroaryls are noteworthy.

5.4.2.2.1 Reissert Indole Synthesis The Reissert indole synthesis is a very reliable
method for the preparation of benzene-substituted indole-2-carboxylates [57]. In the
first step, condensation of o-nitrotoluene (94) with ethyl oxalate under basic media
affords the potassium salt of o-nitrophenylpyruvate 95 (Scheme 5.38). The key step in
the Reissert synthesis is the reductive cyclization of this intermediate, which
generates the aminoketone 96 that undergoes cyclization to provide the indole-2-
carboxylate (97). The reductive cyclization has been effected under different catalytic
hydrogenation conditions (Pt/AcOH, Pd-C/EtOH [58]) and also with various low
oxidation state metal salts (SnCl2-TiCl3) [59].
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Many variations on the classic Reissert synthesis are known, which differ in the
way the intermediate o-aminobenzyl ketones or aldehydes, ready for the cyclization,
are obtained [60].

Nucleophilic substitution on nitroarenes has been applied extensively in several
approaches, a theme that has been reviewed [61]. Silylenol ethers 99 activated with
fluoride anion [tris(dimethylamino)sulfonium difluorotrimethylsiliconate (TASF)]
behave as strong C-nucleophiles and add to nitroarenes 98 in the ortho position to
the nitro group. Subsequent aromatization of the intermediate generated with DDQ
leads to o-(2-nitroaryl)alkyl ketones 100. Finally, reductive cyclization under standard
conditions provides the indole 101 (Scheme 5.39) [62].

The vicarious nucleophilic substitution (VNS) of hydrogen [63] in nitroarenes 102
with a-chloroalkyl ketones 103 gives rise to nitroaryl ketones 104, which are
converted into indoles 105 under classical Reissert conditions (Scheme 5.40).

A similar valuable approach to indoles consists of the reductive cyclization of
(o-nitroaryl)acetonitriles 108 (Scheme 5.41). The cyanomethyl group is efficiently
introduced in nitroarenes 106 by VNS of hydrogen with chloroacetonitrile 107 or
aryloxyacetonitrile. Catalytic hydrogenation transforms the cyano group into an
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imine and the nitro group to an amine, giving rise to 108, which cyclizes sponta-
neously to the indole 109 [64].

Carbocyclic-fused indoles have been prepared by several other alternative routes
that involve the cyclization of a a-(o-nitrophenyl) ketone (Scheme 5.42). For instance,
the intermediate nitroketones 112 can be obtained by arylation of cyclic silyleno-
lether 111 with (o-nitrophenyl)phenyliodonium fluoride 110 [65]. This methodology
was employed in the total synthesis of (�)-tabersonine [66]. In a different approach,
an Ullman-type cross-coupling of o-halonitroarenes 113 with a-haloenones 114 has
been also employed to obtain the o-nitroarylketones 115 [67]. In both cases, reductive
cyclization affords the expected indole ring.
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In Shibasaki�s total synthesis of strychnine [68] an advanced intermediate is also an
a-(o-nitrophenyl)ketone (118), which is prepared by Stille cross-coupling of o-nitro-
stannylbenzene (116) with a vinyl iodide (117) (Scheme 5.43).

A remarkable innovation has been uncovered by Buchwald – applying the Pd-
catalyzed arylation of ketone enolates [69] to transform o-bromonitrobenzene deri-
vatives 120 into o-nitroketones 122 (Scheme 5.44). Subsequent reductive cyclization
provides the corresponding indoles 123 [70]. The reaction is very general and has
been utilized successfully in the synthesis of indoles bearing both electron-with-
drawing and electron-donating substituents on the benzene ring and awide variety of
ketones 121. Moreover, additional substitution can be introduced if the intermediate
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nitroketone 122 is deprotonated and alkylated before the reductive cyclization step to
furnish substituted nitroketones 124. Therefore, this important development allows
for the preparation of very highly substituted indoles 125.

5.4.2.2.2 Leimgruber–Batcho Synthesis The Leimgruber–Batcho synthesis is a very
convenientmethod to prepare indoleswith substitution only in the benzene ring [71].
The two-step procedure starts with the three-components reaction of an o-methylni-
troaryl (126) with dimethylformamide dimethylacetal in the presence of pyrrolidine,
to provide o-nitro-b-pyrrolidinostyrene 127 (Scheme 5.45). Reductive cyclization
on 127 furnishes indoles 128, usually in very high yields.

Strong points of this approach are the compatibility with many functional groups,
and the ready availability of the starting materials, which make this method a very
interesting entry to polysubstituted indoles [72–74]. Enhanced conditions for a Lewis
acid catalyzed version of the reaction using microwave acceleration have been
described recently [75]. This modification has been applied to the synthesis of a
wide variety of substituted nitroenamines, including several examples of heteroaro-
matics such as 129, which expand the scope of the Leimbruger–Batcho synthesis
(Scheme 5.46).

5.4.2.2.3 Reductive cyclizations o-Nitrostyrenes The reductive cyclization o,b-dini-
trostyrenes is another two step synthesis of indoles closely related with the Leim-
bruger–Batcho approach. The formation of the o,b-dinitrostyrenes 131 is usually
achieved by Henry condensation [76, 77] of nitromethane with o-nitrobenzalde-
hydes 130, or by nitration of benzaldehydes [78]. The reduction step has been
carried out with several classes of reducing agents, including different metal/acid
combinations [79] and catalytic hydrogenation conditions (Scheme 5.47) [80]. This
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methodology has been applied as starting point in the synthesis of several natural
products containing the indole skeleton [81–84].

A versatile methodology, related with the methods described above, is the palla-
dium-catalyzed reductive N-heteroannulation of o-nitrostyrenes 132 [85, 86]. The
reaction is carried out under COpressure and in the presence of a Pd/ligand catalytic
system (Scheme 5.48) [87].

The required precursors, the o-nitrostyrenes, are readily available from o-bromo-
nitrobenzenes, through metal-catalyzed reactions, such as Stille couplings [88] or
Heck reactions [89]. Examples of both approaches are represented in Scheme 5.49.
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5.4.2.2.4 Sugasawa Synthesis Another synthesis of the indole ring from anilines is
based on the o-chloroacetylation of aniline, the so-called Sugasawa reaction
(Scheme 5.50) [90, 91]. Treatment of an aniline (133) with chloroacetonitrile in the
presence of BCl3 and another Lewis acid furnishes o-chloroacetylaniline 134, through
the intermediate 135. Chloroacetylaniline 134 can be cyclized to the indole 136
by reduction with NaBH4. The Sugasawa synthesis has been used very efficiently for
the preparation of N�H unprotected indoles with substitution in the benzene
ring [92, 93].

5.4.2.2.5 Indoles from 5-Aminodihydronaphthalenes: Plieninger Indole Synthesis
The oxidative cleavage of 5-aminodihydronapthalenes 137 provides the amino
carbonyl 138 required for the N�C2 condensation reaction to form 7-substituted
indoles 139 (Scheme 5.51) [94].

The key intermediate in this synthesis, the 2-aminodihydronaphthalene 141, is
best obtained by [4 þ 2] cycloaddition reaction of a p-benzoquinone mono- or di-
imine, such as 140with electron-rich dienes [95]. The great potential of this approach
is exemplified by the synthesis of the polysubstituted indole 142, en route to the total
synthesis of the antitumor agent (þ )-yatakemycin (Scheme 5.52) [96].
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5.4.2.2.6 Cyclizations of Nitrenes Another type of cyclization with formation of the
N�C2 bond involves the insertion of nitrenes in a vinylic C�Hbond to form indoles
(Scheme 5.53). Obviously, the key in this type ofmethodology is the generation of the
unstable nitrene species.

The intermediate nitrenes can be formed by thermolysis of b-substituted-o-
azidostyrenes 143, which undergo insertion to form the indole [97, 98]. Scheme 5.54
shows, as an example, the synthesis of 2-nitroindole 144, which is not easily available
through other procedures [99].

Nitrenes have also been generated from o-nitrostyrenes or o-nitrostilbenes by
deoxygenation of the nitro group with triethyl phosphite [100, 101]. In a more recent
modification of this approach, the nitrene is generated by treatment of the nitroarene
145withphenylmagnesiumchlorideunder verymild conditions (Scheme5.55) [102].
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Scheme 5.56 shows the mechanism proposed for this novel nitrene generation
reaction.

5.4.2.2.7 Synthesis from o-Allylanilines or o-Vinylanilines Palladium-catalyzed intra-
molecular C�N bond formation is one of the most powerful methods for the
synthesis of the indole ring. The first contributions in this area were due toHegedus,
who described the cyclization of o-allylanilines 146 using stoichiometric amounts of
Pd(II) in aWacker-type process (Scheme 5.57) [103]. The reaction tolerates functional
groups as well as substitution in the allyl moiety.

During the reaction the Pd(II) species is reduced to Pd(0). To avoid the use of
stoichiometric Pd, benzoquinone is used in the catalytic process as reoxidant. This
methodology has been applied in the synthesis of 3-hydroxyindoles 147
(Scheme 5.58) [104].
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5.4.2.2.8 Synthesis from o-Alkynylanilines or o-Alkynylanilides Intramolecular
hydroamination of o-alkynylanilines 148, through a 5-endo-dig cyclization, is one of
the most popular modern methods for the construction of the indole ring
(Scheme 5.59). The required alkynylanilines are usually synthesized by a Pd-
catalyzed Sonogashira cross-coupling of an o-iodoaniline with a terminal acety-
lene [105]. The cyclization reaction has been studied extensively and applied in
numerous synthetic efforts. Several metal-based catalytic systems are able to
promote the cyclization. Among them, Pd and Cu have been the most studied.
Detailed accounts of this methodology have been published [106]. Typically, the
cyclization is carried out in the presence of a Pd(II) catalyst, such as PdCl2
(Scheme 5.60) [107].

The mechanism of the reaction is postulated to proceed via an intramolecular
aminopalladation of the alkynylaniline 148, which produces the a s-indolylpalladium
species 149, followed by protonolysis of the C�Pd bond, which releases the indole
150 and recovers the Pd(II) catalyst (Scheme 5.61).

The one pot synthesis of 2-substituted indoles from o-haloaniline derivatives 151
and terminal acetylenes 152 can be achieved by employing a combination of Pd(II)
and Cu(I) catalyst (Scheme 5.62). In this process, the Sonogashira coupling to form
alkynylaniline 153 and the intramolecular hydroamination occur consecutively and
are promoted by the same catalytic system [108, 109].

Indoles are also prepared in one pot fashion from o-chloroalkynylbenzene 154
derivatives and primary amines 155 (Scheme 5.63) [110]. In afirst step, a Pd-catalyzed
aryl amination takes place to furnish the o-alkynylaniline 156, which then cyclizes to
give the indole 157, in a process promoted by the same Pd catalyst.

An interesting variation of this methodology is the �aminopalladation/reductive
elimination� domino reaction that provides 2,3-disubstituted indoles 160 from
o-alkynyl trifluoroacetanilides 158 and organic halides 159 (Scheme 5.64) [111].
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A plausible mechanism for this Pd(0)-catalyzed domino reaction involves: (i)
oxidative addition of the halide to the Pd(0) species to form Pd complex 161; (ii)
coordination of the Pd(II) species 161 to the triple bond of 158 to form the (g2-alkyne)
organopalladium complex 162; (iii) intramolecular nucleophilic attack of the nitro-
gen across the triple bond to form the s-indolylpalladium intermediate 163; and (iv)
reductive elimination that regenerates the Pd(0) catalyst and releases the 2,3-
disubstituted indole 160 (Scheme 5.65).

The reaction has been carried out employing aryl halides [112], alkenyl triflates,
alkynyl bromides [113], and allylic carbonates [114] to provide the corresponding 2,3-
disubstituted indoles.Moreover, if the process is carried out under CO atmosphere, a
three-component reaction takes place with incorporation of the carbon monoxide
molecule, to yield 3-acyl-substituted indoles (Scheme 5.66) [115].
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This domino chemistry has been also carried out with a solid support and applied
to the preparation of a combinatorial library of indoles 164 with three points of
diversity (Scheme 5.67) [116].

A very impressive extension of this approach is the recently described Pt-catalyzed
carboamination of o-alkynylanilides 165 [117]. A representative example is presented
in Scheme 5.68. During the reaction, the acyl groupmigrates from the N-atom to C3
to form acylated indole 166. Therefore, this methodology constitutes a very attractive
method for the preparation of 2,3-disubstituted indoles.

The indolization of o-alkynylanilines has been performed with alternative pro-
moters other than the classic transition metal catalysts. For instance, K and Cs bases
promote successfully the cyclization (Scheme 5.69) [118]. This simple procedure
appears to be very general regarding the substituents in the alkyne and the aromatic
system, and has been adapted to solid-supported synthesis. Moreover, a similar
strategy has been applied to the preparation of oxindoles.

Iodinating reagents, such as bis(pyridine)iodonium(I) tetrafluoroborate
(IPy2BF4) [119], can also promote the cyclization of o-alkynylanilines 167
(Scheme 5.70). Interestingly, the reaction affords 3-iodoindoles 168, offering the
opportunity of further transformation by substitution of the iodine substituent by
well known cross-coupling protocols.Moreover, the reactionhas also been carried out
on a solid support.
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5.4.2.2.9 Synthesis from o-Alkynyl isocyanides or o-Alkynyl Isocyanates N-Cyanoin-
doles 171 are prepared by a very elegant Pd-catalyzed three-component coupling
reaction of o-alkynylphenylisocyanide 169, allyl carbonate 170 and trimethylsilyl
azide (Scheme 5.71) [120].

The catalytic cycle proposed for this remarkable cascade process (Scheme 5.72)
starts with the reaction of the Pd(0) species with allyl carbonate 170 and TMSN3 to
give thep-allylpalladiumazide complex172. Insertion of the isocyanide in thePd�N3

bond would give a new p-allylpalladium complex (173). Elimination of N2, with 1,2-
migration of thep-allylpalladiummoiety fromCtoN,would providep-allylpalladium
carbodiimidecomplex174.Thisrearrangementcanbeenvisionedasap-allylpalladium
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mimic of the Curtius rearrangement. Complex 174 can be in equilibrium with the
p-allylpalladiumcyanamide complex 175. Insertion of the alkyne in thePd�Nbond of
p-allylpalladium 175wouldprovide the 2-indolyl-p-allylpalladiumcomplex176, which
upon reductive elimination yields the cyanoindole 171 and the Pd(0) catalyst.

A related reaction can be applied to prepareN-methoxycarbonylindoles 178 from o-
alkynylisocyanates 177 and allyl carbonate 170. In this case a Pd0-CuI bimetallic
catalyst is required (Scheme 5.73) [121].

5.4.2.2.10 Synthesis from o-Haloanilines and Acetylenes: The Larock Indole Synthesis
The Pd-catalyzed synthesis of indoles from o-iodoanilines 179 and internal alkynes
180 is known as the Larock indole synthesis, and stands as one of the more powerful
methods for the preparation of 2,3-disubstituted indoles 181 (Scheme 5.74) [122].

When unsymmetrical alkynes are used, the annulation reaction is regioselective,
with the bulkiest substituent being placed at C2 in the indole. In particular, silylated
alkynes afford exclusively the C2 silylated indole.

It is postulated that the mechanism of the annulation involves (Scheme 5.75): (i)
oxidative addition of the aryl iodide 179 to the Pd(0) species to form arylpalladium
complex 182; (ii) coordination of the alkyne 180 to the arylpalladium complex to form
complex 183; (iii) insertion of the alkyne in the Pd�CAr bond, and coordination of the
nitrogenwith ligand displacement to generate palladacycle intermediate 184; and (iv)
reductive elimination to form the indole and regenerate the Pd(0). The regioselec-
tivity of the reaction is determined by the insertion of the alkyne in the Pd�C bond.
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The bulkier substituent is situated next to the Pd, to avoid steric interactions with the
aromatic ring.

Larock�s heteroannulation has been applied as the key step in the preparation of
several indole alkaloids and heterocycles. For instance, 7-methoxytryptophan 185, an
early intermediate in the preparation of some indole alkaloids, has been efficiently
synthesizedwith thismethodology (Scheme5.76) [123].Moreover, recently, the scope
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of the reaction has been extended to o-bromo- and o-chloroanilines, by using an
appropriate supporting ligand for the Pd, which enhances its reactivity towards
oxidative addition [124].

A different Pd-catalyzed tandem process, which shares somemechanistic features
with Larock�s indolization, has led to indoles from o-(2,2-dibromovinyl)anilines
186 [125]. In this case, the tandem process takes advantage of the different reactivity
of the two C�Br bonds towards oxidative addition. Thus, in a first step, Suzuki
coupling with substitution of the more reactive trans-bromine atom gives the
bromovinyl aniline 187, which undergoes Pd-catalyzed intramolecular C�N bond
formation to provide the indole 188 with high yields (Scheme 5.77).

5.4.2.3 Ring Synthesis by Formation of the C3�C3a Bond

N N

5.4.2.3.1 Electrophilic Cyclizations of the Aromatic Ring: The Bischler Synthesis This
section includes those indole syntheses in which the key step is a cyclization by
electrophilic attack of the aromatic ring to a nucleophilic center in a 5-exo-trig type of
cyclization (Scheme 5.78).
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approach. In the original protocol, arylaminoketone 190 is obtained from N-methy-
laniline and a-haloketones 189. Acid-catalyzed 5-exo-trig cyclization then leads to
indole 191 (Scheme 5.79).

Notable among themost relevant modifications of this procedure are the use of an
acetal as amasked aldehyde functionality and the acylation or sulfonation [127] of the
nitrogen, which allows a much more controlled cyclization. The Nordlander syn-
thesis [128] exemplifies such variations (Scheme 5.80).

In another modification of the Bischler synthesis, the intermediate a-(N-arylami-
noketones) 194 are prepared by the N�H insertion reaction of anilines 192 with
rhodium carbenoids [129], generated from diazocarbonyl compounds 193 [130]. The
final cyclization is carried out using the acidic ion-exchange resin Amberlyst 15,
which provides better results than the usual Lewis acid catalysts (Scheme 5.81).
A further refinement of the reaction by the same authors allows for the preparation of
N�H indoles [131].

Hydroamination of propargylic alcohols with anilines represents another transi-
tion metal catalyzed alternative to the classic Bischler synthesis [132]. In a one pot
process, the hydroxyimine 196, which comes from the ruthenium-catalyzed hydro-
amination of the propargylic alcohol 195, undergoes hydrogen migration to the
Bischler intermediate 197, followed by cyclization to provide a mixture of regioiso-
meric 2,3-substituted indoles (Scheme 5.82).
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5.4.2.3.2 Carbometallation of N-(2-Lithioallyl)anilines The intramolecular carbome-
tallation of lithiated double bonds has been used to prepare several types of
functionalized indoles [133]. For instance, N-bromoallyl-o-fluoroanilines 198 are
converted into indoles by treatment with 3 equivalents of tBuLi. Cyclization of the
benzyne intermediate 199 generated gives rise to C(4)-lithiated 3-methyleneindoline
derivative 200. Quenching of the lithiated species 200 with selected electrophiles
allows functionalization at this position to provide methyleneindoline 201, which
isomerizes on workup or on silica gel chromatography to the corresponding indole
derivatives 202 (Scheme 5.83) [134].

Interestingly, 3-methyleneindolines such as 201 are known to participate in Alder-
ene reactions with activated enophiles to furnish 3,4-disubstituted indoles 203
(Scheme 5.84) [135].

Taking advantage of this reaction, addition of an enophile to the reaction mixture
provides 3,4-disubstituted indoles in a one-pot sequence. Schemes 5.85 and 5.86
show, as representative examples, the one-pot synthesis of a tryptamine analog 204
and a substituted carbazole 205, respectively.
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5.4.2.3.3 Palladium-Catalyzed Heck Reactions The intramolecular Heck reactions
of o-halo-N-allylanilines 206 and o-halo-N-vinylanilines 207 are very effective meth-
ods for the construction of the indole ring (Scheme 5.87).

The Pd-catalyzed cyclization of N-allyl-o-haloanilines, such as 208 [136–138], is a
very reliablemethod for the preparation of indoles. The intramolecularHeck reaction
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is usually achieved under Pd ligandless conditions and in the presence of a base
(Scheme 5.88) [139, 140].

The formation of the indole can be explained by the accepted mechanism of the
Heck reaction. Oxidative addition of the aryl halide to form arylpalladium complex
209, followed by cyclization by olefin insertion, gives rise to the Pd(II) substituted
indoline 210. b-Elimination regenerates the Pd(0) species and produces a 3-methy-
lenindoline 211, which isomerizes spontaneously to indole 212 (Scheme 5.89).
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Nevertheless, it is possible to isolate the intermediate indoline under certain reaction
conditions, which include the use of silver carbonate as base [141].

Many examples have appeared in the literature of the application of this meth-
odology in the synthesis of complex molecules [142], including adaptation to solid-
phase synthesis [143]. Scheme 5.90 shows a solid-phase synthesis of trisubstituted
indoles 213 that allows for the introduction of several points of diversity in the indole
scaffold [144].

The Heck reaction of o-haloenamines has attracted comparatively less attention
than the previously discussed reaction with N-allylanilines. The instability of the
enamines when compared with the allylamines, as well as the more difficult 5-endo-
trig cyclization when compared with the 5-exo-trig, may account for this difference.
The first examples of this approach were carried out with acylenamines 214, easily
prepared through different procedures, which undergo Pd-catalyzed cyclization to
provide 2,3-disubstituted indoles 215 (Scheme 5.91) [145].

Direct annulation of o-iodoanilines with ketones is a very convenient variation of
this route [146]. The reaction has been extended recently to the more easily available
chloroanilines 216 [147]. In a first step, condensation of the amine with the ketone
forms the enamine 217, which then undergoes Pd-catalyzed cyclization
(Scheme 5.92). The use of a very active catalytic system is crucial.

Enamine 217 required for the cyclization has also been prepared by acetylene
hydroamination. Thus, the indole ring has been formed from acetylenes 219 and o-
chloroaniline (218), in a one potprocess that requires twodifferentmetal catalysts: a Ti
catalyst for the hydroamination, and a Pd catalyst for the Heck reaction
(Scheme 5.93) [148].

In a related process, indoles have been synthesized from o-haloanilines 220 and
alkenyl bromides 221. Notably, in this process the same Pd catalyst promotes two
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different reactions: the alkenyl amination, which forms the intermediate enamine
222, and the subsequent Heck reaction to form the indole (Scheme 5.94) [149].

5.4.2.4 Ring Synthesis by Formation of the C2�C3 Bond
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5.4.2.4.1 Madelung Synthesis The construction of the indole ring by cycloconden-
sation of 2-methylanilides (223) is known as the Madelung indole synthesis
(Scheme 5.95). In its original formulation the reaction used bases such as NaNH2

and KOtBu, and required extremely harsh reaction conditions with temperatures
over 250 �C (check out the procedure published inOrganic Synthesis Collective) [150].
The replacement of these bases by alkyllithiums or LDA allows the reaction to take
place under much milder reaction conditions (Scheme 5.96) [151, 152].
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Introduction of electron-withdrawing substituents at the ortho-methyl group
makes the benzylic proton of derivatives 224 more acidic and thus facilitates the
overall process [153]. This approach is illustrated by the solid-phase synthesis of a
library of 2,3-disubstutited-indoles 225 (Scheme 5.97) [154].

In another variation of the Madelung synthesis, phosphonium salts 227 led to the
corresponding indoles through aWittig-like intramolecular reaction in the presence
of base [155] or under thermal conditions [156]. The required phosphonium salts can
be easily obtained from o-nitrobenzyl bromide (226) in a sequence that includes
substitution with triphenylphosphine, reduction of the nitro group and acyla-
tion [157]. This procedure has been applied to the preparation of 2-alkyl, 2-alkenyl
and 2-arylindoles 228 (Scheme 5.98). A solid-phase version of this procedure using a
polymer-bound triphenylphosphine has also been developed [158].

2,3-Disubstituted indoles 231have beenprepared by a very original strategy from o-
aminoketones 229 through an intramolecular Horner–Wadsworth–Emmons reac-
tion. The key step in this synthesis is the generation of the intermediate phospho-
nate 230, required for the olefination reaction, which was prepared by insertion in a
N�Hbond of an in situ generated Rh carbenoid (Scheme 5.99). The whole sequence
can be conducted in a one-pot process [159].
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5.4.2.4.2 F€urstner Synthesis The intramolecular reductive cyclization of
oxo-amides 232 promoted by low-valent titanium (an intramolecular McMurry
coupling) [160] is known as the F€urstner indole synthesis [161] (Scheme 5.100).

This coupling reaction is a very powerful method for the preparation of 2,3-
disubstituted indoles – in particular of 2-arylindoles – and has been applied in the
total synthesis of several indole alkaloids and biologically active molecules [162].
Scheme 5.101 shows a particular example of this methodology, applied to the
preparation of an endothelin receptor antagonist [163]. The oxo-amide 235 required
for the cyclization reaction is easily prepared from o-nitrobenzaldehyde (233).
Addition of an aryl Grignard followed by oxidation of the resulting alcohol installs
the ketone functionality to obtain 234. Then, catalytic hydrogenation of the nitro
group followed by acylation provides the amido functionality of 235, which is
transformed into indole 236 under the standard low-valent-titanium reduction.

5.4.2.4.3 Radical Cyclizations A wide range of 2,3-disubstituted indoles can be
prepared by the tin-promoted radical cyclizations of 2-alkenylphenylisonitriles [164]
and 2-alkenylthioanilides 237 devised by Fukuyama [165] (Scheme 5.102).

The cyclizations are carried out in the presence of tributyltin hydride and a radical
initiator. In a first step, the tin radical adds to the thioamide 237 to form a sp3 radical
238 or an imidoyl radical 239, which cyclizes to yield the indole after a tautomeric
equilibrium (Scheme 5.103).

The tin-promoted cyclizations are compatible with a wide range of functional
groups. Moreover, the required 2-alkenylthioamides are easily available through
various procedures. All this factors make this approach a very useful method for the
preparation of 2,3-disubstituted indoles. For instance, this reaction has been applied
by Fukuyama to build both indole rings present in the alkaloid (þ )-vinblastine, a
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potent agent for cancer therapy (Scheme 5.104) [166]. In this example, the 2-
alkenylthioamide is prepared in several steps from quinoline 240. Ring opening of
quinoline 240 promoted by thiophosgene produces 241. Reduction the of the
aldehyde functionality, followed by protection of the hydroxyl group with dihydro-
pyran, leads to the isothiocyanide 242, which is transformed into the thioamide 243
by addition of a nucleophile. Finally, radical cyclization under standard conditions
gives rise to the highly functionalized indole 244.

5.4.2.4.4 Palladium-Catalyzed Cyclizations ThePd-catalyzed cyclization of 2-(1-alky-
nyl)-N-alkylideneanilines 245 gives rise to 3-alkenylindoles 246 [167] (Scheme 5.105).

According to the authors� proposal, the reaction most probably proceeds through
the regioselective insertion of a Pd hydride in the triple bond of 245, to
form vinylpalladium intermediate 247. From this intermediate, both an �oxidative
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addition/reductive elimination� sequence (path a) and carbopalladation of the imine
followed by b-elimination (path b) can explain the formation of the indole
(Scheme 5.106).

5.4.2.5 Cyclizations with Formation of the N�C7a Bond

NHN

5.4.2.5.1 Nenitzescu Indole Synthesis The preparation of 5-hydroxyindole 250
derivatives from 1,4-benzoquinone (248) and a b-enaminoester 249 is known as
the Nenitzescu reaction and was first reported in 1929 (Scheme 5.107) [168].

Although the mechanism of the reaction remains somewhat obscure, it is
presumed that it involves an internal oxidation–reduction process within the
following steps: Michael-type addition of the enamine 249 to the quinone 248,
oxidation of the hydroquinone 251 into a substituted benzoquinone 252, conden-
sation to form the quinoimmonium cation 253 and reduction to form 5-hydroxyin-
dole 250 (Scheme 5.108).
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The Nenitzescu synthesis has been widely used for the preparation of 5-hydro-
xyindole derivativeswith additional substituents in both rings [169]. An example of its
implementation to solid-phase synthesis is given in Scheme 5.109 [170].

The scope of the Nenitzescu reaction has been recently extended to substrates
different than the classical b-enaminocarbonyls. Pyrimidine-2,4,6-triamines react
with p-benzoquinones to provide hydroxypyrimido[4,5-b]indoles with moderate
yields [171].

Benzylimines of simple ketones (254), which are in tautomeric equilibrium with
the corresponding enamines 255, are also good substrates for the indolization. This
new reaction has been applied to simple cyclic imines, and also to more complex
systems such as 256 to prepare new hydroxyindolomorphinans 257 with potent
biological activity (Scheme 5.110) [172].
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5.4.2.5.2 Synthesis by Nitrene Insertion: The Hemetsberger Synthesis The indole
ring can be built by insertion of a nitrene placed on the side-chain (260). In this
approach, commonly known as the Hemetsberger indole synthesis, cyclization is
achieved by thermolysis of the corresponding azides 259 [173]. Although the reaction
may be understood as a nitrene insertion into a C�H bond, an azirine intermediate
261has been isolated at lower temperatures [174], which provides the indole 262 after
a subsequent rearrangement (Scheme 5.111).

The vinylazides are best obtained by condensation of azidoacetate with aryl
aldehydes 258. Thus, this methodology is particularly useful for the preparation of
2-carboxyindoles 262 from aromatic aldehydes [175]. This protocol has been
employed successfully in the preparation of polycyclic indole derivatives. For
instance, application of the Hemetsberger sequence to the formylbenzoxazine
263 gives oxazinindole 264 in moderate overall yield (Scheme 5.112) [176].
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5.4.2.5.3 Intramolecular Buchwald–Hartwig Amination The Pd-catalyzed cross-cou-
pling of aryl halides with amines is nowadays one of the most powerful methods for
the formation of Caryl�N bonds [177]. The intramolecular version of the reaction
leads to indolines, which can be converted into indoles by treatment with Pd/C.
Scheme 5.113 shows the cyclization of the in situ generated 1-(o-bromophenyl)-2-
ethylamine 265 to furnish the corresponding indole 267 after the oxidation step of the
intermediate indoline 266 [178]. Further optimization of the reaction showed that
modification of the ligand and the base provides better yields under milder condi-
tions [179]. Moreover, a similar copper-catalyzed cyclization has also been
reported [180, 181].

Intramolecular N-arylation of enamines has also been applied in the synthesis of
indoles.Enamine270 (in tautomericequilibriumwiththe imine269),which isreadyfor
cyclization, is obtained by Ti-catalyzed hydroamination of the o-chloro-substituted
alkynylbenzene 268. Then, the Pd-catalyzed C�N bond-forming reaction furnishes
N,2-disubstitutedindoles271withgoodyieldsinaone-potprocess(Scheme5.114)[182].

Indoles have been prepared by two consecutive Pd-catalyzed amination reactions
on the enoltriflate 272 in a closely related strategy that features two reactive positions
towards Pd-catalyzed amination (Scheme 5.115) [183]. First, amination of the more
reactive enoltriflate occurs, to produce the enamine 273, which then undergoes
intramolecular aryl amination to give indole 274.
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5.4.3
Synthesis of the Indole Ring by Annelation of Pyrroles

Construction of the indole ring by annelation of pyrroles has been much less
exploited. Nevertheless, several efficient methods have been disclosed during the
last two decades. Most of the existing methods lie in one of the retrosynthetic
schemes represented in Scheme 5.116.

5.4.3.1 Synthesis by Electrophilic Cyclization
The most popular type of methods for synthesis of the indole ring from pyrroles
involves an electrophilic cyclization, with formation of either theC7�C7a orC3a�C4
bond (Scheme 5.117). In both cases, annelation takes place by an intramolecular
electrophilic attack of the pyrrole to a carbonyl function. To facilitate aromatization, a
leaving group is usually present in the carbon chain. Thedifferentmethods described
in the literature differ in the way to synthesize the intermediate carbonyl pyrrole
ready for the cyclization.
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5.4.3.1.1 Natsume Synthesis In the Natsume approach, the intermediate for
cyclization is prepared by addition of a organometallic bearing a masked carbonyl
functionality (276) to a pyrrolyl ketone (275). Acid-catalyzed cyclization on the
resulting functionalized pyrrole 277, with concomitant aromatization, provides
indole 278. This method is a very powerful strategy for the preparation of alkyl-
substituted indoles in the benzene portion. Scheme 5.118 shows the preparation of
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both a 7-substituted (278) and a 4-substituted indole (281) by application of the same
methodology but starting from 2-acyl (275) and 3-acyl (279) substituted pyrrole,
respectively [184].

Modifications of this strategy have been applied to the preparation of several
natural indole alkaloids, characterized by complex alkyl-substitution in the benzene
ring, such as herbindoles and trikentrins (Scheme 5.119) [185].

5.4.3.1.2 Katritzky Synthesis In the method by Katritzky, the carbonyl substituted
pyrrole 283 ready for the cyclization, is generated by a Michael-type addition
of the carbanion generated from a benzotriazole (Bt)-substituted pyrrole (282)
with a a,b-unsaturated ketone (Scheme 5.120) [186]. The benzotriazolyl
functionality acts as both an anion-stabilizing group and leaving group in the
overall transformation. Both approaches, cyclization by formation of the
C3a�C4 bond (Scheme 5.120) or the C7�C7a bond (Scheme 5.121), have been
conducted [187].

5.4.3.2 Palladium-Catalyzed Cyclizations
The six-membered ring of the indole skeleton has also been constructed by Pd-
catalyzed intramolecular Heck reactions. In the example shown in Scheme 5.122, a
6-exo-trig cyclization of a bromo-substituted pyrrole (284), bearing a double bond in
an appropriate position, provides an advanced intermediate for the synthesis of the
antitumor antibiotic duocarmycin SA [188].

The intramolecular Heck reaction has also been employed to build the benzene
ring of the indole system with formation of the C5�C6 bond [189].
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5.4.3.3 Electrocyclizations
Electrocyclization of 2,3-dialkenyl-4-nitropyrroles 285 gives rise to 3-nitroindoles 286 –
compounds that are difficult to prepare selectively through other routes. After the
thermal 6p-electrocyclization, aromatization of the intermediate dihydroindoles
occurs to provide the indole directly (Scheme 5.123) [190].

5.4.3.4 [4 þ 2] Cycloadditions
The cycloaddition of 2- and 3-vinyl pyrroles should allow for the preparation highly
functionalized indoles in the benzene ring [191]. In a particularly interesting
approach, 4,5-g2-Os(II)pentaammine-3-vinylpyrrole complexes 287 readily undergo
Diels–Alder reactions with activated dienophiles such as N-phenylmaleimide to
generate the 5,6,7,7a-tetrahydroindole nucleus. The tetrahydroindole complexes 288
can be decomplexed and oxidized with DDQ to generate highly functionalized
indoles 289 (Scheme 5.124) [192].

In contrast, the cyclic pyrrolo-2,3-quinodimethanes 290 undergo Diels–Alder
cycloaddition with alkynes. After CO2 loss, indoles with high substitution in the
benzene ring (291) are obtained (Scheme 5.125) [193].

5.4.3.5 Indoles from 3-Alkynylpyrrole-2-Carboxaldehydes
Benzannulation of readily available 3-alkynylpyrrole-2-carboxaldehydes 292 with
alkenes, promoted by iodonium ions, yields indoles 293 with a high level of
substitution and functionalization in the benzene ring (Scheme 5.126) [194].

The mechanism proposed for this unusual transformation is represented in
Scheme 5.127. Interaction of the iodonium ion with the triple bond of 292 would
promote the formation of intermediate 294. Nucleophilic attack of the alkene to the
electrophilic carbon of 294; subsequent intramolecular cyclization would then
provide 296. The simple loss of a proton to give a conjugated double bond then
yields 297. Finally, aromatization by elimination of HI gives the indoles 293. This
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proposal is supported by detailed mechanistic and spectroscopic studies, which
allowed the isolation of analogues of the cationic intermediates 294 and 296 [195].

5.5
Reactivity of Indole

5.5.1
Reactions with Electrophiles

The chemistry of indole is dominated by the strong electrophilic character of the
p-electron excessive heterocycle. Electrophilic aromatic substitution takes place at
C3, and is one of the most efficient methods for the introduction of substituents on
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the indole ring at that position. The regioselectivity of the electrophilic aromatic
substitution is easily explained by the different stability of the intermediate indolium
cations generated. The positive charge at C2, generated by electrophilic attack at C3,
can be delocalized between C2 and the N atom without compromising the aroma-
ticity of the benzene ring. In contrast, electrophilic attack atC2 generates an indolium
cation with the positive charge at C3, which cannot be delocalized without breaking
the aromaticity of the benzene ring. Electrophilic aromatic substitution on the
benzene ring occurs only on indoles strongly deactivated on the five-membered ring.

The method of choice to introduce electrophiles at the C2 position of indoles
consists in a stepwise procedure, involving N-protection, lithiation at C2, reaction
with the electrophile and N deprotection.

5.5.1.1 Protonation
Indole and substituted indoles are weak bases, with pKa values ranging from -2.4 for
protonated indole to�0.3 for the protonated electron-richer 2-methylindole [196]. As
expected, C3 is the main site for protonation of indole, to produce the 3-H-indolium
cation. Although the N-protonated indole (1-H-indolium cation) is not detected, even
spectroscopically, it is believed thatN-protonation occurs rapidly and equilibrates into
the more stable C3 protonated species.

Under weak acidic media indole undergoes dimerization and oligomerization by
attack of a molecule of non-protonated indole to the strong electrophilic C2 position
of the 3-H-indolium cation (Scheme 5.128).

5.5.1.2 Friedel–Crafts Alkylations of Indole
Indolyl compounds can be regioselectively alkylated at C3 through different Friedel–
Crafts (FC) type of reactions (Scheme 5.129). Alkyl halides, epoxides and aziridines,
carbonyl compounds and imines, a,b-unsaturated compounds, alkenes and alkynes,
and allylic acetates or carbonates have all been employed as electrophiles. The
amount of literature regarding this topic is enormous. These types of reaction
usually proceed smoothly in the presence of a Lewis or protic acid as catalyst. Thus,
the most recent advances have focused mainly on developing catalytic systems
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to perform the electrophilic aromatic substitution reaction in a milder, regio- and
stereoselective manner [197].

5.5.1.2.1 Michael Additions The reactions of indoles with a,b-unsaturated com-
pounds, such as a,b-unsaturated ketones, nitriles and nitroolefins, usually require
activation of the electrophile by an acid, and proceed with either protic [198] or Lewis
acids [199] and clays [200] to provide the corresponding 3-substituted indoles
(Scheme 5.130).
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These transformations have attracted much attention in recent years, and several
different new Lewis acids have been developed, including bismuth(III) salts [201],
cerium salts [202], Pd salts [203] and iodine [204]. For instance, the use of lanthanide-
based Lewis acids allows for the alkylation of indoles at the 3-position with various
Michael acceptors and under mild conditions (Scheme 5.131) [205].

Michael additions have been carried out in water at room temperature using a
scandium salt of an anionic surfactant – Sc(DS)3 (scandium dodecyl sulfate)
(Scheme 5.132) [206].

Indiumsalts are amongst themost general and effective Lewis acids to promote the
Michael addition, which can be performed with relatively hindered enones and 2-
substituted indoles [207, 208]. The same catalyst promotes the reaction with
nitroalkenes, under aqueous conditions, with excellent yields in most instances
(Scheme 5.133) [209].

Gold(III) salts are also excellent catalysts for this reaction [210]. Interestingly, when
the Michael addition is carried out with 3-substituted indoles, substitution occurs at
C2 although with relatively lower yields (Scheme 5.134).
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In the reaction of indoles with b-substituted-a,b-unsaturated compounds one or
two new stereogenic centers can be created. Control of the enantioselectivity of such
processes has aroused much interest in recent years (Scheme 5.135).

Few examples have appeared of the catalytic asymmetric Michael reaction of
indoles. To achieve good enantioselectivities the use of bidentate chelating Michael
acceptors is required, to keep fixed the chiral environment provided by the ligand
(Scheme 5.136). Good to excellent enantioselectivities have been achieved in reac-
tions of alkylidene malonates 298 [211], b,c-unsaturated a-ketoesters 299 [212], acyl
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phosphonates 300 [213], a0-hydroxyenones 301 [214] and a,b-unsaturated-2-acyli-
midazoles 302 [215, 216], using appropriate chelating C2 symmetric chiral ligands
combined with Cu or lanthanide Lewis acids.

Scheme 5.137 shows the asymmetric Friedel–Crafts alkylation of indoles with
a0-hydroxyenone 301, yielding 3-substituted indole 303 with very high ee.

In a totally different and extremely elegant approach, the asymmetric Michael
addition of indoles to a,b-unsaturated aldehydes has been achieved using a chiral
imidazolidinone (304) as an asymmetric organocatalyst [217]. The imidazolidinone
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plays a double catalytic role: to activate the aldehyde 305 by the formation of the highly
reactive iminium species 306, and to create a chiral environment that differentiates
both enantiotopic faces of the Michael acceptor (Scheme 5.138).

Thiourea-based organocatalyst 307 promotes the asymmetric Friedel–Crafts alkyl-
ation of indoles with nitroalkenes with high yields and enantiomeric excesses. The
stereochemical course of the reaction is controlled by the asymmetric platform
provided by the chiral thiourea organocatalyst, which forms hydrogen bonds simul-
taneously with both reactants (Scheme 5.139) [218].
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5.5.1.2.2 Reactions with Unactivated Olefins The intramolecular cyclization of
alkenylindoles 308 can be promoted by PtCl2 to give tetrahydrocarbazole derivatives
309 [219]. The cyclization proceeds through nucleophilic attack of the indole on the
Pt(II) complexed olefin in intermediate 310, followed by protonolysis of the C�Pt
bond in 311 (Scheme5.140). The same authors have recently reported an extension of
this methodology to the use of Pd(II) and Cu(II) catalysts [220].

5.5.1.2.3 Reactions with Carbonyl Compounds Friedel–Crafts alkylation of indoles
with aldehydes and ketones takes place under Brønsted [221] or Lewis acid catalysis.
The initially formed indole-3-yl-carbinols 312 are usually not isolated and evolve to
produce the azafulvenium salts 313. Finally, addition of a second molecule of indole
to the azafulvenium salt gives rise to bis(indoylmethanes) 314 (Scheme 5.141).
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Several different types of protic and Lewis acid catalysts have been employed for
this transformation. For instance, reaction of indole with aldehydes or ketones such
as 315 and 317, in the presence of LiClO4, affords the bis(indoylmethanes) 316 and
318, respectively, in excellent yields (Scheme 5.142) [222].

When the reaction is carried out with 2-oxoesters such as glyoxalate 319, the
indoylcarbinol 320 does not undergo elimination and can be isolated
(Scheme 5.143) [223].

The enantioselective version of this reaction has been successfully carried out both
with copper-based chiral Lewis acids 321 [224] and with Cinchona alkaloid organic
catalysts 322 (Scheme 5.144) [225]. The organocatalyzed reaction, although not well
understood yet, is remarkable, as the appropriate choice of alkaloid (chinchonidine,
CD or Chinchonine, CN) provides either enantiomer in quantitative yield and with
very high ee.

5.5.1.2.4 Reactions with Imines and Imminium Ions: Mannich Reaction Under
typical Mannich conditions indole undergoes alkylation at C3. This reaction leads
to the synthesis of gramines 323, which are important intermediates for the
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preparation of substituted indoles (Section 5.6.1). When the reactions are
conducted in water at low temperatures, the kinetically controlled N-alkylation
product 324 is obtained [226]. The resulting N-aminal indoles are relatively stable
but convert into the thermodynamically more stable C3-substituted aminomethyl
indoles upon heating at neutral pH or acid treatment at room temperature
(Scheme 5.145).

Gramines can undergo a second Mannich reaction, yielding 1,3-disubstituted
indoles 325. This reaction has been applied to the parallel synthesis of an indole-
based library (Scheme 5.146) [227].

Indole reactswith imines under acidic conditions to give substituted gramines. For
instance the reaction of glyoxylimine 326 with indoles employing Yb(OTf)3 as Lewis
acid leads to gramine derivatives 327 (Scheme 5.147) [228, 229].
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Asymmetric versions of this reaction have been carried out employing Cu-based
chiral catalysts [230] and also organic catalysts. Scheme 5.148 presents the Friedel–
Crafts alkylation of indoleswithN-tosylimines, such as 328, promoted by the quinine-
based organic catalyst 329 [231].

5.5.1.2.5 Epoxide and Aziridine Ring Opening Epoxides and aziridines are versatile
alkylating agents for indole. The ring opening of these strained heterocycles by indole
proceeds with Lewis acid, bases and solid acids, giving rise to triptophols and
tryptamine derivatives respectively (Scheme 5.149). Moreover, the ready availability
of enantioenriched cis and trans epoxides makes this approach a very valuable entry
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into enantiomerically pure indoles. The regiochemistry and stereochemistry of the
ring opening are the main issues that have to be addressed during the reaction.

The alkylation of indole with enantiomerically pure styrene oxide is catalyzed by
most of the common Lewis acids, with InBr3 being the most efficient in terms of
regioselectivity, enantioselectivity and yield (Scheme5.150) [232, 233].Other catalysts
such as Sc(OTf)3 and SnCl4 [234] also promote the ring opening without
racemization.

Enantioenriched chiral triptophols 330 can also be prepared by kinetic resolution
of racemic epoxides, or by desymmetrization ofmeso epoxides, employing Cr(Salen)
Cl complex 331 as chiral catalyst (Scheme 5.151) [235].
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The ring opening of aziridines with indoles provides tryptamine derivatives. Lewis
acids based onZn [236], Sc, Yb, and indium [237], andSiO2 promote efficiently the FC
reaction. Scheme 5.152 shows the alkylation of methyl indole-2-carboxylate with
chiral aziridine 332 to produce the enantiomerically pure substituted indole 333. The
alkylation occurs cleanly simply by adsorbing both reagents in SiO2 and heating the
mixture at 70 �C [238].

5.5.1.2.6 Indole as Nucleophile in Palladium-Catalyzed Allylic Alkylations Indoles are
also competent nucleophiles for Pd-catalyzed allylic substitutions (Tsuji–Trost reac-
tion) [239]. The reaction between allyl carbonate 334 and indole leads regioselectively
to the C3-allylated indole 335 or theN-allylated indole 336, depending on the reaction
conditions applied (Scheme 5.153) [240].

Theintramolecularvariantof this reactionprovidesanewentry intopolycyclic fused
indoles. Remarkably, use of the appropriate chiral ligand allows for the asymmetric
allylic alkylation (AAA) reaction [241] to take place with very high ee, giving rise to
tetrahydro-b-carbolines338 (Scheme5.154) [242].Moreover,whenthepedantgroupis
attachedatC3, suchas in339, the allylic alkylation takesplace atC2, alsowithveryhigh
regio- and enantioselectivity, to produce tetrahydro-c-carbolines 340.

5.5.1.3 Nitration
Indoles are highly sensitive to acids, and for this reason the nitration of the indole
ring requires carefully designed experimental conditions. Although C3 is the
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preferred position for electrophilic attack on indole, nitration under strong acid
conditions proceeds through the 3-H-indolium cation, and nitration occursmainly at
C5, owing to the directing influence of the iminium substituent. Indole itself can be
nitrated at C3withmoderate yield with benzoyl nitrate [243], and 2-arylindoles can be
successfully nitrated at C3 by treatment with 2-cyano-2-propyl nitrate under phase
transfer catalysis conditions [244]. More interestingly, N-protected indoles can be
successfully nitrated at C3 by treatmentwith in situ generated acetyl nitrate at very low
temperature (Scheme 5.155) [245].

In contrast, 2-nitroindoles 342 can be synthesized by a lithiation-nitration protocol
on N-protected indoles 341 at very low temperature (Scheme 5.156) [246], and by
treatment ofN-protected-2-bromoindoles 343with silver nitrite (Scheme5.157) [247].
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5.5.1.4 Acylation
Indoles can be acylated at C3 by theVilsmeier–Haack reaction [248], by Friedel–Crafts
acylations [249] and also by reactions of indole Grignard reagents [250] or indole zinc
chloride salts with acid chlorides (Scheme 5.158) [251].

The Vilsmeier–Haack reaction is the classical method for the preparation of 3-
formylindole and other 3-acylindoles, starting from tertiary amides. This reaction
provides good yields for the acylation of indoles but is limited to formamide and
alkylcarboxamides (Scheme 5.159).

Friedel–Crafts acylation is a very convenient process for electron-withdrawing-
substituted indoles and for N-protected indoles. However, the reaction of N�H
indoles requires a fine tuning of the catalyst and the reaction conditions to avoid
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N-acylation and polymerization reactions [252]. The use of an excess of dialkylalu-
minium chlorides as Lewis acids represents a very general method for the Friedel–
Crafts acylation of indoles [253]. The excess dialkylaluminum reagent is required to
quench the HCl liberated in the acylation process, thereby avoiding side reactions,
such as dimerization and polymerization, thatmight be originated by the presence of
the acid (Scheme 5.160).

The use of N-acylbenzotriazoles 344 represents an alternative to acid chlorides,
eliminating the complications associated with the release of HCl [254]. This proce-
dure permits the acylation of both N-H and N-alkylindoles (Scheme 5.161).

5.5.1.5 Halogenation
The indole ring can be easily halogenated at C3 by employing bromine and iodine in
DMF (the presence of potassium hydroxide is required for the iodination reaction),
providing nearly quantitative yields of the corresponding 3-haloindoles [255],
while 3-chloroindoles are best prepared with N-chlorosuccinimide (NCS)
(Scheme 5.162) [256, 257]. Many other reagents have been described to promote
these transformations [258, 259].
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Halogens are best introduced at C2 by the metallation–halogenation sequence
discussed in Section 5.5.2.2.

5.5.2
Reactions with Bases

5.5.2.1 N-Metallation of Indoles
Indole is a weak acid (pKa¼ 16.7 and 20.9 in water [260] and DMSO [261], respec-
tively) and therefore undergoes deprotonation by strong bases to provide a reactive
anion.Most of the reactions involving substitution at nitrogen – alkylation, acylation,
and sulfonation – are carried out through the indolyl anion.

The usual methods for the N-alkylation of indole involve the use of alkali metal
hydroxides [262], alkali metal hydrides [263] or NaNH2 in polar aprotic solvents
(Scheme 5.163). Alternatives include the use of potassium hydroxide in acetone
under phase transfer catalysis conditions [264], caesium carbonate in either
DMPU [265] or in the presence of a crown ether [266].
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Both N-acylation and N-sulfonation of indoles are synthetically relevant transfor-
mations, not only for the interest inN-acyl andN-sulfonyl indoles themselves, but also
because the protection of the indole N�H in a synthetic sequence almost always
involvesanacylationorsulfonationstep[267].Theuseofacidchloridesandanhydrides
inthepresencebasesmakeupthemostcommonreactionconditions. Inparticular, the
Boc group has been introduced using di-tert-butyl dicarbonate, phenyl-tert-butyl
carbonate and BocN3 [268]. Scheme 5.164 depicts some representative reactions for
the N�H acylation of indole with different acylating agents [269–271].

Direct acylation of indoles with aromatic carboxylic acids can be achieved using
DCC as coupling agent (Scheme 5.165) [272].

5.5.2.2 C-Metallation of Indoles
N-Substituted indoles undergo direct lithiation at C2, and in certain cases at C3 upon
treatment with organolithium reagents [273]. In fact, lithiation followed by reaction
with an electrophile is the most common strategy to introduce substituents at C2.
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Both N-acyl and N-sulfonyl indoles can be selectively lithiated at C2 by treatment
with organolithium reagents. The presence of the coordinating group at N1 assists
the lithiation atC2 andgoverns the regioselectivity of the process. Recent applications
of this strategy are found in Gribble�s syntheses of 2-nitroindole 345 [274] and 2-
iodoindole 346 [275] from, respectively, N-Boc-indole and N-phenylsulfonylindole
(Scheme 5.166) and in the preparation of the important synthetic intermediates
2-indolylborates 347 (Scheme 5.167) [276].

Substitution at C2 onNH indoles can be achieved by employing Katritzkýs elegant
indole C2 lithiation protocol [277]. In this sequential process the dilithiated inter-
mediate 348 is formed, which provides the C2 substituted indole 349 after reaction
with an electrophile and aqueous workup (Scheme 5.168). A typical example of the
application of this methodology is Bergman�s synthesis of 2-bromoindole 350
(Scheme 5.169) [278].

The nature of the N-substituent can direct the position of the lithiation in N-alkyl
indoles.While indoles substitutedwith non-bulky alkyl groups are lithiated at C2, the
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presence of a bulky non-coordinating group drives the lithiation at C3. For instance,
N-methyl-2-stannylindole 352 is selectively synthesized from N-methylindole (351)
by deprotonation at C2 with BuLi, followed by reaction with tributylstannyl chloride
(Scheme 5.170).

In contrast, indole 353, bearing the very bulky triisopropylsilyl N-substituent, is
lithiated selectively at C3 upon treatment with t-BuLi (Scheme 5.171) [279].

The directing effect of the N-protecting group has been also applied to effect
regioselective ortho-metallation at the C7 position [280]. For this purpose, it is
necessary to protect the C2 position with a removable group, such as TMS. Then,
treatment ofN-CONEt2 protected indole 354with t-BuLi/THFat�78 �C followed by
quench with TMSCl gives rise to the indole silylated at C2 355. Treatment of 355with
s-BuLi/TMEDA/THFat�78 �C produces the regioselective metallation at C7, which
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provides the corresponding C7 functionalized indole 356 upon reaction with an
electrophile (Scheme 5.172). Interestingly, the whole process can be conducted in a
one pot fashion.

5.5.3
Transition Metal Catalyzed Reactions

The most reliable synthetic methods to create C�C and C�X bonds from C-sp2 are
currently transitionmetal catalyzed reactions. The well-developed Pd-catalyzedHeck
and cross-coupling reactions are doubtless the most prominent methods, and have
been applied successfully to the incorporation of new substituents in the indole ring.
Moreover, alternative methodologies that make use of different transition metals are
also noteworthy, and are discussed in this section.

5.5.3.1 General Considerations on Palladium-Catalyzed Cross-Coupling Reactions
Indolyl halides or triflates behave as regular aryl halides in Pd-catalyzed cross-
coupling reactions. Thus, 2- and 3-halo or triflate substituted indoles have been
employed to synthesize numerous indole derivatives. The process starts with the
oxidative addition of indolyl halide 357 to the Pd(0) catalyst to form indolyl-Pd(II)
complex 358. The nature of the coupling partner, alkene, alkyne, stannane, boronate,
organozinc, amine, determines the subsequent steps of the cross-coupling process.
In a prototypical cross-coupling reaction, transmetallation of the organometallic
partner followed by reductive elimination produces the cross-coupling product 360
and releases the Pd(0) catalyst (Scheme 5.173).

5.5.3.2 Reactions with Alkenes and Alkynes: Heck Reactions
The reaction of indolyl halides or pseudohalides with alkenes under standard Heck
conditions gives rise to vinylindoles [281]. For instance, N-protected-4-bromoindole
361 can be transformed into 4-alkenylsubstituted indoles 362 under standard Heck
conditions (Scheme 5.174) [282].

The higher reactivity of iodide than bromide towards oxidative addition to Pd,
allows for the sequential substitution of 3-iodo-4-bromoindole 363 through two
consecutive Heck reactions. In the first step substitution of the more reactive iodine
occurs to yield 364. A secondHeck reaction with substitution of the bromine leads to
365 (Scheme 5.175). This strategywas employed byHegedus in the synthesis of ergot
alkaloids [283].
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In a similar manner to other Pd-catalyzed cross-couplings, the reaction is general
regarding thepositionof the leavinghalogen.For instance, 3-substituted2-iodoindole
366 reacts with methyl acrylate to furnish 2-alkenylindole 367 (Scheme 5.176) [284].

The intramolecular Heck reaction is particularly appealing, as it leads to polycyclic
indole derivatives that might be difficult to synthesize through other strategies [285].
For instance,N-allylindoles 368 undergo cyclization to give 3H-pyrroloquinoline 369
under typical Heck reaction conditions (Scheme 5.177) [286], and carbolines 371 are
easily prepared from 3-iodoindoles 370 (Scheme 5.178) [287].

5.5.3.3 Sonogashira Reaction
Indolyl halides or triflates react under typical Sonogashira [288] conditions with
terminal alkynes to give rise to the corresponding alkynes (Scheme 5.179) [289]. The
alkynylation can be employed to prepare 2-alkynylindoles 372, 3-alkynylindoles 373,
and also to introduce the alkyne in the benzene ring [290] from the corresponding
indolyl halides or triflates.
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5.5.3.4 Cross-Coupling Reactions with Organometallic Reagents
Typical Pd-catalyzed cross-couplings consist of the reaction of an organic halide with
an organometallic reagent. The most popular methods involve the use of organotin
(Stille reaction), organoboron (Suzuki–Miyaura reaction) [291] and organozinc
(Negishi reaction) [292] compounds. Two different strategies are possible to conduct
a cross-coupling reaction involving an indole derivative: (i) couple an indolyl halide or
triflatewith anorganometallic reagent and (ii) react an indolylmetal derivativewith an
organic halide. Regardless of the strategy chosen, inmost of the cases, cross-coupling
reactions involving indolyl species can be performed efficiently under the typical
conditions developed for cross-couplings with benzenoid systems.

5.5.3.4.1 Suzuki–Miyaura Cross-Coupling The Pd-catalyzed reaction of a boronic
acid and an aryl or alkenyl halide or sulfonate is one of the most popular C�C bond-
forming reactions involving aromatic species, and has been extensively applied to the
functionalization of indoles on every position of the ring. Indolyl halides and triflates
have been employed in the coupling reaction. For instance, the reactions of 2-indolyl
triflates with aryl boronic acids afford the corresponding aryl substituted indoles in
high yields (Scheme 5.180) [293].

The Suzuki coupling has been also applied to the preparation of vinylindoles. One
example is the reaction of vinylboronate 378 with 3-iodoindole 377, which leads to
3-vinylindole 379 (Scheme 5.181) [294].
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Thiophen-3-trifluoroborates 381have been employed in a coupling reactionwith 7-
bromoindole 380, giving rise to the corresponding thiophene-substituted indole 382
(Scheme 5.182) [295].

Indoylboronic acids are also appropriate coupling partners in cross-coupling
reactions [296]. The sometimes difficult purification of indolylboronic acids recom-
mends its utilization as crude products. An example of this methodology is repre-
sented in the synthesis of 386 (Scheme 5.183), a precursor of a tyrosine kinase
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inhibitor. The indolylboronic acid 384 required is prepared by metallation of
indole 383, followed by reaction with triisopropylborate. The coupling reaction with
the corresponding bromide 385 then affords 386 [297]. Remarkably, the sequence can
be conducted on a multi-kilogram scale.

7-Arylsubstituted indoles can be synthesized from the corresponding boro-
nates 387, which can be prepared by the synthetic sequence discussed in
Scheme 5.167. Subsequent Suzuki reaction leads to the 7-aryl substituted indoles
388 (Scheme 5.184) [298].

5.5.3.4.2 Stille Cross-Coupling The Pd-catalyzed coupling of organostannanes with
halides or pseudohalides is generally known as the Stille reaction. This coupling
reaction has been widely employed in the modification of indoles. Both indolyl
triflates (Scheme 5.185) [299, 300] and halides have been employed in the coupling
reaction.

The Stille coupling has been employed in many syntheses of biologically active
indole alkaloids [301]. In the example represented in Scheme 5.186, 2-vinylindole 391
(an intermediate in the synthesis of the natural alkaloid tabersonine) was prepared
from 2-iodoindole 389 and vinylstannane 390 [302].

Interestingly, when the Stille cross coupling conditions are applied under a
CO atmosphere, the corresponding a,b-unsaturated ketones are isolated
(Scheme 5.187) [303].
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Indolylstannanes [304] have also been widely utilized for the functionalization of
indoles, mostly at C2 [305] and C3 [306]. Scheme 5.188 presents the synthesis of 2-
arylindoles by coupling ofN-protected-2-indolylstannane 393with aryl halides under
typical Stille conditions. A variation of this reaction has also been adapted to a solid-
phase synthesis [307].

5.5.3.5 C�N Bond-Forming Reactions
Application of the Buchwald–Hartwig arylation to N�H indoles allows for the
preparation of N-arylindoles from N�H indoles and aryl halides [308–310]. The
reaction is very general regarding the structure of both coupling partners, the indole
and the aryl halide. Aryl bromides, chlorides, and triflates can be employed suc-
cessfully upon selection of the proper combination of ligand and base. Scheme 5.189
gives an example of a coupling reaction between indole 394 and m-bromoacetophe-
none (395). The reaction proceeds in the presence of potentially sensitive functional
groups to give arylated indole 396 in quantitative yield. In a similar procedure,
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treatment with vinyl halides allows for the preparation of the corresponding N-
vinylindoles [311].

On the other hand, Buchwald–Hartwig amination can be applied to incorporate an
amino group into the indole structure. Thus, coupling of haloindoles with amines
provides the corresponding aminoindoles. The coupling reaction can even be
conducted with NH-containing indoles such as 397 to give amino substituted indole
398, provided that an excess of base is employed (Scheme 5.190) [312].

5.5.3.6 Transition Metal Catalyzed C�H Activation
Modification of the indole ring via substitution of a C�H bond by a C�C bond is a
very desirable reaction, as it does not require the previous presence of a reactive
functionalization such as C–halogen, C–triflate, or C–metal bond in the indole ring.
Nevertheless, this challenging transformation has been comparatively much less
studied than the cross-coupling reactions, and at the present suffers from some
limitations, such as lack of selectivity and generality.

Many examples exist of intramolecular Pd(II)-catalyzed oxidative cyclizations of
indoles with a proper pedant aryl or alkenyl group [313]. For instance, the oxidative
cyclization of bisindolylmaleimides 399 gives rise to indolo[2,3-a]pyrrolo[3,4-c]car-
bazoles 400 [314], a substructure that is present in a large number of natural products
(Scheme 5.191).

One approach for the direct substitution of the C�H bond is the reaction with
metal salts that usually starts with the electrophilic metallation of the indole
(Scheme 5.192).
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An interesting recent example is the Pd-catalyzed oxidative annulation of alkenyl
indoles 401 (Scheme 5.193), which gives rise to tricyclic derivatives 402 [315].

Themechanism proposed for this annulation includes (i) electrophilic palladation
of the indole to form indolyl palladium complex 403; (ii) intramolecular olefin
insertion to give palladated complex 404; and (iii) b-hydrogen elimination, which
gives rise to the annulated indole 402 and releases a Pd(0) species. To obtain a
catalytic reaction, reoxidation of the Pd(0) to Pd(II) is necessary. In this example, a
pyridine derivative (ethyl nicotinate) in an oxygen atmosphere is responsible for
reoxidation of the Pd catalyst (Scheme 5.194).

Some examples of the intermolecular oxidative coupling of indoles with olefins
and alkynes have been also described [316, 317]. The intermolecular oxidative Heck
reaction of indoles with alkenes allows for the selective alkenylation at C2 or C3,
depending on the solvent and reaction conditions chosen [318]. Thus, when the
reaction is carried out using a mixture of DMFand DMSO as solvent, and Cu(OAc)2
as oxidant, the expected C3 oxidative alkenylation is produced, giving rise to the C3-
alkenylindole 405 (Scheme 5.195).However, if the reaction is performedunder acidic
conditions (dioxane : AcOH), employing tert-butyl benzoyl peroxide as oxidant, the
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regioselectivity of the alkenylation is switched to the 2 position to give alkenylindole
406 as the major product.

An explanation of this switch in the regioselectivity can be found in the mechan-
isms proposed for each process as represented in Scheme 5.196. The reaction starts
with the electrophilic palladation at the electron-richer C3 position, to provide
cationic indole complex 407. At this point, aromatization by loss of a proton leads
to indolyl palladium complex 408 (left-hand cycle), which then follows the path of a
typical Heck reaction. The catalytic cycle is completed by oxidation of the Pd(0)
species liberated. When the reaction is carried out under acidic media, the depro-
tonation of complex 407 is disfavored (right-hand cycle). Instead, 1,2-Pd migration
takes place to give the new cationic complex 409, which then follows the reaction path
of a Heck reaction to produce alkenylation at C2.
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In a similar way, indoles add regioselectively to alkynoates 410 in the presence of
Pd(OAc)2 and acetic acid [319]. Indole itself gives rise to 3-alkenylindoles 411, while 3-
methylindole provides 2-alkenylindoles 412, also with good yields (Scheme 5.197).

The mechanism proposed for the reaction involves (i) electrophilic palladation of
the indole to form indolyl palladiumcomplex; (ii) complexation of the alkyne followed
by regioselective carbopalladation of the triple bond to provide vinyl palladium
complex; and (iii) protonolysis of the C�Pd bond by action of the AcOH, affording
alkenylated indole 411 and liberating the Pd(II) species (Scheme 5.198) .

Direct Pd-catalyzed C�H substitution has also been accomplished by reaction of
indolyl anions 413with organopalladiumcomplexes 414, generated in situ fromPd(0)
complexes and aryl halides (Scheme 5.199). Arylation of NH-indoles can be carried
out selectively either at C2 [320, 321] or C3 [322], depending on the reaction
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conditions (Scheme5.200). Thus, reactionwithMgOas base gives rise exclusively the
C2 arylated product 415, while the use of larger bases such as Mg(HMDS)2 provides
the C3 arylated indole 417 with very high regioselectivity.

A rationale for this reactivity trend has been found after detailed mechanistic
investigations (Scheme 5.201). Electrophilic palladation of the indolylmagnesium
salt with the arylpalladium complex 414 gives rise to the cationic indolinylarylpalla-
dium complex 418. Aromatization by deprotonation gives indolylaryl palladium
complex 419, and reductive elimination produces the C3 arylated indole 417. In
contrast, palladiummigration on complex 418 leads to the C2 palladated indole 420,
which will evolve through 2-indolylaryl palladium complex to furnish the C2 arylated
indole 415. The driving force for themigration step has been related to stabilization of
the carbon–palladium bond by the adjacent nitrogen atom on 420. However, bulky
ligands on the magnesium destabilize the C2 palladated indole 420 and, therefore,
the migration does not occur and so the arylation takes place at C3 (Scheme 5.201).

N
H

Pd(OAc)2+

N
H

PdOAc

-HOAc Ph CO2Et

N
H

PdOAc
Ph

CO2Et

N
H

Ph CO2Et

PdOAc AcOH

N
H

Ph CO2Et

H
+ Pd(OAc)2

411

Scheme 5.198

N
H

Pd(OAc)2, PPh3

Dioxane/DMF, 1:2

150 ºC

MgO
I

+
N
H

84%

N

MgOH

+ Ph-Pd-I(PPh3)2

413 414

415

Scheme 5.199

468j 5 Five-Membered Heterocycles: Indole and Related Systems



In contrast, when the steric interactions are minimized with small bases, such as
MgO, themigration step is favored and the arylation occurs at C2. In agreement with
this hypothesis, bulkier ligands on the Pd also drive the reaction to the C3 arylation
product.

Regioselective indole C2 arylation has also been conducted employing Rh(III)
complexes as catalysts. The coupling process is achieved in the presence of a catalyst
that is assembled in situ from a rhodium species, a phosphine ligand and CsOPiv as
base (Scheme 5.202) [323].

The proposed catalytic cycle involves (i) oxidative addition of the aryl halide, to form
Rh(III) complex 422, (ii) complexation of the indole to form complex 423, followed by
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pivalate promoted C�H bond metallation to give indolyl rhodium complex 424 and
(iii) reductive elimination to release the C2 arylated indole 421 (Scheme 5.203).

5.5.4
Radical Reactions

Intermolecular radical aromatic substitution on indole can be effected at C2 with
electrophilic carbon-centered radicals. For instance, indole reacts with radicals
generated from iodoacetates or bromomalonates 425 to give the alkylated indole
426 (Scheme 5.204) [324, 325]. The reactions proceed with high regioselectivity,
although a large excess of indole is required to avoid polysubstitution reactions.
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A more efficient procedure for the oxidative radical alkylation of indoles employs
a-acetyl or a-acetonyl radicals generated from the corresponding xantenes 427.
In this way, radical alkylation can be accomplished to prepare 2-indolyl acetate 428
inpreparativelyusefulyieldswithouttheneedofexcessindole(Scheme5.205)[326,327].

While the intermolecular reactions of indoles with radicals have found limited
application, there aremany examples of intramolecular radical additions to the indole
ring that have been employed as an entry into more complex heterocyclic struc-
tures [328–331]. For instance, spirocyclic dearomatized indole derivatives 430, 432,
and 434 are formed via 5-exo-trig cyclizations from aryl, vinyl and alkyl radical
precursors 429, 431, and 433, respectively (Scheme 5.206) [332].

In these examples the reaction proceeds by attack of the intermediate radical 435 to
the C2 position of the indole ring (Scheme 5.207). The additional stability of the
benzylic radical 436might account for the preference of the C2 attack instead of C3
attack.

Nevertheless, it has been observed that the nature of the pedant group may
influence the course of the cyclization, and, in some cases, the addition of the
radical at C3 is themain or unique reaction pathway [333, 334]. This is the case of the
tandem radical sequence that has been applied to the preparation of functionalized
indolenine 441 from amidoindole 437 (Scheme 5.208) [335]. Reaction of indole
amide 437 with the tributylstannyl radical produces the aryl radical 438 by bromine
atom abstraction. The aryl radical undergoes [1,5]-hydrogen atom abstraction, which
generates the amido radical 439. Intramolecular addition of the radical to the C3
position of the indole produces indolyl radical 440, which leads to the indolenine 441
after hydrogen atom abstraction of the tributylstannyl hydride. The same authors
have further extended the radical sequence to the preparation of tetracyclic
structures [336].
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On the other hand, indolyl radicals can be generated from the corresponding
haloindoles by treatment with tributyltin hydride in the presence of a radical initiator.
The indolyl radical can be trapped in an intermolecular [337] or in an intramolecular
sense by reactionwith a suitable radical acceptor. Scheme 5.209 shows the generation
of 2-indolyl radical 443 from a 2-bromoindole (442) and the subsequent intra-
molecular cyclization to provide the tricyclic indole 444 [338].

Indolyl radicals such as 446, generated from bromoindole 445, which cannot
undergo a direct intramolecular annulation, evolve through a [1,5]-hydrogen atom
abstraction reaction to generate transient radical 447. Then, intramolecular radical
addition to the indole ring leads to the tetracyclic radical 448, and finally to indoline
449 as a single diastereoisomer (Scheme 5.210) [339]. The reaction proceeds with
moderate yield, as a 42% yield of dehalogenated indole 450 is also recovered.

A 3-indolyl radical can be also generated by oxidation of the corresponding anion.
This strategy has been applied to devise an extremely potent coupling between
unprotected indoles and ketone enolates [340]. Thus, simultaneous deprotonation of
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indole and the ketone 451 gives indole anion 452 and ketone enolate 453. Oxidation
with a Cu(II) salt provides 3-indolyl radical 454 and ketone radical 455, which upon
radical coupling lead to substituted indole 456 (Scheme 5.211).

Importantly, the application of this methodology to ketones bearing stereogenic
centers leads to the corresponding coupling products as single diastereoisomers.
This strategy has been applied in the crucial step of a highly convergent total synthesis
of various indole alkaloids such as Fischer-indoles I and G and welwitindolinone
A [341]. Scheme 5.212 shows the coupling of ketone 457 with indole to give
enantiomerically pure substituted indole 458.

N
CN

N

Me

O Br

Bu3SnH, AIBN

tBu-benzene

170 ºC
N

CN

Me

N

PhO

Bu3Sn·

N
CN

N

Me

O

R

[1,5]-H abstraction

N
CN

N

Me

O

R

H

N
CN

Me

N

R

PhO

Bu3SnH

53% four diastereoisomers

441437

440

439

438

Scheme 5.208

N

Br
Bu3SnH

Toluene
reflux

N N

79%

442 443 444

Scheme 5.209

5.5 Reactivity of Indole j473



N

Br Bu3SnH, AIBN

Toluene, reflux, 36 h

O
N

N

N

O

N

O
N

H
H

N

O
N

H
H

N

N

O

Bu3SnH
Bu3Sn·

H N
H

O
N

+

42%54%

445 449 450

448447446

Scheme 5.210

N
H

O

R1

R2

+X

2 eq.

LiHMDS (3 eq)

Cu(II)-2-ethylhexanoate

THF, - 78 ºC N
H

X

O

R1

R2

LiHMDS

N
X

O

R1

R2

+
Cu(II) oxidation

N
X

O

R1

R2

+

radical coupling

451

452 453 455454

456

Scheme 5.211

O

Me

Cl
Me

H

N
H

LiHMDS
Cu(II)2-ethylhexanoate

THF, -78 ºC, 30 min

55%
N
H

O

Me

Cl

Me

H

N
H

NC

Me
Cl

H

Me
Me

(-)-Fischer-indole G458457

Scheme 5.212

474j 5 Five-Membered Heterocycles: Indole and Related Systems



5.5.5
Oxidation Reactions

Indoles are highly sensitive to oxidation and, thus, undergo aerial autooxidation to
produce 3-hydroperoxo-3H-indoles, which are rarely isolated but decompose to
produce complex mixtures of degradation and polymerization derivatives.

The transformation of N-tosylindole into indoxyl 459 has been described with
oxodiperoxomolybdenum(IV) [342, 343], andby catalytic oxidationwith dichlororuthe-
nium(IV)meso-tetrakis(2,6-dichlorophenyl)porphyrin complex [RuIV(2,6-Cl2tpp)Cl2].
The latter process requires the presence of 2,6-dichloropyridine N-oxide as stoichio-
metric oxidant (Scheme 5.213) [344].

Indoles can be converted into oxindoles through several different oxidative
strategies. A general reaction is the treatment of indoles with conc. HCl in dimethyl
sulfoxide,whichprovides cleanly the corresponding oxindoles 460 [345]. The reaction
is likely to proceed throughC3 protonation of indole to give indolenium intermediate
461, followed by electrophilic addition of the DMSO to give intermediate 462
followed by elimination of dimethylsulfane (Scheme 5.214).
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Oxidation of indoles to oxindoles 460 can also be produced by treatment of the
indole with a halogenating agent, followed by hydrolysis. Thus, the intermediate
indolenium cation 463 formed gives 2-hydroxy-3-halodihydroindole 464,
which suffers dehydrohalogenation to give oxindole 460 (Scheme 5.215) [346]. A
closely related procedure allows for the substitution of indoles at C2. This oxidative-
coupling procedure involves reaction of the indole with a suitable electrophile [Xþ ].
Addition of a nucleophile [Nu�] to the transient indolenium cation 463 formed
gives 465, and aromatization by elimination of HX furnishes the functionalized
indole 466.

Halogenating agents, such as tBuOCl, NCS or NBS are the electrophiles of choice.
The oxidative-coupling strategy has been performed with various carbon nucleo-
philes, such as allyl boranes and stannanes, enol ethers, enamines, acetylide and even
indole. Scheme 5.216 presents the synthesis of C2 substituted tryptophan 469 by
nucleophilic addition of a silylenol ether (467) to the indolenium cation generated
from protected tryptophan 468 [347].

Heteronucleophiles such as alcohols [348], anilines, phenols and thiophenols [349]
are also appropriate reagents for the oxidative coupling, providing the corresponding
C2 functionalized indoles. For instance, 2-aminoindole 471 can be prepared from
indole 470 by employing this sequence (Scheme 5.217).
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Moreover, the versatility and functional group compatibility of this oxidative-
coupling procedure has been shown in the coupling of a tryptophan derived peptide
472with the imidazole ring of the histidine-containing peptide 473, which represents
the key step in the synthesis of the right-hand ring of the natural octapeptide
celogentin (474) (Scheme 5.218) [350].

A very valuable synthetic transformation is the oxidation of indoles with dimethyl-
dioxirane, which produces the corresponding epoxides 475 [351]. Although the
epoxides are unstable inmost cases, their generation in the presence of a nucleophile
gives rise to 3-hydroxyindoline derivatives 476 (Scheme 5.219).

The application of this strategy to protected tryptophan 477 led to pyrrolo[2,3-b]
indole 478, an early key intermediate in Danishefsky�s total synthesis of himastatin
(Scheme 5.220) [352].

In contrast, aqueousworkup of the preformed epoxide leads to 3-hydroxyoxindoles
479 (Scheme 5.221) [353].
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5.5.6
Reduction of the Heterocyclic Ring

Indoles are reduced to indolines by several methods, including catalytic hydrogena-
tion, dissolvingmetals andmetal hydrides. Some detailed reviews on this subject are
available [354].

5.5.6.1 Catalytic Hydrogenation
Catalytic hydrogenation of the heterocyclic ring has been achieved employing various
heterogeneous catalysts, but usually requires harsh conditions and sometimes is not
very selective. In the presence of strong acids, relatively milder conditions can be
used, as the reaction proceeds through the C3 protonated indole [355]. For instance,
N-Boc-2,3-disubstituted indoles 480 are hydrogenated to the corresponding cis-2,3-
disubstituted indolines 481 over a rhodium-alumina catalyst in a EtOH/AcOH
mixture (Scheme 5.222) [356].

The catalytic asymmetric hydrogenation ofN-acylindoles 482 has been performed
employing as catalyst a rhodium complex bearing the chiral diphosphine ligand 484.
In thisway, optically active substituted indolines 483 canbe obtained inhigh yield and
enantiomeric excesses (Scheme 5.223) [357].
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5.5.6.2 Metal-Promoted Reductions
The reduction of indoles with dissolving metals may give partial reduction of both
the benzene and the heterocyclic ring, depending on the particular substrate and
reaction conditions applied. In certain examples, high chemo- and stereoselectivity
can be achieved. For instance, N-phenylindoles 485 are converted into the corre-
sponding indolines 486 upon treatment with Na/NH3 in THF (Scheme 5.224) [358].

On the other hand, 2-acylindoles can be reduced to the indolines through several
protocols involving metal–acid combinations, such as Mg/MeOH [359] and Sn/
HCl [360].

5.5.6.3 Metal Hydride Complexes
A very general method for the reduction of indoles to indolines 488 consists of
treatment with a hydride reagent under acidic conditions (Scheme 5.225). The

N

Boc

CO2Me

Me
MeO

MeO N

Boc

CO2Me

Me
MeO

MeO

84%

H2, 200 psi

EtOH, AcOH

Rh-Al2O3

480 481

Scheme 5.222

N

Ac

CO2Me

N

Ac

CO2Me

84%

H2, 5 MPa

iPr-OH, Cs2CO3

[Rh(nbd)2]SbF6

Yield: 95%
ee: 95%

484

PPh2Me

Ph2P
Me

Fe Fe
Chiral
ligand

482 483

484

Scheme 5.223

N

Ph

83%

Na/NH3/THF
HN

N

Ph

HN

H

H

486485

Scheme 5.224

5.5 Reactivity of Indole j479



reaction proceeds via initial protonation at C3 to generate indolenium ion 487which
is subsequently reduced by the hydride donor [361].

Hence, the best results have been obtained with hydride sources that are stable to
acid, such as NaBH3CN in AcOH [362], BH3/THF in TFA [363] and triethylsilane in
TFA [364]. Representative examples are given in Scheme 5.226.

5.5.7
Pericyclic Reactions Involving the Heterocyclic Ring

5.5.7.1 Cycloaddition Reactions
The C2–C3 double bond of indole can participate in different types of cycloaddition
processes as a 2p or 4p component. As a 2p component it can behave as a dienophile
in [4 þ 2] cycloadditions, and as dipolarophile in dipolar [3 þ 2] cycloadditions. On
the other hand, 3-vinylindoles 489 and 2-vinylindoles 490 take part as dienes in
[4 þ 2] cycloadditions. Moreover, orthoquinodimethane indole derivatives 491 are
highly reactive dienes in Diels–Alder reactions, and methylene indolines 492
and oxindoles can react as 2p components in [4 þ 2] and dipolar cycloadditions
(Scheme 5.227).

N
H

H+

N
H

H
H

[H-]

N
H

487 488

Scheme 5.225

N
H

79%

NaBH3CN, AcOH

N
H

N

BH3-THF/TFA

NH 0 ºC, 2 min

86%
N NH

N
H

N

NPh

MeO

MeO

Et3SiH/TFA

80%
N
H

N

NPh

MeO

MeO

Scheme 5.226

480j 5 Five-Membered Heterocycles: Indole and Related Systems



Owing to the high electron density of the C2�C3 double bond, indole derivatives
have beenmostly employed as electron-rich dienophiles in inverse-electron-demand
Diels–Alder reactions [365]. In particular, the use of aromatic heterodienes such as
1,2,4,5-tetrazines, 1,2,4-triazines and pyridazines represents a versatile route into
more complex polycyclic structures [366]. Scheme 5.228 shows the synthesis of a
3,9b-dihydro-5H-pyridazino[4,5-b]indole 494by cycloaddition of 3-methylindolewith
the 1,2,4,5-tetrazine 493. The final compound 494 is obtained after loss of N2 and
hydrogen transposition of the initially formed cycloadduct 495 [367].
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The application of [4 þ 2] cycloadditionmethodology in an intramolecular version
leads to polycyclic skeletons in very short synthetic sequences [368], and has been
employed in several approaches to complex indole alkaloids. For instance, transan-
nular cycloaddition of the pyridazinoindolophane 496 gives polycyclic adduct 497,
which provides the final dihydrocarbazole 498 after loss of N2 via a retro-Diels–Alder
reaction [369]. This particular sequence is the key step in a total synthesis of
strychnine (Scheme 5.229) [370].

Another example of an intramolecular inverse-electron-demand Diels–Alder
reaction is the cycloaddition of 499, a molecule that features a substituted indole
and an aza-o-xylylene, a very reactive heterodiene moiety [371]. Cycloaddition gives
rise to 500, which features the heptacyclic ring system present in the natural alkaloid
communesin B (Scheme 5.230).
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Indoles substitutedwith electron-withdrawing groups in positions 1 and 3, such as
501, can react with electron-rich dienes like Danishefsky�s diene 502, in normal
electron-demand cycloadditions [372]. Very high temperatures are required unless
activation by Lewis acids or high pressure are employed (Scheme 5.231) [373, 374].

The intramolecular [4 þ 2] cycloaddition of 504, which features an amidofuran
moiety tethered onto an indole, can be regarded also as an example of a normal
electron-demand cycloaddition [375]. In this process, the cycloadduct 505 undergoes
spontaneous rearrangement onto tetracycle 506 [376]. The reactions proceed at very
high temperatures and only substrates substituted with an electron-withdrawing
group at the indole nitrogen undergo the cycloaddition (Scheme 5.232).

The electron-rich C2�C3 bond of indole can also participate as dipolarophile in
1,3-dipolar cycloaddition reactions. Nitrones [377], azomethine ylides [378],
azides [379] and carbonyl ylides are among the dipoles successfully employed, in
most cases in an intramolecular fashion. In the example presented below, the
carbonyl ylide, generated by cyclization of a rhodium carbenoid generated from
diazoimide 507, reacts with the tethered indole giving rise to 508, which presents the
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pentacyclic skeleton of Aspidosperma alkaloids (Scheme 5.233) [380]. The carbonyl
ylide–indole cycloaddition can be also conducted in an intermolecular fashion [381].

The power of intramolecular cycloadditions across the C2�C3 double bond has
been shown in a remarkable application of cycloaddition cascades employed byBoger
et al. in the total synthesis of (–)-vindoline (Scheme 5.234) [382]. The reaction is
initiated by the [4 þ 2] cycloaddition of the tethered enol ether with the 1,3,4-
oxadiazole on 509, to give a cycloadduct. Loss of N2 by a retro-dipolar cycloaddition
then generates the intermediate carbonyl ylide 510. Intramolecular [1,3] dipolar
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cycloaddition across the indole C2–C3 double bond provides the polycycle 511 with
total control of the stereochemistry on the six new stereogenic centers generated
along the cascade process.

Among the very few intermolecular 1,3-dipolar cycloadditions of indoles known,
noteworthy is the reaction of 2- and 3-nitroindoles with the mesoionic m€unchnones
512 [383]. The reaction gives rise to pyrrolo[3,4-b]indoles 514 in a highly regioselective
manner, and is thought to proceed through a 1,3-dipolar cycloaddition to form the
unstable cycloadduct 513, which gives thefinal compounds after loss of CO2 andNO2

(Scheme 5.235).

Many examples have been described of [4 þ 2] cycloadditions of 2- and 3-
vinylindoles as 4p-electron components. Vinylindoles can be seen as electron-rich
dienes, and therefore will react preferentially with electron-poor dienophiles in
normal electron-demand cycloadditions. Thus, intermolecular reactions involve
typical dienophiles such as methyl acetylenedicarboxylate [384], N-phenylmalei-
mide [385], and benzoquinones [386]. When asymmetric dienophiles are employed,
the regiochemistry can be predicted by employing frontier molecular orbital theory
principles. For instance, the regiochemistry of the reactions of 3-vinylindole 515with
ethyl acrylate [387], and the cycloaddition of 2-vinylindole 516withmethyl propiolate
can be both explained assuming the directing interaction of the HOMO of the
vinylindole with the LUMO of the dienophile (Scheme 5.236) [388, 389].

The intramolecular version of the [4 þ 2] cycloaddition leads to complex structures
in a convergentmanner. In a classical example, the 2-vinylindole 518 generated in situ
from indoline 517 undergoes cycloaddition with the enaminic double bond to give
519, a very advanced intermediate in the total synthesis of pseudotabersonine
(Scheme 5.237) [390, 391].

Intramolecular Diels–Alder reactions of 3-vinylindoles usually involve a
dienophile tethered through the nitrogen atom. For instance, the intramolecular
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cycloaddition of the nitrovinylindole with a terminal alkyne 520 provides the
tetracyclic structure 521 after loss of HNO2 (Scheme 5.238) [392].

The oxime-substituted indole 522 behaves as an 1-aza-1,3-butadiene in an intra-
molecular hetero-Diels–Alder reaction with a tethered alkyne, to give tetracycle 523,
which features the skeleton of Canthine alkaloids (Scheme 5.239) [393].
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Indole-2,3-quinodimethanes are highly reactive dienes in [4 þ 2] cycloadditions
and represent a very valuable entry into the carbazole ring structure [394]. They can be
generated in situ by fluoride or iodide ion induced 1,4-elimination of silylated indolyl
ammonium salts [395], by double elimination on N-protected-2,3-bis(dibromo-
methyl)indoles [396], by thermal fragmentation of 2-substituted 3-aminomethylin-
doles [397] and by [1,5]-H shift on 3-cyanomethyl-2-vinylindoles [398]. Moreover, the
anionic indole-2,3-dienolate can be formed by deprotonation of 1,2-dimethylindole-
3-carboxaldehyde [399].

For instance, disubstituted indole-o-quinodimethane 525 is generated by thermal
decomposition of gramine 524 in the presence of the dienophile; it then reacts to give
the tetracyclic adduct 526 in very high yield (Scheme 5.240).

Alternatively, reactive indole-2,3-quinodimethane intermediates 528 can be gen-
erated from o-allenylanilines 527, and trapped with dienophiles to obtain directly the
corresponding carbazole derivatives 529 in moderate yields (Scheme 5.241) [400].
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5.5.7.2 Electrocyclizations
The C2–C3 double bond of indole can participate in electrocyclic reactions. Although
the 6p-electron electrocyclization of 2,3-divinylindoles is known, the participation of
allene intermediates ismore efficient. Thus, a versatile route to carbazoles is based on
an allene-mediated electrocyclic reaction of a 6p-electron system involving the indole
2,3-bond [401]. This strategy has been applied in the preparation of numerous
alkaloids containing the carbazole moiety. Scheme 5.242 depicts the preparation of
oxygenated carbazole 532 from propargyl ether containing indole 530. Treatment
with KOtBu produces the acetylene–allene isomerization to give intermediate 531,
which suffers electrocyclization leading to the carbazole.

5.5.7.3 Sigmatropic Rearrangements
The indole C2–C3 bond can participate in [3,3] sigmatropic rearrangements, and this
strategy has been employed in many synthetic efforts to introduce additional
substitution at C2 or C3 [402–404].

TheClaisen rearrangement of 2-allyloxiindoles leads to oxindoleswith creation of a
quaternary center. For example, allyloxyindole 534, generated in situ by olefination of
2-allyloxiindoxyl 533, suffers the [3,3]-rearrangement to provide oxindole 535
(Scheme 5.243) [405]. The required 2-allyloxiindoles can be also generated by
oxidative coupling of indoles with allyl alcohols (Section 5.5.5) [406].

Another type of [3,3]-rearrangement with functionalization at C3 is found in the
conversion of 1-vinylaminoindole 536 into tricyclic compound 538 under thermo-
lysis conditions [407]. The formation of 538 can be explained by [3,3]-rearrangement
to form imine 537, which generates the pyrrolo[2,3-b]indole by intramolecular
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cyclization (Scheme 5.244). On the other hand, the incorporation of a substituent at
C2 by a Claisen rearrangement has been also described [408].

5.5.8
Photochemical Reactions

Synthetic applications of indole photochemical reactions are very limited, and
therefore this technique has been scarcely employed. Ultraviolet light irradiation
promotes the [2 þ 2] cycloaddition of N-protected indoles with alkenes and
alkynes [409, 410]. For instance, N-acylindoles 539 undergo [2 þ 2] photocycloaddi-
tion with monosubstituted alkenes to form the cyclobutane ring regioselectively
regardless of the nature of the substituent on the alkene [411]. The reaction is
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postulated to proceed through the biradical intermediate 540, which is formed by
bonding the 2-position of the indole with the less substituted position of the alkene
(Scheme 5.245).

Several examples have been reported of the intramolecular version of the [2 þ 2]
photocycloaddition [412]. Interestingly, the intramolecular reaction with the double
bond tethered through theN atom leads to the opposite regiochemistry in the [2 þ 2]
cycloadduct [413].

The [4 þ 2] cycloaddition reaction of indoles with electron-rich dienes, which does
not proceed thermally, can be promoted photochemically by electron-transfer catal-
ysis. Nevertheless, at present, these procedures are far from being synthetically
practical [414].

Another synthetically useful photochemical transformation is the photocyclization
of indole-containing stilbenes 541 and related systems to give polycycles 543
featuring the carbazole moiety. The reaction occurs through a 6p-electron conrota-
tory electrocyclization to give 542, followed by oxidation to furnish directly the
aromatic system. Thus, the photocyclization is usually carried out in the presence of
an oxidant, such as iodine or Pd/C (Scheme 5.246) [415].

The main application of this methodology is in the preparation of [2,3-a]pyrrolo
[3,4-c]carbazoles, a substructure that is present in several naturally occurring
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alkaloids with potent biological activities [416], such as rebeccamycin [417] and
staurosporin [418]. In a recent example, naphtho[2,3-a]carbazole 545 is obtained by
photooxidation of 2-naphthylindolyl maleimide 544 in nearly quantitative yield
(Scheme 5.247) [419, 420].

5.5.9
Reactions with Carbenes and Carbenoids

The reaction of indole with carbenes or carbenoids does not lead to cyclopropanation
but, instead, insertion in the C3–H double bond occurs, to give the corresponding
substitution product [421]. In the example shown in Scheme 5.248, the rhodium
carbenoid generated from the cyclic diazo compound 546 reacts with indole to give
the C3-substituted indole 547 [422]. This chemistry has been applied in the pre-
paration of natural indolocarbazole alkaloids.

5.6
Chemistry of Indole Derivatives

5.6.1
Alkylindoles

Deprotonation of the alkyl chain of indoles is usually difficult. Nevertheless, NH-2-
alkylindoles 548 can be lithiated at the a-position through a one pot sequence that
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involves formation of the lithium carbonate 549, by NHdeprotonation with BuLi and
quench with CO2, followed by treatment with t-BuLi to obtain dianion 550. Subse-
quent reaction with an electrophile yields the 2-(substituted a1kyl)indole 551 after
thermally induced loss of CO2 (Scheme 5.249) [423].

Alternatively, NH-2,3-dialkylindoles 552 can be directly deprotonated by treatment
with an excess of base that consists of a combination of BuLi and KOt-Bu. Treatment
with an electrophile provides the 2-substituted indole 553, indicating that the
lithiation is produced exclusively at the C2 side-chain (Scheme 5.250).

Bromination of the side-chain ofN-protected indoles such as 554 canbe carried out
by treatment with NBS in the presence of a radical initiator. Interestingly, while the
reaction under radical conditions provides the indole brominated on the side-chain
555, the same reaction in the absence of the radical initiator gives rise to the C2-
brominated indole 556 (Scheme 5.251) [424].
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Among functionalized alkylindoles, the chemistry of gramines 557 is noteworthy.
The elimination of the dimethylamino group can be promoted either by quaterniza-
tion or by treatmentwith bases, generating the highly reactive electrophile 558, which
undergoes the addition of a nucleophile. The overall reaction is the substitution of the
dimethylamino group by the nucleophile (Scheme 5.252). This strategy has been
employed for the introduction of different types of carbon [425], nitrogen [426] and
sulfur nucleophiles [427].

Scheme 5.253 presents the use of gramine 557 as electrophile in a typical
acetylacetate alkylation, leading to substituted indole 559 [428].

This chemistry has been applied in an original method for the preparation of
vinylindoles, in a substitution/Wittig olefination tandem sequence. Thus, treatment
of gramine with an aromatic aldehyde in the presence of an excess of PBu3,
affords directly the vinylindole 561, through the in situ generated ylide 560
(Scheme 5.254) [429].
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5.6.2
Oxiderivatives

Oxindole and indoxyl are the stable tautomeric forms of 2-hydroxy- and 3-hydro-
xyindole respectively (Figure 5.8). The aromatic 2-hydroxyindole is unstable and
undetectable. In contrast, 3-hydroxyindole contributes in the tautomeric equilibri-
um, and in some 2-substituted-indoxyls is the thermodynamically controlled
product.
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5.6.2.1 Oxindole
The substructure of oxindole is present in numerous naturally occurring alkaloids
and pharmaceutically active compounds. Substituted oxindoles and, in particular,
spirocyclic oxindoles featuring a quaternary center at C3 are attractive targets in
organic synthesis due to their usefulness as drug candidates and as intermediates in
alkaloid synthesis. Figure 5.9 shows somenatural oxindole-containing alkaloids such
as the well-known hexacyclic cage-like alkaloid gelsemine [430] and the highly potent
cytotoxic agent spyrotryprostatin B [431].

Numerous methodologies for the preparation of oxindoles are available, and
detailed coverage would largely exceed the aim of this chapter. Oxindoles can be
prepared from indole or indole derivatives, by derivatization of isatin (Figure 5.8), and
by cyclization processes.

5.6.2.1.1 Synthesis of Oxindoles from Indoles Indoles can be transformed into
oxindoles under the oxidation protocols discussed in Section 5.5.5. Additionally, N-
Boc-indoles can be cleanly converted into N-Boc-oxindoles 562 by a two-step
sequence that involves formation of a 2-indolylborate [432] and oxidation with oxone
(Scheme 5.255) [433]. Moreover, as discussed in Section 5.5.7.3, oxindoles can be
prepared by Claisen rearrangement of 2-allyloxiindoles.

5.6.2.1.2 Synthesis of Oxindoles from Isatins Isatin (Figure 5.8) features two
carbonyl groups, a ketone and an amide carbonyl. The higher reactivity of the C3
ketone carbonyl can be exploited to introduce functionalization and prepare 3-
substituted oxindoles. Thus, reductions [434], aldol reactions [435], additions of
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nucleophiles [436] andWittig olefinations [437] lead to the corresponding substituted
oxindoles. Notably, the rhodium-catalyzed asymmetric addition of arylboronic acids
to isatin 563 gives rise to enantiomerically enriched 3-substituted-3-hydroxyoxin-
doles 564 (Scheme 5.256) [438].

5.6.2.1.3 Synthesis of Oxindoles by Cyclization Reactions Cyclization strategies are
usually reminiscent of themethods employed for the synthesis of indoles, such as the
Fischer synthesis [439], cyclization of o-aminophenylacetic acid derivatives [440],
intramolecular Friedel–Crafts alkylations [441], radical cyclizations [442], intramo-
lecular Heck reactions [443], intramolecular Buchwald–Hartwig amidations [444]
and intramolecular a-arylation of amide enolates [445]. Extensive coverage of the
methods of synthesis of oxindoles is beyond the scope of this chapter, and the reader
is referred to the original papers. Nevertheless, some relevant modern alternatives to
the general approaches depicted in Figure 5.10 is briefly presented.

Cyclization of o-aminophenylacetic acid derivatives is one common approach to
the synthesis of oxindoles. Several different strategies can be applied to prepare the
intermediate amino acid [446]. The [3,3]-sigmatropic rearrangement of the enolate
568, generated from N,O-diacylated phenyl hydroxylamine 567, is the key step in a
three-step synthesis of oxindoles from N-acylhydroxylamines 565 and carboxylic
acids 566 [447]. The N-protected amino acid 569 generated in the rearrangement is
condensed to give the spirocyclic oxindole 570 (Scheme 5.257).

Samarium iodide reductive coupling of isocyanates with a tethered
a,b-unsaturated ketone (571) gives rise to oxindoles 572 (Scheme 5.258) [448]. In
this original approach, the oxindole is built by formation of the C2�C3 bond, and has
been employed in the preparation of advanced intermediates towards the synthesis of
welwitindolinone alkaloids.

Intramolecular Friedel–Crafts alkylation of a-chloroacetanilides is one of themost
classical methods for the synthesis of oxindoles. A variant of this reaction has been
recently disclosed by Buchwald, avoiding the harsh reaction conditions required in
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the FC alkylation. Thus, treatment of a-chloroacetanilides 573 with a Pd(0)-based
catalytic system leads to the oxindoles 574 in excellent yields, undermilder conditions
and with high functional group tolerance (Scheme 5.259) [449]. Interestingly, the
overall process results in a Pd-catalyzed aromatic C�H activation. Nevertheless, at
present there is no unambiguous mechanistic proposal.

5.6.2.1.4 Oxindole Reactivity The chemistry of oxindole resembles a typical five-
membered ring lactam.Deprotonation at the b-carbon occurs readily, as the resulting
anion is stabilized by the aromatic character of the oxindole enolate. Thus, the
oxindole anion can react with electrophiles in alkylation, acylation and condensation
reactions.

On the other hand, oxindoles can be transformed into the corresponding indolyl-
triflates 575 (Scheme 5.260) [450], which can be further employed inmetal-catalyzed
cross-coupling reactions (Section 5.5.3.6).

5.6.2.2 N-Hydroxyindoles
The structure of N-hydroxyindole is also present in a considerable number of
biologically molecules. Moreover, several N-hydroxylated analogues of biologically
inactive indoles have shown biological activity [451].

The most common approach to the preparation of N-hydroxyindoles is the
reductive cyclization of o-nitrobenzylketones 576 or aldehydes in the presence of
a metal reducing agent [452]. A fairly general and chemoselective protocol is the
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reaction with the Pb/TEAF system (TEAF: triethylammonium formate), which
provides N-hydroxyindoles 577 in very high yields (Scheme 5.261) [453].

In a closely related reaction, structurally diverse substitutedN-hydroxyindoles 580
can be prepared in a tandem process from nitroaromatic a,b-unsaturated keto-
esters 578 [454]. The initially formed nitrone 579 is trapped by a hetero- or
carbonucleophile to provide substituted N-hydroxyindoles 580 (Scheme 5.262).

For instance, the reaction in the presence of silylenol ethers gives rise to the
corresponding C-alkylated derivatives 581 (Scheme 5.263).
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5.6.3
Aminoindoles

Although most amino-substituted heterocycles exist mainly in the amino tautomer,
2-aminoindole exists predominantly as the 3H-tautomer, which is stabilized by the
amidine resonance form (Scheme 5.264).

Regarding the synthesis, the most reliable modernmethod to introduce an amino
group in the heterocyclic indole ring is Pd- or Cu-catalyzed amination
(Section 5.5.3.5).

N-Amination of indole can be accomplished with different �NH2
þ � type of

reagents such as monochloramine (NH2Cl) [455] or hydroxylamine o-sulfonic
acid [456] under basic media (Scheme 5.265).

On the other hand, N-aminoindoles 583 can be prepared by the Pd-catalyzed
intramolecular cyclization of o-chloroarylacetaldehyde hydrazones 582
(Scheme 5.266) [457].

5.6.4
Indole Carboxylic Acids

Decarboxylation of indole-3-carboxylic acid, and also indoyl-2-acetic acid, takes place
under reflux of water (Scheme 5.267). The reaction proceeds through the protonated
3H-indolium cation 584 [458].
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Decarboxylation of indole-2-carboxylic acid requires much harsher conditions,
such as heating in the presence of either mineral acids or copper powder [459]. The
latter is a valuable synthetic transformation that has been employed to prepare 2-
unsubstituted indoles 586 from the more readily available 2-indole carboxylates 585.
Scheme 5.268 gives an example of the application of this sequence [460, 461].

5.7
Addendum

During the production of this book, and since the initial elaboration of this chapter,
remarkable advances have occurred in the field of indole chemistry, which indicate
the high interest in this particular type of heterocyclic structure. This addendum is
not intended to be a comprehensive revision of themost recent literature, and collects
only some important advances that have not been mentioned above. First of all,
several reviews covering synthesis and different aspects of indole reactivity have
appeared recently [462].

5.7.1
Ring Synthesis

5.7.1.1 Fischer Indole Synthesis
The direct synthesis of N-Cbz indoles from the corresponding N-Aryl-N-Cbz hydra-
zide has been disclosed [463].
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An improved methodology for the sequence hydrohydrazination of alkynes/
Fischer indolization has been described employing inexpensive and environmentally
friendly Zn salts as catalysts [464].

5.7.1.1.1 Cyclizations by Formation of the N�C2 Bond The synthesis of indoles by
cyclization of nitrenes, generated from aryl azides, has been carried out employing
rhodium catalysts [465].

The aryl amination/hydroamination sequence on o-chloroalkynyl benzenes has
been implemented for the preparation of indoles with sterically demanding N-
substituents [466]. Similar routes have been employed for the synthesis of 2-
aminoindoles [467] and 4-alkoxyindoles [468]. A multicomponent domino process
for the preparation of 2-aminomethyl indoles, involving the cyclization of an o-
alkynylaniline, has been reported [469].

A new approach for the synthesis of indoles is the cycloisomerization of 2-
propargylanilines (591). This reaction has been effected employing Pt-based and
Brønsted acid catalysts, and leads to functionalized indole skeletons 592
(Scheme 5.269). The mechanism proposed for the acid-catalyzed reaction involves
a 5-exo-dig cyclization followed by an aza-Cope rearrangement [470].

A 5-exo-dig cyclization is also the first step for the cycloisomerization of o-alkynyl-
N,N-dialkylanilines 593 that leads to annulated indoles 594 (Scheme 5.270) [471].
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The reaction involves activation of the alkyne by the action of the metal catalyst,
followed by 5-exo-dig cyclization to produce a metal-containing ammonium ylide
(595). Then, a [1,2]-Stevens rearrangement, followed by a [1,2]-alkyl migration,
renders the fused indole structure (Scheme 5.271).

Indoles have been synthesized from o-iodobenzoic acids and alkynes in a sequen-
tial process that involves a Curtius rearrangement followed by a Pd-catalyzed Larock-
type indolization [472]. Quite similarly, o-alkynylamides have been employed to
synthesize indoles through a Hoffmann-rearrangement/alkyne hydroamination
sequence [473].

The Pd-catalyzed synthesis of indoles from o-amino-gem-dihalostyrenes has been
studied in detail, and represents a very powerful methodology for the synthesis of
substituted indoles [474].

A new approach to tryptamines from readily available N-Boc anilines 596 and N-
Boc-3-pyrrolidinone 597 has been developed (Scheme 5.272). The process, which
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consists of various steps, as represented in the scheme, allows for the synthesis of a
large variety of tryptamines 598 substituted in the benzene ring [475].

5.7.1.1.2 Cyclizations by Formation of the C2�C3 Bond The synthesis of cyclic-
ketone fused indoles has been achieved by a Pt-catalyzed cycloisomerization ofN-(2-
alkynylphenyl)lactams [476].

A structural variety of 2-substituted indoles 601 can be prepared from o-amino-2-
chloroacetophenones 599 and Grignard reagents [477]. The reaction involves a [1,2]-
migration of the R group from the intermediate magnesium alcoholate 600
(Scheme 5.273).

N-fused indoles have been synthesized through a catalytic carbenoid C–H inser-
tion approach. In this novel reaction, a niobium carbenoid (603) is generated from a
CF3 group of the o-trifluoromethylaniline derivative 602 (Scheme 5.274). Then, an
intramolecular C–H insertion leads to a mixture of indole 605 and indoline 604.
Subsequent oxidation leads to the N-fused indoles 605 with good yields.

5.7.1.1.3 Cyclizations by Formation of the C3�C4 Bond A very versatile new
methodology for indole ring synthesis is the Pd-catalyzed oxidative cyclization of
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N-arylenaminones 606 (Scheme 5.275) [478]. Thismethodology, which leads to 3-acyl
substituted indoles 607, is clearly advantageouswhen comparedwith strategies based
on intramolecularHeck reactions, which require o-haloanilines as startingmaterials.

The mechanism proposed for this reaction (Scheme 5.276) starts with the
electrophilic palladation of the enaminone 606, to give acylpalladium intermediate
608, followed by formation of palladacycle 609 by a s-bond metathesis or a base-
assisted deprotonation. Reductive elimination furnishes the indole 607 and releases a
Pd(0) species that is reoxidized to the active Pd(II) by the stoichiometric Cu(II) salt.

More recently, a similar reaction, but employingCuI as a catalyst [479], and ametal-
free version of this transformation, mediated by phenyl-iodide diacetate, have been
reported [480].

Moreover, this type of cyclization has been adapted to a domino process in which
indoles are prepared directly from electrophilic alkynes and anilines in a Pd(II)-
catalyzed process [481].
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The same type of products obtained from the cyclization of enaminones has been
obtained by a metal-free cascade reaction between N-arylamides and ethyl
diazoacetate [482].

Some other Heck based cyclizations have been reported recently: a Pd-catalyzed
Suzuki–Heck sequence [483], a Pd-catalyzed aryl amination-Heck sequence [484],
and a Cu-catalyzed cyclization of 2-iodoenaminones [485].

Acetanilides have been employed in a rhodium-catalyzed oxidative indole synthe-
sis (Scheme 5.277). In this impressive reaction, 2,3-disubstituted indoles 612 are
built from acetanilides 610 and internal alkynes 611 [486]. As in the oxidative
cyclization of enaminones described above, the reaction does not need an ortho
substituent to enable the cyclization.

5.7.1.1.4 Cyclizations with Formation of the N�C7a Bond A Pd-catalyzed N�C7a
bond-forming reaction is the last step in the Pd-catalyzed cascade synthesis of indoles
from 1,2-dihalobenzene 613 derivatives and imines 614 (Scheme 5.278). This
synthesis consists of two independent reactions catalyzed by the same Pd catalyst:
the iminea-arylation and the intramolecular C�Nbond-forming reaction. It is worth
noting the high modularity of this synthesis of indoles, which are prepared from
three fragments: the aromatic system and the carbonyl compound and the amine
employed in the preparation of the imine [487].
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This methodology has been extended to employ o-chlorononafluorosulfonates (o-
chlorononaflates) 616 (Scheme 5.279). The reaction is totally regioselective, with the
C�C bond being formed between imine a-carbon and the C-atom that supports the
nonaflate. This is an important improvement, because o-chlorononaflates are readily
prepared from phenols, and moreover is particularly adequate for the preparation of
6-substituted and 4,6-disubstituted indoles, which are not easily prepared by other
conventional methods [488].

5.7.1.1.5 Synthesis of Indoles by a [4 þ 2] Cycloaddition A very elegant construction
of the functionalized indole skeleton has been carried out by the sequence presented
in Scheme 5.280 [489]. The key step is the MW-promoted intramolecular [4 þ 2]
cycloaddition of the aminofuran intermediate 617, which forms both rings at the
same time. The method is particularly useful for the synthesis of 4-substituted
indoles (618).
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5.7.2
Reactivity

5.7.2.1 Reactions with Electrophiles

5.7.2.1.1 Michael Additions and Reactions with Nitroolefins The recent explosion of
thefield of asymmetric organocatalysis has had an important impact in the chemistry
of indoles, in particular in the reactions of indoles with electrophiles such as
a,b-unsaturated compounds, nitroolefins, carbonyl compounds, and imines. A
review on this field is available [490].

TheFriedel–Crafts alkylation of indoleswitha,b-unsaturated carbonyl compounds
has been carried out employing chiral primary amines as organocatalyst [491].

A chiral binolN-triflylphosphoramide derivative has been employed as a Brønsted
acid catalyst in the Friedel–Crafts alkylation of indoles with b,c-unsaturated-a-ketoe-
sters [492]. An intramolecular version has also been reported [493].

Regarding Lewis acid based asymmetric catalysis, highly enantioselective Friedel–
Crafts alkylations with a,b-unsaturated phosphonates have been uncovered employ-
ing bis(oxazolinyl)pyridine-scandium(III) triflate complexes [494].

Several organocatalytic approaches for the asymmetric addition of indoles to
nitroolefins have been reported, employing thiourea based organocatalysts [495],
and promoted by a chiral phosphoric acid derivative [496]. Also noteworthy is a recent
catalytic asymmetric version employing a Cu(I) chiral catalyst [497].

5.7.2.1.2 Asymmetric Organocatalyzed Pictet–Spengler Reactions Several asymmet-
ric variants of the Pictet–Spengler (Scheme 5.281) reaction of have been
reported [498].

For instance, carboline 621 was obtained in the chiral Brønsted acid catalyzed
reaction between a properly functionalized tryptamine (619) and aliphatic aldehyde
(620) (Scheme 5.282) [499].

5.7.2.1.3 Indole as Nucleophile in Pd-Catalyzed Allylic Alkylations The Pd-catalyzed
allylic alkylation reaction has been applied in the allylation of 3-substituted indoles,
leading to indolenines featuring a C3-quaternary center [500].

The electrophilic arylation of 3-substituted indoles employing diaryl l3-iodanes as
electrophilic aryl transfer reagents leads to indolenines 622, which also feature a C3-
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quaternary center (Scheme 5.283) [501]. The relative unstable indolenines 622 are
isolated upon reduction to the corresponding indolines 623.

5.7.2.2 Transition Metal Catalyzed Reactions

5.7.2.2.1 Direct Alkenylation, Alkynylation, and Arylation reactions The indole ring
has served as a platform to develop new C�C bond-forming cross-coupling from
C�H bonds. Indeed, much effort has been made in very recent years in the study of
the direct arylation of indoles, which has led to very exciting achievements in
transition metal catalysis. A review in this field is available [502].

Palladium(II)-catalyzed C2-alkenylation has been reported that employs N-(2-
pyridyl)sulfonyl indoles [503].

Very recently, an intermolecular Au(I)-catalyzed alkynylation of indoles has been
disclosed [504].

Palladium-catalyzed selective arylation of indoles at C2 under mild conditions has
been accomplished employing a PdII/IV catalytic cycle [505]. A different strategy for
the C–H arylation, employing boronic acids, has also been reported [506].

Site-selective arylation at either C2 or C3 has been described that employs a Cu(II)
catalyst and diaryl-iodine(III) reagents as electrophiles (Scheme 5.284) [507]. Aryla-
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tion at C3 to give 624 occurs on N-H and N-Me indoles, while N-acetylated indoles
undergo arylation at C2 leading to 625. The catalytic cycle proposed for this reaction
involves a CuI/CuIII system (Scheme 5.284), and involves oxidative addition to give a
highly electrophilic Cu(III) species (626) that undergoes attack at the 3 position of the
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indole to form intermediate 627. Rearomatization and reductive elimination releases
the arylated product and regenerates the Cu(I) catalyst.

For the N-acetylated indole, the intermediate 627 suffers a C3–C2 migration
directed by complexation with the oxygen atom of the carbonyl, giving rise to the C2-
metallated system 628. Reductive elimination and rearomatization provide the C2-
arylates indole.

A truly remarkable achievement, carried out by the group of the late Keith Fagnou,
is the arylation of indoleswith unactivated arenes (Scheme5.285) [508]. The reactions
take place in the presence of a Pd(II) catalyst and a stoichiometric oxidant. C3 or C2
selectivity can be controlled bymodification of several parameters: the stoichiometric
metal oxidant, the substitution at the N atom of the indole, and the additives present
in the reaction. Typically, N-acetyl indoles 629 give C3 arylation, while N-pivaloyl
indoles 630 suffer arylation at C2.

5.7.2.2.2 C�NBond-Forming Reactions The introduction of secondary and tertiary
substituents at the N position of the indole is a challenging transformation.
Important advances in this sense have been achieved recently.

A one-step tert-prenylation of indoles has been devised employing a Pd(II) catalyst
(Scheme 5.286) [509]. This is an important transformation as the prenyl group is
present in a large number of indole natural products and intermediates.

Various contributions have appeared regarding the asymmetric N-allylation of
indoles [510]. For instance, a method has been described employing a chiral
metallacyclic iridium phosphoramidite complex (631, Scheme 5.287) [511]. This
important reaction provides the corresponding N-allylated indoles 632 with total
regioselectivity (no C3-allylation occurs) for a wide range of 2,3-disubstituted, 3-
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substituted, and also 2-substituted indoles. In the last case, the presence of an
electron-withdrawing group at C2 is necessary to reduce the reactivity of the C3
position and direct the reaction to the N-position. The branched regioisomer 632 is
always obtained as major or exclusively with very high enantiomeric excesses.

5.7.2.2.3 Pericyclic Reactions A Claisen rearrangement involving the C2�C3 bond
of the indole is the key step in the synthesis of kojic acid derivatives 634
(Scheme 5.288) [512]. The intermediate pyranone substituted indole 633 is prepared
employing the Larock indole synthesis.
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A highly enantioselective organocatalytic [4 þ 2] cycloaddition of 3-vinylindoles
withmaleimides has been reported recently (Scheme 5.289) [513]. The reaction gives
rise to indolenines 634 with very high yields and enantioselectivities. The chiral
thiourea 635 is the catalyst for the reaction. The nearly complete enantioselectivity
obtained has been justified by the simultaneous interaction of the organocatalyst with
diene and dienophile, as presented in the transition state model 636.
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6
Five-Membered Heterocycles: Furan
Henry N.C. Wong, Xue-Long Hou, Kap-Sun Yeung, and Hui Huang

6.1
Introduction

Furan (1) is prepared by a gas-phase decarbonylation procedure starting from
furfural, which, in turn, is produced in large amounts via an acid treatment of
vegetable residues after industrial production of porridge oats and cornflakes [1]. In
addition, acid-promoted dehydration of saccharides such as D-fructose also leads
to the formation of hydroxymethylfurfural (2) [2, 3]. In this connection, furan (1) and
hydroxymethylfurfural (2) are generally regarded as compounds that are readily
accessible from renewable resources.

O

1

O

2

CHO

HO

The structure of 1 is closely related to those of pyrrole and thiophene. There are two
electron lone pairs on the oxygen atom, one being conjugated with the two double
bonds to form a sextet, and the other located in the molecular plane in an sp2 hybrid
orbital.

Furan molecular frameworks are found in many naturally occurring molecules,
and play a very significant role in thefield of heterocyclic chemistry. Furans have been
applied to various commercially important products such as pharmaceuticals, flavors
and fragrant products, and functional polymers. They are also versatile precursors
and synthetic intermediates in the preparation of cyclic and acyclic molecules. For
example, furans are latent 1,4-dicarbonyl units and are also widely employed as 1,3-
dienes in Diels–Alder reactions. Efficient synthesis of polysubstituted furans there-
fore continues to be of great interest to synthetic chemists due to their widespread
applications and frequent occurrence in Nature [4].
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6.1.1
Nomenclature

The positions next to the oxygen atom are indicated as a and a0, while those away
from the oxygen are calledb and b0. Figure 6.1 shows the numbering of the furan ring
system [5]. Reduced furans are called 2,3-dihydrofuran (3), 2,5-dihydrofuran (4) and
2,3,4,5-tetrahydrofuran (5).

O

3

O

4

O

5

6.1.2
General Reactivity

Sections 6.3 and 6.4 give a much more thorough discussion on the reactions of
furan 1 and its derivatives. Here we concentrate on the overall reactivity of 1 [1, 6]. In
general, furans are rather stable towards weak aqueous acids. However, in concen-
trated sulfuric acid or Lewis acids the furan framework will be decomposed. Of the
three types of five-membered heterocycles that contain NH, S or O, furans are the
least aromatic [7] and would therefore react like dienes. Electrophilic substitution
reactions with 1 are regiospecific and lead to mostly a-substituted furans 6 via
a general addition–elimination pathway (Scheme 6.1) [1, 6, 8]. b-Substitution reac-
tions only occur when both the a and a0 positions are occupied by substituents.
Scheme 6.2 depicts an example of b-acylation, in which 7 is converted into 8 [9].

O
1 25

43

α

β′ β

α′

Figure 6.1 Numbering of the furan ring system.

O

1

E
+

O

E

H+

– H
+

O
E

6

Scheme 6.1
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Scheme 6.2
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In a nitration reaction, furan 1 reacts with acetyl nitrate to give, initially, an
addition product, which undergoes subsequent elimination to offer 2-nitrofuran (9)
(Scheme 6.3).

In sulfonation reactions, furan (1) is again sulfonated at C2, with a pyridine–sulfur
trioxide complex, followed by acidification with hydrochloric acid to afford 10
(Scheme 6.4).

Halogenation reactions are trickier with furans. Thus, polyhalogenated products
are obtained from 1 through reactions with chlorine and bromine at room temper-
ature. Pure 2-chlorofuran and 2-bromomfuran can only be obtained when 1 reacts
with chlorine in dichloromethane at �40 �C, and bromine in dioxane at 0 �C,
respectively. 3-Methylfuran (11), in contrast, reacts withN-bromosuccinimide (NBS)
to furnish 2-bromo-3-methylfuran (12) (Scheme 6.5) [10].

Acylation under Vilsmeier–Haack conditions with a catalyst such as boron
trifluoride etherate or phosphoric acid converts 1 into 2-acylfurans. As shown
in Scheme 6.6, treatment of 3,4-bis(trimethylsilyl)furan (13) with acetyl chloride
and titanium(IV) chloride affords the a-acetylfuran 14 [11].

1

O

AcONO2

–5° to –30°C O
AcO NO2 O

NO2

+C5H5N

–C5H5NHOAc

9

Scheme 6.3

1

O O
SO3H

1. C5H5N•SO3

2. HCl

10

Scheme 6.4
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Me

O

Me
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reflux
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Scheme 6.5
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73% 1413

Scheme 6.6
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Scheme 6.7 gives an appropriate example of a Lewis acid catalyzed alkylation of
a furanmoiety (15) [12]. This reaction is stereospecific, leading only to the trans-fused
diastereomer 16.

Condensation of 1 with acetone in the presence of an acid, intriguingly, gives 16-
membered macrocycle 17 (Scheme 6.8) [13].

Metallation such as mercuration with mercury (II) chloride and sodium acetate
leads to a-mercurated furans. As demonstrated in Scheme 6.9, 3-methylfuran (11)
undergoes mercuration to give the corresponding furanmercuric chloride 18 [14].
Lithiation with alkyllithium in refluxing diethyl ether proceeded smoothly at C2,
providing a 2-lithiofuran (19). In the presence of tetramethyl ethylenediamine
(TMEDA) in hexane, 2,5-bis(lithio)furan (20) is formed instead (Scheme 6.10) [15].

O

BF3•Et2O

84%

O

H
1615

Scheme 6.7
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Lithium chemistry opens up an avenue for the realization of some useful a--
substituted furans. An example is shown in Scheme 6.11 [16]. As can be seen, an
excess of butyllithium presumably generates a 2,5-bis(lithio)furan, which is then
silylated at the less hindered side to give furan 22 with a 2,4-disubstituted pattern.

Furan (1) undergoes catalytic hydrogenation to afford the very commercially
important solvent tetrahydrofuran. As mentioned above, furans behave like a 1,3-
diene, so the reaction of 2,5-disubstituted furan 23 with methanolic bromine
produces 2,5-dimethoxy-2,5-dihydrofuran 24 (Scheme 6.12) [17].

The diene character of furan can be further demonstrated by its Diels–Alder
cycloaddition reaction with maleic anhydride, forming the endo-adduct 25 at a lower
temperature as the kinetic product, and an exo-product 26 as the thermodynamic
product after much longer reaction times or at a higher temperature (Scheme 6.13).
Notably, this cycloaddition reaction was one of the reactions that led Otto Diels and
Kurt Alder to report their now famous Diels–Alder reaction [18]. A recent example
utilizing an intramolecular Diels–Alder reaction between the furan unit 27 and
maleic anhydride, leading to the Diels–Alder adduct 29 via 28, is shown in
Scheme 6.14 [19].

Under the conditions of the Paterno–B€uchi reaction, hydroxymethylfuran (30)
reacts readily with benzophenone to form the [2þ 2] adducts oxetanes 31 (65%) and
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32 (20%) (Scheme 6.15) [20]. Reductivemethylation of furan 33with sodium in liquid
ammonia and subsequent addition ofmethyl iodide, on the other hand, afforded 2,5-
dihydrofuran 34 (Scheme 6.16) [21].

6.1.3
Relevant Physicochemical Data [8]

Furan (1) shows only limited solubility in water (1 part in 35 at 20 �C) [8]. The
hydrogenbonding effect of its oxygen atomwith thewater protons is the reasonwhy it
is more soluble in water than thiophene (1 part in 700 at 20 �C).

Microwave spectroscopy of 1 and its deuterated analogs in the gas phase has been
reinvestigated, and highly accurate structure parameters have been obtained [22].
The dimensions are shown in Figure 6.2. In contrast, the solid-state structural
dimensions of furan-2-carboxylic acid [23] and furan-3,4-dicarboxylic acid [24] have
been determined by an X-ray diffraction study; the values obtained are in good
agreement with those found in the gas phase study [22].
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The UV/Visible spectroscopic absorption maximum of furan (1) in ethanol is lmax

208 nm (log e 3.9). This value is the smallest amongst pyrrole (210 nm) and thiophene
(235 nm), and is therefore a good indication that 1 behaves more like a diene than
a conjugated system [25].

Chemical shifts of protons are related to the electron-density of the carbons they
are attached to, with lower field shifts corresponding to electron-deficient carbon
centers. Thus, thea-proton signals of furan (1) at d 7.29 are at a lower field than those
of the b-protons (d 6.24), which is primarily due to the inductive electron-withdraw-
ing effect of the oxygen atom [26]. Coupling constants between protons on 1 are
J2,3¼ 1.75Hz, J2,4¼ 0.85Hz, J2,5¼ 1.40Hz and J3,4¼ 3.30Hz [27]. 13C NMR chem-
ical shifts also show the electron-withdrawing effect of the oxygen atom, giving
signals at d 142.7 ppm of the a-carbons and d 109.6 ppm for the b-carbons [28].

In itsmass spectrum, the fragmentation pathway of furan 1 is like that of otherfive-
membered heterocycles (Scheme 6.17). For 1, the strongest peak (70%) is the
molecular ion [29].

TheHe(1a) photoelectron spectrum of furan (1) [30] reveals the energy of the third
molecular orbital (p3) as 8.89 eV, which is also the energy of the highest occupied
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molecular orbital as well as close to the first ionization potential (IP1) of 1
(8.99 eV) [31]. Other molecular orbital energies p1 and p2 are measured at 14.4
and 10.2 eV, respectively. Since a high p-donation character of a compound always
leads to substantial p-electron excess, the bestmeasure ofp-donation is the value of
the first ionization potential (IP1). In this connection, furan and thiophene (p3

¼ 8.92 eV) [32] show almost equal p-donor properties, while that of pyrrole is
significantly larger (p3¼ 8.2 eV) [32]. HMO calculations lead to the same conclu-
sion, namely that the totalp-electron excess of 1 is smaller than that of pyrrole [8]. As
can be seen in Figure 6.3, the b-carbon atoms carry significantly larger negative
charges than the a-carbons. Such a distribution of p-electron excess is also in good
agreement with the larger shielding of Hb- and Cb-nuclei in the proton and 13C
NMR spectra, respectively [8].

The Pariser–Parr–Pople (PPP) approximation method reproduces well the
electronic spectral features of furan (1) [33], while the simple H€uckel method has
also been employed to compute the resonance energy of 1 in a quantitativemanner,
providing a value of 18 kcalmol�1, which is less stable than thiophene (resonance
energy 29 kcalmol�1) [34]. Satisfactory molecular geometry and heat of formation
for 1 have been obtained from MINDO/3 semi-empirical MO calculations [35]. In
addition, MINDO/3 calculated vibration frequencies for 1 [36] agree well with
values obtained experimentally [37]. In addition, satisfactory dipole moment [38]
and ionization energies [39] for 1 have been obtained from an ab initio calculation.
The electronic spectrum [40] and electronic structure [41] of 1 have also been
computed by other ab initio methods.

6.1.4
Relevant Natural and Useful Compounds

As mentioned in Section 6.1, the furan molecular skeleton is found widely in
many naturally occurring molecules. Shown below are several furan-containing
natural products (35–40) identified in 2004 and 2005. Thus, shinsonefuran (35),
a sesterterpene exhibiting cytotoxicity against HeLa cells with an IC50 of 16 mg
mg�1, was obtained from the deep-sea sponge Stoeba extensa [42]. A limonoid
containing also a 3-substituted furan, namely xyloccensin L (36), was isolated
from the stem bark of Xylocarpus granatum [43]. The new furanocembranolide 37
was isolated from the octocorals Leptogorgia alba and Leptogorgia ridida collected
on the Pacific coast of Panama [44]. The linderazulene 38, a novel azulenoid
showing moderate activity against the PANC-1 pancreatic cell line with an IC50

of 18.7 mgml�1, was obtained from a deep-sea gorgonian Paramuricea sp. [45]. In

O

+0.209

–0.015

–0.090

Figure 6.3 p-Electron excess at positions 2 and 3 of furan.
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a chemical and genetic study of Ligularia tongolensis in the Hengduan Mountains
of China, a strongly Ehrlich-positive furanoeremophilane compound (39) was
identified [46]. During automated screening for small-molecule agonists to
peroxisome proliferator-activated receptor-c (PPAR-c), a new biologically active
linear triterpene 40 was isolated and characterized from the bark of Cupaniopsis
trigonocarpa [47].
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Furan-containing molecules are also useful as catalysts, pharmaceuticals and
electronic devices. For example, in the synthesis of a highly potent and selective
serotonin reuptake inhibitor (BMS-594726), MacMillan�s furan-containing imida-
zolidinone catalyst 41 [48] has been employed in the key enantioselective indole
alkylation step, leading to a desired product with an enantiomeric excess of 84% [49].
Ranitidine (42) (Zantac�), a histamine H2-receptor antagonist that inhibits gastric
acid secretion, possesses a furan framework as the pivotal structural unit [50]. Anther
furan-containing oligoarylcyclophanene (43) – showing a strong broad luminescence
at 499 nm, due presumably to an intramolecular interaction between the chromo-
phores and the presence of a double bond – has potential use in opto-electronic
devices [51].
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6.2
Synthesis of Furans

6.2.1
Introduction

The synthesis of furans has continued to attract the attention of synthetic chemists
during the past several decades [4]. In this connection,many efficient procedures have
been documented. Some of these methods have become standard procedures and
have been extremely useful in the synthesis of furans with different substituted
patterns. One of these classical methods is the acid-catalyzed dehydration reaction of
1,4-diketones to form furans, known as the Paal–Knorr synthesis [52]. Not only 1,4-
ketones but also masked diketones, such as chloroallyl ketones and oxiranes with
appropriate substituents, as well as 1,4-dicarboxylic acid derivatives, including esters
and nitriles, are suitable substrates. Many variants have also been recorded. Further-
more, cyclization of c-hydroxy ketones or aldehydes in the presence of an acid catalyst
can also provide the corresponding substituted furans. Various acids, such as sulfuric
acid, p-toluenesulfonic acid, oxalic acid, Amberlyst 15 and zinc bromide, have been
usedas catalyst. Someexamples (44! 45 and46! 47) are shown inScheme6.18 [53].
Reaction of oxazole derivative 48 and a dienophile via a Diels–Alder cycloaddi-

tion–retro-Diels–Alder reaction strategy provides a useful protocol to produce furan
49with different substitution patterns, provided these startingmaterials are carefully
chosen (Scheme 6.19). The procedure has been employed in the total synthesis of
(�)-teubrevin G (50) [54]. Furans themselves may also serve as dienes in the reaction
with electron-deficient alkynes, leading to 7-oxabicyclic compounds, which undergo
a retro-Diels–Alder reaction to provide the corresponding furans. The advantages of
this strategy lie in the functional group compatibility as well as the starting material
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accessibility. If the availability of starting materials is not a problem, this procedure
may be regarded as the simplest and the most efficient.

Organometallic compounds have found significant application in furan synthesis
in recent years. A lithiation–electrophile trapping strategy has been widely applied to
the synthesis of 2,3-disubstituted and 2,3,5-trisubstituted furans. These furyllithium
species have been obtained by variousmeans, such as the directmetallation of furans
at the a-position using n-BuLi or LDA (Scheme 6.10) [15] or using lithium magne-
sates [55] and metal–halogen exchange methodology. All these furyllithium com-
pounds can be converted into the corresponding substituted furans upon quenching
with various electrophiles such as halides or carbonyls. As shown in Scheme 6.20,
3-bromofuran 51 can be lithiated and alkylated at the a-carbon to afford 52, which
undergoes further reactions to give rosefuran (53) [56]. Furyllithium species can also
be converted into other organometallic species, such as titanium and manganese
derivatives through a transmetallation procedure. In addition to titanium and
manganese derivatives, organocopper, zinc and tin have all been utilized in the
preparation of polysubstituted furans [57].
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Despite the fact that a lot of strategies and procedures for the synthesis of furans
have been recorded, the quest for efficient and reliable synthetic methodologies,
especially with acceptable regioselectivity, is still an active research field. Some
progress in this area is reviewed in the following section.

6.2.2
Monosubstituted Furans

Transition metal catalyzed coupling reactions of arenes and halides and amines have
been very popular in the synthesis of arene derivatives. These protocols can also be used
in the synthesis of furans with substituents at different positions. C�N cross-coupling
reaction of a bromo-substituted furan with various amides, carbamates and lactams
catalyzed by CuI furnishes 2- and 3-substituted amidofurans in 45–95% yield [58].
Arylboronic acid has been employed as an aryl source in the synthesis of 2-arylfuran
under Mn(II) acetate-promoted radical reaction conditions. Although the yields are not
high, they are better than those of the phase-transfer Gomberg–Bachmann synthesis
using arenediazoniumions [59].Arylationof 3-furoatewith 3-bromonitrobenzeneusing
Pd(PPh3)4 as catalyst in toluene affords 2,3-disubstituted furanwhile 5-aryl products are
generated predominantly when Pd/C is used as the catalyst and NMP as solvent [60].

2-Substituted furan 56 has been prepared using the phosphorylated allenic
glycol 54 through a cyclization pathway under basic conditions, followed by dehy-
dration of intermediate 55 in the presence of a catalytic amount of p-TsOH
(Scheme 6.21) [61].

2-Substituted furans can be prepared undermild conditions. Thus, reaction of 2,5-
dimethoxy-2,5-dihydrofuran (57) and an appropriate vinyl ether in the presence of
a catalytic amount of MgBr2�Et2O affords a functionalized 2-alkylfuran 58 in good
yields (Scheme 6.22). The reaction might proceed through a concerted mechanism,
in which the MgBr2-activated dihydrofuran reacts with the vinyl ether via a cyclic
intermediate [62].
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Furyldifluoromethyl aryl ketones 59 are formed when furan (1) is allowed to react
with difluoroenol silyl ethers in the presence of Cu(OTf)2 as depicted by an example
in Scheme 6.23 [63]. If 2-furfurylcarboxylate is used, the corresponding substituted
furan is also obtained [63].

The Yb(fod)3-catalyzed carbonyl-ene reaction of 3-methylene-2,3-dihydrofuran
(60) and aldehydes is a mild, efficient way to provide 2-substituted furans, which
can be transformed into furano[2,3-c]pyrans 61 in good yield via the oxa-Pictet–
Spengler procedure (Scheme 6.24) [64]. Similarly, 60, produced from the Wolff–
Kishner reduction of 2-furylhydrazone, reacts with aldehydes in the presence of Yb
(fod)3 or Ti(OPr-i)4, to afford the same 2-substituted furans. Notably, an optically
active product is realized when Ti(OPr-i)4/(S)-BINOL is the catalyst [65].

The 2-position of furan is usually derivatized by a simple electrophilic aromatic
substitution or metallation. However, the introduction of a substituent to the 3-
position of furans requires special strategies. Several such procedures have been
developed, one of which is the synthesis of furan-3-carboxylic acid (63) via aroma-
tization of 3-trichloroacetyl-4,5-dihydrofuran (62) followed by a nucleophilic
displacement with hydroxide, alcohols and amines (Scheme 6.25) [66].

Reductive annulation of 1,1,1-trichloroethyl propargyl ether 64 in the presence
of a catalytic amount of Cr(II) regenerated by Mn/Me3SiCl provides another entry to

O

OSiMe3

Ph

F

F

+
Cu(OTf)2

MeCN-H2O

    (50:1)
     88%

O

O

Ph

F F
591

Scheme 6.23

O O

OH
O

O
CHO

Me

Me

Yb(fod)3
72%

CHO

Me

Me

MeMe

Me

Me
Me

Me
p-TsOH

76%
6160

Scheme 6.24

O

NBS

    CCl4
reflux, 2 hr
     60%

O

  C6H6
reflux, 16 hr
     70%

O

CCl3 CCl3 OH

OOO
1 M NaOH

6362

Scheme 6.25

6.2 Synthesis of Furans j545



a 3-substituted furan (65) in high yields (Scheme 6.26). The reaction conditions
proved compatible with most other common functional groups. Some natural
products, such as perillene and dendrolasin, have been prepared by utilizing this
procedure [67].

The reaction of furan with N-tosylimine produced in situ from TsN¼S¼O and
aldehydes in the presence of ZnCl2 gives no Diels–Alder reaction products. Instead,
furyl sulfonamides have been separated in high yields (Scheme 6.27) [68]. This
procedure provides an efficient synthesis of 2-substituted furans such as 67 from 66,
and is general with respect to aldehydes. Moreover, it is possible to synthesize 2,3-
disubstituted furans by an intramolecular aromatic substitution of N-tosylimines at
the 3-position of furans.

Ring closingmetathesis (RCM), one of themost powerful tools for ring-formation,
has demonstrated its high efficiency and functional group tolerance. Recently, the
RCM reaction has also been employed in the synthesis of substituted furans (e.g.,
68! 69). A range of different substitution patterns and functional groups are
compatible with this sequence, such as the formation of both 70 and 72, employing
also the Grubbs catalyst 71(Scheme 6.28) [69].

6.2.3
Disubstituted Furans

Direct metallation of 2-substituted furan with t-BuLi in the presence of TMEDA
followed by treatment of the lithiated furan species with electrophiles provides
a simple and efficient way to the corresponding 2,3-disubstituted furans [70].
2-Furancarboxamide reacts with vinylsilanes catalyzed by Ru3(CO)12 or RuHCl
(CO)(PPh3)3 to deliver 3-trialkylsilyl-2-furancarboxamide also in high yield [71].
A general protocol has been developed towards a mild, regioselective arylation of
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2-furaldehyde using functionalized aryl halides in the presence of a catalytic amount
of PdCl2-PCy3. Slow addition of aryl halides to the reactionmixture avoids the homo-
coupling efficiently [72]. A one-pot Suzuki coupling of aryl halides with in situ
generated 5-(diethoxymethyl)-2-furylboronic acid catalyzed by palladium(0) also gave
5-aryl-2-furaldehydes in high yields [73]. A simple procedure to prepare 5-aryl- and 5-
pyridyl-2-furaldehydes from the inexpensive and commercially available 2-furalde-
hyde diethyl acetal through direct lithiation–transmetallation–electrophile trapping
has been reported. The reaction proceeded in a four-step, one-pot manner and the
yields of the coupling step were usually 58–91% [74].

Allene derivatives are useful starting materials in the synthesis of furans contain-
ing different substitution patterns. In 1990, Marshall found that Rh(I) and Ag(I) can
catalyze the isomerization of allene 73 to the corresponding substituted furan 74 in
high yield (Scheme 6.29) [75]. Later, this strategy was successfully applied to the
synthesis of furanocembranes and other related natural products [76].

Several reports have discussed the isomerization between allenes and propargyl
groups. One example is the intermolecular reaction of allenyl ketone 75 and an
a,b-unsaturated ketone catalyzed by AuCl3, which gives rise to 2,5-disubstituted
furan 76 in good yield (Scheme 6.30) [77]. Both ethyl propargyl ketone and ethyl
allenyl ketone lead to the same 2,5-disubstituted furan.
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A general, efficient procedure for the preparation of 2,5-disubstituted furans
containingacid-andbase-labilegroupsviaCuI-catalyzedcycloisomerizationofalkynyl
ketones such as the conversion of 77 into 78 has appeared (Scheme 6.31), for which a
plausible mechanism has been proposed [78]. The allenyl ketone produced from the
triethylamine-Cu(I)-catalyzed isomerization of the starting material should be the
intermediate.Coordinationofcopper to theterminaldoublebondofallenefollowedby
an intramolecular nucleophilic attack of the oxygen lone pair and subsequent
isomerization eventually leads to furans as final products. Indeed, 2-phenylfuran
was afforded in 33% yield when allenyl phenyl ketone was treated with CuI in DMA.

2,4-Disubstituted furan 81 has been obtained in high yield through a novel
oxidative cyclization–dimerization reaction between the two different allenes 79
and 80 (Scheme 6.32) [79].

As shown in Scheme 6.33, 2,5-disubstituted furan 84, with a cyclopropane subunit
at the 5-position, has been synthesized in acceptable yield by a metal-catalyzed
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cyclization reaction of 1-benzoyl-cis-1-buten-3-yne (82) and the enol ether 83 via (2-
furyl)carbene complex 85.Many types ofmetal complexes, such asMo,W,Ru,Rh, Pd,
and Pt, complexes are suitable catalysts [80].

Reaction of 2-alkynal acetal with a divalent titanium reagent and aldehydes
provides, after an acid work up, 2,3-disubstituted furans in good to excellent
yields [81].Michael addition–aldol condensation reactions ofa,b-unsaturated enones
with an organocopper reagent and (tetrahydropyranyloxy)acetaldehyde have been
followed by treatment of the products with p-TsOH to afford 2,3-disubstituted furans
in moderate to good yields [82]. a,b-Unsaturated carbonyl compounds with an
appropriate leaving group undergo 1,5-electrocyclization reactions to yield 2,5-
disubstituted furans upon heating in the presence of an acid, presumably through
an intermediate formed from 1-oxapentadienyl cations, whose conformational and
energy properties were also studied by DFT calculations (B3LYP/6-31þG�) [83]. A
2,3-disubstituted furan, such as 88, with different functionalities has been synthe-
sized through an acid-catalyzed elimination reaction of 2-alkylidenetetrahydro-
furan 87, which can be prepared from the cyclization of 86 in high regioselectivity
(Scheme 6.34) [84]. 2-Substituted furans and bicyclic furans can be synthesized by
this methodology.

Aldol reaction of aziridine and a,b-epoxyaldehydes (e.g., 89) followed by an
intramolecular enol cyclization in the presence of Bu2BOTf/DIPEA furnishes
5-substituted-2-furyl amines and carbinols 90 in good yields. The reaction proceeds
in a one-pot manner (Scheme 6.35) [85].

Mercury triflate-catalyzed cyclization of 1-alkyn-5-one 91 produces 2-methyl-5-
phenylfuran (92) (Scheme 6.36). The reaction may involve a protodemercuration of
a vinylmercury intermediate generated in situ. When the substituent is at the
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a-position of the carbonyl group, 2-methyl-4,5-disubstituted furans are formed. A
plausible reaction mechanism has also been provided [86].

Trifluoromethylsulfonamidofuran 94 has been prepared in high yield through the
reaction of a cyclic carbinol amide 93 with triflic anhydride (Scheme 6.37). Many
lactams have been tested and the reaction proceeds under mild conditions. Keto-
amides are also suitable substrates in these reactions [87].

A two-step electrochemical annulation directed to polycyclic systems containing
annulated furans has been developed. This pathway involves an initial conjugate
addition of a furylethyl cuprate to cyclopentenone (95) and trapping of the enolate as
the corresponding silyl enol ether 96. The second step involves anodic coupling of the
furan and the silyl enol ether to form the cis-fused six-membered ring 97 with high
stereoselectivity (Scheme 6.38) [88]. The reaction can be extended to the formation of
seven-membered ring fused furan 98 [89].However, the substituent on the 3-position
of cyclopentanone is important for the formation of a seven-membered ring fused
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furans. If the substituent is H, no desired cyclization product is provided. The results
show that the gem-dialkyl effect plays a crucial role in this electron transfer reaction.

6.2.4
Trisubstituted Furans

Many procedures mentioned above can also be utilized effectively to the synthesis
of 2,3,4- and 2,3,5-trisubstituted furans. In addition, several novel procedures have
also been reported.

3-Trifluoromethylfuran 100 has been obtained from (Z)-2-alkynyl-3-trifluoro-
methyl allylic alcohol 99 through a palladium-catalyzed cyclization-isomerization
procedure (Scheme 6.39) [90].

A mild, simple reaction of dimethyl acetylenedicarboxylate with an ammonium
ylide supplies trisubstituted furan 101 in good yield (Scheme 6.40) [91].

The reaction of 1,4-diarylbut-3-yne-1-one 102 with NBS, NIS or ICl affords, via
a 5-endo-dig electrophilic cyclization, 3-halofuran 103 in high regioselectivity and
high yield (Scheme 6.41) [92].

M€uller has reported the synthesis of 3-halofurans [93]. Thus, cross-coupling of acid
chlorides with THP-protected propargyl alcohols gives rise to the corresponding
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alkynones, which undergo an acid-assisted electrophilic addition of hydrogen halide
with concomitant deprotection and cyclization to afford 3-chlorofuran 104. If RB
(OH)2 is added to the reaction system before workup, this reaction can provide
Suzuki-coupling products in moderate yields (Scheme 6.42).

Organic molecules can also be used as catalysts in furan ring formation reactions.
Krische has reported an example of organophosphine serving as catalyst in the
construction of substituted furans, in which various c-acyloxybutynoates such as 105
were converted into 2,3-disubstituted, 2,4-disubstituted, and 2,3,5-trisubstituted
furans (e.g., 106) (Scheme 6.43) [94].

Reaction of 2-penten-4-yn-1-one 107 with benzaldehyde initiated by tributylpho-
sphine delivers 2-vinyl substituted furan 108 in a good yield. The reaction might
proceed through a 1,6-addition of phosphine to the enynes, and is followed by ring
closure and Wittig reaction between the ylide resulting from cyclization and an
aldehyde (Scheme 6.44) [95].
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3-Aminofuran-2-carboxylate 109 has been prepared in good yield through the
reaction of a cyanoketone with glycolate under Mitsunobu conditions followed by
treatment with NaH (Scheme 6.45). 4-Pyridylcarbinol and 4-nitrobenzyl alcohol can
also react with cyanoketone to furnish 3-aminofurans [96].

2,3,5-Trisubstituted furan 112 has been synthesized from a two-step one-pot
reaction from epoxyalkyne 110. A facile SmI2-mediated reduction generates 2,3,4-
trien-1-ol 111, and the reduction is followed by a Pd(II)-catalyzed cycloisomerization
(Scheme 6.46) [97]. An attractive variant of this reaction has been extended to the
preparation of tetrasubstituted furans. Thus, when electrophilic Pd(II) complexes are
generated in situ by an oxidative addition of aryl halides or triflates to Pd(0), the
oxypalladation process is followed by a reductive elimination and, as a result,
tetrasubstituted furans are formed [98].

Nucleophilic substitution of sulfinylfuran 113 with acetylacetone and allyl tin
reagent via a Pummerer-type reaction has been used in the formation of 2,3,5-
trisubstituted furan 114, as well as with other 2,3-disubstituted furans, in high
regioselectivity (Scheme 6.47) [99].
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Regioselective gold-catalyzed cyclization of 2-(1-alkynyl)-2-alken-1-one 115 in the
presence of a nucleophile affords 2,3,5-trisubstituted furan 116 in an efficient, atom-
economical manner. Various alcohols, 1,3-diketones as well as some indoles and
amines can serve as nucleophiles. This reaction provides another good example of
using gold as catalyst in furan synthesis (Scheme 6.48) [100].

Yamamoto has demonstrated that, in the presence of CuBr as a catalyst, trisub-
stituted furan 118 is formed from 117 and isopropanol (Scheme 6.49) [101], while Liu
has shown that tetrasubstituted 3-iodofurans are afforded on employing similar
starting materials and I2/K3PO4 as reagents (see below) [102].

Conjugated ene-yne-carbonyl 119 has been employed as a precursor of 2-furyl-
carbene 121. In this way, 121 was allowed to react with an allyl sulfide to form an
S-ylide followed by [2,3]sigmatropic rearrangement to give the corresponding
trisubstituted furan 120 in an excellent yield (Scheme 6.50) [103].

Palladium-catalyzed cyclization ofa-propargyla-keto ester 122 provided 2-alkenyl-
4,5-disubstituted furan 123a.High E/Z-selectivity is realized when the Me3Si- group
is introduced to the a0-position of the triple bond. The geometry of the double bond
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in 123a is almost completely inverted by reaction with a catalytic amount of diphenyl
diselenide, providing 123b. (Scheme 6.51) [104].

Ma has reported an elegant regioselective synthesis of 2,3,4-trisubstituted furan
126 using a Cu-catalyzed ring-opening cycloisomerization reaction of cyclopropenyl
ketone 124 (Scheme 6.52). Notably, the regioselectivity of this reaction can be tuned
using different catalysts. 2,3,5-Trisubstituted furan 125 is produced from the same
starting materials with excellent regiocontrol using a Pd catalyst [105].

Alkylidenecyclopropyl ketones, analogs of allene ketones, have been used as
a starting material in the synthesis of polysubstituted furans. Ma has given another
example in which highly regiocontrolled transformation of an alkylidenecyclopropyl
ketone (127), easily prepared by the regioselective cyclopropanation of an allene or the
reaction of alkylidenecyclopropanyllithiumwithN,N-dimethyl carboxylic acid amide,
into 2,3,4-trisubstituted furan 128 is realized in the presence of NaI. Interestingly,
the same starting material 127 gives rise to 2,3,4,5-tetrasubstituted furan 129 if Pd
(PPh3)4 or PdCl2(MeCN)2 is the catalyst (Scheme 6.53) [106].

Allene derivatives are important precursors in the regioselective synthesis of
substituted furans. One example is the reaction of thioallenyl ketone via a 1,2-
migration of the thio group from an sp2 carbon atom in allenyl sulfide 130 catalyzed
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by CuI to afford trisubstituted furan 131 in high yield (Scheme 6.54) [107]. Propargyl
sulfides led to similar results. If thiopropargyl aldehydes are used as starting
materials, 2,3-disubstituted furans are obtained. This route therefore provides
a simple entry for the preparation of disubstituted and trisubstituted furans.
Similarly, reaction of propargylic dithioacetals with an organocopper reagent fol-
lowed by treatment with an aldehyde and then with acid also furnishes 2,3,5-
trisubstituted furans, in moderate to good yields [108].

Isomerization of a-allenylcyclopentenone 132, obtained from propargyl ether and
morpholino unsaturated amide, in the presence of Hg-catalyst gives furylcyclopen-
tenone 133, therefore providing another example of the conversion of allenyl ketones
into furans (Scheme 6.55) [109].

Gevorgyan has reported a regio and divergent synthesis of halofuran 135 via 1,2-
halogen migration of haloallenyl aldehyde 134 catalyzed by AuCl3 (Scheme 6.56)
[110]. The procedure furnished 3-halofurans, some of which are otherwise difficult
to access.

Reaction of aryl or alkyl-1-enyl halides with allenyl ketone 136 in the presence of
Pd-catalyst followed by cyclization affords substituted furanswith aryl or alk-1-enyl as
substituent at the 3-position. This reaction is a new route to 3-substituted furan 137
(Scheme 6.57) [111].
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6.2.5
Tetrasubstituted Furans

Many procedures discussed above are also suitable for the synthesis of tetrasub-
stituted furans if there are substituents at appropriate positions in the starting
materials. However, some special methodologies have also been developed solely for
the synthesis of tetrasubstituted furans.

Liu has shown that cyclization of 2-(1-alkynyl)-2-alken-1-one 117 in the presence of
a nucleophile affords fully substituted furan 138 in high regioselectivity and a good
yield if I2 and K3PO4 are also used. This reaction provides a mild, efficient route to 3-
iodofurans. The reaction might be initiated by the formation of iodonium through
coordination of the triple bond to an iodine cation, followed by cyclization and,finally,
a nucleophilic attack (Scheme 6.58) [102].

Ruthenium- and platinum-catalyzed sequential reaction of propargylic alcohols
(e.g., 139) and cyclohexanone affords tri- and tetrasubstituted furans such as 140
(Scheme 6.59) [112]. In this reaction, two different kinds of catalysts sequentially
promote each catalytic cycle in the same medium and give the products in high
regioselectivity and good yields.
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Another example of the regioselective synthesis of substituted furan 142 from the
reaction of allenyl ketone 141 with organic halides initiated by Pd-catalyzed nucle-
ophilic attack of the aryl group to allene followed by cyclization reaction has been
reported (Scheme 6.60) [113]. This methodology shows a high substituent-loading
capacity and functional group tolerance, as well as generality and versatility. If one of
the substituents of the allenyl ketones is H, 2,3,4- and 2,3,5-trisubstituted furans can
also be generated.

Gold-catalyzed reactions of propargyl vinyl ether 143 furnish tetrasubstituted
furan 145 in high yield. The reaction proceeds through cyclization of the 2-alle-
nyl-1,3-dicarbonyl intermediate 144 produced from a propargyl-Claisen rearrange-
ment (Scheme 6.61) [114].

Palladium-mediated sequential cross-coupling Sonogashira reaction–Wacker-type
heteroannulation and deprotection reactions of pyridones, alkynes and organic
halides furnish substituted furo[2,3-b]pyridones (e.g., 146) in a one-pot operation
(Scheme 6.62) [115]. The coupling products of pyridones and alkynes can be
separated and a single palladium catalyst intervenes in three different
transformations.

A palladium-catalyzed three-component cyclization–coupling reaction of acetoa-
cetate, propargyl bromide or carbonate and aryl halides gives tetrasubstituted furan
147 in high regioselectivity and a good yield (Scheme 6.63) [116].

Several examples concerning the synthesis of tetrasubstituted furans utilizing
acetylenecarboxylate, aldehydes andnitrile or isonitrile have been reported.One such
example is a one-pot reaction, affording tetrahydrofuro[2,3-c]pyridine 148 in high
yield (Scheme 6.64) [117].

Scheme 6.65 shows a further example, in which the reaction is carried out in an
ionic liquid under mild conditions, leading to tetrasubstituted furan 149 in high
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yield [118]. A similar reaction employing 2-furyl-2-oxoacetamides instead of alde-
hydes in the preparation of substituted furylfurans was also recorded [119].

A detailed description of the synthesis of furylcyclopropane 150 from the reaction
of an alkene and previously reported 2-furylcarbenoid by ametal-catalyzed cyclization
of enyne ketone has been disclosed (Scheme 6.66) [120]. This protocol has been
expanded by the same authors to the synthesis of furylcyclopropane-containing
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polymers as well as furfurylidene-containing polymers when phenyl enyne ketones
with a vinyl and formyl group at the ortho position of the benzene ring are
employed [120].

Cycloisomerization of acyloxy-, phosphatyloxy- and sulfonyloxy-substituted
alkynylketones gives tri- and tetrasubstituted furans (e.g., 151) with good regios-
electivities; the allene intermediates are produced in situ via migration of the
substituents, catalyzed by CuCl or AgBF4 (Scheme 6.67) [121].

N-Heterocyclic carbenes (NHC) have found use as reagents in the synthesis of
polysubstituted aminofurans. Multicomponent reaction of an imidazolinium salt
with an aldehyde and an acetylenecarboxylate in the presence of NaH leads to
tetrasubstituted furan 152 in a good yield (Scheme 6.68). A plausible reaction
mechanism has been proposed [122]. A similar procedure for the synthesis of
tetrasubstituted 3-aminofurans, using a thiazolium salt, aldehydes and acetylenedi-
carboxylate, has also been reported [123].

6.3
Reactivity

This section primarily deals with the reactivity of furans that results in an overall
transformation of the ring. Reactions of furans, particularly reactions ofC-metallated

O

Ph

Ph
THF
14 hr
85%

+ O

Ph

Ph

Cr(CO)5•THF (5 mol%)

150

Scheme 6.66

AcO

O

AgBF4 (5 mol%)

CH2Cl2
86%

O

AcO

151

Scheme 6.67

CHO

CF3

CO2Me

Ph

N

N

tBu

tBu

O N

MeO2C Ph

NH But

F3C
tBu

Cl–
+ NaH

PhMe
90°C
58%

++

152

Scheme 6.68

560j 6 Five-Membered Heterocycles: Furan



furans, that lead to substituted furan derivatives have been discussed in Section 6.2.1.
Most examples in this section are extracted from recent literature so as to document
the progress made in each reaction category [4].

6.3.1
Reactions with Electrophilic Reagents

Furans are reactive p-nucleophiles. Nucleophilic additions of furans to electrophiles,
from either the 2-position or 3-position, often involve regeneration of the furan ring
from the oxonium ion intermediate by loss of a proton, as shown, for example, in
Scheme 6.7, Section 6.1.2. An interesting example of direct hydrolytic cleavage that
occurssubsequent tofuranadditiontoanN-acyliminiumionisshowninScheme6.69.
The initially formed oxonium ion likely undergoes a 1,5-proton shift to generate an
intermediate that is then hydrolyzed to the dicarbonyl compound 153 [124].

2-Silyloxyfurans 154 are chemically equivalent to �cyclic� vinyl silyl ketene acetals,
and have been employed for vinylogous additions to electrophiles under Lewis acid
catalyzed conditions to provide c-butenolides 155, which are common structures
present in natural products. These include vinylogousMannich [125, 126], aldol [126]
and Michael reactions. Consistent with vinylogous reactions of acyclic silyloxy
dienolates, additions generally occur at the 5-position of 2-silyloxyfurans 154
(Scheme 6.70). Further synthetic manipulations of these adducts can lead to carbo-
cycles, piperidines, sugars and azasugars. A subsequent intramolecular Michael/
hetero Michael addition to the a,b-unsaturated system of butenolide can also be
exploited to form polycyclic ring structures [127]. Although the factors and the
transition state structures (Diels–Alder like versus open chain) that govern the
stereoselectivity have not been well-defined, anti (erythro) adducts are in general
isolated as the major isomers for additions to iminium ions, except cyclic acylimi-
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nium ions, fromwhich the syn-isomers are obtained preferentially. For reactionswith
aldehydes, syn (threo) products generally predominate.

The synthetic utility of vinylogous additions using 2-siyoxyfurans (e.g. 156) is
exemplified by the total synthesis of the plant alkaloid croomine (157), in which two
vinylogous Mannich reactions of 2-silyloxyfuran to a pyrrolinium ion constitute the
key steps for assembling the carbon framework (Scheme 6.71) [128].

VinylogousMichael additions of 2-silyloxyfurans to 3-alkenyl-2-oxazolidinones are
anti-selective, and are highly enantioselective in the presence of a BINAP-Lewis acid
catalyst [129]. As illustrated in Scheme 6.72, a complementary, syn-selective, orga-
nocatalytic, enantioselective vinylogous Michael addition of 2-silyloxyfuran 158 with
ana,b-unsaturated aldehyde to produce c-butenolide 159has been achieved by using
the chiral amine catalyst 160 [130].

As shown in the example in Scheme 6.73, 2-trimethylsilyloxyfuran (161) also
reacts with Morita–Baylis–Hillman acetate 162 to provide the interesting c-buteno-
lide 163. These triphenylphosphine-catalyzed substitutions proceed regio- and
diastereoselectively. However, the reaction mechanism (vinylogous Michael versus
Diels–Alder) has not been elucidated [131].
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Similar to 2-silyloxyfuran, the relativelyunexplored3-silyloxyfuranalsoparticipates
in an aldol additionmanner with aldehydes under Lewis acidic conditions. High syn-
diastereoselectivity is obtained with bulky a-branched aldehydes [132]. In addition,
2-methoxy, 2-aryloxy and 2-phenylthiofurans also serve as nucleophiles [133].

The nucleophilicity of furans can be modulated by complexation to transition
metals. When furan is dihapto-coordinated to a rhenium p-base, the nucleophilicity
of the uncoordinated C3-position is enhanced. In this manner, furan acts as an enol
ether [134].

6.3.2
Reactions with Nucleophilic Reagents

Electron-deficient furans, for example 2-nitrofuran (9), can undergo nucleophilic
substitutions. Various Grignard reagents react with 9 in a Michael addition fashion,
providing predominantly trans-2,3-disubstituted 2,3-dihydrofurans such as 164
(Scheme 6.74) [135].

The chiral Fischer-type furan carbene complex 165 (Scheme 6.75) participates in
1,4-addition with organolithium reagents in a regioselective and diastereoselective
manner. Consecutive oxidative decomplexation and reductive cleavage of the chiral
auxiliary provides 2,3-dihydrofuran 166, which contains a quaternary C3 center [136].

6.3.3
Reactions with Oxidizing Reagents

Furans are valuable precursors to 1,4-dicarbonyl compounds, which are not directly
accessible from the reactions between electrophiles and nucleophiles, such as those
employed for the synthesis of 1,3- and 1,5-dicarbonyl compounds. Furans are
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hydrolytically cleaved to saturated 1,4-dicarbonyl compounds under reflux in strongly
acidic conditions (Section 6.3.5). The 1,4-dicarbonyl moiety can also be revealed by
oxidation of furans using various oxidizing reagents [4, 137].

2,5-Dialkoxy-2,5-dihydrofurans formed from the oxidation of furans in a metha-
nolic solution of bromine (e.g., Scheme 6.12, Section 6.1.2) can be hydrolyzed to cis-
a,b-unsaturated-1,4-dicarbonyls. Oxidation of 2-substituted or 2,5-disubstituted
furans to cis-a,b-unsaturated-1,4-dicarbonyls 167 can be performed using m-CPBA,
PCC or NBS [4, 137], magnesium monoperoxyphthalate (MMPP) [138], dimethyl-
dioxirane [139], methyltrioxorhenium/urea hydrogen peroxide [140] and buffered
sodium chlorite [141] (Scheme 6.76). The corresponding trans isomers 168 are
obtained by in situ isomerization, especially in the presence of an amine base, or
directly by Mo(CO)6-catalyzed oxidation using cumyl hydroperoxide [142]. Furans
also serve as surrogates to carboxylic acids, which are obtained by oxidative disas-
sembly of the aromatic ring using ruthenium tetroxide [143].

The 1,4-dicarbonyl compounds are useful precursors towards the syntheses of
cyclopentenones and cyclopentanones [137]. Interception of the transient oxonium
ion during oxidation of furans (e.g., by NBS) by pendant nucleophiles leads to
interesting spiro ring systems [144]. Scheme 6.77 depicts an application of furan
oxidation in the total synthesis of the indolizidine alkaloid monomorine (169) [145].

Regioselective oxidation of unsymmetrical 3-substituted furan 170 to butenolide
172 has been accomplished by using alcoholic bromine or NBS and controlling the
acid-catalyzed hydrolysis of the 2,5-dialkoxy intermediate 171 in acetone–water
mixture [146] (Scheme 6.78).

(OC)5Cr

O

O

Me

Me

Me

OPh

MeHO

1. PhLi

    Et2O

    –80°C 3 steps

 78% ee
90%

(OC)4Cr

O

O

Me

Me

Me

Me

Ph

2. MeOTf
    –80°C to r.t.
    84 : 16 d.r.
    78%

165

166

Scheme 6.75

OR1 R2

R1 OH

O

O O

R1 R2
R2

O

R1

O

OH

O

R1

OO O

R1 OH
O O

R1

HO

R2 = H

oxidation

isomerizationoxidation

R2 = H

oxidation

R2 = H

RuO4

167 168

Scheme 6.76

564j 6 Five-Membered Heterocycles: Furan



Alternatively, regioselectivity can be controlled by the incorporation of a silyl group
in the furan ring (Scheme 6.79), producing 173 in a regiospecific manner [147].

Photooxidations of furans by singlet oxygen, sensitized by, for example,methylene
blue, Rose Bengal or tetraphenylporphyrin, generate endoperoxides [148] (e.g., 174,
Scheme 6.80) via a Diels–Alder cycloaddition. Intermediate 174 is prone to
Baeyer–Villiger type rearrangement to provide carboxylate 175 (R including silyl).
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Deprotonation at the bridgehead carbon of 174 by an organic base provides hydro-
xybutenolide 176. This provides a useful method for the regioselective oxidation of
unsymmetrical 3-substituted furans by using a hindered base (e.g., i-Pr2NEt) [149].
Reaction of 174 with an alcohol (MeOH is often used as a solvent) at higher
temperature forms hydroperoxide 177 regio and stereoselectively due to a hydrogen
bonding assisted front side attack of the alcohol on the most stabilized carbocation.
Reduction of hydroperoxide 177 and subsequent eliminative ring opening provides
1,4-dicarbonyl compound 178, while dehydration of 177 gives butenolide 179.
Photooxidations of furans have the benefit of being performed selectively in the
presence of alkenes.

Scheme 6.81 shows a novel example of taking advantage of the singlet-oxygen
photooxidation of furan in the presence of two trisubstituted alkenes in the side chain
(R group) during the total synthesis of litseaverticillols 180 [150]. The unusual regio
and diastereochemistry obtained from themethylene blue (MB) sensitized oxidation
inMeOHis, presumably, the result of a backside attack ofMeOHon the intermediate
endoperoxide.

Oxidation of furfuryl alcohols under similar conditions leads to ring expansion to
form dihydropyranones. These Achmatowicz oxidations are often accomplished by
using bufferedNBS, VO(acac)2/t-BuOHand singlet oxygen.Dimethyldioxirane [139]
and methyltrioxorhenium/urea hydrogen peroxide [140] are also effective oxidants.
The corresponding aza-Achmatowicz oxidation of furfurylamines [151], frequently
by NBS or m-CPBA, provides a novel method for the synthesis of azasugars and
piperidine-containing compounds [152]. An interesting example of simultaneously
applying both reaction variants in the synthesis of aza-C-linked disaccharide, such as
182 from 181, is shown in Scheme 6.82 [153].
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A novel route for the construction of the daphnane BC-ring in the quest for
resiniferatoxin (Scheme 6.83) employed furan 183 in an Achmatowicz rearrange-
ment via, presumably, oxidopyrylium ion 184, which participates in an intramolec-
ular [5þ 2] cycloaddition to provide dihydropyranone 185 [154, 155].

The furan nucleus can be oxidized electrochemically, and the radical cations
generated at the anode can be trapped by the reaction medium, for example,
methanol, to give 2,5-dioxygenated-2,5-dihydrofurans. Intramolecular electrochem-
ical annulation of furans provides an interesting avenue for the synthesis of polycyclic
ring systems. Anodic oxidation of furans that contain pendant vinylsulfide,methyl or
silyl enol ethers generates radical cation intermediates that cyclize to form six- and
seven-membered rings [156]. Scheme 6.84 shows a recent example of the construc-
tion of the complex tetracyclic core 186 of guanacastepenes, obtained as a single
diastereoisomer, by such an electron transfer reaction [157]. A gem-dialkyl effect has
been identified as essential for the efficient formation of a seven-membered ring in
this type of reaction [89, 158].

6.3.4
Reactions with Reducing Reagents

Furans are reduced by catalytic hydrogenation (Pd/C, Raney Ni and Rh), dissolving
metals (Birch reduction) and alkylsilanes to dihydrofurans and tetrahydrofur-
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ans [159]. 2,5-cis-Reduction products 187a and 187b are obtained from 2,5-disubsti-
tuted furans, an example that is essential in the total synthesis of tetranactin
(Scheme 6.85) [160].

In the stereoselective reduction of electron-deficient chiral furoic amides
(Scheme 6.16, Section 6.1.2), under Birch-type reductive alkylation to form dihy-
drofuran derivatives, methyl and trimethylsilyl substituents at the 3-position of the
furan moiety are essential for achieving high diastereoselectivity in the alkylation
step, presumably by controlling the enolate geometry [161].

6.3.5
Reactions with Acids or Bases

Rearrangement of furfuryl alcohols in aqueous acidic medium at pH 4.0–6.0 is
a useful reaction for the preparation of hydroxycyclopentenones on a preparative
scale (Scheme6.86). 5-Unsubstituted and 5-methylfurfuryl alcohols having a range of
R groups are generally good substrates for this type of reaction. 5-Nitrofurfuryl
alcohol, however, does not undergo the rearrangement [137]. As illustrated in
Scheme 6.86, this kind of rearrangement provides trans-4-hydroxy-5-substituted
2-cyclopentenones, which can isomerize to 2-substituted 2-cyclopentenones 188
under mild basic conditions, for example, using alumina and phosphate buffer
pH7.9 [137], as well as amine bases [162].WhenR is phenyl or 2-thienyl, a reaction in
refluxing water without the use of any acid leads directly to isomer 188 [163].

A 2-acylfuran derivative reacts with aqueous ammonia to give 3-hydroxypyridine
189 (Scheme 6.87). An initial attack of ammonia at the C5-position of the furan
followed by a subsequent ring opening/ring closing sequence has been proposed as
the reaction mechanism [164].
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6.3.6
Reactions of C-Metallated Furans

C-Metallated furans are primarily used for the synthesis of substituted furans
(Section 6.2.1). 2-Furylcuprate 190, as shown inScheme6.88,was recently discovered
to undergo a 1,2-metalate rearrangement to form 191 [165]. A similar dyotropic
rearrangement of 2-furylzirconocene complexes has also been reported [166].

6.3.7
Reactions with Radical Reagents

Furans react with radical reagents at the a-positions. For example, an acetyl radical,
generated from a xanthate, reacts with 2-acetylfuran to provide the a-substituted
product [167]. As illustrated in Scheme 6.89, addition of the alkenyl radical generated
from the cyclohexenyl bromide 192 to the pendant furan moiety gives the spiro-
dihydrofuran radical intermediate 193. Radical fragmentation in 193 then provides
a cyclohexyl radical, leading to unsaturated ketone 194 [168]. Similar methodology
has been examined in the synthesis of polycyclic ring system [169].
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6.3.8
Electrocyclic Reactions

There is a large volume of literature on both inter- and intramolecular Diels–Alder
reactions of furans with dienophiles, for example, alkenes, alkynes, allenes and
benzynes, under thermal, Lewis acid promoted or high-pressure conditions. These
[4þ 2] cycloadditions, which form six-membered rings, have been applied to the total
synthesis of natural products, and are well documented and reviewed [4, 170].
Diels–Alder reaction of furans often requires elevated reaction temperature, as
furans are generally poor dienes, unless the dienophiles are reactive or Lewis acids
are used. However, structural elements can be incorporated into the starting
materials such that these cycloadditions proceed at or below ambient temperature.
For example, the cycloaddition of 195 which has an unactivated double bond, occurs
at room temperature to furnish 196 (Scheme 6.90). This reaction is a consequence
of 195 being populated in a reactive conformation imparted by the amide carbonyl of
the tether [171].

Examples of transannular Diels–Alder reactions of furanophanes are very rare. In
such an approach, macrocyclic conformational control can offer high diastereo-
selectivity, as demonstrated in the synthesis of the chatancin core 198 from 197
(Scheme 6.91) [172].

The [4þ 3] cycloadditions of furans have been used to form seven-membered
rings, which are widely present in natural products. Reactions with oxyallyl cations
are the most explored [4þ 3] cycloadditions of furans [173], although reactions with
oxyallyl equivalents, for example, silyloxyacroleins [174] and cyclopropanone hemi-
acetals [175], and aminoallyl cations [176], have also been reported. These cycloaddi-
tions of furans with oxyallyl cations and their equivalents are generally considered
as concerted processes. However, theoretical calculations support an alternative
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stepwise mechanism for certain examples [174, 177]. An example of employing
such a reaction as the key step in the total synthesis of colchicine is shown in
Scheme 6.92 [178]. Thus, coupling of the highly substituted furan 199 with the
oxyallyl cation generated from silyl enol ether 200 produces the desired endo-adduct
201 as a single isomer.

An enantioselective organocatalytic [4þ 3] cycloaddition of furan using the chiral
amine catalyst 160 has been realized [179]. As shown in Scheme 6.93, the endo
selective [4þ 3] cycloaddition between 3-methylfuran (11) and the nitrogen stabilized
oxyallyl cation 202 derived from an allenamide can also be rendered highly enantio-
selective by using a 1,2-cyclohexanediamine derived C2 symmetric salen(Cu) com-
plex as the catalyst, leading to the formation of 203 [180].

The [6þ 4] cycloaddition between furan and tropone, a previously unsuccessful
transformation, has recently been realized in an intramolecular conversion of 204
into 205 during the assembly of the ABC-ring of ingenol (Scheme 6.94) [181].
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Gold-catalyzed intramolecular cycloisomerization of furans with a pendant ter-
minal alkyne provide phenol product 207 (Scheme 6.95) [182]. Although the reaction
may be a result of a [4þ 2] or [2þ 2] process, a viable mechanism has not been
identified. The formation of arene oxide intermediate 206, however, has been
characterized experimentally [183].

2-Vinylfurans participate in extra annular [4þ 2] cycloadditions in which the vinyl
group and the furan 2,3-p bond function as the 4p component to form tetrahy-
drobenzofurans [184]. 2-Butadienylfuran 208 has recently been shown to behave as
an 8p-component in cycloaddition with dimethyl acetylenedicarboxylate, providing
an oxygen-bridged ten-membered ring (209, Scheme 6.96) [185].

Furans also behave as dienophiles and dipolarophiles. The 2,3-p bonds of furans
react with o-quinodimethide [186] and o-benzoquinones. Scheme 6.97 shows an
example of a regio- and diastereoselective cyclization involving (R)-furfuryl alcohol
211 and a masked o-benzoquinone 210, producing the ortho, endo adduct 212 [187].
Thea-hydroxyl group controlled the facial selectivity of theDiels–Alder type reaction.
Recent studies, however, suggest a stepwise, double Michael addition as the mech-
anism for this type of reaction [188].
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Furansare less reactivedipolarophiles.However,1,3-dipolar cycloadditionbetween
nitrileoxidesandfurans togive furoisoxazolineshasbeendevelopedasanovelentry to
amino sugars and aminoacids [189]. Recently, intramolecular cycloadditionof a furan
with a carbonyl ylide dipole was also shown to proceed under microwave promoted
conditions, providing the cycloadduct in modest yield [190].

The furan 2,3 p-bond also undergoes cyclopropanation with metal carbenoids.
Asymmetric cyclopropanation of furan-2-carboxylate with ethyl diazoacetate to
provide the exo-diastereoisomer has been achieved under copper(I)-bisoxazoline
catalyzed conditions [191]. A retro-Claisen type rearrangement often accompanies
cyclopropanation with diazocarbonyl compounds, leading to a 2,4-diene-1,6-dicar-
bonyl structural motif. Intramolecular versions are attractive methods for synthe-
sizing [6,7]-, [6,6]-, [6,5]- and even [6,4]-fused ring systems [192]. Scheme 6.98 gives an
example of a rhodium-catalyzed reaction as applied in the synthesis of guanacaste-
pene core structure 213 [193].

6.3.9
Photochemical Reactions

In addition to furan behaving as a 4p-component in photochemical reactions with
aromatic compounds, the furan 2,3-p bond also reacts photochemically. The
most synthetically interesting photochemical reaction involving furans is the Pater-
no–B€uchi [2þ 2] cycloaddition with carbonyl compounds. The oxetane products
obtained are useful intermediates for the synthesis of natural products. Regio- and
stereoselectivities of the reaction are determined by the conformational stability of
the triplet diradical intermediate [194]. As illustrated in a study with 2-silyloxyfurans
(Scheme 6.99) [195], reaction with ketones provided higher substituted products

O

CO2Et
Me

Ph2
tBuSiO

O

N2

Me

Ph2
tBuSiO

O

CO2Et
HO

CH2Cl2
r.t.

50%

Rh2(OAc)4

213

Scheme 6.98

O

Me

OSi  BuMet
2 O

O

OSi BuMet
2

Me
R

Ph

O

Ph R

+
hv (>290 nm)

MeCN
0°C

+

O

O

R
Ph Me

OSi BuMet
2

R = Me, 214 : 215 = 93 : 7
R = H, 214 : 215 = 60 : 40

215214

Scheme 6.99

6.3 Reactivity j573



(e.g. 214) regioselectively, while those with aldehydes are regio-random. As usual,
exo-oxetanes were produced predominantly in both examples.

The [2þ 2] photocycloaddition of furanswith alkenes is also synthetically useful. A
remarkable example is the pivotal intramolecular cyclization to form 216
(Scheme 6.100), as employed in the total synthesis of ginkgolide B [196].

6.4
Oxyfurans and Aminofurans

6.4.1
Oxyfurans

Hydroxyfurans exhibit fairly low stability that is quite different from their benzenoid
counterparts. This phenomenon can be explained by a careful structure investigation
on 2-furanol (217), which can be treated as the enol form of 2- or 3-butenolide.
Estimations of resonance energy reveal that 2-furanol is of much higher energy than
the corresponding furanone structure. Therefore, 2(3H)-furanone (218) and 2(5H)-
furanone (219) dominate at equilibrium in the absence of additional stabilizing effect
for enolization (Scheme 6.101) [197, 198].

Both the 2(5H)-, and 2(3H)-furanone structures widely occur in biologically active
natural products. They are, in general, also called �butenolides,� as derivatives of 4-
hydroxybutenoic acids, and not as furan derivatives. Thus, 3-butenolide corresponds
to 2(3H)-furanone (218) and 2-butenolide corresponds to 2(5H)-furanone (219) [199].

2(5H)-Furanones are important synthetic intermediates in the construction of
substituted c-butyrolactones. In addition, they also serve as useful building blocks in
the syntheses of various organic compounds [200]. Several excellent reviews dealing
with the synthesis of these unsaturated lactones have been published [199, 201–203].
Instead of providing a thorough literature survey, only recent advances are discussed
here.
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Palladium-catalyzed cyclocarbonylation of propargyl alcohol is an excellentmethod
for the construction of 2(5H)-furanones. Thus, a combination of Pd(dba)2 and dppb
has been used to catalyze the transformation of 220 into 5,5-disubstituted 2(5H)-
furanone 221. The reaction mechanism involves the insertion of a Pd(0) species into
the C�O bond of the substrate, followed by rearrangement to the allenylpalladium
intermediate. Insertion of CO and subsequent reductive elimination then lead to the
2,3-dienoic acid, which then affords 221 (Scheme 6.102) [204].

A highly functionalized 2(5H)-furanone (222) has been prepared from a triphe-
nylphosphine-catalyzed reaction of activated carbonyl compound with dimethyl
acetylenedicarboxylate (Scheme 6.103) [205].

Besides acyclic substrates, 2(5H)-furanones can also be synthesized from cyclo-
butenone precursors. Thus, when hydroxycyclobutenone 223 was subjected to
reaction with a hypervalent iodine reagent, an oxidative ring enlargement took place
to give 5-acetoxy-2(5H)-furanone 224 (Scheme 6.104) [206].

The presence of an a,b-unsaturated carbonyl moiety renders the 2(5H)-furanones
highly reactive towards different reagents (Section 6.3).
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Attempts to synthesize simple 2(3H)-furanones usually result in a mixture
containing also 2(5H)-furanones [207]. Generally, 2(3H)-furanone (218) is thermo-
dynamically less stable than 2(5H)-furanone (219). Computational (SCF-MO) results
reveal that the energy of 2(3H)-furanone (218) is of 53 kJmol�1 higher than that of 2
(5H)-furanone (219) [198]. Experimentally, isomerization can be achieved by amine
bases or at elevated temperature (Scheme 6.105) [208].

The reactively low stability of 2(3H)-furanones makes them susceptible to nucle-
ophilic attack to give ring-opening products, which may be employed to construct
other important heterocyclic systems [209].

As illustrated in Scheme 6.106, a hydrazide 226 is formed on treatment of
furanone 225 with hydrazine hydrate. Further reaction with a mixture of NaNO2

and HCl promotes ring closure to afford 227 with a pyridazinone structure [210].

Similar to their 2-hydroxyl isomers, 3-hydroxyfurans tend to exist in the keto form
as 3(2H)-furanones [198]. As depicted in Scheme 6.107, free 3(2H)-furanone 228 can
be synthesized from 3-bromofuran (51) [211].

Although the 3(2H)-furanone motif is less common than 2(5H)-furanones and 2
(3H)-furanones in bioactive naturally occurring molecules, a series of 4,5-diaryl
substituted 3(2H)-furanones (229–233) have been studied as cyclooxygenase-2
inhibitors and show excellent anti-inflammatory activities [212].
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6.4.2
Aminofurans

3-Aminofuran is stable only in an inert atmosphere or in vacuo. It polymerizes rapidly
upon contact with air. 2-Aminofuran is also a reactive species. However, as illustrated
in Scheme 6.108, 234 is one of the exceptions, whose stabilitymay be attributed to the
presence of a conjugated electron-withdrawing group on the furan ring. When 234
is treated with a dienophile, the rearranged cycloadduct 235 is obtained in high
yield [213].

6.5
Addendum

6.5.1
Additional Syntheses of Furans

In the past few years, several procedures for the synthesis of substituted furans
in high regioselectivity and efficiency have appeared. Amongst them, reports on the
using of Au-catalysts have increased substantially. In all cases the starting materials
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contain an alkynyl or allenyl group. Because of the exceptionally alkynophilic, but not
as oxophilic, property of Au-catalysts, the Au-catalyzed reactions are oxygen-, water-,
and alcohols-tolerated and thus do not need air- and moisture-free conditions. Also
noteworthy is that in Au-catalyzed reactions non-classical carbocation or carbenoid
intermediates are very often involved so that the selectivity of these reactions can be
controlled. A few examples are shown below. Cyclization of allenones in the presence
of Au(III)-porphyrin gave rise to the corresponding substituted furan in good to high
yields. The catalyst can be recycled several times and its catalytic activity remained
intact [Scheme 6.109, reaction (1)] [214a]. Another example of Au catalysis has been

Scheme 6.109
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reported using alkynyl cyclopropyl ketones as a starting material. Trisubstituted
furans were afforded in high yields under mild conditions via a domino reaction
process [Scheme 6.109, reaction (2)] [214b]. A carbonyl-ene-yne compound is also
a suitable starting material in Au-catalyzed furan formation. In the presence of Au-
catalyst, 2-alkynyl-1-cycloalkenecarbaldehydes were converted into trisubstituted
furans via an Au-carbene intermediate [Scheme 6.109, reaction (3)] [214c]. Alkynyl
cyclopropyl ketones have also been employed as startingmaterial, as 1,4-dipoles in an
Au-catalyzed [4þ 2] annulation reaction, providing fully substituted furans in high
yields [Scheme 6.109, reaction (4)] [214d].

In addition to Au-catalysis, transition metals were still used widely as efficient
catalysts in the synthesis of furans with full control of regioselectivity. Employing
ruthenium complexes as catalysts, trisubstituted furans have been provided through
an unprecedented 1,4-shift of the sulfanyl group of allenyl sulfides in high yields.
Furan products have also been afforded in a one-pot reaction from a-diazocarbonyls
and propargyl sulfide using both Rh- and Ru-complexes or only Ru-complexes as
catalysts [Scheme 6.110, reaction (1)] [215a]. The second reaction in Scheme 6.110
provides another example of furan synthesis using metal catalysts. In the presence
of In(OTf)3, terminal disubstituted allenyl ketones were smoothly converted into

Scheme 6.110
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tri- and tetra-substituted furans in high yields. The 1,2-shift of the terminal alkyl
group was a key step in this reaction [215b]. In addition to In salt, some other Lewis
acids, such as Sn(OTf)2, AgOTf, and [Au(PPh3)]OTf, could also be used in similar
reactions. Control of regioselectivity in the synthesis of multi-substituted furans has
been realized by using Cu-catalyst in the reaction of bis-propargylic ester via Cu-
carbene intermediate [Scheme 6.110, reaction (3)]. The reaction is suitable for the
preparation of tetra-substituted furans, and silane is not necessary when CuBr or
CuCl is the catalyst [215c]. 1-(1-Alkynyl)-cyclopropyl ketones have proved useful as a
building block in the synthesis of multi-substituted furans by using an Au-catalyst
[215b,c]. They are also useful in transition-metal catalyzed furan-formation reactions.
In the presence of Rh-catalyst, carbonylation takes place and thus the procedure was
developed for the synthesis of tetra-substituted furans in high regioselectivity via
a Rh-catalyzed carbonylation/cyclization [Scheme 6.110, reaction (4)] [215d].

A domino-reaction is a powerful strategy that has been adopted bymany groups to
synthesize furans. Some examples are shown below (Scheme 6.111). Thermally
induced cascade cyclizations under metal-free conditions using epoxyhexene as acid
scavenger provided polycyclic furans in high yields [Scheme 6.111, reaction (1)]
[216a]. Another Pd-catalyzed cascade reaction using conjugated enynals as starting
materials has been reported. Here, good to high yields of 2,3,4-trisubstituted furans
were realized [Scheme 6.111, reaction (2)] [216b]. Tetrasubstituted furans have been
obtained in the three-component Michael addition–cyclization–cross coupling reac-
tion by using a Pd-complex as catalyst. [Scheme 6.111, reaction (3)] [216c].

Scheme 6.111
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6.5.2
Additional Reactions of Furans

Noteworthy and interesting transformations of furan nucleus that are related to the
types of furan reactions as described in Section 6.3 have been reported between
2006 and 2009.

The reaction of a furan tethered at the 2-position to an iminium ion gave a spiro-
2,5-dihydrofuran derivative as the sole diastereoisomer. This spirocyclization has
been used in forming the ABC tricyclic core of manzamine A [217]. Several new
catalytic asymmetric addition reactions of silyloxyfurans to electrophiles using
various chiral catalysts have beendeveloped and reviewed in detail [218]. The addition
of 2-trimethylsilyloxyfuran to Morita–Baylis–Hillman acetates to form c-butenolides
has been rendered enantioselective by using a chiral phosphine catalyst [219].

As exemplified in Scheme 6.112, regioselective addition of 2-methoxyfuran or
2-trimethylsilyloxyfuran to chromium(0) alkynylcarbene complexes furnished
interesting dienyne and dienediyne carboxylates by proceeding through a formal
vinylogous Michael intermediate [220]. 2-Methoxyfuran reacted with chiral tungsten
(0) alkenylcarbene complexes in a similar fashion [221].

Scheme 6.113 shows a reaction of 2-furaldehyde with a secondary amine nucle-
ophile in a lanthanide-catalyzed condensation/ring-opening/electrocyclization pro-
cess to provide trans-4,5-diaminocyclopenten-2-ones, presumably via a ring-opened,
deprotonated Stenhouse salt [222].

The opposite regioselectivity was obtained in the photooxidation of 3-bromofuran
to bromo-c-hydroxybutenolides by using DBU and phosphaxene [223]. The regios-
electivity provided by the commonly used H€unig�s base was reversed by using
n-Bu4NF in the photooxidation of unprotected furan Baylis–Hillman adducts to
a-substituted c-butenolides [224].

Scheme 6.112

Scheme 6.113
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2-Furanyl carbamates undergo iodine-promoted oxidative rearrangement to form
5-methoxypyrrol-2(5H)-ones, which have been used as intermediates for the syn-
thesis of 2,4-disubstituted pyrroles [225]. Enantiomeric enriched dihydropyranones
can be obtained from Achmatowicz oxidation of furfuryl alcohols under Sharpless
kinetic resolution conditions. This approachwas adopted in a recent total synthesis of
the acetogenin pyranicin [226]. As illustrated in Scheme 6.114, a �homologous�
Achmatowicz oxidation of 2,5-disubstituted, 2-(b-hydroxyalkyl)furans by singlet
oxygen produced 3-keto-tetrahydrofurans, presumably via a Michael addition to an
intermediate 1,4-enedione [227].

As depicted in Scheme 6.115, electrochemical oxidation of furans tethered to silyl
enol ethers at the 2-position leads to a spiroannulation product as a result of the
higher nucleophilicity of the furan 2-position [228].

An enantioselective hydrogenation has been developed in which 2-substituted
furans using chiral iridium/pyridine-phosphinite complexes as catalysts provide
tetrahydrofurans with ee up to 93% [229]. Another interesting example is the Rh/
butiphane-catalyzed enantioselective cis-hydrogenation of a furylnucleoside to form
the reduced product with 72% ee [230].

The presence of a halogen or methoxy substituent at the 2-position of furan
enhances the rate of intramolecular Diels�Alder reactions and the yield of cycload-
duct. This phenomenon is attributed to the decreased activation energy and a greater
stabilization of the cycloadduct imparted by the substitution as determined by CBS-
QB3 calculations. The same substitution at the 3-position can also provide a similar
effect although to a lesser extent than that of the 2-position [231]. In the example
shown in Scheme 6.116, the Diels�Alder reaction occurred mainly at the 3-chloro-

Scheme 6.114

Scheme 6.115
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furan ring, which suggests a dominant effect of a 3-halo substituent on intermo-
lecular cycloaddition [232].

The [4þ 3] cycloaddition of furans with epoxy enol silane derived oxyallyl cations
(Scheme 6.117) has been rendered a viable process by optimization of the reaction
conditions and use of a bulky triethylsilyl group [233]. Dioxines were used as oxyallyl
cation equivalents in a Au/Ag-catalyzed [4þ 3] cycloaddition with furan [234].

A novel Nazarov cyclization of silyloxyfuran as catalyzed by a strong Lewis acidic
iridium complex (Scheme 6.118) was the pivotal step in a total synthesis of the
sesquiterpene merrilactone A [235].

Besides reacting with rhodium carbenoids, furans also react regioselectively with
ruthenium and platinum carbenoids derived from tertiary propargyl carboxy-
lates [236] and sec-O-propargyl thiocarbamates [237], leading to interesting triene
systems.

Scheme 6.116

Scheme 6.117

Scheme 6.118

References

1 Joule, J.A. and Mills, K. (2000)
Heterocyclic Chemistry, 4th edn, Blackwell
Science, Oxford, pp. 296–318.

2 Lichtenthaler, F.W., Cuny, E., Martin, D.,
R€onninger, S., and Weber, T. (1991) in
Carbohydrates as Organic Raw Materials

References j583



(ed. F.W. Lichtenthaler), VCH,
Weinheim, pp. 207–246.

3 Daub, J., Rapp, K.M., Salbeck, J., and
Sch€oberl, U. (1991) in Carbohydrates as
Organic Raw Materials (ed. F.W.
Lichtenthaler), VCH, Weinheim,
pp. 323–350.

4 Dunlop, A.P. and Peters, F.N. (1953) The
Furan, Reinhold, New York. Bosshard, P.
and Eugster, C.H. (1966) Advances in
Heterocyclic Chemistry, 7, 377–490.
Gschwend, H.W. and Rodriguez, H.R.
(1979) Organic Reactions, 26, 1–360;
Dean, F.M. (1982) Advances in
Heterocyclic Chemistry, 30, 167–238.
Dean, F.M. (1982) Advances in
Heterocyclic Chemistry, 31, 237–344;
Sargent, M.V. and Dean, F.M. (1984) in
Comprehensive Heterocyclic Chemistry, Vol
3 (eds C.W. Bird and G.W.H.
Cheeseman), Oxford, Pergamon, pp.
599–656. Donnelly, D.M.X. and Meegan,
M.J. (1984) in Comprehensive Heterocyclic
Chemistry, Vol. 4 (eds Bird, C.W. and
Cheeseman, G.W.H.), Pergamon,
Oxford, pp. 657–712.Lipshutz, B.H.
(1986) Chemical Reviews, 86, 795–819;
Hou, X.L., Cheung, H.Y., Hon, T.Y.,
Kwan, P.L., Lo, T.H., Tong, S.Y., and
Wong, H.N.C. (1998) Tetrahedron, 54,
1955–2020; Keay, B.A. (1999) Chemical
Society Reviews, 28, 209–215;Wright,D.L.
(2005) in Progress in Heterocyclic
Chemistry, Vol. 17 (eds G.W. Gribble
and J.A. Joule), Elsevier, Amsterdam,
Chapter 1, pp. 1–32.

5 McNaught, A.D. (1976) Advances in
Heterocyclic Chemistry, 20, 175–319.

6 Eicher, T. and Hauptmann, S. (1995) The
Chemistry of Heterocycles, Thieme,
Stuttgart, pp. 52–62, translated by H.
Suschitzky and J. Suschitzky.

7 Simkin, B.Y., Minkin, V.I., and
Glukhovtsev, M.N. (1993)
Advances in Heterocyclic Chemistry, 56,
303–428.

8 Pfleiderer, W. (1963) in Physical Methods
in Heterocyclic Chemistry, Vol. 1 (ed. A.R.
Katritzky), Academic Press, New York,
pp. 177–188. Katritzky, A.R. and
Pozharskii, A.F. (2000) Handbook of
Heterocyclic Chemistry, 2nd edn,
Pergamon Press, Amsterdam.

9 Dom�ınguez,C., Cs�aky, A.G., andPlumet,
J. (1992) Tetrahedron, 48, 149–158.

10 Bock, I., Bornowski, H., Rauft, A., and
Theis, H. (1990) Tetrahedron, 1199–1210.

11 Song, Z.Z., Ho, M.S., and Wong, H.N.C.
(1994) The Journal of Organic Chemistry,
59, 3917–3926.

12 Nasipuri, D. and Das, G. (1979) Journal of
the Chemical Society, Perkin Transactions 1,
2776–2778.

13 Chastrette, M. and Chastrette, F. (1973)
Journal of the Chemical Society, Chemical
Communications, 534–535.

14 Kutney, J.P., Hanssen, H.W., and Nair,
G.V. (1971) Tetrahedron, 27, 3323–3330.

15 Gilman, H. and Breuer, F. (1934) Journal
of the American Chemical Society, 56,
1123–1127.

16 Lee, H.K. and Wong, H.N.C. (2002)
Chemical Communications, 2114–2115.

17 Al-Busafi, S. and Whitehead, R.C. (2000)
Tetrahedron Letters, 41, 3467–3470.

18 Diels,O. andAlder, K. (1928)AnnalenDer
Chemie-Justus Liebig, 460, 98–122.Diels,
O., Alder, K., and Naujoks, E. (1929)
Chemische Berichte, 62B, 554–562.

19 Boltulchina, E.V., Zubkov, F.I., Nikitina,
E.V., and Varlamov, A.V. (2005) Synthesis,
1859–1875.

20 D�Auria, M., Racioppi, R., and
Romaniello,G. (2000)European Journal of
Organic Chemistry, 3265–3272.

21 Donohoe, T.J., Guillermin, J.-B.,
Frampton, C., and Walter, D.S. (2000)
Chemical Communications, 465–466.

22 Mata, F., Martin, M.C., and Sørensen,
G.O. (1978) Journal ofMolecular Structure,
48, 157–163.

23 Hudson, P. (1962) Acta Crystallographica,
15, 919–920.

24 Williams, D.E. and Rundle, R.E. (1964)
Journal of the American Chemical Society,
86, 1660–1666.

25 Armarego, W.L.F. (1971) in Physical
Methods in Heterocyclic Chemistry, Vol. 3
(ed. A.R. Katritzky), Academic Press,
New York, pp. 67–222. Bowden, K.,
Braude, E.A., and Jones, E.R.H. (1946)
Journal of the Chemical Society,
948–952.Ott, D.G., Hayes, F.N.,
Hansbury, E., and Kerr, V.N. (1957)
Journal of the American Chemical Society,
79, 5448–5454. Grigg, R., Knight, J.A.,

584j 6 Five-Membered Heterocycles: Furan



and Sargent, M.V. (1966) Journal of the
Chemical Society (C), 976–981. Horv�ath,
G. and Kiss, �A.I. (1967) Spectrochimica
Acta Part A-Molecular and Biomolecular
Spectroscopy, 23, 921–924.

26 Batterham, T.J. (1973) NMR Spectra of
Simple Heterocycles, John Wiley & Sons,
Inc., New York, pp. 370–382.Jackman,
L.M. and Sternhell, S. (1969) Applications
of Nuclear Magnetic Resonance
Spectroscopy in Organic Chemistry, 2nd
edn, Pergamon Press, Oxford, pp.
201–214.White, R.F.M. (1963) in Physical
Methods in Heterocyclic Chemistry, Vol. 2
(ed. A.R. Katritzky), Academic Press,
New York, pp. 103–159.Gronowitz, S.,
Sorlin, G., Gestblom, B., and Hoffman,
R.A. (1962) Arkiv f€or Kemi, 19, 483–497.
Pascal, Y., Morizur, J.P., andWiemann, J.
(1965) Bulletin de la Soci�et�e chimique de
France, 2211–2219.

27 Read, J.M., Jr, Mathis, C.T., and
Goldstein, J.H. (1965) Spectrochim Acta,
21, 85–93.

28 Silverstein, R.M., Webster, F.X., and
Kiemle, D.J. (2005) Spectrometric
Idenification of Organic Compounds, 7th
edn, Ch 4, John Wiley & Sons Inc., New
York, pp. 204–244. White, R.F.M. and
Williams,H. (1971) inPhysicalMethods in
Heterocyclic Chemistry, Vol. 4 (ed. A.R.
Katritzky), Academic Press, New York,
pp. 121–235; Reddy, G.S. and Goldstein,
J.H. (1962) Journal of the American
Chemical Society, 84, 583–585. Page, T.F.,
Jr, Alger, T., and Grant, D.M. (1965)
Journal of the American Chemical Society,
87, 5333–5339;Weigert, F.J. and Roberts,
J.D. (1968) Journal of the American
Chemical Society, 90, 3543–3549.

29 Spiteller, G. (1971) in Physical Methods in
Heterocyclic Chemistry, Vol. 3 (ed. A.R.
Katritzky), Academic Press, New York,
pp. 223–296; Collin, J. (1960) Bulletin
des Soci�et�es Chimiques Belges, 69,
449–465.

30 Turner, D.W., Baker, A., Baker, A.D.,
and Brundle, C.R. (1970) Molecular
Photoelectron Spectroscopy, John Wiley &
Sons Inc., New York, pp. 329.Eland,
J.H.D. (1969) International Journal of
Mass Spectrometry and Ion Physics, 2,
471–484.

31 Distefano, G., Pignataro, S., Innorta, G.,
Fringuelii, F.,Marino,G., andTaticchi, A.
(1973) Chemical Physics Letters, 22,
132–136.

32 Sell, J.A. and Kuppermann, A. (1979)
Chemical Physics Letters, 61, 355–362.

33 Fabian, J., Mehlhorn, A., and Zahradn�ık,
R. (1968) Theoretica Chimica Acta, 12,
247–255.

34 Julg, A. and Sabbah, R. (1977) Comptes
Rendus de l�Academie des Sciences Paris C,
285, 421–424.

35 Bingham, R.C., Dewar, M.J.S., and Lo,
D.H. (1975) Journal of the American
Chemical Society, 97, 1302–1306.

36 Dewar, M.J.S. and Ford, G.P. (1977)
Journal of the American Chemical Society,
99, 1685–1691.

37 Rico, M., Barrachina, M., and Orza, J.M.
(1967) Journal of Molecular Spectroscopy,
24, 133–148.

38 Palmer,M.H., Findlay, R.H., andGaskell,
A.J. (1974) Journal of the Chemical Society,
Perkin Transactions 2, 420–428.

39 Nakatsuji, H., Kitao, O., and Yonezawa, T.
(1985) Journal of Chemical Physics, 83,
723–734.

40 Serrano-Andr�es, L., Merch�an, M., Nebot-
Gil, I., Roos, B.O., and F€ulscher, M.
(1993) Journal of the American Chemical
Society, 115, 6184–6197.

41 Cooper, D.L. and Wright, S.C. (1989)
Journal of the Chemical Society, Perkin
Transactions 2, 263–267.

42 Phuwapraisirisan, P., Matsunaga, S., van
Soest, R.W.M., and Fusetani, N. (2004)
Tetrahedron Letters, 45, 2125–2128.

43 Wu, J., Zhang, S., Xiao, Q., Li, Q.-X.,
Huang, J.-S., Long, L.-J., and
Huang, L.-M. (2004) Tetrahedron Letters,
45, 591–593.

44 Guti�errez, M., Capson, T.L., Guzm�an,
H.M., Gonz�alez, J., Ortega-Barr�ıa, E.,
Qui~no,�a E., and Riguera, R. (2005)
Journal of Natural Products, 68, 614–616.

45 Reddy, N.S., Reed, J.K., Longley, R.E., and
Wright, A.E. (2005) Journal of Natural
Products, 68, 248–250.

46 Hanai, R., Gong, X., Tori, M., Kondo, S.,
Otose, K., Okamoto, Y., Nishihama, T.,
Murota, A., Shen, Y.-M., Wu, S.-G., and
Kuroda, C. (2005) Bulletin of the Chemical
Society of Japan, 78, 1302–1308.

References j585



47 Bousserouel, H., Litaudon, M., Morleo,
B., Martin, M.-T., Thoison, O., Nosjean,
O., Boutin, J.A., Renard, P., and
S�evenet, T. (2005) Tetrahedron, 61,
845–851.

48 Austin, J.F. and MacMillan, D.W.C.
(2002) Journal of the American Chemical
Society, 124, 1172–1173.

49 King, H.D., Meng, Z.-X., Denhart, D.,
Mattson, R., Kimura, R., Wu, D.-D., Gao,
Q., andMacor, J.E. (2005)Organic Letters,
7, 3437–3440.

50 Garcia, A.A. and Martinez, J.L.O. (1982)
Span. ES 506,422. Clitherow, J.W. (1985)
U.S. Patent 4,497,961. Price, B.J.,
Clitherow, J.W., and Bradshaw, J. (1984)
Patentschrift CH 640,846.

51 Tseng, J.-C., Huang, S.-L., Lin, C.-L., Lin,
H.-C., Jin, B.-Y., Chen, C.-Y., Yu, J.-K.,
Chou, P.-T., and Luh, T.-Y. (2003)Organic
Letters, 5, 4381–4384.

52 Krasnoslobodskaya, L.D. and Gol�dfarb,
Ya.L. (1969)Uspekhi Khimii, 38, 854–891,
(Russ.).

53 Ranganathan, S., Ranganathan, D., and
Mehrotra, M.M. (1977) Synthesis,
838.Kornfeld, E.C. and Jones, R.G. (1954)
The Journal of Organic Chemistry, 19,
1671–1680.

54 Efremov, I. and Paquette, L.A. (2000)
Journal of the American Chemical Society,
122, 9324–9325.

55 Mongin, F., Bucher, A., Bazureau, J.P.,
Bayh, O., Awad, H., and Tr�ecourt, F.
(2005) Tetrahedron Letters, 46, 7989–7992.

56 Bock, I., Bornowski, H., Rault, A., and
Theis, H. (1990) Tetrahedron, 46,
1199–1210.

57 Cahiez, G., Chavant, P.-Y., and Metais, E.
(1992) Tetrahedron Letters, 33, 5245–5248;
Kojima, Y.,Wakita, S., andKato, N. (1979)
Tetrahedron Letters, 20, 4577–4580.Ennis,
D.S. and Gilchrist, T.L. (1990)
Tetrahedron, 46, 2623–2632;Yang, Y. and
Wong, H.N.C. (1994) Tetrahedron, 50,
9583–9608.

58 Padwa, A., Crawford, K.R.,
Rashatasakhon, P., and Rose, M. (2003)
The Journal of Organic Chemistry, 68,
2609–17.

59 Demir, A.S., Reis, €O., and Emrullahoglu,
M. (2003) The Journal of Organic
Chemistry, 68, 578–580.

60 Glover, B., Harvey, K.A., Liu, B., Sharp,
M.J., and Tymoschenko, M.F. (2003)
Organic Letters, 5, 301–304.

61 Brel, V.K. (2001) Synthesis, 1539–1545.
62 Malanga, C. and Mannucci, S. (2001)

Tetrahedron Letters, 42, 2023–2025.
63 Uneyama, K., Tanaka, H., Kobayashi, S.,

Shioyama, M., and Amii, H. (2004)
Organic Letters, 6, 2733–2736.

64 Miles, W.H., Heinsohn, S.K., Brennan,
M.K., Swarr, D.T., Eidam, P.M., and
Gelato, K.A. (2002) Synthesis, 1541–1545.

65 Miles, W.H., Dethoff, E.A., Tuson, H.H.,
and Ulas, G. (2005) The Journal of
Organic Chemistry, 67, 2862–2865.

66 Zanatta, N., Faoro, D., Silva, S.C.,
Bonacorso, H.G., and Martins, M.A.P.
(2004) Tetrahedron Letters, 45, 5689–5691.

67 Barma, D.K., Kundu, A., Baati, R.,
Mioskowski, C., and Falck, J.R. (2002)
Organic Letters, 4, 1387–1389.

68 Padwa, A., Zanka, A., Cassidy, M.P.,
and Harris, J.M. (2003) Tetrahedron, 59,
4939–4944.

69 Donohoe, T.J., Orr, A.J., Gosby, K., and
Bingham, M. (2005) European Journal
of Organic Chemistry, 1969–1971.

70 Grimaldi, T., Romero, M., and Pujol,
M.D. (2000) Synlett, 1788–1792.

71 Barma, D.K., Kundu, A., Baati, R.,
Mioskowski, C., and Falck, J.R. (2000)
Chemistry Letters, 750–751.

72 McClure, M.S., Glover, B., McSorley, E.,
Millar, A., Osterhout, M.H., and
Roschangar, F. (2001) Organic Letters, 3,
1677–1680.

73 McClure, M.S., Roschangar, F., Hodson,
S.J., Millar, A., and Osterhout, M.H.
(2001) Synthesis, 1681–1685.

74 Gauthier, D.R., Jr, Szumigala, R.H., Jr,
Dormer, P.G., Armstrong, J.D., III,
Volante, R.P., and Reider, P.J. (2002)
Organic Letters, 4, 375–378.

75 Marshall, J.A. and Robinson, E.D. (1990)
The Journal of Organic Chemistry, 55,
3450–3451.

76 Marshall, J.A. and Sehon, C.A. (1997)The
Journal of Organic Chemistry, 59,
4313–4320.

77 Hashimi,A.S.K., Schwarz, L., Choi, J.-H.,
and Frost, T.M. (2000) Angewandte
Chemie, International Edition, 39,
2285–2588.

586j 6 Five-Membered Heterocycles: Furan



78 Kel�in, A.V. and Gevorgyan, V. (2002)
The Journal of Organic Chemistry, 67,
95–98.

79 Ma, S. and Yu, Z. (2002) Angewandte
Chemie, International Edition, 41, 1775;
Ma, S., Gu, Z., and Yu, Z. (2005) The
Journal of Organic Chemistry, 67,
6291–6294.

80 Miki, K., Nishino, F., Ohe, K., and
Uemura, S. (2002) Journal of the
American Chemical Society, 124,
5260–5261.

81 Teng, X., Wada, T., Okamoto, S., and
Sata, F. (2001) Tetrahedron Letters, 42,
5501–5503.

82 M�endez-Andino, J. and Paquette, L.A.
(2000) Organic Letters, 2, 4095–4097.

83 Alickmann, D., Fr€ohlich, R., Maulitz,
A.H., and W€urthwein, E.-U. (2002)
European Journal of Organic Chemistry,
1523–1537.

84 Bellur, E., G€orls,H., and Langer, P. (2005)
European Journal of Organic Chemistry,
2074–2090.

85 Righi, G., Antonioletti, R., Ciambrone,
S., and Fiorini, F. (2005) Tetrahedron
Letters, 46, 5467–5469.

86 Imagawa, H., Kurisaki, T., and
Nishizawa, M. (2004) Organic Letters, 6,
3679–3681.

87 Padwa, A., Rashatasakhon, P., and Rose,
M. (2003) The Journal of Organic
Chemistry, 68, 5139–5146.
Rashatasakhon, P. and Padwa, A. (2003)
Organic Letters, 5, 189–191.

88 Whitehead, C.R., Sessions, E.H.,
Ghiviriga, I., and Wright, D.L. (2002)
Organic Letters, 4, 3763–3765.

89 Sperry, J.B. and Wright, D.L. (2005)
Journal of the American Chemical Society,
127, 8034–8035.

90 Qing, F.-L., Gao, W.-Z., and Ying, J.-W.
(2000) The Journal of Organic Chemistry,
65, 2003–2006.

91 Fan, M., Guo, L., Liu, X., and Liang, Y.
(2005) Synthesis, 391–396.

92 Sniady, A., Wheeler, K.A., and
Dembinski, R. (2005) Organic Letters, 7,
1769–1772.

93 Karpov, A.S., Merkul, E., Oeser, T., and
M€uller, T.J.J. (2005) Chemical
Communications, 2581–2583.

94 Jung,C.-K.,Wang, J.-C., andKrische,M.J.
(2004) Journal of the American Chemical
Society, 126, 4118–4119.

95 Kuroda, H., Hanaki, E., and Kawakami,
M. (1999) Tetrahedron Letters, 40,
3753–3756; Kuroda, H., Hanaki, E.,
Izawa, H., Kano, M., and Itahashi, H.
(2004) Tetrahedron, 60, 1913–1920.

96 Redman, A.M., Dumas, J., and Scott,W.J.
(2000) Organic Letters, 2, 2061–2063.

97 Aurrecoechea, J.M., P�erez, E., and Solay,
M. (2001) The Journal of Organic
Chemistry, 66, 564–569.

98 Aurrecoechea, J.M. and P�erez, E. (2001)
Tetrahedron Letters, 42, 3839–3841.

99 Akai, S., Kawashita, N., Satoh, H., Wada,
Y., Kakiguchi, K., Kuriwaki, I., andKita, Y.
(2004) Organic Letters, 6, 3793–3796.

100 Yao, T., Zhang,X., and Larock, R.C. (2004)
Journal of the American Chemical Society,
126, 11164–11165.

101 Patil, N.T., Wu, H., and Yamamoto, Y.
(2005) The Journal of Organic Chemistry,
70, 4531–4534.

102 Liu, Y. andZhou, S. (2005)Organic Letters,
7, 4609–4611.

103 Kato, Y., Miki, K., Nishino, F., Ohe, K.,
and Uemura, S. (2003) Organic Letters, 5,
2619–2621.

104 Wipf, P. and Soth, M.J. (2002) Organic
Letters, 4, 1787–1790.

105 Ma, S. and Zhang, J. (2003) Journal of the
American Chemical Society, 125,
12386–12387.

106 Ma, S., Lu, L., andZhang, J. (2004) Journal
of the American Chemical Society, 126,
9645–9660.

107 Kim, J.T., Kel�in, A.V., and Gevorgyan, V.
(2003) Angewandte Chemie, International
Edition, 42, 98–101.

108 Lee, C.-F., Yang, L.-M., Hwu, T.-Y., Feng,
A.-S., Tseng, J.-C., and Luh, T.-Y. (2000)
Journal of the American Chemical Society,
122, 4992–4993.

109 Leclerc, E. and Tius, M.A. (2003) Organic
Letters, 5, 1171–1174.

110 Sromek, A.W., Rubina, M., and
Gevorgyan, V. (2005) Journal of the
American Chemical Society, 127,
10500–10501.

111 Ma, S. and Zhang, J. (2000) Chemical
Communications, 117–118.

References j587



112 Nishibayashi, Y., Yoshikawa, M., Inada,
Y., Milton, M.D., Hidai, M., and Uemura,
S. (2003) Angewandte Chemie,
International Edition, 42, 2681–2684.

113 Ma, S., Zhang, J., and Lu, L. (2003)
Chemistry – A European Journal, 9,
2447–2456.

114 Suhre, M.H., Reif, M., and Kirsch, S.F.
(2005) Organic Letters, 7, 3925–3927.

115 Bossharth, E., Desbordes, P., Monteiro,
N., and Balme, G. (2003) Organic Letters,
5, 2441–2444.

116 Duan, X.-H., Liu, X.-Y., Guo, L.-N., Liao,
M.-C., Liu,W.-M., and Liang, Y.-M. (2005)
The Journal of Organic Chemistry, 67,
6980–6983.

117 Fayol, A. and Zhu, J. (2004) Organic
Letters, 6, 115–118.

118 Yadav, J.S., Reddy, B.V.S., Shubashree, S.,
Sadashiv, K., and Naidu, J.J. (2004)
Synthesis, 2376–2380.

119 Yavari, I., Nasiri, F., Moradi, L., and
Djahaniani, H. (2004) Tetrahedron Letters,
45, 7099–7101.

120 Miki, K., Yokoi, T., Nishino, F., Kato, Y.,
Washitake, Y., Ohe, K., and Uemura, S.
(2004) The Journal of Organic Chemistry,
66, 1557–1564; Miki, K., Washitake, Y.,
Ohe, K., and Uemura, S. (2004)
Angewandte Chemie, International Edition,
43, 1857–1860.

121 Sromek, A.W., Kel�in, A.V., and
Gevorgyan, V. (2004)Angewandte Chemie,
International Edition, 43, 2280–2282.

122 Nair, V., Streekumar, V., Bindu, S., and
Suresh, E. (2005) Organic Letters, 7,
2297–2300.

123 Ma, C. and Yang, Y. (2005)Organic Letters,
7, 1343–1345.

124 Tanis, S.P., Deaton, M.V., Dixon, L.A.,
McMills,M.C., Raggon, J.W., andCollins,
M.A. (1998) The Journal of Organic
Chemistry, 63, 6914–6928.

125 Bur, S.K. and Martin, S.F. (2001)
Tetrahedron, 57, 3221–3242.

126 Rassu, G., Zanardi, F., Battistini, L.,
and Casiraghi, G. (1999) Synlett,
1333–1350; Rassu, G., Zanardi, F.,
Battistini, L., and Casiraghi, G. (2000)
Chemical Society Reviews, 29, 109–118;
Casiraghi,G., Zanardi, F., Appendino,G.,
and Rassu, G. (2000) Chemical Reviews,
100, 1929–1972.

127 For examples Carre~no, C., Luz�on, C.G.,
and Ribagorda, M. (2002) Chemistry – A
European Journal, 8, 208–216.Brimble,
M.A., Davey, R.M., and McLeod, M.D.
(2002) Synlett, 1318–1322.

128 Martin, S.F., Barr, K.J., Smith, D.W., and
Bur, S.K. (1999) Journal of the American
Chemical Society, 121, 6990–6997.

129 Suga, H., Kitamura, T., Kakechi, A., and
Baba, T. (2004) Chemical
Communications, 1414–1415; Kitajima,
H., Ito, K., and Katsuki, T. (1997)
Tetrahedron, 53, 17015–17028.

130 Brown, S.P., Goodwin, N.C., and
MacMillan, D.W.C. (2003) Journal of the
American Chemical Society, 125,
1192–1194.

131 Cho, C.-W. and Krische, M.J. (2004)
Angewandte Chemie, International Edition,
43, 6689–6691.

132 Winkler, J.D., Oh, K., and Asselin, S.M.
(2005) Organic Letters, 7, 387–389.

133 Naito, S., Escobar,M., Kym,P.R., Liras, S.,
and Martin, S.F. (2002) The Journal of
Organic Chemistry, 67, 4200–4208.

134 Friedman, L.A., You, F., Sabat, M., and
Harman, W.D. (2003) Journal of the
American Chemical Society, 125,
14980–14981; Chen, H., Liu, R., Myers,
W.H., and Harman, W.D. (1998) Journal
of the American Chemical Society, 120,
509–520.

135 Hwu, J.R., Sambaiah, T., and
Chakraborty, S.K. (2003) Tetrahedron
Letters, 44, 3167–3169.

136 Barluenga, J., Nandy, S.K., Laxmi, Y.R.S.,
Su�arez, J.R., Merino, I., Fl�orez, J., Garc�ıa-
Granda, S., and Montedo-Bernardo, J.
(2003) Chemistry – A European Journal, 9,
5725–5736.

137 Pianacatelli, G., D�Auria, M., and
D�Onofrio, F. (1994) Synthesis, 867–889.

138 Cs�aky, A.G. and Plumet, J. (1990)
Tetrahedron Letters, 31, 7669–7670.

139 Adger, B.M., Barrett, C., Brennan, J.,
MaKervey, M.A., andMurray, R.W. (1991)
Journal of the Chemical Society, Chemical
Communications, 1553–1554.

140 Finlay, J., MaKervey, M.A., and
Gunaratne, H.Q.N. (1998) Tetrahedron
Letters, 39, 5651–5654.

141 Annangudi, S.P., Sun, M., and Salomon,
R.G. (2005) Synlett, 1468–1470; Clive,

588j 6 Five-Membered Heterocycles: Furan



D.L.J. and Minaruzzaman, Ou, L.-G.
(2005), The Journal of Organic Chemistry,
70, 3318–3320.

142 Massa, A., Acocella, M.R., De Rosa, M.,
Soriente, A., Villano, R., and Scettri, A.
(2003) Tetrahedron Letters, 44, 835–837.

143 Giovannini, R. and Petrini, M. (1997)
Tetrahedron Letters, 38, 3781–3784.

144 McDermott, P.J. and Stockman, R.A.
(2005) Organic Letters, 7, 27–29.

145 Kim, G., Jung, S.-D., Lee, E.-J., and Kim,
N. (2003) The Journal of Organic
Chemistry, 68, 5395–5398.

146 Cen~nal, J.P., Carreras, C.R., Tonn, C.E.,
Padr�on, J.I., Ram�ırez, M.A., D�ıaz, D.D.,
Garc�ıa-Tellado, F., andMart�ın, V.S. (2005)
Synlett, 1575–1578; Ley, S.V. and
Mahon, M. (1983) Journal of the
Chemical Society, Perkin Transactions 1,
1379–1380.

147 Yu, P., Yang, Y., Zhang, Z.Y., Mak, T.C.W.,
and Wong, H.N.C. (1997) The
Journal of Organic Chemistry, 62,
6539–6366.

148 Gollnick, K. and Griesbeck, A. (1985)
Tetrahedron, 41, 2057–2068.

149 Kerman, M.R. and Faulkner, D.J. (1988)
The Journal of Organic Chemistry, 53,
2773–2776.

150 Vassilikogiannakis, G. and Stratakis, M.
(2003) Angewandte Chemie, International
Edition, 42, 5465–5468.
Vassilikogiannakis, G., Margaros, I., and
Montagnon, T. (2004) Organic Letters, 6,
2039–2042.

151 Ciufolini, M.A., Hermann, C.Y.W., Dong,
Q., Shimizu, T., Swaminathan, S., and Xi,
N. (1997) Synlett, 105–114.

152 Haukaas, M.H. and O�Doherty, G.A.
(2001) Organic Letters, 3, 401–404;
Cassidy, M.P. and Padwa, A. (2004)
Organic Letters, 6, 4029–4031.

153 Kennedy, A., Nelson, A., and Perry, A.
(2005) Chemical Communications,
1646–1648.

154 Katritzky, A.R. and Dennis, N. (1989)
Chemical Reviews, 89, 827–861.

155 Wender, P.A., Jesudason, C.D., Nakahira,
H., Tamura, N., Tebbe, A.L., and Ueno, Y.
(1997) Journal of the American Chemical
Society, 119, 12976–12977.

156 Moeller, K.D. (2000) Tetrahedron, 56,
9527–9554.

157 Hughes, C.C., Miller, A.K., and Trauner,
D. (2005) Organic Letters, 7, 3425–3428.

158 Yim, H.K., Liao, Y., and Wong, H.N.C.
(2003) Tetrahedron, 59, 1877–1884.

159 Gribble, G.W. (1991) In Comprehensive
Organic Synthesis, Vol. 8 (eds B.M. TrostC
and I. Fleming), Oxford, Pergamon,
pp. 606–608; Donohoe, T.J., Garg, R.,
and Stevenson, C.A. (1996) Tetrahedron
Asymmetry, 7, 317–344.

160 Schmidt, U. andWerner, J. (1986) Journal
of the Chemical Society, Chemical
Communications, 996–998.

161 Donohoe, T.J., Calabrese, A.A.,
Stevenson, C.A., and Ladduwahetty, T.
(2000) Journal of the Chemical Society,
Perkin Transactions 1, 3724–3731;
Donohoe, T.J., Calabrese, A.A.,
Guillermin, J.-B., Frampton, C.S., and
Walter, D. (2002) Journal of the Chemical
Society, Perkin Transactions 1, 1748–1756.

162 Rodr�ıguez, A., Nomen, M., Spur, B.W.,
and Godfroid, J.-J. (1999) European
Journal of Organic Chemistry, 2655–2662.

163 D�Auria, M. (2000) Heterocycles, 52,
185–194.

164 Chubb, R.W.J., Bryce,M.R., and Tarbit, B.
(2001) Chemical Communications,
1853–1854.

165 Pommier, A., Stepanenko, V., Jarowicki,
K., and Kocienski, P.J. (2003) The Journal
of Organic Chemistry, 68, 4008–4013.

166 Erker, G., Petrenz, R., Kr€uger, C., Lutz, F.,
Weiss, A., and Werner, S. (1992)
Organometallics, 11, 1646–1655.

167 Osornio, Y.M., Cruz-Almanza, R.,
Jim�enez-Monta~no, V., and Miranda, L.D.
(2003) Chemical Communications,
2316–2317.

168 Demircan, A. and Parsons, P.J. (2003)
European Journal of Organic Chemistry,
1729–1732; Demircan, A. and Parsons,
P.J. (1998) Synlett, 1215–1216;Parsons,
P.J., Penverne, M., and Pinto, I.L. (1994)
Synlett, 721–722.

169 Jones, P., Li, W.-S., Pattenden, G., and
Thomson, N.M. (1997) Tetrahedron
Letters, 38, 9069–9072.

170 Kappe, O., Murphree, S., and Padwa, A.
(1997) Tetrahedron, 53, 14179–14233.

171 Padwa, A., Ginn, J.D., Bur, S.K., Eidell,
C.K., and Lynch, S.M. (2002) The Journal
of Organic Chemistry, 67, 3412–3424.

References j589



172 Tor�o, A. and Deslongchamps, P. (2003)
The Journal of Organic Chemistry, 68,
6847–6852.

173 Harmata, M. (2001) Accounts of Chemical
Research, 34, 595–605; Harmata, M.
(1997) Tetrahedron, 53, 6235–6280;Rigby,
J.H. and Pigge, F.C. (1997) in Organic
Reactions, Vol 51 (ed. Paquette, L.A.),
John Wiley & Sons Inc., New York,
pp. 351–478.

174 S�aez, J.A., Arn�o, M., and Domingo, L.R.
(2003) Organic Letters, 5, 4117–4120, and
references cited therein.

175 Cho, S.Y., Lee, H.I., and Cha, J.K. (2001)
Organic Letters, 3, 2891–2893.

176 Pri�e G., Pr�evost, N., Twin, H., Fernandes,
S.A., Hayes, J.F., and Shipman,M. (2004)
Angewandte Chemie, International Edition,
43, 6517–6519.

177 Harmata, M. and Schreiner, P.R. (2001)
Organic Letters, 3, 3663–3665.

178 Lee, J.C. and Cha, J.K. (2000) Tetrahedron,
56, 10175–10184.

179 Hamata, M., Ghosh, S.K., Hong, X.,
Wacharasindhu, S., and Kirchhoefer, P.
(2004) Journal of the American Chemical
Society, 125, 2058–2059.

180 Huang, J. andHsung, R.P. (2005) Journal
of the American Chemical Society, 127,
50–51.

181 Rigby, J.H. and Chouraqui, G. (2005)
Synlett, 2501–2503.

182 Hashmi, A.S.K., Frost, T.M., and
Bats, J.W. (2000) Journal of the
American Chemical Society, 122,
11553–11554.

183 Hashmi, A.S.K., Rudolph, M.,Weyrauch,
J.P., W€olfle, M., Frey, W., and Bats, J.W.
(2005) Angewandte Chemie, International
Edition, 44, 2798–2801.

184 Drew,M.G.B., Jahans,A.,Harwood, L.M.,
and Apoux, S.A.B.H. (2002) European
Journal of Organic Chemistry, 3589–3594,
and references cited therein.

185 Zhang, L.,Wang, Y., Buckingham,C., and
Herndon, J.W. (2005) Organic Letters, 7,
1665–1667.

186 For two recent examples see: Anderson,
E.A., Alexanian, E.J., and Sorensen, E.J.
(2004) Angewandte Chemie, International
Edition, 43, 1998–2001. Toyooka, N.,
Nagaoka, M., Kakuda, H., and Nemoto,
H. (2001) Synlett, 1123–1124.

187 Chou, Y.-Y., Peddinti, R.K., and Liao, C.-C.
(2003) Organic Letters, 5, 1637–1640.

188 Avalos, M., Babiano, R., Cabello, N.,
Cintas, P., Hursthouse,M.B., Jimenez, J.,
Light, M.E., and Palacios, J.C. (2003) The
Journal of Organic Chemistry, 68,
7193–7203.

189 J€ager, V. andM€uller, I. (1985) Tetrahedron,
41, 3519–3528;Zimmermann, P.J., Lee,
J.Y., Hlobilova, I., Endermann, R.,
H€abich, D., and J€ager, V. (2005)
European Journal of Organic Chemistry,
3450–3460.

190 Mejia-Oneto, J.M. and Padwa, A. (2004)
Organic Letters, 6, 3241–3244.

191 Chhor, R.B., Nosse, B., S€orgel, S., B€ohm,
C., Seitz, M., and Reiser, O. (2003)
Chemistry – A European Journal, 9,
260–270.

192 Curini, M., Epifano, F., Marcotullio,
M.C., Rosati, O., Guo, M., Guan, Y., and
Wenkert, E. (2005) Helvetica Chimica
Acta, 88, 330–338.

193 Hughes, C.C., Kennedy-Smith, J.J., and
Trauner, D. (2003) Organic Letters, 5,
4113–4115.

194 Abe,M., Kawakami, T., Ohata, S., Nozaki,
K., and Nojima, M. (2004) Journal of the
American Chemical Society, 126,
2838–2846.

195 Abe, M., Torri, E., and Nojima, M. (2000)
The Journal of Organic Chemistry, 65,
3426–3431.

196 Crimmins, M.T., Pace, J.M., Nantermet,
P.G., Kim-Meade, A.S., Thomas, J.B.,
Watterson, S.H., and Wagman, A.S.
(2000) Journal of the American Chemical
Society, 122, 8453–8463.

197 Capon, B. and Kwok, F.-C. (1986)
Tetrahedron Letters, 27, 3275–3278.

198 Bodor, N., Dewar,M.J.S., andHarget, A.J.
(1970) Journal of the American Chemical
Society, 92, 2929–2936.

199 Rao, Y.S. (1976) Chemical Reviews, 76,
625–694.

200 Fari~na, F., Maestro, M.C., Martin,
M.R., Martin, M.V., S�anchez, F., and
Soria, M.L. (1986) Tetrahedron, 42,
3715–3722.

201 Rao, Y.S. (1964) Chemical Reviews, 64,
353–388.

202 Laduwahetty, T. (1995) Contemporary
Organic Synthesis, 2, 133–179.

590j 6 Five-Membered Heterocycles: Furan



203 Hashem, A. and Kleinpeter, E. (2001)
Advances in Heterocyclic Chemistry, 81,
107–165.

204 Yu,W.-Y. and Alper, H. (1997) The Journal
of Organic Chemistry, 62, 5684–5687.

205 Nozaki, K., Sato,N., Ikeda, K., andTakaya,
H. (1996) The Journal of Organic
Chemistry, 61, 4516–4519.

206 Ohno,M., Oguri, I., and Eguchi, S. (1999)
The Journal of Organic Chemistry, 64,
8995–9000.

207 Jan-Anders, H., Nasman, K., and Pensar,
G. (1985) Synthesis, 8, 786–788.

208 Eberhard, G., Walter, K., Wolfgang, W.,
andVolker, J. (1986)Synthesis, 9, 921–926.

209 Hashem, A. and Senning, A. (1999)
Advances in Heterocyclic Chemistry, 73,
275–293.

210 Hashm, A.I. and Shaban, M.E. (1981)
Journal f €ur Praktische Chemie, 323,
164–168.

211 Camici, L., Ricci, A., and Taddei, M.
(1986) Tetrahedron Letters, 27, 5155–5158.

212 Shin, S.S., Byun, Y., Lim, K.M., Choi, J.K.,
Lee, K.-W., Moh, J.H., Kim, J.K., Jeong,
Y.S., Kim, J.Y., Choi, Y.H., Koh, H.-J.,
Park, Y.-H., and Oh, Y.I. (2004) Journal
of Medicinal Chemistry, 47, 792–804.

213 Cochran, J.E., Wu, T., and Padwa,
A. (1996) Tetrahedron Letters, 37,
2903–2906.

214 (a) Zhou, C.Y., Hong, P.W. and Che, C.M.
(2006) Organic Letters, 8, 325–328.
(b) Zhang, J. and Schmalz, H.-G. (2006)
Angewandte Chemie, International Edition,
45, 6704–6707. (c)Oh,C.H., Lee, S.J., Lee,
J.H. and Na, Y.J. (2008) Chemical
Communications 5794–5796. (d) Zhang,
G., Huang, X., Li, G. and Zhang, L. (2008)
Journal of the American Chemical Society,
130, 1814–1815.

215 (a) Peng, L., Zhang, X.,Ma,M. andWang,
J. (2007) Angewandte Chemie,
International Edition, 46, 1905–1908.
(b)Dudnik, A.S. andGevorgyan, V. (2007)
Angewandte Chemie, International Edition,
46, 5195–5197. (c) Barluenga, J., Riesgo,
L., Vicente, R., L�opez, L.A. and Tom�as, A.
(2008) Journal of the American Chemical
Society, 130, 13528–13529. (d) Zhang, Y.,
Chen, Z., Xiao, Y. and Zhang, J. (2009)
Chemistry – A European Journal, 15,
5208–5211.

216 (a) Parsons, P., Waters, A.J., Walter, D.S.
andBoard, J. (2007)The Journal ofOrganic
Chemistry, 72, 1395–1398. (b) Ho, C.H.,
Park, H.M. and Park, D.I. (2007)
Organic Letters, 9, 1191–1193. (c) Xiao, Y.
and Zhang, J. (2008) Angewandte
Chemie, International Edition, 47,
1903–1906.

217 Tokumaru, K., Arai, S. and Nishida, A.
(2006) Organic Letters, 8, 27–30.

218 Casiraghi, G. Zanardi, F., Battistini, L.
and Rassu, G. (2009) Synlett, 1525–1542;
other new examples: Wieland, L.C.,
Vieira, E.M. Snapper, M.L. and Hoveyda,
A.H. (2009) Journal of the American
Chemistry Society, 131, 570–576;Frings,
M., Atodiresei, I., Runsink, J., Raabe, G.
and Bolm, C. (2009) Chemistry�A
European Journal, 15, 1566–1569;Yuan,
Z.-J., Jiang, J.-J. and Shi, M. (2009)
Tetrahedron, 65, 6001–6007.

219 Jiang, Y.-Q., Shi, Y.-L. and Shi, M. (2008)
Journal of the American Chemistry Society,
130, 7202–7203.

220 Barluenga, J., Garc�ıa-Garc�ıa, P., de S�aa,D.
and Fern�andez-Rodr�ıguez, M.A. (2007)
Angewandte Chemie, International Edition,
46, 2610–2612.

221 Barluenga, J., de Prado, A., Santamar�ıa, J.
and Tom�as, M. (2007) Chemistry�A
European Journal, 13, 1326–1331;
Barluenga, J. de Prado, A., Santamar�ıa, J.
and Tom�as, M. (2005) Angewandte
Chemie, International Edition, 44,
6583–6585.

222 Li, S.-W. and Batey, R.A. (2007) Chemical
Communications, 3759–3761.

223 Aquino, M., Bruno, I., Riccio, R. and
Gomez-Paloma, L. (2006) Organic Letters,
8, 4831–4834.

224 Patril, S.N. and Liu, F. (2007) The Journal
of Organic Chemistry, 72, 6305–6308.

225 Kiren, S., Hong, X., Leverett, C.A. and
Padwa, A. (2009) Organic Letters, 11,
1233–1235.

226 Griggs, N.D. and Phillips, A.J. (2008)
Organic Letters, 10, 4955–4957.

227 Tofi, M., Koltsida, K. and
Vassilikogiannakis, G. (2009) Organic
Letters, 11, 313–316.

228 Sperry, J.B., Ghiviriga, I. andWright, D.L.
(2006) Chemical Communications,
194–196.

References j591



229 Kaiser, S., Smidt, S.P. and Pfaltz, A.
(2006) Angewandte Chemie, International
Edition, 45, 5194–5197.

230 Feiertag, P., Albert, M., Nettekoven, U.
and Spindler, F. (2006) Organic Letters, 8,
4133–4135.

231 Pieniazek, S.N. and Houk, K.N. (2006)
Angewandte Chemie, International Edition,
45, 1442–1445; Padwa, A., Crawford,
K.R., Straub, C.S., Pieniazek, S.N. and
Houk, K.N. (2006) The Journal of Organic
Chemistry, 71, 5432–5439.

232 Ram, R.N. and Kumar, N. (2008)
Tetrahedron Letters, 49, 799–802;232.Ram,
R.N. and Kumar, N. (2008) Tetrahedron,
64, 10267–10271.

233 Chung, W.K., Lam, S.K., Lo, B., Liu, L.L.,
Wong,W.-T. andChiu, P. (2009) Journal of

the American Chemistry Society, 130,
4556–4557.

234 Harmata, M. and Huang C. (2009)
Tetrahedron Letters, 50, 5701–5703.

235 He, W., Huang, J., Sun, X. and Frontier,
A.J. (2007) Journal of the American
Chemistry Society, 129, 498–499; He, W.,
Huang, J., Sun, X. and Frontier, A.J.
(2008) Journal of the American Chemistry
Society, 130, 300–308.

236 Miki, K., Fujita, M., Uemura, S. and
Ohe, K. (2006) Organic Letters, 8,
1741–1743; Miki, K., Senda, Y.,
Kowada, T. and Ohe, K. (2009) Synlett,
1937–1940.

237 Ikeda, Y., Murai, M., Abo, T., Miki, K. and
Ohe, K. (2007) Tetrahedron Letters, 48,
6651–6654.

592j 6 Five-Membered Heterocycles: Furan



7
Five-Membered Heterocycles: Benzofuran and Related Systems
Jie Wu

7.1
Introduction

Benzofuran is a very important heterocycle and broadly found in natural [1] and
biologically important [2] molecules and is frequently used as a building block in
materials science [3a] and in organic synthesis [3b]. Several recentmini-reviews cover
the investigation of benzo[b]furans in natural products, bioactivity and synthesis [4].
Two general approaches are commonly used for the preparation of substituted
benzofurans: (i) functionalization of existing benzofuran-containing precursors by
introduction of new substituents [5] and (ii) the formation of a new benzofuran ring
by cyclization of acyclic substrates [6–10]. The methods based on the first approach
are not general. Derivatization of benzofuran via an electrophilic substitution is not
easy due to poor regioselectivity and the low stability of benzofurans under strongly
acidic conditions, whereas protocols involving metallation of benzofuran derivatives
followed by trapping of the benzofuryl anion with electrophiles are limited to base-
stable benzofuran substrates and, in the case of alkylation, to primary electrophiles
only. Among cyclization approaches, the classical oxidative cyclocondensation of
phenol or related precursor remains the most powerful method for the construction
of some naturally occurring benzofurans. Significant attention has been paid to the
development of metal-catalyzed approaches aimed at cascade cyclization with
substituted phenols or iodophenols under rather mild or neutral conditions [10].
In this chapter, in consideration of the limited space, we first discuss recent progress
in the synthetic methods for metal-catalyzed benzofuran synthesis based on the
reaction classification, and then discuss their important uses in terms of drug
discovery and material science. For other synthetic methods regarding the synthesis
of benzofurans, please see the references provided.
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Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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7.2
General Structure and Reactivity

7.2.1
Relevant Physicochemical Data, Computational Chemistry and NMR Data

Benzo[b]furan is an aromatic compound and is usually recognized as a heterocyclic
analog of naphthalene. Each of the ring atoms in the benzo[b]furan rings is in the
same plane and has a p-orbital perpendicular to the ring plane. Additionally, (4n+2)p-
electrons are associated with each ring. The oxygen in benzo[b]furan acquires
considerable positive charge since it provides two p-electrons for the aromatic sextet.
Accordingly, the same amount of negative charge is displayed in the all ring carbon
atoms.

Figure 7.1 illustrates the frontier electron populations of the parent benzo[b]furan
according to frontier orbital theory [11], and Table 7.1 shows theUVabsorption bands
and NMR signals of benzo[b]furan.

In benzo[b]furan, the p-electron excess of C2 is lower than that of C3.
Consequently,. 13C NMR chemical shifts show that C2 (141.5 ppm) is deshielded
in comparison with C3 (106.9 ppm). It is noticeable that C7 is in the upfield
position compared with the other benzenoid carbons at positions 4, 5, and 6. The
benzenoid protons H4 and H7 appear downfield from H5 and H6. Also
noteworthy is that the long-range coupling between H3 and H7 is of considerable
diagnostic value in establishing the orientation of a substituent on the benzo[b]
furan ring [12b].

O
0.54

0.47

-0.38

-0.01

-0.38

-0.23

O
1

2

34

5

6

7

Figure 7.1 Structure numbering and frontier electron populations of benzo[b]furan.

Table 7.1 UV and NMR data of benzo[b]furan [12].

UV (ethanol) l (nm)
(e, mol�1 dm3 cm�1)

1H NMR (acetone-d6)
[d (ppm)]

13C NMR [d (ppm)]

244 (4.03) H2: 7.79 H6: 7.30 C2: 141.5 C6: 124.6
274 (3.39) H3: 6.77 H7: 7.52 C3: 106.9 C7: 111.8
281 (3.42) H4: 7.64 C4: 121.6 C3a: 127.9

H5: 7.23 C5: 123.2 C7a: 155.5
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7.3
Isolation of Naturally Occurring Benzofurans

Numerous biologically active benzofurans have been isolated from natural
sources [1]. Table 7.2 shows some examples of naturally occurring compounds
containing the benzo[b]furan skeleton.

For instance, a new benzofuran dimer, 5,6,50,60-tetrahydroxy[3,30]bibenzofuranyl-
2,20-dicarboxylic acid dimethyl ester (kynapcin-24, entry 5) has been isolated from
Polyozellus multiflex and shown to noncompetitively inhibit prolyl endopeptidase
(PEP), with an IC50 of 1.14 mM. Kynapcin-24 is less inhibitory to other serine
proteases such as chymotrypsin, trypsin and elastase [1c].

Recently, naturally occurring furocarbazole alkaloids were also identified [13].
These molecules have a broad range of useful pharmacological activities [14]. Their
useful bioactivities and their interesting structural features attracted the attention of
synthetic chemists and has led, over the last decade, to the development of many
different synthetic strategies [13a, 15].

O O

OH

OH O
O

Ulexin A

O

OH

CO2H

OH

OH

Tournefolic acid B

OHO

HO

CO2Me

O
MeO2C

OH

OH

Kynapcin-24

Table 7.2 Naturally occurring compounds containing benzo[b]furan skeleton.

Entry Compound name Source Biological activity Reference

1 Ulexins C, A and D Ulex europaeus
ssp. europaeus

No inhibition of the growth
of Cladosporium cucumerinum

[1a]

2 Paradisin C Grapefruit juice Inhibition of cytochrome
P450 (CYP) 3A4 (IC50¼ 1.0mM)

[1b]

3 Skimmianine and
dictamnine

Teclea trichocarpa
Enge. (Rutaceae)

N/A [1g]

4 Millettocalyxin C and
pongol methyl ether

Stem bark of
Millettia erythrocalyx

N/A [1d]

5 Kynapcin-24 Fruiting bodies of
Polyozellus multiflex

Non-competitively inhibited
prolyl endopeptidase (PEP)
(IC50¼ 1.14mM)

[1c]

6 Stemofurans A–K Roots of Stemona
collinsae

Antifungal activity against
Cladosporium herbarum

[1f ]

7 Tournefolal and
tournefolic acid B

Stems of
Tournefortia
sarmentosa

Anti-LDL-peroxidative activity [1e]
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H

O

furocarbazole

7.4
Synthesis of Benzofuran

As described above,major synthetic strategies for benzofurans include (Scheme 7.1):
(i) dehydrative cyclization of a-(phenoxy)alkyl ketones [6a–6e]; (ii) dehydration of
o-hydroxybenzyl ketones under acidic conditions [7a, 7b]; (iii) decarboxylation of
o-acylphenoxyacetic acids or esters on treatment with a base [8a–8d]; (iv) cyclofrag-
mentation of oxiranes, prepared in three or four steps from the corresponding
o-hydroxybenzophenones [9]; and (v) palladium(II)-catalyzed cyclization of arylace-
tylenes [10a–10e].

7.4.1
Transition Metal Catalyzed Benzofuran Synthesis

7.4.1.1 Synthesis of 2,3-Disubstituted Benzo[b]furans
Themetal-catalyzed intramolecular cyclization of aryl-substituted alkynes possessing
a nucleophile in proximity to the triple bond has proven effective for the synthesis of
five-membered heterocycles (Scheme 7.2) [16]; the first report describing synthetic
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efforts relevant to 2,3-diarylbenzo[b]furan with this approach was given by Arcadi in
1996 [17a].

The reaction of o-ethynylphenols with a wide variety of unsaturated halides or
triflates RX (R¼vinyl, aryl; X¼Br, I, OTf) in the presence of a palladium catalyst gives
2-vinyl- and 2-arylbenzo[b]furans 10 in good to high yield, through an intramolecular
cyclization step (Scheme 7.3). Small amounts of 2,3-disubstituted benzo[b]furans 9
are usually isolated as side products. In some cases, however, benzofurans 9 are
generated in significant yield or even as the main products. The formation of 10 can
be prevented by employing alternative procedures that use o-[(trimethylsilyl)ethynyl]
phenyl acetates as starting building blocks. One procedure is based on the palladium-
catalyzed reaction of o-[(trimethylsilyl)ethynyl]phenyl acetates with RX in the pres-
ence of Pd(PPh3)4, Et3N and n-Bu4NF, followed by the hydrolysis of the resultant
coupling derivative under basic conditions. The other procedure affords 10 through
an in situ coupling/cyclization of o-[(trimethylsilyl)ethynyl]phenyl acetates with RX in
the presence of Pd(PPh3)4 and KOBut. The utilization of o-alkynylphenols as the
starting alkynes in the palladium-catalyzed reaction with RX leads to the formation
of 2,3-disubstituted benzo[b]furans through an annulation process promoted by

X-LG

R

LG = leaving group

cat. Cu or Pd
X

R'

R

X = O, S, N
R, R' = alkyl, aryl, silyl
alkenyl, ester, ketone

Scheme 7.2

R

O H
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Ar-X

R
O

R'

Ar

R
O

R'

Pd
Ar

Ln

Base
Pd(0)

ArPdIIXLn

R

O

R'PdAr

LnX

+

base
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7
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9
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Scheme 7.3
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s-vinyl- and s-arylpalladium complexes generated in situ. The best results in this case
are obtained by using KOAc and Pd(PPh3)4. In the presence of KOAc and Pd(PPh3)4,
and under an atmosphere of carbonmonoxide, the reaction of o-alkynylphenols with
RX provides 2-vinyl- and 2-aryl-3-acylbenzo[b]furans.

Later, Arcadi reported that the 5-endo-dig-iodocyclization of 2-alkynylphenols
with I2 in the presence of NaHCO3 at room temperature produces 2-substituted 3-
iodobenzo[b]furans, which are useful synthetic intermediates for the preparation
of 2,3-disubstituted benzo[b]furans via Pd-catalyzed cross-coupling reactions
[17b].

More recently, Flynn and colleagues [18] have disclosed an efficient approach to
synthesize 2-substituted-3-arylbenzo[b]furan by a palladium-catalyzed multicompo-
nent sequential coupling strategy, starting from iodophenol and terminal phenyl
acetylene. In this reaction, MeMgBr was used as an essential base to form the
corresponding magnesium salts of phenolate. Although the method was applied
successfully to one substituted iodobenzene, utilization of MeMgBr to form the
magnesium salts could hamper application of thismethod to other substrates having
functional groups such as ketone, ester or amide, thus limiting the universality
required in diversity oriented synthesis (Scheme 7.4).

I

OHMeO R OMgClMeO

R

+

ArI

CO

ArI

OMeO

R

MgCl

PdI
Ar

OMeO

R

MgCl

PdI

ArO

Cyclization
reductive elimination

Cyclization
reductive elimination

MeO O

Ar

R

MeO O

R

Ar
O

45-88%
64%

11 12 13

1514

16
17

MeMgCl 2 equiv, 

Pd(PPh3)2Cl2
(3 mol %)

THF, 65 οC

1.5 h under N2

DMSO, 80 οC

16-18h

DMSO, 80 οC

16-18h

Scheme 7.4
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To realize a strategy of diversity oriented synthesis andbranching reactionpathways
Yang [19] has described the palladium/bpy-catalyzed annulation of o-alkynylphenol
with various aryl halides to generate diversified 2,3-diarylbenzo[b]furans (19). In the
reaction process, the presence of bpy ligand is essential for the successful transfor-
mation. This method provides an efficient synthetic pathway for the combinatorial
synthesis of conformationally restricted 2,3-diarylbenzo[b]furan (Scheme 7.5).

Yang [20a] has also developed a highly effective co-catalysis system (PdI2-thiourea
and CBr4) for carbonylative cyclization of both electron-rich and electron-deficient o-
hydroxylarylacetylenes to the corresponding methyl benzo[b]furan-3-carboxylates.
This was thefirst time using carbon tetrabromide (CBr4) as a superior oxidative agent
for the turnover of palladium(0) to palladium(II) (Scheme 7.6).

R1

OH

R2

R1

O

Ar

R2

Pd2(dba)3 (5 mol%)

    bpy (10 mol%)

ArI, K2CO3

MeCN, 50οC

52-87% yield
18

19

Scheme 7.5
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The overall process may involve attack of a carboalkoxypalladium(II) intermediate
on the alkyne 18 to generate a complex, followed by nucleophilic addition of
the phenolic oxide to the XPdII(CO)OR-activated alkyne to give intermediate, which
went through reductive elimination to produce ester 20 and palladium(0).
The palladium(0) is then oxidized to palladium(II), which re-enter the catalytic cycle.
The method has been successfully applied in the solid-phase synthesis of benzo[b]
furan-3-carboxylates [20e].

Further studies shows the carbonylative annulation of o-alkynylphenols mediated
by PdCl2(PPh3)2 and dppp in the presence of CsOAc at 55 �C in acetonitrile under
a balloon pressure of CO generates functionalized benzo[b]furo[3,4-d]furan-1-ones
25 in good yields [20b]. This novel synthetic approach provides a highly efficient
method for diversification of the benzofuran scaffold for combinatorial synthesis.
The authors speculated that the overall processmay involve attack of alcohol 21 on the
PdIIXYLn to generate complex 22, followed by insertion of CO to give intermediate
23. Intramolecular nucleophilic addition of the phenolic oxide to the resulting acyl-
palladium complex 23 leads to formation of intermediate 24, which might undergo
reductive elimination to produce the five-membered lactone 25 and palladium(0).
The palladium(0) is then oxidized to palladium(II), thereby completing the cycle
(Scheme 7.7).

Recently, Yang [20h] further described a novel,mildmethod for the rapid synthesis
of benzo[b]furan-3-carboxylic acids26directly from the substituted o-alkynyl- phenols
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18 in good yields by utilizing a PdII-mediated carboxylative annulation since, from
a drug discovery perspective, synthesis of benzofuran-based carboxylic acids could
be more interesting because of their increased solubility in aqueous media and the
potential enhancement of ionic interactions with basic residues in their association
with biological receptors (Scheme 7.8).

Cacchi has also described palladium catalysis in the construction of the benzo[b]
furan ring from alkynes and organic halides or triflates [16m,16n].

3-Spiro-fused benzofuran-2(3H)-ones can be conveniently synthesized starting
from vinyl triflates and o-iodophenols through palladium-catalyzed chemoselective
carbonylation and subsequent regioselective intramolecular Heck reaction. For
example, 2-iodo-4-methylphenol reacted with trifluoromethanesulfonic acid 4-(1,1-
dimethylethyl)-1-cyclohexen-1-yl ester leading to 4-(1,1-dimethylethyl)-1-cyclohex-
ene-1-carboxylic acid 2-iodo-4-methylphenyl ester. Subsequent ring closure of this
intermediate furnishes spirobenzofuranone C (85% yield) [17c].

O
O

Spirobenzofuranone C

Arcadi [17d] has reported the synthesis of 2,3-disubstituted furo[3,2-b]pyridines,
2,3-disubstituted furo[2,3-b]pyridines and 2,3-disubstituted furo[2,3-c]pyridines
under mild conditions via the palladium-catalyzed cross-coupling of 1-alkynes with
o-iodoacetoxy- or o-iodobenzyloxypyridines, followed by electrophilic cyclization by I2
or by PdCl2 under a balloon of carbon monoxide (Scheme 7.9).
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Dibenzofuran-type molecules can be formed from the reaction of o-iodophenols
with silylaryl triflate in the presence of a palladium catalyst. Nucleophilic addition of
o-iodophenols to benzyne (generated by treatment of silylaryl triflate with CsF) and
subsequent Pd-catalyzed intramolecular arylation are involved in the reaction [21]
(Scheme 7.10).

Recently, Stoltz [22] has developed a method for the synthesis of electron-rich,
highly substituted benzofuran and dihydrobenzofuran derivatives (50–80% yields)
via an intramolecular Fujiwara-Moritani/oxidative Heck reaction (Scheme 7.11); 15
examples are demonstrated in the article. No extra functionalization step was
required for palladium(II)-catalyzed oxidative carbocyclizations, which provided
highly substituted benzofurans and dihydrobenzofurans by net dehydrogenation.
The direct C�H bond functionalization of the aromatic ring and cyclization with
unactivated olefins is involved in the oxidation process. Furthermore, the products
contain quaternary carbon stereocenters that can be obtained in diastereomerically
pure form.

OH

IMeO2C

SiMe3

OTf

+

O

MeO2C
1. CsF (3.0 eq.)
    MeCN, RT

2. [Pd] (5 mol%)

    PCy3 (10 mol%), 80οC

87% yield

30 31 32

Scheme 7.10
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Ionic liquid ([BMIm]BF4) has been utilized as an effective solvent for the
PdCl2-catalyzed benzofuran formation via an intramolecular Heck reaction [23].
This strategy has been applied to construct the seven-membered ring based
(�)-frondosin B [24].

The palladium-catalyzed annulation of 1,3-dienes with o-iodoacetoxyflavonoids for
the generation of biologically interesting dihydrofuroflavonoids was realized
(Scheme 7.12). This reaction is quite general and regioselective, and a wide variety
of terminal, cyclic and internal 1,3-dienes are applicable [25].

One of the key intermediates (43) towards the total synthesis of frondosin B has
been synthesized by a sequential reaction from phenol 40, enyne 41, and bromide 42
in a one-pot operation (Scheme 7.13) [26]. Palladium-catalyzed intramolecular C�O
bond formation between aryl halides and enolates has been employed to form 2,3-
disubstituted benzo[b]furans [27].

Synthesis of 3-fluoroalkylated benzo[b]furans was achieved via a palladium-cata-
lyzed reaction of fluorine-containing internal alkynes with various 2-iodophenols in
the presence of P(tBu)3 as an essential ligand [28] (Scheme 7.14).
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As shown in Scheme 7.15, the optically active dihydrobenzo[b]furan-ring 48 has
been constructed efficiently via a C�H insertion reaction, leading to the total
synthesis of (�)-ephedradine A [29].

Herndon has reported benzannulation of heterocyclic ring systems through
coupling of Fischer carbene complexes and heterocycle-bridged enynes [30]. The
benzofuran rings are easily annulated onto furan, thiophene and imidazole ring
systems in a reaction process involving the coupling of Fischer carbene complexes
with either 2-alkenyl-3-alkynyl- or 3-alkenyl-2-alkynyl-heteroaromatic systems
(Scheme 7.16).

Arylboronic acids reacted with nitriles catalyzed by a cationic palladium complex
leading to aryl ketones inmoderate to good yields [31]. Based on this result, a one-step
synthesis of benzofurans from phenoxyacetonitriles under the catalysis of [(bpy)
Pdþ (OH)]2(

–OTf)2 or [(bpy)Pd
2þ (H2O)2](

–OTf)2 has been developed that shows that
the cationic palladium catalyst is highly active for these addition reactions
(Scheme 7.17).

2-Chloroaryl alkynes, which are generated from 1,2-dihaloarenes using known
methodology, undergo the reaction conditions shown in Scheme 7.18 successfully
providing benzofurans 54 in good yields [32]. While the cyclization of 2-hydroxyalk-
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ynyl arenes is known, this is the first time this strategy has been employed starting
with a 2-haloaryl alkyne.

The formation of 2-alkynyl benzofurans is described via a new tandem coupling
approach [33]. This reaction utilizes easily accessible gem-dibromovinyl substrates
and terminal alkynes and proceeds via Pd/C- and CuI-catalyzed tandem Ullman/
Sonogashira couplings (Scheme 7.19).

An efficient synthesis of benzofurans from o-anisole-substituted ynamides has
been reported by Hsung and co-workers via an unexpected Rh(I)-catalyzed demeth-
ylation-cyclization sequence (Scheme 7.20) [34]. The silver salt is critical for the
successful transformation in the reaction process.
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Trost has reported that benzofurans can be formed chemoselectively from the
Rh-catalyzed cyclo-isomerization reaction of easily prepared 2-alkynylphenol sub-
strates (e.g., 2,4-dichloro-6-ethynylphenol) [35]. The reaction may proceed by nucle-
ophilic capture of a vinylidene intermediate (Scheme 7.21).

Benzofuran products can be delivered in good yields through palladium-catalyzed
intramolecular C�O bond formation of enolates derived from a-(ortho-haloaryl)-
substituted ketones (Scheme 7.22) [36]. A catalyst generated from Pd2(dba)3 and the
ligand DPEphos effects the key bond formation to produce various substituted
products from both cyclic and acyclic precursors. In the meantime, a cascade
sequence that produces the required a-aryl ketones in situ has been developed.
However, the substrate scope is more restricted.

Li has presented a novel and selective palladium-catalyzed annulation of
2-alkynylphenolsmethod for the synthesis of 2-substituted 3-halobenzo[b]furans [37].
In the presence of PdX2, 2-substituted benzo[b]furans were afforded in good yields,
whereas in the presence of 5–10mol% of PdX2, 3.0 equiv of CuX2 and 0.2 equiv of
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HEt3NI, 2-disubstituted 3-halobenzo[b]furans were selectively produced as themajor
products (Scheme 7.23). A possible mechanism was also proposed.

3-Zinciobenzofurans 66, generated in excellent yield through ametallative 5-endo-
dig cyclization reaction of 2-alkynylphenoles in the presence of BuLi and ZnCl2, can
be further transmetallated to the corresponding cuprates 67, which then react with
electrophiles to produce various 2,3-disubstituted benzofurans 68 [38] (Scheme7.24).

7.4.2
Oxidative Cyclization

Recently, Bellur [39] has reported an efficient synthesis of functionalized benzofur-
ans based on a [3 þ 2] cyclization/oxidation strategy. The functionalized benzofur-
ans were prepared by DDQ oxidation of 2-alkylidenetetrahydrofurans, which are
readily available by one-pot cyclizations of 1,3-dicarbonyl dianions or 1,3-bis-silyl enol
ethers (Scheme 7.25).

The first total and biomimetic synthesis of violet-quinone has been accomplished
by utilizing an oxidative dimerization of a substituted 4-methoxy-1-naphthol with
a ZrO2/O2 system, the so-formed dimer eventually led to the target molecule
(Scheme 7.26) [40]. The same research group later published the SnCl4-mediated
oxidative biaryl coupling reaction to build up the dinaphthanofuran framework [41].
Silver(I) acetate is an efficient agent with which to obtain the dimer of resveratrol in
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high yield [42]. Oxidation of phenol with PIFA has also been applied to construct the
framework of (�)-galanthamine [43].

A new family of benzo[b]furans has been synthesized by an anodic oxidation of an
aqueous solution of 3-substituted catechols followed by coupling with dimedone (78)
(Scheme 7.27) [44].

Compound 80 can be cyclized in the presence of either mercury acetate in acetic
acid or bromine in chloroform to give 3-chloromercurio- or 3-bromobenzofuran,
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respectively. The 3-chloromercurio intermediates could be reduced to proton or
derivatized to ester or bromide, leading to the synthesis of ailanthoidol (30% yield),
XH-14 (15% yield) and obovaten (11% yield), respectively [45] (Scheme 7.28).

5-[2-(4-Hydroxyphenyl)vinyl]benzene-1,3-diol 84 (resveratrol) was treated with an
equimolar amount of silver(I) acetate in dry MeOH to afford its (E)-dehydrodimer, 5-
{5-[2-(3,5-dihydroxyphenyl)vinyl]-2-(4-hydroxyphenyl)-2,3-dihydrobenzofuran-3-yl}
benzene-1,3-diol 85, as a racemic mixture in high yield [46] (Scheme 7.29). This
method is applicable to the oxidative dimerization of 4-hydroxystilbenes such as
trans-styrylphenol and 5-{6-hydroxy-2-(4-hydroxyphenyl)-4-[2-(4-hydroxyphenyl)vinyl]-
2,3-dihydrobenzofuran-3-yl}benzene-1,3-diol (viniferin), giving rise to the corresponding
2-(4-hydroxyphenyl)-2,3-dihydrobenzofurans.
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7.4.3
Radical Cyclization

A radical initiated benzo[b]furan formation has been applied to the synthesis of spiro
[chroman-3,30-(20H)-benzofurans] in the presence of n-Bu3SnCl andNa(CN)BH3 [47]
(Scheme 7.30).

A similar approach has also been demonstrated by the same group to obtain spiro
[pyrimidine-6,30-20,30-tetrahydrobenzofuran]-2,4-diones [48]. On the other hand,
n-Bu3GeH is reported to be an effective alternative compared with n-Bu3SnH in
the synthesis of 3-substituted-2,3-dihydrobenzo[b]furans [49]. Moreover, a photo-
induced fast tin-free reductive radical dehalogenation has found use for the synthesis
of 2,3-dihydrobenzo[b]furans [50].

2,3-Disubstituted benzofuran derivatives have been synthesized from o-acylphe-
nols in two steps. The b-aryloxyacrylates prepared from the o-acylphenols react with
n-Bu3SnH/AIBN and then with 5% HCl-EtOH leading to 2,3-disubstituted
benzofurans [51].

A radical [3 þ 2] annulation reaction with an N-centered radical has been devel-
oped. The reaction of alkenes withN-allyl-N-chlorotosylamide yields the correspond-
ing pyrrolidine derivatives 90 in good yields, in the presence of Et3B as a radical
initiator, via an atom-transfer process [52] (Scheme 7.31).

Grimshaw [53] has reported that the cyclization of 20-bromodeoxybenzoin with Cu
powder in refluxing AcNMe2 gives 2-phenylbenzofurans in 65–70% yield
(Scheme 7.32).
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7.4.4
Acid- and Base-Mediated Cyclization

Katritzky [54] has disclosed the preparation of 2,3-disubstituted benzofurans by
reactions of o-hydroxyphenyl ketones or o-(1-hydroxy-2,2-dimethylpropyl)phenol
with 1-benzotriazol-1-ylalkyl chlorides in two or three steps (Scheme 7.33). These
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approaches provide a facile route to a variety of benzofurans in good overall yields and
complements a previous benzotriazole-mediated preparation of benzofurans.

2-Arylbenzo[b]furan can be cyclized in a modest yield from a non -symmetrical
diarylethyne, which was generated via palladium -catalyzed Sonogashira reaction of
an aryl bromide and an aryl acetylene (Scheme 7.34) [55]. Other types of 2-alkyl/aryl
substituted benzo[b]furans have also been obtained by the palladium-catalyzed
coupling reaction of o-iodophenols (even o-iodophenols with a base-labile nitro
group) with various alkynes in the presence of prolinol as base in water. This
environmental friendly procedure does not need the phase transfer or water-soluble
phosphine ligands and is free from the use of any organic co-solvent [56]. A similar
process has also been reported with an amphiphilic polystyrene–polyethylether
(PS-PEG) resin-supported palladium-phosphine complex as a catalyst in water to
give the corresponding aryl-substituted alkynes in high yield under copper-free
conditions [57]. In the total synthesis of pterulinic acid, the core structure of
2-substituted benzofuran was generated by the palladium-catalyzed heteroannula-
tion of an o-iodophenol derivative with methyl 3-butynoate [58].

Base-mediated conditions have also been applied to afford 2-arylbenzo[b]furan,
employing the coupling product generated from the ultra-fine nickel-catalyzed
Sonogashira reaction of iodophenols with phenylacetylenes [59]. Four 2,6-linked
and 2,5-linked benzo[b]furan trimers as organic electroluminescent materials have
been prepared by the base-mediated cyclization of 2-alkynylphenols [60].

In the synthesis of furoclausine A, acid-catalyzed conditions were used to produce
the furo[3,2-a]carbazole framework from a ketal as depicted (Scheme 7.35) [61]. An
acid-catalyzed intramolecular cyclization to form the scaffold of furoquinoline
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alkaloids has also been achieved from 3-oxiranylquinolines [62]. Furanoeremophi-
lane sesquiterpenes have been synthesized by acid-mediated furan ring formation
from their corresponding phenolic-ketone ethers [63]. 3-Aryl-2,2-dialkyl-2,3-dihy-
drobenzo[b]furans have been delivered from phenols and 2-aryl-2,2-dialkylacetalde-
hydes in the presence of a catalytic amount of CF3SO3H [64]. A ZnCl2-mediated
benzo[b]furan formation has been utilized to produce 2-carboxylate benzo[b]furans
from 3-dimethylaminopropenoates [65].

Synthesis of different types of substituted benzoheterocycles under metal-free
protocols have been developed. The combination of o-alkynylbenzaldehyde deriva-
tives, iodonium ions and alkenes was demonstrated to effectively produce the
corresponding benzofurans [66]. The rapid access to benzofurans with interesting
di- and tri-substitution patterns and featuring the 2,3-unsubstituted ring motif has
been established (Scheme 7.36).

A simple procedure for the construction of the trans-5,6-ring system existing in
phenylmorphans was developed by the displacement of nitro-activated aromatic
fluorine with a hydroxyl group [67] (Scheme 7.37).

Synthesis of coumestrol (108) has been achieved by sequential condensation
between phenyl acetate and benzoyl chloride, followed by demethylation and
cyclization (Scheme 7.38) [68].

Hellwinkel has reported 2-arylbenzofurans formation using MF/Al2O3 base-
systems [69]. Saito has described a novel method for the generation of 4-acetoxy-
2-amino-3-arylbenzofurans from 1-aryl-2-nitroethylenes and cyclohexane-1,3-
diones [70]. This one-pot operation shows high efficiency (Scheme 7.39).
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Wagner [71] has described the synthesis of 2-(6-hydroxy-2-methoxy-3,4-methyle-
nedioxyphenyl)benzofuran (113, Scheme 7.40) via an acid mediated cyclization.
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Johnson [72] has reported benzofuran formation via a organolithium-induced
cyclization. Treatment of 2,2,2-trifluoroethyl phenyl ethers with 4 equivalents of an
aryl or alkyl lithiumreagent (R3Li) causes in almost all cases complete dehalogenation
of the trifluoroethyl side chain with the concomitant introduction of an alkyl or aryl
group (R3) at the acetylenic 2-position (Scheme 7.41). This is followed apparently by
ortholithiation to give the lithio intermediates; the latter then spontaneously cyclize to
the 2-lithioheterocyles. Subsequent electrophilic quenching leads to the correspond-
ing benzofurans depending whether the electrophile is a proton or another electro-
negative species.

Banerji [73] [Scheme 7.42 (1)] and Clerici [74] [Scheme 7.42 (2)] have reported
titanium-mediated benzofuran synthesis, respectively.

Jha has also reported a facile synthesis of 2-arylbenzo[b]furans through an unusual
acid-catalyzed 1,2-elimination [75]. 2-Phenoxyalkanals react with methanol at room
temperature under homo- or heterogeneous acid-catalysis conditions leading to the
formation of diacetal as well as some quantities of appropriate 2-alkylbenzofurans.
2-Alkylbenzofurans can be obtained in high yields via cyclization of the 1,1-
dimethoxy-2-phenoxyalkanes under mild conditions over Amberlyst 15 [76].

An effective route to chiral optically active 2-substituted benzofurans directly from
carboxylic acids has been reported (Scheme 7.43) [77]. This procedure, which allows
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the preparation of R-alkyl-2-benzofuranmethanamines from N-protected R-amino
acids without sensible racemization phenomena, proceeds in good yields undermild
conditions with the help of microwave irradiation.

Treatment of benzyl 2-halophenyl ethers with 3 equivalents of t-BuLi results in
Li–halogen exchange and lithiation at benzylic methylene simultaneously. These
dianions can be trapped with electrophiles. Their reactions with carboxylic esters
afford the corresponding 2-aryl-3-hydroxy-2,3-dihydrobenzo[b]furans, which subse-
quently undergo acid-catalyzed or mediated dehydration to give moderate to good
overall yield of various 2-aryl-3-substituted benzo[b]furans (127) (Scheme 7.44) [78].

Zn(OTf)2 (10mol%) catalyzes the cyclization of propargyl alcohols with PhOH in
hot toluene (100 �C) without additive to give benzofuran products in good yields. Its
mechanism has been elucidated. This catalytic cyclization is also applicable to the
synthesis of oxazoles through the cyclization of propargyl alcohols and amides
without a 1,2-nitrogen shift (Scheme 7.45) [79].

Asao has described an efficient synthesis of functionalized aromatic compounds
from enynals and carbonyl compounds [80]. The reaction most probably proceeds
through the reverse electron demand-type Diels–Alder reaction between the pyr-
ylium intermediate and enol 2p-system, derived from carbonyl compounds. The
scope of the reaction was extended to the synthesis of benzofused heteroaromatic
compounds. For instance, benzofuran synthesis using furan derivatives 130has been
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examined. As expected, the reaction of 130 with propionaldehyde proceeded in the
presence of AuBr3 or Cu(OTf)2 catalyst to give the corresponding product 131 in 58 or
67% yields, respectively. The AuBr3-catalyzed reaction of 130 with b-methoxystyrene
gave 132 in 50% yield (Scheme 7.46).

SanMartin has reported copper-catalyzed straightforward synthesis of benzo[b]
furan derivatives in neat water [81]. This on-water methodology delivers a range of
benzo[b]furans (134) in good to excellent yields starting from readily available
substrates 133 (Scheme 7.47).
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Amicrowave-mediated solvent-free Rap–Stoermer reaction has been reported for
the synthesis of benzofurans from various salicylaldehydes and phenacyl halides
(Scheme 7.48) [82]. Someof the advantages andhighlights of thismicrowave protocol
include, solvent-free clean reaction conditions and high yields of benzofurans
obtained in short reaction times. In addition, the 2-aroyl benzofurans formed using
this method are also important as the corresponding carbinols (reduction products)
are known to have hypolipidemic activity.

DiMauro has reported a rapid, efficient synthesis of various substituted fused
benzofurans using a microwave-assisted one-pot cyclization-Suzuki coupling
approach [83]. The benzofuran scaffold was formed under base conditions. Further
elaboration via Suzuki cross-coupling reactions afforded the desired products 140 in
moderate yields (Scheme 7.49).

7.4.5
Olefin-Metathesis Approach

Sequential isomerization and ring-closing metathesis for the synthesis of benzo-
fused heterocycles has been reported [84]. 2-Allylphenol is converted into allyl-2-
(allyloxy)benzene (141) under suitable conditions. [RuClH(CO)(PPh3)3] is then
added to a solution of 141 in benzene-d6 or toluene-d8 and the reaction mixture
heated at 60–80 �C for 18 h (Scheme 7.50). Analysis by 1H NMR spectroscopy
confirmed that the isomerization of both allyl substituents had occurred to afford
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the acid-labile compound, which was not isolated. The introduction of catalyst
(GrubbsGeneration I) then readily affords the benzo[b]furan in excellent conversion,
as determined by further 1H NMR spectroscopy. This result constitutes a novel
approach to the ubiquitous benzo[b]furan skeleton.

Grubbs et al. have described a method for the synthesis of cyclic enol ethers
(including benzofuran) via molybdenum alkylidene-catalyzed ring-closing metath-
esis (Scheme 7.51) [85]. To demonstrate an application of this process, the authors
chose the naturally occurring benzofuran 2,4,20,40-dihydroxyphenyl-5,6-(methylene-
dioxy)benzofuran (Sophora compound I), the antifungal phytoalexin isolated from
aerial part of Sophora tomentosa L [86], as a synthetic target.

Several 2,3-dihydrobenzo[b]furans can bemade by the Ru-catalyzed olefinmetath-
esis approach in the presence of trimethylsilyl vinyl ether (Scheme 7.52) [87]. The
isovanillin derived benzo[b]furan has also been synthesized by the C-propenylation-
O-vinylation and olefin metathesis approach [88].

A strategy employing a second generation Grubbs catalyst to facilitate the pro-
duction of various cyclic enol phosphates, including benzofuran-2-yl enol phosphate
scaffolds, has been described. This work represents the first case of an olefin
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metathesis reaction in which one of the groups participating in the metathesis event
is an enol phosphate moiety [89].

7.4.6
Miscellaneous

3-Cyano or ethoxycarbonyl-2-methyl-benzo[b]furans have been prepared in a one-
step synthesis by the microwave induced Claisen rearrangement under solvent-free
conditions (Scheme 7.53) [90]. The Fries rearrangement has been employed in the
synthesis of benzo[b]naphtha[2,3-d]furan-6,11-dione [91]. A [2,3]-Stille–Wittig rear-
rangement has also been utilized to make 2,3-disubstituted benzo[b]furans from 2-
stannane substituted benzo[b]furans [92].

An efficient generation of 2-arylbenzofurans proceeds via a route involving
acylation and subsequent [3,3]-sigmatropic rearrangement of oxime ethers [93]. Its
synthetic utility is demonstrated by a short synthesis of stemofuran A (153) and
eupomatenoid (154) in which no procedure for protection of the phenolic hydroxyl
groups is needed (Scheme 7.54).

The synthetic strategy involving an intramolecular hydroxyl epoxide opening has
been applied to build up the cyclopenta[b]benzofuran ring for the total synthesis of
naturally occurring rocaglaol [94] (Scheme 7.55).

Horaguchi has reported the synthesis of benzofurans using photocyclization
reactions of aromatic carbonyl compounds [95]. Benzofurans functionalized with
hydroxy and acetyl functionalities are not only the core structures found in numerous
biological important natural products but are also the vital precursors for several
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naturally occurring furanoflavonoids. Numerous synthetic methodologies are avail-
able in the literature for the synthesis of functionalized benzofurans, but few
references appear on the access of benzofurans with adjacent hydroxy and acetyl
functionalities. Dixit [96] has reported a highly convenient synthesis of nature-
mimicking benzofurans and their dimers from easily accessible precursors. The
crystal structure of 5,50-diacetyl-20,30-dihydro-2,30-bibenzofuran-6,60-diol is reported.

7.4.7
Progress in Solid-Phase Synthesis

Novel titanium benzylidenes (Schrock carbenes) bearing an arylboronate group are
generated from thioacetals with low-valent titanium species, Cp2Ti[P(OEt)3]2, and
alkylidenate Merrifield resin-bound esters to give enol ethers. Treatment with 1%
TFAgives 2-substituted (benzo[b]furan-5-yl)boronates, and solid-phase Suzuki cross-
coupling gives 2,5-disubstituted benzofurans (Scheme 7.56) [97].

Yang et al. have reported a combinatorial synthesis of a 2,3-disubstituted benzo[b]
furan library via palladium(II)-mediated cascade carbonylative annulation of o-alky-
nylphenols on silyl linker-based macrobeads (Scheme 7.57) [98].
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The same authors have developed a novel catalytic system of AgOTs-CuCl2-
TMEDA for the homocoupling of aliphatic acetylenes on solid support. It is the
first observation that an Ag(I)-activated triple bond can facilitate Cu(II)-mediated
oxidative acetylenic homocoupling. This procedure provides an efficient way to
synthesize a diversified symmetric 1,3-alkadiynediol bis(benzo[b]furan-carboxylate)
library on solid support [99].

Furthermore, a split-pool synthesis of dimeric benzo[b]furans has been developed
employing the Sonogashira reaction, palladium-mediated carbonylative annulation
and olefin cross-metathesis as the key steps on high-capacity, lightly cross-linked,
silyl-linker-based polystyrene macrobeads. This protocol provides direct access to
a range of dimeric molecules that are ideal for high-throughput screening of
protein–protein interactions in a cell-based assay system [100].

Subsequently, the authors described a conformationally restricted 2,3-diarylbenzo
[b]furan library built up on a solid-phase by the palladium/bipyridyl-catalyzed
annulation of o-alkynyl phenols with aryl halides (Scheme 7.58) [101].
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A 2-substituted furo[3,2-b]quinolines library has been made on solid support by
K2CO3-mediated sequential deprotection and cyclization [102] (Scheme 7.59).

7.5
Uses of Benzofuran

7.5.1
Uses of Benzofuran in Drug Discovery

Jones has synthesized benzbromarone analogs (168) screened for inhibitory
potency against 2C19, or used as substrates or metabolite standards [103]. The
findings illustrate the increased utility of benzbromarone analogues since they
have now been adapted to act as 2C19 inhibitors. According to this study with
benzbromarone and previous works on phenobarbital analogues and proton pump
inhibitors, it is demonstrated that for 2C19, ligands with two hydrophobic regions
separated by a polar group are the most complementary. Interestingly, high-affinity
binding of benzbromarone ligands to 2C19 appears to be achieved without
constraining substrate mobility within the enzyme.

165164

Pd2(dba)3 (5 mol%)
bpy (10 mol%), MeCN

50οC, R2I, K2CO3
OHR

R1

R
O

R1

R2

Scheme 7.58

166

N

AcO

R2

R1

O

O

N

R2

R1   K2 3CO
18-Crown-6

DMF-H2O (19:1)

167

Scheme 7.59

7.5 Uses of Benzofuran j623



O

R1

O

168

R4

R3

R2

A series of benzofuran-2-yl-(phenyl)-3-pyridylmethanol derivatives have been
prepared in good yields using an efficient one-step procedure. Additionally, to
determine the effect of the benzene ring in benzofuran with respect to inhibitory
activity, furan-2-yl-(phenyl)-3-pyridylmethanol derivatives have been synthesized in
the meantime. The pyridylmethanol derivatives were all evaluated in vitro for
inhibitory activity against aromatase (P 450AROM, CYP19), using human placental
microsomes. The benzofuran-2-yl-(phenyl)-3-pyridylmethanol derivatives displayed
good to moderate activity (IC50¼ 1.3–25.1mM), which was either better than or
comparable with aminoglutethimide (IC50¼ 18.5 mM) but lower than arimidex
(IC50¼ 0.6mM), with the 4-methoxyphenyl substituted derivative displaying opti-
mum activity. Moreover, it shows the activity to reside with the (S)-enantiomer based
on molecular modeling of the benzofuran-2-yl-(4-fluorophenyl)-3-pyridylmethanol
derivatives. The essential role of the benzene ring of the benzofuran component for
enzyme binding is demonstrated since the furan-2-yl-(phenyl)-3-pyridylmethanol
derivatives were devoid of activity [104].

Histamine H3 receptor antagonists are being developed to treat various neuro-
logical and cognitive disorders that may be ameliorated by enhancement of central
neurotransmitter release. A nonimidazole, benzofuran ligand ABT-239 [4-(2-{2-
[(2R)-2-methylpyrrolidinyl] ethyl}-benzofuran-5-yl)benzonitrile] (169) has been uti-
lized in the in vitro pharmacological and in vivo pharmacokinetic profiles and
compared with several previously described imidazole and nonimidazole H3 recep-
tor antagonists. The assay results demonstrate that ABT-239 is a selective, non-
imidazole H3 receptor antagonist/inverse agonist with similar high potency in both
human and rat and favorable drug-like properties [105]. The potency and selectivity of
this compound and of analogs from this class support the potential of H3 receptor
antagonists for the treatment of cognitive dysfunction [106].

O

CN

N

169 (ABT-239)

A series of 2-(4-hydroxyphenyl)benzofuran-5-ols with relatively lipophilic groups
in the 7-position of the benzofuran has been synthesized for measurement of the
affinity and selectivity for ERb. Some analogs are active as potent and selective ERb
ligands. The structural modifications at the benzofuran 4-position as well as at
the 30-position of the 2-Ph group (e.g., 170) further increase selectivity. Such
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modifications have lead to compounds with <10 nM potency and >100-fold
selectivity for ERb [107].

O

NC 170

HO

OH

F

5-Chloro-3-methyl-2-acetylbenzofuran reacts with bromine in acetic acid leading
to 5-chloro-3-methyl-2-bromoacetylbenzofuran, which then undergoes condensation
with various substituted aromatic amines to afford 2-N-arylaminoacetyl-5-chloro-3-
methylbenzofurans. These compounds have been screened for their antibacterial,
antifungal, analgesic, antiinflammatory and diuretic activities and some hits were
discovered [108].

A series of 1-(1-benzofuran-2-yl-ethylidene)-4-substituted thiosemicarbazides
along with some derived ring systems, substituted-2,3-dihydro-thiazoles and thia-
zolidin-4-ones, have been synthesized and evaluated for their in vitro anti-HIV,
anticancer, antibacterial and antifungal activities. Among the tested compounds, two
produced a significant reduction the viral cytopathic effect (93.19% and 59.55%) at
concentrations of >2.0� 10�4M and 2.5� 10�5M, respectively. One compound
displayed moderate anti-HIV activity. Several compounds showed mild antifungal
activity. However, no significant anticancer activity was discovered for the tested
compounds [109].

7.5.2
Uses of Benzofuran in Material Science

New functionalized mono- and bis-benzo[b]furan derivatives which possess a CN,
CHO, CH¼CHPh, CH¼CPh2, or CH¼CHCOOH group at C4 have been synthe-
sized and developed as blue-light emitting materials [110]. Two benzo[b]furan nuclei
in bis-benzo[b]furan derivatives have been connected by a divinylbenzene bridge. Bis-
benzo[b]furan 171was fabricated as a device with good volatility and thermal stability.
It emitted blue light with brightness 53 430 cdm�2 (at 15.5 V) and a high maximum
external quantum efficiency 3.75% (at 11V) (Scheme 7.60).

The direct anodic oxidation of 2,3-benzofuran on stainless steel sheet in boron
trifluoride di-Et etherate (BFEE) contained 10% poly(ethylene glycol) (PEG) with a
molar mass of 400 (by vol.) affords a visible-light transparent high-quality substrate-
supported poly(2,3-benzofuran) (PBF) film [111]. The oxidation potential of 2,3-
benzofuran in this medium was measured to be only 1.0 V vs SCE, which is lower
than that determined in acetonitrile þ 0.1M Bu4NBF4 (1.2 V vs SCE). Good elec-
trochemical behavior and good thermal stability with a condense of 10�2 S cm�1,
are displayed for these PBF films, and the doping level of as-prepared PBF films
was determined to be only 8.9%. The structure of the polymer has been studied by
UV/Vis, IR spectroscopy and SEM.
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Yang has reported the synthesis and spectral properties of novel 4-benzofuranyl-
1,8-naphthalimide derivatives [112]. A series of 4-benzofuranyl-N-alkyl-1,8-naphtha-
limides has been prepared from 4-ethynyl-N-alkyl-1,8-naphthalimides and substi-
tuted o-iodophenols catalyzed by a Pd(PPh3)2Cl2/CuI system under mild conditions.
The absorption and fluorescence spectra of these benzofuran-1,8-naphthalimides
have been recorded and the quantum yields are measured using quinine sulfate as
the standard. The UV/Vis absorption spectra were in the range of 380–400 nm and
the emission spectra were in the range of 500–520 nm.

A novel fluorescence active 12H-benzo[e]indolo[3,2-b]benzofuran and its deriva-
tives (172) has been prepared from 6-R1-2-naphthols in good yields. The synthesized
compounds with planar geometry and extended conjugation exhibit excellent fluo-
rescence properties [113].

O

172

N

R2 R1

Four linear benzofuran trimers have been prepared and tested as materials for
organic electroluminescence (OEL). The solubility, aggregation, and film-forming
properties weremodulated by tert-butyl and n-hexyl substituents on the benzofurans.
Additionally, two tert-butyl groups prevented aggregation in the solid state, thus
maintaining emission in the blue region of the visible spectrum. The OEL char-
acteristics of the tert-butyl-substituted benzofuran trimer have been explored, and
blue emission observed. The two-stage synthetic procedure employed for the
preparation of these benzofuran trimers may be applied to a wide variety of
benzofuran oligomer and polymer targets [114].
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Recently, Nakamura has described a facile route to 2,3,6,7-tetraarylbenzo[1,2-b:4,5-
b]difurans (BDFs) (Scheme 7.61), which could be functioned as the hole-transporting
material (HTM) in layered organic light-emitting diodes (OLEDs) [115]. The high
performance of the compounds is primarily due to the BDF core itself, which is in
sharp contrast to the fact that the biphenyl scaffold in R-NPD alone does not function
as a HTM. They also found that there is a synergetic effect of the BDF core and the
substituents. The physical properties can be improved by suitable functionalization.
It can be expected that the BDFmolecule will serve as a useful newmolecular scaffold
on which multiple functional groups can be attached to obtain new properties.
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Benzofuran-naphthyridine links show high-yield fluorescence with solvatochro-
mic properties. For instance, after formation of fluorescent organic nanoparticles
(FONs1.) of ABAN (183, Scheme 7.62), the photophysical properties (such as the
spectral features and intensity) are remarkably different from those at the molecular
level (solution) and in bulk material [116].
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8
Five-Membered Heterocycles: 1,2-Azoles. Part 1. Pyrazoles
Jos�e Elguero, Artur M.S. Silva, and Augusto C. Tom�e

8.1
Introduction

Pyrazoles belong to the family of azoles, which for some authors include pyrroles and
indoles while for others it contains only by imidazoles, benzimidazoles, pyrazoles,
indazoles, 1,2,3-triazoles, benzotriazoles, 1,2,4-triazoles, tetrazoles and pentazoles.
The dubious position of pyrroles is due to their very different reactivity and less
aromatic stability.

We have carried out a search in theChemical Abstracts �on line� (1987–2004) using
the following truncated words: pyrazol�, indazol�, imidazol�, benzimidazol�, triazol�

(thus treating together 1,2,3 and 1,2,4-triazoles), benzotriazol�, tetrazol� and
pentazol�. In this way, fused compounds are included although they will not be
discussed in detail in this chapter. Table 8.1 gives the number of references and the
percentages in each case.

The evolution of the number of publications between 1999 and 2004 show an
increase of all of them, with the most cited, imidazoles and pyrazoles, growing the
fastest.

FromFigure 8.1 is can be concluded that benzazoles aremuch less studied than the
corresponding azoles and that an increase in the number of nitrogen atoms
diminishes the importance of the azoles, with pentazoles being only a curiosity.

In the Chemical Abstracts 2004, the word pyrazol� appears 1931 times. Regarding
these 1931, it is possible to classify them (at the price of some simplifications) into six
different fields (Table 8.2).

As expected, the medicinal chemistry aspects of pyrazoles dominates largely the
2004 production, but note their great importance as ligands in coordination
chemistry. As materials, the main applications are as dyes, inks and luminescent
devices.

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Another way to classify pyrazoles is to made a class of 1,2-azoles formed by
pyrazoles, isoxazoles and isothiazoles. This is not entirely satisfactory, because there
is an important difference between pyrazoles on the one hand and isoxazoles and
isothiazoles (Chapter 9) on the other: the presence of an NH (NR) in pyrazoles (1–3)

Table 8.1 Relative importance of azoles in the literature.

Azol� Total %

Pyrazol� 20701 22.12
Indazol� 1451 1.55
Imidazol� 31118 33.25
Benzimidazol� 10158 10.85
Triazol� 15688 16.76
Benzotriazol� 6429 6.87
Tetrazol� 8008 8.56
Pentazol� 42 0.05
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Figure 8.1 Evolution of the number of publications devoted to azoles between 1999 and 2004.
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that confers to this heterocycle a specific behavior to the point that we have treated it
separately from the two other heterocycles.

N
N

H

N
N

H
1
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3

4
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7

3a

7a N
N H

1 2

3

4
5

6

7

12

34

5

3a

7a

1H-pyrazole (1) 1H-indazole (2) 2H-indazole (3)

8.1.1
Nomenclature

We have represented above the three main heterocycles of this chapter. Notably, the
migration of the proton of a pyrazole from N1 to N2 changes the numbering of the
ring, that is 3-methyl-1H-pyrazole (4a) becomes 5-methyl-1H-pyrazole (4b), whereas
in indazoles the same migration transforms 3-methyl-1H-5a into 3-methyl-2H-
indazole (5b).

N
N

H

N
N

H

N
N HN

N

H

Me

Me

Me Me

4a 4b 5a 5b

A series of books or chapters in books have been devoted to this heterocycle,
including its benzo derivative, indazole, with exclusion of the very large topic of
pyrazoles fused with other heterocycles. In 1966, Kost and Grandberg published the
first systematic approach to pyrazole chemistry [1]. It is still a valuable source of
information because it summarizes in a short and clear way the knowledge

Table 8.2 Use of pyrazoles according to the number of citations.

Pyrazol� References % % Without
biol. appl.

Biological applications 785 40.65 —

Coordination chemistry 423 21.91 36.91
Synthesis 375 19.42 32.72
Properties 125 6.47 10.91
Application as materials 118 6.11 10.30
Reactivity 105 5.44 9.16
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accumulated in Russia after the seminal contribution of Karl Friedrich von Auwers
(1863–1939) to the chemistry of these compounds. A year later, a book appeared that
contains tables describing many pyrazoles, indazoles and their reduced derivatives,
one of the authors, Fusco, was at that time very active in the chemistry of
pyrazoles [2]. A book on all azoles is very useful since it represents a more
structural and comparative study with much spectroscopic data [3]. In 1984
(updated in 1996) Comprehensive Heterocyclic Chemistry provided an extensive
treatment of the structure and reactivity of pyrazoles and indazoles but with a
concise report on synthetic aspects [4, 5]. The synthesis is well developed inHouben-
Weyl, Methoden der Organischen Chemie and its continuation, Science of Synthesis,
which contains synthetic recipes [6–9].

8.2
General Reactivity

Depending on the oxidation degree, pyrazoles can be classified into different families
(Scheme 8.1). Indazoles saturated in the benzene ring (4,5,6,7-tetrahydroindazoles)
are better considered as 3(5),4-tetramethylenepyrazoles. The 3H-indazoles, a third
isomer of indazoles, are unstable if one (or both) of the substituents at position 3 is an
H atom, that is, there are no 3H-indazole tautomers.

8.2.1
Relevant Physicochemical Data, Computational Chemistry and NMR Data

Figure 8.2 shows the structures of the three parent compounds, giving an image of
their compact character. Table 8.3 summarizes the properties of pyrazole (1) and 1H-
indazole (2) (the other tautomer, 3, is unstable – see under tautomerism).

In general, pyrazoles unsubstituted at position 1,NH-pyrazoles, andNH-indazoles
are solids, the exception being some pyrazoles substituted at position 4, like 4-
methylpyrazole [28]. The N-substitution, especially the N-alkylation, is accompanied
by a large decrease in the melting point.

Figure 8.3 presents, in a simplified manner, the geometry of 1 in the gas phase
(both from MW spectroscopy and from high-level theoretical calculations). Pyrazole
is planar and to a first approximation has a regular pentagonal geometry. Closer
examination reveals alternating single (C3-C4)/(C5-N1) and double (C4-C5)/(N2-C3)
bonds. Particularly relevant to determining the position of the NH, when it is not
observed in X-ray crystallography due to disorder, is the fact that the angle on N1 is
always larger than that on N2 (the same happens at C3 and C5).

Structural assignment of pyrazoles and indazoles is usually carried out by NMR
(Schemes 8.2–8.4), at one time by using tables of reference compounds and/or
coupling constants [29] but now more often by 2D spectroscopy, such as NOESY,
which detects the proximity of substituents [30].

The identification of pyrazole isomers is easy by NMR when there is only one
substituent at positions 3(5). The 1H NMR chemical shifts are dependent on the
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Scheme 8.1 Different structures of pyrazole derivatives depending on their oxidation degree

Figure 8.2 Space filling models of (a) pyrazole (1), (b) 1H-indazole (2) and (c) 2H-indazole (3).
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solvent, but the 3J34 VS. 3J45 coupling constants are not, so the fact that J45> J34 is
always a useful test. The ration J45/J34 depends on the substituent on the nitrogen,
with EWG (like tosyl) the difference is large and the criteria easy to apply. With EDG
(like amino) the difference tends to blur and J34� J45 [31].

For isomeric pyrazoles bearing different substituents at positions 3 and 5, the 13C
chemical shifts of carbons C3 and C5 is a better method of assignment if both
isomers are available. If only one is obtained, onemust rely on a comparison with the
large amount of data available [15]. In contrast, indazoles are easily identified by 13C
NMR spectroscopy [16].

15N NMR spectroscopic data can be routinely obtained from unlabelled samples
(natural abundance). But their utility as a diagnostic tool is limited. Note that the 15N
chemical shifts are very sensitive to hydrogen bonds and, obviously, to protonation.

Table 8.3 Properties of the parent compounds.

Property Pyrazole (1) Indazole (2)

Mp (�C) 69–70 145–149
Bp (�C) 186–188 (758mmHg) 269–270 (743mmHg)
LogP 0.13–0.26 1.82
Dipole moment (m, D) 1.92 (benzene) 1.60 (benzene)
pKa (proton addition) 2.52 1.31
pKa (proton loss) 14.21 13.80
Enthalpies of formation (kJmol�1) 179.4 [10] 243.0 [10]
UV (lmax nm, log e) 211 (3.49) [4] 250 (3.65), 284, 296 (3.52) [4]
IR (cm�1) 3524 (nNH gas) [4] Source: [11]
X-ray (CSD) [12] PYRZOL INDAZL
1H NMR Source: [13] Source: [13, 14]
13C NMR Source: [15] Source: [16]
15N NMR Source: [17] Source: [17]
MS Source: [18] Source: [19]
PES Source: [20] Source: [21]
MW Source: [22] Source: [23]
Best theoretical calculations Source: [24] Source: [25]
Aromaticity (benzene¼ 0.991) 0.900: [26] 0.808: [26]a)

a) Naphthalene: 0.811, 2H-indazole: 0.792 (using as criteria the HOMA) [27].
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Figure 8.3 Geometry of pyrazole.
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NMR information on the non-aromatic derivatives of pyrazoles is very abundant,
particularly on D2-pyrazolines and on pyrazolones [4, 7]. Scheme 8.5 contains some
multinuclear NMR data on D2-pyrazolines.
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8.2.2
Tautomerism

The study of the tautomerism of NH-pyrazoles and indazoles (annular tautomerism)
and that of functional compounds (e.g., pyrazolones) has been of considerable
importance for the development of structural chemistry [32–34]. Some protonated
cations also shown tautomerism. This huge amount of data is difficult to summarize,
but the principal conclusions are as follows:

1) Tautomerismoccupies amultidimensional space (Scheme8.6): the three states of
the matter, the thermodynamic and kinetic aspects, and the proton (prototropy
versus elementotropy).All theseaspectshavebeenobserved inpyrazoles although
those situationsmarked with a gray circle are very rare. Theoretical studies of the
tautomerism of pyrazole and its derivatives mainly concern the gas phase.

2) Concerning thermodynamic aspects, the main conclusion about annular tau-
tomerism of pyrazoles (6a*) 6b) is that the equilibrium tautomeric constant KT

is never far from 1 [35–37]. The preference of 6a versus 6b has been analyzed
using the Taft–Topsonmodel [35, 36]. BH2, COF, CO2H, and CHO substituents
stabilize the 6a tautomer, while the 6b tautomer is stabilized by OH, F, NH2, Cl,
CONH2, CN, NO2, and CH3 groups (this paper contains a wealth of information
about the IR of NH-pyrazoles) [37]. A more detailed analysis of the annular
tautomerism of 3(5)-aminopyrazoles (R¼NH2) shows that both tautomers are
present in solution and even in the solid state [38].
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For indazole, the 1H-tautomer (2) is more stable than the 2H-tautomer (3) by
about 20 kJmol�1, and this tendency cannot be reversed by phase effects;
consequently, in solution and in the solid state the only tautomer present is 2 [39].
To displace the equilibrium towards one of the tautomers it is necessary to use a
combination of substituents, aza and annelation effects [39]. For instance,
substituents like NO2 and CO2Me at position 3 favor the 2H-tautomer, the
replacement of a CH by an N atom at position 7 favors the 1H-tautomer (by
lone-pair/lone-pair repulsion in 7b), and a fused benzo group at positions [ f ] and
[g] favors, respectively, the 1H- (8a) and 2H-tautomers (9b).
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3) In terms of kinetic aspects, the transfer of group R between both nitrogen atoms
is an intermolecular process in the case of prototropy [40]. This requires other
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molecules (another pyrazole, water, a solvent, etc.) or a surface, for instance that
of the measuring instrument [41]. Other groups on the nitrogen migrate either
intermolecularly (COR, CH3, etc.) or intramolecularly (SiR3, GaR2, GeR3, SnR3,
HgR) with barriers that can be very low in some cases [34, 41].

4) The tautomerism of functional derivatives, such as pyrazolones, is well
understood and is no longer a research subject [32, 34]. However, there
remains always some interesting cases, for instance that of 4-nitroso-5-ami-
nopyrazoles 10 [42]. The compound exists as a mixture of rotamers 10a/10c of
the amino-nitroso tautomer, rather than a mixture of amino-nitroso/imino/
oxime tautomers 10a/10b.
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8.3
Relevant Natural and/or Useful Compounds

The common belief is that heterocycles are natural if they can be found in DNA
(nucleosides and nucleotides) or in proteins. That is why indole (tryptophan), pyrrole
(proline, porphyrins), imidazole (histidine, biotine) and benzimidazole (vitamin
B12) are considered �naturals� while pyrazole is not. One of the rare natural products
that contains a pyrazole ring isWithasomnine [5,6-dihydro-3-phenyl-4H-pyrrolo[1,2-
b]pyrazole (11) an alkaloid isolated from the roots of an Indian medicinal plant,
Withania somnifera]: its simplicity means that several synthesis are known, with the
most recent described in 2002 [43, 44].

N
N

Ph

11

Other pyrazoles found in nature are pyrazofurin or pyrazomycin (an antibiotic
isolated from the fermentation broth of Streptomyces candidus), formycin (a naturally
occurring isomer of adenosine) and L-b-pyrazolylalanine (found in the seeds ofmany
species of Cucurbitaceae).

From this itmust not be concluded that the pyrazole skeleton is not a good scaffold
for making drugs. A recent review examines the topic �Pyrazoles as Drugs: Facts and
Fantasies� [45]. This review describes the past and the present of pyrazole derivatives
in medicinal chemistry. From an important past, exemplified in the analgesic and
anti-inflammatory pyrazolones and pyrazolinediones, not devoid of severe complica-
tions, to a glorious present with some of the most important drugs of recent times
(sildenafil, celecoxib) being pyrazole derivatives.
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Analgesics were, by far, the main area of biological activity of pyrazoles, often
associatedwithantipyreticactivity.Theybelongtothreemainclasses:pyrazolin-5-ones
[antipyrine –phenazone – (12), pyramidon (13), dipyrone (14)], pyrazolin-3,5-diones
[phenylbutazone (15)] and pyrazoles [actually, an acetic acid, lonazolac (16)] [46].

Indazole proved to be an interesting nucleus in this field. Structural modifications
of the anti-inflammatory agent bendazac (17), an indazole derivative, have been
realized and, in some cases, the synthesized compounds showed analgesic effects
along with anti-inflammatory properties [47].
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Lesopitron (18) (E-4424), a pyrimidylpiperazine substituted by 1-butyl-4-chloro-
pyrazole, was introduced as a new non-benzodiazepine anxiolytic acting on 5-HT1A

receptors. It differed from other 5-HT1A receptors ligands mainly because of its
greater anxiolytic potency, its lack of sedative effects, its sustained activity even on
long-term treatments and its lack of withdrawal problems [48]. Lesopitron, currently
in advanced clinical trials (phase III), and has been shown to be efficient and safe in
patients with generalized anxiety disorder. Of particular interest is zaleplon, N-[3-(3-
cyanopyrazolo[1,5-a]pyrimidin-7-yl)phenyl]-N-ethylacetamide (19), a BZ1-receptor
selective ligand [49]. Zaleplon (Sonata, Wyeth-Pharma, MI 10165) is a non-benzo-
diazepine sedative hypnotic that has been recently introduced for clinical use. It is
indicated for short-term treatment of insomnia and presents the advantages of
showing weak anxiolytic activity and reduced risk of tolerance.
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The implication of glutamate receptors in memory processes has initiated great
interest in anti-Alzheimer therapy. In an attempt to obtain heterocyclic analogs of
glutamic acid, a synthetic strategy has been developed to prepare pyrazoles that show
biological activity at central glutamate receptors [50].

The discovery by Sanofi [51] in 1994 of the pyrazole SR141716A (20) has been of
great interest in the field of cannabinoids because this study reported the first
cannabinoid antagonist possessing nanomolar affinity. This selective and orally
active CB1 receptor subtype antagonist has become an experimental tool for
insights into CB1 subtype recognition and activation and for clinical applications
such as treatment of psychosis, eating disorders or memory deficits [52]. Recent
studies of analogs retaining the central pyrazole structure of 20, tested for CB1

binding affinity and in a battery of in vivo tests, suggest that the structural properties
of 1- and 5-substituents are primarily responsible for the antagonist activity of
SR141716A.
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The availability in 1997 of the highly specific antagonist SR144528 (21) [53] for the
CB2 receptor has allowed the investigation of both the architecture of ligand binding
sites, an approach that is difficult due to the structural disparity of cannabinoid
agonists, and the respective contribution of cannabinoid receptor subtypes in
functional cannabinoid effects in vivo. Its potential therapeutic applications include
immune disorders such as rheumatoid arthritis, multiple sclerosis, psoriasis,
infections and asthma.
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Various derivatives of SR141716A have been synthesized [54] and Makriyannis
et al. [55] have reported a study of structure–activity relationships of pyrazole
derivatives as cannabinoid receptor antagonists and have proposed structural
requirements for CB1 antagonistic activity.
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6-Aryl-tetrahydropyridazin-3-ones are prototypes of cardiotonic agents, having
both inotropic and vasodilator activities. Imazodan and bemoradan are two repre-
sentatives of this family, which are supposed to exert their actions by selective
inhibition of phosphodiesterase type 3 enzymes (PDE3). Many different structural
variations have been devised in this series and, related to pyrazoles, the most
interesting compound from a series of heterocyclic benzimidazolyl-pyridazinones
is meribendan (22). It inhibited myocardial PDE3, showed an interesting calcium
sensitizing effect and was selected for development as a positive inotrope [56].

The synthesis and inhibitory effects on cyclooxygenase, lipoxygenase and throm-
boxane synthetase of 3-amino-4,5-dihydro-1H-pyrazoles and related compounds
have been reported. Among these, the trifluoromethylphenyl derivative 23 is the
most interesting [57].
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Progress in understanding inflammatory processes has led to the search of
inhibitors of both the cyclooxygenase (COX) and lipoxygenase (LOX) pathways of
the arachidonic acid cascade. In this way tepoxalin (24) has been prepared and found
to be a potent anti-inflammatory agent [58].
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The discovery of a second, inducible form of cyclooxygenase (COX-2) that exists
along with the constitutive form (COX-1) led to the hypothesis that selective
inhibitors of COX-2 would be anti-inflammatory without causing the side effects
associated with inhibition of COX-1 in the gastrointestinal tract and kidney. This
is the moment most promising approach at present and has ultimately led Searle
to SC-58125 (25) and then to celecoxib SC-58635 (26) (MI 1968), which is useful
for the treatment of rheumatoid arthritis and osteoarthritis [59]. Other pharma-
ceutical companies have explored this avenue; for instance Fujisawa has developed
27 [60].
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Other groups, like ASTA, have approached the problem by inhibiting the enzyme
5-LOX. By analogy with zileuton, one of the first launched 5-LOX inhibitors for the
treatment of asthma, they prepared a series of 1,5-disubstituted indazol-3-ones, the
most potent being 28 [61]. Mosti et al. have also reported indazoles related to
angelicin, like compound 29a, which shows good anti-inflammatory and antipyretic
properties, while 29b shows significant local anesthetic activity [62].

For the treatment of diabetes, a series of hypoglycemic agents derived from
pyrazoles have been prepared and tested. The most interesting antidiabetic in this
field is WAY-123783 (30) – obtained after extensive SAR studies; it acts by blocking
SGTL (sodium-glucose co-transporter) in the kidney [63].
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For the treatment of obesity,Henke fromGlaxoWellcomehas optimized a series of
3-(1H-indazol-3-ylmethyl)-1,5-benzodiazepines – potent and orally active CCK-A
agonists derived from 31 [64].
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Steroidal pyrazoles have long been known. Kirschke [6] has reported several of
these compounds, like cortivazol (32) (X-ray structure) [65] and stanozolol (33), both
important and commonly used drugs. Cortivazol (32) is an anti-inflammatory
glucocorticoid while stanozolol (33) is an anabolic steroid used as androgen. Nivazol
(34) also belongs to the glucocorticoid class [66].
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Liver alcohol dehydrogenase (EC 1.1.1.1) catalyzes the first step in alcohol
metabolism and is a rational target for inhibiting alcohol metabolism. Prevention
of poisoning by methanol and damaging effects of ethanol metabolism are potential
applications of inhibitors of alcohol dehydrogenase. From the pioneering work of
Theorell [67] it is known that pyrazole and some of its 4-substituted derivatives (4-
methyl, 4-iodo and 4-bromo) are potent inhibitors of ethanol metabolism in vivo.
Pyrazoles have been proposed as therapeutic agents for treatment of alcohol
intoxication. Unfortunately, pyrazole is itself toxic and may not be useful for long-
term treatment of humans.

Although some interesting efforts have been made, including X-ray studies and
molecular modeling [68], 4-methylpyrazole (fomepizol) continues to be the most
efficient and less toxic of all the liver alcohol dehydrogenase inhibitors and inacti-
vators. Note also that pyrazole itself, an alcohol dehydrogenase inhibitor, has dual
effects on N-methyl-D-aspartate (NMDA) receptors of hippocampal pyramidal cells,
agonist and noncompetitive antagonist [69].

One of the most prominent of the anticancer agents with a pyrazole skeleton is
pyrazoloacridine (PZA, 35), 2-(N,N-dimethylaminopropyl)-9-methoxy-5-nitro-(6H)-
pyrazolo[3,4,5-kl]acridine (NSC 366140). PZA is the first of a new class of rationally
synthesized acridine derivatives to undergo clinical testing as an anticancer agent.
Recent studies suggest that PZAmight be a dual inhibitor of DNA topoisomerases I
and II and exerts its effects by diminishing the formation of topoisomerase-DNA
adducts. Consistent with this unique mechanism of action, PZA exhibits broad-
spectrum antitumor activity in pre-clinical models in vivo. In addition, this agent
displays several remarkable properties, including solid tumor selectivity, activity
against hypoxic cells, and cytotoxicity in noncycling cells. PZA has been studied in
phase I trials in adults and children, and is currently undergoing broad phase II
trials in several tumor types. No significant anti-tumor activity has been seen in
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gastrointestinal malignancies and prostate cancer. Owing to its unique properties,
combination studies with other antineoplastic agents are in progress [70].
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We end this section by summarizing the most promising fields of application of
pyrazoles and indazoles with four compounds. First, edaravone –norphenazone–, 3-
methyl-1-phenyl-2-pyrazolin-5-one (36), is a very simple compound, known fromold,
that it is a free radical scavenger and a very potent antioxidant agent against lipid
peroxidation. In vivo studies have revealed that edaravone shows brain-protective
activity in a transient ischemiamodel [71]. The second one is tolfenpyrad, 4-chloro-3-
ethyl-1-methyl-N-[4-(p-tolyloxy)benzyl]pyrazole-5-carboxamide (37) one of the most
promising insecticides recently discovered in Japan [72].
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The normal biological functions regulated by nitric oxide are attributed to three
nitric oxide synthase (NOS) isoforms (neuronal, endothelial or inducible macro-
phage). A dysfunction of these enzymes is implicated in various diseases such as
Alzheimer�s disease, septic shock, inflammatory arthritis, schizophrenia, impotence
and susceptibility to infection. 1H-Pyrazole-1-carboxamidines are competitive inhi-
bitors of all three isoforms: the most selective compound, 1H-pyrazole-N-(3-amino-
methylanilino)-1-carboxamidine, is 100-fold selective for neuronal NOS over endo-
thelial NOS [73]. In the field of neuroprotective activity, studies carried out by Wolff
and Gribin [74] on inhibition of nitric oxide synthase by indazole agents confirmed
the proposal that 5-nitro-, 6-nitro- and 7-nitroindazoles exert inhibitory actions by
interaction of nitric oxide synthase such that oxygen does not bind. 7-Nitroindazole
(38), a selective inhibitor of neuronal nitric oxide synthase, has been studied
for neuroprotective activity and has been used to investigate the role of nitric
oxide [75–77].
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On 27 March 1998 the US Food and Drug Administration approved sildenafil
citrate (Viagra) (39) for treating male erectile dysfunction (MED). The drug works by
inhibiting cyclic guanosine monophosphate (cGMP) phosphodiesterase Type 5
(PDE5). Further structural manipulations have included a-thiagra, the thiophene
bioisostere [78], and Monagra, a chiral 5-(2-methyl-2,3-dihydro-7-benzofuryl)-pyra-
zolopyrimidone analog [79]. At Bristol-Myers Squibb a PDE5 screening of a series of
pyrazolopyridines identified a lead compound with modest potency. Based on this
template, andusing parallel synthesis, froma large anddiverse library emerged anew
pyrazolopyridine showing comparable in vitro functional PDE5 inhibition when
compared to sildenafil and improved PDE isozyme selectivity. Thus, due to its
pharmacokinetic profile, it is expected to have fewer PDE-related side effects than
sildenafil [80].
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39
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8.4
Synthesis of Pyrazoles and Indazoles

Since the synthesis of pyrazoles and indazoles have very few items in common it is
better to treat them separately. Ring transformations, when a heterocycle is trans-
formed into a pyrazole (or indazole), are discussed in the synthesis section. On the
other hand, cases where a pyrazole (or indazole) is transformed into another
heterocycle are reported under reactivity (Section 8.5). For the same reasons,
oxido-reduction reactions, for example, transformation of pyrazolines into pyrazoles
or vice versa, will also be covered under reactivity.

8.4.1
Synthesis of Pyrazoles

There aremanymethods for the synthesis of the pyrazole ring; it can be formed both
by cyclization and by cycloaddition reactions. The reaction of hydrazines with 1,3-
dicarbonyl compounds (or their equivalents) is probably the most general and
versatile method; however, a disadvantage, in some cases, is the formation of
mixtures of isomeric pyrazoles from unsymmetrical dicarbonyl compounds. The
1,3-dipolar cycloaddition reaction of diazo compounds, nitrilimines and azomethine
imines with alkynes is also a general route to pyrazoles.
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Scheme 8.7 shows the different possibilities for the creation of the pyrazole ring
according to the bonds formed.

The synthesis and chemistry of pyrazoles has been the subject of recent reviews
[6, 8, 81–84].

8.4.1.1 Formation of One N–N Bond
Dioximes of 1,3-dicarbonyl compounds give oxidative cyclization to 4H-pyrazole-1,2-
dioxides 42 (Scheme 8.8). Various oxidants have been used, namely lead(IV)
acetate [85, 86] and N-bromoacetamide [87–89]. Dehydration of dioximes 41 with
thionyl chloride leads to the monooxides 43 [88, 89]. Base-induced cyclization of 1,3-
diketone dioximes affords 1-hydroxypyrazoles, but in low yield (10–30%) [90].

Imines 44 react with thionyl chloride, at room temperature, to furnish 1,2,6-
thiadiazine 1-oxides 45. Thermal extrusion of sulfur monoxide leads to pyrazoles 46
(Scheme 8.9). Alternatively, reaction of imines 44with thionyl chloride in pyridine at
90 �C leads directly to pyrazoles 46 [91, 92].

Iminohydrazones 47 give NH-pyrazoles 48when treated with an aqueous solution
of sulfuric acid (Scheme 8.10). In contrast, they are converted into the N-alkenyl
derivatives 49 when treated with an equimolar amount of anhydrous trifluoroacetic
acid in dry THF [93].

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

Formation of one bond

Formation of two bonds

a) from 4 + 1 atom fragments

b) from 3 + 2 atom fragments

Scheme 8.7

R1R1

NN
HO

N
N

O

42

R1

O
+ -

+
-

Oxidant

41

OH

R2R2

R1

R2 R2

N
N

O

43

R1

+
-

R1

R2 R2

SOCl2/SO2

Scheme 8.8

652j 8 Five-Membered Heterocycles: 1,2-Azoles. Part 1. Pyrazoles



8.4.1.2 Formation of One N–C Bond
Oxidative cyclization of arylhydrazones 50 leads to 1,3,5-trisubstituted pyrazoles 51 in
high yields (Scheme 8.11). Lead tetraacetate [94], manganese dioxide [95] and
thianthrene cation radical perchlorate [96] have been used as the oxidants in these
transformations.

Diazoalkenes 52 give 1,5-electrocyclizations to 3H-pyrazoles 53, which isomerize
spontaneously to 1H-pyrazoles 54 (Scheme 8.12). These reactive intermediates can
be generated by alkaline decomposition of ethyl alkenylnitrosocarbamates [97],
tosylhydrazones of a,b-unsaturated carbonyl compounds [98] or N-methoxypyrida-
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zinium salts [99] or from the reaction of carbonyl compounds with ethyl
lithiodiazoacetate [100].

8.4.1.3 Formation of One C–C Bond
Dieckmann cyclization of hydrazones 55 leads to 4-hydroxypyrazole-5-carboxylic acid
derivatives 56 in moderate to good yields (Scheme 8.13) [101, 102]. Trifluoroacetic
anhydride-pyridine induced cyclization of hydrazones 57 affords 1-alkyl-4-trifluor-
omethylpyrazoles 58 [103].

When heated with trace amounts of concentrated hydrochloric acid at 140 �C for
100 h, azines of methyl ketones 59 are converted into 3,5-dialkyl-5-methyl-2-pyra-
zolines 60 in 65–79% yields (Scheme 8.14) [104]. Heating these azines with nickel or
cobalt(II) halides at 200 �C also affords pyrazolines 60 in good yields [105]. Under
these conditions, other azines give pyrrole derivatives [105]. When acetone azine is
heated at 100 �C in the presence of trace amounts of TiCl3, 90% conversion into
pyrazoline 60 (R1¼Me) is effected after 20 h [106].
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Cinnamaldehyde azine and derivatives 61 are converted into pyrazoles 62 in high
yields when heated at about 200 �C (with or without solvent) (Scheme 8.14) [107].
Other a,b-unsaturated azines behave similarly [108, 109]. The thermal decomposi-
tion of polyhalogenated propenal azines can be used for the synthesis of mono- and
dihalogenated N-unsubstituted pyrazoles [110].

Treatment of benzyl phenyl ketazine with two equivalents of LDA generates a
dianion that, when heated at 65 �C for 1 h in THF-HMPA, provides 3,4,5-
triphenylpyrazole [111].

8.4.1.4 Formation of Two Bonds

8.4.1.4.1 From 4þ 1 Atom Fragments

Formation of One C–N and One N–N Bond [N-C-C-CþN] Iminoposphoranes 63
react with 2-azido-cyclopent-1-enecarbaldehyde 64 to afford azidoimines 65. When
heated in refluxing toluene, these compounds extrude nitrogen and cyclize to
pyrazoles 66 (Scheme 8.15) [112].

Nitrosation of a,b-unsaturated oximes unsubstituted in the a-position with
sodium nitrite and acetic acid leads to pyrazole 1,2-dioxides 68 and 69 while the
a-substituted ones afford 1-hydroxypyrazole 2-oxides 70 (Scheme 8.16) [113–115].
Nitrosation of oximes 67 with butyl nitrite in the presence of pyridine and copper
sulfate affords copper complexes 71, which can be conveniently converted into the 1-
hydroxypyrazole 2-oxides 70 [116].

Formation of One C–N and One C–C bond [N-N-C-CþC] Hydrazones of methyl
ketones react with the Vilsmeier–Haack reagent to afford 1H-pyrazole-4-carbalde-
hydes 74 (method A, Scheme 8.17) [117]. The reaction time can be reduced from
4–5 h to 35–50 s ifmicrowave irradiation isused insteadof conventional heating [118].
An interesting variation of method A consists in the substitution of phosphorus
oxychloride by cyanuric chloride (2,4,6-trichloro[1,3,5]triazine, TCT) (method
B) [119]. This variation requires milder reaction conditions.

Condensation of theVilsmeier–Haack reagent with arylhydrazones of b-ketoesters
and c-ketoesters yields, respectively, pyrazole-4-carboxylic acid esters [120] 75 and 4-
pyrazoleacetic acid esters [121] 76 (Scheme 8.18).
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Aminocarbonylhydrazones of methyl ketones [122] or of b-ketoesters [120] react
with theVilsmeier–Haack reagent to afford, respectively,N-unsubstituted pyrazole-4-
carbaldehydes 77 and N-unsubstituted pyrazole-4-carboxylic acid esters 78
(Scheme 8.19).

Acetophenone azines 79 also react with the Vilsmeier–Haack reagent to afford 1H-
pyrazole-4-carbaldehydes 80 in excellent yields (Scheme 8.20) [123].

Anions generated from hydrazones with an a-hydrogen undergo a series of
reactions affording N-heterocycles, namely pyrazoles [124]. The reaction of
dilithiated hydrazone anions with electrophiles (esters [125–129], acyl chlorides [128,
130], nitriles [131], amides [128], a-haloketones [128], aldehydes [132] or diethyl
carbonate [133]) followed by acid-catalyzed ring closure furnishes adequately func-
tionalized pyrazoles (Scheme 8.21).

The anion derived from the N-phenyl-a-phosphinylhydrazone 81 reacts with
aromatic aldehydes to afford hydrazones 82. Heating at 100 �C in toluene leads to
pyrazoles 83 in excellent yields (Scheme8.22) [134]. In a similarway, deprotonation of
the N,N-dimethylhydrazone 84, addition of isocyanates (X¼O) or isothiocyanates
(X¼S) and cyclization leads to pyrazoles 86 [135].
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Treatment of a solution of diazabutadiene 87 in toluene with 1–10mol% of Pd(0)
catalyst under an atmosphere of CO (1–2 atm) at 100 �C for 15min affords 1,3,4-
triphenylpyrazol-5-one (88) in excellent yield (Scheme 8.23) [136].
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8.4.1.4.2 From 3þ 2 Atom Fragments

Formation of Two C–N Bonds [C-C-CþN-N] The addition of hydrazines (double
nucleophiles) to three-carbon units featuring two electrophilic carbons in a 1,3-
relationship is one of the most versatile routes to pyrazoles. The condensation of
hydrazineswith 1,3-diketones, for instance, is perhaps themost common route to the
construction of the pyrazole ring (Scheme 8.24) [137–139]. Several other 1,3-bis
(electrophilic) compounds react with hydrazines to yield pyrazoles, namely b-keto-
aldehydes, b-ketoesters, b-ketoamides, b-ketonitriles, vinyl ketones, alkynyl ketones,
and so on.

Substituted 5-alkylamino and 5-(arylamino)pyrazoles 93 can be prepared in one-
pot synthesis from a b-ketoamide 91, an aryl or alkyl hydrazine and Lawesson�s
reagent (Scheme 8.25) [140]. Hydrazones 92 are probable intermediates.
This method has also been applied for the solid-supported synthesis of 5-(N-
monosubstituted-amino)pyrazoles [141].

Diketo oximes 95 (prepared from1,3-diketones 94) react with hydrazines to yield 4-
nitrosopyrazoles 96 (Scheme 8.26) [142, 143]. However, if a large excess of hydrazine
is used the isolated products are the corresponding 4-amino-3,5-disubstituted
pyrazoles 97 [144].

Enamines of general type 98 react with hydrazine derivatives to afford pyrazoles 99
(Scheme 8.27) [145]. For instance, reaction of (þ )-camphor derivative 100 with
hydrazine or benzylhydrazine leads to pyrazoles 101 [146]. Also, compounds 102
reactwith phenylhydrazine to afford 1,4,5-trisubstituted pyrazoles 103 inmoderate to
excellent yields [147]. Similarly, ethyl 4-dimethylamino-2-oxo-3-butenoate 104 and its
diester analogue 105 react with a range of hydrazine derivatives to afford pyrazoles
106 and 107, respectively [148].
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The use of microwave irradiation in this type of chemistry allows the formation of
pyrazole derivatives in a few minutes while it requires several hours under conven-
tional heating [149]. The formation of pyrazoles from polymer-bound 2-acyl-3-
aminopropenoates has also been described [150, 151].

Cyclocondensation of a-oxoketene N,S-acetals 108 with phenylhydrazine gives
regioselectively 3- or 5-(N-cycloamino)pyrazoles just by variation of the reaction
conditions (Scheme 8.28) [152]. Reaction of 2-cyanoketene N,S-acetals with substi-
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tuted hydrazines in refluxing ethanol containing a catalytic amount of piperidine
gives the corresponding 5-amino-3-anilino-1H-pyrazole-4-carboxamides [153].

a-Oxoketene dithioacetals 111 react with phenylhydrazine to give selectively
5-methylthio-1-phenyl-3,4-substituted/annulated pyrazoles 112 (Scheme 8.29) [154].
Regioisomeric 3-methylthio-1-phenyl-4,5-substituted/annulated pyrazoles 114
are obtained selectively from the reaction of b-oxodithioesters 113 with
phenylhydrazine [154].

Cyclocondensation of 1-bis(methoxy)-4-bis(methylthio)-3-buten-2-one (115) with
hydrazine hydrate gives pyrazole 116 with a masked aldehyde functionality
(Scheme 8.30) [155]. The corresponding 5(3)-cycloaminopyrazole derivatives 118
can also be synthesized in a one-pot sequence by prior displacement of one of the
methylthio groups of 115 by the respective amine. Hydrolysis of the dimethylacetal
moiety of 116 with aqueous acetic acid (50%) affords the corresponding pyrazole-3
(5)-carbaldehyde in 95% yield.
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Baylis–Hillman adducts 119 and 121 react with hydrazine hydrochlorides to afford
regioselectively 1,3,4,5-tetrasubstituted pyrazoles 120 and 122 respectively
(Scheme 8.31) [156].

5-Trichloromethyl-1-phenyl-1H-pyrazoles 124 and 5-trichloromethyl-1,2-
dimethylpyrazolium chlorides 125 can be synthesized in 80–98% yield by the
cyclocondensation of b-alkoxyvinyl trichloromethyl ketones 123 with phenylhydra-
zine and 1,2-dimethylhydrazine dihydrochloride, respectively, under microwave
irradiation and using toluene as solvent (Scheme 8.32) [157]. While the use of
microwave and classical methods are comparable for making pyrazoles, the pyr-
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azolium chlorides can be obtained in a significantly shorter time and in some cases
better yield. The trifluoromethyl analogues of 123 react with 7-chloro-4-hydrazino-
quinoline to afford 1H-pyrazol-1-yl quinolines in high yields [158].

Treatment of a-benzotriazolyl-a,b-unsaturated ketones 127withmonosubstituted
hydrazines leads to the regioselective synthesis of benzotriazolylpyrazolines 128,
which, by treatment with a base, can be converted into the trisubstituted pyrazoles
129 (Scheme 8.33) [159]. Alkylation of pyrazolines 128 at the 4-position of the
pyrazoline ring is a versatile route to unsymmetrical 1,3,4,5-tetrasubstituted pyr-
azolines 130 and -pyrazoles 131 [159]. Thea-benzotriazolyl-b-ethoxy-a,b-unsaturated
ketones 132 react with hydrazines to afford directly the corresponding 4-benzotria-
zolylpyrazoles 133 [160].

Chalcones 134 react with substituted hydrazines to yield 1-substituted-3,5-diaryl-
4,5-dihydro-1H-pyrazoles 135 (Scheme 8.34) [84]. With hydrazine hydrate, in acetic
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acid, they afford the 1-acetyl derivatives; some of them are potent and selective
inhibitors of monoamine oxidase [161]. Chalcones 134 undergo a rapid cyclization
with phenylhydrazine under solvent-free and silica-supported conditions using
microwave irradiation to afford 4,5-dihydro-1H-pyrazoles 135 in good yields in
2–3min [162]. Chalcone-epoxides react with hydrazine hydrate, in refluxing ethanol,
to afford 3,5-diaryl-1H-pyrazoles in high yield [163].

Cinnamylideneacetophenones 136 react with hydrazine hydrate or phenylhydra-
zine to afford the dihydropyrazoles 137 (Scheme 8.34) [164]. In a similar process,
chalcones, bis(chalcones) and oligo(chalcones) react with hydrazine hydrate or
hydrazine derivatives to yield pyrazolines, bis(pyrazolines) and oligo(pyrazolines),
respectively [165, 166].

Addition of hydrazine to alkynyl ketones is a simple and regioselective route to
pyrazoles. Some examples are shown in Scheme 8.35 [167–170].

Alkynylcarbene complexes 138 react with hydrazines 139 to form selectively 1,4-
disubstituted pyrazoles 140 (Scheme 8.36) [171].Withmethylhydrazine it leads to the
cyclic aminocarbene complex 141, which can be demetallated to 1-methyl-5-phe-
nylpyrazole (142).

Aryl benzophenone hydrazones 143 are convenient substitutes of arylhydrazines
in the synthesis of pyrazoles. These hydrazones react with various 1,3-bifunctional
substrates under acidic conditions to afford adequately functionalized pyrazoles in
good yields (Scheme 8.37) [172, 173]. The obtained regioselectivity is consistent with
transhydrazonation followed by subsequent cyclization. This synthetic route is
especially attractive for the synthesis of 1-hetaryl-pyrazoles, since N-hetaryl benzo-
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phenone hydrazones can easily be prepared following Buchwald–Hartwig
procedures [173].

The cyclocondensation of hydrazines with 1,3-dihalopropanes 144 or propane-1,3-
diol ditosylate (145) in aqueous alkaline medium and under microwave irradiation
affords 4,5-dihydropyrazoles 146 as major products instead of the anticipated
pyrazolidines 147 (Scheme 8.38) [174].
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Formation of One C–N Bond and One C–C Bond [N-N-CþC-C] The 1,3-dipolar
cycloaddition of diazoalkanes, nitrilimines or azomethine imines to alkynes, alkenes
or to functionalized alkenes (enamines or enol ethers, for instance) is a versatile
method for the synthesis of pyrazoles. The dipole is the source of the [CNN] fragment
while the dipolarophile contributes with the [CC] fragment. This method suffers
from the disadvantage that a mixture of two isomeric pyrazolesmay be formed when
unsymmetrical dipolarophiles are used.

C N NC N N
- +-+

C N N
-+

C N N
- +

Diazoalkanes

Nitrilimines

Azomethine imines C N N
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C N N
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.. ..
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Diazoalkanes react with alkenes and alkynes to give, respectively, D1-pyrazolines
and 3H-pyrazoles [175–177]. However tautomerization may take place, especially if
diazomethane or a monosubstituted diazoalkane is used.

The orientation of the dipole–dipolarophile interaction is mainly governed by
electronic effects, as described by the FMO theory. However, as indicated in
Scheme 8.39 [178], the regioisomer ratios are also strongly dependent on steric
effects, which are more pronounced in the case of alkynes.

Diazoalkanes react with arylalkynes and acylalkynes to afford, with high regios-
electivity, pyrazoles 152 and 153, respectively (Scheme 8.40). In both cases, the
polarization of the triple bond is such that the nucleophilic carbon atom of the dipole
attacks the terminal position of the alkyne.With acylarylalkynes, amixture of the two
possible regioisomers 154 and 155 is frequently obtained. For each alkyne, the
ratio 154 : 155 is strongly dependent on the diazoalkane used [177, 179].
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Pyrazole itself can be synthesized from the reaction of diazomethane with
acetylene. When this reaction is carried out under pressure, almost quantitative
yields are obtained [180]. Under identical conditions, addition of diazoethane, ethyl
diazoacetate ora,v-bis(diazo)alkanes 157 to acetylene gives rise to the corresponding
pyrazoles 156 or bispyrazoles 158 (Scheme 8.41) [180].

Addition of an ethereal diazomethane solution to fluoro(tributylstannyl)acetylene
(159a), at �30 �C, gives the corresponding 5-tributylstannyl-4-fluoropyrazole (160a)
in 98% yield (Scheme 8.42) [181]. The trifluoromethyl analogue 160b can be obtained
in the same way [182].
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A one-pot procedure for the preparation of 1H-pyrazoles involving aryldiazo-
methanes generated in situ has been reported [183]. The 1,3-dipoles are generated in
situ from aldehydes, via tosylhydrazone sodium salts, and then react with arylace-
tylenes to furnish regioselectively 3,5-diaryl-1H-pyrazoles 161 (Scheme 8.43). When
they are generated in the presence of N-vinylimidazole, an acetylene equivalent, 3-
substituted-1H-pyrazoles 162 are obtained.

The generation of aryldiazomethanes 164 from bromovinyl tosylhydrazones 163
leads to benzopyrano[1H]pyrazoles 165 in high yields (Scheme 8.44) [184].

An efficient InCl3-catalyzed 1,3-dipolar cycloaddition of diazocarbonyl compounds
and alkynes to synthesize pyrazoles has been reported recently [185]. The reaction is
carried out inwater, at room temperature, and the catalyst, which stays in the aqueous
phase after thework-up, can be reusedwithout loss of catalytic activity. The reaction is
applicable to various a-diazocarbonyl compounds and alkynes with a carbonyl group
at the neighboring position. As an example,methyla-diazoarylacetates 166 react with
methyl propiolate to afford pyrazoles 167 and 168 in excellent combined yields
(Scheme 8.45).

Nitrilimines are also interesting intermediates in the synthesis of pyrazoles and
D2-pyrazolines [186, 187]. These 1,3-dipoles are typically generated by dehydroha-
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logenation ofN-arylhydrazonoyl halides 169with triethylamine in an inert solvent in
the presence of the dipolarophile (Scheme 8.46) [188]. Useful alternatives for the
generation of nitrilimines are the cycloreversion [189] of tetrazoles 170, oxathiadia-
zolinones 171 and 1,3,4-oxadiazolin-2-ones 172 and the oxidation of aldehyde
hydrazones with chloramine T, lead tetraacetate [190] or with (diacetoxy)iodoben-
zene [191, 192].

3-Diethylaminoacrylonitrile (173) reacts readily with nitrilimines generated from
hydrazonoyl chlorides 174 and triethylamine to yield selectively 1,3-disubstituted
pyrazole-4-carbonitriles 175 (Scheme 8.47) [193]. Bis-pyrazolophanes have been
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prepared via double cycloadditivemacrocyclization of bis-hydrazonoyl chlorides with
bis-allyl ethers, a bis-vinyl ether and a bis-propargyl ether [194].

Diaryl azines reactwithmaleic anhydride,maleimide orN-substitutedmaleimides
to give pyrazolo[1,2-a]pyrazole derivatives 177 by (1,3 : 2,4)-dipolar cycloadditions
(also known as crisscross cycloadditions) (Scheme 8.48) [195–197]. Azomethine
imines 176 are probable intermediates in these transformations.

Azomethine imines of types 178 and 180 have been used in the synthesis of aza-b-
and aza-c-lactams (Scheme 8.49) [198, 199].

A highly enantioselective catalytic intermolecular [3 þ 2] cycloaddition of acylhy-
drazones 182 to electron-rich alkenes has been reported [200]. Tetrahydropyrazoles
183 are obtained in high yield andwith high ee (95–98%) (Scheme 8.50). The reaction
proceeds in the presence of a chiral zirconium catalyst prepared from zirconium
propoxide (Zr(OPr)4), (R)-3,30-I2BINOL (184) and propanol. A concertedmechanism
has been proposed for this reaction.

N

N

Ar

Ar

X

O

O

+
N

N

X

X

O

O
O

O

Ar

Ar

177X = O, NH, N-alkyl, N-aryl

N

N

X

O

O

Ar

Ar

-

+

X

O

O

176

Scheme 8.48

N N

R1 O

CO2R2

CO2R2

N
N

CO2R2R2O2C

Ph

Ph

R1

O

-+
+

N
N

MeO2C

O

NHCOPhPh

Ar

CO2Me

N
N O

NHCOPhPh

H

-
+

Ar
CO2Me

CO2Me

+

Ph

Ph

971871

181081

Scheme 8.49

670j 8 Five-Membered Heterocycles: 1,2-Azoles. Part 1. Pyrazoles



Formation of Two C–N Bonds and One C–C Bond [N-NþC-CþC] A four-compo-
nent one-pot construction of pyrazoles via a palladium-catalyzed coupling of
terminal alkynes, hydrazine (or methylhydrazine), carbon monoxide and aryl
iodides has been described recently (Scheme 8.51) [201]. The reaction proceeds
at room temperature and an ambient pressure of carbon monoxide in an aqueous
solvent system. The reaction is completely regioselective and the yields are
excellent. Under similar conditions, the reaction with phenylhydrazine does not
afford the corresponding pyrazole.

8.4.1.5 From Other Heterocycles
Many heterocyclic compounds can be converted into pyrazoles. However, despite
some synthetically interesting exceptions, in most cases the starting heterocycles are
not readily available and the routes are unlikely to be general. A few examples of ring
enlargement, ring modification and ring contraction reactions leading to pyrazoles
are shown in the following schemes.

Ring enlargement of diaziridinone 185 by reaction with bifunctional carbanions
leads to pyrazolinone 186 or to spiroheterocycles 187 (Scheme 8.52) [202].

Sydnones give 1,3-dipolar cycloadditions with a range of dienophiles to yield
pyrazoles. For instance, the reaction of 3-phenylsydnone (188) with meta- and
para-diethynylbenzene in refluxing xylene gives meta- and para-phenylenedipyra-
zoles 190, respectively (Scheme 8.53) [203]. Similarly, the reaction of para-phenylene-
3,30-disydnone (191) with phenylacetylene provides 3,30-diphenyl-1,10-para-phenyle-
nedipyrazole (192). A range of polysubstituted pyrazoles have been obtained in high
yield and with elevated regioselectivity from the reaction of 3,4-disubstituted syd-
nones with 1-aryl-3,3,3-trifluoromethylpropynes [204]. The 1,3-dipolar cycloaddition
reactions of nitrilimines with a great variety of heterocyclic compounds, many of
them leading to pyrazoles, have been reviewed [187].
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Pd(0)-catalyzed carbonylation of 1,2-diaza-1,3-butadienes 196, generated in situ by
thermal extrusion of SO2, CO2 or COS from heterocyclic precursors 193–195,
respectively, under 1–2 atm of CO affords pyrazol-5-ones 197 in good yields
(Scheme 8.54) [136].
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Addition of hydrazine derivatives to (S)-1-acylpyrrolidin-2-ones 198 in refluxing
acetic acid leads to (S)-N-acyl-3-(1-substituted-5-hydroxy-1H-pyrazol-4-yl)alanine
methyl esters 199 (Scheme 8.55) [205].

3-Benzoyl-2-substituted-5-phenylfurans 200 react with hydrazine to afford the
corresponding 4-benzoylmethyl-3(5)-phenylpyrazoles 201 (Scheme 8.56) [206].

Furan-2,3-diones 202 react with hydrazines under different conditions to yield
pyrazole-3-carboxylic acid hydrazides 203 (Scheme 8.57) [207].

4,5-Dihydro-5-(hydroxyimino)-4-oxothiophene-3-carboxylic esters 204 react with
hydrazines to yield pyrazole-3- or -5-thiohydroxamic acids (205 and 206, respectively),
depending on the substituents R1 and R2 (Scheme 8.58) [208].

2,3-Dihydro-4H-pyran-4-ones 207 undergo rapid condensation with arylhydra-
zines in the presence of montmorillonite KSF clay to afford enantiomerically pure 5-
substituted pyrazoles 208 in good yields (Scheme 8.59) [209]. In the absence of the
clay, no reaction is observed between the pyranones and arylhydrazines. The catalyst
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can be recovered by simple filtration and reused three times without any significant
decrease in activity after being washed with methanol and activated at 120 �C.

2-Formyl glycals 209 undergo rapid condensation with arylhydrazines under
solvent-free conditions to give the corresponding optically pure 4-substituted pyr-
azoles 210 in good yields with high selectivity (Scheme 8.60) [210]. Like arylhydra-
zines, hydrazine hydrate itself also affords the respective pyrazoles in good yields.

2-(Methyl, phenyl, or styryl)chromones 211 react with methylhydrazine to afford
the corresponding 3-(2-benzyloxy-6-hydroxyphenyl)pyrazole derivatives 212
(Scheme 8.61) [211]. Similarly, treatment of 3-aroylflavones 213with hydrazine gives
a mixture of the two aroylpyrazoles 214 and 215 [212].

Treatment of the 3-(3-aryl-3-oxopropenyl)chromen-4-ones 216 with hydrazine
hydrate in hot acetic acid afforded the 1-acetyl-3-aryl-5-[3-(2-hydroxyphenyl)pyra-
zol-4-yl]-2-pyrazolines 217 in good yields (Scheme 8.62) [213]. Oxidation of the 2-
pyrazoline ring with DDQ gave the bispyrazoles 218.N-Deacylation occurred during
the oxidation.

3-Acyl-2H-pyran-2,4-diones 219 react with one equivalent of phenylhydrazine to
give hydrazones 220a–d (R3¼Ph) (Scheme 8.63) [214]. Reaction of 219a with
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hydrazine hydrate affords 221a (R3¼H) [215]. Hydrazones 220 can be converted into
pyrazolin-5-ones 221 in good yields [214]. 3-Acetyl-2H-pyran-2,4-dione 219a reacts
with two equivalents of phenylhydrazine to give the pyrazolylpyrazole 222 [214].

Surprisingly, 2H-pyran-2,4-dione 223 reacts with phenylhydrazine to afford dihy-
dropyrazole 224 while with hydrazine it gives pyrazole 225 (Scheme 8.64) [216]. The
formation of 225 involves a decarboxylation process, not observed in the reaction of
compound 219a with hydrazine [215]. 3-Aryl-1-(3-coumarinyl)propen-1-ones also
react with hydrazines to afford 1-substituted 5-aryl-3-(3-coumarinyl)-2-
pyrazolines [217].

N-Methoxypyridazinium salts 226 react with hydroxide ion to give vinyl diazo-
methanes 227, which cyclize to 3(5)-acyl-1H-pyrazoles 228 when heated in benzene
(Scheme 8.65) [99].

Under the action of hydrazines, pyrimidines give ring contraction transformations
to pyrazoles. For instance, 5-nitropyrimidine reacts with hydrazine hydrate at room
temperature for 2 days, or at 100 �C for half an hour, to yield 4-nitropyrazole in nearly
quantitative yield [218]. More recent work has shown that treatment of 4-(dimethy-
lamino)-6-chloro (or 6-methoxy)-5-nitropyrimidine with hydrazine hydrate or
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methylhydrazine (2 equiv.) leads to 3,5-diamino-4-nitropyrazole and 3,5-diamino-1-
methyl-4-nitropyrazole, respectively, in moderate yields (Scheme 8.66) [219]. The
conversion of 5-acylpyrimidines and 5-acyl-uracils into a range of pyrazole derivatives
has been reviewed [220].

A novel one-step synthesis route to fully substituted pyrazol-4-ols was reported
recently. It is based on the reaction of thietanone 231 with 1,2,4,5-tetrazines 232
(Scheme 8.67) [221]. All of the elements of the thietanone, except its sulfur, are
incorporated in the products. Quoting the authors of that work, this is a simple yet
non-obvious method for the construction of pyrazol-4-ols.

Thermolysis of the tetrazolo[1,5-a]pyrimidines 234 and tetrazolo[1,5-b]pyridazine
237 gives 1-cyanopyrazoles in good yields (Scheme 8.68) [222]. When these hetero-
cyclic compounds are heated at about 10–20 �C over their melting temperature
evolution of nitrogen is observed. The reactions are particularly fast (fewminutes)
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and the pyrazole derivatives 236 and 239 are the only detectable products.
Nitrenes 235 and 238 are probable intermediates in these ring contraction reactions.

8.4.2
Synthesis of Indazoles

There are several methods for the synthesis of indazoles [4, 5, 7, 9, 223, 224]. Most
start from benzene derivatives, where the pyrazole ring is formed by ring
closure. However, a few examples start from pyrazoles. The different possibilities
for the construction of the indazole ring can be regarded according to the bonds
formed, as described for the pyrazoles, and their synthesis will be organized in
that way.

The major part of indazole ring-closure procedures involves creating a bond
between the two nitrogen atoms (N�N) as the last step; nevertheless, ring closure by
creation of a N�C bond through the formation of N2�C3 or N1�C7a bond is also
common. A few examples involving a C3–C3a ring closure are also reported.

8.4.2.1 Formation of One N–N Bond
One of the simplest syntheses of indazoles by an N–N ring closure involves the
reduction ofN-ortho-nitrobenzaldimines 240with triethyl phosphite, to afford 2-aryl-
2H-indazoles 241 (Scheme 8.69) [225]. The same type of imines (242) can be
converted into 2H-indazoles 244 by reductive N-heterocyclization of N-(2-nitroben-
zylidene)amines 242 with the catalyst system dichlorobis(triphenylphosphine)pal-
ladium(II)–tin(II) chloride at 100 �C for 16 h under 20 kg cm�2 of initial carbon
monoxide pressure (Scheme 8.70) [226]. Carbon monoxide operates as a reducing
agent of the nitro substituent into a nitrene intermediate 243, which strongly
coordinates palladium, alongwith the generation of carbon dioxide. The electrophilic
nitrene can then attack the nitrogen atom of the imino group to give the correspond-
ing 2-substituted 2H-indazoles 244.

2-Aryl-3-chloro-2H-indazoles 247 are obtained by the treatment of ortho-azido-
benzanilides 245 with thionyl chloride at reflux (Scheme 8.71). The mechanism
proposed for this transformation probably involves the initial formation of ortho-
azidobenzimidoyl chlorides 246, which cyclize into 247 by a concerted pericyclic
process with loss of nitrogen [227]. The required anilides 245 can be prepared in high
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yield from the reaction of the appropriate arylamine with ortho-azidobenzoyl chloride
in pyridine solutions. 2-Substituted-2H-indazoles 250 are obtained from N-(2,4,6-
trinitrobenzylidene)anilines and hydrazones 248 by a similar synthetic process
(Scheme 8.72). Treatment of 248 with sodium azide leads to the regiospecific
substitution of the ortho-nitro group by the azido group, and the thermolysis of the
obtained 249 give 4,6-dinitro-2-substituted-2H-indazoles 250. In some cases, com-
pounds 248 are converted into 2H-indazoles 250 even in the process of the azide
formation [228]. The thermal decomposition of other 2-azidobenzylideneamine
derivatives into 2-substituted-2H-indazoles is also described [229].

2-Amino-3-(alkyl or aryl)amino-2H-indazoles 253 are also prepared from the
reaction of ortho-azidobenzaldimines 251 with tertiary phosphines followed by acid
hydrolysis of the obtained iminophosphoranes 252 (Scheme 8.73) [230].
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2-Aryl-2H-indazoles are also prepared by a base-catalyzed reaction of ortho-nitro-
benzyl triphenylphosphoniumbromide254 and aryl isocyanates (Scheme8.74) [231].
Deprotonation of the triphenylphosphonium bromide 254 with DBU gives a purple
ylide 255. When sodium hydride is used, the expected indazoles are accompanied by
small amounts of 2-nitrotoluene as a by-product. Treatment of the ylide with aryl
isocyanates, bearing electron-withdrawing or electron-donating substituents, affords
2-aryl-2H-indazoles 256 in moderate to good yields; the nitrogen of the nitro group
being transformed into the indazole N1 atom.

2H-Indazole-2-oxides 260 are obtained via the 1,7-electrocyclization of non-stabi-
lized azomethine ylides 257, formed from ortho-nitrobenzaldehydes and sarcosine,
onto the nitro group to give the unstable benz-1,2,6-oxadiazepine 258, which under-
goes a ring contraction, resulting in the elimination of formaldehyde and the
formation of 2-methyl-2H-indazole-1-oxides 260 in moderate yield (32–40%)
(Scheme 8.75) [232, 233]. In these reactions, 3-methyl-5-aryl-oxazolidines 259 are
also formed, resulting from the reaction of the starting ortho-nitrobenzaldehydes
with an azomethine ylide obtained from formaldehyde generated in situ and the
excess of sarcosine.

2H-Indazole-1-oxides 260 are deoxygenated in the presence of Pd–C to afford 2-
methyl-2H-indazoles 261 [232, 233].

A N�N bond in the synthesis of 1-substituted-1H-indazoles 263 and 265 can be
created by dehydration of oximes 262 with acetic anhydride [223] or by heating the
oxime acetate 263 in the melt at 170 �C, under vacuum [234], respectively
(Scheme 8.76).

8.4.2.2 Formation of One N2–C3 Bond
One of themost commonmethods for the synthesis of indazoles involving a N2�C3
ring closure starts from an ortho-toluidine (Scheme 8.77) [235]. Acetylation of the
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aniline, followed by nitrosation with nitrous gases, formed by the action of nitric acid
on sodium nitrite, and subsequent intramolecular azo coupling, with an initial acyl
migration, leads to the 1H-indazoles. This classic protocol is also employed in the
synthesis of several potential biologically active N-substituted-1H-indazoles,
although with small changes in the experimental procedure [236–238].

The diazotization of ortho-toluidines in acid or neutral aqueous solution is also a
well-know procedure to prepare indazole rings [239, 240]. However, the reactions are
successful only for ortho-methylbenzenediazonium salts bearing an electron-with-
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drawing nitro or halogen group on the aromatic ring and involve the isolation of an
explosive ortho-methylbenzenediazonium chloride. The improvement of this syn-
thetic procedure allows the preparation of 1H-indazoles 268 bearing electron-
withdrawing or electron-donating substituents from the reaction of non-explosive
ortho-alkylbenzenediazonium tetrafluoroborates 267 (Scheme 8.78) [241, 242]. ortho-
Alkylbenzenediazonium tetrafluoroborates 267 are obtained from the reaction of
ortho-alkylanilines 266 with sodium nitrite in fluoroboric acid or sodium nitrite in
hydrochloric acid followed by the addition of sodium tetrafluoroborate. Treatment
of 267 with two equivalents of potassium acetate, 5mol% of 18-crown-6 in ethanol-
free chloroform at room temperature affords 1H-indazoles 268 in moderate to good
yields. The presence of the phase transfer catalyst 18-crown-6 is essential; in its
absence no indazole is formed.

3-(2-Fluorophenyl)-1H-indazole 271 is prepared from the diazotization of the
corresponding 2-aminobenzophenone 269 under strongly acidic conditions (HBF4),
followed by reduction with sodium dithionite (Scheme 8.79) [243]. Zhang et al.
describe a similar synthesis, save the reduction of the intermediate 270, which is
made with SO2 [244].

Themost common synthesis of 1,2-dihydro-3H-indazol-3-ones 274 (or their enolic
forms 3-hydroxy-1H-indazoles) starts from diazonium salts of anthranilic acid 272,
which are reduced with sulfites or sulfur dioxide to the corresponding ortho-
hydrazinobenzoic acid derivatives 273 (Scheme 8.80) [224]. Cyclization to 274 may
be carried out with phosphoryl chloride, by boiling in nitrobenzene or refluxing in an
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aqueous solution of either acidic or buffered with sodium acetate. A variation of this
method consists in the nitrosation of N-substituted anthranilic acids or esters, with
nitrous acid, followed by reduction of the formed nitroso derivatives. This reduction
must be done with sodium hydrosulfide when the N-substituent is a hydrogen or
halogen atom or an alkyl group; for compounds with an N-aryl group as substituent
the reduction must be carried out with zinc in acetic acid or lithium aluminium
hydride [224].

8.4.2.3 Formation of One N1�C7a Bond
Aromatic hydrazides are converted into indazol-3-ones when treated with an excess
of butyllithium (Scheme 8.81) [245]. Benzoylhydrazines 275 afford 2H-indazol-3-
ones 276 in 61–80% yield. The same transformation has been carried out replacing
butyllithium by sodium or potassium hydride, but the corresponding 2H-indazol-3-
one was obtained in lower yields (49 and 56%, respectively, when R¼H). 2H-Indazol-
3-ones 277–279 are obtained by the same procedure from appropriate aromatic
hydrazides, while aliphatic and heterocyclic hydrazides afford the corresponding
aldehydes [245].

3-Substituted-1-tosyl-6-fluoro-1H-indazoles 283 are obtained from 2-chloroben-
zoylhydrazides 280 (Scheme 8.82) [246]. Treatment of 280 with thionyl chloride
affords the corresponding imidoyl chloride 281, which reacts with piperazine
derivatives, in the presence of DABCO, to yield imidates 282. This is a trick reaction,
the best yields being obtained when 1.1 molar equivalents of piperazine derivatives
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and 0.7 molar equivalents of DABCO are used; the presence of an amine more basic
than piperazine is required. However, imidoyl chlorides 281 are also transformed
into 1H-indazoles 283 in one-pot transformation; after the in situ formation of
imidate 282, milled potassium carbonate is added to the mixture and the 3-substi-
tuted-1-tosyl-6-fluoro-1H-indazoles 283 are obtained.

Another general method involving the formation of the N1�C7a bond consists in
the cyclization of phenylhydrazone derivatives. Lead tetraacetate oxidation of phenyl
ketone phenylhydrazones 284 leads to the formation of azoacetates 285, which
furnish 1-phenyl-1H-indazoles 286 when treated with Lewis acids (e.g., AlCl3, BF3.
Et2O) (Scheme 8.83) [247–252]. 1-Benzyl-3-(5-hydroxymethyl-2-furyl)indazole YC-1,
an indazole possessing important biological applications, is obtained from the
hydrazone of ketone 287, although in a modest yield (Scheme 8.84) [253]. YC-1 is
obtained in higher yield starting from the unsubstituted-2H-indazol-3-one [254].
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A variation of this method consists in the cyclization of para-nitrophenylhydra-
zones of several acetophenones, benzophenones and benzaldehyde by reaction with
polyphosphoric acid at high temperature (150–165 �C), affording 1-(4-nitrophenyl)-
1H-indazoles [255, 256]. Another variation involves the cyclization of arylhydrazines
possessing a leaving group in the ortho position (F, NO2, OH or OR) [243, 257–261].
These methods also require harsh experimental conditions, such as very high
temperatures (200–270 �C), although there are references to the synthesis of inda-
zoles by the reaction of ortho-fluorobenzophenone or pentafluoroacetophenone with
hydrazine in refluxing ethanol or toluene, respectively [243, 262]. Treatment of 20,60-
(dialkoxy- or dihydroxy)acetophenone or benzophenone hydrazones 288 with poly-
phosphoric acid gives 4-(alkoxy- or hydroxy)-3-substituted-1H-indazoles 289 in
moderate to good yields (Scheme 8.85) [263, 264].

The palladium-catalyzed cyclization of arylhydrazones of 2-bromobenzaldehydes
and 2-bromoacetophenones 290 constitutes an easy, efficient method for the syn-
thesis of 1-aryl-1H-indazoles 291 (Scheme 8.86) [265–267]. N-Arylindazole deriva-
tives are synthesized in a one-pot reaction of 2-bromobenzaldehydes with arylhy-
drazines in the presence of a catalytic amount of a palladium catalyst, a phosphorous
chelating ligand and sodium tert-butoxide [265]. The use of preformed hydrazones is
the key to obtaining higher yields, milder reaction conditions and to extend the scope
of this method to heterocyclic substrates and to 2-chlorobenzaldehyde [267].
In addition, better yields can be obtained using Pd(dba)2 and chelating phosphines
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(rac-BINAP,DPEphos and dppf) in the presence of a base, such as caesiumcarbonate
or potassium phosphate. This method is applicable for the synthesis of a wide range
of 1-aryl-1H-indazoles bearing electron-donating and electron-withdrawing
substituents.

Various 2-aryl-2H-indazoles 293 and 1-aryl-1H-indazoles 296 can be prepared by
the palladium catalyzed intramolecular amination of the correspondingN-aryl-N-(2-
bromobenzyl)hydrazines 292 and N-aryl-N0-(2-bromobenzyl)hydrazines 295,
followed by spontaneous aromatization of the formed aryl-substituted-2,3-dihy-
dro-1H-indazoles (Schemes 8.87 and 8.88, respectively) [268, 269]. [N-Aryl-N0-(2-
bromobenzyl)hydrazinato]triphenylphosphonium bromides 294, intermediates in
the synthesis of 295, also underwent cyclization under suitable conditions to afford 1-
aryl-1H-indazoles 296 (Scheme 8.88). Toluene is used as solvent when starting with
N-aryl-N0-(2-bromobenzyl)hydrazines 295 and 1,4-dioxane with [N-aryl-N0-(2-bromo-
benzyl)hydrazinato]triphenylphosphonium bromides 294 due to the insolubility of
the latter in toluene.

1-Aza-2-azonia allene salts 298, formed by oxidation of hydrazones 297 with tert-
butyl hypochloride followed by treatment with SbCl5 in dichloromethane at�50 �C,
can be used as starting materials for the preparation of 1-substituted-1H-indazoles
300 (Scheme 8.89) [270]. Treatment of 298 with SbCl5 induces an intramolecular
cyclization to afford 3-pyridyl-1H-indazoliumhexachloroantimonates 299. It is worth
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noting the complete regioselectivity of the cycloaddition. The reaction of 1-aza-2-
azonia allene salts 298, bearing a trichloropyridyl substituent, with propionitrile gives
3H-1,2,4-triazolium hexachloroantimonates 301 instead of 300.

8.4.2.4 Formation of One C3�C3a Bond
The cyclization of para-nitrophenylhydrazones of ketones and aldehydes with poly-
phosphoric acid gives 1-arylindazoles through a C3–C3a ring closure [271], whileN0,
N0-diphenylhydrazides are converted into 1-phenylindazoles by means of trifluor-
omethanesulfonic anhydride [yields from 2% (R¼H) to 50% (R¼Ph)] [272].

1H-Indazoles 303 can also be obtained in moderate yield from the reaction of
nitroarenes with aromatic hydrazones in alkaline medium (Scheme 8.90) [273]. The
presence of electron-withdrawing groups in both reagents is required for
the formation of 1H-indazoles 303. Other substituents originate displacement of
the chlorine atom or hydrogen atom in the 4-position of the nitroarene by the
hydrazone anion. Although the mechanism of this reaction is not clear, a possible
reaction sequence could be described as an initial attack of the hydrazone anion to
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the ortho-position of the nitroarene, to give a Meisenheimer intermediate (302). The
presence of an electron-withdrawing substituent on the nitroarene facilitates the
attack of the hydrazone anion and stabilizes the anion 302. Displacement of the nitro
group leads to indazoles 303.

1,2-Dihydro-3H-indazol-3-ones 308 are also obtained fromanilines (Scheme 8.91).
Treatment of substituted anilines with phosgene in toluene affords carbamoyl
chlorides 304, which react with sodium azide in methanol to give carbamoyl
azides 305. Thermal cyclization of 305 gives indazol-3-ones 308 [224, 274, 275].
This cyclization must proceed via intermediates 306, which are converted into
isocyanates 307, which then cyclize to indazol-3-ones 308. The existence of inter-
mediate 306 is confirmed by the concomitant formation of benzimidazolinones
309 [224, 274–276].

8.4.2.5 Formation of Two Bonds

8.4.2.5.1 From 4þ 1 Atom Fragments

Formation of One C–N and One C–C Bond [C-C-N-NþC] 3-Dimethylamino-1-phe-
nyl-1H-indazoles are obtained from the reaction of N,N-diphenylhydrazine with
phosgene iminium chloride (Scheme 8.92) [277].
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Formation of One C–N and One N–N Bond [C-C-C-NþN] Several 1H-indazol-3-
carboxamide or carboxylate derivatives are prepared from 2-nitrophenylacetic acid
derivatives (Scheme 8.93) [278, 279]. The nitro group is reduced to the amino
derivative, then tert-butyl nitrite or sodium nitrite in acetic acid promotes
the cyclization to the corresponding 1H-indazole. The hydrolysis of the ester and
amide groups with a great excess of sodium hydroxide in water affords the
corresponding 1H-indazol-3-carboxylic acids.

8.4.2.5.2 From 3þ 2 Atom Fragments

Formation of Two C–N Bonds [C-C-CþN-N] Like pyrazoles, indazoles can be pre-
pared by the [C-C-CþN-N] approach. The standard method consists of the conden-
sation of a 1,3-difunctional compound with hydrazine or hydrazine derivatives. 1H-
indazoles 311 are synthesized by cyclization of hydrazones of 2-mesyloxyphenyl
ketones 310 (Scheme 8.94) [280]. Conversion of the appropriatemesylate 310 into the
desired 1H-indazoles 311, by the reaction with hydrazine derivatives, proceeds
through the hydrazone intermediate, which cyclizes to indazoles by nucleophilic
aromatic substitution of the mesylate group. The reaction needs a slightly acidic
medium to catalyze the conversion of the ketone into the hydrazone and it is
imperative the use of aDean-Stark apparatus to eliminate thewater, to avoidmesylate
hydrolysis to the corresponding phenol, which does not cyclize to indazoles under
these reaction conditions.
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A relatedmethod involves the reaction of benzoic acid derivatives bearing a leaving
group in the ortho position with hydrazine. For instance, treatment of methyl 2-
fluorobenzoate 312with hydrazine in refluxing butanol gives the corresponding 1H-
indazole-3-ones 314 (Scheme 8.95) [261]. Under identical conditions, ortho-fluor-
obenzonitriles 313 afford 3-amino-1H-indazoles 315 (Scheme 8.95) [237, 281, 282].

4,5,6,7-Tetrahydro-2H-indazoles 317 are obtained from the reaction of the Bay-
lis–Hillman adducts of cyclohexen-1-ones (316) with hydrazine derivatives. These
tetrahydroindazoles (317) are oxidized to 2-substituted-2H-indazoles 318 by treat-
ment with DDQ (Scheme 8.96) [283]. 3-Substituted-1-aryl-4,5,6,7-tetrahydro-1H-
indazoles 320 are obtained by the reaction of diketone 319 with arylhydrazines
(Scheme 8.97) [284]. Various 4,5-dihydro-1H-benzo[g]indazole-based ligands for
cannabinoid receptors have been prepared by a similar procedure [285]. Tetrahydro-
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and hexahydro-1H- and 2H-indazole derivatives are also obtained from the reaction
of appropriate chalcone-type compounds or b-diketones with hydrazine deriva-
tives [283, 284, 286–288].

Formation of One C–C and One C–N Bond [C-N-NþC-C] The 1,3-dipolar cycload-
dition reactions of diazo compounds with benzyne is a versatile method for the
synthesis of indazoles (Scheme 8.98) [289–291]. Benzyne is conveniently generated
in situ from the reaction of anthranilic acid with alkyl nitrite in an aprotic media
(mixtures of dichloromethane : acetone or acetonitrile) [292]. Aoyama et al. describe
the synthesis of 3-trimethylsilyl-1H-indazoles 322 from the [3 þ 2] cycloaddition
reactions of lithium trimethylsilyldiazomethane with benzyne, generated from
halobenzenesandlithium2,2,6,6-tetramethylpyperidine (LTMP)(Scheme8.99) [293].
LDA, a less hindered base, can also be used, but a significant decrease in the yield of
indazole is observed. The reaction mechanism involves a nucleophilic attack of
(CH3)3SiC(Li)N2 to the benzyne, subsequent cyclization of the indazole intermedi-
ate 321 and reaction with water to afford 3-trimethylsilyl-1H-indazoles 322
(Scheme 8.99).

1,3-Dipolar cycloaddition reactions of diazomethane to quinones originate the
corresponding 1H-indazole-4,7-diones (Scheme 8.100) [294, 295].

8.4.2.6 Other Synthetic Methods
Dehydrogenation of tetrahydro-1H-indazoles in boiling decalin with 5% palladium
on activated carbon gives the corresponding 1H-indazoles (Scheme 8.101) [296].
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Most syntheses of indazoles proceed from benzene derivatives, where the
pyrazole ring is generated by ring closure. However, a few examples of the synthesis
of indazoles starting from pyrazoles are known [297–299]. One of them involves the
condensation of 3-substituted pyrazole-4-carbaldehydes 323 with diethyl succinate
in the presence of potassium tert-butoxide, affording esters 324 (mixture of
geometric isomers), which undergo cyclization to 1H-indazoles 325 by reaction
with sodium acetate in acetic anhydride (Scheme 8.102) [297]. The ring closure step
probably takes place by an electrocyclization process after the enolization of the
mixed anhydride 326.

Another example of synthesis of indazoles from pyrazoles consists in the reaction
of stable chromiumand tungsten Fischer dienyl carbenes 328, formed from a [3 þ 2]
cycloaddition reaction of alkenylethynyl carbene 327 with trimethylsilyl diazo-
methane, with isocyanides to give highly functionalized 1H-indazoles 329
(Scheme 8.103) [298].

1,3-Diphenyl-1H-indazoles 333 are obtained from base induced addition–
elimination of 5-cyanomethyl-1,3-diphenylpyrazoles 331 to various a-oxoketene
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dimethylthio acetals 330, followed by acid-assisted cycloaromatization of the result-
ing adducts 332 (Scheme 8.104) [299]. The cycloaromatization of adducts 332 ismore
efficient (in terms of yield and work-up) in the presence of para-toluenesulfonic acid
(PTSA) than with various protic and Lewis acids. By using cyclic of a-oxoketene
dimethylthio acetals it is possible to obtain annulated indazoles.

1-Phenyl-5-vinyl-1H-pyrazole (334) gives cycloaddition reactions with several
dienophiles to furnish 1-phenyl-1H-indazole derivatives 335–337 (Scheme 8.105)
[300]. The reaction of 334withmethyl propiolate affords 1-phenyl-1H-indazole 336 as
a result of a double Diels–Alder cycloaddition with extrusion of ethylene. 1-Phenyl-
1H-indazole 338 is obtained by oxidation of its dihydro derivative 335 by treatment
with DDQ.

Highly substituted-1H-indazoles 341 have been obtained from the cycloaddition
reaction of 1-aryl-3-phenyl-1,6-dihydropyrano[2,3-c]pyrazoles 339 with dialkyl acet-
ylenedicarboxylates in refluxing DMF (Scheme 8.106) [301]. The resulting cycload-
ducts 340 spontaneously eliminate acetone to give 1-aryl-6,7-dialkoxycarbonyl-4-
methyl-3-phenyl-1H-indazoles 341.

N-Unsubstituted pyrazole ortho-quinodimethanes 343, generated by thermal
extrusion of sulfur dioxide from NH-pyrazole-fused 3-sulfolenes 342, react with
dienophiles to give 4,5,6,7-tetrahydro-1H-indazoles 344–346 (Scheme 8.107) [302].
Thermolysis of sulfones 342a,b in refluxing tolueneor chlorobenzene in thepresence
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of dimethyl fumarate gives the 1 : 1 Diels–Alder cycloadducts 344a,b without the
competition of the Michael addition. However, thermolysis of the same sulfones in
the presence ofN-phenylmaleimide gives the 2 : 1 cycloadducts 345a,b. Adducts345a,
b were obtained as diastereomeric mixtures of the 1- and 2-substituted indazole
isomers. Thermolysis of sulfone 342c in the presence of N-phenylmaleimide gives
the tetrahydro-1H-indazole 346 as the only product.

8.4.2.7 Ring Synthesis from Heterocycles
Flash vacuum pyrolysis of 2,5-diaryltetrazoles 347 at 400–500 �C gives almost
quantitative yields of 3-aryl-1H-indazoles 350 (Scheme 8.108) [303]. Under these
conditions, tetrazoles 347 eliminate nitrogen, leading to nitrilimines 348, which
undergo cyclization onto the remote aromatic ring to afford 3-aryl-3H-indazoles 349,
which spontaneously isomerize to 3-aryl-1H-indazoles 350. 3-Substituted-1H-inda-
zoles are also prepared by flash thermolysis (400–500 �C) of 2-substituted-4-phenyl-
1,3,4-oxadiazolin-5-ones [303, 304]. In this case, the same type of nitrilimines is also
involved, being generated by elimination of carbon dioxide.

Treatment of 1H-[1-3]triazolo[1,5-a]benzimidazole 351 with dimethyl sulfate at
elevated temperature results in the formation of benzimidazolyl-1H-indazole
354 [305]. Instead of the simple methylation to yield 352, a ring opening reaction
take place and, via formation of a nitrenium cation, indazole 353 is formed
(Scheme 8.109). This intermediate is then alkylated to the dimethyl salt 354. Similar
transformations occurwhen 351 is treatedwith trifluoroacetic acid at reflux, resulting
in the formation of 1H-indazole 353 (R¼H) [306].

The photochemistry of some 3,5-disubstituted-1,2,4-oxadiazoles 355 bearing a
nitrogen nucleophilic group, such as an ortho-aminophenyl moiety, at C3 of the
oxadiazole ring leads to the concomitant formation of indazoles 357 and benzimi-
dazoles 359 (Scheme 8.110) [307]. The photochemistry of 355 is characterized by
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photolysis of the O�N bond to give open compounds 356, which rearrange to 1H-
indazoles 357 through the N�N bond closure. The photolytic species 356 can also be
converted into carbodiimides 358, precursors of the benzimidazoles 359.

1H-Indazoles 357 can also be obtained from 3,5-disubstituted 1,2,4-oxadia-
zoles 355 in almost quantitative yield, by heating these compounds, without solvent,
at a temperature much higher than their melting points [308].

8.5
Reactivity

The reactivity of pyrazoles is related to the tautomerism of the neutral forms 360 and
to their acid (conjugated anion 361) and basic properties (conjugated cation 362)
(Scheme 8.111). It is very important when discussing the reactivity of pyrazoles and
indazoles to determine the form that reacts. The �pyridinic� N2 atom is susceptible to
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electrophilic attack and the �pyrrolic� N1 is unreactive, but the N1 proton can be
removed by bases to afford the anion 361. Electrophilic attack on C4 is generally
preferred. Since indazoles have the pyrazolic C4 position substituted, electrophilic
attack on indazoles takes place in the 3-position and in the benzene ring (positions 5
and 7).

We have also represented in Scheme 8.111 the effect of a positive charge
(pyrazolium salts) on pyrazole reactivity. In contrast, the anions (pyrazolates) show
the expected inversion of reactivity when compared with the cations. Note that in
generalN-alkyl pyrazoles and indazoles are prepared from the corresponding anions.

8.5.1
Reactions with Electrophilic Reagents

8.5.1.1 Electrophilic Attack at Nitrogen
This is the most characteristic reaction of pyrazoles. The reactivity of the nitrogen
atom in neutral pyrazoles and indazoles corresponds to that of pyridine N atom.
Notably, the apparent rate of formation of an N-substituted derivative depends more
on the rate of reaction of a given tautomer than on the tautomeric equilibrium
constant.

8.5.1.1.1 Basicity of Azoles Pyrazoles are medium to weak bases, much weaker
than for instance imidazole (pKa¼ 6.95). Some significant values are reported in
Table 8.4 from a large collection described in Reference [309]. In general, the effect of
the substituents is additive and the acidity and basicity pKas are linearly related [309].

8.5.1.1.2 Acidity of Azoles Pyrazole and indazole are very weak acids, unless they
bear a strong EWG such as NO2 (Table 8.4).

8.5.1.1.3 Metal Ions (see also Section 8.6.4.3) Pyrazoles and indazoles form sodi-
um, potassium and silver salts that are hydrolyzed to a large extent by water. The
resulting anions react very readily with electrophiles. Pyrazoles, pyrazolate anions
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and polypyrazolylborates (scorpionates) [310] are much used ligands in coordination
chemistry.

8.5.1.1.4 N-Alkylation and N-Arylation N-Alkylation is one of the most important
andmost studied reactions of pyrazoles and indazoles. Alkylations have been carried
out using alkyl halides (usually iodides and bromides), dialkyl sulfates, arenesulfo-
nates, diazomethane and dialkyl phosphates. Microwave irradiation has proved very
effective for carrying out this reaction [311, 312]. With neutral pyrazoles and alkyl
halides, the alkylation yields salts of the corresponding acids.

The orientation of the entering group strongly depends on the substituents on the
pyrazole ring, on the nature of the alkylating agent and on the experimental
conditions. Phase transfer catalysis has been used with success to prepare N-
substituted pyrazoles [4]. When polyhalogenoalkanes are used as alkylating agents,
poly-N-pyrazolylalkanes (useful ligands in coordination chemistry) are obtained.

Only activated halogenated benzenes (para-fluoronitrobenzene, 1-fluoro-2,4-dini-
trobenzene, picryl chloride) [313] and halogeno substituted heterocycles (such as 3,6-
dichloropyridazine, cyanuric chloride and brominated derivatives) [314] react with
pyrazoles and indazoles [4]. Pyrazolate anions react with hexafluorobenzene to yield
hexapyrazolylbenzenes (propellenes, Section 8.6.4.3) [5, 315]. An efficient synthesis
of b-hydroxyethyl-pyrazoles 364 and 365 from propylene and styrene oxide using
Cs2CO3 has been reported [316].

N
N

364

R2

R1

N
N

365

R2

R1

OH OH

R3

R3

Table 8.4 pKa for proton addition (basicity) and proton loss (acidity).

Azole pKa (basicity) pKa (acidity)

Pyrazole 2.52 14.21
3(5)-Methyl 3.32 —

4-Methyl 3.09 —

3,4,5-Trimethyl 4.63 —

4-Nitro �1.96 9.05
3,5-Dinitro — 3.14
1-Methyl 2.09 —

1-Phenyl 0.44 —

Indazole 1.31 13.80
1-Methyl 0.42 —

2-Methyl 2.02 —
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Through the use of Bi, B and Pb derivatives and copper-catalyzed cross-coupling
reactions it is possible to make N�C bonds between pyrazoles and unsubstituted
phenyl rings [317–320], or between indazoles and aryl rings [321].

8.5.1.1.5 N-Acylation (see also Section 8.6.4.2) N-Acetylated pyrazoles are obtained
from N-unsubstituted pyrazoles by treatment with acetyl chloride (alone or in the
presence of pyridine) or acetic anhydride. The fact that the isomeric structure of
azolides is thermodynamically controlled has been used to prepare the less accessible
1-alkylpyrazoles regioselectively (Scheme 8.112) [4].

Acylation of 3(5)-aminopyrazole 366with chloroacetyl chloride affords amixture of
367 and 368, both ofwhich rearrange in the solid state to 3-(chloroacetamido)pyrazole
369 (Scheme 8.113) [322].

8.5.1.1.6 Michael Addition N-Unsubstituted pyrazoles and indazoles add to com-
pounds containing activated double and triple bonds [1–5]. Amongst C�C double
and triple bonds, maleic anhydride, acrylic acid esters and nitriles, acetylenecar-
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boxylic and -dicarboxylic esters, quinones, and some a,b-unsaturated ketones have
been used with success. With an activated C�C triple bond two successive additions
can occur if the intermediate alkene is reactive enough; this occurs, for instance, with
DMAD. For additions on C�O double bonds see Section 8.6.4.2.

8.5.1.1.7 N-Halogenation N-Halogenated pyrazoles are unstable compounds (Cl
>Br> I) that are seldom isolated. 1-Bromopyrazole resembles NBS and can act as a
source of the electrophilic brominium ion [4].

8.5.1.1.8 N-Amination and N-Nitration The powerful aminating agents hydroxyla-
mino-O-sulfonic acid and O-mesitylenesulfonylhydroxylamine have been used to
aminate pyrazole and indazole (60% of 1-amino and 40% of 2-aminoindazole) [4].
Amination of C-aminopyrazole 370 affords both diamino isomers 371 and 372
(Scheme 8.114) [323].

8.5.1.2 Electrophilic Attack at Carbon
Pyrazole is less reactive towards electrophiles than pyrrole. As a neutral molecule it
reacts as readily as benzene and, as an anion, as readily as phenol. Pyrazole cations
(pyrazolium ions), formed in strong acid media, show a pronounced deactivation
(nitration, sulfonation, Friedel–Crafts reactions). Electrophilic attack on pyrazoles
takes place at C4.

8.5.1.2.1 Nitration Pyrazole is very stable in acid media and even under rather
vigorous conditions neither ring opening nor ring oxidation was observed. Nitration
occurs at the 4-position; in the case of 4-R substituted pyrazoles, mono- and
dinitration at positions 3 and 5 are observed [4].

8.5.1.2.2 Sulfonation Direct sulfonation of the pyrazole ring is rather difficult due
to cation formation and takes place at position 4 only on prolonged heating with 20%
oleum [4, 5].

8.5.1.2.3 H/D Exchange Qualitatively it was observed that in D2SO4 exchange of 1-
methylpyrazole occurs initially at C4 and then simultaneously at C3 and C5, while in
1,2-dimethylpyrazolium it occurs only at C4 [4, 5].

8.5.1.2.4 Halogenation Halogenation is one of the most studied electrophilic
substitutions in the pyrazole series [4]. Many reagents can chlorinate pyrazoles:
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Scheme 8.114
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chlorine-water, chlorine in carbon tetrachloride, hypochlorous acid and chlorine in
acetic acid (one of the best experimental procedures). Bromine in chloroform
and bromine in acetic acid are the reagents used most often to brominate pyrazoles.
To effect polybromination of pyrazoles the use of iron as catalyst is necessary.
Pyrazole does not react with iodine although pyrazolsilver is converted into 4-
iodopyrazole.

Ultrasound irradiation using N-halosuccinimides [324], N-iodosuccinimide [325]
and a mild and efficient method for the regioselective iodination of pyrazoles have
been reported [326].

8.5.1.2.5 Acylation: Vilsmeier–Haack and Friedel–Crafts reactions 1-Substituted pyr-
azoles are formylated and acetylated at C4. C-Alkylation of pyrazoles is rather
uncommon and only groups like benzyl or adamantyl can be introduced directly
on the 4-position.

8.5.1.2.6 Diazo Coupling and Nitrosation Generally, pyrazoles do not react with
diazonium salts. However, when an activating group (hydroxy, alkoxy, amino) is
present at position 3 or 5, the reaction proceeds easily at position 4. The reaction is
very common in pyrazolone chemistry; pyrazolone diazo coupling is an important
industrial reaction since the resulting azo derivatives are important dyestuffs, like
tartrazine. The behavior of pyrazoles towards nitrosation is similar to that towards
diazo coupling.

8.5.2
Reactions with Oxidizing Agents

Pyrazoles are resistant to oxidation but with agents like potassium permanganate the
indazole ring is completely destroyed. Side chains can be oxidized; for instance,
methyl groups into carboxylic acids.

8.5.2.1 Oxidation
The most important of all oxidation reactions in the chemistry of pyrazoles is the
aromatization of pyrazolines into pyrazoles. Various oxidizing agents transform
pyrazolines into pyrazoles: sulfur, bromine, chloranil, potassiumpermanganate, lead
dioxide and mercury(II) acetate are all effective.

The problem is not totally solved, as shown by the numerous papers devoted to this
topic. Oxidations using chlorine in CCl4 [327], chloranil [164, 328], trichloroisocya-
nuric acid [329], Pd/C in acetic acid [330], DDQ [331] and Bi(NO3)3 with MW
irradiation [332] have been reported.

8.5.3
Reactions with Nucleophilic Reagents

Little is known about nucleophilic attack on an unsubstituted carbon atom of
pyrazoles. Some nucleophiles do not attack the heterocyclic ring carbon atoms but
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instead the substituent linked to nitrogen with subsequent N-deprotection, for
instance dequaternization (pyrazolium salts) [4] or debenzylation (pyrazoles and
indazoles) [333].

8.5.3.1 Reduction by Complex Hydrides
When an electron (mass spectrometry, electrochemistry) attacks a pyrazolium salt,
two different radicals are formed, one leading to a pyrazoline (reduction of a C�C
double bond) and the other to an open-ring diamine (N�Nbond cleavage) [334].With
lithium aluminium hydride, D3-pyrazolines and pyrazolidines are obtained from
quaternary pyrazolium salts [4].

8.5.4
Reactions with Bases

This section corresponds to topics like metallation at ring carbon atoms
(mainly lithiation) [335], hydrogen/deuterium exchange in neutral pyrazoles and
pyrazolium cations, ring cleavage via C-deprotonation (opening to b-amino
acrylonitriles or ortho-cyano anilines in the case of indazoles) – all of them of
secondary importance.

8.5.5
Reactions of N-Metallated Pyrazoles

The main use of N-metallated pyrazoles and indazoles (sodium or silver salts) is for
the preparation of N-substituted derivatives.

8.5.6
Reactions of C-Metallated Pyrazoles

This is a field of growing importance related to Suzuki, Miyaura, Sonogashira [325]
and other cross-coupling reactions. Examples of C-arylation [52, 54, 154, 336], C-
alkylation [154, 159] and C-alkynylation [325, 337, 338] have been reported.

8.5.7
Reactions with Radicals

Expansion of pyrazoles into pyridazines by the action of dichlorocarbenes has
been reported [4]. Similarly, indazole and chloroform at 555 �C yields 2-chlor-
oquinazoline. Little interest has been shown in the radical reactions (methyl and
phenyl radicals) of pyrazoles because they afford mixtures of C-substituted
derivatives.

A complete study of the chemistry of ground and excited state of ortho-pyrazolyl-
phenyl nitrenes 373 (Scheme 8.115) has been carried out by Carra, Bally and Albini:
different kinds of heterocycles have been isolated, amongst them 374–376 [339].
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8.5.8
Reactions with Reducing Agents

The reduction of pyrazole and 1-phenylpyrazole with H2, in the presence of
palladiumon active charcoal, gives the pyrazolines or, undermore drastic conditions,
the pyrazolidines [4].

8.5.9
Ring Transformations

8.5.9.1 Ring Opening without Fragmentation
Scheme 8.116 shows two of themost illustrative examples of this kind of reaction: the
opening of 1-substituted indazoles 377 into 2-alkylaminobenzonitriles and the
rearrangement of 1-(ortho-nitrophenyl)pyrazoles 379 into benzotriazole 1-oxides (cis
and trans 381) through intermediate azo compound 380 [4].

8.5.9.2 Ring Isomerization
Themost studied reaction is the transformation of pyrazoles into imidazoles and of 2-
substituted indazoles into benzimidazoles.

8.5.9.3 Ring Enlargement
In dilute sulfuric acid (pH 2–4) rearrangement of indazoles 382 (Scheme 8.117) into
benzimidazoles is suppressed and dihydroazepinones 383 and 384 are formed [4].
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8.5.10
Electrocyclic Reactions

Concerning Diels–Alder and 1,3-dipolar cycloadditions, pyrazole never reacts as an
alkene towards a diene or a 1,3-dipole nor as an azadiene towards a dienophile. There
are very few examples of reactions related to this topic: some are reported in
Schemes 8.105–8.107 and 8.118 [4, 5].

Stephanidou-Stephanatou et al. have described the sequence of reactions reported
in Scheme 8.119. From the N-benzoyl derivative 390, through bromination and
dehydrobromination, pyrazole ortho-quinodimethane 392 was generated and
trapped with several dienophiles to afford the Diels–Alder adducts 393 [340].
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8.6
Derivatives

8.6.1
C-Substituted Pyrazoles and Indazoles

In pyrazoles the simplest way to characterize the carbon atoms is to consider that C3
is similar to the pyridine a-position, C4 to the pyrrole b-position and C5 to both the
c-pyridine and the a-pyrrole positions.

8.6.2
Oxy- and Aminopyrazoles and Indazoles

Probably the most studied pyrazole derivatives are the oxy (pyrazolones and indazo-
lones) and the amino derivatives in the order 5-substituted> 3-substituted� 4-
substituted. For a long time, the only comprehensive source on pyrazolones was the
book fromWiley andWiley of 1964 [341]. Fortunately, Varvounis et al. have updated it
recently (theyuse3-ones for the3- and5-ones, a logicalbutuncommondecision) [342].

Pyrazolin-4-ones exist as 4-hydroxypyrazoles and are much less common [4–6, 8],
although deserving attention for their biological potentialities. Indazolones exist as
such and not as 3-hydroxyindazoles [343]. The chemistry of pyrazolidinones has been
reviewed [344].

3-, 4- and 5-Aminopyrazoles are interesting in themselves and also as precursors of
many pyrazoles with fusedfive- [345], and six-membered rings [323, 346–349], aswell
as larger heterocyclic rings [350].

8.6.3
Other Substituents

The synthesis and reactivity of many different C-substituted pyrazoles have been
described in the literature. Some of the most important (because of much studied
or because very rare) are: CHO [351], C�CR [352], NO2 [353–355], 11B [356],
19F [357–360], 31P [361, 362], 32S [363], 28Si (for instance TMS) [364] and 127I [326,
337, 365, 367].

8.6.4
N-Substituted Pyrazoles and Indazoles

8.6.4.1 Quaternary Pyrazolium and Indazolium Salts
Pyrazolium 394 and indazolium salts 395main importance was as precursors ofD3-
pyrazolines and indazolines [4, 5]. But in recent years the extraordinary development
of ionic liquids has promoted the study of pyrazolium salts as an alternative to
imidazolium salts [366, 367]. Pyrazolium salts have been used to generate car-
benes [368], and several papers dealing with their mass spectrometry have been
published [369].
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8.6.4.2 Azolides
N-Acyl azoles (azolides) are much studied compounds both for their use as synthons
and for their structural properties [370]. Pyrazolides 396 and related compounds (like
the addition products to aldehydes 397 and 398) are in an equilibrium similar to
prototropy and only the most stable isomers are usually isolated [371].
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8.6.4.3 Coordination Chemistry of Pyrazoles
As we recalled in the introduction, the use of pyrazoles as ligands is one of the most
prominent in their chemistry. Not considering biological properties, which include
most patents, this aspect represent 36% of all 2004 references, according to the
Chemical Abstracts (Table 8.2).

Since this topic has been covered in several reviews, only a classification of the
pyrazoles as ligands is described here (see Refs [4, 5, 372–375]).

. Simple pyrazoles: pyrazolate anions. Both examples of pyrazoles acting as
exobidentate ligands (399) and, much less common, as endobidentate – chelating
– agent (400).
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399 400

. Simple pyrazoles: neutral pyrazoles. These compounds act as 2-monohapto-
pyrazoles.

. Bis-, tris- and poly-pyrazolyl derivatives: Ligands such as 401 (polypyrazolyl-
methanes) [376], 402 [poly(pyrazolylmethyl)benzenes] [377], 403 (polypyrazolyl-
benzenes, propellenes) [315], and 404 (polypyrazolylazines) [378] often form
chelate complexes with different metals.
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. Tris(pyrazolyl)borates (scorpionates) [310, 379]: The synthesis by Trofimenko of
the pyrazolylborates (bis, tris and tetrakis, the tris 405 being themost interesting)
is one of the major discoveries of pyrazole coordination chemistry. The anionic
nature of 405, which can be isolated with the Cp anion, confers to 405 and related
compounds very rich coordination chemistry.
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. Ferrocenylpyrazoles: The possibility that the pyrazole has a C-substituent with
interesting properties has enriched the usefulness of pyrazoles in organometallic
chemistry. Amongst these substituents, ferrocene is one of the most promising.
Two representative structures are 406 [380] and 407 [381]. Other ferrocene-based
pyrazolylborates (similar to 407) have been described by Wagner et al. [382]
Multidentate ferrocenyl-pyrazoles have been described by Thiel et al. [383].
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8.6.5
Chiral Derivatives

The increasing interest in chiral compounds comes from the pharmaceutical
industry and from the catalytic properties of coordination complexes (e.g., asym-
metric hydrogenation). The chiral pyrazoles can be classified into three groups: (i) the
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chirality is in the substituent; (ii) the chirality is in a fused ring, tetrahydroindazoles
from natural chiral ketones; (iii) the chirality pertains to a ring that is partially –

pyrazolines – or totally – pyrazolidines – saturated.

8.6.5.1 Pyrazoles bearing N- or C-Chiral Substituents
Pyrazoles derived from steroids, carbohydrates and vitamins share the chiral
properties of the starting materials. Thus compound 408, an analogue of vitamin
D, has been prepared [384]. Others, like 409, a CNS agent, have been obtained by
resolution [385]. Pyrazoles substituted at position 3 by (2R)-bornane-10,2-sultam 410
have been described and their annular tautomerism determined by X-ray and NMR
spectroscopy [386]. Compounds related to Tr€oger�s bases, such 411, retain the
inherent chirality of this family of compounds [387]. The synthesis of enantiomeri-
cally pure 5-substituted pyrazoles from 2,3-dihydro-4H-pyran-4-ones and from 2-
formyl glycals has been reported (Schemes 8.59 and 8.60) [209, 210].
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8.6.5.2 Tetrahydroindazoles from the Chiral Pool
Here, the most important compound by far is camphopyrazole – (4S,7R)-7,8,8-
trimethyl-4,5,6,7-tetrahydro-4,7-methano-2H-indazole – 412; this compound and
related ones have been the subject of many studies: synthetic [146, 388–390],
structural [391], reactivity [392, 393] and coordination chemistry [394, 395]. Other
ketones found in natural sources have also been used to prepare compounds such as
413 [396–399].
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8.6.5.3 Pyrazolines and Pyrazolidines
These compounds have several stereogenic centers: carbons C4 and C5 in D2-
pyrazolines 414 and carbons C3, C4 and C5 in pyrazolidines 415. Even taking into
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account the nitrogen inversion, stereogenic nitrogen atoms should be considered.
Chiral pyrazolines have beenprepared by resolution [400], and by inclusion in a chiral
host [401]. The formation of a ruthenium complex from a racemic pyrazoline lead to
diastereomeric structures 416 that have been separated [402].
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Using cycloaddition methodologies a series of pyrazolines and pyrazolidines
enantiomerically pure have been prepared by Barluenga (417, and then reduced to
pyrazolidines) [403], 418 [404], Molteni (419) [405], Ortu~no (420) [406] and Kobayashi
(421) (Scheme 8.50) [200]. A highly enantioselective [3 þ 2] acylhydrazone-enol ether
cycloaddition has been reported for the preparation ofmono-benzoyl (similar to 421)
and dibenzoylpyrazolidines [407]. This is a very interesting field that it is expected to
become very important in the near future.
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A series of compounds by Sibi are worth mentioning in this context: 422 (used for
enantioselective intermolecular free radical conjugate additions) [408], 423 (a new
ligand system) [409] and 424 (a pyrazolidinone template used with chiral Lewis
acids) [410].
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Finally, the resolution of compounds 425 and 426, whose chirality resides
exclusively in the nitrogen atoms, has been reported by Kostyanovsky [411]. For
previous studies on chiral nitrogen atoms in pyrazole reduced derivatives due to
hindered inversion see Reference [412].
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8.6.6
Macrocyclic Pyrazoles

This is an important field that has been treated in detail in other monographs [4, 5].
Particularly relevant are the results of Navarro et al. [413–415] (structures 427 and
428) and of Kohnke et al. (429) [416].
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8.6.7
Labeled Derivatives

For biological purposes or by spectroscopic necessities (microwave, IR, NMR, etc.)
many labeled pyrazoles have been prepared, mainly deuterium and 15N derivatives
for spectroscopy [4, 5, 417], and radioligands for biological studies: tritium [418, 419],
11C [420], 18F [421], and 125I [422].
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9
Five-Membered Heterocycles: 1,2-Azoles. Part 2. Isoxazoles
and Isothiazoles
Artur M.S. Silva, Augusto C. Tom�e, Teresa M.V.D. Pinho e Melo, and Jos�e Elguero

9.1
Introduction

Isoxazole 1 (1,2-oxazole) and isothiazole 2 (1,2-thiazole) are five-membered hetero-
cyclic compounds having a pyridine-like N-atom bonded to an O- or an S-atom,
respectively. These N�O and N�S s-bonds are the weakest bonds in each molecule,
being their energy much lower than that of N�C, O�C or S�C bonds, and are
cleaved in all ring-opening reactions. Isothiazoles react more slowly with nucleo-
philes than isoxazoles and in both cases the reactions usually originate ring-
opening [1].

N
O
1

2

34

5

1

N
S
1

2

34

5

2

The first reference to the isoxazole structure 1 was made by Claisen in 1888, for
the reaction product of benzoylacetone with hydroxylamine [2]. He proposed the
corrected structure (3-methyl-5-phenylisoxazole 3) for a compound isolated several
years before and suggested the name monoazole; however, Hantsch modified it to
isoxazole, a name derived from the already know isomeric ring oxazole [3]. Claisen
reported the fundamental outline of isoxazole chemistry in 1891 [4] and synthesized
the parent compound of the series, isoxazole 1, in 1903, by oximation of propargy-
laldehyde acetal [5]. After the fundamental work of Claisen and coworkers and some
other contemporary authors [6], the next important contribution to the chemistry
of isoxazoles was made by Quilico in 1946, when he began to study the formation of
isoxazoles from N-oxides and acetylenic compounds [7]. The saturated derivatives
had long been know (1892) but it was only in the 1960s that these compounds were
studied extensively [8]. The extensive studies on isoxazoles since the 1980s are due to
their versatility in the synthesis of various compounds, namely heterocycles and
natural products, as well as their applications in several fields, such as agriculture,
medicine and industry [1, 6, 8, 9]. In terms of the literature on isoxazole derivatives,
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one canfind an enormous number of references on their chemistry, physicochemical
andbiological properties, aswell as somebookchapters (inComprehensiveHeterocyclic
Chemistry, 1984 [10] updated in 1996 [8], and Science of Synthesis [11–13]) and mono-
graphs (Isoxazoles and Related Compounds, published in 1962 by Quilico [14] and
Isoxazoles–Part 1andPart 2, published in1991 [6] and1999 [9] byGr€unangerandVita-
Finzi) which collate all this information. Part 1 of the last monograph is restricted to
mononuclear isoxazoles and their hydrogenated derivatives (dihydroisoxazoles and
tetrahydroisoxazoles), except for the isoxazolones, while Part 2 is devoted to the
chemistry of condensed isoxazoles, namely benzisoxazoles and related compounds.

N
O

3

Me

Isothiazole (2) was first described in 1956 [15] while the benzisothiazoles have
long been known. The most widely known derivative, saccharin (4), the first non-
carbohydrate sweetening agent discovered in 1879, is 300–500 times as sweet as
sucrose [16]. Saccharin (4) is manufactured commercially by the cyclization of ortho-
substituted benzenesulfonamides with strong bases [17]. It still be used in many
countries as a non-nutritive sweetener, although it was found that massive doses
administered to rats caused bladder cancer, a fact which led to its ban in developing
countries [18]. The controversy over its danger when used in small amounts is still
unresolved [19]. Although all types of pharmacological activity have been claimed for
isothiazoles, some are notable, such as that of thiomuscinol (5) on the central nervous
system, as a potent agonist of c-aminobutyrate (GABA) receptors [20], and the
significant antifungal activity of isothiazolones (6) (marketed under the name
Kathon) [21]. Several reviews on isothiazoles and on benzisothiazoles have been
published [21–26]; the chapters in Comprehensive Heterocyclic Chemistry (1984 [16]
and updated in 1996 [27]) and Science of Synthesis [28, 29] describe both types of
compounds.

NH
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OH

H2N

R2

R3 R1

O

6a R1 = Me, R2 = R3 = H

6b R1 = Me, R2 = H, R3 = Cl

6c R1 = Me, R2 = R3 = Cl

6d R1 = n-octyl, R2 = R3 =H

9.1.1
Nomenclature

The structure and numbering system of the two mononuclear heterocycles (1 and 2)
treated in this chapter and some of their best known derivatives is shown above.
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However, before discussing their physicochemical properties, synthesis and trans-
formations, it is important to present the structure and nomenclature of all known
saturated and benzo-derivatives. For isoxazoles, one can find 4,5-dihydroisoxazoles
(7) (also known as D2-isoxazoline or 2-isoxazoline), 2,3-dihydroisoxazoles (8) (also
knownasD4-isoxazoline or 4-isoxazoline), isoxazolidines (9), 1,2-benzisoxazoles (10),
2,1-benzisoxazoles (11) and2,3-dihydro-1,2-benzisoxazoles (12). Structure10hasalso
been described as indoxazene, 4,5-benzisoxazole, a,b-benzisoxazole and benzo[d]
isoxazole (IUPAC nomenclature) and benzisoxazole. It is indexed in Chemical
Abstracts as 1,2-benzisoxazole and numbered as shown below. The first member of
the family, 3-phenyl-1,2-benzisoxazole (13),was synthesizedat theendof thenineteen
century (1892) [30] and the 1,2-benzisoxazole itself 10 was obtained in 1908 [31].
Structure 11 has also been described as anthranil, anthroxan, 3,4-benzisoxazole,
b,c-benzisoxazole, benzo[c]isoxazole (IUPAC nomenclature) and benzisoxazole. It is
indexed in Chemical Abstracts as anthranil and numbered as shown below.
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  8 Z = O
15 Z = S

  9 Z = O
16 Z = S 10 Z = O

17 Z = S
11 Z = O
18 Z = S

12 Z = O
19 Z = S

For isothiazoles one can find the same type of dihydroisothiazoles (14 and 15),
tetrahydroisothiazoles (16), and benzisothiazoles (17 and 18) and their reduced form
(19). The saturated isothiazole 1,1-dioxides 20 are known as sultams and 1,2-
benzisothiazole 1,1-dioxides 21 are called saccharins.

NR
S

 20

O O

NH
S

O O

 21

O
R

9.2
General Reactivity

9.2.1
Relevant Physicochemical Data, Computational Chemistry and NMR Data

The calculated p-electron density distributions of isoxazole (1) and isothiazole (2) are
consistentwith electrophilic substitution occurring at the 4-position (highest electron
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density) rather than at other ring positions [32–34]. The positional selectivity in
the electrophilic attack on heterocyclic molecules can be explained according to the
magnitude of the HOMO electron density of each atomic center [35], which predicts
the reactivity order of electrophilic substitution of isoxazole (1) as C4>C5>C3, in
agreement with the experimental data. Comparison of partial rate factors of iso-
thiazole (2) with those of benzene and related compounds shows that its 4-position is
�104 times more reactive towards electrophiles than expected on the basis of
the calculated p-electron density at carbon atoms and the electronegativity of the
heteroatoms [36]. This indicates that when attempting to correlate the theoretical
calculations with chemical reactivity one must be careful and consider whether
ground or excited states are involved, or whether it is the electron density of
intermediates, rather than the original molecule, that determines the product of
a chemical transformation.

Thep-electron density distribution also suggests that nucleophilesmust attack the
3-position of both isoxazole (1) and isothiazole (2) since it presents the lowest electron
density.

The positional reactivity of isothiazole 2 can also be evaluated by 1H NMR. The
relative rate of deuterium exchange of H5 and H3, under basic conditions, has been
demonstrated to be 400 : 1, with no exchange of H4, whereas those of the hydrogens
of the methyl groups of 5-, 4- and 3-methyl-isothiazoles were 100 : 1 : 10�4, respec-
tively [37]. The high reactivity of the 5-position can be due not only to the electron
distribution in the ground state but also to the stabilization of the formed anion by the
s-3d (sulfur) bonding. A similar study with isoxazoles provided the same conclu-
sions [36, 38].

The very lowp-order of theN�Obondof isoxazole (1) (Table 9.1) relative to those of
the other ring bonds and the largest localized dipole due to the N�O bond suggests
that this bond can be a site of attack of hydrolytic reagents, which is in agreement
with the experimental reactivity.

Jug classified isoxazole (1) in the range of moderate aromatic compounds
(1.548–1.332), based on the index of aromaticity, which corresponds to the value
of the lowest bond order (Table 9.1, calculated by MO-SINDO1) [39]. These calcula-

Table 9.1 Calculated p-bond orders of isoxazole (1) and isothiazole (2).

X(O,S)-N N-C C3-C4 C4-C5 C-X(O,S) Calculation method Compound, Reference

0.285 0.795 0.546 0.817 0.342 HMO 1, [42]
0.412 0.772 0.580 0.776 0.458 MO-LCAO 1, [43]
0.404 0.735 0.617 0.738 0.526 PPP-SCF-CI 1, [44]
0.296 0.858 0.452 0.833 0.448 CNDO/2 1, [45]
1.361 1.957 1.501 1.955 1.498 MO-SINDO1 1, [39]
0.502 0.705 0.634 0.707 0.594 HMO 2, [21]
0.474 0.707 — — — PPP 2, [46]
0.227 0.870 0.410 0.850 0.302 CNDO/2 2, [34]
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tions indicate that isoxazole (1) (1.361) is less aromatic than oxazole (1.392) and
imidazole (1.423) butmore than pyrazole (1.297). These results have been confirmed
by using other quantitative measurements of aromaticity, such as empirical reso-
nance energy values for heteroaromatic systems as well as conjugation energies [40].
The aromaticity of isothiazole (2) is greater than that of isoxazole (1), just as the
aromaticity of thiophene is greater than that of furan.

The tendency of 1JCC coupling constants in 13C NMR to converge towards that of
benzene (56Hz) is another possible criterion of degree of aromaticity, increasing
with the convergence [41]. Although an interesting model, these coupling constants
also depend on the geometry of the molecule. The fact that isothiazole (2) is planar
and their 1JCC (1JC3�C4 52.5Hz and 1JC4�C5 62.2Hz) are less divergent than those
of the less aromatic isoxazole (1) (1JC3�C4 48.7Hz and 1JC4�C5) 67.7Hz) seems to
support this method.

The proton resonances of isoxazole (1) and isothiazole (2) are strictly related to
electron density distribution on the ring (referred above). The 1H NMR spectrum of
isoxazole (1), neat or dissolved in various solvents, has been reported in many
papers (Table 9.2) [34, 47–49]. The signals of H4 (d, 6.28–6.41 ppm) appear at lower
frequency values than those of H3 (d, 8.15–8.40 ppm) and H5 (d, 8.39–8.61 ppm),
but all of them are in the aromatic region. For isothiazole (2) the same kind of
chemical shifts appears, H5 is at a higher frequency than H3, but in some cases it
can be reversed. The resonance is deshielded (0.5 ppm) when spectra are acquired
in DMSO-d6 solution, owing to the interaction of this hydrogen with proton
acceptors.

Table 9.2 1H NMR chemical shifts (d, ppm) of some isoxazole and isothiazole derivatives.

Compound H3 H4 H5 3JH3�H4 (Hz) 3JH4�H5 (Hz) 3JH3�H5 (Hz) Solvent

1 [47] 8.34 6.41 8.51 1.5 1.5 — CDCl3
1 [48] 8.40 6.40 8.61 1.7 1.7 0.5 Neat
1 [49] 8.19 6.32 8.44 1.6 1.6 — CCl4
1 [34] 8.15 6.28 8.39 1.78 1.69 0.27 CS2
22 [49] (2.28) 6.02 8.13 — 1.6 — CCl4
23 [49] 7.90 5.85 (2.42) 1.6 — — CCl4
24 [49] (2.24) 5.85 (2.41) — — — CCl4
25 [49] — 6.58 8.39 — 1.6 — CCl4
26 [49] 8.43 — 8.58 — — — CCl4
27 [49] 8.15 6.39 — 2.0 — — CCl4
28 [52] — — 9.08 — — — CHCl3
29 [49] — 6.74 — — — — CCl4
2 [53] 8.54 7.26 8.72 1.66 4.66 0.15 CCl4
30 [53] (2.46) 7.00 8.54 — 4.55 — CCl4
31 [53] 8.24 (2.32) 8.21 — — 0.33 CCl4
32 [53] 8.24 6.92 (2.56) 1.63 — — CCl4
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The interaction between H3 and the ring nitrogen atom, due to the quadrupole
relaxation of 14N, is responsible for the broadening of H3 signals of isoxazole and
isothiazole derivatives. This broadening is sometimes the diagnostic for the differ-
entiation of H3 and H5 resonances and it is generally reduced in solvents with high
viscosity, lower temperatures or nitrogen protonation [2Jð14N3-H3Þ from �10 to
3Hz] [47, 50].

As one can see from Table 9.2, the presence of methyl substituents (electron-
donating groups) causes a shielding in the resonances of the isoxazole 22–24 and
isothiazole 30–32 protons. The 1H NMR spectra of methylisoxazoles can be used as
a tool to calculate the ratio of 3- and 5-methylisoxazoles in some reaction mixtures
and to determine the isomeric purity of products, since the chemical shift of the
corresponding methyl groups are very different.

The 1H NMR chemical shifts of the isoxazole ring of 3-, 4- and 5-phenylisox-
azoles 25–27 seem to indicate a different conformation for these compounds,
presenting different angles between the planes of the two ring, the most important
being that of 5-phenylisoxazole (27). This conclusion is based on the deshielding
effect of the phenyl ring on the protons lying in the same plane, which decreases with
increasing torsional angle.

The resonance of H4 can also be used to distinguish between isomeric 3,5-
disubstituted isoxazoles [51]. In the case of unsymmetrical 3(5)-substituted-5(3)-
phenyl-isoxazole derivatives bearing one substituent more electron-donating than
the phenyl ring, the H4 resonance is shielded (Dd 0.03–0.80 ppm) for the isomers
where the electron-donating substituent group is at the 5-position. Opposite results
were obtained for those compounds containing stronger electron-withdrawing
groups. In these cases the H4 resonance is deshielded (Dd 0.11–0.31 ppm) for
compounds bearing an electron-withdrawing substituent at the 5-position of the
isoxazole ring compared to those of the 3-isomer.

The 1H NMR spectra of 1,2-benzisoxazole and 1,2-benzisothiazole derivatives
have the characteristics of both condensed benzene and isoxazole/isothiazole rings.
A typical resonance of these compounds is that of H3, which appears around
d 8.7–8.8 ppm and presents long-range coupling with H-7 (5J 0.9–1.2Hz) due to
the well-known zigzag route [22, 54]. The vicinal coupling constants of the phenyl
ring protons are consistent with some degree of ortho-quinonoid structure and
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correlate with the bond orders of 2,1-benzisoxazoles and 2,1-benzisothiazoles (3JH4-

H5� 9Hz and 3JH5-H6� 7.5Hz) [55].
Table 9.3 presents the 13C resonances of isoxazole (1), isothiazole (2) and some of

theirmethyl derivatives as examples of the 13C NMRspectra of such compounds. The
presence of amethyl group as ring substituent implies a deshielding into the signal of
the carbon to which the methyl is bonded.

A comprehensive collection of 1H and 13C NMR chemical shifts of several
isoxazole derivatives is reported in the first monograph of isoxazoles [6].

Unsubstituted isoxazole (1) (Table 9.4) and its alkylisoxazole derivatives are usually
liquids; the introduction on the ring of more than one substituent with a long chain
leads to solid compounds. Phenylisoxazoles are usually solids [6].

Isothiazole (2) and their alkylisothiazole and benzisothiazole derivatives are
usually liquids or solids with low melting points (Table 9.4). The presence of polar
substituents increases themelting points. Isothiazole (2) has a low solubility in water
(�3.5%) and is miscible with most organic solvents. Benzisothiazoles are insoluble
in water, but are soluble in strong acids (salt formation) and in organic solvents [6].

Table 9.4 shows the physical properties of unsubstituted compounds, isoxazole (1)
and isothiazole (2), and their fused benzo-derivatives, 1,2- and 2,1-benzisoxazole (10)
and (11) and 1,2- and 2,1-benzisothiazole (17) and (18), discussed in this chapter.

9.2.2
Tautomerism

Annular tautomerism does not occur in isoxazoles, benzisoxazoles, isothiazoles and
benzisothiazoles, but they present some substituent tautomers. Isoxazolin-3(5)-ones

Table 9.3 13C NMR chemical shifts (d, ppm) of some isoxazole and isothiazole derivatives.

Comp. C3 C4 C5 Comp. C3 C4 C5

1 [56] 150.0 140.5 158.9 2 [58] 157.0 123.4 147.8
22 [57] 159.2 105.7 159.2 30 [58] 166.7 123.9 148.1
23 [57] 150.9 101.4 169.2 32 [58] 157.6 123.3 163.0

Table 9.4 Physical properties of isoxazole, isothiazole and their fused benzo-derivatives.

Compound 1 10 11 2 17 18

Mp (�C) �80 — — — 37
Bp (�C/mmHg) 95/769 84/11 994.5/11 113/760 — 242/760
pKa �2.03 — — �0.51 — �0.05
Dipole
moment (m, D)

2.90 — — — 2.44 —
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or isothiazolin-3(5)-ones can exist in equilibrium with the corresponding hydroxy-
derivatives. Isoxazolin-3-ones or isothiazolin-3-ones have beenmore studied than the
corresponding 5-substituted derivatives. The spectroscopic data indicate that they
exist as 3-hydroxy tautomers in solid state or in non-polar solvents, such as
cyclohexane or ether, but more polar solvents resulted in a great contribution of
the keto tautomers [6, 21, 59, 60]. In the solid state these compounds form hydrogen-
bonded dimers 33. One of the best known 3-hydroxyisoxazoles, due its important
neuropharmacological activity, is the natural compoundmuscinol (34), isolated from
an Amanita species [61, 62].
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The infrared (IR) spectra have been useful in establishing the position of the
tautomeric equilibrium in 1,2-benzisoxazolin-3-one. The enol form of 35 is preferred
in the solid state, as shown by the strong band at 3000–2500 cm�1 and the lack of
carbonyl band and theC¼Nband at 1620 cm�1. Both tautomeric forms are present in
chloroform solution, since the carbonyl (1670 cm�1) and hydroxyl band (as above) are
present [63]. However, X-ray and other spectroscopic data show that 1,2-benzisothia-
zolin-3-one and its derivatives, 2,1-benzisothiazolin-3-one and saccharin, all exist in
the keto form [64].

Studies on tautomerism have shown that in general isoxazolin-4-ones exist
preferentially as 4-hydroxy-isoxazoles [65]. The structure of the bioactive natural
compound triumferol (36) has also been established as a 4-hydroxy-derivative by 1H
NMR (dH3 8.25 ppm, dH5 8.33 ppm, dOH 8.18 ppm, acetone-d6) and O-acyl and
O-methyl derivatives [66].
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9.3
Relevant Natural and/or Useful Compounds

Although isoxazole and isothiazole moieties are rarely found in nature, they
present important biological applications. Muscinol (34), a potent CNS depres-
sant and agonist of the neurotransmitter 4-aminobutyric acid [67], has been
isolated from Amanita muscaria [61, 62]. The naturally occurring amino acid
ibotenic acid (37), a widely used neurotoxin and pharmacological tool for studies
of glutamic acid receptors [68], has also been isolated from Amanita muscaria
and from Amanita pantherina [62]. Brassilexin (38a) and sinalexin (38b) are
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phytoalexins, with fungicidal activity, isolated from the leaves of Brassica juncea
(Cruciferae) [69, 70]. Aulosirazole (39) is the major cytotoxin in the blue-green
alga (cyanobacterium) Aulosira fertilissima Ghose. It shows selective cytotoxicity
against solid tumors [71].
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Isoxazoles are a large group of heterocyclic compounds that display interesting
medicinal, agricultural and some other industrial utilities. Some of the most
important are the pharmacologically active isoxazoles, including antibacterial sulfo-
namides 40–42, semi-synthetic penicillins 43–46, semi-synthetic cephalosporin 47,
anabolic steroid 48 and the monoamine oxidase inhibitor 49 (used in psychother-
apy) [72].
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41 R = H, R1 = Me, Sulfisoxazole

42 R = Ac, R1 = Me, Acetylsulfisoxazole

R1 N
OMe

R1

R2

N

O

S

HO2C

Me

Me

43 R1 = R2 = H, Oxacillin

44 R1 = H, R2 = Cl, Chloxacillin

45 R1 = R2 = Cl, Dichloxacillin

46 R1 = R2 = Cl, Floxacillin
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The isosteric relationship of 1,2-benzisoxazole with that of the indole nucleus
has led to its use as a carrier of pharmacophoric moieties in the search for potential
drugs. From themany compounds studied, only a fewhave emerged as candidates for
clinical use. 1,2-Benzisoxazole-3-sulfonamide 50 (zonisamide) is a potent antiepi-
leptic drug [73], 6-fluoro-1,2-benzisoxazole 51 (risperidone) is a potent antipsychotic
agent with thymosthenic properties [74], its analogue 52 (HRP 913) is a potent
dopamine antagonist with antipsychotic properties [75], and 1,2-benzisoxazole-3-
acetamidoxime 53 (PF-257) is a psychotropic agent with seemingly new proper-
ties [76]. Phosphonate 54 (Bay 52957) is a potent insecticide [77]
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As referred to in the introduction, themostwidely known isoxazole derivative is the
benzisothiazole saccharin (4), the first non-carbohydrate sweetening agent discov-
ered [16, 27]. Although many isothiazole compounds exhibited biological activities
(all types of pharmacological activity have been claimed!), the most important are (i)
saccharin derivative 55, which presents potent sedative, hypnotic and anticonvulsant
activity [78]; (ii) the adrenergicb-blockers 56 [79]; (iii) the cyclizine analogue 57, which
presents appetite suppressant activity [80]; (iv) the amide 58, which has potent anti-
inflammatory activity [81]; (v) thiomuscinol (5), which is active on the CNS as a potent
agonist of GABA receptors (Section 9.1) [20]; (vi) the acid 59, the most interesting
compound in the agrochemical sphere, having high herbicidal activity [17, 78]; and
(vi) the allyloxy-1,2-benzisothiazole 1,1-dioxide 60, known as Probenazole or Ory-
zaemate, which is useful in rice crop protection [82].
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Numerous biological, pharmacological and biocidal activities are fully described
in reviews and monographs published about the compounds treated in this
chapter [6, 8–10, 16, 26, 27, 83].

9.4
Synthesis of Isoxazoles and Isothiazoles

9.4.1
Isoxazoles

Synthetic methodologies for the construction of the isoxazole ring can be classified
based on the number of atoms of the component synthons, which are subdivided
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according to the type and arrangement of the atoms in each component. The [3 þ 2]
approach includes the twomajor routes to isoxazoles: CCCþNO reactions (reaction
of hydroxylamine with a three-carbon atom component) and CNOþCC reactions
(1,3-dipolar cycloaddition of nitrile oxides). Isoxazoles can also be obtained via
[4 þ 1], [5 þ 0] and [3 þ 1 þ 1] routes. Ring transformation reactions also lead to
isoxazoles.

9.4.1.1 [3 þ 2] Routes

9.4.1.1.1 [CCCþNO] Reactions: Reactions of Hydroxylamine with a Three-Carbon
Atom Component In 1888 Claisen described the first general synthesis of isoxa-
zoles [2]. The process involved the reaction of b-diketones with hydroxylamine
followed by cyclization–dehydration of the intermediate oxime (Scheme 9.1). This
became an important route to 4-unsubstituted or 4-substituted isoxazoles bearing the
same substituent at 3- and 5-positions. 4-Monosubstituted isoxazoles 62 and unsub-
stituted isoxazole61havealsobeenprepared fromthe reactionof tetraalkoxypropanes
(or b-dialdehydes) with hydroxylamine (Scheme 9.1) [6, 10, 84, 85]. This route was
applied to the synthesis of 3,5-disubstituted isoxazole-4-carbaldehydes using also
diketones as the three-carbon building-block in the reaction with hydroxylamine [86].

The drawback of this approach is that unsymmetrical 1,3-diketones or their
derivatives can lead to mixtures of the two isomeric isoxazoles. This is the case in
the solid-phase synthesis of isoxazoles outlined in Scheme 9.2 [87]. However, the
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selection of a CCC synthon with dissimilar terminal carbon atoms in terms of
electronic and/or steric effects, the protection of one terminal carbon or the control
of the pH of the medium can lead to selectivity. Nevertheless, many variants of this
reaction have been developed and in fact isoxazoles have been prepared from the
reaction of hydroxylamine with several three-carbon atom components, namely
b-keto aldehydes, b-keto esters, a-acetylenic ketones or aldehydes, a,b-unsaturated
ketones, b-imino nitriles and b-keto nitriles [6, 10, 84, 85].

3-Hydroxy-isoxazole is a synthetic unit present in several biologically active
compounds. They have been prepared mainly by cyclization of b-keto esters with
hydroxylamine. However, this method usually leads to the formation of isoxazol-5-
ones as a by-product. By using Meldrum�s acids the problem of the lack of regios-
electivity in the addition of hydroxylamine can be overcome (Scheme 9.3) [88].

The regioselective synthesis of 5-substituted 3-alkoxyisoxazoles can be achieved
using b-oxo thionoesters (Table 9.5, entry 1) [89]. 3-Aryl-5-alkoxyisoxazoles have been
obtained in moderate yields from cyclocondensation of acylketene O,S-acetals with
hydroxylamine in the presence of sodium alkoxide/alcohol (Table 9.5, entry 2). 5-
Alkoxy-3,4-annulated isoxazoles can also be obtained using the same synthetic
approach (Table 9.5, entry 3) [90].

The a-keto methylene group in 3,5-diarylcyclohexen-2-ones has been used to
obtain fused isoxazoles via Claisen-like condensation with ethyl formate followed by
cyclocondensation with hydroxylamine hydrochloride (Table 9.5, entry 4). The same
type of approach can be applied to prepare other types of fused isoxazoles [91],
including those derived from triterpenoids, namely methyl oleanonate and lanost-8-
en-3-one [92].

The reaction of vinyl ketones bearing a potential leaving group at the b-position
(such as halogen, alkoxy or dialkylamino) with hydroxylamine has been extensively
explored (Scheme 9.4) [6, 10, 84, 85, 93, 94].

The amine exchange reaction of an enamine ketone has also been used for the
regioselective synthesis of 4,5-diarylisoxazoles [95–98]. The one-pot reaction of
enamino ketones 63 with hydroxylamine hydrochloride leads to the corresponding
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Table 9.5 Reaction of hydroxylamine with three-carbon atom components.

1 [10]
N

O

OEt

ROH S

OEtR

NEt3/CH3CN N
O

OEt

R

HO

R OEt

O N
OH

CH3OH/H2O
reflux, 3 h

pH 3-5

68-82% 81-94%

NH2OH.HCl
rt, 2 h

2 [90]
N

O
R1O R1 = Me, Et or n-Pr

O

R2S

OR1

H

Ar

NH2OH.HCl

NaOR1/R1OH

reflux, 8-10 h

45-53%

Ar

3 [90]

X

OR1 O

R2S
n

X

n

O
N

R1O

NH2OH.HCl

NaOR1/R1OH

reflux, 8-10 h

45-53%
X = CH2, n = 1, R1 = Et

X = S, n = 2, R1 = Me

4 [91]

Ar Ar

O
1. HCO2Et

    NaOMe

2. HCl aq.
Ar Ar

O

OH

Ar

Ar

N
O

NH2OH.HCl/AcOH

70-80 ºC, 6-8 h

75-78%

5 [104]
N

O

MeO2C

Me

OMe

NH2

O
NH2OH.HCl/NEt3

EtOH, reflux, 5 h
73%

CH2Ph

O

Me

CH2Ph

6 [108] N
O

R1

O

R3O

R2

CCl3

R1

ORR2

O

NH2OH.HCl/H2SO4 conc.

R3OH, reflux, 8-12 h

65-95%
R3 = H, Me, Et or Pri

7 [109]
N

O

Ph

F3C(F2C)4Ph

MeO

F3C(F2C)4 H

O

NH2OH.HCl, NaOH
MeOH, reflux, 4 h

40%

8 [110] N
O Ph

Ar

N
O Ar

Ph
NH2OH.HCl

pyridine/EtOH
reflux, 3 h

NH2OH.HCl

Na2CO3
Ar = C6H4-OMe-p

Ph

O

Ar
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isoxazoles 64 (Scheme 9.5) [95]. This strategy has been applied to the synthesis of the
cholinergic channel activator ABT-418 [99].

The reaction of 2-acyl-3-(dimethylamino)propenoates with hydroxylamine in
refluxing methanol leads to 5-substituted isoxazole-4-carboxylates in high yields
(68–90%) [100] and open-chain and cyclohexane syn-2-(dimethylamino)ethylene-1,3-
diones are converted into 5-substituted 4-acylisoxazoles [101]. A cellulose-based resin
has also been used to prepare 5-substituted isoxazole-4-carboxylates via in situ
generation of a polymer-bound enaminone [101–103]. The same strategy can be
used to prepare tri-substituted isoxazoles. In fact, a b-enamino ketoester reacts with
hydroxylamine hydrochloride in the presence of triethylamine to give a tri-substi-
tuted isoxazole (e.g., Table 9.5, entry 5) [104–107].

The reaction of vinyl ketones bearing a potential leaving group (bromo or
benzotriazole) at the a position with hydroxylamine has also been reported
(Scheme 9.6) [111, 112]. Depending on the leaving group or the experimental
conditions 3(5)-substituted-5(3)-phenylisoxazoles are regioselectively obtained.

N
OR

NH2OH.HCl

N
OR

EtO2C

R1 = H

R2 = NR'2
R1 = CO2Et

R2 = OEt

NH2OH.HCl
NaHCO3/EtOH/H2O

R R2

O

R1

Scheme 9.4
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Ar2

Ar1

Ar1

NMe2

Ar2

O

Ar1 Ar2

HOHN

NH
O

Ar2

Ar1

HO

H+

- HNMe2
6463

O

88-99%

NH2OH.HCl
Na2CO3

MeOH/H2O

pH 4-5 (AcOH)
reflux, 2 h

Scheme 9.5

N
O

R

Ph
PhBt

O

RCHO

O

PhBt

R
N

O
R

PhBt

NH2OH - BtH

55-66%

55-81%

O

PhBr

R

NH2OH.HCl

NaOEt in abs. EtOH N
O

R

Ph

NH2OH.HCl

K2CO3 in 95% EtOH

1 h

N
O

Ph

R

R = Me, Et, Prn or Pr1  25-33%30-49%

EtOH, rt 40 h

Scheme 9.6
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Reaction conditions were found to allow the exclusive formation of isoxazole-5-
carboxylic acid derivatives by conjugate addition, in acidicmedium, of hydroxylamine
to a b-alkoxyvinyl trichloromethyl ketone (Table 9.5, entry 6) [108]. The trichloro-
methyl group is the carboxyl group precursor: using water as solvent it leads to
the formation of carboxylic acids whereas the use of an alcohol leads to ester
derivatives. In contrast, the b-perfluoroalkyl-b-alkoxyvinyl phenyl ketone undergoes
a selective attack on the carbonyl group upon reacting with hydroxylamine in basic
medium, affording an isoxazole bearing a perfluoroalkyl substituent (Table 9.5,
entry 7) [109].

Isoxazoles can be obtained via oxidative cyclization ofa,b-unsaturated oximeswith
iodine/potassium iodide [113], with N-bromosuccinimide [114] or with palladium
complexes in the presence of sodium phenoxide [115]. 3,5-Diarylisoxazoles can also
be obtained using lead(IV) acetate as oxidant, although in moderate yields (24–28%)
[116]. The method of preparation of 3,5-disubstituted isoxazoles by oxidative closure
of a,b-unsaturated oximes can be carried out using tetrakis(pyridine)cobalt(II)
dichromate (TPCD) as oxidant, under mild reaction conditions and very short
reaction time (Scheme 9.7) [117]. A route to ABT-418 involving the same type of
strategy for the isoxazole ring has been described [118].

The synthesis of isoxazoles attached to sugar moieties via oxidative cyclization of
a,b-unsaturated oximes has been reported [119]. The isoxazoles were obtained by
reacting the oximeswith potassium iodide and sodiumhydrogen carbonate at 100 �C
(64–68% yield).

The reaction of a,b-alkynic ketones with hydroxylamine hydrochloride gives 3- or
5-substituted isoxazole isomers, depending on the conditions used (Table 9.5, entry
8) [110]. This route to isoxazoles has been applied to the synthesis of non-proteino-
genic isoxazole substituted a-amino acids [120].

9.4.1.1.2 [CNOþCC] Reactions: 1,3-Dipolar Cycloaddition of Nitrile Oxides The
study of Quilico et al. on the formation of isoxazoles from nitrile oxides and
unsaturated compounds is a milestone in the chemistry of isoxazoles [7]. Since
then, the 1,3-dipolar cycloaddition of nitrile oxides has became an important
approach to isoxazoles [6, 10, 85, 86, 121, 122]. Nitrile oxides can undergo dimer-
ization to give furoxans (1,2,5-oxadiazole-2-oxides), the rate of this process being
strongly dependent on the nature of the nitrile oxide substituent. Thus, steric and
electronic effects determine the stability of the nitrile oxides, as illustrated by the time
required for complete dimerization of some derivatives (Table 9.6) [123]. To avoid
dimerization, nitrile oxides are usually generated in situ.

N
O

Ar1

Ar2

Ar1

HO
N

Ar2

TPCD/60% AcOH aq.

60 ºC, 1 min
51-94%

Scheme 9.7
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The 1,3-dipolar cycloaddition of nitrile oxides with mono-substituted alkynes
(alkyl/aryl) gives the corresponding 3,5-disubstituted isoxazoles regioselectively and
occurs in competition with the 1,3-addition to give acetylenic oximes, which in some
cases can be isolated. These oximes can easily be converted into isoxazoles
(Scheme 9.8) [124].

A one-pot synthesis of isoxazoles frommonosubstituted acetylenes with nitric acid
under biphasic conditions (nitromethane–water, 1 : 1) in the presence of the catalyst
Bu4N

þAuCl4
� has been described (Table 9.7, entry 1) [125]. Nitrile oxide, generated

from a-hydroxyimino carboxylic acids, in the presence of an alkyne furnishes the
corresponding isoxazole (Table 9.7, entry 2) [126].

An efficient method for the in situ generation and cycloaddition of nitrile oxides
from nitroalkanes, using 4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholi-
nium (DMTMM) chlorides and DMAP as catalyst through microwave irradiation
has been reported. Carrying out the reaction in the presence of the appropriate
alkynes, isoxazoles are obtained in high yields (Table 9.7, entries 3 and 4). This
approach can also be applied to solid-phase synthesis [127].

Geometry constraints in the intramolecular 1,3-dipolar cycloaddition of nitrile
oxides containing internal terminal alkynes leads to the exclusive formation of
4-substituted isoxazoles (Table 9.8).

The reaction of nitrile oxides with disubstituted alkynes leads to isoxazoles
exclusively via 1,3-dipolar cycloaddition when the alkyne contains at least one
electron-withdrawing substituent [6, 134].

Table 9.6 Stability of some nitrile oxides towards dimerization to furoxans [123].

N OR2
N

O
N O

R

furoxans

R

R Complete dimerization
(at 18 �C)

R Complete dimerization
(at 18 �C)

Methyl <1min p-Chlorophenyl 10 days
t-Butyl 2–3 days p-Nitrophenyl Very slow
Phenyl 30–60min 2,4,6-Trimethylphenyl Very stable

N
O

Ph

Ph

N OPh Ph

Ph

N
OH

Ph

CCl4

25 ºC, overnight

90%

Scheme 9.8
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Solid-phase synthesis of 3-hydroxymethyl-4,5-disubstituted isoxazoles 66 has been
achieved through a 1,3-dipolar cycloaddition of different alkynes to resin-bound
nitrile oxide generated from nitro compound 65 under Mukaiyama conditions [135].
An alternative solid-phase 1,3-dipolar cycloaddition methodology allows the
regioselective preparation of 5-hydroxyalkylisoxazoles 67 by anchoring acetylenic
compounds on trityl chloride resin and carrying out the cycloaddition with nitrile
oxides generated in situ from aldoximes (Scheme 9.9) [136].

A soluble polymer-supported synthesis of 3-hydroxymethyl-5-arylisoxazole, where
construction of the isoxazole ring was based on nitrile oxide cycloaddition reactions,
has been reported [137–140]. An alternative route to solid-phase synthesis for the
construction of a library of isoxazoles involves a solution phase combinatorial
synthesis of isoxazoles via cycloaddition of nitrile oxides with alkynes followed by
precipitation of the products as HCl salts [141].

The synthesis of isoxazoles via cycloaddition of nitrile oxides can also be achieved
using easily available alkenes instead of alkynes and converting the resulting
isoxazolines into the corresponding isoxazoles either by dehydrogenation or by
elimination reaction in the case of derivatives bearing a potential leaving group. In
many cases the cycloaddition of nitrile oxides to alkenes affords directly the isoxazoles
due to the lability of the intermediate isoxazoline under the experimental conditions
(Scheme 9.10) [10, 121, 142].

The reaction of alkenes and alkynes with cerium ammonium nitrate (CAN) in
acetone or acetophenone under reflux gives 4,5-dihydroisoxazoles or isoxazoles,
respectively (Scheme 9.11) [143]. The reaction mechanism involves the nitration of

H
N

O

O
NO2

O

H
N

O

O
N

O

O

R2

R1

O
N

R2

R1

OH
R1R2

PhNCO

NEt3, DMF
50 ºC, 5 h

20% TFA

CH2Cl2

30 min
66  33-93%65

O
N

R

5% TFA

CH2Cl2

rt, 20 min
67  60-90%

Cl O n
HO n

O n
O N

R

Pyridine
rt, 48 h

R

N OH

NCS. rt, 2 h

1.

2. NEt3, rt HO

n

Scheme 9.9

N
O

N OH N
OAcO

HOAc
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90% NO HHH
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Scheme 9.10
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acetone or acetophenone mediated by CAN (IV) or CAN (III) followed by the
generation of the corresponding nitrile oxide (Scheme 9.12). The 3-acetyl- and
3-benzoylisoxazole derivatives are obtained by 1,3-dipolar cycloaddition of this dipole
with the alkenes or alkynes.

Further examples of the use of 1,3-dipolar cycloaddition of nitrile oxides with
alkenes and alkynes for the synthesis of isoxazoles have been published [144–155].

An alternative approach to the regioselective construction of the isoxazole ring
involves the reaction of nitrile oxides with doubly activated methylene groups
containing at least one carbonyl or nitrile substituent. This group ends up in the
5-position of the isoxazole: an acyl group as an alkyl or aryl group, 2-oxoacyl group as
an acyl group, an ethoxyoxoacyl as an ethoxycarbonyl group, and a nitrile as an amino
group (Scheme 9.13) [10, 156–159].

Several 3-aryl-5-alkylisoxazoles were synthesized in good yields by reacting arylni-
trile oxides with free enolates, obtained from alkyl methyl ketones, followed by
dehydration (Scheme 9.14) [160].
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O

R2

O

R1 R1

n

n = 0-3 N
O

R2

O

R2 = Me or Ph R2 = Me or Ph
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CAN (III)-HCO2H

R2 CH3

O
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CAN (III)-HCO2H

22-73%12-78%
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R2
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R1 R2 = Me or PhR1
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31-80%

Scheme 9.11
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Polyisoxazole systems containing two or more isoxazole rings can be constructed
using the 1,3-dipolar cycloaddition of nitrile oxides. Starting from bisnitrile oxides
the reaction with alkynes leads to 3,30-linkage of the isoxazole rings whereas the
cycloaddition of nitrile oxides with diynes produces a 5,50-linkage [6, 161–165].

9.4.1.2 [4 þ 1] Routes

9.4.1.2.1 [CCNOþC] Reactions: Reactions of Oxime Dianions with Carbonyl
Compounds The reaction of oxime dianions with carbonyl compounds (e.g., esters,
amides or aroyl chlorides) is an alternative regioselectivemethod for the construction
of the isoxazole ring (Scheme 9.15). The anion is acylated on carbon followed
by cyclization–dehydration to give the unsymmetrically substituted isoxazoles. The
same type of reaction can be carried out with benzonitriles, benzaldehydes and
benzophenones [6, 10]. The condensation of 1,4-dilithiooximes with amides usually
leads to higher yields than the reaction with aromatic esters [166–168].

A regiocontrolled route to isoxazoles has been reported that is amodification of the
oxime dianion method (Scheme 9.16) [169].

9.4.1.2.2 [CCNOþC] Reactions: via Nitrosoalkenes Isoxazoles can be obtained
from the reaction of nitrosoalkenes 68, generated in situ by dehydrohalogenation
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of a-halooximes 69 or of the isomeric nitroso compounds 70, with a C synthon
(Scheme 9.17). The formation of alkene-nitrosyl chloride adduct 71 followed by
reaction with cyanide affords 5-aminoisoxazoles 72 [170]. N-Substituted 5-aminoi-
soxazoles are usually prepared through N-functionalization of 5-aminoisoxazoles.
However, such derivatives can also be produced directly from oximes of a-haloke-
tones and isocyanides in the presence of sodium carbonate [171]. The process is
thought to involve a [4 þ 1] cycloaddition of the transient nitrosoalkene with
isocyanides to give 73. The C synthon can also be a keto-stabilized sulfonium ylide,
as illustrated by the reaction of benzoylsulfonium ylide with (2-chloro-2-ethoxy-1-
nitrosoethyl)benzene leading to isoxazole 74 [172].

9.4.1.3 [5 þ 0] Routes

9.4.1.3.1 [CCCNO] Reactions Reaction of 1,1-dihalo-2-arylcyclopropanes, bearing
electron-accepting substituents in the aromatic ring, with amixture of nitric acid and
sulfuric acid leads to halogen-substituted isoxazoles (Scheme 9.18) [173–174].

A simple procedure for the synthesis of 5-aminoisoxazoles takes advantage of the
biohydrogenation of nitroacrylonitriles (R¼H, Me or Ar) with baker�s yeast
(Scheme 9.19) [175]. The reduction of nitroacrylonitriles as a route to isoxazoles
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can also be carried out electrochemically or by reduction or by treatment with
thiophenol in basic medium [10].

9.4.1.3.2 [OCCCN] Reactions Cyclization of a,b-unsaturated ketones or esters
bearing an appropriate nitrogen-containing substituent in the b-position can lead
to the corresponding isoxazole derivatives (Scheme 9.20). The nitrogen atom can
undergo a nucleophilic attack by the carbonyl oxygen atom if a good leaving group is
present. However, the formation of an b-acylvinylnitrene as intermediate cannot be
excluded. Examples of this type of isoxazole precursors are b-azidovinyl ketones or
esters 75, N-(1-pyridinio)acylvinylaminides 76 and acylvinylsulfinimines 77 [6, 10].
TheN-(1-pyridinio)acylvinylaminides 78 undergo N�N bond cleavage upon heating
in benzene to give isoxazoles 79 [176]. Acylvinylsulfinimines 80 [177], generated from
the reaction of diphenylsulfilimine with benzoylacetylenes, allows the synthesis of
isoxazoles 81 (Scheme 9.21).
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The thermolysis of 3-phenyl-2H-azirine-2-carbaldehyde at 200 �C leads to
3-phenylisoxazole in high yield [178]. The same isoxazole can also be obtained
in 90% yield by treatment of 3-phenyl-2H-azirine-2-carboxaldehyde at 25 �C
with Grubbs’ catalyst [179]. Furthermore, 2-benzoyl-3-phenyl-2H-azirine affords
the corresponding isoxazole upon heating in non-hydroxylic solvents [180]
(Scheme 9.22).

9.4.1.3.3 [CONCC] Reactions Lithium hydroxide-catalyzed cyclization of a-(acyl-
methoxyimino)nitriles 82 provides a route to 5-acyl-4-aminoisoxazoles 83 [181].
The a-nitro oximes 84 act as an CONCC synthon in the synthesis of benzoyl-
protected 3-ribofuranosyl-4-nitroisoxazole-5-carboxylate 85 (Scheme 9.23) [182].

9.4.1.3.4 [NOCCC] Reactions 3-Aminoisoxazole can be synthesized by the hydro-
lysis and ring closure of vinyl-substituted oximes under acidic conditions
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(Scheme 9.24) [183]. Similar results are obtained starting with other oximes (e.g.,
acetone oxime or ethyl acetate oxime) and the cyanoacetylene can also be replaced by
b-chloroacrylonitrile [184].

9.4.1.4 [3 þ 1 þ 1] Routes

9.4.1.4.1 [ONCþCþC] Reactions The reaction of primary nitroalkanes with
organic bases affords dioximes 86 which are converted into trialkylisoxazoles 87 in
high yields when heated in dilute acids [10]. In contrast, the reaction of phenylni-
tromethane with cis-a-nitrostilbene gives isoxazoline-N-oxide 88. Treatment of 88
with aqueous alcoholic sodium hydroxide allows the synthesis of triphenylisoxazole
89 (Scheme 9.25) [185]. Trisubstituted isoxazoles can also be obtained from the
reaction of nitroalkanes with aldehydes in the presence of a base [10, 186].

9.4.1.5 Ring Transformations of Heterocycles Leading to Isoxazoles
4-Acylisoxazolin-5-ones 90 rearrange to the isomeric isoxazole-4-carboxylic acids 91
upon treatment with aqueous sodium hydroxide [187]. 4-Benzylidene-3-phenylisox-
azolin-5-one (92) is converted into isoxazole 93 upon treatment with anhydrous
ammonia in ethanol in the presence of benzaldehyde (Scheme 9.26) [188].

The reaction of hydroxylamine with 2-substituted or 3-substituted chromones gives
exclusively the corresponding 5-(2-hydroxyphenyl)isoxazoles (Scheme 9.27) [10].
The reaction involves the opening of the chromone ring followed by the formation
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of 5-(2-hydroxyphenyl)isoxazole in 72% overall yield [189, 190]. Some of these
isoxazole derivatives show anti-inflammatory related activity.

The 5-amino-4-trifluoroacetyloxazoles 94 can be used in a two-step synthesis of
isoxazoles 96 (Scheme 9.28). Nucleophilic attack of hydroxylamine at thefive position
of 94 leads to ring opening followed by a cyclization to give isoxazoline 95. Subse-
quent dehydration in the presence of trifluoroacetic anhydride allows the synthesis of
isoxazoles in good yields [191].

Isoxazolines with the general structure 97 undergo cycloreversion to give iso-
xazoles 98 (Scheme 9.29) [6]. The parent isoxazole can be prepared in 37% yield by
the thermolysis of the cycloadduct obtained from fulminic acid (HCNO) and
norbornadiene [192]. This type of approach can also be used to the synthesis of
3-vinylisoxazole (99), which is unsubstituted at both the 4- and 5-positions. The two-
step procedure involves initial 1,3-dipolar cycloaddition of acrylonitrile oxide to
norbornadiene followed by retro-Diels–Alder fragmentation under flash vacuum
pyrolysis [193].
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Furazans (1,2,5-oxadiazoles) undergo fragmentation to nitrile and nitrileN-oxides
by thermolysis or photolysis. Irradiation of benzofurazan in the presence of dimethyl
acetylenedicarboxylate (DMAD) to give isoxazole 100 is an illustrative example of this
approach (Scheme 9.30) [194, 195].

9.4.2
Isothiazoles

The first synthesis of a mononuclear isothiazole ring system was reported in
1956 [15]. Oxidation of 5-amino-1,2-benzisothiazole by alkaline permanganate gives
isothiazole-4,5-dicarboxylic acid. Decarboxylation to isothiazole-4-carboxylic acid
followed by functional group interconversion leads to the isothiazole itself and
a range of monosubstituted isothiazoles [15].

The chemistry of isothiazoles has been reviewed [25–29]. The most convenient
methods for the construction of the isothiazole ring involve: (i) oxidative cyclization
of a c-thio amine derivative (formation of the S–N bond), (ii) 1,3-dipolar cycload-
dition of nitrile sulfides to alkynes or alkenes and (iii) conversion of other
heterocycles into isothiazoles. Examples of such synthetic methodologies are
described below.

9.4.2.1 Synthesis from Acyclic Compounds
Isothiazole itself can be prepared frompropynal by two distinct routes (Scheme 9.31).
It reactswith thiohydroxylamino-S-sulfonate (101) to give the thiooxime intermediate
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102, which, in the presence of NaHCO3, cyclizes to isothiazole [21]. In the second
route, propynal and sodium thiosulfate afford the intermediate 103, which on
treatment with ammonia cyclizes to isothiazole [196]. 3-Methylisothiazole can be
obtained by a similar synthetic procedure, changing propynal by but-3-yn-2-one [196].

There are several routes to isothiazoles based on oxidative cyclization reactions
in which the N–S bond is formed. A good leaving group attached to the sulfur atom
is required, which frequently is introduced by reaction with iodine (Scheme 9.32)
[197, 198].

Oxidation of 3-amino-2-cyano-3-phenylpropenedithioates with iodine produces
3-phenyl-5-alkylthioisothiazole-4-carbonitriles in near-quantitative yield
(Scheme 9.33) [199].

Ketene S,N-acetals 104 give the isothiazolium salts 105 in good yields when treated
with iodine at room temperature. Dealkylation with KI in DMSO affords the
corresponding 5-aryl-3-(arylthio)isoxazoles 106 (Scheme 9.34) [200].

Enamino thioaldehydes 108 can be converted in good yields into 3,4-disubstituted
isothiazoles 109 by oxidation with m-chloroperbenzoic acid (Scheme 9.35) [201].
Oxidation of enamino thioaldehydes 108 (generated from 107a) with iodine, at room
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temperature, also affords the corresponding isothiazoles 109 in moderate to good
yields [202]. Thioaldehydes 108may be synthesized from enamines 107 by solvolysis
of the corresponding Vilsmeier salts with aqueous or methanolic sodium hydrogen
sulfide [201, 202].

3,5-Diaminoisothiazole-4-carboxylate derivatives can be prepared in a one-pot
reaction from active methylene nitriles, isothiocyanates and chloramine
(Scheme 9.36) [203]. Reactions starting from malononitrile give the corresponding
isothiazole in higher yields (41–65%).

Dithiolate disodium salt 110 reacts with chlorine to give 4-benzoyl-3,5-dichlor-
oisothiazole (111) in low yield. However, the same compound can be monomethy-
lated and reacted with hydroxylamine-O-sulfonic acid to afford isothiazole 112 in
a global 75% yield (Scheme 9.37) [204].
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Oximes are also useful intermediates in the synthesis of isothiazoles. For instance,
oximes derived from a-oxoketene dithioacetals cyclize to 5-methylthioisothiazoles
when treated with thionyl chloride in pyridine (Scheme 9.38) [205].

Oxime derivatives 113 are converted into isothiazoles 114 by reaction with
a dehydrating agent, namely tosyl isocyanate [206]. Similarly, the 2-(hydroxyi-
mino)alkyl N,N-dialkyldithiocarbamates 115 and the analogous trithiocarbonates
117 react with tosyl isocyanate to afford the bis(4-isothiazolyl) disulfides 116 or 119
and the disubstituted isothiazoles 118 (Scheme 9.39) [207].

Oxime tosylates of type 120 react with methyl thioglycolate to give 4-amino or
4-hydroxyisothiazole-5-carboxylate esters (Scheme 9.40) [208, 209]. This synthetic
methodology has been used to prepare ethyl 4-aminoisothiazole-5-carboxylate
C-nucleosides [210].

Photoreaction of arylthioamides with alkenes and alkynes, under aerobic condi-
tions, yields isothiazoles and 1,2,4-thiadiazoles in low to moderate yields
(Scheme 9.41). Nitrile sulfides are probable intermediates in these reactions [211].
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a-Acetylenic aldehydes or ketones are converted into 4-unsubstituted isothiazoles
by reaction with hydroxylamine-O-sulfonic acid and sodium hydrogen sulfide in
buffered aqueous solution in a one-pot procedure (Scheme 9.42) [212].

Arylmethylene-malononitriles reactwithsulfurchloride in thepresenceofpyridine
to give 5-aryl-3-chloroisothiazole-4-carbonitriles in high yields (Scheme 9.43) [213].

3-Chloroalk-2-enals react with ammonium thiocyanate to afford 4,5-disubstituted
isothiazoles 121 (Scheme 9.44) [214, 215]. Cycloalka[c]isothiazoles 122 can be
prepared by a similar method [216]. 2-Thiocyanatocyclohex-1-ene carbaldehyde
(123) reacts with anilines to afford isothiazolium salts 124 [217].
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Methacrylonitrile reactswith trithiazyl trichloride (NSCl)3 in the presence of excess
SO2Cl2, in refluxing chloroform, to give 4-cyanoisothiazole in 78% yield [218].

9.4.2.2 Ring Transformations of Heterocycles Leading to Isothiazoles
Several heterocyclic compounds can, by chemical modification, be converted into
isothiazoles. Despite some synthetically interesting exceptions, in most cases the
starting heterocycles are not readily available and the routes are unlikely to be general.

A synthetically useful method involves the generation of nitrile sulfides in the
presence of alkynes or alkenes, affording isothiazoles or 4,5-dihydroisothiazoles,
respectively (Scheme 9.45). The nitrile sulfides are conveniently generated in situ by
thermal cycloreversion of five-membered heterocycles already containing the C¼N-S
unit [219]. Decarboxylation of 1,3,4-oxathiazol-2-ones in an inert solvent (e.g., xylene,
chlorobenzene) in the presence of an excess of the dipolarophile is one of the most
convenient routes [220–223]. Using dimethyl acetylenedicarboxylate as dipolaro-
phile, the isothiazole-4,5-dicarboxylates are obtained in yields as high as 96% [221].
The low regioselectivity observed in the reactions of nitrile sulfides with unsymme-
trical alkynes and alkenes is a major disadvantage of this method. Oxidation of 4,5-
dihydroisothiazoles with sodium hypochlorite, under phase-transfer conditions,
affords the isothiazoles in high yields [223].
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Both 2,5- and 2,3,5-substituted furans react with trithiazyl trichloride (NSCl)3 to
afford 5-acylisothiazoles in good yield (Scheme 9.46) [224, 225]. A much simpler
proceduremakesuse of amixture of ethyl carbamate, thionyl chloride andpyridine in
boiling benzene or toluene; this generates the reactive thiazyl chloride, NSCl, in
situ [226, 227]. Highly polarized 2,5-disubstituted furans (such as 125) yield only one
isothiazole. However, when the electronic properties of the substituents are more
balanced, two isomeric isothiazoles are formed [225, 227]. The thiazyl chloride
reagent has been used for the direct conversion of calix[n]furans into macrocyclic
isothiazoles [228].

4,5-Dichloro-1,2,3-dithiazolium chloride reacts with methyl 3-aminocrotonate at
room temperature to give 5-cyano-3-methylisothiazole-4-carboxylate in 78% yield
(Scheme 9.47) [229].
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Thermolysis of triphenyl-1,3-dithiol-2-yl azide (126) in refluxing toluene gives
3,4,5-triphenylisothiazole (127) in 80% yield. However, under identical conditions,
the diphenyl analogue 128 affords a mixture of isothiazoles and 1,4,2-dithiazines
(Scheme 9.48). These dithiazines, when refluxed in toluene, extrude the sulfur atom
at the 4-position to give, selectively, one isothiazole [230].

Benzopyran-4-thiones react with diphenylsulfilimine to give the corresponding
5-(2-hydroxyphenyl)isothiazoles in high yields (Scheme 9.49) [231].

Maleimide derivatives 129 undergo oxidative cyclization to give isothiazole-3,4-
dicarboximides 130 (Scheme 9.50) [232]. By ammonolysis, the N-unsubstituted
derivative affords 5-aminoisothiazole-3,4-dicarboxamide (131).
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9.5
Synthesis of Benzisoxazoles and Benzisothiazoles

9.5.1
1,2-Benzisoxazoles

Most synthetic approaches to 1,2-benzisoxazoles involve cyclization of a suitable
benzene derivative and can be represented as follows:
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O

C
N

O

C

O
N

C

N
O

7a-1 bond formation 1-2 bond formation 2-3 bond formation 7a-1/3-3a bond
formation

1,2-Benzisoxazoles can also be obtained from 3-3a bond formation in the cycli-
zation processes. The remainingmethodology involves heterocyclic rearrangements.

9.5.1.1 Formation of Bond 7a-1
The first synthesis of a 1,2-benzisoxazole was reported in 1892, 3-phenyl-1,2-
benzisoxazole 132, and involved the reaction of hydroxylamine with ortho-bromo-
benzophenone in alkaline medium [30]. However, 1,2-benzisoxazole had been
known since 1882, obtained from the reduction of ortho-nitrobenzaldehydewith tin
and hydrochloric acid [233]. This base-promoted intramolecular displacement
reaction for formation of the 7a-1 bond has became an important route to 1,2-
benzisoxazoles. Other halogens also undergo this type of displacement, with the
reactivity of iodide and fluoride comparable with bromide but chloride less
reactive [10, 234]. The displaceable groups also include nitro, amino, methoxy
and hydroxyl groups (Scheme 9.51 and Table 9.9).

The course of the reaction is determined by the configuration of the oxime. A syn
relationship of the OH to the aryl substituent bearing the leaving group allows
cyclization to 1,2-benzisoxazole whereas the isomeric oximes usually produce Beck-
man rearrangement products [234]. Amidoximes are configurationally labile, allow-
ing the use of the anti oxime as starting material for the synthesis of 1,2-benzisox-
azoles. Thus, the amide oxime 133 cyclizes to 3-(4-pyridinylamino)-1,2-benzisoxazole
134 on reactingwith potassium tert-butoxide via an isomerization/cyclization process
(Scheme 9.52) [239].
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b-Hydroxyoximes 135, bearing a phenyl group unsubstituted in the ortho posi-
tions, are converted into styrylbenzisoxazole 136 upon treatment with phosphoric
acid [10]. The base cyclization of dithioacetal 137 followed by desulfurization leads to
3-acyl and 3-aroyl-1,2-benzisoxazoles (138) [240] (Scheme 9.53).

9.5.1.2 Formation of Bond 1-2
1,2-Benzisoxazoles can be obtained from 2-hydroxybenzophenone oximes by
thermolysis, treatment with base or with dehydrating agents (e.g., sulfuric
and phosphoric acid). By reacting oxime 139 with thionyl chloride/pyridine the

Table 9.9 Base-promoted intramolecular displacement reactions for 1,2-benzisoxazole 7a-1 bond
formation.
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1,2-benzisoxazole 140 can also be prepared [241]. The O-sulfonate oxime 141 is
converted, in the presence ofmild bases, into 1,2-benzoisoxazole in 95%yield [242]. A
synthesis of 3-(2-dialkylaminoethyl)-1,2-benzisoxazoles 143 from oxime acetates of
2-hydroxyphenyl ketones 142 has also been reported [243] (Scheme 9.54). A similar
synthetic approach has been applied to the synthesis of 3-[2-(1-pyrazolyl)ethyl]-1,2-
benzisoxazoles [244].

9.5.1.3 Formation of Bond 2-3
The synthesis of 3-methyl-1,2-benzisoxazole (145) from the reaction of 2-hydroxya-
cetophenone with hydroxylamine-O-sulfonic acid in diluted aqueous base is an
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example of a 2–3 ring closure. The process occurs via the generation of interme-
diate 144, which then undergoes the cyclization [9] (Scheme 9.55).

3-Amino-1,2-benzisoxazoles (147 or 149) can be obtained from 2-fluorobenzeno-
nitrile [245, 246]. The synthesis involves anSNAr reaction to give an intermediate (146
or 148, respectively) followed by ring-closure to give the 1,2-benzisoxazoles. A solid-
phase synthesis of 3-amino-1,2-benzisoxazoles uses a similar synthetic strategy: the
displacement of fluoride from 2-fluorobenzonitrile by the Kaiser oxime resin 150
followed by cyclization [247, 248] (Scheme 9.56).

9.5.1.4 Formation of Bonds 7a-1/3-3a
1,3-Dipolar cycloaddition of nitrile oxides to benzyne gives 3-substituted 1,2-benzi-
soxazoles inmodest yield (Scheme 9.57) [249]. Other dipolarophiles can also be used
for the synthesis of 1,2-benzisoxazole derivatives, namely 1,4-benzoquinones and
enamines [9].
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9.5.1.5 From Other Heterocycles
The reaction of 4-hydroxycoumarin 151 (R¼H) and 4-hydroxycoumarin substituted
derivatives with hydroxylamine leads to 1,2-benzisoxazole-3-acetic acid 152
(Scheme 9.58) [250, 251].

9.5.2
2,1-Benzisoxazoles

2,1-Benzisoxazoles are usually prepared by 1-2 or 2-3 bond formation in the
cyclization step or by introduction of atom C3, resulting in the formation of bond
2-3.

9.5.2.1 Formation of Bond 1-2
An important route to 2,1-benzisoxazoles involves reduction of ortho-nitrophenones
or ortho-nitroalkylbenzenes containing an oxygen function on the a-carbon of the
alkyl substituent. 3-Phenyl-2,1-benzisoxazole (154) can be obtained from 153 in the
presence of sulfuric acid. 3-Aryl-2,1-benzisoxazoles are also prepared by the reaction
of ortho-nitrobenzaldehydes and an aromatic hydrocarbon catalyzed by sulfuric acid
(Scheme 9.59) [252].

5-Substituted-2,1-benzisoxazoles 155 have been prepared from 5-substituted-2-
nitrobenzaldehydes by the reduction of the nitro group with stannous chloride
dihydrate and in situ cyclization (Scheme 9.60) [253]. The allyl bromide/Znmediated
reductive cyclization of 2-nitrobenzaldehydes, 2-nitroacetophenone and N-(2-nitro-
benzylidene)anilines (156) leads to 2,1-benzisoxazoles in good to excellent
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yields [254]. The reductive cyclization of ortho-nitrobenzaldehydes and ortho-nitroa-
cetophenone can be carried out with 2-bromo-2-nitropropane/Zn in methanol at
50 �Cto give 2,1-benzisoxazoles 157 in good yields [255]. Electrochemical synthesis of
2,1-benzisoxazole from nitroarenes by controlled potential cathodic electrolysis has
been reported [256].

Many methods of oxidative cyclization of ortho-aminoaryl ketones to 2,1-benzisox-
azoles are known [9]. An illustrative example is the hypervalent iodine oxidation
of ortho-aminochalcones 158 to give styryl-2,1-benzisoxazole 159 in good yields
(Scheme 9.61) [257]. Under similar reaction conditions, 3-methyl-2,1-benzisoxazole
(160) is obtained from ortho-aminoacetophenone.

The thermolysis of ortho-azidoaryl ketones also produces 2,1-benzisoxazoles. For
example, the thermal decomposition of azide 161 gives styryl-2,1-benzisoxazoles 162
along with a minor amount of hydroxyquinoline 163 (Scheme 9.62) [258].

9.5.2.2 Formation of Bond 2-3
The 2,1-benzisoxazole ring system can be constructed from the acid- or
base-catalyzed dehydration of 2-nitrobenzyl compounds. In fact, sulfuric acid
cyclization of ortho-nitrophenylacetic acid yields a mixture of 2,1-benzisoxazole and
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2,1-benzisoxazole-3-carboxylic acid [259]. Me3SiCl/Et3N-mediated dehydration of
2-nitrobenzyl derivatives 164 gives sulfones 165 (Scheme 9.63) [260].

Two research groups claimed the synthesis of 2,1-benzisoxazoles from the reaction
of ortho-nitrosobenzaldehyde with benzylamine [261] and from treatment of 167a
or 167b with aqueous sodium hydroxide [262]. However, Kurth et al. have demon-
strated that the products of these reactions were in fact indazalones [263].
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9.5.2.3 By introduction of C-3
2,1-Benzisoxazole can be produced from the condensation of nitrobenzenes
with benzyl cyanide in the presence of a base. Starting from para-chloronitrobenzene
the reaction with benzyl cyanide gives 2,1-benzisoxazole 168 in 46% yield via an
ortho-quinonoid intermediate [264]. The synthesis of 3-substituted 2,1-benzisoxa-
zoles 169 from the reaction of ortho-chloronitrobenzene with the sodium salt of
malonic ester or ethyl cyanoacetate occurs through an initial nucleophilic displace-
ment (Scheme 9.64).

9.5.3
1,2-Benzisothiazoles

One of the most synthetically appealing methods for 3-substituted 1,2-benzisothia-
zoles involves the cyclization of the readily accessible oximes of 2-methylthiophenyl
ketones 170. Heating oximes 171 in an acetic anhydride/pyridine mixture
converts them into 1,2-benzisothiazoles 172 (Scheme 9.65) [265]. This method has
been used to prepare some benzo[d,d0]diisothiazoles [266]. The oximes of
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2-(t-butylthio)benzaldehydes cyclize to 1,2-benzisothiazoles (172, R1¼H) when
treated with polyphosphoric acid [267].

1,2-Benzisothiazoles 173 and 3-amino-1,2-benzisothiazoles 174 are obtained,
respectively, by treatment of 2-sulfanylbenzaldehydes or 2-sulfanylbenzonitriles with
chloramine (Scheme 9.66) [268].

The reaction of 2-benzylthio-4-fluorobenzaldehyde or ketones 175 with sulfuryl
chloride gives the corresponding sulfenyl chlorides 176, which by treatment with
ethanol saturated with ammonia afford the 6-fluoro-1,2-benzisothiazoles 177
(Scheme 9.67) [269].

A one-pot procedure for the synthesis of 1,2-benzisothiazoles starting from simple
bromobenzenes is shown in Scheme 9.68. It involves the generation of substituted
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benzynes, formation of zirconium complexes and reaction with nitriles to form
metallacyclic compounds 178. These compounds react with sulfur monochloride to
afford regioselectively the benzisothiazoles 179 in moderate to good yields [270].

3-Substituted 1,2-benzisothiazole 1,1-dioxides can be prepared by ortho-deproto-
nation–cyclization of N-acylbenzenesulfonamides with 2 equivalents of LDA
(Scheme 9.69) [271]. A relatedmethod for the synthesis of 3-aryl-1,2-benzisothiazoles
involves the ortho-lithiation of N,N-diphenylbenzenesulfonamides followed by the
addition of aromatic nitriles [272].

The ortho-lithiation of N-tert-butylbenzenesulfonamide followed by reaction with
ketones gives the tertiary alcohols 180, which undergo TMSCl-NaI-MeCN reagent
mediated cyclization to afford 3,3-disubstituted 2,3-dihydrobenzisothiazole 1,1-
dioxides 181 in high yields (Scheme 9.70) [273].

9.5.4
2,1-Benzisothiazoles

ortho-Toluidine and ring substituted o-toluidines 182 (R1¼H) react with
thionyl chloride in xylene at reflux temperature to yield 2,1-benzisothiazoles
183a [274]. Similarly, o-benzylaniline affords 3-phenyl-2,1-benzisothiazole (183b)
(Scheme 9.71) [275]. o-Toluidines can also be converted into 2,1-benzisothiazoles
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by reaction with N-sulfinylmethanesulfonamide (CH3SO2NSO) [276]. This
method has been used for the synthesis of all the possible angular benzo[c]
bisisothiazoles and the symmetrical benzo[c]trisisothiazole and also benzo[c:d0]
bisisothiazoles [277, 278].

3-Amino-2,1-benzisothiazoles are easily prepared by the oxidative cyclization of
ortho-aminothiobenzamides [279, 280]. These compounds can be converted into
other 3-substituted derivatives by diazotization and replacement of the diazonium
group by halogen atoms or cyanide or nitro groups (Scheme 9.72) [281]. Similarly,
oxidative cyclization of ortho-aminothiobenzoic acid affords 2,1-benzisothiazol-3-
one, which can be converted into 3-chloro-2,1-benzisothiazole (Scheme 9.72) [282].
The chlorine atom is easily and almost quantitatively displaced by nucleophiles,
leading to several different 3-substituted 2,1-benzisothiazoles [282].

2,1-Benzisothiazole 2,2-dioxides 184 can be prepared from a wide range of
precursors (Scheme 9.73) [283]. The nitro derivatives are prepared in higher yields
and under milder conditions (Scheme 9.74) [283]. Such compounds are used as
precursors of aza-ortho-quinodimethanes (see Scheme 9.119).
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9.6
Reactivity of 1,2-Azoles

9.6.1
Isoxazoles and Benzisoxazoles

The key feature of these heterocycles is that they possess the typical properties of an
aromatic system but contain a weak nitrogen–oxygen bond, which, under certain
reaction conditions, particularly in reducing or basic conditions, is a potential site of
ring cleavage. Thus, isoxazoles are very useful intermediates since the ring system
stability allows the manipulation of substituents to give functionally complex
derivatives, yet it is easily cleaved when necessary.

The ring opening provides difunctionalized compounds, namely 1,3-dicarbonyl,
enaminoketone, c-amino alcohol, a,b-unsaturated oxime, b-hydroxy nitrile or b--
hydroxy ketone compounds, so that isoxazoles can be considered masked forms of
these synthetic units. Consequently, isoxazoles have become an important synthetic
tool.

The chemical behavior of benzisoxazoles can, in general, be compared with that of
substituted isoxazoles. 1,2-Benzisoxazoles undergo electrophilic substitution in
the benzo ring whereas the reaction with nucleophiles involves the isoxazole
moiety. Benzisoxazoles readily undergo cleavage of the heterocyclic ring and this
feature makes them suitable building blocks for the synthesis of other heterocyclic
systems.

9.6.1.1 Thermal and Photochemical Reactions
Scheme 9.75 outlines the reactivity pattern of isoxazoles under thermal reaction
conditions. N�O bond cleavage leads to the generation of vinylnitrenes 185, which
rearrange to the corresponding 2H-azirines 186. The 2H-azirines can also undergo
ring cleavage to give nitrile ylides 187 followed by recyclization to give oxazoles 189 as
the final product. However, thermolysis of isoxazoles unsubstituted at C3 usually
leads to nitriles 188 (Scheme 9.75) [284, 285]. Thermolysis of 3-unsubstituted 1,2-
benzisoxazoles yields the corresponding salicylnitriles 190 [286].
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The thermal stability of alkyl or aryl substituted isoxazoles is relatively high. In fact
isoxazoles 191 are stable on heating at 280 �C for 10 days [287]. However, isoxazoles
having a heteroatom (O, S, N) substituent at C5 undergo ring cleavage at lower
temperatures. In fact, 5-alkoxy-3-arylisoxazole 192 is converted into 2H-azirine 193
when heated at 200 �C (Scheme 9.76) [288]. High yields of 3-amino-2H-azirines 195
are also obtained by both thermolysis and photolysis of 3,5-bis(dimethylamino)
isoxazoles 194 [289]. The presence of a carbonyl group in the isoxazole C4 position
also favors the cleavage of the N�O bond [287, 290]. Thus, heating 4-acylisoxazoles
196 at 230–240 �C affords the isomeric 4-acyloxazoles 197 in good yields.

Flash vacuum pyrolysis (FVP) of 3-phenyl-1,2-benzisoxazole allows the synthesis
of 2-phenylbenzoxazole (198) in 80% yield (Scheme 9.77) [291].

Similar chemical behavior is observed when isoxazoles are subjected to photolysis
instead of thermolysis (Scheme 9.78). The photochemical rearrangement of 199a
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(R¼H) furnishes 200a in 99% yield. Irradiation of 199b (R¼Me) gives the corre-
sponding oxazole 200b in 63% yield. Photolysis of 199b at �77 �C allowed the
observation of an IR band at 2050 cm�1, which is assigned to the ketoketenimine
201 [292]. The nature of the solvent used to promote the photochemical reactions can
determine the product profile [293].

1,2-Benzisoxazole undergoes photochemical rearrangement to give benzoxazole
202 and salicylnitrile 203. The synthesis of salicylnitrile can be rationalized by
considering the direct cleavage followed by hydrogen transfer, while the formation
of benzoxazole occurs via isocyanide intermediate 204, which can be detected be IR
and UV spectroscopy (Scheme 9.79) [294].
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The photolysis of 3-methyl-1,2-benzisoxazole in n-hexane/acetonitrile gives
a salicylamide, whereas carrying out the irradiation in acetonitrile/methanol
(95 : 5) gives an iminoester that is converted into methyl salicylate upon hydrolysis.
Photolysis of 3-methyl-1,2-benzisoxazole in 2M H2SO4 affords 2-aminophenol via
hydrolysis of the benzoxazole intermediate (Scheme 9.80) [10].

2,1-Benzisoxazoles can undergo ring expansion reactions on photolysis
(Scheme 9.81). Carrying out the photochemical reaction in methanol leads to the
synthesisof3-acyl-2-methoxy-3H-azepines205.Thereactioninethercontainingwater
oraminesaffords thecorresponding2-oxo-or2-amino-3H-azepines (206or207) [295].

9.6.1.2 Reactions with Electrophilic Reagents
Isoxazoles are quaternized by reaction with alkyl iodides or dialkyl sulfates, although
special conditions are required due to the low basicity of isoxazoles and their
susceptibility to nucleophilic attack. The reactivity of various azoles (1-methylimi-
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dazole, thiazole, 1-methylpyrazole, oxazole, isothiazole and isoxazole) towards
dimethyl sulfate has been studied and revealed that the parent isoxazole is the least
reactive towards quaternization and is also 104 times less reactive than pyridine [296].
Thus, direct alkylation with alkyl iodides and sulfates requires relatively vigorous
reaction conditions and long reaction times. The rates of quaternization of isoxazole,
1,2-benzisoxazole and 2,1-benzisoxazole with dimethyl sulfate show that 1,2-benzi-
soxazole is the least reactive towardsN-methylationwhereas 2,1-benzisoxazole reacts
faster than isoxazole [297].

The reaction of isoxazoles with secondary and tertiary alcohols and perchloric acid,
a efficient source of carbonium ions, is a more convenient route to isoxazolium salts
with bulkyN-substituents. Reaction of 3,5-dimethylisoxazole with a range of alcohols
occurs at room temperature, affording isoxazolium salts in 50–90% yield
(Scheme 9.82) [298].

4-Unsubstituted isoxazoles undergo electrophilic substitutions such as nitration,
sulfonation, halogenation, chloromethylation and hydroxymethylation, Vilsmeier–
Haack formylation and acetoxy mercuration at the 4-position of the ring. Isoxazoles
are less reactive towards electrophilic attack than furan but more reactive than
pyridine, as expected for a heterocycle having an activating oxygen and a pyridine-like
N-atom.

The parent isoxazole is nitratedwith great difficulty to give 4-nitroisoxazole in 3.5%
yield under controlled conditions, with mixed nitric acid and sulfuric acid at
35–40 �C. However, nitration of 3,5-dimethylisoxazole at 100 �C affords the 4-nitro
derivative in 86% yield. Both 3-methyl- and 5-methylisoxazole are nitrated regiose-
lectively at the 4-postion. Aryl substituted isoxazoles can be nitrated under mild
conditions, although competition between nitration at the C4 of the isoxazole ring
and nitration at the aryl group can occur. Under controlled conditions, nitration of
3,5-diphenylisoxazole in Ac2O/HNO3 at 20 �C affords only 4-nitro-3,5-diphenylisox-
azole.However, the same isoxazole inHNO3at 0 �Cundergoes nitration at the phenyl
groups [9, 10].

1,2-Benzisoxazoles undergo electrophilic substitutions, such as nitration, sulfo-
nation and halogenation, preferentially at the 5-position [9, 10]. Nitration of the
parent 1,2-benzisoxazole gives exclusively the 5-nitro-1,2-benzisoxazole [299] and
3-substituted 1,2-benzisoxazoles also lead to the synthesis of the 5-nitro derivatives as
the major product.

Isoxazole can act as an activating substituent, as illustrated by the reaction of 5,50-
diisoxazole, which undergoes nitration at the 4-position of both rings
(Scheme 9.83) [300].
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Isoxazoles are rather resistant to sulfonation [6, 10]. This is illustrated by the
reaction of 5-phenylisoxazole with chlorosulfonic acid, which undergoes sulfonation
only at the phenyl substituent, to give a mixture ofm- and p-phenylsulfonyl chloride
isoxazole derivatives. However, on prolonged heating with chlorosulfonic acid,
3-methyl-, 5-methyl, and 3,5-dimethyl-isoxazoles are converted into the correspond-
ing sulfonic and sulfonyl chlorides via electrophilic substitution at C4.

Isoxazoles can be halogenated with various reagents, leading to 4-haloisoxazole
derivatives. Treatment of isoxazoles with chlorine or bromine leads to coordination
compounds, which afford 4-chloro- or 4-bromoisoxazoles when heated or irradiated.
An improved procedure for the C4 halogenation of 3,5-diarylisoxazoles with N-halo-
succinimide (NBS, NCS and NIS) in acetic acid has been reported. The 4-haloisox-
azoles are obtained in yields ranging from 37 to 97% [301].

Other examples of electrophilic substitution of isoxazoles have been reviewed
[6, 10].

Ring-opening reactions of isoxazoles can be carried out under acidic conditions.
This aspect of the isoxazoles� reactivity has been explored in the conversion of
5-(2,3,5-tri-O-benzoyl-b-D-ribofuranosyl)isoxazole-4-carbaldehyde (208) into 3-cyano-
1,5-benzodiazepine C-nucleosides 209 (Scheme 9.84) [302].

9.6.1.3 Reactions with Nucleophilic Reagents
The lability of isoxazoles towards nucleophiles is a key feature of their reactivity.
However, its reactivity depends on the nature and position of the substituents. In
general, the stability increases with increasing substitution. In fact, the trisubstituted
isoxazoles are usually stable and react with nucleophiles preferentially in the side-
chains.
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The 3-unsubstituted isoxazoles are cleaved by bases giving cyanoenolates via a one-
step concerted E2 type mechanism [303]. Protonation of 210 followed by rearrange-
ment affords b-ketonitriles 211, which in some cases undergo further reactions
(Scheme 9.85). The reaction can be carried out with strong bases such as alkoxides,
sodium amide, lithium diisopropylamide, butyllithium and also with hydroxide ion
orwithweaker bases, such as ammonia andphenyl hydrazine, at higher temperature.

The 3-unsubstituted 1,2-benzisoxazoles present similar behavior, reacting with
hydroxide ion and amines to yield 2-cyanophenolates [304]. Reactions of 1,2-benzi-
soxazoles with sodium borohydride and lithium aluminium hydride usually result
also in N�O bond cleavage [9].

The ring opening of 5-unsubstituted 3-alkyl- or 3-arylisoxazoles requires more
vigorous reaction conditions, for example heating with alkoxides or use of stronger
bases, such as sodium amide or butyllithium. H5 deprotonation of these derivatives
leads to N�O and C3/C4 bond cleavage with formation of a nitrile and an
ethynolate [305]. The 5-unubstituted isoxazoles bearing a potential leaving group
at C3 react with bases without the C3/C4 bond cleavage. This is the case with
cyanoisoxazole 212, which reacts with sodium ethoxide to give 213 as the final
product (Scheme 9.86) [306].

1,2-Benzisoxazoles can be used as a building block for the synthesis of other
heterocycles via a reaction with bases [307, 308]; Scheme 9.87 shows two examples.
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The 1,2-benzisoxazole amine derivative 214 is converted into 3-(2-hydroxyphenyl)
indazole (215) by treatment with LiAlH4 or NaH [307] and the 1,2-benzisoxazole
amide derivatives 216 give 3-(2-hydroxyphenyl)pyrazoles 217 [308].

Trisubstituted isoxazoles with strong electron-withdrawing groups at the 4-posi-
tion are susceptible to ring cleavage when reacting with nucleophiles (Scheme 9.88).
For example, alkaline treatment of 5-methylamino-4-nitroisoxazole 218 leads to
oxime 219 along with methylamine [309]. The process proceeds with initial nucle-
ophilic attack at the 5-position of the isoxazole ring. 4-Aroylisoxazole 220 undergoes
a rearrangement to give 4-acetylisoxazole 222 via an initial nucleophilic attack at the
5-position followed by cyclization of oxime 221 [310].

Isoxazolium salts are easily cleaved with nucleophiles. The quaternization of the
nitrogen atom increases the lability of the isoxazole ring towards nucleophilic attack.
The 3-unsubstituted isoxazolium salts undergo ring cleavagewithmild nucleophiles,
including carboxylate ions in aqueous solution, whichmakes these derivatives useful
coupling reagents for peptide synthesis. This synthetic strategy is outlined in
Scheme 9.89. Deprotonation of isoxazolium salts 223 at the 3-position is followed
by ring opening and the ketoketenimines 224 formed react with a carboxylic acid to
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give 225. Reaction of this enol ester with nucleophiles (e.g., an amino acid) gives the
final product 226 [10].

1,2-Benzisoxazolium salts readily undergo ring opening to salicylnitrile deriva-
tives upon treatment with bases [311, 312]. The 3-unsubstituted 2,1-benzisoxazoles
show similar instability in the presence of bases, and easily undergo ring opening
reactions to give anthranilic acid derivatives. The 2,1-benzisoxazolium salts are
particularly reactive towards nucleophilic attack at the 3 position and stable adducts
can be obtained from their reaction with a range of nucleophiles. The 3-unsub-
stituted 2,1-benzisoxazolium salts behave in an analogous manner to their 1,2-
isomers. In the reaction of 2,1-benzisoxazolium salt 227 with triethylamine
the deprotonation is followed by ring opening to the iminoketene 228, which
undergoes electrocyclization to give N-tert-butylbenzoazetinone 229 in 84% yield
(Scheme 9.90) [313].

The reactivity profile of isoxazoles with nucleophiles also includes nucleophilic
addition to the ring and nucleophilic replacement reactions. Halide displacement
reactions can be carried out with 3-halo- and 5-haloisoxazoles bearing the appropriate
substitution pattern to prevent ring opening. 4-Haloisoxazoles are very stable and
their reactivity towards nucleophiles is similar to that of aryl halides.

9.6.1.4 Cycloaddition Reactions
4-Nitro-3-phenylisoxazoles 230 act as dienophiles towards 2,3-dimethylbutadiene
(Scheme 9.92 below) [314, 315]. The activated C4/C5 double bond undergoes
Diels–Alder reaction with 2,3-dimethylbutadiene, acting as a synthetic equivalent
of the corresponding didehydro derivative 231 since the activating groups can be
easily removed. Thus, isoxazole 230c undergoes Diels–Alder reaction with 2,3-
dimethylbutadiene to give the bicyclic derivatives 232 and 233 in 49 and 37% yields,
respectively. The initial adducts 232 can be easily converted into 233 on treatment
with DBU and both 232 and 233 are converted into benzisoxazole 234 either by
prolonged heating or by oxidation with DDQ.

The reaction of nitroisoxazole 230c with 1-azadiene 235 affords the isoxazolo-
pyridine 237 in 59% yield, with loss of nitrous acid and dimethylamine from the
initial cycloadduct 236 (Scheme 9.91) [315].

The nitroalkenemoiety of 4-nitroisoxazoles undergo hetero-Diels–Alder reactions
with enol ethers (e.g., ethyl vinyl ether) [316].
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2,1-Benzisoxazole participates in Diels–Alder reactions as a diene. Cycloaddition
with N-phenylmaleimide gives the corresponding exo product together with a ring-
opened product [317]. From the reaction of 2,1-benzisoxazole with dimethyl acet-
ylenedicarboxylate (DMAD) in refluxing benzene the quinoline 1-oxide is obtained.
The mercury sulfate-catalyzed cycloaddition of 2,1-benzisoxazole with cyclic ketones
has also been reported (Scheme 9.92) [318].
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1,3-Dipolar cycloadditions of 2,1-benzisoxazole are also known, as illustrated by
the example presented in Scheme 9.93 [319]. The reaction of 6-nitro-2,1-benzisox-
azole-3-carboxylate 238 with excess of diazoacetic esters affords 6H-pyrazolo[3,4-g]
[2,1]benzisoxazoles 240 in good yield. The reaction proceeds via the formation of the
1,3-dipolar cycloadduct 239 followed by elimination of nitrous acid.

9.6.1.5 Reactions with Reducing Agents
Isoxazoles are readily cleaved at the N�O bond under reducing conditions andmany
examples have been reported. Catalytic hydrogenolysis leads to b-enaminoketones or
to the corresponding 1,3-diketone obtained by hydrolysis. The reduction with sodium
in liquid ammonia in the presence of 3 equivalents of tert-butyl alcohol gives
b-aminocarbonyl compounds, which are converted into a,b-unsaturated ketones on
heating or under acidic conditions. Thus, isoxazoles can be consideredmasked forms
of these important synthetic building blocks. The example shown in Scheme 9.94
illustrates this type of reactivity [113]. The use of isoxazoles as masked b-enamino-
ketones has been applied in a strategy for the total synthesis of vitamin B12 [320].

Samarium diiodide [321] and transition-metal carbonyls [322, 323], such as
molybdenum hexacarbonyl in the presence of water, are also efficient reagents for
the reductive cleavage of isoxazoles. Nitta et al. have reported that 3-methyl-5-
(2-oxoalkyl)isoxazoles 241 undergo a Mo(CO)6-induced reductive cleavage to give
pyridin-4(1H)-ones 244 in a single step [322]. Here, complex formation of isoxazole
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withMo(CO)6 is followed by theN�Obond cleavage to give the nitrene complex 242.
Hydrolysis of 242 gives the enamino ketone 243, which cyclizes to the pyridin-4(1H)-
ones 244. Li et al.have shown that if the 2-oxoalkyl side-chain is at the 3-position of the
isoxazole 245 the corresponding enamino ketone could be isolated after reduction
with Mo(CO)6 and could be cyclized to pyran-4-ones 246 under acidic conditions
(Scheme 9.95) [323].

Under reducing conditions theN�Obond of benzisoxazoles is readily cleaved and
many examples have been reported. The catalytic hydrogenolysis of 1,2-benzisox-
azoles gives 2-iminophenols and/or 2-ketophenols depending on the reaction
conditions. The catalytic reduction of 2,1-benzisoxazoles results in the formation
of 2-aminophenones.

Hydrogenolysis of 3-aryl-2,1-benzisoxazoles is a useful route to 2-aminobenzo-
phenones (Scheme 9.96) [324]. The efficient reductive cleavage of the N�O bond of
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5-substituted-3-aryl-2,1-benzisoxazoles 247 can also be achieved with samarium(II)
iodide. If aryl methyl ketones are added to the reactive mixture 2,4-diarylquinolines
248 are obtained [325].

Reductive ring cleavage of isoxazoles to the corresponding b-enaminoketones
under treatment with titanium(IV) isopropoxide and ethylmagnesium bromide has
been reported (Scheme 9.97). The interaction of equimolar quantities of EtMgBr and
Ti(O-iPr)4 leads to the formation of titanium(III) isopropoxide. This reagent assists
the homolytic cleavage of theN�Obond in isoxazoles 249, giving the alcoholates 250,
followed by hydrolysis to afford the enaminoketones 251. From isoxazolines the
correspondingb-hydroxyketones are obtained [326]. The isoxazole ring is also cleaved
by reactions with LDA [327].

9.6.1.6 Reactions with Oxidizing Agents
Isoxazoles are stable to acidic oxidizing reagents such as peroxyacids, chromic and
nitric acids and acidic permanganate. The only general method of oxidation ring
cleavage of substituted isoxazoles is ozonolysis. 3-Unsubstituted isoxazoles are also
easily converted into cyanoketones with alkaline oxidizing reagents.

Oxidation reactions of isoxazoles bearing heterocyclic substituents allows us to
redraw conclusions concerning the relative stability of various heterocyclic com-
pounds under the reaction conditions used (Scheme 9.98) [10]. The isoxazole ring
proved to be more stable than furan but less stable than pyrazole and furazan rings.
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1,2-Benzoisoxazoles are also quite stable towards oxidizing reagents, allowing
selective oxidation of substituents of the 1,2-benzisoxazole ring system. Substituted
2,1-benzisoxazole can be oxidized with nitrous acid or with CrO3/AcOH to generate
mixtures of ring-opened products, the rate of which is dependent on the amount of
oxidant (Scheme 9.99) [9].

9.6.1.7 Reactions of Metallated Isoxazoles
Protons at thea-position of alkylisoxazoles are relatively acidic and can be removed by
strong bases (e.g., BuLi, LDA or NaNH2/NH3), giving carbanionic species. Reaction
of these intermediates with electrophiles is an approach to side-chain functionaliza-
tion and many examples are known [6, 328]. The a-deprotonation of an 5-alkyl
substituent is favored over deprotonation of alkyl groups at 3- and 4-positions of the
isoxazole ring, allowing regioselective reactions with electrophiles via lateral metalla-
tion. Thus, the 3,5-dimethylisoxazole 252a reacts with BuLi to give specific metalla-
tion at C5 methyl group and the subsequent treatment with Me3SiCl affords 253a in
70% yield (Scheme 9.100). Regioselective metallation at the same position is
observed for trimethylisoxazole 252b [329, 330]. 4-Metalloisoxazoles are generally
prepared by halogen–metal exchange reactions [330].
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Direct lithiation of 3-(Boc-amino)isoxazole 254 and 5-(Boc-amino)isoxazole 256
using BuLi or s-BuLi/TMEDA as the lithiating reagents, respectively, has been
reported (Scheme 9.101) [331]. The anion intermediates undergo addition to elec-
trophiles to give 4-substituted isoxazoles (255 and 257).

Palladium-catalyzed coupling reactions (Suzuki–Miyaura, Stille or Heck reac-
tions) of 3,5-disubstituted 4-iodoisoxazole afford in good yields the corresponding
4-substituted derivatives, bearing 4-aryl, 4-heteroaryl, 4-vinyl or 4-acetylenyl
groups as substituents [332]. Tin 4-metallated isoxazoles are synthesized by
stannylcupration of 4-haloisoxazoles 258 and can also be used as intermediates
in the preparation of 4-substituted isoxazoles 259. The 5-iodoisoxazolylpyridine
261, obtained from 260 via 1,3-dipolar cycloaddition with iodoacetylene, also
undergoes palladium-catalyzed coupling to give 5-substituted isoxazoles 262
(Scheme 9.102) [333, 334].
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3,4,5-Trisubstituted isoxazoles can also be prepared via cross-coupling reactions of
isoxazolyl-4-sinanols and isoxazole-4-boronic esters with the appropriate halo-com-
pounds [335, 336].

9.6.2
Isothiazoles and Benzisoxazoles

9.6.2.1 Photochemical Reactions
The photochemical reactions of isothiazoles have been reviewed [337]. Isothiazole
photoisomerizes to thiazole 264a (Scheme 9.103) [338]. This photorearrangement is
also observed in methylisothiazoles. Each methylisothiazole 263b–d isomerizes
selectively to the corresponding methylthiazole 264, indicating that the rearrange-
ment occurs via a N2–C3 exchange process [339].

The photochemistry of phenyl substituted isothiazoles has been extensively
studied. The resulting products are phenylthiazoles, phenylisothiazoles isomeric
of the starting materials and ring-opened compounds. The relative proportions of
these products are strongly dependent on the presence of a base or acid and, in some
cases, on the polarity of the solvent used [340–342].

Saccharin derivatives undergo extrusion of sulfur dioxide when irradiated in
solution. When irradiated in ethanol or propan-1-ol, the N-propyl derivative 265 is
converted intoN-propylbenzamide 266 by hydrogenuptake, while in benzene it gives
the N-propylbiphenyl-2-carboxamide 267 (Scheme 9.104) [343].
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In contrast to that observed in the saccharin derivatives, in the 3-mono- and 3,3-
disubstituted 2,3-dihydro-1,2-benzisothiazole 1,1-dioxides a net migration of one
oxygen atom from sulfur to nitrogen is observed upon irradiation at 254 nm in
acetonitrile or methanol (Scheme 9.105) [344].

9.6.2.2 Reactions with Electrophilic Reagents
Isothiazoles are quaternized by iodoalkanes, dialkyl sulfate, trialkyloxonium tetra-
fluoroborate or diazomethane.

Mononuclear isothiazoles give electrophilic substitution at the 4-position, with the
3-position being relatively inert to attack. Nitration also occurs at C4, usually in good
yield. 5-Haloisothiazoles give the 4-nitro derivatives in moderate yields by reaction
with amixture of concentrated sulfuric acid and 90%nitric acid (Scheme 9.106) [345].

Electron-releasing groups in the 3- or 5-position facilitate halogenation. For
instance, 3,5-dimethylisothiazole reacts with iodine to give the 4-iodo derivative
(Scheme 9.107) [346].

Bromination of 2-substituted isothiazolin-3-ones 268 affords the 4-bromo deriva-
tives in good yields. The formation of 4,5-dibromo derivatives is muchmore difficult
(Scheme 9.108) [347]. In contrast, even under mild conditions, chlorination of 268
gives primarily 4,5-dichloro derivatives and lesser amounts of the 4-chloro deriva-
tives [347]. 3-Diethylamino-4-(4-methoxyphenyl)isothiazole 1,1-dioxide 269 reacts
with bromine to afford the 4,5-dibromo derivative 270, which, on heating or by
treatment with triethylamine, gives the 5-bromoisothiazole 271 [348].
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9.6.2.3 Reactions with Nucleophilic Reagents
The displacement of a halogen atom from halo-isothiazoles by nucleophiles is a
versatile route to new isothiazole derivatives. As shown inScheme9.109, substitution
of the halogen by alkylthio groups can be conveniently performed by converting the
halo-isothiazole into a thiolate followed by reaction with a suitable alkylating reagent
(one-pot procedure) [213].

Certain groups at the 5-position of the isothiazole ring can be easily displaced by
nucleophiles, affording new functionalized isothiazoles. As an example, starting
from 5-methylthioisothiazole 272, four new isothiazoles have been prepared by
successive nucleophilic substitutions (Scheme 9.110) [199]. 5-Unsubstituted iso-
thiazole 1,1-dioxides give addition products with sulfur, oxygen, nitrogen [349] and
phosphorus [350] nucleophiles. When 5-bromoisothiazole 1,1-dioxides are reacted
with these nucleophiles, the substitution products are obtained [69, 70].

5-Iodoisothiazole 273 can be used as electrophile in Suzuki and Negishi cross-
coupling reactions to afford 5-aryl and 5-hetarylisothiazoles 274 in good to excellent
yields (48–95%) (Scheme 9.111) [351]. Similarly, 3,5-dichloroisothiazole-4-
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carbonitrile (275) reacts with aryl- andmethylboronic acids to give in high yields the
3-chloro-5-(aryl or methyl)-isothiazole-carbonitriles 276. This reaction is totally
regioselective [352].

The palladium-catalyzed reaction of 5-bromo-3-diethylamino-4-(4-methoxyphe-
nyl)-isothiazole 1,1-dioxide with vinyl-, aryl-, heteroaryl- and alkynylstannanes
provides a general and efficient method for the synthesis of 5-substituted isothiazole
1,1-dioxides [348].

2-Alkylisothiazolium salts are converted into polymeric products by alkali hydro-
xides or alkoxides. When treated with ethanolic ammonia, isothiazolium salt 277
yields the corresponding demethylated isothiazole 278. However, under identical
conditions, its isomeric compound 279 affords the 3-methylamino derivative 280
(Scheme 9.112) [353]. These transformations result from an initial nucleophilic
attack on the ring S atom and recyclization of the initial intermediates.
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Isothiazolium salts react with other nitrogen nucleophilic reagents such as
phenylhydrazine and hydroxylamine to give, respectively, pyrazoles, and isoxazoles;
with benzylamine they afford acyclic thiones [21]. They also react with carbanions to
give thiophene or benzo[b]thiophene derivatives (Scheme 9.113) [354].

9.6.2.4 Cycloaddition Reactions
Isothiazoles participate in Diels–Alder reactions and in 1,3-dipolar cycloadditions as
the 2p electrons component [355]. A few examples of their participation in [2pþ 2p]
cycloadditions with diphenylketene or inamines have also been reported [356, 357].
Some isothiazole derivatives are used as precursors of reactive dienes (ortho-quino-
dimethanes) that can be trapped in Diels–Alder reactions (see below).

Isothiazol-3(2H)-one 1,1-dioxides react with buta-1,3-dienes [358, 359], cyclo-1,3-
dienes [356], anthracene [356], 1-azadienes [360], furans [356, 361], 1,3-oxazoles [362]
and so on to afford the Diels–Alder adducts in moderate to good yields
(Scheme 9.114).

A general method for the synthesis of saccharin derivatives involves the
Diels–Alder reaction of 4-bromo-2-t-butylisothiazol-3(2H)-one 1,1-dioxide with
oxi-substituted buta-1,3-dienes (Scheme 9.115) [359]. Dehydrobromination of the
cycloadducts and removal of the protecting groups leads to the saccharin derivatives.

Isothiazole derivatives, especially the 1,1-dioxides, undergo 1,3-dipolar cycloaddi-
tions with a wide range of dipoles under mild conditions [363]. For instance,
isothiazol-3(2H)-one 1,1-dioxides react with nitrile imines and nitrile oxides to give
the expected cycloadducts (Scheme 9.116) [364]. In the case of reaction with azides
and diazo compounds, the presence of a substituent at 4-position makes all the
difference in the outcome of the reaction (Scheme 9.117) [360].

The 3-amino-4-arylisothiazole 1,1-dioxides are also very reactive in 1,3-dipolar
cycloadditions. They react with a wide range of dipoles, such as oxazolones [365],
diazo compounds [366], azides [367], and nitrile oxides [368]. The bicyclic cycload-
dition products are versatile intermediates formonocyclic heterocycles by cleavage of
one ring.
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Isothiazole-fused 3-sulfolenes 281 extrude SO2 when heated at 185 �C in a sealed
tube, generating the isothiazole o-quinodimethanes 282. Extrusion of SO2 in the
presence of N-phenylmaleimide (NPM) or dimethyl acetylenedicarboxylate affords
the corresponding Diels–Alder adducts 283 and 284, respectively, in good yields
(Scheme 9.118) [369]. Benzisothiazole 285 is obtained by the oxidation of the
corresponding adduct 284.

2,1-Benzisothiazole 2,2-dioxides (see Schemes 9.73 and 9.74) extrude SO2 when
heated in refluxing 1,2-dichloro- or 1,2,4-trichlorobenzene to yield aza-ortho-quino-
dimethanes that can be trapped in inter- or intramolecular Diels–Alder cycloaddi-
tions (Scheme 9.119) [283, 370].

9.6.2.5 Reactions with Reducing Agents
Catalytic hydrogenation of isothiazol-3-ones 286 at 3.5 atm leads to the cis-dihydro
derivatives 287 (Scheme 9.120) [214]. The dimethyl derivative 287, however, iso-
merizes to the trans-isomer 288 via keto-enol tautomerism.

2-Alkyl-3-alkylthio-5-arylisothiazolium halides 289 are reduced to the S,N-acetals
290 by treatment with NaBH4 in ethanol at room temperature (Scheme 9.121)
[200, 371].
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9.6.2.6 Reactions with Oxidizing Agents
Isothiazoles unsubstituted at 3-position (291) are oxidized with 35% H2O2 in acetic
acid to 1,2-isothiazol-3(2H)-one 1,1-dioxides 292 (Scheme 9.122) [214]. Oxidation of
3-aminoisothiazoles 293 with m-chloroperbenzoic acid affords the corresponding
1,1-dioxides 294 [372].

The oxidation of isothiazolium salts 295, containing electron-withdrawing
substituents in the ortho-position of the 2-aryl ring, with 30% H2O2 in acetic acid
gives 3-hydroperoxy derivatives 296 in moderate to good yields (42–70%) and minor
amounts of the corresponding 1,1-dioxides 297 (Scheme 9.123). When R1 is an
electron-donating group compounds 297 are the only products (40–63%) [372]. If the
reaction is carried out at 80 �C the products are the isothiazol-3(2H)-one 1,1-dioxides
298 (up to 81% yield) [372].

Oxidation of 1,2-benzisothiazoles with hydrogen peroxide [373, 374] or perphthalic
acid [375] yields the corresponding 1,1-dioxides.
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9.6.2.7 Reactions of Metallated Isothiazoles
Isothiazole is selectively lithiated with BuLi at the 5-position. 5-Substituted isothia-
zoles can be prepared by reacting the 5-lithioisothiazole with electrophiles [376–379].
For instance, it reactswithDMF to afford selectively the isothiazole-5-carbaldehyde in
good yield (Scheme 9.124) [196].

3-Benzyloxyisothiazole is also lithiated regioselectively in the 5-position using LDA
in diethyl ether. Quenching the lithiated species with electrophiles leads to the
corresponding 3,5-disubstituted isothiazoles (Table 9.10).

Table 9.10 Lithiation of 3-benzyloxyisothiazole and reaction with various electrophiles.

i) LDA, Et2O, -78 ºC, 15 min

ii) electrophile, 15 min
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Lithiation of 3-methyl-5-phenylisothiazole with butyllithium occurs selectively at
the methyl group (Scheme 9.124). The lithiated species reacts with alkyl halides to
give isothiazoles 299 in high yields [363]. It also reacts with a range of aldehydes and
ketones to afford the corresponding secondary or tertiary alcohols 300 [381]. When
esters are used as electrophiles, mixtures of ketones 301 and tertiary alcohols 302 are
obtained [378].

3,5-Dimethylisothiazol-4-ylmagnesium iodide, generated in situ from 4-iodo-3,5-
dimethylisothiazole and ethylmagnesium bromide, reacts with a range aldehydes,
ketones and alkyl halides to afford 4-substituted 3,5-dimethylisothiazoles in good
yields (Scheme 9.125) [382].
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10
Five-Membered Heterocycles: 1,3-Azoles
Julia Revuelta, Fabrizio Machetti, and Stefano Cicchi

10.1
Introduction

Imidazole, oxazole, and thiazole, known as 1,3-azoles, are planar five-membered ring
systems with three carbons, one nitrogen, and an additional heteroatom (nitrogen,
oxygen or sulfur). These compounds and their derivatives have been known since the
nineteenth century.

The first reports on imidazoles were published in the 1840s concerning the 2,3,5-
triphenylimidazoles [1, 2]. In 1858 Debus [3] reported the reaction between
glyoxal and ammonia and pioneered the synthesis of imidazoles. Historically, the
molecule was named �glyoxaline� and �iminazole,� but imidazole is now used
universally.

Oxazole (1,3-oxazole) was first prepared by Cornforth [4] in 1947, about 100 years
after the first synthesis of a substituted oxazole, 1,4,5-triphenylisoxazole, reported by
Zinin in 1840 [5]. In 1888, Hantzsch [6] gave the name of oxazoles to these class of
compounds. Oxazole is not easily synthesized and has been unavailable in large
quantities (because of high synthesis costs) and has only recently become commer-
cially available inmultigram scale at a reasonable cost. The Cornforth procedure was
a lengthy route in which the oxazole was obtained in the final stage by decarbox-
ylation–distillation of the corresponding oxazole-4-carboxylic acid from hot quino-
line-CuO. Oxazole may be prepared in the laboratory following the practical method
of Brederick and Bangert [7].

Modern oxazole chemistry was stimulated in the 1940s by the synthesis of
penicillin, which was presumed to contain the oxazole nucleus. The next important
development of oxazole chemistry came from the discovery by Kondrateva in the late
1950s that these compounds acts as dienes in the Diels–Alder reaction and by
Huisgen�s work on 1,3-dipolar cycloaddition reactions of mesoionic derivatives.

Wallach reported the synthesis of some thiazoles in the 1870s. One of the first
thiazoles prepared was the 5-aminothiazole-2-carboxylic acid amide [8].

In terms of literature about imidazoles, oxazoles and thiazoles there are many
reviews on specialized topics (chemistry, physicochemical, biological and pharma-

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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cological properties) but Comprehensive Heterocyclic Chemistry (1984 [9] updated in
1996 [10]) and Science of Synthesis [11] are themost exhaustive sources of information.

10.1.1
Nomenclature

The general name 1,3-azoles (1) indicates, according to the more recent IUPAC
nomenclature rules, five-membered (stem -ole) heterocycles with one nitrogen atom
(prefix aza-) bearing a second heteroatom in position 3 of the cycle. This name is
generally used to indicate thiazole, oxazole and imidazole. The first two names
correspond to the IUPAC nomenclature, whereas the name imidazole is a trivial one
that is commonly preferred to 1,3-diazole. The state of hydrogenation is indicated
either by the prefixes �dihydro-� or in the stem �-olidine�. This chapter examines 1,3-
oxazole, 1,3-thiazole and imidazole, as well as their saturated derivatives.
Figure 10.1 gives an easy, exhaustive description of nomenclature and numbering
of the structures.

These heterocyclic rings occur widely in nature, contained in the structure of
several secondary metabolites. Some of these compounds are promising candidates
as drugs and their synthesis has been performed. The oxazole ring is present in the
backbone of diazonamide A (3), a complex macrocyclic molecule with anticancer
properties, which was recently been synthesized [12]. Phorboxazole A (4), which
possesses two isolated oxazole rings, is an extremely cytotoxic compound that is active
towards numerous human tumor cell lines [13]. Other bis- and trisoxazole oxazole
compounds are known, such as muscoride A (5) [14] and ulapualide A (6) [15]. The
thiazole ring, in different degrees of saturation, is present in thiamine pyrophosphate
(7), 6-aminopenicillanic acid (8) and other secondary metabolites such as dendroa-
mide A (9) [16] and epothilone A (10) [17]. Histidine (11), which has an imidazole
ring, is a very well known amino acid with a fundamental role in themetabolism and
also in the family of alkaloids derived from it. The same ring, in reduced form, is also
found in biotin (12) and in a large series of alkaloids, such as (�)-agelastatin
A (13) [18] and fumiquinazoline A (14) [19] (Figure 10.2).

10.2
General Reactivity

10.2.1
Relevant Physicochemical Data, Computational Chemistry and NMR Data

These compounds present an additional nitrogen atom in the ring with respect to
pyrrole, thiophene and furan. This additional nitrogen atom contributes with one
electron to the aromaticity of the ring while a lone pair of electrons remains in the
plane of the molecule. This additional nitrogen atom lowers the energy levels of p
orbitals, as verified by the ionization potentials, which are higher than those of
pyrrole, thiophene and furan, respectively. At the same time the additional nitrogen
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Figure 10.1 Nomenclature and numbering of 1,3-oxazole, 1,3-thiazole, imidazole, and their
saturated derivatives.
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atom has an inductive electron-withdrawing effect that provides stabilization to
negatively charged reaction intermediates formed in reactions like nucleophilic
substitution [Scheme 10.1 (1)] and deprotonation of the methyl group [Scheme 10.1
(2)]. A recent study, based on NMR data of the carbanions of 2-benzyl-1,3-azoles,
ranked the p electron-withdrawing power of these heterocycles as thiazole> oxazole

N

N NH2

N

S O
P O

O

O

P

O

O

O

thiamine pyrophosphate

N

NH

O

NH2

OH

histidine

N

S

O

H2N

O
HO

HH

6-aminopenicillanic acid

N

H

O

HO O

H

O

N

O

NH

NH

Cl
N

O

Cl

diazonamide A

N

O N

O

O

O

N

H

O
NH

(-) muscoride A
N

O

O
N

O
N

OMe O O OAc

N
CHO

O

OH

O

ulapualide A

S

N
NH

O

NO

O

N
H

N

S

OHN

dendroamide A

S

N

O
H

O

O

OH

O

OH

epothilone A

NH

H
N

S

O

O

HO

H

HH

biotin

N

NH

O

NH

NHO O

Br

(-)agelastatin A

N

N
NH

O

O

N

H
N

H

O

fumiquinazoline A

Br

OMe

OH

OH H

OMe

O

N

O

O

O

O

O

OH

N

O

phorboxazole A

3

4

5
6

7

8

9 10 11

12

13
14

Figure 10.2 Some natural compounds containing the 1,3-azole structure.
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> imidazole in terms of charge demand, that is, the fraction of p-negative charge
delocalized by the ring [20]

These compounds are aromatic, each carbon atom and one nitrogen atom
participating with one electron to the conjugated p system while the other hetero-
atom participates with a lone pair of electrons. The NMR andUVspectra confirm the
aromaticity of the ring (Table 10.1).

The p electrons are delocalized across the ring although the electron density is
largely concentrated onto the two heteroatoms. The electron density map also
indicates that these compounds are p excessive although this character decreases
on passing fromN toO to S. From the samemap it can be predicted that electrophilic
substitution is favored at C4 and C5, while the reduced electron density at C2 should
favor nucleophilic attack onto this position (Table 10.2).

The effect of the additional nitrogen atom is evidenced also by the acid/base
properties of these compounds. The lone pair on nitrogen atom provide a site for
protonation and most azoles are stronger bases than pyrroles. However, the stability
of the azolide anions makes imidazole a stronger acid than pyrrole (Figure 10.3).

Outstanding, in this series, is the pKa of imidazole and of the imidazolium ion.
These values are justified by the predominance of a mesomeric effect. The two

N

Y Z

X-

N

Y Z

X
N

Y X

N

Y CH3
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Y CH2

N
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(2)

1

-Z-

Scheme 10.1

Table 10.1 UV and NMR data for 1,3-azolesa).

X (Table 10.2) UV (ethanol) l (nm)
(e, mol�1 dm3 cm�1)

1H (d, ppm) 13C (d, ppm)

N 207–208 (3.7) H2: 7.73 C2: 135.4
H4: 7.14 C4: 121.9
H5: 7.14 C5: 121.9

O 205 (3.9) H2: 7.95 C2: 150.6
H4: 7.09 C4: 125.4
H5: 7.69 C5: 138.1

S 207.5 (3.41) 233.0 (3.57) H2: 8.77 C2: 153.6
H4: 7.86 C4: 143.3
H5: 7.27 C5: 119.6

For atom numbering see structure in Table 10.2.
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identical resonance structures account for the high stability of these ions
(Scheme 10.2). Oxazole, on the other hand, is the least basic of the three heterocycles
due to the inductive effect of the oxygen atom.

10.2.2
Tautomerism

Apeculiar behavior ofN-unsubstituted imidazoles is their rapid equilibriumbetween
the two possible tautomers. This rapid equilibrium hampers the separate isolation of
4- and 5-substituted imidazoles. Nevertheless the tautomeric equilibrium can be
shifted mainly towards one of the two forms. Imidazoles substituted with electron-

Table 10.2 Physicochemical data for 1,3 azoles.
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Electron densities

X 1 2 3 4 5
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Figure 10.3 Values of pKa for 1,3-azoles and azolium ions.
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withdrawing groups are predominantly present as 4-substituted tautomers (e.g., 4-
nitroimidazole, 2) [Scheme 10.3 (1)]. In neutral organic solvents this equilibrium can
be an intermolecular process involving two or more imidazole molecules while in
protic solvents the solvent itself is involved. The NH proton of imidazole exchanges
rapidly in D2O solution.

The tautomeric equilibrium of 2-amino substituted 1,3-azoles is shifted towards
the amino formover the imino form [Scheme10.3 (2)]. This assumption is confirmed
by the basicity of the imino form, which is generally higher than that of the amino.
Conversely, 2-hydroxy substituted 1,3-azoles behave as keto derivatives [Scheme 10.3
(3)]. These considerations can generally be extended to other amino and hydroxy
derivatives.

10.3
Synthesis of Aromatic 1,3-Azoles

10.3.1
Synthesis of Imidazoles

A remarkable number of synthetic approaches have been developed for imidazoles,
due to is prevalence in natural products and pharmacologically active compounds.
Clearly, no a single general synthetic method fulfils all needs in the preparation of
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functionalized imidazoles, and various cyclization reactions are used to produce
specifically substituted imidazoles [21–24]. Adetailed compilation of knownmethods
of synthesis of imidazoles has been published [25]. This brief section, while covering
classical methods, focuses mainly both on their conceptual extensions and on new
synthetic routes. Most classical preparation methods of imidazoles derive from the
approach followed by Debus, who pioneered the use of 1,2-dicarbonyl compounds
for the synthesis of substituted imidazoles (Scheme 10.4). The reaction was
extended using a-ketoaldehydes or a-diketones as substrates. This route in general
provides 2-monosubstituted and 2,(4,5- homo and hetero)trisubstituted imidazoles
(Scheme 10.4).

The Radziszewski reaction [26] is a modified version of this method using
a-hydroxyketones.A similar syntheticmethodologywas introducedbyBredereck [27]
inwhich ana-hydroxyketone or ana-haloketone is heatedwith formamide instead of
ammonia or ammonium acetate. Bredereck�s reaction provides 4-substituted and
4,5-disubstituted imidazoles (Scheme 10.5).

The advent of microwave assisted organic synthesis (MAOS) has allowed the
reinvestigation of the classical conditions of Debus synthesis of imidazoles. Thus,
synthesis from 1,2-diketones and aldehydes in the presence of various catalysts has

N
H

N
R4

OR4

R5

O

R2

+
R5

NH3/H2O or NH4Ac/AcOH

R2

NH

NH

R4

R5

NH

R2
HN

H2N

N

R5R4

R2
N

N
R4

R5 R2

H+

- NH3

Debus' reaction: R2=R4=R5=H

O
15

Scheme 10.4

N
H

N
R4

O

OH

R4

R5

O

NH2

2+
R5

OH

O

R4

R5

N
H

O

OH

R4

R5

H
N

O
H
N

O

-2 H2O
-HCO2H

Scheme 10.5

816j 10 Five-Membered Heterocycles: 1,3-Azoles



been reported. These include silica gel [28], silica gel/Zeolite HY [29], Al2O3 [30] and
CH3CO2H [31]. These recent more reports, with some green chemistry related
improvements, utilize solvent-free, silica-gel catalyzed condensation of aromatic
aldehydes or benzonitrile derivatives with benzyl (16) (as well as other aromatic or
heteroaromatic diketones) [31] in the presence of primary amines to obtain the
corresponding tetrasubstituted imidazoles (17). The reactions proceed with high
yields but the tolerated substitution pattern is restricted to symmetrical residues due
to a lack of regiocontrol for the 4- and 5-positions (Scheme 10.6) [29].

a-Hydroxyketones have also been used in MAOS procedures [32], and both
diketones and a-hydroxyketones have found application in ionic-liquid promoted
synthesis [33].

The cyclization ofN,N0-disubstituted oxamides 18with PCl5 to afford 1-substituted
5-chloroimidazoles 19 is another classical method of imidazole ring preparation.
This method was discovered by Wallach [34–36] and elaborated by Sarasin [37]. This
approach, initially limited to methyl and ethyl symmetrical disubstituted oxamides,
was extended to higher symmetrical [34, 38, 39] and unsymmetrical N,N0-disubsti-
tuted oxamides (Scheme 10.7) [40]. In the latter case, to obtain appreciable regios-
electivity very dissimilar substituent (alkyl versus aryl) should be used. The reaction
gives high yields for limited phenyl and chlorinated phenyl substituents but with a 3-
pyridyl substituent the yield is low (Scheme 10.7).
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Wallach�s reaction proceeds via a dichlorinate adduct (20), which after a double
bond migration (hydride shift), cyclizes to the final 5-chlorosubsituted imidazole 19
(Scheme 10.7).

Another example of a classical approach to imidazole is represented by the
Marckwald synthesis, involving the use of a-aminocarbonyl compounds with cya-
nates, thiocyanate and isothiocyanates. This approach allows the synthesis of 4,5-
disubstituted imidazoles andwill be described inmore detail in Section 10.4.5 for the
synthesis of 2-amino-1,3-azoles. TosMIC (tosylmethyl isocyanide) 25 and other
isocyanides, 23, are key reagents for the preparation of 1,5 substituted imidazole
rings, providing the CNC fragment [Scheme 10.8 (1)] [41]. Different species like
aldimines, imidoyl chlorides, isothiocyanates, nitriles and imino ethers can undergo
cycloadditions with TosMIC giving imidazoles. This methodology provides densely
functionalized imidazoles, as 24, with various substitution patterns in a completely
regioselective manner.

The TosMIC molecule (which accommodates a reactive isocyanide carbon and an
activated methylene) can cycloadd its CH2N¼C moiety to polarized double bonds
under basic conditions [Scheme 10.8 (2)]. When applied to aldimines, this type of
reaction affords imidazoles by elimination of p-toluenesulfinic acid from the inter-
mediate 4-tosyl-2-imidazolines 26 [42]. This methodology regioselectively provides
1,5 and a limited number of 1,4,5-trisubstituted imidazoles.

This methodology provides regioselectively 1-arylimidazole-5-carboxylates 28 by
the addition of anilines to ethyl glyoxylate 27 in methanol followed by reaction with
TosMIC (Scheme 10.9) [43].

The related reaction of ethyl glyoxylate or glyoxylic acid with primary amines or
ammonia and aryl substituted TosMIC reagents 23 [44] is a versatile method for the
synthesis of imidazole-5-carboxylates substituted at C4 (e.g., 29, Figure 10.4) [45].
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The TosMIC chemistry can be extended utilizing an aldehyde as a partner
(Scheme 10.10) [46]. Polysubstituted imidazoles are not easily made with this
methodology and a mixtures of regioisomeric imidazoles are obtained.

Amidines, guanidines, ureas and thioureas are the most common NCN
synthons. With these synthons we can selectively synthesize 1,2,5 substituted
imidazoles [47].

Bromo enol ethers 31 react with a range of monosubstituted amidines 30, giving
with high regioselectivity 1,2,5 imidazoles inmoderate yields [Scheme 10.11 (1)]. The
mechanism that explains the high regioselectivity of this reaction is shown in
Scheme 10.11 (2). The unsubstituted nitrogen of amidine 30 adds inMichael fashion
to the b-carbon of the ether. Intermediate 32 then cyclizes with extrusion first of HBr
and then of ROH to afford imidazole 33. Initial attack by the monosubstituted
nitrogen is disfavored, particularly in cases where R1 is a bulky group.

1,5Disubstituted imidazole-4-carboxylates can be efficiently synthesized using the
reactivity of BICA [3-bromo-2-isocyanoacrylate (34)] [48]. In this strategy, a Michael
reaction of a primary amine with a,b-unsaturated ester 34 and subsequent b-elim-
ination of hydrogen bromide occurs as the first step. The resulting enamine 35
undergoes an intramolecular nucleophilic addition to the isonitrile group, affording
the final imidazole 36 (Scheme 10.12). This approach has been applied to the
synthesis of imidazoles having a range of substituents at the 1- and 5-positions.
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A methodology for the preparation of 2-substituted-4,5-dicyanoimidazoles is the
reaction of DAMN (diaminomaleonitrile) with carbonyl compounds under oxidative
conditions [49]. A more recent variation is the reaction of DAMNwith anhydrides to
afford b-aminoenamides that dehydrates to afford the imidazole nucleus [50]. The
commercial availability of this reagent gave impulse to its use in the synthesis. Its
use and the mechanism of action are discussed in Section 10.5.6 for the synthesis of
2-amino derivatives.

Fewmethods for thedirect constructionof tetrasubstituted imidazoles are available
and they are often restricted to a fixed pattern of substitution [28, 51, 52]. Popular
methodologies for the construction of imidazole rings such as the aforementioned
approaches based on van Leusen�s TosMIC chemistry are not able to provide direct
access to tetrasubstituted imidazoles, because donot allow to insert substituent onC2
of the imidazole ring. Further introduction of substituent requires activation/sub-
stitution (Section 10.3). In general the synthesis of tetrasubstituted imidazoles rely on
the regiocontrolled synthesis of trisubstituted imidazoles followed by insertion
of the fourth substituent [53–56]. This approach have some drawbacks. For example
the N-alkylation of 2,4,5-trisubstituted imidazoles has as a major drawback the
formation of both possible regioisomers that are often difficult to separate.
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One of the more versatile intermediates for the synthesis of imidazoles and in
particular tetrasubstituted imidazoles are 1,4 dicarbonyl compounds. This approach
is limited for two main reasons: (i) the syntheses of these precursors are nontrivial
and in many examples involve multistep sequences starting from 1,2-aminoalco-
hols [57–59]; (ii) the reaction conditions are often drastic. An efficient synthesis of tri-
and tetra- substituted imidazoles starting from b-ketoamides under neutral reaction
conditions has been reported (Scheme 10.13) [58]. Cyclization was carried out using
ammonium trifluoroacetate as a solvent.

Themethod tolerates a various array of substituents at N1 and C2. For bulky R1 the
substituent R2 is limited to small groups due to the difficult synthesis of the
corresponding keto amides. With this methodologies it is possible decorate the
imidazole scaffold with sufficient flexibility (Figure 10.5) [60].

A very attractivemethod for the preparation of tetrasubstituted imidazoles is based
on an hetero-Cope rearrangement followed by an amidine cyclization [61]. This
procedure utilizes as starting materials oximes 37 (bearing R4 and R5 imidazole
substituents) and imidoyl chlorides 38 (bearing R1 and R2 imidazole substituents)
(Scheme 10.14). This reaction is highly regioselective, the main limitation being the
aromatic nature of the C2 substituents.

Another direct approach towards 1-methyl-tetrasubstituted imidazoles involves
the 1,3-dipolar cycloaddition of methylated mesoionic oxazolones (m€unchnones).
The reaction of N-methyl-1,3-oxazolium-5-olates 39 with imines 40 involves a 1,3-
dipolar cycloaddition to give an unstable primary bicyclic adduct 41 that loses carbon
dioxide and benzenesulfinic acid and gains aromaticity (Scheme 10.15) [52]. The
phenylsulfonyl leaving group enhances the tendency to aromatize. The yields
reported for this reaction are low, at least partly due to self-condensation of
m€unchnones.
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Figure 10.5 Structures of compounds obtained starting from 1,4-dicarbonyl reagents.
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The problem of self-condensation can be suppressed by using a solid-phase
approach towards preparation of imidazoles (Scheme 10.16) The precursor 43
prepared from commercially available resin 42 (ArgoGel-MB-CHO) and treated with
ethyl-diisopropylcarbodiimide (EDC) led to the m€unchnone 44. Subsequent cyclo-
addition with tosyl imine 45 followed by elimination of toluenesulfinic acid and CO
provided the resin linked imidazoles 46. The imidazoles were liberated from the
resin by treatment with glacial acetic acid at 100 �C and obtained in good yield and
purities [62].

There are a few examples that utilize the concept of a multicomponent reaction
(MCR), especially the Ugi type reaction, for the synthesis of imidazoles. However,
most syntheses have been performed in a stepwise fashion and were not set-up as
MCR. A three component reaction utilizing aldehydes, o-picolilamines and isocya-
nides is shown in Scheme 10.17 [63].

The reaction proceeds through in situ formation of imine 49 from aldehyde 48 and
amine 47 followed by the attack of the a-acidic isocyanide 51 and subsequent ring
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closure. Subsequent aromatization affords the final imidazole. The nucleophilicity of
the (2-pyridyl)methyl carbon derives from the enamine tautomer 50.

Scheme 10.18 depicts the synthesis of 1-substituted-4-carboxylic acid imidazoles
53 through a resin-bound isonitrile [64]. The solid supported isonitrile
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(Wang resin) 52 was treated with alkyl and aryl amines to give, in variable yields, the
imidazoles. The reactions can be speeded up using microwaves. The
reaction proceeds with a mechanism involving a-addition of the amine to the
isocyanide.

10.3.2
Synthesis of Oxazoles

Oxazole are common substructures in several biologically active compounds, syn-
thetic intermediates and pharmaceuticals, and consequently there is a continuing
stimulus for the development of more general and versatile synthetic methodologies
for this class of compounds [65].

The cyclodehydration of 2-acylamino ketones 54, known as the Robinson–Gabriel
reaction, is one of the oldest andmost widely used synthesis of 2,5-disubstituted and
2,4,5-trisubstituted oxazoles (Scheme 10.19) [66, 67].

As an extension of Robinson–Gabriel synthetic approach to oxazoles,N-acylamino
acids, N-acylamino esters, N-acylamino nitriles and N-acyl peptides have been used
as substrate for cyclodehydration. Classically, this transformation was carried out
with relatively harsh dehydrating agents, including concentrated H2SO4, polypho-
sphoric acid, P2O5, SOCl2, POCl3 and anhydrous HF. These classical reagents
continue to be used to prepare a wide variety of oxazole derivatives and some
examples are shown in Table 10.3.

2-Monosubstituted and 2,4-disubstituted oxazoles are generally inaccessible by the
Robinson–Gabriel method owing to the sensitivity of 2-acylamino aldehydes to
oxidative anddehydrating conditions. In addition, the sameproblems can be suffered
by a-acylamino ketones containing stereochemically sensitive side chains. However,
milder dehydrating agent can be used, offering broader functional group compat-
ibility [76]. A protocol based on triphenylphosphine/iodine in the presence of
triethylamine has been introduced by Wipf and Miller (Scheme 10.20) [77].
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The authors have proposed a mechanism in which an enol phosphonium salt 56
loses Ph3PO to generate acylimino carbene 57, which cyclizes to the oxazole ring
(Scheme 10.20). The same result can be obtained using the Burgess reagent 55
(Scheme 10.20), in combination with microwave irradiation [78].

The Robinson–Gabriel synthesis of oxazoles can be extended to solid-phase
synthesis utilizing solid supported a-acylaminoketones with TFAA as dehydrating
agent [79], (Scheme 10.21) or the Burgess reagent [80].

Following the Robinson–Gabriel [66, 67, 81] approach new methodologies have
been developedmainly with the aim of improving the generation of the a-aminoacyl
ketone precursors. A synthesis described by Moody and coworkers is based on Rh-
catalyzed insertion of carbenoids. The use, as counterparts, of nitriles [82] affords
directly the oxazole, while the use of primary amides goes through a preliminary
insertion of the carbenoid in theN�Hbond and subsequent cyclization following the
methodologies introduced by Wipf [83]. The source of carbenoids are diazoesters 58
(Scheme 10.22).

Table 10.3 Robinson–Gabriel synthesis of substituted oxazoles.

O

N

R5

R4

R2

R4

R5

O

N
H

O

R2

H+

-H2O

R2 R4 R5 Yield (%) Reference

CH2Cl Et H 31a) [68]

N
H

N

77a) [69]

Me CO2Me CH2CO2Me 19b) [70]

Pr Ph Ph 87c) [71]

N
N

CONHCH2CF3

H

N

MeO
82c) [72]

(CH2)6CO2Me H Ph 84d) [73]

i-Pr H 3,4-di-MeOPh 79e) [74]

Me i-Pr N(Bn)2 86f) [75]

Dehydrating agents:
a) POCl3.
b) SOCl2.
c) H2SO4.
d) P2O5.
e) TFA/TFAA.
f) PPA.
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Another well established and widely used method to prepare oxazoles is the cyclo-
condensation of a-haloketones 59 with primary amides 60 (Hantzsch type reaction).
The reaction is typically driven by heating the mixture of 59 and 60 in the presence
of a buffer to remove the generated acid. Both 2,4-disubstituted oxazoles and
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Scheme 10.20 Wipf-Miller cyclodehydration synthesis.
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2-amino-4-substituted oxazoles can be accessed with this methodology
(Scheme 10.23). This approach can be extended to synthesize 2-aminooxazoles
using urea and its derivatives as the partner of a-haloketones (Section 10.4.4).
Furthermore, this approach, using thioamides, is the most general method for the
synthesis of thiazoles and it is discussed in details in the next section.

As we have previously seen for the synthesis of imidazoles, TosMIC (23) is also a
useful reagent for the synthesis of oxazoles [45]. Aldehydes condense, in presence of a
base, with TosMIC to afford 4,5-disubstituted oxazolines that eliminate toluenesul-
finic acid to yield 5-monosubstituted oxazoles, as already outlined for the imidazole
series. The reaction can be extended to substituted TosMIC, giving 4,5-disubstituted
oxazole (Table 10.4). The reaction proceeds with the nucleophilic addition of TosMIC
to aldehyde followed by cyclization–aromatization.

The TosMIC route has been extended to solid-phase synthesis. The use of a
polymer-supported version of TosMIC offers the advantage, compared with the
homogeneous counterpart, of easy recovery of pure products. Resins that are
unstable in basic reaction conditions are avoided. Polystyrene-SO2-CH2-NC resin
61, prepared fromMerrifield resin, can be used as a solid-phase equivalent of TosMIC
and has found application in the synthesis of 5-aryloxazoles using tetrabutylammo-
nium hydroxide as base (Figure 10.6) [88].

Resin 62 has also been used for the preparation of 5-aryloxazoles in conjunction
with t-Bu-tetramethylguanidine [89].

An alternative method to the cyclodehydration of keto amide is the base-promoted
[90] or palladium-catalyzed cycloisomerization of propargyl amides. Thefirst reaction
in Scheme 10.24 is an example of the latter, inwhich 2,5 disubstituted oxazoles 63 are
prepared. The reaction proceeds through a palladium-catalyzed coupling step
followed by cyclization [91]. In the same manner [Scheme 10.24 (2)], 2,4,5 trisub-
stituted oxazol-5-yl carbonyl derivatives 64 can be prepared using cheap and easily
removable silica gel as themediator of cycloisomerization. These oxazol-5-yl carbonyl
compounds were inaccessible utilizing the base- or palladium catalyst-mediated
procedure [92].

Oxazoles can also be prepared from b-(acyloxy)vinyl azides by reaction with
phosphorous(III) reagents (Table 10.5). The intermediate iminophosphorane gives
substituted oxazoles through an intramolecular version of the aza-Wittig reaction.
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This route is particularly useful for the synthesis of acid-labile oxazole derivatives
(Table 10.5) [93].

An intermolecular version of the aza-Wittig reaction, using aroyl chlorides, affords
imidoyl chloride derivatives 65 which easily cyclize to afford derivatives 66
(Scheme 10.25) [94, 95].

Table 10.4 Substituted oxazoles prepared using the van Leusen–TosMIC route.
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+
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Figure 10.6 Resins used for the preparation of 5-aryloxazoles.
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Iminophosphorane joined with isothiocyanate are also useful intermediates for
the synthesis of 2-amino substituted oxazoles. This tandem iminophosphorane/
heterocumulene mediated annulation is described in Section 10.4.4 [96]
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Table 10.5 Oxazoles via intramolecular aza-Wittig rearrangement.
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10.3.3
Synthesis of Thiazoles

The classicalmethod for the synthesis of thiazole is theHantzsch process inwhich an
a-halocarbonyl compound 59 (or the corresponding a-haloacetal) is condensed with
a primary thioamide 67 (or a thiourea for the 2-amino derivatives) [97, 98]. The
reaction proceeds with the nucleophilic attack of sulfur on the carbon atom bearing
thehalogen. The acyclic intermediate (isolated in few cases)a-S-alkyliminiumsalt 68,
after a proton transfer, undergoes cyclization and subsequent acid-catalyzed elim-
ination of water (Scheme 10.26).

This reaction usually proceeds smoothly to yield the desired thiazole and excellent
yields have been obtained for simple thiazoles. However, for some types of substit-
uent the range of pattern is limited, and low yields occur, as a result of dehalogenation
of the a-haloketone during the reaction. Using thioamides and unsubstituted
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a-halocarbonyl it is possible to access 2-substituted thiazoles. In this case the range of
substitution pattern is in almost every case abundant. Table 10.6 lists some examples.

Dimethyl and diethyl acetals as well as halohydrine derivatives frequently replace
the aldehydes.

Table 10.6 2-Substituted thiazoles prepared following the Hantzsch procedure.

S

N

R2

X

O
+

S

NH2R2 -H2O, -HX

X = Cl, Br

R2 Yield
(%)

Reference R2 Yield
(%)

Reference

Me 49 [99]

MeO2C SO2

33 [100]

Ph 79 [101] NHCbz 71 [102]

NH2 91 [103]
N

N(iPrO)2PO 41 [104]

SH 50 [105]

p-MePhCO2

O

p-MePhCO2

70 [106]

SMe 88 [107]
N

Ph NH 78 [108]

Me2N 85 [109]

O
p-MeOPh

50 [110]

N NH
80 [111] S

SO

65 [112]

N 50 [113]

AcO

15 [114]

O

NBoc

Si
Me

tBu

Me

73 [115]
N

NH

79 [116]
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For the synthesis of 4-substituted thiazole the thioformamide is the reagent of
choice, while using substituted thioamides and substituted a-haloketones affords
2,4,5-trisubstituted azoles (Table 10.7).

A modification of the Hantzsch synthesis utilizes a-tosylketones instead of
a-halocarbonyl compounds [128]. One of the advantages of this modification is to

Table 10.7 Synthesis of 2,4,5-trisubstituted azoles.

S

N

R2
X

O

+
S

NH2R2
-H2O, -HX

X = Cl, Br

R4 R4

R5 R5

R2 R4 R5 Yield (%) Reference

H CH2CH2Phth H 78 [117]
H CH2CH2CO2Et H 40 [118]

H
N

O

CO2HR

H 83 [119]

H m-NH2Ph H 84 [119]

H N
O

F3C
CF3

O

H 52 [120]

Me 3,4-diOMe-Ph CO2Me 80 [121]
Bt Me Me 66 [122]

Ph Ph 50
Ph Me 59

CbzNH

CO2tBu

CO2Et Me 81 [123]

NH2 Me CO2Me 53 [124]

N
H

CO2Me CO2Me 65 [125]

Ph

O

Br
NH

O

N
O

H 86 [126]

NH2 CO2Et H 76 [127]
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avoid the use of lachrymatory and toxic a-halocarbonyl compounds. This method
involves a reaction of ketones with the hypervalent iodine reagent HTIB [hydroxy-
(tosyloxy)iodobenzene] (69) to produce thea-tosylketone 71 through the intermediate
formation of a-l3-iodanil ketone 70 (Scheme 10.27).

It was subsequently noted that a-l3-iodanil ketones, obtained in situ, could also
undergo direct cyclization by the reaction with thioamides, avoiding the isolation of
the a-tosylketone 71 [129].

Another important synthetic method for the synthesis of thiazoles involves
treating a-acylamino ketones 54 with phosphorous pentasulfide or Lawesson
reagent [130] (Gabriel synthesis) (Scheme 10.28).

An alternative thiazole synthesis, which is applied to combinatorial chemistry, is
shown in Scheme 10.29. These isocyanide based four-component reactions provides
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2,4-disubstituted thiazoles. The substituent on C4 is limited to carbomethoxy
(Scheme 10.29) [131].

Methods involving a regioselective metal-catalyzed coupling reaction have also
been utilized to construct highly substituted thiazoles in view of the fact that coupling
reactions would be selective for the more electron-deficient C2 (see below).

10.4
Reactivity

This section considers the reactivities of 1,3-azoles in detail and, when possible, the
reactions of these heteroaromatic systems are compared among themselves. These
reactions can be rationalized with reference to the tautomeric and acid–base
equilibria shown by these compounds that are discussed in Section 10.1.

10.4.1
Reactions with Electrophilic Reagents

10.4.1.1 Electrophilic Attack at N3
Electrophilic attack at the azomethine nitrogen (pyridine-type) depends upon (i) the
electron density on the pyridine-type nitrogen and (ii) the substituents present on the
azole ring. The nature and position of the heteroatom other than azomethine
nitrogen determine the electron density on the former. The interaction of pyridine-
type nitrogen with pyrrole-type nitrogen, oxygen and sulfur atoms has a considerable
influence due to the presence of two opposite electronic effects: (i) the mesomeric
effect and (ii) the inductive effect. The balancing of both these effects determines the
electron density at the pyridine-type nitrogen atom. The inductive effect is stronger
when the second atom is oxygen or sulfur and thus lowers the electron density on
nitrogen. In contrast, with two nitrogen atoms the mesomeric effect is stronger and
increases the electron density at position 3. Imidazoles substituted at N1 [132],
oxazoles [133], and thiazoles [134] 72 are alkylated/acylated with the formation of
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quaternary salts 73 (Scheme 10.30a) and alkylation/acylation of imidazole 74 (with
free NH group) produces protonated N-alkyl-/acyl-imidazolium salt 75 that can be
deprotonated by a base to afford N-alkyl imidazole 76 [135]. In this case, if the
electrophilic reagent is a proton, this reaction sequence is a simple tautomer
interconversion (Scheme 10.30b).

There are several examples of quaternizing alkylations of imidazoles using diverse
reagents like alkyl, alkenyl or arylalkyl halides, ethyl chloroacetate, phenacyl bromide
or dimethyl sulfate [136]. Although quaternization at the already substituted nitrogen
atom has been reported and one of the products of the reaction of imidazole with 2,2-
dichlorodiethyl sulfide was identified as 77, it is more likely to be 78 or 79
(Figure 10.7). The observations of Pinner and Schwarz in 1902 that the quaternary
salt obtained from 1-methylimidazole and 1-bromopentane was decomposed by
alkali to give both aminomethane and 1-aminopentane was the first piece of evidence
(more recently confirmed by NMR studies) to support the accepted view that
quaternization takes places at the unsubstituted ring nitrogen [137].

The oxazole and thiazole nitrogen atom also reacts with various alkylating and
acylating agents [138, 139].Oxazoles reactwith bromine inmethanol to give amixture
of products via initial attack of bromine on nitrogen atom to form the charged
complex 80. Subsequent rapid reactions withmethanol lead to intermediates 81 or 82
depending on the C2 and C4 substituents ability to stabilize the C¼N bond. Thus, a
phenyl substituent on C2 favors the 2,5-dihydrooxazole structure 81, whereas a
phenyl group on C4 favors the 4,5-dihydrooxazole structure 82. The intermediates
give cyclic or ring-opened products 83–86 (Scheme 10.31) [140].
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The electronic density on pyridine-type nitrogen is also affected by the substituents
on the azole ring and may be rationalized as follows:

1) Strongly electron-withdrawing substituents (e.g., NO2, COR, CHO) make these
reactions less favorable by decreasing the electron density on the nitrogen atom(s).
Theeffect is largely inductive and, therefore, isparticularly strong for thea-position.

2) Strongly electron-donating substituents (e.g., NH2, OR) facilitate electrophilic
attack by increasing the electron density on the nitrogen atom. This is due to the
mesomeric effect and is, therefore, strongest for the a- and c-positions.

3) Groups with relatively weak electronic effects have a relatively small electronic
influence.

More recently, an efficient and straightforward copper-catalyzed method allowing
vinylation of imidazoles in high yields and selectivities with di- or trisubstituted vinyl
bromides has been described. The reaction can be performed with catalytic amounts
of copper iodide and inexpensive nitrogen ligands under very mild temperature
conditions (35–110 �C) [141]. For example, the viynilation of imidazole 74 by
b-bromostyrene afforded compound 87 with a yield of 93% (Scheme 10.32).
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In this context, triphenylphosphine has been used as nucleophilic catalyst for
umpolung addition of azoles to electron-deficient allenes. This strategy offers a
simple and efficient method for functional allylation of azoles under neutral con-
ditions and affords heterocyclic substituted Michael olefins [142]. The catalytic
cycle might be initiated by a nucleophilic addition of triphenylphosphine to the
electron-deficient allene 88. The enolate 89 then deprotonates the azole, generating
the vinylphosphonium 90. Subsequently, nucleophilic addition to vinylphospho-
nium 90 leads to the ylide. Finally, the enolate is obtained by prototropy and then
undergoes a b-elimination, affording the final allylazole 91 and regenerating the
nucleophilic catalyst. (Scheme 10.33).

Finally, many metal complexes with azoles or alkyl derivatives are known. The
sulfur, oxygen and pyrrolidine-type nitrogen atoms are less nucleophilic than a
pyridine-type nitrogen atom and the latter is expected to be the dominant donor. For
example, a palladium(II) bisimidazole complex was obtained from the reaction of Pd
(cod)ClMe (cod¼cyclooctadiene) with equimolar amounts of 92 and proved to be an
effective catalyst for the Heck reaction under phosphine-free conditions using ionic
liquids as solvent (Scheme 10.34) [143].

10.4.1.2 Electrophilic Attack at Carbon
Figure 10.8 depicts the reactivity order in 1,3-azoles.

Imidazoles containing an unsubstituted NH group are easily chlorinated
(Cl2/H2O or N-chlorosuccinimide/CHCl3), brominated (Br2/CHCl3 or KOBr/H2O)
and iodinated (I2/HIO3). Substitution generally occurs first at the 4-position
but further reaction at the other available positions takes place readily, providing
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2,4,5-tribromoimidazole [Scheme 10.35 (1)] [144]. Ring bromination of oxazole 90
with bromine or NBS (N-bromosuccinimide) occurs preferentially at the 5-position to
afford 5-bromooxazole and, if this is occupied, at the 4-position [Scheme 10.35
(2)] [145].

Thiazole does not react with bromine or chlorine in an inert solvent, but thiazoles
with an electron-releasing substituent in the 2 or 4-position are brominated at
C5 [146]. For example, 2-aminothiazole afforded compound 93 in a bromination
reaction (Scheme 10.36).

Nitration of imidazoles [137] and thiazoles [139] has usually been carried out using
either a mixture of concentrated (or fuming) nitric acid and concentrated sulfuric
acid, or in some cases with concentrated nitric acid and acetic anhydride. Nitration
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(HNO3/H2SO4, 160 �C) and sulfonation (H2SO4/SO3, 160 �C) of imidazoles pro-
ceeds at the 4-position very slowly, because the reaction takes places in acidic
medium, with formation of imidazolium cations (e.g., 74 yields 94)
(Scheme 10.37) [137]. The deactivating effect of a protonated nitrogen atom is
considerably greater than, for example, the two nitro groups in m-dinitrobenzene.

With the object of finding milder nitration conditions, the use of cerium (IV)
ammonium nitrate [147], montmorillonite impregnated with bismuth nitrate [148],
and nitrations with dinitrogen pentoxide [149, 150] have been studied. Direct
nitration of various imidazoles and thiazoles with nitric acid/trifluoroacetic anhy-
dride, which involves N2O5, affords mononitro derivatives with an average yield of
60% [151]. Finally, dinitrothiazoles have been obtained by direct nitration of the
corresponding mononitro derivative with acetyl nitrate [152].

In the case of thiazole, the reaction only occurs at the 5-position under forcing
conditions (H2SO4/SO3 in the presence of HgSO4, 250 �C). As expected, these
reactions are facilitated by activating groups such as an amino group; for example,
2-aminothiazole 92 is sulfonated at low temperature with the formation of sulfamic
acid 95, which on heating rearranges to 2-aminothiazole-5-sulfonic acid 96
(Scheme 10.38) [153].

Mercuration of oxazole with mercury(II) acetate occurs at C4 or C5 depending
upon the available unsubstituted position. If both positions are substituted,mercura-
tion occurs at the 2-position. Thiazole 97 is mercurated at positions 2, 4 and 5 in the
order: C5>C4>C2, providing 2,4,5-tris(acetoxymercury)thiazole 98 on treatment
with mercury acetate in the presence of aqueous acetic acid (Scheme 10.39) [153].
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Diazonium ions couple with the anions of N-unsubstituted imidazoles at the 2-
position (e.g., 74 affords 99) [Scheme 10.40 (1)]. In general, other azoles react only
when they contain an amino or an hydroxy group. For example, 2-aminothiazole 92
undergoes diazo coupling with diazonium salts at C5 to afford 100 [Scheme 10.40
(2)] [154].

Phosphorylation of 1-substituted imidazoles has been achieved under basic
conditions by treatment with phosphorous(V) acid chlorides and provided good
yields of the corresponding phosphinic acid salts after treatment with aqueous
base [155].

Direct electrophilic silylation of 1,3-azoles with silane (II) under basic conditions
afforded C-trimethylsilylazoles in good yields. The silylation occur at C2 [156].

On the other hand, electrophilic substitution is by far the most common
method for substitution at the 2-position of substituted 1,3-azoles [157]. With this
aim the addition of electrophiles as acid chlorides [158] or aldehydes [159] has
been studied. In general, the reactions are run with an amine base for acid
chlorides andareproposed toproceed via an intermediate carbene/ylide species [160].
In this context, the addition of 2,2,2-trichloroacetyl chloride to 76 affords 101
(Scheme 10.41).
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Imidazoles are sufficiently nucleophilic to condensewith aldehydes under thermal
conditions in the presence of acid to give 2-hydroxymethylimidazoles. For example,
the addition of formaldehyde to N-methylimidazole yields 102 (Scheme 10.42). The
reaction, however, is highly variable and substrate dependent.

The addition of imidazole-1-carboxamides 103 to phenyl isocyanate gives the
corresponding amides 104 in modest yield (Scheme 10.43) [161].

The intramolecular addition of azoles to iminium ions formed from aldehydes and
secondary amines affords 2-substituted derivatives cleanly only when the 4- or 5-
position is blocked. For example, the addition of the iminium ion 106 obtained from
the azole-aldehyde 105 and an aryl-piperazinone affords amixture of 107 and 108 in a
1 : 2 ratio, respectively (Scheme 10.44) [162]. When position 2 is substituted the
reaction yields the 4-substituted product [137, 163].

The preformation of 1-cyano-4-(N,N-dimethylamino)-pyridinium bromide (109),
from DMAP (4-N,N-dimethylaminopyridine) and BrCN, allows for the selective 2-
cyanation of N-methylimidazole to yield 110 (Scheme 10.45). In the absence of
DMAP, the 2-position is brominated [164].

Finally, although the Lewis acid-promoted Friedel–Crafts acylation is the most
commonly used method for the acylation of an aromatic ring, it is impracticable for
imidazoles, due to deactivation of the Lewis acids. Other azoles, such as oxazoles and
thiazoles, are generally also not amenable, because of their electron-deficient aromatic
character. This type of acylation, however, proceeds in thepresence of strong activation
from electron-donating groups, such as alkoxy, amino or arylthio groups, in the
substrates [165].
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10.4.2
Reaction with Oxidizing Agents

Imidazoles and thiazoles are resistant to oxidation, but they can be oxidized by
hydrogen peroxide and peracids as, for example, perbenzoic or peracetic acid. In the
caseof imidazoles the ring is degraded [166] to afford111a and111b [Scheme10.46 (1)]
and with thiazoles the 3-oxide 112 is obtained [Scheme 10.46 (2)] [167].

Photosensitized oxidation of imidazole (74) with singlet oxygen produces imida-
zolidin-2-one 114 via the cyclic peroxide 113 (Scheme 10.47) [168].

Trisubstituted imidazoles and thiazoles undergo photosensitized oxidation with
the formation of ring cleaved products depending on the solvent and the sensitizer
used [169].

The oxazole ring is cleaved by oxidizing agents such us permanganate, chromic
acid or hydrogen peroxide to give acids or amides [170].
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10.4.3
Reactions with Nucleophilic Reagents

Substitution at C2 of 1,3-azoles with a leaving group generates a heterocycle that can
be functionalized via displacement of the C2 substituent. Heteroatom nucleophiles
add either as the deprotonated species (e.g., alkoxides, thiolates) or under milder
basic conditions. Diazo salts (e.g., 115) can be displaced by bromide ion
(Scheme 10.48) [171] or by alcohols [172].

2-Haloazoles 116 undergo nucleophilic substitution reactions with replacement
of the halogen atom by nucleophiles [Scheme 10.49 (1)]. Halogen atoms at the 4- and
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5- positions of imidazoles are normally unreactive but can be activated by an a- or
c- electron-withdrawing substituent (e.g., 117 yields 118) [Scheme 10.49 (2)] [173].

Addition of carbon nucleophiles to halogenated thiazoles includes the use of
sodium cyanide [174], indolyl Grignard reagent [Scheme 10.50 (1)] [175], 2-lithio-2-
nitropropane [Scheme 10.50 (2)] [176] and ester enolates [177].

Imidazole (74) has been used as electrophile with silyl enol ethers in the presence
of alkyl chloroformates to provide the 2-substituted 2,3-dihydroimidazole 119
(Scheme 10.51) [178]. The same reaction can be performed with thiazole.

Z

N

X

NH2R

Z

N
NHR

Z = NH, O, S

X = Br, Cl

N

N

O2N

Cl

Me

N

N

O2N

NC

Me

KCN

116

117 118

(1)

(2)

Scheme 10.49

N

MgI

S

N

Br

MeO

N H

OMe

N

S

S

N

BrO2N

NO2

Li

S

N

O2N

NO2

(1)

(2)

Scheme 10.50

N

N
H

1. ClCO2R1, Et3N

2. ClCO2R1

R3

R2 OTMS

R4

N

N

CO2R1

R1O2C
R3

R2

O

R4

74 119

0 °C, 10 min-24h

several examples 29-99%

Scheme 10.51

844j 10 Five-Membered Heterocycles: 1,3-Azoles



Imidazo[1,2-b]thiazolines 120 undergo nucleophilic displacement with allylic,
benzylic and alkyl Grignard reagents to yield 121 (Scheme 10.52) while alkyl or aryl
lithium reagents result in nucleophilic attack on sulfur and loss of ethylene to afford
2-thioalkyl-1H-imidazoles 122 (Scheme 10.52) [179].

In some cases nucleophilic attack results in the cleavage of the ring. For example,
oxazoles 123when treatedwith ammonia at 200 �Cundergo nucleophilic attack at the
2-position and are transformed into the corresponding imidazoles 124
(Scheme 10.53) [180].

Imidazole (74) reacts with acid chlorides to give salts that in the presence of alkali
react to afford compound 125, derived from the ring cleavage (Scheme 10.54) [181].
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Finally, thiazoles are quite inert in the presence of hydroxide and alkaline ions.
However, two proteases were found to catalyze the enantioselective hydrolysis of
several 5-hydroxythiazoles (126) to give a-amino acids (127) (Scheme 10.55) [182].

10.4.4
Reactions of N-Metallated Imidazoles

Although the direct alkylation of imidazoles at N3 affords the 1-substituted imida-
zoles through a tautomer interconversion (Scheme 10.56, route a), in some cases the
synthesis of these compounds has been reported using N-metallated imidazoles
(Scheme 10.56, route b).

Route b can be considered as a complementary way for the preparation of 1-
substituted imidazoles and has permitted the introduction of the imidazolyl unit in a
large number of structures for the synthesis of natural products or analogues [183].

In general, N-metallated imidazoles 128 are obtained using a base such as NaH or
BuLi (Scheme 10.57).
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10.4.5
Reactions of C-Metallated Azoles

10.4.5.1 Lithium Azoles
These derivatives are prepared by direct deprotonation [184, 185] using strong bases
or, particularly useful in the case of the less acidic sites in aromatic rings, by halogen
exchange [186] between anhalogenatedheterocycle and an organolithiumcompound
or lithium metal.

1,3-Azoles are prone to be lithiated at C2, but if this position is already occupied,
lithiation occurs at C5. If a C4 metallation is required, usually the halogen–lithium
exchange methodology is employed. The combination of all these techniques allows
the selective lithiation at any position in the azole nucleus.

N-Substituted imidazoles tend to lithiate with alkyllithiums at C2, affording a
carbenoid species that can be used as a bulky base, as in the case of 2-lithio-1-
methylimidazole, which has been used in the stereoselective deprotonation of
cyclohexene oxides when combined with a chiral lithium amide [187]. However,
2-lithioimidazoles are employed normally as nucleophiles, for instance in addition
reactions to aldehydes [188], ketones [189], esters and isocyanates [190], as well as in
silylation [191], sulfenylation [192], and cyclic sulfate ring-opening [193] reactions.

2-Lithiated N-substituted imidazoles such as 2-lithio-N-methylimidazole (129),
prepared by direct deprotonation using n-butyllithium, has recently been used in the
reaction with the diester 130 for the preparation of compound 131 as a zinc ligand
(Scheme 10.58) [194].

2-Lithioimidazoles can also be generated by treatment of 1-substituted imidazoles
with an excess of lithium powder in the presence of a catalytic amount of an electron-
carrier [195] such as isoprene [196]. The isoprene-catalysed lithiation of different 1-
substituted imidazoles 132 (PG¼ trityl, allyl, benzyl, vinyl, N,N-dimethylsulfamoyl,
para-toluenesulfonyl, tert-butoxycarbonyl, acetyl, trimethylsilyl, tert-butyldimethylsi-
lyl) leads to the cleavage of the protecting group producing 1H-imidazole
(Scheme 10.59). However, the use of 1-(diethoxymethyl)imidazole (133) in the same
lithiation reaction allows the preparation of the corresponding 2-lithio intermediate,
which by reacting with different electrophiles such as, for example, benzaldehyde or
N-phenyl-benzyl imine leads to 2-functionalized imidazoles (Scheme 10.60) [197].
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As mentioned above, 5-lithiumimidazoles can be generated by direct deprotona-
tion with an alkyllithium if the C2 position of the ring is blocked. When the
substituent at C2 is a trialkylsilyl group, introduced by deprotonation and reaction
with a trialkylsilyl halide, lithiation at C5 takes place. Examples of the use of these 2-
sylilated imidazol-5-yllithiums (132) are in the synthesis of imidazolsugars 133
(Scheme 10.61) [198].

As in the case of any 1,3-azole, oxazoles are readily lithiated at C2. However,
attempts to trap 2-lithioxazoles with electrophiles must contend with complications
due to the ring opening of the anion that equilibriates by an elimination/ring-
opening to produce the b-cyano enolate 135, which, according to NMR data, is the
dominant form. In many cases enolate 135 cyclizes back after the C-electrophilic
attack, affording mixtures of C2 and C4 substituted oxazoles, 136 and 137
(Scheme 10.62) [200].
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In this electrophilic ring opening, it is possible to lock the electron pair at
the oxazole nitrogen by complexation with a Lewis acid, such as borane, thus
allowing C2-lithiation (Scheme 10.63) [201].

In 2-substitued oxazoles, direct C5-lithiation can be carried out, allowing further
reaction with electrophiles [202], although the bromine–lithium exchange method-
ology has also been used [203]. Remarkably, in 2 methyl-4-substituted oxazoles, a
selectivity for lithiation at C5 to give compound 138, versus lithiation at the methyl
group to give compound 139, has been observed, depending on the lithium base
(Scheme 10.64) [204]. 5-Lithiation of 2-substituted oxazoles has also been achieved
by ortho-lithiation to a triflate group [205]. Concerning 5-bromo-2-phenyloxazole,
5-lithiation and further reaction with electrophiles has been achieved through
an initial LDA-promoted 4-lithiation followed by halogen migration, leading to a
4-bromo-5-lithio-2-phenyloxazole intermediate [206].
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2-Lithiothiazoles [207] have been used as nucleophiles, for instance addition to
aldehydes [208], the thiazolemoiety being considered as a formyl equivalent [209], for
example in addition reactions to lactones [210], to benzyloxyacetaldoximes [211] or in
reactions with nitrones 140 for the synthesis of amino sugars (e.g., 141)
(Scheme 10.65) [212].

Lithiation at C5 in thiazoles takes place directly if the C2 position is blocked,
an example being the lithiation of 2-(methylthio)thiazole (142) to give intermediate
143, which can react further with a nitrile such as p-chlorobenzonitrile, affording
5-(arylcarbonyl)thiazole 144 after hydrolysis (Scheme 10.66) [213].

5-Lithiation has also been achieved in 2-thiazolamines bearing a bromine
atom at C5 through a halogen migration process starting from a LDA-promoted
4-lithiation [214].

4-Lithiated thiazoles have usually been generated by bromine–lithium exchange, an
exampleoftheirusebeingthesynthesisofsomephotochromicdithiazolylethenes[215].

10.4.5.2 Magnesium Azoles
The direct preparation of azolic organomagnesium reagents using the standard
reaction between a halogenated derivative and magnesium is rather difficult due to
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the presence of a basic nitrogen. In these cases, the usual preparative procedure is to
treat the azolewith an alkylGrignard reagent (generally EtMgBr, iPrMgBr, or iPr2Mg)
or to perform a halogen–magnesium exchange by treating bromo and iodo azoles
with the mentioned alkyl Grignards [216]. This procedure tolerates the presence of
other functionalities [217]. Furthermore, the preparation of the organolithium
derivative followed by interchange using magnesium dibromide can also be used.

The generated imidazolylmagnesium halide has been employed in addition
reactions to carbonyl compounds for the preparation, for example, of ligands
for the a2D adrenergic receptor [218], sugar-mimic glycosidase inhibitors [219] or
C-nucleosides [220]. It has also been used in acylation reactions with esters in the
synthesis of pilocarpine analogues [221] or with Weinreb amides such as 145
(Scheme 10.67) [222].

In addition, examples of the use of oxazolylmagnesiums can be found in the
addition of 2-(methylthio)-5-oxazolylmagnesium bromide (146) to the aldehyde 147
to give compound 148, which has been employed for the synthesis of conforma-
tionally locked C-nucleosides (Scheme 10.68) [223].

Finally, thiazolylmagnesiums metalated at C2 have been obtained by the usual
bromine-magnesium exchange using alkyl Grignards, even regioselectively. For
example, 2-thiazolylmagnesium bromide 149 has been obtained from 2,4-dibro-
mothiazole. This reagent has been used in an addition reaction to the chiral nitrile
150, affording, after reduction, the corresponding amine, which is a building block
for the synthesis of thiazolyl peptides (Scheme 10.69) [224]. The lithium–magnesium
transmetalation can also be used for the generation of thiazolylmagnesiums, an
example being the preparation of 2-methylthiazol-4-ylmagnesium bromide, which is
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useful in the preparation of a fragment of epothilone via a copper(I)-catalyzed
coupling to an allylic bromide [225].

10.4.5.3 Silicon Azoles
Azole silanes are usually prepared by reaction of the corresponding heterocyclic
organolithiums with alkylhalosilanes [226].

Imidazoles have been silylated at C2 using the conventional lithium–silicon
exchange, although it has been observed that 2-tert-butyldimethylsilylimidazole can
be obtained by reaction of O-tert-butyldimethylsilylimidazolyl aminals with organo-
lithium reagents through a retro-[1,4]-Brook rearrangement [227]. Usually, 2-silyli-
midazoles are employed in a subsequent lithiation at the 3-position and further
reaction with electrophiles such as aldehydes [228] or tosyl azide [229].

The introduction of a silyl group at the 2-position in N-protected imidazoles was
used as a logical way of changing the acidic proton by an easily removable group, thus
allowing deprotonation at C5 and further transformations (Section 10.4.5.1). Exam-
ples are 2-silylated imidazoles, which are lithiated at C5 and act as nucleophiles [230].

The preparation of 2-silylated oxazoles is not obvious, since the usual 2-lithia-
tion–silylation sequence drives the abovementioned ring opening to give an isocyano
enolate (Section 10.4.5.1) after the lithiation step. This problem was overcome by O-
silylation of the isocyano enolate followed by a base-promoted insertion to give the
corresponding 2-silyloxazole 151 (Scheme 10.70) [231]. The procedure can be
simplified by a heat-induced cyclization in the final distillation step [232]. These
derivatives have also been prepared by reaction with trimethylsilylbromide in the
presence of triethylamine [233].

These 2-silylated oxazoles can be used as nucleophiles in additions to alde-
hydes [234], such as to the tripeptide-derived aldehyde 152 (Scheme 10.71) [232].
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Recently, 4-(triethylsilyl)oxazoles have been prepared, by treatment of (triethylsilyl)
diazoacetates with rhodium(II) octanoate and nitriles, as precursors of 4-halogenated
oxazoles after treatment with N-bromosuccinimides [235]. On the other hand, these
derivatives have been used to perform a 4-litiation followed by reaction with
electrophiles [236].

2-(Trimethylsilyl)thiazole (153), which is prepared by the conventional lithiation–-
silylation sequence, has been frequently used for addition reactions to alde-
hydes [237], mainly for chain elongation due to consideration of the thiazole moiety
as an equivalent of the formyl synthon. An example of the use of 153 is its
diastereoselective addition to the chiral aldehyde 153, yielding the corresponding
protected alcohol 155, an intermediate in the synthesis of the pseudopeptide
microbial agent AI-77-B (Scheme 10.72) [238].

In addition, 2-methylthiazole can be trimethylsilylated at C5 by lithium–silicon
exchange, with the resulting 2-methyl-5-silylthiazole permitting, therefore, a subse-
quent lithiation at the 2-methyl substituent [239].

Although the addition to aldehydes is well documented, the less known reaction
with ketones [240] and some acid chlorides [241] has also been reported. Other
examples of the use of 2-(trimethylsilyl)thiazole are the ring expansion of a cyclo-
propanated carbohydrate [242], the copper(I) salt-mediated coupling to iodoben-
zene [243] and the ipso-substitution with iodine [244].

10.4.5.4 Tin Azoles
In general, azolic stannanes have been obtained by reaction of their corresponding
azolic organolithiumswith a chlorostannane [245, 246]. Thesemetallated azoles have
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found application mainly in palladium-catalyzed cross-coupling reactions (the so-
called Stille coupling) (see Section 10.4.6.31).

2-Azolylstannanes and 2-substituted-5-stannylazoles have been prepared follow-
ing the usual stanylation sequence. 5-Stannylimidazoles have also been prepared by a
2,5-dilithiation, followed by a double stannylation and a 2-hydrodestannylation
sequence [247].

The preparation of 4-stannylated azoles is not obvious. 4-Stannylated thiazoles are
usually obtained by a sequential halogen–lithium–tin interchange [248], although
after lithiation of 4-bromo-2-stannylthiazoles, to give the 4-stannylated heterocycles,
rearrangements were observed [249]. In some cases, 4-stannylthiazoles are prepared
by palladium-catalyzed cross-coupling of the corresponding bromide using bis
(trimethyltin) [250].

The same methodology has been employed when 4-stannylated oxazoles bearing
labile groups are required [246].

10.4.5.5 Zinc Azoles
Organozincs are a useful class of organometallic reagents due to their tolerance of
several functional groups [251]. Azolic zinc derivatives are generally prepared by
exchange reactions of the corresponding organolithium or magnesium with zinc
halides, being stable at higher temperatures than their precursors [251]. Other
methods for their preparation employ zinc dust [251], active Rieke zinc [251] or
electrochemical methods [252].

2-Zincated 1,3-azoles are used mainly in palladium-catalyzed Negishi cross-
couplings, as in the reaction of the triflate 157 with the N-silylated imidazolylzinc
chloride 156 to afford compound 158 (Scheme 10.73), in studies toward the synthesis
of anxiolytics.

More recently, the coupling of the organozinc reagent 159with the bromopyridine
160 afforded compound 161, which is an intermediate in the synthesis of the
heterocycle core of the GE 2270 antibiotic (Scheme 10.74) [253].
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Imidazol-4-yl-zinc chloride has been used in several synthesis [218], whereas
oxazol-2-yl-zinc [254] and thiazol-2-yl-zinc [255] derivatives are also employed in
Negishi cross-couplings. Furthermore, copper-catalyzed cross-coupling reactions
have been performed using N-methylimidazol-2-yl-zinc iodide [256]. Finally, thia-
zol-4-yl-zinc bromide is used in additions to nitrones [209].

10.4.5.6 Copper Azoles
Azolyl copper reagents are usually obtained from the corresponding organolithium
reagents (2 equivalents) by reaction with a copper(I) salt [239, 245].

For example, N-substituted 4,5-diiodoimidazole 162 has been regioselectively
transformed into the 5-cuprated imidazole 163 after reaction with (PhMe2CCH2)2-
CuLi. These organocopper reagents reacted with electrophiles such as allyl bromide
to give the corresponding 5-functionalized imidazole 164ðScheme 10.75) [257].

Examples of high order 5-oxazolyl cuprates in allylation and propargylation
reactions have also been reported [258].

10.4.6
Transition Metal Mediated Reactions

10.4.6.1 Metal-Mediated Functionalization
Recently, several newmethods for the functionalization of 1,3-azoles under selective
conditions of C�H activation have been developed, particularly through the use of
transition metal catalysts.

The arylation of 1,3-azole derivatives (oxazoles, thiazoles and protected imidazoles)
proceeds using catalytic palladium, rhodium, and/or copper in the presence of an
inorganic base [259]. However, these reactions often suffer from low yields and poor
selectivity, and a major disadvantage is the need to apply a relatively high reaction
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temperature. In general, the addition of copper(I) iodide facilitates the reactions and
in specific cases can promote the reaction without a source of palladium
(Scheme 10.76).

Employing solid-supported aryl iodides, regioselective arylation at C2 is obtained
(Scheme 10.77) [260]. The observed selective monofunctionalization can be attrib-
uted to the solid-phase pseudodilution effect which prohibits a second equivalent of
the iodide interacting with the already coupled product.

In contrast, in the absence of CuI the 5-arylated products are obtained
(Scheme 10.78) [260].

However, although in particular cases it is possible to obtain the arylation with
palladium in a regioselective form, in general, non-fused azoles gave mixtures of
substitution at the 2- and/or 5-position and the use of bulky phosphines as ligands
gives improved yields of diarylation [261].

As an alternative to problematic organometallic azole functionalization, thiazole
N-oxides have been investigated as alternatives [262].The N-oxide group not only
imparts a dramatic increase in reactivity in direct arylation at all positions of the azole
ring but also changes theweak azole bias for C5>C2 arylation to a reliableC2>C5>
C4 reactivity profile (Scheme 10.79). This permits high yielding, regioselective, and
room temperature arylation at C2, high yielding arylation at C5, and the first
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examples of arylation at C4, providing a unique opportunity for exhaustive functio-
nalization of the azole core (Scheme 10.80).

In recent years, phosphine-free and even base-free conditions, palladium-cata-
lyzed C–H bond arylation of azoles have been reported [263]. However, these
methods are typically restricted to only one type of heterocycle, even under harsh
conditions, such as elevated temperature and/or microwave assistance. Moreover,
stoichiometric amounts of copper salts (1–3 equiv) or silver additives are generally
required to improve these phosphine-free, Pd-catalyzed coupling reactions.

The direct C-arylation of azoleswith a broad spectrumof aryl bromideswithout the
presence of phosphines, the aid ofCuI, or othermetal additives has beendescribed by
using pivalic acid as a cocatalyst. Particularly noteworthy is than this protocol can
tolerate an array of functional groups such as ester, nitrile, nitro, aldehyde, methoxy,
trifluoromethyl, fluoro, and chloro substituents [264].

In addition to such carbon–carbon bond-forming reactions, carbon–heteroatom
bond formation is also an important issue. Limited examples of intra- [265] and
intermolecular [266] C–H funcionalization with amines have been described. For
example,C–H,N–Hcouplingofazoles takesplacewithseveral amines in thepresence
of a copper catalyst to undergo amination at the 2-position (Scheme 10.81) [267].

Finally, several metal-promoted N�C cross-coupling reactions have been devel-
oped [268]. For example, copper-catalyzed N-phenylation of imidazoles 165
with diphenyliodonium tetrafluoroborate affords N-phenylimidazoles 166
(Scheme 10.82) [269].
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The N-arylation of azoles, in lower nitrile solvents, with aryl halides has been
achieved efficiently in the presence of copper powder without any additional ligands.
Thus, the first nitrile type ofmonodentate ligand-mediated, �ligand-free-like� copper
catalyzed N-arylation procedure was established [270].

Arylboronicacids167 react efficientlywith imidazoles165 in thepresenceof anovel
diamine-copper complex to give variousN-arylimidazoles 168 (Scheme 10.83) [271].

Alkoxydienyl and alkoxystynyl boronates have also been used in various
copper acetate mediated cross-coupling reactions with imidazole, affording various
N-alkoxydienyl- and N-styrylimidazoles in good yields under mild conditions [272].

10.4.6.2 Catalytic Transition-Metal Mediated Reactions of Halogenated Azoles
2-Halogenated azoles are among the most valuable synthons for further functiona-
lization of 1,3-azoles using catalytic transition-metal mediated reactions. They are
readily prepared by direct halogenation (Br2, I2, or N-halosuccinimides) or trapping
of C2-metalated (Li, Mg, Zn) azoles. Numerous methods have therefore been made
for their further functionalization. Coupling reactions mediated by transition-metal
catalysts allow for bond formation between halogenated azoles and unsubstituted
olefins and acetylenes, as well as dimerization reactions.
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10.4.6.2.1 Heck and Ullmann Couplings Classical Heck-type couplings (using Pd-
catalyst and a base) are one of the most common bond-forming reactions of aromatic
halides. Its use in the chemistry of 1,3-azoles is also very common.As-azolylpalladium
complex, generated in situ from 2-halogenated azole, undergoes an insertion with
the alkene/alkyne cosubstrate, followed by b elimination to give the product.

Auseful example of this reaction is the coupling of methyl 3-oxo-6-heptynoate 170
with 2-bromothiazole (169) in the presence of K2CO3 and catalytic amounts of Pd
(PPh3)4 that provide the derivative 171 (Scheme 10.84) [273].

This reaction has also been utilized to catalyze the dimerization of bromothia-
zole 169 [274], isolating the product 172 in an improved yield (Scheme 10.85).

One of the more commonmethods for forming 2,20-azoles is to utilize copper as a
coupling catalyst (Ullmann conditions). For example, selective lithium–bromine
exchange followed by oxidative coupling with copper(II) chloride allows for the
formation of dibromobithiazole 173 via a homodimerization (Scheme 10.86) [275].

Another example of this reaction is the cyclization of the symmetric derivative 174
in modest yield utilizing copper to furnish a tetracyanobisimidazole 175
(Scheme 10.87) [276].
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However, despite extensive research in this area, the classical Ullmann reactions
were invariably plagued by the need for large amounts of copper (in the form of
salts, oxides, or finely divided metal) and for very harsh reaction conditions, most
notably for a high reaction temperature. In this context, very recently it was shown
that simple copper(I) complexes formed in situ with chelating nitrogen- and/or
oxygen-containing ligands could effect N- andO-arylations ofmany different organic
compounds with azol halides in good yields at temperatures in the range
80–150 �C [277].

The range of employed ligands is continuously increasing [278], and other kinds of
copper-containing catalysts, such as Cu2O-coated soluble copper nanoparticles [279],
copper-exchanged apatites [280], and copper-containing perovskites [281] have been
successfully tested as well.

10.4.6.2.2 Sonogashira Reaction The Sonogashira reaction [using Pd(0)/Cu(I)-cat-
alyst] is a useful method for the cross-coupling of a terminal alkyne to an
2-halogenated azole. In this case the s-azolylpalladium complex reacts with a
copper acetylide, generated in situ, and after a b-elimination the final product is
obtained.

This reaction has been used, for example, to prepare histidine derivatives wherein
diiodide 176 undergoes selective coupling as well as dehalogenation in the presence
of excess phenylacetylene (Scheme 10.88) [282].

Imidazole derivatives [283] and thiazole analogs (Scheme 10.89) [284] have been
investigated, and regioselective alkynylation is often feasible.

Finally, although in general 2-halogenated azoles are employed as starting materi-
als for this type of reaction, oxazolyl and thiazolyl triflates 177 are also effective
substrates [285] for substitution (Scheme 10.90).
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10.4.6.3 Stoichiometric Organometallic/Transition Metal Mediated Reactions
Whereas the use of 1,3-azoles in coupling reactions with unsubstituted partners
(Section 10.4.6.1) is somewhat limited, the use of stoichiometric organometallic
reagents is very broad. The use of organostannanes, boronates and other metal-
substituted reagents in transition-metalmediated coupling reactions has beenwidely
examined.

10.4.6.3.1 Stille Cross-Coupling Reactions The availability of organostannanes and
their well-understood cross-coupling reactions has been applied to the coupling with
2-halogenated azoles.

The cross-coupling of the organostannane 178with 2-bromothiazole 169 has been
used to construct alkylidene-cephalosporine derivatives 179 asb-lactamase inhibitors
(Scheme 10.91) [241].

Trialkylstannyl-1,3-azoles have also been utilized as partners in the Stille reaction
with aromatic or heteroaromatic halides and triflates.

This reaction constitutes a useful solution for the selective arylation of azoles. For
example, a good yield of the arylated imidazole derivative 181 is obtained from
dibromide 180, with good selectively for C2 substitution (Scheme 10.92) [287].

Examples using N-protected imidazolyl-stannanes or thiazolyl-stannanes can be
found in the coupling with iodouracil derivatives [288]. Standard conditions were
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effective for incorporation of the thiazole moiety; however, the reaction of imidazole
182 required the use of stoichiometric silver(I) oxide (Scheme 10.93).

More recently, these conditions have been employed in the synthesis of RNA
containing imidazole attached directly to 5-position of uracyl heterocycles of tandem
G–U wobble base pairs. The modified uridine was prepared using a palladium-
catalyzed coupling of 5-iodouridine and 4-tributylstannyl imidazole [289].

Other examples of Stille couplings using 2-substituted 5-stannylimidazoles [290]
are applicable to the synthesis of cytotoxic agents [291] and an imidazolyl isomer of
the alkaloid didemnimide C [292]. 5-Stannylimidazoles have also been prepared by a
2,5-dilithiation, followed by a double stannylation and a 2-hydrodestannylation
sequence [291]. In addition, the stannyl group on imidazoles has been employed
for ipso-iodination reactions, as in the synthesis of inhibitors of phophodiesterase
PDE4 [293].

Finally, sometimes attempts to generate either coupling partner as a discrete
stannane lead to dimeric or decomposition products. In some cases it is necessary to
form the stannane in situ, such as in the synthesis of dimethyl sulfomycinamate,
which was prepared via in situ stannane formation from triflate 184 followed by
addition of bromide 183 to the reaction (Scheme 10.94) [294].

10.4.6.3.2 Suzuki–Miyaura Cross-Coupling Reactions Reactions of azole derivatives
that take advantage of a boron-containing partner in the coupling reaction are also
very common, but generally use an halogenated azole and an aryl or heteroaryl
boronic acid, many of which are now commercially available. The Suzuki reaction is
exceptionally tolerant of functional groups that often need protection under other
coupling conditions.
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Also in this case, 2-bromothiazole (169) [295a–c] is a common substrate for this
type of reactions (Scheme 10.95) [295a].

These cross-coupling reactions are a useful solution for the selective arylation of
azoles. For example, chemoselective reaction of 2,4-dibromothiazole 185 proceeds
selectively at C2 [Scheme 10.96 (1)] [296], as does the 2-bromo-5-chloro derivative 186
[Scheme 10.96 (2)] [297].

10.4.6.4 Zinc, Magnesium and Other Metal Mediated Couplings
Metal-substituted coupling partners for transition-metal mediated reaction, other
than tin and boron, are of interest for environmental (tin toxicity) or synthetic
(availability of boronates) reasons.

Zinc-mediated couplings have been developed. For example, highly active
zinc [298] generates 188, which efficiently couples with 2-iodothiazole (187) to afford
indolyl-thiazole adduct 189 (Scheme 10.97).
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Another class of cross-coupling reactions recently described are the Grignard
couplings. For example, the combination of zinc bromide and a Grignard reagent
allows for installation of the isobutylene fragment in thiazole 190 in the first step
(Scheme 10.98) towards the fungicidal natural product hectochlorin [299].

Newmethods for the coupling of thioether derivatives have been reported. Nickel
catalysis in combination with both aryl and alkyl Grignard reagents affords derivative
191 (Scheme 10.99) [300].

Finally, the use of other organometallic reagents has proven useful with haloge-
nated azoles, and include organoaluminates [301] with palladium catalysis as well as
Grignard reagents with the catalysis of nickel [302] and iron [303].

10.4.7
Reactions with Radicals

Free radical reactions are still very much less common in azole chemistry than those
involving, for example, electrophilic or nucleophilic reagents. In reactions involving
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free radicals, substituents have little orienting effect; however, rather selective radical
reactions are now known.

Phenyl radicals attack azoles unselectively to form a mixture of phenylated
products. The phenyl radicals may be prepared from the usual precursors: PhN
(NO)COMe, Pb(OCOPh)4, (PhCO2)2 or PhI(OCOPh)2. For example, the three
monophenylthiazoles are obtained in the practically constant ratio of 6 : 3 : 1
(2 : 5 : 4, respectively) using the photolysis of benzyl peroxide as source of radicals
in the presence of thiazole. In the case of 1-methylimidazole, phenylation, using the
decomposition of benzoyl peroxide at 118 �C, no change in the overall yield is
reported whether the solvent is 1-methylimidazole itself or acetic acid. In acetic acid,
however, only 1-methyl-2-phenylimidazole was formed, while with the excess of
heterocycle 1-methyl-2-phenyl- and -5-phenyl-imidazoles were isolated in the ratio
79 : 21 [304].

In contrast, alkyl radicals produced by oxidative decarboxylation of carboxylic acids
are nucleophilic and attack azoles at themost electro-deficient sites. Thus, imidazole
and 1-alkylimidazoles are alkylated exclusively at the C2. Similarly, thiazoles are
attacked in acidic media by methyl and propyl radicals to give 2-substituted deriva-
tives in moderate yields, with smaller amounts of 5-substitution. Similar reactions
occur with acyl radicals, for example with the CONH2 radical from formamide [305].

Recently developed are alkyl [Scheme 10.100 (1)] and aryl [Scheme 10.100 (2)]
radical cyclization onto azoles for the synthesis of bi-or tricyclic heterocycles [306].

10.4.8
Reactions with Reducing Agents

Oxazoles are readily reduced, usually with ring scission (Scheme 10.101). Only
acyclic products have been reported from the reductions with complex metal
hydrides of oxazoles. Similar results have been obtained using catalytic hydrogena-
tion or reduction by dissolving metals [307].

Imidazoles are generally resistant to reduction. Unless the NH of imidazole is
substituted, the preferential reaction with a complex hydride will be salt formation,
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which leaves a negative charge on the ring nitrogen. Consequently, the species
becomes resistant to reduction.

Finally, thiazole reduction is a very useful method for the synthesis of alde-
hydes [207]. The aldehyde is prepared via a three-step reaction sequence that consists
ofN-methylation of the thiazole ring 192, reduction of the resultingN-thiazolium salt
(not shown) to the thiazolidine 193 and, finally, HgCl2-promoted hydrolysis of the
heterocyclic nucleus of 193 (Scheme 10.102).

One of the first examples of this reaction was the thiazole-based one-carbon
homologation of 2,3-O-isopropylidine-D-glyceraldehyde 194 to protected D-erythrose
195 (Scheme 10.103) [308].

10.4.9
Electrocyclic and Photochemical Reactions

10.4.9.1 Diels–Alder Reactions and 1,3-Dipolar Cycloadditions
The distinction between these two classes of reactions is simply semantic for the five-
membered rings: Diels–Alder reaction at the F/B positions in 196 (four-atom
fragment) is equivalent to 1,3-dipolar cycloaddition in 197 across the three-atom
fragment, both providing the four p-electron component of the cycloaddition
(Figure 10.9) [309].

Oxazoles exhibit diene-type characteristics and undergo Diels–Alder reactions
with alkenic and alkynic dienophiles (HOMO-oxazole, LUMO-dienophile)
(Scheme 10.104) [310]. The presence of electron-releasing substituents on the
oxazole ring facilitates the reaction with dienophiles.
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The primary adducts of oxazoles with alkenes and alkynes are usually too unstable
to be isolated. An exception, for example, is compound 200, obtained from 5-ethoxy-
4-methyloxazole 198 and 4,7-dihydro-1,3-dioxepine 199, which has been separated
into its endo and exo components (Scheme 10.105) [310].

If the dienophile is unsymmetrical the cycloaddition can afford the two regioi-
somers. This is usually the case in the reactions of oxazoles with monosubstituted
alkynes; while with alkenes regioselectivity is observed. A general rule for the
reactions of alkyl- and alkoxy-substituted oxazoles is that in the adducts the more
electronegative substituent of the dienophile R4 occupies the position shown in
Scheme 10.104.

Acid- or base-catalyzed cleavage of the ether bridge inprimary cycloadducts leads to
pyridine derivatives (Scheme 10.106) [312]. The intermediates 201 cleave to unstable
dihydropyridinols 202, which aromatize in four ways:

. path A: pyridines are formed by dehydration;

. path B: 3-hydroxypyridines results from elimination of R3H;

. path C: elimination of R4H if R3 is hydrogen;

. path D: dehydrogenation if R3 is hydrogen.

Generally, more than one path is followed and a mixture of products results.
However, the reaction of oxazoles with alkyne dienophiles affords furans 203with

the elimination of cyanide in a retro-Diels–Alder reaction (Scheme 10.107) [313].
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Figure 10.9 A Diels–Alder reaction at the F/B positions in 196 (four-atom fragment) is equivalent
to 1,3-dipolar cycloaddition in 197 across the three-atom fragment.
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In contrast to oxazole, thiazole does not undergo Diels–Alder cycloaddition
reaction. This behavior can be correlated with the more dienic character of oxazole
relative to thiazole.

Dipolarophiles like DMAD (dimethyl acetylenedicarboxylate), dibenzoylacetylene
and ethyl propiolate condense with ylides 204 resulting from quaternization of 4-
methylthiazole with an a-bromo ketone or ester and subsequent deprotonation. The
1 : 1 molar adduct 205 rearranges to a pyrrolothiazine 206 (Scheme 10.108) [341].

N
O

R2

R3

R4

R5

R1

OR3

R4 R5

R1

+R2CN

203

Scheme 10.107

N
O

R2

R3

R4

R5

R1

N

R4

R5

R1

R2

OH
R3

N

R4

R5

R1

R2

N

R4

R5

R1

R2

N
R5

R1

R2

N

R4

R5

R1

R2

R3OHOHOH

A

-H2O

B

-R3H

C

(R3 = H)

-R4H

D

(R3 = H)

-H2

201 202

Scheme 10.106

S

NMe

O

Ph
Br

S

NMe
CH2COPh

Br-

S

NMe
CHCOPh

S

NMe
H

COPh

EWG

EWG
H

S

N

EWG

EWG

Ph
OH

Me

Et3N dipolarophile

204

205 206

Dipolarophile: DMAD                     89%
                       dibenzoylacetylene 89%

Scheme 10.108

868j 10 Five-Membered Heterocycles: 1,3-Azoles



Thiazoles itself reacts with DMAD at room temperature in DMF; the initially
formed adduct 207 rearranges either via a concerted suprafacial 1,5-sigmatropic shift
or by a non-concerted pathway proceeding via zwitterions 208 to 209 (R¼R1¼H)
(Scheme 10.109) [315].

2-Isopropylthiazole (209) reacts with dichloroketene in a [2 þ 2 þ 2] manner to
give 210 as the major product (Scheme 10.110) [316].

Finally, reactions of imidazoles 211 with DMAD usually do not lead to normal
Diels–Alder adducts but to products of N-alkylation (212) (Scheme 10.111) [317].

There are instances, nevertheless, in which some form of addition takes place. For
example, 1,2-dimethylimidazole gives the adduct 213 (Figure 10.10) [318].
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10.4.9.2 Photochemical Reactions
Oxazoles are generally photostable and are, indeed, produced by light-
induced rearrangements of isoxazoles [319]. However, irradiation of 2,5-diphenylox-
azole in ethanol gives a mixture of 3,5-diphenylisoxazole (214), 4,5-diphenyloxa-
zole (215), the phenanthrooxazole (216) and traces of benzoic acid. This
reaction proceed by two distinct paths, which are rationalized as shown in
Scheme 10.112.

In the case of photoaddition of acetone and other ketones to 1-, 2- and 1,2-di-
methylimidazoles the products are a-hydroxyalkylimidazoles 217, which are derived
from the selective attack of excited carbonyl oxygen at C5 (Scheme 10.113) [320].
Imidazole itself does not react.

Benzophenone reacts differently with 1,2-dimethylimidazole. The diarylketone
adds at the 2-methyl group [Scheme 10.114 (1)]; 1-benzylimidazole reacts at the
exocyclic methylene group [Scheme 10.114 (2)] [321].

More recently, a photoinduced procedure for the intermolecular hydroamination
of alkenes using azoles has been described. This reaction occurs in modest to good
yield for six- and seven-membered cyclic alkenes. Upon irradiation at 254 nm in the
presence ofmethyl benzoate and a small amount of triflic acid as an additive (20mol.
%), imidazoles can react with the alkene to afford complex Markovnikov
adducts [322].
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10.5
Derivatives

10.5.1
Dihydro-1,3-Azoles

The most important partially saturated derivatives of 1,3-azoles are 4,5-dihydroa-
zoles, and severalmethodshave beendeveloped to obtain substituted derivatives both
achiral and chiral. The impetus to this development was surely given by the wide use
oxazolines (another common name for 4,5-dihydroxazoles) have found in homoge-
neous catalysis [323]. For this reason, synthetic approaches to 4,5-dihydrooxazoles are
the blueprint of this section. The synthesis of 4,5-dihydroimidazoles and -thiazoles,
which also have important application in catalysis [324] and natural compounds
chemistry, are discussed in comparison with 4,5-dihydrooxazoles.

The most important and widely used approach is the cyclic dehydration of a
b-hydroxyamide derivative. Several reagents are commonly used to obtain this
dehydration and new ones are developed every year. Simple heating of the amide
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can in some cases afford the final oxazoline derivative but a high temperature is
generally required and efforts have been devoted to usingmilder reaction conditions.
All known reactions can be divided into twomain classes [Scheme 10.115 (1) and (2)]:
(i) reactions that give retention of configuration on the stereocenter that bears the
hydroxyl group; (ii) reactions that cause inversion of configuration on the same
stereocenter [325]. The first class of reactions resembles the biosynthetic process.

In the first class the commonmechanism is the activation of the carbonyl group of
the amide moiety to nucleophilic attack of the hydroxyl group, followed by elimi-
nation of water. The activation is performed through the use of Lewis or Brønsted
acids (Scheme 10.116).

This class of reagents includes TiCl4 [326], TsOH [327], Ph3PO-Tf2O [328] and
recently also Mo(IV) and Mo(VI) oxides [325].

The second class of reagents is instead based on the transformation of the hydroxyl
group into a good leaving group to perform a nucleophilic substitution by the amide
oxygen through an SN2 mechanism. This mechanism is described, using TsCl as
reagent, in Scheme 10.117.

This class of reagents includes Martin�s sulfrane [329], the Burgess reagent [330],
Mitsunobu reagents [331], DAST (diethylaminosulfur trifluoride) [332], polymer-
supported TsCl [333] and SOCl2 [334].
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In a similar process, a solid-phase supported synthesis of 4,5-dihydrooxazoles has
been performed, transforming the hydroxyl group into a iodide through the use of
PPh3, I2, imidazole [335].

Several of these methods can be extended to the synthesis of 4,5-dihydrothiazoles.
Thiazoles derivatives can be obtained by cyclodehydration of b-hydroxythioamides
with SOCl2-Py [336], and with MsCl/NEt3 [337], as well as by TiCl4-induced dehy-
dration of amides derived from vicinal aminothiols [338], cyclization of a serine-
derived thiolamide with [339] or without [340] the use of Burgess� reagent, dehy-
drocyclization of thioamides with deoxofluor or DAST [332, 341] or with Mitsunobu
reagents [342], and reaction of aminothiols with carboxylic acids [346].

Concerning 4,5-dihydroimidazoles, N-aminoethyl amides dehydrocyclize in the
presence of POCl3 [343], and this procedure has been applied also for the solid-phase
synthesis of imidazoline 218 (Scheme 10.118) [344].

A somewhat related procedure is used to produce imidazoline derivatives.
N-hydroxyethylamides are treated with excess thionyl chlorides, or thionyl chlorides
followed by PCl5, to afford N-chloroethylimidoyl chlorides 219. These intermediates
are treated with amines and anilines to produce N-chloroethylamidines 220, which
are converted into imidazolines upon workup with aqueous sodium hydroxide
(Scheme 10.119) [345].

Direct condensation of carboxylic acids with b-aminoalcohols is quite a drastic
procedure but works nicely with substituted aminoalcohols in the presence of acid
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catalysts, such as boric acids, to afford polysubstituted oxazolines such as 221
(Scheme 10.120) [346].

The use of a combination of PPh3, a base and CCl4 [347] allows the one-pot
condensation and cyclic dehydration of amino acids and b-aminoalcohols, in a
process that affords 2-aminomethyl-4,5-dihydrooxazoles 222 (Scheme 10.121) [348].

A microwave accelerated two-step, one-pot procedure has been proposed, using
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complete the cyclization of the intermediate amide formed. This procedure is also
convenient for the synthesis of thiazoline derivatives [349].

Several other derivatives of carboxylic acids can be used for the synthesis of
oxazoline. The reaction of esters with vicinal diamines affords the expected imida-
zolines and, in the sameway, also thiazolines and oxazolines. The reaction conditions
are refluxing toluene and Al(Me)3 [350].

Vicinal diamines, as well as aminoalcohols and aminothiols, also react with
orthoesters in the presence of HCl to afford the corresponding heterocycles. Often
the orthoester is the solvent [351].

The cyano group reacts with aminoalcohols in the presence ofmetal catalysts, such
as Cd salts [352] or ZnCl2 [Scheme 10.122 (1)] [353]. The same reaction can be
performed using aminothiols to afford thiazoline derivatives [354].

Muchmilder reaction conditions are neededwhen employing imidates and vicinal
aminoalcohols [355], aminothiols [356] and diamines [Scheme 10.122 (2)] [357].

Oxiranes and aziridines are converted, in a Ritter reaction, into 4,5-dihydroox-
azoles and 4,5-dihydroimidazoles by treatment with cyanides in the presence of
Lewis acids. The reaction occurs with inversion and, for substrate 223, is completely
regiospecific (Scheme 10.123) [358].
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opening of the aziridine ring takes place with total regio- and stereoselectivity, by the
mechanism proposed in Scheme 10.124 [359].

Avery general route to 1,3-azolines is represented by the cyclization obtained by the
aza-Wittig reaction of substituted azides. The reaction occurs under very mild
conditions and the synthesis appears particularly versatile. Triphenylphosphine
reacts with the azido group of 225 to afford the corresponding iminophosphorane
226, which then react with the vicinal ester group to give the ring closure
(Scheme 10.125) [360].

The use of polymer-supported triphenylphosphine makes the purification easier.
The same reaction can be performed using thioester to obtain the corresponding

thiazolidine [361].
The equivalent reaction for the synthesis of imidazolidine is more limited since it

is necessary to use activated amides to obtain the ring closure. For example, azido
imide 227 reacts to give the corresponding imidazolinone 228 (Scheme 10.126) [362].
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A more general route to imidazoline is obtained by treating the intermediate
iminophosphorane 229 with an acyl chloride and subsequently with NH3. Imidoyl
chloride 230 is the proposed reactive intermediate (Scheme 10.127) [363].

Propargylamides 231 are transformed into the correspondent 5-carboxymethy-
lene-4,5-dihydrooxazoles 232 in a Pd-catalyzed process in the presence of CO, an
alcohol and molecular oxygen (Scheme 10.128) [364].

A multicomponent reaction of oxazolones with aldehydes, primary amines and
TMSCl affords diastereoselectively highly substituted imidazolines. The proposed
mechanism proceeds through a 1,3-dipolar cycloaddition reaction of the mesoionic
intermediate 233 (Scheme 10.129) [365].
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Another multicomponent reaction (MCR) has been developed using aldehydes,
primary amines and isonitriles with AgOAc as catalyst. This MCR probably involves
an aldol-type addition of the isocyanide 234 to the in situ generated imine followed by
ring closure of the intermediate 235 (Scheme 10.130). The role of AgOAc is to
increase the acidity of the protona to the isonitrile group through complexation [366].

Isonitrile derivatives have also found application in reactions with N-sulfonyli-
mines, as 236, catalyzed by Ru or Gd complexes to afford stereoselectively the
corresponding N-sulfonyl-2-imidazolines 237 (Scheme 10.131).

The salt derived from Ph3PO/Tf2O is effective in the dehydrocyclization of
N-aminoethyl amides obtained by condensation of amino acids. This procedure

O

N

R2O

R4

O

R2
R3 NH2

N

N

R2

R4

R3

R2

HO2C

TMSCl

O

N

R2O

R4 TMS

N
R3

R2

HCl

TMSCl

233

-CO2

-CO2

51-78%

Scheme 10.129

R1 NH2

O

R4''R4

NC

R5'R5
+ +

AgOAc (2%)

CH2Cl2, r.t.

N

N

R1
R5'

R5

R4 R4''

N

R4'R4

R1
NC

R5'R5

NCR5

R5'

R4
R4'

NH

R

234

234

235

yields up to 91%

Scheme 10.130

N
Ts

R

+ CN CO2Me
RuH2(PPh3)

N NTs

R CO2Me

236
237

Scheme 10.131

878j 10 Five-Membered Heterocycles: 1,3-Azoles



affords imidazolines that still contain the amino acid functionality and preserves the
stereochemical integrity [367]. The same procedure has been used by the same
authors for the biomimetic synthesis of thiazoline starting from cystein-containing
dipeptides [368].

N,N-Dichloro-o-nitrobenzenesulfonamide (2-NsNCl2) is an effective electrophilic
nitrogen source for the direct diamination ofa,b-unsaturated ketones in the presence
of acetonitrile, without the use of any metal catalysts (Scheme 10.132) [369].

Peculiar to the synthesis of thiazolines is the phosphine-induced annulation of
thiolamides and2-alkynoates. The proposedmechanism, depicted inScheme10.133,
is based on the bielectrophilic character imparted by the phosphine to the triple
bond [370]. The addition of tributylphosphine to the polarized triple bond of 238
induces, after migration of the double bond, the formation of the ylide 239, which
undergoes cyclization to afford thiazoline 240.

Direct oxazoline–thiazoline conversion can be realized by thiolysis of oxazolines
with H2S in methanol/triethylamine, followed by cyclodehydration with Burgess
reagent 55 (for structure see Scheme 10.20). This protocol is high yielding, chemo-
selective and essentially free of racemization for C(5)-unsubstituted and trans-4,5-
disubstituted peptide oxazolines (Scheme 10.134) [371].
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A very mild transformation of secondary and tertiary amides into thiazolines
has been described using iminium triflates. The reaction proceeds at very low
temperature and is tolerant towards several functional groups [372]. The iminium
triflate 241 undergoes nucleophilic addition–elimination by 2-aminoethanthiol to
afford 242, which subsequently cyclizes with loss of the secondary amine to give 243
(Scheme 10.135).

10.5.2
Benzo-1,3-Azoles

The synthesis of this class of compounds presents peculiar approaches, since the
structure forces the syntheses towards cyclization reactions on a preformed 1,2
disubstituted benzene ring. Extremely rare are synthesis inwhich the benzene ring is
formed during the synthesis. However, this implies that many synthetic approaches
are common for benzoimidazoles, benzoxazoles and benzothiazoles. For this reason
all the procedures presented here are applied to the three different kinds of
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derivatives. Special syntheses that concern just one heterocycle are presented
together with similar generic procedures.

The starting material are usually the ortho-substituted anilines 244–246
(Figure 10.11).

These compounds, as well as their derivatives bearing other substituents on the
benzene ring, are generally available and stable. Only 2-aminobenzenethiol and its
derivatives are not very stable since they are oxygen sensitive. To circumvent this
problem they are often used in the formof derivatives such as acid salts, alkaline salts,
zinc salts or disulfides [373].

A general synthetic approach is the intramolecular nucleophilic addition of the
heteroatom substituent onto an imine moiety followed by oxidation to afford the
aromatic derivative. The imine can be used as startingmaterial but often the reaction
is performed on a mixture of the 2-substituted aniline 247 and the aldehyde. The
saturated intermediate 248 is subsequently oxidized to afford the final benzo-
derivative 249 (Scheme 10.136).

Several oxidants have been used, such as DDQ or the simple 1,4 benzoqui-
none [374, 375],MnO2 [376],Mn(OAc)3 [377], NBS [378], Ag2O [379], and oxone [380];
however, reactions in which the mixture of reagents is heated at high temperature in
DMSO [381], or even under solvent-free conditions with Yb catalyst have also been
described [382]. Remarkable is the reported synthesis of substituted benzoxazoles by
heating the aniline and the aldehyde in xylenes in the presence of activated carbon is;
the oxidant is presumed to be atmospheric oxygen [383]. Benzimidazoles can be
obtained at room temperature by condensing ortho-phenylenediamine and aldehydes
with silica-supported thionyl chloride [384]. Examples of reactions performed under
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NH2

X

O

HR2

[Ox]

X

N

R2

X = NR, O, S

N

X

R2

H
X

NH

H

H

H

R2

-H2O [Ox]

-H2O

247

248

249

Scheme 10.136

10.5 Derivatives j881



microwave irradiation, optimizing the time and the yields [385], have been reported,
as have several examples of reactions applied on the solid phase for the production of
libraries [374, 376, 386, 387] as well as for the synthesis of libraries in solution
phase [388].

The most important synthetic methods for the preparation of a wide range of
benzoazoles is the condensation of 2-substituted anilines with carboxylic acids or
derivatives (Scheme 10.137). Benzimidazole can be made in 80% yield by merely
standing amixture of o-phenylenediamine and formic acid at room temperature for 5
days; however, at 100 �C the process takes only 2 h and it is applicable to a wide range
of 2-substituted benzimidazole. Careful choice of reaction conditions is, however,
essential to obtain good yield for each substrate [389]. The most widely used
conditions (Phillip�s method [390]) involve heating the reagents in the presence of
hydrochloric acid, usually around 4M concentration. However, the range of reaction
conditions that has been used is wide: from merely heating the diamines with a
carboxylic acid [391], to heating in the presence of acids such asHCl [392], PPA [393],
and POCl3 [394].

If the o-diaminoarene has one of the amino groups substituted by an alkyl or aryl
group, 1-substituted benzimidazoles are formed [395].

As described in Section 10.5.1 the complex Tf2O/POPh3 acts as a dehydrating
agent favoring the formation of the benzoimidazole 250 in common solvents, giving
high yields in 30–60min at room temperatures (Scheme 10.138) [344].

A range of acid derivatives can substitute for carboxylic acids (Scheme 10.139):
esters [397], orthoesters [398], nitriles [399], imidates [400], acid chlorides (including
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phosgene) [401] and anhydrides [402]. Concerning the use of orthoester the reaction
conditions may vary considerably depending on the reactivity of the 2-substituted
aniline. Inmany cases an excess of orthoester is used – it is often the solvent – and the
reaction is conducted in the presence of catalytic TsOH [402], of a base [404] or of KSF
clay [405].

A few examples of the synthesis of benzimidazoles using amides have been
reported in the literature. Usually, these reactions occur at high temperature [406].

A procedure strictly related to the previous method is the reaction of N-acyl
derivatives of 244–246, which undergo thermal dehydration to afford the correspond-
ing benzoazoles (Scheme 10.140) [407–410].

The cyclization may occur by simple uncatalyzed thermolysis or with aqueous or
ethanolic acid as well as phosphoryl chloride. Recently, Mitsunobu reaction condi-
tions were also used [411].

Since the amide intermediate 252 is formed, the Beckmann rearrangement of o-
hydroxybenzophenone oxime 251 leads directly to benzoxazole 253
(Scheme 10.141) [412].
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In situ reduction (tin and acetic or hydrochloric acids, hydrogen/palladium
carbon, hydrogen/Raney nickel/hydrochloric acid) of o-nitroacylaminoarenes is
followed by cyclization to afford 1,3-benzoimidazoles usually in good yields
(Scheme 10.142) [413].

This general method can be applied to the synthesis of 2-unsubstituted benzimi-
dazoles by cyclization of an o-formamidoarylamine and to 1-aminobenzidimazoles
when o-acylaminophenylhydrazines are the substrates.

An example of a MCR can be included in this methodology since the reaction
of o-phenylenediamine derivative 254 affords, in the Ugi reaction, compound 255,
which upon deprotection cyclizes to afford benzimidazole derivatives 256
(Scheme 10.143) [414].

o-Nitrochlorobenzene easily undergoes nucleophilic substitution reactions with
sulfurated reagents. The adducts can successively cyclize, after reduction of the nitro
group, to afford the corresponding benzothiazole derivative (Scheme 10.144).

O,N- [415], N,N0-, S,N- [416] diacylated compounds can also cyclize under different
conditions, ranging from simple heating at 200 �C [417] to microwaves irradiation of
mixtures with montmorillonite K10 [418].
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A modification has been introduced to prepare 1-acetyl-2-methylbenzimidazole
(257) in quantitative yield (Scheme 10.145) [419].

Simple aniline derivatives, such as thioanilides (Jacobson method) [420] or
arylmonothiocarbamates (Jacobson–Hunter method) [421], cyclize to afford the
corresponding 2-substituted benzothiazole derivative in the presence of potassium
ferricyanide (Scheme 10.46).

Aryl isothiocyanate can be cyclized by heating with PCl5 to 2-chlorobenzothiazoles
(Hunter�s method) or with sulfur to 2-mercaptobenzothiazoles.

o-Halothioanilides undergo ring closure, presumably through an intermolecular
aromatic nucleophilic substitution, under basic conditions [422, 423] in the presence
of catalysts. The thioamide can also be formed in situ (Scheme 10.147) [424].

A novel palladium-catalyzed carbonylation of iodobenzene has recently been
linked to base-induced coupling and cyclization with o-phenylenediamine, to give
2-arylbenzimidazoles without having to use an aryl carboxylic acid (Scheme 10.148).

Provided that bases with pKa values around 6.6 are used, the yields of 2-arylben-
zimidazole lie in the range 70–98%. This route is tolerant of various functional
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groups and complements the classical approaches where the required benzoic acid is
not readily available [425].

The presence of a fused aromatic ring on the five-membered ring induces some
modification of the reactivity.

As expected from the nature of the heterocyclic portion, nucleophilic reaction
concerns essentially the five-membered ring in the lone reactive position, that is, 2.
Conversely, electrophiles attack the benzenoid ring. The fused aryl ring appears to
exhibit less aromatic stability than the hetero-ring, as evidenced by the easy oxidation
of benzimidazole to imidazole-4,5-dicarboxylic acid, and by its catalytic reduction
over platinum oxide to give 4,5,6,7-tetrahydrobenzimidazole.

Benzimidazole is subject to N-alkylation and N-acylation as imidazoles, although
the benzene ring reduces the reactivity as well as the basicity (Section 10.5.1).
Furthermore, the electron-withdrawing nature of the benzene ring increases the
facility with which nucleophilic substitution occurs at C2.

Since most electrophilic substitution reactions involve Lewis acids it is the
benzoazolium species that is involved and in this substrate it is the benzene ring
that is the more reactive.

Only a few electrophilic substitutions take place at the C2 of benzoazoles, for
example acylation in the presence of triethylamine (compare reactivity of 1,3-azoles,
Section 10.4).

Sulfonation with oleum at 100 �C affords 4-, 6- and 7-benzothiazole sulfonic acids
in the ratio 70 : 25 : 5%, respectively, while bromination at 100 �C in acetic acid gives
4,6-dibromobenzothiazole. Nitration of 2-methylbenzoxazole gives a 4 : 1 mixture of
6- and 5-nitro derivatives.

10.5.3
Tetrahydro-1,3-Azoles

Imidazolines, oxazolidines, and thiazolidines are easily obtained by reactions of
vicinal diamines, aminoalcohols and aminothiols, respectively, with carbonyl com-
pounds (Scheme 10.149).

The typical condensation is conveniently conducted in boiling benzene with
continuous removal of water [426] as described for the synthesis of oxazolidine
258, which was then transformed into the Garner aldehyde 259 (a useful synthetic
intermediate) (Scheme 10.150) [427].

However, the most recent syntheses can be achieved at rt. For example, imida-
zolidine 262 is obtained by simply reacting at rt the aldehyde 260 with the vicinal
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diamine 261 in the presence of molecular sieves [Scheme 10.151 (1)] [428]. In some
cases less reactive substrates, such as 263, may require activation, for example, the
use of montmorillonite KSF [Scheme 10.151 (2)] [429].
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Oxazolidines have also been obtained by these procedures [430], although an
application to the production of a library of 96 oxazolidines through a parallel solid-
phase synthesis required MgSO4 as dehydrating agent and a temperature of
60 �C [431].

Particularly interesting is the synthesis under acid catalysis of substituted imida-
zolidines bearing a perfluorinated phenyl ring on C2, such as 264 (Scheme 10.151).
On heating at temperatures ranging from 65 to 144 �C these compounds afford the
corresponding carbene even the in absence of any transition metal [432].

The easy nucleophilic substitution of a benzotriazolyl group by C-nucleophiles
allows the ready synthesis of unsymmetrical imidazolines. The process proceeds
through Mannich reactions between 1,2-ethanediamines, benzotriazole (BtH) and
formaldehyde at rt to produce imidazolidine 265. Finally, reaction of 265 with
different nucleophiles affords the products of general structure 266
(Scheme 10.152) [433].

Simple thiazolidine has been obtained by reacting at rt cysteamine hydrochloride
with formaldehyde. Under these reaction conditions cysteamine can be replaced by
aziridine and hydrogen sulfide [434]. Diastereomeric mixtures have obtained by
reacting N-protected amino glyoxals 267 with L-cysteine methyl ester (268)
(Scheme 10.153) [435].

Several derivatives of carbonyl compounds can be used, such as acetals [436],
hemiacetals [437], Schiff bases and orthoesters. The reaction ofN-tosylaminoalcohols
with orthoformates affords 2-methoxy-oxazolidines 269 that react with allyltrimethyl-
silane or trimethylsililenolether at 0 �C in a zinc chloride or trimethylsilyl triflate-
catalyzed reaction to afford new oxazolidine derivatives [438]. The kinetic derivative
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270 isomerizes to the all-cis oxazolidine 271 when treated at room temperature with
TMSOTf (Scheme 10.154).

Similar reactivity is found with titanium enolates [439].
Similar substrates, in the enantiopure form, have been obtained in the solid phase

by reaction of enantiopure aminoalcohols with solid-supported aldehydes and
subsequent reaction with a sulfonyl chloride [440].

A new procedure for the formation of oxazolidines derived from ketones has been
reported. It is based on the use of isopropoxytrimethylsilane and a catalytic amount of
trimethylsilyl trifluoromethanesulfonate and has found application in the synthesis
of a polymer-supported oxazolidine aldehyde [441].

A vicinal aminoalcohol moiety is a perfect starting point for the construction of an
oxazolidine ring; however, if the oxazolidine ring is built up in a different manner,
hydrolysis of the ring is an efficient way to obtain aminoalcohols in stereoselective
fashion.

Intramolecular conjugate addition of the N-hydroxymethyl moiety onto an
a,b-unsaturated ester affords the corresponding oxazolidine 272 with high stereo-
selectivity. Finally, the oxazolidine ring was cleaved (Scheme 10.155) [442].

Recently, a novel MCR has been developed using four components for the
synthesis of highly substituted 1,3-oxazolidines. The reaction may be catalyzed by
transitionmetals; however, the use ofmicrowaves can efficiently substitute themetal
catalysis (Scheme 10.156) [443].
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10.5.4
Alkyl-1,3-Azoles

The synthesis of alkyl-1,3-azoles is described throughout Section 10.3, for this reason
this short section will deal only with the most characteristic reactivity of the alkyl
residues linked to the heteroaromatic nuclei.

Alkyl groups attached to heterocyclic systems undergomany of the same reactions
as those on benzenoid rings. For example, free radical brominationwithNBS is often
performed on these substrates. Bromination with NBS of 2-alkylthiazoles affords
a-dibromothiazoles in good yields. The hydrolysis of these compounds leads to
2-acylthiazoles [444]. The side chains can, under certain circumstances, be oxidized.
For example, methyl thiazoles with SeO2 give thiazolecarbaldehydes but oxazole
derivatives cannot be easily oxidized since the oxazole itself is reactive towards strong
oxidants. However, it is stable to the Sharpless oxidation conditions with certain
precautions [445].

In addition to these reaction, alkyl groups in the 2-positions of imidazole, oxazole
and thiazole rings show reactivity that results from the easy loss of a proton from the
carbon atoms of the alkyl group adjacent to the ring [compare Scheme 10.1 (2)]. Very
strong bases, such as sodamide, LDA or butyllithium convert 2-methyl-oxazole and
-thiazole and 1,2-dimethylimidazole essentially completely into the corresponding
anions, although this transformation is not always straightforward since it is very
sensitive to reaction conditions and the nature of the substituents [446].

Butyllithium reacts with 1,2-dimethylimidazole at �80 �C to lithiate the 2-methyl
group, but at higher temperatures some 5-metalation also occurs [447], while
treatment with LDA at �78 �C gives 84% of 2-methyllithiation and 18% of 5-
lithiation [448]. Much better control was obtained with 1-dimethylaminomethyl-2-
methyl-imidazole, whichwas converted by butyllithium into the stabilized anion 273,
which reacted with benzyl chloride to form 274 (Scheme 10.157) [449].

BuLi reacts at �78 �C with 2-methylthiazole to give a mixture of 2-lithiomethyl
and 5-lithio derivatives in a ratio of 1 : 4 [450], while when the 2-position is blocked
4-or 5- methyl groups can be lithiated [451]. These anions all react readily even with
mild electrophilic reagents; thus the original alkyl groups can be modified through
alkylation, acylation, carboxylation and reaction with aldehydes [452].

Extremely useful are the reactions of alkyl-1,3-azoles in which traces of the reactive
anion is involved.

In aqueous or alcoholic solutions, many 2-alkyl-1,3-azoles react with bases to give
traces of anions.With suitable electrophilic reagents these anions undergo reasonably
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rapid and essentially non-reversible reaction. 2-Methyl and 2-ethylbenzothiazoles
condense with aromatic aldehydes at room temperatures in 50% aqueous sodium
hydroxide under phase-transfer catalysis conditions to afford secondary carbi-
nols [453], while 2-methyl thiazole heated at 150�C with ZnCl2 and benzaldehyde
gives the styryl derivatives. To confirm the peculiar reactivity of the 2-alkyl group,
neither 4- nor 5-methyl thiazole undergo such condensation.

1-Benzyl-2-methylimidazole 275 reacts with benzoyl chloride in the presence of a
tertiary amine to give the phenacyl derivative 276, but with 1-benzyl-5-methylimi-
dazole the product is the 2-benzoyl derivative due to the substitution at C2
(Section 10.4.1.2) [454]. The reaction has also been extended to 2-methylimidazole
[Scheme 10.158 (1)] [455].

The presence of other activating group makes the condensation reaction
even easier. In the presence of trimethylamine, 2-cyanomethylbenzimidazole
(277) condenses with acetone to give the unsaturated derivative 278 [Scheme 10.158
(2)] [456].

10.5.5
Quaternary 1,3-Azolium Salts

In the past literature methods for the synthesis of azolium and azolinium salts
have generally focused on N-alkylation reactions (Section 10.4.1.1). However,
these reactions are limited to reactive halides and are inappropriate for introduction
of chiral substituents. Since this class of compounds has very important applications,
new general synthesis of them are of substantial interest. In this context, imidazo-
lium salts are precursors of carbene ligands used for the synthesis of metathesis
catalysts [457] and have been used also as ionic liquids (Scheme 10.159) [458].
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Chiral imidazolium salts have been synthesized in one step (Scheme 10.160).
Starting from racemic amines the meso-forms were produced. In contrast, only the
C2-symmetric imidazolium salts are formed when enantiomerically pure amines are
employed [Scheme 10.160 (1)] [459].

In a similar reaction, starting from glyoxal, 1,3-diarylimidazolium chlorides are
obtained in a three-step sequence via the diimine 279, which is then reduced. Finally,
cyclization of the diamines afforded the imidazolinium salt 280 [Scheme 10.160
(2)] [460].

Benzimidazolium salts have been prepared through a subsequent Buchwald–
Hartwig amination and ring closure. This method is suitable for the preparation of
2-substituted salts and benzimidazolium salts that bear chiral substituents on one or
both the nitrogen atoms [Scheme 10.160 (3)] [409].

Solid-supported azolium and benzoalium salts have been prepared. Azole deri-
vatives react with bromoacetic acid to give azolium acetic acids that have been
anchored to a Wang resin [Scheme 10.161 (1)].

Compounds 281–283 have been employed in the Westphal reaction, obtaining
cycloiminium salts [Scheme 10.161 (2)].

The synthesis of 1-amino-3-alkylimidazolium 284 [461] and N-imidazolium-N-
methyl-amides 286 [462] has been reported. In the first case, the salts are obtained by
direct amination of the corresponding alkoxycarbonylazoles using mesitylenesulfo-
nylhydroxylamine (MSH) as the aminating agents (Scheme 10.162).

In the second case, the amino derivatives 284 are acylated with acyl chlorides,
and the resulting betaines 285 are alkylated with methyl iodide to give the
salts 286. Azolium N-aminides 287, generated from the corresponding
salts in the presence of N-ethyldiisopropylamine, and cycloimmonium N-ylides
are 1,3-dipoles, usually involved in 1,3-dipolar cycloaddition reactions
(Figure 10.12) [463]. 2-Alkyl- and 2-amino-substituted structures 288 have the
potential to function as 1,4-dinucleophiles through deprotonation and can react
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with 1,2-dicarbonyl compounds to afford a great variety of derivatives [464].
2-AlkoxycarbonylazoliumN-ylides-N-aminides 289 are species that have the potential
to act as efficient 1,4-dipole equivalents when they react with heterocumulenes such
as iso(thio)cyanates and carbodiimides [465].

N

Me

1. BrCH2CO2H
2. HBr N

Me

CO2H

Het Het Br-

OH
N

Me

Het Br-

OO

N

N

Me

Me

CO2
Br- N

N

Me

Me

CO2
Br-

N

S
Me

CO2
Br-

(1)

382282182

N

Me

Het Br-

OO

Het

Br-

OO

N
Me

Me

O

O

Me
Me

(2)

Scheme 10.161

N

N
CO2Et

Me
R4

R5

MSH

N

N
CO2Et

Me
R4

R3

NH2

MSTS-
(1)

MSTS-= Mesytilenesulfonate

RCOCl
K2CO3

N

N
CO2Et

Me
R4

R5

N

R

O

N

N
CO2Et

Me
R4

R5

N

R

O
Me

I-

MeI
(2)

284

285

284

286

Scheme 10.162

N

X

Z

Z = NH, CHR

N

X

Z

Y
δ−

δ−

Y = NH2, CH2R

Z = NH, CHR

N

X

Z

Y
δ+

δ−

Z = CO2R, CN, COR

X = NH

Y = OR1,3-Dipole 1,4-Dinucleophile
1,4-Nucleophile-electrophile

288 289287

Figure 10.12

10.5 Derivatives j893



N-Imidazolium-N-methylamides and bis-amides behave as highly selective
acylating reagents towards organometallics, leading to ketones [462] and diketones.
The metallation of alkoxycarbonyl-N-imidazolium-N-methyl amides with LDA
followed by the addition of a Grignard reagent affords 4-oxo and homologous esters
(Scheme 10.163).

10.5.6
Oxy- and Amino-1,3-Azoles

Cyanogen chloride (or bromide) as well as cyanamide are the reagents of choice for
the synthesis of 2-aminoderivatives. These reagents have found application in the
synthesis of the simple heterocycles as well as their benzofused derivatives by
reaction with a-hydroxy [466] or a-amino ketones (an extension of the Marckwald
synthesis in which cyanamide replaces cyanate, thiocyanate and isothiocyanate as a
counterpart of a-aminoaldehydes or ketones) (Scheme 10.164) [467, 468].

An application of this routes allows the synthesis of 2-aminoimidazole-containing
natural products, demonstrating the usefulness and power of thismethodology [469].
Another application of cyanogen chloride (or isocyanide dichlorides) for the
synthesis of 2-aminoimidazoles is the reaction with DAMN, in which the nucleo-
philic addition of DAMN proceeds through a mechanism analogous to that reported
above [470].
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The reaction of o-aminophenols with cyanogen bromide or cyanamide affords
2-aminobenzoxazoles 290 or benzoxazoleimines 291; yields are high and the general
method can be adopted to give 2-substituted amino derivatives (Scheme 10.165).

Alternatively, the reactivity of 2-bromo derivatives towards amines in the presence
of CuBr can be used as well as the direct nucleophilic amination of benzimidazole by
sodium amide.

The reaction of a b-aminoalcohol with BrCN affords the correspondent 2-amino-
oxazoline, whose reactivity is nicely exploited in the synthesis of the bis-oxazoline 292
(Scheme 10.166) [471].

The cycloaddition of azides across a double bond provides another method of
imidazole preparation. In this reaction an iminium species, 293, generated in situ
under Vilsmeier conditions, attacks an azide functionality [472]. The method is
intrinsically limited to2-dimethylaminosubstituted imidazoles294 (Scheme10.167).

A variation of the Hantzsch procedure uses thiourea with a-halocarbonyl
compounds to produce 2-aminothiazoles, while a-halocarboxylic acids afford the
correspondent 2-amino-4-hydroxythiazoles [Scheme 10.168 (1)].
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This reaction has found application for the development of a solid-supported
synthesis of 2-aminothiazole using the amino group as a convenient, traceless point
of attachment to acid-sensitive resins [Scheme 10.168 (2)] [473].

2,4-Diaminothiazole (295) can be prepared by the reaction of thiourea with
chloroacetonitrile (Scheme 10.169).

Mono-, di-, and tri-substituted arylthioureas 296 are very easily cyclized to
2-aminobenzothiazoles by the action of bromine in a solvent such as CHCl3, CCl4
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(Hugershoff �s method) followed by a treatment with SO2 and with a base
[Scheme 10.170 (1)].

Under oxidative or acidic conditions, or merely by heating the reagents, appro-
priately functionalized guanidines 297 cyclize to 2-aminobenzimidazoles
[Scheme 10.170 (2)] [474].

A variation of the Hantzsch synthesis has been introduced for the preparation of
2-aminoimidazoles using a-haloketones and N-acetylguanidines to afford the
corresponding 4(5)-substituted N-(1H-imidazol-2-yl)acetamides 298. These com-
pounds are then hydrolyzed to their corresponding 2-aminoimidazoles 299
(Scheme 10.171) [475].

Iminophosphoranes have found several applications in the synthesis of
2-aminoimidazole derivatives and particularly for the synthesis of natural pro-
duct [476]. Aza-Wittig-type reactions of properly substituted iminophosphorane
300with CO2, isocyanates or isothiocyanates afford heterocumulenes that undergo
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nucleophilic attack of the amino group to give the five-membered heterocycles 301
[Scheme 10.172 (1)].

Avariation to thismethod is theuse of azido esters in combinationwith isocyanates.
Theintermediatecarbodiimide302 reactswithaprimaryaminetoafford theguanidine
derivative 303 that finally cyclizes on the ester group [Scheme 10.172 (2)] [476].

Concerning the reactivity of 2-aminoazoles, some general points can be made. In
aminoazoles with the amino groupa to C¼N, the imino resonance structure justifies
the increased reactivity of the pyridine-like nitrogen atom towards electrophilic
reagents, but decreases that of the amino group. Consequently, protons, alkylating
agents andmetal ions usually react with amino azoles at the annular nitrogen. This is
exemplified by the behavior of 2-aminothiazole. If the thiazole reacts in its neutral
form, the ring nitrogen atom is the more reactive center, except when bulky
substituents are present at the C4 position. If the thiazole reacts in the form of its
conjugate base, the ambident anion leads to a mixture of products resulting from N-
ring and N-exocyclic reactivity [Scheme 10.173 (1)].

Under mild conditions, 2-aminothiazoles react at their exocyclic nitrogen atom
with aromatic aldehyde, yielding Schiff bases. Under more forcing conditions,
however, the 5 position can also react [Scheme 10.173 (2)].

Acylation of 2-, 4- and 5-aminothiazoles takes place on the exocyclic nitrogen atom.
Acetic anhydrides acetylate aminothiazoles and benzothiazoles on the exocyclic
nitrogen atom. The reaction of 2-aminothiazoles with alkyl or aryl isocyanates or
isothiocyanates gives the corresponding thiazolylureas or thioureas.

Alkylation of D4-thiazolin-2-ones may yield O�R or N�R derivatives according to
experimental conditions. With diazomethane in ethanol, O-methylation takes place
whereas N-methylation occurs when a basic solution of the thiazolinone reacts with
methyl iodide. Alkylation of 2-amino imidazole occurs at the exocyclic N atom.

Azolidin-2-ones are popular tools in asymmetric synthesis and as synthetic
intermediates, and newmethods for their synthesis are described in the literature.
Azolidin-2-ones are commonly prepared fromaminoalcohols, vicinal diamines and
aminothiols by incorporation of a carbonyl unit. Additions to the list of reagents
that effect the transformation are bis(trichloromethylcarbonate) [477, 478] and
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trichloromethyl chloroformate [479], which offer the advantages of easier handling
and reduced risk of exposure compared to phosgene [480]. Another reagent of
choice is carbonyldiimidazole, which by reaction with cysteine affords derivative
304 [Scheme 10.174 (1)] [481].

Vicinal aminoalcohols and diamines react with Boc2O/DMAP to afford the
corresponding azolidinones 305 substituted on the N atom with Boc groups, while
aminothiols are less efficient in this transformation [Scheme 10.174 (2)] [482].

A recent method for the effective synthesis of imidazolidinones and oxazolidinones
is MW irradiation. The proposed mechanism is shown in Scheme 10.175 [483].

The ability of the benzotriazole nucleus to act as a good leaving group has
found another application in the synthesis of polysubstituted imidazolidinones.
Treating amine 306 with s-BuLi and subsequently with an aldimine or an aldehyde,
affords imidazolidinones or oxazolidinones bearing a benzotriazolyl group on C4.
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With imidazolidinones 307 it is possible to substitute the benzotriazolyl group
with various C-nucleophiles to obtain differently substituted imidazolinones
(Scheme 10.176) [484].

Aziridines in the presence of Lewis acids rearrange to afford substituted oxazo-
lidinones. This approach has found interesting application for the production of
enantiopure 4- and 5-carboxymethyl oxazolidinones, which are important precursors
for the synthesis of amino acid analogs or as starting material for the synthesis of
natural products. In the first case, aziridine 308 was treated with methyl chlorofor-
mate to afford the corresponding oxazolidinone 309 with retention of configuration
on the reacting stereocenter due to a double inversion of configuration as described in
Scheme 10.177 [485].

In contrast, treating aziridine 310 with Lewis acids induces a rearrangement in
which it is the carbonyl group of the carbamoyl moiety, activated by the exit of
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isobutene, that induces the enlargement of the three-membered ring
(Scheme 10.178) [486].

The reaction of vinyl epoxides with aryl isocyanates is facilitated by Pd cataly-
sis [487]. The intermediate p-allyl complex equilibrates to afford stereoselectively the
cis derivative from either isomer of the epoxide [Scheme 10.179 (1)].

The same reactivity has been extended to aziridines [488] and to thiiranes [489]; for
every substrates the enantioselective version of the transformation has also been
described [Scheme 10.179 (2)].

Oxazolidinones can be obtained also through a palladium-catalyzed oxidative
carbonylation of b-aminoalcohols [490]. In an analogous procedure vicinal diamines
are converted into imidazolidinones through an oxidative carbonylation catalyzed by
W(CO)6 [491].

Particularly important, especially for the breakthrough that it allowed in the
synthesis of tetrodotoxin [492], is the Rh-catalyzed C�H insertion reaction for the
oxidative conversion of carbamates into oxazolidinones [493] and the more recent
expansion to the synthesis of imidazolidines (Scheme 10.180) [494].

Some specific reported syntheses for the obtainment of benzo-1,3-azol-2-ones have
found recent application. Themost direct approach to these derivatives is the reaction
of a 2-substituted aniline with the general reagent 311 (Scheme 10.181).

The reagent of general formula 311 stands for a series of different reagents in
which the Z groups represents good leaving groups. For this reason, good reagents
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are phosgene [495], urea [496],carbonyldiimidazole [497], dimethyl carbonate [498],
N,N-diethylcarbamyl chloride and carbon dioxide [499].

10.5.7
Azole N-Oxides and Azoline N-Oxides

Oxazole and imidazole N-oxides cannot be synthesized by oxygenation of oxazoles
or imidazoles, respectively. The only method described for the synthesis of oxazole
N-oxides is the condensation of monooximes of 1,2-dicarbonyl compounds with
aldehydes in acidic medium [Scheme 10.182 (1)]. The aldehyde may be aromatic or
aliphatic (including formaldehyde) and the oxime may be derived from an aromatic
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diketone or it may be an a-keto aldoxime, leading to a 2,5-disubstituted oxazole N-
oxide. For imidazole N-oxides the most common approach is the condensation of an
a-oximinoketone with an aldehyde and a primary amine. The use of an hydroxyl-
amine in this condensation [Scheme 10.182 (2)] or the reaction of the aldehyde oxime
or aldehyde with a 1,2-dioxime [Scheme 10.183 (3)] afford 1-hydroxyimidazole-3-
oxides.

A similar method has been used for the synthesis of 4,5-dihydrooxazole-3-oxides
(cyclicC-alkoxynitrones). In this case the condensation of an b-hydroxyamino alcohol
hydrochloride with an ortho ester (Scheme 10.183, route A) [500] or an amide acetal
(Scheme 10.183, route B) [501] affords the desired compound. 4,5-Dihydro-1H-
imidazole-3-oxides (cyclic C-aminonitrones) have been prepared using route A with
N-(2-aminoethyl)hydroxylamine dihydrochloride as starting material.

Treatment of 2-(hydroxyamino)alkan-1-one oximes with phenyl or methylglyoxal
affords 4,5-dihydro-1H-imidazole 3-oxides. The reaction is occurs through the
formation of intermediates 312–314 (Scheme 10.184).

On the other hand, oxidation of 4,5-dihydrooxazoles with 3-chloroperoxybenzoic
acid (MCPBA)producesoxaziridines that undergo isomerization to the corresponding
nitrones upon treatment with trifluoromethanesulfonic acid (TfOH) [Scheme 10.185
(1)] [502].
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Lithiation of 315 followed by treatment with 4-toluensulfonyl chloride or diphe-
nylphosphoryl chloride [503] affords the C-chloronitrone or the C-phosphorylni-
trone, 316 and 317, respectively [Scheme 10.185 (2)].

Oxidation of 315 in methanol with lead(IV) acetate or manganese(IV) or lead(IV)
oxides affords predominantly the correspondingC-methoxynitrones 318 [504], which
react with potassium hydrosulfide to afford the thiohydroxamic acids 319 [505].
Compound 319 has also been obtained by treatment of the nitrone 320 with sodium
sulfide (Scheme 10.186) [506].

Finally, the reactivity of azole-N-oxides is somewhat similar to that of the azolo-
nium ions, particularly when the cationic species is involved. In the case of imidazo-
line-N-oxides (cyclic C-amino nitrones) and oxazoline-N-oxides (cyclic C-hydroxy
nitrones) the reactivity is well known. These compounds are versatile synthetic
intermediates that readily undergo 1,3-dipolar cycloaddition [507] and addition of
nucleophiles [508] and are also useful as radical spin traps [509].
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11
Five-Membered Heterocycles with Two Heteroatoms: O and S
Derivatives
David J. Wilkins

11.1
Introduction

Ageneral review of chemistry for all the derivatives described in this chapter covering
the period up to 1995 can be found in Comprehensive Heterocyclic Chemistry first
edition (Volume 6) and second edition (Volume 3).

11.2
1,2-Dioxoles and 1,2-Dioxolanes

11.2.1
Introduction

Most work on 1, 2-dioxole systems has been on derivatives of the fully saturated 1, 2-
dioxolane (1) and as cyclic peroxides these have been the subject of three major
reviews [1–3]. 1,2-Dioxoles are unstable and they have only been detected spectro-
scopically at temperatures below �60 �C [4].

O
O

1

11.2.2
Relevant Physicochemical Data

11.2.2.1 NMR Spectroscopy
1H and 13C NMR data for trans- and cis-3, 5-dimethyl-1,2-dioxolane 2, 3 have been
published [5]; proton resonances appear (in ppm) at dH¼ 4.25 cis and 4.3 trans for
H3, at dH¼ 2.77 cis and 2.19 trans for H4, and at dH¼ 4.25 cis and 4.30 trans for H5.

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
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The cis and trans isomers are readily identified by 13C NMR, which shows cis d 19.25
Me, 49.34 C4 and 77.30 C3,5; trans d 18.40 Me, 48.61 C4 and 77.04 C3,5.

O
O

O
O

2 3

11.2.2.2 Electron Diffraction Studies
Electron diffraction has been used to obtain the following dimensions for the
heterocyclic ring of perfluorinated 1,2-dioxolane (4) [6]: O�O, 1.443A

�
; C�O,

1.377A
�
and C�C, 1.531A

�
; C�C�C, 98.1�; C�C�O, 107.3� and C�O�O, 102.9�.

O
OF

F

F F
F

F

4

11.2.3
Synthesis

11.2.3.1 Synthesis by Ring Construction
Oxidative addition of elemental fluorine to appropriate 1, 3-dicarbonyl compounds
provides a convenient synthesis of perfluorinated 1,2-dioxolanes. Compound 4 can
be synthesized by treatment of difluoromalonyl difluoride with fluorine [6] and 5 is
similarly prepared from either hexafluoroacetylacetone or the copper(II) or nickel(II)
chelate of trifluoroacetylacetone [7].

O
OF

F3C

F F
F

CF3

5

Several studies have appeared on the formation of 1, 2-dioxolanes either by endo
cyclization of allylic hydroperoxides [8] or by exo cyclization of homoallylic hydro-
peroxides upon treatment with various electrophilic reagents [9]. For example,
cyclization of the homoallylic peroxide 6 with ButOCl affords the 1, 2-dioxolane 7
(Scheme 11.1) [10].

Photooxygenation of arylcyclopropanes 8 (R¼Ph) provides direct access to the
corresponding 1,2-dioxolanes 9 (R¼Ph), although the reaction is non-stereospecif-
ic [11]. The addition can also be radicalmediated, as in the conversion of 8 (R¼H) to 9
(R¼H) by treatment with O2 in the presence of PhSeSePh and AIBN
(Scheme 11.2) [12].
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a,b-Unsaturated imines 10 react directly with singlet oxygen to give 3-amino-1,2-
dioxolanes 11 (Scheme 11.3) [13].

11.2.3.2 Ring Transformations of Heterocycles Leading to 1,2-Dioxoles and 1,2-
Dioxolanes
3-Hydroperoxypyrazolines 12 react readily with oxygen with the loss of N2 to give
3-hydroxy-1,2-dioxolanes 13 (Scheme 11.4) [14].

Lewis acid treatment of 1,2,4-trioxolanes givesmetallated carbonyl oxides thatmay
be trapped by cycloaddition to allylsilanes to give 1,2-dixolanes 14 [15].
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OO
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6                                                          7
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Scheme 11.1

Ph
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8, R = H or Ph                                     9, R = H or Ph

Scheme 11.2
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Scheme 11.3
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OOH
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Scheme 11.4
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11.2.4
Reactivity of 1,2-Dioxoles and 1,2-Dioxolanes

Solution thermolysis of the bicyclic dioxolane 15 gives epoxy aldehyde 16 in non-polar
solvents and the diketone 17 in polar solvents [16]. Flash vacuum pyrolysis of 15 at
450 �C and 10�3 Torr gave only 16 [17]. Monocyclic dioxolanes such as 18 [17] and
19 [18] give under similar conditions a mixture of epoxide and carbonyl compounds
(Scheme 11.5).

11.3
1,3-Dioxoles and 1,3-Dioxolanes

11.3.1
Introduction

There has been relatively little work published on the fully conjugated system, 1,3-
dioxolium salts 20 and their benzo analogues 21, but there are reviews on these
compounds [19, 20].More recently a comprehensive review chapter on 1,3-dioxolium
salts has appeared [21]. A much larger volume of work has been published on 1,3-
dioxoles 22, although most work published in this area is on the fully saturated
compounds, 1,3-dioxolanes 23. A major review of these compounds has been
published [22].

OO
O

O

OO OO
+ +

20                               21                                22                           23

OO OO

H

OO

H

O
O O

O

R1

R2

Ph

and / or

15                                          16                                           17

18                                      19

Scheme 11.5
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11.3.2
Relevant Physicochemical Data

11.3.2.1 X-Ray Diffraction Studies
X-Ray diffraction studies on the 1,2-dioxolan-2-yl cation 24 has given molecular
dimensions (Table 11.1). The data show the structure to be essentially planar at
C2 [23].

OO +

24

11.3.2.2 NMR Spectroscopy
Table 11.2 presents the 1H NMR spectra of 1,3-dioxolane derivatives.

13C NMR data for 1,3-dioxolium salts 24–26 and 1,3-dioxolane 27 are shown in
Table 11.3. The high frequency for C2 signals in 1,3-dioxolium salts is notable when
compared to the dioxolane 27.

Table 11.1 X-ray structural data for 24.

Bond length (A
�
)

O1�C2 C2�O3 O3�C4 C4�C5 C5�O1
1.281 1.282 1.472 1.505 1.480
Internal angle (�)
O1 C2 O3 C4 C5
108.1 103.4 103.1 108.6 116.8

Table 11.2 1H NMR data for ring protons of 1,3-dioxolane derivatives.

Compound dH (ppm)

2H 4H 5H Reference

4,4-Dimethyl-1,3-dioxolane 4.9 3.51 [24]
2-Imino-1,3-dioxolane 4.40 4.40 [25]
cis-2,2,4,5-Tetramethyl-1,3-dioxolane 4.15 4.15 [26]
trans-2,2,4,5-Tetramethyl-1,3-dioxolane 3.38 3.38 [26]
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OO

R R

OO OO

CF3F3C

+ +

24, R = Ph                    26                               27
25, R = Me

17O NMR studies have been carried out on 1,3-dioxolanes 28 and a few simple
derivatives. The chemical shift for the parent compound has been given variously as
dO (with respect to H2

17O): þ 34 [29], þ 35.8 [30] and þ 34.8 [31].

O

O

28

11.3.3
Synthesis

11.3.3.1 Synthesis by Ring Construction
1,3-Dioxolium salts have been prepared from a-diazoanhydrides 29 by palladium-
catalyzed decomposition to give a carbene intermediate that undergoes electrocy-
clization to give 30 (Scheme 11.6) [32].

Table 11.3 13C NMR data for ring carbons of 1,3-dioxole derivatives.

Compound dC (ppm)

C2 C4 C5 Reference

24 174.7 146.6 146.6 [27]
25 175.4 147.9 147.9 [27]
26 181.9 90.6 90.6 [27]
27 101.5 153.2 69.1 [28]

O Ar
2

O
Ar

1 N
2

O

OO

Ar
1

Ar
2

29                                                  30

+

Scheme 11.6
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Other methods that involve the decomposition of diazo compounds include the
reaction of the diazoketone 31 with PhCO2Tf to afford the diazolium salt 32 [27] and
the copper-catalyzed decomposition of the 2-diazo-1,3-dicarbonyl compound 33,
which in the presence of aldehydes or ketones gives 4-acyl-1,3-dioxoles 34
(Scheme 11.7) [33].

Rhodium-catalyzed reaction of the diazo esters 35 with carbonyl compounds,
R1COR2, provides a new route to silyl dioxolanones 36 in a process involving an
intermediate carbonyl ylide (Scheme 11.8) [34].

The treatment of chloroesters 37 and 38 with SbCl5 results in cyclization with
rearrangement of the carbon skeleton to give, respectively, the salts 39 [35] and 40 [36]
(Scheme 11.9).

Vinyl esters such as 41 react with benzoyl or t-butyl hexachloroantiminoate to give
the 1,3-dioxolium salt 42 (Scheme 11.10) [37, 38].

A simple preparation of 2-methyl-1,3-dioxolane (44) involves heating the vinyl
ether 43 with KOH to give 44 in 66% yield [39]. A similar preparation involving enol
ethers starts with 45, which reacts with either EtMgBr or Bu2

iAlH followed by
benzaldehyde to give hydroxyalkyldioxolanes 46 (Scheme 11.11) [40].
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Treatment of glycidic esters like 47 with cationic zirconium species and AgClO4

affords the dioxolane 48 [41]. Epoxides like 49 react with CO2 to give dioxolanones 50
(Scheme 11.12) The reaction may be catalyzed either by mixed alkali metal or
manganese halides [42] or alkali metal/lead/indium halides [43]. The use of ionic
liquids to catalyze this reaction has also been described [44].
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932j 11 Five-Membered Heterocycles with Two Heteroatoms: O and S Derivatives



Treatment of the acetylenic alcohol 51 with aq LiOH affords the dioxolane 52; the
yield of this reaction is increased by the addition of acetone (Scheme 11.13) [45].

Reaction of the stabilized iodonium ylide 53 with ketones affords 1,3-dioxoles 54
(Scheme 11.14) [46].

The palladium-catalyzed reaction of propargyl acetates with CO in methanol
results in cyclization to give dioxolanes 55 (Scheme 11.15) [47].
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Treatment of a-hydroxyketones, R1CH OH COR2, with triphosgene, Cl3CO2CO,
gives the 1,3-dioxol-2-ones 56 in moderate yield [48].

OO

O

R1 R2

56

2-Imino-1,3-dioxoles 57 can be prepared either by electrochemical reduction of
benzils 58 in the presence of Ar2N¼CCl2 [49] or by the treatment of bis tin derivatives
such as 59with Ar2NCS (Scheme 11.16); 59 also reacts with CS2 to give 1,3-dioxole-2-
thiones [50].

2,2-Disubstituted-1,3-dioxolanes 61 may be formed by nucleophilic attack with
stabilized carbanions on 2-haloalkyl esters 60 (Scheme 11.17) [51].

The transfer hydrogenation of the tosylacetophenone 62 using a chiral ruthenium
catalyst and formic acid as the hydrogen source unexpectedly gives the chiral
dioxolanone 63 in 94% ee (Scheme 11.18) [52].
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1,2-Diols like 64 react with oxalyl chloride and triethylamine to give the 1,3-
dioxolanone 65 rather than the expected six-membered ring products
(Scheme 11.19) [53].

The treatment of styrene oxide with ruthenium trichloride in acetone gives the
dioxolane 66 [54]. Titanium-based catalysts for the reaction of epoxides with acetone
to give 2,2-dimethyl-1,3-dioxolanes are TiO CF3CO2 and TiCl CF3SO3 [55].

O

O

Ph
66

The most widely used method for the preparation of 1,3-dioxolanes involves the
reaction of carbonyl compounds with 1,2-diols. A wide range of catalysts has been
used in this reaction, trimethylsilyl triflate in the presence of a trimethylsilyl
ether [56], K10 montmorillonite under solvent-free conditions [57, 58], scandium
triflate [59] and N-benzoylhydrazinium salts [60].

11.3.3.2 Ring Transformations of Heterocycles Leading to 1,3-Dioxoles and
1,3-Dioxolanes
The treatment of 1,3-dioxane 67 with mCPBA provides an interesting route
into 1,3-dioxolane aldehydes 68, presumably via an epoxide rearrangement
(Scheme 11.20) [61].

11.3.4
Reactivity of 1,3-Dioxoles and 1,3-Dioxolanes

The phenyliminodioxolane 69 (R¼Ph) undergoes isomerization to the oxazolidinone
70 upon heating at 200 �Cwith LiCl [62]. The parent compound 69 (R¼H) undergoes

OTs

O

Ph
O

O PhO

62                                                    63

Ru*

HCO2H

Scheme 11.18

OH

R2 OH

R1

O

OR1

R2

O

64                                                 65

Scheme 11.19
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spontaneous isomerization and trimerization to give the 1,3,5-triazine 71
(Scheme 11.21) [63].

11.3.4.1 Reactions with Nucleophiles
There has been several studies on stable cations such as 72 and their reactions with
nucleophiles; 72 reacts withNaOMe atC2, butwithNaHCO3 or LiCl at C4 to give ring
open 2-hydroxyethyl or 2-chloroethyl methyl carbonates, respectively [64]. The
reaction of salts like 73 with acetylenic Grignard reagents takes place at C2 [65].

O

OMe
O BF4

O

R
O ClO4

+ - + -

72                                                    73

Efficient hydrolysis of 2,2-disubstituted-1,3-dioxolanes to carbonyl compoundshas
been an area of much interest. Methods for the hydrolysis of 2,2-dimethyl-1,3-
dioxolanes include cerium ammonium nitrate and oxalic acid [66] and a polymer-
supported dicyanoketene acetal [67]. Cleavage may also be achieved using Ph3P/
CBr4 [68] or CpTiCl3 [69], other reagents used include DDQ in aq. CH3CN [70] and
TeCl4 [71].

OO

R1 R2

OO

R2R1

CHO

67                                            68

Scheme 11.20

O

O

RN

N N

N O

O

O

OH

HO

OH

N

O

O Ph

70                                                        69

71

Scheme 11.21

936j 11 Five-Membered Heterocycles with Two Heteroatoms: O and S Derivatives



11.3.4.2 Uses in Asymmetric Synthesis
There has been a large volume of work published on the use of 1,3-dioxolanes in
asymmetric synthesis. TADDOL complexes 74 have been used widely in asymmetric
synthesis and have been the subject of a major review [72]. Further developments in
this area involve the synthesis of polymer-supported TADDOLs [73] and TADDOL
crown ethers [74]. Benzylcyclohexanone has been deracemized by the formation of
an inclusion complex with TADDOL compound 74, R,R¼cyclohexyl. The X-ray
structure of this complex has also been published [75]. The TADDOL complex 74,
R,R¼cyclopentyl, has been used to direct enantioselective Diels–Alder reactions in
aqueous solution [76].

O

O

R

R
Ar Ar

Ar Ar

OH

OH

74

There has also been considerable work on C�C bond formation by attack on
suitable dioxolane systems by carbanions, and of particular interest has been the use
of chiral dioxolanes in asymmetric synthesis. Conjugate addition of organozinc
compounds to chiral dioxolanes such as 75 and 76 affords adducts with a high degree
of enantioselectivity [77, 78].

OO

O

Bu

O

O
MeO2C

75                                       76

11.3.4.3 Reactions with Carbenes and Radicals
Treatment of 1,3-dioxolane (23) with ferrous sulfate and a peroxide in the presence of
pyridine gives predominantly 77 together with small amounts of products resulting
from reaction at the 4-position of the dioxolane and the 2-position of the pyridine [79].

OO N
O

O

23                                        77

The reaction of 1,3-dioxolanes with carbenes generally proceeds by insertion into
the C2�H bond and this has been examined for phase-transfer generated Cl2C: and
Br2C: [80, 81] and for various arylchlorocarbenes (ArClC:) [82, 83]. Ethoxycarbonyl-
carbene behaves differently and reacts with 78 by insertion into the C2�O bond to
give 79 [84].
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11.3.5
Compounds of Interest

1,3-Dioxolane derivatives such as 80 have been used as a fungicide [85] and related
derivatives have anti-fungal activity [86–88]. The structurally related compounds 81
and 82 have been prepared as intermediates for ketoconazole synthesis by lipase-
catalyzed kinetic resolution [89].

O

O
NN

Cl
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O

F
Ph

O

O

Cl
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R
Br

80                                                            81, R = CH2OH
                                                                82, R = CO2H

Tertiary ammonium salts containing a 1,3-dioxolane ring (83) have been described
as muscarinic acetylcholine antagonists [90].

O

OAr

N
+

I

83

11.4
1,2-Dithioles and 1,2-Dithiolanes

11.4.1
Introduction

The 1,2-dithiolane system 84 is known but the partially unsaturated 1,2-dithiole
system 85 is very common, along with its derivatives 85 (X¼O, S, NR). There are only
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a few references to systemswhereX¼H,Hor alkyl. Cationic species such as 86 and 87
are also known. 1,2-Dithiolanes have a greater reactivity than acyclic disulfides, which
is attributed to some repulsion between the lone pairs on the adjacent sulfur
atoms [91]. 1,2-Dithiolium cations are aromatic 6p systems and are very stable
except to nucleophilic reagents. A comprehensive review of 1,2-dithiolium salts has
been published [92].

S S
S S

X

RR
S S

+

R
S

+
S

+

RR

84                       85                       86                             87

11.4.2
Relevant Physicochemical Data

X-Ray methods for 1,3-dithiolanes have shown the S�S bond distances to be in the
range of acyclic disulfides [91]. Figure 11.1 shows the bond lengths and angles of 1,2-
dithiol-3-thione [93].

The 1H NMR spectrum of 1,2-dithiolane 84 has signals at d2.09 ppm for H4 and
d3.36 ppm for H3 and H5 [91]. Protons in 1,2-dithiole-3-ones absorb at higher field
than the corresponding 1,2-dithiole-3-thiones. In the unsubstituted 1,2-dithiolium
ion 88, the H3 and H5 protons absorb at d10.7 ppm and the H4 proton at
d8.88 ppm [91].

S S
+

88

The 13C NMR chemical shifts for 1,2-dithiolanes are�41 ppm for C3 and C5 and
56 ppm for C4; the chemical shifts for 1,2-dithiole-3-one are 216 ppm for C3,
140.2 ppm for C4 and 155.1 ppm for C5 [94].

SS

S

1.67A

1.77A

2.05A

1.69A

1.34A 1.38A

119.04o

120.0o

111.1 o

96.8o93.0o

Figure 11.1 Geometry of 1,2-dithiol-3-thione.
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11.4.3
Synthesis

11.4.3.1 Synthesis by Ring Construction
The synthesis of 1,2-dithioles and 1,2-dithiolaneshas been the subject of a review [95].
The most practical method for the synthesis of 1,2-dithiols involves direct S�S bond
formation, usually via oxidation or displacement of a leaving group on one of the
sulfur atoms. For example, treatment of dithiols with bromine on hydrated silica has
affords 1,2-dithiolanes 84 and 89 [96].

S S S S

OH

OH

84                       89

Amildmethod for the preparation of 1,2-dithiolanes involves the treatment of 1,3-
dithiocyanates with Bun4N

þF� [97].
Treatment of b-ketoamides such as 90 with Lawesson�s reagent gives the 1,2-

dithiole-3-thione 91 [98]. In a similar preparation, treatment of malonates 92
with Lawesson�s reagent and sulfur in xylene in the presence of a catalytic amount
of 2-mercaptobenzothiazole and ZnO affords the 1,2-dithiol-3-thione 93 [99].

S S

S
N
H

O O
Ph

S S

SRS
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RO OR

O O

R1

90                                       91

92                                       93

Dicyclic 1,2-dithiolane 94has beenprepared by treating either the ylidePh3¼Ar2 or
the thione Ar2C¼S with sulfur in boiling xylene in the presence of maleic anhy-
dride [100]. The cycloaddition of thiocarbonyl sulfides with reactive alkynes gives
access to 1,2-dithioles 95 [101].
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SPh
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1,2-Dithiolanes are formed by the reaction of 1,3-halopropanes or haloalkeneswith
disulfide ions. Hydrogen disulfide provides the source of disulfide ion and it readily
condenses with phenylpropynyl chloride to form 5-phenyl-1,2-dithiol-3-one
(96) [102]. Similarly 1,3-diketones condense with hydrogen disulfide to give 1,2-
dithiolium salts 97 (Scheme 11.22) [102].

a-Thioderivatives of enamines or enol ethers react with carbon disulfide to form
5-amino or 5-alkoxy-1,2-dithiole-3-thiones [103]. An interesting reaction of the oxime
98with S2Cl2 gives the bicyclic 1,2-dithiole isomers 99 and 100 (Scheme 11.23) [104].

A commonmethod for the synthesis of 1,2-dithioles is the sulfurization of various
3-carbon units by elemental sulfur. The conversion of 101 into 102 and 103 into 104 is
usually carried out under thermal conditions (180–250 �C) (Scheme 11.24) [105].

11.4.3.2 Ring Transformations of Heterocycles Leading to 1,2-Dithioles and
1,2-Dithiolanes
The synthesis of 1,2-dithioles by the transformation of other heterocyclic rings is a
commonmethod of preparation. Thiophene derivative 105, when reacted with Na2S
in air affords the 1,2-dithiole 106 (Scheme 11.25) [106].

Ring contraction of 1,3-dithianes or 1,3-dithienes is also awell reportedmethod for
the preparation of 1,3-dithioles and 1,3-dithiolanes. The reaction is usually carried
out under oxidizing conditions in the presence of acid or from 1, 3-dithiane-S-oxides
with acids. Bromine has been used to transform the 1, 3-dithiane 107 into the 1,2-
dithiolane 108 (Scheme 11.26) [107].
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Isoxazoles possess a three-carbon unit suitable for conversion into the 1,2-dithiole
skeleton. Thus, 5-phenylisoxazole (109) is thionated to afford 5-phenyl-1,2-dithiole-3-
thione (110) [108] and isoxazoline-3-thiones 111 affords 1,2-dithiole-3-imines 112 on
treatmentwithH2S (Scheme 11.27) [109]. Thiazolidinones 113 react with Lawesson�s
reagent to give 3-imino-1,2-dithioles 114 [110].

11.4.4
Reactivity of 1,2-Dithioles and 1,2-Dithiolanes

11.4.4.1 1,2-Dithiolium Salts

11.4.4.1.1 Reactions with Nucleophiles 1,2-Dithiolium salts react readily only with
nucleophiles and often at the least hindered 3 or 5 position to form 1,2-dithioles.
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These 1,2-dithiolesmay reform1,2-dithioliumsalts if there is a suitable leaving group
at the 3-position Scheme 11.28.

Oxygen and sulfur nucleophiles react in a similar fashion to give 3-alkoxy or
3-alkylthio substituted 1,2-dithioles, again if there is a suitable leaving group at the
3-position the products obtained are 1,2-dithiolium salts [111]. 1,2-Dithiolium salts
react with nitrogen nucleophiles at the 3-position but the final product depends on
the substitution pattern on the dithiolium ring. Dithiolium salts 115, without a
leaving group at C3, react with ammonia to form isothiazoles 116 [111] and with
primary and secondary amines to form aminothiones 117 (Scheme 11.29) [111].
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The reaction of 1,2-dithiolium salts with carbon nucleophiles usually leads to ring
opening and recyclization to give thiopyrans or thiophenes – these reactions are
similar to those involving nitrogen nucleophiles by attack at C3 or it may involve an
initial attack of the carbanion on a ring sulfur [112, 113].

11.4.4.1.2 Reduction Electrochemical reduction of 1,2-dithiolium salts 118 gives
bis-1,2-dithiole dimers 120 via radical intermediates 119 whose stability depends on
the substitution pattern (Scheme 11.30) [114].

11.4.4.2 1,2-Dithioles
To a certain extent 1,2-dithioles behave like acyclic disulfides in their reactions. 1,2-
Dithioles with exocyclic double bonds are potentially aromatic and readily undergo
reactions that result in the formation of 1,2-dithiolium salts.

11.4.4.2.1 Reactions with Electrophiles 1,2-Dithioles react with electrophiles at the
ring sulfur atoms; thus chlorine, sulfuryl chloride and sulfenyl chlorides react at the
ring sulfur to afford acyclic products [115].

11.4.4.2.2 Reactions with Nucleophiles 1,2-Dithiole-3-thiones react with nucleo-
philes at S2, C3, C4 orC5, the exact position depending on the substitution pattern on
the ring and on the hard/soft character of the nucleophile [116–118]. 1,2-Dithioles are
attacked at C3 by hydroxide ion. Ethoxide ion attacks Oltipraz (121) at C5; subsequent
ring opening and recyclization forms pyrrolodiazine 122 [116].

S S
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N

S

N
N

SMe

OEt

121                                               122

1,2-Dithiole-3-ones and 3-thiones behave like acyclic ketones and thiones, forming
imines such as 125, oximes and hydrazones with nitrogen nucleophiles [119]. 1,2-
Dithioles 123 can also undergo ring opening and recyclization to afford isothia-
zoles 124 (Scheme 11.31). This pathway is dependant on the substituents at R1 and
R2 and is particularly common with fused dithioles [120].

1,2-Dithioles react with carbon nucleophiles at a range of sites. Grignard reagents
react as thiophiles, attacking at S2 of 1,2-dithiol-3-ones. Phosphonium ylides and
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other carbanions attack at C3 of 1,2-dithiole-3-ones and 3-thiones to form 3-alkyli-
dene-1,2-dithioles [121].

Reaction of the 1,2-dithiole-3-thione 126with trimethyl phosphate affords some of
the desired coupling product but also the phosphonate derivative 127
(Scheme 11.32) [122].

11.4.4.2.3 Reactions with Carbenes and Nitrenes 1,2-Dithioles react with carbene
and nitrenes at the S�S bond, leading to insertion and sometimes with loss of one
sulfur atom to form thiophenes (128) or isothiazoles (129), respectively,
Scheme 11.33 [123, 124].

11.4.4.3 1,2-Dithiolanes

11.4.4.3.1 Reaction with Electrophiles Reactions of 1,2-dithiolanes all occur at the
ring sulfur atoms. The sulfur is nucleophilic and is readily alkylated to form 1,2-
dithiolium salts 130 (Scheme 11.34) [125].
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11.4.4.3.2 Reaction with Nucleophiles Alkyl lithium reagents, Grignard reagents
and cyanide ion attack 1,2-dithiolanes at a sulfur atom to form ring open pro-
ducts [126, 127].

1,2-Dithiolanes 131 react with lithium acetylides to give the ring expanded product
132 [128]. If the 1,2-dithiolane 131 is reacted with dimethylsulfoxonium methylide
the 1,3-dithiane 133 is formed (Scheme 11.35) [129].

11.4.4.3.3 Reactions with Carbenes Carbenes react with 1,2-dithiolanes to afford
insertion products at the S�S bond. The 1,2-dithiolane 134 reacts with diphenyl-
carbene to afford a mixture of the 1,3-dithiane insertion product 135 and the
desulfurization product 136 (Scheme 11.36) [130].

11.4.4.3.4 Compounds of Interest 1,2-Dithiolane-4-carboxylic acid (asparagusic,
137) is thought to act in biological systems as a substrate of a dehydrogenating
enzyme and to stimulate pyruvate oxidation. Lipoic acid 138 is involved in the
oxidative decarboxylation of 3-ketoacids, oxidative phosphorylation and in photosyn-
thesis [91]. The sulfonamide derivative of lipoic acid (139) is a glutathione reductase
enhancer [131]. Oltipraz (121) has schistosomicidal activity [116].
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O R

137                                                                   138, R = OH
                                                                         139, R = NHSO2Me

11.5
1,3-Dithioles and 1,3-Dithiolanes

11.5.1
Introduction

This section deals with 1,3-dithioles derivatives such as 1,3-dithiolylium ions 140,
mesoionic 1,3-dithiol-4-ones 141, 1,3-dithioles 142, 1,3-dithiolanes 143 and the
tetrathiafulvalene (TTF) system 144. The latter system has been the subject of a
large number of publications because of its organic conducting properties.

S
+

S
S

+
S

O

R2

R1

S
S

S
S

S

S

S

S

140                        141                       142                   143                         144

A comprehensive review chapter on 1,3-dithiolium salts has appeared [132]. The
synthesis and reactions of 1,3-dithioles and dithiolanes have also been reviewed [95].
There have also been several reviews on the properties of TTFs [133–135].

11.5.2
Relevant Physicochemical Data

11.5.2.1 X-Ray Diffraction Studies
Several X-ray crystal structure determinations on 1,3-dithioles and 1,3-dithiolanes
have been published; bond lengths and angles are presented in Tables 12.4 and 12.5,
respectively.

Interestingly, the TTF system 144 is not planar but is slightly distorted into a chair
conformation [136].

11.5.2.2 NMR Spectroscopy
1H NMR data of variously substituted 1,3-dithiolylium ions have been pub-
lished [113, 138].

Table 11.6 contains 1H NMR data for several derivatives.
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Table 11.4 Bond lengths (A
�
) for 1,3-dithiolane derivatives.

Bond

S

S

S

S

S
S

Ph Ph

O

S1�C2 1.756 1.72
S3�C2 1.758 1.76
S3�C4 1.729 1.80
C4�C5 1.314 1.54
S1�C5 1.732 1.83
Reference [136] [137]

Table 11.5 Bond angles (�) for 1,3-dithiolane derivatives.

Bond

S

S

S

S

S
S

Ph Ph

O

S1�C2�S3 114.5 115.5
C2�S3�C4 94.3 96.7
S3�C4�C5 118.6 115.4
C4�C5�S1 118.0 108.3
C5�S1�C2 94.5 94.6
Reference [136] [137]

Table 11.6 1HNMR data for 1,3-dithiole derivatives.

Compound H2 (d, ppm) H4 & 5 (d, ppm) Reference

S C
+
S

H

11.65 9.67 [139]

S
S

S

7.2 [138]

S
S

O

6.74 [138]
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13C NMR data for 1,3-dithiole derivatives are presented in Table 11.7. Calculated
electron densities have been correlated with observed 13C chemical shifts for the
benzo-1,3-dithiolylium ion [140].

11.5.2.3 Theoretical Methods
Simple LCAO-MO calculations for 1,3-dithiole-2-thione, benzo-1,3-dithiolylium
ion,1,3-dithiole-2-one and 1,3-dithiolylium ions indicate that the lowest electron
density is found at the 2-position of the 1,3-dithiolylium cation and showed that the
C4�C5 bond order corresponded approximately to that of an isolated double
bond [138].

11.5.3
Synthesis

11.5.3.1 1,3-Dithiolium Salts, 1,3-Dithiolones and 1,3-Dithioles
Several methods are known for the preparation of 1,3-dithiolylium salts from acyclic
precursors by the formation of one bond. Acid-catalyzed cyclization of thioesters 145,
dithioesters 146 or thio analogues 147 using either mixtures of perchloric acid and
glacial acetic acid or sulfuric acid in the presence ofH2S [138] orH2S/BF3 [113] results
in the formation of 148 (Scheme 11.37).

Dithiocarbamates like 149 afford the perchlorate salt 150 upon reaction with
perchloric acid (Scheme 11.38). Reduction of 150with sodium borohydride gives the
1,3-dithiole 151, which can then be treated againwith perchloric acid to afford the 1,2-
dithiolylium salt 152 [142].

Table 11.7 13C NMR data for 1,3-dithiole derivatives.

Compound C2 (d, ppm) C4 (d, ppm) Reference

S C
+
S

H

BF4

179.5 146.2 [140]

S C
+
S

H

BF4

221.2 46.4 [140]

S C
+
S

H

BF4

182.4 146.0 [140]

S
S

S

140.7 133.7 [141]
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1,3-Dithiol-2-ones 154 are also obtained by acid-catalyzed cyclization of thioxo-
dithiocarbamates 153 (Scheme 11.39) [143].

In a similar approach S-vinyl-N,N-dialkyldithiocarbamates 155 afford, upon
reaction with bromine, the 1,3-dithiolylium bromides 156 (Scheme 11.40) [144, 145].
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Scheme 11.37

NS

O
S

N
+

S

S

ClO
4
-

N

S

S

H

S

C
+S

ClO
4
-

HClO4

NaBH4

HClO4

149                                                150                                               151

152

Scheme 11.38

R2 S

R1 S
S

OR
3

S

S
OR2

R1

H+

153                                                         154

Scheme 11.39

S

R1
S

NR
2

S

C
+S

R1

NR
2

Br

155                                                         156

Br2

Scheme 11.40

950j 11 Five-Membered Heterocycles with Two Heteroatoms: O and S Derivatives



Thiobenzoylthioglycolic acid 157 reacts with acetic anhydride in the presence of
boron trifluoride results to form dithiolylium salt 158 (Scheme 11.41) [146].

Various methods have been described for the synthesis of 1,3-dithiole-2-thiones,
which are widely used as precursors for the preparation of 1,3-dithiole derivatives.

Dithiocarbamates 159 are easily cyclizedwith conc. sulfuric acid or 70%perchloric
acid to yield the 1,3-dithiolylium salts 160, which upon treatment withH2S afford the
1,3-dithiole-2-thiones 161 (Scheme 11.42) [147].

An alternative approach uses propargyl-t-butyltrithiocarbamates 162, which afford
mono substituted 1,3-dithiole-2-thiones 163 on treatment with trifluoroacetic acid/
glacial acetic acid (Scheme 11.43) [148].

A two-step conversion of alkynes into dithiolones 164 and dithiolethiones 165 has
been reported. The initial step involves palladium-catalyzed addition of Pri3Si-S-S-
SiPri3 followed by treatment with fluoride ion and either PhSOCl or CSCl2 [149].
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A convenient synthesis of 1,3-dithiole-2-thiones 166 involves the treatment of a
terminal alkyne with butyllithium, sulfur and then CS2 (Scheme 11.44) [150]. In
similar fashion, the reaction of phenylacetylene with sulfur andKOHinDMSO leads
to direct formation of the dithiole 167, albeit in low yield [151].

The bis-dithiole salt 168 reacts with long-chain alkyl iodides to give dithioles 169
(Scheme 11.45) [152].

Unsubstituted 1,3-dithiole-2-thione (172) can be prepared from 1,2-dichloroethyl
ethyl ether (170) and potassium trithiocarbonate (Scheme 11.46). The intermediate
4-ethoxy-1,3-dithiolane-2-thione 171 is treated with p-toluene sulfonic acid to
give 172 [153].

1,3-Dithiolylium salts 175 have also been prepared by the reaction of a-haloke-
tones 173 with an excess of dithio-carboxylic acids 174 in the presence of strong
mineral acids at 60–80 �C (Scheme 11.47) [154].
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a-Haloketones 176 also react with N,N-dialkyldithiocarbamidates 177 in the
presence of strong acid to afford 2-alkylamino-1,3-dithiolylium salts 178
(Scheme 11.48) [155, 156].

Benzo-annellated 1,3-dithiole-2-thiones (180) can be prepared by the reaction of
benzene-1,2-dithiol (179) with thiocarbonyldiimidazole in glacial acetic acid
(Scheme 11.49) [157].

11.5.3.2 Ring Transformations of Heterocycles Leading to 1,3-Dithiole Derivatives
Thermolysis of 1,2,3-thiadiazoles 181 in carbon disulfide provides a useful route to
1,3-dithiole-2-thiones 182 (Scheme 11.50) [158].

1,2-Dithiole-3-thione derivatives can also be used as starting compounds for 1,3-
dithiole synthesis. 1,2-Dithiole-3-thiones 183 react with alkynes or even benzyne to
afford 1,3-dithioles 184 (Scheme 11.51) [159].

Alkynes bearing electron-withdrawing groups also react with O,S-ethylene dithio-
carbonate 185 (X¼O) or ethylene trithiocarbonate 185 (X¼S) to afford 1,3-dithiole-2-
ones 186 (X¼O) or 1,3-dithiole-2-thiones 186 (X¼S) (Scheme 11.52) [160, 161].
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11.5.3.3 Ring Synthesis of 1,3-Dithiolanes
The most widely used method for the synthesis of 1,3-dithiolanes involves the
condensation reaction of an aldehyde or ketone with suitably substituted 1,2-dithiols
in the presence of a catalyst. Catalysts for the conversion of aldehydes and ketones
into 1,3-dithiolanes with ethanediol include HCl [162], BF3Et2O [162], iodine [163],
MoCl5 [164], indium triflate [165] and Cu(CF3SO3)2 [166].

Iodine and indium triflate and indium chloride are also good catalysts for effecting
the transthioacetalization of 1,3-dioxolanes [167]. ZrCl4 has also been used in this
transformation [168].

The use of BF3�Et2O as a catalyst allows the synthesis of some very sensitive
systems; the cyclopropanone 187 reacts with 1,2-dithiols 188 in 24–58% yield to give
the spiro derivatives 189 (Scheme 11.53) [169].

Carbonyl compounds possessing an a-methylene group (190) react with 1,2-
bis(chlorosulfenyl)alkanes 191 to give 2- formyl-1,3-dithiolanes 192 (Scheme
11.54) [170].

S

SR3

R4

R1

S
R2

S

SR1

R2

S

R3 R4

183                                                                                        184

+

Scheme 11.51

R2R1 SS

X

S

S
X

R1

R2
+

185                                         186

Scheme 11.52

O

Ph R1

HS
SH

R2
SS

Ph R1

R2

+
BF3Et2O

25oC, 2h.

187                          188                                                 189

Scheme 11.53

954j 11 Five-Membered Heterocycles with Two Heteroatoms: O and S Derivatives



Compound 191 also reacts with ethyl acetoacetate to give 2-acetyl-2-ethoxycarbo-
nyl-1,3-dioxolanes 193, which are readily hydrolyzed and decarboxylated to give
2-acetyl-1,3-dioxolanes 194 (Scheme 11.55) [170].

1,2-Bis(triphenylphosphonium)ethane dibromides 195 react with 1,2-ethane-
dithiol in the presence of a base to give an almost quantitative yield of 2-triphenylpho-
sphoniomethyl-1,3-dithiolane (196), which can then undergo Wittig reactions
(Scheme 11.56) [171].

2-Amino substituted 1,3-dithiolanes 198 can be obtained from amide acetals such
as 197 and 1,2-ethanedithiol (Scheme 11.57) [172].
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Ethane-1,3-dithiol also reacts with dichloromethyl methyl ether in the presence of
sodium to give 2-methoxy-1,3-dithiolane 199 (Scheme 11.58) [173]. It also reacts with
phosgene to give 1,3-dithiolan-2-one 200 [174].

The reaction of ethylene dibromide with sodium trithiocarbonate affords 1,3-
dithiolan-2-thione (201) (Scheme 11.59) [175].

11.5.3.4 Ring Transformations of Heterocycles Leading to 1,3-Dithiolane Derivatives
2-Substituted 1,3-dioxolanes react with ethanediol in an ionic liquid – transthioace-
talization occurs to afford the corresponding 2-substituted 1,3-dithiolanes [176]. The
asymmetric synthesis of various nucleoside analogues in which the ribose base is
replaced by a 1,3-dithiolane ring has been described [177].

The transformation of complex and sensitive carbonyl compounds under neutral
conditions into 1,3-dithiolanes 203 can be achieved using 2-phenyl or 2-halogeno
1,3,2-dithiaborolanes 202 (Scheme 11.60) [178].

An alternative method for the synthesis of 1,3-dithiolanes 205 from acid-sensitive
carbonyl compounds involves the reaction of 2-ethoxy-1,3-dithiolane (204) in the
presence of mercury(II) chloride or other Lewis acids (Scheme 11.61) [179].
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11.5.3.5 Synthesis of Tetrathiafulvalenes
Tetrathiafulvalenes (TTFs) are electron donors that easily form charge-transfer
complexes with electron acceptors such as radical salts. The discovery of the
exceptional electron conductivity of TTFs has encouraged a great deal of research
into their synthesis.

The vast majority of syntheses of TTFs involve the preparation of the p-bond in
between the two 1,3-dithiole rings as the final step. This bond can be formed via
an elimination reaction involving either two-proton electrochemical oxidation or the
s- and p- bonds can be formed simultaneously by a coupling reaction between two
carbenes.

The electrochemical oxidation of the 1,3-dithioles 206 and 208 in the presence of
pyridine has been described. The respective TTFs 207 and 209 were obtained in low
yield, 30 and 40%, respectively (Scheme 11.62) [180].

The synthesis of TTF via elimination of a proton from 1,3-dithiolylium salts in the
final synthetic step involves the reaction of a carbene or phosphonium ylide on a 1,3-
dithiolylium salt bearing a hydrogen at C2. These precursors can be prepared either
by an alkylation of 2-alkylthio-1,3-dithioles 210 [181] or by oxidation of 1,3-dithiole-2-
thiones 211 either with peracid or hydrogen peroxide (Scheme 11.63) [182]. Treat-
ment of these precursors with a tertiary amine base affords TTF (144). The presence
of alkyl groups in the 4 or 5 position does not interfere with this reaction; however,
electron-withdrawing groups in these positions can lead to no reaction.
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The reaction of carbon disulfide with either a strained or electron-rich acetylene
derivatives in the presence of an acid or under high pressure is another common
method for the preparation of TTFs. This method can be used to afford TTFs with
electron-withdrawing substituents in the ring. Acetylenes 212 and 213 react with CS2
to give the TTFs 214 [183] and 215 (Scheme 11.64) [184].

1,3-Dithiolylium salts 217 react with 2-triphenylphosphino-1,3-dithioles 216 to
afford an intermediate that eliminates a proton and triphenylphosphine on treatment
with base to give the TTF 218 (Scheme 11.65) [185].
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Similarly, TTF (144) is obtained from amixture of trialkylphosphanes and alkynes
in the presence of carbon disulfide (Scheme 11.66) [186].

TTF may be obtained by dethioxygenation of 2-thioxo-1,3-dithioles by transition
metal complexes. The reaction of 2-thioxo-1,3-dithioles 219 with Fe3(CO)12 or
Co2(CO)8 furnishes TTFs 220 with aryl, alkyl or electron-withdrawing groups in
the 4- and 5-positions of the dithiole ring (Scheme 11.67) [187, 188].

2-Thioxo-1,3-dithioles bearing electron-withdrawing groups such as in 221 also
react with trivalent phosphorus compounds to form the corresponding TTFs (222) as
a mixture of regioisomers (Scheme 11.68) [189].

Tetrachloroethylene has also been used as a central building block for TTF
synthesis. This method is suitable for the synthesis of symmetrical and unsymme-
trical TTFs. The reaction of tetrachloroethylene with 1,2-benzenethiols 223 and 224
leads to a mixture of benzotetrathiafulvalenes 225 (Scheme 11.69) [190].

TTF (144) has been synthesized in two steps (85% overall yield), starting from 4,5-
bis(benzoylthio)-1,3-dithiole-2-thione (226) (Scheme 11.70). The intermediate tetra-
thianaphthalene 227 is treatedwith base to affordTTF. Thismethod is suitable for the
large-scale synthesis of TTF as no chromatography is required [191].
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11.5.4
Reactivity of 1,3-Dithiolylium Ions, Mesoionic 1,3-Dithiol-4-ones and 1,3-Dithioles

11.5.4.1 Thermal and Photochemical Reactions
1,3-Dithiole-2-one 228 undergoes a photochemically induced decarbonylation to
afford the dithione derivative 229, which may react further to give the dithiete 230
(Scheme 11.71) [192].

Photolysis of the 1,3-dithiolylium-4-oate 231 gives a mixture of the 1,2-dithiol-3-
one 232 along with diazine 233 and thiophene 234 (Scheme 11.72) [193].
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11.5.4.2 Reactions with Electrophiles
The attack of electrophiles at the ring carbons of 1,3-dithiolylium ions is seldom
observed. 1,3-Dithiole-2-thiones can be alkylated on the ring sulfur atom to give a 1,3-
dithiolylium system – strong alkylating agents such as triethyloxonium tetrafluor-
oborate must be used [194].

11.5.4.3 Reactions with Nucleophiles
1,3-Dithiolylium salts react with nucleophiles at the 2-position while 1,3-dithioly-
lium-4-oates undergo nucleophilic attack at the 4-position. 1,3-Dithiolylium cations
are hydrolyzed to the corresponding 2-hydroxy-1,3-dithioles, which upon treatment
with acid reform the 1,3-dithiolylium cation [195]. The reaction of 1,3-dithiolylium
salts 235with alcohols leads to stable 2-alkoxy-1,3-dithioles 236 (Scheme 11.73) [196].
These alkoxy derivatives are useful precursors of 2-aryl-1,3-dithioles [197]. Sulfur
nucleophiles react in a similar fashion to alcohols with 1,3-dithiolylium salts to afford
2-alkylthio or 2-arylsulfanyl-1,3-dithioles [196].

Secondary amines react with 1,3-dithiolylium salts that are unsubstituted at the
2-position (237) to afford 2-amino-1,3-dithioles 238 (Scheme 11.74) [196]. 2-Methyl-
sulfanyl-1,3-dithiolylium salts 239 give the corresponding 2-amino-1,3-dithiolylium
salts 240 with secondary amines [198]. Primary amines react with 239 to afford
2-imino-1,3-dithioles 241 [199].
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2-Methylsulfanyl-1,3-dithiolylium salts 239 also react with Grignard reagents to
form2-alkyl-2-methylsulfanyl-1,3-dithiolylium salts 242, whichmay react with excess
Grignard reagent to give 2,2-dialkyl-1,3-dithioles 243 (Scheme 11.75) [200].

11.5.4.4 Reductions
1,3-Dithiolylium salts are easily reduced by NaBH4, LiAlH4 or NaSH to give the
corresponding 1,3-dithiole [196]. If 1,3-dithiolylium salts 244 are reduced with
zinc [201] or V(CO)6 [202] the dimer 245 is formed (Scheme 11.76). 2-Methylsulfa-
nyl-1,3-dithiolylium iodide (246) forms TTF (144) when reduced with zinc in the
presence of bromine [203].

1,3-Dithiolylium-4-olates 248 can be regarded as masked 1,3-dipole thiocarbonyl
ylides; they react with dipolarophiles to give cycloadducts. Thiophenes 249 are
obtained when 248 are reacted with alkynes (Scheme 11.77) [204].

Stable adducts such as 250 are formed when 248 is reacted with electron-deficient
alkenes [205].

11.5.4.5 Coupling Reactions
The palladium-catalyzed coupling of the tributyl tin 1,3-dithiole derivative 251
with 2-iodoquinoline to give the coupled product 252 has been described
(Scheme 11.78) [206].
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11.5.5
Reactivity of 1,3-Dithiolanes

1,3-Dithiolanes are resistant to both acid and alkaline hydrolysis, they are also
resistant to nucleophilic attack by nucleophiles such as hydride ions.

11.5.5.1 Cleavage Reactions
A review of methods for cleaving 1,3-dithiolanes to aldehydes or ketones has been
published [207]. The ring can be cleaved by a mixture of HgCl2/CdCO3 quite
effectively [208]; alternatively, sodium in ethanol in liquid ammonia [209], NBS in
acetone [210], or thallium(III) nitrate inmethanol can be used. The lattermethod has
been used for the selective cleavage of a mixture of thioketals 253 to afford the
unsaturated ketone 254 (Scheme 11.79) [211].

SOCl2-treated silica and DMSO is a good combination with which to cleave
2-substituted-1,3-dithiolanes; however, under similar conditions 2,2-disubstituted-
1,3-dithiolanes undergo ring expansion to give dihydro-1,4-dithiins [212].
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Recent methods for the cleavage of 1,3-dithiolanes include the use of 2,4,6-
trichlorotriazine and DMSO [213], oxone on wet alumina [214] and ferric nitrate
on K-10 montmorillonite clay [215].

Treatment of 2-substituted-1,3-dithiolanes with NBS followed by 1,2-ethanediol
affords 1,3-dioxolanes [216].

11.5.5.2 Electrophilic Attack at Carbon
1,3-Dithiolanes can be deprotonated at C2 with equimolar amounts of butyllithium.
The resultant carbanions can then be trapped by various electrophiles [217].
2-Alkynyl-1,3-dithiolanes 255 affords allenes 256when treated with an organocuprate
compound followed by an electrophile and then a Grignard reagent with nickel
catalysis (Scheme 11.80) [218]. Similarly, the reaction of 2-alkenyl-1,3-dithiolanes 257
with Bu2CuLi or BuLi and an electrophile followed by treatment with a Grignard
reagent under nickel catalysis affords alkenes 258 [219].

11.5.5.3 Oxidations
1,3-Dithiolanes can be oxidized to afford 1,3-dithiolane-1-oxides by photooxida-
tion [220], while oxidation under more vigorous conditions leads to mono and bis
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sulfones [221]. Enantioselective oxidations of 1,3-dithiolane (143) by microbial
oxidation gives the corresponding S-oxide 259 in high enantiomeric excess
(Scheme 11.81) [222]. A review of the preparation and use of the C2 symmetric
bis-sulfoxide 260 has been published [223].

On a similar theme the 2-phenyl monosulfoxide derivative 262 has been prepared
in a diastereoselective manner by the reaction of 2-phenyl-1,3-dithiolane (261) with
ButOOH and Cp2TiCl2 (Scheme 11.82) [224].

11.5.5.4 Radical Reactions
Intramolecular addition of the 1,3-dithiolan-2-yl radical generated from 263 by
photolysis affords the spirocyclic derivative 264 (Scheme 11.83) [225].

11.5.5.5 Ring Transformation Reactions
Treatment of dithiolane 265withWCl6 inDMSO gives the ring-expanded dithiin 266
(Scheme 11.84) [226].
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Ethylenediamine reacts with 1,3-dithiolane derivatives 267 to give imidazolines
268 (Scheme 11.85) [227].

11.5.6
Compounds of Interest

TTFderivatives have been the focus of scientific interest since themid-1970s. Indeed,
their organicmetal properties and superconductivity has prompted the publication of
several reviews discussed earlier in this section [133–135].

11.6
1,2-Oxathioles and 1,2-Oxathiolanes

11.6.1
Introduction

The parent oxathiolone 269 is known but most work published has been on the
S-oxidized derivatives like 270 and 271. The corresponding saturated derivatives 272
and 273 have also been described. A comprehensive review of 1,2-oxathiolium salts
has been published [228].
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11.6.2
Relevant Physicochemical Data

11.6.2.1 X-Ray Diffraction
The X-ray structure of 274 has been published to give the dimensions [229] shown in
Figure 11.2.

11.6.2.2 NMR Spectroscopy
Table 11.8 gives 1H NMR data for S-oxidized 1,2-oxathiolane systems 272 and 273.

11.6.3
Synthesis

11.6.3.1 Ring Synthesis of 1,2-Oxathioles
Chlorination of 1,3-thioalcohols using either Cl2 or SO2Cl2 affords 1,2-oxathiolan-2-
oxide 272 by way of an intermediate 3-hydroxysulfinyl chloride (275)
(Scheme 11.86) [232].
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Figure 11.2 Geometry of a 1,2-oxathiolone derivative.

Table 11.8 1H NMR data for 1,2-oxathiolanes derivatives.

Compound 3-H (d, ppm) 4-H (d, ppm) 5-H (d, ppm) Reference

1,2-Oxathiolan-2-oxide (272) 1.35 1.35 3.45 [230]
1,2-Oxathiolan-2,2-dioxide (273) 3.1 2.5 4.82 [231]
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Oxathiolane 277 is prepared by treatment ofN-alkylcystinol 276 with NCS or NBS
(Scheme 11.87) [233].

Substituted 1,3-thioalcohols 278 can also be oxidized with NaIO4 to give the
corresponding 1,2-oxathiolane-2-oxides 279 (Scheme 11.88) [234].

A ring-closing metathesis reaction of the allylvinyl sulfonate 280 using a second-
generation Grubb�s catalyst gives the oxathiole 270 (Scheme 11.89) [235].

Full details of the asymmetric synthesis of chiral c-sultones 281 have been
described [236].
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The direct reaction of cyclopropanes 282with SO2 in TFA to give 1,2-oxathiolane-2-
oxides 283 and 284 has been studied extensively to determine the regioselectivity of
this reaction (Scheme 11.90) [237].

Similarly, treatment of the methylene cyclopropane 285 with SO3 affords 286
directly (Scheme 11.91) [238].

The adamantyl alcohols 287 can also be treated with SO3 to afford 1,2-oxathiolane-
2,2-dioxides 288 (Scheme 11.92) [239].

The epoxide 289 can be cyclized with triethylamine to give the 1,2-oxathiolane-2,2-
dioxides 290 (Scheme 11.93) [240].
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11.6.3.2 Ring Transformations of Heterocycles Leading to 1,2-Oxathiole Derivatives
Oxidative ring expansion of thietan-2-ones 291 by treatment with chlorine or SO2Cl2
and acetic anhydride gives the 1,2-oxathiolan-5-one 292 (Scheme 11.94) [241].

Cyclic sulfides 293 undergo ring contraction upon treatment with BF3�Et2O to give
the 1,2-oxathiolane-2,2-dioxides 294 (Scheme 11.95) [242].

11.6.4
Reactivity of 1,2-Oxathioles and 1,2-Oxathiolanes

Most reactions in this area have involved either 1,2-oxathiolane 2-oxides or 2,2-
dioxides. The type of reactions involve either thermal extrusion of SO or SO2 or
nucleophilic attack at the cyclic sulfinate or sulfonate functions.

11.6.4.1 Thermal or Photochemical Reactions
1,2-Oxathiolane 2-oxides 295 readily undergo thermal extrusion of SO to afford
a,b-unsaturated carbonyl compounds. The reaction is most likely to proceed via an
initial tautomerization from the 5H to the 3H form 296, which then undergoes an
electrocyclic process to give cinnamaldehyde (Scheme 11.96) [243].

1,2-Oxathiolan-5-one 2,2-dioxide derivative 297 undergoes thermally induced
elimination of SO2 at 180 �C to give methacrylic acid (Scheme 11.97) [244].
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11.6.4.2 Nucleophilic Attack
Nucleophilic attack on the cysteine-derived chiral 4-amino-1,2-oxathiolane 2-oxide
298 by alkyllithiums takes place on the sulfur atomwith inversion of configuration to
give 299 (Scheme 11.98) [245].

Reaction of the 1,2-oxathiolane 2-oxide 300with bromine results in the loss of SO2

to give the 1,3-dibromo derivative 301 (Scheme 11.99) [246]. Compound 300 also
reacts with PCl3 to give the ring open product 302 [247].

11.7
1,3-Oxathioles and 1,3-Oxathiolanes

11.7.1
Introduction

Little work has been published on 1,3-oxathiolium salts 303 and their mesoionic
system 304 [20]. A review on 1,3-oxathiolium salts has appeared [248]. A larger
amount ofmaterial has been published on 1,3-oxathioles 305.Most studies have been
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carried out on the fully saturated systems, 1,3-oxathiolanes (306), and reviews
covering this system have appeared [249, 250].
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303                    304                             305                    306

11.7.2
Relevant Physicochemical Data

11.7.2.1 X-Ray Diffraction
The X-ray structure of 307 has been published to give the dimensions [251] shown in
Figure 11.3.

11.7.2.2 NMR Spectroscopy
Table 11.9 gives 1H NMR data for 1,3-oxathiolane systems 308 and 309.
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308                                309

13C NMR data for the mesoionic 1,3-oxathiolium 4-oxide compound 310 has been
published (Figure 11.4) [254].
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Figure 11.3 Geometry of a 1,3-oxathiolone derivative.

Table 11.9 1H NMR data for 1,3-oxathiolane derivatives.

Compound 2-H 4-H 5-H Reference

5-Methyl-1,3-oxathiolane (308) 4.72/4.89 2.5/3.0 3.96 [252]
1,3-Oxathiolan-2-one (309) 3.59 4.53 [253]
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11.7.3
Synthesis

11.7.3.1 Ring Synthesis of 1,3-Oxathioles and 1,3-Oxathiolanes
An important method for the preparation of 1,3-oxathiolium salts has been pub-
lished. Phenacyldithiocarbamates 311 can be desulfurized with a silver, mercury or
copper salt to afford 2-amino-1,3-oxathiolium salt 312 (Scheme 11.100) [255].

Thermolysis of the bis-dithiocarbonates 313 results in loss of COS to afford the 1,3-
oxathiolane 314 in up to 90% yield (Scheme 11.101) [256].

The 1,3-oxathiolane 2,2-dioxide 316 has been prepared by treatment of the
diazosulfone 315 with BF3 (Scheme 11.102) [257]. Similarly, rhodium-catalyzed
decomposition of a-diazoketones 318 in the presence of CS2 affords the 1,3-
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Figure 11.4 13C NMR data for a mesoionic 1,3-oxathiolium-4-oxide compound.
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oxathiolane-2-thione 317 [258]. If the decomposition is carried out in the presence of
an isothiocyanate then 2-imino derivatives 319 are formed [259].

The reaction of hydroxyethylthiocyanates 320with a tertiary alcohol in sulfuric acid
gives the 2-iminooxathiolane 321 (Scheme 11.103) [260].

Routes to fully conjugated systems include the reaction of the phenacyl benzoate
322 with H2S and iodine to give the oxathiolium salt 323 in 88% yield
(Scheme 11.104) [261].
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The addition of diazomethane to an a-oxothioester 324 affords 4-alkylthio substi-
tuted 1,3-oxathioles 325 (Scheme 11.105) [262].

The standard method of preparation of 1,3-oxathiolanes is to condense a
carbonyl compound with 2-thioethanol. Several catalysts have been used for this
reaction – the most common is BF3�Et2O [263]. More recently, other catalysts used
for this reaction include triisopropyl triflate [264], indium triflate [265], NBS [266],
tetrabutylammonium tribromide [267] and scandium triflate [268]. A catalyst that
is selective for aldehydes in the presence of acyclic ketones is LiBF4 [269]. A
catalyst that is suitable for a,b-unsaturated ketones is an aminopropyl functiona-
lized silica [270]. Dimethyl acetals can also be used in place of the carbonyl
component for this reaction [271].

The iodonium salt 326 reacts with either carbon disulfide or a thioketone to form
2-thione 1,3-oxathiolane derivative 327 (Scheme 11.106) [46].

The phosphonate derivative 329 is prepared by the condensation of the a-haloal-
dehyde 328 with KSCN (Scheme 11.107) [272]. Acetylenic alcohols 330 also react
with KSCN by a more complex course to give the 1,3-oxathiolane derivative
331 [273].

The standard method for the preparation of 2-imino-1,3-oxathioles 333 is to
condense a phenacyl bromide with either a dithiocarbamate 332 (X¼SR) [274] or
a thiourea 332 (X¼NMe2) (Scheme 11.108) [275].

Silyl enol ethers 334 and a-halosulfonyl bromides when treated with DBN afford
1,3-oxathiole 3,3-dioxide 335 (Scheme 11.109) [276].
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Treatment of the silyl derivative 336 with CsF generates a thiocarbonyl ylide that
can then be trapped by addition of aldehydes to give 5-substituted 1,3-oxathiolanes
337 (Scheme 11.110) [277].

11.7.3.2 Ring Transformations of Heterocycles Leading to 1,3-Oxathiole Derivatives
The 1,2,4-dithiazol-3-one 338 undergoes cycloaddition to ynamines 339 to give 2-
imino-1,3-oxathioles 340 (Scheme 11.111) [278]. Similarly, the 1,2,4-thiadiazol-3-one
341 reacts with enolates 342 to also give 2-imino-1,3-oxathioles 343 [279].
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The 1,4-oxathiane 344 undergoes rearrangement to the 2-acyl-1,3-oxathiolane 3-
oxide derivatives 345 and 346 on treatment with singlet oxygen (Scheme 11.112)
[280].

11.7.4
Reactivity of 1,3-Oxathioles

11.7.4.1 Reactions with Electrophiles
Electrophilic substitution on the heterocyclic ring of 1,3-oxathioles is essentially
unknown.
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11.7.4.2 Reactions with Nucleophiles
1,3-Oxathiolium salts 347 react withNaN3 by attack at C2, followed by loss of nitrogen
and rearrangement to give the 1,4,2-oxathiazine 348 (Scheme 11.113) [281].

11.7.4.3 Cycloaddition Reactions
Mesoionic 1,3-oxathiolium-4-olates 349 undergo ready cycloadditions with alkene
and alkyne dipolarophiles. Addition of 349 toCS2 or PhNCSproceeds by formation of
a bicyclic adduct that then loses COS to give a new mesoionic system (350)
(Scheme 11.114) [282].

11.7.5
Reactivity of 1,3-Oxathiolanes

11.7.5.1 Thermal Reactions
Pyrolytic extrusion of CO2 from both 1,3-oxathiolan-2-ones and 5-ones affords
thiiranes. 2-Imino-1,3-oxathiolanes 351 rearrange to the isomeric thiazolidinones
352 at 80 �C where R¼alkyl; where R¼Ph an alternative pathway leads to the
formation of RNCO and a thiirane (Scheme 11.115) [283].

11.7.5.2 Reactions with Electrophiles
Oxidation of 1,3-oxathiolanes to the corresponding 3-oxides is readily achieved in
high yield using peroxyacetic acid [284];mCPBA can also be used [285]. Asymmetric
3-oxidation using ButOOH/TiOPri4 and diethyl tartrate has been examined. The
diastereoselectivity observed was moderate but the enantioselectivity observed was
very poor [286].
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11.7.5.3 Reactions with Nucleophiles
New catalysts for the efficient hydrolysis of 1,3-oxathiolanes to the corresponding
aldehydes or ketones includeH2O2/CH3CN [287],NaNO2/AcCl [288] andAmberlyst-
15/glyoxylic acid under solvent-free conditions [289]. A method that is selective for
1,3-oxathiolanes in the presence of 1,3-dioxolanes is NBS in aqueous acetone [290].

The 1,3-oxathiolan-2-one (353) reacts with secondary amines in toluene to afford,
by loss of CO2, thioethylamines 354 [291], when the same reaction is performed in
dioxan the thiopropyl carbamate is formed (Scheme 11.116) [292].

1,3-Oxathiolane-5-ones such as 356 canbedeprotonated and alkylatedwith reactive
electrophiles at C4 when R¼Me but not when R¼H [293].

S

OO

R

356

11.7.5.4 Radical, Electrochemical Reactions
2-Substituted 1,3-oxathiolanes 357 can undergo reductive cleavage when treated with
trimethylsilyl hydride. Reduction occurs at the C2�S bond to give 358
(Scheme 11.117) [294]. 2-Substituted 1,3-oxathiolan-5-ones react in a similar way.
They also undergo selective anodic fluorination to give the 4-fluoro derivatives [295].

11.7.5.5 Ring Expansion
2-Substituted 1,3-oxathiolanes 357 react with carbenes to give ring-expanded 1,4-
oxathianes 359 via insertion into the C2�S bond (Scheme 11.118) [296].
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The titanium tetrachloride mediated reaction of a,b-unsaturated oxathiolanes 360
with styrene or a-methylstyrene gives the ring-expanded dihydrothiapyrans 361
(Scheme 11.119) [297].

11.7.6
Other Compounds of Interest

1,3-Oxathiolanes bearing a 2-propenyl, 2-furyl- or 2-phenyl group have been used as
flavorings [298]. Anti-viral activity has been claimed for the nucleoside analogue
362 [299].
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12
Five-Membered Heterocycles with Three Heteroatoms: Triazoles
Larry Yet

12.1
1,2,3-Triazoles

12.1.1
Introduction

The chemistry of 1,2,3-triazoles is reviewed extensively elsewhere [1]. This chapter
will focus on the general synthesis and reactivity of the monocyclic 1,2,3-triazole
system with recent methods, which include solid-phase and microwave-assisted
reactions.

12.1.2
General Reactivity

12.1.2.1 Relevant Physicochemical Data and NMR Data
N-Unsubstituted 1,2,3-triazole can be shown as either 1H- or as 2H-triazoles since
these two tautomeric forms are in equilibrium in the solution phase (Figure 12.1).
In this chapter, for simplication, this type of compound will be represented as 1H-
triazoles, independent of the predominant tautomer. In the gas phase, the 2H-
tautomer of the 1,2,3-triazole represents more than 99.9% of the equilibrium
mixture [2]. 1H-1,2,3-Triazole is both a weak base (pKa¼ 1.17) and a weak acid
(pKa¼ 9.40). The basicity ofN-unsubstituted andN-methyl-1,2,3-triazoles in the gas
phase, in solution, and in the solid state has been determined [3].

The 1H and 13C NMR spectra of the parent 1,2,3-triazole for the protons and
carbons at the 4- and 5-positions are identical because the compound exists as both
1H- and 2H-triazoles in solution at room temperature (Table 12.1). Other 1H and 13C
NMR data of the methyl group attached to the 1,2,3-triazole in the 1- and 2-positions
are listed for comparison.

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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12.1.3
Relevant Natural and/or Useful Compounds

1,2,3-Triazoles are not present in natural products and are remarkably stable to
metabolic transformations such as oxidation, reduction, and both basic and acidic
hydrolysis. 1,2,3-Triazoles have found broad use in industrial applications such as
dyes and brighteners for fibers, corrosion inhibitors formanymetals and alloys, light
stabilizers for organicmaterials andpolymers, and agrochemicals such as herbicides,
fungicides, and antibacterial agents [1d]. They have been considered as an interesting
component from the viewpoint of biological activity and are seen inmany drugs such
as potent HIV-inhibitors [6], antimicrobial agents [7], and selective b3-adrenergic
receptor agonists [8]. Figure 12.2 shows the structures of b-lactam antibiotics
tazobactam [9] and cefatrizine [10].

12.1.4
Synthesis of 1,2,3-Triazoles

The most important general approach to the synthesis of 1,2,3-triazoles involves the
use of azide reagents. Azides that have been employed in these syntheses can be alkyl,

N

N
H

N

N

N
NH

2H-1,2,3-triazole

1

2

4

1

34

5 2

3

5

1H-1,2,3-triazole

stable, water-soluble, colorless crystals

mp 120-121 °C

pKa = 9.40

pKa = 1.17 of the protonated species

Figure 12.1 Tautomeric structures of 1,2,3-triazoles.

Table 12.1 1H and 13C NMR data (ppm) of 1,2,3-triazoles.

N

N
H

N

4

5 1

1H NMR
(DMSO-d6)

Reference 13C NMR
(DMSO-d6)

Reference

Substituents H4 H5 C4 C5
— 7.91 7.91 [4] 130.3 130.3 [5]
1-Me 7.72 8.08 [4] 134.3 125.5 [5]
2-Me 7.77 7.77 [4] 133.2 133.2 [5]
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aryl, heteroaryl, acyl, alkoxycarbonyl and sulfonyl azides, trimethylsilyl azide, hydra-
zoic acid, and sodium azide. Azides can react with substituted alkynes and alkenes
and with activated methylene compounds to yield various 1,2,3-triazoles.

12.1.4.1 1,3-Dipolar Cycloadditions of Alkynes with Azide Reagents
1,3-Dipolar cycloaddition of azides to alkynes is the most popular method for the
syntheses of various 1,2,3-triazoles since it provides the desired product directly. A
review on 1,2,3-triazole formation via 1,3-dipolar cycloaddition of acetylenes with
azides undermild conditions has been published [11].When unsymmetrical alkynes
are used, two possible regioisomers are usually obtained. Isomers with the electron-
withdrawing groups at the C4 position and the electron-donating groups at C5 are
usually the major products.

N-Unsubstituted-1,2,3-triazoles are prepared by direct addition of hydrazoic
acid [12] or with azide ions [13] to alkynes, such as the reaction of a,b-acetylenic
aldehydes 1with sodium azide in dimethyl sulfoxide (DMSO) followed by hydrolysis
to give 5-substituted-4-carbaldehyde-1,2,3-triazole derivatives 2 (Scheme 12.1) [14].
The major disadvantage of this method is that often thermal conditions are required
for these reactions and that sodium azide can be explosive.

The most prominent method employed for the synthesis of 1,2,3-triazoles is the
addition of alkyl, aryl, and heteroaryl azides to alkynes. Azides can add to acety-
lene [15] and symmetrically substituted alkynes [16] to give only 4,5-unsubstituted-
and 4,5-disubstituted-1,2,3-triazoles, respectively. Addition of azides to monosub-
stituted alkynes affordmixtures of 1,4- and 1,5-disubstituted 1H-1,2,3-triazoles 3 and
4, respectively (Table 12.2). The ratio of the two products depends on the structure of
the monosubstituted alkyne; alkynes with the electron-withdrawing groups prefer-
entially give products substituted at C4 like 3, while alkynes with electron-donating
groups provide major products substituted at C5 like 4.

N

S
N

N
N

O
H

H O
O

CO2H

N

S

S

N N

NH

CO2H
O

N
H

O

NH2

HO

H

tazobactam cefatrizine

Figure 12.2 Structure of b-lactam antibiotics containing 1,2,3-triazole rings.
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O
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N
N
H

N

R CHO

1. NaN3, DMSO

2. Hydrolysis

       (>98%)

R = Ph, (CH2)nOTBS, (CH2)nOTHP

n = 1, 3

Scheme 12.1
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Recent advances in this area are the acceleration and regioselectivity of these azide
additions to alkynes, which can sometimes be slow. �Click chemistry� is a recently
coined term to denote a growing family of powerful chemical reactions that are based
on �spring-loaded� energy-intensive substrates that can, under the right conditions,
unload their energy to form stable products in high selectivity [24]. Amicroreview on
copper(I)-catalyzed alkyne–azide �click� cycloadditions from a mechanistic and
synthetic perspective has been written [25]. A mini-review has been published on
the 1,3-dipolar cycloadditions of azides and alkynes as a universal ligation tool in
polymer and materials science [26]. A highlight has been published on the click
reaction in the luminescent probing ofmetal ions and its implications on biolabeling
techniques [27]. A perspective on the Cu(I)-catalyzed 1,3-dipolar cycloaddition of
azides and alkynes in carbohydrate chemistry, highlighting developments in the
preparation of simple glycoside and oligosaccharide mimetics, glyco-macrocycles,
glycopeptides, glyco-clusters, and carbohydrate arrays has been reported [28]. A
review titled �Click chemistry –What�s in aname?Triazole synthesis andbeyond�has
been published [29]. A highlight on the copper-free azide–alkyne cycloadditions with
new insights and perspectives has been written [30]. Substituent effects in the 1,3-
dipolar cycloadditions of azides with alkenes and alkynes have been investigatedwith
the high accuracy CBS-QB3 method [31].

For example, a high-yielding copper-catalyzed reaction,which involves the reaction
of azides to terminal alkynes in the presence of copper(II) sulfatewith ascorbic acid or
sodium ascorbate, gave 1,4-disubstituted-1,2,3-triazoles 5 regardless of the group on
the alkynes or azides (Scheme 12.2) [32]. The mechanism of the ligand-free Cu(I)-
catalyzed azide–alkyne cycloaddition reaction has been proposed in a literature
report [33]. Triazole-linked glycopeptides have been obtained by Cu(I)-catalyzed
cycloadditions of either azide-functionalized glycosides and acetylenic amino acids

Table 12.2 Addition of azides to monosubstituted alkynes.

R1 N3 R2

N

N
N

R1

R2

3

N

N
N

R1

R2

4

+ +

Yield (%)

R1 R2 3 4 Reference

Ph Ph 43 52 [17]
Ph CO2Me 88 12 [18]
Bn CONHBn 65 22 [19]
CF2CFHCF3 Bu 37 58 [20]
CH2PO(OEt)2 CH2OH 30 69 [21]
4-Tol Bz 60 11 [22]
Benzotriazolylmethyl Ph 40 60 [23]
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or acetylenic glycosides and azide-containing amino acids in the presence of sodium
ascorbate [34]. A highly efficient one-pot synthesis of 1,2,3-triazole-linked glycocon-
jugates involving a Cu(I)-catalyzed 1,3-dipolar cycloaddition as a key step has been
reported [35].

Microwave irradiation has also become a recent method for the synthesis of 1,2,3-
triazoles under solvent-free conditions. For example, 1,3-dipolar cycloaddition of
organic azides 6 with acetylenic amides 7 under solvent-free microwave irradiation
produced N1-substituted-4C-carbamoyl-1,2,3-triazoles 8 (Scheme 12.3) [19]. Micro-
wave irradiation allowed a substantial decrease in reaction times and offered greater
simplicity in the purification step.

Addition of azides to unsymmetrical disubstituted alkynes often yieldsmixtures of
isomeric 1,2,3-triazoles. The relative ratios of the twoproducts depend strongly on the
nature of the substituents on the alkyne. A more recent example showed the 1,3-
dipolar cycloadditions of azido ester 10with electron-deficient alkynes 9 to give 1,4,5-
trisubstituted 1,2,3-triazoles 11 under mild conditions in water (Scheme 12.4) [36].
1,3-Dipolar cycloaddition of tributyl(3,3,3-trifluoro-1-propynyl)stannane (12) with

R
1

N3 R2

CuSO4•5H2O

sodium ascorbate

H2O/t-BuOH (2 : 1)

25 ºC

(84-94%)

+

5

R1 = CH2Cbz, adamantyl,

Ar, Bn

R2 = CH2NEt2, CO2H, Ph,

cholesterolyl,
H
N NH2

NH

N

N
N

R1

R2

Scheme 12.2

N3

R

O

( )n

6 n = 1, 3 7 R = piperidyl, NHBn

+
microwave, 55 ºC

(62-84%)

8

N

N
N

R

O

( )nPh

Scheme 12.3

R EWG

N3 OEt

O

R = H, Me, CO2Et

EWG = CO2Me(or Et), CH2OSO2Ph

H2O, 50 ºC
9

10

11

(81-94%)

N
N

N

EWG R

OEt

O

Scheme 12.4

12.1 1,2,3-Triazoles j993



phenyl azide gave the corresponding 1,2,3-triazole 13, which was a useful building
block for further functionalization (Scheme 12.5) [37]. An interesting approach to
prepare regiospecifically 4,5-disubstituted-1,2,3-triazoles is the addition of bromo-
magnesiumacetylides 15 to aryl azides 14 to yield 1,5-disubstituted-1,2,3-triazoles 16,
which could be trapped with various electrophiles to form 1,4,5-trisubstituted 1,2,3-
triazoles 17 (Scheme 12.6) [38]. In addition, copper(I) iodide promoted reaction of
alkyl azides and terminal alkynes in the presence of iodine monochloride led to a
regiospecific synthesis of 5-iodo-1,4-disubstituted-1,2,3-triazole 18, which could be
further elaborated to a range of 1,4,5-trisubstituted-1,2,3-triazole derivatives
(Scheme 12.7) [39]. A series of 4,5-disubstituted-1,2,3-triazoles has been regiospe-
cifically prepared directly from propargyl halides and sodium azide via the Banert
cascade [40].

Recently, metal-mediated methodologies have been published where 1,2,3-tria-
zoles can be prepared regiospecifically, with non-activated terminal alkynes and
trimethylsilyl azide as the safe synthetic equivalent of the highly explosive hydrazoic
acid or sodium azide. Various triazoles (19) were synthesized from non-activated
terminal alkynes, allylmethyl carbonate, and trimethylsilyl azide (TMSN3) in a [3 þ 2]
cycloaddition with the use of a Pd(0)-Cu(I) bimetallic catalyst (Scheme 12.8) [41]. The

F3C SnBu3

N

N
NBu3Sn

F3C PhPhN3

CH(OMe)3

85 ºC

(66%)12
13

Scheme 12.5

Ar N3 MgBrR
N

N
NAr

R MgBr N
N

N

ArR

E

R = Ph, n-C3H7, n-C5H11, (EtO)2CH

+
selihportcelECº05,FHT

(45-95%)
14 15

16
17

Scheme 12.6

R1 N3 R2

N
N

N
R1I

R2
+

18

CuI (1 equiv), Et3N

ICl, THF, 25 ºC

(34-81%)

R1 = CF3CH2, CHF2CF2CH, Bn, n-C8H17

R2 = Ph, n-C4H9, CO2allyl, CONHallyl

Scheme 12.7
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allyl group of 19 is efficiently deprotected by ruthenium-catalyzed isomerization
followed by ozonolysis or by nickel-catalyzed Grignard addition reaction to give 4-
substituted triazoles 20 [42]. 2-Allyl-1,2,3-triazoles 21 have been prepared regiospe-
cifically by the palladium-catalyzed three-component coupling reaction of alkynes,
allylmethyl carbonate, and trimethylsilyl azide (Scheme12.9) [43]. Similarly, the four-
component coupling reactions of silylacetylenes, allyl carbonates, and trimethylsilyl
azide catalyzed by a Pd(0)-Cu(I) bimetallic catalyst led to trisubstituted 1,2,3-tria-
zoles [44]. The [3 þ 2] cycloaddition of non-activated terminal alkynes and trimethyl-
silyl azide proceeded smoothly in the presence of copper catalyst and N,N-dimethyl-
formamide and methanol to give the corresponding N-unsubstituted-1,2,3-triazoles
in good to high yields [45]. [3 þ 2]-Cycloadditions of alkyl azides with various
unsymmetrical internal alkynes in the presence of Cp�RuCl(PPh3)2 as catalyst in
refluxing benzene led to 1,4,5-trisubstituted-1,2,3-triazoles, whereas alkyl phenyl and
dialkyl acetylenesunderwent cycloadditions to affordmixtures of regioisomeric 1,2,3-
triazoles and acyl-substituted internal alkynes reacted with complete regioselectivity
[46]. In the presence of catalytic Cp�RuCl(PPh3)2 or Cp�RuCl(COD), primary and
secondary azides reactedwith a broad range of terminal alkynes containing a range of
functionalities toproduceselectively1,5-disubstituted-1,2,3-triazoles [47].1,3-Dipolar

R H OCO2Me + TMSN3

N
N

N

R

N
N
H

N

R

+

Pd2(dba)3•CHCl3 (2.5 mol%)

CuCl(PPh3)2 (10 mol%)

P(OPh)3 (20 mol%)

EtOAc, 100 ºC

(50-83%)

1. HRuCl(CO)(PPh3)2, toluene,

    reflux

2. O3; Me2S

               or 

    t-BuMgCl, NiCl2(dppe),  

          toluene, 25 ºC

                 (78-92%)

19 20

R = t-Bu, Ph, Ar, n-C6H13, BnOCH2, 1-naphthyl

Scheme 12.8

R
1

R
2 OCO2Me TMSN3

N
N

N

R
1

R
2

++
Pd2(dba)3•CHCl3

dppp, EtOAc, 100 ºC

(29-66%)
21R

1
 = H, Et, Et, i-Bu, Cy

R
2
 = CN, CHO, CO2Me, SO2Ph, COMe

Scheme 12.9
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cycloaddition of trifluoromethylated propargylic alcohols with azides in the presence
of catalytic [Cp�RuCl2]n afforded exclusively 4-trifluoromethyl-1,4,5-trisubstituted-
1,2,3-triazoles in high yields [48]. Copper-catalyzed [3 þ 2] cycloaddition of azides to
mono- and disubstituted alkyneswithN-heterocyclic carbene ligands has been found
to be a versatile and highly efficient reaction in which an internal alkyne was
successfully shown to work for the first time [49].

Azides can be prepared in situ from their respective halides and then reacted with
their alkyne partners. 1,4-Disubstituted-1,2,3-triazoles 22 have been obtained in
excellent yields by a convenient one-pot procedure from various aryl and alkyl iodides
and terminal alkynes without isolation of potentially unstable organic azide inter-
mediates (Scheme 12.10) [50]. The microwave-assisted synthesis of this version has
been published by the same group [51]. A similar one-pot procedure uses benzyl and
alkyl halides for generation of the azides with a series of terminal and disubstituted
alkynes [52]. A one-pot sequential and cascade sequence involving the formation of
allylic azides, from aryl/heteroaryl/vinyl halides, allene, and sodium azide, by
palladium-catalyzed anion capture, and cyclization-anion capture, followed by 1,3-
dipolar cycloaddition provided various 1,2,3-triazoles in good yields [53]. A copper(I)-
catalyzed three-component reaction with amines, propargyl halides and azides in
water affords 1-substituted-1H-1,2,3-triazol-4-ylmethyl)dialkylamines [54]. Terminal
alkynes reacted with benzyl- or alkyl halides and sodium azide in the presence of a
copper(I) catalyst immobilized on 3-aminopropyl- or 3-[(2-aminoethyl)amino]propyl-
functionalized silica gel in ethanol to generate exclusively the corresponding regios-
pecific 1,4-disubstituted-1,2,3-triazoles in good to excellent yields [55]. An efficient
and improved procedure for the preparation of aromatic azides from the correspond-
ing aromatic amines 23 is accomplished undermild conditions with tert-butyl nitrite
and trimethylsilyl azide and their application in the Cu(I)-catalyzed azide–alkyne 1,3-
dipolar cycloaddition gives 1,4-disubstituted-1,2,3-triazoles 24 without the need for
isolation of the azide intermediates (Scheme 12.11) [56].

Many recent reports have shown that polymer-supported azides and alkynes can be
employed in the synthesis of 1,2,3-triazole derivatives. Functionalized 1,2,3-triazoles
26 and 27 were prepared by [3 þ 2] cycloaddition of resin-bound a-azido esters 25
with terminal alkynes (Scheme 12.12) [57]. Polystyrene resin-bound azide 28 reacted

Ar-I R
N

N

N

Ar

R

Condition A: NaN3, L-Proline, CuSO4·5H2O, sodium ascorbate,

Na2CO3, DMSO/H2O (9 : 1), 60 ºC (66-98%)

Condition B: NaN3, trans-1,2-(methylamino)cyclohexane, CuI,

sodium ascorbate, DMSO/H2O (5 : 1), 25 ºC (38-99%)

+

22

Conditions

R = alkyl, TMS, aryl, CH2OAr, CH2NEt2

Scheme 12.10
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with disubstituted alkynes followed by acidic cleavage to give 1,2,3-triazoles 29
(Scheme 12.13) [58]. Regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of
resin-bound alkynes 30 to azides afforded solid-supported 1,2,3-triazoles 31, which
were ligated further to give 1,4-substituted-1,2,3-triazole-peptide compounds
(Scheme 12.14) [59]. Immobilized REM resin azides have provided a regioselective
method for the preparation of 1,5-trisubstituted-1H-1,2,3-triazoles via a 1,3-dipolar
cycloaddition of trimethylsilyl-propynoic acid [60]. A library of peptidotriazoles have
been prepared by solid-phase peptide synthesis combinedwith a regiospecific copper
(I)-catalyzed 1,3-dipolar cycloaddition between resin-bound alkynes and protected
amino azides [61].

ArNH2

t-BuONO, TMSN3, CH3CN;

Na ascorbate, aq. CuSO4,

alkyne

(79–87%)

N
N

N
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Scheme 12.11
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There are published reports on the use of polymer-supported azide reagents in the
1,3-dipolar cycloadditions of alkynes. Different alkyl bromides reacted with Merri-
field resin supported ammonium azide (32) to give various alkyl azides, which were
reacted with methyl propiolate to give 1,2,3-triazoles 33 in excellent yields
(Scheme 12.15) [62]. The monomethyl ether of poly(ethylene glycol) (PEG)- or
MeOPEG-bound azide 34 has been utilized in the 1,3-dipolar cycloadditions with
various alkynes to afford regioisomeric mixtures of 35 and 36 (Scheme 12.16) [63].
The 1,2,3-triazoles could be cleaved with formic acid in dioxane in one example
(R¼CO2Me). 1,3-Dipolar cycloaddition of poly(ethylene glycol)-supported azidewith
various dipolarophiles followed by acidic cleavage afforded 4- and 5-substituted-1,2,3-
triazoles [64].

12.1.4.2 Reactions of a,b-Unsaturated Systems with Azide Reagents
a,b-Unsaturated systems are good substrates for azide additions to prepare 1,2,3-
triazole derivatives. Frequently, the azides undergo addition to unactivated or
activated alkenes with electron-withdrawing or electron-rich substituents, such as
enamines, enamides, enol ethers, and ketene acetals, to give 4,5-dihydro-1H-1,2,3-
triazoles,which are unstable andby elimination of a stable fragment functional group
aromatizes to 1,2,3-triazoles. Generally, the addition of azides to alkenes is regio-
selective and only one isomer is obtained.

Several reports have been published on sodium azide additions to alkenes with
strongly electron-withdrawing substituents to give N-unsubstituted-1,2,3-tria-
zoles [65]. For example, tetrabutylammonium fluoride-catalyzed [3 þ 2] cycloaddi-
tion reactions of 2-aryl-1-cyano(or carbethoxy)-1-nitroethenes 37 with trimethysilyl
azide under solvent-free conditions provided 4-aryl-5-cyano(or carbethoxy)-1H-1,2,3-
triazoles 38 in good to excellent yields under mild conditions (Scheme 12.17) [66a].

BrR
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NR 3

CO2Me
N

N
N

MeO2C

R
DMA, 25 ºC, 72 h

(35-98%)

DMA, 80 ºC, 24 h

(73-100%)
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R = Bn, PhO(CH2)2, (EtO)2P(O)(CH2)2, 3-indolylethyl

Scheme 12.15
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Similarly, nitroalkenes or vicinal acetoxy nitro derivatives underwent a clean reaction
with sodium azide in hot dimethyl sulfoxide to give the corresponding 1,2,3-triazoles
in good yield [66b]. There are reports of additions of azide reagents to enol ethers [67],
vinyl acetates [68], a-acylphosphorus ylides [69], allenes [70], and alkenes with very
strong electron-withdrawing groups like nitro and sulfonyl [71] to produce the
corresponding 1,2,3-triazoles.

There are several interesting reports on the additions of various azide additions to
enamine-type alkenes to give 1,2,3-triazoles where the amine portion either becomes
part of the product or is eliminated as a fragment via the unstable 4,5-dihydro-1H-
1,2,3-triazole intermediate. For example, aroyl-substituted ketene aminals 39 react
with aryl azides to provide polysubstituted 1,2,3-triazoles 40 (Scheme 12.18) [72]. A
series of 5-fluoroalkylated 1H-1,2,3-triazoles 42 have been prepared in good yield by
the regiospecific 1,3-dipolar cycloaddition reaction of (Z)-ethyl-3-fluoroalkyl-3-pyrro-
lidinoacrylates 42 with aryl azides (Scheme 12.19) [73]. Benzyl azides also partici-
pated in these reactions but sodium carbonate was required to provide good yields of
the triazoles. Condensation of enaminones 43 with mesyl azide (MsN3) gave 1,4,5-
trisubstituted-1,2,3-triazoles 44 (Scheme 12.20) [74]. A solid-phase version of this
reaction has also been reported [75].

Ar
NO2

CN (CO2Et)
N

N

N
H

Ar

(EtO2C) NC

TMSN3, TBAF•3H2O

solvent-free conditions

(70-90%)
37

38

Scheme 12.17

N
H

H
N Ar

O

H

NX 3

N
N

N

Ar

X

X = Cl, NO2

dioxane, 80 ºC

39
40

H
N

N
(37-80%)

Scheme 12.18

Rf

CO2Et

N
N

N
N

Ar

EtO2C

Rf

Rf = ClCF2, BrCF2, CF3, Cl(CF2)2CF2

ArN3, 80 ºC

(66-97%)

41
42

Scheme 12.19

12.1 1,2,3-Triazoles j999



4-Acyl-1H-1,2,3-triazoles 46 have been formed from diethylaluminium azide and
a,b-unsaturated ketones 45 by [3 þ 2] cycloaddition of azide, followed by 1,5-hydride
transfer to the b carbon of the triazoline side chain and fragmentation of the tertiary
amino group (Scheme 12.21) [76].

12.1.4.3 Reactions of Azides and Hydrazines with Active Methylene Compounds
Base-catalyzed condensation of azides with active methylene compounds, known as
the Dimroth reaction, is a versatile method for the preparation of 1,2,3-triazoles
regioselectively. The 5-position of the 1,2,3-triazole can be an alkyl, aryl, hydroxyl,
alkoxycarbonyl, or an amino group depending on the functional group of the active
methylene compound used. Various azides can react with 1,3-diketones, 3-oxoesters,
and3-oxoamides togive4-carboxy-1,2,3-triazoles47 ingoodyields (Table12.3) [77–79].

R1

OR2HN

N
N

N
R2

O

R1 R1= OEt, Me

R2 = Bn, n-Bu, n-decyl, Ph

43
44

MsN3

NaH

CH3CN

(50-81%)

Scheme 12.20

Bn2N
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O

N

N
H

N

R
1

O
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R1 = i-Pr, Bn

R2 = Me, Bn, i-Pr

45
46

Et2AlN3

PhMe

25 ºC

(10-41%)

Scheme 12.21

Table 12.3 Reactions of azides with active methylene compounds to give 4-carboxy-1,2,3-triazoles.

R1 N3
R2 R3

O O N

N
N

R1

O

R3

R2+
NaOEt, EtOH

47

R1 R2 R3 Yield (%) Reference

4-O2NC6H4 Me Me 83 [77]
3,5-Cl2C6H3CH2 Me OEt 89 [78]
2-O2N-4-ClC6H3 Me NHPh 80 [79]
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Furthermore, the base-catalyzed reaction of organic azideswithmalonic esters and
malonamides gave the best synthesis of 1H-1,2,3-triazol-5-ols 48 with an alkyloxy(or
aryloxy)carbonyl or carbamoyl functions at C4 (Table 12.4) [80–82]. Similarly, reac-
tions of azides under base-catalyzed conditionswith acetonitrile derivatives yielded 1-
substituted-1H-1,2,3-triazol-5-amines 49 (Table 12.5) [83–85].

There are also reports where activated acyl compounds can react with hydrazines
instead of azides to give substituted 1,2,3-triazoles. For example, a-aminoacetophe-
nones 50 react with hydrazines in acetic acid to give an efficient preparation of 2,4-
disubstituted-1,2,3-triazoles 51 (Scheme 12.22) [86]. Various phenacyl halides 52
react with excess tosyl hydrazide in refluxing methanol to provide 4-aryl-1-(p-
toluenesulfonylamido)-1,2-3-triazoles 53 (Scheme 12.23) [87]. A general and efficient

Table 12.4 Reactions of organic azides with malonic esters and amides to give 1H-1,2,3-triazol-5-
ols.

R1 N3
R2 R2

O O
NaOMe

MeOH

N

N
N

R1

O

R
2

HO
+

48

R1 R2 Yield (%) Reference

Bn OEt 88 [80]
4-pyridyl OEt 75 [81]
Ph NHPh 72 [82]

Table 12.5 Reactions of organic azides with acetonitrile derivatives to give 1H-1,2,3-triazol-5-
amines.

R1 N3 R2 CN

N

N
N

R1

R2

H2N
+ Base/Solvent

49

R1 R2 Base/solvent Yield (%) Reference

PhSCH2 2-FC6H4 K2CO3/DMSO 29 [83]
Bn Ph K2CO3/DMSO 84 [84]
Bn CN K2CO3/DMSO 48 [84]
Bn CONH2 K2CO3/DMSO 84 [84]
2-O2NC6H4 CONH2 NaOEt/EtOH 55 [85]

12.1 1,2,3-Triazoles j1001



method for the preparation of 2,4-diaryl-1,2,3-triazoles 55 from a-hydroxyacetophe-
nones 54 and arylhydrazines has been reported (Scheme 12.24) [88].

12.1.4.4 Oxidation/Cyclization of Hydrazones
Oxidation of bis(hydrazones) 56 with manganese dioxide or mercury(II) oxide affor-
ds 4-aryl-1H-1,2,3-triazol-1-amines 57 as the only regioisomer (Scheme 12.25) [89].
However, other vicinal bis(hydrazones) have generated regioisomeric 1H-1,2,3-
triazoles [90, 91]. Unsymmetrical vicinal bis(arylsulfonylhydrazones) have been
cyclized either with acid or base to give 1-(arylsulfonylamino)-1H-1,2,3-triazoles as
a mixture of regioisomers [92].
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Imine hydrazones can be cyclized in the presence of oxidants to give 1,2,3-triazole
derivatives. GlyoxalO-benzyloxime hydrazone 59, which is generated in situ from the
reaction of glyoxal O-benzyloxime 58 with excess hydrazine, afforded 1-(benzyloxy)-
1H-1,2,3-triazole (60) by oxidative cyclization (Scheme 12.26) [93]. Similarly,
iodobenzene diacetate-mediated oxidation of hydrazones 61 furnished fused
1,2,3-triazoloheterocycles 62 (Scheme 12.27) [94]. a-Hydroxyimino hydrazones 63
undergo intramolecular cyclization with elimination of water to generate 2H-1,2,3-
triazole derivatives 64 in the presence of acetic anhydride or phosphorus pentachlor-
ide (Scheme 12.28) [95].

12.1.4.5 Other Methods for Preparations of 1,2,3-Triazoles
Several other recent methods for preparation of 1,2,3-triazoles do not fall into the
above categories. Treatment of oxazolone 65 with iso-pentyl nitrite in the presence of
acetic acid gives 1,2,3-triazole 66, a precursor to b-(N-1,2,3-triazolyl)-substituted-
a,b-unsaturated-a-amino acid derivatives (Scheme 12.29) [96]. 2-Aryl-2H,4H-imi-
dazo[4,5-d][1,2,3]triazoles 68 have been prepared from the reaction of triethyl N-1-
ethyl-2-methyl-4-nitro-1H-imidazol-5-yl phosphoramidate (67) with aryl isocyanates
(Scheme 12.30) [97].N-(Uracil-6-yl)-S,S-diphenylsulfilimine (69) reacted with aryldia-
zonium salts to give arylsulfilimines 70, which were thermolyzed to the 1,2,3-
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64

R3

Scheme 12.28
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triazolopyrimidine diones 71 in good yields (Scheme 12.31) [98]. Polystyrene-sulfonyl
hydrazide resins 72 reacted with various amines to give regiospecifically 1,4-disub-
stituted-1,2,3-triazoles 73 via traceless cleavage reactions (Scheme 12.32) [99]. Palla-
dium-catalyzed synthesis of 1H-triazoles 75 from alkenyl bromides 74 and sodium
azide in the presence of xantphos ligand has been reported (Scheme 12.33) [100]. A
new one-pot procedure has been developed to synthesize 1-aryl- and 1-vinyl-1,2,3-
triazoles directly from boronic acids and alkynes, which avoids the need to isolate
unstable azide intermediates [101].

O

N

NH

Ph

NH2

NC

O

NC

O

N

PhO

N

N

N

NC

CN

iso-pentyl nitrite

HOAc, 25 ºC

(65%)

65 66

Scheme 12.29

N

N

N

NO2

Me

Et
P(OEt)3 N

N
Me

Et

N
N

N

Ar

67 68

ArNCO

MeCN

(57-79%)

Scheme 12.30

N

N

O

Me

O

Me

N SPh2

N

N

O

Me

O

Me

N SPh2

N
N

R

N

N

O

Me

O

Me

N

N

N

R
ArN2Cl

H2O, DMF

THF, 5 ºC

PhMe, reflux

- SPh2

(86-98%)

69
70 71R = H, Me, OMe, Cl, NO2

Scheme 12.31

O2
S

NHN

CHCl2

R1

N

N

N

R2

R1R2NH2

MeOH

25 ºC

(28-57%)72

73

Scheme 12.32
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12.1.5
Reactions of 1,2,3-Triazoles

12.1.5.1 Reactions of Carbon of 1,2,3-Triazoles
In general, the 1,2,3-triazole ring system is relatively resistant to both oxidation and
reduction conditions but many synthetically useful reactions can still be achieved
with this system. For example, lithiation of N-protected 1,2,3-triazoles is one of the
most general methods for introduction of carbon or hetero substituents onto the C5
position of the ring. 1-Substituted-1,2,3-triazoles 76 react easily with n-butyllithium,
lithium diisopropylamide (LDA), or with lithium tetramethylpiperidine (LTMP) to
generate lithio species 77, which are quenched with various electrophiles to give 1,5-
disubstituted-1,2,3-triazoles 78 (Table 12.6) [93, 102, 103]. Low temperaturesmust be
maintained, otherwise cycloreversion to the alkyne species can result. Alkyl, alcohol,

R
Br

NaN3, Pd2(dba)3

xantphos, dioxane

or DMSO, 90-110 ºC

R = Ph, Ar, 2-furyl, CH2OBn

(45-94%)

N

N

N
H

R

74

75

Scheme 12.33

Table 12.6 Lithiation of 1H-1,2,3-triazoles and quenching with electrophiles.

N

N
N

R1

N

N
N

R1

Li

N

N
N

R1

R2
n-BuLi or LDA or LTMP

THF, -78 ºC

electrophile

THF

76 77 78

R1 R2 Electrophile Yield (%) Reference

SEM CH(OH)Ph PhCHO 45 [102]
SEM Me MeI 30 [102]
SEM Cl Cl3CCCl3 50 [102]
SEM SPh PhSSPh 80 [102]
OBn Me MeI 93 [93]
OBn CHO DMF 87 [93]
OBn Cl Cl3CCCl3 88 [93]
OBn Br Br2 86 [93]
OBn SnBu3 Bu3SnCl 91 [93]
OBn CO2Me ClCO2Me 76 [93]
OBn TMS TMSCl 93 [93]
Me Me MeI 56 [103]
Me CH(OH)Ph PhCHO 61 [103]
Me PhC(O) PhCONMe2 78 [103]
Me PhCOCH2 PhCOCH2Br 66 [103]
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halogen, sulfur, silicon, tin, aldehyde, and ester products can be formed from these
reactions. The 2-(trimethylsilyl)ethoxymethyl (SEM) and benzyloxyl (OBn)N-protect-
ing groups both stabilize the intermediate triazol-5-yllithium species by intramo-
lecular coordination. The SEM group can be deprotected easily with dilute
hydrochloric acid or with tetrabutylammonium fluoride to give the 5-substituted-
1H-1,2,3-triazoles, while the Bn group can be deprotected with catalytic hydrogena-
tion to give the corresponding 5-substituted-1H-1,2,3-triazol-1-ols. From Table 12.6,
higher yields are generally obtained for the same type of reaction (Cl, Me) when the
nitrogen was protected with the benzyloxy group [93]. Lithiation of 1-methyl-1H-
1,2,3-triazole with n-butyllithium or with LTMP followed by addition of electrophiles
gives moderate yields of 5-alkyl- or 5-acyl-1-methyl-1,2,3-triazoles [103]. Bromine–
lithium exchange can be carried out on 4,5-dibromo-1-(methoxymethyl)-1H-1,2,3-
triazole with n-butyllithium and subsequent quenching with various electrophiles
gives high yields of the corresponding 5-substituted-1,2,3-triazoles [104].

1-(Benzyloxy)-1H-1,2,3-triazoles 79 have been lithiated followed by transmetala-
tion to the zinc species 80, which undergoes Negishi cross-coupling with aryl iodides
to generate 5-aryl-1,2,3-triazoles 81 (Scheme 12.34) [105].

Substitution of halogens by nucleophiles is possible in N-substituted-1,2,3-tria-
zoles. Displacement of the chloro group in N-substituted-1,2,3-triazoles 82 by
nucleophiles, such as cyanide, phenolates, arene, and furylthiolates, gave moderate
to good yields of derivatives 83 (Table 12.7) [106–109]. Heating 1-aryl-5-chloro-1H-
1,2,3-triazoles with hydrazine gave 5-substituted-1H-1,2,3-triazol-1,5-diamines, via
the 5-hydrazinotriazole intermediates which spontaneously rearrange under the
reaction conditions [110]. 5-Bromo-1-methyl-1H-1,2,3-triazole reacts with aniline to
give the corresponding 5-anilino derivative [111].

12.1.5.2 Reactions of Nitrogen of 1,2,3-Triazoles
1H-1,2,3-Triazoles can be N-alkylated with alkyl halides in the presence of bases such
as sodium alkoxide, sodium hydride, or sodium hydroxide to give mixtures of 1- and
2-alkylated-1H-1,2,3-triazoles [112]. Selectivity for alkylation at the 1-position has
been achieved in the presence of silver or thallium salts of 1,2,3-triazoles on reaction
with alkyl halides [113]. Reaction of 2-(trimethylsilyl)-2H-1,2,3-triazoles with primary
alkyl halides afforded products of selective alkylation at N1 [103]. 1H-1,2,3-Triazoles
can beN-acylatedwith acyl halides and anhydrides to give exclusively 1-acyl-1H-1,2,3-
triazoles; however, the acyl group can migrate to the 2-position on heating or on
treatment with base [114].

N

N
N

OBn

N

N
N

OBn

Li

ZnI2
N

N
N

OBn

IZn

N

N
N

OBn

Ar
n-BuLi

THF, -78 ºC

ArI, DMF

Pd(PPh3)4

80 ºC

(30-87%)

79 80 81

Scheme 12.34
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N-Arylation of 1,2,3-triazoles is possible with activated aryl halides. Activated aryl
halides such as 1-fluoro-2-nitrobenzene and 1-fluoro-4-nitrobenzene with 1H-1,2,
3-triazoles afforded mixtures of the corresponding 1- and 2-nitrophenyl-1,2,3-tria-
zoles [115, 116]. However, reactions with even more activated halides such as
1-fluoro-2,4-dinitrobenzene and 2-chloro(or fluoro)-1,3,5-trinitrobenzene provided
only 1-substituted-1H-1,2,3-triazoles 84 (Scheme 12.35) [116]. The copper-catalyzed
arylation of 1,2,3-triazole with iodobenzene proved to be problematic as competitive
N-1/N-2 arylation products were observed [117]. Efficient post-triazole regioselective
N-2 arylation to give 86 has been developed from C4, C5 disubstituted-1,2,3-NH-
triazoles 85 (Scheme 12.36) [118].

1H-1,2,3-Triazoles can also N-substituted with heteroatoms. For example, 4,5-
diphenyl-1H-1,2,3-triazole has been aminatedwith hydroxylamine-O-sulfonic acid to
yield mixtures of N-aminotriazoles substituted in the 1- and 2-positions [119]. 1H-
1,2,3-Triazoles can be oxidized by peracids such as 3-chloroperoxybenzoic acid and
hydrogen peroxide to give 1H-1,2,3-triazol-1-ols [92, 120], which are also obtained by
catalytic hydrogenation of 5-substituted-1-(benzyloxy)-1H-1,2,3-triazoles [92, 121].

Table 12.7 Nucleophilic displacement of 5-chloro-N-substituted-1,2,3-triazoles with nucleophiles.

N

N
N

R1

Cl

R
2

N

N
N

R1

Nuc

R2

nucleophile

DMF, 80 °C

82 83

R1 R2 Nucleophile Nuc Yield (%) Reference

PMB CO2Et NaCN CN 66 [106]
PMB CO2Et 4-OMeC6H4SNa 4-OMeC6H4S 74 [106]
Ph Ph NaCN CN 75 [107]
Bn CO2Et NaOPh OPh 82 [108]

Bn CO2Me
S SNa S S 48 [109]

PMB CO2Me
S SNa S S 34 [109]

N

N
H

N

O2N

O2N

NO2(NO2 ,F) Cl

N

N
N

NO2O2N

NO2

+
DMF or DMSO

(58-96%)

84

Scheme 12.35
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12.1.5.3 Electrophilic Reactions of 1,2,3-Triazoles
Halogenations are themost common type of electrophilic reactions of 1,2,3-triazoles.
For example, 1H-1,2,3-triazole reacts with bromine to afford 4,5-dibromo-1H-
1,2,3-triazoles (87) in almost quantitative yield (Scheme 12.37) [122]. 4-Bromo-
and 5-bromo-1H-1,2,3-triazoles are obtained indirectly by bromination of a triazole
with a protecting group at N1 [123]. In general, most halogens are introduced
into the carbons of the ring system by a lithiation/electrophilic sequence
(Section 12.1.5.1).

Direct nitration of 1H-1,2,3-triazole is not possible. Nitration of 1-phenyl and
4-phenyl-1H-1,2,3-triazole was also unsuccessful as nitration occured only on the
phenyl ring [124]. However, nitration of 2-methyl-2H-1,2,3-triazole (88) with a
mixture of fuming nitric acid and concentrated sulfuric acid afforded 2-methyl-4-
nitro-2H-1,2,3-triazole (89), which can be nitrated further to 90 undermore vigorous
conditions (Scheme 12.38) [125].

N

N
NH

R1

R2

ArF or ArCl, base

or

ArB(OH)2, Cu(OAc)2 (20 mol%)

O2, 1 atm, 50 °C, 12 h

or

ArI, CuCl (10 mol%), L-proline (20 mol%),

110°C, 24 h (or microwave, 160 °C, 30 min)

(50-95%)

N

N
N

R1

R2 Ar

85 86

Scheme 12.36

N

N
H

N
Br2, H2O

(97%)

N

N
H

N

Br

Br

87

Scheme 12.37

N

N
N Me

N

N
N Me

O2N

N

N
N Me

O2N

O2N

HNO3, H2SO4

25 ºC, 3 h

(98%)

HNO3, H2SO4

100 ºC, 10 h

(97%)88 89
90

Scheme 12.38
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12.2
Benzotriazole

12.2.1
Introduction

12.2.2
General Reactivity

12.2.2.1 Relevant Physicochemical Data and NMR Data
The parent benzotriazole is a weak basewith a pKa of 8.2, which is a strongerNHacid
than indazole, benzimidazole, or 1,2,3-triazole (Figure 12.3). The 1-substituted 1H-
benzotriazole is remarkably stable to strong acid and bases and to oxidative and
reductive conditions. The two tautomeric forms of benzotriazole (Figure 12.4) are in
equilibrium, but 1H-benzotriazole is the predominant species (99.9%) in both the
gas and solution phases [2].

The 1H and 13C NMR spectra of the parent benzotriazole for the protons and
carbons at the 4-/7- and 5-/6-positions are identical because benzotriazole undergoes
rapid proton exchange between the tautomeric forms at room temperature
(Table 12.8). Other 1H and 13C NMR data of the methyl group attached to the
benzotriazole in the 1- and 2- positions are listed for comparison.

12.2.3
Synthesis of Benzotriazoles

12.2.3.1 Synthesis by Ring-Closure Reactions
Diazotization of benzene-1,2-diamine derivatives is the most common synthetic
route to 1-substituted benzotriazoles. Diazotization is mostly commonly performed
with nitrous acid, generated in situ from sodium nitrite and a mineral acid source
such as nitric, sulfuric, or acetic acids. A range of various 1-substituted benzotriazoles
92 can be prepared from the corresponding benzene-1,2-diamine derivatives 91
(Table 12.9).

N

N

N

H

acid pKa 8.2 for proton loss
very weak Bronsted base (pKa for proton addition)
Lewis base of appreciable strength

non-volatile, crystalline, odorless, nontoxic
almost insoluble in water, soluble in sodium carbonate solution

N
N

N

R

Stable: thermally to 400 °C

            to hot strong sulfuric acid
            to fused potassium hydroxide
            to oxidation
            to reduction

Chemical Stability of Benzotriazole Ring System

Figure 12.3 Physical and chemical properties of the parent and 1-substituted 1H-benzotriazole.
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1-Substituted benzotriazoles can be prepared from various azides with a benzyne
intermediate generated in situ from 2-aminobenzoic acid (Table 12.10). 1-Chloro-2-
nitrobenzenes 93 react with hydrazine to yield benzotriazol-1-ols 95 via the 2-
nitrophenylhydrazines 94 (Table 12.11). The polymer-supported synthesis versions
of benzotriazol-1-ols has also been published [141, 142]. These benzotriazol-1-ols can
be readily deoxygenated to their NH derivatives by reductive cleavage with either
phosphorus trichloride or samarium(II) iodide [142]. Various substituted benzotria-

Table 12.8 1H and 13C NMR data (ppm) of benzotriazoles.

N

N
H

N

4

5

1
6

7

Substituents 1H NMR (DMSO-d6)
13C NMR (DMSO-d6) Reference

H4 H5 H6 H7 Reference C4 C5 C6 C7
— 8.00 7.44 7.44 8.00 [126] 130.3 130.3 130.3 130.3 [128]

1-Me 8.02 7.47 7.47 7.36 [127] 119.3 123.4 126.8 108.8 [129]
2-Me 7.85 7.34 7.34 7.85 [127] 117.5 125.9 125.9 117.5 [129]

N

N

N

H

N

NH

N

1
2

1

2

1H-benzotriazole 2H-benzotriazole

Figure 12.4 Tautomerisim in benzotriazoles.

Table 12.9 Diazotization of benzene-1,2-diamine derivatives to give 1-substituted benzotriazoles.

R2

NH2

NHR1 N

N

N

R1

NaNO2, HCl or H2SO4

or HOAc, 0 ºC

91 92

R2

R1 R2 Yield (%) Reference

H H 81 [130]
Me 5,6-(NO2)2 83 [131]
Ac 5-6-Me2 63 [132]
CO2Et 7-Cl-4-OEt-5-CO2Me 68 [133]
SO2Ph 5-Me 100 [134]
Benzotriazol-2-yl H 63 [135]
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zoles 97 have been prepared by the [3 þ 2] cycloaddition of azides to benzynes
generated from aryl triflates 96 and cesium fluoride (Scheme 12.39) [143].

2-Substituted benzotriazoles can be prepared by several methods. For example, 2-
aminoazobenzenes 98 can be converted into their 2-aryl-2H-benzotriazoles 99

Table 12.10 Synthesis of 1-substituted benzotriazoles from azides and a benzyne intermediate.

CO2H

NH2

BuONO RN3

N

N
N

R

R Yield (%) Reference

Ph 52 [136]
4-O2NC6H4 62 [137]
Bz 63 [137]
SO2Ph 52 [137]
4-OMeC6H4CO 60 [137]
1-Naphthalenyl 75 [138]

Table 12.11 Benzotriazol-1-ols from 1-chloro-2-nitrobenzenes and hydrazines.

Cl

NO2

NHNH2

NO2
N

N
N

OH

NH2NH2

EtOH

reflux

93 94 95

R RR
- H2O

R Yield (%) Reference

H 90 [139]
4,5,6-Cl3 67 [139]
6-CF3 90 [140]
6-OMe 6 [140]
6-CONH2 39 [140]
6-SO2NHBn 96 [135]

Z

TMS

OTf

RN3, CsF

CH3CN, 25 °C

(20–100%)

R = Ph, Ar, Bn, alkyl

N

N
N

Z

R
96

97

Scheme 12.39
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by oxidation with copper(II) sulfate in refluxing pyridine [144], copper(II)
acetate in air [145], or by refluxing the azo compound in thionyl chloride
(Scheme 12.40) [145a]. 2-Aryl-2H-benzotriazoles 101 can be prepared directly by
reaction of 1-halo(or nitro)-2-nitrobenzenes 100 with an excess of an arylhydrazine
(Scheme 12.41) [146].

12.2.4
Reactions of Benzotriazoles

The growing applications of benzotriazole methodology as a versatile synthetic tool
have been reviewed extensively [147]. Practically all the chemistry occurs on the N1-
position of the benzotriazole. The benzotriazole group conveys multiple activating
influences such as a leaving group, proton activator, ambident anion directing group,
cation stabilizer, radical precursor, and anion precursor. The benzotriazole group can
also easily be eliminated by radical-type reactions, by hydrolysis, by palladium-
catalyzed SN20 substitution, and by reductive metal reductive reactions. This section
will not describe the chemistry needed to give the benzotriazole derivatives; however,
the intermediates of these substitution reactions will be used to explain themyriad of
useful synthetic reactions.

12.2.4.1 Acylation of 1-Benzotriazoles and Benzotriazole Methodology
The classical preparation of N-acylbenzotriazoles uses the corresponding acid
chlorides (Table 12.12) [148]. More recently, two methods have been developed for
the preparation of N-acylbenzotriazoles directly from carboxylic acid without the
necessity of isolating the acid chlorides. Carboxylic acids are converted into themixed
carboxylic sulfonic anhydride, which is then attack by the benzotriazole anion with
methanesulfonylbenzotriazole as the reagent [149]. Treatment of carboxylic acids

N

NH2
N

N
NN

Ar

CuSO4, pyridine, reflux

or

Cu(OAc)2, air, DMF, reflux

or

SOCl2, PhH, reflux

Ar

98 99

R R

Scheme 12.40

X

NO2
N

N
N

Ar

X = Cl, Br, NO2

ArNHNH2, heat

100 101

R R

Scheme 12.41
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with thionyl chloride in the presence of excess benzotriazole provided N-acylbenzo-
triazoles in high yields [150].N-Acylbenzotriazoles can be synthesized by palladium-
catalyzed carbonylation of benzotriazole and hypervalent iodonium salts [151].

N-Acylbenzotriazoles are useful intermediates in several synthetically valuable
reactions (Table 12.13) [152]. N-Acylbenzotriazoles can react with ammonia and
primary and secondary amines to give high yields of their respective amides [149].O-
Alkyl, N-alkyl, and O,N-dialkylhydroxamic acids have been synthesized from N-
acylbenzotriazoles [153]. C-Acylation of N-acylbenzotriazoles with furan, thiophene,
pyrrole, and indoleunderFriedel–Crafts conditionsgaveproducts inhighyields [154].
b-Diketones have been prepared frommonoketones andN-acylbenzotriazoles in the

Table 12.12 Synthesis of N-acylbenzotriazoles.

N
N

N

R
O

Acyl Reagent Benzotriazole
Reagent

+
Base

Acyl reagent Benzotriazole reagent Reference

RCOCl BtH [148]
RCO2H BtSO2Me [149]
RCO2H/SOCl2 BtH (4 equiv) [150]
CO/iodonium salts BtH [151]

Table 12.13 Benzotriazole-mediated methodology of N-acylbenzotriazoles.

N

N
N

R

O

Reactants Products Reference

Amines (ammonia, primary, secondary) Amides (primary, secondary, tertiary) [149]
R1NHOR 2HCl O-Alkyl, N-alkyl, O,N-dialkylhydroxamic

acids
[153]

Five-membered heterocycles C2-acylated heterocycles [154]
Cyclic and acyclic ketones b-Diketones [155]
Nitriles (primary, secondary) a-Substituted b-ketonitriles [156]
Sulfones b-Ketosulfones [157]
Acetoacetic esters b-Ketoesters/b-diketones [158]
Grignards/heteroaryllithiums Ketones [159]
Sodium azide Acyl azides [160]
Indoles Aroylindoles [161]
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presence of base [155]. a-Substituted b-ketonitriles have been synthesized from
N-acylbenzotriazoles with primary and secondary alkyl nitriles [156]. C-Acylation of
sulfones with N-benzotriazoles affords b-keto sulfones [157]. b-Ketoesters and
b-diketones have been prepared by an acylative-deacylative sequence [158]. Stable
and easily accessible N-acylbenzotriazoles, derived from various aliphatic, unsatu-
rated, (hetero)aromatic, andN-protected-R-amino carboxylic acids, have been reacted
with Grignard and heteroaryllithium reagents to afford the corresponding
ketones [159]. A general synthesis of acyl azides from the corresponding N-acyl
benzotriazoles have been described [160]. Stable and easily accessible N-aroylbenzo-
triazoles react with indoles in the presence of a base to afford the corresponding N-
aroylindoles [161].

12.2.4.2 Benzotriazole-Mediated Imidoylation
N-(Imidoyl)benzotriazoles have found synthetic applications in the syntheses of
various substituted guanidines. For example, benzotriazole-1-carboxamidinium
tosylate (102) was found to be an efficient reagent for the synthesis of mono- and
disubstituted guanidines 103 in moderate to good yields and offers advantages over
previous procedures (Table 12.14) [162]. Introduction of Boc groups on both nitro-
gens of the amidine moiety and nitro or chloro group on the benzotriazole enhances
the ability of the benzotriazole moiety as a leaving group [163]. Bis(benzotriazolyl)
carboximidamide (104) has been developed as a new guanylating agent for the
synthesis of tri- and tetrasubstituted guandines 105 [163, 164]. Benzotriazolyl
carboximidoyl chlorides (106) are stable, colorless, and conveniently handled
reagents for the synthesis of unsymmetrical guanidines 107 [165]. Polysubstituted
acylguanidines and guanylureas 109 [166] have been prepared from N-acyl-N,N-
disubstituted benzotriazolyl carboximidates 108.

Table 12.14 Synthesis of substituted guanidines with various benzotriazole imidates.

Benzotriazole imidate Reagents Products Reference

Bt NH2

NH2

OTs 102 R1R2NH
NR1R2

NH

H2N
103

[162]

Bt Bt

NH

104 R1R2NH, R3R4NH
NR3R4

NH

105R2R1N
[163, 164]

Bt Cl

NR
1

106
R2R3NH, R4R5NH

NR
4
R

5

NR1

107
R2R3N

[165]

Bt NR2R3

N

O

R1

R1 = aryl, alkyl, NHAr

108 R4R5NH

NR2R3

N

O

R
1

109

R4R5N

[166]
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12.2.4.3 Benzotriazole-Mediated Amino-, Amido-, Alkoxy-, and Alkylthio-Alkylations
A very detailed recent review describes extensively the synthesis and the broad utility
of aminomethylbenzotriazoles 110, amidomethylbenzotriazoles 111, alkoxymethyl-
benzotriazoles 112, and alkylthiomethylbenzotriazoles 113 (Figure 12.5) and so this
chemistry will not be presented here [167].

12.2.5
Benzotriazole-Containing Reagents

Substituents located in the N1 position of 1,2,3-benzotriazoles have become useful
reagents in various reactions (Table 12.15). 1-Hydroxybenzotriazole (114) is a useful
co-reagent in peptide coupling reactions in the activation of carboxylic acids [168].
Aminium-based 115 [169] and phosphonium-based 116 [170] benzotriazoles are
currently utilized as peptide coupling reagents. 1-Aminobenzotriazole (117) is a
useful reagent in the generation of benzyne intermediate, which can be trapped with
various dienes [171]. 1-Cyanobenzotriazole (118) has been found to participate in
electrophilic cyanations of sp2 and sp carbanions [172]. 1H-Benzotriazole-1-yl
methanesulfonate (119) has been explored as a regioselective N-mesylating
reagent [173]. Reagent 119 mesylated molecules containing both primary and
secondary amines on the primary amino position and mesylation occurred on the
amino group in molecules containing both amino and hydroxy groups. 1H-Benzo-
triazole-1-yl alkyl carbonates (120) are convenient and inexpensive coupling agents in
the preparation of active esters for the synthesis of amides [174]. A general and
efficient route to thionoesters via thionoacyl nitrobenzotriazoles 121 has been
reported [175]. The Vilsmeier-type reagent 122 with b-enaminonitriles provides a
regioselective route to the preparation of nicotinonitriles [176] and was employed in
the direct and efficient synthesis of dimethylformamidrazones from hydra-
zines [177]. 1-(Chloromethyl)benzotriazole reacted with sodium dialkyl phosphites
to give dialkyl-(1-benzotriazolmethyl)phosphonates 123, which are potential
Horner–Emmons reagents [178] for the stereoselective preparation of (E)-1-(1-
alkenyl)benzotriazoles [179]. 2-Benzotriazolyl-1,3-dioxolane (124) has been utilized
as a novel formyl cation equivalent [180]. The novel three-carbon synthon 1-(1H-1,2,3-
benzotriazol-1-yl)-3-chloroacetone (125) has beenused for the synthesis of benzothia-
zoles, pyrido[1,2-a]indoles, styryl-substituted indolizines, and imidazo[1,2-a]pyri-
dines [181]. Various functionalized N-allylamines and N-allylsulfonamides have
been synthesized by Pd(II)-catalyzed intermolecular amination of the corresponding
N-allylbenzotriazoles 126 [182]. S-(1H-1,2,3-Benzotriazol-1-ylmethyl)-O-ethylcarbo-

Bt NR1R2

R

110

Bt N
H

R

R

O

111

Bt OR2

R1

Bt SR2

R1

112 113

Figure 12.5 Structures of amino- (110), amido- (111), alkoxy- (112), and alkylthio- (113)
methylbenzotriazoles [167].
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nodithioate (127) has been used to generate the benzotriazolylmethyl radical, which
was trapped by various olefins [183]. 1-(Trimethylsilylmethyl)benzotriazole (128)
has been utilized as a one-carbon synthon in the conversion of alkyl and aryl
carboxylic acids into their corresponding homologated acids or esters [184]. N-
Alkane-, N-arene-, and N-heteroenesulfonylbenzenetriazoles 129 have been
exploited as efficient sulfonylating agents [185]. Several benzotriazole sulfur reagents
130 have been prepared and used for thioacylations, thiocarbamoylations, alkyl/
alkoxythioacylations, and aryl/alkylthioacylations [186]. Benzotriazole of 3,3,3-tri-
fluoro-2-methoxy-2-phenylpropionic acid (131) reacted with water-soluble amino
acids and peptides in an acetonitrile/water (2 : 1) mixture to give the corresponding
Mosher derivative in quantitative yield [187]. Anionic in situ generation of formal-
dehyde from benzotriazolylmethanol 132 has proved to be a very useful and versatile
tool in synthesis [188]. Carbamoyl-1H-benzotriazole 133, an effective carbamoyl

Table 12.15 Synthetic utility of 1-substituted benzotriazole reagents.

N
N

N

R

R Number Synthetic utility Reference

OH 114 Co-reagent in peptide coupling [168]

CHNR2 X 115 Peptide coupling agent [169]

OP(NHR2)3 X 116 Peptide coupling agent [170]

NH2 117 Benzyne intermediate [171]
CN 118 Electrophilic cyanations [172]
OMs 119 N-Mesylating reagent [173]
OCO2R 120 Synthesis of active esters [174]
C(S)R� 121 Synthesis of thioesters [175]

CH=NMe2Cl 122 Vilsmeier-type reagent [176, 177]

CH2P(O)(OR)2 123 Horner–Emmons reagent [178, 179]

O

O
124 Formyl cation equivalent [180]

CH2C(O)CH2Cl 125 Three-carbon synthon [181]
CHRCH¼CH2 126 N-Allylating reagent [182]
CH2SC(S)OEt 127 Benzotriazolylmethyl radical [183]
CH2TMS 128 One-carbon synthon [184]
SO2R 129 Sulfonylating reagents [185]
C(S)X X¼R, OR, SR, HetNH 130 Thioacylating reagents [186]
PhC(OCH3)(CF3)C(O)) 131 Mosher-Bt reagent [187]
CH2OH 132 Formaldehyde generation [188]
CONH2 133 Carbamoyl chloride reagent [189]
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chloride substitute, and a range of its analogs have been synthesized in good yields in
two very simple steps from 1,2-diaminobenzene [189].

12.3
1,2,4-Triazoles

12.3.1
Introduction

The chemistry of 1,2,4-triazoles is extensively reviewed elsewhere [190]. A compre-
hensive review on the chemistry of mercapto- and thione- substituted 1,2,4-triazoles
and their utility in heterocyclic synthesis has been published [191]. This section will
focus onmethods for the synthesis of themonocyclic 1,2,4-triazole system, including
solid-phase and microwave-assisted reactions.

12.3.2
General Reactivity

12.3.2.1 Relevant Physicochemical Data and NMR Data
The parent 1,2,4-triazole consists of a five-membered aromatic ring containing three
nitrogen atoms, two of which are adjacent; it is a stable, water-soluble solid. Two
tautomeric forms, 1H-tautomer and 4H-tautomer, can be envisaged (Figure 12.6).
Theoretical and analytical methods show that the 1H-tautomer is the preferred
structure. Every carbon atom in 1,2,4-triazole is linked to two nitrogen atoms and,
thus, this ring system is electron deficient. The ring is deactivated towards electro-
philic attack so nitration and other reactions at carbon typical of aromatic chemistry
do not apply to the parent compound. However, electrophilic attack at nitrogen is
found in abundance in the literature and this will be discussed later. The parent
compound has a pKa of 10.26 and so alkali metal salts form readily at the N1 position.
The pKa of the protonated species is 2.19 and the weakly basic nature allows
electrophilic attack at the N4 position in 1-substituted-1,2,4-triazoles.

The 1H NMR spectrum of the parent 1,2,4-triazole in HMPT is temperature
dependent; the H3 andH5 protons show one broad singlet at slightly above or below
room temperature due to the rapid proton exchange between the tautomeric forms

N

N
H

N

HN

N
N

4H-tautomer

1

2

4

1

34

5 2

3

5

1H-tautomer

stable, water-soluble, colorless crystals

mp 120-121 °C

pKa = 10.26

pKa = 2.19 of the protonated species

Figure 12.6 Tautomerism of 1,2,4-triazoles.
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(Table 12.16) [192]. However, at�34 �C, theH3 protons andH5 protons are observed
separately. The 13C NMR spectrum shows a single peak for the parent triazole.

12.3.3
Relevant Natural and/or Useful Compounds

1,2,4-Triazoles have several applications in analytical chemistry, in industrial, and in
molecular recognition processes [190d,190f ]. The 1,2,4-triazole ring is also a com-
ponent of a wide range of biologically active pharmaceutical products. For example,
rizatriptan benzoate, marketed as Maxalt�, was launched in 1998 by Merck & Co. as
an antimigraine medication (Figure 12.7) [193]. Voriconazole is sold as Vfend� by
Pfizer for treatment of fungal infections [194]. Aprepitant is sold as Emend� for the
treatment of chemotherapy-induced nausea and vomiting [195].

12.3.4
Synthesis of 1,2,4-Triazoles

12.3.4.1 Reactions of Acylhydrazines with Various Nitrogen-Containing Reagents
One of the most common methods of preparing 1,2,4-triazoles is the reaction of
acylhydrazines with various nitrogen-containing reagents. For example, reactions of

Table 12.16 1H and 13C NMR data (ppm) of 1,2,4-triazole.

N

N
N

H

3

5

1H NMR (HMPT) 13C NMR (CD3OD-d4)

Temperature (�C) H3 H5 C3 C5
37 8.03 8.03 147.4 147.4
10 8.17 8.17
�34 7.92 8.85

N
H

NMe2

N
N

N

N

N NF

F

N

N

OH
CH3 F

N

ONH
HN

N

O

O

Me

F

CF3

CF3

rizatriptan benzoate (MaxaltTM)
Merck & Co. voriconazole (VfendTM)

Pfizer
aprepitant (Emend TM )

Merck & Co.

Figure 12.7 Some biologically active pharmaceutical products that contain a 1,2,4-triazole ring.
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acylhydrazines with isothiocyanates or isocyanates to give 1,2,4-triazoles can be seen
in the following examples. Acylhydrazines 134 and isothiocyanates 135 afforded
1,2,4-triazole-3-thiones 136, which were intercepted by alkyl halides to give substi-
tuted 3-thio-1,2,4-triazoles 137 (Scheme 12.42) [196]. Solid-supported acylhydrazines
138 react with isocyanates or isothiocyanates followed by base-induced cyclization/
cleavage to provide 1,2,4-trisubstituted urazoles and thiourazoles 139
(Scheme 12.43) [197]. A traceless liquid-phase synthesis of 3-alkylamino-4,5-disub-
stituted-1,2,4-triazoles on poly(ethylene glycol)-supported thioureas and acylhydra-
zines has been reported [198].

Acylhydrazines can also be used in conjunction with substituted imidates to give
1,2,4-triazole derivatives. The three-component condensation of acylhydrazines in
the presence of S-methyl isothioamide hydroiodide 140, silica gel, and ammonium
acetate under microwave irradiation afforded 1,2,4-triazoles 141 in good yields
(Scheme 12.44) [199]. Acylhydrazines 142 react with imidates 143 to yield 1,2,4-
triazoles 144 (Scheme 12.45) [200].

Other non-traditional reactions of acylhydrazines with nitrogen reagents for the
synthesis of 1,2,4-triazoles are also available. An efficient one-pot, three-component
synthesis of substituted 1,2,4-triazoles 146 has been prepared from primary acylhy-

R2 N=C=SR1 N
H

NH2

O
THF NHN
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R
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3
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Scheme 12.42
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drazines, dimethylamino acetals 145, and amines (Scheme 12.46) [201]. 1,3-Benzox-
azine 147 reacts with acylhydrazines in refluxingmethanol to give 1,2,4-triazoles 148
(Scheme 12.47) [202]. Diethoxyphosphinyl acetic acylhydrazine 150was found to be a
unique reagent that provided a convenient and efficient process to prepare fused
[5,5]-, [5,6]-, and [5,7]-3-[(E)-2-(arylvinyl)]-1,2,4-triazoles 151 from aldehydes
and alkoxyimines 149 (Scheme 12.48) [203]. A convenient and efficient one-step,
base-catalyzed microwave-assisted synthesis of 3,5-disubstituted-1,2,4-triazoles by
condensation of a nitrile and acyl hydrazide has been reported [204].

O
NHNH2

O

EtO
N

R3

RNH•HCl 2

)( n

i-PrOH, Et3 ºC65N,

142

143

R1

N

NHN NR2R3
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144
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O

Scheme 12.45
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12.3.4.2 Reactions of Hydrazones
Substituted hydrazones are a rich source of precursors for the syntheses of 1,2,4-
triazoles. For example, hydrazonyl chlorides can be used as partners in reactionswith
compounds containing a C–N multiple bond that lead to 1,2,4-triazoles. Aryl-
substituted hydrazonyl chlorides 152 reacted with cycloalkanone oximes 153 to give
1,2,4-triazolospiro compounds 154 (Scheme 12.49) [205]. Intermolecular cyclization
of hydrazonyl chlorides 155with nitriles catalyzed by ytterbium(III) triflate afforded a
series of 1,3,5-trisubstituted-1,2,4-triazoles 156 in good yields (Scheme 12.50) [206].
Dipolar cycloadditions between hydrazonyl chlorides 157 and nitriles in aqueous
sodium bicarbonate in the presence of a surfactant provided mild conditions for the
synthesis of 1-aryl-5-substituted-1,2,4-triazoles 159 via intermediate 158
(Scheme 12.51) [207]. A series of 1,2,4-triazoles have been prepared by oxidative
intramolecular cyclization of heterocyclic hydrazones with copper dichloride [208].
Other C–N multiple partners include aryl cyanides [209], amidines [210], and
cyanamides [211].

NHN
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Aminohydrazones or amidrazones are versatile reagents that can react
with various electrophilic carbon compounds to give 1,2,4-triazoles. As an example,
N-tosylamidrazones 160 can react either with acid chlorides or with ethyl chlor-
oformate to give tosylated 1,2,4-triazoles 161 or 1,2,4-triazole-3-ones 162, respectively
(Scheme 12.52) [212]. Other amidrazone reactions can occur with carboxylic
acids [213], cyanogen bromide [214], aldehydes [215], and orthoesters [215, 216].
Amidrazones 163 have been oxidized to 1,3,5-trisubstituted 1,2,4-triazoles 164 in
good yields by silver carbonate, Dess–Martin periodinane, sodium and calcium
hypochlorites, and tetrapropylammonium perruthenate (TPAP)/N-methylmorpho-
line N-oxide (NMO) combination (Scheme 12.53) [217–219].

Other hydrazone intermediates have been utilized in the synthesis of 1,2,4-
triazoles. Addition of primary amines to a-nitrohydrazones 165 followed by addition
of sodium nitrite affords 1,3,5-trisubstituted-1,2,4-triazole 166 (Scheme 12.54) [220].
1,3,-Dipolar cyclocondensation of C-acetyl-N-arylnitrilimines 167 with benzoylhy-
drazones 168 furnished 1,2,4-triazoles 169 (Scheme 12.55) [221]. Iodobenzene
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diacetate or lead tetraacetate cyclization of hydrazones 170 [222] or 172 [223] afforded
fused 1,2,4-triazoles 171 and 173, respectively (Scheme 12.56).

12.3.4.3 Reactions of Oxadiazoles or Thiadiazoles
1,2,4-Triazoles can be synthesized from oxadiazoles. Photolysis of 1,2,4-oxadiazoles
in the presence of nucleophiles led to 1,2,4-triazole products [224] and 1,3,4-
oxadiazoles can undergo ring-cleavage with nitrogen nucleophiles followed by
recyclization of the intermediates to give 1,2,4-triazoles. For example, the unusual
hydrazinolysis of 5-perfluoroalkyl-1,2,4-oxadiazoles 174 provided an expedient
route to 5-perfluoroalkyl-1,2,4-triazoles 175 (Scheme 12.57) [225]. Similarly, 3,5-
bis(trifluoromethyl)-1,3,4-oxadiazole is particularly activated towards nucleophilic
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attack by primary amines to yield 4-substituted-1,2,4-triazoles [226]. Microwave-
assisted rate acceleration of reactions between 2-aminothiadiazoles 177 with oxadia-
zoles 176 on alumina support affords thiadiazolyl-substituted-1,2,4-triazoles 178
(Scheme 12.58) [227]. Photochemistry of some fluorinated oxadiazoles gives rise to
mixtures of fluorinated 1,3,4-oxadiazoles and 1,2,4-triazoles [228]. 2-Amino-1,3,4-
oxadiazoles 179 reacted with alcohols followed by subsequent ring-cleavage and ring-
cyclization to give 3-alkoxy-1,2,4-triazoles 180 (Scheme 12.59) [229], while amines
and hydrazines react with 2-amino-1,3,4-oxadiazoles to afford 3-amino- and 3,5-
diamino-1,2,4-triazoles, respectively [230]. Condensation of highly reactive chloro-
methyloxadiazoles with ethylenediamines provides a concise synthesis of [1,2,4]
triazolo[4,3-a]piperazines [231]. Reaction of some fluorinated 1,2,4-oxadiazoles in
the presence of methylamine or propylamine under photochemical irradiation in
methanol or acetonitrile led to the corresponding fluorinated 1-methyl- or 1-propyl-
1,2,4-triazoles [232].

12.3.4.4 Synthesis of 1,2,4-Triazoles from Thioureas, Thiocyanates, and Thioamides
Unsaturated and saturated thio compounds have been employed in the syntheses of
1,2,4-triazoles.D2-1,2,4-Triazolin-5-ones 182 have been prepared from 1-aryl/alkyl-6-
phenyl-2-thiobioureas 181 in the presence of benzyl chloride and aqueous ethanol
(Scheme 12.60) [233]. A novel one-pot synthesis of 1,2,4-triazole-3,5-diamine deri-
vatives 184 and 185 from isothiocyanates 183 and monosubstituted hydrazines has
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been reported; derivatives 185 were obtained with higher regioselectivity when
aromatic and sterically bulky hydrazines were used (Scheme 12.61) [234]. S-Ethyl
thioamides 186 react with acyl hydrazides 187 in refluxing n-butanol to give 3,4,5-
trisubstituted 4H-1,2,4-triazoles 188 (Scheme 12.62) [235]. An efficient synthesis of
substituted 1,2,4-triazoles involved condensation of benzoyl hydrazides with thioa-
mides under microwave irradiation [236]. 3-N,N-Dialkylamino-1,2,4-triazoles 191
have been synthesized from S-methylisothioureas 189 and acyl hydrazides 190 in
moderate to good yields (Scheme 12.63) [237].

Combinatorial solid-phase reactions have been used in the synthesis of libraries of
1,2,4-triazole compounds. Reaction of resin bound S-methyl-N-acylisothioureas 192
with hydrazines followed by acidic cleavage yielded 3-amino-1,2,4-triazoles 193
under mild conditions (Scheme 12.64) [238]. 3,4,5-Trisubstituted 1,2,4-triazoles
195 have been synthesized on solid-phase from various thioamides 194 and hydra-
zides, leading to peptidomimetic scaffolds (Scheme 12.65) [239]. A robust �catch,
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cyclize, and release� preparation of 3-thioalkyl-1,2,4-triazoles mediated by the
polymer-bound base P-BEMP has been described [240].

12.3.4.5 Reactions of Semicarbazides
A couple of reports present the use of semicarbazides in the synthesis of 1,2,4-
triazolones. Condensation of semicarbazide hydrochloride 196 with orthoester 197
resultedinasimplesynthesisofchlorotriazolinone198 (Scheme12.66),andthemethod
was applied to the convergent synthesis of an NK1 antagonist [241]. Amines have been
converted into 1-formyl semicarbazides 199, which were cyclized smoothly to 2,4-
dihydro-3H-1,2,4-triazolin-3-ones 200 with hexamethyldisilazane (HMDS), bromotri-
methylsilane, and a catalytic amount of ammonium sulfate (Scheme 12.67) [242].
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12.3.4.6 Synthesis of 1,2,4-Triazoles via Benzotriazole Methodology
Solution- and solid-phase benzotriazole-mediated methodologies are employed in
the synthesis of 1,2,4-triazoles. Acyl 1H-benzotriazol-1-carboximidamides 201 and
hydrazines have been employed in a general synthesis ofN,N-disubstituted 3-amino-
1,2,4-triazoles 202 (Scheme 12.68) [243]. Polymer-supported N-acyl-1H-benzotria-
zole-1-carboximidamides 203 reacted with hydrazines followed by acidic cyclizative
release to give 3-alkylamino-1,2,4-triazoles 204 (Scheme 12.69) [244]. Reaction of acyl
hydrazides 206 with imidoylbenzotriazoles 205 in the presence of catalytic amounts
of acetic acid under microwave irradiation afforded 3,4,5-trisubstituted triazoles 207
(Scheme 12.70) [245].

12.3.4.7 Other Synthesis of 1,2,4-Triazoles
Three-component condensation of ethyl trifluoroacetate (208), hydrazine, and ami-
dines in the presence of sodium hydroxide gave 3-trifluoromethyl-5-substituted-
1,2,4-triazoles 209 (Scheme 12.71) [246, 247]. The amidine supplies a C–N bond to
the new ring system while the other two nitrogen atoms are derived from hydrazine.
Reaction of aromatic nitriles with hydrazine dihydrochloride in the presence of
hydrazine hydrate in ethylene glycol under microwave irradiation gave 3,5-disub-
stituted-4-amino-1,2,4-triazoles 210 (Scheme 12.72) [248]. 1,3-Dipolar cycloadditions
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between poly(ethylene glycol) supported m€unchnones and diethyl azodicarboxylate
led to synthesis of 3,5-disubstituted-1,2,4-triazoles [249].

12.3.5
Reactions of 1,2,4-Triazoles

12.3.5.1 Reactions on the Nitrogen of 1,2,4-Triazoles

12.3.5.1.1 N-Alkylation of 1,2,4-Triazoles 1,2,4-Triazoles that are unsubstituted on
nitrogen can be readily alkylated. 1-Substituted-1,2,4-triazoles are the predominant
products of these base-catalyzed alkylation reactions; 4-substituted-1,2,4-triazoles are
rarely isolated after purification. DBU is found to be a mild and convenient base for
the alkylation of 1,2,4-triazole with alkyl halides in the high-yielding syntheses of 1-
substituted-1,2,4-triazoles 211 (Scheme 12.73) [250]. Sodium hydroxide [251], sodi-
um methoxide [252], and sodium hydride [253] are other bases that have been
successfully employed in these reactions.

The synthesis of 1,2,4-triazole-functionalized solid-support 212 and its use in the
solid-phase synthesis of variousN1 andN2 trisubstituted-1,2,4-triazoles 213has been
reported (Scheme 12.74) [254].

1,2,4-Triazoles can be alkylated at N4 by using a removable protecting group at N1
and then forming a quaternary salt with the 1-substituted triazole. 1-Acetyl and
1-cyanoethyl groups have been used as removable protecting groups [255].
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The sequence involving quaternization/dealkylation with 1,10-methylenebis(triazo-
lium) salts 214 linked at the N1 position is shown in Scheme 12.75 [256]. Other
similar sequences have also been reported [257]. Alternatively, 3-phenylthio-1,2,4-
triazoles 215 were alkylated to their triazolium salts 216, which under aqueous basic
conditions provided 2,4-disubstituted-1,2,4-triazol-3-ones 217 (Scheme 12.76) [258].

12.3.5.1.2 N-Acylation of 1,2,4-Triazoles N-Unsubstituted-1,2,4-triazoles can be
readily acylated at N1 by common acylating reagents such as acetyl chloride or acetic
anhydride under standard conditions to give 1-acyl-1,2,4-triazoles [259]. 1H-1,2,
4-Triazol-3-amines are acetylated first on N1 and then on the 3-amino group [260].

12.3.5.1.3 N-Arylation of 1,2,4-Triazoles 1,2,4-Triazole can be N-arylated at the
1-position by activated aryl halides such as 1-fluoro-2-nitrobenzene or 1-chloro-2-
nitro-4-(trifluoromethyl)benzene [261]. N1-Phenylation can be achieved with
triphenylbismuth diacetate and copper(II) acetate [262].
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Recent protocols of copper-catalyzed N-arylations of aryl iodides with 1,2,4-
triazoles represent a new landmark in the field of Ullmann-type arylation couplings
of nitrogen-containing heterocycles. The aryl iodides 218 reacted efficiently and
regioselectively at the N1 position with 1,2,4-triazole in the presence of copper(I)
iodide and trans-diamine ligand 219, with potassium phosphate as a base, to give 220
(Scheme 12.77) [117]. Another similar procedure employs copper(I) oxide, Chxn-Py-
Al as the ligand, and cesium carbonate as the base [263]. However, these procedures
are limited to aryl iodides; aryl bromides and aryl chlorides are not efficiently cross-
coupled under these conditions.

12.3.5.2 Reactions on the Carbons of 1,2,4-Triazoles
1,2,4-Triazoles are electron-deficient aromatic systems and so conventional electro-
philic substitution reactions are not a practical method for the introduction of carbon
substituents at C3 or C5. The most common methods for introduction of groups to
C3 or C5 are by triazolyllithium intermediates or more recently by radical or carbene
species.

12.3.5.2.1 C-Substitution by Triazolyllithium Hydrogen–metal exchange by n-butyl-
lithium can occur at C5 if N1 is substituted to give organolithium species, which then
react quickly with alkylating agents or with other electrophiles (Scheme 12.78) [264].
If the N1 is a removable protecting group, then monosubstituted 1,2,4-triazoles can
be prepared by this method [264b,264c]. 1-(Methoxymethyl)-1H-1,2,4-triazole is
converted directly into 5-acyl derivatives by reaction with acyl chlorides and triethy-
lamine and the methoxymethyl protecting group could be removed in a subsequent
step [265].

Methods are available for preparation of 3-substituted-1,2,4-triazoles. A C5 remov-
able group such as a phenylthio is employed in a protection/deprotection sequence
to give 1-substituted 3-acyl-1,2,4-triazoles 221 (Scheme 12.79) [266]. 1H-1,2,4- and

IR

N

N
H

N NR
N

N

219

MeHN NHMe

CuI (5 mol%)

ligand 219 (10 mol%)

K3PO4 (2 equiv)

DMF, 110 ºC, 24 h

(83-89%)

R = H, OMe, Ac

+

022812

Scheme 12.77

N

N
N

n-BuLi, THF
N

N
N

R
1

R
1

Li

R
2
X

or

R
2
COCl

N

N
N

R
1

R
2

(R
2
CO)

Scheme 12.78

1030j 12 Five-Membered Heterocycles with Three Heteroatoms: Triazoles



1-methyl-1H-1,2,4-triazoles have been transformed directly into their 3(5)-arylcarba-
myoyl derivatives by heating with aryl isocyanates [267]. These C-acylations are
suggested to proceed by formation of N-acylated triazoles, followed by thermal
rearrangements.

12.3.5.2.2 Radical Reactions of 1,2,4-Triazoles Reaction of 1-N-alkyl triazoles 222
with an alkyl radical generated from the corresponding secondary carboxylic acid
in the presence of silver nitrate affords the triazole ring 223 alkylated selectively in the
5-position (Scheme 12.80) [268].

12.3.5.2.3 Carbene Reactions of 1,2,4-Triazoles There are two published reports on
the syntheses of stable 1,2,4-triazolyl carbenes. Thermal decomposition in vacuo of
5-methoxytriazoline 224 provided in quantitative yield 1,2,4-triazol-5-ylidene 225, a
stable carbene in the absence of oxygen and moisture (Scheme 12.81) [269]. Nucle-
ophilic carbene 225 could react with various alcohols, thiols, amines, oxygen, sulfur,
selenium, isocyanantes, and metal carbonyls to form a myriad of addition products.
Reactions of 1,2,4-triazolyl perchlorate salts 226 with base afforded stable nucleo-
philic 1,2,4-triazol-5-ylidenes 227, which could react with acetonitrile and elemental
sulfur and selenium to yield addition products (Scheme 12.82) [270].
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12.3.5.2.4 Halogenations of 1,2,4-Triazoles Most halogenation reactions of 1,2,
4-triazoles are N-chlorotriazoles, kinetic products that rearranges to 3-halo-1,2,4-
triazoles slowly upon storage or heating in water [271]. 5-Chloro derivatives of
1-substituted-1,2,4-triazoles have been obtained by C5-lithio derivatives [272].
C-Halo-1,2,4-triazoles can be prepared more directly without isolation of the N-
halo-1,2,4-triazoles. For example, bromination of 1H-1,2,4-triazole in excess aqueous
sodium hydroxide afforded 3,5-dibromo-1H-1,2,4-triazole (228), which selectively
exchanges a bromine with a fluorine to give 229 (Scheme 12.83) [273].

12.3.5.2.5 Other Reactions of 1,2,4-Triazoles Urazoles 230 can be converted into the
corresponding 1,2,4-triazol-3,5-diones 231 by various oxidizing reagents
(Table 12.17). Trichloroisocyanuric acid [274], a silica gel/sodium nitrite combina-
tion [275], an ionic complex, obtained from N2O4 and 18-crown-6 [276], Oxone/
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Table 12.17 Dehydrogenation of urazoles to 1,2,4-triazol-3,5-diones with various oxidants.

N
H

NH

N

R O

O
N

N

N
R O

O

Conditions

230
231

Conditions Reference

Trichloroisocyanuric acid [274]
Silica gel/NaNO2 [275]
N2O4/18-crown-6 [276]
Oxone/NaNO2/wet silica gel [277]
Silica sulfuric acid/NaNO2 [278]
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sodium nitrite in the presence of wet silica [277], and silica sulfuric acid/sodium
nitrite [278] have all been reported as oxidants in this reaction.

1,2,4-Triazoline-3,5-dione 233 underwent an ene reaction with olefins 232 to yield
trialkylated allylic urazoles 234, which were further elaborated into allylic amines 235
(Scheme 12.84) [279].

1-Methyl-1,2,4-triazole 236 participated in a palladium-catalyzed C–H arylation
reaction with 3,5-dimethoxychlorobenzene (237) to give coupled product 238
(Scheme 12.85) [280].

12.3.6
1,2,4-Triazole-Containing Reagents

Monocyclic 1,2,4-triazole-containing structures have found synthetic utility. For
example, 4-phenyl-1,2,4-triazole-3,5-dione (239) was found to be a novel and reusable
reagent for the aromatization of 1,4-dihydropyridines under mild conditions [281]
and to be an efficient and chemoselective reagent for the oxidation of thiols to their
corresponding symmetrical disulfides [282].N-4-(p-Chloro)phenyl-1,2,4-triazole-3,5-
dione 240 has been used as an effective oxidizing agent for the oxidation of 1,3,5-
trisubstituted pyrazolines to their corresponding pyrazoles under mild conditions at
room temperature [283]. 1-Benzylsulfanyl-1,2,4-triazole (241) is a useful electrophilic
sulfur source in the organocatalyzed a-sulfenylation of aldehydes [284]. Catalyst 242
catalyzed the oxidation of allylic alcohols to allylic esters withmanganese(IV) oxide in
excellent yields [285] and the oxidation of unactivated aldehydes to esters
with manganese(IV) oxide in excellent yields [286]. The asymmetric synthesis
of hydrobenzofuranones via desymmetrization of cyclohexadienones using the
intramolecular Stetter reaction has been accomplished with 1,2,4-triazolium salt
catalyst 243 [287].
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1,2,4-Triazolium salt catalysts 244 and 246 have been employed in the highly
enantioselective azadiene Diels–Alder reactions [288]. Chiral catalyst 245 promoted
the intramolecular Stetter cyclization of an aldehyde onto a vinylphosphine oxide or
vinylphosphonate Michael acceptor [289]. Chiral triazolium salt 246 has been
employed successfully in the hetero Diels–Alder reactions of a-chloroaldehyde
bisulfite adducts with various oxodienes under biphasic reaction conditions with
high levels of enantioselectivity [290] and in the highly enantioselective cis-cyclo-
pentene-forming annulation reactions [291].

N

O

N

N

R

X

244 R = 4-OMeC6H4, X = BF4

245 R = C6F5, X = BF4

246 R = Mes, X = Cl

Bicyclic 1,2,4-triazolium salts have varied synthetic utility in a host of reactions.
1,2,4-Triazolium salts 247 have been identified as a new family of stable annulated N-
heterocyclic carebenes that found applications in catalytic benzoin condensations
and transesterifications at ambient temperature [292]. N-Pentafluorophenyl triazo-
lium tetrafluoroborate salts 248 were found to be useful catalysts in the macro-
cyclization of a,v-dialdehydes to a-hydroxyketones [293] and in the synthesis of 1,2-
amino alcohols via azidation of epoxy aldehydes (where modest asymmetric induc-
tion was achieved) [294]. N-Pentafluorophenyl triazolium tetrafluoroborate salt 249
was found to be useful catalyst in the asymmetric intermolecular Stetter reaction of
glyoxamides with alkylidenemalonates [295]. Chiral catalyst 250 has been utilized in
theN-heterocyclic carbene-catalyzed redox amidations ofa-functionalized aldehydes
with amines [296]. The N-heterocyclic catalyst 251 promotedO toC carboxyl transfer
on a range of indolyl and benzofuranyl carbonates [297] and also promoted the formal
[2 þ 2] cycloaddition of ketenes with N-tosyl imines to give the corresponding
b-lactams [298]. Chiral triazolium catalyst 252 has been found to be efficient in the
formal [2 þ 2] cycloaddition reactions of alkyl(aryl)ketenes with 2-oxoaldehydes to
afford b-lactones with a-quaternary-b-tertiary stereocenters in high yields with good
diastereoselectivities and excellent enantioselectivities [299]. The asymmetric
Michael addition of aromatic heterocyclic aldehydes to arylidenemalonates catalyzed
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byN-heterocyclic carbene 253has been disclosed [300]. Catalyst 253was also effective
in an intermolecular Stetter reaction to give 1,4-diketones [301].
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13
Oxadiazoles
Giovanni Romeo and Ugo Chiacchio

13.1
Introduction

There are four isomeric types of oxadiazoles (1–4).

N

N

O
N

N

O
NN

O

NN

O

1 2 3 4

Examples of all these ring derivatives are reported; the 1,2,3-oxadiazole system
is well represented by the mesoionic sydnones (5, X¼O) and sydnonimines
(5, X¼NR). In fact, potential 1,2,3-oxadiazoles 6 are not known: when formed in
some reactions, they isomerize, instantaneously, into the open a-diazoketone
tautomeric forms 7 (Figure 13.1).

Arguments concerning the existence of 6 and 7 have been summarized [1], but the
firmly established 1,2,3-oxadiazole ring system is of the sydnone type.

Ring systems of type 2 are commonly termed azoximes and the 1,2,5-oxadiazoles 3
are often referred to by the trivial name furazan, while 1,2,5-oxadiazole-2-oxide,
a well-known derivative, has the trivial name furoxan.

Notably, 1,2,4-oxadiazoles have received great attention in the pharmaceutical
industry. In contrast, 1,3,4-oxadiazoles have recently found extensive application
in the field of new materials for the development of electric as well as optical
devices.

The chemistry of 1,2,3- [2], 1,2,4- [3], 1,2,5- [4], and 1,3,4-oxadiazoles [5] has been
widely reported in a series of books and reviews.We refer here to the cited references
for general aspects of reactivity of these heterocycles. Particular attention is paid to the
literature published after 1995.

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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13.2
1,2,3-Oxadiazoles

These are the least common of the oxadiazole group of heterocycles and the literature
relating to them is rather sparse. With a very limited and still not perfectly defined
number of exceptions, simple 1,2,3-oxadiazoles 6 are not isolable because they
isomerize immediately to the their more stable open-chain tautomers, the a-diazo-
ketones 7. The sterically protected 1,2,3-oxadiazole 8 is the only known oxadiazole,
bearing alkyl substituents, which exists in the cyclic form in the crystalline state but as
diazoketone in chloroform solution [6].

1,2,3-Oxadiazoles have been proposed [7] as not-isolated intermediates in
the oxidation of alkenes with nitrous oxide: a recent DFT analysis predicts that
the reaction consists of two steps, with the formation of 1,2,3-oxadiazole in the
first and its decomposition in the second, leading to carbonyl compounds [8]
(Scheme 13.1).

Fusion with an aromatic ring does not stabilize the system. 1,2,3-Benzoxadiazole
(9) is more stable as an o-quinone diazide (10$11): the ionization potentials,
measured by MS for 10 and 11 and estimated for 9, indicate that the stabilizing
influence of the zwitterionic structures is more important than the gain in aroma-
ticity [9, 10].
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Figure 13.1 Mesoionic sydnones (5, X¼O) and sydnone imines (5, X¼NR) are well represented,
while potential 1,2,3-oxadiazoles 6 are not known since when formed in some reactions they
isomerize instantaneously into the open a-diazoketone tautomeric forms 7.
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Some substituted 1,2,3-benzoxadiazoles have been shown to exist in equilibrium
with their open chain tautomers. The relative concentration of the species at the
equilibrium is strongly dependent upon solvent and substitution effects: the diazo-
ketone structure is stabilized by hydrogen bonding and polar interactions. The most
stable of these compounds is 5,7-di-t-butyl-1,2,3-benzoxadiazole (12) which is 6.3 kJ
mol�1 more stable than its diazocyclohexadienone valence isomer 13 in the vapor
phase.

O
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N
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N2t-But

t-But t-But

t-But

12 13

Several examples in the literature report on compounds that have been incorrectly
formulated as 1,2,3-oxadiazoles [11]: the previously formulated diazoesters 14 were
successively established as non-cyclic 15.

O
N

N

EtO

CHCO2Et

N

N

14 15

13.2.1
Sydnones and Sydnonimines

The 1,2,3-oxadiazole ring system is present in the stable mesoionic sydnones
(5a, X¼O and sydnone imines (5b, X¼NR). The trivial term �sydnone� comes
from the University of Sidney, where the first example of these compounds, the
3-phenylsydnone 16, was synthesized (by Earl and Mackney) by cyclodehydration of
N-nitroso-N-phenylglycine with acetic anhydride [12] (Scheme 13.2).

Baker and Ollis coined the term mesoionic [13] to describe the structure of such
compounds, for which a totally covalent structure cannot be written, and which
cannot be represented satisfactorily by any one polar structure. The term was then
extended to several compounds that can be depicted only as resonance hybrids of
dipolar structures. Structure 17, in which the positive charge is delocalized, can be
represented as the summary of three canonical forms 18–20 [14]. The formal positive
charge is associated with the ring atoms, and the formal negative charge is associated
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with ring atoms or an exocyclic nitrogen or chalcogen atom. X-Ray evidence shows
that the valence tautomer 21 should also be considered in discussions of the structure
of the sydnones [15].
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13.2.2
1,2-3-Oxadiazolines

The partially reduced 4,5-dihydro-1,2,3-oxadiazole system, theoretically assemblable
by dipolar cycloaddition of diazoalkanes to carbonyl compounds, has never been
detected directly in such reactions, although dihydro-1,2,3-oxadiazoline structures
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have been proposed in the literature [16].Ab initio andDFTcalculations indicate that,
in the reaction of diazomethane with formaldehyde, the kinetically most favorable
cycloadduct is less stable than the reactants and has a lower barrier for nitrogen
elimination [17].Derivative 22has beenpostulated as intermediate in themetabolism
of some (2-hydroxyethyl)- or (2-haloethyl)nitrosoureas, a class of highly active
antitumor agents (Scheme 13.3) [18].

One derivative, the salt 23, has been isolated as a crystalline solid [19].

N
O

N

OH

Me

ClO4

23

An unambiguous characterization of the so-called �Traube�s oxazomalonic acid,�
obtained from the condensation of dimethyl malonate with nitric oxide, has dem-
onstrated that the compound is really an unusual five-membered heterocycle and
corresponds to 3-hydroxy-2-carboxysydnone dianion 24 (Scheme 13.4): the synthesis,
structure and spectroscopic analysis of the potassium salt andmethyl ester have also
been reported [20].

The oxidation state represented by anN-oxide lends stability to the 1,2,3-oxadiazole
system [21]. Thus, the reaction of diene 25 with nitrosyl chloride afforded 4,4-
dimethyl-5-(2-methylpropenyl)-D2-1,2,3-oxadiazoline 3-oxide 26, whose structure
was confirmed by chemical and spectroscopic data (Scheme 13.5).

A wide variety of 1,2,3-oxadiazole 3-oxides, valuable candidates for drug frame-
works, have been synthesized by the reaction of nitric oxide with functionalized
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alkynyllithium derivatives [22]. A theoretical study [23] indicates that the overall
reaction is stepwise and is considered to include two processes. In the first, the
nitrogen atom in nitric oxide at first attacks the C1 atom in alkynyllithium to afford
the intermediate 27. In the second, another nitric oxide reacts with 27 to produce 28.
Then, attack of the oxygen atom at C2 to form a five-membered-ring geometry (29) is
followed by addition of water, leading to the final 5-alkyl-1,2,3-oxadiazole 3-oxides 30
(Scheme 13.6).

The structure of some of the obtained compounds was confirmed by X ray
crystallography and spectroscopic data.

The isomeric 2-oxide system is present in 32, isolated as a crystalline solid from
the reaction of the nitroazo-compounds 31 with bases [24]. As a general process, the
intramolecular alkylation of 2-halo- or 2-cyano-substituted nitramines proceeds
through an O-alkylation and leads to 4,5-dihydro-1,2,3-oxadiazole 2-oxides 32
(Scheme 13.7) [25].

Recently, a new synthetic approach to functionally substituted 4,5-dihydro-1,2,3-
oxadiazolo 2-oxides 34 has been described, starting from sulfamic acid derivatives 33
(Scheme 13.8) [26].
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Stable derivatives of the 1,2,3-oxadiazolidine ring system 35 are unknown.

N N

O

H H
35

13.2.3
Theoretical Aspects

Ab initio theoretical studies and semiempirical MNDO calculations [27], performed
on 1,2,3-oxadiazoles, indicate that the heterocycle is too unstable to be isolated and
predict a major stability for its tautomer the diazoacetaldehyde. MNDO calculations
on substituted 1,2,3-benzoxadiazoles and the isomeric diazocyclohexadienones
reach the same conclusion [10].

Ab initiomethods have also been used to calculate the geometry and the energy of
4,5-dihydro-1,2,3-oxadiazole (22): the molecule is predicted to be unstable, its most
favorable mode of decomposition being a retro 1,3-dipolar addition to diazomethane
and formaldehyde [28].

Several theoretical studies have addressed the structure and aromaticity of
sydnones [20–34]. Sydnones could be regarded as aromatic because their structures
could be represented as cyclic arrays of p-orbitals containing six p-electrons, with four
from the C¼N�N system and two from the lone pair on oxygen. However, sydnones
are not a delocalized �aromatic� ring system, as confirmed by their chemical
reactivity: the reactions of sydnones include both substitutions and additions
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X NO2
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Scheme 13.7
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Semiempirical and ab initio calculations provide the same overall description of the
bond lengths. The bond from C5 to the exocyclic oxygen atom is essentially a double
bond, while the bondsO1�N2, O1�C5, and C4�C5 are approximately single bonds.
N2�N3 and N3�C4 are partial double bonds (36). On this basis, these compounds
could be regarded as 1,3-dipolar azomethyne imines bearing a conjugative carbonyl
group at C5 [29].

N N

O

N N

O

O O

RR

1

23

4 5

3736

X-Ray structural measurements confirm that the exocyclic C�O bond is close in
length to that of a normal carbonyl group [35–38]. Therefore, according to the values
of the net atomic charges on the ring, determined by semiempirical methods, the
resonance structure 37 appears to be the best single representation. The large dipole
moments of sydnones (>6D) are consistent with their strongly polar character and
the charge separation shown in structure 37 [29, 36].

Frontier orbital energies and coefficients for sydnones and for some substituted
sydnones, performed by the MINDO/3 method, show that the HOMO is a pure
p-orbital with a large coefficient onN2 andC4 (Figure 13.2) [29, 33].On this basis, 1,3-
dipolar cycloadditions of sydnones to electron-deficient alkenes should be controlled
by the HOMO of the sydnone and the LUMO of the dipolarophile.

13.2.4
Structural Aspects

Structural parameters, IR spectra, ionization potentials, relative energies, isomeri-
zation barriers, and solvation energies have been calculated for sydnones and for the
aromatic benzo-1,2,3-oxadiazole (prevalent tautomer in the gas phase) and zwitter-
ionic 6-diazocyclohexa-2,4-dienone (prevalent tautomer in a polar solvent)molecules.
The calculations indicate that unsubstituted 1,2,3-oxadiazole is unstable in all
solvents [39].

N
N

C N

N
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N

N
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C C

Z

 -0.67  + 0.59

HOMO

LUMO

-0.44  -0.56

   HOMO
(- 8.48 eV)

   LUMO
(+ 0.37 eV)

Figure 13.2 Frontier orbital energies and coefficients for sydnones and for some substituted
sydnones show that the HOMO is a pure p-orbital with a large coefficient on N2 and C4.
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13.2.4.1 X-Ray Diffraction
Crystal structure data of several sydnones have been reported [34, 40]. The ring is
nearly planar and the values for bond lengths are in the range illustrated in structure
38. The exocyclic carbonyl bond length is 1.21A

�
; the N2�N3 and N3�C4 bonds are

somewhat shorter than a single bond,while the onlyC�Cbondpresent is longer than
a double bond.

O
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1.32-1.34
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1.21-1.22

1.39-1.42

1.38-1.39

1.31-1.32

38

13.2.4.2 UV and IR Spectra
UV and IR spectroscopy have afforded useful information in studies of the equilib-
rium between 1,2,3-benzoxadiazole and o-quinone diazide structures. The IR spectra
of 1,2,3-benzoxadiazoles show absorptions at 1626, 1611, 1464, and 1457 cm�1,
whereas the isomeric quinone diazides show strong absorptions at 2090 and
1718 cm�1 [41]. The UV spectrum of 1,2,3-benzoxadiazole in an argon matrix shows
maxima at 201, 243, and 289 nm [10].

Carbonyl stretching frequencies of sydnones are in the range 1720–1790 cm�1.
Alkylsydnones show a single maximum at 290 nm in the UV spectrum.

13.2.4.3 NMR Spectra
The 1H and 13C spectra of several sydnones and sydnonimines have been
reported [42]. In accord with the dipolar structure 5, the H4 proton resonates upfield
in the range 6.2–6.8 ppm. Analogously, for the strong deshielding effect of positively
charged N3 atom, the 3-alkyl protons are shifted downfield (4.10–4.40 ppm) with
respect to 4-alkyl protons (2.20–2.50 ppm).

For 3-methylsydnone, the 14N and 17O spectra have also been determined and
a complete set of chemical shift values for all the atoms have been reported [45].
The 13C chemical shifts are reported on structures 39 and 40.
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According to a synthetic approach that allowed for the independent labeling of
the nitrogen atoms (Section 13.2.5.1), the NMR chemical shift for each 15N has been
determined unambiguously.

13.2.4.4 Mass Spectra
Electron impact mass spectra of the sydnone ring are characterized by the loss of NO
(M–30) and CO (M–28) fragments, which can occur consecutively or simultaneously.
The fragmentM-58 represents generally the base peak and themolecular ion is often
distinguishable [44].

Reported CI spectra indicate the same pattern of fragmentation. In the fused
sydnone 41, the initial loss of NO is followed by CO, HCN, acetylene, and finally Ph,
as the principal fragment ion [45].

N

N

O
O

41

13.2.4.5 Other Properties
The highly polarized yet neutral electrical character and the high dipolarmoments of
sydnones have been exploited for the design of technologically interesting thermo-
tropic liquid crystals (LCs) with properties between those of covalent and ionic LC.
The molecular design, synthesis, and characterization of the first examples of both
classical and non-conventional chiral mesoionic (mesomeric þ ionic) liquid crystals
derived from sydnones have been reported (Scheme 13.9) [46, 47].

The occurrence of chiral smectic phases in these novel compounds was evidenced
by optical microscopy, calorimetry, and X-ray studies.
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A side-chain polysiloxane containing 3-(4-aminophenyl)sydnone moieties at ter-
minal and aliphatic spacer has been prepared and its structure was confirmed by IR
and NMR measurements. By introducing sydnone into polysiloxane, the polymer
displays a high electrorheological effect due to the increased interaction between
sydnone moieties [48].

13.2.5
Synthesis of 1,2,3-Oxadiazoles

The synthetic approach towards substituted 1,2.3-benzoxadiazoles is based on the
synthesis of the tautomeric open-chain 6-diazo-1,2-cyclohexadienones [49, 50]. Thus,
the diazotization of 2-aminophenols by treatment with sodium nitrite or isoamyl
nitrite, followed by careful neutralization with potassium carbonate, afforded the
diazoketones (Scheme 13.10), which is in equilibrium with the cyclic tautomer
benzoxadiazole (42) (Section 13.2). An alternative route exploited the reaction of a
substituted o-benzoquinone with tosyl hydrazine [43]. Naphthoxadiazole (43), stable
in the solid state at �19 �C, has been prepared according to this synthetic route.

13.2.5.1 Sydnones and Sydnonimines
Despite extensive studies of the sydnone ring, practically only one general synthetic
entry is available [51]. The method involves (a) nitrosation of amino acids to give 44;
(b) formation of a mixed anhydride 45 and (c) cyclization to the sydnone ring 46
(Scheme 13.11).

The nitrosation step has been carried out under neutral conditions, using isoamyl
nitrite. Among the dehydrating agents, trifluoroacetic anhydride gives themost rapid
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results; thionyl chloride, phosphorus oxychloride, phosphoric anhydride, and car-
bodiimides have also been used successfully.

The cyclization step can be aided by ultrasonic irradiation [52, 53]: in this way,
functionalized 3-aryl sydnones have been prepared in good yields.

A similar general method towards sydnonimines involves the nitrosation of
the corresponding a-aminonitriles 47 and cyclization of the intermediate 48
(Scheme 13.12) [54]. Substituents can be introduced at the exocyclic nitrogen atom
bynormalmethods in acidic or buffered solutions: sydnone imines aremore stable in
acid and less stable in base than sydnones.

A three-component reaction of theMannich typehas been exploited to prepare 3-N-
hydroxy- (50)and3-N-amino-(51)substitutedsydnoneimines(Scheme13.13) [55–57].

13.2.5.2 4,5-Dihydro-1,2,3-Oxadiazolines
Methods for the synthesis of the few reported compounds of this type have
been described in Section 13.2.2. Scheme 13.14 describes the synthesis of 4,5-
dihyro-3-methyl-1,2,3-oxadiazolium tosylate (52) [58]. Accordingly, 5-alkoxy-substi-
tuted derivatives can be prepared by cyclization of 2,2-dialkoxy-N-methyl-N-
nitrosoethylamines [59].

13.2.6
Reactivity of 1,2,3-Oxadiazoles

With the exception of some benzo-fused derivatives and 4,5-dihydro-1,2,3-oxazoli-
dinium salts, the chemistry of the 1,2,3-oxadiazole system is nearly confined to the
mesoionic sydnones or sydnonimines.
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13.2.6.1 Benzo-1,2,3-Oxadiazoles
UV irradiation cleaves the benzoxadiazole ring to 2-diazocyclohexadienones:
subsequent loss of nitrogen and Wolff rearrangement leads to ketene 53
(Scheme 13.15) [10]. The formation of 2-naphthol 54 and methyl indene-2-carbox-
ylate 55 by irradiation of naphthoxadiazole 43 is amenable to the loss of nitrogen
from the diazocarbonyl tautomer [60].

13.2.6.2 4,5-Dihydro-1,2,3-Oxadiazoles
The known chemistry is limited to 4,5-dihydro-3-methyl-1,2,3-oxadiazolinium
salts. The cation reacts with nucleophiles at the methyl group (methylation of the
nucleophile) or at C5, with opening of the ring.

13.2.6.3 Sydnones

13.2.6.3.1 General Aspects Sydnones are crystalline compounds that are sensitive
to hydrolysis, especially in basicmediawhere they are rapidly cleaved. The ring is also
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cleaved by catalytic reduction and, oxidatively, by reaction with nitric acid, potassium
permanganate, and other oxidants.

Thechemical reactivityof thesydnonesystemisdisplayed inringcleavagereactions
and in processes in which the ring system is retained such as substitution or addition
reactions (at the 4-position). Substituents can be introduced into the 4-position by
conventional electrophilic substitution or after metallation at C4. Standard transfor-
mation of functional groups at C4 of sydnone have also been investigated extensively
and targeted to the synthesis of various 4-substituted sydnones.

Sydnones can act as 1,3-dipoles in dipolar cycloaddition reactions.

13.2.6.3.2 Ring Cleavage

Hydrolysis (Acid and Basic Ring Cleavage) The alkaline hydrolysis of sydnonimines
(Scheme 13.16) proceeds through an experimentally ascertained third-order kinetics,
and leads to ring cleavage that affords the nitrosonitrile 56 [61].

Acidhydrolysisofsydnones,whichoccursatelevatedtemperatures,hasbeenexploited
as a synthetic path to alkyl- and arylhydrazines (Scheme 13.17) [62–64].

Oxidative Ring Cleavage Ring cleavage of sydnones with oxygen in the dark affords a
mixture of products; thus, oxidation of 3-phenylsydnone gives benzaldehyde, benzyl
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alcohol, and benzyl formate, while 3-benzyl-4-phenylsydnone affords benzyl phe-
nylglyoxylate, benzyl benzoate, diphenylmethane, benzyl alcohol benzaldehyde, and
benzoic acid (Scheme 13.18) [65].

The proposed mechanism, which implies radical intermediates, arises from an
initial electron-transfer reaction of the sydnone with oxygen. Recombination of the
radical ionwith .O2

�would lead to the hydroxyperoxy zwitterion 57, which could then
cyclize at the 3- or 2-position to give 58 and 59, respectively. Further collapse of 58
and 59 afforded the obtained mixtures of compounds (Scheme 13.19).

Oxidation with ozone of 4-methylsydnones leads to pyruvate esters
(Scheme 13.20) [66].

Thermal and Photochemical Ring Cleavage Thermochemical and photoinduced
decomposition of sydnones give different products as a function of the nature of
substituents present in the ring.

3,4-Diarylsydnones lose carbon dioxide by UV irradiation or by flash photolysis
and give transient nitrile imines, which can be intercepted by external or internal
dipolarophiles [67, 68]. For example, the photochemically induced reaction of 3,4-
diphenylsydnone affords, in the presence of DMAD, the dimethyl 2,5-diphenylpyr-
azole-3,4,dicarboxylate (61) (Scheme13.21),whichoriginates fromthe lossofCO2and
the addition of the dipolarophile to the dipolar intermediate 60 (Scheme 13.21) [69].

In the thermochemically induced process, the addition of DMAD occurred first
to give 62, followed by elimination of carbon dioxide to form the dimethyl 1,5-
diphenylpyrazole-3,4-dicarboxylate 63.

Alkenes and other trapping agents have been used to capture the dipolar
nitrilimine [70–72]. When 1,3-butadiene was used as a dipolarophile, 1,3-diphe-
nyl-5-vinylpyrazole (64) was obtained, so confirming that 60 is the trapped fragment
(Scheme 13.22) [73].
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3-Aryl-4-[2-(2-vinylphenyl)ethenyl]sydnones undergo fast isomerization to the
trans isomer and competitive photolysis of the sydnone moiety, giving the corre-
sponding nitrile imine, which cannot react intramolecularly. In the presence
of acrolein, a [3 þ 2] cycloaddition takes place to give the trans-styrylpyrazoline
derivative 65, which during isolation aromatizes to the pyrazoles 66 and 67
(Scheme 13.23) [74].

Nitrile imines have not been detected from 3-arylsydnones unsubstituted at C4;
ESR techniques have, however, revealed the presence of the radical species 68, which
originates from the photolysis of 3-phenylsydnone [75].

Nitrile imines have also been claimed as intermediates in the formation of triazole
derivatives by photochemical decomposition of a sydnone in dioxane. By labeling the
nitrogen atoms in 69, themechanism for the formation of the triazole 71, based on 70
as key intermediate, has been supported (Scheme 13.24) [76].

The photosensitized oxidation of sydnones with singlet oxygen has also been
reported to give amixture of products. In the presence of Rose Bengal as a sensitizer,
singlet oxygen adds to a sydnone as a dipolarophile. The identification of benzoic acid
and dibenzoylphenylhydrazine among the reaction products has been rationalized
on the basis of two simultaneous reaction pathways (Scheme 13.25) [77].
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Several sydnones develop a color when irradiated by UV light; for instance, a blue
color has been observed by irradiation of the 3-(3-pyridyl)sydnone. The phenomenon
has been explained through the formation of diketene 72, which has been identified
as the blue species [78].
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13.2.6.3.3 Nucleophilic Substitution at C4 Replacement reactions at C4 in syd-
nones have been reviewed. Butyllithium has been exploited to displace the bromine
atom from a 3-phenylsydnone [46b]: the resulting organometallic compound
has been carbonylated, added to ketones and converted into a silyl derivative [79].
Grignard compounds have also been prepared from 3-bromosydnones, and
subsequently reacted with ketones to give the corresponding alcohols
(Table 13.1) [80].

Metallation reactions have been exploited as a synthetic tool for effecting electro-
philic substitution at C4 (Section 13.2.6.3.4) [81].

13.2.6.3.4 Electrophilic Substitution at C4 Electrophiles can be directly introduced
at C4 in the sydnone ring. Table 13.2 summarizes a series of such reactions reported
in literature [82, 83].

With 4-unsubstituted 3-alkyl- or 3-phenylsydnones, substitution occurs only at the
electron-rich C4, while when aryl substituents are present at C3 the position of the
electrophilic attack depends upon the nature of the aryl group, Exclusive aryl ring
nitration occurs with electron donors on the aryl group [84]. Thus, 3-(2-aminophenyl)
sydnone is brominated in the benzene ring para to the amino group [85] while the
nitration of 3,4-diphenylsydnone affords the 4-nitrophenyl derivative. As further

Table 13.1 Nucleophilic replacement reactions at C4 in sydnones.
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X Ph
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Y Ph
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Z Ph

60-84%

X Reagent A Y Reagent B Z

Br, H BuLi Li CO2 COOH
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MeCOCHMe2 MeC(OH)CHMe2

Br Mg, ether, MeI MgBr I2 I
Ac2O COMe
RCHO CH(OH)R

SMe H2O2 SO2Me NaBH4 H

13.2 1,2,3-Oxadiazoles j1065



examples, the sydnone ring is brominated in preference to a pyrazolyl system at C3,
while nitration of 3-methyl-4-phenyl sydnone affords the 4-nitrophenyl substituted
derivative.

Intramolecular electrophilic substitutions at C4 provide a route to fused sydnones
such as 73 [86] and 74 [87].

N

N

O
N

O

ArHN
N

HN

O
N

O

O

73 74

Electrophiles have also been introduced at the 4-position through organometallic
derivatives. 4-Lithio intermediates [46b] (Section 13.2.6.3.3) have been used to
introduce several S, Se, and Te electrophiles [88, 89], and also formyl or acetyl
substituents (Scheme 13.26) [90]. This strategy has been exploited for the synthesis of
3-amino-4-benzoylsydnone (75), the first example of a sydnone containing an amino
group at C3 [91].

Table 13.2 Electrophilic replacement reactions at C4 in sydnones.
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Vinyl and aryl substituents at C4 have been introduced by means of other
organometallic species. Thus, the reaction of 4-lithio-3-phenylsydnone with
copper(I) bromide affords the stable copper derivative 76, which gives palladium
(0)-catalyzed coupling to iodobenzenes and vinyl bromides [92]. The reaction of the
lithium intermediate with copper(II) bromide leads to the dimer 77 (Scheme 13.27).

Various 4-arylethynyl sydnones have been prepared in good yields by the reaction
of 4-bromo-3-phenylsydnone with aryl acetylenes under palladium catalysis [93].

Chloromercuro derivatives 78have also been used inHeck coupling reactionswith
vinyl halides, and sydnones with platinum or palladium substituents 79 have been
prepared from 4-bromo-3-phenylsydnone and M(PPh)3 [94].

13.2.6.3.5 Reactions of Substituents Standard transformations occur in various
functional groups present on the sydnone ring. Thus, 3-phenylsydnone-4-carboxylic
acids can be easily converted into the corresponding esters, amides, and hydrazides;
tertiary alcohols can be dehydrated to alkenes and ketones can be condensed with
benzaldehyde. Aldehyde 80 can be converted into the corresponding (E)- and (Z)-
alkenes by a Wittig reaction (Scheme 13.28) [95].
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Sydnonyl-substituted a,b-unsaturated ketones have been synthesized by
Claisen–Schmidt condensation of 4-acetyl-3-arylsydnones with aryl aldehydes. An
easy, eco-friendly synthetic version has also been reported that involves grinding 4-
acetyl-3-aylsydnones with aryl aldehydes in a mortar [96].

Further reaction of sydnonyl-substituted a,b-unsaturated ketones with hydrazine
hydrate afforded sydnonyl-substituted pyrazolines 81, which possess useful applica-
tions in medicine (Scheme 13.29) [97].

Moreover, the reaction of 3-aryl-2-bromo-1-sydnonylpropenones with 3-arylami-
nomethyl-4-amino-5-mercapto-1,2,4-triazoles gives 3-arylaminomethyl-6-(3-arylsyd-
non-4-yl)-8-aryl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazepines 82with antibacterial activity
(Scheme 13.30) [98].

4-Aryl-3-formylsydnones can be easily converted into their oximes, from which
other functionalized sydnones such as the nitrile 83 [99] and the nitrile oxide 84 [100]
can be obtained.
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The reaction of 3-aryl-4-carbohydroximic acid chlorides with hydrazine hydrate
gives hydrazino(3-arylsydnon-4-yl)methanone oximes, which by reaction with alde-
hydes are good precursors of 4-triazolyl-sydnones (85, Scheme 13.31) [101].

4-Formylsydnones undergo reduction, Claisen condensation with acetophenone,
and condensation with nitroalkanes and active methylene compounds. Thus, the
Knoevenagel reaction of 3-aryl-4-formylsydnones affords multifunctional
derivatives [102].

3-Aryl-4-formylsydnone-40-phenyl-thiosemicarbazones and 30 aryl-4-formylthio-
semicarbazones 86 react with ethyl chloroacetates, ethyl 2-chloroacetoacetate, and
2-bromoacetophenone to produce heterocyclic substituted sydnone derivatives 87a–c
that possess 4-oxo-thiazolidine and thiazoline groups (Scheme 13.32) [103]. The
antioxidant activity of the synthesized compounds was evaluated. Among these
compounds, 4-methyl-2-[(3-arylsydnon-4-yl-methylene)hydrazono]-2,3-dihydro-thi-
azole-5-carboxylic acid ethyl ester and 4-phenyl-2-[(3-arylsydnon-4-yl-methylene)
hydrazono]-2,3-dihydro-thiazoles exhibit potent DPPH (1,1-diphenyl-2-picrylhydra-
zyl) radical scavenging activity, comparable to that of vitamin E.

A suitable substituent at C4 can be used as a temporary blocking group to
allow reaction to take place at another side of the sydnone. For example, 4-acetyl-
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or 4-formyl-3-phenylsydnones can be nitrated in the aromatic ring (in the meta
position) and subsequently the acyl group can be removed under basic conditions.

Similarly, a thioether group at C4 can be removed by oxidation to sydnone sulfone
and subsequent reduction with sodium borohydride.

13.2.6.3.6 1,3-Dipolar Cycloaddition Reactions Sydnones can be regarded as cyclic
azomethine imines and as such they undergo thermal cycloaddition reactions with
a range of dipolarophiles. As previously discussed (Section 13.2.6.3.2), on photolysis
3,4-diaryl-sydnones lose carbondioxide and afford transient nitrile imines,which can
be trapped by alkynes to give pyrazole derivatives.

Thermal reactions with acetylenic dipolarophiles also lead to pyrazoles by spon-
taneous loss of carbon dioxide from the cycloadducts. According to this reaction
route, a series of 5-halopyrazoles (89) with potential pharmacological activity has been
synthesized in good yields by 1,3-dipolar cycloaddition of 4-halogenated sydnones 88
with dimethyl acetylenedicarboxylate (DMAD) (Scheme 13.33) [104].
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With unsymmetrical alkynes 91, the cycloaddition reactions of sydnones 90 rarely
show a good regioselectivity (Scheme 13.34) [105].

With monosubstituted alkenes bearing conjugative electron-withdrawing groups,
the regioselectivity of the reaction is that predicted by frontier orbital analysis
(Figure 13.2), that is, with the carbon bearing the electron-withdrawing group next
to nitrogen. The obtained products are usually dihydropyrazoles or pyrazoles formed
by oxidation of the intermediate dihydropyrazoles.

The unstable species formed by loss of carbon dioxide are also azomethine ylides:
thus, in the reaction of 3-phenylsydnone with N-phenylmaleimide, a second dipolar
cycloaddition reaction can take place (Scheme 13.35) [106].

The tandem 1,3-dipolar cycloaddition between sydnones and 1,5-cyclooctadiene
afforded 9,10-diazatetracyclo[6.3.0.0.4,110.5,9]undecanes (Weintraub reaction) [107].
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13.2.7
Important Compounds and Applications

1,2,3-Oxadiazole derivatives show a wide range of biological activities. In particular,
twomost important and studied compounds are the sydnoniminesmolsidomine (94)
and sydnocarb (95).

O
N

N

N

O
OEt

N

O

O
N

N

N

O
NHPh

N
Ar

94 95

Molsidomine (94), endowed with very low toxicity, has a long-term effect in
vasodilation, thus exerting a positive effect in cases of ischemic heart diseases. In
combination with the b-blocker propanolol, molsidamine has shown a high efficacy
for the treatment of portal hypotension [108].

Molsidomine is also used in treating angina pectoris [109].
The pharmacological activity is correlated to the formation of a metabolite, the

N-morpholino-N-nitrosoaminoacetonitrile, which acts as a nitric oxide donor
(Scheme 13.36) [110].

Accordingly, to achieve site-specific delivery of nitric oxide (NO), a new class of
glycosidase activated NO donors has been developed, in which glucose, galactose,
and N-acetylneuraminic acid were covalently coupled to 3-morphorlinosydnoni-
mine, via a carbamate linkage at the anomeric position [111]. The b-glycosides were
successfully prepared for these conjugates, while the a-glycosidic compounds
were very unstable. The new stable sugar–NO conjugates could release NO in the
presence of glycosidases (Scheme 13.37). SuchNOprodrugsmay be used as enzyme-
activated NO donors in biomedical research.

With analogous aim, conjugates of cephalosporinwith 3-morpholinosydnonimine
have been designed and evaluated [112]. The obtained compounds demonstrated
promising b-lactamase dependent NO releasing ability.

O
OH

HO
OH

OH

OH
O

OH

HO
OH

OH

O
N

O
O

N
N
N

O

β-galactosidase
NO

Scheme 13.36

1072j 13 Oxadiazoles



Sydnocarb acts on the central nervous system and has been used as a psychos-
timulant and an antidepressive. Nitrososydnonimines 96 and 97 showed potent
antithrombotic activity [113, 114].
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A series of derivatives – 98 and 99 – prepared by manipulation of the carboxylic
group of 3-(3-carboxyphenyl)- and 3-(3-carboxyphenyl)sydnones, or by Claisen–Sch-
midt condensation of 3-(4-acetylphenyl)sydnone with aldehydes or malononitrile,
showed high antibacterial activity against both Gram-positive and Gram-negative
organisms [115].
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A series of 40-substituted-30-nitrophenylsydnones 100 have been synthesized
(Scheme 13.38) and evaluated [116, 117] for anticancer activity and it was found
that the 40-chloro, 40-fluoro and 40-pyrrolidino compounds significantly enhanced
the survival of Sarcoma 180 (S180), Ehrlich carcinoma (Ehrlich), and Fibrous
histiocytoma (B10MCII) tumor bearing mice.

Many other sydnones have been tested for antioxidant, antimicrobial, antifungal,
analgesic, anti-inflammatory, and antipyretic activities [118].

4-Styrylcarbonyl-3-phenylsydnone derivatives 101 and 102 showed activity similar
to that of aspirin, at the same dosage [119].
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13.3
1,2,4-Oxadiazoles

The chemistry of 1,2,4-oxadiazoles 103 has been extensively reported [120]. Research
on this class of heterocycles has registered great interest in medicinal chemistry.
Many derivatives possess diverse biological activities [121–123]. Some 1,2,4-oxadia-
zoles can reduce pain and inflammation in rats and mice [124, 125]; for example,
N-[3-aryl-1,2,4-oxadiazol-5-yl-methyl]phthalimides have been found to be analgesic,
and one of them, namely, N-[3-phenyl-1,2,4-oxadiazol-5-yl-methyl]phthalimide,
possesses highly enhanced analgesic activity compared to aspirin [124].
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Furthermore, the1,2,4-oxadiazole ringhasbeenexploited as apeptidomimetic, as a
stable ester andamide isostere; specific1,2,4-oxadiazoleshavebeenused as inhibitors
in several biological systems [126, 127]. In particular, numerous papers deal with
applications of the soluble guanylyl cyclase inhibitor 1H-[1,2,4]-oxadiazole[4,3-a]
quinoxalin-1-one (ODQ) (104) andwith applications of theneuroexcitatory quisqualic
acid (105), the only naturally occurring 1,2,4-oxadiazole known hitherto [128].
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Partially or fully saturated 1,2,4-oxadiazoles (106–109) have also been reported.
In particular, 4,5-dihydro-1,2,4-oxadiazoles 106 have been evaluated very little for
biological activities compared to 1,2,4-oxadiazoles, but some of them have shown
interesting pharmacological results. For example, someare fungicides [129, 130], and
other 3,4,5-triaryl-4,5-dihydro-1,2,4-oxadiazoles demonstrated bronchodilator,
anticholinergic, hypertensive, analgesic, anti-inflammatory, diuretic, antiulcer, vaso-
dilatatory, and sedative properties [131]. Some 4-adamantyl-5-aryl-3-phenyl-1,2,4-
oxadiazolines have been evaluated in vitro for antiviral activity against human
immunodeficiency virus (HIV),where the 5-phenyl substituent produced a reduction
of more than 50% of viral cytopathic effects [132]. The present chapter updates the
previous work and reviews the literature published since, with reference to new
advances, preparations, reactions, and uses.
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13.3.1
Structure

The 1,2,4-oxadiazole ring is planar and described as having little aromatic
character [133] – lower than furan on the Bird index [134]. Dipole moments and
Kerr constants of certain oxadiazoles seem to indicate some ability of the ring
oxygen atom to donate p electrons into the ring. This heterocyclic system has an
appreciable heterodiene character, as suggested by X-ray analysis, which indicates,
for both C�N distances, conjugated double bond character. The low aromaticity
manifests itself by allowing rearrangement to more thermodynamically stable ring
systems, thus making 1,2,4-oxadiazoles good substrates for ring-to-ring
transformations [135].

The ring of 4,5-dihydro-1,2,4-oxadiazoles, according to CNDO/2 calculations, is
nonplanar, adopting an envelope conformation with one atom sitting above the plane
described by the four others, and, in contrast to the 1,2,4-oxadiazole ring, it is quite
polar [136].

The parent compound 103 is an extremely volatile liquid, very soluble in water and
organic solvents, but it is unstable at room temperature. 3,5-Dialkyl and 3,5-diaryl
1,2,4-oxadiazoles are thermally stable and do not hydrolyze by treatment with
aqueous sodium hydroxide or hydrochloric acid. In contrast, 103 and monosub-
stituted oxadiazoles 110 and 111 are thermally and hydrolyticallymarkedly less stable
(Scheme 13.39) [137].

Tautomerism of 3- and 5-hydroxy, 3- and 5-amino, and 3- and 5-sulfur analogues
has been recently reviewed [138]. In 5-hydroxy-3-phenyl-1,2,4-oxadiazole (112a), the
keto forms 112b and 112c predominate according to NMR data [139]. The tautomer
113b is more important in the 5-phenyl isomer in solution, but in acetone and
oxygenated solvents 113a allows for an effective hydrogen bonded dimer 114
(Figure 13.3).
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In aminooxadiazole derivatives the tautomeric imino form 115b is less significant,
since 115a ismore basic; in the corresponding sulfur analog there is only evidence for
the thione form 116 with the hydrogen at N2.
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Interestingly, the 5-aryl-4,5-dihydro-1,2,4-oxadiazole 117a undergoes formal
tautomerism with the 4-aryl-1,3-diaza-1,3-butadiene 117b, which in turn can
undergo ring closure with loss of water to form the quinoxaline 118
(Scheme 13.40) [140].

13.3.2
Theoretical Aspects

Theoretical studies on the structure and properties of 1,2,4-oxadiazoles have
been reported. Semiempirical (PM3 and AM1) and ab initio molecular orbital
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Figure 13.3 Tautomerism exhibited by hydroxy derivatives.
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calculations have been performed for diaryl-1,2,4-oxadiazoles and 4,5-dihydro-
1,2,4-oxadiazoles to determine bond orders, total energies, ionization potentials,
and dipole moments [141]. In particular, ab initio molecular calculations give
values close to those obtained by crystallographic techniques and NMR spectros-
copy. Proton affinities and pKa values of amino-substituted oxadiazoles have been
calculated [142]. INDO studies on 3-phenyl-1,2,4-oxadiazole and its 5-methyl
analog suggest that nucleophilic attack should occur on C3 and C5 [143]. In
connection with pharmacological structure–activity relationships, semiempirical
and ab initio molecular orbital calculations have been reported for a series of
analgesic compounds, leading to new suggestions for their mechanism of activ-
ity [120, 144]. A new model of interaction between the drug and the enzyme has
been proposed that involves an electron transfer from the amino acid residue of
the enzyme to the drug.

A theoretical study of photoinduced ring-isomerization of 3-amino-5-methyl- and
3-amino-5-phenyl-1,2,4-oxadiazoles has been reported. The results agree well with
experimental data and explain the ring-photoisomerization into the corresponding 2-
amino-1,3,4-oxadiazoles through a ring contraction–ring expansion route [145]
(see Scheme 13.19 in 1,3,4-oxadiazoles). On the same basis a theoretical study of
degenerate Boulton–Katritzky rearrangements concerning the anion of the 3-for-
mylamino-1,2,4-oxadiazole has been carried out by using semiempirical MNDO and
ab initio Hartree–Fock procedures [146].

A combined kinetic and theoretical study of themonocyclic rearrangements of the
(Z)-hydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into the corresponding tria-
zole (Scheme 13.41) has been investigated at the DFT level [147].

The synthetic approach towards 1,2,4-oxadiazoles, based on the BH3- or BF3-
mediated cycloaddition of benzonitrile oxide to nitriles, has been investigated
theoretically according to quantum chemical methods (MP2 and B3LYP) together
with a topological analysis of the charge density (Section 13.3.4.2) [148]. Activation
by the Lewis acid occurs via two different mechanisms: if the Lewis acid is
coordinated to the nitrile oxide, the reactant is activated, so that the reaction is
expected to be catalytic. If the Lewis acid is coordinated to the nitrile and strong
enough, the process requires a stoichiometric amount of Lewis acid and forms a
stable Lewis acid–product complex.
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13.3.3
Structural Aspects

13.3.3.1 X-Ray Diffraction
X-Ray data of many 1,2.4-oxadiazoles confirms that the ring is planar [149–154].
Values of C�N bond lengths are consistent with a heterodiene character and account
for the low aromaticity of the system. Table 13.3 shows the reported bond lengths and
bond angles for methyl 2-[3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl]benzoate (121),
a compound used as spacer in the synthesis of a potential non-peptide angiotensin
receptor antagonist [155].

N

O
NR1

N
R2 NHR3

N
N

N

R3

HN

R1

R2

O

R1 RHPh,= 2 RPh= 3 2,4-NOPh,= 2-C6H3

119 120

Scheme 13.41

Table 13.3 Molecular dimensions for methyl 2-[3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl]benzoate
(121).

N

O
N

Me

CO2Me

6

7

11
12

121

Bonds Distances (A
�
) Bond angles (�)

O1�N2 1.415 O1�N2�C3 103.51
N2�C3 1.310 N2�C3�N4 114.10
C3�N4 1.325 C3�N4�C5 102.83
N4�C5 1.298 N4�C5�O1 113.30
C5�O1 1,347 C5�O1�N2 106.25

13.3 1,2,4-Oxadiazoles j1079



The 3,5-diphenyl-oxadiazole fragment is almost coplanar. The angles between the
planes of the rings C5�N4/C6�C7 and C5�N4/C11�C12 are 11.13 and 2.28�,
respectively. The phenyl rings are tilted to the same sidewith respect to the oxadiazole
ring and the angle between them is 8.86�. An interesting aspect of the crystal
structure is the presence of two weak C�H�O bonds between two neighboring
molecules in the same layer. Each molecule behaves as both donor and acceptor,
leading to a dimer formation [155].

Crystal structures for a series of 2,3-dihydro-1,2,4-oxadiazoles have been
reported [156–158]. The 4,5-dihydro-1,2,4-oxadiazole ring in compounds 122 [156]
and 123 [151] are in an envelope conformation, with the oxygen atom above the plane
occupied by other atoms.

N

O
NH

MeO2C

H

N

O
NH

O

Me

Me

123122

Yu and coworkers have reported the preparation and spectroscopic and X-ray
diffraction studies of two diastereoisomericD2-1,2,4-oxadiazolines (124, showing the
assigned configuration of the diastereoisomer) having a spiral junction at C3 of
fructopyranose. These compounds show extensive applications as drugs [159, 160].

O

O

O

N
N Ac

O

Me
Me

Me

Me
H

H

124

According to the biological activities of 1,2,4-oxadiazole derivatives, the combi-
nation of an oxadiazole moiety with a sugar framework has been performed.
Unsaturated glycosides having an 1,2,4-oxadiazole part as an aglycone, 125 and
126, have been reported [153]: crystallographic data, providing precise information
regarding the configuration at C8 and also about the molecular conformation, have
shown that compound 125 has a torsion angle H(15)–C(15)–C(10)–H(10) of�43.2�,
which clearly shows that the anomeric proton is disposed equatorially. The ring
oxygen atom is a little above the C(10)-C(15)-C(14)-C(13) plane; the C(12) atom is
slightly below this plane. The p-tolyl ring and the 1,2,4-oxadiazole rings are coplanar
[torsion angle N(2)–C(3)–C(16)–C(17)Z10.618�]. The bond distances C(13)–C(12)
and C(12)–O(11) are 1.54 and 1.43A

�
, respectively.
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Based on the recent observation that Pt(II) mono- and bis-1,2,4-oxadiazoline
complexes exhibit in vitro cytotoxicity against a series of platinum-sensitive and
resistant human cancer cell lines, with a potency comparable to that of cisplatin and
superior to carboplatin [161], a series of PtX2(nitrile)(oxadiazoline) (127) and PtX2
bis-1,2,4-oxadiazoline (128) complexes have been prepared.

N
N
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MeR2 R1

Pt
N
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N

Me R1
R
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N
N

O

MeR2 R1

Pt
N

X

X
Me

127 128

13.3.3.2 NMR Spectroscopy
Protons on the 1,2,4-oxadiazole ring are shifted downfield with respect to protons in
benzene, according to the electron deficiency of the heterocyclic ring. In the parent
compound 103, the signal for the C3 proton is at 8.99 ppm, while the C5 proton
resonates at 9.49 ppm. The presence of an alkyl or aryl substituent shifts the
resonance upfield; for 3-phenyl-1,2,4-oxadiazole, the H5 in CCl4 is at 8.70 ppm [120].
Resonances forH5 of 4-unsubstituted 5-alkyl-4,5-dihydro-1,2,4-oxadiazoles appear at
5.4–5.7 ppm [125, 162]. Chemical shifts for H5 of 5-alkyl-2,5-dihydro-1,2,4-oxadia-
zoles have been found at 6.1–6.3 ppm [163].

For 3-substituted 2,3-dihydro-1,2,4-oxadiazoles, theH3 shift is in the range 5.7–6.2
and 7.2–7.6 ppm, according to the presence of N-alkyl or N-aryl substituents,
respectively [164].

Many fully assigned 13C data for C3/C5 disubstituted 1,2,4-oxadiazoles have been
reported [165–168]. C3 resonances are in the range 148–169,while chemical shifts for
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C5 are downfield, in the range 165–185 ppm. Table 13.4 summarizes the data for
oxadiazoles 129–132.

13.3.3.3 UV and IR Spectroscopy
UV spectra of aryl-substituted 1,2,4-oxadiazoles have been reported [162, 169]; non-
aryl 1,2,4-oxadiazoles have no UVabsorption. UV and fluorescence spectra of Cu(II)
complexes of 5-(2-hydroxyphenyl)-3-phenyl-1,2,4-oxadiazole (133) have been
reported [170]: Cu (II) binds to monodentate oxadiazole via N4 and the OH group
in a 2 : 1 complex.

A detailed IR analysis exists for the parent compound and a series of fully
conjugated 1,2,4-oxadiazoles [162]. Diagnostic absorptions are at 1590–1560 (C¼N),
1119–1218 (C�O) and 895–910 (N�O) cm�1 [171, 172]. For 4,5-dihydro-1,2,4-
oxadiazole 134, the C¼N absorption is shifted to around 1600 cm�1 [162, 173].
2,3-Dihydro-1,2,4-oxadiazoles exhibit a nC¼ N between 1670 and 1676 cm�1 [156,
183], while in 2,5-dihydro the same absorption is at 1622–1640 cm�1 [162, 173].

OH
N

N

O

Ph

N
HN

O

Ar

R1
H

133
134

13.3.3.4 Mass Spectrometry
The diagnostic fragmentation pattern of 1,2,4-oxadiazoles is a 1,3-dipolar cyclorever-
sion process, which proceeds via initial cleavage of the 1,5 (C�O) and 3,4 (C�N)

Table 13.4 13C NMR shifts (ppm) for C3/C5-disubstituted 1,2,4-oxadiazoles 129–132.

1,2,4-Oxadiazole 129 130 131 132

C3 148.6 168.8 176.9 169.3
C5 164.1 174.7 182.7 173.4
Solvent CD3CN CDCl3 CDCl3 DMSO

N

O
N

CN
N

O
N

Me

N

O
N

Me

N

O
N

furanose

N

O N

NC

129 130 131 132
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bonds: the positive charge is retained in the predominant nitrile oxide fragment
(Scheme 13.42) [175, 176].

The nitrile oxide fragment itself fragments further, either by expulsion of oxygen
to give a nitrile, which may then lose a CN fragment, or via rearrangement and
expulsion of CO.

A recent review reports a detailed mass spectrometric analysis of a series of 1,2,4-
oxadiazoles and 4,5-dihydro-1,2,4-oxadiazoles [177]. The fragmentation mode of
the latter compounds differs from that of 1,2,4-oxadiazoles. For example, the electron
impact dissociation of compounds 135 is reported in Scheme 13.43.

13.3.4
Synthesis

Many synthetic routes for the 1,2,4-oxadiazole systemhave been reported [120]. 1,2,4-
Oxadiazoles can be achieved from open-chain precursors through conventional
heterocyclization reactions: the best represented approach exploits the cyclodehy-
dration of O-acyl-amidoximes, a method first used by Tiemann and Kruger [178], or
N-acylamidoximes, a method developed by Beckmann and Sandel (amidoxime
route) [179]. Another different general synthetic route is based on the 1,3-dipolar
cycloaddition of nitrile oxides to nitriles, developed by Leandri (cycloaddition
route) [180].
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13.3.4.1 Amidoxime Route

13.3.4.1.1 Cyclization of O-Acylamidoximes According to the most represented
route, 1,2,4-oxadiazoles 138 can be prepared by cyclization ofO-acylamidoximes 137,
which are obtained from the appropriate amidoxime 136 (easily prepared by reaction
of the corresponding nitrile with hydroxylamine) and an acylating reagent [120]
(generally acyl halides [181, 182], esters [183], or anhydrides [184]) (Scheme 13.44).

The cyclization of O-acylamidoximes is performed by heating them at their
melting point [185], or at reflux in a high-boiling solvent (DMF [186], toluene [187],
pyridine [188], ethanol [189], acetonitrile [190], glacial acetic acid at reflux) [191, 192],
eventually in the presence of a dehydrating agent (phosphorous pentoxide,
phosphorus oxychloride, or acetic anhydride).

The experimental conditions required to realize the ring closure of the corre-
sponding O-acylamidoximes vary as a function of their structures. In some cases,
depending on the substrates, the cyclodehydration reaction occurs under the same
conditions as the acylation reaction and the open-chain intermediate is not isolated.

An efficient one-pot method based on the reaction of nitriles with hydroxylamine
hydrochloride in the presence ofmagnesia-supported sodium carbonate, followed by
reaction with acyl halides under solvent-free conditions and microwave irradiation,
has been reported [193a]. The use of microreactors (microfluidic chips) as an
alternative to �in flask� chemistry has been exploited for a rapid synthesis of bis-
substituted 1,2,4-oxadiazoles from aryl nitriles and acyl chlorides or succinic anhy-
dride in a single continuousmicroreactor sequence. In thisway, amultiday,multistep
sequence has been amended to a highly efficient procedure lasting less than 30min
(Scheme 13.45) [193b].

Cyclization can be performed under mild conditions if the weak nucleophilic
amide group is converted into the more nucleophilic amide ion. Thus, 1,2,4-
oxadiazoles 140 have been obtained by treatment of 139 with DBU at 70 �C [205].
A significant advance is the use of TBAF at room temperature as a cyclization
media, a process that occurs in high yields in the presence of 0.1–1 eq of TBAF, with
the fluoride ion acting as both a homogeneous and strongly basic reagent
(Scheme 13.46) [194, 195].

A wide variety of carboxylic acid derivatives can be used for the formation of O-
acylated amidoximes, such as esters [196], acid chlorides [152, 154, 171, 175, 187, 197],
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acid anhydrides [197b, 152, 171, 198], including symmetrical acid anhydrides derived
from amino acids [184c], and amino-acid activated as succinimides [183].

Succinic [199] and glutaric anhydrides [200] are excellent substrates for reaction
with amidoximes, giving 1,2,4-oxadiazol-5-yl carboxylic acids 141 and 142, respec-
tively: the obtained compounds are excellent substrates for coupling to amino acid
derivatives (Scheme 13.47).

Examples of the amidoxime route, by which two 1,2,4-oxadiazole moieties can be
linearly joined by alkyl chains through the annular 5,50-positions, have been reported.
Thus, the 5,50-bis-1,2,4-oxadiazolyl system 144 has been obtained by reaction of
malonates 143 with two equivalents of an amidoxime in the presence of potassium
carbonate (Scheme 13.48) [196f ].

The use of carboxylic acids, activated in situ and reacted with an amidoxime, has
also been exploited, using various coupling reagents, including dicyclohexylcarbo-
diimide (DCC) [184a–f ], 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide(EDC)
[184a,d, 201c], (EDC)/HOBt [201b,c, 202], bis(2-oxo-3-oxazolidinyl)phosphinic
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chloride (BOP-Cl) [184a], 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyl-uronium
tetrafluoroborate (TBTU) [186, 201c], 1,10-carbonyldiimidazole (CDI) [184a, 203],
and/or high-speed microwave irradiation (Scheme 13.49) [186,197a, 201].

Chiral 1,2,4-oxadiazoles 147 have been synthesized from amino acids by reaction
of the readily available N-protected (a-aminoacyl)benzotriazoles 146 with amidox-
imes in ethanol (Scheme 13.50) [189].

In some cases, nitriles can be used as acylating reagent for amidoximes, and the
subsequent heterocyclization involves loss of ammonia in the final step, with
formation of 1,2,4-oxadiazoles 148 (Scheme 13.51) [204].
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For this purpose the reaction is carried out in the presence of an ammonia acceptor
reagent (a carboxylic acid or an excess of the nitrile). For example, from the reaction of
benzamidoximes with perfluoroalkyl nitriles, a series of fluorinated 5-alkyl-1,2,4-
oxadiazoles can be obtained [205].

Disubstituted 1,2,4-oxadiazoles have been synthesized in good yields and good
purity in a one-pot procedure by reaction of aromatic nitriles, hydroxylamine hydro-
chloride, and sodium carbonate in ethylene glycol under heating at 195 �C [168].

Microwave irradiation of nitriles in the presence of hydroxylamine and different
aromatic aldehydes, under solvent-free conditions, affords fully conjugated 1,2,4-
oxadiazoles 149 in high yields (Scheme 13.52) [206].

Other methods to obtain 1,2,4-oxadiazoles 150 include the palladium-mediated
coupling of an aryl iodide with an amidoxime in the presence of carbon monoxide
(Scheme 13.53) [207].
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Similarly, 1,2,4-oxadiazoles 152 have been prepared by palladium-catalyzed reac-
tions of diaryliodonium salts (151) with amidoximes in the presence of carbon
monoxide (Scheme 13.54) [208].

13.3.4.1.2 Cyclization of N-Acylamidoximes N-Acylamidoximes 158 cannot be pre-
pared by acylation of amidoximes because O-acylation is faster. Suitable starting
materials for N-acylamidoximes can be found inN-acylimidic chlorides 153 (X¼Cl),
cyanides 154 (X¼CN), acylamidines 155 (X¼NHR, NR2), N-acyl(alkylthio)imi-
des 156 (X¼ SR), or N-acyl(alkoxy)imides 157 (X¼OR), which, by reaction with
hydroxylamine, lead to 1,2,4-oxadiazoles 159 (Scheme 13.55) [209].

Imidates such as 160 react with cyanamide to giveN-cyanoamidines 161, while the
hydrochloride 162, is transformed into 163 [210]. Both 161 and 163 give 3-amino-
1,2,4-oxadiazoles 164 on treatment with hydroxylamine (Scheme 13.56).
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Adifferent approach involves the nitrosation of dimethylaminopropenoates 165,
with formation of the corresponding oximes 166, which undergo cyclization to give
the 5-substituted 1,2,4-oxadiazoles 3-carboxylates 167 (Scheme 13.57) [211].

The reaction of cyanohydrines 168 with hydroxylamine leads to the non-isolable
amidoximes 169, which, through intramolecular acylation to 170, cyclize to
epimeric 1,2,4-oxadiazoles 171 (Scheme 13.58) [212].

A series of substituted 1,2,4-oxadiazoles 176 have been synthesized through
a new and versatile solid-phase synthesis protocol using resin-bound nitriles
(172). This resin was treated with hydroxylamine and converted into resin-bound
amidoximes 173, which were transformed into the polymer supported O-acyla-
midoximes 174 upon treatment with acyl chloride. These compounds were
subsequently converted into immobilized 1,2,4-oxadiazoles 175, and then to
176 by treatment with 95% aqueous TFA in 15–52% overall yield
(Scheme 13.59) [213].
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13.3.4.2 Cycloaddition Route
Another general and well-established route to 1,2,4-oxadiazoles 159 relies on the
1,3-dipolar cycloaddition between a nitrile 176 and a nitrile oxide 177
(Scheme 13.60) [120]. Aromatic and electron-deficient nitriles showed good reactiv-
ities, while aliphatic nitriles donot undergo cycloaddition to the oxadiazole derivative.
However, under Lewis acid catalysis even aliphatic nitriles form cycloadducts [148].

Non-activated nitriles undergo cycloaddition with especially reactive nitrile oxides
such as bromo- and chlorocyanogen oxide (Scheme 13.61) [214].

Several methods are reported in the literature for the in situ generation of nitrile
oxides.Huisgen�s base-induced dehydrohalogenation of hydroximoyl chlorides [215]
andMukaiyama�s dehydration of primary nitro compounds, using phenyl isocyanate
with a catalytic amount of triethylamine [216], are the most frequently used routes to
generate nitrile oxides. Thus, the loss of HCl from imidoyl chloride 179 leads to the
nitrile oxide 180, which undergoes cycloaddition to the dicyanoketene acetal 181,
producing the 1,2,4-oxadiazole 182 (Scheme 13.62) [217].

The ultrasound cycloaddition of nitrile oxide, formed byMukaiyama�s dehydration
of nitroethane, with trichloroacetonitrile 183 affords the 1,2,4-oxadiazole 184 whose
remarkable reactivity towards nucleophilic substitution by amines has been widely
exploited (Scheme 13.63) [218].

Treatment of nitriles with acetone or acetophenone in the presence of iron(III)
nitrate affords 3-acetyl- or 3-benzoyl-oxadiazoles 186; the reaction proceeds through
enolization andnitration to give ana-nitroketone,which undergoes an acid-catalyzed
dehydration to the intermediate nitrile oxide 185 (Scheme 13.64) [219].
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A similar reaction leading to 1,2,4-oxadiazoles from ketones, nitriles, and nitric
acid has been described using yttrium triflate as catalyst (Scheme 13.65) [220].

The reaction mechanism involves the 1,3 dipolar cycloaddition of nitriles with
nitrile oxide 187, which is obtained by enolization of the ketones promoted by yttrium
triflate, followed by nitration and subsequent dehydration (Scheme 13.66).

A less common method for the formation of nitrile oxides is the oxidation of
aromatic aldoximes with ceric ammonium nitrate (Scheme 13.67) [221]; the subse-
quent cycloaddition to nitriles leads to 1,2,4-oxadiazoles 188.
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The cycloaddition methodology has been employed for the synthesis of complex
systems. The reaction between nitrile oxides 189 and trans-[PdCl2(RCN)2], or RCN
(R¼Me, Et, CH2CN,NMe2, Ph) in the presence of PdCl2, proceeded smoothly under
mild conditions and allowed isolation of the trans-[-PdCl2]-1,2,4-oxadiazole com-
plexes (190–197) in 40–85% yields. (Scheme 13.68) [222].

3-Aryl-5-C-glucosyl-1,2,4-oxadiazoles 199 and 200, assayed as glycogen phosphor-
ylase inhibitors, have been prepared in high yield by 1,3-dipolar cycloaddition of aryl
nitrile oxides to benzoylated glucosyl cyanide 198 and subsequent cleavage of the
protecting group (Scheme 13.69) [223].

1,2,4-Oxadiazoles have been prepared by cycloaddition of nitrile oxides to
different dipolarophiles. Thus, the cycloaddition of nitrile oxides to amidoximes
201 proceeds with loss of diethylamine to give the 1,2,4-oxadiazole-4-oxide 202,
which can be deoxygenated with trimethyl phosphite to give 1,2,4-oxadiazole 203
(Scheme 13.70) [224].

The reaction of nitrile oxide 204with imine 205 affords the 1,2,4-oxadiazole 207 via
the non-isolable intermediate 206 (Scheme 13.71) [225].

13.3.4.3 Miscellaneous Synthesis of 1,2,4-Oxadiazoles
Fully conjugated 1,2,4-oxadiazoles have been prepared by oxidation of 4,5-dihydro-
1,2,4-oxadiazoles 208 (Section 13.3.4.4.1), containing hydrogen atoms in the 4- and
5-positions: the oxidation can be performed by MnO2 [125], nitric acid [125],
NaOCl [162], or N-chlorosuccinimide (NCS) [169] (Scheme 13.72).
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Oxidation of N-benzylamidoxime 209 with KMnO4 affords 1,2,4-oxadiazole 211,
through the intermediate 4,5-dihydro-1,2,4-oxadiazole 210 (Scheme 13.73) [226].

Bicyclic 4,5-dihydro-1,2,4-oxadiazole 212 leads to 213 through a retro-[2 þ 2]
cycloaddition via loss of styrene in toluene at reflux (Scheme 13.74) [227].

Some recent synthetic procedures concern ANRORC-like reactions that consist of
the Addition of a Nucleophile to a p-deficient heterocycle, followed by Ring-Opening
and Ring-Closure steps. By this approach, a heterocycle can be transformed into
a different one containing the heteroatoms originally belonging to the nucleophilic
reagent. Thus, the reaction of 5-fluoroalkyl-1,2,4-oxadiazoles 214with hydroxylamine
furnishes high yields of 3-fluoroalkyl-1,2,4-oxadiazole 217 in a virtual C5–C3 annular
shift (Scheme 13.75) [228]. The reaction is promoted by nucleophilic attack of the
hydroxylamine to the electron-deficient C5 to produce 215. Heterocyclization of
the dioxime intermediate 216 and removal of hydroxylamine leads to themore stable
oxadiazole 217, in an irreversible ring-degenerate process.
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Accordingly, photoinduced rearrangements of O�N bond containing azoles can
be useful for the synthesis of 3-amino-5-alkyl-1,2,4-oxadiazoles [229]. This procedure
exploits the photofragmentation pattern of the furazan heterocycle into a nitrile and
a nitrile oxide. Thus, irradiation of 3-alkanoylamino 217 at l¼ 313 nm in methanol
and in the presence of ammonia or primary aliphatic amines gives the corresponding
3-amino- or 3-N-alkylamino-5-alkyl-1,2,4-oxadiazoles 219 as a result of the hetero-
cyclization of the intermediate 218 (Scheme 13.76) [230, 231].

Unfortunately, yields of isolated products (about 30–40%) were not very good
because of the photoreactivity of oxadiazoles under irradiation conditions; this,
however, appears to be the only method that allows these derivatives to be obtained.

13.3.4.4 Synthesis of Dihydro-1,2,4-Oxadiazoles

13.3.4.4.1 4,5-Dihydro-1,2,4-Oxadiazoles The main methodology towards the syn-
thesis of 4,5-dihydro-1,2,4-oxadiazoles 220 relies on the reaction of carbonyl com-
poundswith amidoximes 136under acidic conditions (Scheme13.77) [120, 162, 232].

The use of chloroformate or diethyl carbonate leads to 4,5-dihydro-1,2,4-oxadia-
zolones 222 via an intermediate acetamidoxime, which cyclizes under base treatment
(Scheme 13.78) [233].

The reaction with phosgene or thiophosgene constitutes an alternative route
towardsthe4,5-dihydro-1,2,4-oxadiazol-5-onesor-5-thiones223 (Scheme13.79) [234].

A widely exploited route to 4,5-dihydro-1,2,4-oxadiazoles is the 1,3-dipolar cyclo-
addition of nitrile oxides to azomethines [120, 235].

Thus, the reaction of imines 224 with hydroxyimoyl chlorides 225 in the presence
of triethylamine gives 4,5-dihydro-1,2,4-oxadiazoles 226 (Scheme 13.80) [236].
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Scheme 13.81 reports a parallel synthesis of 4,5-dihydro-1,2,4-oxadiazoles,
through a cycloaddition reaction of imines with poly(ethylene glycol) (PEG)
supported nitrile oxide. 4-Formylbenzoic acid (227) was attached to the dihydroxy-
lated PEG by esterification in the presence of DCC. The PEG-bound derivative 228
was converted into oxime 229 by treatment with hydroxylamine hydrochloride, in the
presence of trioctylamine, whichwithN-chlorosuccinimide afforded the PEG-bound
chlorooxime 230. This derivative was then treated with several imines to give the
corresponding cycloadducts 231, which were released from the PEG by treatment
with sodium methoxide in methanol, to afford 1,2,4-oxadiazolines 232 in 71–91%
overall yield [237].

+
Ar Ar

N
H 30-80% N

O
N

Ar1

224 226

N

XAr1

H

4-MeCPh,=Ar 6H4 4-ClC, 6H4 4-BrC, 6H4 3NO, 2-C6H4 4-C, 6H4 4-C, 6H4 4-C, 6H4,

OH

Et3N

225

Ar

Ar

Ar1 4-MeCPh,= 6H4

Scheme 13.80

NH2OH

OH

O

N

O

N

R2

HO2C

CHO

DMAPDCC,

+

O

O

CHO

O

O

CHNHOH

NCS

base

O

O

HOHN

Cl

O

O

Base

N

R1 R2

R3

N O

N

R1 R2
R3

MeONa

MeOH

O
Me

R3

R1

R1 MeH,=

R2 4-MeO-CPh,= 6H4 4-F-C, 6H4 4-Me-C, 6H4 3-NO, 2-C6H4 4-C, 7H5O2,

R3 4-F-CPh,= 6H4 4-Me-C, 6H4 PhCH, 2 butyl,

dihydroxy-PEG
227 228

229

230
231

232

Scheme 13.81

13.3 1,2,4-Oxadiazoles j1101



The use of cyclic imines in the cycloaddition reaction is a useful route to various
fused 4,5-dihydro-1,2,4-oxadiazoles. In this way, oxadiazolo-1,4-diazepines,
233 [238], oxadiazole-1,5-benzodiazepines 234 [239], and oxadiazolotriazole-1,5-
benzodiazepines 235 have been prepared [240] (Scheme 13.82).

13.3.4.4.2 2,5-Dihydro-1,2,4-Oxadiazoles Aminonitrones 236, prepared by reaction
of hydroxylamines with ethyl cyanoformate, cyclize by treatment with triphosgene to
2,5-dihydro-1,2,4-oxadiazin-5-ones 237 (Scheme 13.83).

A related reaction involves the acylations of 2-aminopyridineN-oxides 238 and 239
with ethyl chloropyruvate or phosgene, respectively (Scheme 13.84) [241].
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The reaction of substituted oxazoles 241 with arylnitroso derivatives 240 affords
2-aryl-2,5-dihydro-1,2,4-oxadiazoles 242 regioselectively, through a formal [3 þ 2]
cycloaddition, proceeding via a ring opening of oxazoles promoted by a nucleophilic
attack of the nitroso compound at the 2-position of the penta-atomic ring
(Scheme 13.85) [242].

A facile one-pot synthesis of 2,3,5-substituted 1,2,4-oxadiazolines from nitriles in
aqueous solution has been reported [243]. Thus, alkyl/aryl amidoximes, prepared
from the corresponding nitriles and N-alkylhydroxylamines, readily undergo con-
secutive double Michael additions to electron-deficient alkynes and provide highly
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substituted 1,2,4-oxadiazolines 243 in good yields in homogeneous aqueous solution
(Scheme 13.86).

13.3.4.4.3 2,3-Dihydro-1,2,4-Oxadiazoles A general route to 2,3-dihydro-1,2,4-oxa-
diazoles is based on the 1,3-dipolar cycloaddition of nitrones to nitriles. Thus, 3-t-
butyl-2,3-dihydro-1,2,4-oxadiazoles 246 have been prepared through cycloaddition
between butylnitrone 244 and different activated nitriles 245 (Scheme 13.87) [244].
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The cycloadditions have been performed in the absence of solvent, under micro-
wave irradiation within 2–10min [245].

Recently, a series of 5-trichloro- and 5-(2-methylpropanenitrile)-D4-1,2,4-oxadia-
zolines 247 have been synthesized by 1,3-dipolar cycloaddition of nitrones to
trichloroacetonitrile and 2,2-dimethylmalononitrile, respectively. These oxadiazo-
lines rearrange into formamidine derivatives 248 by prolonged heating, via ring
opening and a 1,2-aryl shift from carbon to the adjacent amino nitrogen
(Scheme 13.88) [246].

Based on a recent observation that Pt(II) mono- and bis-oxadiazoline complexes
exhibit in vitro cytotoxicity against a series of platinum-sensitive and resistant human
cancer cell lines with a potency comparable to that of cisplatin and superior to
carboplatin [247] a series of 2,3-dihydro-1,2,4-oxadiazoles have been synthesized by
1,3-dipolar cycloaddition of coordinated dinitriles 249a,d to nitrones 250a–c
(Scheme 13.89). Moreover, Pt(II)oxadiazoline complexes 251a and 251d, having
only one of the coordinated nitriles, have been used for various new mixed ligand
complexes. Thus, 252–254 have been obtained by reaction of the corresponding
oxadiazolineswith pyridine, 4-N-dimethylpyridine, and 1-benzyl-2-methylimidazole,
respectively (Scheme 13.90) [248].

A novel type of heterocycle, 2,3a-disubstituted 5,6-dihydro-3aH-[1,3]oxazolo[3,2-b]
[1,2,4]oxadiazoles 258a–g, has been generated by an intermolecular Pt(II)-mediated
1,3-dipolar cycloaddition between the oxazolineN-oxide 256 and coordinated nitriles

N
O

R

R = Ph, 4-NO2-C6H4

N C R1
+

R1 = ClC(CN)2, Br2(CN), C(CN)3, CCl3

N

O

N

R1

R

∆

80-100%

244

245

246

Scheme 13.87

NCR +
CHCl3

95-100%

N

R1 H

MeO

N

O
N Me

CCl=R 3 Me, 2CCN

R1

R

H

R1 2-MeOC= 6H4 2,3-(MeO), 2C6H3 2,4-(MeO), 2C6H3 2,5-(MeO), 2C6H3 2,6-(MeO), 2C6H3,
3,4-(MeO)2C6H3 2,3,4-(MeO), 3C6H2 3,4,5-(MeO), 3C6H2 2,4,5-(MeO), 3C6H2 2,4,6-(MeO), 3C6H2

h1-5°C,60

°C,60

d70h-12 N

R

O

NH

R1

Me

15-82%247 248

Scheme 13.88

13.3 1,2,4-Oxadiazoles j1105



N
O

R1R2

Me
+Pt

X

X

N

N
C

Ph

C
Ph

N
O

N

Ph

Me
R1

R2

Pt

X

X

N
C

Ph

N
O

R1R2

Me

N
O

N

Ph

Me
R1

R2

Pt

X

X

N
O

N

Ph

R2

R1
Me

249a,d 250a-c
251a-d

250a-c

261a-d

X R1 R2

HCla Ph

Br

I

Cl

H

H

CO2E

Ph

Ph

CH2CO2Et

b

c

d

68-76%

46-71%

Scheme 13.89

N
O

N

Ph

Me
Ph

H

Pt
Cl

Cl

N
C

Ph 251a

N
O

N

Ph

Me
Ph

H

Pt
Cl

Cl

253

Pyridine

CHCl3 °C60,
N

O
N

Ph

Me
Ph

H

Pt
Cl

Cl

N

252

N

N
Me

Me

N
O

N

Ph

Me
EtO2C

EtO2CH2C

Pt
Cl

Cl

N
C

Ph 251d

N
N

Ph

Me

CHCl3 °C60,

27%h,24
77%h,24

62%h,24

CHCl3 °C60,

N

NMe

Me

N
O

N

Ph

Me
EtO2C

EtO2CH2C

Pt
Cl

Cl

N

254
N

Ph

Me

Scheme 13.90

1106j 13 Oxadiazoles



in the complexes trans/cis-[PtCl2(R-CN)2] 255. The reaction is unknown for free RCN
and oxazoline N-oxides, but under PtII-mediated conditions the reaction proceeds
smoothly and gives pure complexes 257a–g in 42–79% yields (Scheme 13.91) [249].

13.3.4.5 Synthesis of 1,2,4-Oxadiazolidines
A general synthetic approach to 1,2,4-oxadiazolidines 259 exploits the 1,3-dipolar
cycloaddition of nitrones to a C¼N double bond, a method first used by Beckmann
(Scheme 13.92) [250].

+Pt
Cl

Cl

N

N
C

R1

C
R1

N
N

O

Pt
Cl

Cl

N

255 256 257

42-79%

15-86%

N

O
R

O

R1

O

Me

Me

R

N
O R1

O R

Me
Me

N
N

O R1

O R

Me
Me

ethane-1,2-diamineEtMe,=R

R1 BnPh.Et,Me,=

258

Scheme 13.91

N

CCl3H

EtO2C
+

N
RO

R1

CH=R 2 PhMe,Ph,

N O

N

R

R1

CCl3

CO2Et

R1 4-OPh,= 2NC6H4, 4-MeOC 6H4

52-84%

259

Scheme 13.92

13.3 1,2,4-Oxadiazoles j1107



The use of isocyanates and isothiocyanates as dipolarophiles affords an easy entry
to 1,2,4-oxadiazolidinones and thiones 260 (Scheme 13.93) [251].

On this basis, 1,2,4-oxadiazolidinones as stable chiral building blocks have been
prepared by 1,3-dipolar cycloaddition of isocyanates with mannosyl- or erythrosyl
derived nitrones 261. The reaction proceeds with a good diastereoselectivity,
giving enantiopure 1,2,4-oxadiazolidin-5-ones 262 after removal of the auxiliary
(Scheme 13.94) [252].

The reaction of oxaziridines 263with isothiocyanates affords 1,2,4-oxadiazolidin-5-
thiones 264; interestingly, the reaction of 263 with chlorosulfonyl isocyanate 265
leads to 1,2,4-oxadiazolidin-3-ones 266, as established by X-ray crystallography
(Scheme 13.95) [253].

13.3.4.6 Synthesis of 1,2,4-Oxadiazole-N-Oxides
The1,3-dipolarcycloadditionofamidoximes267withnitrileoxidesaffordsaneasyentry
to 1,2,4-oxadiazole-N-oxides 268, through elimination of an amine (Scheme 13.96). A
version of this approach exploited the use of Wang-supported nitrile oxide [224, 254].
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13.3.5
Reactivity of 1,2,4-Oxadiazoles

13.3.5.1 Reactions with Electrophiles
1,2,4-Oxadiazoles are rather inert against electrophilic attack. Halogenation, nitra-
tion, Friedel–Crafts alkylation, and acylation do not occur in this ring system.
However, electrophilic mercuration of 5-unsubstituted oxadiazoles 269 is possible
(Scheme 13.97) [120].

3,5-Diaryl-substituted 1,2,4-oxadiazoles serve as monodentate ligands for some
transition metal complexes. The reaction of 1,2,4-oxadiazole 270 with Cu(II)acetate,
to give 271, occurs selectively on N4 (Scheme 13.98) [170].
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The closely correlated oxadiazole 272 is, by treatment with dimethyl sulfate
and perchloric acid, methylated at N2 to give the 1,2,4-oxadiazolium salt 273
(Scheme 13.99).

An interesting example of an intramolecular electrophilic attack at theN2, reported
in Scheme 13.100, yields oxadiazolopyrimidinium salts 274 [255].
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Acetylation of 1,2,4-oxadiazoline 275 with acetic anhydride in pyridine furnishes
the N2-acetylated compound 276, while the treatment with potassiumhydride in 1,2-
dimethoxyethane (DME) gives mixtures of the N2 and the N4-acetylated hetero-
cycles 276 and 277, respectively (Scheme 13.101) [120b].

4,5-Dihydro-1,2,4-oxadiazol-5-one 278 can beN-alkylated with alkyl halides or with
epoxides in the presence of bases to give 279 and 280, respectively
(Scheme 13.102) [256].

Similarly, 4,5-dihydro-1,2,4-oxadiazol-5-one 278 reacts with alkyl halides 281 and
283 to give the N4 substituted derivatives 282 and 284, respectively. Compound 278
also reacts with acrolein, via Michael addition, to give 285 (Scheme 13.103) [257].

Unsubstituted 1,2,4-oxadiazolidine 3,5-dione (286) undergoes alkylation
preferentially at N2. Thus, the reaction with benzyl bromide leads to 2-benzyl
derivative 289, which can be further methylated at N-4 to give 290 [258]. Similarly,
the reaction with (S)-aziridine 287 produced the protected (S)-quisqualic acid 288
(Scheme 13.104) [259].

13.3.5.2 Reactions with Nucleophiles
Nucleophilic attack on 1,2,4-oxadiazole systems occurs mainly at C5 with nucleo-
philic displacements of good leaving groups. Table 13.5 summarizes some of these
reactions [120, 121, 198, 218, 260].
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The 3-position is remarkably stable to nucleophilic attack. While the 5-trichlor-
omethyl group of 291 leads, by treatment with KOH, to the 5-oxo compound 292, the
3-trichloromethyl isomer 293 gives carboxylic acid 294, which rearranges with loss
of CO2 to acetyl cyanamide 295 (Scheme 13.105) [261].
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Nucleophilic addition of hydrazine or hydroxylamine to the 5-position of 5-
fluoroalkyl-1,2,4-oxadiazoles leads to triazole or oxadiazole derivatives 296 and
297 (Scheme 13.106) [135, 228, 262].

The reaction of fully conjugated 3,5-diaryl-1,2,4-oxadiazoles 298with butyllithium
allows facile access to 5-butyl-3,5-diaryl-4,5-dihydro-1,2,4-oxadiazoles 299
(Scheme 13.107) [263].

A similar reaction occurs with 3-methyl derivative 300 to produce 301 [120a], while
the 5-methyl of 302 is deprotonated by butyllithium to afford the anion 303, which
produces, after CO2 treatment, the corresponding acid 304 (Scheme 13.108) [264].

4,5-Dihydro-1,2,4-oxadiazol-5-one 305 hydrolyzes by treatment with NaOH to give
amidoximes 306 (Scheme 13.109) [153].

13.3.5.3 Reductions and Oxidations of 1,2,4-Oxadiazoles
Catalytic hydrogenation of 1,2,4-oxadiazoles 307 have been reported, and begins with
N-Ofission, leading to the corresponding iminoamides intermediates 308 that under

Table 13.5 Nucleophilic displacements on 1,2,4-oxadiazoles.
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the reaction conditions adopted are converted into amidines 309 (Scheme
13.110) [265].

LiAlH4 reduction furnishes N-substituted amidoximes [121, 266]. An
application of this reaction concerns the reduction of the Wang resin-bound
1,2,4-oxadiazole 310 to furnish directly the amidooxime 311 via a reductive cleavage
from the resin followed by a reductive ring opening of the 1,2,4-oxadiazole ring
(Scheme 13.111) [267].
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Amidines are also obtained by catalytic hydrogenation of 4,5-dihydro-1,2,4-oxa-
diazoles. Thus, 1,2,4-oxadiazolo[4,5-a]indolines 312 are catalytic hydrogenated over
Raney nickel to furnish the corresponding amidines 313 that under tautomerization
reaction lead to the opened structures 314 (Scheme 13.112) [268].

Similar reactions have been reported for 4,5-dihydro-1,2,4-oxadiazole 5-ones 315
(Scheme 13.113) [269].

Oxidation of 4,5-dihydro-1,2,4-oxadiazoles 316 leads to fully conjugated 1,2,4-
oxadiazoles 317; the oxidation has been performed with different oxidants
such as N-chlorosuccinimide, manganese dioxide, and concentrated HNO3

(Scheme 13.114) [125, 162, 169].
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13.3.5.4 Thermal and Photochemical Ring Cleavage
Owing their low aromaticity, 1,2,4-oxadiazoles undergo, by thermal or base-treat-
ment, an easy ring rearrangement known as the Cusmano–Ruccia or Boulton–Ka-
tritzky rearrangement. This rearrangement involves a nucleophilic attack on N2 by
the oxygen, sulfur, selenium, nitrogen atoms, or carbon anion of a side chain (W)
linked at the 3-position of the heterocycle. The generalized rearrangement is
reversible only when atom W is oxygen. Table 13.6 summarizes the more common
rearrangements [270].

The ring degenerate version of the process has also been reported and investigated
as a function of substituent effects and experimental conditions [271]. Thus, for the
interconversion 318–319, mixtures enriched in compound 318 are obtained, while in
neutral conditions compound 319 predominates. The effect of substituent X is
significant in basic media (Scheme 13.115).

The rearrangement has been used for a synthesis of a series of 3-amino-5-aryl-, 3-
amino-5-alkyl-, and 3-amino-5-polyfluorophenyl-1,2,4-oxadiazoles 321 starting from
3-amino-5-methyl-1,2,4-oxadiazoles 320 (Scheme 13.116).

Detailed studies of experimental and theoretical aspects of the rearrangement of
phenylhydrazones of 3-benzoyl-1,2,4-oxadiazoles 322 and 323 into the corresponding
triazoles 324 and 325 have been performed (Scheme 13.117) [272].
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1,2,4-Oxadiazoles undergo photochemically induced azole to azole interconver-
sions, similar to the previously mentioned thermal rearrangements
(Scheme 13.118) [273].

Thus, photolysis of the 3-acetamino-1,2,4-oxadiazole 326 involves cleavage of the
N�O bond and the formation of the new oxadiazole 327 (Scheme 13.119).
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a byproduct originating from the carbodiimide 330, the rearrangement product
of 329 (Scheme 13.120) [274].

UV irradiation of 1,2,4-oxadiazoles 333 in the presence of nucleophilic nitrogen
sources (primary amines, ammonia, hydrazine) affords triazoles 335, via cleavage
of the N�O bond and addition of the nucleophile to the intermediate 334
(Scheme 13.121) [275].
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The use of methanol as nucleophile leads to a 1 : 1 mixture of 1,3,4-oxadiazole 337
and triazole 336 (Scheme 13.122).

When an amino group is present at C5, the reactionwith a sulfur nucleophile leads
to 1,2,4-thiadiazoles 338 (Scheme 13.123) [276].
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can be trapped by cyclohexadiene to give the hetero-Diels–Alder adducts 341 in good
yields (Scheme 13.124) [277].

The intermediate nitrosocarbonyls 340 can also be trapped in ene reactions to give
adducts 342 and 343 [254, 278].

The 1,2,4-oxadiazol-5-ones 344 undergo, when heated in vacuum, a retro-1,3-
dipolar cycloaddition to give nitrones 345 (Scheme 13.125) [251].

13.3.5.5 Reactivity of Substituents
Reactions involving substituents attached to ring carbons reveal the particular
stability of the heterocyclic system. A series of examples are related to the formation
and reactivity of a-anions. Thus, 5-methyl-3-phenyl-1,2,4-oxadiazole (302) is
deprotonated by bases to the corresponding anion, which adds to carbonyl
group of ketones or CO2 [264]. Conversely, the methyl group of 3-methyl-5-phe-
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nyl-1,2,4-oxadiazole (300) by treatment with butyllithium does not form the anion:
the reagent adds to the 4,5-bond (Scheme 13.108) [120a].

1,2,4-Oxadiazole 302 also undergoes the aldol condensation with benzaldehyde
(Scheme 13.126) [120a].

N

O

N

Ph

H2N

R = Ph, Me, H

hν, 254 nm

MeOH

45-67%

N

S

N

Ph

RHN

338

N

O

N

Ph

H2N

HN

O

N

Ph

H2N

S

S

NHRX

NR

X

X = MeO, NH2

Scheme 13.123

N

O
N

R1

R

R = Ph, 2,4,6-MePh, p-Cl-Ph, p-MeOPh

hν, 313 nm

MeOHO

R1CN   +
N

O

OR
61-95% O

N

O

R

R1 = Ph, 2,4,6-MePh, p-Cl-Ph

R3

R2 R5

H

R4 O

Ph N
H

R3 R2

R4

R5

90-99%

R2, R3, R4, R5 = H, Ph, Me

N
HO

ROC

73-87%
339

340
341

342
343

Scheme 13.124

1122j 13 Oxadiazoles



Phosphonate 347, obtained by Arbuzov reaction of 3-chloromethyl-1,2,4-oxadia-
zole 346, has been used in Wadsworth–Emmons reactions: the methodology
provides useful access to 3-alkenyl-1,2,4-oxadiazoles 348 (Scheme 13.127) [264].
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The formation of a-anions has been exploited for the synthesis of a library of
5-alkenyl-substituted 1,2,4-oxadiazoles 353. Compounds 353 have been prepared
starting from a polystyrene-supported oxadiazolyl-substituted selenium resin 350,
preparedby reactionofpolystyrene-supportedselenyl acetic acid349,withamidoxime
and DDC through Porco�s two-step, one-pot condensation. Alkylation of 350 by base
treatmentandadditionofallylbromidesproducedthea-alkylatedseleniumresins351,
whichwereusedasdipolarophilesina1,3-dipolarcycloadditiontofurnishpolystyrene-
supported oxadiazolyl- and isoxazolinyl-substituted selenium resins 352. Oxadiazolyl
and isoxazolinyl substituted olefins 353were then obtained stereoselectively through
selenoxide syn-elimination fromresins352byH2O2 treatment (Scheme13.128) [279].

The stability of the oxadiazole ring is pointed out in many reactions that
substituents at C3 or C5 undergo. Among themore recent reactions, Scheme 13.129
shows the synthesis of aryl ethers 354 [280], the nucleophilic attack of methanol to
a pentafluorophenyl or tetrafluorophenyl 1,2,4-oxadiazole (355) [275b], a Sonogashira
coupling to afford 356 [195a], and the synthesis of amino compounds 357 by
tetrapropylammonium perruthenate (TPAP) oxidation of the hydroxyl group fol-
lowed by reductive amination of the resulting aldehyde [200].

The reaction of 5- and 3-chloromethyl-1,2,4-oxadiazoles 358 and 359, respectively,
with pyrazolyl-purine affords the corresponding derivatives 360 and 361
(Scheme 13.130) [187].

Analogously, the polymer supported-1,2,4-oxadiazole 362 reacts with primary
amines to give 5-aminomethyl oxadiazoles 363 (Scheme 13.131) [281].

N

O
N

R

350

351

N

O
N

R

LDA, -60-40°C, 1h

R1

Br

Se

Se

R1

R
1

=Ph,H

R = Ph, p-Me-C6H4, p-F-C6H4, p-Cl-C6H4,

48-72%

DCC, 95°C, 20h

R

NH2HON

Se

CH2CO2H

349

N

R
2

R
2

=CO2Et, p-MeO-C6H4, p-Br-C6H4, p-Cl-C6H4, p-NO2-C6H4 O

N

O
N

R

Se

N

O

R1

R
2

H2O2,THF

0°C/rt, 80 min

N

O
N

R

N
O R1

R2

rt,24 h

352353

Scheme 13.128

1124j 13 Oxadiazoles



A series of highly p-conjugated nonsymmetrical liquid crystals, based on the core
3,5-(disubstituted)-1,2,4-oxadiazole with a shape similar to a hockey stick, have been
synthesized by Sonogashira coupling reaction. Thus, compounds 366were prepared
in 74–82% yield, by reaction of an aryl iodide containing the 1,2,4-oxadiazole ring
(364) with the terminal arylacetylenes 365, using 10mol.% of dichlorobis(triphe-
nylphosphine)palladium, 5mol.% of the co-catalyst copper(I) iodide, in a triethyla-
mine–tetrahydrofuran mixture (7 : 3). The obtained compounds showed liquid
crystal phases, in particular smectic and nematic typical of calamitic structures, and
moreover exhibit strong blue fluorescence in solution (Scheme 13.132) [282].
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13.3.6
1,2,4-Oxadiazoles in Medicine

1,2,4-Oxadiazole ring occurs widely in biologically active synthetic compounds,
and is often used in drug discovery as a hydrolysis-resisting bioisosteric replace-
ment for amide or ester functionalities [283] because of its electronic properties.
Its derivatives can be found in a vast number of compounds exerting biological
activity, such as ligands of benzodiazepine receptors [284, 285], anti-inflammatory
agents [131, 199, 234], antiviral agents [283], inhibitors of protein tyrosine
phosphatases [286], agonists of muscarinic receptors [287], inhibitors of Src
SH2 [183], antagonists of histamine H3-receptors [288], integrin receptor antago-
nists [200], angiotensin II receptor antagonists [289], and HIV-1 reverse transcrip-
tase inhibitors [290]. 1,2,4-Oxadiazole moieties have been used in the design of
dipeptidomimetics as peptide building blocks [184a,b]. Compounds 367 contain,
at C5 of the 1,2,4-oxadiazole nucleus, a residue of an amino group linked to peptide
moieties, and a carboxyl or ester functionality attached at C3 directly or through
a methylene chain [291]

N

ON

367

R
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n =0, 1,2

R = OH, OEt, NHMe

N
H

R2

R1 = PhCH2, Me, i-Prop

R2 = Ac, Boc, H-Tyr-D-Ala, H-Arg-Pro--Lys-Pro-Gln-Gln-Phe

nROC

Numerous 1,2,4-oxadiazoles have been suggested as potential agonists for cortical
muscarinic [292], benzodiazepine [293], and 5-HT1D (5-hydroxytryptamine) recep-
tors [294], and as antagonists for 5-HT [295] or histamine H3 receptors [296]. They
show activity as antirhinoviral agents [297], growth hormone secretagogues [298],
anti-inflammatory agents [234], and antitumor agents [183, 188, 299]. They also
inhibit the SH2 domain of tyrosine kinase [300], monoamine oxidase [301], human
neutrophil elastase [302], and human DNA topoisomerases. Finally, tropane deri-
vatives of 1,2,4-oxadiazoles display high affinity for the cocaine binding site of the
dopamine transporter [303].

More recently, it has been reported that the ring opening of N-oxides of adenosines
368, followed by exocyclic ring closure, in the presence of carboxylic anhydrides and
thiophenol, followed by ammonia treatment, generates 1,2,4-oxadiazolyl imidazoles
369 (Scheme 13.133) [304]. The so-obtained separation of the fused imidazole and
pyrimidine rings of purine nucleosides increases the conformation flexibility: these
shape-modified analogues have been used to investigate triple helix formation and as
probes for the study of enzyme interactions [305a].
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Furthermore, a series of keto-1,2,4-oxadiazoles (370) have been prepared that have
been shown to be potent inhibitors of human mast cell tryptase and useful in the
treatment of asthma and allergic diseases.
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The 1,2,4.oxadiazol-5-one moiety can act as a bioisostere of the carboxylic acid
function in retinoid structures. Recently, the solid-phase or solution-phase syntheses
of a new series of non-carboxylic acid retinoic acid receptor ligands (RARs) bioisos-
teres of Am580 or tazarotene-like retinoids has been reported [305b].

In particular, the retinoidal activity of compound 371 (RAR-b,c selective) is
significant. These non-carboxylic acid type RAR ligands may exhibit
different pharmacological behaviors from classical carboxylic acid compounds, as
well as unique biological activity, and they may provide further scope for clinical
applications.
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13.4
1,2,5-Oxadiazoles

1,2,5-Oxadiazole (372) is often referred to by the trivial name furazan; for 1,2,5-
oxadiazole-2-oxide (373), a commonderivative, the trivial name furoxan is still inwide
usage. The first report on a 1,2,5-oxadiazole ring system appeared in the 1850s: the
parent compound 1 was prepared in 1964 by treatment of glyoxime with succinic
anhydride [306]. For 2,1,3-benzoxadiazoles (374) and the correspondingN-oxide 375,
the terms benzofurazan and benzofuroxan are commonly used. The partially
reduced dihydro- (D2, D3) and tetrahydro-derivatives 376–378 are very rare.
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1,2,5-Oxadiazoles, their N-oxides, as well as their benzo-fused systems are
biologically active compounds. Some of their derivatives are important because
of their anthelmintic, fungicidal, bactericidal, and herbicidal action. They have also
been found to possess antitumoral activity.

Several reviews have been published on 1,2,5-oxadiazoles [307–311]: the most
comprehensive account of the chemistry of furoxans and benzofuroxans is that by
Gasco and Boulton [312], and the more recent one by Paton [313].

13.4.1
Structure

1,2,5-Oxadiazole is a heteroaromatic compound; strictly, it should be regarded as
a p-excessive heterocycle with six electrons distributed over five atoms. However, the
p-electron density on the heteroatoms is so great that the values for the C-atoms are
smaller than one,wherep-deficiency prevails, thereby influencing the reactivity [314].
Despite low p-electron density on the C-atoms, 1,2,5-oxadiazoles do not react at all or
onlyslowlywithnucleophiles: treatmentwithstrongbases,suchasNaOHinmethanol,
causes ring opening to form sodium salts of a-oximinonitriles 380 (Scheme 13.134).

The 1,2,5-oxadiazole ring is a stable system and annular-group tautomerism is not
favored [308]. Thus, the two theoretically possible tautomeric forms 381a and 381b for
3-hydroxyfurazans 381 can be discarded on the basis of IR and NMR data, which
show the exclusive presence of the hydroxy compound in chloroform solution
(Scheme 13.135).
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However, the formation of 2-alkyl-1,2,5-oxadiazol-3(2H)-ones 382 by alkylation
of trimethylsilyl derivatives of 3-hydroxyfurazans using triethyl orthoformate
has been reported [315]. The compounds were characterized by NMR and MS
measurements.
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N

R O

R

382

The N-oxide structure for furoxans and their benzo-derivatives was ascertained
by Wieland [316] and Werner [317]. Ring-chain tautomerism is a distinctive feature
of furoxan chemistry, as evidenced in the interconversion of 2-oxide 383 and 5-oxide
isomers 384 (Figure 13.4: see Section 13.4.2).
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Figure 13.4 Example of ring-chain tautomerism shown by the interconversion of 2-oxide 383 and
5-oxide isomers 384.
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A furazan fused to a five-membered heterocycle was first described in 1908 [318]:
annelation in 5/5-byciclic systems suggests the presence of strain energy in the
molecules, which is manifested in the difficulty to form these compounds. Desta-
bilization of the distorted aromatic oxadiazoles results not only frombond stretching,
angular distortion, and torsional effects, but also from the decreased resonance
stabilization [319].

5,7-Dimethyl-3-phenyl-furazano- and –furoxano[5,4-a]pyridinium perchlorates
(385 and 386), a new type of condensed system, have been obtained by cyclocon-
densation of aminophenylfuroxan and aminophenylfurazan with acetylacetone in
the presence of HClO4. The structure of these compounds is supported by crystal-
lographic analysis and CNDO/2 calculations [320].
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Very few partially or totally reduced 1,2,5-oxadiazole ring systems has been
reported. For instance, a Japanese patent [321] describes the synthesis of 5-(4-oxo-
2,5-diphenyl-1,2,5-oxadiazolidine-3-yl)-2,4(1H,3H)-pyrimidinedione (387), the first
representative of 1,2,5-oxadiazolidines.
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As a result of the low aromatic character of the benzofuroxan system, recent
studies have revealed that nitrobenzofuroxan acts as very versatile Diels–Alder
reagent, with the carbocyclic ring being capable of acting as a dienophile [322],
a heterodiene [322], or a carbodiene [323], depending upon the experimental
conditions. Thus, treatment of 4-nitro-6-trifluoromethylfurazan (388) and -furoxan
(389) with 1,3-cycloexadiene afforded a mixture of fused derivatives 390 and 391,
respectively (Scheme 13.136) [324].

13.4.2
Theoretical Aspects

Theoretical studies on the structure and properties of 1,2,5-oxadiazoles have been
reported. Molecular orbital calculations [325, 326] and ab initio quantummechanical
methodologies have been used to determine bond orders, total energies, ionization
potentials, and dipolemoments [327]: a goodmatch with experimental data has been
obtained.
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Dipole moments for a set of substituted 1,2,5-oxadiazoles and 1,2,5-oxadiazole
2-oxides have been measured in benzene solution [328]. The dipole moment of
furazans is orientedwith thenegative end towards the oxygen atom,while in furoxans
the data revealed a strong electron shift from the exocyclic oxygen back into the
heterocyclic system, corresponding to a mesomeric moment of approximately 3 D.
The molecule of furoxan is well characterized as electron-overcrowded, particularly
near the nitrogen atom N2.

Dipole moments of 3-amino-4R-furazans 392 have been determined experimen-
tally and also calculated by HF ab initio (STO-3G, 3-21G, 4-31G, 6-31G, 6-31G��/4-
31G, 6-31G�� levels) and semiempirical (MNDO, AM1, PM3) quantum chemical
methods; good agreement with the experimental values has been found.

N
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N

R NH2

392

R = H, NH2, OMe, N3, COOH, COOMe, NO2

For these compounds, the amino–imino tautomeric equilibrium is strongly
shifted towards the amino-form [329].

A great deal of interest has been taken in the 2-oxide and 5-oxide tautomers and
the pathway of their interconversion (393$395) has been studied in some
detail [330–335]. Structures and relative stabilities of furoxan and its open-chain
tautomers have been calculated by semiempirical and ab initio procedures. The
obtained results support a mechanism that involves the cis-1,2-dinitroethene 394
as intermediate/transition state, with an energy about 120 kJmol�1 above that of
furoxan.

N
O

N

R R1

O
NO

NOR

R1
N

O
N

R1 R

O

393 394 395

Analogously, in the benzofuroxan series, MP2 calculations afford a correct
prediction of the structure [336]: the most likely intermediate in the interconversion
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Scheme 13.136
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396$398 is anti-1,2-dinitrosobenzene (397) with an energy of 50 kJmol�1 above that
of benzofuroxan [337].
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The involvement of 1,2-nitrosoarenes as intermediates in the equilibration process
has been established by matrix isolation experiments [338–340]: photolysis (360 nm)
of benzofuran in an argon matrix at 14K generated 1,2-nitrosobenzene, which was
characterized by UV and IR spectroscopy, and subsequent thermolysis or photolysis
(320 nm) afforded benzofuroxan. The gain of resonance energy of the benzene ring
does not compensate for the energy needed to open the furoxan ring, and therefore
dinitrosobenzene is less stable than benzofuroxan.

More recently, the first experimental evidence for the formation of 2,3-dinitroso-
2-butene as a reactive intermediate, during the photolytically induced decomposi-
tion of dimethylfuroxan, has been reported by matrix isolation experiments [341a].
DFT calculations gave the geometry of the dinitrosoalkene intermediate [341b].
However, this species is photolabile and decomposes upon prolonged photolysis
time to give acetonitrile N-oxide as the final, photostable product. The two photo-
products were characterized using a combination of experimental and quantum
chemical results.

Factors influencing the equilibrium constants and rates have been reviewed [312,
342–344].

The equilibrium between annelated furoxans and the isomeric dinitroso deriva-
tives, for example, 399 and 400, has been investigated theoretically by semiempirical
(AM1, PM3) and ab initio methods (MP2/6-31G�//6-31G� and RHF/6-31G�) [345].
For both 1,2- and 2,3-dinitrosonaphthalene, several conformers exist asminimumon
the potential energy surface (PES). Calculations of the energy difference between
[1,2,5]thiadiazolo[3,4-e]benzoxadiazole-1-oxide and -3-oxide are in agreement with
experimental data.

N

O
N

O

N

N

O

O

399 400

Ab initio and density functional theoretical studies on non-classical furoxans
401 (Y¼O, NH, S for each of the following combinations of X,Z: CH,CH; N,
CH; CH,N; and N,N) and their open-chain anti-1,2-dinitroso isomers 402 have
been reported [346, 347]. Calculations indicate that, in all cases considered,
the non-classical furoxans are less stable than the corresponding open-chain
isomers.
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Density functional theory (DFT) has been used to calculate the heats of formation
and IR active vibrational frequencies of 12 furazan compounds [348]. The assign-
ments of the vibrational motions to IR frequencies based on a force field analysis are
given to clarify the complex coupling in these molecules.

Dissociation enthalpies of terminal (N�O) bonds, DH�(N�O), in furoxans have
been calculated fromenthalpy of formation, enthalpy of sublimation, and enthalpy of
vaporization data [349].

13.4.3
Structural Aspects

13.4.3.1 X-Ray Diffraction
X-Ray crystal structures have been reported for various furazans and furoxans [350–
357]. Bond lengths and bond angles have been determined also by double resonance
modulation microwave spectroscopy [358]. For furazans, crystallographic data show
that the heterocyclic ring is essentially planar and possess C2v symmetry. p-Bond
orders are 0.72–0.82 for N2�C3 and C4�N5 and 0.45–0.52 for C3�C4. These data
suggest a significantp-delocalization; in contrast, O1�N2andN5�O1 are essentially
single bonds (0.32–0.36). Benzofurazans show similar parameters and a significant
double bond fixation in the fused ring. The molecular geometry for the parent
furazan (403) has been determined by microwave spectroscopy.

0.3563

N

403

O
N

0.8116

0.5051

As for furazans, the oxadiazole ring of furoxans in nearly planar, but the exocyclic
oxygen at N2 causes substantial distortion, lying 0.05A

�
out of the plane of the

heterocycle. Structures are characterized by the long O1�N2 and the short N2�Oexo

bonds.Moreover, C3�C4 is shortened, with about 30%double bond-character, while
N2�C3 is longer than C4�N5.

Benzofuroxans show a similar pattern of bond lengths and angles. In the homo-
cyclic ring, significant bond localization is supported by the consideration that
the C4�C5 and C6�C7 bonds are notably shorter than C5�C6, in accord with their
chemical reactivity (Section 13.4.5.2).

Crystal structure simulations for three azoxyfurazans, 4,20-dichloroazoxyfurazan
(404), 4,40-di(morpholin-1-yl)azoxyfurazan (405), and 4,40-dimethylazoxyfurazan
(406), have been carried out to test the reliability of standard force fields for

1134j 13 Oxadiazoles



furazan derivatives [359]. The predicted crystal structures were compared with
experimental ones, obtained by X-ray diffraction analysis.
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X-Ray data for 1,2,5-oxadiazoles fused with a pyrazine ring have been reported
recently [360].

Azofurazan annulated macrocycles 407 [361], 408 [362], and 409 [363] have
been synthesized and then characterized by X-ray analysis. Lactam 407 show two
furazan rings linked to a piperazine system, while compound 408 contains four
furazan rings bonded by three azo bonds. The ion binding ability of compounds 409
was tested.
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13.4.3.2 NMR Spectroscopy
Monosubstituted furazans [364], phenylfurazans [365], azoxyfurazans [366], and
hydroxy-, alkoxy- and phenoxyfurazans [367] have been studied by NMR spectros-
copy. Additive schemes have been developed and spectrum–structure correlations
have been elucidated.

Table 13.7 reports the NMR chemical shifts (1H, 13C, 15N, and 17O) of furazan,
furoxan, and their benzo derivatives [308].

Table 13.7 NMR chemical shifts (ppm) for furazan, furoxan, and their benzo-fused derivatives.

Compound H3 H4 C3 C4 N2 N5 O1 O-exo

Furazan 7.92 7.92 142.0 142.0 �33.5 �33.5 450
Benzofurazan 148.6 148.6 �35.6 �35.6
Furoxan 7.44 8.50 105.2 146.8 �15.4 3.9 507.5 364.0
Benzofuroxan 113.7 152.2 �25.3 �13.2
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In the furoxan series the lower chemical shifts of 3Hwith respect to 4His due to the
contribution of the resonance structure 411.
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The strong shielding effect exerted by the exocyclic oxygen atom on the
proton attached to the substituents at C3 allows one to identify the individual
isomer 383a and 384a. Thus, for dimethylfuroxan the resonance at 2.16 ppm is
assigned to the 3-methyl group, while that at 2.38 ppm is attributable to the 4-
methyl group [368].

In benzofuroxans, the shielding effect exerted by N-oxide shifts all the signals to
higher frequency with respect to the resonances of benzofurazans, with the larger
shifts for H7 and for H4 [369]. The ring-chain tautomerism of these compounds
has been investigated by 1H spectroscopy. The unsymmetrical ABCD pattern for the
homocyclic protons, observed at �40 �C, changes into a symmetrical A2B2 pattern
at 100 �C, as a consequence of the rapid equilibration of two isomers. In this way,
exchange rates over a range of temperatures have been determined and thermody-
namic activation parameters calculated [344, 370].

Themost noteworthy feature of the 13C NMR of furoxans is the large difference in
chemical shifts of C3 and C4 resonances. As indicated in Table 13.7, C3 resonates
at higher field in the range 100–123 ppm, while C4 appears in the range
140–160 ppm [368].

The chemical shifts and multiplicities of the two bridgehead carbons in the 13C
NMRspectra of various fused furoxans have been shown to provide a generalmethod
for assigning structure in these tautomeric systems [371].

3-Methylfurazans with nitrogen-containing substituents at C4 have been studied
by 1H, 13C and 14N NMR spectroscopy [372]. A correlation between the chemical
shifts in 13C NMR spectra of these furazans andmonosubstituted benzenes with the
same substituents was found. The influence of substituents on the NMR data of
the iodofurazans was also investigated [356].

The 15N NMR spectra of furazan and benzofurazan show a single absorption
at �33 and �36 ppm, respectively [373, 374]. The nitrogen atoms of furoxans show
distinct signals in the range �26 to �15 for N2 and �14 to þ 4 ppm for N5: these
resonances coalesce on heating.

The parent furoxan 373 has 17O signals at 508 and 364 ppm, while furazan 372
shows a single resonance at 450 ppm [368]. The corresponding figures for dimethyl-
furoxan are 460 and 350 ppm, and 475 ppm for dimethylfurazan.

13.4.3.3 UV and IR Spectroscopy
Characteristic peaks in the IR spectra of furazans are in the ranges 1525–1560
(C¼N�O), 1430–1385 (N�O), and 1040–1030 and 890–880 cm�1 (heterocyclic ring).
Furoxans show diagnostic peaks at 1625–1600 (CN�O), 1490–1400 (C¼NO2),

1136j 13 Oxadiazoles



1360–1280 (N�O), and at 1190–1150, 1030–1000, and 890–875 cm�1 (heterocyclic
ring) [308].

MINDO/3 and DFTmethods have been used to calculate the IR active vibrational
frequencies of a series of furazans and furoxans [348]. The 1605 cm�1 band of
furoxans was assigned to vibrations of the C:N(O) group [326].

Monocyclic furazans and dimethylfurazan have UV absorption bands at
228–241 nm, while typical monocyclic furoxans have a peak at 255–295 nm [375].

The extended conjugation in the chromophores of benzofurazans and benzofur-
oxans results in a shifts of lmax to longer wavelengths (350–410 nm); the energy band
can extend into the visible region when conjugating groups are present.

7-Halo-4-nitro and 7-halodinitrobenzofurazans are used as analytical reagents
because of the strong visible fluorescence in the region 525–545 nm when reacted
with ethers, thioethers, and amines. Thus, tyrosil, cysteinyl, and amino residues of
proteins can be labeled by this method, providing access to a fluorescence probe
incorporating various biological interesting molecules [376].

13.4.3.4 Mass Spectrometry
Two general patterns of fragmentation under ionizing radiation characterize mono-
cyclic furazans (Scheme 13.137) [377–379]. Initial ring opening by cleavage of the
weakO1�N2bond is followed by theC3�C4bond breaking to yield nitrile andnitrile
oxide (path a) or by the extrusion of NO (path b) [380]. Peaks attributable to RCþ are
usually observed.

Unlike many aromatic N-oxides, the (M–16)þ peak for furoxans is weak.
The electron impact mass spectra of furazans are characterized by diagnostic
peaks at (M–30)þ and (M–60)þ , due to the loss of NO and two NO molecules,
respectively [381, 382]. The fragmentation pattern (Scheme 13.138) is consistent with
the O1�N2 bond cleavage, with formation of the 1,2-dinitrosoethene tautomers,
followed by sequential expulsion of NO. In parallel with this route, cleavage of the
C3�C4 bond yields two nitrile oxides.
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R R
a

CR N OH

b

+ R N

R2C2N +  NO

C N OR

Scheme 13.137
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The acetylenic structure of the (M–60)þ fragment has been ascertained by mass-
analyzed ion kinetic energy (MIKE) spectroscopy performed under high energy
collision activation conditions [312].

The direct generation of NO by a chemical decomposition suggests that the
furoxan derivatives can be utilized as a potential NO-related biological probe [381].

13.4.4
Synthesis

Many synthetic routes for the 1,2,5-oxadiazole system have been reported [308, 313,
384]. Different approaches are generally required for furazans, furoxans, and their
benzo-fused analogues; thus separate subsections are devoted to the synthesis of
furazans, benzofurazans, furoxans and benzofuroxans.

Moreover, according to the stability of the heterocyclic ring, numerous different
1,2,5-oxadiazole derivatives can be generally prepared by exploiting appropriate
interconversion reactions of the substituents present on the five-membered ring.

13.4.4.1 Furazans
Three main routes have been designed for the synthesis of furazans: (i) dehydrative
cyclization of 1,2-dioximes, (ii) deoxygenation of furoxans, and (iii) Boulton–Ka-
tritzky rearrangement of other five-membered heterocycles.

13.4.4.1.1 Dehydration of 1,2-Dioximes Furazan 372 was first prepared in 1964, by
melting glyoxime with succinic anhydride, in 57% yield [306]. Cyclization of
substituted glyoximes 413 is the most exploited methodology for the preparation
of mono and disubstituted furazans 414 (Scheme 13.139). The starting material is
prepared by reaction of 1,2-diketones 411 with hydroxylamine or by a-nitrosation of
an alkylketone 412, followed by oximation of the resulting 1,2-dione monooxime. A
�one-pot�method for the synthesis of 3-alkyl-, 3-aryl-, and 3-hetaryl-4-aminofurazans

C N OArN
O

N

Ar Ar

O
N

O
N

Ar Ar

O
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b

N N

Ar Ar

O O

- 2NO

d

c
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Scheme 13.138
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from b-alkyl- or b-aryl and b-hetaryl-b-oxoesters has been reported recently. The
multistep process involves hydrolysis of the ester, nitrosation at the activated
methylene group, and treatment of the resulting intermediate with an alkaline
solution of hydroxylamine in the presence of urea [385].

Dioximes can be also obtained by reduction of furoxans with H2, Pd/C (Sec-
tion 13.4.4.1.2); thus, when furoxan is easily available, as for example by dimerization
of nitrile oxides, the sequence furoxan–glyoxime–furazan constitutes a valuable
synthetic route for symmetrically substituted furoxans. Various dehydrating agents
have been utilized, such as acetic, succinic and phthalic anhydrides, sulfuric acid,
dicyclohexylcarbodiimide, phosphorus oxychloride, thionyl chloride, and alcoholic
sodium hydroxide. According to this procedure, diaminofurazan 418 has been
prepared in good yield by reaction of glyoxime 416 and hydroxylamine hydrochloride
in aqueous NaOH, to give diaminoglyoxime 417, followed by KOH mediated
dehydration; the reaction has also been performed under microwave irradiation in
2/3min (Scheme 13.140) [386].

For monosubstituted furazans such as 419, basic dehydrating agents must be
avoided becausemost of these compounds are isomerized to oximes ofa-ketonitriles
(421), according to a sequence that originates from the initial deprotonation at C4
(Scheme 13.141) [387]. Thus, in these cases, dehydration of the corresponding
dioximes is conveniently carried out with anhydrides or sulfuric acid.

In contrast, disubstituted furazans are stable to both heat and chemical conditions
and a wide range of dehydrating agents may be used. An unusual synthesis of
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3-(trifluoromethyl)-4-aryl-furazans 423 has been reported (Scheme 13.142) [388]:
dehydration of 1,1,1-trifluoromethyl-2,3-dione dioximes 422, which failed with
traditional methods, was performed on heating with silica gel.

A modification of the dehydration route involves the conversion of dioximes into
diesters, followed by cyclization via distillation or reaction with alkali [389].

The 1,2-dioxime dehydration route is compatible with various substituents, such
as alkyl, aryl, acyl, carboxyl, and amino groups. For example, 3-amino-4-phenylfur-
azans (425) are obtained by treatment of aroyl cyanides 424 with hydroxylamine and
sodium acetate in ethanol or on heating N-hydroxy-2-(hydroxyimino)-2-arylacetimi-
damide (426) with sodium acetate in ethanol (Scheme 13.143) [390].

13.4.4.1.2 Deoxygenation of Furoxans Furazans have been prepared by deoxygen-
ation of furoxans: this method is suitable for furazans bearing different substituents,
including alkyl, aryl, acyl, cyano, and amino groups (Scheme 13.144) [313].

NOHHONHCOCOH

NH2OH

N
O

N

H2N NH2

NH2OH

KOH

NaOH

76%

NOHHON

H2N NH2

416415

417418

Scheme 13.140

Ph NOH

NN
O

N

Ph H
H2O

OH

N
O

N

Ph

420419 421

Scheme 13.141

N
O

N

F3C Ar

423

NOHHON

F3C Ar SiO2

422

40-86%

Tolyl=Ph,Ar

Scheme 13.142

1140j 13 Oxadiazoles



However, the reduction process must be carried out so as to avoid over-reduction
and, when the furazan is thermally labile, the formation of by-products by ring
opening [319]. The most employed reducing agents include trialkyl and triarylpho-
sphites and phosphines, phosphorous pentachloride, stannous chloride in acetic
acid, and Zn/acetic acid [308].

The strategy is particularly efficient for the preparation of symmetrical substituted
furazans because the corresponding furoxans can be easily prepared via dimerization
of the appropriate nitrile oxides (Section 13.4.4.3.3) (Scheme 13.145) [391].

Vinyl azides 431 [392] and vicinal vinyl nitro compounds 433 [393] can be
precursors for furoxans and furazans (Scheme 13.146).

13.4.4.1.3 Boulton–Katritzky Rearrangement Oximes of several classes of 3-acyl-1-
oxa-2-azoles, such as isoxazoles, 1,2,4-oxadiazoles, and furazans, undergo a thermal
or base-catalyzed rearrangement, known as the Boulton–Katritzky rearrangement,
which leads to furazans (Scheme 13.147) [342, 394].

The reaction can proceed by a concerted electrocyclic mechanism or, in the
presence of a base catalyst, in two steps by an intramolecular nucleophilic attack
at the nitrogen atom of an anionic intermediate.
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The process is geometry dependent, with the (Z)-isomer rapidly transformed,
while the (E)-isomer is generally stable. Thus, the reaction of 3-benzoyl-5-phenyl-
1,2,4-oxadiazole (434) with hydroxylamine gives rise to a mixture of (E)-oxime 436
and the amido furazan 437 resulting from the rearrangement of (Z)-oxime 435 [395].
The addition of an acid improves the process because of the (Z/E)-oxime isomer-
ization. Under this condition the amidofurazan 437 is hydrolyzed to its amino
derivative 438 (Scheme 13.148).
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The transformation is not limited to oximes, but also amidoximes and hydrazi-
doximes can give the corresponding furazans [396].

The (Z)-oximes of 3-acylisoxazoles 439, which are more stable than the corre-
sponding 1,2,4-oxadiazole derivatives, do not react in the absence of a catalyst;
the rearrangement occurs easily by treatment with bases, leading to the formation of
b-ketoalkylfurazans 440 (Scheme 13.149).

Various oximes of 3-acyl-substituted furazans 441 undergo the Boulton–Katritzky
rearrangement in which the oxadiazole ring is converted into a new furazan system
bearing a hydroxyiminoalkyl group (442). Several examples of N-mono and N,N-
dialkylfurazanamidoximes (443$444) have been reported (Scheme 13.150) [397].

13.4.4.2 Benzofurazans
The main synthetic routes towards benzofurazans are (i) dehydration of o-quinone
dioximes, (ii) cyclization of o-substituted nitrosoarenes, and (iii) deoxygenation of
benzofuroxans (Scheme 13.151) [307, 309].

N
O

N

R1 CHR2COR3

N
O R3

N

R1

HO

439 440

R2

OH

36-92%

R1 =H,Me,Et,Ph

R2 =H,Me,Ph,Bn

R3 =Me,Et,i-Pr

Scheme 13.149

N
O

N

H

N
O

N

N

H

OH

R HON

R

N
O

N

N

R

OH

H2N

N
O

N

RHON

NH2

443 444

441 442

R = PhNH,PhCH2 NH, (CH2)5N, (CH2)4ON, Me2 N, Me2CHN, (Me2CH)2N

56-67%

Scheme 13.150

13.4 1,2,5-Oxadiazoles j1143



Various dehydration conditions have been used for the conversion of o-quinone
dioximes into benzofurazans, such as the use of acetic anhydride, thionyl chloride,
sulfuric acid, phenyl isocyanate, and alcoholic sodium hydroxide. Alternatively,
cyclization may be performed by thermolysis of the corresponding dioxime diace-
tates or dibenzoates [307, 309].

The utility of this synthetic approach is linked to the availability of dioxime
precursors, which can be prepared by direct oximation of o-quinones or by reduction
of the corresponding benzofuroxans, although, in many cases, direct deoxygenation
to benzofurazans can occur.

Adifferentwidely exploitedmethodology starts from o-nitrosoarenes: thus, o-azido
nitroso derivatives, generated from the o-chloro analogues, can be converted
into benzofurazans by thermolysis [398], while 1-amino-2-nitrosoarene affords
benzofurazan by oxidation with ferricyanide or hypochlorite, probably through an
o-quinone dioxime intermediate. In addition, o-nitrosophenol heated in the presence
of hydroxylamine leads to furazans, presumably by oximation of the tautomeric
o-quinone monooxime followed by dehydration. Other approaches involve the
thermolysis of o-nitroanilines or the reaction of o-dinitroarenes with sodium
azide [399] and the reduction of o-dinitroarenes with sodium borohydride [400]
(Scheme 13.152)

Moreover, benzofurazans can be synthesized by a Boulton–Katritzky rearrange-
ment. Thus, 7-nitrosobenzofuroxan or 3-methyl-7-nitroso-2,1-benzisoxazole afford
the corresponding 4-nitrofurazan [398] and 4-acetylbenzofurazan [401]. Analogously,
benzofurazan is formed by photolysis of 2,1,3-benzoselenadiazole N-oxide. This
reaction involves cleavage of the heterocyclic ring, and the extrusion of selenium
followed by ring closure [402].

13.4.4.3 Furoxans
The most exploited routes towards furoxans are (i) oxidative cyclization of 1,2-
dioximes, (ii) dehydration ofa-nitroketoximes, and (iii) dimerization of nitrile oxides
for symmetrically substituted furoxans. For unsymmetrical furoxans, the possibility
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of formation of mixtures of 2- and 5-isomers must be taken in account in choosing
a suitable synthetic strategy. No data have been reported on the direct oxidation
of furazans to furoxans.

13.4.4.3.1 Oxidation of 1,2-Dioximes The oxidation of 1,2 dioximes offers a valuable
route towards furoxans. The oxidation can be carried out with t-butyl hypochlo-
rite [403], lead tetraacetate, dinitrogen tetroxide [404], as well as electrochemical-
ly [405]; as an example, Scheme 13.153 shows the oxidation reaction of compound
449 to give 450.

Ring closure can be achieved stereospecifically, thus allowing the formation
of individual isomers for asymmetrically substituted furoxans 452 and 453
(Scheme 13.154) [406].

This approach is suitable for the synthesis of 1,2,5-oxadiazoles fused to other
carbocyclic and heterocyclic systems [406, 407].

13.4.4.3.2 Dehydration of a-Nitro Ketoximes Mono- and polycyclic furoxans have
been easily prepared by a synthetic strategy that starts from readily available
alkenes [312, 408]. The process involves the initial reaction of alkenes 454 with
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nitrogen trioxide to afford the 1-nitro-2-nitroso adduct 455 – isolable as its nitroso
dimer 456 – followed by thermal isomerization to the a-nitro ketoxime tautomer 457
and dehydration with cyclization to the target furoxans 458 (Scheme 13.155).

Mixtures of isomers are obtained from non-symmetrical alkenes. The reaction
route is compatible with a wide range of functional groups; thus, nitrosation
of crotonoaldehyde leads to 4-formyl-3-methylfuroxan [409] and similarly the reac-
tion of b-nitrostyrene with N2O3 yields the corresponding aryl nitrofuroxan
isomers [410].

Recently, it has been reported that AgNO2/TSMCl reacts with olefins to afford
nitrosonitrates that are then converted into furoxans in high yields (Scheme 13.156):
the reaction of AgNO2 with TSMCl furnishes first hexamethylsiloxane and N2O3
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which in situ add to alkenes 459 [411]. The approach has been applied to the synthesis
of furoxans fused to penta-, six-, seven-, and eight-membered saturated rings 460.

A general method for the synthesis of furoxans 463 starts from a-nitro-
ketones 461 [412], by conversion into the corresponding a-nitro-ketoximes 462,
followed by treatment with acidic alumina (Scheme 13.157) [413].

A number of symmetrically substituted dibenzoylfuroxans have been synthesized
bytreatingsubstitutedacetophenoneswithnitricaciddistilledfromsulfuricacid [414].

13.4.4.3.3 Dimerization of Nitrile Oxides Besides their characteristic and synthet-
ically important 1,3-dipolar cycloaddition reactions, nitrile oxides undergo sponta-
neous [3 þ 2] dimerization, usually regarded as an unwanted side reaction, which
can be exploited for the preparation of furoxans (Scheme 13.158).

Two paths have been proposed for the dimerization of nitrile oxide to furoxans, but
the detailed mechanism is unknown. The most widely accepted mechanism is
a concerted 1,3-dipolar cycloaddition process, where one nitrile oxide acts as a dipole,
while the C�N multiple bond in the other nitrile oxide acts as a dipolarophile
(Scheme 13.159) [415, 416]. A (closed-shell) stepwise mechanism, often called the
carbene mechanism, has also been proposed [417–419]. In the carbene mechanism,
the first step corresponds to bond formation between the carbenoid carbons of
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two nitrile oxides to form a dinitroso alkene intermediate, which then cyclizes to the
furoxan.

DFT calculations performed at the B3LYP/6-31G� level on the dimerization
reactions of acetonitrile oxide and para-chlorobenzonitrile oxide to form furoxans
indicate that these processes are stepwise, involving dinitrosoalkene intermediates
that have considerable diradical character (stepwise diradical mechanism in
Scheme 13.159). The rate-determining steps for these two reactions correspond to
C�C bond formation [420].

The retardation of dimerization in aromatic nitrile oxides arises from the inter-
ruption of conjugation between the nitrile oxide and aryl groups in the C�C bond
formation step. The reluctance of aromatic nitrile oxides to dimerize with respect
to aliphatic nitrile oxides is attributed to conjugative stabilization of the former.
The dimerization processes in solution are slower than in the gas phase, and polar
solvents retard the reaction rates.

The method is not appropriate for bicyclic furoxans; a few examples of intramo-
lecular dimerization have been reported. The bimolecular dimerization competes
with the unimolecular rearrangement to the isomeric isocyanate, with the latter
dominant at higher temperature. Therefore, the preparation of furoxans from nitrile
oxides is carried out in concentrated solution at room temperature.

Nitrile oxides are conveniently accessible frommany compounds such as oximes,
hydroximoyl halides, nitromethyl compounds, alkyl esters of a-nitroalkanoic acids,
and others.
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The most useful methods have been widely reported in reviews and specialized
books [421, 422].

13.4.4.4 Benzofuroxans
Thebenzofuroxan systemcanbe constructed by suitablemodification of the synthetic
methods used to synthesize benzofurazans. Thus, the main routes involve the
thermolysis of o-nitroaryl azides, the oxidation of o-quinone dioximes, the oxidation
of o-nitroanilines (Scheme 13.160), and the Boulton–Katritzky rearrangement.

The most exploited methodology for the synthesis of benzofuroxans and hetero-
substituted analogues is the thermolysis or photolysis of o-nitroarylazides, which can
be easily generated from the o-nitrohaloarene and sodium azide [423]. The reaction
mechanism involves the intramolecular displacement of the nitrogen by the oxygen
of the adjacent nitro group.

The method can be used to prepare various hetero-substituted analogues, such as
thieno-, imidazo-, oxadiazolo-, thiadiazolo-, pyrido-, quinilino-, pyridazino-, and
pyrimidino-derivatives. Thus, photolysis of 4-azido-5-nitrothiophene-2-carboxylic
acid ester 465 gives a mixture of thieno[2,3-c]furoxan isomers 466 and 467
(Scheme 13.161) [424].

In analogy with the formation of furoxans by oxidation of 1,2-dioximes, benzofur-
azans can be prepared by oxidation of o-quinone dioximes. The method is, however,
limited by the availability of the starting materials.
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Oxidative ring closure of o-nitroanilines constitutes a preferable and commonly
used alternative route towards benzofuroxans [425, 426]. Alkaline hypochlorite is
themost used reagent: themechanism involves an initial N-chlorination, followed by
deprotonation and loss of chloride ion (Scheme 13.162).

13.4.5
Reactivity of the Heterocyclic Ring

The parent 1,2,5-oxadiazole, with pKa about �5, is less basic than isoxazole (pKa¼
�2.97). 1,2,5-Oxadiazoles are aromatic in nature and are to be considered as
p-excessive heterocycles with relatively p-deficient C-atoms. Despite the electron
deficiency of carbon atoms, nucleophilic substitution reactions are not common;
however, when good leaving groups are present, then reactions can take place.
Generally, electrophilic substitutions at the C-atoms cannot be achieved.

13.4.5.1 Furazans and Benzofurazans

13.4.5.1.1 Reactions with Electrophiles and Oxidizing Agents The heterocyclic ring
of 1,2,5-oxadiazoles is particularly resistant to attack by electrophilic reagents; thus,
halogenation, nitration, and oxidation take place at substituent groups. Electrophilic
substitutions in benzofurazan and phenylfurazan occur on the aromatic ring,
predominantly at the 4-position and in ortho–para positions, respectively. For
example, bromination of phenylfurazan with bromine in the presence of
Ag2SO4/H2SO4 gave the p-bromophenyl derivative in 82% yield [427].

Similar results have been obtained on nitration with fuming nitric acid, which
gives 4-nitro- or 2,4-dinitro products [428, 429].

There is a single example of an electrophilic reaction at the ring carbon of furazans:
insertion of methoxymethylcarbene in the C�H bond of a furazan occurred on
thermolysis of furazans 471 with methyl diazoacetate in the presence of copper
stearate to give the corresponding methoxycarbonylmethylfurazans 472 in 9–12%
yield (Scheme 13.163) [430, 431].

For benzofurazans and benzofuroxans the most facile electrophilic substitution is
nitration, which occurs preferentially at the 4-position; a second nitro group can
sometimes be inserted at C6. Other electrophiles react less readily, with nitrosation
and diazo-coupling occurring only in the presence of activating groups. 5-Methyl-
benzofurazan reacts with bromine to give substitution at the 4-position; however,
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bromine in the presence of sun light undergoes electrophilic addition to the 4,5,6,7-
tetra-adduct rather than substitution.

Direct oxidation of furazans to furoxans has not been achieved, as can be expected
from the high ionization energy. For instance, oxidation of 3,4-dimethyl-1,2,5-
oxadiazole (473) [432] and 3-methyl-4-phenylfurazan (474) [433] with potassium
permanganate occurs at the alkyl substituents, giving rise to 1,2,5-oxadiazole-3,4-
dicarboxylic acid (475) and 4-phenylfurazan-3-carboxylic acid (476), respectively.
Under mild conditions, oxidation of fused furazan 477 afforded the dicarboxylic
acid 478 (Scheme 13.164) [434].

The heterocyclic ring is also resistant to acid attack; pKa values for protonation of
methylphenylfurazan and benzofurazan are �4.9 and �8.4, respectively.

Quaternization with dimethyl sulfate in sulfolane proceeds under forcing condi-
tions, more slowly than that of isoxazoles with iodomethane, to give the correspond-
ingN-methylfurazinium salt [435]. N-Ethyl salts of furazan and 3-phenylfurazan have
been obtained by reaction with triethyloxonium tetrafluoroborate.

The reaction of the silyloxy-furazan derivative 479with triethyl orthoformate led to
a mixture of 2-ethyl-1,2,5-oxadiazole-3(2H)-one (480) and O-ethyl compound 481
(Scheme 13.165). Compound 480 is a rare example of a tricoordinate N-substituted
1,2,5-oxadiazole [436].
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13.4.5.1.2 Reactions with Nucleophiles and Reducing Agents Furazans and benzo-
furazans are generally resistant to attack by nucleophiles. As reported in
Scheme 13.134, treatment of the parent compound and monosubstituted furazans
with strong bases, as NaOH in methanol, causes the ring opening to form sodium
salts of a-oximinonitriles. Disubstituted furazans are comparatively inert.

Furazan ring cleavage occurs also when 482 is treated with Ac2O at elevated
temperatures to produce acylated derivatives 483 [387]. Ring opening with subse-
quent recyclization has been observed by nucleophilic attack of hydroxylamine on
monosubstituted furazans 482, leading to aminofurazans 485 (Scheme 13.166) [437].

However, when a good leaving group is present, then substitution can occur. Thus,
displacement of the nitro group by a hydroxy group has been observed on heating
3-nitro-4-phenylfurazan 486with sodiumhydroxide (Scheme 13.167) [436]; displace-
ment of nitrite or phenylsulfonyl group by alkoxy nucleophiles and by ammonia [438]
has also been reported.

Similarly, the homocyclic ring of benzofurazans is susceptible to analogous
nucleophilic substitutions. Thus, halides are displaced by various nucleophiles such
as alkoxides, fenoxides, cyanide, amines, and thiolates. 4-Halogenobenzofurazans
give 4- or 5-substitued products generated fromnormal ipso or cine reactions; the cine
products are amenable to an addition–elimination mechanism (AE), while ipso
substitution can result from both AE and SNAr (Scheme 13.168) [439].

However, substitution reaction on the homocyclic ring can take place even in the
absence of a leaving group: benzofurazan has been converted into its 4-formyl
derivative by treatment with LDA in DMF.

The furazan ring is susceptible to reduction. Thus, benzofurazans give 1,2-
diaminoarenes by treatment with tin and hydrochloric acid, while catalytic reduction
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takes place at the homocyclic ring to afford tetramethylenefurazans. 1,2-Diamines
are also formed by reduction of furazans with sodium borohydride, whereas LiAlH4

causes fragmentation of the C3�C4 bond, yielding primary amines as final products.
Treatment with phosphites results in both fragmentation and deoxygenation to
nitriles. Zinc and acetic acid can lead to a selective reduction of the oxadiazolomoiety
in the presence of other heterocyclic systems: furazano[3,4-d]pyrimidines 491 and
furazano[3,4-e]pyrazines 492 have been converted into the corresponding o-amino
compounds (Scheme 13.169) [440].

4,6-Dinitrobenzofurazan, which is strongly electrophilic, undergoes facile s-com-
plexation with weak nucleophiles to form stable Meisenheimer complexes
(Section 13.4.5.3).
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13.4.5.1.3 Thermal and Photochemical Ring Cleavage Thermolysis and photolysis
of 1,2,5-oxadiazoles proceeds by cleavage of the O1�N2 and C3�C4 bonds to give
nitrile and nitrile oxides, together with products derived therefrom.

The thermal process requires temperatures above 200 �C, except for ring-strained
derivatives, where less drastic conditions are needed. Thus, diphenylfurazan decom-
poses at 250 �C to give benzonitrile, phenyl isocyanate, and 3,5-diphenyl-1,2.4-
oxadiazole, with the latter two products arising from the rearrangement and 1,3-
dipolar cycloaddition with benzonitrile of the initially formed benzonitrile oxide. In
contrast, the ring-strained acenaphthofurazan 493 fragments at 120–150 �C to
produce the transient 494, which in the presence of phenylacetylene gives 495 in
53% yield (Scheme 13.170) [441].

The kinetics of the gas-phase thermolysis of several furazans to phenyl isocyanate
and 3,5-diphenyl-1,2.4-oxadiazole have also been examined [442], and a biradical
mechanism has been proposed.

Benzofurazans, which are thermallymore stable,may be cleaved photochemically.
For example, benzofurazan 446 in benzene affords cyanoisocyanate 498 and azepine
499 (Scheme 13.171). Compound 499 probably originates from the reaction of the
solvent with the acylnitrene intermediate 497 [443].

13.4.5.2 Furoxans and Benzofuroxans

13.4.5.2.1 Reactions with Electrophiles and Oxidizing Agents As reported for fur-
azans, the furoxan nucleus shows low reactivity towards electrophiles; reactions
occur at the substituents or at the homocyclic ring of benzofuroxans [444]. Reaction
with acids is also slow: benzofuroxans have pKa values of about�8, similar to those of
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benzofurazans. Treatment of the parent furoxan 372 with concentrated H2SO4

proceeds with ring-cleavage to (hydroxyimino)acetonitrile oxide 500, followed
by dimerization to bis(hydroxyiminomethyl)furoxan 501 in nearly quantitative yield
(Scheme 13.172) [375].

Quaternization is difficult for all furoxans: benzofuroxan does not react with
triethyloxonium tetrafluoroborate.

The heterocyclic ring of furazans is also resistant to attack by oxidizing agents, with
reactions occurring preferentially at the substituents groups.However, benzofuroxan
is oxidized by persulfuric or trifluoroperacetic acid to 1,2-dinitrobenzene, while the
4,6-dinitro compound affords the 1,2,3,4-tetranitrobenzene [445].

13.4.5.2.2 Reaction with Nucleophiles and Reducing Agents The reactivity of
furoxans with nucleophiles and reducing agents is good. In fact, Grignard reagents
react with disubstituted furoxans, primarily at C3, leading to nitrile and nitronate
fragments, which, in the presence of an excess of Grignard reagent, yield the
corresponding ketones. Monosubstituted furoxans give glyoximes.

Nucleophilic substitution of substituents at C3 and C4 is an easy and valuable
pathway towards the synthesis of a wide series of derivatives. The nitro group in
particular is readily displaced by numerous nucleophiles such as amines, alkoxides,
thiols, azide, halides, and sulfonyl groups [375, 446]. In the benzofuroxans series,
nucleophilic reactions take place preferentially at the homocyclic ring; the reactivity is
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enhanced by the presence of nitro groups [447]. Numerous biologically interesting
applications of this kind of reaction have recently appeared in the literature
(Section 13.4.6).

In the absence of a good leaving group, nucleophilic attack occurs at N5 of the
oxadiazole ring: in this case, the reaction with secondary amines proceeds via
ring opening to furnish o-nitroarylhydrazines. However, a substitution reaction on
the homocyclic ring can take place even in the absence of a leaving group: with
4-nitrobenzofuroxan, carbanions of the formRSO2ClCH

� cause the displacement of
the hydrogen at C5 and at C7 [448].

All monosubstituted furoxans are quite sensitive to bases, which causes ring-
opening reactions, with the formation of nitrile oxides 503 from 4-substituted
furoxans 502 and aci-nitro compounds 505 from 3-substituted furoxans 504
(Scheme 13.173) [313].

Base attack is favored at the position adjacent to the more highly electron-
withdrawing substituent.

Ring opening with subsequent recyclization has been observed by nucleophilic
attack of hydroxylamine in aqueous KOH on 3-thien-2-yl and 4-thien-2-yl furoxans
(506, 507), leading to aminofurazans 508 (Scheme 13.174) [449].

Furoxans and benzofuroxans can be reduced by various reagents to yield furazans
a-dioximes, 1,2-diamines, and nitriles, according to the experimental conditions.
Catalytic hydrogenation usually leads to dioximes, but, under forcing conditions, ring
cleavage at C3�C4 and N1�O2 can occur. For example, tetramethylenefuroxane 509
affords cyclohexane-1,2-dione dioxime (510) by treatment with H2 and Pd/C at room
temperature, while the use of Raney nickel at 100 �C leads to 1,6-diaminohexane
(511) (Scheme 13.175).

NaBH4 behaves in a similar way, while LiAlH4 reduction is accompanied by ring
cleavage to give primary amine fragments. Benzofuroxans are reduced to o-nitroani-
line derivatives by ferrous salts [450] and to o-phenylenediamines by ammonium
sulfate–sodium borohydride [451].
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Reduction with tervalent phosphorus compounds, such as trialkyl and triaryl
phosphites and phosphines, causes deoxygenation of furoxans and benzofuroxans to
give furazans and benzofurazans, respectively, leaving the heterocycle intact.

13.4.5.2.3 Thermal and Photochemical Ring Cleavage Monocyclic furoxans under-
go by thermolysis ring cleavage at the O1�N2 and C3�C4 bonds to give two nitrile
oxides fragments, in a formal retro 1,3-dipolar cycloaddition reaction. In the
presence of a dipolarophile, the nitrile oxide can be trapped as its 1,3-dipolar
cycloadduct; otherwise, the nitrile oxide rearranges to the isomeric isocyanate
(Scheme 13.176).
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Under flash vacuum pyrolysis conditions, the nitrile oxides can be isolated [452a].
Bicyclic furoxansaffordbisnitrileoxidesanddiisocyanates.Theprocess issensitive to

the ring strain: for decamethylenefuroxan 513 a temperature above 200 �C is required,
while the trimethylene analog 512 reacts at 80–100 �C (Scheme 13.177) [452b,c].

In general, benzofuroxans are much less susceptible to decomposition.

13.4.5.3 Meisenheimer Complex Formation
4,6-Dinitro compounds 513 and 514 are strongly electrophilic and form stable
Meisenheimer complexes when treated even with weak nucleophiles under mild
conditions. In particular,514 is regarded as a super-electrophile –morepowerful than
1,3,5-trinitrobenzene. Thus, 514 reacts with methanol, enols, phenols, anilines,
thiophenes, pyrroles and indoles, and nitroalkanes to form, in the absence of base,
stable C-bonded s-adducts 516. Moreover, the electrophilic character of 515 is also
confirmed by its reaction with 1,8-bis(dimethylamino)naphthalene, the so-called
�proton sponge,� yielding carbon-linked compound 517 (Scheme 13.178) [453].

13.4.5.4 Heterocyclic Ring Rearrangements of Furoxans and Benzofuroxans
Furoxans have been extensively used as starting material for synthetic conversions
into various other heterocyclic systems, some of which show interesting biological
activity. The Boulton–Katritzky rearrangement is the most exploited reaction route,
affording an easy entry towards isoxazoles, pyrazoles, and furazans. Other conver-
sion reactions give access to isoxazolines, quinaxoline, and benzimidazoleN-oxides.
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13.4.5.5 Rearrangements of Furoxans
The Boulton–Katritzky rearrangement [342, 393] of non-condensed furoxan deriva-
tives has been reported for oximes of 4-furoxanylcarbonyl compounds [454]; in
particular, the base-catalyzed rearrangement of the (Z)-isomer of 4-benzoyl-3-
methylfuroxan oxime (518) leads to 3-(1-nitroethyl)-4-phenyl-1,2,5-oxadiazole 519
(Scheme 13.179).

Other variants of rearrangement of monocyclic furoxans have been performed
for derivatives involving different side chains: C-N-N (phenylhydrazones), N-C-N
(amidines), and N-C-S (thioureides) [455]. Thus, treatment of (Z)-isomers of
phenylhydrazones 520 with ButOK and heating yielded 1,2,3-triazoles 523, formed
with a Nef-type [456] reaction via 5-(1-nitroethyl)-1,2,3-triazole 522 intermediate
(Scheme 13.180).
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Analogously, the rearrangement of 3-aryl(alkyl)-1-(3-R-furoxan-4-yl)amidines 526
– synthesized by reaction of aminofuroxans 524with triethyl orthoformate or triethyl
orthoacetate, followed by the action of various amines on the resulting imi-
noethers 525 – afforded the 1,5-disubstituted 3-[1-nitroethyl(benzyl)]1,2,4-triazoles
527 (Scheme 13.181) [455].

5-Ethoxycarbonylamino-3-(1-nitroalkyl)-1,2,4-thiadiazole derivatives 530 have been
obtained by refluxing a mixture of aminofuroxans and ethoxycarbonyl isothiocyanate
in various solvents: the reaction proceeds through a not-isolated 4-(3-ethoxycarbo-
nylthioureido)-3-substituted-furoxan intermediate (529) (Scheme 13.182) [456].

A different kind of rearrangement has been described that proceeds through
adinitrosoethylene intermediate. In particular (Z)-isomers of 4-benzoyl or 4-acetyl-3-
methylfuroxan phenylhydrazones 520, thermally or in the presence of various bases,
give oximes of 5-acetyl-4-phenyl(methyl)-2-phenyl-2H-1,2,3-triazole 1-oxide 532
(Scheme 13.183) [457]. It has been suggested that the reaction starts with rupture
of the O1–N2 bond in the furoxan ring, which results in formation of dinitrosoethy-
lene intermediates 531, followed by the reaction of one nitroso group with the
phenylhydrazone moiety and transformation of the second nitroso group into the
oxime group.

Another example of this rearrangement is represented by the thermally induced
transformation of 3,30-disubstituted-4,40-azofuroxans 533 in an oxidizing medium
into triazole 1-oxide derivatives 536 (Scheme 13.184) [458].
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Furoxans 537 bearing a methyl group at C3 give hydroximino derivatives
of isoxazolines 538 on treatment with alkoxides or alcoholic alkali hydroxides (the
so-called isoxazoline transposition or Angeli rearrangement) (Scheme 13.185) [459].
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13.4.5.6 Rearrangements of Benzofuroxans
The Boulton–Katritzky rearrangement of benzofuroxans bearing at the 4-position
a ring-conjugated side chain has been studied in detail from both a synthetic and
mechanistic point of view [342, 370, 393, 460–465]. As a rule, rearrangements are
initiated thermally, photochemically or in the presence of bases; the first example of
acid catalysis has been published [466]. Several types of unsaturations can constitute
theX¼Ygroup, such asC¼O,N¼N,C¼N, andN¼N, so allowing the construction of
a series of new heterocyclic systems. Thus, 4-acetylbenzofuraxan 539 rearranges
spontaneously to 3-methyl-7-nitrobenzo[c]isoxazole 540, while nitroindazoles 542 are
formed from 4-formylbenzofurazan 541 and primary amines (Scheme 13.186).

Analogously, nitrosation of 5-(dimethylamino)benzofuroxan (543) affords
4-(dimethylamino)-7-nitrobenzofurazan (545) through the rearrangement of the
intermediate 4-nitroso compound 544. Similar behavior has been observed for 4-
arylazobenzofuroxans546yielding4-nitrobenzo-1,2,3-triazoles547 (Scheme13.187).

Quinoxaline-1,4-dioxides 551, 553, and 555 are readily obtained from the reaction
of benzofurazans with enamines or carbonyl compounds in the presence of ammo-
nia or amines (Beirut reaction) (Scheme 13.188) [467]. In the absence of the
a-hydrogen required for the elimination, the 2,3-dihydroquinoxaline intermedi-
ate 550 can be isolated. Enolates derived from b-diketones react in an analogous
way, affording 2-acylquinoxalines [468].

This process formally involves the insertion of a two-carbon fragment between the
N�O groups of the furoxan (Scheme 13.188). Various quinoxalines are endowed
with interesting biological activity: this feature has considerably extended the scope of
this reaction. In the same context, the reaction also gives ready access to polycyclic
compounds: for example, phenazine derivatives result from benzofuroxans and
phenolates, p-benzoquinone, or hydroquinone [312, 469].
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Benzimidazole oxides, in 25–90% yields, are also accessible from benzofuroxans.
The reaction with primary nitroalkanes leads to 2-substituted-1-hydroxybenzimida-
zole-3-oxides 556 via displacement of the NO2 group; similarly, the nitrile group of
a-cyanoacetamides is removed with formation of 2-amide derivatives 557
(R0 ¼CONR2). Secondary nitroalkyl compounds afford 2,2-disubstituted-2H-benz-
imidazole-1,3-dioxides 558.

R'
R'

R'R
N

N

N

N

O

OOH

O

556 : R' = Alkyl

557 : R' = CONR2

558

Benzimidazoles are also obtained from the reaction of benzofuroxans with
phosphorus ylides [470], nitrones [471], and diazo compounds [472].

Amechanism has been suggested that involves the nucleophilic attack at N3 of the
benzofuroxan 396 (or at one of the nitroso groups of the o-dinitroso tautomer),
followed by cleavage of the O2–N3 bond to give the di-N-oxide 561, with subsequent
cyclization to five- or six-membered ring products, according to the nature of the
nucleophile (Scheme 13.189).

13.4.5.7 Cycloaddition Reactions of Benzofuroxans
The double bonds at the 4,5- and 6,7-positions in benzofuroxans are sufficiently
localized and activated to undergo [3 þ 2] and [4 þ 2] cycloaddition reactions. Thus,
isoprene (563) gives in 80% yield the 1:1 Diels–Alder adduct 562 with 4-nitro-6-
trifluoromethansulfonylbenzofuroxan (564) (Scheme 13.190) [473].
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Similarly, alkyl diazoacetates 566 afford pyrazolo derivatives 567 by reaction with
6-nitrobenzofuroxan (565) (Scheme 13.191) [474].

Mesitonitrile oxide givesmixtures of 1 : 1 and 2 : 1 adducts [475], anddiazomethane
reacts at C5�C6 of 4-nitrobenzofuroxan to give the 5-6-cyclopropa-fused derivative
568, probably by loss of nitrogen from the initial pyrazoline cycloadduct [476].

N

O
N

O

NO2

568

13.4.5.8 Alkyl and Aryl Furazans and Furoxans
Reactions of aryl furazans and furoxans have been studied in detail. The heterocyclic
ring exerts an ortho–para-directing influencewith the predominant formation of para
products. For example, nitration or chlorosulfonation of phenylfurazan and phe-
nylfuroxan take place at the phenyl group, at the 40-position, leaving the heterocycle
intact. In benzofurazans and benzofuroxans, electrophilic attack occurs, as previ-
ously reported (Section 13.4.5.1.1), at the 4-position; a second group can be some-
times inserted at the 6-position.

Alkyl groups on the furazan or furoxan ring can undergo functional transforma-
tions that depend on the electron-withdrawing properties of the rings. Treatment of
alkylfurozans 569 with NBS in the presence of BPO or AIBN gives a-bromoalkyl
derivatives 570 (Scheme 13.192) [477]. Similar results were obtained with 3-methyl-
furoxans 571 [478].

These a-haloyl derivatives are excellent starting materials for side-chain substi-
tuted furazans and furoxans through classical nucleophilic substitution reactions.
The halogen atom is readily displaced by a wide range of oxygen, sulfur, nitrogen,
phosphorus, and carbon nucleophiles to give the corresponding products in good
yields [477–483].
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a-Metalation offers an alternative approach to functionalization of the methyl
compounds. 3,4-Dimethylfurazan readily undergoes lithiation by treatment with n-
butyllithium: the lithiated intermediate 573 reacts with electrophiles at –55�C to give
various a-functionalized alkylfurazans (Scheme 13.193) [484–486]. The electrophile
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can be an alkyl halide, a chlorosilane, a carbonyl compound, a nitrile, or an ester, an
azo compound, and chlorine.

A similar procedure using two equivalents of BuLi and two equivalents of the
electrophile offers access to a,a0-difunctionalized derivatives.

13.4.6
Furazans, Furoxans, and Benzo-Related Compounds in Medicine

Furazans, benzofurazans, and in particular furoxans and benzofuroxans are very
important bioactive compounds. Theyhave shown anti-microbial, anti-parasitic, anti-
viral; mutagenic, anticancer and immunosuppressive, anti-aggregating, and vasor-
elaxant activity. Moreover, compounds containing the furoxan or benzofuroxan
moiety inserted in a classical active principle have produced hybrid compounds
that have been used, very recently, as new anti-ulcer drugs, calcium channel
modulators, and vasodilatators. Several furoxan and furazan derivatives have been
evaluated as antibacterial (Gram-negative and Gram-positive), antiprotozoal (Trich-
omonas vaginalis and Entamoeba histolytica), and antifungal compounds. 4,7-Dicya-
nobenzofurazan (574) presents a bacteriostatic effect in Escherichia coli, due to
inactivation of 2,3-dihydroisovalerate [487]. 3-Nitro-4-phenylfuroxan (575) and its
tautomer 576 displayed anti-infective properties, but with mutagenic activity; 3-
bromo-4-phenylfuroxan (577) shows strong antimicrobial activity [488].
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CN

CN

N
O

N

Ph NO2

O N
O
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O2N Ph
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Br

575 576 577574

Furoxans and benzofuroxan 578–580 have been reported to inhibit in vitro the
growth of Trypanosoma cruzi, the etiologic agent of Trypanosomiasis americana,
the so-called Chagas� disease, and their activity is in the order 580> 579> 578.
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R = CH=NNHCONH-butyl
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R R
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O
R

578 579 580

Anti HIV-1 reverse transcriptase activity has been described for compounds 581
and 582. In particular, compound 582 has shown the best anti-viral activity with
a selectivity index (ratio of cytotoxic concentration to effective concentration) ranked
in the order of 582> 581.
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4-Nitro (583), 4-thio (585) or 4-phenoxy- (587) benzofurazans and 4-nitro- (584), 7-
thio (586) or 7-phenoxy (588) benzofuroxans present optimal drug activity as
inhibitors of RNA synthesis in sheep lymphocytes [489].
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Since the first report indicating that some nitrobenzofurazans displayed anti-
leukemic properties, numerous 7-nitro-2,1,3-benzoxadiazole derivatives have been
evaluated as anticancer agents. In particular, 7-nitro-2,1,3-benzoxadiazoles such
as 589 [R1¼ alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, etc.;
X¼O, S] have been prepared recently and used as agents able to inhibit glutathione
S-transferase (GST). These compounds are useful in the production of pharma-
ceutical drugs to be used in anticancer therapy, andmay be employed either alone or
in combination with other chemotherapeutic agents. Thus, 4-[(7-nitro-2,1,3-
benzoxadiazol-4-yl)sulfanyl]butanol 590, prepared by reacting 4-chloro-7-nitro-
2,1,3-benzoxadiazole with 4-mercapto-1-butanol in EtOH and potassium phos-
phate buffer, has shown a relevant activity against different cancer cell lines, such as
K562 human myeloid leukemia, HepG2 human hepatic carcinoma, CEM1.3
human T-lymphoblastic leukemia, and GLC-4 human small cell lung carcino-
ma [490].
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Combretafurazan (592), obtained from combretastatin A-4 (591), an antitumoral
and antitubulin agent that is active only in its cis configuration, has shown to be
a potent in vitro cytotoxic compound compared to combretastatin in neuroblastoma
cells, while maintaining a similar structure–activity relationship and pharmacody-
namic profiles [492].
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OH

OCH3H3CO

H3CO

OCH3

OH

OCH3OCH3H3CO

H3CO

Combretafurazan (592)A-4 (591)Combrestatin

Recently, another class of furazans, and in particular the furazano[3,4-b]pyrazines
593have beenprepared andused as antitumoral agents. Their activity is not limited to
sarcomas, melanomas, neuroblastomas, carcinomas (including but not limited to
lung, renal cell, ovarian, liver, bladder, and pancreatic carcinomas), and mesothe-
liomas. Moreover, specific assays, conduced for compound 594, have demonstrated
that it exhibited an IC50 of 0.00834 nM against sarcoma tumors [492].
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Some furazanobenzimidazoles 595 (R¼ aryl, haloaryl, etc.; R1, R2¼H, alkyl,
cycloalkyl, etc.; R3, R4, R5, R6¼H, alkyl, haloalkyl, cycloalkyl, etc.; X¼O, C:Y; Y¼O,
NOH, etc.) and their salts have been synthesized as apoptosis inducers for the
treatment of neoplastic and autoimmune diseases. In particular, compound 596
exhibits a strong apoptotic activity in the Hoechst 33342 nuclear staining assay [493].
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It has also been found that azabenzimidazoles 597 – in which R1 is H or C1–6 alkyl;
R2 is halo or optionally substituted Ph, heteroaryl, or carboxamide; R3 is halo, (un)
substituted C1–6 alkoxy, (un)substituted phenoxy, heteroaryloxy, or heterocyclyloxy –
are inhibitors of Rho-kinases. Rho-kinase is implicated in the phosphorylation of
myosin light chain downstream of Rho, which is thought to induce smooth muscle
contraction and stress fiber formation in non-muscle cells [494].
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Moreover, compound 598 is useful for the treatment of diseases such as hyper-
tension, heart failure, and ischemic angina [495].
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Many other furoxans and furazans have been synthesized to improve their
cytotoxic activity; their biological assays have established that the furazan analogues
are, usually, less active than the corresponding furoxans. These results indicate the
relevance of N-oxide in terms of the bio-response.

One of the most interesting pharmacological properties of furoxans and benzo-
furoxans is the nitric oxide (NO) releasing capacity. NO displays diverse potent
physiological actions. As regards the cardiovascular system, it plays a crucial role in
vascular homeostasis through several mechanisms, including vasodilation, inhibi-
tion of platelet aggregation, and modulation of platelet and leukocyte adherence. In
the central nervous system, it plays roles in learning and memory formation. In
the peripheral nervous system, it regulates several gastrointestinal, genitourinay, and
respiratory functions as neurotransmitter at the endings of nonadrenergic, non-
cholinergic nerves. NO is also potentially toxic and can induce genomic alterations.

Figure 13.5 gives some examples of these drugs.

13.5
1,3,4-Oxadiazoles

1,3,4-Oxadiazole (599) is a partially aromatic and thermally stable molecule [496].
Exocyclic-conjugated mesoionic 1,3,4-oxadiazoles (600), 1,3,4-oxadiazolium cations
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(601), and 1,3,4-oxadiazolines (602) are also stable molecules. The partially and fully
reduced systems designated as 4,5-dihydro-(D2) (603), 2,5-dihydro-(D3) (604), and
2,3,4,5-tetrahydro-1,3,4-oxadiazole (605) are also known.
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Figure 13.5 Examples of drugs that contain a furoxan moiety.
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1,3,4-Oxadiazoles are of great practical importance. Inparticular, these compounds
are used in medicine, as leprostatics, tuberculostatics, antibacteric, antiproteolytic,
and anticonvulsants. They also possess analgesic, antipyretic, antiphlogistic, bacter-
icides, insecticides, fungicidal, and several other biological activities [496]. More
recently, compounds containing the 1,3,4-oxadiazole motif have been used as HIV
integrase and angiogenesis inhibitors [497]. 1,3,4-Oxadiazoles have also been used in
agriculture, in the production of polymers, laser dyes, photographic materials, or
scintillators. Furthermore, they show a combination of interesting properties, which
makes themsuitable for thedevelopment of newelectrical and electro-optical devices.

A good number of reviews on the chemistry of the 1,3,4-oxadiazoles are present in
the literature [496]: the most recent report covers the literature up to the early part of
2007.

13.5.1
Structure

13.5.1.1 Theoretical Aspects
1,3,4 Oxadiazole is not fully aromatic; it has an aromaticity index of 50 (43 and 66
for furan and thiophene, respectively), while the bond orders for O�C, C�N, and
N�N bonds are 1.3124, 1.9062, and 1.3348, respectively.

Theoretical studies on the structure and properties of 1,3,4-oxadiazoles are numer-
ous [496]. In particular, MNDO and STO-3G ab initio methods have been used to
calculate the proton affinities; CNDO/2methods have been used to calculate the total
energies, ionization potentials, andnet atomic populations; INDO/Shas beenused to
calculate the electron distribution of ground and excited states. Diels–Alder reactions
of several 1,3,4-oxadiazoles used as dienes with alkenes have been investigated
throughmolecular orbital calculations at the B3LYP/6-31G(d)AM1 theory level [498].
MNDO-PM3 calculations have been used to calculate the geometry and electronic
structure of mesoionic 1,3,4-oxadiazolium-2-aminides 606 (R¼ 4-MeO-3-O2NC6H3,
R1¼Me, Ph; R¼ 4-Cl-3-O2NC6H3, R

1¼Me; R¼Me, R1¼Ph) and 1,3,4-oxadiazo-
lium-2-olates 607 (Ar¼ 4-Cl-3-O2NC6H3, 4-MeO-3-O2NC6H3) [499].
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2-Hydroxy, 2-amino and 2-thiol derivatives 608 are in tautomeric equilibriumwith
D2-1,3,4-oxadiazolin-5-ones, 5-imino, and 5-thiones 609, respectively. Usually, one of
the forms distinctly predominates.
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Most of 1,3,4-oxadiazoles are solids, apart from the parent compound (bp 150 �C)
and its lower alkyl derivatives, which are liquids. Some of them are soluble in water,
with a solubility that decreases with increasing molecular weight.

13.5.1.2 Structural Aspects

13.5.1.3 X-Ray Diffraction
Many papers related to the X-ray structures of 1,3,4-oxadiazoles have been
reported [500]. The oxadiazole ring has a nearly flat structure: all the atoms of the
ring lie in the same plane with very slight deviation from it.

Table 13.8 shows the reported bond lengths and bond angles for 2,5-di(4-pyridyl)-
1,3,4-oxadiazole 610 and for 2-(4-cyanophenyl)-5-(4-dimethylaminophenyl)-1,3,4-
oxadiazole 611.

In the crystal, compound 610 has an almost planar structure. All three rings of
the molecule are planar but they show a slight torsion relative to each other. The
deviation of the planes of the two pyridyl rings relative to the plane of the oxadiazole
ring is þ 3.3� for one ring and �3.4� for the other. Owing to the absence of
significant steric hindrance the torsion angle between the neighboring rings is
small and, therefore, the conjugation is not lost. Compound 611 is almost planar.
The planarity of the three single rings is nearly perfect but again the rings show a
slight torsion relative to each other. The rotation of the inter-ring bond between the
oxadiazole ring and the benzonitrile is þ 6.5� and between the oxadiazole ring and
the dimethylaniline is þ 4.2. In this molecule the two substituents are tilted in the
same direction relative to the oxadiazole ring whereas in 610 the rings are tilted in
opposite directions [501].

Table 13.8 Molecular dimensions for 2,5-di(4-pyridyl)-1,3,4-oxadiazole (610) and for 2-(4-
cyanophenyl)-5-(4-dimethylaminophenyl)-1,3,4-oxadiazole (611).

N

O

N

610

Me2N CN

N

O

N

N N

611

Compound 610 Compound 611

Bond lengths (nm) Bond angles (�) Bond lengths (nm) Bond angles (�)

O1�C2 0.1365 O1�C2�N3 112.50 O1�C2 0.1368 O1�C2�N3 111.36
C2�N3 0.1292 C2�N3�N4 106.20 C2�N3 0.1292 C2�N3�N4 106.97
N3�N4 0.1409 N3�N4�C5 106.20 N3�N4 0.1407 N3�N4�C5 106.13
N4�C5 0.1292 N4�C5�O1 112.50 N4�C5 0.1294 N4�C5�O1 112.36
C5�O1 0.1365 C2�O1�C5 102.50 C5�O1 0.1374 C2�O1�C5 102.82
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13.5.1.4 NMR Spectroscopy
The 1H NMRspectrumof the parent compound 599 shows the relative signals at 8.73
d inCDCl3 [496, 502]. The presence of alkyl groups or phenyl groupmoves the proton
of the ring upfield, while the shift is downfield for 2-alkylthio derivatives (Table 13.9).

The 13C chemical shift for C2, or C5 carbon in the parent compound is centered at
152.1 ppm. The presence of a phenyl ring at C2moves this carbon to 164 d [502]. The
chemical shifts of the ring carbon atoms in several 1,3,4-oxadiazoles have also been
reported. For example, in 2-methoxy-1,3,4-oxadiazole the C2 signal is shifted
downfield in comparison with signal of C5. The same trend has been observed
for the oxadiazolinone and oxadiazolinethione derivatives where the C2 carbons
resonate downfield with respect to C5 carbon [496]. Recently the structure of some
2,5-disubstitued-1,3,4-oxadiazoles has been elucidated by spectral (IR, 1H NMR, 13C
NMR) analysis. The 13C NMR analysis revealed that the presence of alkyl groups
attached to C2 and C5 of the ring induced a downfield shift of both carbons by at least
about 20–22 ppm in comparison with the relative signal present in 599 [503].

The 15N and 17O data of different 1,3,4-oxadiazoles have also beenused to elucidate
their structures. In particular, the 17O resonances registered for the 1,3,4-oxadiazo-
lium-2-olate have demonstrated that the value centered at 181 ppm, relative to
exocyclic oxygen, is that expected for an enolate form instead of that for a carbonylic
function [496].

13.5.1.5 UV and IR Spectroscopy
The electronic spectrum of the 1,3,4-oxadiazole system is equivalent to that of
benzene and the maxima are only slightly hypsochromically shifted. Substituted
2,5-diaryl- derivatives show strong fluorescence in solution on stimulation by UV or
b-irradiation, and some of them are electroluminescent with irradiation of blue
light [504]. The electronic effects of conjugated rings on 1,3,4-oxadiazoles are
maintained and the absorption and emission spectra of these compounds have
been extensively studied and reported [499, 505].

The IR absorption spectra for 1,3,4-oxadiazoles show bands at 1640–1560 (nCN),
1030–1020 (nCO), and 970 cm�1 [496, 503, 506]. These bands occur at longer

Table 13.9 Proton NMR data (ppm) for ring hydrogens of 1,3,4-oxadiazoles.

NN

O
RH

R Solvent d

H CDCl3 8.73
Me CDCl3 8.53
Et CDCl3 8.48
PhCH2 CDCl3 8.26
Ph CDCl3 8.50
MeS d6-DMSO 9.42
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wavelengths in the spectra of 2,5-dialkyl-1,3,4-oxadiazoles and at shorter values in 5-
thione derivatives [496]. A band in the range 1785–1740 cm�1 is reported for C¼O
absorption in the case of oxazolidin-5-ones [496].

13.5.1.6 Mass Spectrometry
The electron impact mass spectra of most 1,3,4-oxadiazoles exhibit a very intense
signal for the molecular ion [496, 503, 506]. Moreover, the predominant fragment is
represented by R-C¼Oþ .. In the case of 2-substituted 1,3,4-oxadiazoles, diagnostic
fragments derive from loss of CO and HCO. Loss of HNCO is fundamental in the
spectrum of 2-amino-5-phenyl-1,3,4-oxadiazole. Oxazolidin-5-ones easily lose CO2 to
give the corresponding ions of general formula R-C¼N¼NHþ .

A study regarding the electron-spray ionization mass spectra of 2,5-diaryl and 2-
arylamino-5-aryl-1,3,4-oxadiazoles together with their complexes with copper cations
has been reported [507]. In this latter case, loss of NH3 and HNCO was observed. In
some protonated 2,5-diaryl derivatives an unusual elimination of HNCO was also
detected [508].

13.5.2
Synthesis of 1,3,4-Oxadiazoles

The common synthetic routes to these compounds involve:

1) cyclization of diacylhydrazines with various anhydrous reagents such as
BF3�OEt2 [503], thionyl chloride [509], phosphorous pentoxide [510], phospho-
rous oxychloride [511], triflic anhydride [512], triphenylphosphine [513], poly-
phosphoric acid [514], and sulfuric acid [515];

2) cyclization of acylhydrazones [516], semicarbazones, and thiosemicarbazides;
3) ring transformations [517].

13.5.2.1 Cyclization of Diacylhydrazines
The first synthesis of this ring, reported by Robert Stolle, exploits a condensation
reaction of N,N0-diacid hydrazides 612 under vigorous conditions to produce in
variable yields 2,5-diaryl(alkyl)-1,3,4-oxadiazoles 613 (Scheme 13.194) [518].

Useful as agricultural fungicide, Boesch has reported the synthesis of 2-cyanoox-
adiazole 617 by cyclocondensation of ethyl 2-(2-benzoylhydrazinyl)-2-oxoacetate
614 with P2O5 followed by NH3 treatment and dehydration with POCl3
(Scheme 13.195) [519].
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Scheme 13.194
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Using hot polyphosphoric acid (PPA) 5-substituted [1,3,4]oxadiazol-2-yl com-
pounds 619 have been obtained in good yield (75–95%) (Scheme 13.196).

The 2-(oxadiazolyl)imidazo[1,2-a]pyrimidines (619) thus obtained are a class of
compounds that bind to benzodiazepine receptors with moderate to weak affinity,
and yet display antianxiety properties of similar potency to chlordiazepoxide in
animalmodels, while demonstrating reduced or negligiblemyorelaxant effects [514].

A polymer-supported Burgess reagent under microwave conditions has been
efficaciously used for the cyclodehydration of 1,2-diacylhydrazines 620 to provide
1,3,4-oxadiazoles 621 in excellent yields (Scheme 13.197) [520].

A convenient, one-pot procedure has been reported byMashraqui and coworkers
for the synthesis of various 2,5-disubstituted-1,3,4-oxadiazoles 625 by condensing
mono-aryl hydrazides 622 with acid chlorides 623 in HMPA solvent under
microwave heating (involving as intermediates diaroylhydrazines 624)
(Scheme 13.198) [521].

The yields are good to excellent; the process is rapid and does not need any added
acid catalyst or dehydrating reagent.

N
H

O
H
N O

CO2Et

P2O5

95%

NN

OPh CO2Et

NH3

97%

NN

OPh CO2Et

NN

OPh CN

POCl3

94%

614
615

616617

Scheme 13.195

N

N NR4

R3

R2

O

HN NH

O

R5 PPA

N

N NR
4

R3

R2

O

NN

R5

R1 R1

R1 H, Br, Cl= R2 Me=

R3 CHallyl,Et,Pr,= 3CH=CH

R4 OMe= R5 Et,Pr,CFMe,H,= 3,Ph

120°C,60min

618 619

75-95%

Scheme 13.196

1176j 13 Oxadiazoles



13.5.2.2 Cyclization of Acylhydrazones, Semicarbazones, and Thiosemicarbazides
Mono and disubstituted 1,3,4-oxadiazoles 629 have been prepared by oxidation of
acylhydrazones 628 prepared in situ by the condensation of aryl carboxylic acid
hydrazides 626with orthoesters 627 (Scheme 13.199). In two examples, the 1-acyl-2-
ethoxymethylenehydrazine 628 intermediate was isolated [522]. This reaction has
been used to prepare the parent 1,3,4-oxadiazole (599) [523].

The above reaction has been revised recently by Varma et al., who have used
a green protocol to synthesize 1,3,4-oxadiazoles 629 [502]. In particular, various
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hydrazides 626 have been reacted with triethyl orthoalkanates or triethyl orthobenzo-
ate (627), in the presence of Nafion NR50, under microwave irradiations and in the
absence of any solvents to afford the desired 1,3,4-oxadiazoles 629 in good yields
(68–90%) (Scheme 13.200).

Owing to the selective absorption of catalyst, the reaction rate is strongly accel-
erated (10min).Moreover, NafionNR50 is easy to handle because it involves a simple
addition of Nafion beads in a reaction vessel, which can be physically removed by
forceps after completion of the reaction.
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Electrolytic oxidation of ketone N-acylhydrazones 630 and aldehyde N-acylhydra-
zones 631 in methanolic sodium acetate affords, through their intramolecular
cyclization, the corresponding 2-methoxy-D3-1,3,4-oxadiazolines 632 and oxadia-
zoles 633, respectively (Scheme 13.201) [524].

The formation of heterocycles 632 and 633 has been rationalized according to
a three-step process. The first step involves the formation of a cationic intermediate
generated from 630 or 631 by the loss of two electrons and one proton. In the second
step, a 1,3,4-oxazolidinyl carbocation (634) is formed by an intramolecular cyclization
promoted by the oxygen of the carbonyl group; and the third step consists of attack
by methanol followed by expulsion of a hydrogen in the case of compound 630 or
hydrogen extrusion in the case of 631 (Scheme 13.202).

Another method of oxidation of N-acylhydrazones 635 and 636 involves a hyper-
valent iodine reagent. Thus,Dai et al. have reported the synthesis of 2-alkoxy-D3-1,3,4-
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oxadiazolines 639 and 2,5-disubstitued-1,3,4-oxadiazoles 641 in good to excellent
yield by means of phenyl-iodine(III) diacetate (Scheme 13.203). The yields in 1,3,4-
oxadiazoles was improved by the use of 2mmol of NaOAc [525].

Scheme 13.204 explains the formation of these compounds.
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More recently, starting from 1-aroyl-2-arylidene hydrazines 644, a microwave
assisted synthesis of 2,5-disubstituted 1,3,4-oxadiazoles 645 has been reported using
as oxidizing agent potassium permanganate supported bymontmorillonite K10. The
reaction was more efficient when acetone/H2O (20 : 5) was used as solvent, and
occurs in only 10min, with a yield in the range 59–100%. Interestingly, the starting
hydrazines 644 have been prepared in good yields under microwave irradiation,
mixing in ethanol 6mmol of acid hydrazide 642, 6mmol of aldehyde 643, and three
drops of phosphoric acid (Scheme 13.205) [526].

Semicarbazones have also been used for the synthesis of 2-amino-1,3,4-oxadia-
zoles, through their cyclization performed with a mixture of sodium acetate,
bromine, and glacial acetic acid. In fact, this procedure was used recently to prepare
some Schiff bases of 2-amino-5-aryl-1,3,4-oxadiazoles (649a–t) that posses antibac-
terial activities. In particular, semicarbazones 646 have been reacted with a mixture
of sodium acetate, bromine, and glacial acetic acid, and transformed into the
corresponding 2-amino-5-aryl-1,3,4-oxadiazoles 647 that in turn have been con-
densed with aldehydes 648 to give the expected 1,3,4-oxadiazole derivatives 649a–t
(Scheme 13.206). The antibacterial properties of the compounds were investigated
against Proteus mirabilis, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus
aureus. The most active compounds were 649c,649f,649m, and 649q with a MIC in
the range 62–68 mgml�1. Antifungal activity against Aspergillus niger and Candida
albicanswere also found for compounds 649g,h,i,m. The correspondingMICs are in
the range 52–60mgml�1. The biocidal activities of these compounds were attributed
to the toxophoric C¼N linkage [527].

Themixture of sodium acetate, bromine, and glacial acetic acid has also been used
to prepare several antibacterial 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes 651 from the
corresponding diacylhydrazones 650 (Scheme 13.207) [528].

In particular, compounds 651c–e show a good antibacterial activity against
Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli,
with a MIC of 6 mg ml�1.

Another cyclizationmethod towards the synthesis of 1,3,4-oxadiazoles involves the
cyclodesulfurization of thiosemicarbazides 652 using either dicyclohexylcarbodii-
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mide (DCC), or a mixture of I2/NaOH. By this procedure 2-amino-substituted-1,3,4-
oxadiazoles 653, having anti-inflammatory activity, have been synthesized
(Scheme 13.208) [529]. The anti-inflammatory activity was investigated by deter-
mining the inhibitory effect of the oxadiazole derivatives 653a–p on histamine-
induced edema in rat abdomen. Compounds 653a,653c,653e,653j, and 653n proved
to be more potent anti-inflammatory agents at 200mg kg�1 p.o. than Ipobrufen, the
standard reference drug.

2-Amino-5-aryl-1,3,4-oxadiazoles 656 have also been prepared, in good yield, by
cyclodesulfurization of thiosemicarbazides 654 using 1,3-dibromo-5,5-dimethylhy-
dantoin (655) as primary oxidant in the presence of potassium iodide
(Scheme 13.209) [530].
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13.5.2.3 Ring Transformations
Thermal decomposition of N-acyl-tetrazoles 657 is a common way to obtain 1,3,4-
oxadiazoles 659 [496]. This reaction has been easily explained by the loss of nitrogen,
formation of the corresponding nitrilimines 658, and an intramolecular 1,5-cyclo-
addition (Scheme 13.210).
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The mechanism of the process was demonstrated by labeling with 15N the atoms
N1 and N4 in 5-phenyltetrazole. Half of the 15N was found in the 2,5-diphenyl-1-3-4-
oxadiazole, obtained by the breakdown of the N-benzoyl-5-phenyltetrazole. There-
fore, either the atoms N1 and N2 or N3 and N4 were eliminated as N2 [531].
Scheme 13.211 shows that the thermolysis ofN-aroyl-5-phenyltetrazoles 660 affords
oxadiazoles 661 [532].

(5-Nonyl-1,3,4-oxadiazol-2-yl)benzothiazine dioxide 664, a compound that shows
anti-inflammatory properties by virtue of its inhibition of arachinodate 5-lipoxygen-
ase [533], has been prepared starting from tetrazol-5-yl derivative 662, which
undergoes a Huisgen rearrangement on refluxing with decanoic anhydride 663 in
toluene, followed by saponification (Scheme 13.212).

R

N

NN

N
O

NN

R

657

O

R

∆
N– 2

658 659

N

O

N

R R R

Scheme 13.210

N

N

N
N

Ph

O Ar

∆

91-98%

NN

OPh Ar

2-Cl-CPh,=Ar 6H4 2-Br-C; 6H4 4-NO; 2-C6H4 4-Me-C; 6H4

660

661

Scheme 13.211

S
N

Me
O O

OH

N
H

N

NN

Me(H2C)8 O (CH2)8Me

O O

refluxPhMe,

NaOH/MeOH

75%

S
N

Me
O O

OH

O
C

NN
(CH2)8Me

662 664

663

Scheme 13.212

1184j 13 Oxadiazoles



By exploiting the thermal decomposition of alkoxycarbonyl tetrazoles, the 4-[5-
(dipyrido[3,2-a:20,30-c]phenain-11-yl)-1,3,4-oxadiazol-2-yl]-N,N-diphenylaniline 668
has been prepared. Thus, the dipyrido[3,2-a,20,30-c]phenazine 8-carboxyl chloride
665 in dry pyridine was refluxed for 72 h with triphenylamine tetrazole 666 to
afford 668 via the corresponding alkoxycarbonyl tetrazole intermediate 667, in 60%
yield (Scheme 13.213) [534].

The above compound, which contains a hole-transporting triphenylamine and an
electron-transporting 1,3,4-oxadiazole unit, is an efficient light-emitting material. In
particular, the absorption spectrum of 668 is extended into the visible region and
shows a typical CT band around 416nm and a broad p–p� transition band around
347 nm. This is the result of the extended conjugation of the phenanthroline moiety.
The emissionmaximum of 668 is at 635 nm (red) with lex at 416 nm, and a quantum
yield of 40%. Moreover, preliminary studies performed on this compound showed
that it can be used as anorganic light emitting diode (OLED).

Microwave methodology has also been used to prepare various 3-(1,3,4-oxadiazol-
2-yl)pyridines 671 in good to excellent yields, by reaction of 3-(5-tetrazolyl)pyridines
669 with different acid anhydrides (670) (Scheme 13.214) [535].

1,3,4-Oxadiazoles can also be obtained by photo-isomerization of 1,2,4-oxadia-
zoles. Irradiation of 5-alkyl-3-amino-1,2,4-oxadiazoles 672 at 254 nm in methanol
and in presence of Et3N, even if in moderate yields, leads to 2-amino-5-alkyl-1,3,4-
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oxadiazoles 675. A small amount of the ring-degenerate isomers 3-alkyl-5-amino-
1,2,4-oxadiazoles 678 (Scheme 13.215) was also obtained [536].

The formation of 675 has been explained according to the ring contraction–ring
expansion (RCRE) route, while 678 originates via a competing internal cyclization
(IC)–isomerization mechanism, with an anionic species (673) as a common
precursor (Scheme 13.216).

By a similar approach, 2-amino-5-alkylfluorinated-1,3,4-oxadiazoles 680 have been
prepared utilizing the photochemical interconversion of 3-N-alkylamino-5-per-
fluoalkyl-1,2,4-oxadiazoles 679 in the presence of triethylamine. A moderate yield
of 5-amino-3-alkyl-1,2,4-oxadiazoles 681 was also obtained, as a rearrangement
product (Scheme 13.217) [537].

In this context, the same authors have reported that 1,2,5-oxadiazoles containing
an acetylamino moiety are able to photochemically interconvert into 1,3,4-oxadia-
zoles. Thus, irradiation of 2,2,2-trifluoro-N-(4-phenyl-1,2,5-oxadiazol-3-yl)acetamide
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682, inmethanol in the presence ofmethylamine, produces, via 3-N-methylamino-5-
trifluoromethyl-1,2,4-oxadiazole (683), a mixture of 2-N-methylamino-5-trifluoro-
methyl-1,3,4-oxadiazole (684) and 1-methyl-3-N-methylamino-5-trifluoro-methyl-
1,2,4-triazole (685) in 32% and 15% yield respectively (Scheme 13.218) [538].

The study of organic transformations within constrained media is a research
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first intrazeolite-photoinduced rearrangement of 1,2,4-oxadiazoles leading to 1,3,4-
oxadiazoles has been reported. Irradiation of a perfluorohexane slurry of 3,5-
diphenyl-1,2,4-oxadiazole (686) in zeolite (NaY) at 254 nm for 24 h furnished 2,5-
diphenyl-1,3,4-oxadiazole (689) in 60% yield together with N-benzoyl-N0-phenylurea
(691) (4%) and unreacted starting compound (35%). The formation of 689 and 691 is
unknown in solution (Scheme 13.219) [539].

In fact, a photochemical study performed on 686 in MeOH afforded product 692.
This dramatic difference of photo-behavior is explainable through a common
intermediate (687), which in the zeolite cage leads to compounds 689 and 691, via
intermediates 688 and 690, respectively, while 687 in methanol undergoes a nucle-
ophilic addition of the solvent, giving rise to 692 (Scheme 13.220).
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It was found recently that a thermal rearrangement promoted by base is also
effective in the formation of 1,3,4-oxadiazoles 698 starting from 3-acylamino-1,2,4-
oxadiazoles 693 (Scheme 13.221) [540].

The reaction consists of a one-atom side-chain rearrangement that is base
activated, occurs at higher temperature, and irreversibly leads to the corresponding
2-acylamino-1,3,4-oxadiazoles.

The reaction mechanism has been studied in depth by computational methods,
using the hybrid DFT B3LYP method and the 6-31 þ þG(d,p) basis set. Following
these computational studies, the proposed mechanism is that reported in
Scheme 13.222, where the route involvingmigration–nucleophilic attack–cyclization
(MNAC) is the activated route, while the ring contraction–ring expansion route
(RCRE) is ruled out.
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13.5.2.4 Synthesis of Mesoionic 1,3,4-Oxadiazoles (600), and 1,3,4-Oxadiazolium
Cations (601)
The simplest way to prepare mesoionic 1,3,4-oxadiazoles 600 is by the thermal
cyclization of 1-carbonyl-substituted-1-substituted hydrazine hydrochloride and
phosgene [541]. Thus, the 4,5-dihydro-3-methyl-5-oxo-2-phenyl-1,3,4-oxadiazolium
inner salt 701 has been synthesized from 1-benzoyl-1-methylhydrazine hydrochlo-
ride (699) and phosgene (700) (Scheme 13.223) [541].

In the same way, 5-(dimethylamino)-4-methylisosydnone 705 has been prepared,
via the aminoisocyanate 704 intermediate, by heating at 70 �C the 2,4,4-trimethylse-
micarbazide 702 with trichloromethyl chloroformate (703) (Scheme 13.224) [542].

1,3,4-Oxadiazolo[3,2-a]pyridylium-2-aminides 708 are available in 75–91%yield by
reaction, in refluxing toluene, of 1,3,4-oxadiazolo[3,2-a]pyridylium-2-olate 706 with
N-aryliminotriphenyl-phosphoranes 707 (Scheme 13.225) [543].
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1,3,4-Oxadiazolium cations 601 are easily obtained by treatment of 1,3,4-oxadia-
zoles with several alkylating agents to give in about 100% yield the corresponding
salts. A recent example is the synthesis of 2,5-diaryl-3-trimethylsilylmethyl-1,3,4-
oxadiazolium trifluoromethanesulfonates (711) [544]. These compounds have been
prepared in 99–100% yield by mixing a solution of 2,5-diaryl-1,3,4-oxadiazoles 709
with trimethylsilylmethyl trifluoromethanesulfonate 710 in dry CH2Cl2 at 50 �C
under reflux condenser for 24 h (Scheme 13.226).

Another method involves the cyclization reaction of N-substituted diacylhydra-
zides with a mixture of HClO4–Ac2O. Thus, cyclization of RCONR1NHAc 712
with HClO4–Ac2O gave 47–98% yields of 1,3,4-oxadiazolium salts 713
(Scheme 13.227) [545].

13.5.2.5 Synthesis of Oxadiazolinones, Oxadiazolinethiones, and
Oxadiazolimines (602)
1,3,4-Oxadiazolin5-ones are, usually, synthesized by reaction of substituted acid
hydrazide with phosgene or by thermal cyclization of acylcarbazates.
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5-tert-Butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazolin-2-one – a very
active herbicide, that goes under the commercial name of Oxadiazon (716, R¼
CMe3), commonly used in rice production for controlling weeds and increasing seed
yield in soya beans, containing the oxadiazolinones ring – has been prepared by
reaction of 1-trimethylacetyl-2-(2,4-dichloro-5-isopropoxyphenyl)hydrazide 714 with
phosgene (715) in toluene at 100–110 �C (Scheme 13.228) [546].

Similarly, 5-substituted-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazolin-2-
ones have been prepared (R¼MeO, EtO, n-PrO, BuO, sec-BuO, iso-BuO).

Condensation of ethyl 2-(2-chlorophenyl)hydrazine-carboxylate 717 with phos-
gene has furnished 5-ethoxy-3-(2-chlorophenyl)-1,3,4-oxadiazolin-2-one 718, which
is active orally against gastrointestinal nematodes of domestic animals and man
(Scheme 13.229) [547].

Cyclization of acylcarbazates has been utilized fruitfully for the synthesis of 2-(2,3-
dihydro-2-oxo-1,3,4-oxadiazol-5yl)benzoxazoles, a class of compounds that are potent
inhibitors of anaphylactically induced histamine release from rat peritoneal mast
cells and are orally active as inhibitors of IgE-mediated passive cutaneous anaphylaxis
in the rat [548]. The 2-(2,3-dihydro-2-oxo-1,3,4-oxadiazol-5-yl)benzoxazole 722a
(R¼H), chosen as an example, was synthesized by heating ethyl 3-(2-benzoxazo-
lyl)hydrazine-carboxylate (721) in Dowtherm at 230–240 �C for 1 h. Intermediate 721
was prepared by treating 3-chloro-1,4-benzoxazin-2-one 719with ethyl carbazate 720
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in dioxane and triethylamine at room temperature for 4 h. In a similar manner,
compounds 722b–g have been prepared (Scheme 13.230).

5-Imino-2-substituted D2-1,3,4-oxadiazolines 725, as hydrochloride salts, which
are able to produce a profound flaccid paralysis in rats, have been prepared by
hydrochloric reaction of 2-amino-5-aryl-1,3,4-oxadiazoles 724, in DMF/H2O or in
ethanol–ether as solvents. These latter compoundshave been synthesized by reaction
of 1-acyl-3-thiosemicarbazide 723 with Pb3O4 (Scheme 13.231) [549].

Diphenylnitrilimine 728, prepared from 2,5-diphenyltetrazole (726) or by triethy-
lamine treatment of diphenylchlorohydrazone 727, adds to C¼O and C¼N double
bond of aryl isocyanate to give 2,4-diphenyl-1,3,4-oxadiazol-5-phenylimino 729,
and 1,3-diphenyl-4-aryl-1,2,4-triazolin-5-ones (730) in a 2 : 1 ratio respectively
(Scheme 13.232) [550].
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5-Hydroxy-2-methyl-6-phenyl-7H-[1,3,4]oxadiazolo[3,2-a]pyrimidin-7-one (733)
has been obtained in 79% yield via a solvent-free microwave cyclocondensation
reaction using di(2,4,6-trichlorophenyl) 2-phenylmalonate (732) and 2-methyl-5-
amino-1,3,4-oxadiazole (731) in a 1 : 2 ratio under heating at 250 �C for 15min
(Scheme 13.233) [551].

The synthetic procedure based on the ring closure of substituted acid hydrazide
734 with carbon disulfide leads to 5-aryl-2,3-dihydro-1,3,4-oxadiazole-2-thiones 735
in excellent yield (Scheme 13.234).

The obtained compounds have been conveniently transformed into 3,5-disubsti-
tuted-2,3-dihydro-1,3,4-oxadiazole-2-thiones 738 in 72–92% yield, by reaction with
dapsone (736) and aromatic aldehydes 737 in methanolic solution. Compound
738a has been shown to be very active against Mycobacterium tuberculosis H37Rv
and isoniazid (INH) resistant M. tuberculosis with MIC of 0.1 and 1.10mM respec-
tively [552].
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Acyclic C-nucleoside 5-(1,2-dihydroxyethyl)-3H-[1,3,4]oxadiazole-2-thione 742,
containing an 1,3,4-oxadiazolinethione ring, as mimic of ribose unit, has been
synthesized starting from (�)-2,2-dimethyl-[1,3]dioxolan-4-carboxylic acid methyl
ester 739 via reaction with hydrazine to give the corresponding hydrazide 740,
followed by CS2 treatment and subsequent deacetonation with Amberlyst 15
(Scheme 13.235) [553].

The synthesis of this optical active compound has been performed by the same
common route using as chiral source the D-mannitol. Furthermore, the use of
D-xylose 743, via (tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)-methanol 744, leads

R1

O

N
H

NH2

CS2 /KOH
N

O

N

Ph

R1

S

SO

O

NH2

NH2

R2CHO

72-92%

S

O

O

HN NH

N

R
2

N

R2

O

N

N

O

R1

S

S

R1

R1 4-NOPh,= 2-C6H4 PhNHPh,, β-C10H7-O-CH2,
α-C10H7-O-CH2 PhOCH, 2, PhCH2

R2 2-furylPh,=

70-90%

734
735

736

737

738

Scheme 13.234

13.5 1,3,4-Oxadiazoles j1195



to 5-(1,2,3,4-tetrahydroxybutyl)-3H-[1,3,4]oxadiazole-2-thione 745 in enantiomeri-
cally pure form, in 8.5% total yield (Scheme 13.236).

13.5.2.6 Synthesis of (D2) (603), (D3) (604), and 2,3,4,5-Tetrahydro-1,3,4-
Oxadiazoles (605)
TheD2-1,3,4-oxadiazoline 751, which inhibits cell proliferation and binds to tubulin,
has been synthesized, as reported in Scheme 13.237, according to a process that
involves as the key reaction the cyclization of acylhydrazone 749 with acetic
anhydride [554]. The synthesis starts from the 4-azido-3-methylbenzoic acid (746),
which was reacted with tert-butylcarbazate in the presence of 1-[3-(dimethylamino)
propyl]-3-ethylcarbodiimide hydrochloride (EDCI) and a small amount of 4-(N,N,-
dimethylamino)pyridine as base, to give, after trifluoroacetic acid (TFA) treatment,
98% of 4-azido-3-methylbenzoylhydrazide (747). This compound was condensed
with 3,4,5-trimethoxybenzaldehyde (748) to give in 67% yield the corresponding
acylhydrazone 749, which was then cyclized to 2-(4-azido-3-methlphenyl)-4-acetyl-5-
(3,4,5-trimethoxyphenyl)-D2-1-3-4-oxadiazoline (750). Compound 750was converted
into the target compound 751 by reduction of the azido group with a suspension of
SnCl2, thiophenol, and triethyl amine, in 80% yield (total overall yield 32%).
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The method has been exploited to prepare various 2-[4-(N,N-dimethylaminophe-
nyl]-4-substituted-(3,4,5-trimethoxyphenyl)-D2-1-3-4-oxadiazolines 753, which pres-
ent interesting antitumoral activity (Scheme 13.238)[555].
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C,N-Diphenyl nitrilimine 728 reacts, by 1,3-dipolar cycloaddition, with aldehydes
754 to produce in 50–75% yield 5-aryl-substituted-2,4-diphenyl-1,3,4-oxadiazolines
(755) (Scheme 13.239) [555, 556].

N-Substituted 2,3-dihydrooxadiazoles have been prepared recently by intramolec-
ular cyclization of protected amino-aldehydes (1,5-dipolar cycloaddition) [557]. Thus,
theN,N-dibenzylated aldehyde 756 after heating at reflux for 72 h, in toluene,withN1-
acetyl-N2-methylhydrazine 758, for 16 h, gave rise to the 2,3- dihydro-1,3,4-oxadiazole
760a (7%), through a cyclization involving the hydrazine N-acetyl group of the not-
isolable intermediate 759 (Scheme 13.240). 2-Benzyloxypropanal 757 gave the
analogous product 760b (11%).

Ylidine-N-phenylhydrazine-carbothioamides 762 react, in glacial acetic acid at
reflux temperature, with 2,3-diphenylcyclopropenone (761) by way of an initial
[2 þ 3] cycloaddition to give 763, which undergoes a cyclization process with
extrusion of H2S to afford the pyrrolo[2,1-b]-1,3,4-oxadiazoles 764a–e in 60–77%
yield (Scheme 13.241) [558].

D3-1,3,4-Oxadiazolines (604) can be easily prepared by oxidation of acylhydrazones
(see Schemes 13.201 and 13.203) [524, 525]. Thus, the oxidation of methoxycarbonyl
hydrazone of acetone (766) with lead tetraacetate (LTA) furnishes the 2-acetoxy-2-
methoxy-5,5-dimethy-D3-1,3,4-oxadiazoline (767) in 60–72% yield (Scheme 13.242).
This reaction route was further developed, transforming 767 into various D3-1,3,4-
oxadiazolines 768 and 769 by reaction with alcohols or phenols. Notably, these
compounds have been used as a carbene source, because they fragment quite cleanly
in solution at about 100 �C to give as by-products acetone and N2 [559].
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2,3,4,5-Tetrahydro1,3,4-oxadiazoles are obtained by reaction of 1,2-disubstituted
hydrazines with aldehydes. Zwanesburg et al. have reported the synthesis of a series
of 2,3,4,5-tetraalkyl-1-3-4-oxadiazolidines (772) by reaction of 1,2-dimethylhydrazine
(771) with aliphatic aldehydes 770. Thus, the appropriate aldehyde (2 equivalents) in
50ml of dry ether and a few grams ofMgSO4 treated drop-wise during 15min, below
5 �C, with one equivalent of aldehyde gave after 1 h the corresponding 1,3,4
oxadiazolines in 60–75% yield (Scheme 13.243) [560].

N PhNO

Ph Ph

+ Ph

H
N

H
N

N R

S

AcOH

4-8 h

N

Ph

Ph

O

R H

H

SN

H

Ph

H

N

O

R

Ph

H

HS

PhHN

–H2S
N

Ph

N

O

R

Ph

PhHN

4-Cl-CPh;2-Thienyl,=R 6H4 4-OMe-C, 6H4 4-OH-C, 6H4

60-77%

761 762

763

764765

Scheme 13.241

N

O

N

OAcMeN
H
N

CO2Me

(AcOH)LTA

60-72%

Me OMe
ROH

ArOH

N

O

N

OArMe

Me OMe

N

O

N

ORMe

Me OMe

61-68%

67-94%

766

767 768

769

R Me Et Pr i-Pr Bu t-Bu CH2CF3 But-
3ynyl 

Pent-
4ynyl 

Ar Ph 4-CN-
C6H4

4-OMe-
C6H4

–– –– –– –– –– –– 

Scheme 13.242

13.5 1,3,4-Oxadiazoles j1199



In a similar way Zinner and Kliwing have prepared other 1,3,4-oxadiazolines (775)
using different hydrazines (774) (Scheme 13.244) [561].

3,4-Diaryl substituted 1,3,4-oxadiazolidines 777 have been synthesized in mod-
erate to good yields (16–54%) by TiO2-photocatalyzed reaction of azobenzenes 776
in methanol through a uranium glass filter (lex> 320 nm). The reaction probably
involves a photoreduction of azobenzenes to 1,2-diarylhydrazine, an oxidation of
methanol to formaldehyde, and the subsequent cyclization to 1,3,4-oxadiazolidines
(Scheme 13.245) [562].

Tricyclic fused-1,3,4-oxadiazole systems that display in vitro fungitoxicity compa-
rable to that of fungicide DithaneM45 at 1000 ppm concentration against Aspergillus
niger andFusariumoxysporumhave beenobtained starting from2-aryl-3-thioureido-4-
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thiazolidinones 778. These compounds were treated with a mixture of KI/I2 under
basic conditions to afford bicyclic compounds containing the D2-1,3,4-oxadiazoline
core (779) that were then converted into the target compounds by reaction with
formaldehyde and various a-amino acids 780 (Scheme 13.246) [563].

Another versatile method for the synthesis of 1,3,4-oxadiazolidines (605) is
the 1,3-dipolar cycloaddition of azomethinimines to carbonyl compounds. In
particular, thermal decomposition of 8,8a,16,16a-tetrahydro-8,16-diphenyl-
[1,2,4,5]tetrazino[6,1-a:3,4-a0]diisoquinoline (782) at 50–80 �C gave the 3,4-dihy-
droisoquinolineazomethinimine 783 that in presence of various carbonyl com-
pounds (784) gave rise to substituted 1,3,4-oxadiazolidines 785 (79–100% yield)
(Scheme 13.247) [564].

The obtained compounds, at high temperature, are thermolabile and decompose
to azomethinimines and carbonyl compounds. This is recognizable by a color change
to reddish-brown.Moreover, the azomethinimines thus obtained can be trappedwith
a wide range of dipolarophiles [565].

Hydrazide 786 (R ¼ Me) and semicarbazides 787 (R ¼ NHAr) have been used for
the synthesis of azomethine imines 789 that, in situ, react with methyl glyoxylate
hemiacetal 788 to give the corresponding 1,3,4-oxadiazolidines 790 in good yields
(60–70%) (Scheme 13.248) [566].

Similarly, the cyclic hydrazine 791 reacts with ethyl glyoxylate (792) in the presence
of MgBr2�Et2O in THF at 65 �C to give in 71% yield the bicyclic 1,3,4-oxadiazolidine
794 with a diastereomeric ratio of 46/38/16, via the azomethinimine intermedi-
ate 793 (Scheme 13.249) [567].
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13.5.3
Reactivity

The reactivity of the 1,3,4-oxadiazole system is expressed in a series of different
chemical transformations that can be amenable to (i) ring cleavage reactions, (ii)
reactions due to the reactivity of heterocycle ring, and (iii) reactions of substituents.

13.5.3.1 Ring Cleavage Reactions
Ring-opening reactions of 1,3,4-oxadiazoles can be achieved by the action of
nucleophilic reagents; in some cases the ring opening occurs by thermolysis
or photolysis.

2,5-Dialkyl-1,3,4-oxadiazoles are cleaved by water in basic or acid conditions to
produce diacylhydrazines that suffer further hydrolysis under vigorous conditions
to give carboxylic acids and hydrazine (Scheme 13.250).

This ring cleavage is dependent on the solubility. In fact, no hydrolysis was
observed for 2,5-diphenyl-1,3,4-oxadiazole, which has a solubility in water of
0.03% [568].

The presence of an electron-withdrawing group at C2 and C5 of the ring increases
the reactivity towards nucleophiles. Thus, 2,5-bis(perfluoroalkyl)-1,3,4-oxadiazoles
797a–c are very sensitive to nucleophilic attack. They react with ammonia to give the
corresponding 1-(perfluoroalkylimidoyl)-2-(perfluoroacyl)hydrazines 798a–c (R¼
H). The reaction occurs by attack of nucleophiles on the electron-deficient oxadiazole
ring carbon to afford the 798a–c. The reaction with the more nucleophilic methyl-
amine provides 1,2-bis(N-alkyl)perfluoroalkylimidoyl)hydrazines 799a–c via the
hydrazine intermediates 798a–c (R¼Me) (Scheme 13.251) [569].

Interestingly, thermal dehydration or deamination of these hydrazine deriva-
tives 798 and 799 produces the corresponding 4-substituted-3,5-bis(perfluor-
oalkyl)-4H-1,2,4-triazoles 800a–c or 801a–c in 88–94% yield (Scheme 13.251).
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In a similar fashion 3,5-bis(trifluoromethyl)-1,3,4-oxadiazole 802 reacts with
hydrazine in methanol at �42 �C to afford the N2-(a-hydrazonotrifluoromethyl)-
N1-(trifluoroacetyl)hydrazine 803, which under heating is converted into the 4-ami-
no-3,5-bis(trifluoromethyl)-4H-1,2,4-triazole (804) (85%). Dihydrotetrazine 805 in
36% yield is, instead, obtained if the reaction is performed in ethanol at 0 �C
(Scheme 13.252) [570].

2-Aryloxadiazolinethiones 806 also react with hydrazines, giving rise to triazoline
thione derivatives 807 (Scheme 13.253) [571].
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The ring-opening reaction promoted by hydrazine has been used by El-masry et al.
to prepare, starting from 5-[2-(2-methylbenzimidazol-1-yl)ethyl-[1,3,4]-oxadiazole-2
(3H)thione (808), 1-[(1-amino-2-mercapto-1,3,4-triazol-5-yl)ethyl]-2-methylbenzimi-
dazole 809, a biologically active compound, which possesses a moderate activity
against Bacillus cereus (Scheme 13.254) [572].

The reaction of 802 with primary alkyl amines 810 in methanol at�42 �C leads to
complexes 811 whose structure has been elucidated by X-ray crystal analysis. These
complexes can be conveniently transformed into 4-substituted-3,5-bis(trifluoro-
methyl)-4H-1,2,4-triazoles 812 by heating in methanol. The reaction of 802 with
aromatic amines 813, performed at reflux, provides directly the triazole derivatives
814 in moderate to good yields (Scheme 13.255) [573].

1,3,4-Oxadiazol-2-ones 815 reactwithwater to form1,5-diacylcarbohydrazides 819.
The pathway of this reaction appears to be the hydrolytic ring opening to form the
hydrazide 818, via either an acylhydrazinoformic acid 816 or the acyl hydrazono-
formic acid 817, followed by loss of carbon dioxide to produce 818, which, in turn,
attacks the remaining oxadiazolone 815 to form the observed product 819
(Scheme 13.256) [574].

Oxadiazolones 815 also react with hydrazine and amines to give semicarbazides
820 and carbohydrazides 821, respectively (Scheme 13.257) [575].

This reaction is quite general and similar to the above reported reactions. The
reaction with NaOMe promotes the formation of 822 (Scheme 13.258) [575].

3-Substituted 5-trifluoromethyl-1,3,4-oxadiazolones 823a–d are attacked by N and
S-nucleophiles to give, as initial products, compounds deriving from the ring-
opening reaction. In some cases, ring-enlargement products are formed. The

N

O

H
N

S

Ar

RNHNH2 N

N

H
N

S

Ar
NHR

65-85%

4-MeO-CPh,=Ar 6H4 4-NO, 2-C6H4 4-Pyridyl, MePh,H,=R

806
807

Scheme 13.253

N

N

Me

O
NH

N

S

NH2NH2

EtOH, reflux

85%

N

N

Me

N
N

N

HS

H2N

808
809

Scheme 13.254

13.5 1,3,4-Oxadiazoles j1205



reaction of 3-iodomethyl-5-trifluoromethyl-1,3,4-oxadiazol-2-(3H)-one (823d) with
thiols (827) produces 830 through a Grob-type fragmentation (Scheme 13.259) [576].

2-Methyl-6-phenylimidazo[2,1-b]oxadiazole 831, a cyclic oxadiazolimine, is cleaved
with concentrated HCl or an 8% solution of KOH to give 832 and then 833 in
quantitative yield. The reaction of 831 with 48% HBr gives 834 in 40% yield. In
addition, 833 has been transformed into 834 by reaction with HBr
(Scheme 13.260) [577].
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2,5-Diphenyl-1,3,4-oxadiazole 835 is cleaved under photolytic conditions in the
presence of alcohols to yield benzonitrile imine 837 and benzoic acid esters 838 in
moderate yields [578]. These compounds are produced by an initial nucleophilic
attack of alcohols on the C¼N bond of the oxadiazole ring, followed by cyclo-
elimination. Moreover, as expected, the benzonitrile imine 837 undergoes a 1,3-
dipolar cycloaddition with the unreacted 1,3,4-oxadiazole 835 to furnish the bicyclo-
adduct 839. This compound is then transformed into benzamide (841) and 3,5-
diphenyl-1,2,4-triazole (842), via 4-benzamido-3,5-diphenyl-1,2,4-triazole (840) pro-
duced by ring opening of 839 and concurrent hydrogen shift (Scheme 13.261).
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In the case of 2-phenyl-1,3,4-oxadiazole (843), the regioselective addition of
methoxy group at C2 of 1,3,4-oxadiazole ring affords, as the only detectable com-
pound, 1-(a-methoxybenzylidene)-2-formylhydrazine 845 in 7% yield, produced by
an initial nucleophilic attack of methanol followed by a ring opening reaction
(Scheme 13.262).

Thione 846 forms a stable salt with p-toluidine (847), which gives rise to ring-open
product 848 on heating (Scheme 13.263) [579].

Alkylhydrazine and arylhydrazines 850 react with 1,3,4-oxadiazolium bro-
mides 849 to produce 2-methyl or 2-phenyl-4-acylamino-3-imino-6-aryl-2,3,4,5-
tetrahydro-1,2,4-triazines 852. These compounds are probably obtained via inter-
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mediate 851, which rearranges to 852 through a ring opening reaction followed by a
ring closure (Scheme 13.264) [580].

1,3,4-Oxadiazolium salts 853 react with ethyl cyanoacetate (854) in the presence of
triethylamine to yield 1,5-substituted 3-aminopyrazole-4-carboxylic esters 857. An
open chain intermediate 855was isolated and the reaction involves an initial attack at
C2 of the oxadiazole ring (Scheme 13.265) [581].

Isosydnone 858 undergoes a ring-opening reaction by treatment with sodium
hydroxide followed by addition of an ethanol–hydrogen chloride mixture to give 1-
benzoyl-1-methylhydrazine hydrochloride (859) (Scheme 13.266) [541].
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13.5.3.2 Oxidative and Reductive Processes
1,3,4-Oxadiazoles are very stable to strong oxidizing and reducing agents. However,
some oxidations or reductions involving atoms linked to the heterocycle ring have
been performed. Thus, recently, sulfonyl derivatives 863, with antifungal activity,
containing trimethoxyphenyl substituted 1,3,4-oxadiazoles have been synthesized, in
67–94% yield, by hydrogen peroxide oxidation, catalyzed by ammonium molybdate
in ionic liquid ([bmim]PF6), of substituted 1,3,4-oxadiazole sulfide 860 [582]. In
particular, 1,3,4-oxadiazole sulfides 862 have been prepared, in 31–93% yield, by
thioetherification, catalyzed by indium tribromide, of 5-(3,4,5-trimethoxyphenyl)-
1,3,4-oxadiazole-2-thiol (860) with organic halides (Scheme 13.267).

The oxidation of sulfides 864withm-CPBA furnishes, in contrast, the correspond-
ing sulfoxides 865 (Scheme 13.268) [583].

It has also been reported that the oxidation of 866 with hydrogen peroxide and no
catalyst affords oxadiazolone derivatives 867 (Scheme 13.269) [584].

Oxidation of 2,5-di m- or p-tolyl-1,3,4-oxadiazoles 868 with potassium permanga-
nate/pyridine leads to the corresponding dicarboxylic acids 869 (78–94%) [585]; if the
oxidation is performed with chromium trioxide/acetic anhydride, diacetoxymethyl
derivatives 870 are obtained. These latter compounds can be conveniently trans-
formed by acid hydrolysis into dialdehydes 871 (Scheme 13.270) [586].
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Reduction of the nitro group linked to phenyl moiety of 1,2,4-oxadiazoles with
phenylhydrazine or hydrogen/palladium has been reported to give aminoaryl 1,3,4-
oxadiazoles in good yield [587]. Thus, 2-phenyl-5-(p-nitrophenyl)-1,3,4-oxadiazole
(872), carefully heated to 110–15 �C for 75–90min, gives 2-phenyl-5-(p-aminophe-
nyl)-1,3,4-oxadiazole 873 in 84% yield (Scheme 13.271) [588]. Similar results have
been obtained with nitrophenyl derivatives such as 874, which upon hydrogenation
with Pd/C yields 875 [589].

Hydrogenation, performed on 5-tert-butyl-3-(4-chloro-2-nitrophenyl)-1,3,4-oxadia-
zolin-2-one (876) in AcOEt, conversely, leads to a partial reduction of nitro groupwith
the formation of the 4-chloro-2-(hydroxyamino)phenyl derivative 877 in 44% yield
(Scheme 13.272) [590].

It has been reported that the hydrogenation of D3-1,3,4-oxadiazoline 878, per-
formed in ethanol over Pd/C, gives acetic acid andN-cyclohexyl-N-benzoylhydrazine
(880) via the corresponding 2,3,4,5-tetrahydro-1,3,4-oxadiazole derivative 879
(Scheme 13.273) [591].
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13.5.3.3 Reactions due to the Reactivity of the Heterocyclic Ring
1,3,4-Oxadiazoles are weak bases. The pKa values of 2,5-diaryl-1,3,4-oxadiazoles
measured by the method of Yates and MacClelland in aqueous solution of sulfuric
acid are in the range of�1.15 to�2.49. 2-Amino derivatives (pKa¼ 2.3�2.7) aremore
basic and form stable salts. As already reported, some hydrochloride salts have been
obtainedbyhydrochloric reactionof 2-amino-5-aryl-1,3,4-oxadiazoles, inDMF/H2Oor
in ethanol–ether as solvents, giving rise to compounds having muscle relaxant
properties (Scheme 13.230) [549]. In the same context, 5-imino-2-phenyl-D2-1,3,4-
oxadiazoline-maleate, -citrate, -sulfate, and -nitrate, together with 5-imino-2-(p-ami-
nophenyl)-D2-1,3,4-oxadiazoline dihydrochloride, 5-imino-2-(1-ethylpropyl)-D2-1,3,4-
oxadiazoline hydrochloride, 5-imino-2-(1-ethylbenzyl)-D2-1,3,4-oxadiazoline hydro-
chloride, and 1-ethyl-3-(5-phenyl-1,3,4-oxadiazol-2-yl)urea have also been prepared.

Electrophilic substitution on the C-atoms of the ring is difficult, because proton-
ation of the nuclear nitrogen in acidic media reduces strongly the possibility of
electrophilic attack. Thus, no nitrations, sulfonations, or halogenations of unsub-
stituted oxadiazoles are known. Mono-substituted derivatives are not able to react-
with electrophiles because they are sensitive to acid conditions. In fact, for example,
2-phenyl 1,3,4-oxadiazole is easily hydrolyzed by acids at room temperature to give
benzohydrazide and formic acid [588]. In addition, the mono- and 2,5-dialkyl-
derivatives undergo a ring-opening reaction on treatment with acids [592].

There are several examples of reactions of alkyl halides with 1,3,4-oxadiazole
derivatives. The alkylation reactions occur preferentially at the N3 ring atom, except
for amino and thio derivatives, where the alkylation, essentially, occurs at the sulfur or
the exo-nitrogen atom.

Thus, it has been reported that the reaction of 5-(4-chloro-3-ethyl-1-methyl-1H-
pyrazole-5-yl)-1,3,4-oxadiazole-2-one (881) with methyl iodide in the presence of
NaOHgives rise to the correspondingN-methyl derivative 882, while alkylation of the
2-thioxo derivatives 883 with NaOH, tetrabutylammonium bromide (TBAB), and
alkyl iodide leads to the corresponding thioalkylated derivatives 884 in good yield. In
the same context, it has been noted that the 2-alkylthio derivatives so obtained are
active against rice sheath blight, which is a major disease of rice in China
(Scheme 13.274) [593].

Analogously, a series of bis-oxadiazolyl sulfides 887 (R¼Ph, substituted Ph)
have been synthesized via alkylation reaction of 5-[[2-(trifluoromethyl)-1H-benzimi-
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with HNO3 produces the sulfoxide derivatives 888 in good yield
(Scheme 13.275) [594].

Methylation of 5-methyl or 5-aryl-2-thioxo-2,3-dihydro-1,3,4-oxadiazoles 889 with
trimethyloxonium tetrafluoroborate in CH2Cl2 at room temperature furnishes, as
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expected, the correspondingmethyl(methylthio)oxadiazolium tetrafluoroborates 890
in 86–96% yield (Scheme 13.276) [595].

The Mannich reaction of 1,3,4-oxadiazole-2-thione derivatives 891 with different
secondary amines and paraformaldehyde in absolute ethanol occurs at the N3 ring
atomand leads to 5-[2-(2-methylbenzimidazol-1-yl)ethyl-3-N-methylamino-1,3,4-oxa-
diazole-2-thiones (892) in 60–65% yield (Scheme 13.277). In particular, the diethy-
lamino derivative 892 has shown to exhibit moderate antimicrobial activity against
one strain of Gram-positive bacteria (Bacillus cereus) [596].

The 1,3,4-oxadiazole ring 893 has been, recently, used as 4p component in a
Diels–Alder reaction. This ring is considered an electron poor diaza-diene and reacts
with extremely electron rich (aminoacetylenes) or strained dienophiles in an inverse
electron demand reaction. Unfortunately, the mono cycloadduct 895 thus obtained
has never been isolated, but it extrudes N2 and generates a carbonyl ylid 896, which
further reacts with olefin in a 1,3-dipolar cycloaddition to give the final product 897
(Scheme 13.278).

The first example of such a cycloaddition cascade was reported by Vasiliev et al.
Heating at 200–220 �C of the 2,5-bis(trifluoromethyl)-1,3,4-oxadiazole 802 with
ethylene (898) or cyclopentadiene (899) affords the oxabicycloheptane 900 in 41%,
or oxatetracyclotridecane 901 in 33% yield respectively (Scheme 13.279 [597].

Other examples of this cycloaddition have been reported, giving rise to the
formation of strained structures (Scheme 13.280) [598].

In some cases, the intramolecular version of this reaction is more productive and
leads to bicyclic or monocyclic derivatives (Scheme 13.281) [599].
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The synthetic efficiency of the process can be improved through the development
of domino reactions that allow the formation of complex compounds, starting from
simple substrates, in a single transformation consisting of several steps. A domino
reaction can be defined as a process involving two or more bond-forming transfor-
mations that take place under the same reaction conditions, without adding
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additional reagents and catalysts and in which the subsequent reactions result as
a consequence of the functionalities obtained in the previous step.

Thus, the intramolecular Diels–Alder (DA)/1,3-dipolar cycloaddition (1,3-DC)
cascade of 1,3,4-oxadiazoles has became a powerful tool for the rapid generation
of molecular complexity. Specifically, this methodology has been featured in the
construction of the pentacyclic ring systems and ultimately in the total syntheses of
vindoline and several structurally related natural products [600]. Vindoline (913)
constitutes the most complex half of vinblastine (914), a member of the bisindole
alkaloid family that is used as an antineoplastic drug. The method is based on
a combination of a DA and 1,3-DC. The synthesis proceeds by a diastereoselective
tandem [4 þ 2]/[3 þ 2]-cycloaddition of a substituted 1,3,4-oxadiazole. The reaction
leading to vindoline is initiated by an intramolecular [4 þ 2]-cycloaddition of 1,3,4-
oxadiazole 910 with the tethered enol ether. Loss of N2 from the initially formed
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cycloadduct 911 provides the carbonyl ylid dipole 912, which undergoes a subsequent
1,3-dipolar cycloaddition across the proximal indole moiety (Scheme 13.282) [601].

Some other examples of this methodology (916, 918) are reported in
Scheme 13.283 [599].

The double bond of the 1,3,4-oxadiazole ring has also been used as 2p component
in a [2 þ 2] photochemical cycloaddition. Thus, it has been reported that 2,5-
diphenyl-1,3,4-oxadiazole (835) with indene (919), with or without benzophenone
as a sensitizer, affords the bis adduct diazetidine derivative 920, while if the reaction is
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performed in the presence of iodine the photoreaction leads to the mono-adduct 921
(Scheme 13.284) [602].

A 1 : 1 adduct with 923 (26%) was obtained when a solution of 835 was
irradiated with an excess of furan (922) in the presence or absence of benzophe-
none used as sensitizer. The reaction did not occur in the presence of a triplet
quencher such as piperylene, indicating that the photoaddition takes place from an
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excited triplet state [603]. The presence of iodine promotes a different reaction
pathway, leading to the formation of 3-benzoylfuran (927) (17%). This product has
been rationalized by an initial valence tautomerization of furan into cyclobutadiene
oxide 924, which undergoes a [2 þ 2] cycloaddition with a double bond of 1,3,4-
oxadiazole ring, leading to monoadduct 925. This compound, via ring opening and
photoisomerization reaction, produces the N0-[3-furyl(phenyl)methylene]phenyl-
hydrazide (926) that is easily hydrolyzed with trace amounts of water to give 927
(Scheme 13.285).

13.5.3.4 Reactions with Nucleophiles
Direct nucleophilic substitutions of ring C-substituents in 1,3,4-oxadiazoles are
seldom. These reactions occur only for compounds containing a good leaving group,
via addition–elimination reaction. Thus, for example, 3-(5-phenyl-[1,3,4]oxadiazol-2-
yl]pentane-2,4-dione (930, R¼Me) and 3-(5-phenyl-[1,3,4]oxadiazol-2-yl]-dibenzoyl-
methane (930, R¼Ph) have been synthesized, in 63% and 85% yield, respectively, by
nucleophilic substitution of 2-methylsulfonyl-5-phenyl-1,3,4-oxadiazole (928) with
b-diketone anions, formed by the corresponding carbonyl compounds 929with NaH
(Scheme 13.286) [604].
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A similar displacement reaction has been performed with 2-methylsulfonyl-5-
pyrazolyl-1,3,4-oxadiazole 931 that by reaction with arylamines 932 produces bioac-
tive 2-substituted-amino-5-pyrazolyl-1,3,4-oxadiazoles 933, which exhibit moderate
fungicidal activity (Scheme 13.287) [605].

Nucleophilic substitution of 2-methylsulfonyl-1,3,4-oxadiazoles 934 has been
reported to occur with other nucleophiles, such as sodium azide, amines, and
acylhydrazines (Scheme 13.288). The compounds containing the acylhydrazine
group have shown to posses strong antibacterial activity against Bacillus subtilis and
Escherichia coli (2.0� 10�4mol l�1) [606].

Recently an efficient conversion of 5-substituted-1,3,4-oxadiazolin-2-ones 936 into
2-amino-1,3,4-oxadiazoles 937, via a nucleophilic aromatic substitution, appeared in
the literature (Scheme 13.289) [607].

The reaction is activated from benzotriazol-1-yloxytris(dimethylamino)-phospho-
nium PF6

� (938), and occurs according to Scheme 13.290, using as co-reagent 2
equivalents of base. The key step of the reaction is the attack of the oxygen atom of the
carbonyl group on the phosphonium salt, promoted by base. The intermediate 939
thus obtained undergoes a facile reaction with the nucleophile 940 at C2 of the
oxadiazole ring, followed by extrusion of HMPA (941).
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A nucleophilic substitution has also been reported for quaternary intermediate
salts obtained by reaction of alkyl iodide with phenylalkoxyoxadiazoles. The
reaction produces the corresponding 3-alkyl-5-phenyl-1,3,4-oxadiazol-2-ones via
a nucleophilic attack promoted by iodine ion on the R1 group of quaternary salts
(Scheme 13.291) [608].

13.5.3.5 Reactions of Substituents
Electrophilic reaction can occur on diphenyl derivatives. Thus, 2,5-bis(4-nitrophe-
nyl)-, bis(3-nitrophenyl)- and bis(2-nitrophenyl)-1,3,4-oxadiazoles have been
obtained in 27%, 20%, and 40% yield, respectively, by mixing 2,5-diphenyl-1,3,4-
oxadiazole (835) with HNO3 at 30 �C and then at 80 �C for 4 h (Scheme 13.292). The
addition of HNO3 to the oxadiazole in concentrated H2SO4 at 50 �C and subsequent
heating for 6 h at 100 �Cgave bis(3-nitrophenyl)-1,3,4-oxadiazole (38%) and 2-phenyl-
5-(m-nitrophenyl)-1,3,4-oxadiazole (31%) [609].
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2-(4-Nitrophenyl)-5-phenyl-1,3,4-oxadiazole undergoes selective electrophilic bro-
mination of the phenyl ring in the presence of potassium bromate to produce o-,m-,
and p-derivatives in 16%, 14%, and 26% yield, respectively (Scheme 13.293) [610].

A sulfonamide group directly linked to 1,3,4-oxadiazole ring has been utilized
to synthesize N-(anilinocarbonyl)-5-(2,4-dichlorophenyl)-1,3,4-oxadiazole-2-sulfon-
amide 953 (R¼Cl) and N-(anilinocarbonyl)-5-phenyl-1,3,4-oxadiazole-2-sulfon-
amide 953 (R¼H) with aim of preparing potential pesticides. These compounds
have been obtained by reaction of phenyl isocyanate with 5-(2,4-dichlorophenyl)-
1,3,4-oxadiazole-2-sulfonamide (952, R¼Cl) or with 5-phenyl-1,3,4-oxadiazole-2-
sulfonamide (952, R¼H) respectively (Scheme 13.294). The compounds so obtained
have been tested for fungicidal activity against the fungal species Cephalosporium
saccharii andHelminthosporium oryzae, and have been shown to possess a good level
of activity [611].

Some acetamides carrying a substituted-1,3,4-oxadiazole moiety with local anes-
thetic activity have synthesized by reaction of 5-aryl-2-chloroacetamido-1,3,4-oxadia-
zoles 956 with different secondary amines (Scheme 13.295). Compound 956 was
easily prepared in 63% yield from the reaction of 5-(4-fluorophenyl)-1,3,4-oxadiazol-
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2-amine (954) with chloroacetyl chloride (955). The local anesthetic activity was
investigated using the rabbit corneal reflex method and guinea pig�s wheal derm
method, using lidocaine as standard drug [612].

Monosubstituted oxadiazoles are deprotonated at the ring carbon atom to give
the corresponding anion, which has been subsequently alkylated with various
alkylating agents. Thus, for example, 2-substituted-1,3,4-oxadiazoles 959 after
treatment with butyllithium in the presence of MgBr2 diethyl etherate in THF,
followed by the addition of N-[(1S)-1-(methylethyl)-2-oxoethyl](tert-butoxy)carbox-
amide (N-Boc-L-valinal) (961), affords the corresponding N-Boc alcohols 962 in
53–79% yield. Similar treatment of (5-phenyl-1,3,4-oxadiazol-2-yl)lithium (963)
with Boc-leucinal (964) produces [1-[(R/S)-hydroxy-(5-phenyl-[1,3,4]oxadiazol-2-yl]-
(S)-methyl]-3-methylbutyl]carbamic acid tert-butyl ester (965) in 70% yield
(Scheme 13.296) [613, 614].

In addition, the methyl group attached at carbons of 1,3,4-oxadiazoles shows
a marked acidity when it is treated with strong bases. Thus, when 2,5-dimethyl- or 2-
methyl-5-phenyl-1,3,4-oxadiazoles 966 and 971 were treated with isopropylmagne-
sium bromide (967) or NaH, followed by addition of alkyl carboxylates, 5-substituted
1,3,4-oxadiazol-2-ylmethyl ketones 969, 970, and 972 were obtained. The yield in
ketones has been shown to depend on the nature of substituents present in the
carboxylate moiety (Scheme 13.297) [615].

Interestingly, when the lithium anion of 971 was allowed to warm from�78 �C to
room temperature, the N-benzoylated hydrazone 973 was isolated from the reaction
mixture in 34% yield (Scheme 13.298) [616]. The formation of this latter compound
is easily rationalized as the nucleophilic attack of the lithium anion to the not
de-protonated 971 still present in solution.

1,3-4Oxadiazoles containing a good leaving group at themethylenemoiety are able
to give nucleophilic substitutions. Thus, 2-aryl-5-chloromethyl-1,3,4-oxadiazoles 974,
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via condensation of piperazine (975), give 1,4-bis[(5-aryl-1,3,4-oxadiazol-2-yl)methyl]
piperazines 976 that in vitro displayed relatively potential antibacterial activities
(Scheme 13.299) [617].

5-(p-Cyanomethylphenyl)-2-n-nonyl-1,3,4-oxadiazole 979, useful precursor for
organic light-emitting diodes (OLEDS), has been synthesized in 82% yield, by
reaction of the bromide derivative 978 with tetraethylammonium cyanide. The 5-
(p-bromomethylphenyl)-2-n-nonyl-1,3,4-oxadiazole (978) was easily prepared by the
reaction of 5-(p-methylphenyl)-2-n-nonyl-1,3,4-oxadiazole (977) with N-bromosucci-
nimide(NBS) (Scheme 13.300) [618].

Substituents linked to 1,3,4-oxadiazoline moiety have also been involved in the
synthesis of compounds having interesting properties. Thus, the herbicide 5-tert-
butyl-3-(2,4-dichloro-5-isoprooxyphenyl)-1,3,4-oxadiazol-2-one (981) has been
obtained starting from 877 via 5-tert-butyl-3-(2-amino-4-chloro-5-hydroxyphenyl)-
1,3,4-oxadiazolin-2-one (980) (Scheme 13.301) [590].
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Some 3-acyl-1,3,4-oxadiazoline derivatives 983, having antitumoral activity,
have been prepared by nucleophilic displacement of the chlorine atom in 982
(Scheme 13.302).
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13.5.3.6 Metal Complexes
1,3,4-Oxadiazole derivatives are widely used as electron-transporting groups due to
their high electron deficiency and good thermal stability [619]. According to these
properties, compounds containing the 1,3,4-oxadiazole core have prepared and used
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in the production of organic light-emitting diodes (OLEDs). An OLED converts
electrical energy into light and it is formed by an emissive chromophore, an electron-
transporting group, and a hole-transporting unit. Recently, heavy metal ions have
been incorporated in OLEDs as a cyclometalated ligand to increase the phospho-
rescence at room temperature, because these ions are able to increase the efficiency of
the intersystem crossing from the singlet to triplet excited state. Based on the above
consideration, here are two reported examples of 1,3,4-oxadiazole metalated com-
plexes together with their syntheses.

Thefirst synthesis of 1,3,4-oxadiazole-functionalized terbium (III)b-diketonate for
organic electroluminescence has been reported by Zheng et al. The synthesis was
performed by treating compound 930 with a suspension of t-BuOK and an
aqueous solution of TbCl3 (Scheme 13.303). The crystal structure of 984 was
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established byX-ray diffraction. The Tb(III) ion is surrounded by eight oxygen atoms,
six of which are from the bidentate b-diketonate ligands and the other two from the
coordinated water molecules. The coordination polyhedron is best described as
square antiprismatic. This compound was used as an emittingmaterial, and a bright
and highly efficient green-emitting LED was fabricated [604].

An interesting series of iridium(III) complexes linked to 1,3,4-oxadiazole systems
has been synthesized and utilized to prepare three organic light emitting diodes
devices, which showed stable green-yellow luminescence. The synthetic procedure
involved two steps. In the first step, IrCl3�3H2Owas allowed to react with an excess of
2,5-diaryl-1,3,4-oxadiazoles 985 in a 2-ethoxyethanol–water mixture. In the second
step, the resulting iridium compounds were treated with sodium carbonate and
acetyl acetone in 2-ethoxyethanol as solvent to afford the cyclometalated derivatives
986–988 in 70–85% yield (Scheme 13.304) [620].
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14
Thiadiazoles
Ugo Chiacchio and Giovanni Romeo

14.1
Introduction

There are four isomeric types of thiadiazoles (1–4).

N

N

S
N

N

S
NN

S

NN

S

1 2 3 4

Many biologically active derivatives of this ring system have been synthesized and
incorporated into commercial drugs and pesticides. For instance, the 1,2,5-thiadia-
zole timolol (5), is used as maleate salt to treat glaucoma; the sulfonamide derivative,
acetazolamide 6, is a diuretic.

N
S

N

N OCH2CHOHCH2NHCMe3

NN

S

O

Timolol

H2NO2S NHCOMe

Acetazolamide

5 6

14.2
1,2,3-Thiadiazoles

1,2,3-Thiadiazoles are heterocycles of great practical and theoretical interest. Most of
the literature has been devoted to thermal and photochemical reactions of the 1,2,3-
thiadiazole ring, whose cleavage and rearrangement allow easy access to a series of
functionalized compounds. Derivatives of this heterocyclic system are important
in industry, medicinal chemistry, and agriculture. However, although interest in
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isomeric thiadiazoles is continuously increasing, there is a gap of knowledge in the
area of 1,2,3-thiadiazoles, which still account for the fewest literature citations.

A good number of reviews on the chemistry of 1,2,3-thiadiazoles are present in
literature [1]: one of the most recent reports cover the literature up to the early part of
2004 [2].

14.2.1
Structure

While the 1,2,3-oxadiazole systemoccurs nearly exclusively as open-chain tautomers,
1,2,3-thiadiazoles are stable compounds: the neutral aromatic structure 7 is preferred
with respect to a-diazothiaketone species 8.

N

N

S
N

N

SR

R

R

R

7
8

However, it has been suggested that a-diazothiaketones 8 are involved as inter-
mediates in some reactions [3]. The existence of these intermediates has
been supported by the isolation of the complex of 2-diazothione 10 with iron
nonacarbonyl, obtained by reaction of 1,2,3-benzothiazole (9) with Fe2(CO)9
(Scheme 14.1) [4].

The parent compound is a yellow liquid with a boiling point of 157 �C at
atmospheric pressure, and is soluble in alcohol, diethyl ether, and water. Other
1,2,3-thiadiazoles are soluble in methylene chloride and chloroform. Benzo-fused
analogues of 1,2,3-thiadiazoles 7 have also been reported [5]. Fully aromatic
mesoionic compounds have been synthesized [6], but information is limited.
More recently, mesoionic 1,2,3-thiadiazoles as 11 have been obtained by methyl-
ation at N3 of 1,2,3-thiadiazoles containing an oxime or phenylhydrazone function
at the 5-position [7].

Very few examples of non-aromatic 1,2,3-thiadiazoles such as 12 and 13 have
appeared in the literature [8].

S

N
N

N

N
Fe

S

S

N

N
(OC)3Fe Fe(CO)3

COFe2(CO)9

9

10

80%

Scheme 14.1
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14.2.2
Theoretical Aspects

Theoretical studies on the structure and properties of 1,2,3-thiadiazoles are not
numerous, probably due to the difficulty associated with calculating sulfur-contain-
ing organic compounds [9]. Bond angles and lengths have been determined by
ab initio methods for the parent compound (Table 14.1) [10, 11].

The distribution of the electronic charge density shows that the largest negative
values are adjacent to the nitrogen atoms [10, 11].

The relative stabilities of 1,2,3-thiadiazolines and 1,3,4-thiadiazolines, which are
formed as a mixture of regioisomers in the cycloaddition reaction of aliphatic
diazo compounds to thioketones (Pechmann synthesis), have also been determined
by semiempirical and ab initio [12] 1,2,3-Thiadiazoline is 0.9 kcalmol�1more stable
than 1,3,4-thiadiazoline. The reverse trend has been found for alkyl-substituted
derivatives.

According to frontier molecular orbital theory, the reaction between diazo-
methane and thioformaldehyde can be classified as HOMO-CH2N2/LUMO-CH2S
controlled: the formation of two regioisomeric adducts is predicted
(Figure 14.1) [12].

The aromaticity of 1,2,3-thiadiazole 1,1-dioxide has been studied by ab initio
calculations [13] and compared with that of isomeric thiadiazoles: the heteroaroma-
ticity of 1,2,3-thiadiazole 1,1-dioxide is higher than that of 1,3.4-thiadiazole 1,1-
dioxide, but lower than that of 1,2,5-isomer.

Table 14.1 Calculated geometry of 1,2,3-thiadiazole.

Bond Length (A
�
) Bond Angle (�)

S–C 1.6872 C–S–N 92.11
S–N 1.7357 S–N–N 110.27
N–N 1.2786 N–N–C 115.45
C–C 1.3809 C–C–S 106.67
C–H 1.0937 S–C–H 124.01

N–C–H 119.93
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14.2.3
Structural Aspects

14.2.3.1 X-Ray Diffraction
Many papers related to X-ray structures of 1,2,3-thiadiazoles have been reported [14].
The thiadiazole ring is essentially flat: all atoms of the ring lie in the same plane, with
a very slight deviation of less than 0.02� from the plane.

Table 14.2 shows the reported bond lengths and bond angles for 1,2,3-benzothia-
diazole (9) and for 4-phenyl-1,2,3-thiadiazole (14).

For compound 14, the N2–N3 andC4–C5 bond lengths show a nearly double bond
character, while the bond lengths of S–N2 and S–C5 indicate partial double bond
character for both sulfur bonds; an aromatic behavior has been ascribed to this ring.
The distance betweenC4–C6, 0.14 nmas expected for a sp2–sp2 carbon–carbonbond,

N
N

C N

N

C

CH2N2 + CH2S

N

N
S

NN

S

+

C

S SC

Figure 14.1 Frontier molecular orbital theory prediction of the reaction between diazomethane
and thioformaldehyde.

Table 14.2 Molecular dimensions for 1,2,3-benzothiadiazole (9) and 4-phenyl-1,2,3-thiadiazole
(14).

S
N

N

14

Ph

S
N

N

9

Compound 14 Compound 9

Bond lengths (nm) Bond angles (�) Bond lengths (nm) Bond angles (�)

S–N 0.1666 C–S–N 93.2 S–N 0.1706 C–S–N 92.6
N–N 0.1286 S–N–N 111.2 N–N 0.1279 S–N–N 112.7
N–C 0.1378 N–N–C 114.4 N–C 0.1384 N–N–C 113.4
C–C 0.1363 N–C–C 112.2 C–C 0.1397 N–C–C 114.2
C–S 0.1670 C–C–S 109.0 C–S 0.1708 C–C–S 107.1
C–Ph 0.1469
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indicates that there is a little conjugation between the two rings [15]. Similar values of
bond angles and bond lengths have been reported for benzo-1,2,3-thiadiazole 9 [5].

X-Ray data have also been reported for the mesoionic 5-(methoxycarbonyl)amino-
3-methyl-1,2,3-thiadiazole (15) and for 4-phenyl-1,2,3-thiadiazole 3-oxide (16) [6].

S
N

N

15

Ph

S
N

N
Me

MeO2CN

O

16

14.2.3.2 NMR Spectroscopy
1H NMR spectroscopy confirms the aromatic character of the 1,2,3-thiadiazole ring.
Proton chemical shifts are found in the region 7.44–9.37 ppm. N-Alkylation of the
ring shifts these signals 1.0–1.5 ppm downfield (Table 14.3).

13C NMR spectroscopy is a useful tool for the elucidation of heterocyclic structures
where few or no ring protons are present. For symmetrically substituted 1,2,3-
thiadiazoles, the carbon adjacent to the nitrogen atom resonates at lower field than
the carbon atom adjacent to the sulfur atom. The body of 13C reported data allows us
to predict accurately the chemical shift of ring carbons, assuming the tabulated
incremental effects of substituents at C4 and C5 (Table 14.4) [16].

Very few references are present in the literature for the 14N and 15N NMR of 1,2,3-
thiadiazoles. One paper, regarding solvent effects on the 14N NMR spectra of
isomeric thiadiazoles, suggests that an increase in solvent polarity favors the
delocalization of the lone electronic pair from the sulfur atom into the ring, thus
leading to an increase of electronic charge at the nitrogen atom [17].

The 15N NMR spectra of a series of 1,2,3-thiadiazoles reveal the strong influence of
substituents on the N2 resonance, which can be rationalized by the conjugation

Table 14.3 Proton NMR data for ring hydrogens of 1,2,3-thiadiazoles (see text for details).

N

N
S

R
1

R2

N

N
S

R1

R2

N

N
S

R1

R2

Me

Me
.

R1 R2 N2 N3 d (ppm)

Methyl H 8.20
Phenyl H 8.60
H Methyl 8.35
H Phenyl 8.70
H Acetyl 9.04
H Formyl 9.20
H Diethylamino 7.44
Phenyl H Methyl 9.93
Phenyl H Methyl 10.17
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effect. Conversely, little influence on the chemical shifts is exerted by substituents at
position 4.

The 15N chemical shifts of some mesoionic compounds have also been deter-
mined and explained by the dual effect of 5-substitution and salt formation [18].

14.2.3.3 UV and IR Spectroscopy
Data on IR [19] and UV [20] spectroscopy have been reported for some 1,2,3-
thiadiazoles. Characteristic infrared absorptions are at 1560–1475 and
1350–1280 cm�1 (ring skeletal).

Simple 1,2,3-thiadiazoles show three absorption bands in theUVspectra: 211–217,
249–253, and 290–294 nm.

14.2.3.4 Mass Spectrometry
The electron-impactmass spectra of themost 1,2,3-thiadiazoles exhibit a very intense
signal for the molecular ion [21]. Moreover, the predominant fragmentation is
represented by the loss of N2 (M–28)þ , which gives rise the most intense peak in
the spectrum (Scheme 14.2). Other types of molecular ion fragmentations are
negligible and are of some interest only for complex structures [22].

Table 14.4 13C NMR spectral data (ppm) for ring carbons of 1,2,3-thiadiazoles.

N

N
S

R
1

R
2

R1 R2 C4 C5

H H 147.3 135.8
Phenyl H 163.9 130.9
H Phenyl 144.2 152.2
Phenyl Phenyl 157.5 150.8

N

N
S

R

R

S

R

R

SC
S

R R

Scheme 14.2
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The structure of the [M–N2]
þ fragment has been investigated and found to depend

on the substitution pattern. For the unsubstituted 1,2,3-thiadiazole, the fragment
shows the thioketene and the distonic .CH¼CH–Sþ structure, while for 5-amino-
1,2,3-thiadiazoles the ion exists in the thiirene form [23].

14.2.4
Synthesis

The synthetic approaches towards the 1,2,3-thiadiazole system can be classified
according to five methodologies:

1) cyclization of hydrazones with thionyl chloride: the Hurd–Mori reaction [24];
2) heterocyclization of a-diazocarbonyl compounds: the Wolff synthesis [25];
3) 1,3-dipolar cycloaddition of diazo compounds 3 to isothiocyanates: the Pech-

mann and Nold synthesis [26];
4) ring transformation of other sulfur-containing heterocycles;
5) elaboration of preformed 1,2,3-thiadiazoles.

14.2.4.1 Hurd–Mori Synthesis
Hydrazone derivatives, possessing amethylenemoiety and an electron-withdrawing
group (CO2Et, SO2R) at N2, give rise to 1,2,3-thiadiazoles upon treatment with
thionyl chloride [27]. Retrosynthetically, the Hurd–Mori reaction is a [4 þ 1]
approach where four atoms come from hydrazone and one (the sulfur atom) from
the thionating agent.

Thus, the reaction of 2[(ethoxycarbonyl)hydrazono]propanoic acid (17) with SOCl2
affords 1,2,3-thiadiazole-4-carboxylic acid (18) in 53% yield, accompanied by traces of
5-methyl-2H-1,3,4-oxadiazine-2,6(3H)-dione (19) (Scheme 14.3) [24].

The obtainment of 1,2,3-thiadiazoles has been interpreted according to the initial
formation of intermediate 21, which originates from thenucleophilic attack of 20 to the
sulfur atom [28]. A fast ene–hydrazine tautomerism promotes the cyclization to the
sulfoxide 23, which, probably through a Pummerer-type rearrangement [2], evolves
towards the 1,2,3-thiadiazole system25, with extrusion ofNH3 andCO2 (Scheme14.4).

The presence of intermediate thiadiazoline-1-one 23, isolated and characterized
in some cases [29], was also ascertained by the crystallographic investigation of the

H3C CO2H

N

H
N

CO2Et SOCl2 N

N

S N

O

H
N

+ H3C

O

O

19

53%

17 18

trace

CO2H

Scheme 14.3
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compound 27 isolated by Kobori et al. [30] in the reaction of 26 with SOCl2
(Scheme 14.5).

Substituted hydrazones 29, obtained from 1,2-diaza-1,3-butadienes 28 and
methylenic or methinic activated substrates, afford, in the presence of thionyl
chloride as solvent-reagent, functionalized 1,2,3-thiadiazoles 30 in good yields
(Scheme 14.6) [31].

Similarly, the reaction of 1,2-diaza-1,3-butadienes 28 and trialkyl phosphites,
under solvent-free conditions, leads to alkyl 3,3-dialkoxy-2H-1,2,3,l5-diazaphosp-
hole-4-carboxylates 31 that are easily converted into the corresponding (E)-hydrazi-
nophosphonates 32 by treatment with water. Subsequent reaction with thionyl
chloride affords 4 substituted 1,2,3-thiadiazoles 33 (Scheme 14.7) [32].

TheHurd–Mori reaction is by far themost widely exploited syntheticmethodology
for 1,2,3-thiadiazoles. The reaction is especially suitable for alkyl- and (het)aryl-
substituted 1,2,3-thiadiazoles; in the same way, fused 1,2,3-thiadiazoles have been
prepared fromcyclic ketones. Several substituted thiadiazoles, possessinghalide [33],
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ester [34], carboxy [24], aldehyde [35], sulfide [36], and amino groups [37], have also
been obtained.

4,5-Diaryl and 4-aryl-substituted 1,2,3-thiadiazoles 36, with potential antithrom-
botic activity, have been prepared starting from aldehydes and ketones 34
(Scheme 14.8) [38].
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The 1,2,3-thiadiazole ring annelated to the benzazepine ring 38 was obtained by
the Hurd–Mori reaction of hydrazonobenzazepine 37 (Scheme 14.9) [39].

An interesting solid-phase synthesis of 1,2,3-thiadiazoles 41 has also been
reported. A Merrifield type resin functionalized with sulfonhydrazide groups (39)
was used to capture ketones from the reaction mixtures (Scheme 14.10) [40].

14.2.4.2 Wolff Synthesis
Wolff�s synthesis of 1,2,3-thiadiazoles is one of the earliest methods [25]; it implies
the heterocyclization of a-diazothiocarbonyl compounds, which can be prepared via
different routes. According to this methodology, 5-alkyl and 5-aryl-1,2,3-thiadiazoles
have been prepared by reaction of 2-diazo-1,3-dicarbonyl compounds with ammo-
nium sulfide [41]. The method has been exploited to prepare various 5-amino- and
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5-mercapto-1,2,3-thiadiazoles bearing different functional groups at the 4-position
(Scheme 14.11) [41, 42]. Diazothiocarbonyl compounds 43, 46 and 50 may be
generated: (i) by introducing the diazo group into compounds containing a C¼S
bond, (ii) by constructing a C¼S group into the a-position of a diazo compound, or
(iii) by simultaneous introduction of both these functions.

Thiadiazole 44 has been prepared by diazotation of 2-amino-2-cyano-thioaceta-
mide (42) [41, 43]. The method requires the presence of two electron-withdrawing
groups at the a-carbon atom, which stabilize the intermediate diazothiocarbonyl
compounds 43.

The same stabilization can be achieved by including the carbon atom attached to
the diazo function onto an aromatic ring. In this way, benzo-1,2,3-thiadiazole 9 has
been synthesized in 77%yield by reaction of ortho-aminothiophenol (53) with sodium
nitrite in acetic acid (Scheme 14.12) [44].
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An alternative way to generate a-diazothiocarbonyl compounds exploits the
reaction of species bearing an active methylene group such as compound 54, with
azides (Scheme 14.13) [45].

2-Diazo-1,3-dicarbonyl derivatives 45 react with thionating reagents to give dia-
zocarbonyl intermediates that spontaneously cyclize to 4-carbonyl-5-alkyl- or 5-aryl-
1,2,3-thiadiazoles 47 (Scheme 14.11) [41].

As an example, 5-ethyl-4-ethoxycarbonyl-1,2,3-thiadiazole has been prepared
from an a-diazoketone via its thioketone intermediates using Lawesson�s reagent
(Scheme 14.14) [46].

Lithium trimethylsilyldiazomethane (48) reacts with thiocarbamoyl chloride 49 to
give a mixture of 5-amino-1,2,3-thiadiazoles 51 and 52. The proposed mechanism
involves the formation of a diazothioacetamide that undergoes a rapid cyclization
(Scheme 14.16) [47].

Wolff�smethodology has been exploited in the first solid-phase synthesis of benzo-
1,2,3-thiadiazoles and related structures, starting from resin bound chloro, bromo, or
iodo triazenes and using a functionalization on cleavage [48]. In particular, the
synthesis was realized employing two different, synergetic methods: an anionic
approach, via a halide metal exchange, and a cross-coupling approach, via an
innovative palladium catalyzed C–S bond forming reaction. Anilines 58 were
diazotated with tert-butyl nitrite and subsequently coupled with piperazine resin
59. The resulting triazene aryl halides 60 have been converted into the corresponding
thiol 61 bonded to the resin by two alternative methods: (A) reaction with n-BuLi and
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TMEDA, followed by treatment with elemental sulfur; (B) reaction with triisopro-
pylsilylthiol in the presence of palladium acetate. Cleavage from the resin with dilute
trifluoroacetic acid (TFA) resulted spontaneously in the desired cyclization reaction,
yielding benzo[1,2,3]thiadiazoles 62 in good yields (Scheme 14.15).

14.2.4.3 Pechmann and Nold Synthesis
One of earliest synthesis of 1,2,3-thiadiazoles is the Pechmann and Nold synthe-
sis [26], which involves the 1,3-dipolar cycloaddition between diazoalkanes 63 and
isocyanates 64 (Scheme 14.16) [1].

Thismethod includes the reactions of diazo compounds with various thiocarbonyl
derivatives, such as thioketones, thioesters, thioamides, and carbon disulfide [49].

The reaction of diazoalkanes 67with thioketones 66 gives amixture of 1,2,3- 68 and
1,3,4-thiadiazolines 69[50]: the regioisomeric distribution depends on the solvent
polarity and steric effects (Scheme 14.17) [12].

The reaction has been studied in detail by ab initio RHFand CASSCF calculations
(3-21G�, 6-31G�, CAS/3-21G�) and semiempirical calculations (AM1 and MNDO-
PM3). In particular, ab initio calculations, in accord to experimental data, show that
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1,2,3-thiadiazoline products are formed in higher ratio in more polar solvents and
that this is explainable by the higher dipole moment (about 5 D as compared to circa
2 D) of the transition structure [12].

If the cycloaddition reaction is performed with chlorodithioformates 70 or thio-
phosgene (73) as dipolarophiles, the initial thiazolidines undergo elimination of
HCl and form a mixture of 1,2,3- (71 and 74) and 1,3,4-thiadiazoles (72 and 75)
(Scheme 14.18) [41, 50, 51].

A variation of this method, which probably does not proceed through a concerted
[3 þ 2] cycloaddition, involves the reaction of lithium (trimethylsilyl)diazomethane
(77) with thioesters or dithioesters 76 and with carbon disulfide to afford various 5-
substituted-1,2,3-thiadiazoles 78 and 80 (Scheme 14.19) [52].

14.2.4.4 Transformations of Other Heterocycles
The 1,2,3-thiadiazole ring can also be obtained by chemical transformation of other
sulfur-containing heterocycles. Thus, treatment of 1,3,4-thiadiazin-2-ones 81 with
tert-butyl hypochlorite gives rise to 1,2,3-thiadiazole 84, probably via the intermedis
82 and 83, as reported in Scheme 14.20 [41].
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Adifferentmechanismhas been proposed for this reaction, based on the oxidation
of 81 to thiadiazine dioxide 85, whichundergoes hydrolysis of the imine double bond.
Subsequent loss of CO2 and H2O leads to the final product 84 (Scheme 14.21) [2].

As support, a suspension of thieno thiadiazine dioxide 88 in acid media affords
thienothiadiazole 91 (Scheme 14.22) [53].

Another interesting conversion is represented by the rearrangement reaction of
1,2,3-triazoles containing a thiocarbonyl group. Thus, 1,2,3-triazolo[4,5-b]pyridin-4
(7H)-thione (92) rearranges by thermolysis into 1,2,3-thiadiazolo[4,5-c]pyridine 93
(Scheme 14.23) [41, 54].
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14.2.4.5 Elaboration of Preformed 1,2,3-Thiadiazoles
Various 1,2,3-thiadiazole derivatives have also been easily prepared by chemical
modification of substituents present at C4 or C5 in a preformed 1,2,3-thiadiazole
system. Thus, 1,2,3-thiadiazole carboxylic acids have been obtained by oxidation of
4- or 5-methyl-1,2,3-thiadiazole [55], or by hydrolysis of the corresponding
esters [56]. The acids can be easily converted by standard procedures into the
corresponding esters, chlorides, amides, hydrazides, azides, thioamides, and
nitriles [36, 57].

The carbaldehyde function has been introduced by oxidation of a hydroxymethyl
group [58] or by acid-catalyzed hydrolysis of the corresponding hydrazones and
oximes [7, 35, 59].

4- and 5-Amino- [1, 3, 41, 42], 5-halo- [3, 42], 5-mercapto- [36], and 5- and 4-alkenyl
1,2,3-thiadiazoles [60–62] have beenprepared following the same synthetic approach.

In particular, different 5-substituted derivatives have been synthesized by
Katritzky et al. [63] following a procedure that exploits the chemistry of the
benzotriazole system. Thus, the 1-(1,2,3-thiadiazol-5-yl)-1H-1,2,3-benzotriazole
94 has been transformed into 5-[(4-methylphenyl)thio]-1,2,3-thiadiazoles 96 (X¼
S) and 5-phenoxy-4-phenyl-1,2,3-thiadiazoles 97 (X¼O). The reaction mechanism
includes the known ring-chain tautomerism of substituted 1,2,3-thiadiazoles,
involving cleavage of 1,2-bond to afford 2-diazoethanethione tautomers 95. This
intermediate then undergoes a direct nucleophilic substitution of the benzotriazole
moiety and sequential ring closure to give 5-substituted 1,2,3-thiadiazoles 96 and 97
in yields ranging from 11% to 76% (Scheme 14.24).

14.2.5
Reactivity

The reactivity of the 1,2,3-thiadiazole system is expressed in a series of different
chemical transformations: (i) ring cleavage reactions, (ii) base-catalyzed decomposi-
tions, (iii) rearrangement processes, (iv) oxidative and reductive processes, (v) reac-
tions due to the reactivity of the heterocycle ring, and (vi) reactions of nucleophiles.

N

N S

R1

N N
N N

N S

R1

N N
N R2XH

NaH

N

N S

R1

XR2

X = S,O R1 = H, Ph, Thiophen-2-yl, Furan-2-yl

R2 = Ph, p-CH3-C6H4, 2-Naphthyl, Bn, p-Cl-C6H4, p-CH3O-C6H4

94 95

96,97

11-76%

Scheme 14.24

14.2 1,2,3-Thiadiazoles j1269



14.2.5.1 Ring Cleavage Reactions
The easy ring cleavage of the 1,2,3-thiadiazole system,which produces highly reactive
fragments, affords a useful synthetic access to different functionalized compounds.

The most important reaction pathways are:

1) loss of the nitrogenmolecule with production ofa-thioxocarbene which, in turn,
can rearrange to thioketenes;

2) simultaneous loss of a molecule of nitrogen and the sulfur atom.

As an example of the first case, compounds 98 upon thermolysis extrude nitrogen,
leading to transients a-thioxocarbenes 99 and 101 and thiirenes 100, which can
follow different reaction routes [64–66]: (i) rearrangement to thioketenes 102, (ii)
dimerization to 1,4-dithiins 103, or (iii) cycloaddition of the intermediate a-thiox-
ocarbenes with the rearranged thioketene 102 to give 4-dithiafulvenes 104
(Scheme 14.25).

Formation of thioketenes 102 from 99 and 101 involves a 1,2-shift of the
substituent at the carbon atom of the thiocarbonyl group. The structure of thioke-
tenes has been confirmed by NMR [67] and IR spectra [68].

The intermediate four-electron systems 99–101have been trapped by reactionwith
acetylenes 105 [69–72], affording a mixture of isomeric thiophenes 106 and 107 in a
ratio of 1 : 1 (Scheme 14.26).
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The formation of the same product distribution (111–113) from regioisomeric
thiadiazoles supports the suggested equilibrium between the two isomeric 1,3-
diradicals 99 and 101 via thiirene 100 (Scheme 14.27) [73].

Capture of the thiirene intermediate by an intramolecular reaction has been
reported by Katritzky et al. [74] in the thermal rearrangement of 5-benzotriazolyl-
1,2,3-triazoles 114 to zwitterionic 3-phenyl-[1,2,3]thiadiazolo[3,4-a]benzimidazol-9-
ium-4-ide 117 (Scheme 14.28).
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Thermolysis of 1,2,3-benzothiazole 9 gives, as main products, thianthrene
(119) [64, 65] and dibenzo[1,2]dithiin (120). The formation of these compounds can
be explained on the basis of the dimerization of biradical 118, formed after the
nitrogen extrusion (Scheme 14.29).

When heated in the presence of sulfur, 1,2,3-benzothiadiazole 121 loses nitrogen
and produces benzopentathiepine 122 (Scheme 14.30) [75]. In this way several
heterocycles fused to the pentathiepine nucleus have been obtained by starting from
the corresponding thiadiazoles [76].
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2-Aryl-1,2,3-thiadiazole-4H-5-imines 123, when heated in boiling pyridine, under-
go extrusion of sulfur to form hydrazones 124, which by reaction with the starting
thiazolidin-5-imines give 1,2,4-thiadiazoles 125 (Scheme 14.31) [77].

In analogy to thermolysis, photolysis of 1,2,3-thiadiazoles proceeds with extrusion
of nitrogen and leads to many products, all of which correspond with the above
reported intermediates (Scheme 14.25) [78, 79]. Thus, thioketenes 102, 1,4-
dithins 103 and 1,4-dithiafulvenes 104 have been obtained. Photolysis of 1,2,3-
thiadiazole 1 in an argon matrix at 8 K produced thiirene 126, as seen by the
appearance of its IR spectrum [80]. Upon further irradiation, this intermediate
affords the corresponding thioketene 127. Evidence for the thiirene intermediate
has been obtained during the photolysis of 5-phenyl-1,2,3-thiadiazole by 13C NMR
spectroscopy [81]. Further support of thiirene intermediates has been given by the
photolysis of either 128 or 129, which in the presence of hexafluoro-2-butyne (130)
lead to the thiophene 131 (Scheme 14.32) [72].

The photochemical decomposition of 1,2,3-thiadiazole 1 in the presence of amines
132 leads to thioamides 133 in yields of 60–75% (Scheme 14.33) [82, 83].
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In the presence of alcohols (134), photolysis or thermolysis leads to thioesters 135
(Scheme 14.34) [64, 65, 84].

Thephotochemical decomposition of benzothiadiazoles, followedby acylation of the
obtained products, affords thioesters of acetic acid (138 and 139) (Scheme 14.35) [85].

Photolysis of substituted 1,2,3-thiadiazoles has also been used to generate highly
reactive intermediates such as heterocumulenes [86]. Heterocumulenes 142 and 143
have been obtained by photolysis of quinone 140 and indandione 141, respectively
(Scheme 14.36) [87, 88].
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An example of the simultaneous loss of amolecule of nitrogen and the sulfur atom
arises upon treatment of 4,5-disubstituted 1,2,3-thiadiazoles with strong bases,
which results in ring cleavage. Thus, treatment of 4,5-diphenyl-1,2,3-thiadiazole
(144) with n-butyllithium at�60 �C gives 1,2-diphenylacetylene (145) with evolution
of nitrogen and extrusion of the sulfur atom (Scheme 14.37) [1].

Upon irradiation, fused compounds like 146, through the simultaneous loss of
nitrogen and sulfur, give acetylene derivatives 147 (Scheme 14.38) [89, 90].

Monocyclic 1,2,3-thiadiazoles 148, acting as heme ligands, are oxidized by cyto-
chrome P450 and oxygen to give acetylenic derivatives 150. The formation of these
compounds has been rationalized by the production of an unstable S-oxide (149),
which loses nitrogen and SO (Scheme 14.39) [91].

Pyrolysis of 1,2,3-thiadiazole 151 produces the arylethynyl sulfone 152 in satis-
factory yields via N2 and S displacement (Scheme 14.40) [92].
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A study of the thermal decomposition of unsubstituted 1,2,3-thiadiazole has
suggested the formation of alkynethiol, thioketene, and acetylene. Ab initio calcula-
tions indicate that thioketene 127 is 74 kJmol�1more stable than ethynethiol 153 and
552 kJmol�1 more stable than thiirene 126 (Scheme 14.41) [93, 94].

14.2.5.2 Base-Catalyzed Decompositions
The ring cleavage of 4-monosubstituted 1,2,3-thiadiazoles in the presence of strong
bases affords reactive alkynethiolates 157 [95, 96]. The alkynethiolate can be alkylated
to give sulfide derivatives 160, or acylated, reacted with nucleophiles to give 162,
dimerized to 1,4-dithiafulvenes 166, cyclized with CS2 to give 1,3-dithiole-2-
thiones 165, which are useful intermediates towards tetrathiafulvalenes 167
(Scheme 14.42) [97–99].
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Thomas and Zimmerman have trapped the anion 157 in situ, by reaction with
chlorotrimethylsilane, giving rise to the formation of compound 164 [100].

In contrast to 4-monosubstituted thiadiazoles, 5-derivatives produce stable
anions that can react with many electrophiles to give various 4,5-disubstitued
1,2,3-thiadiazoles. For example, the metallation of 5-phenyl-1,2,3-thiadiazole
(168) with methyllithium gives 4-lithio-5-phenyl-1,2,3-thiadiazole (169), which
is stable and can react with aldehydes or ketones at �70 �C in tetrahydrofuran to
produce 4-oxymethyl-1,2,3-thiadiazoles 170 in good yields (Scheme 14.43) [100].

4-(o-Hydroxyaryl)-1,2,3-thiadiazoles 171 have proven to be susceptible to
relatively weak bases such K2CO3 and give, in the presence of alkylated agents, the
unexpected benzofuran-2-sulfides 174 instead of the O-alkylated 1,2,3-thiadiazoles
(Scheme 14.44) [101, 102].

1H NMR data proved that the benzofuran-2-thiolate 173 is really the intermediate
of the reaction.

This methodology has been exploited to produce nitrogen heterocycles: thus base-
catalyzed ring cleavage of derivatives of 1,2,3-thiadiazole-4-carbonylhydrazide 175,
followed by alkylation, affords the pyrazoles 178 (Scheme 14.45) [103].
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The presence of two or more equivalents of base promotes a different reaction
course that leads to the formation of the 1,3,4-oxadiazine structure 181.

5-Chloro-1,2,3-thiadiazoles 182, which are stable in the presence of weak or
moderately strong bases, react with organometallic reagents to give alkyne sulfides
183 as a consequence of the ring cleavage. Metallation of 182with lithium affords the
unstable 1,2,3-thiadiazol-5-yllithium 184, which loses nitrogen to give the alkynethio-
late 185, which in turn can be easily transformed into 186 (Scheme 14.46) [104].
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The formation of alkynethiolates, by decomposition of the 1,2,3-thiadiazole ring in
the presence of bases, has beenused for the synthesis of a series of dendrimers. Thus,
1,3,5-tris(1,2,3-thiadiazolyl-4-yl)benzene 187, prepared from 1,3,5-triacetylbenzene
by the Hurd–Mori reaction, upon treatment with potassium t-butoxide gives the
trithiolate anion 188, which can be coupled with dendron 189 to afford the second
generation dendrimer 190 (Scheme 14.47) [105].

14.2.5.3 Rearrangement Processes
The chemistry of the 1,2,3-thiadiazole system has found extensive application in
organic synthesis as a useful approach to a series of functionalized five-, six-, and
seven-membered heterocyclic systems. The reaction routes starting from 1,2,3-
thiadiazoles are promoted by (i) the cleavage of the weak N–S bond, (ii) the
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equilibrium between 1,2,3-thiadiazole and a-diazothiocarbonyl structures, and (iii)
the cyclization of these functionalities onto electrophilic and nucleophilic
substituents [3].

14.2.5.3.1 Dimroth-Type Rearrangement The Dimroth rearrangement [106] has
been observed in a series of heterocyclic derivatives possessing several N-atoms. In
the 1,2,3-thiadiazole system, this rearrangement occurs through cleavage of the N–S
bond to give the corresponding diazothiocarbonyl compound 193. 5-Amino-1,2,3-
thiadiazoles 191 easily undergo this type of rearrangement, upon treatment with
base, to form 5-mercapto-1,2,3-triazoles 194 (Scheme 14.48). In this rearrangement,
the nitrogen atom of the chain at position-5 takes part in the process.

The suggested mechanism is supported by the kinetics of the process and by the
influence of the solvent polarity. The acidity of themercapto group shifts the reaction
forward with the formation of thiolate salts in basic conditions.

The transformation of hydrazones 195 into 1,2,3-triazoles 196 by treatment with
PCl5 could proceed by the same reaction route, although themechanismhasnot been
perfectly elucidated (Scheme 14.49) [107, 108].

AdoubleDimroth rearrangement has been reported for the conversion of ethylene
bis(thiadiazol-5-amine) (197) into the intermediate bis thiol, which undergoes an
intramolecular nucleophilic substitution reaction with loss of H2S to give tricyclic
triazole 199 (Scheme 14.50) [108].
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By the same reaction route, 5-halo-1,2,3-thiadiazole 200 reacts with 1,8-diamino-
naphthalene (201) to afford the tetracyclic derivative 203 (Scheme 14.51) [27, 109].

14.2.5.3.2 Cornforth-Type Rearrangement 1,2,3-Thiadiazoles, bearing a C¼N and
or C¼S function at the 4-position, when treated with base, rearrange to give 1,2,3-
triazoles (X¼NR) or isomeric 1,2,3-thiadiazoles (X¼S). The process, in contrast to
theDimroth rearrangement, involves two atoms of the 4-substituent and is similar to
the interconversion reactions of isomeric 4-acyl-substituted oxazoles via the dicar-
bonyl nitrile ylides discovered by Cornforth in 1949 [110]. The rearrangement has
been rationalized on the basis of a 1,3-dipolar intermediate diazo compound 205
bearing two nucleophilic groups (two thiocarbonyl functions or a thiocarbonyl and an
iminocarbonyl function) (Scheme 14.52).
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The example reported in Scheme14.53 shows the different course of theCornforth
rearrangement with respect to the Dimroth reaction. Treatment of 5-amino-1,2,3-
thiadiazole-4-carbothioamide (207) with bases involves two atoms of the side chain to
give 5-mercapto-1,2,3-triazoles 209 rather than the isomeric product 210 resulting
from the Dimroth rearrangement [111].

14.2.5.4 Oxidative and Reductive Processes
1,2,3-Thiadiazoles are very stable to strong oxidizing and reducing agents. However,
oxidation with peracetic acid gives 1,2,3-thiadiazole 3-oxides 211 and, with an excess
of oxidizing agent, 1,2,3-thiadiazole 1,1,3-trioxides 212. Photolysis of 212 produces
several products such as dioxazoles 213, nitriles 214, and acetylenes 215
(Scheme 14.54) [112].

Oxidation of 1,2,3-benzothiadiazole 9with hydrogen peroxide leads to 1-oxo-1,2,3-
benzothiadiazole (216), which thermally decomposes into benzoxathiete 217 or its
valence tautomer 218. Photochemical oxidation of 9 affords the benzoxathieteS-oxide
219 and biphenylene (220) (Scheme 14.55) [113].
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Reduction of benzothiadiazole 221 with hydrogen on palladium gives methyl 3-
amino-2-mercaptobenzoate (222) (Scheme 14.56) [114].

14.2.5.5 Reactions due to the Reactivity of Heterocyclic Ring
Electrophilic substitution on the C-atoms is difficult, while nucleophiles prefer to
attack the 5-position. 1,2,3-Thiadiazoles are weak bases and form a deliquescent
hydrochloride salt that is decomposed by water. There are several examples of
reactions of alkyl halides at the nitrogen atoms of 1,2,3-thiadiazoles to give salts or
mesoionic compounds [5]. Alkylation reactions occur preferentially at N3 ring atom;
Table 14.5 shows the effect exerted by substituents at the 4 and 5-position of the ring
with the relative formation of compounds 223 and 224. The presence of a bulky group
at the 4-position directs alkylation towards the preferential formation of the 2-alkyl
derivative [18].

The alkylation of 1,2,3-thiadiazoles with trimethylsilylmethyl-trifluoromethane-
sulfonate occurs at N3 to produce the corresponding thiadiazolium salts 226, which,
when treated with CsF, give rise to 1,2,3-thiadiazol-3-ium-3-methanides 227 [115].
These non-stabilized azomethine ylides react in situ, via 1,3-dipolar cycloaddition,
with electron-deficient alkynes or alkenes to give pyrazolo-thiadiazole systems 228.
The fused bicyclo compounds can in turn undergo a ring-opening reaction to form
pyrazole or pyrazoline derivatives 229, depending on the nature of the dipolarophiles
(Scheme 14.57).

1,2,3-Thiadiazoles are not easily halogenated. It has been reported that 5-pheny-
lureido-1,2-3-thiadiazole 230 reacts with chlorine or bromine to give the compound
231, produced by halogenation on both the thiazole and phenyl rings
(Scheme 14.58) [116].
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Table 14.5 Product distribution in the methylation of 1,2,3-thiadiazoles with Meerwein�s reagent.
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Mesoionic 3-phenyl-1,2,3-thiadiazoles 232 can be nitrated, formylated, and ami-
nomethylated, as a result of the influence of the olate moiety (Scheme 14.59) [37].

With 1,2,3-benzothiadiazoles, electrophilic substitution occurs on the benzene
ring. For instance, the reaction with nitric acid leads to 4- and 7-nitro-1,2,3-
benzothiadiazoles [1].

14.2.5.6 Reactions with Nucleophiles
1,2,3-Thiadiazoles containing a good leaving group at the C5 atom are able to give
nucleophilic substitutions. Thus 5-nitrosoamino-1,2,3-thiadiazoles 236 in presence
of acid, via the intermediate diazonium salt, react with nucleophiles to give, through
a nucleophile displacement, the corresponding derivatives (Scheme 14.60) [2].

Moreover, 5-chloro and 5-bromo-1,2,3-thiadiazoles in turn can react with different
nucleophilic reagents to give a large variety of 5-substituted 1,2,3-thiadiazole deri-
vatives [117]. For example, the reaction of the 5-chloro derivative 239 with sodium
azide affords in good yield the 5-azide derivative 240 [118] (Scheme 14.61).
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14.2.6
1,2,3-Thiadiazoles in Medicine and Agriculture

1,2,3-Thiadiazoles exhibit various types of biological activities and some of
these compounds are useful pharmacophores. This nucleus is found in some
cephalosporin derivatives such as 241 (cefuzonam), which show antibiotic proper-
ties, in compounds that are antipsychotic agents, in derivatives such as 242 and 243,
which exhibit activity against herpes viruses, herpes simplex viruses, varicella-zoster,
human cytomegalovirus, and HIV-1 [119].
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In general, it is interesting to note that the introduction of the 1,2,3-thiadiazole
nucleus in molecules of known biological activity leads to an increase of their
pharmacological profiles.

1,2,3-Thiadiazoles are also used in agriculture as pesticides. In particular, the 5-
phenylureido-1,2,3-thiadiazole 244 (thidiazuron) is a very active cotton defoliant,
while the S-methyl ester of 1,2,3-benzothiadazole-7-thiocarboxylic acid 245 (Bion),
introduced by Novartis, has been shown to induce disease resistance in wheat,
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tobacco, melons, maize, and Arabidopsis. Moreover, compounds showing antibac-
terial, antiviral, and antifungal activities have also been reported.
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14.3
1,2,4-Thiadiazoles

The parent compound 246 was prepared in 1955 and the first natural
product containing the 1,2,4-thiadiazole system (dendroine, 247, a cytotoxic
compound isolated from marine tunicate Dendrodoa grassularia) was reported in
1984 [120].
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termed thiadiazolidine.
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Many synthetic 1,2,4-thiadiazole derivatives are biologically active compounds
and find use as insecticides, fungicides, herbicides, and antibacterials. As an
example, 5-ethoxy-3-trichloromethyl-1,2,4-thiadiazole (ethridiazole) is used to com-
bat or prevent fungal infestation of plants, fruit, cotton, and soil [121]. Azodyes
derived from diazotized 5-amino-1,2,4-thiadiazoles are used as dyestuffs for poly-
ester and polyacrylonitrile fibers.

During the last decade, very interesting therapeutic applications have been
explored: the 1,2,4-thiadiazole nucleus is a fundamental constituent of several
synthetic products with biological activities concerning the central nervous system
(CNS), G-protein coupled receptors, cardiovascular system, or antibiotic activity.

Extensive reviews have been published on 1,2,4-thiadiazoles [120, 122, 123].
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14.3.1
Structure

1,2,4-Thiadiazole is a heteroaromatic compound. It is a p-excessive heterocycle, but
the presence of two nitrogen atoms exerts a considerable effect on its properties,
leading to a relative p-deficiency on the carbon atoms. Electrophilic substitution
reactions on carbon atoms are extremely rare, while nucleophilic substitution
reactions are common and take place very readily in this ring system, because both
nitrogen atoms can assist in stabilizing the intermediates. An example is provided by
the high reactivity of 5-chloro-3-phenyl-1,2,4-thiadiazole (251) towards nucleophiles:
the compound reacts faster than many activated six-membered heteroaromatics
(Scheme 14.62).

The inductive effect of the sulfur undoubtedly contributes to the stabilization. This
effect is selective, since the 3-chlorine in 3,5-dichloro-1,2,4-thiadiazole is muchmore
difficult to displace than the 5-chlorine.

For 3-hydroxy-1,2,4-thiadiazoles three tautomeric forms are possible (253a–c).
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UVdata suggest that the lactam form 253b is the major tautomer in ethanol [120];
however, 3-hydroxy-5-phenyl-1,2,4-thiadiazole has been shown by X-ray studies to
exist as the OH tautomer 253a [124].

3-Amino and 5-amino-1,2,4-thiadiazoles exist predominantly in the amino
forms (Figure 14.2), as supported by spectroscopic methods and ab initio MO
calculations [125].
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Figure 14.2 3-Amino and 5-amino-1,2,4-thiadiazoles exist predominantly in the amino forms.
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The IR spectrum of 5-mercapto-1,2,4-thiadiazole does not show the SHabsorption
of structure 258, thus suggesting the thione tautomers 259 and 260. On the same
basis, IR experiments indicated that perthiocyanic acid exists as dithione 261 and not
in tautomeric form 262 [120].
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1,2,4-Thiadiazoles fusedwith heteroaromatic systems have also been reported: the
5,7-dimethoxy-2-(2,4-dichlorophenoxyacetylimino)-2H-1,2,4-thiadiazolo[2,3-a]
pyrimidine (263) [126] shows interesting herbicidal properties. Bicyclic imidazo[1,2-
d][1,2,4]thiadiazoles 264 and tricyclic benzo[4,5] imidazo[1,2-d][1,2,4]thiadiazoles 265
have been described as compounds able to react with enzyme cysteine residues to
form a disulfide adduct, thus inhibiting the enzyme [127–129].
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The structure of the 1,2,4-thiadiazole[2,3-a]pyridinium salts 267 (Scheme 14.63),
obtained from the oxidation of N-alkyl-N-benzylthiourea or N-benzyl-N0-(2-pyridyl)
thiourea 266 with sulfuryl chloride in toluene, has been confirmed by 1H and 13C
NMR spectroscopy [130].
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The N-methyl-1,2,4-thiadiazolium salt 268 has been proposed as an interesting
pharmacophore in the design of inhibitors targeting the cysteine residues of
proteins [131].
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Asmentioned above, the partially reduced 1,2,4-thiadiazoles (1,2,4-thiadiazolines)
can exist in three tautomeric forms 248–250, depending on the position of the double
bond. The tautomer 248, with the double bond between the a-nitrogen and the
b-carbon, is the one with the lowest energy, lying 3.3 and 4.6 kcalmol�1 off the other
forms, and thus is themore stable geometric structure [132]. Stable N-substitutedD4-
269 [133] and D3-thiadiazolines 270 [134] have been suggested as scaffolds for
structure–activity investigation as N-S cysteine thiol trapping agents in enzyme
systems [135].
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The 5-amino-1,2,4-thiadiazolin-3-one 271, analog of cytosine, can exist in two
stable tautomeric forms: lactam (oxo) 271a and lactim (enol) 271b. 13C and 1H NMR
spectra and ab initiomolecular orbital calculations support the idea that 271 exists in
the lactam rather than in the lactim form [136, 137].
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The fully saturated 1,2,4-thiadiazole system (1,2,4-thiadiazolidine) is present in
a series of compounds endowedwith important biological activities. Compounds 272
and 273 are characterized by interesting antibacterial, antifungal, anti-inflammatory,
and analgesic activities [138, 140].
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Thiazolidinones 275 have been obtained by reaction of oxathiadiazolium salt 274
with aromatic and cycloalkyl amines (Scheme 14.64). The (Z) configuration for 275
was assigned by AM1 calculations and 1H NMR data [139].

Synthetic approaches towards 1,2,4-thiadiazolidine systems are reported in
Section 14.3.4.1.

The synthesis and chemistry of two classes of meso-ionic 1,2,4-thiadiazoles (276,
X¼O, X¼ SO2C6H4Me-p) have also been reported [133].
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Ph
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14.3.2
Theoretical Aspects

Theoretical studies on the structure and properties of 1,2,4-thiadiazoles are not
numerous, because of the difficulties linked to the presence of the sulfur atom. AM1
calculations have been performed on the parent compound to predict the degree of
aromaticity and to calculate some energetic andmagnetic parameters [141]. With the
view to establishing structure–activity relationships, the charge densities of 3,5-
disubstituted 1,2,4-thiadiazoles have been calculated and possible conformations
estimated [142]. The reactivity of the 5-position in nucleophilic substitution reactions
for non-protonated 1,2,4-thiadiazoles has been supported by a molecular orbital
method with the LCAO approximation [120].

Electrostatic potentials at N2 and N4 have been calculated for 3,5-dimethyl-1,2,4-
thiadiazole and other 5-substitued-3-methyl-1,2,4-thiadiazoles and correlated with
the relative binding to cortical muscarinic receptors [143].
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Geometrical bond lengths and bond angles for the 1,2,4-thiadiazoline
nucleus have been estimated by density functional theory (DFT) methods
(Table 14.6) [132].

Dipole moments, ionization potentials, and electron affinities as a measure of
aromaticity have also been calculated to determine the reactivity of different sites
within themolecules studied. The results were compared with existing experimental
evidence on thiazolidines and related compounds.

Ab initio calculations performed on thiadiazoline 271 confirm that the
lactam form 271a is more stable than lactim form 271b by 9.82 kcalmol�1 at the
HF/3-21G� level. On the same basis, bond lengths and angles have been estimated
(Figure 14.3) [144].

Table 14.6 Equilibrium geometry parameters performed at the B3LYP with a 6-31G�� basis set for
the 1,2,4-thiadiazoline nucleus.

Bond Length (A
�
) Bond Angle (�)

S–N(1) 1.746 N(1)–S–C(1) 93.9
S–C(1) 1.862 S–N(1)–C(2) 108.3
N(1)¼C(2) 1.280 S–C(1)–N(2) 101.6
C(1)–N(2) 1.463 N(1)–C(2)–N(2) 121.1
C(2)–N(2) 1.386 C(1)–N(2)–C(2) 112.7
C(1)–H(3) 1.093 S–C(1)–H(3) 110.1
N(2)–H(2) 1.011 C(1)–N(2)–H(2) 117.6
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Figure 14.3 According to ab initio calculationsperformedon thiadiazoline271, lactam form271a is
more stable than lactim form 271b.
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14.3.3
Structural Aspects

14.3.3.1 X-Ray Diffraction
X-Ray diffraction measurements of several 1,2,4-thiadiazoles and 1,2,4-thiadiazoli-
dines have been reported; [122, 126, 145–149] bond lengths and angles have
been determined by double resonance modulation microwave spectroscopy
(Figure 14.4) [122].

The X-ray analysis of 5-cyano-3-phenyl-1,2,4-thiadiazole (277) shows the molecule
to be almost planar with only ca 2� torsional twist about the bond linking the
thiadiazole and the phenyl system. The experimental data are consistent with the
presence of a formal N¼C double bond for the N2–C3 and N4–C5 linkages, though
there is some evidence for delocalization that extends from S1 via C3 to C5 [150]. The
pattern of bonding is similar to that observed for 1,2,4-thiadiazole-3,5-dicarbonitrile
(278) [151], indicating that the nature of the substituent on C3 has little effect on
the bonding within the ring.
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N
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NC

Ph
N

S
N

278

NC

CN

The X-ray structure of 5-carboxamide-3-phenyl-1,2,4-thiadiazole 4-oxide (279), the
first 1,2,4-thiadiazole N-oxide reported [150], shows that this molecule too has
a nearly planar conformation, the torsional twists about the C(3)–C(Ph) and C
(5)–C(O) bonds being only ca 8� and 5�, respectively. The conformation is stabilized
by intramolecular NH. . .O and CH(Ph). . .O hydrogen bonds, with the former
producing the syn relationship between the N-oxide oxygen and the amido nitrogen.
The bonding in the thiadiazole ring differs noticeably from that observed in 277,
where a pattern of delocalization is present extending from C3 via S1 to N4.
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Figure 14.4 Bond lengths and angles determined by double resonance modulation microwave
spectroscopy.
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More recently, the X-ray crystal structure of the bicyclic imidazo[1,2-d][1,2,4]
thiadiazole 264 was obtained: some of the salient features include the C1–S1 and
N1–S1 bond lengths of 1.730 and 1.693A

�
, respectively, which are slightly longer

than the C–S (1.707A
�
) and N–S (1.649A

�
) bond lengths of monocyclic [1,2,4]

thiadiazole [152].
The crystal structure of the adduct of cathepsin B and Apo501 (280), a member of

a series of 1,2,4-thiadiazole analogues designed as inhibitors of cysteine proteases,
clearly indicates that the cysteine thiol reacts with the N–S bond of the thiadiazole
moiety, thus resulting in the inactivation of the enzymes [127].
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280

14.3.3.2 NMR Spectroscopy
1H NMR spectral data on several 1,2,4-thiadiazole derivatives have been
reported [126, 153, 154, 158]. In general, the resonances of protons in the 1,2,4-
thiadiazoles are shifted downfield with respect to benzene protons, with the proton
at C3 more deshielded than the proton at C5. In 3-phenyl-1,2,4-thiadiazole, H3
resonates at 9.9 d, while H5 appears at 8.55 d [125].

The solvent effect on the 1H NMR spectral data of a series of 1,2,4-thiadiazole
derivatives has been determined by measuring the chemical shift differences
observed in various solvents. For methyl and methylene groups linked to a sp2-
hybridized nitrogen,Dn shows a linear correlation with Hammett s constants, while
the same groups attached to a sp3-hybridized nitrogen correlate with Taft s0

constants [122, 155].
1H and 13C NMR data have been reported for 1,2,4-thiadiazolidines 281 [156].

NS

N
ON

R

Ar

281

R

13C NMR spectroscopy has been widely used to elucidate the structures of various
1,2,4-thiadiazoles and thiadiazolines [159–163]. More recently, 13C chemical shifts
of 3,4-disubstituted-1,2,4-thiadiazole-5-ones were determined [164]. Exceptionally
goodHammett correlations of 13C chemical shifts withswere obtained. Thenegative
r values observed indicate p-polarization of C¼N, and C¼O bonds.

Unequivocal assignment of all chemical shifts (1H and 13C NMR) has been
performed using two-dimensional experiments such as HMQC for one-bond
correlations and HMBC for long distance proton/carbon correlations [171].
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Solvent and concentration effects in 14N NMR spectroscopy have been inves-
tigated [165, 166]. High precision 14N NMR measurements are reported for all
possible thiadiazole isomers in various solvents. Both solvent polarity and hydro-
gen bonding effects produce an increase in the nitrogen shielding. Analysis of the
experimental data and molecular orbital studies indicates that an increase in
the polarity of the solvent favors the delocalization of the lone pair electrons from
the sulfur atom into the conjugated ring, thus leading to an increase in electronic
charge at the nitrogen atoms.

In the case of 1,2,4-thiadiazoles, nitrogen shielding ranges from11 to 20 ppm,with
the range for N3 approximately twice that for N2.

Themechanismof the reaction and the formation of 1,2,4-thiazolidineN-oxide 284
by reaction of O-substituted benzamidoxime 282 with 4,5-dichloro-1,2,3-dithiazo-
lium chloride (283) (Scheme 14.65) has been investigated by analysis of 13C and 14N
NMR spectra of 15N-labeled and unlabeled precursors (Scheme 14.66) [150].

The signal at d�110.9, corresponding to the unoxidized nitrogen atom, in the 15N
NMR spectrum of the N-oxide – and the signal at d �70.7, characteristic of
heterocyclic N-oxides, in the 14N NMR spectrum – clearly suggests that all the
15N labels are on the unoxidized nitrogen atom.
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14.3.3.3 UV and IR Spectroscopy
Data on IR and UV spectroscopy have been reported for some 1,2,4-
thiadiazoles [120].

Characteristic infrared absorptions are seen at 1560–1590 and 1490–1550 cm�1

(ring skeletal vibrations), 1215–1270, 1080–1185, and 1020–1050 cm�1 (CH in plane
deformations), and 735, 795–860 cm�1 (CH out-of-plane deformations) [167].

1,2,4-Thiadiazoles show an absorption band in the UV spectra at 229 nm:
the presence of amino groups in the ring induces a bathochromic shift (247 nm
for 5-amino- and 256 nm for 3,5-diamino-1,2,4-thiadiazole).

14.3.3.4 Mass Spectrometry
The electron-impact mass spectra of 1,2,3-thiadiazoles exhibit an intense signal for
the molecular ion [139]. Moreover, the predominant fragmentation pattern follows
two general pathways (a and b) as reported in Scheme 14.67. 3-Aryl-1,2,4-thiadiazole-
5-thiones 285 and 286 fragment much less than 3,4-disubstituted compounds 287,
288 [168].

3-Aryl-5-alkyl- or arylthio-1,2,4-thiadiazoles 289 have been shown to exhibit rather
stableMþ . ions and relatively simple fragmentation patterns (Scheme 14.68), which
are usually dominated by the R1CNSþ . ion, which is even the base peak.
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The mass spectra of 1,2,4-thiadiazole 4-oxides 279 and 284 show as first frag-
mentation the loss of the oxygen atom, followed by the fragmentation observed
for the corresponding deoxygenated compounds,which is the usual fragmentation of
the 1,2,4-thiadiazole ring [150].

14.3.4
Synthesis

14.3.4.1 1,2,4-Thiadiazolidines
Themost general synthetic entry to thiadiazolidinediones 292 starts fromN-alkyl- or
N-aryl-S-chloroisothiocarbamoyl chlorides 290, obtained by treatment of alkyl or aryl
isothiocyanate with chlorine. Thus, the reaction of 290 with aliphatic or aromatic
isocyanates gives the sparingly soluble 3-oxothiadiazolium salts 291, which, in the
presence of moist air, hydrolyzes to 1,2,4-thiadiazolidine-3,5-diones 292 with evo-
lution of hydrogen chloride (Scheme 14.69) [169, 170].

Introduction of an iminomoiety at the 5-position of the thiadiazolidine framework,
leading to compound 295, has been achieved by the basic hydrolysis of urea
derivative 294 (Scheme 14.70). This last compound was easily obtained following
a described procedure of 5-aminophenyl-1,2,3,4-thiatriazole 293 rearrangement
with isocyanates and isothiocyanates [171]. Treatment of 293 with ethoxycarbonyl
isothiocyanate leads to thiadiazolidine 296.
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Alternatively, 5-imino-3-oxo-1,2,4-thiadiazolidines 298 have been obtained in good
yields by addition of arylureas to benzoyl isothiocyanate and oxidation of interme-
diate 2-thiobiourets 297 with hydrogen peroxide (Scheme 14.71) [172].

Similarly, amidinothioureas 300, obtained by reaction of aryl isothiocyanates with
guanidines 299, have been converted into 3,5-diarylimino-1,2,4-thiadiazoles 303 by
reaction with bromine in ethanol or by reaction with benzyl chloride followed
by bromine treatment (Scheme 14.72) [173].

An alternative synthesis of amidinothioureas 305 involves the reaction of a-chlor-
oformamidines 304 with substituted thioureas: oxidation of 305 with hydrogen
peroxide leads to thiadiazolidine 306 (Scheme 14.73) [174].

The 1,2,4-thiadiazolidone system has also been prepared starting from
other heterocycles by a cycloaddition–elimination sequence. The reaction of 5-
benzylimino-1,2,4-dithiadiazolidin-3-one 307 with isocyanates leads to the
corresponding 1,2,4-thiadiazolidinone 308 with elimination of carbonyl sulfide
(Scheme 14.74) [175].

An alternative way to obtain 5-imino-1,2,4-thiadiazole-3-ones 310 is based on the
reaction of 5-imino-1,2,3,4-thiatriazolines 309, as masked 1,3-dipoles, with isocya-
nates via a cycloaddition–elimination process (Scheme 14.75) [176].
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Finally, 3-(phenylimino)-1,2,4-thiadiazolidin-5-ones 312 and 313 can be synthe-
sized by reaction of substituted guanidines 311with chlorocarbonylsulfenyl chloride
(Scheme 14.76) [177].

Bicyclic imidazo[1,2-d][1,2,4]thiadiazol-3(2H)-one (316) was prepared by conden-
sation of 2-amino- or 2-mercaptoimidazole (314) [152] with alkyl isocyanates, to give
compound 315, followed by oxidative ring closure with bromine in triethylamine at
ice cold temperature (Scheme 14.77). Tricyclic benzimidazo derivatives have been
obtained by a similar pathway.
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14.3.4.2 Dn1,2,4-Thiadiazolines

14.3.4.2.1 D2-1,2,4-Thiadiazolines D2-1,2,4-Thiadiazolines 320, the so-called
Hector�s bases, have been synthesized in good yields by oxidation of N-arylthiour-
eas 317, with hydrogen peroxide or other oxidizing reagents, via the intermediate
dithioformamidines 318 and N-arylamidinothioureas 319 (Scheme 14.78) [178].

Usually, the preparation of 3,4-disubstituted-1,2,4-thiadiazole-5-ones 322 includes
the reaction of amidoximes 321with chlorocarbonylsulfenyl chloride in the presence
of base as a catalyst (Scheme 14.79) [179] or the reaction with thiophosgene to afford
3,4-disubstituted 1,2,4-oxadiazoline-5-thiones 323, which, in the presence of a
catalytic amount of copper powder, is converted into 322 (Scheme 14.80) [180].

N
H

N
H

R1

N

N S

NN

O

R1

Ph

Ph ClSCOCl Ph

Ph

N S

NN

O

Ph

Ph

R1

+

312311
313

12-82%

R1 = Me, Et, Bu, Ph, Bn

Scheme 14.76

N

N
H

SH

n-BuNCO

∆

N

N SH

O N
H

Bu

Br2

N

N

N

S

Bu
O

Et3N

316

314

315

93% 92%

Scheme 14.77

N
S

N

NH

Ar

S N
H

Ar

NH2

ArHN

H2O2

S N
H

Ar

NH

2

NH
S

N
ArHN

Ar

NH2

317 318

319320

80-90%

TolylPh,=Ar

Scheme 14.78

1300j 14 Thiadiazoles



However, these methods require highly toxic reagents and often lead to a mixture
of products. New methods have been developed from amidoximes 321 by a Lewis
acid-mediated rearrangement (Scheme 14.81) [181].

The reaction of 2-hydroxylamino-4,5-dihydroimidazolium-O-sulfonate (323) with
carbon disulfide took two different courses, dependent on the base–solvent combi-
nation. Thus, when the reaction of 323 was performed in DMF in the presence of an
equimolar amount of triethylamine, 6,7-dihydro-5H-imidazo[2,1-c][1,2,4]thiadia-
zole-3-thione 324 was produced in 50% yield as a result of a tandem nucleophilic
addition–electrophilic amination. In the presence of an excess of triethylamine, 324
underwent subsequent reaction with a secondmolecule of carbon disulfide to give di
(5,6-dihydro-7H-imidazo[2,1-c][1,2,4]thiadiazole-3-thione-7-yl)methanethione 325.
The resulting mixture contained 324 and 325 in a ratio of about 7 : 1
(Scheme 14.82) [182].
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The imidazothiadiazole 324 can exist in two likely (i.e., low-energy) tautomeric
forms, theN7–H tautomer 324 and theN1–H tautomer 324a, which can interconvert
via a 1,3-prototropic shift. Calculations [135] indicated that 324 has a relative energy
12.9 kcalmol�1 below that of 324a. NMR spectroscopy showed that the low-energy
tautomer 324 is also present in DMSO-d6 solution. The methylene groups of the
imidazolinemoiety are non-equivalent, and aNOEwas observed between an upfield-
shifted C6–H proton and the N–H proton.

Compound 324 reacted in the normal manner with acetic anhydride and
benzyl bromide (Scheme 14.82) to afford 326 and 327, respectively. The structure
of 7-benzyl-6,7-dihydro-5H-imidazo[2,1-c][1,2,4]thiadiazole-3-thione (327) was con-
firmed by an X-ray crystallographic study. The reaction of 324 with benzoyl isothio-
cyanate carried out in THF in the presence of Et3N at room temperature led to the
formation of the N7-benzoyl derivative 328 [182].

Bicyclic and tricyclic [1,2,4]thiadiazolines 329 and 331, respectively, have been
synthesized starting from the corresponding [1,2,4]thiadiazol-3(2H)ones 316
and 330, by an exchange reaction with cyanogen bromide at room temperature,
with extrusion of alkyl isocyanate (Scheme 14.83) [152].

14.3.4.2.2 D3-1,2,4-Thiadiazolines N-(2,3-Diphenyl-1,2,4-thiadiazol-5-(2H)-ylidene
methanamine 335, SCH-202676, is a D3-thiadiazoline, identified in 2001 as an
inhibitor of both agonist and antagonist binding toGprotein-coupled receptors [183].
The synthetic approach moves from benzamide 332, which was converted into
benzimidoyl chloride 333 by reaction with thionyl chloride. Substitution of chlorine
with NCS, followed by addition of methylamine, afforded thiourea 334 in good yield.
Finally, oxidation with bromine led to the target 2,3-diphenyl-5-methylimino-2H-
[1,2,4]thiadiazole hydrobromide 335 (Scheme 14.84) [184].

More recently, a new series of 335 were synthesized with different N-imino
substituents [185]. Receptor–ligand binding experiments and stability studies
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showed that these compounds are highly reactive sulfhydryl modifying agents rather
than allosteric inhibitors.

Bicyclic D3-1,2,4-thiadiazolines are formed in moderate yields by treatment of
cyclic amidines 336 as 2-aminopyridine, 3-aminopyridazine, 2-aminobenzothiazole,
2-aminopyrimidine, and 2-aminothiazole with chlorocarbonylsulfenyl chloride
(Scheme 14.85) [186].

The products obtained depend on the mode of addition. When 336 is added to
chlorosulfenyl chloride, derivatives 338 are isolated via the intermediate 337. Addi-
tion of chlorocarbonylsulfenyl chloride to 336 leads to 5-oxo derivatives 340, via the
bis(intermediate) 339.
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Treatment of amidine 336with 1-chloro-1-phenylimonomethanesulfenyl chloride
(341) affords 3H-1,2,4-thiadiazoles 342.

14.3.4.2.3 D4-1,2,4-Thiadiazolines The most general synthetic approach to D4

-1,2,4-thiadiazolines is based on the ring closure of thiobiourets in the presence of
different oxidizing agents. In this way, 5-amino-1,2,4-thiadiazole-3-ones 344 have
been synthesized from 343 via N–S bond formation by treatment with hydrogen
peroxide in alkaline solution (Scheme 14.86) [136, 158, 187].

Other oxidizing agents such as molecular bromine [136] or N-bromosuccini-
mide [188] have been used for cyclization.

Analogously, the oxidation with bromine of amidinothioureas 345, derived from
2-aminobenzimidazole, afforded the tricyclic benzimidazole[1,2-b]-1,2,4-thiadiazo-
line 346 (Scheme 14.87) [189].

The reaction of arylthioamides 347 with phenyl isocyanate leads to arenethiocar-
boxamide 348, which can be converted into 5-aryl-3-oxo-2-phenyl-1,2,4-thiadiazoline
(349) by direct oxidation with bromine (Scheme 14.88) [190].

N

N
S

NH

O

R2

N
H

N
H

N
H

R1

O S

Ox

R1

R2

344343

69-85%

R1 Me, Ph, C(O)Ar=

R
2

H, Me=

Scheme 14.86

N

N
H

NH2

ArCONCS
N

N
H

N
H

N
H

Ar

S O Br2
N

N

N

S NH

345 346

36-70% 19-65%

O Ar

Ar = Tolyl, 4-MeOC6H4

Scheme 14.87

H2N NHAr

S

PhNCO
Ar N

H
N
H

Ph

S O
Br2

N S

N

Ph

O

Ar

347 348
349

26-75%
15-70%

Ar = MeOC6H4, EtOC6H4

Scheme 14.88

14.3 1,2,4-Thiadiazoles j1305



14.3.4.3 1,2,4-Thiadiazoles
In general, 1,2,4-thiadiazoles are prepared by the appropriate intra- or intermolecular
ring closure reactions, starting from different compounds containing nitrogen and/
or sulfur atoms.

The main synthetic route towards 3,5-diaryl- or dialkyl-1,2,4-thiadiazoles is based
on the oxidation of thioamides derivatives [170, 191]: various oxidizing agents as
halogens, hydrogen peroxide, or thionyl chloride promote the oxidative cyclization in
moderate yields. More recently, the condensation reactions of thioamides (as well as
thionicotinamide and isothionicotinamide) have been performed in the presence of
an oxidative DMSO–HCl mixture to give symmetrically substituted 1,2,4-thiadia-
zoles 350 (Scheme 14.89) [192].

Under oxidative cyclization conditions, N-substituted thioureas have also been
converted into 1,2,4-thiadiazole derivatives [192]. Thus, 3,5-diamino-1,2,4-thiadia-
zoles 352 (Dost�s bases) [193] have been obtained in 48% yield, as a result of
isomerization, by heating a suspension of 5-imino-4-phenyl-3-phenylamino-4H-
1,2,4-thiadiazoline 320 (Ar¼Ph, Hector�s base) in ammonia alcohol solution at
135 �C (Scheme 14.90) [194].

The appropriate Hector�s base has been obtained by oxidation of 1-phenyl-1-
phenylamidinothiourea bromohydrate 319 (Scheme 14.78) with molecular bromine
(73% yield) [178] or by oxidation of phenylthiourea 317 with hydrogen peroxide
(70%) [195], tert-butyl hypochlorite (46%) [196], dioxane dibromide (85%) [197], or
diaryl telluroxide (97%) [198]. Compound 352 has also been synthesized by reaction
of 3,5-dichloro-1,2,4-thiadiazole with boiling aniline for 100 h [199].

In comparison with all these oxidative processes needing preliminary, often labor-
intensive synthesis of precursors, a recent method affords 352 starting from
arylthioureas 317 at room temperature by a single-step reaction [200]. The process
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uses [bis(acyloxy)iodo]arenes as a more specific oxidant reagent than the traditional
ones (Scheme 14.91).

Reaction of nitrile sulfides 354with acyl cyanides 356 provides a useful access to 5-
acyl-1,2,4-thiadiazoles 357 [201]. The synthetic route is based on the 1,3-dipolar
cycloaddition of short-life nitrile sulfides 355, generated in situ by thermal decar-
boxylation of 1,3,4-oxathiazol-2-ones 354 [202], to strongly activated dipolarophiles
such as the acyl cyanide (Scheme 14.92).

Analogously, the reaction of 354 with tosyl cyanide (358) leads to the key
intermediate 359, which, by displacement of the tosyl groupwith ammonia, provides
the 5-amino-1,2,4-thiadiazoles 360 (Scheme 14.93) [203].
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5-Amino-1,2,4-thiadiazoles 362 have also been generated by thermolysis of 2-
thiocarbamoyl-5-phenyltetrazoles 361 (Scheme 14.94) [204].

Amore recent synthetic strategy towards 3,5-dialkyl 1,2,4-thiadiazoles 365 involves
the amination-cyclization of N0-(thioaroyl)-N,N-dimethylamidines 364 with an ami-
nating agent such ashydroxylamine-O-sulfonic acid (HSA) orO-(mesitylenesulfonyl)
hydroxylamine (MSH) (Scheme 14.95).

Amidines 364 are prepared by reaction of thioamides with N,N-dimethylforma-
mide dimethyl acetal or N,N-dimethylacetamide dimethyl acetal (363) [205].

1,2,4-Thiadiazole derivatives have also been synthesized by skeletal
rearrangements of different five-membered rings. In this way, methyl 2-(5-alkox-
ycarbonylamino-1,2,4-thiadiazol-3-yl)acetates 368 have been prepared by reaction of
3-amino-isoxazole 366 with isothiocyanates, following skeletal (Dimroth) rearrange-
ment of the intermediate thiourea derivative 367 (Scheme 14.96) [206].

5-Amino-3-(a-nitroalkyl)-1,2,4-thiadiazoles 371 have been obtained by thermal
rearrangements of 3-substituted 4-(3-ethoxycarbonylthioureido)-1,2,5-oxadiazole
2-oxides 370 (Scheme 14.97). The reaction was performed by refluxing a mixture
of aminofuroxans 369 with ethoxycarbonyl isothiocyanate [207].

N

N

N
N

Ph S

NR2

∆

N

Ph

N3 NR2

S N

N
S

Ph

NR2

362

R = Me, Et, Ph, Bn 37-65%

- N2

361

Scheme 14.94

S

R1 NH2
NR1

S NMe2

R2+
MeO

R2

OMe

NMe2
NR1

S NMe2

R2

H2N

N
N

S

R2

R1

XSO3NH2

HSA: X=OH
MSH: X=mesityl

SO3X363 364 365

R1 = R2 = Me, Et, Ph 19-66%

Scheme 14.95

O
N

MeO

NH2
N

N
S

NHCO2R
KSCN/ClCO2R

O
N

MeO

HN

S

NHCO2R

MeO2C

366

367

368

EtMe,=R
17-69%

Scheme 14.96

1308j 14 Thiadiazoles



An interesting access to 3-phenyl-5-substituted-1,2,4-thiadiazoles 374 has
been exploited by the photoinduced molecular rearrangement of five-membered
heterocycles containing a N–O bond. In fact, photolytic species, which originates
from the ring cleavage of 1,2,4-oxadiazoles, react with sulfur reagents by forming
a new N–S bond. Thus, irradiation of 5-amino-3-phenyl-1,2,4-oxadiazole (372) in the
presence of thiourea leads to 1,2,4-thiadiazole 374, through the intermediate 373
(Scheme 14.98) [208].

N-Unsubstituted-N0-chlorobenzamidines (375, R1¼H), by treatment with potas-
sium S-methyl cyanimidodithiocarbonate 376, afford 2-arylimidoyl-3-imino-5-
methylthio-1,2,4-thiadiazoles 378 [209]. In contrast, substituted amidines (375, R¼
aryl and methyl) give 5-cyanimino-4,5-dihydro-3-aryl-1,2,4-thiadiazoles 380 contain-
ing in the ring both the nitrogen atoms of amidines (Scheme 14.99) [210].

N
O

N

R

N

N
S

NHCO2Et

EtO2CNCS O2N

O

H2N

N
O

N

R

O

H
N

S

EtO2CHN

R

369
370

371

R = Me, Ph, COMe 40-59%

Scheme 14.97

N

N
S

Ph

NHR

hνN

N
O

Ph

NH2

N

N
O

Ph

NH2

N

N
O

Ph

NH2

S

H2N NHR

372 373 374

R = H, Me, Ph 45-67%

Scheme 14.98

N

N
S

SMe

NCl

Ar NHR1

NCN

KS SMe

HN
+

R1=H

R1=Aryl, Me

SMeAr

HN S

HN NCN

NH

Ar

SMeNHR1

N S

Ar NCN
N

N
S

NCN

Ar
R1

375 376 377
378

379 380

18-60%

15-58%

- HSMe
Ar = Ph, Tolyl

Scheme 14.99

14.3 1,2,4-Thiadiazoles j1309



At the same time, aminothiadiazole 382 has been obtained by cyclization
of amidine 381with potassium thiocyanate and bromine (Scheme 14.100) [211, 212].

14.3.5
Reactivity

1,2,4-Thiadiazoles are aromatic in nature and are to be considered as p-excessive
heterocycles with relatively p-deficient C-atoms. Electrophilic substitutions at the C-
atoms could not be achieved.

The p-electron density at the 5-position, calculated by the HMO method, is
markedly lower than that at the 3-position, thus influencing many of the properties
of substituted derivatives. As an example, 5-halo derivatives are susceptible to
replacement of halogen by nucleophiles, whereas 3-halo derivatives are relatively
inert. Thus, 5-chloro-1,2,4-thiadiazole (383) undergoes nucleophilic substitution
with silver fluoride to give the 5-fluoro derivative 384 (Scheme 14.101).

In the case of 3-chloro-1,2,4-thiadiazole, delocalization of thenegative charge in the
intermediatewith involvement of both nitrogen atoms is not possible; for this reason,
it does not react or reacts only slowly with nucleophiles.

The parent compound 246 is quite sensitive to acid and bases, as well to oxidizing
and reducing agents. It reacts rapidly with cold alkali hydroxides, undergoing
ring opening with formation of ammonia, hydrogen sulfide, and sulfur. Treatment
of 246 with a weak base (K2CO3) in D2O gives the 5-deuteroderivative 385
(Scheme 14.102) [122].

With hydrochloric acid, hydrolytic ring-opening occurs via the 1,2,4-thiadiazolium
ion. Substituents in the 3- and 5-positions of 1,2,4-thiadiazoles exert a marked
stabilizing influence: for example, the 3,5-diphenyl derivative resists the action of hot
mineral acids and prolonged boiling is required for attack by alkalis [178].
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Catalytic and dissolving metal reductions usually cleave the nucleus at the N–S
bond by a reaction that can be considered as the reverse of its synthesis by oxidative
cyclization of amidinothio-derivatives (Section 14.3.4). For example, reduction of
the diamino derivative 386 affords amidinothiourea (387), from which 386 may be
prepared by oxidation (Scheme 14.103).

Reduction of 3,5-diphenyl-1,2,4-thiadiazole (388) results in the loss of sulfur and
formation of benzamidine 389 (Scheme 14.104)

14.3.5.1 Aromatic Ring Reactivity
1,2,4-Thiadiazoles are weak bases. Methylation with iodomethane occurs at N4;
when trimethyloxonium tetrafluoroborate is used as methylating agent, the reaction
takes place at both nitrogen atoms, leading to the diquaternary salt 390
(Scheme 14.105) [213].
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Methylation of 5-amino-1,2,4-thiadiazoles 360 (R¼H, Ph) affords the N4 deriva-
tives 391; furthermethylation gives 4-methyl-5-methylimino-3H-1,2,4-thiadiazolines
392 (Scheme 14.106) [214]. On warming in ethanol, compound 391 (R¼H) under-
goes a Dimroth rearrangement to give 393.

The N4 derivatives 394, obtained by reaction of phenacyl bromide with 5-amino-
1,2,4-thiadiazoles 360, spontaneously cyclizes to the fused imidazolothiadiazoles 395
(Scheme 14.107) [178].

Reaction of 3-amino-1,2,4-thiadiazole (396) with trimethyloxonium tetrafluoro-
borate occurs at N2 to yield the thiadiazolium salt, which, on basification,
undergoes a Dimroth rearrangement to give the 5-methylamino derivative 397
(Scheme 14.108) [215].
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Analogously, the sulfonamide 398 by reaction with methyl fluorosulfonate
gives the N2 derivative 399, together with the mesoionic compound 400
(Scheme 14.109) [133].

Similar behavior has been observed for 3-hydroxy-5-phenyl-1,2,4-thiadiazole (401).
The reaction with dimethyl sulfate and sodium hydroxide leads to N2 methylated
derivative 402; when methylation was carried out with toluene-4-sulfonate, 402 was
obtained together with the meso-ionic compound 403 (Scheme 14.110) [133].

The reaction of 3 substituted 1,2,4-thiadiazole-5-thiols (404) with formaldehyde
and with arylsulfonyl chlorides leads to N4 derivatives 405 and 406
(Scheme 14.111) [216].

In general, hard nucleophiles attack at the C5 carbon atom of 1,2,4-thiadiazoles,
while soft nucleophiles react at the sulfur atom.
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For examples, nucleophilic attack at C5 has been suggested as the initial step in
many ring-opening reactions leading to linear products that, according to the
substituents, can recyclize to other heterocyclic systems [120]. Thus, 3,5-diamino-
1,2,4-thiadiazole (386) upon treatmentwith hot alkali undergoes a nucleophilic attack
at C5 to give the proposed intermediate 407, which affords, by extrusion of sulfur, the
amidinourea (408) (Scheme 14.112). The stability of 5-alkylamino and 5-arylamino
homologues is considerably higher; thus, the reaction does not occur even after
several hours refluxing in 3N sodium hydroxide solution.

2-Methyl-3,5-diphenyl-1,2,4-thiadiazolium chlorosulfate (409) is cleaved by alk-
oxides to give the benzimidate 410 (Scheme 14.113) [167].

Primary and secondary amines also function as hard nucleophiles and attack at
the C5 position of 409 to yield the open-chain salts 411; when hydrazines and
hydroxylamines are used, the initially formed salts cyclize to give a 1,2,4-triazole or
oxadiazole 412 (Y¼N or O) (Scheme 14.114) [131].

A carbon nucleophile, the dicyanomethanide ion, also attacks at the C5 position
of 409; the open-chain product 413 cyclizes to the dihydropyrimidine 414. On further
treatment with dicyanomethanide ion or aqueous base, a Dimroth rearrangement
occurs to pyrimidine 415 (Scheme 14.115) [131].

Soft nucleophiles attack at the sulfur atom. For example, 3-hydroxy-5-phenyl-1,2,4-
thiadiazole (402) reacts with acetic anhydride in the presence ofDBUat 130 �C to give
thiazole 417 (Scheme 14.116) [215].

When the reaction is carried out at room temperature, acetylation occurs at the N2
position to give compound 418 in low yields (Scheme 14.117) [215].

However, themost important nucleophilic attack at the sulfur atom is related to the
ability of 1,2,4-thiadiazoles to act as a class of small heterocyclic thiol trapping agents.
In fact, heterocyclic compounds possessing a N–S bond are cleaved by thiolates to
form compounds such as 419 via a disulfide intermediate (Scheme 14.118) [131].
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It has been widely reported that three different families of 1,2,4-thiadiazoles are
able to react with enzyme cysteine residues to forma disulfide adduct, thus inhibiting
the enzyme (Scheme 14.119) [127–129].

The design of inhibitors based on the monocyclic 1,2,4-thiadiazole scaffold 420
involves the use of substituent G as a recognition arm for the enzyme binding, and
the substituent Y for tuning the reactivity of the ring opening. The presence of a fused
ring in bicyclic 420b and tricyclic 420c derivatives is preferred for the inhibition of
certain enzymes such as Hþ/Kþ ATPase.

N

N

S
N

N

S

401

OH O

AcPh Ph

418

Ac2O, DBU

3%

Scheme 14.117

N

N

S

409

Ph

Ph

PhS

Me
N

N

Ph

Ph

Me
S

PhS
419

N

N

Ph

Ph

Me
S

N

N

Ph

Ph

Me
S

H2O H-PhS

PhSSPh

+

63%

Scheme 14.118

N

N

SG

Y

N
N

SN

Y

N
N

SN

Y

Enzyme-SH

NH

N

G

Y

S

S
Enzyme

420a 420b
420c

Scheme 14.119

1316j 14 Thiadiazoles



14.3.5.2 Reactions of 1,2,4-Thiadiazolidines
2,4-Dimethyl-1,2,4-thiadiazolidine-3,5-dithione (421) isomerizes in acid solution to
4-methyl-5-(methylimino)-1,2,4-dithiazolidine-3-thione (422): the reverse reaction
occurs in alkaline media [163]. Compounds 421 and 422 are interconvertible also in
the presence of electrophilic nitriles and give 1,2,4-thiadiazoline-5-thiones 424 as
final products. The interconversion has been rationalized on the basis of a cycload-
dition–elimination mechanism that involves hypervalent sulfur intermediates
(Scheme 14.120).

Substituted 2,4-diimino-1,2,4-thiadiazolidines 425 isomerize under acidic
conditions to 2-guanidinobenzothiazoles 427. The suggested mechanism involves
theprotonationof 425 atN2, followedby theN–Sbond cleavage to 426 and subsequent
electrophilic attack of the sulfur at the aromatic ring (Scheme 14.121) [167].

14.3.5.3 Reaction of D2-1,2,4-Thiadiazolines
Hector�s base, 3-arylamino-4-aryl-5-imino-1,2,4-thiadiazole (320), undergoes a base-
catalyzed Dimroth rearrangement to give Dost�s base 352 (Scheme 14.90);
the reduction of 320 under mild conditions (H2S/25 �C) gives amidinothiourea
428, which hydrolyzes to diphenylguanidine (429). Compound 429 can be obtained
directly from 320 by reduction under drastic conditions (Scheme 14.122) [178].

Hector�s base forms a 1 : 1 adduct (430) with CS2 [217], while reaction with
electron-deficient alkynes gives 2-arylaminothiazoles 431 (Scheme 14.123) [120].
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It has been suggested [120] that these reactions proceed via a stepwise
mechanism (Scheme 14.124).

An analogous nucleophilic substitution pattern has been proposed for the reaction
of 3,4-disubstituted 5-imino-D2-1,2,4-thiadiazolines with arylcyanamides and imi-
dates. These reactions give rearranged products that result from bond switching at
hypervalent sulfur intermediates [218].

Thus, treatment of 432 with ethyl acetimidate leads to derivative 433, which on
methylation with Meerwein�s reagent (Me3O

þBF4
�) affords the salt 434. The

structure of compounds 433 and 434 has been confirmed by X-ray analysis
(Scheme 14.125) [219].

S

N

NHPh

X

N S

N

NH

Ph

PhHN

X

X X

431

N S

N

N

Ph

PhHN

X
H

X

N

S X

H

N
Ph

X

320

- PhNHCS

70%

X = CO2Me

Scheme 14.124

N
S

N
NH

Me

N S

N
N

Me

HN

432

NHEtO

N

N
S

N

N

Me

H

N S

N
N

HN

Me
Me3OBF4

N S

N
N

Me

MeN

TFA

N S

N
N

Me

MeHN BF4

433434

75% 60%

Scheme 14.125

14.3 1,2,4-Thiadiazoles j1319



Bond switching rearrangement using the propensity of sulfur to assume
a hypervalent state has been observed in the reactions of bicyclic thiadiazolines
435 with nitriles: an exchange of nitrile units has been observed to give 436
(Scheme 14.126) [220].

The products 438 of the addition of nucleophiles (i.e., alcohols, amines) to the
cyano group of 5-(cyanoimino)thiadiazolines 437 undergo a Boulton–Katritzky
rearrangement, followed by the elimination of a nitrile from the intermediate 439
to give thiadiazoles 440 (Scheme 14.127) [221].

14.3.5.4 Reaction of D3-1,2,4-Thiadiazolines
D3-1,2,4-thiadiazolines react with electrophilic reagents to give rearrangement
products. As an example, treatment of thiadiazoline 441 with trichloroacetonitrile
affords a mixture of tautomers 443 and 444, through the intermediacy and rear-
rangement of imine 442 (Scheme 14.128) [222].
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Thiadiazolines 441 have been acylated in the presence of triethylamine [223]. The
use of diphenylketene as acylating agents leads to 445 which, by heating in polar
solvents, rearranges to D2-thiazolin-4-one 446, whose structure has been confirmed
by X-ray analysis. A similar rearrangement is observed when 441 is reacted with
DMAD to give 447 (Scheme 14.129).
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carbon disulfide) and nitriles to give the products 449 and 450, respectively
(Scheme 14.130) [224].

2-Benzyl-5-chloro-1,2,4-thiadiazole-3-one (451) and 2-aminobenzyl cyanide (452)
in ethanol containing triethylamine react to afford the intermediate 453, which,
through yet another example of bond switching, gives the indolinothiadiazolone 454
(Scheme 14.131) [225].

D4-1,2,4-Thiadiazolines are readily cleaved at the N–S bond under very mild
conditions to give thiobiouret by a reaction that is inverse to that reported in
Scheme 14.86.

3-Imino-1,2,4-thiadiazoline provides example of reductive ring cleavage in which
the products immediately recyclize to new heterocyclic system. Thus, the D4-1,2,4-
thiadiazoline 455 is cleaved with H2S to give triazines 456 and 457
(Scheme 14.132) [167].

14.3.5.6 Reactions of Substituents
Owing to the lower electron density at the 5-position of the 1,2,4-thiadiazole ringwith
respect to the 3-position, methyl or methylene groups attached at C5 show a marked
acidity, which promotes different reactions patterns, following hydrogen abstraction
by bases. In fact, the resulting carbanions, stabilized by conjugation, react, for
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example, with aromatic aldehydes to give 5-styrylthiadiazoles 458, with CO2 to yield
the carboxylic acids 459, and with carboxylic acid esters to afford the keto derivatives
460 (Scheme 14.133) [120].

Analogously, treatment of the methyl ester 461 with triethylamine and tosyl azide
leads to diazoester 462 through the formation of an intermediate carbanion
(Scheme 14.134) [226].

3-Methyl-1,2,4-thiadiazole is less acidic and will not undergo the above reported
reactions.
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According to standard procedures, 3-alkyl-1,2,4-thiadiazole-5-carboxylates 463 are
transformed into hydroxymethyl derivatives 464, primary amines 465, and tertiary
amines 466 (Scheme 14.135) [226].

3-Amino-1,2,4-thiadiazoles are alkylated at N4 by treatment with MeI, while
methylation of 3-amino derivatives with trimethyloxonium tetrafluoroborate pro-
duces theN4quaternary salt (Section14.5.5.1): the obtained compounds canundergo
a Dimroth rearrangements (Schemes 14.106 and 14.108). In contrast, harder
electrophiles, such as benzydryl and thrityl chlorides, alkylate 3-amino and 5-amino
derivatives at the amino functionality [227].

3-Amino and 5-amino-1,2,4-thiadiazoles are acylated under the usual conditions at
the amino group. Moreover, they easily react with isocyanates, carbamates, and
chloroformates (Scheme 14.136); the 5-amino derivatives 467 and 468 are used as
herbicides and bactericides [120].

A bond-switching reaction, already described in the Section 14.3.5.2
(Scheme 14.120) for 1,2,4-thiadiazolidines, can occur at the p-hypervalent sulfur
atom of 5-amino derivatives. In fact, when compounds 360 were reacted with
aliphatic or aromatic nitriles, a mixture of 1,2,4-thiadiazoles 470 and 471 via the
intermediate 469 were obtained (Scheme 14.137) [167].
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5-Nitrosoamino-1,2,4-thiadiazoles are moderately reactive and can be
converted into different functional groups by reaction with the appropriate
reagents [120]. For example, the 5-hydrazino-1,2,4-thiadiazoles 473 can be easily
prepared by simple reduction with LiAlH4 of the corresponding nitrosoamine 472.
Compounds 473 are stable in acidic or basic conditions and can be transformed into
the corresponding hydrazones by reaction with suitable carbonyl compounds. In
contrast, the 3-hydrazino derivatives 474, obtained by ring closure procedures, are
very sensitive to both acids and bases, giving 1,2,4-triazoles 475 by sulfur extrusion
(Scheme 14.138).

5-Amino-1,2,4-thiadiazoles 360 can be diazotized, by treatment with sodium
nitrite, to give the diazonium salts 476. These compounds, because of the strong
electron attraction of the 1,2,4-thiadiazole ring, are particularly reactive and can even
couplewith the hydrocarbonmesitylene, leading to themonoazo dye 477 [227], or can
be transformed into the 5-azido derivatives 478 by treatment with sodium azide
(Scheme 14.139).
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Both 3- and 5-hydroxy-1,2,4-thiadiazoles are generally acidic compounds, compa-
rable to phenol and nitrophenol, respectively. The mercapto-1,2,4-thiadiazoles are
even more acidic [178].

3-Hydroxy-1,2,4-thiadiazoles 253 react with electrophiles either at the hydroxylic
function or at N2. Normally, hard electrophiles (acyl chlorides) attack the oxygen of
the hydroxyl group, giving rise to 3-acyl derivatives 479, while soft reagents (acid
anhydrides) attack the N2 position, giving rise to 1,2,4-thiadiazolin-3-ones 480
(Scheme 14.140) [167].

As already reported in Section 14.3.1, 5-mercapto-1,2,4-thiadiazoles 258 do not
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shifted towards the thione tautomers 259 and 260. The presence of 259 at the
equilibrium is confirmed by the reaction with either formaldehyde or with sulfenyl
chlorides, which give rise to N4 derivatives 481 and 482, respectively. In contrast,
treatment with diazomethane, methyl iodide, methyl sulfate, and bromoacetic and 3-
bromopropionic acids gives only the S- derivatives 483 and 484 (Scheme 14.141), so
indicating that the 5-mercapto form 258 contributes to tautomeric equilibrium [227].

The sulfide derivatives 483 can be oxidized to the corresponding sulfoxides 485 and
sulfones 486 using m-chloroperbenzoic acid (MCPBA) and hydrogen peroxide
respectively (Scheme 14.142) [216].
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The 5-sulfonyl group can be easily removed by nucleophilic displacement: for
example, the reaction of 486a with various amines gives 487 (Scheme 14.143) [228].

14.3.6
Thiadiazoles in Medicine

1,2,4-Thiadiazoles constitute a distinctive class of small heterocycles exhibiting
various types of biological activities and some of these compounds are useful
pharmacophores. Furthermore, they have founduse as dyestuffs, lubricant additives,
and vulcanization agents [120].

The 1,2,4-thiadiazole nucleus is found in some compounds that show analgesic
and anticonvulsant properties, such as 488–490 [227]. More recently, it has been
reported that 3-arylamino-4-aryl-5-(N-arylthiocarbamoyl)-4,5-dihydro-1,2,4-thiadia-
zoles block strychnine seizures [228].
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Anti-inflammatory activity has been described for compounds 492–494 [229]. In
particular, several 1,2,4-thiadiazoles containing a di-tert-butyl-phenol substituent
have been identified as active and selective cyclooxygenase (COX-2) inhibitors [230].
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Cephalosporins incorporating the 1,2,4-thiadiazole system have been prepared
and shown topossess good antibiotic activity. Thus, compounds of type 495have been
the subject of patent specifications [167]. With the aim of developing a broad-
spectrum cephalosporin, new b-lactams bearing various condensed-heterocycles
have been reported [231]. In particular, improvement of anti-pseudomonal and
anti-MRSA (methicillin-resistant Staphylococcus aureus) activities was obtained by
introducing a 5-amino-1,2,4-thiadiazol-3-yl moiety and a hydroxyimino group as C7
substituent (as in compound 496) [231, 232].
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The novel cephalosporin 497 showed an extremely potent activity against Gram-
positive and Gram-negative bacteria [233, 234]. Novel C30 condensed-heterocyclic
pyridinium cephems have also been prepared to enhance the antibacterial spectrum
and water solubility [235, 236].

N

S

O

CO2

N

N

H

O

NOMe

N

N
S

H2N

497

H2SO4N
N N

H
. N S

NO

O

F

498

Thiadiazolidinediones such as 498 are the first examples of potent and selective
inhibitors of bacterial dihydroorotate dehydrogenase (DHO), a critical enzyme of the
pyrimidine biosynthesis [237].

During the last decade, several 1,2,4-thiadiazoles have been reported with relevant
biological activities concerning the central nervous system, G-protein coupled
receptors, and cardiovascular system.

Among the thiadiazoles that act on the cardiovascular system, KC 12 291 (499) has
shown cardioprotective actions due to the inhibition of voltage-gated Naþ chan-
nels [238].
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The 2-sulfonylimino-2H-1,2,4-thiadiazolo[2,3-a]pyridine derivatives 500 have
been described as possessing platelet aggregation inhibitory and cardiotonic actions,
although themechanism of action at themolecular level has not been disclosed [239].

Remarkable antiplatelet and anticoagulant activities have also been observed in
1,2,4-thiadiazol-5(2H)-iminium chlorides 501 [240]. In addition, 5-oxo-1,2,4-thiadia-
zoles 502 have shown efficient oral bioavailability as angiotensin II receptor antago-
nists [241].
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Some1,2,4-thiadiazoles have beendescribed as potential drugs for the treatment of
Alzheimer�s disease. Thus, 3-(thiadiazolyl)pyridine-1-oxides 503 are endowed with
antioxidant andmuscarinic receptor binding properties [242], while a series of 1,2,4-
thiadiazolidinones containing the N-benzylpiperidine fragment (504) have revealed
acetylcholinesterase inhibitory activity [243]. Furthermore, it has been stated that in
a series of 1,2,4-thiadiazoles bearing a mono-or bicyclic amine at C5 (505), the ring
can be regarded as an ester mimic in the binding of muscarinic ligands capable of
displaying high receptor affinity [143]. More recently, the thiadiazolidin-3,5-diones
506 were described as the first non-ATP competitive inhibitors of glycogen synthase
kinase 3b [171], an interesting target for the development of new promising drugs for
the treatment of Alzheimer�s disease, stroke, cancer, and diabetes type II.
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Compound 507 has been found to be a general allosteric modulator of both
agonist and antagonist binding to a wide series of G-protein coupled receptors such
as the human m-, d-, and k-opioid, a- and b-adrenergic, muscarinic M1 and M2, and
dopaminergic D1 and D2 receptors [183, 244].
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Some 2,3,5-substituted-1,2,4-thiadiazoles of general formula 508 were able to
inhibit at a final concentration of 1 mM the [3H]CCPA (2-chloro-N6-cyclopentylade-
nosine) agonist binding to human A1 adenosine receptors. At the same concentra-
tion, the same compounds were able to increase [3H]DPCPX(1,3-dipropyl-8-cyclo-
pentylxanthine) antagonist binding [184, 185].

N

N
S N

Me

HBr

507

N

N
S N

Me

HBr

508R

Thiadiazoles with different N-imino substituents have been synthesized; the
results of receptor–ligand binding showed that these compounds are best described
as proteinmodifiers (sulfhydryl modifying agents) rather than allosteric modulators.

4-(Diethoxyphosphoryl)methyl-N-(3-phenyl[1,2,4]thiadiazol-5-yl)benzamide (509)
acts as a potentmesangial cell proliferation inhibitor [245], 6-(1,2,4-thiadiazol-5-yl)-3-
aminopyridazine derivatives 510 are novel angiogenesis inhibitors [246], and 2,3-
diaryl-5-anilino-1,2,4-thiadiazoliumbromide 511has been identified as amelacortin-
4 receptor agonist [247].

N

S
N

H
N

O

PO3Et2

509

N

S
N

Me

510

N

S
N

NN N
N

Cl

Me

N
H

MeO

Br

511

14.4
1,3,4-Thiadiazoles

1,3,4-Thiadiazole ring systems include aromatic derivatives such as the parent
compound 512, the mesoionic systems 513, the 1,3,4-thiadiazolium cation 514 and
the non-aromatic forms such as the tautomeric compounds 515, the 1,3,4-thiadia-
zolines 516 and 517, and the tetrahydro-1,3,4-thiadiazolidines 518. All the structures
are well known.
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The chemistry of 1,3,4-thiadiazoles has attracted continued interest over the years
because of the great practical importance of these compounds. Several thiadiazoles
have been broadly applied in agriculture, industry, polymer chemistry, and, espe-
cially, in the pharmaceutical field, because some compounds have shown to be active
as fungicides, bactericides, herbicides, and plant-growth regulators. In particular,
1,3,4-thiadiazoles are used inmedicine, as antimicrobial [248], antituberculosis [249],
anti-inflammatory [250], anticonvulsant [251], antihypertensive [252], local anesthet-
ic [253], anticancer [254], and hypoglycaemic compounds [255]. This ring system has
been the subject of several reviews [256–258]; this chapter will be essentially devoted
to the recent published reports (2000–2008).

14.4.1
Structure

14.4.1.1 Theoretical Aspects
The structure and electronic parameters have been obtained by means of theoretical
calculations using the computational methodologies of quantum chemistry [259].

Reported DFT and ab initio calculations of the molecular geometry of the
parent compound 512 (Table 14.7) are in agreement with experimental data

Table 14.7 DFT/6-31G computational method versus experimental bond lengths (A
�
), angles (�),

and dipole moment (Debye) of 1,3,4-thiadiazole (512).

Coordinates DFT/6-31G� Microwave spectroscopy Electron diffraction X-ray

C–S (A
�
) 1.747 1.720 1.722 1.74

C¼N (A
�
) 1.300 1.303 1.304 1.31

N–N (A
�
) 1.373 1.371 1.381 1.38

C–H (A
�
) 1.082 1.077 1.081 0.98

C–S–C (�) 85.6 86.4 86.4 87
S–C¼N (�) 114.7 114.6 114.8 114
C¼N–N (�) 112.5 112.2 112.0 113
S–C–H (�) 122.1 122.5 124.1 123
N¼C–H (�) 123.3 122.9 121.1 123
m (Debye) 3.43 3.28 — —
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(electron diffraction, microwave spectroscopy, dipole moment, and X-ray
spectroscopy) [260].

DFTmethods have also beenused to calculate the net atomic charges and the Fukui
functions f þ , f �, and f 0 for 1,3,4-thiadiazole 512 (Table 14.8) [261].

The obtained data show that 512 is reactive towards nucleophiles, with the sulfur
atom as the favorite position. In particular, the sulfur atom, which has the largest f þ

value (0.2445) is the preferred site of soft nucleophiles, while the carbon atom is the
preferred site of hard nucleophiles.

More recently, the molecular geometry of 2-tert-butyldithio-5-methyl-1,3,4-thia-
diazole (519) has been investigated by Hartree–Fock (HF) and density functional
methods (B3LYP and BLYP), with the 6-31G(d) basis set, and compared with
experimental data (Table 14.9) [262]. The best agreement with the experimental

Table 14.8 Net charges and condensed Fukui functions for 1,3,4-thiadiazole (512) obtained
through BLYP-DFT calculations.

Atom Net charges f þ f � f 0

S 0.818 0.2445 0.2633 0.2539
C �0.3275 0.2153 0.1233 0.1693
N �0.0308 0.0930 0.1740 0.1335
H 0.2673 0.0694 0.0711 0.0703

Table 14.9 DFT/6-31G(d) and Hartree–Fock computational methods versus experimental bond
lengths (A

�
) and angles (�) of 2-tert-butyldithio-5-methyl-1,3,4-thiadiazole (519) in the ground state.

N
N

S

Me

S

S

Me

Me
Me 1

C1
C2

N1
N2

2

3

519

Coordinate Experimental HF B3LYP BLYP

S1–C1 (A
�
) 1.732 1.738 1.760 1.741

S1–C2 (A
�
) 1.736 1.736 1.761 1.741

S2–C1 (A
�
) 1.760 1.771 1.779 1.779

N1–C1 (A
�
) 1.299 1.271 1.304 1.309

N1–N2 (A
�
) 1.383 1.361 1.372 1.378

N2–C2 (A
�
) 1.294 1.275 1.302 1.313

C1–S1–C2 (�) 86.7 86.2 86.4 87.1
N1–C1–S1 (�) 107.1 104.9 107.0 106.3
C1–N1–N2 (�) 119.0 116.1 117.4 117.7
C2–N2–N1 (�) 109.9 111.4 110.0 111.1
S2–C1–S1 (�) 127.2 123.6 124.9 123.0
S2–C1–N1 (�) 125.7 123.5 123.3 123.8
C3–C2–S1 (�) 122.7 120.0 123.7 120.1
C1–N1–N2–C2 (�) �0.1 0.1 0.6 1.3
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values has been reached using the optimized bond lengths byHFand bond angles by
DFT (B3LYP) methods.

Fukui functions, the HOMO and a Mulliken population analysis of 1,3,4-thiadia-
zoles 520–528 have been calculated by using the B3LYP functionals and a STO-3G�

basis set [259].
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S
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N
N

S

Me

SH

N
N

S
Me

Cl

520 521 523522 524
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According to these calculations the most susceptible sites for electrophilic
attacks are the N3 and N4 atoms of the thiadiazole ring. These sites present the
highest values in f �k with a range of 0.0839–0.2144. Derivatives 524, 527, and 528
show other sites susceptible to electrophilic attack, corresponding to the atoms of
nitrogen, sulfur, and chlorine present as substituents in the alkyl chain. Never-
theless, in compound 527 the sulfur atom of the thiole group was demonstrated to
be much more reactive than atoms N3 and N4 with a f �k equal to 0.2931. In all the
cases studied the site prone to nucleophilic attack was shown to be the sulfur atom
of the ring that possesses the highest values of f þ

k falling in a range
0.1983–0.2520.

14.4.2
Structural Aspects

14.4.2.1 X-Ray Diffraction
A gas-phase electron diffraction investigation of the molecular structure of 1,3,4-
thiadiazole 512 has been reported byMarkov et al. [263]. The compound is planar and
has a C2V symmetry with the following bond lengths (A

�
) and bond angles (�):

C–H¼ 1.081� 0.028, N–C¼ 1.304� 0.010, N–N¼ 1.381� 0.016, S–C¼ 1.722
� 0.006; C–S–C¼ 86.4� 0.4, S–C–N¼ 114.8� 0.5, C–N–N¼ 112.0� 0.4, S–C–H
¼ 124.1� 3.0, and H–C–N¼ 121.1� 3.0. The technique has been largely used to
determine the structure of 1,3,4-thiadiazoles.

The X-ray structure of 2-amino-5-(m-nitrophenyl)-1,3,4-thiadiazole (529) shows
that this compound is also planar [264]. The single crystals aremonoclinic, a¼ 11.832
A
�
, b¼ 9.862A

�
, c¼ 8.353A

�
, b¼ 110.40(3)�, V¼ 913.6(3) A

� 3, dcalcd¼ 1.212 g cm�3,
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Table 14.10 Bond lengths (A
�
) and angles (�) in the structure of 2-amino-5-(m-nitrophenyl)-1,3,4-

thiadiazole (529).

N
N

S
N

H

H
C(1)

C(2)

N(3)

N(1)
N(2)

C(3)

529

NO2

Bond d (A
�
) Bond Angle (�)

S–C1 1.742 C1–S1–C2 86.8
S–C2 1.730 N1–C1–S 113.7
N1–C1 1.285 C1–N1–N2 113.6
N1–N2 1.380 C2–N2–N1 112.0
N2–C2 1.311 N1–C1–C3 124.5
N3–C2 1.353 C3–C1–S 121.8
C1–C3 1.471 N2–C2–N3 124.7
— — N2–C2–S 113.9

m(MoKa)¼ 0.253mm�1, Z¼ 4, and space group P21/c. Table 14.10 gives the relative
bond lengths and angles.

The lone pairs of nitrogen and sulfur atoms are conjugated with the double bonds
of thefive-membered ring. This is indicated by theN2–C2 (1.311A

�
), N1–C1 (1.285A

�
),

and N1–N2 (1.380A
�
) bond lengths. The lengths of two endocyclic N–C bonds are

intermediate between the standard lengths of the sesqui-bond and double bond. The
planes of the thiadiazole and benzene rings form a dihedral angle of 27.7�. The angle
between the benzene ring and the nitro group is 8.3�.

The X-ray analysis of 2-trifluoro-N-1,3,4-thiadiazole-2-yl)ethanethioamide (530)
shows that this molecule is a dimer and exhibits intermolecular hydrogen
bonds and intramolecular nonbonding 1,5-type S. . ..S interactions. The
distance between the thiocarbonyl sulfur and the thiadiazole ring sulfur is
2.905 A

�
[265].

N

NS

N N

N
S

N

S

CF3

H

S

CF3

H

2.905A
2.905A

530
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The crystal structure of 6-(2-chlorophenyl)-3-ethyl-[1,2,4]triazole[3,4-b]1,3,4-thia-
diazole (531) has been reported recently [266]. The compound crystallizes in
monoclinic space group P21/c with a cell parameters a¼ 11.879A

�
, b¼ 15.112A

�
,

c¼ 13.95A
�
, Z¼ 8, and the final R factor is R1¼ 0.0524. The five-membered and

phenyl rings are planar with a maximum deviation of 0.021A
�
for C1. The structure

exhibits both intra- and intermolecular hydrogen bonds of the type C–H. . .N.

NN

N

N

S
Cl

531

C1

14.4.2.2 NMR Spectroscopy
The 1H NMR signals of 1,3,4-thiadiazoles are usually shifted downfield with respect
to protons in benzene, according to the electron deficiency of the heterocyclic ring. In
the parent compound 512, the protons are equivalent and resonate at 9.12 ppm as
singlet. The presence of alkyl or aryl substituents shifts the resonance upfield,
similarly to amino and alkoxy groups. In particular, the 2-amino-1,3,4-thiadiazole
(532) shows theH5 proton as singlet at 7.06 d and theNH2 protons at 8.54 ppm; for 2-
amino 5-trifluoromethyl-1,3,4-thiadiazole (533), the NH2 resonance appears as
singlet at 7.71 d [267].

NN

S
PhPh

NN

S
NH2H

NN

S
NH2F3C

C1

C2

C1

C2

C1

C2

533532 534

The 13C chemical shift for C1, or C2 carbon, in the parent compound is at
153.1 ppm. The presence of phenyl substituents in 534moves these carbons to 167.7
d [268].

In the case of compounds 532 and 533, theC2 signals are shifted upfield compared
with C1 carbons, which, respectively, resonate in the range 144.8–146.8 d and
171.2–173.8 d [267].

Many fully assigned 1H and 13C data for disubstituted 1,3,4-thiadiazoles have
been reported [269]. Table 14.11 summarizes the 1H and 13C NMR spectra of 2,5-
disubstituted-3-trimethylsilymethyl-1,3,4-thiadiazolium trifluoromethanesulfonates
535–537, which are useful starting materials for the preparation of 1,3,4-thiadiazo-
lium-3-methanide species used as 1,3-dipoles [270].

14.4.2.3 UV, ESR, and IR Spectroscopy
The electronic spectra of 1,3,4-thiadiazoles containing substituents with lone
pairs are bathochromically shifted. Substituted alkylthio- derivatives show a greater
bathochromic shift than the amino derivatives. p-Nitrophenyl groups cause
large bathochromic shifts, while m-nitrophenyl groups cause hypsochromic shifts.
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Unconjugated 1,3,4-thiadiazoles have no selective absorption above 220 nm. The
electronic spectra of some 2-arylazo-5-phenyl-1,3,4-thiadiazole derivatives, made in
pure and mixed organic solvents with different polarities, display two bands in the
UV region: the first one at 204–238 nm was ascribed to the p–p� transition in the
benzenoid system, while the second one, at 237–313 nm, was attributed to a p–p�

transition of the 1,3,4-thiadiazole moiety [271].
Electron spin resonance (ESR) spectroscopy has also beenused to study the surface

complexes of CuX (X¼CI�, Br�, ClO4
�) on silica gel chemically modified with 2-

amino-1,3,4-thiadiazole (532) [272]. ESR indicated a tetragonal distorted structure
with low degrees of metal loading on the silica gel. Recently, the electronic spectra
of some organotin(IV) derivatives of 5-amino-3H-1,3,4-thiadiazole 2-thione 538,
together with the uncoordinated thiazole-2-thione 539, have been reported
(Figure 14.5) [273]. These spectra show two absorption bands, at 256� 2 and
318� 4 nm, which may be assigned to p–p� and n–p� transitions, respectively, of
the chromophore (C¼N) present in thiadiazole ring. These bands undergo a
hyperchromic shift upon complexation, indicating the participation of C¼N group
in coordination. The infrared spectra of these compounds have also been reported. In
particular, the uncoordinated ligand 539 exhibits two bands, at 2622 and 1240 cm�1,
assigned to n(SH) and n(C¼S), indicating the coexistence of both thione and thiol
forms in the solid state.

N

S

N
NH2

532

Table 14.11 1H and 13C NMR data (ppm) of 2,5-disubstituted-3-trimethylsilymethyl-1,3,4-
thiadiazolium trifluoromethanesulfonates (535–537).

NN

S
RR

535–537

SiMe3SO3CF3

R = H, Me, Ph

Salts Me3Si Me-2/Me-5 NCH2 Aromatic protons H2/H5

d 1H ppm (CDCl3)
535 0.21 — 4.48 — 10.63/9.78
536 0.10 2.90/2.71 3.98 — —

537 0.19 — 4.34 7.55–10.96 (10H) —

d 13C ppm (CDCl3)
Salts Me3Si Me-2/Me-5 NCH2 Aromatic carbons C2/C5
535 �3.0 — 51.0 — 158.7/158.6
536 �2.6 15.8/14.8 46.9 — 171.6/166.0
537 �2.2 — 48.9 122.1–134.1 (8C) 170.4/168.6
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In the IR spectra of the organotin(IV) compounds 538, n(SH) is not observed,
indicating the deprotonation of the thiol form. The n(C¼S) band shifts downward by
53� 13 cm�1, thus indicating the coordination of thione sulfur to tin. The other
significant signals for compound 539 are at 3347 (NH2), 3244 (NH2), 3180 (N3–H),
1604 (N–H þ C¼N), 1547 and 1476 (C¼N/ring mode), 1058(N–N), and 672
(C–S–C).

Some other IR absorption spectra for 1,3,4-thiadiazoles show bands at 1230–1165,
1190–1120, 1075–1045, 1040, 975–905, 905–875, 850, and 775–750 cm�1 [257].

14.4.2.4 Mass Spectrometry
Themain fragmentation of 1,3,4-thiadiazoles is the loss of a nitrile group. Thus, 2,5-
diphenyl-1,3,4-thiadiazole (534) shows intense ions due to the loss of PhCN, S, and
HCN (Scheme 14.144).
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Figure 14.5 Organotin(IV) derivatives of 5-amino-3H-1,3,4-thiadiazole 2-thione (538 and 539) and
the uncoordinated thiazole-2-thione (540).
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In the presence of a methylthio substituent, such as 5-(methylsulfanyl)-1,3,4-
thiadiazol-2-amine, the major process is the loss of .SH and the fragmentation at the
heterocyclic sulfur atom. In the case of 3,5-diphenyl-2,3-dihydro-1,3,4-thiadiazole,
the predominant fragment is represented by PhS., while 1,3,4-thiadiazolidine-
thione 515 decomposes by fragmentation of the ring [257].

More recently, fragmentation studies of several trihalomethylsulfenyl derivatives
of 5-methyl-1,3,4-thiadiazole-2-thiols 540 and 541 have been reported [274]. The
diagnostic fragments are characterized by the loss of the halogenated substituents,
and in all cases cleavage via fragmentation �a� (Figure 14.6) generated the base
peak of m/z 59 Da [CH3C¼S]þ .. Other fragmentations of the substituent occur,
producing Cl3C

þ , Cl2FC
þ , and ClF2C

þ . Fragments and losses common to all
derivatives were also [M–CClnF3�n]

þ , [M–SCClnF3�n]
þ , [M–(S–SCClnF3�n)]

þ ,
[CS]þ , and [CH3CN]

þ ..

14.4.2.5 Thermodynamic Aspects
The parent compound 512 does not show tautomerism in its fully conjugated form.
Nevertheless, in the presence of some substituents tautomerism is possible.

NHN

S
X

NN

S

X = O, S

XH

515b515a

1,3,4-Thiadiazolin-2-ones (X¼O) and -2-thiones (X¼S) exist, in the oxo and
thione forms 515a.

This result is confirmed by 13C NMR spectra of 5-methylamino-1,3,4-3H-thia-
diazoline-2-thione 542a, where the C2 signal appears at 180.6 ppm, while the
oxidized species, the bis(5-methylamino-1,3,4-thiadiazol-2-yl)disulfide 543, obtained
from 542with aqueous hydrogen peroxide, shows the same carbon (C2) resonating at
148.6 ppm (Scheme 14.145) [275].

Tautomeric energy differences also calculated for 515, using the HF/6-31G��,
B3LYP/6-311G��, and B3LYP/6-311 þ þG�� levels of approximation, confirm that
these compounds are oxo or thione compounds rather than hydroxyl and mercapto
tautomers [276].

N

S

N

Me S

S CCl3-nFn

N

S

N

Me S SCCl3-nFnn = 0,1,2

a

b
c

d
a

b c

e

540 541

Figure 14.6 Fragmentation pattern of trihalomethylsulfenyl derivatives of 5-methyl-1,3,4-
thiadiazole-2-thiols.
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2-Amino-1,3,4-thiadiazoles 532 exist in the amino form, in solution and in the solid
state, while the presence of the sulfonamido group shifts the equilibrium towards the
imido tautomer [256, 257].

1,3,4-Thiadiazolidine-2-thiones 544 are in equilibriumwith the open-chain hydra-
zone tautomers 545; under basic conditions, the hydrazone salt is the predominant
form (Scheme 14.146) [277].

1,3,4-Thiadiazoles are solids; some of them are soluble in water, with a solubility
decreasing with increasing molecular weight.

14.4.3
Synthesis

14.4.3.1 Synthesis of 1,3,4-Thiadiazoles
The parent compound, described in 1956 by Goerdeler et al., was obtained by
hydrogenation of 2-bromo-1,3,4-thiadiazole with Adams catalyst in 90% yield [278].
Compound 512 was also obtained by cyclization, in the presence of hydrogen
sulfide, of N0-[(dimethylamino)methylidene]-N,N-dimethylhydrazonoformamide
(548), prepared in a two-step sequence by reaction of DMF with thionyl chloride,
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NN

S
S

543

MeHN S S

NN
NHMe

92%

C2

C2

Scheme 14.145
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Scheme 14.146
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followed by treatment with N,N0-diformylhydrazine (547) and sodium ethoxide
(Scheme 14.147) [279].

A general procedure for the preparation of 1,3,4-thiadiazoles is the cyclization of 1-
acylthiosemicarbazides by cold concentrated sulfuric acid. Using this method,
several 5-(5-nitro-2-furyl)-1,3,4-thiadiazoles (550) have been obtained from 549
(Scheme 14.148) [280].

A convenient procedure has been reported by Nami and coworkers for the
synthesis of N-(5-phenyl-1,3,4-thiadiazol-2yl)benzamide (554), by condensing
thiosemicarbazide 551 with benzoyl chloride (552) under microwave irradiation,
involving as intermediate the 2-benzoylhydrazinecarbothioamide (553)
(Scheme 14.149) [281].

Compound 553 can also be cyclized into compound 554 with H3PO4 under
conventional heating at 120 �C for 10min [282]. This cyclization is quite general
and other dehydrating agents have been used such as polyphosphoric acid [283] and
phosphorus oxychloride [284].

Different 2-amino-1,3,4-thiadiazoles, screened for the antituberculosis activity
againstMycobacterium tuberculosisH37Rv, have been synthesized from the reaction
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of various 1-acylthiosemicarbazides (556) with sulfuric acid. Compounds 556were
prepared by reaction of 4-substituted benzoic acid hydrazides 555 with different
aryl isothiocyanates (Scheme 14.150). Among the tested compounds, 2-phenyla-
mino-5-(4-fluorophenyl)-1,3,4-thiadiazole showed the highest inhibitory activity
(69%) [285].

5-Hydrazinyl- and 5-amino-1,3,4-thiadiazole-2-thiols (559 and 560) have been
prepared in 50% and 12% yields, respectively, starting from 2-(hydrazinyl-
carbonothioyl)hydrazinecarbothioamide (558), by reaction with hydrochloric
acid; a better yield of both compounds was obtained starting from 2,20-carbo-
nothioyldihydrazinecarbothioamide (561) (Scheme 14.151) [286].

Oxidation of ethyl or butyl (2-carbamothioylhydrazinylidene)ethanoate 561 with
ferric chloride leads to ethyl 5-amino-1,3,4-thiadiazole-2-carboxylates showing that
the electron-donating group increases the stability of 1,3,4-thiadiazole carboxylic
acids (Scheme 14.152) [287].
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Oxidative cyclization has also been performed with substituted thiosemicarba-
zones [288]. Thus, the reaction of substituted thiosemicarbazides 563with aldehydes
yields the corresponding thiosemicarbazones 564, which by oxidative cyclization,
achieved with iron(III) chloride or K3Fe(CN)6, lead to substituted 1,3,4-thiadiazoles
565 in good yields (Scheme 14.153) [289].
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2-Alkoxy-2-amino-1,3,4-thiadiazoles 567 have been prepared, in good yields, by
oxidation of the corresponding O-alkyl 2-carbamothioylhydrazinecarbothioate 566
with hydrogen peroxide (Scheme 14.154) [290].

The oxidationmethodhas also been applied to 1,2-hydrazinedicarbothioamide 568
(dithiobiurea), using iodine, ferric chloride and hydrogen peroxide, to produce 2,5-
diamino-1,3,4-thiadiazole (569) (Scheme 14.155) [291].

Ammonium ferric sulfate dodecahydrate has been used to prepare, in 90%yield, 2-
amino-5-(5-nitro-2-thienyl)-1,3,4-thiadiazole (571), starting from 5-nitrothiophene-2-
carboxaldehydethiosemicarbazone (570) (Scheme 14.156) [292].

A similar oxidation has been accomplished using a mixture of sodium acetate,
bromine, and glacial acetic acid, which is useful in preparing 2-amino-5-phenyl-1,3,
4-thiadiazole (573) starting from 2-benzylidenehydrazinecarbothioamide (572)
(Scheme 14.157) [293].
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An efficient one-pot procedure for the preparation in excellent yields of 1,3,4-
thiadiazoles 575 in ionic liquid, as dual solvent and catalyst, has been reported
recently [294]. The reaction involves a one-pot, three-component condensation of
hydrazine hydrate with substituted phenyl isothiocyanates, followed by the addition
of substituted benzaldehydes 574 in the presence of the ionic liquid 1-butyl-3-
methylimidazolium tetrafluoroborate ([bmim]BF4) and in the absence of any other
catalyst, undermild conditions (Scheme 14.158). The reaction workup is simple, and
the ionic liquid is easily recovered from the reaction and reused.

1,3,4-Thiadiazoles can be also obtained from the reaction of diacylhydrazines
with a sulfur source. Thus,N 0-formyl 1-benzothiophene-2-carbohydrazide derivative
577, prepared by condensation of 3-chlorobenzo[b]thiophene-2-carboxylic acid hydra-
zide 576with formic acid, reacts with phosphorous pentasulfide in xylene at reflux to
give the corresponding 2-(3-chloro-1-benzothien-2-yl)-1,3,4-thiadiazole (578) in 63%
yield (Scheme 14.159) [295].
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Moreover, some 2,5-diaryl-1,3,4-thiadiazoles have been prepared in 74–91% yields
using Lawesson�s reagent and microwave irradiation in the absence of solvent for
3–8min [296]. Thus, for example, 2-phenyl-5-m-tolyl-1,3,4-thiadiazole (580) was
prepared in 91% yield from of a mixture of 579 and Lawesson�s reagent (LR)
(Scheme 14.160) [297].

A series of 2-alkylthio-5-alkylamino-1,3,4-thiadiazoles have been synthesized
through a new and versatile solid-phase synthesis protocol using the commercially
available 2-(3,5-dimethoxy-4-formylphenoxy)ethoxymethyl polystyrene (581). This
resin was treated with a range of primary amines under standard reductive amination
conditions to yield the respective resin boundderivatives582, whichwere transformed
into resin bound benzyl-thiocarbamic acid O-pyridin-2-yl esters 583 upon treatment
with di-(2-pyridyl)-thionocarbonate (DPT). These compounds were subsequently
converted into thiosemicarbazides 584 by reaction with hydrazine, and then treated
with 10 equivalent of DPT in dichloromethane (DCM) to give immobilized thiones
585. Alkylation of thione 585 with primary alkyl- or benzyl bromides in a mixture of
1,4-dioxane–methanol and aqueous sodium hydroxide, followed by TFA/DCM treat-
ment, yielded 1,3,4-thiadiazoles 586 in 45–82% yield (Scheme 14.161) [298].

Some benzaldehydeN0-(5-benzoylmethyl-1,3,4-thiadiazol-2-yl)hydrazone hydro-
bromides 590, subsequently converted into the free bases 591 by treatment with
aqueous ammonia, have been synthesized by the reaction of 1-benzylidenethio-
carbohydrazones 587 with 3-bromo-1-phenylprop-2-yn-1-one (588). This reaction
involves, presumably, a nucleophilic replacement of the bromine atom with the
formation of benzoylethynyl sulfide intermediate 589 and intramolecular cycliza-
tion of the NH2 group at the electron-deficient b-carbon of the triple bond
(Scheme 14.162) [299].

Varma et al. have used a green protocol to synthesize in a single step several 1,3,4-
thiadiazoles 594 [300]. In particular, various hydrazides 592 have been reacted with
triethyl orthoalkanates or triethyl orthobenzoate (593), in the presence of phospho-
rous pentasulfide in alumina undermicrowave irradiations and in the absence of any
solvents, to afford the target 1,3,4-thiadiazoles 594 in good yields (65–70%)
(Scheme 14.163).

N-alkylhydrazinecarbothiamides 595 can react with triethyl orthoformate (596) in
the presence of a small amount of concentrated hydrochloric acid to yield unsub-
stituted alkylamino-1,3,4-thiadiazoles 597 (Scheme 14.164) [301].

Triethyl orthoformate (596) has been used to prepare in good yield 5-amino-3-
(methylthio)-1-(1,3,4-thiadiazol-2-yl)-1H-pyrazole-4-carbonitrile (600). Thus, starting
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from 5-amino-4-cyano-3-(methylthio)-1H-pyrazole-1-carbothiohydrazide (599), 600
was synthesized in 76% yield. Compound 599was also used to generate 601 and 602
in 55% yield (Scheme 14.165) [302].
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2,5-Disubstituted-1,3,4-thiadiazoles 607, in high yields and good purity, have been
prepared in a one-pot three-component condensation of aromatic aldehydes 603,
hydrazine, and sulfur in ethanol under microwave irradiation (300W, 1 h) [303]. The
reaction involves as intermediates the corresponding azines 604, which can be
isolated in good yield if the reaction is stopped after 15min. The same reaction
performed with aromatic aldehydes under conventional heating led to 2,5-diaryl-
1,3,4-thiadiazoles 607 (Scheme 14.166) [304].

2,5-Diaryl-1,3,4-thiadiazoles 610 can be also prepared in relatively good yield
starting from the corresponding 1,3,4-oxadiazoles 608 by reaction with thiourea.
The reaction involves an initial nucleophilic attack of the sulfur of thiourea on the
carbon atom of 1,3,4-oxadiazole ring, followed by formation of an oxathiadiazepine
intermediate 609, and subsequent ring contraction and extrusion of urea
(Scheme 14.167) [305].

Recently, a solid-phase synthetic route using the Merrifield resin (611) has
been utilized to prepare various substituted-1,3,4-thiadiazoles 613, by a
dehydrative cyclization of acyldithiocarbazate resins 612 with TMSCl in DCE at
60 �C [306]. Acyldithiocarbazate resins 612 have been prepared by reaction of the
Merrifield resin 611 with carbon disulfide, various hydrazides, and NaH
(Scheme 14.168).

14.4.3.2 Synthesis of Exocyclic-Conjugated Mesoionic 1,3,4-Thiadiazoles (513) and of
1,3,4-Thiadiazolium Cations (514)
The simplest way to prepare 2-oxo or 2-thio mesoionic 1,3,4-thiadiazoles 513 is the
thermal cyclization of 1-thioacyl hydrazine with phosgene or thiophosgene. Thus,
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mesoionic 1,3,4-thiadiazolium-2-olate 615 and 1,3,4-thiadiazolium-2-thiolate 616
have been synthesized from thiocarboxylic acid hydrazide hydrochloride 614 with
phosgene or thiophosgene (Scheme 14.169) [307].

Potassium 2-phenylhydrazinecarbodithioate (617), warmed at 50 �C in benzene
for 1 h with benzoyl chloride, has afforded a 56% yield of 4,5-diphenyl-1,3,4-
thiadiazolium-2-thiolate 620, most probably involving as intermediates the spe-
cies 618 and 619 (Scheme 14.170) [308].

Mesoionic 2-methylene-1,3,4-thiadiazole 623 has been synthesized from thiocar-
boxylic acid hydrazide (614) and 3,3-dichloroacrylonitrile 622, while the reaction
of 614 with carbon disulfide leads to 4,5-disubstituted-1,3,4-thiadiazolium 2-thio-
late 624 [309]. Starting from 625, it is possible to obtain in good yield the correspond-
ing mesoionic compounds 624 (Scheme 14.171).
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A similar reaction performed with thiohydrazides 626 and isonitrile dichloride
(627) or isothiocyanate leads to 2-amino-1,3,4-thiadiazolium salts 628 and 629,
respectively [310]; treatment of 628 with a chloroform solution of anhydrous
ammonia yielded the mesoionic compounds 630 (Scheme 14.172) [311].

2-Substituted 5,7-diphenyl-1,3,4-thiadiazolo[3,2-a]pyridilyum derivatives 633 and
634 have been prepared by reaction of 1-amino-4,6-diphenylpyridine-2-thione (631)
with phenyl isothiocyanate, in 65% and 78% yield, respectively. This transformation
presumably involves the corresponding thioureas 632 as highly reactive intermedi-
ates, which easily undergo cyclodehydrosulfuration. Iminophosphorane 635,

Ph N
NH2

S

Me

O

ClCl

70°C

N

S

N

O

614

616

615

Ph

Me

46%

S

ClCl

N

S

N

S

Ph

Me

56%

Scheme 14.169

KS N
H

NH

S

O

ClPh

50 °C, 1 h
617

56%

N

S

N

S
Ph

Ph

Ph

NH

HN S

S

Ph
O

Ph

N

N S

OH

Ph

Ph

H

S

- H2O

618

619620

Scheme 14.170

14.4 1,3,4-Thiadiazoles j1351



obtained by reaction of 631with Br2 and triphenylphosphine, alternatively produces,
by reaction with carbon disulfide, 5,7-diphenyl-1,3,4-thiadiazolo[3,2-a]pyridinium-2-
thiolate (636) in 80% yield (Scheme 14.173) [312].

Some 1,3,4-thiadiazolium perchlorates 638 have been prepared by reaction of N0-
acyl-N0arylbenzenecarbothiohydrazide 637 with acetic anhydride–perchloric
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acid [313]. Moreover, these compounds have also been synthesized starting from
benzenecarbothiohydrazide 639, by reaction with a nitrile–perchloric acid mixture
(Scheme 14.174) [314].

3-(2,4-Dibromophenyl)-2-methylthio-5-phenyl-1,3,4-thiadiazolium methosulfate
(641) can be prepared by reaction of 3-(2,4-dibromophenyl)-5-phenyl-1,3,4-thiadia-
zole-2-thione (640) with dimethyl sulfate in dry benzene at reflux for 12 h. The
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corresponding perchlorate 642 is synthesized by treatment of the methosulfate salt
with a solution of sodium perchlorate in acetic acid (Scheme 14.175) [315].

1,3,4-Thiadiazolium cations 514 are easily obtained by treatment of 1,3,4-thiadia-
zoles with several alkylating agents to give, in about 100% yield, the corresponding
salts.

A recent example is the synthesis of 3-trimethylsilylmethyl-1,3,4-thiadiazolium
trifluoromethanesulfonates 645. These compounds have been prepared in 75–99%
yields by mixing a solution of 1,3,4-thiadiazoles 643 with trimethylsilylmethyl
trifluoromethanesulfonate (644) in dry CH2Cl2 at 50 �C under reflux for 24 h
(Scheme 14.176) [270].
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14.4.3.3 Synthesis of Thiadiazolinones, Thiadiazolinethiones, and
Thiadiazolimines (515)
1,3,4-Thiadiazolin-2-ones canbe prepared in good yields by acidic thermal cyclization
of substituted thioylhydrazinecarboxamides 647. Thus, the reaction of substituted
dithioate 646 with semicarbazide gave 647, which on cyclization furnished the
substituted 3-acetyl-1,3,4-thiadiazol-2-ones 648 (Scheme 14.177) [316].

5-tert-Butyl-3-[2,4-dichloro-5-(2-propynyloxy)phenyl]-1,3,4-thiadiazol-2(3H)-one
(651), an arylthiadiazolone herbicide structurally related to oxadiargyl and oxadiazon,
has been prepared in high yield in a two-step synthesis starting fromN-2,4-dichloro-
5-(2-propynyloxy)phenyl]-N0-pivaloylhydrazine (649). Thus, 649 was transformed
into the corresponding N-thiopivaloylhydrazine 650 by reaction with tetrapho-
sphorus decasulfide and then converted into 651 by reaction with trichloromethyl
chloroformate in dioxane at room temperature for 3 h (Scheme 14.178) [317].

1,3,4-Thiadiazol-2-(3H)-ones 655 and -2(3H)-thiones 656 can be prepared in good
yield by 1,10-carbonyldiimidazole or 1,10-thiocarbonyldiimidazole induced cycliza-
tion of 3-mercaptopropanoic acid derivatives 654. The reaction starts from 2-oxo-N-
arylpropanehydrazonoyl chloride 652, which in the presence of triethylamine is
converted into the corresponding nitrile imines 653, which in situ undergo a
nucleophilic attack of 3-mercaptopropionic acid leading to 3-[[2-oxo-1-(arylhydra-
zono)propan-1yl]mercapto]propanoic acids 654 (65–71% yield). These propanoic
acids were then treated with 1,10-carbonyldiimidazole (CDI) or 1,10-thiocarbonyldii-
midazole (TCDI) to afford the corresponding 1,3,4-thiadiazole derivatives 655
and 656 (Scheme 14.179) [318].

The cyclization reaction is explained as reported in Scheme 14.180, in which CO2,
ethylene, and imidazole are simultaneously formed.
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5-[4-(Benzyloxy)phenyl]-3-(2-cyanoethyl)-1,3,4-thiadiazol-2(3H)-one (662) and 5-
[(4-benzyloxy)phenyl]-3-(2-cyanoethyl)-1,3,4-thiadiazole-2(3H)-thione (663), used as
monoamine oxidase inhibitors of type B (8 and 16mM), have been synthesized
starting from ({[4-(Benzyloxy)phenyl](thiocarbonyl)}thio)acetic acid (660). In
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particular, compound 660 was treated with NaOH and (2-cyanoethy1)hydrazine in
EtOH at 0 �C to give 1-{[4-(Benzyloxy)phenyl](thiocarbonyl)}-2-(2-cyanoethyl)hydra-
zine (661), which by subsequent reaction with phosgene or thiophosgene gave the
resulting 1,3,4-thiadiazole derivatives 662 and 663 in 62% and in 51% yield,
respectively (Scheme 14.181) [319].

5-Substituted-1,3,4-thiadiazole-2-thiones 665 are obtained in moderate–good
yields from potassium 2-acyl- or 2-aroylhydrazinecarbodithioate 664 and cold con-
centrated sulfuric acid (Scheme 14.182) [320].
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Another method for preparing 5-substituted-1,3,4-thiadiazole-2-thiones is the
reaction of carbon disulfide with amidrazones. Thus, starting from aromatic and
heterocyclic amidrazones 667, obtained from the reaction of corresponding nitriles
666 with hydrazine, a series of 5-substituted-1,3,4-thiadiazole-2-thiones (668) were
obtained in excellent yields (Scheme 14.183) [321].

Various 5-imino-D2-1,3,4-thiadiazolines have been synthesized from activated
thiocyanates and benzenediazonium chloride. The reaction has been performed in
NaOAc buffered solution of EtOH to yield 5-imino-4-aryl-2-phenyl-D2-1,3,4-thiadia-
zolines (671) in 75% yield (Scheme 14.184) [322].
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4-Methyl-5-imino-2-thienoyl-D2-1,3,4-thiadiazolines (675) have also been prepared
by condensation of thienylglyoxal (673) with suitable thiosemicarbazides (672)
followed by oxidation of the resulting 674 with FeCl3 (Scheme 14.185) [288].
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Hydrazonoyl halides offer a versatile tool in the synthesis of azoles. Thus, 5-imino-
4-phenyl-2-trifluoromethyl-D2-1,3,4-thiadiazoline (677) has been prepared in 83%
yield by the reaction of N-phenyltrifluoroacetohydrazonoyl bromide (676) with
potassium isothiocyanate [323]. If the reaction is performed with methyl isothiocy-
anate, the analogous N-methylthiadiazoline 678 was obtained, but in low yield
(Scheme 14.186).
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Asimilar reactionhas been reported for the synthesis of some5-acyl-2,3-dihydro-2-
imino-3-(3-phenyl)pyrazol-5-yl)-1,3,4-thiadiazoles 681. Thus, phenylpyrazolylhydra-
zonoyl chlorides 679 undergo cyclocondensation with potassium thiocyanate to
give 681 in 80–85% yield. At the same time, treatment of 681 with sodium nitrite
in acetic acid, followed by heating, provided the thiadiazolones 683 in good yield
(Scheme 14.187) [324].
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Bi(4,5-dihydro-1,3,4-thiadiazol-5-imines) have been prepared in good yield by
the reaction of N,N0diaroyldihydrazonoyl dihalides with potassium thiocyanate. The
formation of 687 is assumed to proceed via a nucleophilic attack of the thiocyanate
anion to afford intermediates 685, followed by an intramolecular cyclization. Com-
pounds 687 were also obtained from the reaction of dihalides 684 with thiourea,
through the formation of the non-isolable intermediates 686, which cyclized readily
via loss of ammonia (Scheme 14.188) [325].
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1,3,4-Thiadiazole derivatives 691 and 693 have been synthesized via reactions of
hydrazonoyl bromide 688 with alkyl carbodithioates 689, potassium thiocyanate, or
thiourea, according to Schemes 14.189 and 14.190 [326].

14.4.3.4 Synthesis of 2,3-Dihydro-(D2) (516), 3,4-Dihydro-(D3) (517), and 2,3,4,5-
Tetrahydro-1,3,4-Thiadiazoles (518)
Under ultrasonic irradiation conditions a series of 2,3-dihydro-1,3,4-thiadiazole
derivatives 698 and 700 and 5,50-bi(3H-3-phenyl-2-(1-methyl-5-oxo-3-phenyl-
1H,4H-pyrazol-4-ylidene)-1,3,4-thiadiazole 702 have been synthesized from reaction
of 1-methyl-5-oxo-3-phenyl-2-pyrazolin-4-thiocarboxanilide (696) with different
hydrazonyl halides [697, 699], or N,N0-diphenyl-oxalodihydrazonoyl dichloride
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(701). This technique reduces the time of reaction from several hours tominutes and
increases the yields of the obtained products (Scheme 14.191) [327].

A general method for the synthesis of 1,3,4-thiadiazolines is the reaction of
carbonyl compounds with substituted thiohydrazides. Thus, chiral 1,2,4-triazolo
[3,4-b]-1,3,4-thiadiazoles 705 have been synthesized by the Mannich reaction of 3-
pyridyl-4-amino-5-mercapto-1,2,4-triazole (703) (synthetic equivalent of a thiohydra-
zide), with aromatic aldehydes or furaldehyde in the presence of a catalytic amount of
tartaric acid. Some of the obtained products have shown significant antibacterial
activities against Staphylococcus aureus, and Escherichia coli at 500 and 100 ppm
concentrations (Scheme 14.192) [328].

Another recent application of this methodology is the synthesis of 50-phenyl-30H-
spiro[indoline-3,20-[1,3,4]thiadiazol]-2-ones 708, compounds that are able to inhibit
the aggrecanase-2 with a selectivity in the sub-micromolar range. In particular, the
reaction involves a condensation between arylthiohydrazides 706 and isatins 707
(Scheme 14.193) [329].

4,5-Dihydro-1,3,4-thiadiazole-2-carboxamides 712 have been synthesized by
acylation of hydrazones of thiooxamic acid hydrazides 711, which were obtained
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712 with hydrogen peroxide in acetic acid leads to 2-carbamoyl-4,5-dihydro-1,3,
4-thiadiazole 1-oxides 713 in good yields (Scheme 14.194) [330].

2-Amino-5-aryl-5-hydrothiazolo[4,3-b]-1,3,4-thiadiazoles 715a,b have been pre-
pared in 78–80% yield by treating 2-aryl-3-thioureido-4-thiazolidines 714a,b with
cold concentrated sulfuric acid. These compounds were then transformed into
unnatural a-amino acids 716a–d, containing the 1,3,4-thiadiazole core, by con-
densation with HCHO and a-amino acids (74–80%) (Scheme 14.195). Fungitoxi-
city has also been evaluated in vitro against Aspergillus niger and Fusarium
oxysporium and it was found that compounds 716c,d (Ar¼ClC6H4, R¼H, Me)
displayed activities comparable with that of the commercial fungicide Dithane M-
45 [331].
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5-Benzilydene-1,3,4-thiadiazole-2,2(5H)-dicarbonitrile (718), in 28% yield, has
been synthesized through the cyclization of N0(phenylmethylidene)thicarbonohy-
drazide (717) promoted by tetracyanoethylene (TCNE) (Scheme 14.196) [332].
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3-Phenyl- and 3-(p-tolyl)-10bH-1,3,4-thiadiazolo[2,3-a]isoquinoline-2(3H)-thiones
(720) have been prepared in 86% and 82% yield, respectively, by 1,3-dipolar
cycloaddition of N-phenyl or N-p-tolylimides, obtained by sodium carbonate treat-
ment of 2-anilino or 2-(p-toluidino)isoquinolinium chlorides 719, with carbon
disulfide (Scheme 14.197) [333].

2,3,4,5-Tetrahydro-1,3,4-thiadiazoles 722 have been prepared by treating
cyclohexanones 721 with hydrazine and H2S in ethanol at reflux for 12 h
(Scheme 14.198) [334].

Phenyl isothiocyanate in the presence of sodium hydride reacts with different
phenyl hydrazones 723 to afford 1,3,4-thiadiazolidines 724 in good yields
(Scheme 14.199).
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It is presumed that the anion of the hydrazones 725, formed initially, attacks the
isothiocyanate and gives an intermediate ion 726 that cyclizes to 727, producing after
water treatment the 1,3,4-thiadiazolidine 724 (Scheme 14.200).

Alternatively, the reaction of 723 with carbon disulfide yields 3-phenyl-1,3,4-
thiadiazolidine-2-thiones 728 (Scheme 14.201) [335].
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14.4.4
Reactivity

The reactivity of the 1,2,3-thiadiazole system is expressed in a series of different
chemical transformations: (i) ring cleavage reactions and rearrangements, (ii)
reductive and oxidative processes, (iii) reactions due to the reactivity of heterocycle
ring, and (iv) reactions of substituents.

14.4.4.1 Ring Cleavage Reactions and Rearrangements
The 1,3,4-thiadiazole system is cleaved by bases. In particular, Goerdeler andGalinke
have shown that 2-amino-1,3,4-thiadiazole (532) on heating with benzylamine gives
mixtures of triazoline thione 730 and 2-benzylamino-1,3,4-thiadiazole (732) in a 1 : 1
ratio (80%) [336]. Formation of 730 most probably occurs via the ring-opened
amidrazone intermediate 729 (Scheme 14.202).

Under the same conditions, 2-methylamino-, 2-amino-, and 2-amino-5-phenyl-
1,3,4-thiadiazoles 733 react with methylamine to produce the corresponding triazo-
line-thiones 734 (Scheme 14.203).
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2-Amino-5-chloro-1,3,4-thiadiazole (735) and 5-amino-1,3,4-thiadiazole-2(3H)-
thione (736) react with a large excess of hydrazine hydrate on heating to give a
mixture of 3,4-diamino-1H-1,2,4-triazole-5(4H)-thione (739) and 4-amino-3-hydra-
zinyl-1H-1,2,4-triazole-5(4H)-thione (740). This rearrangement probably arises
from the ring-opened intermediates 737 and 738 (Scheme 14.204) [337].

Mesoionic thiadiazoles undergo ring fission at C2 to give open chain compounds.
Thus, 5-phenyl-4-methyl-1,3,4-thiadiazolium-2-olate (741) produces by reaction with
aniline compound 742 (Scheme 14.205) [256].

Similarly, compound 743 on treatment with alkali hydrolyzes to N-benzoyl-N-
phenyldithio-carbamate 745. This compoundwas gentlywarmedon a steambath and
transformed into 746 by extrusion of CS2; subsequent reaction with p-nitrobenzal-
dehyde furnishes hydrazone derivate 747 in 50% yield (Scheme 14.206) [338].

Hydrazine or alkylhydrazines cleave and recyclize the 1,3,4-thiadiazoliumsalts 748
to 1,2- dihydro-1,2,4,5-tetrazines 749 or 1,4-dihydro-1,2,4,5-tetrazines 750, respec-
tively, in high yields (Scheme 14.207) [339].

The action of phenylhydrazine on 748 results in an alternative cyclization to yield 4-
amino-1,2,4-triazoliumsalts 752,most probably via the ring opened intermediate 751
(Scheme 14.208).
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Under mild, neutral conditions, 5-amino-2-imino-3-phenacyl-1,3,4-tiadiazolines
753, in accordwith to theDimroth rearrangement, isomerize to 5-amino-3-mercapto-
1-phenacyl-1,2,4-triazoles 754 in good yields (Scheme 14.209) [340].

A Dimroth rearrangement is also found when a solution of 5-ethyl-3-phenyl-1,3,4-
thiadiazol-2(3H)-imine (755) in aqueousNaOHis heated at 80 �C for 5 h, to afford the
triazole derivative 757 in 45% yield (Scheme 14.210) [341].

Ring cleavage has also been reported for 1,3,4-thiadiazolo[3,2-a]pyrimidines. The
substituent R2 influences the site of ring scission. Thus, isomers 758 and 760 react
with 5%sodiumhydroxide to give quantitative yields ofmethyl-thiouracil 759byN–N
bond cleavage. When R2 is an alkyl group (Me, Et, i-Pr), however, the S–C is broken,
giving rise to 761 (Scheme 14.211) [342].

1,3,4-Thiadiazoles, according to the substitution pattern, undergo thermal or
photochemical fragmentation processes similar to that observed in a mass
spectrometer. Thus, it was found that pyrolysis of 5-sulfanyl-1,3,4-thiadiazole-2
(3H)-thione (762) gave HNCS, CS2, and HCN, while the 5-methyl-1,3,4-thiadia-
zole-2(3H)-thione (763) yielded HCNS, MeNCS, HCN, and CS2 [343]. Analogous
pyrolysis of 2-(tert-butyldisulfanyl)-5-methyl-2,3-dihydro-1,3,4-thiadiazole (764) pro-
duces, besides the expected fragmentation products, 2-methylpropene by an initial
b-hydrogen elimination Scheme 14.212) [344].

2-Alkylidene-1,3,4-thiadiazolines 765 irradiated in benzene solution at a wave-
length greater than 360 nm produces a mixture of 766–768 in 19%, 29%, and 11%
yield, respectively. The formation of these compounds can be explained by several
different reactions, all of which are amenable to an initial cleavage of the 1,3,4-
thiadiazole ring (Scheme 14.213) [345].
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Thermolysis of 1,3,4-thiadiazolines 769 yields the corresponding thiiranes 770. In
contrast, matrix photolysis in an organic glass at 77 K or in solid Ar at 10 K allows the
detection of the thiocarbonyl ylides 772, which were characterized by intense UV
maxima at l¼ 350 nm. The thiocarbonyl ylides are formed in a stepwisemanner, and
not directly from the thiadiazolines, by elimination of N2. In the first step, com-
pounds 769 are cleaved into the thioketones 771 and diazomethane. This latter
compound generates methylene as carbene that, reacting with thioketones 771,
produces the corresponding thiocarbonyl ylides 772 (Scheme 14.214) [346].

4,5-Diphenyl-1,3,4-thiadiazolium 2-thiolate (773a) is cleaved on irradiation at
253.7 nm, in acetonitrile as solvent, to give N-phenylthiobenzamide in 27% yield
and sulfur 35%. Similarly, irradiation of 1,3,4-thiadiazolium 2-thiolates 773b givesN-
phenylthiacetoamide and N-methylthiobenzamide in 20% and 21%, respectively,
together with elemental sulfur (35–40%). This fragmentation has been rationalized
through an initial valence tautomerization toN-isothiocyanatothioamide 774, which
undergoes homolytic fission of N–N bond to yield the radical precursor of the
thioamide and isothiocyanate radicals. The latter radical loses elemental sulfur, while
the former abstracts a hydrogen from the solvent and produces the corresponding
thioamide (Scheme 14.215) [347].

14.4.4.2 Reductive and Oxidative Processes
1,3,4-Thiadiazoles are stable to reducing and oxidizing agents. However, some
reductions have been reported. In particular, reduction with hydrogen/palladium
of 2-bromo- and 2-bromo-5-methyl-1,3,4-thiadiazoles 775 produced, in about 90%
yield, the corresponding debrominated 1,3,4-thiadiazoles 512 and 520, respectively
(Scheme 14.216) [278].
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2-Amino-5-phenyl-1,3,4-thiadiazole 573 has been reduced with sodium amalgam
to benzaldehyde and thiosemicarbazone 776 (Scheme 14.217) [256].

2-Acetylamino-5-benzylmercapto-1,3,4-thiadiazole (777) is reduced to 2-ethyla-
mino-5-benzylmercapto-1,3,4-thiadiazole 778 in 41% yield by reaction with lithium
aluminum hydride (Scheme 14.218) [348].

Lithium aluminum hydride also reduces the mesoionic compound 779 to hydra-
zine derivative 780 with loss of sulfur (Scheme 14.219) [256].

N N

SR1

MePh,=R

R1 PhMe,=

N N

SR1

S

RS

R

hν

MeCN

N

SR1

R

CN S
MeCN

SNH

SR1

R

774a,b773

20-27%

35-40%

Scheme 14.215

NN

SR Br

H2 /Pd NN

SR90%

R = H, Me

775 512, 520

Scheme 14.216

NN

SH2N Ph

Na(Hg) NHN

SH2N Ph
+ PhCHO

79%

573 776

Scheme 14.217

NN

SS NHCOMe

LiAlH4
PhH2C

NN

SS NH
PhH2C Et

41%

777 778

Scheme 14.218

14.4 1,3,4-Thiadiazoles j1373



Oxidation of 1,3,4-thiazolidine-2,5-dione 781 with tert-butyl hypochlorite gives at
�78 �C thiadiazolinedione (782), which in situ undergoes Diels–Alder reactions
with several dienes to provide the corresponding cycloadducts 783 in good to
excellent yield (Scheme 14.220) [349].

Sulfoxide 785 and sulfone 786 derivatives have been obtained by oxidation of 2-
(ethylsulfanyl)-1,3,4-thiadiazole- 784 with m-chloroperbenzoic acid (MCPBA)
(Scheme 14.221) [350].

14.4.4.3 Reactions due to the Reactivity of the Heterocyclic Ring
Electrophilic substitution on the C-atoms of the ring is very difficult owing to two
main problems: (i) the presence of two nitrogen atoms in the ring, which leaves these
carbons with a very low electron density, and (ii) the protonation of nuclear nitrogen
in acidicmedia, which reduces strongly the possibility of this type of reactions. Thus,
reactions such as nitration, sulfonation, acetylation, halogenation, and so on nor-
mally do not take place.
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However, it has been reported that the presence of aminogroups linked to position-
2 allow the bromination reaction; thus, and 2-amino-substituted-5-bromo-1,3,4-
thiadiazoles 788 have been prepared in good yield, starting from 2-amino-1,3,4-
thiadiazoles 787 (Scheme 14.222) [351].

The alkylation reaction occurs easily on the annular nitrogen atoms; thus,
quaternary salts are formed. In the case of mono- or dialkyl-1-3,4-thiadiazoles
789, the alkylation is regioselective and the product distribution 790 versus 791
depends on the bulky group present at C2.When this carbon is substitutedwith a tert-
butyl group, quaternization occurs almost exclusively at N4 (Scheme 14.223) [352].
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Trimethylsilylmethyl trifluoromethanesulfonate 792 is an efficient alkylating
agent for 2,5-disubstituted-1,3,4-thiadiazoles. In fact, 2,5-diphenyl- and 2,5-dimeth-
yl-1,3,4-thiadiazoles 793 react in dry dichloromethane (DCM)with 792 to give in high
yield the corresponding salts 794 (Scheme 14.224) [270].

Other alkylating agents have been used, such as triethyloxonium tetrafluoro-
borate, benzyl chloride, p-bromophenacyl bromide, octyl iodide, and so on
(Scheme 14.225) [353].

In most cases, 2-amino-1,3,4-thiadiazoles are also alkylated at the N3 atom of the
ring [354]. Thus, 2-amino-5-methyl-1,3,4-thiadiazole (733) reacts with chloroacetone
to afford the N-alkylated thiadiazolimine 795 in 75% yield (Scheme 14.226).

Amino derivatives are acylated at the amino group. Thus, it has been reported that
2-amino-5-(5-nitro-2-furyl)-1,3,4-thiadiazole 796 by reaction with acetic anhydride is
transformed into 2-acetylamino derivative 797 in 95% yield (Scheme 14.227) [355].
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A similar reaction is observed with chloroacetyl chloride. Thus, starting from 798,
a series of 2-chloro-N-(5-aryloxymethylene/aryl-1,3,4-thiadiazol-2-yl)acetamides 799
have been synthesized in 81–91% yield (Scheme 14.228) [356].

Owing to the strong electron-withdrawing effect of the thiadiazole ring, carboxylic
acids with the carboxyl group attached to the ring are rather unstable. Thus,
Holmberg, on acidification of the sodium salt of 5-phenyl-1,3,4-thiadiazole-2-car-
boxylic acid (800), obtained a mixture of the acid 801 (40%) and 2-phenyl-1,3,4-
thiadiazole (802) (60%) (Scheme 14.229) [357].

TheMannich reaction of 1,3,4-thiadiazole derivatives with different amino groups
occurs at the N3 ring atom. Thus, it has been reported that 1,3,4-thiadiazolidine-2,5-
dithione 803 with dialkylamines and formaldehyde give N,S-aminomethylated
thiadiazoles 804. With urea, thiourea, semicarbazide, or thiosemicarbazide N,N-
aminomethylated thiadiazoles 805 have been obtained (Scheme 14.230) [258].

Cycloaddition reactions have been reported for the 1,3,4-thiadiazole moiety.
In particular, 2,5-bis(trifluoromethyl)-1,3,4-thiadiazole (806) has been used as 4p
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component in a Diels–Alder reaction, giving rise with norbornadiene to bicyclo-
adduct 809. The formation of this compound was rationalized via the initial
cycloadduct 807, which loses molecular nitrogen to generate a thiocarbonyl ylide
(808) that reacts with a second molecule of norbornadiene (Scheme 14.231) [358].

A Diels–Alder reaction has also been reported for mesoionic 1,3,4-thiadiazoles.
Thus, treatment of 4,5-diphenyl-1-thia-2-thio-3,4-diazolium thiols 810with a twofold
molar excess of dimethyl azodicarboxylate (811) in benzene under reflux for 12 h
yields the corresponding adducts 812, which undergo subsequent sulfur extrusion to
intermediates 813, which with a concomitant oxidation reaction produce the final
products 814 in 62–65% yield (Scheme 14.232) [359].
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2,5-Dihydro-1,3,4-thiadiazoles are able to produce under thermal conditions
thiocarbonyl ylides that can be trapped with suitable dipolarophiles. Thus, as already
reported [346], compound 815 gave 816 and then 2,5-dihydrothiophenes 818 by
reaction with different acetylenic derivatives 817 (Scheme 14.233).

2,3-Dihydro-[(thioacyl)methylene]thiadiazoles 819 undergo cycloaddition reaction
with acetylenedicarboxylate to furnish spiro cycloadducts 820 in 50–60% yield. The
reaction was carried out in chlorobenzene solution under reflux. Surprisingly, the
reaction rates were strongly enhanced upon UV irradiation (l> 300 nm), which
allowed the reaction to occur at room temperature in dichloromethane solution
(Scheme 14.234) [360].
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The thiocarbonyl moiety of 1,3,4-thiadiazole-2(3H)-thiones 821 reacts as 2p
component in a 1,3-dipolar cycloaddition reaction with N-methyl-C-phenylnitrili-
mine (822) to give, via the intermediate cycloadduct 823, the rearranged products 824
and 825 in 16–28% yields (Scheme 14.235) [361].

1,3,4-Thiadiazolium-3-methanide 1,3-dipoles 827, generated in situ from 3-tri-
methylsilylmethyl-1,3,4-thiadiazolium trifluoromethanesulfonates 826 with CsF at
�60 �C, afforded by reaction with substituted alkenes the substituted pyrrolo[2,1-b]
[1,3,4]-thiadiazole systems with endo selectivity. In particular, the reaction
performedwithN-substitutedmaleimide is the first example of bowl-shaped tricyclic
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nitrogen–sulfur (828 and 829) analogues of the tripentagon bowl, a 3,4,10-triaza-6-
thiatricyclo[6,3,0,03,7]undecane ring system (endo selectivity range 6.6–1.1)
(Scheme 14.236) [270].

1,3,4-Thiadiazoles containing a good leaving group at the carbon atoms of the
ring canundergonucleophilic substitutions. Thus, it has been reported that 2-bromo-
1,3,4-thiadiazole (830), by reaction with methylamine or thiourea, affords the N-
methylamino and 2-mercapto-1,3,4-thiadiazoles 831 and 832 in 80% and 75% yield
respectively (Scheme 14.237) [278].
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Some other nucleophilic reactions, involving 2-chloro-5-aroyl-1,3,4-thiadiazoles
833 (Scheme 14.238) lead to the corresponding thiadiazoles 834–837 [362].

A chlorine atom can be easily displaced in reactions involving simple esters as
anion. Thus, tert-butyl 2-(5-phenyl-1,3,4-thiadiazol-2-yl)acetate 839 in 79% yield
has been recently prepared by reaction of 2-chloro-5-phenyl-1,3,4-thiodiazole (838)
with tert-butyl acetate in the presence of sodium hexamethyldisilazide
(Scheme 14.239) [363].

Thioalkyl or sulfonyl substituents, which are good leaving groups, can be substi-
tuted by a range of nucleophiles. Scheme 14.240 shows several examples of such
reactions, leading to different 1,3,4-thiadiazoles 841, 843–845, and 847 [364].

A solid-phase synthetic route, fromMerrifield resin, has been exploited to prepare
various 2-amino-5-substituted-1,3,4-thiadiazoles (849) by nucleophilic displacement
of the sulfonyl group (Scheme 14.241) [306].

14.4.4.4 Reactions of Substituents
2-Amino-1,3,4-thiadiazoles are easily diazotated using strongly acid solutions. The
intermediate diazonium salts have been used to prepare various substituted 1,3,4-
thiadiazoles (Scheme 14.242) [278].

2-Halo-1,3,4-thiadiazoles can be also prepared according to Sandmeyer reactions.
Thus, 2-chloro-5-phenyl-1,3,4-thiadiazole (853) has been synthesized in 85% yield by
reaction of 2-amino-5-phenyl-1,3,4-thiadiazole (573) with amyl nitrite in the presence
of CuCl generated in situ (Scheme 14.243) [363].
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2-Chloro-N-(5-aryloxymethylene/aryl-1,3,4-thiadiazolo-2-yl)acetamides 799 trea-
ted with ammonium thiocyanate under microwave irradiation provide, in
only 5min, 2-(5-aryloxyme-thylene/aryl-1,3,4-thiadiazolo-2-ylimino)thiazolidin-4-
ones 854 in optimal yields (Scheme 14.244) [356].
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A series of 5-thiosubstituted-1,3,4-thiadiazo-2-yl-2-carbamates 858 and 862 as
potential antimicrobial agents has been synthesized starting from 2-amino-5-mer-
capto-1,3,4-thiadiazole (856), according to standard procedures. In particular, the
corresponding 5-alkyl or alkenylthio derivatives 858 have been prepared via 857 by
reacting 856 with alkyl or allylic halides, followed by treatment with ethyl or allyl
chloroformate in 72–80% yield. The butynylamino derivatives 862 have been
prepared by reaction of 856 with propargyl bromide (859), via the propynylthio
analog 860 (75%), followed by reaction with chloroformates to give 861 and
subsequent reaction with formaldehyde and secondary amines (Scheme 14.245).

Most of the thiadiazoles so obtained exhibited some activity against Pseudomonas
aeruginosa and Candida albicans. The thiadiazole containing the perhydroazepino
moiety was more active against C. albicans than phenol (used as standard) [365].

NN

SR NH2

NaNO2 /HCl

NaNO2 HBr

NN

SH ClR = H

70%

75-80%

NN

SR Br
R = H, Me

850
851

852

Scheme 14.242

NN

SPh NH2

573

NN

SPh Cl

853

85%

amylnitrite, CuCl2

MeCN, 55 °C

Scheme 14.243

NN

SR NH

O

Cl

NH4SCN

DMF, MW

NN

SR N S

HN

O

78-98%

R = PhOCH2, 2-ClC6H4OCH2, 2-Me-C6H4OCH2, 4-Me-C6H4OCH2, 4-Cl-C6H4OCH2,

       4-MeO-C6H4OCH2,  2-MeO-C6H4OCH2, 3-Me-C6H4OCH2, 3-NO2-C6H4OCH2, 

       4-NO2-C6H4OCH2, 2,4-Cl2-C6H3OCH2, Ph, 2-ClC6H4, 3-MeC6H4, 3-NO2C6H4

799 854

Scheme 14.244

1384j 14 Thiadiazoles



5-(Benzylthio)-N-ethyl-1,3,4-thiadiazol-2-amine (864) can prepared in similar
way in 100% yield by reaction of 2-ethylamino-5-mercapto-1,3,4-thiadiazole (863)
with KOH and benzyl chloride (Scheme 14.246) [348].

It was found that themethyl group attached at carbons of 1,3,4-thiadiazoles shows
fair acidity when treated with a strong base. Thus, when 2-methyl-5-phenyl- or 2,5-
dimethyl-1,3,4-thiadiazoles 865 and 867 were reacted with butyllithium, or NaH, or
lithium diisopropylamide, followed by addition of CO2, aldehydes, ketones, or acetic
acid,5-substitutedderivativeswereobtained(866and868–870) (Scheme14.247) [366].

14.4.5
1,3,4-Thiadiazoles in Medicine and Agriculture

One of the best known drugs based on a 1,3,4-thiadiazole is acetazolamide (871,
acetazolam), a carbonic anhydrase inhibitor launched in 1954. Compound 871 has
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many indications, including the treatment of glaucoma, epilepsy, and congestive
cardiac failure [367].

1,3,4-Thiadiazoles exhibit various types of biological activities and some of these
compounds are useful pharmacophores. This nucleus is found in some antiviral
derivatives such as 872 (anti HIV-1 and HIV-2) [368] and 873 (anti HIV-1) [369], and
also in the treatment of neurodegenerative diseases and cancer (such as 874 [370]
and 875 [371]).
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Anticancer activity has also been found for 2-amino-1,3,4-thiadiazole (ATDA,
NSC-4728) and related compounds (EATDA, NSC-143 019) [372]. Recently several
N-substituted-2-amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles have shown
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a marked antiproliferative activity in vitro. In particular, the highest antiproliferative
activity was found for 2-(2,4-dichlorophenylamino)-5-(2,4-dihydroxyphenyl)-1,3,4-
thiadiazole (876), with an ID50 two times lower (human cell lines SW707 and
T47D) than cisplatin studied comparatively as the control compound [373].
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It is also used as bactericidal; compounds 877 and 878 are active against Helico-
bacter pylori [374].
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Some compounds posses muscle relaxant properties. Thus, recently, Bhandari
et al. have shown that derivatives 879 and 880 have significant anticonvulsant activity
against maximal electronic shock model compared to standard drugs phenytoin,
diazepam, and phenobarbital [375].
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Moreover many 1,3,4-thiadiazole derivatives have also been patented in the
agricultural field as pesticides, herbicides, insecticides, fungicides, and so on. Two
examples are reported here: in particular compound 881, which shows fungicidal
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activity againstVenturia inaequalis [376], and compound 882, which is an anti-tobacco
mosaic virus agent [377].
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15
Five-Membered Heterocycles with Four Heteroatoms: Tetrazoles
Ulhas Bhatt

15.1
Introduction

Tetrazoles are five-membered ring aromatic compounds composed of one carbon
atom and four nitrogen atoms such that the four nitrogen atoms are linked
contiguously to each other. Tetrazoles have 6p electrons and exist as either the
1H- or the 2H-tautomer (Figure 15.1). In solution, the 1H tautomer is the predom-
inant form, but in the gas phase the 2H-tautomer is more stable. Disubstituted
tetrazoles can be prepared by substituting the ring hydrogen, producing both 1,5- and
2,5-disubstituted tetrazoles. Various substitutions can adorn the tetrazole ring, from
heteroatoms like N, O and S, to alkyl, aryl and heteroaryl groups. In addition, the
tetrazole ring can be part of a fused ring system.

X-Ray structures have confirmed the planarity of the ring system with N�N bond
lengths being of nearly equal length. The cyclic C�N¼N and N�N¼N groups�
vibrational frequencies are observed at 1000–1100 cm�1 in their infrared (IR) spectra.
Weak to medium intensity bands occur in the 1200–1300 cm�1 region due to N�N
vibrations and a strong N�N stretching band can be seen at 1270–1300 cm�1. The
C¼N band occurs at 1450–1500 cm�1. The 5-CH stretching frequency of tetrazole is
at 3146 cm�1 and in several N-alkyl compounds this is shifted to below 3138 cm�1.
15N and 13C NMR spectroscopy are useful tools in the determination of the
substitution pattern. The C5 signal in 2-substitued tetrazoles is usually up to 10 ppm
deshielded when compared to the 1-substitued tetrazoles. Although tetrazoles are an
important compound class in their own right, they are used extensively as surrogates
for carboxylic acids in medicinal chemistry. They have similar pKa values (tetrazole
has a pKa of 4.76) and generally exhibit greater metabolic stability than carboxylic
acids. Tetrazoles are also weak bases, exhibiting a pKa in the range of �3. The
hydrogen at position 1 (N1) can participate in intermolecular hydrogen bonding with
the other pyridine-type nitrogen atoms. Tetrazoles carrying an N1 substituent are
unable to create these strong hydrogen bonds and thus exhibit significantly lower
melting and boiling points than N1 unsubstituted tetrazoles. The tetrazole ring
exhibits a strong electron-withdrawing inductive effect (�I effect) that is more

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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effective than its weaker mesomeric effect (þMeffect). The tetrazole ring thus has a
deactivating effect, especially when substituted with a strong activating group.

Tetrazoles are useful in various applications like pharmaceuticals, agriculture,
photography, polymers and explosives (Figure 15.2). In medicinal chemistry, biphe-
nyl tetrazoles have shown potential as stimulators of growth hormone release,
metalloprotease inhibitors and chloride channel blockers.

Tetrazole chemistry has been extensively reviewed and so this chapterwill cover the
latest advances in thefield [1]. Special attention has been paid to syntheses performed
using newer technologies like solid-phase and microwaves.

15.2
Synthetic Methods

Manymethods for the synthesis of tetrazoles utilize an azide as the source of three of
the four nitrogen atoms. A range of compounds, like acid chlorides, amides,
amidines, carbodiimides, carbonimidic dichlorides, cyanates, imines, isocyanates,
isothiocyanates, isocyanides, ketones, nitriles, nitrilium salts, orthoesters, oximes,
oxazolones, and thiocyanates, react with inorganic azides (e.g., sodium azide) to
produce tetrazoles. This is by far the most popular and extensively studied route for

N

N
Cl

OH
n-C4H9

NH
NN

N

Losartan
(antihypertensive)

N

N
N

N

PTZ
(CNS agent)

OH
H3C

N N

NHN
O

CH3

Tomelukast
(anti-asthmatic)

N

N

N

N

I

I

I

Fungicide

HN N
N

NO2N

Fuel additive

HN N
N

NH2N

Image stabilizer

N+N+
N

N N N

NN

Ar

ArR1 R1

R22X-

R2

electronic display component

Figure 15.2 Useful tetrazole compounds.

N

N
H

N
N

N

N
NH

N

RR 1

2

3
4

5

1H-tautomer 2H-tautomer

Figure 15.1 Tautomers of tetrazoles.

1402j 15 Five-Membered Heterocycles with Four Heteroatoms: Tetrazoles



the synthesis of tetrazoles. Themost commonly used azide sources are sodium azide
(as a suspension inDMFor acetone or under phase-transfer conditions), ammonium
azide (generated in situ) and trimethylsilyl azide. Tetrazoles can also be prepared from
azidoaziridines, triazoles, and triazines.

15.2.1
Amides as Substrates

Amides react with sodium azide in presence of reagents like PCl5, POCl3 or SOCl2 to
generate the corresponding 5-substituted tetrazoles. This reaction proceeds through
the chlorination of the amide to generate the imidoyl chloride, which reacts with the
azide to produce the tetrazole. When PCl5 is the chlorinating reagent, the reaction is
called the vonBraun–Rudolph reaction, but product yields are usuallymoderate. This
methodology has been utilized to prepare tetrazole derivatives 1 (Scheme 15.1) [2].

In a Mitsunobu-type variation of this reaction, an amide is treated with excess
triphenylphosphine, trimethylsilyl azide and diethylazodicarboxylate (DEAD) to
generate the corresponding tetrazoles [3]. This methodology was utilized in the
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Scheme 15.1 Synthesis of tetrazoles from amides [2].
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synthesis of a series of tetrazole-ring containing growth hormone secretagogues. It
was also used successfully to prepare compound 2 (Scheme 15.2) where the
cyanoethyl group does not react under these conditions with TMSN3 to produce
the second tetrazole ring and can be removed later under basic conditions. When
poor yields of tetrazole products are observed using this route, it may be worthwhile
treating the amides with Lawesson�s reagent and then subjecting the resulting
thioamides to Mitsunobu conditions to produce the tetrazole products. This strategy
has been cleverly utilized to convert linear Nv-tritylated v-amino thiobenzylamides
and Na,Nv-ditritylated polyamino mono- or bisthioamides into the corresponding
tetrazole derivatives 3 [4].

In a related reaction sequence, substituted anilines are reacted with ethyl oxalate
and triethylamine to produce the corresponding ketoamides (Scheme 15.3) [5]. These
were treated with triphenylphosphine in refluxing carbon tetrachloride followed by
reaction with sodium azide to produce the tetrazole compounds 4. Recently, the
conversion of amide into tetrazole has been reported by using tributyltin chloride and
sodium azide [6].

The tetrazole ring has also been proposed as a replacement of the cis-amide bond
in peptides (Figure 15.3) [7]. Peptides that contain the tetrazole group in place of a
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cis-amide bond are able to adopt most of the conformations available to the original
peptide.

Tetrazolyl analogs of bradykinin and scyliorhinin I were among the first few
peptides studied. More recently, quinoxaline-based antifolates, with tetrazole mod-
ifiedglutamate side chainpeptidomimetics, have been synthesized (Scheme15.4) [8].
The reaction of a glutamate derivative with quinoline, phosphorus pentoxide and
hydrazoic acid provided the corresponding tetrazole derivative 5. The Cbz group was
removed under hydrogenating conditions and the resulting amine was coupled with
a pteroic acid derivative to produce the desired analogs 6. These analogs exhibited
potent thiamidyl synthase and L1210 cell growth inhibitory activities. Along similar
lines, an analog of thyrotropin releasing hormone (TRH) containing the tetrazole
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Figure 15.3 Tetrazole ring as a replacement for cis-amide bond [6, 7].
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ring as amimic for the cis amide bond has been prepared (Scheme 15.4) [9]. Cbz-His-
Ala-OBz dipeptide derivative was treated with PCl5, quinoline and hydrazoic acid to
produce the tetrazole product 7 that was later transformed into the desired tripeptide
TRH analog. The lack of binding for this particular analog suggests that the amide
bond geometry was not a critical factor in the binding of TRH with its receptor.

In a recent development, an interesting methodology was reported for the
synthesis of tetrazole ring compounds starting from an amide [10]. The amide
substrate was first converted into an oxazoline and then treated with hydrazine
hydrochloride inmethanol to yield an amidrazone. Subsequent reactionwith sodium
nitrite formed the desired tetrazole via a nitrosation process. This procedure avoided
the use of azides altogether and was amenable to scale-up.

15.2.2
Acid Chlorides as Substrates

Acid chlorides react with sodium azide and phosphine imide to generate tetrazoles
(Scheme 15.5) [11]. This reaction proceeds through the formation of imidoyl chloride
that, in some cases, can be isolated prior to its reaction with the azide source. These
reactions occur by the displacement of the chlorine by the azide anion. Other leaving
groups can also be displaced by the azide anion and examples of such substrates
include imidates, thioimidates, and amidines. Aromatic and aliphatic acid chlorides
react with Lewis acids and two equivalents of metal azide to produce 1-substituted
tetrazolols. Trimethylsilylazide has been used in place of the metal azide and the
Lewis acid with excellent results. This reaction proceeds via the formation of the
isocyanate followed by reaction of the second equivalent of the azide anion to
complete the formation of the tetrazole ring.

15.2.3
Nitriles as Substrates

Nitriles react with azides to generate tetrazoles and this method is widely used as a
large number of nitriles are either commercially available or easily prepared. Earlier
procedures used hydrazoic acid generated in situ from sodium azide and acid, but
were often slow and gave poor yields. Use of polar solvents like DMF and DME and

R1 Cl

O PPh3=NR2

R1 Cl

N NaN3 N

N
N

N

R1

R2 R2

R1 Cl

O
NaN3, AlCl3
or TMSN3

N
N

H
NO

R1
N

N
NHO
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Scheme 15.5 Synthesis of tetrazoles from acid chlorides [11].
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the addition of ammonium chloride or alkylammonium salts tends to shorten
reaction times considerably and give better yields. Various 5-substituted tetrazoles
8 have been prepared by reacting nitriles with sodium azide in an aromatic solvent
like toluene in the presence of an amine salt like triethylammonium chloride
(Scheme 15.6) [12]. Several different conditions have been studied, including the
effect of the number of equivalents of sodium azide used, the type of salt and the
solvent. Following this protocol, the synthesis and pharmacological characterization
of 1- and 2-alkyltetrazolyl analogs of 2-Me-Tet-AMPA ((RS)-2-amino-3-[3-hydroxy-5-
(2-methyl-2H-5-tetrazolyl)-4-isoxazolyl]propionic acid), a highly potent and selective
agonist at AMPA receptors, has been described recently [13]. These tetrazole
derivatives (9) have been synthesized by reacting nitriles with sodium azide and
triethylamine hydrochloride in DME. Similarly, tetrabutylammonium fluoride has
been used as the catalyst to prepare tetrazoles 10 fromnitriles and trimethylsilyl azide
under solvent-free conditions [14].

Bis(tributyltin) oxide has also been used as a catalyst in the reaction between
nitriles and trimethylsilyl azide to produce tetrazoles 11 and 12 (Scheme 15.7) [15].
Excellent yields of both alkyl and aryl tetrazoles are usually obtained by this method,
which avoids the use of hydrazoic acid and also minimizes exposure to toxic tin
compounds.

Sharpless�s group has disclosed that the reaction of sodium azide with nitriles
proceeds nicely in presence of zinc salts to give 1H-tetrazoles [16]. This has been
called click-chemistry and these reactions are performed in water with or without
an organic co-solvent. For example, the synthesis of compound 13 proceeded readily
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Scheme 15.6 Synthesis of tetrazoles from nitriles and sodium azide [12–14].
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in water with zinc salts as catalysts (Scheme 15.8). The scope of the reaction is quite
broad; various aromatic nitriles, activated and unactivated alkyl nitriles, substituted
vinyl nitriles, thiocyanates and cyanamides are all viable substrates under these
conditions. However, this method works best for electron-deficient nitriles. The
authors have extended this methodology by using a mixture of water and 2-propanol
at reflux to transform N-Cbz amino nitriles into the corresponding tetrazole
compounds 14 using sodium azide and half-an-equivalent of zinc bromide
(Scheme 15.8) [17]. This methodology has found wide acceptance [18]. For instance,
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15
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Scheme 15.8 Synthesis of tetrazoles from nitriles and azides using zinc bromide [16–19].
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Scheme 15.7 Further syntheses of tetrazoles from nitriles and sodium azide. [15].
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Merck researchers have utilized this methodology under microwave conditions to
prepare a small library of tetrazoylpyridines 15. These compoundswere evaluated for
their role as dual inhibitors of the serine/threonine kinases Akt1 and Akt2. Using the
same protocol, tatrazole analogs of glycyl-L-prolyl-L-glutamic acid have been pre-
pared. Fmoc amino acids were also converted into the corresponding tetrazole
compounds where the carboxylic acid group was replaced by the tetrazole ring.
Recently, nanocrystalline ZnO was also shown to be an effective heterogeneous
catalyst for the [2 þ 3] cycloaddition of azides to nitriles to afford 5-substituted-1H-
tetrazoles in good yields [19].

Palladium-catalyzed three-component coupling reaction of cyano compounds,
allyl methyl carbonate and trimethylsilyl azide, under a catalytic amount of
Pd2(dba)3�CHCl3 (2.5mol%) and tri(2-furyl)phosphine (10mol%), gives 2-allyltetra-
zoles 16 in good to excellent yields (Scheme 15.9) [20]. A p-allylpalladium azide
complex has been proposed as a key intermediate in this reaction. This methodology
has been extended to N-cyanoindoles to produce the corresponding indole-fused
tetrazoles 17. Along similar lines, palladium-catalyzed reaction between allene,
trimethylsilyl azide and 2-iodo-5-bromobenzene-1-carbonitrile generates tetrazoyl-
tetrahydroisoquinoline 18 [21].

Fused bicyclic tetrazole-piperazines 19 have been obtained in very good yields by
reactingN-cyanomethylb-amino chlorides (derived from the correspondingb-amino
alcohols) with sodium azide in DMSO at 150 �C (Scheme 15.10) [22]. Fused
5-heterotetrazole ring systems 20 have been obtained in high yields by the intra-
molecular cycloaddition reaction of organic azides and heteroatom substituted
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Scheme 15.9 Synthesis of tetrazoles under palladium catalysis [20, 21].
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nitriles [23]. Cyanates, thiocyanates and cyanamides are all competent dienophiles for
this reaction.

Tetrazoleshavealsobeensynthesizedusingfluorouschemistry (Scheme15.11) [24].
A fluorous tin azide reagent (21) is prepared and reacted with nitriles to produce
the corresponding tetrazole compounds 22. Subsequent cleavage by concentrated
hydrochloric acid gives pure tetrazole products 23 and the fluorous tin chloride,
which could be reconverted into tin azide. In most cases, a 2–5-fold excess of the
fluorous tin reagent is used and good yields of the tetrazole products are
obtained.

15.2.4
Isocyanides as Substrates

Isocyanides can also be used to prepare tetrazoles. Hydrazoic acid reacts with iso-
cyanides toproduce1-substituted tetrazoles [25]. This reactionproceeds via theattackof
theazideanionon theprotonated isocyanide followedbycyclization togive the tetrazole
ring. To avoid the use of toxic hydrazoic acid, 1-substituted tetrazoles 24 were
synthesized via the [3 þ 2] cycloaddition between isocyanides and trimethylsilyl azide
in the presence of an acid catalyst and methanol (Scheme 15.12) [26]. Various
1-substituted tetrazoles have been obtained in good to high yields under these condi-
tions. The reaction probably proceeds through the in situ formation of hydrazoic acid,
followed by a successive [3 þ 2] cycloaddition with the isocyanide activated by an acid.
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Scheme 15.10 Synthesis of tetrazoles in a fused ring system [22, 23].
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Scheme 15.11 Synthesis of tetrazoles under fluorous conditions [24].
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The isocyanide can also be electrophilically activated by iodinium ion or the
acylium ion. Thus, if iodine azide is used instead of hydrazoic acid, 1-substituted 5-
iodotetrazole can be obtained. Similarly, the reaction of an isocyanide, an acid
chloride and sodium azide generates 1-substituted 5-acyltetrazole where the acylium
ion activates the isocyanide to the nucleophilic attack by the azide anion. The reaction
of isonitriles with azide in the presence of Mannich-type reagent (e.g., formaldehyde
and piperidine) provides 1,5-disubstituted tetrazoles. This is a variation of the well-
known Ugi reaction and is discussed in more detail later.

15.2.5
Oximes as Substrates

Oximes react with an azide source and reagents like thionyl chloride, chlorosulfonic
acid, phenylsulfonyl chloride or phosphorus pentachloride to give 1,5-disubstituted
tetrazoles. This transformation occurs via the attack of the azide anion on the
nitrilium ion intermediate followed by cyclization to produce the tetrazole ring.
Oximes of methyl olenonate and methyl betulonate have been treated with sodium
azide in the presence of chlorosulfonic acid to give tetrazoles 25 and 26 respectively
(Scheme 15.13) [27].

15.2.6
Orthoesters as Substrates

Orthoesters (especially orthoformates) react with sodium azide and amines or
anilines to produce tetrazoles. This method can be carried out conveniently with
aliphatic, aromatic or heteroaromatic anilines and gives good yields of the corre-
sponding tetrazoles. A synthesis of 1-(2-iodophenyl)-1H-tetrazole 27 has been
described recently by treating 2-iodoaniline, triethylorthoformate and sodium azide
in refluxing acetic acid (Scheme 15.14) [28]. This tetrazole derivative, when used as a
ligand in palladium-catalyzed Heck reactions, gives the cross-coupled products in
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Scheme 15.12 Synthesis of tetrazoles form isonitriles [26].

15.2 Synthetic Methods j1411



excellent yields. Condensation of p-methoxybenzylamine with 2-chloro-1,1,1-
triethoxyethane in the presence of sodium azide in acetic acid produces the
corresponding tetrazole 28 [29]. Similarly, 2-aminopyridine has been heated with
sodium azide and triethylorthoformate in acetic acid to produce 2-tetrazolyl-
pyridine [29].

15.2.7
Ketones as Substrates

Ketones react with an azide source to generate tetrazoles in the Schmidt reaction.
Mixtures of 1,5-disubstituted products are generally obtained in this reaction.
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Scheme 15.13 Synthesis of tetrazoles from oximes [27].
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Scheme 15.14 Synthesis of tetrazoles from orthoesters [28, 29].
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Originally, hydrazoic acid was used for this transformation, but now several other
reagents are available. A few steroidal ketones have been converted into their
corresponding tetrazole derivatives when an excess of hydrazoic acid was used [30].
Undesired side products, like the corresponding amides and lactams, were also
formed under these conditions. Boron trifluoride etherate has been used in com-
binationwith hydrazoic acid in this type of reaction, but still both tetrazole and lactam
products were observed when steroidal ketones were used [31]. In another example,
using Pummerer�s ketone, 35% of the tetrazole product and 22% of the uncyclized
azide product was obtained by the use of hydrazoic acid and boron trifluoride
etherate [32].

Other Lewis acids like aluminium trichloride, tin(II) chloride, tin(IV) chloride,
titanium tetrachloride, tetrachlorosilane, zinc(II) chloride and trimethylsilyl azide
have all been used with success. Typically, an excess of the azide is used in the
presence of a Lewis acid and the ketone in this reaction.Mixtures of 1,5-disubstituted
1H-tetrazoles 29 and 30 are obtained when aliphatic or aromatic ketones are reacted
with excess sodium azide in the presence of titanium chloride in refluxing aceto-
nitrile (Scheme 15.15) [33]. The use of a large excess of sodium azide relative to the
amounts of ketone and titanium(IV) chloride (i.e., 8 : 1 : 2) provides the most
satisfactory results. Performing the reactions in other solvents like benzene, THF,
ether or methylene chloride led to lower yield of the tetrazole products in this study.

A series of tetrazoles 31 have been prepared by using b-keto esters with trimethyl-
silyl azide and zinc bromide (Scheme 15.16). These were subsequently transformed
into amino acids 32 [34].

The reactions of a few cyclic a,b-unsaturated ketones with trimethylsilyl azide in
the presence of trimethylsilyl triflate produce the corresponding ring-expanded
tetrazole derivatives 33 (Scheme 15.17) [35].
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Scheme 15.15 Synthesis of tetrazoles from ketones [33].
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Scheme 15.16 Synthesis of tetrazoles from b-keto esters [34].
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Triazidochlorosilane (ClSiN3) is also an excellent reagent for the conversion of
ketones and a,b-unsaturated ketones into the corresponding tetrazole derivatives 34
in nearly quantitative yields (Scheme 15.18) [36].

15.2.8
Tetrazoles from Other Substrates

Tetrazoles have also been prepared from amidines, carbodiimides, carbonimidic
dichlorides, isocyanates, isothiocyanates, isocyanides, nitriliumsalts, oxazolones and
thiocyanates; however, these substrates have been utilized on very few occasions in
the recent literature and hence are not described here. Moreover, this chemistry is
well-documented elsewhere. The syntheses of tetrazole compounds using methods
that have rapidly evolved recently and are now being increasingly used in both
academia and industry is described next. These include the solid-phase synthesis,
microwave synthesis and multicomponent synthesis of tetrazoles.
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Scheme 15.17 Synthesis of fused tetrazoles from cyclic ketones [35].
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15.2.9
Solid-Phase Syntheses

The synthesis of tetrazole derivatives has been reported using solid-phase conditions
to produce libraries of compounds – especially in the realm of pharmaceutical
research. Rink amide resin has been attached to a suitably substituted benzonitrile
that was then reacted with trimethylsilyl azide and a catalytic amount of bis(tribu-
tyltin) oxide for 50 h at 90 �C in o-xylene to produce the corresponding tetrazole
compounds 35 (Scheme 15.19 [37]. This procedure was adapted from the report by
Wittenberger that promoted the use of bis(tributyltin) oxide to facilitate the reaction
of trimethylsilyl azide with nitriles to produce tetrazoles. The final products were
obtained in moderate yields (20–45%) and in reasonably good purity (65–93%).
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Scheme 15.19 Synthesis of tetrazoles under solid-phase conditions using a Rink amide resin [37].
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Scheme 15.18 Synthesis of tetrazoles from ketones [36].
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Theuse of trimethylsilyl azide in contrast to azidotrimethyltin or sodiumazidemakes
this process less toxic. In this study, diversity was introduced at two places on the
phenyl ring by (i) Suzuki coupling at the iodo atom and (ii) Mitsunobu reaction at the
phenolic site.

A dihydropyran carboxylic acid type linker has been attached to tetrazoyl-
arylbromide that then underwent Suzuki coupling with two different aryl boronic
acids to produce biphenyl-tetrazole products [38]. Parallel solid-phase synthesis of
5-aminotetrazoles 36 was recently achieved by the reaction of resin-bound
thioureas with excess mercuric chloride and sodium azide (Scheme 15.20) [39].
The final products were obtained in good yields (60–70%) and good purity
(75–85%).

Tetrazoles have also been incorporated into privileged structures. A series of
nitrile-containing benzopyran scaffolds were prepared on selenium-tethered resin
and reacted with azidotrimethylstanane to provide the corresponding stannylated
tetrazoles (Scheme 15.21) [40]. The trimethylstannyl group was removed using
aqueous trifluoroacetic acid (TFA) and the tetrazoles were further alkylated with
various alkyl halides. Finally, the resin-bound tetrazoles were cleaved under oxidative
conditions to afford the substituted tetrazole products 37.

MeOPEG-supported azide has also been utilized as the azide source for the
reactionwith activated nitriles to produce the corresponding tetrazoles 38 in excellent
yields (Scheme 15.22). Subsequent acid hydrolysis provided clean tetrazole
products [41].

15.2.10
Microwave Syntheses

The use of microwaves has become an increasingly important component in organic
synthesis as more and more types of reactions are successfully performed in their
unique environment. The synthesis of tetrazoles often requires high temperatures
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Scheme 15.20 Synthesis of tetrazoles under solid-phase conditions [39].
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and long reactions times under standard conditions. Microwave chemistry promises
to improve yields using lower temperatures and very short reaction times. Under
microwave conditions, aryl bromides were converted into the corresponding nitriles
by using zinc cycanide and Pd(PPh3)4 in DMF for 2min at 60W. These nitriles were
then reacted with sodium azide and ammonium chloride in DMFusing 20W power
for 15min to produce the corresponding tetrazoles 39 in good yields (80–95%)
(Scheme 15.23) [42]. The same reactions performed using conventional heating took
4–10 h and gave slightly lower yields of the products. The synthesis of hindered
tetrazoyl pyridines has recently been described under microwave conditions [43].
Under conventional heating conditions, only one nitrile substrate could be converted
into the corresponding tetrazole. Using microwave irradiation at 2450MHz and
140 �C for 8 h, substituted pyridinyl nitrileswere reactedwith trimethylsilyl azide and
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Scheme 15.21 A further example of the synthesis of tetrazoles under solid-phase conditions [40].
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Scheme 15.22 Synthesis of tetrazoles using PEG [poly(ethylene glycol)] [41].
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bis(tributyltin) oxide in dioxane to generate tetrazole products 40 in decent yields
(50–80%). A substantial amount of the unreacted starting nitrile was recovered
whenever lower yields of final product were isolated. As microwave instruments
become more common in organic laboratories, more examples of its utility in the
synthesis of tetrazoles will emerge.

15.2.11
Multicomponent Reactions

It has been known since the 1960s that tetrazoles could be obtained by reacting
hydrazoic acid, isonitriles, aldehydes and amines by a variation of the now well-
known Ugi reaction (Scheme 15.24) [44].

The Ugi reaction has been increasingly employed to prepare libraries of com-
pounds. It has especially been employed to prepare tetrazole compounds fused to a
second ring system. In this regard, a four-component, two-step, one-pot reaction
between an aldehyde, a primary amine, methyl-b-(N,N-dimethylamino)-a-isocya-
noacrylate and hydrazoic acid has been used to prepare bicyclic pyrazole compounds
41 in moderate yields (Scheme 15.25) [45]. More recently, a five-centre-four-com-
ponentUgi reaction that employed an aldehyde, a primary amine, trimethylsilyl azide
and 2-isocyanoethyl tosylate to create tetrazoylpiperazine ring products 42 has been
described [46].
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Scheme 15.23 Synthesis of tetrazoles under microwave conditions [42, 43].
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Scheme 15.24 Synthesis of tetrazoles from a modified Ugi reaction.
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A more recent report demonstrates the synthesis of a series of tetrazoles by a Ugi
reaction using the universal Rink-isonitrile resin (Scheme 15.26). The resin-bound
nitrile group reacts with aldehydes, secondary amines and trimethylsilylazide to
produce the corresponding tetrazoles 43 [47].

In a very interesting variation, a series of fused azepine-tetrazoles 44 have been
prepared that utilize the Ugi reaction sequence (Scheme 15.27) [48]. This
generated diversity at five positions on the scaffold. Similarly, the reaction of an
aldehyde, primary amine, methyl isocyanoacetate and trimethylsilyl azide in
methanol at reflux affords bicyclic tetrazole-ketopiperazines 45 in good yield [49].
This efficient one-step protocol creates products with four potential diversity
points and has been used to generate arrays of biologically relevant small
molecules for general and targeted screening. These examples demonstrate the
power of multicomponent reactions to rapidly generate a diverse set of com-
pounds sharing a common core.

HN3
CN CO2R4

(H3C)2N MeOH

N

N

CO2R4R3

R1

N N
N

R1, R2 = alkyl, H, cyclic ketone
R3 = alkyl, benzyl
R4 = Me

R2

30–80%

R1NH2 + R2CHO + TMSN3 + TsOCH2CH2CN
MeOH

N N N

N
NR2

R140–70%
R1 = CH2Ph, 4-MeOOCC6H4
        2-MeOOCC6H4, CH2CH(OMe)2
R2 = CH(CH3)2, 4-MeOC6H4, Ph
        4-MeOOCC6H4

R1R2CO + R3NH2 +

41

42

Scheme 15.25 Synthesis of fused tetrazoles using multiple components [45, 46].
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Scheme 15.26 Solid-phase multi-component synthesis of tetrazoles [47].
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15.3
Reactions of Tetrazoles

The tetrazole ring contains a carbon atom, a pyrrole-type nitrogen atom and three
pyridine-type nitrogen atoms. These atoms exhibit their ownunique chemical nature
and reactivity. The pyrrole-type nitrogen exerts an electron-donating effect (activating
the ring) whereas the pyridine-type nitrogens exert an electron-withdrawing effect
(deactivating the ring). As mentioned earlier, tetrazoles are nitrogen analogs of
carboxylic acids. Tetrazolic acids (R-CN4H) are easily generated in basic medium as
they exhibit a lower pKa than carboxylic acids. The nature of the R-substituent
controls the reactivity – electron-withdrawing groups being more acidic. These
tetrazolic acids can react at either the N1 or N2 position and mixtures are often
obtained in these types of reactions.

15.3.1
Reactions at C5

1-Benzyltetrazoles or 1-(para methoxybenzyl)tetrazoles have been regioselectively
lithiated at the 5-positionusingnBuLi inTMEDA/THFat�98 �C (Scheme15.28) [50].
These conditions were necessary to obtain regioselectivity consistently. Subse-
quent addition of electrophiles (aldehydes, ketones, a,b-unsaturated ketones,
Weinreb amides, iodine and diethylchlorophosphate) furnishes the correspond-
ing adducts 46. The benzyl or para methoxybenzyl groups can be cleaved under
acidic or hydrogenation conditions to produce 5-substituted tetrazoles in good
yields.

N1-protected tetrazoles can be brominated using a strong base like nBuLi and
bromine to produce the C5-bromo products. These activated products can then be

O
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+

TMSN3, R3NH2

R4

MeO2C NC
N

N
NN

O
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R2
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O
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N
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Boc

R3

NC
MeO

O

R4R4NH, TMSN3

N

H
NO

R3

N
N

N

N

R1
R4

R5

44

45

Scheme 15.27 Multi-component syntheses of fused tetrazoles [48, 49].
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utilized to prepare various heterocyclic compounds. 1-Benzyl-5-bromotetrazole (47)
has been conveniently prepared by lithiation of 1-benzyltetrazole with nBuLi in THF
at �78 �C followed by treatment with bromine (Scheme 15.29) [51]. It was then
coupled with various aryl boronic acids to produce the corresponding 5-aryl deriva-
tives 48 under standard Suzuki reaction conditions.

15.3.2
Reactions at N1 and N2

The 2-position of the tetrazole ring is activated and thus reacts under several different
conditions.

N

N
N

N

R

1. nBuLi

2. E+

N

N
N

N

R
X

E X

O

HR

O

H

O

ClR

O

P
ClRO

R

O

R

O

P
RO

OH

OH

R

RO

R

RO

I2
I

CH3I CH3

C6H5CH2Br C6H5CH2

R = Bn, PMB R = Bn, PMB, H
46

Scheme 15.28 Electrophilic addition to tetrazoles [50].
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ArB(OH)2, Na2CO3
cat. Pd(PPh3)4

toluene, H2O, EtOH
reflux
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N
Bn

Ar

80–90%47 48

Scheme 15.29 Suzuki coupling on tetrazoles [51].
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Oxidation of the commercially available sodium salt of ethyl-tetrazole-5-carboxyl-
ate using oxone in aqueous acetone at pH 7.5 forms, exclusively, N-2-hydroxyte-
trazole-5-carboxylate (49) (Scheme 15.30) [52]. Subsequent standard basic hydrolysis
gives the corresponding acid that can be further decarboxylated to generate 2-
hydroxytetrazole (50).

5-Phenyltetrazole can be selectively benzylated by using O-benzyl-S-propargyl
xanthate in refluxing toluene to give exclusively 2-benzyl-5-phenyltetrazole (51)
(Scheme 15.31) [53]. In contrast, the use of benzyl bromide generates both 1- and
2-benzyltetrazoles. O-benzyl-S-propargyl xanthate is prepared by the reaction of the
xanthate salt derived from benzyl alcohol with propargyl bromide.

5-Substituted tetrazoles react withMichael acceptors having electron-withdrawing
groups to produce 1,5-disubstituted and 2,5-disubstituted products 52 and 53
(Scheme 15.32) [54]. These reactions are also applicable to 1-substituted-tetrazo-
lin-5-ones and 5-substituted-1-hydroxy tetrazoles. An asymmetric version of this
reaction has recently been disclosed where 5-methyltetrazole and 5-phenyltetrazole
undergo highly enantioselective catalytic conjugate addition to a,b-unsaturated
ketones and imides in the presence of chiral[(salen)Al(III)] complexes [55]. Mixtures
of 1,5- and 2,5-disubstituted products 54 and 55 were obtained when 5-methylte-
trazole was used but 2,5-disubstituted products 55were exclusively obtained when 5-
phenyl tetrazole was used. Tetrazole itself fails to react under these conditions.

Tetrazoles with the C5 substituted as an aryl ether can be conveniently acylated at
N2 using the corresponding acyl chlorides and triethylamine to produce products 56
(Scheme 15.33) [56].

C-Arylated tetrazoles react with tetrafluoroborate aryliodinium salts using
either copper or palladium catalysts to produce the corresponding C,2N-diaryl

N

NHN

N
Ph

N

NN

N
Ph

Bn

S

BnO S

toluene, reflux

97% 51

Scheme 15.31 Benzylation of tetrazoles [53].
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N
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2. c.HCl, reflux
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NN

N

HO

3. c.HCl, reflux, 90h

0594

Scheme 15.30 Oxidation of tetrazoles [52].
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products 57 and 58 (Scheme 15.34) [57]. Phenyl boronic acids and aryl bismuth
salts can also be used with copper catalysts to produce C,2N-diaryl tetrazoles 59
and 60, respectively, from C-arylated tetrazoles [58].

Tetrazole can displace fluorine from 4-nitrofluorobenzenes to produce N-
(4-nitrobenzene) derivatives 61 (Scheme 15.35) [59].

Tetrazoles react with epoxides readily to produce both N1 and N2 substituted
adducts depending on the conditions used.When a base like potassium t-butoxide is
used to deprotonate the tetrazole, bothN2 andN1 adducts 62 and 63, respectively, are
obtained (Scheme 15.36) [60]. In contrast, when tetrazole is reacted directly, albeit on
a strained epoxide, only N2 adduct 64 is obtained [61].
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Scheme 15.32 Michael addition reactions of tetrazoles [54, 55].
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Scheme 15.33 Acylation reactions of tetrazoles [56].
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15.3.3
Miscellaneous Reactions

C-Phenyltetrazoles can be lithiated at the ortho position of the phenyl ring –hence the
tetrazole ring is seen as an ortho-directing substituent (Scheme 15.37) [62]. These
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N
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N
N
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N N
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Scheme 15.36 Reactions of tetrazoles with epoxides [60, 61].
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Scheme 15.35 Nucleophilic addition on activated fluorobenzenes [59].
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Scheme 15.37 Tetrazole ring as an ortho-directing group [62, 63].
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lithiated species can be quenched with various electrophiles to produce the corre-
sponding adducts 65 and 66 [63].

Tetrazole compounds are also used as catalysts in various reactions. They have
been extensively used in nucleotide chemistry to couple individual phosphoramidite
nucleotides to form long chain RNA molecules. 1H-Tetrazole itself has been
prominent in this chemistry. More recently, 5-(benzylmercapto)-1H-tetrazole (67)
has been shown to be an excellent activator for RNA synthesis (Scheme 15.38) [64].
Compared to routinely used 1H-tetrazole, application of a 0.25M solution of 67 in
acetonitrile allows higher coupling yields (>99%), lower coupling times (3min) and
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Scheme 15.38 Tetrazole derivative used in nucleotide coupling [64].
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Scheme 15.39 Reactions using tetrazole compounds as catalysts [65–67].
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reduced excess of phosphoramidites in solution over the solid-phase nucleotides
(eight-fold). It has been synthesized by reacting benzylthiocyanate with sodium azide
and ammonium chloride in a dioxane/water mixture.

The chiral tetrazole compound 68, derived from proline, has been utilized in
asymmetric Mannich, nitro-aldol and nitro-Michael reactions (Scheme 15.39) [65]. It
has also been successfully used in asymmetric oxidation recently [66]. Its enantiomer
has been utilized in aldol, nitroso-addition and a-fluorination reactions [67].
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16
Six-Membered Heterocycles: Pyridines
Concepci�on Gonz�alez-Bello and Luis Castedo

16.1
Introduction

Pyridine is the simplest six-membered heterocyclic aromatic compound that is
structurally related to benzenewith oneCHgroup in the six-membered ring replaced
by a nitrogen atom. It is a liquid, with afish-like, putrid and sour odor, that is obtained
from crude coal tar or is synthesized from acetaldehyde and ammonia. Pyridine,
widely used as a solvent and reagent in organic chemistry, is a harmful substance
by inhalation, ingestion or absorption through skin and it can produce cancer and
reduce male fertility.

Pyridine derivatives are named as pyridines, indicating the positions of the
substituents as a, b or c or by numbers 2-, 3-, 4-. The radical is named as pyridyl.
Some examples are shown in Figure 16.1.

Some alkylpyridines are known by trivial names. For instance, methylpyridines
are known as picolines, dimethylpyridines as lutidines, and trimethylpyridines as
collidines (Figure 16.2).

16.1.1
Relevant Pyridine Derivatives

16.1.1.1 Natural
Pyridines are rarely found in nature, being exemplified by some vitamins, cofactors
and alkaloids (Figure 16.3). For example, niacin is a water-soluble vitamin that assists
in the functioning of the digestive system, skin and nerves, and is also related with
food metabolism. In addition, pyridoxine (vitamin B6) is an important contributor
of protein metabolism. In contrast, the redox-active part of nicotinamide adenine
dinucleotide (NADþ ) or nicotinamide adenine dinucleotide phosphate (NADPþ ),
important cofactors for enzymatic redox processes, is a nicotinamide heterocyclic
ring.

Few alkaloids containmonocyclic pyridine derivatives, with the notable exceptions
being the tobacco alkaloids. Of particular importance is nicotine, which is present in
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dried tobacco leaves and is the active ingredient in cigarettes and other tobacco
products. Nicotine produces stimulant and depressant phases of action on all
autonomic ganglia and is found in many insecticides. In addition, nicotyrine and
anabasine are also important pyridine derivatives of tobacco alkaloids.

16.1.1.2 Unnatural
Over the last 50 years interest in pyridine derivatives has risen sharply with the
discovery ofmany bioactive compounds containing a pyridine ring. The development
of different pyridine drugs has been especially interesting for the pharmaceutical
industry, as the existence of over 7000 drugs with a pyridine ring demonstrates
(Figure 16.4) [1, 2]. For instance, isoniazide is an antibiotic used to treat tuberculosis;
sulphapyridine is used to help control dermatitis herpetiformis; ABT-594 is a
powerful analgesic many times more potent than morphine, without the serious
side effects; niaprazine is an antihistamine, bronchodilator and sedative; piroxicam is
a non-steroidal anti-inflammatory drug used to relieve the pain, tenderness inflam-
mation and stiffness caused by arthritis; niflumic acid is used as an antirheumatic

N

2-bromo-4-chloropyridine

Cl

N

3-Nitropyridine

NO2

N CO2MeBr

Methyl 5-methoxy-2-pyridinecarboxylate

N

pyridine

N

3-pyridyl

1

2 α

3 β
4 γ

5

6

3

MeO

Figure 16.1 Examples of pyridine nomenclature.
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N
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N

γ-picoline

N

2,6-lutidine

N

2,5-lutidine

N

2,4,6-collidine

N

2,3,5-collidine

Figure 16.2 Nomenclature of some methylpyridines.
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Figure 16.3 Relevant natural pyridine compounds.
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and analgesic; doxylamine is an antihistamine used for short-term treatment of
insomnia and also to treat symptom soft allergy, colds and upper respiratory
infections.

Pyridine derivatives are also very important compounds for the agrochemical
industry due to their applications as herbicides, fungicides or bactericides
(Figure 16.5) [3–5].

16.1.2
Spectroscopic Data

16.1.2.1 NMR Data
The presence of the nitrogen atom in the aromatic ring produces a strong deshielding
influence of the ringa-hydrogen anda-carbon atoms, and a similar but smaller effect
on the ring c-hydrogen and c-carbon atoms. Typical 1H NMRand 13C NMRchemical
shifts are indicated in Figure 16.6. The coupling constants of the pyridine aromatic
protons are usually similar to benzenes, except in the case of the H2 proton whose
coupling constant is reduced from 7–8 to 4–6Hz. Substituent effects follow the same
general trend as in substituted benzenes.

The 15N NMR signal for pyridine-type nitrogen appears at comparatively low field
(57 ppm in CCl4). Substituent effects are often considerable, particularly when
electron-donating groups are present in the aromatic ring and, consequently,
downfield shifts are observed. For instance, the chemical shift of N1 in 4-methox-
ypyridine, 4-aminopyridine and 4-nitropyridine is 90, 105 and 35 ppm (in acetone),
respectively (Figure 16.7).

The nitrogen chemical shift of pyridine increases up to 100 ppm when the lone
electron pair is protonated. For instance, the nitrogen signal of pyridinium hydro-
chloride appears at 181 ppm (in water). N-Oxidation of the nitrogen also shifts
the signal downfield, but only between 10 and 30 ppm. Hydrogen bonding to the
nitrogen lone pair leads to a downfield shift that depends on the strength of the
bonding. Shifts of approximately of 20 ppm are usually found.

16.1.2.2 UV Data
Pyridine shows two absorptionmaxima, at 195 and 250 nm (in CCl4). TheUVspectra
varieswithpHbecause of quaternary salt formation. For example, 4-tert-butylpyridine

N

Picloram
(herbicide)

N

Pyridinitrile
(fungicide)

NH2

Cl

Nitrapyrin
(bactericide)

N CCl3CO2H

ClCl

Cl

CNNC

Cl Cl

Figure 16.5 Examples of agrochemical pyridine derivatives and their applications.
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has an absorption maximum at 262 or 255 nm in 0.1M HCl or 0.1M NaOH,
respectively.

16.1.2.3 IR Data
The pyridine IR spectrum is quite similar to the corresponding vibrations of
benzene. Pyridine has C–H stretching frequencies in the range 3020–3070 cm�1

as well as C¼C and C¼N stretching frequencies at 1590–1660 cm�1 and
near 1500 cm�1.
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Figure 16.6 Proton coupling constants (Hz) and 1H and 13C NMR spectra of pyridine.
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Figure 16.7 Examples of effect of substituents on the nitrogen chemical shift.
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16.1.3
General Reactivity

Pyridine can be considered a benzene derivative in which an sp2-hybridized nitrogen
atom replaces a CH unit. The pyridine ring is aromatic and several resonance
structures may be drawn (Figure 16.8). The aromatic ring electronic structure is
strongly modified by the presence of the electronegative nitrogen atom, which has
a lone pair of electrons in one of the sp2 hybrid orbitals orthogonal to the p-system.
Consequently, this excess electron density is localized on the ring nitrogen atom and
it is not delocalized around the ring. On the other hand, the ring nitrogen atom pulls
charge from the ring because the nitrogen atom is more electronegative than carbon
and, therefore, pyridine is more polar than benzene, as its dipole moment (2.23D)
shows.

Pyridine reactivity is based on the charge distribution within the ring, the
electronic effects of ring substituents and to a lesser extent on steric effects. Pyridines
are electron-deficient heterocycles that have many analogies in reactivity with
nitrobenzene due to their electron distribution. In both molecules, the positive
charge is located at positions 2 and 4 of the ring, and the negative charge is placed in
the ring nitrogen atom for pyridines or in the C1 carbon atom for nitrobenzene
(Figure 16.9).

The ring nitrogen atom of pyridines is a reasonable nucleophile to react with
electrophiles such as alkyl and acyl halides, leading to stable quaternary salts
(Scheme 16.1). In addition, pyridines are weak bases compared with the correspond-
ing piperidines; they react withBrønsted acids such asHCl,HNO3,H2SO4 and so on,
to form pyridinium ions, and with Lewis acids such as AlCl3, SnCl4, and so on to
afford stable pyridinium complexes.

N

N N N
+

- N

+

-

N

2.23 D

--

Figure 16.8 Pyridine resonance forms. The ring nitrogen atom has a negative charge.

N
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δ+δ+

δ-

δ+

δ+δ+
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-O O-

δ-

Figure 16.9 Pyridine and nitrobenzene charge distributions.
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The electron-deficient nature of the pyridine ring allows nucleophiles to react with
pyridines by a nucleophilic aromatic substitution mainly at the a- and c-positions.
A wide range of nucleophiles can be employed, such as amide anions, hydroxyl
groups, organometallic compounds, and so on, allowing the selective functionaliza-
tion of the a- and c-positions of the pyridine ring with a large variety of functional
groups. Pyridine electrophilicity is enhanced in the presence of electron-withdrawing
groups in the ring.

16.2
Synthesis of Pyridines

16.2.1
Synthesis by Cycloaddition Reactions

16.2.1.1 [2 þ 2 þ 2] Cycloadditions
One of the most convenient synthetic approaches to pyridines is the [2 þ 2 þ 2]
cycloaddition of alkynes to nitriles catalyzed by transition-metals (Scheme 16.2)
[6–10]. It is an atom-economical and extraordinarily effective method to prepare
substituted pyridines. Although in principle thermal [2 þ 2 þ 2] cycloadditions are
symmetry allowed, entropic barriers associated with the approximation of the three
components and enthalpic activation energy contributions disfavor the pericyclic
process [11–13]. In fact, reports of purely thermal [2 þ 2 þ 2] cycloadditions are rare
in literature. However, these energetic barriers can be circumvented by the use of
metals that coordinate to the reaction partners in a step-wise process.

N

E

N

E

Reactivity with electrophiles

N

Reactivity with nucleophiles

E = H+, RX, RCOX, (RCO)2O, etc.

Nu

N Nu N

Nu

and/or

Nu: H2N-, HO-, organometallic compounds, etc.

Scheme 16.1

N R
N

R
+

Metal catalyst

∆

R = alkyl, vinyl, aryl

Scheme 16.2
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Until recently, most reported examples of co-cyclization reactions of alkynes to
nitriles focused on cobalt-based catalysts. For example, Wakatsuki and Yamazaki
[14, 15] reported in 1973 the first synthesis of pyridines using stoichiometric and,
later on, catalytic cobaltacyclopentadienes.

The mechanistic and synthetic studies reported by B€onnemann were crucial for
the development of this reaction [16–20]. The proposed mechanism is shown in
Scheme 16.3. Thus, two alkyne moieties coordinate to the metal, and then oxidative
coupling proceeds to give the Co(III)-metallacycle 1. Because nitriles are generally
better s-donors than alkynes and, therefore, are better ligands for Co(III), the nitrile
addition (path a) is more favored than the addition of a third alkyne (path b).
Coordination of a nitrile to the metallacycle 1 takes place initially through the
nitrogen to afford Co complex 2, which finally evolves by insertion of the nitrile
to the metallacycle followed by reductive elimination to yield the pyridine derivative
with concomitant regeneration of the CpCo catalyst.

Whereas the nitriles undergo practically exclusive conversion into pyridine
derivatives, the alkyne component always undergoes some degree of conversion
into benzene derivatives. The ratio of pyridines to benzene products can be directed
in favor of pyridines by using an excess of the nitrile. If catalysis is conducted in the

CpCo

Co

Cp

Co
Cp

N

C

R

"CpCo"

R-CN

Co
Cp

1

2

path a

path b

Cp= cyclopentadienyl

2 x

N R

Scheme 16.3
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presence of a permanent excess of nitrile and a stoichiometric amount of alkyne,
pyridines can be obtained in yields up to 90%.

The photochemical variant of the reaction provides a valuable extension of the
existing methods, avoiding the harsh reaction conditions of the thermally initiated
method. By irradiation of the reaction mixture with UV-Vis light (350–500 nm), or,
alternatively, with sunlight as the energy source for catalyst activation [21, 22], the
reaction could be carried out at ambient temperature and pressure and even permits
the use of water as solvent. Besides improved operational safety with respect to the
thermally initiated variant, the photochemical cycloaddition bears the opportunity to
improve chemoselectivity by avoiding the homocyclotrimerization of the alkyne
moieties [23, 24]. For instance, a series of 2-pyridines 3have been synthesized at 25 �C
in 3–4 hours by the photocatalyzed [2 þ 2 þ 2] cycloaddition of various nitriles with
acetylene (Table 16.1) [25].

The co-cyclization of monosubstituted alkynes 4 to nitriles 5 usually gives
amixture of 2,4,6- (6) and 2,3,6-trisubstituted pyridines (7), with the former products
being predominant (Table 16.2). The regioselectivity of the reaction is related to the
electron density on the metal. Co complexes containing electron-withdrawing

Table 16.1 Examples of [2 þ 2 þ 2] cycloaddition of acetylene with nitrilesa).

N R
N

R
+

CpCo(COD)

hυ, 25 ºC, 3-4 h

3

R Solvent Yield (%)

Hexane 90

Toluene 80

O

O
Hexane 81

OEt

OEt
Water þ 2% (v/v) toluene 85

N
Toluene 79

O

7
Toluene 80

a) COD ¼ cyclooctadiene.
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ligands, for instance (C5H4COMe)Co(COD) [18, 26] (COD¼cyclooctadiene) or
(C5H4CO2Me)Co(COT) [27], (COT¼cyclooctatetraene), give high yields but low
regioselectivities (1.5 : 1), whereas Co complexes containing electron-rich ligands,
for instance (C5Me5)Co(COD), afford higher regioselectivities (3.5 : 1) but low yields.
Table 16.2 shows the effect of the type of Co catalyst on the reaction regioselectivity.

The low regioselectivity of the [2 þ 2 þ 2] cycloaddition reactions can be circum-
vented by tethering two of the three reaction components. Two approaches have been
employed, either reaction of dialkynes and nitriles (Scheme 16.4a) or alkynenitriles
and alkynes (Scheme 16.4b).

(a) Co-oligomerization of dialkynes with nitriles affords chemo- and regioselective
formation of oligoheterocyclic systems in a single step. For instance, the co-
oligomerization of diyne 8 with various substituted nitriles 9 gives pyridines 10
in good yields and high selectivities (Scheme 16.5) [29]. Pronounced regioselectivity
has been observed in the reaction of 1,7-decadiyne (11) with valeronitrile (12),
affording tetrahydroisoquinoline 13 as the major regioisomer (Scheme 16.5) [29].

Table 16.2 Reaction temperature and regioselectivity for 65% propyne conversion.

N R2

+
Co(I)

R1

R1 N R2R1

R1

R1

N

R2

2 +

6 74 5

Co complex T (�C) Ratio 6 : 7
(R1¼Me; R2¼ Et) [18, 26, 28]

Co(COD)PhOC 119 1.22 : 1

MeOC Co(COD) 123 1.46 : 1

Co(COD)Si 144 1.67 : 1

Co(COD) 140 1.73 : 1

Co(COD) 147 1.71 : 1

Co(COD)
180 2.50 : 1

Co(COD) 220 3.51 : 1
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(b) a,v-Alkynenitriles 15 are catalytically co-cyclized with alkynes 16 in the presence
of CpCo(CO)2 to furnish chemo- and regioselective [b]annulated pyridines 17
(Scheme 16.6) [30].

Chiral pyridine derivatives can be obtained by metal-catalyzed cycloaddition
of optically pure nitriles and alkynes. Under thermal conditions, the enantiomeric
excess of the product decreases in many cases by 2–10%, which is attributed to
the high reaction temperatures (>100 �C) necessary to initiate the catalysis [31–39].
However, using the photochemical version of the reaction, this problem is
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circumvented, affording optically pure pyridine derivatives without detectable loss of
enantiomeric purity (Scheme 16.7) [40].

Recently, it has been shown that by using modified chiral Co(I) complexes of
the type CpCo(COD) homochiral 1-aryl tetrahydroisoquinolines 20 are obtained
in 82–93% ee by co-oligomerization of diyne 18 and various nitriles 19
(Scheme 16.8) [41].

Although many examples of Co-catalyzed [2 þ 2 þ 2] cycloaddition of nitriles to
alkynes have been reported, the regioselective assembly of two different unsymme-
trical alkynes and a nitrile, leading to a single pyridine derivative, still remains
unsolved. In a few cases, a single pyridine has been obtained with the assistance of
a functional group such as an ester group [42]. However, in most cases a mixture
of regioisomers is obtained. This can be attributed to the two possible orientations of
the nitrile during the formation of the cobaltacyclopentadiene. Therefore, the
regioselectivity of the reaction is completely dependent on the substitution of the
alkynes. This selectivity problem has been greatly improved with the use of other

N

BnO O

N N

BnO O

N

CpCo(CO)2

toluene, hυ

89%
 >99% ee

+ 2

NHAc

N

NHAc

NCpCo(CO)2

toluene, hυ

83%

+ 2

>99.5% ee

Scheme 16.7

OMe
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+ OMe

N

R
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18 19

Scheme 16.8
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transition-metal complexes such as Fe, Rh, Ni, Ti, Ta, Ru, Zr/Ni and Zr/Cu [6].
Table 16.3 shows some examples.

16.2.1.2 [4 þ 2] Cycloadditions
Pyridine derivatives can be efficiently synthesized by the [4 þ 2] cycloaddition
(hetero-Diels–Alder) of an azadiene and a dienophile (Figure 16.10a and b) or a
diene and an azadienophile (Figure 16.10c). Careful selection of the appropriate
azadiene/diene and the complementary dienophile/azadienophile and well-defined
reaction conditions can result in a good approach to substituted pyridines.

In selecting an appropriate diene and dienophile it is important to understand that
the Diels–Alder reactions can be classified as three types: (i) normal Diels–Alder

Table 16.3 Examples of [2 þ 2 þ 2] cycloaddition of nitriles to alkynes mediated by diverse
transition-metal complexes.

Alkynes Nitrile Metal complex Product Yield (%) Reference

CONEt2

C6H13 Ph

N

SO2Tol

Ti(OiPr)4/iPrMgCl
N

Ph C6H13

CONEt2

70 [43]

Hex

TMS Et

Ph
N

Cp2ZrBu2
NiCl2(PPh3)2

N

Hex Et

Ph

TMS

59 [44]

TsN
CN

CN

Cp�Ru(COD)Cla)

N

TsN

CN

95 [45]

a) Cp�¼pentamethylcyclopentadienyl.
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Figure 16.10 Hetero-Diels–Alder approaches to pyridine.
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(HOMOdiene-controlled), customarily employing an electron-rich diene (increased
HOMOdiene) and electron-deficient dienophile (decreased LUMOdienophile);
(ii) inverse electron demand Diels–Alder (LUMOdiene-controlled), which is favored
by employing an electron-deficient diene (decreased LUMOdiene) and electron-
rich dienophile (increased HOMOdienophile); and (iii) neutral Diels–Alder
(Figure 16.11) [46–48].

16.2.1.2.1 Diels–Alder Reaction of Azadienes and Dienophiles Azadienes as elec-
tron-deficient dienes are ideally suited for participation in inverse electron demand
Diels–Alder reactions [49–51]. Electron-withdrawing groups in the azadiene accen-
tuate its electron-deficiency and permit the use of electron-rich, strained and even
simple alkenes as dienophiles. Strong electron-donating groups in the azadiene
reverse its electron-deficient nature and permit the use of conventional dienophiles
for normal Diels–Alder reactions. The most commonly used azadienes are azabu-
tadienes, oxazoles, 1,3-diazines, 1,2,4-triazines, and so on (Figure 16.12).

Aza-1,3-butadienes Several examples of hetero-Diels–Alder pyridine synthesis
using aza-1,3-butadienes have been reported. For example, Boger and cowor-
kers [52, 53] recently published the total synthesis of Piericidin A1 and B1, in
which the pyridine core was synthesized by an inverse electron demand Diel-
s–Alder reaction between N-sulfonyl-1-aza-1,3-butadiene 22 and tetramethox-
yethene (23) followed by Lewis acid-promoted aromatization to give pyridine 24
in good yield (Scheme 16.9).

EDG
EWG

EWG
EDG

INVERSE
LUMOdiene-controlled

NORMAL
HOMOdiene-controlled

NEUTRAL

LUMO

HOMO

LUMO

HOMO

LUMO

HOMO

LUMO

HOMO

Figure 16.11 Classification of the Diels–Alder reactions.
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In addition, cationic aza-1,3-butadiene 25 reacts with dialkyl acetylenedicarboxylate
26 by a tandem [4 þ 2] cycloaddition/deamination reaction in the presence of
triethylamine to give the product pyridines in satisfactory yields (Scheme 16.10) [54].
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N N
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N O

R

R

R O

oxazinones

Figure 16.12 Examples of azadienes employed in the Diels–Alder reaction.
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Heating 1,3-diynyl bis(a,b-unsaturated hydrazone) 27 results in double intramo-
lecular Diels–Alder reaction to give, after aromatization by loss of dimethylamine,
2,20-bipyridine 28 (Scheme 16.11) [55].

1,3-Oxazin-6-ones 1,3-Oxazin-6-ones react with a large variety of alkynes to afford
highly substituted pyridines. Table 16.4 shows some examples of this hetero-
Diels–Alder reaction. The initial [4 þ 2] cycloadduct 31 undergoes a retro-Diels–
Alder reaction with loss of carbon dioxide providing regioselectively pyridine
derivatives 32 in good to high yields. Alternatively, these cycloaddition reactions
can also be performedwith electron-rich alkenes such as 1-ethoxy-1-(dimethylamino)
ethylene (Scheme 16.12).

N

N

N

N
N

N

76%

Xylene, ∆

2827

Scheme 16.11

Table 16.4 Hetero-Diels–Alder reaction of 1,3-oxazin-6-ones 29 and alkynes 30.

N O

O

R1

R2

N

R4

R1

R2

R5

R4

R5

29 32

R3 R3

+

N

O

R1

R3

R2
R4

R5

31

O

30

CO2

∆

Oxazinone substituents Alkyne substituents

R1 R2 R3 R4 R5 Yield of 32 (%) Reference

Ph CF3 H H CO2Et 96 [56]
Piperidine CF3 H H CO2Et 54 [56]
Pyrrolidine CF3 H CO2Me CO2Me 82 [56]
NMe2 CF3 H CO2Me CO2Me 85 [56]
CO2Et Ph H TMS H 81 [57]
CO2Et Ph H TMS TMS 88 [57]
H Ph H TMS TMS 71 [57]
nPr Me H NBn2 Me 69 [58]
nPr Me H NEt2 Me 83 [58]
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Oxazoles Oxazoles have been used extensively as azadiene in the hetero-Diels–
Alder synthesis of pyridine derivatives [50, 51]. The initial cycloadduct 35 is usually
very stable, and even isolable in many cases, and can provide, depending of the
reaction conditions, pyridines 36 (dehydratation/aromatization) or 3-hydroxypyri-
dines 37 (elimination/aromatization) (Table 16.5).

1,3-Diazines 1,3-Diazines can undergo [4 þ 2] cycloaddition reactions across posi-
tions C2/C5 or N1/C4. The regioselectivity of the reaction depends on the dienophile
employed as well as the substituents present in the diazine nucleus. For example,
diazine 38 reacts with N,N-diethyl-1-propynylamine (39) by an inverse electron
demand Diels–Alder reaction across position C2/C5 (Table 16.6) [64].
Diazines 38a and 38b react via the cycloadduct 40, affording exclusively regioisomers
41 in excellent yield. However, the opposite regioselectivity is obtained with
diazine 38c, which gives pyridine 42 in 81% yield.

A [4 þ 2] cycloaddition reaction across N1/C4 occurs in the reaction of diazine 43
with enamine 44 to give 2-morpholino-5-nitropyridine 47 in 57% yield
(Scheme 16.13) [65]. Its formation can be explained via intermediates 45 and 46.
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Table 16.5 Examples of hetero-Diels–Alder synthesis of pyridines using oxazoles as azadienes.

N
O

X
R2

R1

N

O

R2 R3

R3

R1

X

N

X

R1

R2 R3

R3

N

OH

R1

R2 R3

R3

R3

R3

+

- H2O

534333

37

36∆

-XH

Dienophile
33

Diene
34

Conditions Product Yield (%) Reference

N
O

CN

O

O
iPr (1) MW, 120 �C

N

HO

OH

OH 80 [59]
(2) Hþ

N
O

OEt CO2Et

CO2Et

(1) 115 �C

N

HO

CO2Et

CO2Et
51 [60]

(2) HCl, EtOH

N
O

OEt
CO2HF3C

120 �C

N

HO

CF3

56 [61]

N
H

NR

O

N

R=Boc

DBNa), D N
H

NR
N

R=Boc

69 [62]

CO2Me

O

N

DBNa), D

N

CO2Me
76 [63]

a) DBN ¼ 1,5-diazabicyclo[4.3.0]non-5-ene.
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1,2,4-Triazines Aside from oxazoles, substituted 1,2,4-triazines constitute the most
thoroughly investigated heteroaromatic azadienes in hetero-Diels–Alder reactions.
Two potentialmodes of [4 þ 2] cycloaddition reaction can occur, across positions C3/
C6 or C5/N2 of the 1,2,4-triazine nucleus (Scheme 16.14). Regioselective inverse

Table 16.6 Hetero-Diels–Alder reaction ofN,N-diethyl-1-propynylamine (39)with diverse diazines.

N N

R3

R2

N

R3

R2

38

R1

NEt2

R1

N

R3

R2

R1

NEt2

+

39

41

NEt2

2

5

N

N

R1

R3

R2
NEt2

N

N

R1

R3

R2

NEt2

40∆

5

5

2

2

42

CN

CN

R1 R2 R3 41 42 (% yield)

38a H H CO2Me 90 0
38b H CO2Me CO2Me 80 0
38c CO2Me CO2Me H 0 81

N O N TMSO EtSX =

R = H Me

N O NTMSOX =

R = H Me

Regioselectivity

Reactivity

R

X

dienophile

N N

N

EWG

3

6

Scheme 16.14
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electron demand Diels–Alder reactions across positions C3/C6 can be achieved with
1,2,4-triazines substituted with electron-withdrawing groups and dienophiles substi-
tuted with electron-donating groups. Typical dienophiles are enamines, enol ethers
and reactive or strained alkenes. Although the regioselectivity of the C3/C6 cyclo-
addition is controlled by several factors, such as the electronic and steric properties of
the triazine and the dienophile [66] and the reaction conditions, it is the strong
preference for the nucleophilic carbon of the dienophile to attack the C3 position of
the 1,2,4-triazine nucleus that determines the regioselection outcome.

Scheme 16.15 shows the establishedmechanism for the reaction of 1,2,4-triazines
48 and EDG-dienophiles 49, in which the first step is the inverse electron-demand
Diels–Alder reaction, followedby in situ loss of nitrogen and subsequent elimination/
aromatization to give pyridine derivative 50. For instance, 1,2,4-triazines 51 and 54
react with bicyclic alkene 52 and trimethoxyethene 55 to afford pyridines 53 [67] and
56 [68], respectively, in high yields (Scheme 16.16).

Enamines have been widely used as dienophiles in the [4 þ 2] cycloaddition
synthesis of highly substituted pyridines [69–71]. For instance, diverse fused bicyclic
pyridines 59 have been prepared from 1,2,4-triazines 57 and enamine 58
(Scheme 16.17). Using enamine 61 the reaction takes place with an entirely different
regiochemistry, depending on the triazine substitution (Table 16.7).

This approach had two main limitations: the requirement of preformed enamine
and the unusual stability of the cycloadduct intermediate. Boger and coworkers [72]
circumvented these difficulties by the addition of 4A

�
molecular sieves, which allowed

enamine formation to catalyze the elimination step (Scheme 16.18). Recently, Taylor
and coworkers [73] reported an improved version of this method using a microwave
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Table 16.7 [4 þ 2] cycloaddition of 1,2,4-triazines 60 and enamine 61.

N N

N

60

R1

N

R1

NR2XEtR2N

+

61 62a

R3

R2

N

R1

62b

R2

R3

NR2

R3

R2

∆
+

Triazine 60 Enamine 61 Product (% yield)

R1 R2 R3 X R 62a 62b

Me H H O Me — 60
Ph H H O Me 81 —

H Ph H O Me 8 58
Me H Ph O Me — 83
CO2Me H H S Et 82 —
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(MW)-promoted procedure. Under these conditions tri-, tetra- and penta-
substituted pyridines 63 can be synthesized in good yields with relatively short
reaction times.

Although, addition across C3/C6 of the 1,2,4-triazine nucleus is nearly always
favored, ynamines 64 react exceptionally across C5/N2with subsequent loss of nitrile
by a retro-Diels–Alder reaction to form pyrimidines 65 (Scheme 16.19) [74–78].

In addition, 1,2,4-triazines undergo intramolecular inverse electron
demand Diels–Alder cycloadditions to produce bicyclic pyridines. For instance,
1,2,4-triazine-5,6-dicarboxylate 66 in refluxing diglyme afforded 67 in 8 h
(Scheme 16.20) [79–81]. Addition of Eu(fod)3 [europium tris(6,6,7,7,8,8,8-hepta-
fluoro-2,2-dimethyl-3,5-octanedionate)] enabled completion of the reaction in only
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2 h. Also, several quinoline derivatives 69 have been synthesized from acetylenic
1,2,4-triazines 68 [82].

16.2.1.2.2 Diels–Alder Reaction of Dienes and Azadienophiles Pyridines can be also
synthesized by Diels–Alder cycloaddition of azadienophiles, such as nitriles or
imines, and dienes [83, 84]. Usually, imine dienophiles need to be activated by
Lewis acids such as Yb(OTf)3, Sc(OTf)3, In(OTf)3, ZnCl2, SnCl4, TiCl4, Et2AlCl, and
so on. For instance, 5-alkyl-2(p-tolylsulfonyl)pyridines 72 are obtained in good yields
at room temperature by [4 þ 2] cycloaddition of 2-alkyl-1-ethoxy-1,3-butadienes 70 to
p-toluenesulfonyl cyanide (71), followed by aromatization of the dihydropyridine
intermediate via 1,4-elimination of ethanol (Scheme 16.21) [85].

Oximino derivatives 74 undergo Diels–Alder cycloadditions with dienes 73 to
afford adducts 75, which can be converted into pyridines 76 in refluxing ethanol or by
base-promoted elimination (Scheme16.22) [86–89]. Alternatively, oximinosulfonates
derived from Meldrum�s acid 78 undergo Diels–Alder cycloaddition reaction
with dienes 77 in the presence of dimethylaluminium chloride [90]. The [4 þ 2]

68
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cycloadducts 80 can be transformed by the simultaneous action of a nucleophilic
alkoxide and suitable oxidizing agent into the corresponding pyridines 79 under
treatment with NaOMe and N-chlorosuccinimide (NCS). The mechanism of this
multistage reaction probably involves initial cleavage of the dioxandione ring by
methoxide with concomitant elimination of acetone and carbon dioxide. b-Elimi-
nation of tosylate from the resulting ester enolate 81 then generates a dihydropyr-
idine 82, which by subsequent chlorination with NCS and elimination of HCl
provides pyridines 79.

In addition, heating acyl oximes 83 under high dilution conditions leads to the
corresponding cycloadducts 84, which by a double elimination reaction under
treatment with caesium carbonate give pyridines 85 (Scheme 16.23) [91]. These
cycloaddition reactions can also be promoted by high pressure in similar yields.

16.2.1.3 Formal Cycloaddition Reactions with Organometallic Derivatives
Aumann and coworkers [92] have shown that pyridinium salts 90 and pyridines 91
can be synthesized by a formal [3 þ 3] cycloaddition reaction of alkylnylcarbene
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complexes 87 [93] and enaminoketones or enaminoimines 86 (Scheme 16.24). The
reaction involves the Michael addition of the enamino derivatives 86 to the alky-
nylcarbene complex 87 to give 1,3,5-trienes 88 (characterized by NMR spectroscopy),
which in turn spontaneously cyclize to form 1,2-dihydropyridin-2-ylidene com-
plexes 89. Protonation of 89 takes place at the metal–carbon bond, affording the
pyridinium salt 90 and the recovery of the metal complex. Treatment of the
pyridinium salt 90 (R¼H)with base affords the corresponding pyridine derivative 91.
Under these conditions pyridine 91 (X¼O) has been obtained in 75% yield.

Pyridines and pyridinium salts can also be obtained from (amino)vinyl carbene
complexes and alkynes by a formal [4 þ 2] cycloaddition. The reaction of [(Z)-
b-(monoalkylamino)vinyl] carbene complexes 92, readily prepared by addition of
primary amines to alkynylcarbene complex 93, with alkynes 94 involves the highly
regioselective formation of 4(1H)-pyridinylidene complexes 95 (Scheme 16.25) [94].
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Protonation of 95withHBF4 leads to pyridinium salts 96. On the other hand, heating
[(Z)-b-aminovinyl]chromium complex 97 and 1-hexyne (98) gives pyridine 99 in 66%
yield.

In addition, organolithium derivatives 101 of 1,3-dienes, generated in situ by
lithiation of their corresponding 1-iodo-1,3-dienes 100, react with arylnitriles to give
N-lithioketimines 102 as the first intermediates, which undergo an intramolecular
cyclization to produce 103, which after elimination of LiH or LiTMS (R4¼TMS),
generate pyridine derivatives 104 in good yields (Scheme 16.26) [95–97].

16.2.2
Synthesis by Cyclocondensation Reactions

Pyridine ring have also been synthesized successfully by cyclocondensation reac-
tions, of which the most important is the Hantzsch synthesis.

16.2.2.1 Hantzsch Cyclocondensation
The original Hantzsch synthesis consists of a four-component reaction between two
molecules of ethyl acetoacetate (105), an aldehyde 106 and ammonia to afford 1,4-
dihydropyridines (107), which by further oxidation afford the corresponding sym-
metrical pyridine derivatives 108 (Scheme 16.27). The reaction is usually carried out
by warming the reagents in ethanol, and has been widely used for the preparation of
diverse 1,4-dihydropyridines 107, where R could be an alkyl or an aryl group [98].
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The formation of the 1,4-dihydropyridine derivatives 111 can occur by two path-
ways (Scheme 16.28) [99]. The first consists of the Knoevenagel condensation of one
b-ketoester molecule 109 and the aldehyde 110 to afford a,b-unsaturated ketone 112,
which undergoes a Michael addition reaction with the other b-ketoester molecule to
give the 1,5-dicarbonyl derivative 114. Finally, enamine formation followed by
cyclocondensation affords the 1,4-dihydropyridine nucleus 111. Alternatively, 1,4-
dihydropyridine derivatives 111 can be formed by reaction first of ammonia and one
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b-ketoester 109 molecule to afford b-enaminoester 113, which undergoes Michael
addition with a,b-unsaturated ketone 112 to give also, as the first pathway, enam-
inone 115.

1,4-Dihydropyridines can be oxidized using diverse oxidants, such as HNO3 [100],
KMnO4 [101], quinones [102], cerium(IV) ammonium nitrate (CAN) [103],
NaNO2 [104], Cu(NO3)2 [105], Mn(OAc)3 [106], Zr(NO3)4 [107], Pb(OAc)4 [108],
and so on Recently, more efficient and environmentally benign methods have
been developed, such as electrochemical oxidations [109], and catalytic aerobic
oxidations by using RuCl3 [110], Pd-C [111], activated carbon [112], Fe(ClO4)3 [113]
or N-hydroxyphthalimide [114].

Remarkable improvement of the reaction conditions has been reported, including
the promotion by microwave [115], TMSCl, ionic liquid [116], Bu4NHSO4 [117] and
supported reagents [118].

16.2.2.2 Variants of the Hantzsch Cyclocondensation
Although theHantzsch 1,4-dihydropyridines synthesiswas discovered in 1882, it was
not fully developed until 1980 with the discovery that 1,4-dihydropyridines prepared
from aromatic aldehydes are calcium channel blocking agents and, therefore,
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valuable drugs for heart disease with useful effects on angina and hypertension.
Since its discovery, more effective and versatile variants of the original reaction have
been developed, including (Scheme 16.29):

1) Replacement of ammonia and a molecule of b-ketoester by b-enaminoesters,
b-enaminonitriles or b-enaminoketones.

2) Utilization of a,b-unsaturated ketones instead of an aldehyde and the
b-ketoesters.

3) The use of 1,5-dicarbonyl derivatives.

16.2.2.3 From Enamines
Enamines have been widely used in the cyclocondensation synthesis of highly
substituted pyridines. For example, Jacobson and coworkers [119] have reported
the synthesis of pyridines 119 by condensation of b-ketoester 116, aldehyde 117 and
b-enaminoester 118 and subsequent oxidation of the resulting 1,4-dihydropyridines
with tetrachloroquinone (Scheme 16.30).

Alternatively, cyclocondensation of enamines and a,b-unsaturated carbonyl deri-
vatives has also been achieved. For example,Wolfe and coworkers [120] have recently
described the use of bicycloenamine 120 and a,b-unsaturated ketones 121 in the
synthesis of pyrazolopyridines 122 (Scheme 16.31). Treatment of a,b-unsaturated
ketones 121 with enamine 120, generated from 1-cyanoacetylpyrazolidine hydro-
chloride, followed by oxidation of the corresponding dihydropyridines afforded
pyridines 122 in good yields.
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In addition, Gordeev and coworkers [121] have exploited the enamine/
a,b-unsaturated carbonyl approach to the efficient solid-phase synthesis of diverse
pyridines 127 (Scheme 16.32). Treatment of O-immobilized ketoester 123 with
diverse aldehydes afforded Knoevenagel derivatives 124, which by condensation
with diverse b-enaminoketones 125 gave 1,4-dihydropyridines 126. Finally, oxidation
and cleavage from resin yielded pyridines 127.

On the other hand, Katritzky and coworkers [122] have developed amild and highly
regioselective route to diverse nicotinonitriles 131 from b-enaminonitriles 128 with
a Vilsmeier-type reagent 129 (Scheme 16.33). The reaction proceeds via intermedi-
ate 130 (identified by NMR spectroscopy), which upon treatment with base induced
a spontaneous electrocyclization–elimination process to furnish the pyridine core.
The b-enaminonitriles 128 were synthesized by a tandem addition–elimination
process from b-aminocrotonitrile 132 and ketone 133.

Alternatively, malononitriles have been employed as enamine synthons in
the enamine/a,b-unsaturated carbonyl cycloaddition approach. For example,
a,b-unsaturated ketones 135 were condensed with malononitrile (134) in the
presence of NaOEt or NaOMe to yield the corresponding cyanopyridines 136
(Scheme 16.34) [123].

NR1

R2SOC

R3

CO2R5

R42) Tetrachloroquinone, THF, ∆

119

1) EtOH, 80 ºC, 24h

O

R2SOC

R1 H2N

CO2R5

R4

O

R3

+

116 118

117

R1 = Alkyl, Fluoroalkyl, hydroxyalkyl, thioacetylalkyl

R2 = Alkyl, Fluoroalkyl, hydroxyalkyl

R3 = Alkyl, Fluoroalkyl, hydroxyalkyl, aminoalkyl, thioacetylalkyl

R4 = Aryl

R5 = Alkyl, Fluoroalkyl

Scheme 16.30

+

120 121

N

CO2Et

122

X
CO2H

N
N

O

O

CO2Et

Y

X
CO2H

N
N

O

NH2

Y

1) NaOEt, EtOH, ∆
41-64%

2) CAN, CH3CN

    66-76%

X = S, O, CH=CH
Y = F, CF3

Scheme 16.31

1460j 16 Six-Membered Heterocycles: Pyridines



16.2.2.3.1 From 1,5-Dicarbonyl Derivatives A good approach to pyridine ring
synthesis is the cycloaddition of 1,5-dicarbonyl derivatives and ammonia. For
example, pyridine 138 has been synthesized from 1,5-diketone 137 by treatment at
room temperature with ethanolic ammonia (Scheme 16.35) [124].
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The 1,5-dicarbonyl/ammonia approach has been successfully applied to a solid-
phase synthesis of 2,4,6-trisubstitutedpyridines142 fromhydroxyacetophenones139
(Scheme 16.36) [125]. The strategy includes a Claisen–Schmidt reaction to form
a,b-unsaturated ketones 140, a Michael reaction with trimethylsilyl enol ethers to
form a 1,5-pentanediones 141, and cyclization with ammonium acetate to yield, after
acid cleavage from resin, pyridine derivatives 142.

16.2.2.4 Bohlmann–Rahtz Heteroannulation
The synthesis of trisubstituted pyridines from b-aminocrotonates and ethynyl
ketones was first reported by Bohlmann and Rahtz in 1957 [126]. Originally, the
reaction consisted of a two-step process, involving the initial conjugate addition of
enamine 143 to alkynone 144 at 50 �C in ethanol to generate an aminopentadienone
intermediate 146, which is isolated and subsequently cyclodehydrated by heating the
residue at 120–160 �C under reduced pressure to afford trisubstituted pyridines 145
(Scheme 16.37). Since its discovery, remarkable improvements have been reported,
most notably a single synthetic step using either acetic acid, Amberlyst 15 ion
exchange resin or Lewis acid catalysts, such as ZnBr2 or Yb(OTf)3 [127–129].

The Bohlmann–Rahtz heteroannulation reaction has also been successfully
applied to the combinatorial synthesis of tri- and tetrasubstituted pyridines in
solution [130]. Lewis acid-catalyzedmethods provided the best overall yields, product
ratios and library purity.

16.2.3
Synthesis by Aza-Electrocyclization Reactions

Pyridine rings can also be synthesized by aza-6p-electrocyclic reactions, which result
in the formation of just one new s bond across the ends of a single conjugated

R3O N

R2

55-85%
136

R1

NC

O

R2

R1

NC

NC
O

R2

R1CN

NC
+

R3ONa, R3OH

RT

R1, R2 = Aryl; R3= Me, Et

135134

Scheme 16.34

Ph N

CO2Me

O O
Ph

Ts CO2Me

NH3 (2M in EtOH)

RT, 14h

831731 , 83%

Ph N
H

CO2MeTs

Scheme 16.35

1462j 16 Six-Membered Heterocycles: Pyridines



O
R1

HO

R1

O

N

2RCHO, NaOMe,

MeOH, CH(OMe)3

CsF, DMSO, ∆

NH4OAc, AcOH, 

DMF, ∆

R1

HO

N R3

R2

50% TFA-DCM

139

142

O
R1

O

R3

OTMS

Cl

Cs2CO3, NaI, 

DMF, 50 ºC

R2

R3

R1

O

O

140

R2

R1

O
141

O O

R2

R3

Scheme 16.36

N R4

R3

R2

R1NH2

R2

R1

R3

O R4

+

143 144

EtOH, 50 ºC

146

NH2 O

R4

R3

R2

R1

AcOH or Amberlyst 15, Tol, 50 ºC

or

ZnBr2 or Yb(OTf)3, Tol or DCM, ∆

120-160 ºC

145

R1= alkyl, aryl; R2= CN, CO2R; R3= Me, CO2Et; R4= H, alkyl, aryl, TMS

Scheme 16.37

16.2 Synthesis of Pyridines j1463



p-system (Scheme 16.38). A good example of this approach has also been reported by
Brandsma and coworkers [131, 132] in the synthesis of pyridine derivatives 154
(Scheme 16.39). Reaction of lithiated allene 149, obtained from allenes 147 or
methylacetylenes 148, with alkylthioisocyanate 150 and subsequent alkylation affords
adduct 151, which isomerizes via [1,5]-hydrogen shift, quantitatively, under mild
reaction conditions to generate 1,3-butadienyliminoformates 152. Electrocyclization
of 152 gives 2,3-dihydropyridines 153 in good to excellent yields which under
acidic conditions or by heating at high temperatures eliminate methanol to produce
3-substituted 2-methylthiopyridines 154.

In addition, b-arylvinyliminophosphoranes 156 react with a,b-unsaturated alde-
hydes 155 to give regiospecifically 3-arylpyridines 157 (Scheme 16.40) [133].
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Also, intramolecular approaches have been successful. A good example is the
synthesis of pyridine 159 reported by Tanaka and Katsumura [134]. It consists of the
treatment of the (E)-carbonyltrienal 158 with excess of lithium bis(trimethylsilyl)
amide (LHMDS), which produces, via intermediate 160, an aza-electrocyclization
reaction to afford the corresponding unstable 1,2-dihydropyridine derivative 161,
which upon oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) leads
to pyridine derivative 159 (Scheme 16.41).

16.2.4
Synthesis via Ring Transformation of Other Heterocycles

16.2.4.1 From Five-Membered Rings
Furan derivatives 162 substituted with an acyl- or carboxylic acid functionality in
the 2-position are transformed, in low to moderate yields, into 2-substituted
3-hydroxy pyridines 163 by treatment with ammonia at 150 �C in a sealed tube
(Scheme 16.42) [135].
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16.2.4.2 From Six-Membered Rings
Pyrones and pyrylium salts are six-membered heterocycles that have been success-
fully used as templates in pyridine synthesis. For example, 2-aminopyridines 165
have been synthesized regioselectively through nucleophilic-induced ring transfor-
mation reaction of 2H-pyran-2-ones 164 with urea (Scheme 16.43) [136].

In addition, pyrylium salts 166 upon reaction with ammonia undergo ring-
opening/ring-closing reaction sequences to afford excellent yields of the correspond-
ing pyridine derivatives 167 (Scheme 16.44) [137–140]. If primary amines are used
pyridinium salts are obtained.
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16.3
Reactivity

16.3.1
Reactions with Electrophilic Reagents

Pyridines react easily at the nitrogen atomwith a wide range of electrophiles such as,
protic acids, Lewis acids, reactive alkyl and acyl halides and transition metal ions to
form tertiary salts 168, complexes 169, quaternary salts 170 and 171 and coordination
compounds 172, respectively (Scheme 16.45).
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16.3.1.1 Reactions with Acids
Pyridines form stable salts with Brønsted acids such as HCl, HNO3, H2SO4, and so
on. Pyridine itself, with a pKa of 5.2 in water, is a much weaker base than saturated
aliphatic amines, which have pKa values mostly between 9 and 11. In general,
electron-donating groups in the pyridine ring, especially in the 4-position, increase
their basicity. For instance, 2-methyl- and 4-methylpyridine are more basic than
pyridine (pKa 6.0). The opposite effect is produced when electron-withdrawing
groups are present in the pyridine ring, especially in the 2-position. For instance
2-nitro- and 2-chloropyridine have a lower pKas of -2.6 and 0.7, respectively. In the
case of substituents such as methoxy or aryl groups, which are resonance donors as
well as inductive acceptors, variable effects on pyridine basicity are observed. The
position of the substituent in the ring determines which of these effects are
predominant. For instance, whereas 2-methoxypyridine (pKa 3.3) is less basic than
pyridine, 4-methoxypyridine (pKa 6.6) is more basic. Although steric effects are
usually unimportant, very hindered pyridines such as 2,6-di-tert-butylpyridine (pKa

3.6), are usually less basic than pyridine.
Some pyridinium salts are commercially available reagents that are widely used.

This is the case for pyridinium perbromide 173, which is employed as brominating
agent, pyridinium dichromate (174, PDC) and pyridinium chlorochromate (175,
PCC), used as mild and selective oxidizing agents, and pyridinium teflate (176),
which is utilized as a source of teflic acid, a very weakly coordinating agent
(Figure 16.13).

Lewis acids such as AlCl3, SnCl4, BF3, SbCl5, SO3, and so on react with pyridines to
afford stable pyridinium complexes, some of which are also used as reagents.
For instance, sulfur trioxide pyridinium complex (Py�SO3) is employed as a mild
sulfonating agent.

16.3.1.2 Reactions with Metal Ions
Pyridines can act as monodentate ligands in transition metal complexes. This is
the case with simple complexes such as Ni(Py)4

þ 2, Ag(Py)2
þ , and so on. When

a-substituents, such as carbonyl groups, imines, metilenamines, heteroaryl groups,
and so on, susceptible to coordination are present in the pyridine ring, chelate
complexes are formed (Figure 16.14) [141–144].

Based on pyridyl units, many polydentate ligands have been developed in the field
of the metallosupramolecular chemistry. A good example is the interaction of two
molecules of oligopyridine with variousmetal ions (Feþ 2, Coþ 2, Cuþ 2, etc.) to form
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Figure 16.13 Examples of commercially available pyridinium salts used as reagents.
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a double-helical complex in which the metal is bonded to a tridentate region from
each ligand [145–147].

Pyridines can also act as p-ligands to afford g6-complexes with transition metals
such as chromium. Such complexes are usually prepared by thermolysis with
hexacarbonyl chromium (Scheme 16.46) [148]. However, pyridine derivatives
that lack bulky alkyl groups at the 2- and 6-positions do not afford the
corresponding p-complexes. Tricarbonyl(trispyridine)chromium complexes [Py3Cr
(CO)3] (177) [149] are obtained instead, in which pyridines are coordinated through
their nitrogen lone pairs.

16.3.1.3 Reactions with Halides and Related Compounds
Alkyl halides, tosylates, triflates, and so on react readily with pyridines by an SN2
reaction to give alkylpyridinium salts (Scheme 16.47) [150]. Bulky substituents
around the nitrogen ring atom, or tertiary halides or related compounds cause an
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increase in the competing elimination reaction giving rise to the corresponding
alkene and tertiary salts. In fact, 2,4,6-collidine is often used as base in elimination
reactions.

16.3.1.4 Reactions with Acyl Halides and Related Compounds
Acyl and sulfonyl halides and anhydrides react rapidly with pyridines by an addi-
tion–elimination reaction to form quaternary salts, which are rarely isolated, since
they decompose rapidly on reaction with water, forming salts of the original
pyridines. Some acyl pyridinium salts such as 180 can be obtained in good to
excellent yields by treatment of pyridines 178 with acid chloride 179
(Scheme 16.48) [151].

N-Acyl and N-sulfonylpyridinium salts are very useful acylating and sulfonating
agents. Electron-donor substituted pyridines such as 4-N,N-dimethylaminopyridine
(DMAP) are commonly used as catalysts in acylation reactions (Scheme 16.49) [152].
The dimethylamino function of DMAP increases both the nucleophilicity and the
basicity of the ring nitrogen atom, making intermediate 181 relatively more stable
than the corresponding pyridine analogue. These facts lead to a greater concentration
of the acylating species 181 and, thus, speed up the reaction. This methodology
dramatically enhance yields as well as reaction rates, leading to successful acylations
even with the use of tertiary and sterically hindered alcohols.
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16.3.1.5 Electrophilic Substitution Reactions
Pyridines undergo electrophilic substitution reactions (SEAr) exclusively at the
3-position but much more slowly than benzene, and usually under very drastic
reaction conditions. For example, nitration of pyridine with nitric–sulfuric acids
mixtures requires 300 �C to afford 3-nitropyridine (183) in only 15% yield
(Scheme 16.50). In contrast, sulfonation of pyridine affords 3-sulfonic acid 182 in
71% but only at 230 �C and using HgSO4 as a catalyst [153]. The lack of pyridine
reactivity in electrophilic substitution derives from protonation of the ring nitrogen.
In fact, 2,6-dichloropyridine (184), which has two electron-withdrawing groups is
significantly less basic than pyridine, and undergoes nitration as the free base to give
2,6-dichloro-3-nitropyridine (185) in 64% yield [154].
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Bakke and coworkers [155, 156] have overcome the low reactivity of pyridines
against common nitrating systems by using dinitrogen pentoxide in an organic
solvent, followed by treatment with an aqueous solution of SO2/HSO3

�

(Scheme 16.51). Under these conditions, an N-nitropyridinium ion intermediate
is formed that, when reacted with SO2/HSO3

� in water, gives 3-nitropyridine
(77% yield). It has been suggested that the reaction mechanism implies a [1, 5]
sigmatropic shift of the nitro group. Recently, Katrizky and coworkers [157] have
developed an improved method that consists of the in situ generation of
dinitrogen pentoxide from nitric acid and trifluoroacetic anhydride (TFAA)
(Scheme 16.50).

16.3.2
Reactions with Oxidizing Agents

The pyridine ring is remarkably stable towards oxidation. Because of its resistance
to oxidation, pyridine can be used as a solvent in oxidation reactions, such as in the
Collins oxidation with CrO3. Only under vigorous conditions, such as neutral
aqueous KMnO4 in a sealed tube at 100 �C, can pyridine be oxidized to carbon
monoxide, and at about the same rate as benzene. In alkaline media pyridines are
oxidized more rapidly than benzenes.

As with other tertiary amines, pyridines react smoothly with diverse oxidizing
agents, such as peracids, H2O2/AcOH, dimethyldioxirane (DMD), bis(trimethyl-
silyl)peroxide, oxaziridines, and so on, to give N-oxides (Scheme 16.52)
[158–160].

Alkylpyridines can be oxidized at benzylic positions by various oxidizing agents
such as KMnO4, O2, SeO2, HNO3, and so on to afford pyridine carboxylic acids
(Scheme 16.53). For instance, KMnO4 has been employed in the synthesis of niacin
(187) from b-picoline (186) [161]. Selective oxidation of the methyl group of
disubstituted pyridine 188 has been achieved using SeO2 as the oxidizing agent of
choice to give carboxylic acid 189 [162].
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16.3.3
Reactions with Nucleophilic Reagents

The electron-deficient nature of the pyridine ring allows nucleophilic reagents to
attack pyridines, preferably at their 2- or 4-ring carbon atoms and less readily in the
3-position. However, only strong nucleophiles such as amide ions, hydroxides or
organolithium compounds react. The reaction proceeds by an addition–elimination
mechanism, that is, by SNAr, which involves in the first stage the formation of adduct
190with concomitant de-aromatization of the pyridine ring and, once formed, loss of
hydride occurs to afford pyridine derivative 191 (Scheme 16.54, Z¼H). Electron-
withdrawing substituents on the pyridine ring, such as nitro or cyano groups, favor
the reaction.
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SNAr reactions with pyridines substituted with halogens or other leaving groups
such as alkoxy groups, and so on are most common and proceed much faster than
the corresponding unsubstituted rings (Scheme 16.54, Z¼ leaving group). Usually,
the reaction takes place with a wide range of nucleophiles at 2- or 4-positions, but not
at 3-positions. Scheme 16.55 shows examples of reactions of this type [163–165].

16.3.3.1 Reactions with Amide Ions
Pyridine reacts with sodium amide in toluene at 100 �C to give, mainly, 2-aminopyr-
idine (192) (75%) and a small amount of 4-aminopyridine (Scheme 16.56). At 180 �C,
2,6-diaminopyridine is produced in good yield along with a small amount of 2,4,6-
triaminopyridine. This transformation, known as the Chichibabin reaction, is
usually carried out at relatively high temperatures in an inert atmosphere or without
solvent. It has been suggested that the reaction proceeds via initial formation of an
adsorption complex 193 with a weak nitrogen–sodium coordination that increases
the electrophilicity of the a-carbon ring atom. Subsequently, amide nucleophilic
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attack occurswith formation of intermediate 194, which undergoes a sodiumhydride
elimination followed by deprotonation to give amide salt 196. The 2-aminopyri-
dine 192 is finally obtained after a work-up with water.

More vigorous conditions are required for the amination of alkylpyridines because
proton abstraction from the side-chain by the amide ion occurs preferentially, and
therefore ring attack must involve a dianionic intermediate. Nonetheless, 4-alkyl
pyridines 197have been successfully aminated at 150 �Cto afford reasonable yields of
2-aminopyridines 198 (Scheme 16.57) [166, 167].

16.3.3.2 Reactions with Hydroxide Ions
Pyridines react with hydroxide ions under extreme conditions (KOH-air, 300 �C) to
give 2-pyridones, the stable tautomers of 2-hydroxypyridines, which are formed by
oxidation of the initial adduct. As expected, the reaction is favored by electron-
withdrawing substituents on the pyridine ring. The reaction proceeds much faster
and under milder conditions with pyridines substituted with halogens or other
good leaving groups. For example, even fluoro pyridines can be transformed into
pyridones with lithium hydroxide at room temperature (Scheme 16.58) [168].
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16.3.3.3 Reactions with Carbon Nucleophiles
Pyridines undergo nucleophilic aromatic substitutions (SNAr) with carbon
nucleophiles such as alkyllithium or aryllithium derivatives, affording 2-alkyl- and
2-arylpyridines, respectively (Scheme 16.59). Grignard reagents give the same
reaction products but in lower yields. The reaction requires rather vigorous condi-
tions (e.g., xylene, 100 �C) and proceeds via the dihydropyridine N-lithio salts 199,
which are less basic than those formed by reaction of pyridines with sodium or
potassium amide and eliminate hydride anions with relative difficulty. The N-lithio
salts 199 can be detected by NMR spectroscopy and in some cases have been isolated
as solids [169–171]. These salts are stable at room temperature for several hours but,
on heating, eliminate lithium hydride to give the 2-substituted pyridines 200.

The SNAr reaction of 3-substituted pyridines 201 with an organolithium com-
pound may lead to the 2,3-isomer 202, or a mixture of the latter and the 2,5-isomer
203 (Table 16.8). The rate and orientation of such nucleophilic substitution depends
on steric and coordination effects. An increase in steric hindrance produces less of
the 2,3-isomer 202 (Table 16.8, entry 2 vs. 4), while coordination of the lithium atom
with a free electron pair on the substituent favors nucleophilic attack at the 2-position
(Table 16.8, entries 6 and 7).

16.3.4
Reactions with Bases

The regiospecific exchange of one aryl hydrogen atom by a metal such as lithium, by
treatment with a strong base, usually requires the presence of substituents with lone
pairs on heteroatoms (directing metallation groups, DMG), which enable the
formation of coordination complexes with the metal, resulting in metallation at
sites adjacent to the substituent. This transformation, known as the directed ortho-
metallation reaction, in comparison with the same reaction in p-excessive hetero-
cycles, has an extra complication in p-deficient heterocycles such as pyridines,

N 60% N
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Scheme 16.58

N
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because the soft alkyllithium reagents (nBuLi, PhLi) commonly used can undergo
a facile nucleophilic addition to the azomethine (C¼N) bond (see Sec-
tion 16.3.3.3) [175]. However, it is possible to achieve clean metallation reactions
with alkyllithium reagents formanyDMGs (NHCOR,OR,OCONR2, CONHR, Cl, F)
(Scheme 16.60). For pyridines with DMG groups such as CONR2, SOR, I, Br, and so
on, which are more reactive towards nucleophilic reactions or halogen–metal
exchange, the harder and the less basic lithium diisopropylamine (LDA) or lithium
2,2,6,6-tetramethylpiperidine (LTMP) is normally used.

The regioselectivity of the reaction is the result of mainly four effects: (i) the
strength of the coordination between the DMG-heteroatom and the lithium; (ii) the
inductive effect of the DMG; (iii) the electronic repulsion between the carbanion and

Table 16.8 Reaction of 3-susbstituted pyridines 201 with phenyllithium.

N Ph

202

N

201

PhLi
X X

N

X

Ph

+

203

Entry X Yield (%) 202 203 Reference

1 H 69 100 [172]
2 Me 42 95 5 [172]
3 Et 39 84 16 [172]
4 tBu 25 4 96 [172]

5
N

34 50 50 [173]

6 NH2 25 100 0 [174]
7 OMe 21 100 0 [174]

NN

RLi or lithium amide
LiH

DMG DMG

R= nBu, Ph, sBu

Lithium amide= LDA or LTMP

DMG= NHCOR, OR, OCONR2, CONHR, CONR2, halogen, SOR

Scheme 16.60
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the lone pair of the nitrogen; and (iv) the complexation of the lithium base with the
nitrogen (Figure 16.15). The reaction is usually under thermodynamic control when
metal amides such as LDA or LTMP are used, leading to 3- and 4-carbanions.
Conversely, alkyllithium reagents proceed under kinetic control. In this case, solvent
effects become more important because of the absence of a strong DMG on the ring
and because complexation with the nitrogen can occur, in the absence of a chelating
solvent such as THF. Therefore, deprotonation takes place at the C2 proton.
3-Fluoropyridine (205) is a good example of a metallation substrate in which
regioselectivity canbe inducedbychoosing theappropriatebase (Scheme16.61) [176].
LDA abstracts the proton from the 4-position in 205 (thermodynamic) giving lithium
derivative 204, while nBuLi in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO)
affords lithium derivative 206 resulting from proton abstraction at the 2-position
in 205 (kinetic).

DMG

Li

DMG

Li

N Li

stabilizer effects of DMG

coordination induction

electronic
repulsion

N H

Li
R

Thermodynamic control Kinetic control

3- and 4-positions are favored 2-position is favored

DMG DMG

Figure 16.15 Factors affecting the regioselectivity of the reaction.
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16.3.5
Reactions of C-Metallated Pyridines

Among all possible ways of introducing a pyridine moiety into a more complex
structure, the use of C-metallated pyridines is probably one of the most direct. This
fact makes C-metallated pyridines one of themost important andwidely used pyridyl
intermediates, particularly in carbon–carbon bond forming reactions [177].

Basically, they are used in the following type of reactions (Scheme 16.62):

. (a) nucleophilic attack of lithium or Grignard derivatives to electrophiles;

. (b) metal-catalyzed cross-coupling reactions of:

–(i) halopyridines or related compounds with organometallic derivatives;
–(ii) metal-containing pyridines with halides or related compounds.

16.3.5.1 Reactions of Pyridyl Lithium/Grignard Derivatives with Electrophiles
Pyridines can be readily functionalized upon treatment of either their corresponding
organolithium or Grignard derivatives with a large variety of electrophiles. However,
the difficulties of preparing pyridine Grignard derivatives have limited their use in
synthetic organic chemistry, resulting in their progressive displacement by themore
accessible lithium derivatives [177].
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Pyridyl-lithium derivatives are usually prepared either by ortho-metallation using
strong bases (Section 16.3.4) or by halogen–metal exchange between halopyridines,
mainly bromopyridines, and an organolithium reagent such as nBuLi or tBuLi or
lithium metal. The lithiated species generated by all these methods can react with
a wide range of electrophiles such as N,N-dimethylformamide (DMF), carbon
dioxide, iodine, acid chlorides, ketones, trimethylsilyl chloride, and so on, leading
to pyridine functionalization with a large variety of functional groups in a single step
(Scheme 16.63).

The great synthetic utility of this type of reaction has been demonstrated by Zhai
and coworkers [178] in the synthesis of pyridine derivative 209 in three steps starting
from simple 3-bromopyridine (207) (Scheme 16.64). Ortho-lithiation of 207 with
LDA at �90 �C followed by treatment with acrolein at the same temperature gave
alcohol 208 in 75% yield. After protection of alcohol 208 as the methoxymethyl ether
(MOM), reaction with nBuLi produced a bromine–lithium exchange, which was
followed by treatment with DMF to afford an excellent yield of aldehyde 209.

The direct preparation of Grignard derivatives using standard procedures, con-
sisting of the reaction between an haloheterocycle and magnesium, is sometimes
rather difficult, mainly due to the basicity of the nitrogen ring atom. In these cases,
the usual procedure is the treatment of an halopyridine with commercially available
aryl or alkyl Grignard reagents such as PhMgBr, iPrMgCl, EtMgBr, and so on.
For instance, Madsen and coworkers [179] have employed the Grignard reagent of

N

Li

N

CHO

N

CO2H

N

COR

N

I

N

HO

R´

R

N

SiMe3

DMF

CO2

I2

O

R´R

ClCOR

ClSiMe3

Scheme 16.63

1480j 16 Six-Membered Heterocycles: Pyridines



3-bromopyridine (211), obtained by treatment of 210 with commercially available
phenylmagnesium bromide, in the 1,4-addition–elimination reaction with
a,b-unsaturated carbonyl derivative 212 to furnish pyridine 213 in 86% yield
(Scheme 16.65).

16.3.5.2 Metal-Catalyzed Cross-Coupling Reactions
In the last several years, the use of transition metals, particularly palladium, as
catalysts for coupling reactions involvingmetallated species has increased sharply the
use of heterocyclic organometallics in all kinds of organic transformations. Metal-
catalyzed cross-coupling reactions have remarkably enlarged the toolbox of organic
chemistry since their first examples appeared in the late 1960s. A broad variety of
substrates, good tolerance of different functional groups, mild reaction conditions,
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high yields and efficient catalysis make these modern transformations the most
widely used reactions for the formation of C�C, C�O, C�N and even C�S bonds.

Nucleophilic attack occurs preferentially at the a and c positions of pyridines. This
performance has been attributed to the electronegativity of the ring nitrogen atom,
which induces a partial positive charge at these positions of pyridines. A similar trend
occurs in the context of metal catalyzed cross-coupling reactions. In fact, a and
c-halopyridines are more susceptible to the oxidative addition to Pd(0), relative to
simple carbocyclic aryl halides [180]. Even a- and c-chloropyridines are viable
electrophilic substrates for Pd-catalyzed reactions under standard conditions [175].
Although nickel, copper and, occasionally, platinum have been used as catalysts for
cross-coupling reactions, palladium is the most widely employed catalyst.

Table 16.9 summarizes the most important cross-coupling reactions, indicating
the reagents usually employed and the type of group (Z) introduced in the pyridine
ring in each case.

Palladium-catalyzed cross-coupling reactions of organohalides or related com-
poundswith organometallic reagents follow a generalmechanistic cycle that involves
oxidative addition, transmetallation, isomerization and reductive elimination
sequences (Scheme 16.66) [181].

APd(0)L2 complex (L¼ligand, typically a phosphine such as PPh3) is assumed to be
the active catalytic species in the cycle. Sometimes, these Pd(0) species are generated
in situ by reduction from Pd(II) complexes, such as Pd(OAc)2, in the presence of a
suitable ligand such as PPh3. The first step of the cycle consists in the oxidative
addition of R1–X (X¼halogen, OTf, etc.) to form complex 214, which then undergoes
a transmetallation reaction with the organometallic reagent R2–M to give complex
215. Both intermediates 214 and 215 have been isolated and/or characterized by
different spectroscopic methods. The intermediate 215 undergoes an isomerization
reaction followed by a reductive elimination giving rise to a Pd(0) species along with

Table 16.9 Types of metal-catalyzed cross-coupling reactions.

N

X

N

Z

X= halogen

Coupling Reagents Z

Stille RSn(nBu)3 R (alkenyl, alkynyl, aryl)
Suzuki RB(OH)2/base R (alkenyl, alkynyl, aryl)
Sonogashira R�C:CH/Cu(I) R�C:C
Heck R�CH¼CH2/base R�CH¼CH
Kumada RMgX R (alkyl, alkenyl, alkynyl, aryl)
Negishi RZnX R (alkyl, alkenyl, alkynyl, aryl)
Hiyama RSiR0

3/F
� R (alkenyl, alkynyl, aryl)

Buchwald R2NH/base R2N
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the homocoupling product R1–R2.WhenPd(0) is regenerated the catalytic cycle starts
again. The oxidative addition is often the rate-limiting step and the relative reactivity
of R1–X decreases in the order: I>OTf>Br�Cl.

16.3.5.2.1 Stille Coupling This type of cross-coupling reaction consists of the Pd-
catalyzed reaction between an organostannane and a halide. Typically, the stannane is
sp2 or sp hybridized (aryl, alkenyl, alkynyl) but alkyl-, allyl- and benzylstannanes have
also been used. The halides are usually, aryl, vinyl or acyl, bromides, or iodides (and
also triflates). In addition, aryl chlorides have also been employed, but they are
typically much less reactive.

For a Stille coupling involving a pyridine moiety, the pyridine fragment may be
either the nucleophilic or the electrophilic coupling partner (Scheme 16.67). There-
fore, two approaches can be employed: the reaction of (i) a pyridyl-stannane
(nucleophile) and an halide; or (ii) a halopyridine (electrophile) and an organostan-
nane. In the first case, the pyridyl-stannane is usually prepared either by ortho-
metallation or by lithium–halogen exchange followed, in both cases, by treatment
with a halide stannane such asClSn(nBu)3. Procedure (i) is exemplified by derivatives
216 [182] and 218 [183, 184], respectively (Scheme 16.68). A notable example of
procedure (ii) appears in the recent literature with the synthesis of the biheteroaryl
derivative 221 by Stille cross-coupling using electrophilic pyridine derivative 219 and
the stannane 220 [185].
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16.3.5.2.2 Suzuki Coupling In this reaction, a halide is coupled with an aryl or vinyl
boronic acid or boronic ester. Themajor advantages of the Suzuki reaction are: (i) the
stability and rather low toxicity of the boron reagents; (ii) easy access to a broad variety
of boronic acids, many of which are commercially available; (iii) tolerance for
different functional groups; (iv) straightforward experimental procedures.
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Similar to the Stille coupling, two approaches are possible, depending on whether
the boron derivative is contained in the pyridine ring or in the reagent
(Scheme 16.69). The pyridine boron derivatives are usually prepared by treatment
of an organolithium or magnesium pyridine with a trialkylborate (Scheme 16.70).
Recently, metal-catalyzed methods have been developed using bis(pinacolato)
diboron or pinacolborane as the boron source.

Scheme 16.71 shows examples of Suzuki coupling. The 2-fluoropyridyl group of
epibatidine analogue 224 has been introduced by Pd(0)-mediated cross coupling
betweenfluoropyridyl boronic acid 222 and vinyl triflate 223 [186]. In inverse fashion,
iodopyridine 225 has been transformed into 2-phenylpyridine 227 using phenyl-
boronic cid 226 [187].

16.3.5.2.3 Sonogashira Coupling The Sonogashira reaction is the most direct
approach for the synthesis of alkenyl- and arylacetylenes. It consists of the palladi-
um-copper catalyzed coupling of terminal acetylides to arylhalides (Br, I) or triflates to
yield alkynylarenes (Scheme 16.72). Chloropyridines can be also used, but these
compounds require much higher temperatures.

Control of the reaction regioselectivity arises from the difference in electrophilicity
at the a, b and c positions of the pyridine ring. For instance, mono-acetylenation of
2,5-dibromopyridine (228) with triisopropylsilylacetylene has been achieved under
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mild conditions (0 �Cto room temperature, 2 h) at themore electrophilicaposition of
the pyridine ring to regioselectively afford pyridine 229 (Scheme 16.73) [188]. Further
elaboration requiredmuch harder reaction conditions (reflux for 24 h) to achieve the
second coupling at the less reactive b position of the pyridine ring, which gave
pyridine 230 in 78% overall yield.

The use of silylated acetylene avoids the coupling at both positions of the tripe bond
and, also, enables a second coupling reaction if the silyl protecting group is removed,
leading to unsymmetrical ethynes. For instance, bromopyridine 231 is first coupled
with trimethylsilylacetylene to give a good yield of pyridine 232 (Scheme 16.73) [189].
Under similar reaction conditions, but in the presence of tetrabutylammonium
fluoride (TBAF) for the in situ removal of the silyl protecting group, pyridine 232
undergoes a second Sonogashira coupling with 3-iodophenol to afford bisarylethyne
233 in 67% yield.

16.3.5.2.4 Heck Reaction This type of cross-coupling reactionwas discovered at the
end of the 1960s and consists of the coupling of an alkene with an aryl(or alkenyl)
halide (Br, I) or triflate to afford vinylarenes (or dienes) (Scheme 16.74). Terminal
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alkenes are usually good substrates for the Heck reaction and react at the non-
substituted carbon. 1,2-Disubstituted alkenes usually give product mixtures, with
a preference for the less sterically hindered carbon.

The mechanism of the Heck cross-coupling reaction (Scheme 16.75) differs
slightly from the general scheme presented earlier (Scheme 16.66). Although the
first steps in both processes are identical, in the Heck reaction there is an absence of
the transmetalation step. Alternatively, the C�C bond is formed by an insertion
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process, which is followed by a b-hydride elimination to form the substituted alkene
product.

Examples of Heck reactions are shown in Scheme 16.76. Bromopyridine 234 can
be coupled with inexpensive acrylates to give a,b-unsaturated esters 235 in good to
excellent yields [190]. The tert-butyl acrylate of pyridine 237 is introduced in 236
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(in 83%yield) byHeck couplingwith tert-butyl acrylate, using allyl palladiumchloride
dimer and tri-o-tolylphosphine [191].

16.3.6
Reactions with Reducing Agents

Pyridines can be reduced by catalytic hydrogenation, by metal hydrides or by metals
in protic media to piperidines, 1,2- or 1,4-dihydropiperidines, depending on the
reducing agents employed and the reaction conditions.

Pyridines are much more easily reduced than benzenes. While the catalytic
hydrogenation of benzene requires high pressure and high temperatures, pyridine
can be reduced at normal pressure and room temperature to afford piperidine in
excellent yield [192]. This fact can be exploited for the selective reduction of pyridines
in the presence of phenyl groups. For instance, benzylpyridines 238 have been
converted intobenzylpiperidines239bycatalytichydrogenation (Scheme16.77) [193].
However, the reaction proceeds smoothly only when piperidines are obtained as
ammonium salts, because free bases tend to poison the catalyst. Therefore, hydro-
genation of pyridine 240 using PtO2 as catalyst and in acetic acid gave at room
temperature piperidine 241 in 80% yield [194].

Pyridines can also be reduced with various metal hydrides, but the results depend
on the type of hydride. Whereas diisobutylaluminium hydride (DIBALH) or Et2AlH
reduce pyridine slowly, LiEt3BH (super hydride) efficiently leads to piperidine [195].
In contrast, the reaction of LiAlH4 and pyridine results in the addition of one hydride
equivalent to pyridine, yielding the complex 242, which contains two 1,2- and two 1,4-
dihydropyridine units (Figure 16.16) [196–198]. Complex 242, also known as
Lansbury�s reagent, has been used as a selective reducing agent of ketones, especially
in the presence of carboxylic acids and esters.
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AlthoughNaBH4 does not reduce pyridine itself, electron-withdrawing substituted
pyridinesareeffectivelyreducedtodi-or tetrahydropyridinesinthepresenceofNaBH4.
For instance, pyridines 243 undergo reduction with NaBH4 to give mixtures of the
corresponding1,4- (244)and1,2-dihydropyridines(245) (Scheme16.78) [199].Also, the
pyridine ring of compound 246 has been fully reduced by treatment with NaBH3CN,
leading to a cis-trans diastereomeric mixture of piperidines 247 and 248 [200].

Metals in protic media, typically sodium in ethanol, reduce pyridines to piper-
idines. This type of reduction is considered to be similar to the Birch reduction of
arenes. For instance, reduction of 2,6-diphenylpyridine (249) afforded a cis-trans
mixture of diastereomers 250 and 251 (Scheme 16.79) [201]. Under aprotic condi-
tions, reduction fails and bipyridines are produced instead (Section 16.3.7).

16.3.7
Reactions with Carbenes, Nitrenes and Radical Reagents

16.3.7.1 Reactions at the Ring Nitrogen Atom: Carbenes and Nitrenes
Electrophilic carbenes can react with compounds containing free electron pairs, such
as carbonyls, nitriles, ethers, alcohols, and so on to form ylides. In addition, carbenes
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react with pyridines at the ring nitrogen atom to form pyridinium ylides, which have
been extensively used as trapped carbenes in studies of carbene reactions by laser
flash photolysis. In some cases, pyridinium ylides have been isolated and charac-
terized. For instance, pyridinium cyclopentadienides 254 have been obtained in
yields between 17 and 81% by irradiation of diazo derivatives 252 in the presence of
pyridines 253 (Scheme 16.80) [202].

Nitrenes give similar results with pyridines to afford pyridinium iminoylides. For
instance, treatment of the nitrene precursor PhI¼NTs with various pyridines 255 in
the presence of a catalytic amount of Cu(II) affords the corresponding p-tolylsulfo-
nyliminopyridinium ylides 256 in good yields (Scheme 16.81) [203].

Na, EtOH, ∆
+

249

NPh

250, 39%

N
H

Ph

251, 54%

N
H

PhPh Ph Ph

Scheme 16.79

N

252

Ph

Ph

R1

Ph

Ph

Ph

R1

Ph

Ph

Ph

R1

Ph

N2

N

254

R2

R2

R2
hυ R2R2

R2

hυ

N R2

R2

R2

R1= H, Ph

R2 = H, Me

17-81%

253

253

Scheme 16.80

N

Z PhI=NTs, Cu(OTf)2 (cat)

CH3CN, 20 ºC N

Z

NTs
652552

55-85%

Z= H, Me, CN

Scheme 16.81

16.3 Reactivity j1491



16.3.7.2 Reactions at the Ring Carbon Atom: Carbon and Halogen Radicals

16.3.7.2.1 Carbon Radicals Free radical substitutions in aromatic systems have
long been known, but are used rarely in organic synthesis. Of greater preparative
value are the reactions of nucleophilic radicals, such as HOCH2

� and R2NCO
�, which

can be easily generated under mild conditions. Minisci and coworkers [204] were
the first to report that carbon radicals can be used to regioselectively synthesize 2- and
4-alkyl and acylpyridines. These substitutions are carried out on the protonated
pyridine, which provides both increased reactivity and selectivity for the 2-position,
a transformation that is known as the Minisci reaction (Scheme 16.82) [204]. The
radical species are generated either by oxidative silver-catalyzed decarboxylation (alkyl
radicals) or by Fenton-type reaction with organic hydroperoxides and Fe(II) or Ti(III)
reagents (acyl radicals) [205–207].

Scheme 16.83 shows examples of reactions of this type. Diverse alkyl radicals
generated by oxidative silver-catalyzed decarboxylation of various carboxylic acids
have been reacted with 4-cyanopyridine (257) to give pyridines 258 with control of
regioselectivity [208]. On the other hand, 3-acylpyridines 259 have been regioselec-
tively carbamoylated via the Miscini reaction with RHNCO� radicals generated by
treatment of various formamides with t-butyl hydroperoxide and Fe(II) to yield
pyridines 260 [209].

Alkylmercury halides are also convenient sources of alkyl radicals that react with
pyridines, attacking mainly at the a-position to give the corresponding 2-alkyl
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derivatives 261 (Scheme 16.84) [210]. Reaction yields decrease from tertiary, sec-
ondary to primary alkyl groups, in accordance with decreasing radical stability.

In contrast with alkyl and acyl radicals, aryl radicals generated from (PhCO)2O, PhI
(OCOPh)2, and so on give mixtures of 2-, 3- and 4-arylpyridines with low reaction
yields.

Certainmetals, such as Na, Zn or Ni, under aprotic conditions react with pyridines
to form radical anions 262 resulting from an electron-transfer from the metal to the
pyridine ring (Scheme 16.85). These radical anions dimerize to give bipyridines in
a reaction considered equivalent to the pinacol reduction. At room temperature,
pyridine reacts with sodium in tetrahydrofuran (THF) to afford 4,40-bipyridine (264),
mainly by coupling through the c-positions of two pyridine radicals. At higher
temperatures, 2,30-, 3,30- and 3,40-bipyridines are also formed. If the reaction is
carried out with Zn in the presence of acetic anhydride, the dihydropyridinium
intermediate 263 is trapped and 4,40-bidihydropyridine 265 is obtained [211]. How-
ever, pyridines under dimerization conditions using Ni afford 2,20- (266) instead of
4,40-bipyridine (264). This has been attributed to the favored chelation of the radical
anion to the metal surface.
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16.3.7.2.2 Halogen Radicals Pyridines can be halogenated via radical substitution
at high temperatures where chlorine (270 �C) or bromine (500 �C) are appreciably
dissociated into their corresponding radicals, affording mixtures of 2-halo 267 and
2,6-dihalopyridines 268 (Scheme 16.86). 2-Fluoropyridines can also be synthesized
by reaction with fluorine diluted in an inert gas using polyhalogenated solvents.
However, these methods are rarely used in preparative synthesis due to the extreme
reaction conditions required, which may be incompatible with other functional
groups present in the pyridine nucleus.
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16.3.8
Photochemical Reactions

Pyridines under photochemical irradiation undergo an intramolecular electrocyclic
4p-ring closure to afford highly strained 2-azabicyclo[2.2.0]hexadienes 269, so-called
Dewar pyridines, which contain at least two new stereogenic centers. Complex
structures 269 are observable spectroscopically but, usually, are unstable and revert
thermally to pyridines or in the presence of water are hydrolyzed to conjugated
aminoaldehydes 271 (Scheme 16.87). However, these intermediates can also be
trapped by reduction with sodium borohydride to afford amines 270.

Of particular utility is the photoirradiation of 2-alkylpyridines 272 with electron-
withdrawing groups on the alkyl substituent, which under base-catalyzed conditions
give stable azabicycles 274 resulting from a proton shift over the initial cycload-
duct 273 (Scheme 16.88) [212].

16.4
Pyridine Derivatives

16.4.1
Oxyderivatives

The 2- and 4-hydroxypyridines exist almost entirely in the carbonyl tautomeric forms,
known as 2- and 4-pyridones, respectively (Scheme 16.89). Their hydroxyl forms are
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detected only in non-polar solvents or in the gas phase. However, 3-hydroxypyridines
behave as regular pyridines, which can also be in equilibrium with their zwitterionic
forms in a ratio that depends on the type of solvent.

16.4.1.1 Reactions with Electrophilic Reagents

16.4.1.1.1 Reactions with Acids According to their structure, pyrones react mainly
as unsaturated lactams whereas 3-hydroxypyridines behave as pyridines. As
a consequence, 2- and 4-pyridones are protonated on their carbonyl groups (pKa

0.8 and 3.3, respectively) whereas 3-hydroxypyridines react through their ring
nitrogen atom (pKa 5.2) (Figure 16.17).

16.4.1.1.2 Reactions with Acid Chlorides and Related Compounds Acid chlorides
react with pyridones and 3-hydroxypyridines through their oxygen atom, affording
the corresponding pyridinyl esters. For example, treatment of 4-pyridone and
2-pyridone 277 with benzoyl chlorides 275 and 278 gives, respectively, pyri-
dines 276 [213] and 279 [214] in good yields (Scheme 16.90). Also, the reaction of
2-pyridone 280 with tosyl chloride affords an excellent yield of tosylate 281 [215].
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16.4.1.1.3 Electrophilic Substitution Reactions Pyridones and 3-hydroxypyridines
are more reactive to electrophilic substitutions than pyridines and the regioselective
preference is to undergo substitution in the ortho and para positions relative to the
oxygen functionality (Figure 16.18). These pyridine derivatives can be readily
halogenated, nitrated or sulfonated. For example, the nitration of pyridones 282
and 284 affords regioselectively nitropyridones 283 and 285, respectively
(Scheme 16.91) [216, 217].

16.4.1.1.4 Reactions of Oxypyridine Anions with Electrophiles Pyridones are weak
acids with pKas of around 11. They form mesomeric anions that readily react with
electrophilic reagents at the nitrogen or oxygen atoms depending on the reaction
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conditions (Scheme 16.92). For example, 2-pyridone 286 [218] is quantitatively
O-methylated with methyl iodide using silver carbonate as base, whereas 2-pyridone
287 [219] preferentially affords N-methylation using the same alkylating agent but in
the presence of sodium hydride (Scheme 16.93).
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16.4.1.2 Replacement of Oxygen Function
The pyridone oxygen can be replaced by other atoms such as chloro or sulfur to afford
the corresponding chloropyridines and thiopyridones, respectively. In particular, the
conversion of the carbonyl group of pyridones into a good leaving group such as
chloride, typically using phosphorus oxychloride, is an important reaction in pyr-
idone chemistry, because chloropyridines are susceptible to cross-coupling reactions
with organometallic reagents to form new carbon–carbon bonds or addition–elimi-
nation reactions with diverse nucleophiles (amines, cyanide, etc.) (Scheme 16.94).
Usually, pyridones are converted into thiopyridones using Lawesson�s reagent [2,4-
bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide] [220].

16.4.1.3 Photochemical Reactions of Pyridones
Intramolecular electrocyclic 4p-ring closure represents the key photochemical
reaction of 2-pyridones. This reaction has been extensively utilized in the synthesis
of the carbapenem antibiotics core. Herein, photocyclization of the chiral pyridine
288 leads quantitatively to a mixture of diastereomers 289 and 290 (7 : 5 ratio,
respectively) (Scheme 16.95) [221]. Furthermore,N-alkylated pyridones 291 undergo
this type of reaction, affording diastereomeric bicycles 292 and 293 [222].

16.4.2
Amino Derivatives

16.4.2.1 Reactions with Electrophilic Reagents
Aminopyridines have three possible nucleophilic centers: the ring nitrogen atom, the
amino nitrogen and the ring carbon atom (Scheme 16.96). As expected from their
resonance forms, aminopyridines react with certain electrophiles such as proton,
alkylating and acylating agents preferentially through their ring nitrogen atom.
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However, other electrophilic reagents react with aminopyridines through their ring
carbon atom by an alternative electrophilic substitution pathway. In these cases, the
5- and 3-positions of 2- and 4-aminopyridines, respectively, are favored.

16.4.2.1.1 Reactions with Acids The three aminopyridines are all more basic than
pyridine itself and form crystalline salts by protonation at the ring nitrogen atom. The
a- and c-isomers are monobasic, because the positive charge is delocalized over
both nitrogen atoms, which prevents further protonation (Scheme 16.97). This effect
is stronger in the c-isomer than in the a-isomer, but it is not possible in the b-isomer.
As a consequence b-aminopyridines can be further protonated using strong acids.
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16.4.2.1.2 Reactions with Alkylating Agents Aminopyridines react with alkylating
agents through the more nucleophilic ring nitrogen atom to afford quaternary
ammonium salts. For example, 4-aminopyridine has been alkylated with bromide
295 and chloride 296 to give quaternary pyridinium salts 294 [223] and 297 [224],
respectively (Scheme 16.98).

16.4.2.1.3 Reactions with Acylating Agents Acid chlorides and related compounds
react with aminopyridines through their amino substituent to afford the correspond-
ing amides (Scheme 16.99). The ring nitrogen atom of the aminopyridine reacts first
to give N-acylpyridinium salts 299, which then undergo a second acylation reaction
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through the amino substituent to yield intermediate 300. Finally, aqueous work up
affords amide 298. Some examples are shown in Scheme 16.100 [225, 226].

16.4.2.1.4 Electrophilic Substitution Reactions Aminopyridines undergo electro-
philic substitution under milder conditions than pyridine itself. Usually, the
substitution reaction takes place selectively at 5- and 3-positions of 2- and
4-aminopyridines, respectively. For example, 2-aminopyridine has been selectively
sulfonated to give pyridine 301 in good yield (Scheme 16.101) [227]. Bromination of
2-aminopyridine afforded mainly 5-brominated pyridine 302, and also some dibro-
minated pyridine 303 [228]. In contrast, bromination of 4-aminopyridine gave an
almost 1 : 1 mixture of mono- and dibrominated pyridines 304 and 305, respectively.

The nitration of aminopyridines proceeds via a nitroamino derivative (306)
resulting from the nitration of the amino substituent, which on further reaction

N

NH2

N

NH2

2) H2O

O

N

NH2

O

Cl

Cl

N

HN

O

Cl

O

N

HN

O

Cl

O

Cl

O

Cl

O
H2O

1) , Et3N

Et3N

299

298

300

Scheme 16.99

Ac2O, PhMe

N NH2
77%

N NHAc

Ac2O, AcOH

NMeO2C
80%

NMeO2C

NH2 NHAc

Scheme 16.100

1502j 16 Six-Membered Heterocycles: Pyridines



with concentrated H2SO4 gives the corresponding nitropyridine (Scheme 16.102).
Nitration of 4-aminopyridine 307using potasiumnitrate in concentratedH2SO4 gave
first the nitrated amino derivative 308 in 73% yield, which was followed by treatment
with concentrated H2SO4 to, finally, afford 3-nitropyridine 309 in good yield [229].

16.4.2.2 Diazotization of the Amino Group
Similar to anilines, treatment of aminopyridineswith nitrites affords the correspond-
ing diazonium salts, which easily decompose and react with diverse nucleophilic
reagents such as HBr, HCl, HF, and so on (Scheme 16.103).

The diazonium salts of 2- and 4-aminopyridines decompose particularly fast
and immediately react with the aqueous solvent to give the corresponding 2-and
4-pyridones, respectively. For example, diazotization of 2-aminopyridine 310 in the
presence of 10% H2SO4 gave 2-pyridone 311 in 72% yield (Scheme 16.104) [220].
However, under controlled conditions, these diazonium salts are susceptible to
reaction with diverse nucleophilic reagents. By carrying out the diazotization of
aminopyridines 312 and 314 in 50%HI andHF-pyridine solution, respectively, good
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and excellent yields of iodo- 313 [230] and fluoropyridines 315 [231] can be obtained.
The diazonium salts of 3-aminopyridines are reasonably stable, affording similar
substitution reactions and coupling reactions.

16.4.3
Alkyl Derivatives

Similar to alkylbenzenes, alkylpyridines undergo special reactions at the side-chain
such as halogenations and oxidations (Scheme 16.105) [232, 233].

Of particular interest is the deprotonation reactionwith strong bases, such as LDA,
nBuLi, NaNH2, and so on, which occurs 105 more rapidly with alkylpyridines than
with the corresponding alkylbenzenes (Scheme 16.106). The 2- and 4-isomers are
considerablymore acidic than the 3-isomer due to the nitrogen stabilization, with the
4-isomer being the most acid. The resulting alkylpyridines anions can react with
mild electrophilic reagents to afford a large variety of derivatives. For example,
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functionalization of themethyl group of pyridines 316 and 318 by proton abstraction
of the corresponding methyl groups with nBuLi followed, respectively, by reaction
with formaldehyde and primary bromide leads to pyridines 317 [218] and 319 [234],
respectively (Scheme16.107). 3-Alkylpyridine alsoundergoes this type of reaction but
the yields are usually lower.

Side-chain hydrogens of alkylpyridines are sufficiently acidic to undergo
condensation reactions with aldehydes or acetals. For example, c-picoline has
been condensed with various benzaldehydes to give reasonable yields of hetero-
stilbenes 320 (Scheme 16.108) [235]. Furthermore, treatment of dimethylpyridine
321 with dimethylformamide dimethyl acetal (322) in the presence of catalytic
CuI and microwave acceleration at 180 �C affords an excellent yield of dienamine
323 [236].
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16.4.4
Pyridine Aldehydes, Ketones, Carboxylic Acids and Derivatives

In general, these types of compounds behave similarly to the corresponding benzene
derivatives. In the case of pyridine carboxylic acids, the presence of the ring nitrogen
atomfavors theexistenceof theirzwitterionicformsinaqueoussolution(Figure16.19).
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Figure 16.19 Zwitterionic forms of pyridine carboxylic acids in aqueous solution.
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All three isomersaremoreacidic thanbenzoicacidwith the4-isomer(isonicotinicacid)
being the most acidic.

On heating, pyridine carboxylic acids readily undergo decarboxylation to afford the
corresponding protonated derivatives. This reaction occursmore easily with pyridine
carboxylic acids than with benzoic acids, decreasing in the reactivity order a> c�b

isomer according to the inductive stabilization of the generated carbanions
(Scheme 16.109). If the reaction is carried out in the presence of an electrophile
such as an aldehyde or a ketone, the resulting carbanion can be trapped to form the
corresponding alcohol in a process know as the Hammick reaction [237, 238].
Pyridylacetic acids also undergo a facile b-decarboxylation reaction to afford the
corresponding picolines [239, 240].

16.4.5
Quaternary Pyridium Salts

16.4.5.1 Nucleophilic Additions
The reactivity of quaternary pyridinium salts is explained by the increased electro-
philicity of a and c ring carbon atoms, which allows them to react easily with a large
variety of nucleophiles (Scheme 16.110).
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Usually, organometallic reagents react at botha and c positions; however, selective
c-addition can be achieved using cuprates and also when bulky alkyl groups are
present on the ring nitrogen atom. For example, treatment of pyridinium salt 324
with nBuLi gave an almost 1 : 2mixture of 1,2- 325 and 1,4-tetrahydropiperidines 326
(Scheme 16.111) [241]. Selective addition at the 4-position of pyridinium salt 327was
obtained with phenylmagnesium chloride in the presence of catalytic copper(I)
iodide to yield 1,4-tetrahydropiperidine 328 in excellent yield [242].

The stronger reactivity of pyridinium salts compared with pyridines with
nucleophiles has been exploited to achieve more effective nucleophilic additions
to pyridines by in situ generation of pyridinium salts that are hydrolyzed during
the workup. For example, formylation at the ring nitrogen atom of pyridines 329
with ethyl chloroformate generates pyridinium salts 330, which react with
Grignard reagents selectively at the 4-position to afford pyridines 331 in good
yields [243].

By a related mechanism, pyridinium salts can be oxidized at the a position using
potassium ferrocyanide in basic media to afford the corresponding N-alkyl-2-pyr-
idones (Scheme 16.112). The reaction involves initial a-nucleophilic attack of
hydroxide to afford hydroxy derivative 332 which is then oxidized by potassium
ferrocyanide [244].
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16.4.5.2 Reductions
The reduction reactions of pyridinium salts are of particular interest because of their
relation to important biological processes, such as the enzymatic NADþ/NADH or
NADPþ/NADPH oxidation/reduction reactions.

The pyridinium salts are more easily reduced than pyridines to give N-alkyl
piperidines, 1,2-dihydropiperidines or 1,2,3,4-dehydropiperidines depending on the
reducing agents and the reaction conditions.N-Alkyl piperidines are usually obtained
by catalytic hydrogenation whereas metal hydrides and active metals give partially
unsaturated piperidines. For example, catalytic hydrogenation of pyridinium iodide
333 affords selective and complete reduction of the pyridinium ring, giving
N-methylpiperidine hydroiodide 334 in 63%yield (Scheme 16.113) [245]. Conversely,
treatment of pyridinium iodide 335 with sodium borohydride gives, mainly, 3,4-
dehydropiperidine 336 together with a small amount of 4,5-dehydropiperidine
337 [246].
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16.4.5.3 Reactions at the Alkyl Side Chain
Aswith pyridines, a and c-alkyl substituted pyridinium salts can be functionalized at
the side chain via the intermediacy of enamine 338, which is generated by treatment
with base. Further reaction of 338with an electrophile such as an aldehyde or ketone
would lead to derivatives 339 (Scheme 16.114).

For example, reaction of porphyrin 340 with either 1,4-dimethyl- or 1,2-dimethyl-
pyridinium iodides in the presence of K2CO3 gives condensation products 341 and
342, respectively (Scheme 16.115) [247]. In addition, triple Knoevenagel condensa-
tion of collidine salt 343 with aldehyde 344 affords conjugated pyridinium salt 345
(Scheme 16.116) [248].

16.4.5.4 a-Cyclizations
Intramolecular free radical substitution of pyridinium salts 346 gives good yields of
bicyclic compounds 347 (Scheme 16.117) [249]. Also, compounds 349 have been
synthesized by intramolecular cyclization of pyridinium radicals generated from 2-
bromo-N-alkylpyridinium salts 348 [250].
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16.4.6
Pyridine N-oxides

Pyridine N-oxides are stable dipolar species with the oxygen electrons delocalized
throughout the pyridine ring (Scheme 16.118). TheseN-oxides are particularly useful
in pyridine synthesis because the usual pyridine reactivity is enhanced by the
presence of a positively charged ring nitrogen atom, even more than in quaternary
pyridinium salts due to the electron release of the oxygen. This fact is shown in their
dipole moment, which is almost twice the value of corresponding pyridines.
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16.4.6.1 Reactions with Electrophilic Reagents
Pyridine N-oxides react with electrophilic reagents through their oxygen atom. Of
particular interest is the reaction with alkylating agents such as Me2SO4 because it
affordsN-alkyloxypyridinium salts 350, which are susceptible to further nucleophilic
attack at the 2- and 4-positions of the pyridine ring (Scheme 16.119). Subsequent
elimination of alcohol ROH gives 2- and 4-substituted pyridines, with the latter
usually being the major regioisomer. This transformation has been used for the
synthesis of cyanopyridines, the so-called Reissert–Henze reaction, which affords,
usually, low reaction yields and mixtures of both 2- and 4-cyanopyridines. However,
using an improved method developed by Fife [251], which consists of the use of acid
chlorides instead of alkylating agents, permits cyanation exclusively at the 2-position
of the pyridine in excellent yields. For example, cyano-derivative 352 has been
synthesized from bipyridine N-oxide 351 in 90% yield (Scheme 16.120) [252].
Similarly, diverse aryl and alkyl groups have been introduced successfully at the
6-position of protected pyridoxal N-oxide 353 to give derivatives 354 [253].
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In consistent fashion, chloropyridines can be obtained directly from pyridine
N-oxides by treatment with PCl5, POCl3 or SOCl2 (Scheme 16.121). The chlorinating
agent (i.e., PCl5) reacts with the N-oxide through its oxygen atom and the evolved
chloride adds to the 2- or 4-position of the pyridine ring. Finally, elimination of POCl3
gives the corresponding chloropyridine. For example, chloropyridines 356 and 358
have been synthesized from N-oxides 355 and 357, respectively [254].

Electrophilic substitutions to the neutral pyridine N-oxides occur selectively at the
4-position; however, if the reaction is carried out through the protonated N-oxides
typical pyridiniumreactivity is found and3-substitution is observed (Scheme16.122).
Whereas nitration proceeds by electrophilic addition to the neutral pyridine N-oxide
to give 4-nitroderivatives, sulfonation goes through the protonated form and 3-sub-
stitution is normally achieved. For example, nitration of pyridine N-oxide 359 affords
4-nitroderivative 360 in good yield [255]. Sulfonation of pyridine N-oxide yields
3-sulfonated derivative 361 [153].

16.4.6.2 Reactions at the Alkyl Side Chain
Consistent with the alkylpyridines, a and c alkyl pyridine N-oxides undergo impor-
tant alkyl side chain reactions such as halogenation, condensation or oxidations. In
addition, acyl rearrangement reactionsmay occur to introduce oxygen functionalities
into the side chain, via the so-called Boekelheide reaction. The procedure consists of
treatment of pyridineN-oxideswith acetic anhydride,which initially produces oxygen
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acylation, followed by proton lost from the alkyl side chain to give an uncharged
intermediate 362, which finally undergoes a [3, 3] sigmatropic rearrangement to
afford acetate 363 (Scheme 16.123).

Under these conditions, pyridine N-oxide 364 is efficiently transformed into
alcohol 365by a two-step procedure involving an initial Boekelheide reaction followed
by basic hydrolysis of the resultant acetyl derivative (Scheme 16.124) [256].

16.4.6.3 Deoxygenation Reactions
Several pyridine N-oxide deoxygenation procedures have been developed, including
phosphorous trihalides, catalytic hydrogenation over Raney-Ni or Pd-carbon, SmI2,
NaBH4/AlCl3 or Fe/AcOH.Many of thesemethods are limited by side reactions such
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as substituent reductions. Recently, a milder and highly efficient deoxygenating
methodhas beendeveloped, based on the transfer of oxygen from theN-oxide to PPh3
catalyzed by Re(V) [257] or Mo(VI) [258] complexes. Scheme 16.125 shows some
examples of the deoxygenation reaction [254, 257].

16.5
Appendix

16.5.1
Synthesis of Pyridines by Cycloaddition Reactions

A new review on [2 þ 2 þ 2] cycloaddition reactions catalyzed by transition metal
complexes has appeared [259] that includes recent progress in the synthesis of
aromatic andheterocyclic compounds such as pyridines, pyridones, and so on. In this
context, two novel variants of the cobalt-catalyzed intramolecular [2 þ 2 þ 2]
cycloadditions have recently been published, allowing the formation of highly
functionalized pyridines. Both approaches deal with the co-cyclotrimerization of
nitrilediynes. Snyder and coworkers [260] have reported the microwave-promoted
cobalt-catalyzed [2 þ 2 þ 2] cyclization of dialkynylnitriles A1 to afford tetrahydro-
naphthyridines A2 (n¼ 1) and related pyridine derivatives in moderate to excellent
yields (Scheme16.A.1). Alternatively, Cheng and coworkers [261] use theCoI2(dppe)/
Zn system to achieve the efficient synthesis of tetra- and pentacyclic pyridine
derivatives A4 even with highly substituted nitrilediynes A3 having steric conjunc-
tion at thea andbpositions to thenitrile group and abulky substituent at the terminal
carbon of alkyne (Scheme A.1).

Also important has been the extensive study reported by Yamamoto and coworkers
on the scope of the substrate as well as the reaction mechanism of ruthenium-
catalyzed [2 þ 2 þ 2] cycloaddition of 1,6-diynes and nitriles to afford bicyclic
pyridines [262].
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16.5.2
Reactivity of Pyridines

The use of pyridines as monodentate ligands in transition metal complexes has
recently been exploited in the development of novel, efficient Pd-NHC complex
A5 (Figure 16.A.1) [263], which is very useful as catalyst in the carbon–carbon
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cross-coupling reactions [263–265], particularly in the formation of sp3-sp3 carbon–-
carbon bonds [263, 264].

16.5.3
Pyridine Derivatives

An interesting application of the reaction of pyridines N-oxides with electrophilic
reagents has been reported recently. Various substituted hydroxyphenylpyridines A8
have regioselectively been prepared in one step by reaction between pyridine N-
oxides A6 and arynes generated from silylaryl triflates A7 in the presence of caesium
fluoride in acetonitrile at room temperature (Scheme 16.A.2) [266]. This transition-
metal-free,mild, coupling reaction proceeds in good yield throughwhat appears to be
a series of rearrangements.
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17
Six-Membered Heterocycles: Quinoline and Isoquinoline
Ram�on Alajarín and Carolina Burgos

17.1
Quinoline

17.1.1
Introduction

Quinoline (1) is a benzo-fused pyridine heterocyclic compound and is also known as
1-azanaphthalene, 1-benzazine, or benzo[b]pyridine. Formally, quinoline is derived
from naphthalene by replacement of one of its a-CH units by nitrogen.

Quinoline (1) is a colorless, high-boiling liquid with a sweetish odor. Important
derivatives include quinaldine (2), lepidine (3), 2- and 4-quinolones (4, 5), and the
quinolinium cation (6). The numbering system of this heterocycle, as treated in this
chapter, is shown on structure 1 [1].

N N CH3 N

CH3

N
H

O N
H

O

N
+

R

1

2

3

45

6

7
8

Quinoline 1
Quinaldine 2
(2-methylquinoline)

Lepidine 3
(4-methylquinoline)

2 and 4-quinolones (4 and 5) (1H-quinolin-
2-one and 1H quinolin-4-one, respectively)

Quinolinium cation 6

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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17.1.2
General Reactivity

17.1.2.1 Relevant Physicochemical Data, Computational Chemistry, and NMR Data
The presence of nitrogen in this structure produces an irregular distribution of the
electron density in both heterocyclic and carbocyclic rings, a situation that alters the
physicochemical properties and reactivity. The electronegative nitrogen causes
inductive polarization, mainly in the s-bond framework but also affecting the
p-electron system, and also stabilizes those polarized canonical structures in which
nitrogen is negatively charged. Consequently, there are fractional positive changes,
mainly located on the C2 and C4 pyridine positions, but the local p-deficiency also
increases in the benzene ring [2, 3].

The localization energies and total electron densities (s þ p) calculated by
extended H€uckel theory (EHT) [2] correlate quite conclusively with the experimen-
tally observed data. The values of atomic charges in the quinoline structure are
shown here [4].

N

Quinoline 1

-0.002

+0.068

-0.009

+0.104

-0.216

+0.043

-0.013

+0.016

-0.003

+0.011

Additionally, it has been demonstrated that the positional selectivity in electro-
philic attack on this heterocyclic molecule can be explained according to the
magnitude of the HOMO electron density of each atomic center. The calculated
values predict that electrophilic substitution of quinoline will occur at C5 and C8 – in
agreement with the experimental data [5]. Other relevant UV and NMR data are
compiled in Tables 17.1–17.3

Table 17.1 1H NMR chemical shifts (ppm) and selected coupling constants (Hz) for
quinoline (1) [6].

d (ppm) 3JH–H
4JH–H

H2 8.80 H2–H3 4.18 H2–H4 1.78
H3 7.22 H3–H4 8.24 H5–H7 1.44
H4 7.96 H5–H6 8.20 H6–H8 1.23
H5 7.66 H6–H7 6.92
H6 7.41 H7–H8 8.53
H7 7.59
H8 8.10

1H NMR Spectra recorded at 100MHz in CCl4.
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17.1.2.2 General Reactivity and Tautomerism
Taking into consideration the physicochemical and structural data outlined above,
quinoline, in a similar way to pyridine, undergoes a range of simple electrophilic
additions involving donation of the nitrogen lone pair to an electrophile to give
�quinolinium salts� 6. This donation does not destroy the aromatic sextet and
the quinolinium salt 6 remains aromatic. Concerning electrophilic substitution on
the C-positions, quinoline (1) has a benzene ring annelated to the pyridine ring and
comparisons with naphthalene chemistry must be considered. For example, SEAr
reactions occur on the carbocyclic ring, preferentially on those of the more activated
benzene moiety, and the positional selectivity is C8>C5>� other positions. In
general, the SEAr process occurs preferentially via the conjugate acid, that is, the
quinolinium ion, which prevents attack on the heterocyclic ring.

The electron-deficiency of the C-heterocycle in quinoline (1), in particular on the
C2 and C4 positions, makes nucleophilic addition reactions very important in
quinoline chemistry. The nucleophilic substitution of quinoline usually proceeds
through addition of a nucleophile and then elimination of a negatively charged entity
such as H– or, more favorably, Hal–. The SNAr process proceeds more rapidly in
quinoline than pyridine because the fused benzene ring stabilizes the addition
product through conjugation.

Quinolinium salts 6 are highly resistant to electrophilic substitution but are very
susceptible to nucleophilic additions.

Annular tautomerism does not occur in quinoline (1) but this system does have
some substituent tautomers. 1H-Quinolin-2-one (4) and 1H-quinolin-4-one (5), 2-
and 4-quinolones, respectively, could exist in equilibrium with the corresponding

Table 17.2 13C NMR chemical shifts (ppm) for quinoline (1) [7].

d (ppm) d (ppm)

C2 150.2 C7 129.2
C3 120.9 C8 129.4
C4 135.7 C4a 128.2
C5 127.6 C8a 148.3
C6 126.4

13C NMR spectra recorded at 20MHz in CDCl3.

Table 17.3 UV data for quinoline (1) in H2O [8].

UV (H2O)

l (nm) log e

226 4.36
275 3.51
299 3.46
312 3.52
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hydroxy derivatives. However, the tautomeric equilibrium lies completely over to the
carbonyl tautomeric form [9].

All aminoquinoline derivatives exist predominantly as amino tautomers and their
polarized resonance contributions are shown here for the 2-substituted derivatives.

N
H

O N OH N OH
+N

H

+
O

N
H

NHN
H

+
NH N NH

2
N NH

2

+

17.1.3
Relevant Natural and/or Useful Compounds

Quinoline (1) is mainly used as a building block for other chemical compounds. For
example, 8-hydroxyquinoline is a chelating agent and a precursor for pesticides,
whereas 2- and 4-alkylquinolines are precursors of cyanine dyes. Quinoline was first
extracted from coal tar in 1834 by Friedlieb Ferdinand Runge. Several years later, this
compound was also observed as a pyrolytic degradation product of cinchonamine, a
Cinchona alkaloid closely related to quinine (7). The name �quinoline� comes from
the term �quinine,� an antimalarial agent isolated from cinchona tree bark by
Pelletier in 1820 [10].

N

N

OH
H

H

H

H
3
CO

N

N

OH
H

H
3
CO

H

H

N O

OCH
3

OCH
3

N

O

O

OH

(-) Quinine  7 (+) Quinidine  8 γ-Fagarine  9 Toddaquinoline   10

In contrast to isoquinoline, there are comparatively few naturally occurring
quinolines. In addition to Cinchona alkaloids [11] – pairs of diastereomeric com-
pounds such as quinine–quinidine (7 and 8), dihydroquinine–dihydroquinidine, as
well as cinchonidine–cinchonine – some remarkable members of these families are
the biologically relevant quinoline alkaloids from rutaceous plants, such as c-fagarine
(9), which was isolated from stems of Glycosmis arborea. This compound showed
inhibitory activity toward the induction of Epstein–Barr virus early antigen (EBV-EA)
in Raji cells by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate, and is thus
potentially useful as a chemoprotective agent in chemical carcinogenesis [12].
Additionally, 9 showed useful cytotoxicity towards the murine leukemia P-288 cell
line [13]. c-Fagarine (9) and related furoquinolines also inhibited human phospho-
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diesterase 5 (hPDE5A), a hydrolytic enzyme that regulates the intracellular levels of
cGMP and influences vascular smooth muscle tone [14].

In 1993 Chen and coworkers [15] reported the isolation of toddaquinoline (10), a
benzo[h]quinoline alkaloid that is a constituent of many Asian folk medicines. The
alkaloid was extracted from the root bark of Formosan Toddalia asiatica – another
rutaceous plant [16].

Pyrroloquinoline-based alkaloids have attracted significant interest due to their
intriguing structures and biological activity. The best known example is camptothe-
cin (11), a novel alkaloid isolated from the stemwood of theChinese treeCamptotheca
acuminate, and its analogues. These compounds are collectively known as capto-
thecins and they have potent antitumor activity. Since the isolation of camptothecin
(11) in 1966 and the elucidation of its structure by Wall and coworkers [17] this
compound has been the subject of numerous syntheses [18]. Recently, camptothecin
has also shown potent anti-retroviral activity at dose levels that are well tolerated by
cells. This compound may therefore represent a new direction in AIDS chemother-
apy.Derivatives of camptothecin have a uniquemechanismof action: they kill cells by
binding to and stabilizing a complex of DNA and the enzyme topoisomerase I [19].

N
O

N

O

OOHCH
3

N
H

N

N
H

NH CH
3

CH
3

O

O

N
H

N
H

NH

CH
3

CH
3

CH
3

N
H

NH
2

NH

Camptothecin  11 Martinelline  12

In1995Witherup et al. [20] reported the isolationofmartinelline (12) fromanextract
of Martinella iquitosensis roots. This new alkaloid was found to possess antibacterial
activity as well as affinity for adrenergic, muscarinic, and bradykinin receptors. The
structure of martinelline has attracted considerable attention and several research
groups have reported approaches for the preparation of this compound [21].

N

CH
3

N

N

CH
3

N

Cryptosanguinolentine   14Cryptotackieine  13

In 1996 two groups [22] independently reported the isolation of cryptotackieine (13)
and cryptosanguinolentine (14), two new alkaloids extracted from Cryptolepis sangui-
nolenta, a shrub indigenous to tropical West Africa. Cryptotackieine 13 displays a
strong antiplasmodial activity against Plasmodium falciparum chloroquine-resistant
strains, and both compounds display various interesting biological properties [23].
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Pyranoquinoline alkaloids are another important group of quinoline derivatives.
Simulenoline (15), huajiaosimuline (16), and zanthodioline (17) are representative
examples of these natural products isolated from root bark of Zanthoxylum simulans,
a shrub found in Taiwan and mainland China. These novel monoterpenoid pyr-
anoquinolines are potent inhibitors of platelet aggregation. While simulenoline (15)
and zanthodioline (17) are not cytotoxic, huajiaosimuline (16) is toxic toward several
human culture cell lines, especially the estrogen receptor-positive breast cancer
cells [24].

An important group of quinoline derivatives are those obtained from fungal and
microbial sources. The prototypical example is thiostrepton (18), a thiopeptide
antibiotic that contains a 7,8-dihydroquinoline core [25].
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As far as synthetic quinoline derivatives are concerned, there are a large group
of heterocyclic compounds that display interesting medicinal, agricultural, or
some other industrial utility. Quinoline derivatives provided the first photographic
film sensitizer: the cyanine dye ethyl red (19) [26]. However, some of the most
important examples are the pharmacologically active compounds, including several
antimalarial drugs based on the quinine parent, for example, chloroquine (20) [27]
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and mefloquine (21) [28], and some antibacterial fluoroquinolones such as cipro-
floxacin (22) [29].

N CF
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OH
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Chloroquine  20 Mefloquine    21 Ciprofloxacin    22

+

Ethyl red  19

In recent years some quinoline derivatives have attracted considerable interest for
various pharmacological targets. For example, irinotecan (23) is an anticancer drug
marketed by Pfizer [30], whereas L-689,560 (24) is a strong NMDA receptor
antagonist identified by the Merck group. Overactivation of the NMDA subtype of
excitatory amino acid receptors is implicated in several neurodegenerative disorders,
including epilepsy, stroke, and Alzheimer�s disease [31].

In conclusion, a great number of biological, pharmacological, and biocidal
activities have been fully described in the reviews and monographs published on
the compounds treated in this chapter.

N
H

Cl

Cl

NH

CO
2
H

O

NHPh

N

CH
3

O

O N

N

N

O

O

O

OH

CH
3

L-689,560   24Irinotecan   23

17.1.4
Ring Synthesis of Quinolines

17.1.4.1 Classical Syntheses

17.1.4.1.1 Anilines Plus 1,3-Dielectrophiles

Combes Synthesis Condensation of a 1,3-dielectrophile, in the simplest case a 1,
3-dicarbonyl derivative, with an aniline furnishes a b-aminoenone, which can
evolve to an aromatic derivative by treatment with concentrated acid [32]. The
cyclization step can be viewed as an electrophilic substitution by the aniline
derivative on the O-protonated aminoenone 25 (Scheme 17.1).

Quinolinophanes 26 (Scheme 17.2) have been prepared using this method,
starting from the appropriate aniline and the 1,3-dicarbonyl derivative [33].
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3-Cyanoquinolines are prepared by condensation of anilineswith 3,3-dimethoxy-2-
formylpropanenitrile [34].

In anunconventional approach to the classical Combes reaction, TomandRuel [35]
have reported an efficient synthesis of functionalized 3-formylquinolines 27 from
substituted anilines and vinamidium salts 28. The cyclization was followed by
hydrolysis of themasked aldehydes 29 to provide the desired products (Scheme 17.3).

Conrad–Limpach–Knorr Synthesis Primary arylamines and b-ketoesters condense in
the presence of strong acids to form 2-quinolones (Knorr synthesis) via the corre-
spondingb-ketoanilides (e.g.,30, Scheme17.4),whereas a thermal reaction involving
b-anilinoacrylic esters (e.g., 31, Scheme 17.4) yields 4-quinolones (Conrad–Limpach
synthesis).

The formation of the 2-quinolone is due to an SEAr process, analogous to a
Combes synthesis, whereas formation of the 4-quinolone, especially in cases where
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the benzene ring carries an electron-withdrawing group, is probably due to an
electrocyclic cyclization [36].

4,2-Trifluoromethyl-substituted 2- or 4-quinolinones have been prepared by con-
densation of anilines with ethyl trifluoroacetate under different reaction
conditions [37].

Recently, Zewge et al. [38] discovered that Eaton�s reagent (7.7/92.3 wt.% P2O5/
MeSO3H) could be used to promote the cyclization of aniline derivatives to give
substituted 4-quinolones.

The use of microwave technology in this kind of synthesis continues to gain in
popularity. A microwave synthesis of 4-hydroxy-2-quinolinones 32 (Scheme 17.5)
under solvent-free conditions has been developed. The quinolinones are easily
obtained in a one-pot procedure as a result of the formal amidation of a malonic
ester derivative with an aniline and subsequent cyclization of the intermediate
malondianilide [39].

Skraup and Doebner–Miller Syntheses [40] Construction of the quinoline system by
the Skraup [41] and Doebner–Miller [42] methods is based on the reaction of an
aromatic amine, containing at least one free ortho position, with a reagent that is the
source of a three-carbon fragment. In the classical Skraup method, the aromatic
amine, in the simplest case aniline, is heated with glycerol, sulfuric acid (which
catalyzes the dehydration of glycerol to acrolein), and an oxidizing agent, such as
nitrobenzene, which transforms the initially formed 1,2-dihydroquinoline into the
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fully aromatic heterocycle. The Doebner–Miller synthesis was originally limited to
the reaction with crotonaldehyde to give quinaldines, but this name is increasingly
used as a generic term for this type of reaction. The sequence of this reaction was
established by different methods; the first step being the Michael addition of the
amine to the enal system, to supply the b-aminocarbonyl derivative. These systems
cyclize, via the protonated carbonyl derivative, to give 33. Subsequent dehydration
and dehydrogenation affords quinoline 34 (Scheme 17.6).

A modification of the Skraup synthesis, using InCl3 on silica gel and microwave
irradiation under solvent-free conditions, has been reported by Ranu et al. [43]
starting from anilines and alkyl vinyl ketones (Scheme 17.7).

Furthermore, 2,2,4-trisubstituted 1,2-dihydroquinolines have been prepared by a
Skraup synthesis in the presence of a lanthanide catalyst and microwave
irradiation [44].

The vapor phase synthesis of quinoline from aniline and glycerol in a single step
has been investigated over ZnO-Cr2O3, CuO-ZnO/Al2O3, MoO3-V2O5/Al2O3, and
NiO-MoO3/Al2O3 catalysts in the presence of air at 623–723K at atmospheric
pressure. Among the catalysts investigated, the CuO-ZnO/Al2O3 combination
effectively performed this reaction with high activity and selectivity [45].

A related process is the reaction of anilines with the iminium triflate 35 to yield
trifluoromethylquinolines 36 (Scheme 17.8) [46].

Matsugi et al. [47] have reported an improved version of the Doebner–Miller
cyclization. The reaction was carried out in a two-phase solvent system. The method
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proved to be advantageous in terms of the yield and ease of the work-up process
(Scheme 17.9).

The double condensation of nitroarenes with substituted cinnamyl phenyl sul-
fones in the presence of DBU/silane or DBU/Lewis acid is a procedure that exploits
the opposite polarity used in the Skraup reaction (Scheme 17.10) [48].

17.1.4.1.2 o-Acylanilines Plus Carbonyl Compounds

Friedlander Synthesis and Related Processes o-Acylanilines condense with enolizable
carbonyl compounds through a base- or acid-catalyzed process to give quinolines.
The outcome of the condensation was found to be dependent on the type of catalyst
used, with acid catalysis leading predominantly to formation of the thermodynamic
product 37 and base catalysis giving mostly the kinetic derivative 38
(Scheme 17.11) [49].

Oneof themore commonways to synthesize quinolines is through the Friedlander
synthesis and, as a result, several variations and improvements have been published
for this reaction. For example, in the Friedlander synthesis of quinolines the use of
bases such as 1,3,3-trimethyl-6-azabicyclo[3.2.1]octane (TABO) can lead to an
increase in the overall yield and the regioselectivity of process. The reaction has
been carried out using o-aminobenzaldehydes and unactivated methyl ketones to
furnish the corresponding substituted quinolines in excellent yields and ratios (6 : 1)
(Scheme 17.12) [50].
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In the same way, the use of 2-aminobenzophenones and lactones has enabled a
mild and scalable synthesis of 4-aryl-quinolin-2-ones (Scheme 17.13) [51].

Additionally, other Friedlander variations and improvements have been published
for the synthesis of quinoline analogues that were regiospecifically functionalized on
both the pyridine and benzo-fused rings [52, 53].

A new methodology has been described that employs ionic liquids as �green�
solvents and involves o-acyl anilines and various ketones to produce the desired
quinolines in high yields and under very mild conditions [54].
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Wang et al. have reported a solvent-free method for the Friedlander quinoline
synthesis; this involved the reaction of o-acyl anilines with various b-ketoesters, using
p-TsOH and microwave conditions (Scheme 17.14) [55].

In addition to this work, the same authors reported a water-mediated Friedlander
quinoline synthesis, in this case using hydrochloric acid and conventional
heating [56].

A direct preparation of selectively protected derivatives of 3-hydroxyquinoline-2-
carboxylates 39was discovered in amodified version of this process, which employed
the readily accessible O-methyloxime 40 (Scheme 17.15) [57].

Yus et al. [58] have reported a Friedlander synthesis of polysubstituted quinolines
41 under solvent-free conditions, using in this case RuCl2(dmso)4 (Scheme 17.16).

Various other environmentally friendly strategies or methods that utilize mild
conditions for the preparation of quinoline derivatives by Friedlander synthesis have
also been reported [59–63].

A modification of the Friedlander synthesis of quinolines has been published for
the conversion of o-nitrobenzaldehydes into quinolines in the presence of ketones or
aldehydes. This process occurs through a concomitant nitro reduction in the
presence of SnCl2/ZnCl2 [64] or, alternatively, in the presence of iron and a catalytic
amount of HCl [65].
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A modified version of this strategy has been reported in which the formyl group
is introduced in situ by directed ortho-metallation onto aN-tert-butoxycarbonylanilide
42 (Scheme 17.17) in the presence of s-BuLi and DMF. The addition of an
enolizable carbonyl compound furnished the corresponding substituted quinoline
derivative 43 [66].

The use of organometallic reagents has also been successful in a modified version
of this approach. Thus, 2-aminobenzyl alcohol was oxidatively cyclized with various
ketones in the presence of several Ru catalysts to afford 2-substituted quinolines in
good yields [67].

Other variations of the process related to the Friedlander synthesis have also been
reported. For example, cyclization of Schiff base 45, derived from 2-(trifluoromethyl)
aniline and a methyl naphthone, mediated by lithium 2-(dimethylamino)-ethyla-
mide 44 (Scheme 17.18), furnished a series of substituted 2-(2-naphthyl)quinolines
designed to target triplex DNA [68].

The reaction of a-aroylketene dithioacetals with esters of o-aminobenzoic acid
under different conditions afforded quinoline and quinolone derivatives [69], where-
as silylketene dithioacetal 46 (Scheme 17.19) reacted with 2-aminobenzaldehyde in
the presence of a Lewis acid to produce quinoline 47 [70].

A one-pot quinoline synthesis has also beendescribed from2-aminobenzyl alcohol
and carbonyl derivatives, using ruthenium-grafted hydrotalcite as the heterogeneous
catalyst. In this approach molecular oxygen was used for the oxidation of the
ruthenium species [71]. In a project devoted to thea-alkylation of ketones by alcohols
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in the presence of [Ru(dmso)4]Cl2, Yus et al. found that the reaction between
2-aminobenzyl alcohol and aryl alkyl ketones gave 2,3-disubstituted quinoline
derivatives in good yields [72].

17.1.4.2 Other Processes

17.1.4.2.1 From Ynones, Enones, and Related Substrates: Formation of Bond
1–2 Ynones and related substrates are frequently used as starting materials for
quinoline compounds. For example, a,b-ynone derivatives 48 (Scheme 17.20) can be
converted into 2,4-disubstituted quinolines through tandem nucleophilic addition–
annulation reactions [73].

In a related study, the synthesis of functionalized 4-alkylquinolines was developed
using electrogenerated carbanions derived from nitroalkanes. In this approach, the
desired 4-alkylquinolines were prepared through a sequential alkylation/heterocy-
clization of a,b-ynone derivatives 49 (Scheme 17.21). This method avoids the use of
metal and base catalysts and is performed under solvent-free conditions [74].
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When the o-nitrochalcones 50 (Scheme 17.22) were treated with low-valent
titanium (prepared fromTiCl4 and Smpowder in THF), the intramolecular reductive
coupling products were obtained in moderate yields [75]. Similar results were
obtained starting from substituted o-nitroacrylonitriles [76].

Comparable results have been obtained by Barros and Silva [77] in the preparation
of 2-(2-hydroxyaryl)quinolines from 20-hydroxy-2-nitrochalcones induced by stan-
nous chloride in an acidic medium or ammonium formate/Pd–C in methanol.

The development of environmentally friendly methods that exploit these
approaches has attracted considerable attention. For example, Ahmed and van Lier
have prepared 2,3-dihydroquinolin-4-ones 51 (Scheme 17.23) under solvent-free and
thermal conditions starting from2-aminochalcones supported on silica gel andTaBr5
as a catalyst [78]. A similar process has been reported by Kumar and Perumal [79] on
using microwaves irradiation.

Baker�s yeast reduction of o-nitrocinnamaldehydes affords quinolines directly [80].
Similarly, other o-nitrocinnamic derivatives undergo reduction of the aromatic nitro
group followed by cyclization with Zn in near-critical water at 250 �C [81].

The reaction of the Baylis–Hillman adducts of o-nitrobenzaldehydes 52 and
trifluoroacetic acid at 60–70 �C gave unexpected cyclization products 53, 3-ethox-
ycarbonyl-4-hydroxyquinoline N-oxide derivatives, in good to moderate yields [82].
However, compounds 52 furnished 3-carboalkoxyquinolines 54 by acylation
with AcCl and cyclization by carbon monoxide, catalyzed by [Cp�Fe(CO)2]2 [83], or
2-quinolones 55 by treatment with iron in acetic acid (Scheme 17.24) [84].

In a related study, reported byBatra et al. [85], the synthesis of highly functionalized
quinolines, derived from Baylis–Hillman adducts, was accomplished using SnCl2 to
mediate tandem reactions.

As part of ongoing efforts to develop methods for the generation of quinoline
libraries, titanium alkylidene reagents 56 have been treated with resin-bound esters
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followed by acid-mediated cleavage to give arylammonium salts (Scheme 17.25).
Oxidation with MnO2 gave quinolines of high purity and in moderate yields [86].

The synthesis of quinoline derivatives using metal-catalyzed, and particularly
palladium-catalyzed, chemistry has become of interest for this type of approach.
For example, acetylenic acetals (e.g., 57, Scheme 17.26) or ketals have been reacted
with various aryl or vinyl halides in a palladium-catalyzed process to afford alkenes 58
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in good yield. Cyclization to quinolines 59 was performed in the presence of
TsOH/EtOH [87].

A related process has been reported in which a palladium-catalyzed hydrogena-
tion/heterocyclization gave the quinoline derivative 60 (Scheme 17.27) [88].

In a similar way, o-iodoanilides reacted with terminal acetylenic carbinols in a
palladium-catalyzed process to yield o-substituted anilides, the starting materials for
the synthesis of quinoline or 4-quinolone derivatives [89].

In another metal-catalyzed quinoline synthesis NiBr2(dppe) was used to catalyze
the reaction of o-iodoanilines with aroylalkynes in acetonitrile to give 2,4-disubsti-
tuted quinolines in good yields [90].

17.1.4.2.2 From Alkynes, Propargyl Amines, and Related Systems: Formation of
Bond 4–4a Internal and terminal alkynes have been coupled and cyclized to N-aryl
trifluoroacetimidoyl chlorides 61 (Scheme 17.28) in the presence of catalytic Rh(I)
complexes to afford 2-trifluoromethylated quinolines 62. Various alkynes were
applied to this cyclization coupling and high levels of regioselectivity were
achieved [91].

N-(1,1-Disubstituted propargyl)anilines can be cyclized to 2,2-disubstituted 1,2-
dihydroquinolines by heating under reflux in toluene containing CuCl
(Scheme 17.29) [92].

A new and general method has been developed for the preparation of 2-quino-
linones by intramolecular hydroarylation of alkynes. Various aryl alkynanilides
undergo rapid intramolecular reaction at room temperature in the presence of a
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catalytic amount of Pd(OAc)2 in a mixed solvent containing trifluoroacetic acid. This
process affords 2-quinolinones in moderate to excellent yields with turnover num-
bers (TONs) of more than 1000 with respect to Pd (Scheme 17.30) [93].

Campos et al. have reported the synthesis of 3-haloquinolines 63 by irradiation of
amino haloalkenimines 64 (Scheme 17.31) [94].

Variations of the Friedel–Crafts reaction are also of interest for the synthesis of
quinolines. For example, Saito et al. [95] have described a novel method to synthesize
a quinoline backbone by incorporating allenyl cations into a catalytic intramolecular
Friedel–Crafts reaction. The initial products were isomerized and aromatized upon
treatment with acid and base, respectively, to give quinoline derivatives
(Scheme 17.32).
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Quinolines substituted in the 3-position by an iodo- or phenylseleno-group are
readily prepared by an electrophilic cyclization from propargylic anilines with
appropriate electrophiles under mild reaction conditions. This method can be
followed by palladium-catalyzed substitution reactions to provide further elaboration
of the 3-position of the quinoline core (Scheme 17.33) [96].

In a similar way, Hajra et al. have prepared a series of tetrahydroquinoline
derivatives from allyl anilines using a Lewis acid-catalyzed halocyclization [97].

17.1.4.2.3 From Oximes, Azadienes, and Related Derivatives: Formation of Bond
1–8a Oxime derivatives are also suitable intermediates for the synthesis of quino-
lines. Several papers concerning intramolecular cyclization involving some classes of
oximes and oxime derivatives have been published [98–103]. Scheme 17.34 shows an
example of this methodology.

Campos et al. [104] have reported that the irradiation of azadiene 65 in the presence
of HBF4 furnishes 4-aminoquinoline derivatives in excellent yields (Scheme 17.35).

Quinoline derivatives have been prepared by Quideau et al. [105] from nitrogen-
tethered 2-methoxyphenols. Oxidative acetoxylation in the presence of phenyl iodide
(III) diacetate, followed by an intramolecular Michael addition, gave the desired
quinoline derivatives (Scheme 17.36).
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17.1.4.2.4 Other Processes InvolvingMetal-CatalyzedMethods Palladium-catalyzed
coupling of o-allyl or o-isopropenyl-N-tosylanilides with vinyl halides or triflates
produces dihydroquinolines (Scheme 17.37) [106–110].

A palladium-mediated multicomponent domino reaction involving ethynylaryla-
mines 66, aryl iodides, primary amines, and carbon monoxide has been reported to
give various substituted quinolines (Scheme 17.38) [111].

Intramolecular addition of anilines tomethylenecyclopropanes proceeds smoothly
in the presence of catalytic amounts of Pd(PPh3)4 to afford the corresponding
hydroamination products, which ultimately gave quinoline derivatives 67
(Scheme 17.39) [112].

TheBuchwald–Hartwig palladium-catalyzed aryl-amino coupling reaction has also
been applied successfully to the synthesis of functionalized N-phenyl 2-quinoli-
nones [113]. Additionally, aryl–N-bond formation can be used to prepare quinoline
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derivatives by intramolecular coupling of amines or amides with an aryl
bromide [114].

A successful ruthenium-catalyzedoxidative coupling and subsequent cyclizationhas
beenreportedbetween2-aminobenzylalcoholandsecondaryalcohols inthepresenceof
KOH and 1-dodecene to give 2-substituted quinolines (Scheme 17.40) [115].

Functionalized zinc reagents – derived from readily available o-iodoaniline deri-
vatives and obtained by a straightforward iodine–magnesium exchange followed by
transmetalation with zinc bromide – can be used to prepare a wide range of nitrogen
heterocycles. For example, treatment of the benzylimine-protected iodoaniline 68 in
the presence of a Grignard reagent and subsequent Negishi cross-coupling leads to
the quinoline derivative 69 (Scheme 17.41) [116].
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Various diallylanilines have been shown to undergo cobalt-carbonyl-catalyzed
rearrangement to quinolines, with the diallylaniline acting as a source of the allyl
group in these transformations (Scheme 17.42) [117].

InBr3 promotes the dimerization of 2-ethynylaniline derivatives 70 to give poly-
substituted quinolines in good yields (Scheme 17.43) [118].

o-Halo-N-trifluoroacetylanilines 71 (Scheme 17.44) undergo sequentialWittig and
Pd reaction under a CO atmosphere to supply 4-quinolone derivatives [119, 120].

3-Aryl 2-quinolinones have been prepared by a convergent one-pot cascade
sequence involving palladium-catalyzed cross-coupling reactions of 2-bromobenzal-
dehydes with phenylacetamides in the presence of caesium carbonate and xantphos
(Scheme17.45). Final products 72were obtained by cyclization of the resulting amide
intermediate [121].
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A novel and efficient route to 4-trifluoromethyl-substituted quinoline derivatives
through the Zn(II)-mediated alkynylation/cyclization of o-trifluoroacetylanilines 73
has been described by Jiang et al. (Scheme 17.46) [122].

Palladium(0)-catalyzed termolecular queuing processes involving oxidative addi-
tion to o-iodoanilides followed by low-pressure carbonylation, allene insertion, and
capture of the resulting p-allyl palladium(II) species by the internal N-nucleophile
affords 3-methylene quinolones in good yields (Scheme 17.47) [123].

Gold-catalyzed intramolecular hydroarylation of allenic anilines offers an efficient
route to dihydroquinoline derivatives under mild reaction conditions. The reaction
has been carried out in the presence of [2-(di-tert-butylphosphino)-1,10-biphenyl]gold
(I) chloride (74) and silver(I) triflate (Scheme 17.48) [124].

In the same way, Che and coworkers have devised an efficient method to prepare
substituted 1,2-dihydroquinolines and quinolines by Au(I)-catalyzed tandem hydro-
amination–hydroarylation under microwave irradiation [125].

The first enantioselective synthesis has been reported of the martinelline core, a
new alkaloid (12) that shows antibacterial activity as well as an affinity for adrenergic,
muscarinic, and bradykinin receptors, [21c]. The synthesis proceeded in seven steps
and gave 23% overall yield through a modification of the palladium-catalyzed
carbonylative cyclization procedure reported by Negishi.
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17.1.4.2.5 Cycloaddition Processes

Diels–Alder and Aza-Diels–Alder (Povarov) Reactions The preparation of quinoline
derivatives by cycloaddition processes is an important method for the synthesis of
this class of compounds. Several cyclization/elimination reactions that formally
correspond to Diels–Alder or hetero-Diels–Alder cycloaddition could proceed by a
SEAr mechanism and are usually catalyzed by Lewis acids. For example, the [4 þ 2]
cycloaddition reaction ofN-arylaldimines 75 is effectively catalyzed by ytterbium(III)
triflate to give quinoline derivatives (Scheme 17.49) [126].

Pyrrolo[3,4-b]quinolines can be formed through the coupling of anilines with
N-propargylic-substituted heterocyclic aldehydes in the presence of mild Lewis acid
catalysts. The coupling proceeds through sequential imine formation and a formal
intramolecular aza-Diels–Alder (Povarov) reaction. This approach has been applied
in a total synthesis of luotonin A and a formal synthesis of camptothecin
(Scheme 17.50) [19a].

Menendez and colleagues [127] have reported another aza-Diels–Alder reaction
between aromatic imines and methacrolein dimethyl hydrazone in the presence
of InCl3.

The treatment of azadiene 77, obtained in situ from the carbonate 78, in the
presence of dienophiles produced tetrahydroquinolines 79 (Scheme 17.51) [128].

Reaction of the same azadiene with C60 gave a quinoline-fused fullerene [129].
Hetero-Diels–Alder reaction of 1,2,3-benzotriazine in the presence of dienophiles

produces quinoline derivatives after extrusion of N2. 1,2,3-Benzotriazine interme-
diate 80 can be obtained by oxidative rearrangement of 1-aminobenzotriazole
(Scheme 17.52) [130].

Liu and coworkers [131] have developed an efficient synthetic method for the
preparation of 4-functionalized-quinoline derivatives 81. Ethynyl ketene-S,S-acetals
82 can react in a one-pot procedure with various arylamines and aldehydes under
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mild conditions through consecutive arylimine formation, regiospecific aza-Diel-
s–Alder (Povarov) reaction, and reductive amination (Scheme 17.53).

Takasu and coworkers [132], using cascade and one-pot reactions, have carried out
an inverse electron demand hetero-Diels–Alder reaction and oxidative aromatization
to synthesize substituted quinolines starting from aryl aldimines and allylsilanes
(Scheme 17.54).

The construction of hetero-polycyclic aromatic compounds has been addressed by
intermolecular cycloaddition reaction of a dihalogenated heteroarene with zircona-
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cyclopentadiene. For instance, 2-bromo-3-iodopyridine was reacted in the presence
of a zirconacyclopentadiene, CuCl, and 1,3-dimethyl-3,4,5,6-tetrahydro-2-pyrimidi-
none (DMPU) to give the correspondingquinoline in 85%yield (Scheme17.55) [133].

Other Pericyclic Processes Enolizable vinyl quinonemono- anddiimide substrates 83
(Scheme 17.56) yield protected 6-aminodihydroquinolines by thermal 6p-electro-
cyclization. Aromatization provides the corresponding quinolines in quantitative
yields [134].

A series of substituted 3H-quinolin-4-ones have been synthesized from N-{[2-
(alkyl- or arylthio)carbonyl]phenyl}ketenimines 84 by means of a [1,5]-sigmatropic
migration followed by 6p-electrocyclic ring closure (Scheme 17.57) [135].
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Indenoquinoline has been obtained by a formal [4 þ 1] cycloaddition process from
o-phenylprop-1-ynyl benzoisonitrile in the presence of t-BuOK/t-BuOH. The starting
material was prepared in two steps from o-iodoformanilide. However, only poor
yields were obtained when the method was applied to other related systems
(Scheme 17.58) [136].

N-Methylformanilides 85 reacted with various electron-rich alkenes in POCl3
solution to supplyN-methylquinolinium salts in good yields. The mechanism of the
cyclization was elucidated and was shown to involve an electrocyclic p6s process
(Scheme 17.59) [137].

17.1.4.2.6 Radical Reactions As far as radical chemistry is concerned, a series of
annulated quinolines are readily available from thioamides, thiocarbamates, or
thioureas in the presence of tris(trimethylsilyl)silane (TTMSS) and hn irradiation
(Scheme 17.60) [138].

The intramolecular 6-endo-dig cyclization of an aryl bromide onto a silylated
acetylene using Bu3SnH/AIBN provides dihydroquinoline derivatives
(Scheme 17.61) [108].
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Similarly, the cyclization of an aryl radical onto a pyrrole allows the synthesis of
either the spiropyrrolidinyloxindole or the pyrrolo[3,2-c]quinoline skeleton, depend-
ing on the nature of the protecting group at the N-pyrrole atom [139].

Toddaquinoline (10) has been obtained by Harrowven and coworkers by a radical
cyclization onto a pyridine ring [16a] and by a cobalt-mediated radical addition to a
pyridine derivative [16b].

Free radical cyclization reactions of alkylsulfonyl- and alkylthio-substituted aro-
matic amide derivatives have been described. These radicals undergo either six- or
five-membered ring cyclization onto the aromatic ring and provide synthetically
useful methods for the preparation of quinolinones among other heterocyclic
derivatives [140].

A formal synthesis of martinelline (12) has been accomplished by Naito and cow-
orkers using two types of radical reactions as the key steps [141]. Schmittel et al. have
reported that the thermolysis of enyne carbodiimides 86 (Scheme 17.62) produces the
biradical intermediates 87, which can evolve to quinoline derivatives 88 [142, 143].

17.1.4.2.7 Ring Transformations of Heterocycles Leading to Quinolines An efficient
and practical method for the preparation of 4-hydroxyquinolinone esters and
amides has been developed by Beutner and coworkers. Compounds 89 were
synthesized in good yields and on a kilogram scale from substituted isatoic anhy-
drides (Scheme 17.63) [144].
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Previously, in a related study, Igglessi-Markopoulou et al. [145] described
an efficient route to 3-aryl-4-hydroxyquinolin-2-ones through cyclization of the
b-ketoesters produced by reaction of arylacetic ester enolates with 2-alkoxy-3,1-
benzoxazin-4-ones.

A new one-step methodology has been introduced for the synthesis of quinoline
2,4-diones. The reaction is based on a modification of the Mukaiyama aldol con-
densation and makes use of the high reactivity of benzoxazin-4-ones 90 in the
presence of ketene silyl acetals 91 (Scheme 17.64) [146].

Substituted 2,4-quinolines can be obtained by a novel synthesis that involves
cyclization and thermal extrusion of sulfur. Themethod starts from ortho-thioaniline
(92) and acetylenic ketones 93 and proceeds through the benzo[b][1,4]thiazepine 94
(Scheme 17.65) [147]. The same methodology was applied for the preparation of
enantiomerically pure 2,4-disubstituted quinoline derivatives [148].

17.1.4.2.8 Other Notable Methods A convenient method for the preparation of
highly functionalized quinolines in the presence of Vilsmeier�s reagent has been
reported (Scheme 17.66) [149].
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A microwave preparation of 2-quinolinone derivatives obtained by cyclization of
the corresponding o-vinyl-substituted isocyanate has been described. The method
provides access to cryptotackieine (13) and cryptosanguinolentine (14) [23].

A new method for the synthesis of phenanthridine and related compounds has
been developed using the condensation of o-phenylaniline and its homologues with
cyclic ketones under hydrothermal conditions (Scheme 17.67). Themethod has been
extended to the reaction of 2-isopropenylaniline�HCl to obtain quinoline derivatives.

The product yields and side product distributions were found to be strongly
dependent on the reaction temperature [150].

A novel metal free approach for the synthesis of substituted quinolines has been
reported from imines and enolizable carbonyl compounds under aerobic conditions
(Scheme 17.68). A catalytic amount of HCl in DMSO activated the carbonyl
compounds, which reacted with benzylidenanilines to supply quinolines 95 [151].
This simple and practical method is applicable on a large scale. Other related metal-
free conditions in the presence of iodine have also been communicated [152].

Cyclohexanones have been converted into 8-chloroquinolines and other
quinoline or dihydroquinoline derivatives through a series of reactions involving
imination, a-alkylation with N,N-disilyl-protected v-bromoamines, transimination,
a-chlorination of the resulting bicyclic imines, dehydrochlorination, and/or
dehydrogenation [153].

A versatile alternative approach to the synthesis of 2-quinolones has been devel-
oped by Arcadi and coworkers that involves galvanoplastic electrolysis and subse-
quent intramolecular cyclization of alkynes and malonyl moieties [154].

Ogura and coworkers found that the reaction of 2-(arylamino)-1-(methylthio)-1-
tosylethenes 96 (Scheme 17.69) with hydrogen iodide in refluxing toluene gave 3-
tosyl-2-(tosylmethyl)quinoline derivatives 98 in good yields. In this reaction,
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hydrogen iodide not only reductively removes the methylthio group but also serves
as a protic catalyst for the subsequent dimeric cyclization of 97 to give the quinoline
derivatives 98 [155].

Movassaghi et al. [156] have described a flexible procedure for the synthesis of
polysubstituted quinolines by direct condensation of aryl amides and p-nucleophiles
(Scheme 17.70).

Finally, several examples of intramolecular Schmidt reactions of azides and
carbocations have been reported for the synthesis of quinoline and other heterocyclic
derivatives. In this way, gephyrotoxin, a naturally occurring substance isolated from
the secretions of the poison-dart frog Dendrobates histrionicus, was prepared [157].

17.1.5
General Reactivity: Useful Reactions

17.1.5.1 Addition to Nitrogen
As in pyridine, the nitrogen in quinoline undergoes protonation, alkylation, acyla-
tion, N-amination [158], and with peroxyacids or in the presence of other oxidative
systems, such as O2/2-methylpropanal [159], oxidation to the N-oxide. These
reactions involve donation of the nitrogen lone pair to electrophiles. The pKa for
N-quinoline is 4.94, which shows a similar basicity to pyridine.

17.1.5.2 Reactions with Electrophilic Reagents at Carbon

17.1.5.2.1 Nitration In contrast to pyridine, and according to the above comments,
SEAr reactions occur on the carbocyclic ring, preferentially on the more activated
positions of the benzene ring, with a positional selectivity in the order C8>C5 >�
other positions. In general, the SEAr process occurs preferentially through the
conjugate acid, that is, quinolinium ion, which prevents attack on the heterocyclic
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ring. Nitration takes place in the presence of a nitrating agent undermild conditions:
mononitrations occur exclusively at the C5 and C8 positions to furnish compounds
99 and 100, respectively (Scheme 17.71).

17.1.5.2.2 Sulfonation Sulfonation of quinoline produces different products
depending on the reaction temperature. At 90 �C the 8-sulfonic acid is formed
predominantly; raising the temperature increases the proportion of 5-sulfonic
acid [1]. Reactions at higher temperatures produce other isomers under thermody-
namic control.

17.1.5.2.3 Halogenation As expected, quinoline in the presence of Br2 in H2SO4

yields 5- and 8-monosubstituted products by attack of the halogen on the correspond-
ing salt. However, the introduction of a halogen atom onto the heterocyclic ring
occurs through a non-electrophilic process, by reaction of quinoline hydrochloride
with excess Br2 and catalytic Br– in PhNO2, to supply the 3-bromo derivative
(Scheme 17.72) [160].

17.1.5.2.4 Substitution in Quinolines Bearing Activating Nitrogen and Oxygen
Substituents Electrophilic substitution at carbon on the heterocyclic ring can be
effected more readily on oxy- and aminoquinolines than in quinoline itself, and this
reaction generally occurs ortho and para to the activating functionality. For example,
acylation of 4-dimethylaminoquinoline with 1-trifluoroacetyl-4-dimethylaminopyr-
idinium trifluoroacetate (101) proceeded cleanly to give 3-trifluoroacetyl-4-dimethyl-
aminoquinoline, which can undergo N–N exchange with various amines to furnish
3-trifluoroacetyl-4-aminoquinolines in excellent yields (Scheme 17.73) [161].
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17.1.5.3 Reactions with Oxidizing Reagents
Oxidation of the quinoline system can affect the pyridine ring, the carbocyclic ring, or
both. As a result, oxidation can supply the quinoid derivative or the dihydrodiol. In
addition, alkyl derivatives can be converted into the corresponding carboxylic acids.
Degradation of the benzene ring to generate pyridine dicarboxylic acids, in an
alkaline potassium permanganate medium, can be considered the most common
oxidative reaction [162]. A series of quinoline-bearing substituents on the pyridine
ring have been oxidized electrolytically in sulfuric acids to the corresponding
quinolinic acids [163]. Oxidation of 2- and 3-haloquinolines in the presence of
either ozone/H2O2 or catalytic ruthenium tetroxide gave the corresponding 5- and
6-halopyridine, 2,3-dicarboxylic acids [164].

The conditions have been developed to oxidize 5,8-dimethoxy-2-methylquinoline
to 2-methylquinoline-5,8-dione (102) using NBS, H2O, and H2SO4 without
bromination (Scheme 17.74) [165].

The pyridine ring can be oxidized enzymatically to give various oxygenated
derivatives. As part of an earlier study on the bacterial metabolism of bicyclic
azaarenes using Pseudomonas putida, cis-dihydroxylation of quinoline was observed
to occur at the carbocyclic ring to yield cis-dihydrodiols alongwith 3-hydroxyquinoline
and anthranilic acid [166].

In contrast, hypervalent iodine reagents have also been used in the oxidative
transformation of tetrahydro-derivatives into full aromatic quinoline deriva-
tives [167]. In addition, tetrahydroquinolines undergo anodic oxidation with the
incorporation of cyanide in the 2-position to supply 2-cyanoquinolines [168].
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17.1.5.4 Nucleophilic Substitution Reactions
As expected, nucleophilic substitution of quinoline occurs in the heterocyclic ring at
theC2andC4positions. Ingeneral,SNAr reactionsproceedmore rapidly inquinoline
than in pyridine because the fused benzene ring stabilizes the reaction intermediate.

17.1.5.4.1 Nucleophilic Substitution with Hydride Transfer

Arylation and Alkylation Reactions These processes occur almost exclusively at the
C2 position. In these cases the nucleophilic reagent is an aryl- or alkyllithium or a
Grignard reagent. The reaction seems to proceed in two steps: Addition at the C2
position, to give a dihydroquinolineN-lithio 103 orN-magnesium salt, which can be
hydrolyzed to furnish a 2-substituted-1,2-dihydroquinoline 104. This derivative can
be handled and spectroscopically characterized but can also be oxidized in the
presence of an oxidant to afford the full aromatic heterocycle (Scheme 17.75).

Chichibabin Amination In a similar way to pyridine, the Chichibabin amination on
quinoline proceeds with alkali metal amides in liquid ammonia. Quinoline first
reacts with the amide to give the 2-amino-1,2-dihydroquinolinide ion (kinetic
product), which subsequently rearranges to the more stable 4-amino-1,4-dihydro-
quinolinide ion (thermodynamic product) at higher temperatures. Thus, oxidative
trapping of the quinoline adducts at different temperatures provides 2- or 4-
aminoquinoline [169].

Hydroxylation In contrast to pyridine, quinoline can be hydroxylated directly with
potassium hydroxide at high temperature. The formation of 2-quinolone can be
regarded as a SNAr process that proceeds with the evolution of hydrogen [170].

17.1.5.4.2 Nucleophilic SubstitutionwithDisplacement of Good LeavingGroups The
SNAr reactions of quinoline take place in the presence of leaving groups such as
halogen when located at the C2 or C4 positions. The reaction works well with a wide
range of charged or neutral nucleophiles.

A novel synthesis of 4-quinolyl isothiocyanates from 4-chloroquinoline in the
presence of silver thiocyanate in refluxing anhydrous toluenehas been reported [171].
The method did not seem to proceed through a classical SNAr process but rather
through a radical pathway.
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17.1.5.5 Reactions with Bases
C-Deprotonation of quinoline usually requires bases such as n-BuLi and this is
not a preparative method. Simple lithioquinolines are generally prepared by metal–
halogen exchange. However, the presence of ortho-directing substituents, such as
chloro, fluoro, methoxy, methylthio, and various carboxamides, makes the process
straightforward and such derivatives have been widely used [172].

17.1.5.6 Reactions of C-Metallated Heterocycles
Although Li–halogen exchange reactions are important methods for the preparation
of lithioquinolines, the competitive nucleophilic addition at activated positions could
constitute an additional problem. Consequently, in recent years several groups have
devoted some of their effort to the development of selective methods for the
preparation of lithioquinolines. For example, Queguiner and coworkers have
reported methods for the selective exchange of lithium for bromide followed
by electrophile quenching in the preparation of substituted quinolines at
benzene ring positions [173]. Comins et al. [174] have reported a regioselective
lithium–halogen exchange in 2,4-dibromoquinolines to furnish 2-bromo-4-
substituted derivatives.

Additionally, Marull and Schlosser [175] have studied the functionalization of
polyhalogenated quinolines through organolithium intermediates and used tri-
methylsilyl entities and iodo-substituents as the sole auxiliary substituents. In these
cases, the organolithium intermediates could be generated and the protective groups
removed without impairing the bromo-substituent present in the starting materials.

A study of the direct lithiation of unprotected quinoline-carboxylic acids with
lithium 2,2,6,6-tetramethylpiperidide (LTMP) has also been reported [176].

As far asmagnesiumderivatives are concerned, Knochel and coworkers [177] used
halogen–metal exchange reactions to prepare a wide range of polyfunctionalized
quinolines by regioselective magnesiation reactions using appropriate Mg reagents
(Scheme 17.76).

The application of Pd, Zn, Cu, or Ni-mediated coupling reactions was shown to be
particularly effective in most examples with quinoline derivatives. Several reports
concern cross-coupling reactions and substitution reactions of halo-substituted
quinolines. For example, Sonogashira conditions have been applied to 2-chloroqui-
noline and para-substituted phenylethynes to supply fluorescent compounds as
blue–green emitters (Scheme 17.77) [178].

Alkynylation of 2-quinoline triflate with TMS-acetylene by Pd-catalyzed cross-
couplingmethods, and their application for a dynemicin Amodel, has been reported
(Scheme 17.78) [179].
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Treatment of 5-iodoquinoline with bromoenoate 105 in the presence of Pd(OAc)2,
tri-2-furylphosphine, norbornene, and Cs2CO3 provided benzoxepine derivatives.
This methodology is based on a palladium-catalyzed aromatic substitution followed
by an intramolecular Heck sequence (Scheme 17.79) [180].

Strategies for controlling the regiochemistry of the addition reaction between
organozinc reagents and 2,4-dichloroquinoline have been developed [181]. Similarly,
the palladium-catalyzed carbonylation of quinolyl bromides and triflates has been
described [182]. In the same way, the regiochemistry of the palladium-catalyzed
carbonylation of 4,7-dichloroquinoline was evaluated [183]. Kappe et al. [184] have
developed two general microwave methods for the synthesis of symmetrical hetero-
biaryls from 4-chloroquinolin-2-one in the presence of either Pd(0) or Ni(0).

Buchwald et al. [185] have communicated a general and efficient copper-catalyzed
method for the amidation of 3-bromoquinoline using copper iodide, a diamine
ligand, and K2CO3.

Margolis and coworkers [186] have reported a convenient alternative to the SNAr
process for the formation of the C–N bond in 4-aminoquinolines, an approach that
involves a Pd-catalyzed methodology starting from 4-haloquinolines.

17.1.5.7 Reaction with Reducing Agents
Quinolines are reduced to 1,2,3,4-tetrahydroquinolines with zinc borohydride
and dimethylaniline under sonication conditions [187] or with indium metal in
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ethanol [188], NiCl2�2H2O–lithium arene [189], NiCl2–NaBH4 [190], lithium N,N-
dialkylaminoborohydrides [191], in the presence of an Ir catalyst [192–197],
and Hantzsch DHP and an organophosphate derivative [198]. Hydrogenations of
quinolines to tetrahydroquinolines or decahydroquinolines have also been
described [199, 200]. A method to prepare amino-substituted 5,6,7,8-tetrahydroqui-
nolines by catalytic hydrogenation – in the presence of PtO2 – of the corresponding
acetamido-substituted quinolines followed by acetamide hydrolysis has been
described [201]. Some of these derivatives were synthesized in an enantioselective
manner.

17.1.5.8 Reaction with Radical Reagents
Concerning intermolecular processes, quinoline derivatives have been substituted by
nucleosides in radical substitution reactions [202]. Russell and coworkers have
reported the homolytic radical aromatic tert-butylation of quinolinium salts and
quinoline N-oxides [203].

Harrowven et al. [204] have studied the intramolecular radical additions of aryl
radicals to C2, C3, and C4 quinoline positions. In each case the formation of hetero-
aromatic products, rather than dihydroquinolines, was observed (Scheme 17.80).

17.1.5.9 Other Reactions
A metal-free method involving the use of a new thiourea catalyst (106) has been
reported for the preparation of 1,2-dihydroquinolines 107. The catalyst 106 activates
organoboronic acids to facilitate the enantioselective Petasis transformation of
quinolines to give substituted 1,2-dihydroquinolines 107 with a high degree of
stereocontrol (Scheme 17.81) [205].

Collis and coworkers [206] have reported the transient existence of the hetaryne
7,8-quinolyne and its reaction with furan through a Diels–Alder process
(Scheme 17.82).
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17.1.6
Some Quinoline Derivatives

17.1.6.1 Reactions of Quinolones
N-Unsubstituted quinolones are acidic derivatives and can be deprotonated using the
appropriate base. These ambident anions can react with different electrophiles and
the selectivity is strongly dependent on the solvent, cation, and alkylating agent. The
N- versus O-alkylation of quinolinone derivatives has been investigated extensively
[207]. In addition, the reaction of 4-hydroxy-2-quinolones with alkyl halides in the
presence of Ag2CO3 afforded 2,4-dialkoxyquinolines in moderate to excellent
yields [208].

Electrophilic substitution at carbon in 2- and 4-quinolones can be effected more
readily than in quinoline itself, and this reaction generally occurs ortho and para to
the activating functionality. However, experimental conditions play an important
role and the process is highly dependent upon pH [209]. Several research groups
have studied alternative methods of carrying out this type of process. The ortho-
directing effect of the amide function in the regioselective lithiation of 2-quinolinone
was studied by Avendano and coworkers. Subsequent electrophilic substitution
can furnish 3-substituted derivatives in good yields (Scheme 17.83) [210].

A series of 3-(N-substituted)-aminoquinolin-2-ones have been synthesized by
palladium-catalyzed C–N coupling reactions starting from 3-bromoquinolin-2-ones.
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Various nucleophiles, including amines, amides, sulfonamides, carbamates, and
ureas, have been used successfully [211].

Some examples of cycloaddition reactions have been reported for the quinolone
system. For example, phenanthridone derivatives were prepared by Diels–Alder
reactions from 2-quinolones and butadiene compounds [212]. On the other
hand, the first total syntheses of the novel pyranoquinoline alkaloids simuleno-
line (15), huajiaosimuline (16), and (�)-7-demethoxyzanthodioline have been
described. The key feature of these concise total syntheses is the formal [3 þ 3]
cycloaddition reaction using a,b-unsaturated iminiums and 4-hydroxy-2-quinolones
[24a].

Intermolecular [2 þ 2] photocycloaddition of 4-alkoxy-2-quinolones such as 108
(Scheme 17.84), in the presence of chiral lactams such as 109a or 109b, proceedswith
excellent enantioselectivity (81–98% ee) and gave high yields (61–89%) [213].

The 3-aza-Grob fragmentation of THF-protected 3,4-dihydro-2-quinolinone
analogues in the presence of hydride reagents gave products 110 and demonstrates
that various hydride reagents can reduce this class of aromatic lactam
(Scheme 17.85) [214].
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17.1.6.2 Reactions of Alkylquinolines
Protons on alkyl groups at the 2- and 4-positions of quinoline are sufficiently acidic
for deprotonation by strong bases and are more acidic than alkyl groups at other
positions. The main feature of the reactivity of alkylquinolines is deprotonation
of such alkyl moieties and reaction with electrophiles [215]. In this context, several
2-ketomethylquinolines have been synthesized by heating 2-methylquinolines with
acyl chlorides in a conventional microwave oven and in the presence of silica gel
(Scheme 17.86) [216].

On the other hand, the aerobic oxidation of methylquinolines to carboxylic acids
has been achieved by usingN-hydroxyphthalimide (NHPI)/Co(OAc)2/Mn(OAc)2 as a
catalyst in the presence of small amounts of nitrogen dioxide as an initiator
(Scheme 17.87) [217].

17.1.6.3 Reactions of Quinolinium Salts

17.1.6.3.1 Nucleophilic Additions and Related Processes Nucleophilic additions to
quinoline occur readily after quaternization of the nitrogen and are often the key
step in preparatively useful reactions. For example, N-protected quinolin-4-ones
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undergo 1,4-addition of organolithium or Grignard reagents by conversion into the
4-silyloxyquinolinium triflate (Scheme 17.88) [218].

Other related studies into this type of process include the use of arylzinc reagents
in the presence of chlorotrimethylsilane and rhodium-catalysis, as reported by
Hayashi et al. [219]. In this case the reaction is conducted in an enantioselective
fashion.

Addition of allylsilane to the 2-position of quinolinium salts acylated by
chloroformate derivatives can be accomplished in the presence of AgOTf
(Scheme 17.89) [220, 221].

A similar Ir-catalyzed addition of ethynyl(trimethyl)silane to the 2-position of
quinoline was also reported [222].

Other examples of functionalization of the quinoline at the 2-position to yield
2-substituted 1,2-dihydroquinolines, by activationwith ethyl chloroformate or diethyl
pyrocarbonate, have also been reported [223–225].

A regioselective route to cyanomethyl-1,2-dihydro-N-methylquinolines has been
published and this process starts frommethylquinolinium iodide and tris(trimethyl-
silyl)acetonitrile in the presence of fluoride [226].

A novel one-step synthesis of pyridoquinolines from quinolinium salt derivatives
111 (Scheme 17.90) under Friedel–Crafts conditions has been described [227].

17.1.6.3.2 Cycloadditions of Quinolinium Salts and Related Processes Concerning
the ring expansion of N-acyl derivatives, Yadav et al. [228] have reported a new
process to give easy access to benzoazepine derivatives 112 (Scheme 17.91). Treat-
ment of a quinolineN-acyl derivative with a-diazoketones in the presence of catalytic
CuOTf in 1,2-dichloroethane (DCE) under reflux gave the target compounds in
excellent yields.
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Quinolinium salts, obtained from the corresponding 1-substituted-4-quinolones,
have been used in cycloaddition reactions with silyloxy-1,3-butadienes to give
acridine compounds [229].

17.1.6.3.3 Reissert Reaction Takamura et al. [230] have reported an enantioselective
version for quinoline derivatives of the Reissert-type reaction with trimethylsilyl
cyanide and acyl chlorides in the presence of binaphthols and diethylaluminium
chloride. Chiral dihydroquinoline carbonitriles 113 (Scheme 17.92) were obtained
with up to 91% ee.

The same authors have published the development and application of this
method to the synthesis of the potent NMDA receptor antagonist (�)-L-689,560
(24) [31].

A new safety-catch linker for solid phase organic synthesis that is based on a
quinolinemoiety has been developed. Cleavage from the resin proceeds in two steps:
oxidative aromatization leading to an activated quinolinium derivative and nucleo-
philic displacement of the quinoline resin (Scheme 17.93) [231].
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17.1.6.4 Reactions of Quinoline N-Oxides
Quinoline reacts with peracids to give the N-oxide. In a similar way to pyridine, the
presence of the N-oxide serves to facilitate both electrophilic and nucleophilic
additions to the C2 and C4 positions. In some cases, electrophilic substitution
is dependent on the experimental conditions. For instance, nitration of quinoline
N-oxide in mixed acids takes place at the C5 position, via the O-protonated species,
but with a lower acid strength the reaction occurs at C4 [232].

Numerousmethods are available for the reduction of theN–Obond inN-oxides. In
this context, baker�s yeast is also a useful reagent for the reduction ofN-oxides to the
respective quinoline [233].

Rearrangements are important processes in the case of quinoline N-oxides. For
example, 2,3-dichloroquinoline has been prepared in three steps from 3-bromoqui-
noline through N-oxide formation and subsequent rearrangement [234].
More recently, a simple and novel approach for the direct conversion of quinoline
N-oxides into 2-amidoquinolines has been described [235]. The treatment of primary
amides with oxalyl chloride yielded an acyl isocyanate, which reacted in the presence
of quinoline N-oxide, via intermediate 114, to give 2-amidoquinolines 115 in good
yield (Scheme 17.94).

This methodology is complementary to the Abramovich reaction, which is limited
to the introduction of secondary amides via imidoyl chlorides [236].
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17.2
Isoquinoline

17.2.1
Introduction

Isoquinoline (116) (b-quinoline, 2-azanaphthalene, benzo[c]pyridine), a structural
isomer of quinoline, is a low-melting solid with a penetrating smell. It was first
isolated from coal tar in 1885 by Hoogewerff and van Drop by fractional crystalli-
zation of the acid sulfate [237]. This compound was also isolated from the same
source in 1914 by Weissgerber through selective extraction [238]. The structure,
properties, reactivity, synthesis, and applications of isoquinoline have been reviewed
extensively [1, 3, 5, 239–242].
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17.2.2
General Reactivity

The presence of the nitrogen sp2 lone pair makes 116 basic and it will react with
protons, or other electrophilic species, at nitrogen by electrophilic addition to give
isoquinolinium salts 117, which in many instances are isolable [243, 244]. Proton-
ation, alkylation, acylation, and oxidationwith peroxy acids take place on the nitrogen.
The basicity and N-nucleophilicity are enhanced by electron-releasing substituents
and diminished by electron-withdrawing groups. Moreover, steric interference of
substituents at either or both C1 and C3 positions will slow the rate of N-alkyl-
ation [245]. Isoquinoline is a p-deficient heterocycle as a consequence of conjugation
of the p-electron pair on the nitrogen. Hence, aromatic electrophilic substitution will
take place at a slower rate than in naphthalene [246]. Anothermajor difference is that
SEAr reactions occur through 117, amorep-deficient heterocycle, which reacts on the
benzene ring rather than the electron-poorer pyridine ring, through a high-energy
doubly charged Wheland-type intermediate 118, to give the 5-substituted derivative
119 as the major product [247].
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Aromatic nucleophilic substitution is a very important process for p-deficient
heterocycles such as 116 [248–250]. This process involves a two-step sequence:
addition of a nucleophile species to give aMeisenheimer complex (120) is followed by
elimination of a good leaving group (usually halide or nitrite). The reaction takes
placewhen the leaving group is located atC1, since thenegative charge resides largely
on the nitrogen, and at a much slower rate when it is located at C3, due to the higher-
energy intermediate 1200. Thus, the SNAr reaction of 1- and 3-chloroisoquinolines
with ethoxide is about 104 times faster in the former [251]. Quaternization greatly
increases the rate of nucleophilic substitution [252].
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Another important feature in the reactivity of 116, with no counterpart in the
chemistry of aromatic carbocycles, is nucleophilic substitution with hydride transfer
bymeans of strongnucleophilic reagents such as organolithiums,Grignard reagents,
or sodium amide to give stable intermediate addition products 121, which can be
characterized as such. These intermediates can be oxidized to afford the substitution
products. In this case, only attack at C1 has been observed [253–255].
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17.2.2.1 Relevant Physicochemical Data, Computational Chemistry, and NMR Data
Isoquinoline is a hygroscopic solid that crystallizes as platelets that have low
solubility in water but dissolve in common organic solvents. This compound is as
basic (pKa 5.4) as pyridine and quinoline (pKa 5.2 and 4.95, respectively) and 116 is
also soluble in dilute acids (Table 17.4).

Table 17.4 Physical properties of 116.

Mp (�C) Bp (�C/Torr) Density (g cm�3) pKa m (D)

24.25 242.5/760 1.096 5.4 2.52
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Isoquinoline shows structural and spectroscopic similarities to pyridine and
naphthalene. Both the proton and carbon chemical shifts (Table 17.5) are related to
the electron density, at a given position, as a result of the mesomeric and inductive
electron-withdrawing effects of the nitrogen. As a result, the H1/H3 and C1/C3
signals are shifted to lower field than the other signals in the heterocycle or than the
corresponding signals in naphthalene (dH1: 7.8, dH2: 7.5, dC1: 128, dC2: 126 ppm).

The UV spectrum of 116 (Table 17.6) resembles that of naphthalene [lmax (nm)/
log e: 311/2.39, 275/3.75, and 219/5.10]. The spectrum contains three long wave-
length bands that correspond to the p!p� transitions. However, as the heteroatom
has a lone pair, n!p� transitions are possible but they are overlapped by the much
more intense former bands.

MolecularmechanicshavebeenusedbyAllingerandcoworkers, throughtheirMM3
forcefieldprogram,but theywereunable toestimatethevibrational spectra for116with
accuracy. However, they did reach a good match for the heat of formation (calculated
49.94 kcalmol�1; experimental 48.2 kcalmol�1) and the dipole moment (calc. 2.30 D;
expt. 2.53–2.75 D), with the resonance energy also estimated (25.68 kcalmol�1) [256].
The observed and calculated vibrational spectra were in good agreement when density
functional theory (DFT) calculationswere performedwith theB3LYP functional and6-
31G� basis set [257]. Bond orders were calculated at theHartree–Fock and the second-
order Møller–Plesset (MP2) levels for 116 and other heteroatomic rings [258]. The
p-electron charge distribution was calculated by the LCAO method and gave good
agreement with experimental data [259]. Aromaticity shows a significant collinearity
with magnetic susceptibility, as calculated at the (DFT) B3LYP level with the 6-31G�

basis set [260]. Polarizabilitywas calculatedusing accurate ab initio studies at theHF/6-
311þþG(3d,2d) and BLPY/6-311þþG(3d,2p) levels of theory [261].

As regards other physicochemical parameters estimated by computational chem-
istry methods, the proton affinity of 116 calculated at the 3-21G and 3-21þG ab initio
levels and at theMNDOandAM1semiempirical levels gave, after inclusion of diffuse
functions, good agreementwith experimental data [262]. The extendedH€uckel theory
(EHT)was applied to localization energies and total electron densities (s þ p), which
correlate quite conclusively with the experimentally observed site of predominant
nucleophilic attack by an amine ion in the Chichibabin reaction (Table 17.7) [2].

Table 17.5 1H and 13C NMR chemical shifts (ppm) of 116 (in CDCl3).

d1 d3 d4 d4a d5 d6 d7 d8 d8a

1H 9.15 8.45 7.50 — 7.71 7.57 7.50 7.87 —
13C 152.5 143.1 120.4 135.7 126.5 130.6 127.2 127.5 128.8

Table 17.6 Ultraviolet data (p!p� transitions) for 116 (in hexane).

lmax (nm) Log e lmax (nm) Log e lmax (nm) Log e

317 3.49 266 3.61 217 4.57
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Calculation of the proton and carbon chemical shifts relative to tetramethylsilane,
with accuracies of about �2.62 ppm (13C) and �0.32 ppm (1H) can be performed
using a linear regression formula that converts magnetic shielding constants
calculated at common ab initio and DFT levels [263].

17.2.2.2 Tautomerism
In a similar way to oxypyridines, oxyisoquinolines also show tautomerism. The
benzo-fusion to the pyridine ring involved in tautomerism has the effect of shifting
the equilibrium towards the tautomer that retains full aromaticity of the benzene
ring. Thus, isoquinolin-1-ol (122) completely tautomerizes to 2H-isoquinolin-1-one
(123) whereas isoquinolin-3-ol (124) remains in the equilibrium with 2H-isoquino-
lin-3-one (125) in a proportion significantly greater than in the corresponding
unfused heterocycle.
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Tautomerism also arises in the case of 1-phenacylisoquinolines 126 (X¼O) and
their corresponding ketenimines 126 (X¼NH). The enol and the enamine are
reported to exist as a single tautomer due to intramolecular hydrogen bonding [264].
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17.2.3
Relevant Natural and/or Useful Compounds

Isoquinoline plays an important role as a secondary metabolite in a large number of
alkaloids that have different biogenetic origins. Many isoquinoline alkaloids occur
as 1,2,3,4-tetrahydroderivatives, which can be considered as being derived from

Table 17.7 Electron densities (Q) in 116 obtained using extended H€uckel theory (EHT).

Position 1 2 3 4 4a 5 6 7 8 8a

p 0.78 1.45 0.91 1.03 0.90 1.02 0.96 1.01 0.97 0.97
s 2.87 4.49 2.86 3.12 2.98 3.12 3.11 3.11 3.11 2.99
s þ p 3.65 5.94 3.77 4.15 3.88 4.14 4.07 4.12 4.08 3.96
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b-phenylethylamines [265]. The synthesis, reactions, and biological activities of
isoquinoline natural products have been reviewed extensively [266]. The asymmetric
synthesis of these alkaloids has been the focus of significant efforts by both academic
and industrial research groups seeking stereochemically modified traditional meth-
ods and new advances using the C1-Ca connectivity approach [267], and the use of
a-amino acids as excellent chiral building blocks [268]. Diverse biological activities
have been reported for isoquinoline natural products and these include anti-inflam-
matory [269], cardiovascular [270], and antimalarial [271] among others. Isoquinoline
marine compounds are also of interest [272]. Some examples of isoquinoline
alkaloids are given below and include papaverine (127), an opium poppy alkaloid,
berberine (128), an isoquinolinium alkaloid found in several Korean and Chinese
medicinal plants, mimosamycin (129), one of the simplest isoquinoline quinones of
marine origin, and maritidine (130) a chiral tetrahydroisoquinoline alkaloid.
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In recent years, several reports have been published on new isoquinoline-based
materials with interesting properties. Recently, some studies have highlighted
iridium(III) complexes bearing isoquinoline-derived ligands as chemiluminescent
materials [273, 274], and some of these can be applied as red or white OLEDs
(e.g., 131) [275, 276]. On the other hand, a new type of donor–spacer–acceptor based
on bis(isoquinoline-N-oxide) (e.g., 132) has proved to be an efficient dual channel
fluorosensor that acts as a pincer for lithium,magnesium, and calcium cations [277].

Ir
O

ON

Me

Me

Me

NN

O O O

OO

O O

131 132

2
+ +

- -

17.2.4
Synthesis of Isoquinolines

Synthetic methods for the isoquinoline skeleton are constantly being updated.
Starting from conveniently substituted benzenes, these methods can be classified
into twomajor categories: those that create the fully aromatic heterocyclic ring, which
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are covered in this chapter, and those that build the fully or partially reduced pyridine
ring [278, 279], which will not be considered here, but are important for the
preparation of many isoquinoline natural products [267], such as the classical
Bischler–Napieralski and Pictet–Spengler syntheses.

17.2.4.1 Classical Methods

17.2.4.1.1 Pomeranz–Fristsch Synthesis This two-step method involves the initial
condensation of an aryl aldehydewith a 2-aminoaldehyde acetal [280] or, conversely, a
benzylamine with glyoxal diethyl acetal – if C1-substituted isoquinolines are
desired [281] – to give an aldimine. The second step involves the cyclization of the
aldimine by treatment with a strong acid. For example, 116 has been prepared by
condensation of aminoacetal 133 with benzaldehyde to give imine 134, which was
cyclized with sulfuric acid. For C1-substituted isoquinolines, benzylamine 135 was
condensed with glyoxal diethyl acetal to give imine 136, which then cyclizes to 137
(Scheme 17.95).

This synthesis works well when the aryl component bears electron-donating
groups, preferably para to the position of ring closure. However, the overall yield
is limited by imine hydrolysis during the cyclization. Two solutions have been
developed to overcome this drawback: (i) the use of trifluoroacetic acid/boron
trifluoride [282] and (ii) carrying out the cyclization at the amine level instead of
the imine. For example, imine 138 was reduced to amine 139, which can be cyclized
directly with chlorosulfonic acid to give 140 [283] or tosylated to give 141 before
treatment with HCl (Scheme 17.96) [284]. Tosylamides can be prepared by benzylat-
ing the sodium salt of 2-tosylaminoethanal acetal [285], or byMitsunobu reaction of a
benzylic alcohol with N-sulfonyl-aminoacetals [286, 287].

17.2.4.1.2 Pictet–GamsModification of the Bischler–Napieralski Synthesis Although
the Bischler–Napieralski synthesis provides access to 3,4-dihydroisoquinolines or
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3,4-dihydroisoquinolin-1-ones, the Pictet–Gamsmodification allows the preparation
of fully aromatic isoquinolines starting with unsaturated or potentially unsaturated
arylethanamines. Thus, amides from 2-aryl-2-hydroxyethanamines 142 led to iso-
quinolines 143 when treated with phosphoryl chloride or phosphorus pentoxide
(Scheme 17.97) [288–291].

Inaddition, cinnamicesters substitutedwithanacetamidogroupat theC2-position
can be converted into isoquinolines. In this way 144 was cyclized to isoquinoline
carboxylate 145. The cinnamic ester derivative was prepared by photocycloaddition of
5-methoxy-2-methyloxazole (146) with benzaldehyde to give the oxetane 147, which
under acidic conditions gave first 148 and then 144 (Scheme 17.98) [292].

N

MeO

MeO

N N

MeO
OMe

MeO

MeO
N NH

MeO
OMe

MeO

MeO

N NTs

MeO
OMe

MeO

MeO

NaBH4

or H2, Pt

138 139

ClSO3H, r.t.

(48%) 140

TsCl, pyr

141

6N HCl
dioxane, reflux(81%)

Scheme 17.96

N

R

Me

NH

O

R

OH

Me

X
X

142

POCl3 or P2O5 X = H; 6,7-diOEt;
5,8-diOMe.

R = Me; o-ClC6H4;

      1-naphthyl

143

reflux

(62-80%)

Scheme 17.97

O

N

Me OMe

N

OMe

O

OMe

PhH

AcNH

OH

CO
2
Me

Ph

AcNH CO
2
Me

HPh

N

Me

CO
2
Me

hν

PhCHO

H+/H2O

(87%)

(70%)

H+/H2O

(80%)

POCl3

(78%)

146 147 148

144 145

Scheme 17.98

17.2 Isoquinoline j1577



Milder conditions with trifluoromethanesulfonic anhydride in the presence of
2-chloropyridine have been described for the synthesis of isoquinoline and b-carbo-
line derivatives through electrophilic amide activation [293]. Isoquinolines 149 were
prepared from sensitive (Z)-N-vinylamides 150 in good to excellent yields
(Scheme 17.99). Moreover, condensation reaction conditions proved to be far more
efficient than phosphoryl chloride, oxalyl chloride/FeCl3, or Tf2O/DMAP.

17.2.4.2 Modern Methods

17.2.4.2.1 Electrophilic Cyclization-Based Methods Methods based on electrophilic
cyclization reactions have been developed using different starting materials. Imi-
noalkynes 151 prepared by reaction of tert-butylamine with o-(1-alkynyl)benzalde-
hydes 152 have been cyclized in the presence of electrophiles such as I2, ICl, PhSeCl,
PhSCl, and p-O2NC6H4SCl to give the corresponding halogen-, selenium-, and
sulfur-containing isoquinolines 153 at the C4-position in moderate to excellent
yields (Scheme 17.100). Furthermore, silver-catalyzed ring-closure of 151 provides
an entry to C4-unsubstituted isoquinolines 153 [294, 295].

Acopper(I)-catalyzed domino four-component coupling–cyclizationmethodusing
2-ethynylbenzaldehydes 154, paraformaldehyde, a secondary amine, and tert-buty-
lamine has been reported to give 3-(aminomethyl)isoquinolines 155 in high yields
(Scheme 17.101) [296]. This method is efficient when either electron-donating or
electron-withdrawing substituents are present in the benzene ring.
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Related to the former method, 2-alkynylbenzaldoximes 156 give C3-substituted-
4-iodoisoquinoline-N-oxides 157 in good to excellent yields when treated with
iodine [297]. Silver(I)- and gold(I)-catalyzed procedures have also been reported to
afford C4-unsubstituted-N-oxides 158 (Scheme 17.102) [298].

Iodine-mediated electrophilic cyclization of 2-alkynyl-1-azidomethyl benzenes
leads to highly substituted isoquinolines [299]. Azides 159 react with iodine,
Py2BF4–HBF4 (Barluenga reagent) or NIS as iodium donors to give iodoisoquino-
lines 160, via a cyclic iodonium ion 161 followed by nucleophilic cyclization of the
azide and subsequent elimination of nitrogen (Scheme 17.103). Electron-neutral or
electron-donating substituents at the alkyne terminus are favored. Thismethodology
was applied to the synthesis of norchelerythrine.
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17.2.4.2.2 Nucleophilic Cyclization-Based Methods Ring-fluorinated isoquinolines
162 have been prepared by means of nucleophilic intramolecular cyclization of
o-isocyano-b,b-difluorostyrenes 163with organometallic reagents via intramolecular
sp2nucleophiles,which cyclizeby substitutionof the vinylicfluoride (Scheme17.104)
[300].

In a similar way, 1,4-disubstituted isoquinolines 164 were obtained by reaction of
a-substituted 2-lithio-b-methoxystyrenes 165 with nitriles (Scheme 17.105) [301].
This process has also been carried out starting from o-cyano-b-methoxystyrenes
166 [302]. When lithium dialkylamides were used as nucleophiles, 1-dialkylamino-
substituted isoquinolines 167 were obtained.

17.2.4.2.3 Condensation Reaction-Based Methods The heteroaromatic ring in iso-
quinoline can also be obtained by ring closure through a condensation reaction on
appropriate ortho-substituted benzenes. Reaction of nitriles 168 with ammonia,
or primary or secondary amines, in the presence of catalytic amounts of TFA leads
to 3-aminosoquinolines 169 [303]. Primary amines, as opposed to ammonia or
secondary amines, give the aldimine and this slowly dissociates to add to the cyano
group (Scheme 17.106). In a similar fashion, 2-acylphenylacetonitriles react with
primary amines by acid-catalyzed condensation to give 1-substituted-3-
aminoisoquinolines [304].

R

CF
2

N

R

CF
2

N

R'

N

R

F

R'

R'M

-

(62-88%)

163 162

R'M = alkylMgCl, alkylLi,
          PhLi, HAl(alkyl)2

Scheme 17.104

R
1

Br

R
2

OMe R
1

Li

R
2

OMe R
1

R
2

OMe

N

R
3

N

R
2

R
3

R
1

R
1

OMe

CN

Ph

N

NR
2

R
1

Ph

n-BuLi

Et2O, 0 ºC

R3CN

0 ºC or rt
-

164165
(36-73%)

LiNR2

     THF
- 78 ºC to rt

167166
(29-67%)

Scheme 17.105

1580j 17 Six-Membered Heterocycles: Quinoline and Isoquinoline



Aromatic 1,2-dialdehydes 170 react with protected phosphonoglycine 171 deriva-
tives using DBU as base to give methyl isoquinoline-3-carboxylates 172 in good to
high yields (Scheme 17.107) [305]. This method allows the preparation of isoqui-
nolines bearing electron-withdrawing groups.

2-Benzopyrilium salts 173, prepared by Friedel–Crafts acylation of benzyl ketones,
are converted into isoquinolines 174 by treatment with aqueous ammonia through a
Schiff base intermediate (Scheme 17.108) [306].

More recently, isoquinolines 175 have been prepared by a one-pot procedure from
o-alkynyl-benzamides, -benzoates, -benzaldehydes, or -benzophenones 176. The two-
step procedure, which proceeds via the 2-benzopyrilium salt 177, proved to be equally
efficient (Scheme 17.109) [307].

Unexpectedly, isoquinoline-3-carboxylate 178 was obtained when the N-acetyl-
phenylalaninemethyl ester derivative 179was treatedwithHMTA/TFA. This process
occurred through the formyl intermediate 180, which then cyclizes and dehydro-
genates to give 178 (Scheme 17.110) [308].

17.2.4.2.4 Metal-Catalyzed Ring Closing Methods Larock�s group has reported a
series of isoquinoline syntheses based on palladium-catalyzed annulation processes.
The reaction of tert-butylimines of o-iodobenzaldehydes 181with internal acetylenes
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182 in the presence of catalytic Pd(OAc)2 gave various 3,4-disubstituted isoquinolines
183 in moderate to excellent yields (Scheme 17.111) [309, 310]. When a relatively
unhindered diyne and enyne, or an electron-rich imine, are employed mixtures of
stereoisomers are obtained with high selectivity. The use of trimethylsilyl-containing
acetylenes produced 3-substituted isoquinolines. These compounds were also avail-
able using terminal acetylenes as substrates and themethodology has been applied to
the total synthesis of decumbenine B [311]. A nickel(II) catalyst proved to be efficient
to give 3,4-disubstituted isoquinolines by this method in a highly regioselective
manner [312]. In addition, 3-substituted 4-fluoroalkylated isoquinolines were pre-
pared using a Pd(0) catalyst [313].

The former methodology was subsequently expanded to the synthesis of
3-substituted-4-aroylisoquinolines 184 by palladium-catalyzed carbonylative cycliza-
tion of 2-(1-alkynyl)benzaldimines 185 and aryl halides (Scheme 17.112) [314, 315].
The reaction is useful for both electron-rich and electron-poor aryl halides. Benzal-
dimines 185 are also versatile starting materials for the synthesis of isoquinolines
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186, by palladium-catalyzed cyclization followed by aHeck reaction with olefins [316,
317], or isoquinolines 187 by cross-coupling with aryl, vinyl, alkynyl, allyl, or benzyl
halides [318, 319].

Rhodium(I)-catalyzed tandem ortho-alkenylation–cyclization of aromatic N-ben-
zylketenimines 188 with alkynes has been applied to the synthesis of mixtures of
isoquinolines 189 and 190 [320]. The 1-phenethyl substituted compound 190 is
postulated to be formed by the intermolecular migration of the benzyl group in the
vinylated ketenimine intermediate 191. The one-pot tandem process from aromatic
ketones 192 was also performed more efficiently (Scheme 17.113). The reaction
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works well when either electron-donating or electron-withdrawing groups are
present in the benzene ring.

A Suzuki cross-coupling/reductive debenzyloxycarbonylation sequence has been
reported for the synthesis of [c]annulated isoquinolines [321]. The reaction of
boronic acid 193 with cyclic iodoenones 194 catalyzed by palladium(0) gave inter-
mediates 195 that then cyclized to isoquinolines 196 under reductive conditions
(Scheme 17.114). Thismethodhas been applied to the synthesis of pancratistatin-like
isoquinolines.

17.2.4.2.5 Electrocyclic Ring Closing Methods Hetero-Diels–Alder processes have
been widely used to build nitrogen-containing six-membered rings from azadienes.
1,3-Disubstituted isoquinolines 197 can be prepared by electrocyclic ring-closure
when aldehydes react with N-vinylic phosphazenes 198 through a [4 þ 2] cycload-
dition [322]. Phosphazenes 198 are obtained by an aza-Wittig [2 þ 2] process between
phosphoranes and nitriles (Scheme 17.115). The reaction can be performed with
isolation of the aza-diene 199 or in a one-pot procedure.

This methodology has been used in the synthesis of a derivative of the marine
alkaloid renierol [323]. Thus, phosphacene 200was reacted with trimethylsilylketene
to give the ketenimine 201, which was then converted into the isoquinoline 202
(Scheme 17.116).
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Interestingly, a strong-base-induced [4þ 2] cycloaddition of homophthalic anhy-
drides, such as 203, with enolizable enones 204 has been reported to build a key
isoquinoline intermediate (205) of the antitumor antibiotic fredericamycin A
(Scheme 17.117) [324]. Notably, as opposed to the main strategy in the syntheses
of isoquinolines, that is, the building of the pyridine ring, in this case it is the benzene
ring that is created. The reaction is accelerated in the presence of base to give diene
206, which cyclizes to the proposed cycloadduct 207 followed by elimination of
phenylsulfinic acid and carbon dioxide.

Aryne [4þ 2] cycloaddition reactions have been expanded to the synthesis of
isoquinolines. Thus, when aryne 208, prepared from a silyl aryl triflate (209), is
reacted with an enamide (210), a [4þ 2] addition reaction takes place followed by a
dehydrative aromatization to give diversely substituted isoquinolines 211
(Scheme 17.118) [325]. Similarly, the reaction of 2-amidoacrylate esters 212 with
silyl aryl triflates 209usingCsFas a fluorine source yieldsmixtures of isoquinoline-3-
carboxylates 213 and benzocyclobutanes 214 (Scheme 17.118) [326].

17.2.4.2.6 Ring Expansion- and Ring Contraction-Based Methods o-Quinodi-
methanes are highly reactive diene systems in Diels–Alder reactions. In view of
this, a traceless solid-phase synthesis based on a benzocyclobutanyl ether resin 215, a
precursor of solid-supported o-quinodimethane, has been reported for the hetero-
Diels–Alder reaction with trichloroacetonitrile to give isoquinoline 216 in low
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yield [327]. Resin 215 was prepared from a hydroxymethyl resin via the trichlor-
oacetimidate 217 (Scheme 17.119).

Related to the above method, 3-substituted isoquinolines 218 have been obtained
through zirconocene/copper-mediated coupling of benzocyclobutadiene with
nitriles (Scheme 17.120) [328]. 1-Bromobenzocyclobutene (219) was used as a
synthon and was readily converted into Cp2Zr(g

2-benzocyclobutadiene)(PMe3)
(220), which couples with nitriles to give five-membered-zirconacycles 221. Subse-
quent treatment with CuCl gave isoquinolines 218 in high yields.

An unprecedented rearrangement of a 1H-benzazepine (222) to 1,3-disubstituted
isoquinolines 223 has been reported to occur in good yields by treatment with silica
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gel under normal or UV light, but the mechanism of this process has not been
disclosed (Scheme 17.121) [329].

17.2.4.2.7 Photochemical Methods Irradiation of substituted a-dehydrophenylala-
nine 224 in acetonitrile with Pyrex-filtered light has been found to give a mixture
of isoquinoline 225, azetine 226, and (E)- and (Z)-227 in low yields
(Scheme 17.122) [330]. Compound 225 was proposed to occur through a 1,5-acetyl
migration from (Z)-227, and 226 by a 1,3-acetyl shift from (E)-227.

Photocyclization of 2-azadienes 228 in a neutral medium using Pyrex-filtered light
has been reported to give 1,3-disubstituted isoquinolines 229 (Scheme 17.123) [331].
When 228 bears a phenyl group at the 4-position this group was involved in the
cyclization.
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17.2.5
Reactivity of Isoquinolines

17.2.5.1 Reactions with Electrophilic Reagents

17.2.5.1.1 Addition to Nitrogen Like pyridine, isoquinoline reacts as a base
(pKa¼ 5.4) by protonation or as a nucleophile by quaternization through the electron
lone pair on the ring nitrogen to form an aromatic isoquinolinium cation
(Scheme 17.124). For instance, O-(2,4-dinitrophenyl)hydroxylamine (230) has
proven to be a more efficient aminating reagent than hydroxylamine-O-sulfonic
acids like HOSA or MSH to give 231 [332]. Nitrogen atom oxidation, as for pyridine,
can be performed with peracids to afford isoquinoline-N-oxides. Other mild proce-
dures to prepare 232 have been reported and these involve the use of oxygen in the
presence of ruthenium trichloride [333], or hydrogen peroxide in the presence of
molecular sieves as a catalyst [334].N-Alkylisoquinolinium salts like 233 are obtained
using alkyl halides, sulfonates [335], or methyl salicylate [336]. Stable salts of
N-acylisoquinolinium cations such as 234 can be prepared in the presence of
SbCl5 [337]. On the other hand, a large number of transition metal complexes
bearing isoquinoline units as ligand have been prepared. Isoquinoline usually links
to the metal center through the nitrogen lone pair, except when this is hindered, in
which case p-bonded complexes are obtained [338].
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17.2.5.1.2 Substitution at Carbon

Protonation N-Protonated isoquinoline gives facile protonation of the carbocyclic
ring, as observed in the kinetic study of its reaction with deuteriosulfuric acid at
high temperatures [339]. The protonation occurs at positions C5 (235)>C8>C7,
but at lower acid strength the isoquinolinium cation 236 exchanges a to the
nitrogen at C1 to give the zwitterion 237 (Scheme 17.125).

Energies of the LUMO (ELUMO), the square of the coefficients on carbon atoms at
the LUMO, NBO charges on CH groups, and total and relative energies of dications
have been calculated by the DFT method. The results predict 238 to be the most
favorable dication and C6 and C8 to be the electrophilic reaction centers for this
dication. Thus, when isoquinoline was activated under superacidic conditions
(CF3SO3H-SbF5, HBr-AlBr3-CH2Br2, or HBr-AlBr3) and then reacted with cyclohex-
ane or benzene, ionic hydrogenation and electrophilic substitution were observed to
give 239 and 240, respectively (Scheme 17.126) [340].

Nitration Nitration of 116 with fuming nitric acid and concentrated sulfuric acid
gives 5-nitroisoquinoline (241) with high regioselectivity (Scheme 17.127) [341].
Nitration using dinitrogen pentoxide in liquid SO2 yields 241 regioselectively in low
yield [342].

Sulfonation Isoquinoline (116) has been sulfonated using 50% oleum under ice-
cold conditions to afford isoquinoline-5-sulfonic acid (242) (Scheme 17.128) [343].
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Halogenation Isoquinoline (116) has been brominated using bromine in the
presence of aluminum chloride [344], or N-bromosuccinimide in sulfuric acid, to
give 243 (Scheme 17.129) [345, 346]. Halogenation at the pyridine ring to yield 244
occurs at C4 through a different mechanism, which involves the following steps:
(i) protonation at nitrogen to give the isoquinoliniumcation, (ii) nucleophilic addition
of bromide at C1 to yield an enamine; (iii) electrophilic addition of bromine at C4 to
produce a b-brominated enamine, and (iv) aromatization through HBr
elimination [160].

Friedel–Crafts chlorination gives polychloroisoquinolines [347, 348]. Chlorination
of 6-aminoisoquinoline with NCS affords 6-amino-5-chloroisoquinoline [349].

Acylation Friedel–Crafts acylation or alkylation reactions on isoquinoline are not
possible due to the nucleophilic nitrogen, which rapidly forms the correspondingN-
acyl or N-alkylisoquinolinium salts. However, a few examples of intramolecular
Friedel–Crafts acylation have been reported, such as the preparation of cyclopenta[ f ]
isoquinoline derivatives 245 (Scheme 17.130) [350] and the synthesis of
dinapsoline [351].

17.2.5.2 Reactions with Oxidizing Reagents
Although isoquinoline is rather stable to oxidative conditions – except for peracids,
which cause N-oxidation to give isoquinoline N-oxide – both benzene and pyridine
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rings can be degraded by ozonolysis followed by oxidative cleavage [352], treatment
with alkaline potassium permanganate [353], or fuming nitric acid [354] to give a
mixture of phthalic acid (246) and cinchomeronic acid (247) (Scheme 17.131).
During the oxidation of 116 in neutral media the benzene ring is not affected and
phthalimide is formed [237, 355].

17.2.5.3 Reactions with Nucleophilic Reagents

17.2.5.3.1 Nucleophilic Substitution with Hydride Transfer These reactions take
place faster at C1.

Alkylation and Arylation Isoquinoline selectively undergoes addition of organo-
lithium reagents at C1 to give 1,2-dihydroderivatives [356]. The addition product can
be aromatized using an oxidant. Thus, 116 was treated with 248 to give, after
quenching with H2O, 1,2-dihydroisoquinoline 249 which was rearomatized to
250 by oxidation in refluxing nitrobenzene (Scheme 17.132) [253].

Direct C–C coupling of ferrocenyllithium (251) with 116 by nucleophilic substi-
tution of hydrogen, using DDQ as an oxidant in the aromatization step, has
been performed [357]. Interestingly, coupling was reported to take place at C3 to
give 1-(isoquinolin-3-yl)ferrocene (252) (Scheme 17.133).
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Indirect benzylation at C4 has been carried out by addition of 116 to lithiatedN,N-
diethyl-o-toluamide 253 to give the adduct 254, which was then treated with benzyl
chlorides to afford, in the basic reaction conditions, anion 255. This ion further
eliminates anion 253 to give the 4-benzylisoquinolines 256 (Scheme 17.134) [358].

1-Methylisoquinoline, isolated as its hydrochloride 257, can be easily prepared
from 116 with a catalytic amount of sodium hydride in dimethyl sulfoxide and
ultrasound activation (Scheme 17.135) [359].

Amination and Nitration Isoquinoline reacts with potassium amide in NH3 to give,
after hydrolysis, 1-aminoisoquinoline (258) (Scheme 17.136) [254]. A lower yield was
obtained for 258 (20%) when 116was treated with sodium amide in liquid ammonia
undermodifiedOppenauer oxidation conditions using 9-fluorenone as the hydrogen
acceptor [360].

In cases where the isoquinoline ring bears a nitro group, the reaction, in
the presence of potassium permanganate, takes a different course. For example,
5-nitroisoquinoline (241) was aminated to give the 6-amino derivative 259
(Scheme 17.137) [361]. In contrast, when 1-nitroisoquinoline (260) was aminated
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with a liquidmethylamine solution of potassiumpermanganate, displacement of the
nitro group occurred to give 258a (Scheme 17.137) [362].

1-Nitroisoquinoline (260) can be easily prepared from 116 using potassiumnitrite,
dimethyl sulfoxide, and acetic anhydride [363]. In this case, attack of the nucleophile
takes place on an intermediate isoquinolinium cation (Scheme 17.138).

Hydroxylation Hydroxylation of 116 to give 123 can be performed directly at high
temperature by potassium hydroxide [170], or cupric sulfate [364], or at room
temperature by biotransformations (Scheme 17.139) [365, 366].
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17.2.5.3.2 Nucleophilic Substitution with Displacement of Halide Halogens on the
pyridine ring are only prone to nucleophilic displacement when the halogen atom is
located at C1 or C3, with the halogen at C1 being far more reactive. Halogens on the
benzene ring are inert and behave in the same way as halobenzenes. Thus, 1,3-
dichloroisoquinoline (261) reacts with sodiummethoxide to give the monosubstitu-
tion product 262 (Scheme 17.140) [367]. Several nucleophiles can displace the
halogen atom. For example, reactions on 1-chloro or 1-bromo-substituted isoquino-
lines with water [368], sodium hydroxide [368], alkoxides [369–371], thioalkox-
ides [372], trimethylsilanolate [373], ammonia [374], amides [375], amines [376],
potassium cyanide [377], and phosphorus ylides [378] have been reported.

Phenylacetonitrile, unlike other active methylene compounds, reacts with
4-bromoisoquinoline (244) by halogen displacement, in the presence of sodium
hydride, to afford 263, whereas 3-haloisoquinolines 264 react at C1 to give naph-
thalene derivative 265 (Scheme 17.141) [379].

Although 3-haloisoquinolines react slowly, their reactions with sodium amide are
unusual anddonot followSNAbut, rather, anANRORC (addition of nucleophile, ring
opening and ring closure) mechanism [380]. By means of this mechanism, the
endocyclic nitrogen in the reaction product 266 comes from the nucleophile and the
exocyclic nitrogen comes from the starting isoquinoline 267 (Scheme 17.142).
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17.2.5.4 Reactions with Bases

17.2.5.4.1 Direct Metallation Isoquinoline cannot be directly lithiated with orga-
nolithium reagents since they are strong nucleophiles. Interestingly, 1-(halophenyl)
isoquinolines 268 are lithiated by n-butyllithium, in the position ortho to the halogen,
under kinetic control, to give 269 without nucleophilic addition on the isoquinoline
ring (Scheme 17.143) [381].

Direct metallation with a less active metal has also been carried out by reaction of
the complex [Ru3(CO)10(NCMe)2] (270) with 116 in tetrahydrofurane. In this way the
isomeric ortho-metalated complexes [HRu3(CO)10(C9H6N)] 271 and 271 have been
prepared (Scheme 17.144) [382].

Isoquinoline magnesium derivatives 273 have been prepared with high regios-
electivity using mixed Mg/Li amides of the type R2NMgCl�LiCl as bases
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(Scheme 17.145) [383]. Subsequent reactions with electrophiles such as iodine,
benzoyl chloride, or iodobenzenes give 1-substituted isoquinolines 274.

17.2.5.5 Reactions of C-Metallated Isoquinolines

17.2.5.5.1 Lithium Derivatives Metal–halogen exchange at low temperature is
the method of choice to prepare lithioisoquinolines while avoiding competing
nucleophilic addition. Thus, 1-isoquinolyllithium (275), prepared from 1-bromoi-
soquinoline (276), was reacted with benzophenone to give alcohol 277. Furthermore,
4-isoquinolyllithium (278), obtained from 244, reacted with dry ice to give 4-
isoquinaldic acid (279) (Scheme 17.146) [384]. These types of metallation at
C1 [385] and C4 [386, 387] have recently been used as intermediate steps in the
preparation of bovine amine oxidase and B-Raf kinase inhibitors [388, 389].

On the other hand, the tellurium–lithium exchange reaction on 1-isoquinolyl
telluride 280 has proven useful in the preparation of 1-isoquinolyllithium (275)
(Scheme 17.147) [390].

Only one example of an isoquinoline derivative lithiated at C3 (281) has been
reported [391]. C1must be substituted, otherwise nucleophilic addition takes place as
in 3-bromoisoquinoline (282) (Scheme 17.148).

17.2.5.5.2 Zinc Derivatives 1-Isoquinolylzinc salt 283 has been efficiently prepared
by direct insertion of zinc into 284, a process that is mediated by the addition of
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lithium chloride [392]. Subsequent reaction with benzoyl chloride in the presence of
Cu(II) yields 285 (Scheme 17.149).

4-Isoquinolylzinc bromide 286, prepared in situ from dihaloisoquinoline 287,
provides the substrate for a palladium-catalyzed Negishi coupling step with
7-isoquinolyl triflate 288 to give the key intermediate 289 in the synthesis of
B-kinase inhibitors (Scheme 17.150) [389].

17.2.5.5.3 Boron Derivatives 1-Isoquinolyl and 4-isoquinolyl boronic acid deriva-
tives have beenprepared from the correspondinghalides. Thus, 4-isoquinolylboronic
acidderivative291wasobtained from4-bromoisoquinolinederivative290andreacted
under Suzuki conditions to give the kinase inhibitor 292 (Scheme 17.151) [389, 393].

4-Isoquinolylboronic acid (293) is also a nucleophilic substrate in palladium-
catalyzed Suzuki–Miyaura reactions [394–396]. Reaction of 293 with iodo derivative
294 gives the KDR kinase inhibitor 295 (Scheme 17.152).
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17.2.5.5.4 Tin Derivatives Trialkylstannylisoquinoline derivatives at the C1, C3,
and C4 positions have been prepared and reacted with electrophiles in both non-
catalyzed and palladium-catalyzed processes. The reaction of chloro- or bromoiso-
quinolines 296 with trimethylstannylsodium – generated in situ from chloro-
trimethylstannane and sodium – provides stannylisoquinolines 297. Acylation,
alkoxycarbonylation, and iodination reactions were subsequently performed
on 297 [397–399]. For example, 1-trimethylstannylisoquinoline (298) reacts with
iodine to give 299 (Scheme 17.153).

The palladium-catalyzed Stille reaction has been carried out on both 3-stannyli-
soquinoline N-oxide 300 [400] and 4-stannylisoquinoline [401]. N-Oxide 300 was
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prepared from 3-tri-n-butylstannylisoquinoline (301) and m-chloroperbenzoic acid
(MCPBA). The Stille reaction of 300 with 5-bromopyrimidine (302) yields 303
(Scheme 17.154).

17.2.5.5.5 Palladium-, Nickel-, and Manganese-Catalyzed Reactions Numerous
metal-catalyzed reactions on haloisoquinolines have been reported. Both Suzuki–
Miyaura and Stille reactions provide high yields of coupling products on diversely
substituted boronic acids [402–404] and stannanes [375, 404, 405]. Nickel-catalyzed
processes using both Grignard reagents [404, 406, 407] or lithium borides [404] have
been performed and also lead to interesting homocoupling products [408, 409].
Based on the differential reactivity of the carbon–chlorine bonds in 261, several
carbon–carbon bond forming cross-coupling reactions have been exploited
(Scheme 17.155) [404]. Under palladium catalysis, arylboronic acids regioselectively
couple at C1 to give 1-aryl-3-chloroisoquinoline derivatives 304. Further coupling
with aryl boronic acids, 2-trimethylstannylpyridine (palladium catalyzed) or aryl-
magnesium bromides (nickel-catalyzed) gives 1,3-diarylisoquinolines 305. Further-
more, 304 furnishes 3,30-bis-isoquinolines 306 under nickel-catalyzed zinc-based
Colon reaction conditions.

Recently, a manganese-catalyzed cross-coupling reaction of heterocyclic chlorides
with aryl- and alkylmagnesium halides has been developed [410]. Thus, 1-chloroi-
soquinoline (307) yields 1-n-butylisoquinoline (308) under these conditions
(Scheme 17.156).

Heck and Sonogashira couplings have also been performed on haloisoquinolines.
4-Bromoisoquinoline (244) couples to 1,5-hexadiene under solid-phase conditions to
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give 309 as result of a three-component process (Scheme 17.157) [411]. 1-Chlor-
oisoquinoline (307) couples to 1-hexyne to yield 310 (Scheme 17.157) [412].

Negishi couplings have been performed in the synthesis of ferrocenyl-QUINAP
(311), a planar P,N-ligand for palladium-catalyzed allylic substitution reactions.
Directed ortho-lithiation of chiral ferrocenyl sulfoxide 312 with LDA and subsequent
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addition of zinc(II) bromide yields organozinc 313, which is treated with 1-iodoi-
soquinoline (299) under Negishi conditions to give chiral complex 314. This
compound was then converted into 311 in three steps (Scheme 17.158) [413].

17.2.5.6 Reactions with Reducing Reagents
Selective reduction of the pyridine ring in 116 to the tetrahydroisoquinoline 315
can be achieved with sodium cyanoborohydride in acid solution [414], sodium
borohydride in the presence of nickel(II) chloride [415], or zinc borohydride
(Scheme 17.159) [187]. The dihydride ruthenium complex RuH2(PPh3)2 yields 315
with low conversion [416], while hydrosilylation of 116 catalyzed by [Rh(cod)(PPh3)2]
PF6 afford 315 in high yield [417].

Catalytic hydrogenation reduces the pyridine ring in 116 to give 315 when
performed on cupric chromite [418], Raney nickel [419], platinum oxide [420],
platinum [421], rhodium [422], or palladium [423]. The benzene ring can be
hydrogenated in trifluoroacetic acid solution to provide 316 (Scheme 17.160) [424].
This product can also be obtained by ionic hydrogenation with cyclohexane through
superacidic activation, as mentioned in Section 7.2.5.1.2 ) (Protonation) [340].
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Full hydrogenation using ruthenium leads to cis- and trans-decahydroisoquinolines
317 and 318. When the catalyst is supported on carbon the hydrogenation proceeds
via 315. If ruthenium is supported on alumina there is competition between the two
tetrahydro intermediates 315 and 316 [425]. Themetal hydride complexMo(PMe3)H4

can also be used to perform the catalytic hydrogenation of 116 to 315 [426].
Dihydroisoquinolines can be produced using either sodium in liquid ammonia

(3,4-dihydro, 319) [427] or lithium aluminum hydride (1,2-dihydro, 320) [427–429].
The dihydroisoquinolines can be oxidized back to 116 with chloranil or dispropor-
tionate in acid solution to give a mixture of 1,2,3,4-tetrahydroisoquinoline (315)
and 116. Tetrahydroisoquinoline 315 can be obtained directly from 116 by reduction
with sodium in a non-protic solvent or from 319 using sodium in liquid ammonia
(Scheme 17.161).

17.2.5.7 Reactions with Radical Reagents
The replacement of hydrogen at C1 through homolytic processes is also possible
in 116, with the Minisci reaction being by far the most important approach [430].
Since 116 is a p-deficient heterocycle, nucleophilic free radicals such as hydroxy-
methyl, alkyl, and acyl give better results. Moreover, acidic conditions are essential to
promote N-protonation because this makes C1 more reactive towards the nucleo-
philic radical [431]. Formylation [432] and carbamoylation [433] reactions have been
performed on 116 to give 321 and 322, respectively, in a selective manner
(Scheme 17.162). tert-Butyl peroxide, hydrogen peroxide, or N-hydroxyphthalimide
were used as free radical promoters. Acetylation gives mixtures of acetylated and
methylated products [434].
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Alkylation of 116 has been carried out with alkyl iodides [435, 436] or alkyl
xanthates to give 323 selectively or a mixture of 324 and 325 (Scheme 17.163) [437].
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Hydroxymethylation carried out by persulfate oxidation of ethylene glycol can be
performed regioselectively to give 326 [438].

17.2.5.8 Electrocyclic and Photochemical Reactions
The greater tendency of isoquinolinium salts towards nucleophilic addition at C1 in
comparison to isoquinoline is demonstrated by the number of cycloaddition reac-
tions reported to date. Isoquinoline itself does not undergo cycloaddition processes
and this reaction always occurs through an isoquinolinium intermediate. Neverthe-
less, a theoretical G3(MP2) study regarding the concerted cycloaddition reaction
between ethylene and 116has been published and concluded that 1,4-cycloaddition is
the most favorable in terms of both transition state energy barrier and NBO atom
charges [439].

Isoquinoline reacts with dimethyl acetylenedicarboxylate to give quinolizine-
tetracarboxylate 327 [440]. When isocyanate is present in the reaction mixture,
pyrimidoisoquinoline 328 is obtained [441]. A four-component reaction with diben-
zoylacetylene, diketene, and amines to give pyrroloisoquinolines 329 [442], or water
to give 1,2-dihydroisoquinolines [443], has been reported. Isoquinoline also gives the
cycloadduct 330 with benzonitrile oxide (Scheme 17.164) [444].

Stable isoquinoliniumsalts and ylides give cycloadditionswith several dienophiles.
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N

N CO
2
Me

CO
2
Me

CO
2
Me

MeO
2
C

N

N

CO
2
Me

CO
2
Me

O

Ph

N

RNHCO

Ac OH

Ph O

Ph

N

O

Ph

N OPh
+ -

DMAD, MeOH
- 10 ºC to r.t.

(59%)

DMAD, PhNCO, CH2Cl2
- 5 ºC to r.t.; (99%)

       diketene
dibenzoylacetylene

RNH2, CH2Cl2, r.t.

(R = s-Bu, 78%)
116

327

328

329

330

(60%)

Scheme 17.164

1604j 17 Six-Membered Heterocycles: Quinoline and Isoquinoline



dienophiles such as vinyl sulfides or ethers through the Bradsher cycloaddition
reaction. N-Methylisoquinolinium iodide (331) and ethyl vinyl ether give adduct
332 (Scheme 17.165). Isoquinolinium methylides bearing one or two electron-

withdrawing substituents at the ylide undergo cycloadditions with aryl- and alkyl-
substituted electron-rich olefins [447] or dimethyl acetylenedicarboxylate [448, 449].
This reactionhasbeenexploited in thesynthesisofpyrrolo-isoquinolines related to the
lamellarins [450]. The reaction of the salt 333 with DMAD in the presence of
triethylamine occurs via methylide 334 to yield pyrroloisoquinoline 335. Quaternary
isoquinolinium ylides such as isoquinoline azomethine imine 336, generated in situ
from 2-aminoisoquinolinium iodide (337), react with polymer-bound alkyne 338 to
give pyrazoloisoquinolines 339 after cleavage from the resin [451].

There is very little literature concerning photochemical reactions for isoquinolines
when compared with electrocyclic methods. Photochemical free-radical alkyl-
ation [452, 453] and phenylation [454] reactions have been reported on 116. Ethanol
or propanoic acid can act as the source of ethyl radicals under light irradiation to give
340. Phenylthallium bis-trifluoroacetate (341) allows selective substitution at C1
under acidic conditions to afford 342 (Scheme 17.166).
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Photolysis of isoquinoline N-oxides leads to different products depending
upon the reaction conditions and the substitution pattern on the heterocycle.
Irradiation of 343 (R, R1¼H) furnished isoquinolone (123) via the S1 state through
a radical–ion-pair mechanism, as concluded from magnetic-field effect experi-
ments [455]. However, irradiation of the 1-cyano derivative 343 (R¼CN; R1¼H)
affords 1,3-oxazepine 344 (R1¼H), via the S1 state, through oxaziridine intermedi-
ates (Scheme 17.167) [455, 456]. 1-Cyanoisoquinoline N-oxides substituted at C3
can give two consecutive photochemical reactions, resulting first in oxazepine 344
(R1¼Me) and then in benzofuroazete 345 (Scheme 17.167) [457].

17.2.5.9 Isoquinoline Derivatives

17.2.5.9.1 Oxyisoquinolines The main feature of hydroxy-substituted isoquino-
lines is the tautomerism shown by somemembers of this family. With the exception
of 1-hydroxy- and 3-hydroxy-substituted isoquinolines, the others are true phenols;
they are in equilibrium with their zwitterions such as, for instance, 346 and 347, and
they behave as naphthols [458–461]. In contrast, isoquinolin-1-ol (122) completely
tautomerizes to 123 (1-isoquinolone, 2H-isoquinolin-1-one) since the hydroxyl tau-
tomer 122 lacks a stable polarized resonance contribution, in contrast to 123 [462].
Isoquinolin-3-ol (124) remains in an intermediate situation since 125 (3-isoquino-
lone, 2H-isoquinolin-3-one) is of comparable stability. The less polar tautomer 124
(colorless) predominates in low polarity solvents such as diethyl ether, whereas the
more polar 125 (yellow) dominates inwater or ethanol [463, 464]. The similar stability
of these two systems is due to two opposite factors. In 124 the stability relies on
the complete benzene ring, whereas in 125 the amide unit is the major contributor
to stability.
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Classical reactions of isoquinolin-1-ones are N- and O-alkylation. Deprotonation
of 123 with base and reaction of the resulting bidentate anion with alkyl halides or
tosylates are reported to result in alkylation exclusively at nitrogen to give products
like 348 (Scheme 17.168) [465], although traces of the corresponding O-alkylated
products are also obtained [466]. Harder electrophiles, such as triflic anhydride and
silylating agents, react at the exocyclic oxygen, although the nucleophile may be the
neutral molecule in these cases [467, 468]. These O-substituted products have also
been prepared by displacement of halides from 1-halo-substituted isoquinolines by
alkoxides, but harsh conditions are necessary for this to occur. Regioselective O-
alkylation to give 349 can be achieved using the Mitsunobu reaction with benzylic
electrophiles under mild conditions (Scheme 17.168) [469]. A classical reaction of
isoquinolones is their conversion into haloisoquinolines with phosphorus halides.
For example, 123 reacts with phosphoryl chloride to give 307 (Scheme 17.168) [470].
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17.2.5.9.2 Aminoisoquinolines The whole family of aminoisoquinolines, in con-
trast to hydroxyisoquinolines, exists only as amino tautomers and all are proton-
ated on the ring nitrogen. Dissociation constants for aminoisoquinolines 350 have
been determined by potentiometric titration [471] or spectrophotometry [472]. The
most basic aminoisoquinoline bearing the amino group on the benzene ring is the
6-isomer 351; the high basicity is due to its most stable resonance contribution,
that is, a para-quinoid structure. When the amino group is located on the pyridine
ring, the most basic isomer is 1-aminoisoquinoline (258) since this is the only
system that retains the aromaticity of the benzene ring in its most stable
resonance contribution. The basicity of aminoisoquinoline derivatives has been
studied and it was found that the steric effects of bulky substituents
neighboring the protonated ring nitrogen atom influence electron transfer in
such arrangements [473].
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17.2.5.9.3 Alkylisoquinolines Heterobenzylic hydrogen atoms of the side chain in
the 1-position of isoquinoline are acidic. These protonsmay be abstractedwith strong
bases such as n-butyllithium, lithium diisopropylamide, or sodium amide to give
metalated intermediates that can condense with various electrophiles. Hetero-
benzylic hydrogens at the 3-position are much less acidic and thus regioselective
deprotonation in 1,3-dialkylisoquinolines is possible [264, 474]. Condensation pro-
ducts can also be prepared in acidic media, where the nucleophilic species is an
enamine and the acidity of the heterobenzylic hydrogens is enhanced by the prior
formation of an isoquinolinium cation [475]. Treatment of 1,3-dialkylisoquinoline
352 (R¼Me, R1¼H) with n-butyllithium regioselectively gives the 1-isoquinolyl-
methyllithium derivative 353 (R¼Me, R1¼H). Heterobenzyllithiums deriva-
tives 353 react with benzophenone or benzenenitrile to afford 354 and 355,
respectively (Scheme 17.169). When 352 (R¼R1¼H) is heated with benzaldehyde
in the presence of a Lewis acid such as zinc chloride, the reaction proceeds via the
enamine 356 to afford 1-styrylisoquinoline (357) (Scheme 17.169).

It is possible to oxidize alkyl side-chains while leaving the ring intact [476]. The
oxidation of 358 with manganese dioxide affords mainly a mixture of 359 and 360.
Selective oxidation of 1-methyl groups, as in 361, can be achieved with selenium
dioxide, in the presence of other methyl groups in both the benzene and pyridine
rings, to give 362 (Scheme 17.170).
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17.2.5.9.4 Isoquinoline Carboxylic Acids These derivatives behave as typical aro-
matic acids. The main difference arises in isoquinoline- andN-alkylisoquinolinium-
1-carboxylic acids, which can decarboxylate via an ylide intermediate that can be
trapped by electrophiles such as aldehydes, diazo compounds, or diazonium
ions [477, 478]. Isoquinoline-1-carboxylic acid (363) affords 285awhen heated under
reflux with benzaldehyde. Betaine 364 yields the corresponding ylide 365 when
heated (Scheme 17.171).

17.2.5.9.5 Quaternary Isoquinolinium Salts Although some reactions in this chap-
ter are performed by means of a quaternary isoquinolinium salt, here the high
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versatility of these compounds will be discussed in more detail. One of the most
characteristic features of these compounds is their ease of nucleophilic addition at the
1-position, as compared with isoquinolines, to give relatively stable neutral 1,2-
dihydroisoquinolines, which in some cases may disproportionate or be oxidized.
Nucleophiles such as organometallics add to different isoquinolinium salts. Orga-
nolithiums, for instance, react with isoquinoline-N-borane (366, R¼H3B

�) as
precursors of substituted tetrahydroisoquinolines 367 [479]. Grignard reagents give
1,2-dialkyl-1,2-dihydroisoquinolines (368) when reacted withN-alkylisoquinolinium
salts (366, R¼Me) [480]. N-Acylisoquinolinium salts (366; R¼CO2Me) add benzyl-
stannanes to yield dihydroisoquinoline 369 (Scheme 17.172) [481]. Both stannanes
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and Grignard reagents add to chiral isoquinolinium salts in a diastereoselective
manner [482, 483]. In addition, Zincke�s salt of isoquinoline [366; R¼ 2,4-
(NO2)2C6H3] may be transformed into chiral isoquinolinium salts [484] by reaction
with chiral amines and the products are then reactedwithGrignard reagents to afford
1,2-dihydroisoquinolines diastereoselectively [485]. N-Alkylisoquinolinium tetraalk-
ylborates (366; R¼Me, X¼BMe4) transfer alkyl groups efficiently under thermal or
photochemical activation to give 370 (Scheme 17.172) [486]. On the other hand, the
enantioselective addition of chiral allylsilanes activated by silver salts to an N-
acylisoquinolinium cation has been reported to give 1-allyl-1,2-dihydroisoquino-
lines [487]. These compounds may also be prepared using allyl bromides in the
presence of indium [488].

Softer nucleophiles also add to isoquinolinium cations (Scheme 17.173). Silyl enol
ethers 371 react with isoquinolinium salts (366, R¼CO2Me) to give dihydroisoqui-
nolines 372 [489]. A diastereoselective version of this approach has been applied to
the synthesis of (–)-homolaudanosine [490]. N-Methylisoquinolinium salts (366,
R¼Me) undergo oxoalkylation with ketone enolates under ultrasound (US) activa-
tion to give 373 [491]. When the N-alkyl chain bears an aldehyde, as in 366 [R¼ (
CH2)4CHO], an organocatalytic cyclic oxoalkylation reaction has been performed to
give 374 in a high diastereomeric ratio [492]. Activemethylene compounds react with
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intermediate N-formylisoquinolinium imines (366, R¼CH¼N-tert-butyl), pro-
duced by reaction of isocyanides with isoquinoline, to yield dihydro derivatives
375 through a three-component one-pot reaction [493]. N-Benzylisoquinolinium
salt 366 (R¼Bn) reacts with tribromomethylsodium (generated in situ from bromo-
form) to give the addition product 376 (Scheme 17.173) [494].

The cyanide anion also adds toN-acylisoquinoliniumsalts to give so-calledReissert
compounds such as 377 (Scheme 17.174). These compounds can be prepared using
conventional phase-transfer catalysis [495], or accelerated with ultrasound [496], as
well as crown ether catalysis [497]. Thus, 116 reacts with benzoyl chloride to give the
intermediateN-benzoylisoquinolinium salt 378, which in the presence of potassium
cyanide affords the dihydroisoquinoline 377 under phase-transfer catalysis condi-
tions. Reissert compounds are useful materials in preparing 1-alkyl- and 1-cyanoi-
soquinolines. Deprotonation of 377 with NaH followed by alkylation and
further removal of the acyl and cyanide groups gives rise to 379 [498]. Furthermore,
theN-sulfonyl analogues, such as 380, are prone to eliminate an arylsulfinate to yield
381 [499]. The solid-phase Reissert reaction has also been performed using benzoyl
chloride resin through solid-supported intermediate 382 [500]. A highly enantiose-
lective version of the Reissert reaction has been reported using a chiral substituted
BINOL catalyst [501].

Reduction of quaternary isoquinolinium salts gives stable N-substituted 1,2-
dihydro- or tetrahydroisoquinolines. Hydrides such as sodium hydride or lithium
tetrahydroaluminate react under mild conditions. Isoquinoline-N-borane 383 (R¼
H3B

�; R1¼H) adds NaH to give a dihydroisoquinoline that is further transformed
into tetrahydroisoquinoline 384 [479]. Lithium tetrahydroaluminate reacts with N-
alkylisoquinolinium salts 383 (R¼Me; R1¼H) to give the corresponding dihydro-
derivatives such as 385 [480, 502]. On the other hand, hydrogenation of isoquino-
linium salts can also be performed. The iridium-catalyzed asymmetric hydrogena-
tion of 383 (R¼CO2Me; R1¼Me) affords 386 (Scheme 17.175). This procedure has
been applied to the synthesis of naturally occurring alkaloids [194].
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As mentioned earlier in this chapter, isoquinoline gives electrocyclic reactions
through isoquinolinium intermediates. Thus, 116 reacts with dimethyl acetylene-
dicarboxylate (DMAD) through a Huisgen process [503] to give the 1,4-dipolar
intermediate 387, which can be trapped by benzoquinones or activated alkenes to
give highly functionalized polycyclic adducts [504, 505]. For example, adduct 388 has
been obtained using p-benzoquinone (Scheme 17.176).

17.2.5.9.6 Isoquinoline N-Oxides The chemistry of isoquinoline N-oxide (232)
differs from that of pyridine through the ability to undergo electrophilic substitution
at the C5-position of the benzene ring. For example, 389 is prepared by nitration
of 232with mixed acid (Scheme 17.177) [506]. Compound 232 has been shown to be
less reactive than the corresponding pyridine- and quinoline N-oxide towards
electrophilic substitution through base-induced deprotonation [507]. Treatment
of 232 with lithium 2,2,6,6-tetramethylpiperidide (LTMP) and subsequent reaction
with benzaldehyde affords a mixture of mono- and disubstituted N-oxides 390 and
391. Although there are several deoxygenation methods by which to convert 232
into 116, recently the molybdenum pentachloride/sodium iodide system has proven
to be a mild and efficient process [508].
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Some reactions performed on N-oxides, such as deoxygenation with phosphorus
pentahalides, take place with both Ca-substitution and elimination of an oxygen
atom as part of a good leaving group. A base is usually necessary to promote the
elimination. As an example, the reaction of 232 with ethyl chloroformate and
ethanol leads to 392 [509]. Similarly, treatment of 232 with diethyl cyanopho-
sphonate or trimethylsilyl cyanide gives 1-cyanoisoquinoline (381) (Scheme17.178)
[510, 511].

Isoquinoline N-oxide compounds can also be interesting catalysts and reagents.
QUINOX (393), a chiral isoquinoline N-oxide, performs asymmetric allylation of
aldehydes to give allylic alcohols 394 in good enantiomeric excess (Scheme 17.179)
[512].
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18
Six-Membered Rings with One Oxygen: Pyrylium Ion,
Related Systems and Benzo-Derivatives
Javier Santamaría and Carlos Vald�es

18.1
Introduction

Six-membered oxacycles are a family of compounds that are widely present in natural
products as well as in pharmaceuticals and other useful compounds and materials.
The parent member of the family is the pyrylium cation 1, which is the oxa-analog of
benzene.Other important unsaturated derivatives are 2H-pyran (2) and 4H-pyran (3),
which can be seen as the result of the addition of a hydride to the pyrylium cation.
Carbonyl-containing pyran-2-one (4) andpyran-4-one (5) are prominent derivatives of
pyrans. Moreover, the benzo derivatives of all these structures also constitute
important types of heterocycles. Some of the more common structures, including
their usual names are presented in Figure 18.1.

Owing to the structural variety of pyrylium and pyran derivatives, this chapter will
concentrate mostly on the parent pyrylium salt, as well as on the important oxa
derivatives pyranones and benzopyranones.

18.2
Pyrylium Cation and Benzo-Derivatives

18.2.1
Pyrylium Salts: General Considerations

The pyrylium cation (1) is the ring system inwhich a CHof benzene is replaced by an
oxygen atom. It is a cationic andhighly perturbed aromatic ring, as a result of the high
electronegativity of the oxygen atom. The aromaticity of pyrylium salts is supported
by the physical properties of these cations, such as magnetic properties, vibrational
spectra, and electronic absorption spectra, and also by their structural parameters [1].
Nevertheless, some of the more common aromaticity indexes indicate that pyrylium
salts are less aromatic than most of other aromatic six-membered rings [2].
Figure 18.2 presents the structural parameters of the equilibrium geometry of the
pyrylium cation obtained from calculations at different levels of theory [3].
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Pyrylium salts are stable but highly reactive species. The nature of the counterion
of pyrylium salts depends on themethod of preparation, and themost common salts
are derived frommulti-atomic anions, typically perchlorates, tetrafluoroborates, and
hexafluorophosphates. Owing to their easy accessibility and high reactivity,
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Figure 18.1 Most common six-membered ring oxacycles.

Figure 18.2 Calculated structural parameters of the pyrylium cation.
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pyryliums have found widespread applications as synthetic intermediates, mainly
for the synthesis of other heterocycles or carbocycles through attack by nucleophile–
ring opening–ring closure (ANRORC) sequences. An early review on the synthesis
and applications of pyryliums salts is recommended [4]. Moreover, pyrylium
compounds are constituents of materials with various interesting applications such
as photographic materials, photosensitizers in electrophotography, laser dyes,
optical recording material, fluorescent probes, anticorrosion agents, and polymer-
ization initiators.

A particularly important type of pyrylium salts is the flavylium salts (2-phenyl-1-
benzopyrylium salts), which constitute the aglycon part of anthocyanines, a family of
natural pigments present in flowers, fruits, and leaves. The sugar-free part of
anthocyanines, which are called anthocyanidines, are polyhydroxylated flavylium
salts, which are used as food additives [5]. Table 18.1 presents some common
anthocyanidines.

18.2.2
Synthesis of the Pyrylium Ring

The main strategies for the synthesis of pyrylium salts are based on intramolecular
condensations of 1,5-dicarbonyl compounds, according with the scheme presented
in Figure 18.3. The cyclocondensation of a penten-1,5-dione 14 gives directly the
pyrylium salt. On the other hand, if the reaction involves the condensation of a
pentane-1,5-dione (15), after the formation of 4H-pyran 16 a hydride abstraction step
is required. The different variations of thesemethodologies differ in theway inwhich
the 1,5-dicarbonyl compounds are accessed.

Table 18.1 Selected anthocyanidines.

R1 R2 R3 R4 R5 R6 R7 Color

Cyanidine OH OH H OH OH H OH Magenta
Delphinidin OH OH OH OH OH H OH Purple, blue
Pelargonidin H OH H OH OH H OH Orange, salmon
Malvidin OCH3 OH OCH3 OH OH H OH Purple
Peonidin OCH3 OH H OH OH H OH Magenta
Petunidin OH OH OCH3 OH OH H OH Purple
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A classical example is the preparation of 2,4,6-trimethylpyrylium perchlorate (17)
by acylation of pentenone 18 by an anhydride or an acid chloride under strong acidic
conditions (Scheme 18.1) [6].

Closely related with this reaction is a very versatile methodology, namely, the
classical Balaban synthesis, which involves the diacylation of an alkene. Usually, the
alkene is generated in situ from the corresponding halide or alcohol [7]. Scheme 18.2
provides a recent application of this methodology leading to the pentasubstituted
pyrylium salt 19.

2,6-Diaryl substituted pyrylium salts 21 can be efficiently synthesized by another
variation of this method, which consists of the reaction of methyl ketones 20 with
triethyl orthoformate in the presence of perchloric acid (Scheme 18.3) [8].

A synthesis of pyrylium salts 24 through the pentenone intermediate includes the
reaction of enolizable ketones 22 with 1,3-dicarbonyl compounds 23 under strong
acidic conditions (Scheme 18.4) [9].

A recent variation of this procedure involves the synthesis of trisubstituted
pyrylium salts 29 by reaction of acetophenones 25 with benzoic acids or benzoyl
esters 26. The reaction proceeds through the addition of the enol of the acetophenone

O

OOOH OO
OH

O

H

OOOH O

14

1516

17

Figure 18.3 Retrosynthetic analysis of the pyrylium cation.

O

Ac2O

HClO4

HO

O

O O

OO

O

·ClO4

1718

Scheme 18.1 Synthesis of pyrylium salts by acylation of pentenone 18.
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to the ester, to give dicarbonyl compound 27, followed by aldol condensation of
another molecule of acetophenone with the dicarbonyl to give pentenedione 28, and
final cyclization to provide the pyrylium salt 29 (Scheme 18.5) [10].

A similar synthetic route, although in amultistep procedure, has been employed to
prepare the chiral C2-symmetric bis-camphorpyrylium salt 34, taking camphor 30 as
startingmaterial (Scheme 18.6) [11]. In this case, the key pentenedione 33 is prepared
by Michael addition of the enolate of camphor to chloropentenone 32, which was
obtained by condensation of camphor with methyl benzoate.

Regarding the reactions that consist of the cyclization of saturated diones, one of
the most popular strategies is the reaction between a chalcone (35) and a methyl

Scheme 18.2 Classic Balaban synthesis of pyrylium salts.
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Scheme 18.3 Synthesis of 2,6-diphenylpyrylium salt from acetophenone and an orthoformate.

Scheme 18.4 Synthesis of pyrylium salts from 1,3-dicarbonyl compounds and enolizable ketones.
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ketone (36) (Scheme 18.7) [12]. The reactionmust be carried out with two equivalents
of chalcone 35. It has been proposed that the second equivalent serves as hydride
abstractor to generate the pyrylium salt from the 4H-pyran 38 (Scheme 18.8). This
modular approach allows for the synthesis of pyrylium salts 39 with three different
aryl substituents [13].

An extension of this strategy consists of a one-pot reaction in which the chalcone is
generated from acetophenones and an aromatic aldehyde. In this case the reaction is
restricted to symmetrical pyrylium salts such as 41 (Scheme 18.9). Nevertheless,
taking into account that the reaction is compatible with several functionalities and the
starting materials are very easily available, this reaction is one of the most often
employed methods for the preparation of pyrylium salts [14].

Pyrylium salts can also be prepared by the oxidation of cyclopentadieneswith silver
salts [15]orby theactionmolecularoxygen inthepresenceofperchloricacid [16]. In the

Scheme 18.5 Synthesis of pyrylium salts from acetophenones and benzoyl esters.

Scheme 18.6 Synthesis of chiral pyrylium salts 34 from camphor.

1636j 18 Six-Membered Rings with One Oxygen: Pyrylium Ion, Related Systems and Benzo-Derivatives



latter case, presented inScheme18.10, theoxygen insertionon thecyclopentadiene42
canbeexplainedby amechanismthat implies auto-oxidation togive43, followedbyan
acid-promoted rearrangement that leads directly to the pyrylium salt 44.

18.2.3
Synthesis of the 1-Benzopyrylium Ring

The synthesis of 1-benzopyrylium salts 45 is closely related to the procedures for the
synthesis of pyryliums. As presented in Figure 18.4, most of the methodologies rely

Scheme 18.7 Synthesis of pyrylium salts from chalcones.

Scheme 18.8 Mechanism of the synthesis of pyrylium salts from chalcones.

Scheme 18.9 One-pot synthesis of pyrylium salts from aromatic aldehydes and methyl ketones.
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on the intramolecular cyclizations of properly substituted phenols 46. These cycli-
zation precursors can be prepared by the reactions of phenols with 1,3-bidentate
electrophiles, such as 1,3-dicarbonyl compounds or a,b-unsaturated carbonyl com-
pounds. Alternatively, the intermediate phenol 46 can be generated by reaction of
salicyl aldehydes or o-hydroxyketones with enolizable ketones.

One of the most classical synthesis of flavyliums 50 (2-aryl-1-benzopyryliums) is
the Robinson condensation of salicylaldehydes 47 or 48 with acetophenones 49 [17].
Scheme 18.11 presents a recent application of this methodology oriented to the
preparation of ligands to brain GABA-A receptors [18].

Flavylium ions such as 53 (Scheme 18.12) are also efficiently prepared by the
condensation of activated phenols with 1,3-dicarbonyl compounds. The presence of
additional activating groups in the aromatic ring is essential to facilitate the initial
electrophilic aromatic substitution reaction. Scheme 18.12 presents a recent example
of the reaction of m-methoxyphenol (51) with benzoylacetone (52) catalyzed by
gaseous HCl [19].
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18.2.4
Synthesis of the 2-Benzopyrylium Ring

Figure 18.5 presents themain retrosynthetic routes to the 2-benzopyryliumcation 54.
The classical strategy involves the cyclization of dicarbonyl compounds 55 [20]. The
most general approach to the dicarbonyl intermediate is the Friedel –Crafts acylation
of the benzylic carbonyl compound. Another alternative, which has gained in
popularity in recent years, is the electrophilic cyclization of o-alkynylbenzaldehydes
56, which are readily available through Pd-catalyzed cross-couplings.
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Scheme 18.11 Classical synthesis of flavyliums from salicyl aldehydes and methyl ketones.
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Scheme 18.12 Synthesis of 1-benzopyryliums from 1,3-dicarbonyl compounds and phenols.

Figure 18.5 General strategies for the preparation of 2-benzopyrylium salts 54.
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Many examples have been disclosed over the years of the first route. For instance,
acylation of ketone 57 with acetic anhydride in acidic media gives directly the
corresponding pyrylium salt 58 (Scheme 18.13). Nevertheless, this particular reac-
tion is generally restricted to carbonyls that bear activating substituents in the
aromatic ring, to facilitate the Friedel–Crafts acylation [21].

As noted, the cycloisomerization of o-alkynylbenzaldehydes has emerged recently
as an alternative for the preparation of 2-benzopyryliums. The reaction can be
promoted by different electrophilic reagents [22], but gold salts have been
found to be the best catalysts to promote this type of transformation [23]. For
instance, o-alkynyl aldehyde 59 is quantitatively converted into benzopyrylium salt
60 in just 1min (Scheme 18.14) [24].

18.2.5
Reactivity of Pyrylium Salts

Pyryliumcations are extremelyp-deficient heterocycles, and therefore they are highly
reactive towards nucleophilic systems.Moreover, pyrylium salts are totally unreactive
towards electrophiles. The chemical behavior of pyrylium cations towards nucleo-
philes canbe rationalizedby considering the resonance formsdepicted inFigure18.6.
Additionandsubstitution reactions can takeplace at theelectron-deficientpositions2,
4, and6.Theparticular typeof reactionand theregioselectivitydependonthenatureof
the nucleophile and the substituents of the pyrylium ring.
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Scheme 18.13 Synthesis of 2-benzopyryliums.

Scheme 18.14 Cycloisomerization of o-alkynylbenzaldehydes.
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18.2.5.1 Reactions with Nucleophiles
The reactivity of the pyrylium ion is similar to that of a protonated carbonyl
compound. Therefore, nucleophiles attack preferentially position 2. In 4-unsubsti-
tuted pyryliums, the addition of the nucleophile can take place regioselectively at
position 4 (Figure 18.6).

The reaction with hydroxides (Figure 18.7) serves as a model of a nucleophilic
addition on the pyran ring. Attack at position 2 gives hemiketal 61, which can evolve
through ring opening to the pent-2-en-1,5-dione 62. The equilibrium can be shifted
back to the pyrylium under acidic conditions. When the pyrylium salt features an
enolizable alkyl group at position 2, a phenol (63) can be formed through an
intramolecular aldol condensation. These two reactivity patterns can be extended
to C, N, S, and P nucleophiles and offer numerous opportunities in the synthesis of
heterocyclic and carbocyclic systems through ANRORC cascades, as will be shown
below.

18.2.5.1.1 Synthesis ofOtherHeterocyclic Systems Following a similarmechanism,
different heterocyclic systems 64 can be prepared from pyrylium salts, employing N,
P, S, and other heteroatom-based nucleophiles. Indeed this is a very powerful
transformation for the synthesis of certain classes of heterocycles (Figure 18.8).
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R1 R3 H
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Figure 18.6 General reactivity of pyrylium cations.

Figure 18.7 Reactivity of pyrylium cation with nucleophiles.
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Pyryliums can be transformed into pyridines by treatment with NH4OAc. This
method is an alternative for the preparation of pyridines with some particular
substitution patterns. In the example presented in Scheme 18.15 a pyridine carrying
a benzo-15-crown-5 (67), which is a fluorescent sensor for Mg(II), is prepared
through a straightforward two step sequence that involves: (i) formation of the
pyrylium perchlorate 66 by the classical reaction of an aromatic aldehyde (65) with
acetophenone and (ii) treatment with ammonium acetate to give the desired
pyridine 67 (Scheme 18.15) [25].

The same reaction can be applied to 2-benzopyryliums, to provide isoquinolines.
In the example of Scheme 18.16, the presence of an electron-withdrawing group in
the pyrylium nucleus of 68 enables the transformation into isoquinoline 69 under
milder conditions [26].

The reactions of pyrylium cations with primary amines give rise to pyridinium
cations [27]. This transformation is continuously employed to build molecular
structures with interesting properties that are inaccessible through other method-
ologies. One example application of this methodology is the synthesis of 71, a
molecule that features a tridentate ligand domain and the pyridinium substructure,

Figure 18.8 General strategy for the synthesis of other heterocycles from pyryliums.

Scheme 18.15 Synthesis of pyridine 67 from the corresponding pyrylium salt.
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and is themonomer of a photosensitized supramolecular assembly, by condensation
of triphenylpyrylium salt with 4-aminopyridine (70) (Scheme 18.17) [28]. Other
recent examples include the synthesis fluorescent probes for hydrogen abstrac-
tion [29], molecular wires based on oligomeric pyridinium chains [30], calixarene-
based tricyclic assemblies [31], and the preparation of pyridinium based lipophilic
oligomers for gene delivery [32]. Moreover, the reaction can be also applied to
2-benzopyrylium salts to obtain isoquinolinium salts [33].

Pyrylium salts are the simplest source of phosphinines, the phospha analogs of
benzene. The Oþ–P exchange can be carried out employing P(CH2CH2OH)3 or P[Si
(CH3)]3. This reaction has been utilized recently in the preparation of phosphinines
with some particular substitutions, to be used as ligands in transitionmetal catalyzed
reactions [34]. As an example, the wide bite-angle diphosphinine 73 has been
prepared by this methodology (Scheme 18.18) [35]. The bis-pyrylium derivative 72
is prepared by employing the typical condensation of chalcones with acetophenones.

Scheme 18.16 Synthesis of isoquinoline 69 from 2-benzopyrylium salt 68.

Scheme 18.17 Synthesis of a pyridinium salt from a pyrylium salt.
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Scheme 18.18 Synthesis of phosphinine 73 from pyrylium salt 72.

18.2 Pyrylium Cation and Benzo-Derivatives j1643



Analogously, thiopyrylium salts are synthesized by reaction of the corresponding
pyrylium salts with Na2S in acidic media. To illustrate this transformation,
Scheme 18.19 shows the synthesis of the thiopyrylium Hg2þ and Cu2þ sensor
75 from the corresponding pyrylium salt 74 [36].

18.2.5.1.2 Synthesis of Carbocycles The reactions of pyryliumswith certain nucleo-
philes can lead to a ring opening/ring closure sequence that gives rise to the
formation of benzene derivatives. For this type of process to occur it is necessary
that the acyclic intermediate 76 (Figure 18.9), which is formed upon addition of the
nucleophile, has active hydrogens to permit theC–Cbond forming cyclization. There
are several variations of this reaction depending on the nature of both the pyrylium
salt and the nucleophiles.

For instance, the reaction of secondary amineswith trialkylpyryliumsalts gives rise
to N,N-dialkylanilines 78 through the formation of an intermediate enamine (77)
(Scheme 18.20) [37].

Nevertheless, most of the reactions of synthesis of carbocycles from pyrylium salts
rely on the second equation presented in Figure 18.9 and employ of C-nucleophiles.

Figure 18.9 General strategy for the synthesis of carbocycles from pyryliums.
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Scheme 18.19 Synthesis of thiopyrylium 75 from pyrylium salt 74.
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Classical examples are the reactions of pyrylium salts with nitroalkanes in the
presence of mild bases, which lead to the corresponding nitroaromatic deriva-
tives [38]. Scheme 18.21 shows a recent application of this reaction. Treatment of
pyrylium salt 79 with nitromethane gives trisubstituted nitrobenzene 80, which has
been employed in the preparation of 2,4,6-trisubstituted aniline 81 [39].

Another interesting synthetic application is the annulation of sodium cyclopenta-
nedienide with pyrylium salts [40]. In this case, the intermediate cyclopentadienyl
anion 82 undergoes intramolecular cyclization to produce azulene derivatives 83
(Scheme 18.22).

Pyrylium salts can also react under specific conditions with species that feature
weak C–Hacids such as anhydrides, esters, or ketones [41]. From a synthetic point of
view, an important transformation in this context is the reaction of pyryliumsaltswith
phenylacetates to give o,o-disubstituted biaryl systems [42]. Modern applications of
this reaction take advantage of the availability of the starting pyrylium salts, and the
possibility to include halogens in the aromatic rings, to build complex polyaromatic
molecules combining pyrylium chemistry and Pd-catalyzed cross-coupling
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Scheme 18.20 Synthesis of anilines from pyryliums.

Scheme 18.21 Synthesis of carbocycles from pyryliums and nitromethane.
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reactions [43]. In the example of Scheme 18.23 the pyrylium salt 84 is the starting
material to the preparation of dibenzo[ fg,op]naphthacenes 87 [44]. The key step of the
synthesis is the formation of the aromatic dibromide 86 by reaction of pyrylium
salt 84 with the corresponding sodium arylacetate 85.

18.2.5.1.3 Reactions with Organometallic Reagents Addition of organometallic
reagents can take place at positions 2 or 4 depending on the substitution of the
pyrylium salt. Organolithium andGrignard reagents add to the 2 position, giving rise
to an intermediate 2H-pyran 88, which undergoes an electrocyclic ring opening to
give dienones or dienals 89 with retention of the configuration of the double bonds
(Scheme 18.24). This reaction has found widespread applicability for the stereo-
controlled synthesis of polyenes in natural products synthesis [45, 46].

On the other hand, organocuprates add to 4-position of pyrylium salts, leading to
4-substituted-4H-pyrans 90, which can be subsequently converted into the corre-
sponding 4-substituted pyrylium salts 91 by oxidation with trityl hexafluoropho-
sphate (Scheme 18.25) [47].

An alternative to the preparation of 4-substituted pyrylium salts is the benzotria-
zole-mediated reaction developed by Katritzky. In a first step, the 4-unsubstituted

Scheme 18.22 Synthesis of azulenes 82 from pyryliums and cyclopentadiene.

Scheme 18.23 Pyrylium salt 84 as staring material for the synthesis of naphthacene 87.
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pyrylium salt 92 undergoes addition of benzotriazole to the 4-position to give 4H-
pyran 93. Then, deprotonation by treatment with n-BuLi produces an 8p-electron
heterocyclic anion that can be trapped with an electrophile to give intermediate 94,
which is not isolated and releases the benzotriazole unit upon treatment with a
mineral acid to produce the 4-substituted pyrylium salt 95 (Scheme 18.26). The

Scheme 18.24 Stereocontrolled synthesis of dienals from pyrylium salts.
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Scheme 18.25 Synthesis of 4-substituted-4H-pyrans by addition of organocuprates to pyrylium
salts.
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overall transformation can be envisioned as an indirect electrophilic aromatic
substitution in the pyrylium ring. The reaction can be applied to pyrylium and
1-benzopyrylium salts [48].

Pyrylium salts can also react as electrophiles in Friedel–Crafts-like electrophilic
aromatic substitutions on electron-rich aromatic rings. For instance, 2,6-diphenyl-
pyrylium perchlorate (96) reacts with anilines 97 to furnish the corresponding 4-
substituted pyrylium salts 98 (Scheme 18.27) [49].

18.2.5.2 Cycloaddition Reactions
Pyrylium and benzopyrylium salts can participate in several types of cycloaddition
reactions.

18.2.5.2.1 [2 þ 1] Cycloadditions Benzopyrylium salt 99, generated in situ from
chromone (10), undergoes cyclopropanation with ethyl diazoacetate to give the
cyclopropanation adduct 100, which leads ultimately, after acid-promoted ring
opening, to the corresponding benzoxepine 101 (Scheme 18.28) [50].

18.2.5.2.2 Dienophiles in [4 þ 2] Cycloadditions 4-Silyloxypyrylium triflate 102,
which is readily prepared from 4-pyrone (5), reacts in a domino sequence with

Scheme 18.27 Pyrylium salts as electrophiles in Friedel–Crafts reactions.

Scheme 18.28 Synthesis of benzoxepine 101 by a cyclopropanation/ring expansion sequence on a
pyrylium salt.
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2-silyloxydienes 103 to give polyfunctionalized pyran derivatives 105. The reactions
are triggered by a stepwise [4 þ 2] cycloaddition between the electron-rich diene and
the C2–C3 bond of the pyrylium salt. Upon formation of intermediate 104, the attack
of a second molecule of silyloxydiene produces polycyclic structure 105 with total
diastereoselectivity (Scheme 18.29) [51].

18.2.5.2.3 Dienes in [4 þ 2] Cycloadditions Pyrylium and benzopyrylium salts can
also react as the 4p-component in [4 þ 2] cycloadditions. Scheme 18.30 presents the
synthesis of pyridinium salt 108 by reaction between triphenylpyrylium perchlorate
and dihydroisoquinoline 106. The mechanism proposed involves a [4 þ 2] cycload-
dition between the pyrylium salt and the iminic C¼Nbond, which gives intermediate
adduct 107 and provides pyridinium salt 108 after subsequent ring opening and
expontaneous oxidation. A similar reaction has been observed with 2-benzopyrylium
derivatives [52].

Of particular interest are processes inwhich the pyrylium salts are generated in situ
during the annulation of alkynyl aldehydes. For instance, the benzannulation
reaction of 3-alkynylpyrrole-2-carboxaldehydes 109 with alkenes, promoted by iodo-
nium ions, yields indoles 110 with a high level of substitution and functionalization
in the benzene ring (Scheme 18.31) [53].

Scheme 18.32 shows the mechanism proposed for this unusual transformation.
Interaction of the iodonium ion with the triple bond of 109 would promote the
formation of 4-iodopyrylium salt 111. Nucleophilic attack of the alkene to the

Scheme 18.29 Example of a pyrylium salt as dienophile in a [4 þ 2] cycloaddition.
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electrophilic carbon of 111, followed by intramolecular cyclization, would provide
112. The simple loss of a proton to give a conjugated double bond yields 113. Finally,
aromatization by elimination of HI gives the indoles 110. This proposal is supported
by detailed mechanistic and spectroscopic studies that allowed the isolation of
analogues of the cationic intermediates 111 and 112 [54].

Related reactions have been reported in which the formation of the intermediate
pyrylium salt is mediated by transition metal catalysts such as Cu and Au [55].

Scheme 18.30 A pyrylium cation as diene in a [4 þ 2] cycloaddition.
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Scheme 18.31 Synthesis of indoles 110 from in situ generated pyrylium cations.
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Moreover, Pt-bound pyrylium ions generated in situ through the benzannulation of
alkynylaldehydes react as dipoles in intramolecular [3 þ 2] cycloadditions [56].

18.2.5.2.4 [5 þ 2] Cycloadditions A particularly interesting derivative is the
3-oxidopyrylium betaine 114 that can participate in [5 þ 2] dipolar cycloadditions
with the proper dipolarophiles. This reaction has found wide applicability in organic
synthesis and a recent review is available [57]. An intermolecular example is the
cycloadditionwith indene to give polycycle 115 (Scheme18.33) [58].Moreover, higher
order [6 þ 3] reactions with pentafulvenes have also been reported [59].

This methodology is particularly useful in the intramolecular version, and has
been extensively employed in the total synthesis of natural products. The interested
reader is encouraged to revise the abundant literature cited in Reference [60]. In the
example presented in Scheme 18.34, the intramolecular [5 þ 2] cycloaddition on the
betaine generated from 116 is the key step towards the synthesis of daphnetoxins.
This reaction highlights the synthetic power of this cycloaddition reaction in the
preparation of structurally complex molecules with a high level of stereocontrol.
The structures TS-92 and TS-93 correspond to the proposed transition states for the
formation of each diastereoisomer.
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Scheme 18.32 Mechanism proposed for the formation of indoles 110.
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Related reactions employing in situ generated 2-benzopyrylium-4-olates have also
been described, including catalytic asymmetric versions [61].

18.2.5.3 Side Chain Reactions
Alkyl substituted pyrylium salts feature relatively acidic hydrogens and, in turn, can
react with electrophiles in a similar way to enolizable carbonyl compounds. There-
fore, homologous to aldol condensations, Mannich additions and Michael additions
can be carried out employing pyrylium salts. In contrast to the reactions with
nucleophiles, substituents at C4 react in preference to substituents at C2
(Figure 18.10).

Scheme 18.33 [5 þ 2] dipolar cycloaddition with 3-oxidopyrylium betaine (114).
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Scheme 18.34 Intramolecular dipolar cycloaddition with a 3-oxidopyrylium betaine.

Figure 18.10 General reactivity of the side chain of pyrylium salts.
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Thus, alkylpyrylium salt 120 reacts with aromatic aldehydes 119 to give the new
polyconjugated pyrylium salts 121. This reaction finds application in the synthesis of
pyrylium dyes (Scheme 18.35) [62].

Similar reactions can be carried out with benzopyrylium salts, such as in the
reaction of 5-hydroxy-4-methylflavilium salts 122. In this case, subsequent intramo-
lecular cyclization of the initial adduct 123 gives rise to the pyranoflavyliumderivative
124 (Scheme 18.36). A charge-transfer complex has been proposed as initiator of this
reaction [63].

An interesting application of a Michel-type addition is the reaction of 4-methylpyr-
ylium salt 125with 3-dimethylaminoacrolein to furnish 4H-pyranylidene 126, which
has nonlinear optical properties (Scheme 18.37) [64].

Scheme 18.35 Aldol-like condensation of a pyrylium salt.

Scheme 18.36 Synthesis of a pyranoflavylium through the condensation of a flavylium with an
aldehyde.

Scheme 18.37 Michael-type addition with a pyrylium salt.
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18.2.5.4 Reactions with Reducing Agents
The addition ofmetal hydride complexes such asNaBH4 to pyrylium salts takes place
preferentially at C2, giving rise to 2H-pyrans 127, which undergo ring opening under
the reaction conditions to produce dienones 128 (Scheme 18.38). Under more
intensive reaction conditions (NaBH4/AcOH) further reduction takes place and
D3-dihydropyran derivatives 129 can be isolated. Nevertheless, the regiochemistry of
the hydride addition is strongly dependent on the substitution of the pyrylium
ring [65].

Catalytic hydrogenation of alkyl substituted pyryliums leads to the saturated pyran
derivatives 130 (Scheme 18.39) [66]. Depending on the reaction conditions and the
particular substrates, different types of ring-open compounds can be isolated from
pyrylium salts. A review on this subject is available [67].

On the other hand, catalytic hydrogenation in the presence of a primary amine
leads to piperidine derivatives such as 131 (Scheme 18.40), in a reaction that could be
considered a reductive amination of the pyrylium salt [68].
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Scheme 18.38 Reduction of pyrylium salts with NaBH4 under different reaction conditions.

Scheme 18.39 Catalytic hydrogenation of pyrylium salts.
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18.3
2H-Pyrans and 4H-Pyrans

The most relevant compounds featuring the 2H-pyran and 4H-pyran structures are
the corresponding carbonyl systems, 2H-pyran-2-one and 4H-pyran-4-one, respec-
tively. Each family of compounds is discussed in a separate section. A brief
commentary is dedicated here to the ring synthesis of 2H-pyrans and 4H-pyrans.

18.3.1
2H-Pyran Ring Synthesis

The most characteristic property of 2H-pyran derivatives is their ability to undergo
reversible electrocyclic ring opening to the oxatriene (Figure 18.11). The equilibrium
distribution between 2H-pyrans and 1-oxatrienes is greatly influenced by the sub-
stituents on the ring [69]. Therefore, the main strategies for the preparation of 2H-
pyran derivatives are directed to the synthesis of the acyclic precursors.

The most classical approach is the Knoevenagel condensation of 1,3-diketones
with a,b-unsaturated aldehydes [70]. The reaction between 5-methyl-1,3-cyclohex-
anedione (132) and aldehyde 133 gives rise to pyran 136 (Scheme 18.41) [71]. The
reaction proceedsmore efficiently in the presence of a secondary amine, through the
formation of an iminium salt 134, which reacts readily with the 1,3-dicarbonyl
compound to provide the oxatriene 135. Electrocyclic ring closure then leads to the
pyran 136.

Several approaches have been devised for the preparation of the oxatriene
precursor, such as the oxidation of dienols [72] or Wittig olefination [73]. In a recent
approach, monocyclic functionalized 2H-pyrans 140 can be synthesized from
propargyl vinyl ethers 137 (Scheme 18.42). The cascade process involves a metal-
catalyzed Claisen rearrangement to give allene 138, base-promoted isomerization to
oxatriene 139, and finally the 6p-electrocyclization [74].

Scheme 18.40 Reductive amination of pyrylium salts leading to piperidines.

O O

Figure 18.11 Equilibrium 2H-pyran$oxatriene.
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Bicyclic 2H-pyrans 143 have been prepared by a ruthenium-catalyzed cycloisome-
rization of diyneols 141, which gives rise to oxatrienes 142 that undergo subsequent
electrocyclization (Scheme 18.43) [75].

Another unconventional synthesis is the Pd-catalyzed cycloisomerization of
enynols 144 through a 6-endo-dig cyclization that leads to 2H-pyran 145
(Scheme 18.44). The presence of the electron-withdrawing CF3 substituent is
essential. Otherwise, the formation of a furan, through a more favorable 5-exo-dig
cyclization, occurs [76].
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Scheme 18.41 Synthesis of 2H-pyrans by Knoevenagel condensation.
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18.3.2
4H-Pyran Ring Synthesis

The main approach for the preparation of the 4H-pyran ring is the intramolecular
condensation of 1,5-dicarbonyl compounds (Figure 18.12). The cyclization proceeds
in the presence of either protic or Lewis acids. A review that covers the different
variations of this reaction is available [77].

Inmany cases, the dicarbonyl compound is prepared in situ byMichael addition of
an active methylene or an enolate to an a,b-unsaturated carbonyl compound [78].

E

E
OH

TMS
OE

E

TMS

[CpRu(CH3CN)3]PF6

wateracetone,

mol%5

60ºC
94%

OE

E

TMS

cycloisomerization
Ru-catalyzed electrocyclization

141

142

143

Scheme 18.43 Synthesis of 2H-pyrans by metal-catalyzed cycloisomerization of diyneols.

Scheme 18.44 Synthesis of 2H-pyrans by Pd-catalyzed 6-endo-dig cyclization of enynols.

Figure 18.12 General strategies for the synthesis of 4H-pyrans.
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If the methylene group is activated by the presence of a nitrile, such as mal-
ononitrile, intramolecular cyclization of the intermediate adduct 146 takes place at
the CN group, giving rise to 2-amino-4H-pyrans 147 (Scheme 18.45) [79].

Gold-catalyzed cyclization of alk-4-yn-1-ones affords different oxygen heterocycles
depending on their structure. Alkynones with one substituent at C3 undergo a 5-exo-
dig cycloisomerization to substituted furans.However, a 6-endo-dig cyclization to 4H-
pyrans 149 is observed with alkynones 148 bearing two substituents at C3
(Scheme 18.46) [80].

The hetero-Diels–Alder cycloaddition of alkyneswitha,b-unsaturated compounds
is also a methodology that has been widely employed in the synthesis of 4H-pyrans.
Owing to the low reactivity of alkynes, highly electron-rich alkynes, typically yna-
mines, are generally required. Scheme 18.47 presents the reaction between ethyli-
denemalonate 150 and ynamine 151 to produce polysubstituted pyran 152 [81].

Some of the limitations of this disconnection for the synthesis of 4H-pyrans have
been overcome recently by the development of a Ni-catalyzed process [82]. Under
these conditions, neutral alkynes 153 can be employed in formal [4 þ 2] cycloaddi-
tions with a,b-unsaturated compounds 154 to give pentasubstituted 4H-pyrans 156
(Scheme 18.48). It has been proposed that the reaction proceeds through initial the

Scheme 18.45 Synthesis of 2-amino-4H-pyrans.

Scheme 18.46 Synthesis of 4H-pyrans by gold-catalyzed 6-endo-dig cyclization of enynones.

Scheme 18.47 Synthesis of 4H-pyrans by inverse-electron-demand [4 þ 2] cycloaddition.
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formation of an oxa-nickelacycle 155, which enables the cycloaddition with the
alkyne.

An organocatalyzed [4 þ 2] annulation between 3-formylchromones 157 and
electron-poor alkynes 158 gives rise to 4H-pyrans (Scheme 18.49). The reaction
takes place under catalysis by phosphines or tertiary amines [83]. The mechanism
involves addition of the nucleophile to the alkyne to give an intermediate zwitterion
159 that adds to the formylchromone through a conjugate addition to afford the
intermediate adduct 160. Ring closure with release of the nucleophile gives the final
pyran 161.

The reaction also proceeds with acyclic oxadienes 162; however, the 4H-pyran
cycloadduct 163 undergoes a Claisen rearrangement to give 2H-pyran 164
(Scheme 18.50).

Scheme 18.48 Synthesis of 4H-pyrans by a Ni-catalyzed formal [4 þ 2] cycloaddition.
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Scheme 18.49 Synthesis of 4H-pyrans by an organocatalyzed formal [4 þ 2] cycloaddition.
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The intramolecular version of the [4 þ 2] cycloaddition can be performed with
neutral alkynes in the presence of transitionmetal catalysts. For example, the bicyclic
4H-pyran 166 is obtained from readily available precursor 165 in a copper-catalyzed
intramolecular cycloaddition (Scheme 18.51) [84]. It has been postulated that the
reaction proceeds through the formation of a Cu-acetylide, and therefore is limited to
terminal alkynes. Analogous adducts 168, derived from internal alkynes 167, can be
obtained by a Ru-catalyzed reaction that operates through a totally different
mechanism [85].

18.4
Pyrones, Coumarins, and Chromones

This section is dedicated to the family of oxygenated six-membered rings with the
structure of unsaturated lactones. The properties, synthesis, and reactivity of 2H-
pyran-2-ones (a-pyrones) (4), 4H-pyran-4-ones (c-pyrones) (5), and the correspond-
ing benzofused analogues such as coumarins (2H-1-benzopyran-2-ones) (9) and
chromones (4H-1-benzopyran-4-ones) (10) are compiled (Figure 18.13).

Scheme 18.50 Synthesis of 2H-pyrans by an organocatalyzed formal [4 þ 2] cycloaddition.
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18.4.1
a-Pyrones (2H-Pyran-2-ones)

The structure of 2H-pyran-2-ones can be presented as a resonance hybrid between
two structures: an enol-lactone and a zwitterionic aromatic structure (Figure 18.14).

However, a-pyrones present an absorption frequency in their infrared spectra at
around 1730 cm�1 [86], which is characteristic of a ketone function. This value
indicates low participation of the zwitterionic structure and, as the result, low
aromaticity [87].

On the other hand, NMR spectra indicate the location of positive charges at
positions 4 and 6 – as a downfield shift in proton [88] and carbon [89] spectra – relative
to positions 3 and 5.

As an indication of the interest of these compounds it is worth noting that the
a-pyranone structure can be found in several natural compounds [90], some of which
exhibit biological properties. As an example, compounds of the family of gibepyrones
(6-substitued-3-methyl-2-pyrones) (169, 170) (Figure 18.15) have demonstrated
inhibitory activity against some types of bacteria [91].

In addition, while several other examples have been reported related to the
properties ofa-pyrones, their benzofused derivatives (coumarins) have found greater
applicability. These compounds are analyzed in Section 18.4.2.

O O O OO

O

O

O

4 5 9 10

Figure 18.13 Structure of a-pyrone (4), c-pyrone (5), coumarin (9) and chromone (10).

Figure 18.14 Resonance structures for 2H-pyran-2-one.

Figure 18.15 Compounds of the family of gibepyrones.
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18.4.1.1 Synthesis of a-Pyrones
Themost commonmethodology for the formation of 2H-pyran-2-ones involves ring
closure from isolated, or in situ synthesized, 1,5-ketoacid derivatives. This procedure
has been followed by many authors and can be achieved by three different
approaches:

(a) from ester enolates,
(b) from ketone enolates,
(c) through acylation of ester dienolates (Figure 18.16).

The use ofmalonates orb-ketoesters is a classic procedure for thefirst approach. In
this sense, Scheme 18.52 shows an example following this methodology by using
dialkylmalonate 172 and ana,b-unsaturated ketone 173 [92]. The procedure involves
the formation of the 5-ketoester 174, which is transformed, through an ester
exchange under acidic treatment, into pyranone 175.

This methodology, starting from malonates, is still described in numerous
publications. As an example, Scheme 18.53 shows an a-pyrone formation from a
cyclic malonate ester (176) and a propionaldehyde (177) [93]. After the initial attack,

Figure 18.16 Retrosynthetic analysis for the formation of 2H-pyran-2-one (4) from 5-ketoacid
derivative 171.

Scheme 18.52 Synthesis of a-pyrone 175 from malonate 172.
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Scheme 18.53 Synthesis of a-pyrone 178 from cyclic malonate 176.
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the reaction evolves towards the formation of the pyranone 178 through a diol
deprotection and ester decarboxylation.

Among the numerous electrophiles that follow this methodology, allenyl ketones
have also been reported. Thus, Scheme 18.54 describes the synthesis of polysub-
stituted 2H-pyran-2-one 180 from the reaction of substituted allenyl ketone 179 and
malonic ester or other activatedmethylene groups [94]. The reaction takes place in the
presence of a catalytic amount of base and involves a double bond isomerization to
form the corresponding 5-ketoester, which suffers an in situ cyclization to the
pyranone 180.

On the other hand, several approaches to 2H-pyran-2-ones from 5-ketoesters have
been reported following route (b) (Figure 18.16). Thismethodology canbe considered
as the complementary to that of route (a). As an example, Scheme 18.55 shows a
procedure that involves a Michael-type addition of the enolate of ketone 181 to the
propionic ester 182 [95].

Finally, route (c) (Figure 18.16) implies the acylation of an ester enolate to form the
corresponding 5-ketoacid derivative that can be isolated, or in situ cyclized, to the
correspondinga-pyrones. Thus, Stille coupling of vinyltin 184 affords the 5-ketoester
intermediate 185. This intermediate suffers in situ transformation into the corre-
sponding 2H-pyran -2-one 186 (Scheme 18.56) [96].
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Scheme 18.54 From allenyl ketone 179 to a-pyranone 180.

Scheme 18.55 Synthesis of 2H-pyran-2-ones 183 through via route (b) in Figure 18.16.
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In a similar approach, carbonylation of the alkenyl ketone 187, under palladium
catalysis, followed byO-enolate cyclization affords pyranone 188 (Scheme 18.57) [97].

In addition to synthesis through the formation of 5-ketoacid derivatives, many
alternative methodologies for synthesis of 2H-pyran-2-ones have also been reported.
Among of them, several examples of lactonization of (Z)-2-en-4-ynoate derivatives
can be found. Scheme 18.58 describes two examples: an iodolactonization and an
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Scheme 18.56 Synthesis of 2H-pyran-2-ones 186 though via route (c) in Figure 18.16.

Scheme 18.57 Synthesis of a-pyrones 188 via carbonylation–cyclization.

Scheme 18.58 Lactonizations for the synthesis of 2-pyranones.
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intermolecular Stille coupling, followed by the corresponding lactonization. Thus,
iodine or N-iodosuccinimide (NIS) addition to the (Z)-2-en-4-ynoic acid 189, in a
basic media, induces its cyclization to the a-pyrone 190 [98]. On the other
hand, the (Z)-2-en-4-ynoic derivative is in situ generated from an alkynyltin 192
and a 3-iodoacrylate 191 to undergo further cyclization [99].

18.4.1.2 Reactivity of a-Pyrones
As alreadymentioned,a-pyrones can be described as hybrids between two resonance
structures: an aromatic pyrylium salt and a lactone (Figure 18.14). Although, some
reactions can be associated to the aromaticity,most of the reactive patterns are related
to a 1,3-diene or a lactone structure.

Participation of a-pyrones as 1,3-dienes in Diels–Alder reactions was described as
early as 1931 [100]. In this sense, pyran-2-one (4) reactswithmaleic anhydride (193) to
give the corresponding adduct 194 (Scheme 18.59).

This reactivity pattern has also found application in the modern organic synthesis
as several structures have been accessed starting from a-pyrones and dienophiles.
Scheme 18.60 describes theDiels–Alder reaction ofa-pyrone 195 and vinyl ether 196
in the route to biologically active compounds [101]. Examples of enantioselective
Diels–Alder reactions with 2H-pyran-2-one have also been reported [102].

Interestingly, a-pyrones also participate in Diels–Alder reactions as dienophiles.
Thus, reaction of the pyran 2-one 198 and cyclopentadiene 197 produces the bicyclic

Scheme 18.59 Diels–Alder cycloaddition of a-pyranone (4).
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Scheme 18.60 Diels–Alder reaction of pyranone 195 in the synthesis of (�)-crinine.
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lactone 199 (Scheme 18.61) [103]. This dienophilic capability of pyranone 198 is
facilitated by the presence of an electron-withdrawing group.

Taking account of their dienone structure, 2H-pyran-2-ones are also reactive
towards nucleophiles [104]. This reaction can occur at three different electrophilic
sites: C4, C6, and the carbonylic carbon C2. Scheme 18.62 shows two examples of
nucleophilic attacks to C4 and C2 positions, respectively. In the first example,
nucleophilic substitution of the halogen atom has been achieved at the C4 carbon
of the pyran-2-one 200 [105]. In the second example, addition of two equivalents of a
Grignard reagent to pyranone 201 furnishes 2,2-disubstituted pyrans 202 [106].

Transformation of 2-pyranones into other heterocycles through nucleophilic
additions at C2 is also possible. Scheme 18.63 shows the transformation of
3-amino-2-pyranone 203 into pyridazines 204–206 [107], initiated by a nucleophilic
attack of hydrazine on the carbonylic carbon followed by a ring closure. This reaction
yields tetrahydropyridazine 204 along with different amounts of dihydropyrida-
zine 205 and pyridazine 206. Further transformations allow the formation of 206
as the sole product.

C6-attack is also very common, and the reaction usually evolves to the formation of
aromatic structures. These reactions begin by a nucleophilic attack, followed by an

Scheme 18.61 a-Pyrone 198 reacting as a dienophile.

Scheme 18.62 Nucleophilic attacks on a-pyrones at C4 and C2.
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intramolecular cyclization and decarboxylation. Scheme 18.64 reports one such
example in which the bicyclic aromatic derivative 209 is formed. This reaction is
initiated by the nucleophilic attack of the enolate of ketone 208 on the C6 position of
a-pyrone 207 followed by ring opening, decarboxylation, and recyclization [108].

In a less general approach, a-pyrones also react with electrophiles through the C3
position. In this sense, 2H-pyran-2-ones bearing a hydroxy or alkoxy group at C4 have
been described as useful intermediates for accessing natural compounds with the
skeleton of 4-hydroxy-3-substituted-2-pyranones [109]. Scheme 18.65 shows the
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reaction of the 4-methoxy-2-pyranone (210) with an electrophile, in the presence of
titanium tetrachloride, to give the 3-formylpyranone 211 [110].

Finally, other reactions such as photochemical reactions [111], hydrogena-
tions [112], and palladium-catalyzed couplings [113] can also take place at the
a-pyranone structure.

18.4.2
Coumarins (2H-Chromen-2-ones or 2H-1-Benzopyran-2-ones)

Coumarins (2H-benzopyran-2-ones) are nearly planar compounds and are also
considered as enol-lactone systems in a similar way to the corresponding a-pyrones.

As noted above, coumarins (1,2-benzopyrones) have been widely reported in the
scientific literature in respect of their important applications. Pharmacological
properties are good examples of this, such aswarfarin (212, Figure 18.17), a coumarin
derivative that has found application as anticoagulant for preventing thrombo-
sis [114]. Owing to its anticoagulant activity it has also found application as pesticide
to eradicate rats and mice plagues [115].

Figure 18.18 shows the structure of ensaculin (213), another interesting coumarin.
It is a 3,4-dimethylcoumarin, with a tethered piperazine moiety, that has demon-
strated potential activity against dementia [116].

Scheme 18.65 a-Formylation of pyranone 210.

Figure 18.17 Structure of warfarin.

Figure 18.18 Structure of ensaculin.

1668j 18 Six-Membered Rings with One Oxygen: Pyrylium Ion, Related Systems and Benzo-Derivatives



In addition to their use in pharmacology, coumarins can also be found in other
fields such asmaterial science. For instance, coumarin 214 has found applicability as
part of laser devices, due to its fluorescent properties (Figure 18.19) [117].

Perhaps one of the easiest ways to access to the coumarin structure consists in an
intramolecular lactonization, as several examples of the synthesis of coumarins
following this methodology have been reported. In the reaction shown in
Scheme 18.66, coumarin 216 has been synthesized through an acidic and basic
deprotection/transesterification sequence from the acetoxy compound 215 [118].

Salicylaldehydes are often used as staring materials for the intramolecular lacto-
nization. These compounds can be transformed, following simple procedures such
asWittig [119] or Knoevenagel reactions [120], into intermediates that in situ cyclize to
the corresponding coumarins. Scheme 18.67 describes the Wittig reaction of
phosphorane 217 with salicylaldehyde derivative 218 to form an a,b-unsaturated
ester that lactonizes in situ to give furanocoumarin 219 [121].

One of the most extended procedures for coumarin synthesis consists of a
Pechmann condensation, an acid-catalyzed condensation of phenol with a b-ketoe-
ster. The reaction mechanism is initiated by an electrophilic aromatic substitution

Figure 18.19 Fluorescent coumarin 214 is used in laser devices.
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and involves a final step of lactonization. Among the different reaction conditions
reported, Scheme 18.68 describes a coumarin synthesis, in the absence of solvent,
through a Pechmann condensation catalyzed by titanium tetrachloride [122].

Propionic acids [123] or propionic esters [124] are also used as 1,3-dicarbonyl
synthetic equivalents for this reaction. Other intramolecular reactions such as
condensations [125], ring closing metathesis [126], or transition metal catalyzed
arylation of aryl alkynoates [127] have also been reported.

Finally, it is worth noting an interesting procedure that involves a transition metal
catalyzed carbonylation. Thus, Scheme 18.69 describes a coumarin synthesis from
ortho-alkynylphenols [128]. Rhodium-catalyzed carbonylation followed by lactoniza-
tion furnishes coumarin 221, along with certain amount of a benzofuranone.

Related to their reactivity, coumarins follow similar reaction patterns to those
described for a-pyrones. In this sense, reactions with nucleophiles [129], electro-
philes [130], and also Diels–Alder cycloadditions [131], with the participation of the
lactone ring, are common examples. Only a few procedures involving the benzene
fused ring, such as selective nitration of the aromatic ring [132], differ from the
reactivity of a-pyrones.

18.4.3
c-Pyrones (4H-Pyran-4-ones)

4H-Pyran-4-ones, similarly to 2H-pyran-2-ones, can be presented as resonance
hybrids between a cross-conjugated cycloenone and a zwitterionic aromatic structure
(Figure 18.20).

Scheme 18.68 Pechmann condensation for the synthesis of coumarin 220.

Scheme 18.69 Synthesis of coumarin 221, involving a carbonylation step.
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Taking account of the absorptions in the infrared spectra, c-pyrones are alsomainly
considered as lactones instead of aromatic compounds. To support this theory an
absorption at the IR spectra around 1660 cm�1 is observed [133], similarly to theC¼O
stretching seen in cyclohexadienones. However, this value is slightly lower than the
absorption observed for a-pyrones. These values, in addition to their higher basicity
compared toenones, indicate agreater contribution fromthearomatic structure [134].

18.4.3.1 Synthesis of c-Pyrones
Themost commonly accepted methodology for the synthesis of 4H-pyran-4-ones (5)
lies in the cyclocondensation of 1,3,5-tricarbonylcompounds (222), usually per-
formed under acidic conditions (Figure 18.21) [135].

As an example of this approach, Scheme18.70 shows ahigh yield,multi-gramscale
(10 g) synthesis of c-pyrone (5) from diketalic bis-aldehyde 223 [136].

Themain differences in the reportedmethodologies for the synthesis of c-pyrones
usually occur in the procedures involved for accessing the 1,3,5-tricarbonyl com-
pound or analogues. Thus, use of the enolate of diketone 224, in the reaction with
carboxylic esters, yields triketones 225 that cyclize under acidic conditions to give 2,6-
disubstituted c-pyrones 226 (Scheme 18.71) [137].

As another example of this approach, c-pyrones can also be obtained from
a-pyrones. Thus, a-pyrones, after acidic treatment, are cleaved and transformed
into a 1,3,5-triketone that in situ undergoes recyclization to the corresponding
c-pyrone [138].

Figure 18.20 Mesomeric structures for 4H-pyran-4-one.
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Figure 18.21 Retrosynthetic approach to c-pyrones.

Scheme 18.70 Large-scale synthesis of c-pyranone (5).
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The synthesis of 4H-pyran-4-ones has also been reported involving a totally
different approach. As an example, Scheme 18.72 describes a hetero-Diels–Alder
reaction between the ethoxyethyne (228) and ketoketene 227 to form the correspond-
ing substituted c-pyrone 229 [139]. In a similar way, the use of enol-esters gives rise to
6-unsubstituded pyranones, after elimination of ethanol.

18.4.3.2 Reactivity of c-Pyrones
c-Pyrones can be easily transformed into a-pyrones upon irradiation. This evolution
is proposed to involve an initial step of electrocyclization to form the intermediate
230, which can evolve to the formation of the epoxycyclopentenone 231. Finally,
oxygen migration followed by ring expansion leads to the 2H-pyran-2-one (4)
(Scheme 18.73) [140].

The reactivity of 4H-pyran-4-ones shows great similarity to that of 2H-pyran-2-
ones. Thus, cycloadditions with the participation of one or both pyranone double
bonds are good indications of the low aromaticity of c-pyrones. Scheme 18.74 shows
the participation of c-pyrone 233 as a dienophile in a Diels–Alder reaction with
Danishefsky�s diene (232) to form the bicyclic pyranone 234 [141].

On the other hand, c-pyrones can be transformed into medium-sized rings
through cycloadditions that involve the participation of both unsaturations. In this
sense, several intermolecular [5 þ 2] cycloadditions have been reported [142].

Scheme 18.71 4-Pyranone 226 from diketone 224.
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Scheme 18.72 Hetero-Diels–Alder cycloaddition to form c-pyrone 229.

O

O

O

O

O

O O

O

45 231230

Scheme 18.73 Photochemical transformation of c-pyrone (5) into a-pyrone (4).
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Among of them, the optically active 8-oxabicyclic[3.2.1]octane 236 has been produced
from optically active b-silyloxy-c-pyrone 235 (Scheme 18.75) [143].

4H-Pyran-4-ones, similarly to 2H-pyran-2-ones, react with nucleophiles, involving
an opening–reclosing of the six-membered ring. Nucleophilic attack on c-pyrones
can occur in twodifferentways: 1,2-addition at the carbonyl group and 1,4-conjugated
additions. Scheme 18.76 shows two representative examples that describe this
regioselectivity. Thus, 1,2-addition followed by double bond formation is observed
in the reaction of the reactive methylene group of the cyanoacetamide (238) and
c-pyrone 237 [144]. On the other hand, c-pyrone 239 has been transformed into the
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∆
O
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Scheme 18.74 c-Pyrone 233 as a dienophile.
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Scheme 18.75 Intramolecular [5 þ 2] cycloaddition of c-pyrone 235.

Scheme 18.76 Nucleophilic attacks on 4-pyranones.
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pyridone 240 by a nucleophilic 1,4-addition upon ammonium hydroxide
treatment [145].

18.4.4
Chromones (4H-Chromen-4-ones or 4H-1-Benzopyran-4-ones)

As described above for coumarins, several examples of natural occurring compounds
with the structure of chromones (4H-1-benzopyran-4-ones) have been described.

As an example, khellin (241) is a natural biologically active chromone that has been
widely used in traditional Egyptian medicine for the treatment of renal colic and it is
known that it can also act as a vasodilatator (Figure 18.22) [146]. However, due to the
important secondary effects of khellin, resulting headaches or intestinal disorders,
other synthetic analogues such as cromoglicic acid (242) have been developed. The
sodium salt of 242 has found application in the treatment of allergic rhinitis or
asthma [147].

Flavones (2-phenylchromones) are also natural occurring compounds, widely
found, usually as glycoside derivatives, as pigments in plants. Compounds of this
type are luteolin (243), which is present in celery, green pepper, and camomile tea,
which shows antioxidant properties [148], and apigenin (244), a component of parsley
and celery with important potential biological [149] and industrial properties as a dye
forwool (Figure 18.23). In addition, 3-hydroxyflavones, also known asflavonols, form

O O OO

OH
O

HO

O

O

O

OH

242

O O

OMe

OMeO

241

Figure 18.22 Structures of khellin (241) and cromoglicic acid (242).

Figure 18.23 Structures of luteolin (243), apigenin (244), and myricetin (245).
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another interesting family of biologically active chromones. As an example,myricetin
(245), found in grapes and other plants, has demonstrated antitumor activity [150].

The most extensive methodology for the synthesis of 4H-1-benzopyran-4-ones
(chromones) involves the formation of the pyranone ring starting from ortho-
hydroxyarylketones or related compounds. As a general example, Scheme 18.77
shows the synthesis of isoflavone 247 through the treatment of ortho-hydroxyphe-
none 246 with a mixed anhydride (of acetic and formic acids) and further
dehydration [151].

The intramolecular cyclization followed by dehydration of o-hydroxyacetophe-
nones can be achieved using different experimental conditions. Scheme 18.78 shows
a procedure promoted by iron trichloride [152]. The phenols 248 also cyclize under
copper treatment and microwave irradiation [153] to form chromones 249.

The synthesis of chromones starting from o-hydroxyketones or related compounds
has also been reported through an intramolecular cyclization of aryl ethynylke-
tones [154] or 2-acetoxy- [155], benzyloxy- [156], or hydroxychalcones [157], followed
by oxidation.

In addition to the procedures reported here, it is worth mentioning an interesting
example involving a carbonylation step. This reaction is described in Scheme 18.79:
chromone 252 is synthesized through a palladium-catalyzed carbonylation of
o-iodophenol 250, in the presence of a terminal alkyne (251) [158].

HO OH

R1 O

Ar

R2O

OR1

O

O

ArAc2O

HCO2H

247246

R1 OHH,=

R2 HCOH,=

4-NO=Ar 2-C6H4

90%-70

Scheme 18.77 Formation of chromone 247 from o-hydroxyarylketone 246.

Scheme 18.78 Iron-promoted formation of chromone 249.
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Finally, chromones can also be synthesized starting from other heterocycles.
Scheme 18.80 shows the transformation of benzofuran 253 into chromone 254
upon treatment with osmium tetroxide followed by hydrolysis [159]. The reaction
involves a double bond oxidation followed by opening of the furan ring and a final
recyclization to form a six-membered ring.

Finally, no section is specifically dedicated to compiling reported examples of the
reactivity of chromones because, in addition to the typical aromatic substitution at the
arene ring and similar behavior to coumarins, their reactivity follows a similar pattern
to the non-benzofused compounds, the c-pyrones.

R1 I

OH R2

+ PdCl2 /PPh3

NEt3 /H2O

CO

35-95%

O

O

R1

R2

252250 251

R1 = H, Me, t-Bu, Ph, Cl, CO2 Et

R2 = n-Bu, t-Bu, n-C6H13,TMS

Scheme 18.79 Synthesis of chromone 252 through a palladium-catalyzed carbonylation.

Scheme 18.80 Transformation of benzofuran 253 into chromone 254.
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19
Six-Membered Heterocycles: 1,2-, 1,3-, and 1,4-Diazines and
Related Systems
María-Paz Cabal

19.1
Introduction

Diazines are aromatic six-membered heterocycles that contain two sp2-hybridized
nitrogenatomsinthering.Thethreediazine isomersarepyridazine(1,2-diazine) [1–3]
(1), pyrimidine (1,3-diazine) [4] (2), and pyrazine (1,4-diazine) [5] (3). They are stable,
colorless compounds that are soluble inwater. Being rather expensive, andnot readily
available, these parent compounds are rarely used as starting materials for the
synthesis of their derivatives.
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Four types of bicyclic variants in which a benzene ring is fused onto the diazine
include cinnoline (benzo[c]pyridazine) (4), phthalazine (benzo[d]pyridazine) (5),
quinazoline (benzo[d]pyrimidine) (6), and quinoxaline (benzo[e]pyrazine) (7). In
addition, pteridine (8) and the diazanaphthalene system phenazine (dibenzopyra-
zine) (9) are also important derivatives.
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19.2
General Reactivity

19.2.1
Physical and Spectroscopic Properties [6]

As 6p-electron heteroaromatic compounds diazines are electron-deficient due to
the inductive effects of the nitrogen atoms that induce a partially positive charge
on the carbon atoms. The calculated p-electron density [7] distributions for each
ring, compared to pyridine (Figure 19.1), are consistent with the observed
reactivities towards electrophiles, which are notably lower than those towards
nucleophiles.

Pyridazine and pyrimidine have a planar, slightly distorted hexagonal geometry,
while pyrazine is planar with D2h symmetry. Each of these heterocycles can be
regarded as aromatic in character, and, consequently, the bond lengths and internal
bond angles (Figure 19.2) are also very similar to those in benzene (1.39A

�
), based on

X-ray diffraction, gas-phase electron diffraction and microwave spectroscopy
studies [8].

However, the resonance energies of pyrimidine (110 kJmol�1) and pyrazine
(100 kJmol�1) are significantly lower than those of benzene (150 kJmol�1) or
pyridine (117 kJmol�1), which means that these compounds are less aromatic.
Another way to measure the degree of aromaticity is by the structural index of
aromaticity that is calculated based on the bond lengths; in such set of values the
aromaticity is expressed as a percentage of that of benzene (Table 19.1).

The N�N bond in pyridazine has significant single bond character, supporting
theoretical calculations suggesting that canonical form 1a, having double bonds

N
N

N

N

N

N

N

PyridinePyridazine PyrazinePyrimidine
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0.787
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1.449 1.368
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Figure 19.1 Calculated p-electron density distributions for each ring, compared to pyridine.
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Figure 19.2 Bond lengths (A
�
) and internal bond angles (�) of pyridazine, pyrimidine, pyrazine, and

pyridine.
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between the nitrogens, contributes less to the resonance hybrid than the N�N single
bond structure 1b.

1a

N
N

1b

N
N

The 1H and 13C NMR spectra of the diazines show close similarities with pyridine
(Table 19.2). The additional nitrogen atom in the ring is responsible for a greater
downfield shift of the ring protons and C-atoms at the 3- and 6-positions in
pyridazine, the 2-, 4-, and 6-positions in pyrimidine, and in all the carbons in
pyrazine. The symmetrical 1,4-diazines structure, of course, is reflected in the 1H
and 13C NMR spectra, showing one signal for the four ring protons and C-atoms.

The vicinal coupling constants of ortho protons on the rings vary considerably,
depending on the type of heterocycle, and are typically smaller for those protons
located closer to the heteroatoms (Figure 19.3). The magnitude of the coupling
constants in effect reflects the degree of double bond character in the particular C�C
bond. 15N NMR spectroscopy has also been used to estimate the hybridization of the
nitrogen atoms [9].

Table 19.1 Aromaticity index (%).

Benzene 100
Pyridine 82
Pyridazine 65
Pyrimidine 67
Pyrazine 75

Table 19.2 1H NMR chemical shifts (ppm) of diazines compared with pyridine.

Compound H2 H3 H4 H5 H6 C2 C3 C4 C5 C6 Solvent

Pyridazine — 9.17 7.52 7.52 9.17 — 153.0 130.0 130.3 153.0 CDCl3
Pyrimidine 9.26 — 8.78 7.36 8.78 158.4 — 156.9 121.9 156.9 CDCl3
Pyrazine 8.60 8.60 — 8.60 8.60 145.9 145.9 — 145.9 145.9 CDCl3
Pyridine 8.52 7.16 7.55 7.16 8.52 149.5 125.6 138.7 125.6 149.5 CDCl3
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Figure 19.3 Vicinal coupling constants (Hz) of ortho protons.
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Table 19.3 lists the principal bands in the UV spectra of the three monocyclic
systems. The six-membered aza-aromatic compounds possess the 6p-electron
system of benzene, and have non-bonding electron pairs on the nitrogen atoms.
These electron pairs are responsible for n!p� electronic transitions at longer
wavelengths. These absorptions are weak in comparison to the p!p� transition
of the ring electrons and are frequently difficult to locate in spectra except when the
twonitrogen atoms are adjacent. Thus, then!p� bands aremore obvious features of
the UV spectra of compounds such as pyridazine (1) and cinnoline (4).

The introduction of a nitrogen atom into a benzene ring tends tomake a derivative
more crystalline and less volatile; this effect is even greater for the diazines, especially
pyridazine and pyrazine. Pyridazine, in contrast, is a colorless liquid, soluble inwater
and alcohols but insoluble in hydrocarbons. The high boiling point of pyridazine,
80–90 �C – higher than the other two diazines (Table 19.4) – is attributed to the
polarizability of the N–N unit, which results in extensive dipolar association in the
liquid state. Alkyl groups attached to ring carbon atoms usually increase the boiling
points by 20–60 �C,while hydrogen bonding groups such as carboxylic acids, amides,
amino, and hydroxy substituents afford solids. Methoxy, methylthio, and dimethy-
lamino derivatives are often liquids, while chloro compounds have boiling points
similar to those of the corresponding ethyl derivatives, and approximately 25 �C lower
than their bromo analogues.

Table 19.3 UV absorption bands of the diazines versus pyridine.

Compound p ! p� Log e n ! p� Log e Solvent

Pyridazine 241 3.02 340 2.56 Hexane
251 3.15

Pyrimidine 238 3.48 272 2.62 H2O
243 3.50

Pyrazine 261 3.81 301 2.88 H2O
267 3.72

Pyridine 195 2.65 270 3.87 Hexane
251 3.30

Table 19.4 Physical properties of pyridazine, pyrimidine, and pyrazine versus pyridine.

Property Pyridazine Pyrimidine Pyrazine Pyridine

Mp (�C) �8 22.5 57 �42
Bp (�C/760mmHg) 208 124 116 115
pKa 2.3 1.3 0.4 5.2
Dipole moment (m, D) 4.22 2.33 0 2.22
DH� (kJ mol�1) 4397.8 4480.2 4480.6
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The basicities of the diazines are sharply reduced from that of pyridine and,
consequently, they are more difficult to protonate on the nitrogen centers. This is
reflected by the significantly lower pKa values the protonated species have compared
to pyridinium cation (pKa 5.2): 2.3 for protonated pyridazine, 1.3 for protonated
pyrimidine, and 0.4 for protonated pyrazine. The dipolar moment of pyridazine is
higher than that of pyrimidine, while pyrazine is symmetrical and has no dipole
moment. The calculated enthalpies of formation for the diazines show that pyrida-
zine is 83 kJmol�1 more stable than pyrimidine and pyrazine.

19.2.2
Tautomerism

Table 19.5 summarizes the tautomeric features of hydroxy-, mercapto-, and amino-
substituted azines for dilute solutions in water at 20 �C. For systems having X¼O or
S, the non-aromatic tautomer form(s) in general is favored over the aromatic species,

Table 19.5 Tautomeric equilibria of some monofunctional azines.

Entry Compounds X¼O X¼ S X¼N

1

N
N

XH

N
NH
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A B
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N
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H
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although in the vapor phase the thiol predominates over the thione. For 4-hydro-
xypyrimidine (entry 4), which can exist as three different tautomers, the general
tendency favors amide B over the vinylogous amide C. For X¼N, the aromatic
structure is consistently favored over the other tautomers B and C.

19.3
Relevant Natural/Biological Compounds

19.3.1
Pyridazines (1,2-Diazines)

Unlike other heterocycles found in many important natural products, pyridazines
were discovered only after 1970, and relatively few pyridazines have thus far been
isolated from natural sources. The first representative examples include some
fungal metabolites from Streptomyces species. These are now a big group of over
15 related compounds. Monomycin X [10] (10, from Streptomyces jamaicensis) is
just one example of cyclohexadepsipeptide antibiotics. Antrimycins [11] (11, from
Streptomyces xanthocidiens) are tuberculostatic peptides that also contain nonri-
bosomal amino acids. The quaternary salt pyridazinomycin [12] (12, from
Streptomyces violaceoniger) is an antifungal antibiotic whose amino acid side chain
can be viewed as L-ornithine with its terminal nitrogen atom as part of the
pyridazine ring.
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As synthetic compounds, pyridazines constitute an important pharmacophoric
moiety present in many drugs acting on various pharmacological targets. Minaprine
(13) [13] is a synthetically-derived aminopyridazine possessing dopaminergic, sero-
toninergic, cholinergic, and GABA-ergic activities, while SR 95103 (14) [14], an
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analog of c-aminobutyric acid (GABA), serves as a powerful inhibitor of monoamine
oxidase and acetylcholine esterase [15, 16].

N
O

H
N

N
N

Me

Ph

13 Minaprine

N
N

NH
Me

Ph
COOH

14 SR 95103

Several pyridazines are selective plant growth regulators and are used as herbi-
cides. Pyridate, 15, and 3-hydroxy-6(1H)-pyrazinone, 16, are two examples currently
used in commercial lawn weed killers.
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19.3.2
Pyrimidines (1,3-Diazines)

The most important naturally occurring diazines are the pyrimidine bases uracil,
thymine, and cytosine, which comprise the fundamental nucleoside building blocks
in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) [17]. These compounds
exist as tautomers in which the hydroxypyrimidines adopt the lactam form [uridine
(17) and thymidine (18)] whereas aminopyrimidines prefer the enamine structure
(cytidine, 19).
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In addition, several pyrimidine nucleoside analogues have been developed as anti-
viral agents [18]. Idoxuridine, 20, is used in the treatment of herpes infections of
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the eye; AZT (21) is themostwidely used anti-AIDSdrug; stavudine, 22, is effective in
the treatment of HIV infections and AIDS, and lamivudine, 23, is used to treat both
hepatitis B and AIDS.
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Barbituric acid, 24, and orotic acid, 25, a key compound in the biosynthesis of
naturally occurring pyrimidine derivatives, are also important pyrimidine deriva-
tives. 5,5-Diethylbarbituric acid was the first therapeutic barbiturate (E. Fischer 1903,
veronal or barbital, 26), and other derivatives are still used as sedatives, antiepileptic
drugs, and anesthetics. Sedative barbiturates have toxicity and dependency problems
and have now been replaced by other drugs.

26 Veronal (Barbital)

N
H

NH

O

O O

24 Barbituric acid

N
H

NH

O

HOOC O

25 Orotic acid

N
H

NR3

O

O O

R1

R2

R1 = R2 = Et
R3 = H

Vitamin B1 (thiamine), 27, occurs in yeast, rice husk, and various cereals, and
represents another well-known naturally-occurring pyrimidine essential in our daily
lives. A deficiency of vitamin B1 causes beriberi and damage to the nervous system
(polyneuritis).
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27 Vitamin B1

Several pyrimidine-containing antibiotics, especially those isolated from Strepto-
myces, possess potent antitumor properties, such as the structurally complex bleo-
mycins. Trimethoprim, 28, an antibacterial agent widely used in combination with
sulfamethoxazole, and the antimalarial pyrimethamine, 29, are examples of synthetic
2-amino-substituted pyrimidines in the pharmaceutical area.

1690j 19 Six-Membered Heterocycles: 1,2-, 1,3-, and 1,4-Diazines and Related Systems



N

N

NH2

NH2

OCH3

H3CO

H3CO

28 Trimethoprim

N

N

NH2

NH2

29 Pyrimethamine

Cl

Et

Bensulfuronmethyl, 30, a sulfonylurea derived from 4,6-dimethoxy-2-aminopyr-
imidine, acts as a powerful plant growth regulator and is an active herbicide.
7-Hydroxy-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine, 31, serves as an emulsion sta-
bilizer in various photographic materials.
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19.3.3
Pyrazines (1,4-Diazines)

Alkylpyrazines occur frequently as constituents in foodstuffs and are responsible for
their flavor and strong aroma. Although being present in very small amounts, they
are highly odiferous and can be detected at extremely low concentrations (10�5 ppm).
3-Isobutyl-2-methoxypyrazine, 32, is a simple natural derivative isolated from green
peas andwine, and 2-methyl-6-vinylpyrazine, 33, is an aromatic component of coffee.
Several polyalkylpyrazines such as 2-ethyl-3,5-dimethylpyrazine, 34, also act as alarm
pheromones in ants. Several pyrazin-2(1H)-ones and 1-hydroxypyrazin-2(1H)-ones
(35) have antibiotic properties.
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OH
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343332 35

19.4
Synthesis of Pyridazines (1,2-Diazines)

The first pyridazines were first synthesized as early as 1886 by Fischer [19], but their
chemistry has only been explored since the 1950s. This is likely because pyridazines
do not occur as natural products despite having a nitrogen–nitrogen linkage that
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could conceivably be obtainable from biochemical transformation of dinitrogen.
However, since many pyridazines possess potential therapeutic or plant growth
inhibitory effects, a wide variety of new syntheses have been developedmore recently.

19.4.1
Synthesis by Ring-Closure Reactions

19.4.1.1 Three-Component Couplings
Although the assembly of pyridazines from three discrete coupling units is relatively
uncommon, three-component reactions do represent a useful method for the
preparation of 1,2-diazines (Scheme 19.1).

As an example (Scheme 19.2), a 1,2-diketone, a cyanoacetate, and hydrazine
combine under basic alcoholic conditions to afford 5,6-disubstituted pyridazine-3
(2H)-ones 36 bearing a nitrile group at position 4 [20], a versatile precursor to fused
pyridazines [21, 22]. Similarly, the reaction of 1-aryl-2-nitroprop-1-enes with an
acetoacetate ester and hydrazine offers 3,6-dimethylpyridazines 37 bearing an aryl
group at position 5 and a carbohydrazide at position 4 [23, 24].

19.4.1.2 Two-Component Couplings
Two different strategies can be considered for the assembly of pyridazines by a two-
component coupling (Scheme 19.3).
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A more common route to 1,2-diazines involves a coupling of formal [4 þ 2]
cyclocondensation precursors to create the six-membered ring in one step. Examples
are illustrated below.

19.4.1.2.1 [C-C-C-C] þ [N-N] The condensation of hydrazine or substituted hydra-
zines with appropriate four-carbon synthons represents one of the most widely used
approaches to pyridazines and pyridazinones (Scheme 19.4) [25a]. Carbons 1 and 4 of
these building blocksmust bear functional groups that are susceptible to nucleophilic
attack by a hydrazine nitrogen atom (usually followed by elimination of a small
molecule like water, an alcohol, etc.). Depending on the degree of saturation of the
C2�C3 bond, fully aromatic or partially saturated pyridazines are obtained, in which
case various methods for oxidation/aromatization are available (Br2/AcOH; CuCl2/
CH3CN, etc.).

A long-established method to prepare 3,6-disubstituted pyridazines is the con-
densation of saturated 1,4-dicarbonyl compounds with hydrazine, semicarbazide, or
similar hydrazine derivatives (Scheme19.5). The fully aromatic pyridazines can often
be obtained by spontaneous oxidation of the dihydro intermediates [25b]. When
saturated 1,4-diketones are used, the reaction is carried out in the presence ofmineral
acids to prevent the competing formation of N-aminopyrroles.

One interesting alternative is the use of Meldrum�s acid derivatives 38, which are
easily available and readily cyclize with hydrazine at room temperature, with
subsequent decarboxylation, to provide the 4,5-dihydropyridazin-3(2H)-ones 39
(Scheme 19.6) [26].

4-Oxoalkanoic acids where R3¼ alkyl/aryl/heteroaryl residues, with or without
further substituents R1 and R2, have been employed for condensation reactions with
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hydrazine (Scheme 19.7) [27]. Whereas in most cases the free carboxylic acids
(R4¼H) are employed, esters are also frequently used [28]. For the latter case, a
protocol suitable for high-throughput organic synthesis has been developed that is
based on construction of the oxo ester precursor by silver(I)-catalyzed addition of
zirconocenes to epoxy esters [29].

When 4-oxoalkanoic acids with a 2-hydroxy group are employed for cyclization
with hydrazine spontaneous dehydration of the initial intermediate occurs to give
pyridazine-3(2H)-ones 40 (Scheme 19.8). In some cases, the 4-hydroxydiazinone
intermediate can be isolated [30].

A useful one-pot protocol based on this route has been developed by Coates
(Scheme 19.9) [31] that employs substituted acetophenones with glyoxylic acid
monohydrate in the presence of ammonium hydroxide, in which the initial aldol
adduct is converted into the pyridazin-3(2H)-one 41 with hydrazine. The reported
yields are, however, highly variable.

H2NNH2.H2O

N
NH

R1

O

R2

38 39

O

O

R2 O

OO
R1

Scheme 19.6

R3 R1

O CO2R4

R2

H2NNH2.H2O

heat N
NH

R1

OR2

R3

[O]

N
NH

R1

OR2

R3
66-100%

52-95%

Scheme 19.7

R3

O

R2

CO2R4

R1

OH

H2NNH2.H2O

N
NH

OR2

R3

R1 OH

-H2O
N

NH

R1

OR2

R3

40

Scheme 19.8

Ar

O OHCCO2H.H2O
H2O, NH4OH

Ar

O CO2

OH

NH4
H2NNH2.H2O

-H2O N
NH

O

Ar

41(33-86%)

Scheme 19.9

1694j 19 Six-Membered Heterocycles: 1,2-, 1,3-, and 1,4-Diazines and Related Systems



Lam and Lee have devised a solid-phase procedure for the synthesis of various 3,6-
disubstituted pyridazines (Scheme 19.10) [32]. Sodium benzenesulfinate resin was
treated sequentially with a-bromoketones in two steps to give immobilized diketo
sulfones, from which a library of substituted pyridazines could be prepared by
condensation with hydrazine. Release of the adducts from the resin occurs by
spontaneous elimination driven by ring aromatization.

Unsaturated 1,4-dicarbonyls likewise undergo cyclization with hydrazine to
afford directly the pyridazine product 42 (Scheme 19.11) [33]. While (Z)-alkenyl
diketones react readily with ethanolic hydrazine hydrate at room temperature,
cyclization of the corresponding (E)-isomer also occurs but requires higher
reaction temperatures [34].

The unsaturated 1,4-dicarbonyl compound can be generated electrolytically from
polymer-bound furans [35]. The initial oxidation product 43 can be hydrolyzed in
aqueous acid and, through condensation with hydrazine and concomitant hydrazi-
nolysis of the ester linkage, pyridazines 44 are obtained in 50–65% overall yield
(Scheme 19.12).

The use of maleic acid derivatives with substituted hydrazines is a general method
for the preparation of 6-hydroxypyridazin-3(2H)-ones 45, bearing various substitu-
ents at the 2, 4, or 5 positions (Scheme 19.13). These serve as versatile intermediates
to other pyridazines since the oxo/hydroxyl groups at C3 and C6 can be easily
converted into chloro substituents for nucleophilic replacement [36].

3-Formylpropenoic acids and their hydroxylactone tautomers react with hydrazine
to afford pyridazin-3(2H)-ones 46 in a single step (Scheme 19.14). Thus, the
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condensation of 2,3-dichloro-4-oxobut-2-enoic acid (mucochloric acid, R1 and R2¼
Cl) or its bromo congener with hydrazine gives the corresponding 4,5-dihalopyr-
idazin-3(2H)-ones [37].

The same precursors have been used for the preparation of 6-aryl-4,5-dihalopyr-
idazin-3(2H)-ones 47, via an intermediate lactone resulting from the Friedel–Crafts
reaction of an arene with the 3-formyl acid (Scheme 19.15) [38].

O
O

Me
O

Bu4N Br

MeOH-1,4-dioxane O
O

Me
O

OMeMeO

C-electrodes
j = 15 mA/cm2

O

O
O

O

Me

O

O
N

N

Me

H2SO4 aq.

1,4-dioxane

H2N-NH2

HCl

HO
N

N

Me

43

44

Scheme 19.12

O OO

R1 R2

H2NNH2.heat

R1 = H, Me 
R1 = H, Me,Cl

N
NH

O
R2

R1

HO N
H

N

OH
R2

R1

O

(81-94%)

45

Scheme 19.13

OHC

HO2C

R1

R2

O O

R2R1

HO

H2NNH2.H2O

R1 = R2 =Cl  95%
R1 = R2 =Br  98% N

NH

O

R1

R2

46

Scheme 19.14

O

O
Cl

Cl Ar

H2NNH2.H2O

N
NH

O
Cl

Cl

Ar

47

Scheme 19.15

1696j 19 Six-Membered Heterocycles: 1,2-, 1,3-, and 1,4-Diazines and Related Systems



a-Amino-c-cyanopropenoate esters can be used to obtain the corresponding 3,5-
diaminopyridazines (Scheme 19.16) [39].

An interesting variation of this reaction has been described byOhta and coworkers
in the synthesis of the pyridazine-fused isopropylidene norbornadiene 51
(Scheme 19.17). The cyclization was carried out by hydrolysis of diethyl acetal 50
with formic acid followedby condensationwithhydrazinehydrate [40].Compound50
was prepared by the Diels–Alder cycloaddition of propargylic aldehyde 48 with
dimethylfulvene 49.

As an alternative to hydrazine-based cyclizations, Elassar has reported a Japp–
Klingemann type reaction of aryldiazonium salts to produce pyridazines 52
(Scheme 19.18) [41].

19.4.1.2.2 [N-N-C-C] þ [C-C]

Reaction of Methylene-Activated Hydrazides with 1,2-Dicarbonyl Compounds The
two-component reaction of 1,2-dicarbonyl compounds with hydrazides possessing
an active methylene group, such as cyanoacetohydrazide [20], heteroaryl-substituted
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acetohydrazides [42], or similar derivatives of 2-nitroacetic acid [43, 44], gives
pyridazin-3(2H)-ones in fairly good yields (Schemes 19.19 and 19.20). Glyoxal,
a-keto aldehydes, and a-diketones can all be employed as 1,2-dicarbonyl units for
these cyclizations, thereby affording a wide range of substituted pyridazines.

Reaction of 1,2-Dicarbonyl Monohydrazones with Methylene-Activated Compounds
An alternative method for the construction of pyridazin-3(2H)-ones 53 is the use
of monohydrazones of 1,2-dicarbonyl compounds in combination with esters or
nitriles possessing reactive a-methylene groups (Scheme 19.21) [45–47]. As for the
above method, an assortment of substitution patterns can be introduced through
selection of suitably substituted starting materials.

Reactions of 1,2-Diaza-1,3-Dienes with Alkyl 2-Acetylacetoacetate Derivatives In addi-
tion to their use as dienes in hetero-Diels–Alder reactions, 1,2-diaza-1,3-dienes 54
with an electron-withdrawing group at N1 can be coupledwith acetyl acetoacetates 55
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under mildly basic conditions to give pyridazine products 57 (Scheme 19.22).
Mechanistically, this sequence involves a 1,4-addition of the carbanion generated
from the acetyl acetoacetate, followed by attack of the NH nitrogen atom on the oxo
function and subsequent elimination of acetic acid and loss of the carbamoyl
residue [48, 49]. TheseN-unsubstituted-1,4-dihydropyridazines 56 canbe aromatized
to pyridazines using, for example, a solid-phase supported brominating agent [50].

19.4.1.3 One-Component Couplings

19.4.1.3.1 [N-N-C-C-C-C] The conceptually simplest route to pyridazines is the
cyclization reaction of a hydrazone onto a suitably positioned carbonyl functionality
(Scheme 19.23).

There are two different strategies for the synthesis of pyridazines using a one-
component reaction for the ring closure.

Cyclization ofHydrazones of 4-Oxoalkenoic AcidDerivatives The intramolecular ring-
closure reactions of the hydrazones of 4-oxoalkenoic acid derivatives, such as esters
or nitriles, occur under various reaction conditions to afford pyridazinones or
iminopyridazines (Scheme 19.24) [51]. In most cases, arylhydrazones [52] have
been used as the cyclization substrates, being conveniently available by electro-
philic substitution of methylene-activated precursors with arenediazonium
salts [53].
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Reductive Cyclization of Diazo(vinyl)methanes Bearing a Carbonyl Group 4-(Trifluor-
omethyl)pyridazine-3-carboxylate esters 60 bearing an alkyl or alkoxy group at C6 can
be prepared in two steps from the trifluoroacetyl-substituted diazo esters 58
(Scheme 19.25). First, the ketone is olefinated with stabilized Wittig reagents to
afford the (E)-configured alkoxycarbonylvinyl diazomethane 59, which undergoes
ring closure under very mild conditions by treatment with triphenylphosphine.
Mechanistically, a �diaza-Wittig� reaction of an intermediate phosphazine has been
suggested [54].

19.4.2
Cycloaddition Reactions

One of themost versatilemethods for synthesizing functionalized pyridazines lies in
the use of cycloaddition reactions between suitable dienes and dienophiles.

19.4.2.1 [4 þ 2]-Cycloaddition Reactions of 1,2,4,5-Tetrazines
A reaction that has been used extensively for the synthesis of a wide variety of
substituted pyridazines is the inverse-electron-demand (LUMO diene-controlled)
Diels–Alder reactions of 1,2,4,5-tetrazines with alkene- or alkyne-type dienophiles,
followed by elimination of dinitrogen to give the 1,2-pyrizadine (Scheme 19.26) [55].
This process works best when the tetrazine has electron-withdrawing substituents
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and the dienophile is electron-rich, thereby decreasing the energy gap between the
respective frontier molecular orbitals (LUMOdiene–HOMOdienophile) [56]. Commonly
used dienophiles are mono- and disubstituted alkynes such as ynamines, but also a
wide range of substituents, including nitro, trimethylsilyl and trimethyltin, can be
incorporated onto the acetylene. Alternatively, electron-rich alkenes such as enam-
ines, enol ethers, and ketene acetals can be employed to provide routes to substituted
pyridazines not easily available by other methods [57].

Wan and Snyder have applied this strategy to the inverse-electron demand
cycloadditions of 2-substituted imidazoles 61 with 1,2,4,5-tetrazine-3,6-dicarboxy-
late, 62, to afford imidazo[4,5-d]pyridazines 63 in high yields (Scheme 19.27) [58].

This methodology has been extended to solid-phase synthesis for the rapid
assembly of pyridazine compound libraries (Scheme 19.28). A resin-bound amino-
tetrazine with a functional group at the C6 position (64) has been used in combi-
nation with a wide range of electron-rich dienophiles to give pyridazines 65 after
cleavage from the solid support [59].
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19.4.2.2 [4 þ 2]-Cycloaddition Reactions of Azodicarboxylic Esters
Tetrahydropyridazines 66 can alternatively be produced by a Diels–Alder reaction of
substituted 1,3-butadienes with azodicarboxylic esters (Scheme 19.29). The usual
stereochemical and substituent effects of these reactions follow according to Wood-
ward–Hoffmann considerations.

19.4.2.3 Cycloaddition Reactions with N-Phenyltriazolinedione
Thiophene S,S-dioxides with bulky 3,4-disubstitution (R¼ adamant-1-yl) react with
N-phenyltriazolinedione by a Diels–Alder reaction to give 1:2 adducts, followed by
hydrolysis to afford 4,5-disubstituted pyridazines (Scheme 19.30) [60].

19.4.2.4 Hetero-Diels–Alder with Electron-Rich Alkenes
A convenient method for the preparation of various pyridazines is the inverse-
electron-demand hetero-Diels–Alder reaction of 1,2-diaza-1,3-dienes bearing at least
one acceptor group with electron-rich alkenes such as enol ethers or enamines [61].
These [4 þ 2]-cycloadditionreactionsshowahighdegreeof regio- andstereochemical
control [62, 63]. The primary reaction products are tetrahydropyridazines but they can
be oxidatively transformed into the fully aromatic compounds (Scheme 19.31) [64].
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19.4.3
Synthesis by Ring Enlargement

19.4.3.1 From Furan Derivatives
Several examples of this reaction have been shown already (Section 19.4.1.2.1).
Aromatic furans have been reported to undergo synthetically useful ring transfor-
mation into pyridazines in two steps [65]. First, the furan is converted into 2,5-dialkoxy-
2,5-dihydrofuran by oxidative addition of two moles of an alcohol, followed by an
acid-promoted ring expansion in the presence of hydrazine (Scheme 19.32) [66].

19.4.3.2 From c-Bicyclic Lactams
Bicyclic lactams have been used as precursors for the synthesis of chiral 4,5-dihydro-
2H-pyridazin-3-ones 67 through thermal ring expansion reaction with hydrazines
(Scheme 19.33) [67].

19.4.3.3 From Bromocyclopropenes
Under mild conditions a-diazoesters undergo 1,3-dipolar cycloadditions with di,
tri-, and tetrahalocyclopropenes, leading to unstable cyclopropane-fused pyrazo-
lines, which readily rearrange to pyridazines with loss of hydrogen halide
(Scheme 19.34) [68].
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19.4.4
Synthesis by Ring Atom Exchange

19.4.4.1 Rearrangement of 1,2,4-Triazines
This elegant method is based on ring transformation of an appropriate 6-aryl-3-
chloro-1,2,4-triazine, 68, to give 3-amino-6-arylpyridazines 69 with an electron-
withdrawing substituent (R1¼ cyano, aryl, phenylsulfonyl or ester) at C4
(Scheme 19.35) [69].

In the mechanism, a nucleophile [phenylacetonitrile, ethyl cyanoacetate, maloni-
trile, or (phenylsulfonyl)acetonitrile anions] attacks the C5 position of the 1,2,4-
triazine, inducing a ring-opening, ring-closing process that leads to the diazine
(Scheme 19.36).

19.4.5
Synthesis by Ring Contraction

19.4.5.1 From 1,2-Diazepines
Pyridazines can be synthesized by contraction of 1,2-diazepines by two different
mechanisms. Acid hydrolysis of 5-carboalkoxydihydroazepines with hydrochloric
acid in ethanol affords pyridazinones in high yields (Scheme 19.37) [70].

N
N

N Cl

Ph
+

CN

R1
t-BuOK

N
N

NH2

R1

PhDMF

(50-73%)68 69

Scheme 19.35

N
N

N Cl

CN

R1

N
N

CN

R1 N
base

N
N

CN

R1 N

N
N

Ph Ph Ph

R1 CN
N

Ph

1. H3O+

2. - CO2 N
N

NH2

Ph

R1

Scheme 19.36

N N

EtO2C CN

Ph
Ph

HCl / EtOH

87%

N N
H

EtO2C
CN

Ph
Ph O H

N

EtO2C
CN

Ph

NH2

Ph
O N

NH

O

Ph

PhCOCH2 CN

Scheme 19.37

1704j 19 Six-Membered Heterocycles: 1,2-, 1,3-, and 1,4-Diazines and Related Systems



Using a second strategy, the C5 carbon can be extruded by halogenation of the
dihydroazepine through a diazanorcaradiene 70 intermediate (Scheme 19.38). The
products in these reactions were found to be strongly dependent upon the nature of
C5 substituents as well as the reaction conditions [71].

On the other hand, 1,2-diazepines, consisting of a seven-membered, ring can
undergo ring contraction through loss of one of the ring atoms as a stable entity upon
thermolysis. As an example, 3,7-diphenyl-5,6-dihydro-4H-1,2-diazepines bearing
strong electron-withdrawing substituents at C5 (CN, CO2Et) have been reported to
be unstable and undergo thermal ring contraction at the temperature of boiling
xylene, to afford the 3,6-diphenylpyridazine (Scheme 19.39) [72]. Nomechanism has
been suggested for this reaction.

19.4.5.2 From Hetero-1,2-Diazepines
Similarly to the above transformation, 1,2-diazepines containing an additional
heteroatom at the C5 position (71) undergo ring contraction to afford pyridazines
72 (Scheme 19.40). The heteroatom unit can be nitrogen [73], sulfur [74], or
selenium [75]. The reaction conditions involve either halogenation or heating in an
inert solvent.
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Themechanism suggested for this process presumes a thermal tautomerization to
an enamine, followed by ring opening and electrocyclic ring closure with loss of
hydrogen sulfide (Scheme 19.41).

19.5
Synthesis of Pyrimidines (1,3-Diazines)

19.5.1
Synthesis by Ring-Closure Reactions

19.5.1.1 Three-Component Couplings
There are twomain strategies for the synthesis of pyrimidines by a three-component
coupling (Scheme 19.42).

19.5.1.1.1 [C-C] þ [C] þ [N-C-N] The Biginelli reaction, a three-component con-
densation reaction between an aldehyde, a urea or thiourea, and an easily enolizable
carbonyl compound, was originally described by the Italian chemist Pietro
Biginelli in 1893 [76]. This multi-component reaction provides a straightforward
approach to functionalized 3,4-dihydropyrimidine-2-(1H)-ones 73 (Schemes 19.43
and 19.44) [77].
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In recent decades, many efforts have focused on the preparation of optically active
3,4-dihydropyrimidine-2-(1H)-ones. In this context, the enantioselective version of
the Biginelli reaction was achieved using chiral phosphoric acids as catalysts
(Scheme 19.45) [78].

Eynde and coworkers [79] have reported a three-component [80] coupling of a
b-keto ester, aryl aldehyde, and guanidine to obtain 1,4-dihydropyrimidines 74 in
good yields (Scheme 19.46).

Typically, this tandem Michael addition–elimination–cyclodehydration requires
refluxing in a high-boiling solvent under acid catalysis. In this same manner,
microwave irradiation proves to be an effective alternative in giving excellent yields
of pyrimidine-thiones [81] without the need for a solvent or long heating periods
(Scheme 19.47).
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Molteni and coworkers [82] likewise have reported that microwave irradiation
promotes the conversion of enaminoketones, formed in situ from formamide acetals
and active b-diketones in water, into pyrimidines by reaction with amidines
(Scheme 19.48). The method offers short reaction times and facile purification by
precipitation of the product in aqueous media.

M€uller has reported the three-component coupling of acid chlorides with terminal
alkynes under Sonogashira conditions, with trapping of the intermediate alkynyl
ketone with an amidine, as a one-pot procedure for synthesizing 2,4-di- and 2,4,6-
trisubstituted pyrimidines 75 (Scheme 19.49) [83].

The same author [84] has used the methodology for the one-pot, three-component
synthesis of 2,4-disubstituted pyrimidines 76 (Scheme 19.50), using TMS-acetylenes
in the Sonogashira coupling.

19.5.1.1.2 [C-C] þ [C-N] þ [C-N] The reaction of aliphatic and alicyclic ketones
with triflic anhydride (Tf2O) under mild conditions in the presence of a nucleophile
such as an aliphatic or aromatic nitrile leads to the formation of pyrimidines 77 and
condensed pyrimidines 78 [85] where the substituents at C2 and C4 of the ring are
identical (Schemes 19.51 and 19.52). As an extension, Fern�andez and coworkers have
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reported the preparation of biologically interesting 4-alkoxypyrimidines 79 by the
condensation and cyclization of readily available aliphatic esters [86].

The reaction is postulated to take place via a (triflyloxy)carbenium intermediate
80 [87], which in the presence of another molecule of the nitrile is trapped to give
sequential resonance-stabilized nitrilium intermediates before cyclizing to the
pyrimidine (Scheme 19.53).

Lejon and coworkers have optimized the production of 4-substituted pyrimidines
using Pd(0) or Pd(II) catalysts in the Leuckart reaction between formamide and
a-methyl or a-methylene ketones (Scheme 19.54) [88].
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19.5.1.2 Two-Component Couplings
There are several two-component strategies for the synthesis of pyrimidines
(Scheme 19.55).

19.5.1.2.1 [C-C-C] þ [N-C-N] Themost general pyrimidine ring synthesis involves
the combination of a 1,3-dicarbonyl component with an amidine as source of the
requisite [N-C-N] unit (Scheme 19.56). The [N-C-N] component can also be form-
amide or an orthoester in the presence of ammonia, a guanidine, a urea, or thiourea,
affording pyrimidines with different substitution at C2.

The following modifications are noteworthy: the amidine can be replace by
guanidine [89], or urea [90], affording to 2-amino- or 2-hydroxypyrimidines, respec-
tively. Replacement of one of the carbonyls by a cyano group leads to 4-aminopyr-
imidines (Scheme 19.57).

When thiourea used instead of an amidine [91], 2-thiopyridazines are obtained. In
this case, 1,1,3,3-tetramethoxypropane can be also used as a synthon for the
dicarbonyl unit (Scheme 19.58) [92].
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In addition, an orthoester in the presence of ammonia can be used as an in situ
amidine source, although the yield is low (Scheme 19.59) [93].

If one or both of the carbonyl groups in the 1,3-dicarbonyl is replaced with a
carboxylic ester, 4-pyrimidinones and 6-hydroxy-4-pyrimidinones are formed
(Scheme 19.60) [94].

The widespread use of pyrimidine-containing compounds as anticancer drugs has
led to the development of numerous pyrimidine preparations using this basic
approach. One of these is illustrated here, involving the opening of butyrolactone
esters with guanidine to give pyrimidinone 81 (Scheme 19.61) [95].
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(Scheme 19.62). This methodology has been developed into a solution-phase parallel
synthesis of 4,6-diarylpyrimidine-2-ylamineswith polymer release being executed via
a rearrangement reaction [96].

The same protocol has been used by Almansa and coworkers, in the search for
COX-2-selective inhibitors, who synthesized various pyrazolo[1,5-a]pyrimidines 82
(Scheme 19.63) by condensing 3-aminopyrazoles and various enones in the presence
of zinc chloride [97].
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Enaminones (vinylogous amides) also react with guanidines to produce 2-ami-
nopyrimidines by a conjugated addition followed by ring closure and aromatization
(Scheme 19.64) [98].

Molina and coworkers have used this reaction in their synthesis of the biologically
active marine natural products meridianins C, D, and E (Scheme 19.65) [99].

Thismethodology has been used to prepare several new chiral ligands that contain
pyrimidine rings (83), through the bis-condensation of a chiral amidine with
a,b-unsaturated carbonyl compounds, in high yield (Scheme 19.66) [100].

Other dicarbonyl synthons can be used as well, such as 1,1,3,3-tetramethoxypro-
pane [92] (for malonodialdehyde), nitriles, and tosyl isocyanates [101], to prepare
pyrimidine derivatives in good yields. Fomum and coworkers have reported a novel
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synthesis of biologically active pyrimido[1,2-a]benzimidazole 84 by the cycloaddition
of different aminobenzimidazoles with allenic nitriles (Scheme 19.67) [102].

Certain alkynes can be also be implemented as dicarbonyl synthons for these
cyclizations. In this context, conjugated addition of amidines to cyanoalkynes
followed by subsequent ring closure of the resulting amidate nitrogen onto the
pendant nitrile affords 4-iminopyrimidines with nearly complete regioselectivity
[103]. Moreover, product regioselectivity can be reversed by the use of sodium
hexamethyldisilazide (NaHMDS) as a base (Scheme 19.68).

One-pot syntheses of pyrimidines continue to be developed as efficient routes to
pyrimidines. For example, pyrimidines can be prepared in a single step from
propargylic alcohols by in situ oxidation to the aldehyde with o-iodoxybenzoic acid
(IBX) or manganese dioxide, which reacts with amidines to yield the pyrimidines
(Scheme 19.69) [104]. The heteroannulation can be executed under either thermal or
microwave-assisted conditions, although the latter affords higher yields.

Highly reactive diacetylenic ketones react smoothly with amidines to yield a range
of alkynyl-substituted pyrimidines 85 in high yields (Scheme 19.70) [105]. Notably,
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the pyrimidine compoundswere obtained as single regioisomers, which is attributed
to the acetylenic carbon bearing the ester group being the most electron deficient,
making this the preferential site for nucleophilic attack of the amidine.

Microwave irradiation is nowanestablished tool in organic synthesis, and its use in
pyrimidine syntheses is particularly valuable. In this context, a microwave-assisted
synthesis of 2,4-disubstituted and 2,4,6-trisubstituted pyrimidines in high yield has
been reported from amidines and a range of readily available alkynones described
(Scheme 19.71) [106].

Solid-phase syntheses of pyrimidines continue to appear at a rapid pace. Aversatile
solid-phase approach for the synthesis of a series of pyrimidinone derivatives has
been described (Scheme 19.72) [107]. In the key step, a polymer-bound thiouronium
salt is condensed with different b-ketoesters by adding an excess of Ca(OH)2 in
aqueous ethanol solution.
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The use of iminophosphoranes has been emerging as a valuable tool for the
construction of nitrogen-containing heterocycles [108]. The aza-Wittig reaction of
iminophosphorane 86 with acyclic a,b-unsaturated aldehydes has been
reported by Rossi and coworkers as a means to produce 1,6(1,4)-dihydropyrimi-
dines 88 through electrocyclic ring closure of 1,3-diaza-1,3,5-triene intermediate 87
(Scheme 19.73) [109].

Molina has used this methodology in the last step of his synthesis of the tricyclic
ring system 90, which is present in the marine natural products variolins
(Scheme 19.74) [99]. In this case the aza-Wittig reaction takes place between the
iminophosphorane 89 with several aromatic isocyanates in dry THF at room
temperature to give directly the desired pyrimido annelation products in high
yields.

19.5.1.2.2 [C-C-N] þ [C-C-N] 2,4,6-Trisubstituted pyrimidines 92 can be obtained
from an interesting reaction of a-chloro oxime ethers 91 with Grignard reagents
(Schemes 19.75 and 19.76). This methodology presents the advantage that alkyl
and aryl groups can be easily introduced at the 2-position of the pyrimidine core [110].
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The authors propose a plausible mechanism (Scheme 19.77) involving deprotona-
tion of a-chloro oxime ether 91 to generate a carbenoid species, which then under-
goes Neber-type cyclization [111] to provide a reactive chloroazirine 93. Nucleophilic
addition of a second molecule of the oxime to the azirine intermediate, and
subsequent intramolecular cyclization, is believed to yield 2-chloro-1-azabicyclo
[1.1.0]butane 94. Halide displacement by the Grignard alkyl group triggers ring
opening to an imino oxime, which undergoes electrocyclization and methanol
elimination to the pyrimidine 92.

19.5.1.2.3 [C-C-C-N] þ [C-N] Fused pyrimidones can be synthesized from the
cyclization of vinylogous carbamates with isocyanates, isothiocyanates, or thiomethy-
leneglycinates in acetic acid (Schemes 19.78 and 19.79) [112].
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In related fashion, Kumar and coworkers [113] have reported the conversion of
2-amino-3-cyanopyridines into aminopyrimidinethiones 95 in good yield by cycli-
zation with thiourea (Scheme 19.80).

19.5.1.2.4 [C-C-C-N-C] þ [-N-] Uracil derivatives can be prepared by addition of
primary amines to 3-ethoxyacryloylisocyanate [114], methoxyacryloylisothiocya-
nate [115], or acryloylcarbamates [116] by addition and intramolecular displacement
of the vinylic alkoxy group (Schemes 19.81 and 19.82). This method is suitable for
complex amines and has found applications in recent years in the synthesis of
nucleoside analogues as potential anti-viral agents [117].
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19.5.1.2.5 [N-C-C-C-N] þ [-C] The Remfry–Hull synthesis based on cycloconden-
sations of 1,3-diaminopropene or 1,3-diaminopropanes with carboxylic esters has
been adapted to the use ofmalonamides to afford 6-hydroxypyrimidin-4(3H)-ones 96
(Schemes 19.83 and 19.84).

19.5.1.3 One-Component Couplings

19.5.1.3.1 [N-C-N-C-C-C]

From Cyanoacetylureas Condensation of an N-substituted urea with cyanoacetic
acid yields cyanoacetylureas, which when heated in the presence of HMDS/TMSCl
(hexamethyldisilazane/trimethylchlorosilane) affords 6-aminouracil derivatives. The
reported mechanism (Schemes 19.85 and 19.86) involves activation of the cyano
functionality with TMSCl, which triggers the cyclization [118]
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19.5.2
Cycloaddition Reactions

19.5.2.1 [4 þ 2]-Cycloaddition Reactions of 1,3,5-Triazines
Boger [119] has described a simple pyrimidine annulation process based on the
regiospecific, inverse electron demand cycloaddition of 1,3,5-triazine with an alkyne.
This reaction presumably proceeds via formation and retro-cyclization of a bridged
cycloadduct with loss of hydrogen cyanide (Scheme 19.87).

This process can also utilize various acetylene synthons such as pyrrolidine
enamines (Scheme 19.88), wherein the initial [4 þ 2]-cycloadduct loses pyrrolidine,
which enables rearomatization through expulsion of HCN [120].

Highly electron-deficient triazines such as 2,4,6-tris(ethoxycarbonyl)-1,3,5-
triazine react with ynamines or amidines (via the a-aminoenamine) to afford
excellent yields of amino-substituted 1,3-pyrimidines 97 and 98 respectively
(Scheme 19.89) [121].
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19.5.2.2 Other [4 þ 2] Cycloaddition Reactions
Pyrimidine nucleosides 99 have been prepared by [4 þ 2]-cycloadditions of glycosyl
isothiocyanates with diazadienium iodide as a cationic heterodyne (Scheme 19.90)
[122]. The advantages of this methodology are the ready availability of starting
materials, good yields in the cycloaddition, high diastereo- and regioselectivity, and
experimental simplicity of the procedure. These types of N-nucleosides have impor-
tant applications as antiviral and antitumor drugs.

19.5.3
Synthesis by Ring Enlargement

19.5.3.1 From Isoxazolidin-5-ones
Besides well-established strategies for the preparation of pyrimidines, some new
pathways have beendeveloped.Weinreb andKeen [123] have reported a novel route to
pyrimidones from an isoxazolidin-5-one by treatment with phenyl chloroformate to
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give the N-acylation product. Ammonolysis and aromatization give the pyrimidone
product. Isoxazolidin-5-one can be obtained as a 1:1 mixture of diastereoisomers,
from the reaction of a,b-unsaturated ester and N,O-bis-(trimethylsilyl)hydroxyl-
amine (a convenient source of hydroxylamine) (Scheme 19.91).

19.5.4
Synthesis by Ring Atom Exchange

Similarly to the rearrangement of 1,2,4-triazines in the presence of a nucleophile to
afford 3-aminopyridazines (Section 19.4.4.1) [69], 1,3-oxazin-6-ones are converted by
amines into 4-pyrimidinones 100 (Scheme 19.92). The reaction occurs via a nuce-
lophilic cleavage of the ester followed by cyclocondensation to close the ring.

The same methodology can be applied to prepare pyrimidines from 2-bromopyr-
idines (Scheme 19.93).
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19.6
Synthesis of Pyrazines (1,4-Diazines)

19.6.1
Synthesis by Ring-Closure Reactions

19.6.1.1 Two-Component Couplings
Four strategies have been devised for the synthesis of pyrazines by two-component
couplings (Scheme 19.94).

19.6.1.1.1 [C-C] þ [N-C-C-N] Themost commonway to construct the pyrazine ring
is the cyclocondensation of 1,2-dicarbonyl compounds with 1,2-diaminoethanes (with
double imine formation) to afford 2,3-dihydropyrazines, which are conveniently
oxidized to pyrazines by CuO or MnO2 in KOH/ethanol (Schemes 19.95 and 19.96).
Symmetrical starting compounds yield the best results using this straightforward
approach [124].
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McKervey and coworkers [125] have used N-protected a-amino glyoxals from
diazoketones 101, as 1,2-dicarbonyl components, to condense with simple 1,2-
diamines to form dihydropyrazines (Scheme 19.97). These adducts can be dehy-
drogenated to pyrazines 102 by treatment withmanganese dioxide in the presence of
potassium hydroxide.

Similarly, the pyrazine moiety of pyrazine-fused-isopropylidene norbornadiene
103 has been prepared by condensation of a 1,2-diketone and ethylenediamine,
followed by dehydrogenation in the presence of nickel peroxide (Scheme 19.98) [40].

Using this methodology, Kamitori has reported a new procedure to synthesize
fluorinated pyrazines 106 (Scheme 19.99). Dialkylhydrazones 104 were treated with
trifluoroacetic anhydride (TFAA) followed by hydrolysis with H2SO4 to afford
a-diketohydrates 105, which react readily with diamines such as diamino succino-
nitrile to afford pyrazines 106 in good yields [126].

Direct synthesis of aromatic pyrazines requires a 1,2-diaminoalkene but simple
examples of such compounds are rare; however, diaminomalononitrile can condense
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with 1,2-diketones [127] or b-keto sulfoxides [128] to yield 2,3-dicyanopyrazines
(Scheme 19.100).

a-Amino malonamides 107 are also unsaturated diamine synthons from which
pyrazinones 108 can be formed (Scheme 19.101) [129].

To avoid the need to isolate the highly reactive 1,2-dicarbonyl intermediates, Taylor
has developed a novel methodology for the conversion of a-hydroxyketones into
pyrazines in fair to good yields, via a tandemoxidation procedurewith in situ trapping
using 1,2-diamines (Scheme 19.102) [130].
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suppresses the formation of the polymeric by-products characteristic of conventional
thermal heating (Scheme 19.103) [131].

19.6.1.1.2 [C-C-N] þ [C-C-N]

Cyclodimerization of a-Amino Carbonyl Compounds An important preparation of
pyrazines involves the self-condensation of a-amino ketones to give 2,5-dihydropyr-
azines that subsequently oxidize to the corresponding pyrazines (Schemes 19.104
and 19.105). The required a-amino aldehydes or ketones are usually prepared
in situ because of their instability, and can be obtained from a-hydroxycarbonyl
compounds and ammonium acetate or by catalytic reduction of a-oximino- or
a-azidocarbonyl compounds.

Cyclodimerization of a-Amino Acids Correspondingly, cyclodimerization of a-amino
acids or their esters gives 2,5-dioxopiperazines 109 (Scheme 19.106), which by
treatment with trialkyloxonium salts followed by oxidation with DDQ (2,3-dichloro-
5,6-dicyano-1,4-benzoquinone) provides 3,6-dialkoxypyridazines 110 [132].
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Meier has described a new and efficient synthesis of trisubstituted 1H-pyrazin-2-
ones 111 and tetrasubstituted pyrazines by coupling Boc-protected amino acids with
a-amino ketones or with a-amino alcohols and subsequent oxidation
(Scheme 19.107). These syntheses afford the advantage of the use of readily available
starting materials yielding various products in high yield [133].

Cyclodimerization of a-Phosphazinyl Ketones An alternative synthesis of pyrazines
utilizes an aza-Wittig cyclization of a-phosphazinyl ketones, which are accessible
from a-azido ketones and triphenylphosphine (Scheme 19.108).

Metal-Assisted Reactions A series of a-diazo-b-ketoesters have been reacted with
Boc-protected a-amino amides in the presence of rhodium octanoate catalyst, and
the resulting N-H insertion products were treated with acid to provide pyrazine-6-
ones 112 after air oxidation of the intermediate 1,4-dihydropyrazines. These
products were further derivatized to tetrasubstituted pyrazines 113 by N-alkylation
or by conversion into the arylpyrazines using sequential bromination and Suzuki
coupling reactions (Scheme 19.109) [134]. The authors have shown that this
methodology is amenable to the synthesis of compound libraries using solid-phase
procedures.
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19.6.1.1.3 [C-N-C] þ [C-N-C]

Cyclodimerization of Nitrile Ylides In an interesting approach, Chandrasekhar has
used a thermal Beckmann rearrangement to construct fully substituted pyrazines
from dimerization of oximes (Schemes 19.110 and 19.111). The starting oxime
hydrochloride 114 was thermally dehydrated and deprotonated to the nitrile ylide
115, which dimerizes to form, after air oxidation, the corresponding tetrasubstituted
pyrazines 116 [135].

Similar methodology was used for the synthesis of tetrasubstituted pyrazines
containing two phosphonate groups by the thermal treatment of 2H-azirine-2-
phosphonate (Scheme 19.112) [136].

19.6.1.1.4 [C-C-N-C-C] þ [N] Pyrazines are obtained by oxidative ring closure of bis
(acylmethyl)amines with ammonia (Scheme 19.113).
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19.6.1.2 One-Component Couplings

19.6.1.2.1 [N-C-C-N-C-C]

Electrocyclic Ring Closure Alkylpyrazines are obtained regioselectively from
a-hydroxyimino ketones that condense with allylamines followed by olefin isomer-
ization, O-acylation, and electrocyclization with loss of CO2 and CH3OH
(Schemes 19.114 and 19.115) [137].

19.6.2
Cycloaddition Reactions

19.6.2.1 [4 þ 2]-Cycloaddition Reactions of a-Diimines
The cycloaddition reaction of a-diimines and ketenes yields tetrahydropyrazinones
117 (Scheme 19.116).

Another pyrazine preparation is the [4 þ 2]-cycloaddition of electron-rich dieno-
philes with 1,4-diaza-3-oxa-2-ones 118 to produce lumazines 119 (Scheme 19.117)
[138], which are of the same class of compounds as many natural pteridines of
biological importance.
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19.7
Reactivity of Diazines

The reaction chemistry of diazines has very little in commonwith that of benzene and
its derivatives. The notable reactivity differences already existing between benzene
and its nitrogen variant, pyridine, are further accentuated by having a second
nitrogen atom in the ring. Some of the general features of diazine chemistry can
be summarized as follows.

1) Owing to the presence of the two nitrogen atoms in the ring, the energies of the
p-molecular orbitals are lowered, particularly those with large coefficients on
nitrogen. As a result, this makes electrophilic attack on the ring carbon atoms
rather difficult while facilitating nucleophilic addition onto the ring.

2) All the ring carbon atoms in the diazines, with the exception of C5 of pyrimidine,
are ortho or para to at least one ring nitrogen atom. Intermediates formed by
nucleophilic attack onto the ring, or by deprotonation at these positions, are well
stabilized. This provides selective activation of specific positions in each of the
three diazine ring systems as shown below (a � indicates a propensity for
nucleophilic attack, while �� reflects an even greater degree of reactivity).
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ing influence of the second nitrogen, thereby making the heterocycles more
difficult to N-alkylate or N-oxidize.

19.7.1
Thermal and Photochemical Reactions

19.7.1.1 Pyridazines (1,2-Diazines)
Pyridazine can be regarded as a cyclic bis-hydrazone and themutual proximity of the
nitrogen atoms is reflected in different physical properties and reactions compared to
those of pyrimidine and pyrazine. The reactivity of 1,2-diazines under thermal and
photochemical conditions are particularly noteworthy (Scheme 19.118). Pyridazine
(1,2-diazine) is converted into pyrimidine (1,3-diazine) upon heating to 300 �C,most
likely via a diazabenzvalene intermediate. Conversely, photolysis yields mainly
pyrazine (1,4-diazine), where, presumably, a transient intermediate similar to Dewar
benzene is involved in the process [139]. Thus, in this way, pyridazine can undergo
isomerization to either of its other two diazine forms.

19.7.1.2 Pyrimidines (1,3-Diazines)
Pyrimidines experience a similar fate under photochemical conditions, reverting to a
Dewar pyrimidine species [140]. In the case of 4-amino-2,6-dimethylpirimidine,
photoisomerization yields an acyclic aminoimine by ring-opening of the Dewar
pyrimidine intermediate (Scheme 19.119).

19.7.2
Reactions with Electrophilic Reagents

Owing to the electronegativity of the two nitrogen atoms, all of the diazines are
electron-deficient heterocycles that fail to react with most electrophiles. Electrophilic
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substitution at one of the carbon centers of the ringmustfirst break the aromaticity of
the p-system, giving an intermediate that is further deactivated by the two electro-
negative nitrogen atoms. This is exemplified in Scheme 19.120 by the case of
pyrimidine (top pathway). The electrophilic susceptibility of pyrimidine is compa-
rable to that of 1,3-dinitrobenzene or 3-nitropyridine. Consequently, the kinetically
preferred pathway for electrophilic addition is at nitrogen (bottom pathway). Acti-
vation of the diazine ring by attachment of one or more electron-donating sub-
stituents promotes electrophilic substitution on the ring, as will be illustrated in
examples below.

19.7.2.1 Electrophilic Addition at Nitrogen
Diazines behave as tertiary amines in their reactions with a wide range of electro-
philes (Scheme 19.121): protic acids (to give salts), Lewis acids (to form coordination
compounds), transition metal ions (to form complex ions), alkyl halides (to give
quaternary salts), halogens (to form halo adducts), and oxidizing agents (to yield
amine oxides) [141]. The facility of these reactions depends on two major
factors: the nucleophilicity of the nitrogen atom and the degree of steric
hindrance. Although the pKa of a protonated nitrogen is a convenient measure
of thermodynamic basicity of the free amine, it is not a reliable indicator of
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kinetic nucleophilicity where steric effects of nearby substituents on the ring
(particularly at the a-carbon) are likely.

19.7.2.1.1 Protonation Pyridazines (pKa 2.3 for protonated form) aremuch weaker
bases than pyridine (pKa 5.2 for pyridiniumcation) due to inductivewithdrawal by the
second ringnitrogen. Thea-effect of the twonitrogen electronpairs is not sufficiently
strong to overcome the electron-withdrawing effect of the N�N bond. N,N0-Dipro-
tonation has only been observed in very strong acidic media (pKa(2) �7.1 for the
dicationic species). Predictably, electron-donating substituents on the ring enhance
the nitrogen�s basicity, with protonation of 3-substituted pyridazines occurring on
N2. In 4-substituted pyridazines, where steric and inductive effects are less important
factors, protonation occurs at N1 for electron donor groups, and at N2 for electron
acceptor substituents. In 3,6-disubstituted pyridazines, protonation occurs a to the
less bulky and more powerful electron-donating substituent.

19.7.2.1.2 Metal Ions As a monodentate ligand in transition metal complexes,
pyridazine forms tetrahedral and octahedral structures [e.g., Co(II) salts], and as a
bidentate ligand it gives polymeric complexes. Pyrazine can replace three of the
carbonyl groups in group VI metal hexacarbonyls to form compounds of the type Cr
(CO)3Py3. The other diazines are known to also form metal complexes.

19.7.2.1.3 Alkylation Diazines react with activated alkyl halides by SN2 displace-
ment to give the anticipated mono-quaternary salts. Unsymmetrically-substituted
diazines can give rise to two isomeric quaternary salts. Pyridazines are the most
reactive of the diazines towards alkylation due to the a-effect. Substituents influence
the orientationmainly by steric and inductive effects, rather thanmesomeric effects.
For example, methylation of 3-methoxy-6-methylpyridazine takes place adjacent to
themethyl substituent, at N1, althoughmesomeric release would have been expected
to favor attack at N2 (Scheme 19.122) [142].

Pyrimidines react with alkyl halides to give mono-quaternary salts. Dialkylation
can be achieved with trialkyloxonium tetrafluoroborate (Scheme 19.123) [143].
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2,4-Disubstituted pyrimidines undergo selective alkylation at the less sterically
hindered N1. Kumar and coworkers have reported the coupling of 2,4-bis(silyloxy)
pyrimidinewith benzyl bromides in the presence of iodine to yield one regioisomeric
bis-adduct (120) (Scheme19.124) [144]. Thiswas a key intermediate in their synthesis
of heterocalixarenes 121, which were use in subsequent biological cation binding
studies.

19.7.2.1.4 Oxidation Pyridazines react with peracids to give N-monoxides [145].
For substituted diazines, the regiochemistry of N-oxidation is governed by the same
factors as alkylation, thus 3-aminopyridazine gives mainly 2-oxides, but 3-methyl-
pyridazine provides the 1-oxide as themain (3:1) product (Scheme 19.125) [146]. The
acidity of the medium can also influence the regiochemistry of oxidation; for
example, 3-cyanopyridazine reacts at N1 with peracetic acid, but under strongly
acidic conditions oxidation occurs at N2, presumably due to the heterocycle existing
as its N1-protonic salt [147].
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Pyrimidine and its simple alkyl derivatives can be converted into N-oxides 122,
although the yields are usually low due to the relative instability of the products under
the acidic conditions (Scheme 19.126) [148].

Pyrazine and its benzo derivatives are easily converted into both themono-N-oxide
(major) and di-N-oxides (minor) (Scheme 19.127) [145], although di-N-oxides have
also been reported for pyridazines and pyrimidines.

19.7.2.2 Electrophilic Substitution at Carbon
The SEAr reaction at the ring C-atoms of diazines is difficult to carry out due to
deactivation by the second nitrogen. Nitration or sulfonation of a diazine or
alkyldiazine has been reported to take place only in the presence of multiple strong
electron-donating substituents [149]. In addition, it should be noted that N-oxidation
facilitates the substitution in some cases [150].

19.7.2.2.1 Nitration

Pyridazines (1,2-Diazines) 4-Amino-3,6-dimethoxypyridazine undergoes nitration
to afford the 5-nitro compound. However, the less highly activated 3-methoxy-5-
methylpyridazine requires more vigorous conditions, yielding a complex mixture of
4-nitro, 6-nitro, and 4,6-dinitro derivatives [151]. Pyridazine 1-oxide and many of its
substituted derivatives undergo nitration with nitric and sulfuric acid to form the
corresponding 4-nitropyridazine-1-oxide 123 (Scheme 19.128) [152]. If the 4-position
is occupied nitration can occur at the 6-position.

Pyrimidines (1,3-Diazines) Notably, C5 in pyrimidine is the only position, in all three
diazines, that is not in a a- or c-relationship to a ring nitrogen, and in effect is
equivalent to a b-position in pyridine, which is susceptible to electrophilic substi-
tution. Nevertheless, electrophilic substitution at carbon is not observed in the parent
compound. Electron-donating substituents (OH,NH2) increase the SEAr reactivity in
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the pyrimidine systemand thus enable nitration, nitrosation, aminomethylation, and
azo-coupling to take place at the 5-position [153]. Two or more electron-releasing
substituents make nitration of pyrimidines relatively easy; 2,4-dihydroxy-6-methyl-
pyrimidine, for instance, yields the 5-nitro compound 124 (Scheme 19.129).

19.7.2.2.2 Halogenation

Pyridazines (1,2-Diazines) Pyridazines undergo electrophilic substitution only with
difficulty, and thus direct halogenation is not expected to be a method of wide
application. Nevertheless, dehydrochlorinations of pyridazines are known. 3,6-
Dichloropyridazine can be converted by means of PCl5 into 3,4,5,6-tetrachloropyr-
idazine [152]. Simultaneous introduction of chlorine (or bromine) followed by
dehydrohalogenation and substitution of the potential hydroxyl with chlorine has
been performed with several 3(2H)-pyridazinones using a mixture of POCl3 and
PCl5. The halogen atom always enters at the C4 position. Thus, 1-methyl-2-phenyl-
3,6-pyridazinedione (125) adds bromine or chlorine to give the 4,5-dihalo adduct 126,
which is stable in neutral media, but dehydrohalogenation occurs in the presence of
base to give solely the 4-halogenated product 127 (Scheme 19.130) [154].
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Perchlorinated pyridazines 129 (Scheme 19.131) can be prepared in good yields via
chlorination of pyridazone 128 using phosphorus oxychloride [155].

Pyrimidines (1,3-Diazines) As with nitration, pyrimidine undergoes halogenation
under vigorous conditions to give the 5-substituted product; bromination occurs at
230 �C. When the diazine has one or more activating groups the reaction proceeds
much more easily (Br2 or Cl2 in H2O, AcOH, or CHCl3, 20–100 �C). Sometimes 5,5-
dihalo products are formed, however (Scheme 19.132).

As strong donor substituents, amino groups activate the heteroarene towards
ortho- and para-substitution. However, other substituents may alter the substitution
pattern.

Pyrazines (1,4-Diazines) Chlorination of 2-methylpyrazine occurs under such mild
conditions that it is almost certain that an addition/elimination sequence is involved,
rather than a classical electrophilic aromatic substitution (Scheme 19.133) [156].

Also in this case, the halogenation reaction depends on the presence of other
substituents on the diazine ring (Scheme 19.134). For instance, 2-aminopyrazine
readily undergoes ringhalogenation to give 3,5-dibromo-2-aminopyrazine 130, but 3-
aminopyrazine-2-carboxylic acid 131 is too electronically-deactivated on the hetero-
cycle and, instead, the amino group is halogenated [153].
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19.7.3
Reactions with Nucleophilic Reagents

Diazines are considerably more reactive toward nucleophilic addition than are
pyridines due to the presence of an extra nitrogen atom. There are still only a few
synthetic approaches to inducing substitution on this electron-deficient ring and,
therefore, more diverse methods for functionalization of these heterocycles con-
tinues to be of interest.

19.7.3.1 With Replacement of Hydrogen

19.7.3.1.1 Alkylation and Arylation The diazines readily add alkyl and aryllithiums
and Grignard reagents to give dihydro-adducts that can be rearomatized by oxidation
with reagents such as potassium permanganate or 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ).

Pyridazines (1,2-Diazines) Reactionswith carbonnucleophiles occur at theC4 center
(Grignard reagents) [157] or at C3 (organolithium compounds) (Scheme 19.135).

Alternatively, O-acylation of 3-substituted pyridazine 1-oxides gives a cationic
species that reacts with nucleophiles such as cyanide by analogy to a Reissert
reaction, functionalizing the C6 position (Scheme 19.136).

Ohsawa has reported a three-step procedure to regioselectively introduce an alkyl
sulfone substituent (and thus potentially other groups) to positionC4 of 3-substituted
pyridazines (Scheme 19.137) [158]. First, pyridazine is reacted with tetracyanoethy-
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lene oxide to form a dicyanomethylide zwitterion 132 (with subsequent loss of
hexafluoroacetone), inwhich the existingC3 substituent blocks formation of the ylide
at N2 in favor of N1. This species then undergoes base-promoted alkylation by an
a-halosulfone, which the authors propose as occurring by a vicarious nucleophilic
substitution (VNS) process, and cleavage of the dicyanomethylene group to afford
exclusively the 4-alkylated pyridazine 133.

Pyrimidines (1,3-Diazines) Nucleophilic attack on pyrimidinemay occur at the 2-, 4-,
or 6-position; although only a few such examples are known for pyrimidine itself, the
addition of organometallic compounds gives the 4-alkylated pyrimidine 134 upon air
oxidation of the dihydro adduct (Scheme 19.138).

Interestingly, 2-chloropyrimidine does not undergo nucleophilic substitution at
the halogenated carbon, but instead gives the halogen-retained product with the new
substituent at C4 (Scheme 19.139) [159].
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Another example of the regioselective addition of a nucleophile to anunsubstituted
position on the pyrimidine ring, with C4 typically being the site of addition, has been
reported by Fort and coworkers (Scheme 19.140); addition of 2-chloro-6-lithiopyr-
idine to pyrimidine forms the coupled adduct 135 after rearomatization, albeit in low
yield [160].

Electron-donating substituents enhance the nucleophilicity of pyrimidines and
thus increase the effectiveness of electrophilic attack on the ring. As an example, the
reaction of ethyl cyanoacetate with an aryl aldehyde produces a three-component
coupling adduct 136, by the conjugated addition of stabilized cyanoacetate carbanion
to the initial Knoevenagel condensation adduct (Scheme 19.141) [161].

The process shown in Scheme 19.142 is thought to proceed by an analogous
mechanism [162]. The authors noted that this tandemNef reaction/Michael addition
produced the final product 137 in a single step with sonication.
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19.7.3.1.2 Amination TheChichibabin reaction of diazines is less general than that
for pyridines due to the diminished aromaticity of the diazinep-system.However, the
initial addition is quite easy, while the subsequent loss of hydride (rearomatization) is
difficult, but high yields of 4-aminopyridazine 138 (Scheme 19.143), 4-aminopyr-
imidine, and 2-aminopyrazine can be obtained by in situ oxidation of the dihydro-
adduct with potassium permanganate [163].

Pyrimidines (1,3-Diazines) Pyrimidine is converted into pyrazole when heated with
aqueous hydrazine by a process that involves nucleophilic addition as a first step,
which triggers ring opening and subsequent reclosure to the five-membered aro-
matic ring (Scheme 19.144).

Amination can be achieved by direct lithiation of pyrimidine derivatives with LDA,
or sec-BuLi, and in situ quenching with nitroso electrophiles (Scheme 19.145) [164].

19.7.3.2 With Replacement of Good Leaving Groups
All the halodiazines, except 5-halopyrimidines, react readily with nucleophiles
(amines, thiolates, malonate anions) with substitution of the halide. The relative
reactivity is summarized here.
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19.7.3.2.1 Pyridazines (1,2-Diazines) Nucleophilic aromatic substitution (SNAr)
reactions with an assortment of anionic nucleophiles proceed smoothly with pyr-
idazines having a halogen leaving group at C3 (Scheme 19.146).

Methoxy groups can also serve as leaving groups that can be exchanged by
carbanions via an addition/elimination process (Scheme 19.147) [165].

Unsymmetrical 3,6-disubstituted pyridazines 139 can be prepared in a mild,
efficient manner from commercially available 3,6-halopyridazines through stepwise
nucleophilic mono-substitution followed by palladium-catalyzed coupling with an
arylboronic acid (Scheme 19.148) [166].
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Grignard reagents can be prepared efficiently from halopyridazines followed by
quenching with electrophiles such as acetaldehyde, ethyl cyanoformate, DMF, or
phenyl sulfide to give 140 in acceptable yields (Scheme 19.149) [167].

19.7.3.2.2 Pyrimidines (1,3-Diazines) Remarkable differences in reactivity with
nucleophiles exist for halopyrimidines and triflate derivatives, which depend on
the location of the leaving group on the ring. Leaving groups at the C4 and C6
positions are much more prone to SNAr processes than the C2 center due to the
stabilizing effect of the nitrogen centers. The facility of SNAr displacement for
halopyrimidines follows a predictable order, as shown here.
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Nucleophilic aromatic substitution reactions have also been commonly applied to
the transformation of pyrimidines into introduce a wide variety of new hetero and
carbon ring substituents, as illustrated in Scheme 19.150 [168].

An intramolecular version of this reaction has been reported by Volovenko, where
pyridine or other nitrogen-containing heterocycles can nucleophilically cycloadd to
chloropyrimidines to produce various condensed pyrimidines (Scheme 19.151)
[169].

The following reaction exemplifies the difference in reactivity of polychloropyr-
imidines with aliphatic nucleophiles (Grignard reagents, organolithiums, organo-

N
N

MeO

OMe
I

RMgX

N
N

MeO

OMe
MgX

E+

35-70% N
N

MeO

OMe
E

140

Scheme 19.149

N

N

OMe

Cl OMe

O BnHN CO2Me

Et3N, CHCl3

N

N

OMe

BnN OMe

O

CO2Me

(82%)

Scheme 19.150

19.7 Reactivity of Diazines j1743



sodiums, and thiolates) (Scheme 19.152), which predominantly yield 4-substituted
pyrimidines 141 [170], versus heteroaromatic nucleophiles, which afford the
2-substituted pyrimidines 142 [171].

Generally, all nucleophilic substitution reactions on halodiazines go by a conven-
tional addition–elimination pathway. However, some transformations are not as
straightforward, such as the reaction of 2-chloro-4-phenylpyrimidine with potassium
amide in liquid ammonia, which gives 2-amino-4-phenylpyrimidine 143
(Scheme 19.153). Although this process appears to be an addition–elimination,
radiolabeling experiments have revealed that a nucleophilic ring opening–ring
closure mechanism is involved [172].
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When the corresponding chloride fails to provide the desired substitution com-
pound, triazoles are also often used as leaving groups in C�N bond formation. This
procedure has been utilized by Leumann in the synthesis of deoxynucleosides 144
(Scheme 19.154) [173]. Other leaving groups, such as sulfonate, have also been
reported for the introduction of N-substituents onto pyrimidines [174].

2-Chloropyrimidine can be displaced by alcohols through the use of sodium
methylsulfinate as a catalyst (Scheme 19.155). Significant rate enhancements as well
as improved yields have been reported with this method [175].

Iodopyrimidines could be converted into theirGrignard derivatives by the action of
i-PrMgCl, which then react with various electrophiles [167]. Qu�eguiner and cow-
orkers have reported the synthesis of pyrimidines 145 bearing alcohols, aldehydes,
and esters through this methodology (Scheme 19.156).

Fluorinated pyrimidones 147 are also of general interest as building blocks in
agrochemicals and because of their antitumor activity. The selective substitution of
the 4-fluoro substituent of 2,4,6-trifluoropyrimidine 146 by a hydroxyl group was
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realized by the reaction with [Ni(cod)2] in the presence of triethylphosphine followed
by caesiumhydroxide oxidation of the aryl nickel intermediate (Scheme19.157) [176].

19.7.3.2.3 Pyrazines (1,4-Diazines) Pyrazine ismore reactive than pyridine towards
nucleophilic attack. The Chichibabin amination of pyrazine itself is unsatisfactory,
but substitution of the halogen in 2-halopyrazine occurs readily using ammonia,
amines, amides, cyanide, alkoxide, and thiolate anion. In the example shown in
Scheme 19.158, primary amines react with pyridazine tofirst yield the corresponding
3-amino derivatives, which subsequently added to the carbonyl group to give the ring-
closed aminal [177]. The products prepared are all of interest as potential pesticides.

Halo- and methoxy-substituted pyrazines (Scheme 19.159) can likewise be dis-
placed by various carbon and hetero-nucleophiles [148].

Sato and Narita have provided an improved synthesis of halopyrazines 149 in
which hydroxypyrazines 148 were activated with TMSCl to give silyl ethers [178].
Subsequent treatment with the appropriate phosphorus-based halogen source
provided halopyrazines in 46–94% overall yield (Scheme 19.160). This two-step
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processwas accomplishedwithout isolation of the siloxyl intermediate and provides a
milder, more convenient approach than the traditional heating of hydroxypyrazines
with PXn directly.

PyrazinesundergoGrignard formation fromhalopyrazines andsubsequently react
with certain electrophiles to produce pyrazine derivatives 150 (Scheme 19.161) [167].

19.7.4
Cycloaddition Reactions

All the diazines with electron-withdrawing substituents undergo inverse-electron
demand Diels–Alder additions with electron-rich dienophiles [179].

19.7.4.1 Pyridazines (1,2-Diazines)
The inverse electron demand Diels–Alder of pyridazines continues to be a com-
monly explored topic. The adjacent nitrogen atoms of pyridazines not only help
create an electron-deficient heteroatomic diene but the N¼N bond also functions as
a good leaving group in a subsequent retro-Diels–Alder reaction. Intramolecular
reactions of this type occur very rapidly, without even the presence of activating
substituents. The immediate products of the initial [4 þ 2]-cycloaddition usually
lose dinitrogen (N2) through rearomatization to generate benzene products
(Scheme 19.162) [180].
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Intermolecular variants of this cycloadditive route to functionalized fused
benzene derivatives are also readily executed, as shown for 4,5-dicyanopyridazine
151 with N-methylpyrrole (Scheme 19.163). The reaction occurs thermally at 150 �C
to give a Diels–Alder adduct (152), which goes on to provide the indole heterocycle
153 upon expulsion of H2 and N2 [181]. Numerous examples of both the intramo-
lecular and intermolecular processes similar to these have been described in the
literature and applied to natural products total synthesis.

19.7.4.2 Pyrimidines (1,3-Diazines)
The corresponding [4 þ 2]-cycloadditions of pyrimidines with electron-rich alkynes
takes place to give regioselective substituted pyridine products, through loss of
hydrogen cyanide (Scheme 19.164) [182].

Intramolecular inverse-electron demand Diels–Alder reactions of pyrimidines
with a dienophilic side chain have received considerable attention during the last few
years. The broad scope and relatively mild conditions of these reactions make them
fruitful. (Scheme 19.165) [183].
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Following the earlier studies by van der Plas, Dehacen and coworkers have
illustrated how the electron-deficient pyrimidine ring 154 can be exploited in the
intramolecular inverse electron demand Diels–Alder reactions to obtain 2-chloro-
pyridines 155 under thermal conditions (Scheme 19.166) [184].

In a novel application, pyrimidine enediynes 156 have been prepared and sub-
jected to Bergman cyclization to give tricyclic pyrimidines 157 (Scheme 19.167),
which were shown to cleave dsDNA [185].

19.7.4.3 Pyrazines (1,4-Diazines)
Likewise, pyrazines can be employed as electron-deficient dienes to prepare substi-
tuted pyridines, as shown in the following example [186]. A mixture of 8H-5,6-
dihydropyrano[3,4-b]pyridine 159 and 1H-3,4-dihydropyrano[3,4-c]pyridine 160 are
obtained (Scheme 19.168). In the formation of the intermediate cycloadduct 158
considerable steric hindrance develops between the trimethylsilyl group and the
C¼N bridge, and the fact that product 159 is favored over 160 implies that loss of
hydrogen cyanide from cycloadduct 158 indicated by route a is faster than of that
indicated by route b.

19.7.5
Reactions with Reducing Agents

Owing to the lower degree of aromaticity, diazines are more easily reduced than are
pyridines. All the diazines can be reduced to tetrahydro derivatives with in situ
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carbamation on nitrogen, which aids in stabilization and thus allows isolation [187].
Yields, however, are generally not very high (Scheme 19.169).

Caution must be exercised in carrying out these conversions for pyridazines,
however, since over-reduction to the hexahydro derivative may lead to subsequent
cleavage of the N�N bond. As an example, reduction of pyridazine with sodium
metal in hot ethanol affords tetramethylenediamine (via N�N bond cleavage) as well
as partially hydrogenated ring products (Scheme 19.170). Under these conditions
pyrimidines and pyrazines are normally reduced to hexahydro derivatives [6].

Reductive ring contraction of pyridazines is an efficient methodology to produce
densely functionalized pyrrole derivative, capitalizing on the versatility of the
azadiene Diels–Alder cycloaddition route to 1,2-diazines (Scheme 19.171) [188].
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In this sense, activated pyridazines 161 have been converted into the correspond-
ing functionalized pyrroles 163 by nitrogen extrusion by electrochemical reduction
process, proceeding through 1,2-dihydro intermediate 162 (Scheme 19.172) [189].

19.7.6
Reactions with Oxidizing Agents

Diazines are generally resistant to oxidative attack at the ring carbons, although
alkaline oxidizing agents (H2N-NH2, heat) can afford degradation via intermediates
produced by initial nucleophilic addition (Section 19.7.3.1.2). Alkyl substituents and
fused aromatic rings [190] can be oxidized to carboxylic acid residues without
affecting the heterocyclic ring (Scheme 19.173).

Some bacteria such as Pseudomonas putida (ATCC 33 015) can be used as
biocatalysts for the selective oxidation of a methyl group in the 2,5-dimethylpyrazine
to the corresponding mono-carboxylic acid 164 (Scheme 19.174) [191].

Similarly, other bacteria such as Agrobacterium can selectively C-hydroxylate
unsubstituted C2 and/or C4 positions of pyrimidines without altering side chains
on the ring (Scheme 19.175) [192].
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The first oxidative cleavage of the pyrimidine ring has been reported by Soai and
coworkers [193]; thus RuO4 (prepared in situ from RuCl3 and NaIO4),provides a new
route for the transformation of acetates of chiral pyrimidylalkanols into chiral
a-acetoxy-N-acetylamides 165 and a-acetoxyamides 166, which are synthetic equiva-
lents of chiral a-hydroxy carboxylic acids, without racemization (Scheme 19.176).

19.7.7
Reactions of Metallated Pyridazines

Qu�eguiner and coworkers have reviewed the directed deprotonation (ortho- metala-
tion) of azines and diazines [194]. In general, diazines are more difficult to ortho-
metalate than are pyridines, due to having sufficiently lower LUMO energies, which
makes themprone to nucleophilic additions and electron-transfer processes. For this
reason, non-nucleophilic lithium 2,2,6,6-tetramethylpiperidide (LiTMP) is a more
efficient ortho-metalating agent than are alkyllithiums, but the resulting heteroar-
yllithium species are very unstable and can easily dimerize. These by-products can
often be avoided by using very short lithiation times or by in situ trapping with a
compatible electrophile (Scheme 19.177) [195].
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19.7.7.1 Pyridazines (1,2-Diazines)
Queguiner and coworkers [196] have reported the ortho-lithiation of pyridazine with
subsequent trapping with chiral sulfinate esters, affording chiral sulfoxides 167with
high enantiomeric excesses (% ee) (Scheme 19.178). These sulfoxide adducts can
then be subjected to a second ortho-lithiation-electrophile trapping sequence with
aldehydes to provide fully-substituted pyridazines 168 with high diastereoselectiv-
ities (% de).

A surprising result is obtained for pyridazine thiocarboxamides (Scheme 19.179),
which undergo metalation–electrophilic attack regioselectively meta to the thiocar-
boxamide group [197].

19.7.7.2 Pyrimidines (1,3-Diazines)
For pyrimidines, ortho-lithiation occurs selectively at C4, not at C2, despite the
enhanced electronegativity of C2 due to its two electron-withdrawing nitrogens
(Scheme 19.180).
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Metalation of diazines bearing directing groups (chloro, fluoro, methoxy,
methylthio, and carboxamides) has been widely reported [198]. Interestingly, pyr-
imidines can be lithiated either by deprotonation or by halogen exchange
(Scheme 19.181). Deprotonation is favored at higher temperature (�10 �C) using
lithium diisopropylamide (LDA), while lithium–halogen exchange occurs at low
temperature (�100 �C) with n-BuLi. The presence of ring substituents at the C2 and/
or C4 centers help to stabilize the resulting lithiated pyrimidines [199].

5-(Pyrimidinyl)magnesium chloride and 5-(pyrimidinyl)cerium dichloride
reagents 169, prepared from bromopyrimidines via metal–halogen exchange, react
with aldehydes and ketones to give high yields of alcohols 170 (Scheme 19.182) [200].

Similarly, lithiation of 5-bromopyrimidine and reaction with enantiomerically-
pure chiral sulfinate esters gives chiral sulfoxides 171 with high enantioselectivities
(Scheme 19.183) [196].
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19.7.7.3 Pyrazines (1,4-Diazines)
Directed metalation of pyrazines has been reported as well, and can be used to
prepare ortho-halogenated derivatives (Scheme 19.184).

Ortho-metalation of 2,6-dichloropyrazine 172 with lithium 2,2,6,6-tetramethylpi-
peridide (LTMP) followed by quenching with a lactone produces the C-heteroaryl
glycoside 173 (Scheme 19.185) [194].

It is reported that pyrazine thiocarboxamides undergo lithiation at the para
position (Scheme 19.186), although the ortho product could be selectively generated
under certain conditions [201].

19.7.8
Palladium-Catalyzed Reactions

Organopalladium chemistry is a rapidly growing field with wide application to
heterocyclic synthesis [202]. This section shows representative types of palladium-
mediated transformations of diazine derivatives.

19.7.8.1 Coupling Reactions

19.7.8.1.1 Pyridazines (1,2-Diazines) New developments in the field of palladium-
catalyzed cross-coupling reactions have included halodiazines and diazene triflates.
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Rival and coworkers reported what is described as being the first Suzuki cross-
coupling for the synthesis of 3-amino-6-arylpyridazines [203]. Electron-donating
substituents on the arylboronic acid provided optimal yields (Scheme 19.187).

Aldous and coworkers have reported similar studies on palladium-catalyzed Stille
and Suzuki coupling reactions of pyridazinyl triflates 174 with electron-rich aryl-
stannanes and aryl boronates, respectively (Scheme 19.188). In general, Suzuki
couplings were found to be more efficient than the corresponding Stille
couplings [204].

In the absence of palladium catalysts, the direct amination of 3-chloropyridazines
with primary amines requires drastic conditions with difficult work up procedures,
giving poor yields of the desired product and low reproducibility. For this reason the
formation of a carbon–nitrogen bond via palladium cross-coupling reactions repre-
sents a powerful synthetic tool. Hibert [205] has developed an operationally simple
and efficient palladium-assisted procedure for the amination of 3-iodo-6-arylpyrida-
zines 175 (Scheme 19.189).

Palladium-catalyzed alkynylations have also been studied with pyridazines. As an
illustration, several 6-phenyl-3(2H)-pyridazinones (Scheme19.190) bearing different
alkynyl groups at position 5 have been prepared by Sonogashira cross-coupling [206].
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When 1-phenyl-2-propyn-1-ol was used, the (E)-chalcone adduct was isolated in
excellent yield.

An efficient one-pot bis-functionalization of the 4,5-positions of the 3-pyridazi-
none ring has been performed using Suzuki, Sonogashira, and Stille cross-coupling
reactions assisted by a retro-ene fragmentation (Scheme 19.191) [207]. This route
allows quick access to several pharmacologically useful novel 3(2H)-pyridazinone-
based antiplatelet agents [208].

This samemethodology has been applied to a �traceless� solid-phase synthesis of 3
(2H)-pyridazinones 176, employing a dihydropyran-functionalized resin and cleav-
age conditions that promoted a retro-ene fragmentation (Scheme 19.192) [209].

In the case of 1,2-diazines, the lithiopyridazines prepared by ortho-lithiation have
been converted by reaction with zinc chloride into the more stable zinc compounds
for use in palladium-catalyzed cross-coupling reactions [210]. The use of sonication,
for the first time in a Negishi reaction, lowered the reactions times significantly and
improved the yields (Scheme 19.193).

19.7.8.1.2 Pyrimidines (1,3-Diazines) Palladium-catalyzed cross-coupling reactions
have also been reported for pyrimidines. The increased stability of organozinc
reagents compared to lithium or magnesium organometallics allows the Negishi
reactions to be carried out at high temperature. In this way, ortho-lithiation of
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4-chloro-2-methylthiopyrimidine 177 using LTMP and subsequent treatment with
ZnCl2 led to organozinc reagent 178, which was then cross-coupled with iodoben-
zene to furnish the 5-arylpyrimidine 179 (Scheme 19.194) [210].

Although alkyl halide substrates are prone to b-hydride elimination in these
reactions, alkylzinc or alkylboron reagents can take part in Negishi or Suzuki
coupling without detectable b-hydride elimination to produce alkylpyrimidines
(Scheme 19.195) [211].

The cross-coupling reaction of methylthiopyrimidines 180 with organozinc com-
pounds in the presence of palladium was found to produce substituted pyrimidines
181 in good to excellent yields (Scheme 19.196) [212].
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The traditional Stille-type cross coupling of stannanes with bromopyrimidines has
been reported to provide chlorobiaryls 182 in good yields (Scheme 19.197) [160].

Amodular synthesis of functionalized pyrimidinones via a selective sulfide versus
halide cross-coupling protocol has been reported (Scheme 19.198) [213]. The
exchanges are complementary and depend solely on the experimental conditions.
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In the same way, 2-amino-6-iodo-4-tosyloxypyrimidine (183, which is easily
prepared from commercially available material, is a key intermediate for the
preparation of differentially substituted 2-aminopyrimidines bymeans of sequenced
Suzuki and/or Sonogashira reactions (Scheme 19.199) [214].

Microwave activation is becoming a very popular and useful technique in organic
chemistry. The combination of solvent-free reaction conditions and microwave
irradiation leads to significantly reduced reaction times, enhanced conversions, and,
sometimes, higher selectivity, with the advantage of an eco-friendly approach (green
chemistry). In this context, Botta has described a microwave-assisted Sonogashira
coupling of pyrimidinones with alkynes to give the corresponding 5-alkynyl deriva-
tives 184, or furano-fused pyrimidines 185 when using propargyl alcohol
(Scheme 19.200) [215].

19.7.8.1.3 Pyrazines (1,4-Diazines) Chloropyrazines and theirN-oxides both under-
go a wide range of palladium-catalyzed carbon–carbon bond-forming reactions. The
oxidative addition of chloroarene to Pd(0) occurs using sterically hindered, electron-
rich phosphine ligands, as reported by Reetz [216], Fu [217], and Buchwald [218]. In
1981, Otha et al. [219] introduced a cyano group by refluxing chloropyrazine 186with
KCN inDMFin the presence of a catalytic amount of Pd(Ph3P)4 to give cyanopyrazine
187 (Scheme 19.201).
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good yields. Stille coupling of chloropyrazines and their N-oxides has been carried
out with tetraphenyltin [220] and aryl-, heteroaryl-, allyl-, and alkylstannanes [221].
Acylation of pyridazines by Stille reactions of bromopyrazines with 1-ethoxyvinyl-
stannanes (Scheme 19.202) has been accomplished by Sato et al., using a copper co-
catalyst [222]. They found that the copper additive increased the yields from 31% to
93%. The Cu-induced acceleration was most prominent for electron-deficient
pyrazines, which are more reactive in Pd-catalyzed reactions.

Suzuki couplings have likewise been conducted using halopyrazines and boronic
acids. In this way (Scheme 19.203), bromopyrazine 188 and 2-thiopheneboronic acid
have been coupled to deliver the desired thienylpyrazine 189 [223].

In addition, some pyrazine derivatives can be coupled with aryl halides through a
Negishi reaction (ortho-lithiation and transmetalation with ZnCl2) [210]. In this case,
sonication has a great influence on the yield and reaction time (Scheme 19.204).
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Palladium-catalyzed alkylation reactions of chloropyrazines with alkyl organome-
tallic reagents bearing b-sp3-hydrogens have sometimes proven to be difficult [224].
In addition to coupling, dehalogenation may also take place. In comparison, when
trialkylaluminium or dialkylzinc reagents are used low yields of the alkylated product
are obtained, while trialkylboranes give the best results (Scheme 19.205).

Akita and Otha disclosed one of the earliest Sonogashira reactions of chloropyr-
azines and their N-oxides [225]. Under standard cross-coupling reaction conditions
[Pd(Ph3P)2Cl2, CuI, Et2NH], many alkynylpyrazines have been synthesized [226],
among them being some natural products (Scheme 19.206) [227].
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Heck reactions of 2-chloro-3,6-dimethylpyrazine 190 with styrene in the presence
of Pd(Ph3P)4 and KOAc provides a convenient route to vinylpyrazine derivatives 191
(Scheme 19.207) [228]. This methodology was also extended to 2-chloropyrazines
N-oxides, although the yields were considerably lower (28–38%) [229].

Ohta�sgrouphasadvancedthismethodologytoHeckreactionsofhalopyrazineswith
both p-electron-rich and p-electron-deficient heteroarenes (Scheme 19.208) [230].

A stereospecific Heck-cross-coupling reaction of an iodo-substituted diaminopyr-
azine has been reported by Townsend in which a glycal serves as the acceptor, giving
exclusively the b-configuration of the C-glycosidic bond [231]. It was not necessary to
protect the two amino groups of the pyrazine due to the relatively weak basicity of the
amino nitrogens on the electron-deficient pyrazine ring (Scheme 19.209).

19.7.8.2 Carbonylation Reactions
Alkoxycarbonylation reactions of halo-substituted diazines can be carried out with
carbon monoxide and palladium acetate in an alcohol solvent, providing an effective
route to pyrimidine esters (Scheme 19.210) [232].
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Similarly, pyrazine-carboxylic esters 192 and pyrazine carboxamides can be
synthesized in excellent yield from chloropyrazines by Pd-catalyzed carbonylation
in the presence of either an alcohol or dialkylamine (Scheme 19.211) [233].

19.8
Important Derivatives

19.8.1
Diazines N-Oxides

Pyridazine N-oxides and pyrazine N-oxides can be prepared by selective N-oxidation
of the parent heterocycles, but pyrimidineN-oxides aremore difficult to obtain in this
way and are best prepared by ring synthesis [234, 235]. Pyridazine N-oxides and
pyrazine N-oxides give electrophilic aryl substitution and nucleophilic displacement
(Scheme 19.212). Interestingly, the nitro group can be removed readily either at the
b- or c-position to the N-oxide function.

All three diazene N-oxide systems are prone to nucleophilic substitution by halide,
cyanide, enamines, or acetate with loss of the oxide function [236]. Depending on the
types of substituents present on the ring, the site of introduction of the nucleophile is
not always a to the N-oxide as would be predicted by analogy with pyridine chemistry
(Scheme 19.213).
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TheN-oxide group can also serve as an activating substituent to allow regioselective
metalation (ortho-lithiation) and further reaction with electrophiles, as shown in
Scheme 19.214. The N-oxide can be removed with phosphorus tribromide [237].

19.8.2
Aminodiazines

Aminodiazines exist in the fully aromatized amino form but significant anionic
charge character is built up on the ring nitrogen by resonance (a shown below),
making protonation occur on the anionically-enriched ring nitrogen. The order of
preference for protonation of a ring nitrogen is c>a>b to the amino group.

N

N

NH2
N

N

NH2

-

The presence of an amino group facilitates electrophilic substitution, as illustrated
for halogenation (Scheme 19.215). Predictably, two amino groups further activate the
ring to enable attack by weaker electrophiles.

Often, it is difficult to regioselectively alkylate 2-aminopyrimidines without
producing a mixture of endo- and exocyclic N-alkylation products. Alvarez-Builla
and coworkers [238] have reported methodology for selectively preparing 2-alkyla-
minopyrimidines 194 with high regioselectivity, after reductive removal of the
pyridine moiety from the N-alkylated product (Scheme 19.216). The reaction is
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thought to proceed through formation of an intramolecular hydrogen bond between
the pyridine and pyrazine rings, which prevents alkylation of the ring nitrogens.
Similar methodology can be applied to 2-aminopyrazines.

Various biologically important natural products contain the 2-aminopyrimidine
moiety in their structure, and various reactions involving these substituted hetero-
cycles have been reported (condensation with aldehydes and ketones [239], Michael
additions [240]). For example, Grubb has employed the cyclocondensation of an
a-bromoaldehyde with diaminopyrimidone in a total synthesis of quinine (Q Base),
found in tRNA (Scheme 19.217) [241].

19.8.3
Alkyldiazines [242]

Alkyldiazines undergo condensations that involve deprotonation of the pendent alkyl
group. The intermediate anions are stabilized bymesomerism involving one or both
nitrogens. Thus, pyrimidines system shows side-chain reactivity; CH3 groups at the
C2, C4, or C6 undergo aldol or Claisen condensations with marked preference at C4
(Scheme 19.218).
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The regioselectivity of the side chain reactions on disubstituted pyrimidine can be
controlled by adjusting the reaction conditions (Scheme 19.219). Thus, in the
bromination of 4,5-dimethylpyrimidine (195) under ionic conditions (Br2, HOAc)
substitution at the C4 methyl group 196 is favored, but under radical conditions
(NBS, CCl4) the halogenation occurs at the C5 methyl group (197) [243].

Like the other diazines, alkylpyrazine can undergo base catalyzed C�C bond-
forming reactions of the CH groups adjacent to the heteroatom. Thus, 2-methylpyr-
azine (198), after deprotonationwithNaNH2 in liquidNH3, canbe alkylated, acylated,
and nitrosated (Scheme 19.220).

19.8.4
Hydroxydiazines

All the mono-oxygenated diazines, except 5-hydroxypyrimidine, exist predominantly
as carbonyl tautomers and are thus categorized as diazinones. The dioxydiazines do
not obey a straightforward rule, for where both oxygens are a or c to a nitrogen both
are expected to exist in carbonyl formbut one remains in the hydroxyl form, as seen in
the case of maleic hydrazide. The preference for themono-oxo tautomer is likely due
to the favorable interaction between two adjacent, oppositely charged nitrogen atoms
as opposed to dual cationic nitrogens in the di-oxo form (Scheme 19.221).
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On the other hand, uracil, 199, thymine, 200, and cytosine, 201, all exist in the
dione form and most of their reactions can be interpreted on this basis [244].
Similarly, barbituric acid, 24, prefers the tricarbonyl tautomer.
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Diazinones are highly susceptible to nucleophilic attack, generally viaMichael-type
addition rather than by direct attack at a carbonyl center (Scheme 19.222). There are,
of course, exceptions to this general trend. Grignard reagents add to the ring to give
dihydro-compounds and good leaving groups can be displaced [245].

For certain synthetic transformations it is often convenient to use halo- or alkoxy-
substituted diazines to enhance solution solubility, or product yield, compared to the
underivatized compound. Oxydiazines with the oxygen a to nitrogen can be con-
verted into halo- and thio-compounds using the same reagents used for 2- and 4-
pyridones, including N-bromosuccinimide with triphenylphosphine or phosphorus
oxyhalide (Scheme 19.223) [246].

This same transformation can be effected via generation of the O-silylated
pyrazinones with phosphorus(III) halide or phosphorus(V) chloride under mild
conditions and without the need for isolation of the silyl intermediate
(Scheme 19.224) [247]. The iodo adducts were obtained in low yield.

Diazinones 202 can be converted into aminodiazines 204 by various processes,
including the use of 1,2,4-triazole intermediate 203 (Scheme 19.225) [248].
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Owing to the importanceof light-inducedmutagenesis, photochemical transforma-
tions of the double bond in oxypyrimidines have been investigated in depth. From this
comesuseful [2 þ 2] cycloadditionmethodology, as illustrated in the reaction of uracil
with vinylene carbonate to prepare a 5-alkylated derivative (Scheme 19.226) [249].

Uracils also undergo radical additions (Scheme 19.227), which are of possible
relevance to mutagenesis mechanisms [250].
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19.8.5
Halodiazines

Most of the chemistry concerning halodiazines derivatives has been discussed above
in the context of various nucleophilic sing substitutions (Sections 19.7.3.2
and 19.7.8).
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20
Six-Membered Heterocycles: Triazines, Tetrazines
and Other Polyaza Systems
Cristina G�omez de la Oliva, Pilar Goya Laza, and Carmen Ochoa de Ocariz

20.1
Introduction

Triazines and tetrazines have been the subject of previous surveys. Reference
textbooks include Comprehensive Heterocyclic Chemistry I [1–4], Comprehensive
Heterocyclic Chemistry II [5–9] and The Chemistry of Heterocyclic Compounds [10]. In
addition, Progress in Heterocyclic Chemistry [11] which appears annually and always
includes a chapter with these ring systems. In other heterocyclic series, such as
Advances inHeterocyclic Chemistry, several chapters havedealtwith 1,2,3-triazines [12],
dihydrotriazines [13, 14], reaction of triazines with nucleophiles [15–17] and 1,2,4-
triazine-N-oxides [18]. Some of the references cited therein have been considered in
the present chapter and the reader is referred to them for additional details.

Among the three triazine isomers the 1,2,3-triazines (1) are the least studied in
comparison with their 1,3,5- (3) and 1,2,4- (2) isomers, because of the well known
fragility of chains and rings with contiguous nitrogen atoms [19].
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Several reviews on the chemistry of 1,2,3-triazine, also called n-triazine, have been
published [12, 20–26]. Study of the reactivity and stability of the unsubstituted ring
systems has been possible only since 1981 when the first synthesis of the parent
compound 1 was reported [27].

1,2,4-Triazines, also called a-triazine or as-triazine, are well-known compounds
and a wide variety of synthetic methods for the preparation of substituted derivatives
are available. Compounds containing the 1,2,4-triazine moiety are found in natural
materials and some of them show biological activity. Several reviews dealing with
1,2,4-triazines have appeared, particularly on account of their biochemical proper-
ties [16, 18, 24, 26, 28–32]. The parent compound 2was prepared for the first time by
Paulder and Barton in 1966 [33].
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1,3,5-Triazines have been known for almost 200 years. Originally, they were called
the symmetric triazines, usually abbreviated to sym-triazine. Like many heterocyclic
compounds, 1,3,5-triazines are often referred to by trivial names such as cyanuric
acid (4), cyanurates (5), cyanuryl chloride (6), isocyanurates (7) and melamines (8).
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Therehavebeenmanystudiesdealingwiththechemistryof1,3,5-triazine[26,34–41].
Triazine 3 was first isolated in 1895 by Nef [42]. An incorrect molecular weight
determination led Nef to assign a wrong structure. This incorrect assignment was
accepted by other workers, but in 1954 a correct cryoscopic molecular weight deter-
mination established the structure of 3 [43].

Tetrazines have been less studied than triazines since there are fewer known
examples [44]. The three possible isomers of tetrazine are known and numbered as
indicated in Figure 20.1. There are more examples of 1,2,4,5-tetrazines (9), also
named s-tetrazines and sym-tetrazines, than of the other two isomers. 1,2,3,4-
Tetrazine (10) is also known as n-tetrazine. 1,2,3,5-Tetrazines (11), also named
as-tetrazines, are the least studied class. The parent compoundof the 1,2,4,5-tetrazine
series (9) was first synthesized by Hantzsch and Lehman in 1900 [45].

20.2
1,2,3-Triazines

20.2.1
Relevant Computational Chemistry, Physicochemical and Spectroscopic Data

Few monocyclic 1,2,3-triazines are known, so knowledge of the structure of these
compounds is poor. 4,5,6-Tris(4-methoxyphenyl)-1,2,3-triazine was the first mono-
cyclic triazine to be studied by X-ray crystallographic analysis [46]. This work showed
the planarity of the triazine ring, as expected for a molecule with some degree of
electron delocalization. The X-ray analysis of the parent compound 1 has been
performed and the results fully agree with the planar and aromatic nature of the ring
system [47–49]. X-Ray crystallographic analyses with alkyl and aryl substituents of
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Figure 20.1 Numbering of the three possible isomers of tetrazine.
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1,2,3-triazines 12 [50], 13 [50], 14 [51] and triazinium salts 15 [50], 16 [50], 17 [50] and
18 [52] have been described.

12   R4 = Ph, R5 = H, R6 = Me;             13  R4 = Ph, R5 = R6 = (CH2)4
14   R4 = R6 = Ph, R5 = NEt2
15 R4 = Ph, R 5= H, R6 = Me, X = O-;   16 R4 = R6 = Me, R5 = H, X = O-

17   R4 = R5 = R6 = Me, X = NH-;          18 R4 = R6 = Ph, R5 = H, X = CH3N
N
N

R6

R4

R5

X

In 2004, Fabian and Lewars described a computational study of the stability,
homodesmotic stabilization energy, electron distribution and magnetic ring current
of triazines [53]. The proton affinity of 1 has been calculated [54]. The results suggest
that 1,2,3-triazine has almost the same basicity as pyrazine and 1,2,4-triazine, but it is
more basic than 1,3,5-triazine [54]. The electronic absorption spectrum of 1,2,3-
triazine has been obtained [55, 56]. In addition, the excited state geometries and
vibrational spectra of 1 have been calculated using different levels of ab initio theory,
with the results being in agreementwith experimental studies [55, 57].Harmonic [58]
and anharmonic [58, 59] frequencies have also been calculated. Solvent effects on the
lowest excitation of 1,2,3-triazine have been studied using a method developed for
estimating solvent shifts of triazines that have strong specific interactions with the
solvent [60]. The heat of formation has been calculated for 1,2,3-triazine [61].

Most known 1,2,3-triazines are stable at room temperature. The parent com-
pound 1 can be obtained as colorless plates from ether and it undergoes slow thermal
decomposition at room temperature, but is stable for several months when stored
under vacuum at�20 �C. Table 20.1 gives the melting points, 1H and 13C NMR data
of various 1,2,3-triazines. The relatively high melting point of 1 suggests the tight
stacking of the unsubstituted triazine ring, which was shown in X-ray data [48]. The
low-field chemical shifts of the ring protons are consistent with deshielding by a ring
current ofp-electrons; thus the triazine ring is aromatic. The 13C NMRdata show the
aromatic nature of the triazine ring.

Figure 20.2 shows the 15N-signals of 1,2,3-triazines 1 [48], 19 and 20 [72] and those
obtained recently for 21 and 27–29 [67]. 15N NMR spectra of 1,2,3-triazines derivatives
havebeenrecordedinCDCl3solution,usingnitromethaneasinternalstandard.Insaltsall
nitrogensignalsareshifted tohigherfieldcomparedto thecorresponding1,2,3-triazines.

Mass spectrometry of 1,2,3-triazine affords a characteristic fragmentation. The
general fragmentation pattern of monocyclic 1,2,3-triazines shows peaks for [Mþ -
N2], and for an acetylene and a nitrile, which is in accordance with the results of
thermolysis and photolysis. The mass spectrum of the parent triazine 1 shows peaks
at 81 (Mþ , 47%), 53 (Mþ–N2, 69%), 27 (HCN, 13%), 26 (C2H2, 100%) [62]. The
presence of alkyl and/or aryl substituents diminishes the molecular ion peak [67].

20.2.2
Relevant Natural and Useful Compounds

To date, no compound containing the 1,2,3-triazine system has been isolated from
natural sources. Derivatives of 1,2,3-triazine are an important class of heterocyclic
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Table 20.1 Melting point and 1H and 13C NMR data of 1,2,3-triazines.

  1 R4 = H, R5 = H, R6 = H;             14 R4 = R6 = Ph, R5 = NEt2
19 R4 = Me, R 5 = R6 = H;               20 R4 = R6 = Me, R5 = H
21 R4 = R6 = H, R5 = Ph;                 22 R4 = R6 = H, R5 = Me
23 R4 = R6 = Me, R5 = CH2COPh;  24 R4 = Ph, R5 = OH, R6 = Me
25 R4 = R6 = Me, R5 = CONH2; 26 R4 = R6 = Me, R5 = CH2SO2Ph

N
N
N

R4

R5

R6

mp (�C) 1H NMR (CDCl3) d (ppm) 13C NMR (CDCl3) d (ppm)

1 70 9.06 (2H, d, J¼ 6.0Hz), 7.45 (1H, t,
J¼ 6.0Hz) [62]

149.7, 117.9 [62]

14 216 7.20–8.00 (10H, m), 2.68 (4H, q, J¼ 7.0Hz),
0.90 (6H, t, J¼ 7.0Hz) [63]

153.0, 137.0, 129.4, 128.7,
128.4, 46.1, 12.8 [63]

19 30 8.92 (1H, d, J¼ 6.0Hz), 7.33 (1H, t, J¼ 6.0Hz),
2.70 (3H, s) [64]

159.7, 148.8, 117.8,
21.4 [65]

20 87 7.11 (1H, s), 2.68 (6H, s) [66] 158.8, 117.6, 21.1 [65]
21 145 9.95 (2H, s), 7.69–7.63 (2H, m), 7.57–7.51 (3H,

m) [67]
147.4, 131.4, 131.1, 130.1,
127.3 [67]

22 67 8.93 (2H, s), 2.40 (3H, s) [64] 146.9, 137.4, 123.5,
17.4 [65]

23 130 8.08–8.06 (2H,m), 7.72–7.68 (3H,m), 7.55–7.59
(2H, m), 2.44 (2H, s), 2.59 (6H, s) [68]

193.1, 158.8, 135.7, 134.3,
129.1, 128.2, 124.9, 37.2,
19.6 [68]

24 182 8.12–8.25 (2H,m), 7.31–7.41 (3H,m), 2.41 (3H,
s), 2.17 (1H, bs) [69]

164.1, 156.4, 147.7, 132.3,
129.5, 127.9, 127.7,
15.5 [69]

25 210 6.60 (2H, bs), 2.72 (6H, s) [70] 166.1, 154.8, 126.5,
17.5 [70]

26 136 7.36–7.92 (5H,m), 4.44 (2H, s), 2.52 (6H, s) [71] 159.6, 138.2, 134.9, 129.9,
128.2, 118.8, 54.9 [71]
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Figure 20.2 15N NMR data of some 1,2,3-triazines.
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compounds that are useful in organic synthesis, their importance being due to the
fact that they can react as diene in inverse-demand Diels–Alder cycloadditions with
electron-rich dienophiles. The use of 1-t-butyl-3-ethyl-2-methylhexahydro-1,2,3-tri-
azine as a corrosion inhibitor for steel is mentioned in the literature [73]. For several
other compounds containing the 1,2,3-triazine system, claims for biochemical or
technical applications have been made, but these seem to have been mostly for the
purposes of obtaining patents on the compounds involved, and it appears that no
significant uses are yet known. Reports on the medicinal chemistry of 1,2,3-triazine
have appeared [74–82].

20.2.3
Synthesis

20.2.3.1 From Tricycles
The rearrangement of cyclopropenyl azides 30 (Scheme 20.1) is a method used for
the synthesis of monocyclic 1,2,3-triazines [83–90]. This method is limited to the
synthesis of trisubstituted triazines, because only trisubstituted cyclopropenyl azides
have been rearranged.

Diphenylchloroazine 31 and diazomethane yield 4,5-diphenyl-1,2,3-triazine 32
(Scheme 20.2) [91].

Matsumoto et al. have reported the preparation of 5-amino-4,6-dialkyl-1,2,3-
triazines 35 from the corresponding dialkylcyclopropenones 33 [63, 92, 93]
(Scheme 20.3).
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20.2.3.2 From Pentacycles
The more general synthetic method to obtain various mono-, di- and tri-substituted
alkyl- and aryl-triazines, besides the parent triazine 1, is by oxidation ofN-aminopyr-
azoles 36 with lead(IV) acetate (LTA; Pb(C2H3O2)4), nickel peroxide or sodium
perchlorate [27, 48, 64, 66, 94, 95] (Scheme 20.4). The amino nitrogen is incorporated
into the triazine ring as the central nitrogen N2, probably via insertion of the nitrene
moiety to the N�N bond of the pyrazole ring [72].

Butler et al.have reported that 2,5-dihydro-1,2,3-triazine derivatives are obtained by
the 1,3-dipolar cycloaddition of 1,2,3-triazole N-oxide and dimethylacetylene dicar-
boxylate (DMAD) [96, 97]. The same group have reported another synthesis in which
pyrrolo[2,3-d]-1,2,3-triazoles thermally rearrange to 2,5-dihydro derivatives [98].

20.2.3.3 Cycloaddition of [3þ 3] Fragments
Another 1,2,3-triazine system (39) has been obtained by the reaction of triazenes 37
with chloroformylketones 38 (Scheme 20.5) [99].

20.2.3.4 Cycloaddition of [5þ 1] Fragments
The cycloaddition of [5þ 1] fragments has also been used indirectly for the synthesis
of one monocyclic 1,2,3-triazine. Compound 40 (Scheme 20.6) is cyclized with
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nitrous acid to give 4-aminoimidazo[4,5-d][1,2,3]triazine 41, which affords 4,5-
diamino-6-cyclopentylamino-1,2,3-triazine 42 [100].

20.2.3.5 Cycloaddition of [6þ 0] Fragments
Cyclization of triazenes 43 affords 1,3-disubstitued-3,4,5,6-tetrahydro-1,2,3-triazi-
nium salts 44 [101] (Scheme 20.7).

20.2.4
Reactivity

20.2.4.1 Thermal and Photochemical Reactions
Flash vacuum thermolysis (FVT) of 1,2,3-triazines affords nitriles 45 and 46, alkyne
47 and nitrogen (Scheme 20.8). With unsymmetrically substituted triazines, frag-
mentation proceeds selectively. The results indicate that a bulky substituent at C4(6)
makes the adjacent C�N bond break more easily than the opposite C�N bond. The
photolysis of triazines (Scheme20.9) gives the fragments nitriles 45 and 46, alkyne 47
and nitrogen, as under FVT conditions [83, 85, 102–104]. In contrast to the FVT,
unsymmetrical triazines also give the other possible alkyne 48.

FVT has been applied to the synthesis of fluorinated alkynes, such as perfluoro-3-
methyl-1-butyne (50) and difluoroethyne (51) [105, 106] (Scheme20.10). Seybold et al.
have obtained the first isolable unfused azete 54 by FVT of tris(dimethylamino)
triazine (53) [87] (Scheme 20.11).
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20.2.4.2 Reactions with Electrophilic Reagents
Electrophilic reaction on ring carbon C5 of 1,2,3-triazines cannot proceed because of
the intensive p-electron deficiency of the ring system.

Protonation of alkyl and/or aryl substituted 1,2,3-triazines is difficult due to the low
basicity of the ring nitrogen, and only when 4-phenyl (28) and 5-phenyl-1,2,3-
triazines (21) are treated with tetrafluoroboric acid is the isolation of protonated
1,2,3-triazinium salts 55 possible [67]. The N2 substituted isomer is the most stable
(Scheme 20.12).

However, 4,6-diamino-1,2,3-triazines have relatively highnucleophilicity atN2 and
undergo various kinds of reactions with electrophiles [107] (Scheme 20.13).

Other electrophilic reactions proceed on the ring nitrogen of substituted 1,2,3-
triazines (Scheme 20.14). The reaction with methyl iodide takes place easily to give
2-methyl derivatives 62 [63, 68, 92, 108]. Ethylation of substituted 1,2,3-triazines
occurs when these compounds are treated with triethyloxonium, and so derivatives
63 have been obtained [67, 109]. Both N-amination and N-dicyanomethylidation of
triazines also occurs and the corresponding 2-substituted isomers 64 [70] and 65 [109]
are obtained in good yields. The N-phenylated 1,2,3-triazinium 66 has been obtained
from copper-catalyzed reaction between 1,2,3-triazines and diphenyliodonium hex-
afluorophosphate [67]. Treatment of triaryl-1,2,3-triazines with aqueous hydrochloric
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acid at higher temperatures leads to hydrolysis of the ring and formation of 1,3-
dicarbonyl compounds 67 [83]. The reaction of monosubstituted 1,2,3-triazines with
hydroxylamine-O-sulfonic acid gives 3-amino-2(3)-phenylacrylonitriles 68a,b [109].

20.2.4.3 Reactions with Nucleophilic Reagents
1,2,3-Triazines are highly p-electron deficient and are readily attacked by nucleo-
philes. The reaction site is almost exclusively at the C4 position, even in the presence
of a substituent at C4 [69, 110, 111].

Gompper et al. [107] have reported that 4,5,6-trichlorotriazine undergoes substi-
tution reactions with amines and alcohols. The first reaction site was the C4 position,
and successive displacement(s) occur, depending on the nature of the nucleophile
(Scheme 20.15).
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Therefore, the 1,2,3-triazine ring system has been shown to have insufficient
stability for direct introduction of substituents. For example, the parent triazine
slowly decomposes in methanol at room temperature, which suggests that nucle-
ophilic attack of methanol occurs in the solution. Also, softer nucleophiles undergo
a redox reaction with triazine (1) to give 2,5-dihydro derivatives 73 without ring
substitution [112] (Scheme 20.16).

On the other hand, 4-methyl-1,2,3-triazine (19) reacts with sodium amide in
ammonia to give 5-amino-4-methyl-2,5-dihydro-1,2,3-triazine (74) [48]
(Scheme 20.17).

The introduction of nucleophiles at the C5 position of 1,2,3-triazine has been
carried out for ring activation of N2, that is, addition of nucleophiles was successful
when 1,2,3-triazinium salts were used as substrate. The dicyanomethylene group is
a good activator, whose removal was simultaneously effected under the reaction
conditions. Makosza [113] has developed a method named vicarious nucleophilic
substitution of hydrogen to transform 1,2,3-triazinium 2-dicyanomethylylides 65
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into 5-benzenesulfonylmethyltriazines 75 [71, 114] by a radical reaction
(Scheme 20.18). Radical nucleophilic carbamoylation, which was developed by
Minisci [115], has been applied to triazinium dicyanomethylides to form 5-carba-
moyl-1,2,3-triazines 76 [70, 116].

However, this procedure was limited to these two reactions because of the
instability of the dicyanomethylene group toward other nucleophiles. Ohsawa
et al. [68, 117] have found an alternative method for ring activation – ketene silyl
acetals or silyl enol ether react with 1,2,3-triazine in the presence of 1-chloroethyl
chloroformate to give 2,5-dihydro adducts 77, which upon aromatization with ceric
ammonium nitrate (CAN) give the corresponding 5-substituted triazines 78. 2,5-
Dihydro-1,2,3-triazine 79has been obtained by hydrolysis in acetonitrile/water under
reflux (Scheme 20.19).

Hydrolysis of 5-amino-1,2,3-triazinium salt 62 with aqueous sodium hydroxide
affords 1,2,3-triazin-5-ones 80 [63, 92, 93] (Scheme 20.20). 2-Methyltriazinium
quaternary salts are highly reactive to nucleophiles; the reactive site is the 5-position,
giving 2,5-dihydro derivatives 81 and 82 [118].

When 2-ethyl-1,2,3-triazinium salts are allowed to react with C-nucleophiles the
expected attack occurs in the case of the 4-alkyl triazinium salt to obtain 83
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(Scheme 20.21); however, 5-alkyl-1,2,3-triazinium salts did not react [67]. Reactions
with these C-nucleophiles suffer from poor yields due to the weak nucleophilicity.
Reaction of 63 with compounds with acidic protons allows one to obtain 84 in
good yields.

In addition, other nucleophiles can react with 1,2,3-triazines while keeping the
aromaticity of the ring. Consequently, reaction between 4,6-dimethyl-1,2,3-triazine
with halogenating reagents yields 5-halotriazine [119]. The use of interhalogen
reagents affords 5-halotriazines derived completely or mainly from the more
electronegative halogen.

Monocyclic 1,2,3-triazine 2-oxides are quite stable and unreactive toward reagents
such as Grignard reagents, alkyl- and aryllithiums and other organometallic com-
pounds. This fact suggests that the N-oxide moiety back-donates electrons to the
triazine ring, thus making the a- and c-positions less reactive toward nucleophiles.

20.2.4.4 Cycloaddition Reactions
1,2,3-Triazines areuseful compounds that participate in cycloaddition reactions [120].
These compounds behave as p-deficient dienes and undergo inverse-demand
Diels–Alder cycloadditions with electron-rich dienophiles [121]. Several reactions
of 1,2,3-triazines with ynamine or enamine have been reported to afford pyridines
85 [48, 122] or 86 [94, 123] respectively (Scheme 20.22). This approach has been
successfully employed for the total synthesis of pyridine alkaloids [124, 125], such as
fabianine (87) [48, 126] and fusaric acid (88) [127, 128].

The mechanisms proposed for these reactions are described in Scheme 20.23.
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4,6-Dimethyl-1,2,3-triazine (20) also reacts as diene with enamines under micro-
wave irradiation [129, 130] (Scheme 20.24). The presence of alkyl substituents in the
triazine ring diminishes the electron deficiency of the ring and increases the steric
hindrance experienced in the cycloaddition. For these reasons, cycloaddition reac-
tions are scarce and reaction conditions are very energetic, therefore microwave
irradiation in solvent-free conditions is used. To date, Diels–Alder reactions of 4,5,6-
trimethyl-1,2,3-triazine have not been reported.
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In 2004 [109] the first report was made of a 1,3-dipolar cycloaddition reaction
between 1,2,3-triazonium N-ylides 65 and electron-deficient dipolarophiles, afford-
ing a new class of bicyclic heterocycles (89) (Scheme 20.25).

20.2.4.5 Reactions with Reducing Reagents
Sodium borohydride reduction of 4,6-disubstituted triazines in methanol afforded
2,5-dihydrotriazines 90 in good yields [66]. 4,5,6-Triaryltriazines have been reduced
with LiAlH4 to give also the corresponding 2,5-dihydro compounds 91 in moderate
yields [48] (Scheme 20.26).

Reduction of the 2-oxide 92 with NaBH4 gives tetrahydro derivatives 93
(Scheme 20.27) in good yields [131]. Reduction of the triazine 1-oxide 94 affords
2,5-dihydrotriazines 90.

20.2.4.6 Reactions with Oxidizing Reagents
2-Oxides 92 and/or 1-oxides 94 have been obtained by treatment ofmonocyclic 1,2,3-
triazines with MCPBA or AcOH/H2O2 (Scheme 20.28). Triazines with bulky aryl
groups on C4 and C6 give predominantly 2-oxides 92, while with alkyl groups on C4
and/or C6 it is possible to obtain 1-oxides 94 [48]. There are no reported 1(3)-oxides
without substituent on the adjacent carbon.
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5-Halo-1,2,3-triazines 95 react with superoxide to give 1,2,3-triazin-5(2H)-ones
96 [69, 111] (Scheme 20.29). The 5-oxo forms are predominant rather than the
5-hydroxy tautomers.

The reactions of triazinium salts 62 [111, 118] and 2,5-dihydrotriazines 97 [132]
with superoxide give 5,50-bi(2-methyl-2,5-dihydrotriazinyls) 98, which are formed by
one-electron reduction with superoxide followed by dimerization (Scheme 20.30).

2,5-Dihidrotriazines 90 slowly oxidize in air to give the corresponding triazines
(Scheme 20.31), whereas oxidation with MCPBA affords 2-oxides exclusively 92; N-
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methyl derivatives 97 are oxidized with MCPBA to afford 5-oxo-2,5-
dihydrotriazines 80 [133].

20.2.4.7 Relevant Examples
Direct Diels–Alder reactions of 1,2,3-triazine with fullerene C60 should be unfavor-
able because 1,2,3-triazines behave as p-deficient dienes with inverse-electron
demand and the 6-6 junction double bond of C60 acts as an electron-deficient
dienophile. However, the reaction took place to give an azacyclohexadiene fused
derivative such as 99 by extrusion of N2 [134, 135] (Scheme 20.32)

20.3
1,2,4-Triazines

20.3.1
Relevant Computational Chemistry, Physicochemical and Spectroscopic Data

Much detailed data on the structure of 1,2,4-triazine have been published. Two
Kekul�e structures can be drawn for this molecule (2a and 2b,Scheme 20.33).
Theoretical calculations suggest that structure 2a gives a higher contribution to the
ground state of the molecule. This is supported by X-ray crystallographic structure
determinations. It is explained by the fact that structures with a formal N¼N double
bond are energetically unfavorable; they are destabilized and so tend not to be
formed [136].
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Several theoretical methods have been used to study 1,2,4-triazines. Thus, the
H€uckelmethodwas used to calculate thep-electron energies [137, 138], the electronic
excitation energies and intensities were calculated by the RPAC molar properties
program [139], the electronic state of 1,2,4-triazines were obtained [140] and the
ionization energies were calculated by the outler valence Green function technique
(OVGF) [141]. The CNDO/2 method has been used to calculate the sites of
protonation and alkylation [142]. The acidities and basicities of 2 have been calculated
by the MOSP method [143]. The proton affinities have been calculated by the 3-
21 þ G, 3-21G, MNDO, and AM1 methods [54], the tautomeric equilibrium by the
AM1 and MNDO-PM3 methods [144] and the lithium-triazine binding energies by
the 6-31G� method [145].

A computational study of the stability, homodesmotic stabilization energy, electron
distribution and magnetic ring current of 1,2,4-triazines has been conducted [53].
The geometry and vibration spectra of 1,2,4-triazine have been obtained [57].
Harmonic [58] and anharmonic [58, 59] frequencies have also been calculated. The
heat of formation of 1,2,4-triazine have been reported [61, 146].

Investigations employing the semi-empirical AM1, MNDO and MINDO/3 in
the program package AMPAC to calculate both electronic charge distribution and
structure optimization on compounds containing a 1,2,4-triazine ring demonstrate
that thesemethods are not useful in studying heteroaromatic compounds containing
nitrogen–nitrogen ring bonds [147].

The relative stability of the nine possible dihydro-1,2,4-triazines and three dihy-
drotriazinium cations has been studied at HF, MP2, generalized gradient approx-
imation DFTand CBS-4 levels of theory. The quantum chemical calculations support
that the most stable isomer is the 2,5-dihydro-1,2,4-triazine [148].

Most 1,2,4-triazines are crystalline compounds, the melting points depending on
the structure and the substituents present. Alkyl-substituted 1,2,4-triazines are
yellow and melt at low temperatures, or a few cases are liquid at room temperature
and they are reasonably stable. Aryl-substituted 1,2,4-triazines have melting points
around 100 �C, while all heterosubstituted 1,2,4-triazines have melting points in the
200 �C region – these compounds are thermally very stable.

Several X-ray crystallographic studies have been reported for 1,2,4-triazines
derivatives [149–161]. The X-ray studies on two Lamotrigine analogs, 3,5-dia-
mino-6-(2-fluorophenyl)-1,2,4-triazine methanol solvate and 3,5-diamino-6-(2-
methylphenyl)-1,2,4-triazine monohydrate, show that these compounds contain
two conformers of the triazine molecule, each conformer with significant, distinct
dihedral angles between their respective phenyl and triazine rings [162, 163]. The
reader is referred to the Cambridge Structural Database for further structure
determinations.

NMR spectra of 1,2,4-triazines are well documented. The parent compound 2
shows three signals in the 1H NMR spectrum: d¼ 9.88 (1H, d,H3), 8.84 (1H, d,H5),
9.48 (1H, dd, H-6) ppm [33]; coupling between H3 and H5 is never observed in
simple 1,2,4-triazines. The 13C and 15N NMR data of 1,2,4-triazine and some
derivatives are gathered in Table 20.2. 15N NMR data for 101 and 102 have only
been measured with the addition of Cr(acac)3.
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Palmer has determined the 1,2,4-triazine 14N quadrupole coupling constants from
a joint study by microwave spectroscopy and ab initio calculations [166].

Themass spectra of 1,2,4-triazines have been extensively studied since they can be
used for structure determination. The fragmentation pattern depends on the
structure of the 1,2,4-triazine system (2) and on the substituents [2, 6]. Detailed
studies on 1,2,4-triazines substituted with oxygen or sulfur in the 3- and 5-position
have shown that five distinct fragmentation patterns can be observed upon electron
impact, but none involve initial loss of nitrogen [167].

Information on the IR spectra of 1,2,4-triazines canbe found [168–171].UVspectra
have been used to determine tautomeric structures in 1,2,4-triazin-3-ones [172–174],
1,2,4-triazin-5-ones [175, 176], 1,2,4-triazin-6-ones [177], 1,2,4-triazinethiones [178]
and amino-1,2,4 triazines [179]. Unsubstituted 1,2,4-triazine [180] 2 has two absorp-
tion bands in methanol, at 374 (e¼ 400) and 247.8 nm (e¼ 3020). The UV spectra of
the different 1,2,4-triazines have been reviewed [168].

For many 1,2,4-triazines of varied structure the pKa values have been determined
and, depending on their structure, they range from 1.5 to 10.3 [181–186].

Table 20.2 13C and 15N NMR [164] data of 1,2,4-triazines.

N
N

N R3R5

R6 N
N

N R3R5

R6

X
N

N

N OR5

R6 X

2, 100
101

102

Substituent 13C NMR (DMSO-d6)
(d, ppm)

15N NMR (DMSO-d6)
a) (d, ppm)

d (N1) d (N2) d (N3)
R3¼R5¼R6¼H (2) 158.3, 150.7, 149.2 [165] 39.24 �4.89 �80.34
R3¼SCH3, R

5¼OCH3,
R6¼H (100a)

170.9, 161.1, 138.6, 54.1,
13.1 [164]

33.3 �56.1 �140.0

R3¼OCH3, R
5¼ SCH3,

R6¼H (100b)
167.8, 163.8, 143.4, 55.1,
11.3 [164]

27.1 �79.0 �129.4

R3¼SCH3, R
5¼SCH3,

R6¼H (100c)
171.1, 165.1, 144.3, 13.0,
11.3 [164]

23.0 �50.0 �108.5

R3¼SCH3, R
5¼SCH3,

R6¼CH3 (100d)
168.7, 164.4, 151.5, 18.0,
13.1, 11.7 [164]

14.6 �52.3 �108.2

R3¼SCH3, R
5¼OCH3,

R6¼CH3 (100e)
168.8, 160.3, 146.5, 54.8,
16.1, 13.1 [164]

23.0 �58.3 �141.3

R3¼OCH3, R
5¼CH3,

R6¼H, X¼O (101a)
168.1, 166.3, 135.7, 49.8,
54.1 [164]

�140.5 �123.3 �153.7

R3¼SCH3, R
5¼CH3,

R6¼H, X¼O (101b)
174.6, 163.5, 136.5, 49.7,
12.6 [164]

�122.6b) �123.1 �125.1

R5¼OCH3, R
6¼CH3, X

¼CH3 (102)
163.8, 153.6, 134.8, 39.3,
54.5, 15.5 [164]

�28.61 �142.4 �142.4

a) Nitromethane as reference.
b) Assignment of nitrogen ascertained by HMBC exponent.
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20.3.2
Tautomerism

As mentioned already, UV spectra have been used to determine the predominant
tautomeric forms of 1,2,4-triazinones, 1,2,4-triazinethiones, and amino-1,2,4-tria-
zines. In most cases, 1,2,4-triazines with oxygen or sulfur substituents exist pre-
dominantly in the oxo form (103 [172, 173], 104 [168, 175], 105 [187], 106 [178]) or
thioxo form (106 [178],107, and 108), while 1,2,4-triazineswith anitrogen substituent
occur predominantly as the amino tautomer (109 [179], 110).
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On the other hand, 1H NMR spectroscopy shows that 5-alkyl-1,2,4-triazine-3-ones
111 [173] and 5-alkyl-1,2,4-triazine-3-thiones 112 [188] (Scheme 20.34) with a proton
at C1 of the alkyl group can occur in two tautomeric forms, the alkylidene group (111a
or 112a) and the structure with an alkyl form (111b or 112b). The ratio of the two
tautomers depends on the solvent.

Azido-1,2,4-triazines may exist also as tetrazolo-fused tautomers. 3-Azido-1,2,4-
triazines 113 spontaneously cyclize to give the tetrazolo[1,5-b][1,2,4]triazines 114
(Scheme 20.35), if cyclization to N2 is possible; no cyclization to N4 has
been observed [189, 190]. 5-Azido-2H-1,2,4-triazin-3-ones 115 also cyclize to give
116 [191, 192]. In contrast, when the 6-azido tautomer 117 is stirred for a fewminutes
in a polar solvent it is quantitatively transformed into the tetrazole tautomer 118 [193].

20.3.3
Relevant Natural and Useful Compounds

1,2,4-Triazines are biologically very active compounds.Many have been tested for use
in agrochemistry or medicine. Amino-1,2,4-triazin-5-ones are, biochemically, highly
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active substances and are used as herbicides [168]. Some potent herbicides are
4-amino-6-tert-butyl-4,5,-dihydro-3-methylthio-1,2,4-triazin-5-one (119) (Metribuzin,
Sencor, Lexone), 6-tert-butyl-4,5,-dihydro-4-isobutylideneamino-3-methylthio-1,2,4-
triazin-5-one (120) (Isomethiozin), 4-amino-4,5,-dihydro-3-methyl-6-phenyl-1,2,4-
triazin-5-one (121) (Metamitron, Goltix) and 6-tert-butyl-4,5,-dihydro-3-dimethyla-
mino-4-methyl-1,2,4-triazin-5-one (122) (Amibuzin).
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Two reviews on the role of uncondensed 1,2,4-triazine derivatives as biocide plant
protection and therapeutic agents appeared in 2001 [194, 195].

Several 1,2,4-triazines show pharmacological properties (123–125). Com-
pound 123 has been tested for its antibacterial and tuberculostatic activity [168].
3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine (124) (Lamotrigine), a sodium
channel blocker, is the active component of Lamictal and is in clinical use as an
anticonvulsant therapy. Cefriaxome (125) [196, 197], a semi-synthetic parenteral
cephalosporin, is a leading injectable antibiotic in hospital use.
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Several 1,2,4-triazines have been tested as analgesic and anti-inflammatory
agents [198–202]. Significant activity towards leukemia, ovarian cancer and anti-
HIV were observed in vitro for some 3,5,6-trisubstituted-1,2,4-triazines [203–208].
1,2,4-Triazine-N-oxide derivatives have been studied as potential hypoxic cytox-
ins [209–211]. Recently, the pyrrolotriazine nucleus has been identified as a potent
and selective inhibitor of the tyrosine kinase [212–214].
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Dihydro-1,2,4-triazine derivatives have been described as antimalarials due to
their ability to inhibit multiple mutants of Plasmodium falciparum dihydrofolate
reductase [215].

Many 1,2,4-triazines form complexes with metal ions and can be used for their
determination [168, 216–219]. Other metallic complexes of 1,2,4-triazine have been
also reported [220–224].

20.3.4
Synthesis

The 1,2,4-triazine ring can be synthesized by cycloaddition reactions of several
different fragments – [3þ 3], [4þ 2], [5þ 1] – or by cyclization of a chain containing
the necessary six carbon and nitrogen atoms. However, in many cases, reaction
occurs in more than one step starting from smaller fragments. Other examples,
starting from different heterocycles, have also been described.

A review dealing with the synthesis of 1,2,4-triazine mono-N-oxide appeared in
2002 [18].

20.3.4.1 From Other Heterocycles
There are some examples of preparation of 1,2,4-triazines by transformation of
different heterocycles. For example, treatment of diaziridinone with a-metallated
isocyanides yields 5-substituted 1,2-dihydro-6-hydroxy-1,2,4-triazines [225]; the reac-
tion of 3-benzoyl-1,2,4-oxadiazoles with hydrazine furnishes the (Z)-oxime of 1,4-
dihydro-6-phenyl-1,2,4-triazin-5-ones [226]; cyclization of 2,6-difluorphenylpyruvic
acid with 2-aryl-5,5-dimethyltriazolidinine under acidic conditions affords the 6-(2,6-
difluorbenzyl)-2-aryl-1,2,4-triazine-3,5-dione [227]; the reaction of arenediazonium
salts with 5-methyl- and 5-ethylpyrimidine-4,6-diones yields 2,4-dihydro-6-alkyl-2-
aryl-1,2,4-triazin-5-ones [228].

N-Aminoimidazolidinone 126 undergoes acid-catalyzed rearrangement to yield
1,2,4-triazinone 127 (Scheme 20.36). This product is also formed by reacting the
aziridinone with hydrazine followed by cyanogen bromide [229]. On the other hand,
1,4-dinitroimidazole 128 reacts with hydrazine to give the product of imidazole ring
expansion 129 [230].

The transformation of 1-benzohydrazonoyl-1,2,3-triazoles 130 into 1,2,4-triazines
131 by heating with a slight excess of sodium hydride in dry benzene has been
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described recently [231]. This process can be considered to proceed via the formation
and decomposition of aryl(1,2,3-triazol-1-yl)diazomethanes I by a Bamford–Stevens
reaction, followed by the ring enlargement of the resulting carbenes II as shown in
Scheme 20.37 [231].

The transformation of 1,2,3-triazolium salts 132 to yield substituted 2,3-dihydro-
1,2,4-triazines 134 has been achieved on treating 132 with different bases via 1,2,5-
triazahexa-1,3,5-trienes 133 [232–234] (Scheme 20.38).

Some examples of the preparation of 1,2,4-triazines by transformation of 1,2,4,5-
tetrazines are considered in Section 20.5.4.2. Treatment of 1,3,5-triazine-2,4,6-
tricarboxylic acid triethyl ester 135 with arylhydrazines provides 5-amino-6-oxo-
1,6-dihydro-1,2,4-triazine-3-carboxylic acid ethyl esters 136, after intramolecular
rearrangement, in moderate to good yields [235–237] (Scheme 20.39).

In 1996 Morioka reported the reaction of 137 with diethyl ether-boron trifluoride
(1/1) to give 1,2,5,6-tetrahydro-1,2,3-triazine derivatives [238, 239]. Nevertheless, in
1998X-ray crystallography analysis demonstrated the uncorrected assignment of this
structure. The product obtained was established as 2,3,4,5-tetrahydro-1,2,4-triazine
138 [240] (Scheme 20.40).
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20.3.4.2 Cycloaddition of [3þ 3] Fragments
Few examples have been reported of this method. Among them, the reaction of
a-amino ketones with thiosemicarbazides affords 3-amino-4,5-dihydro-1,2,4-tria-
zines and dihydrotriazine-3-thiones [241]; and the cyclocondensation of nitrilimines
with a-amino esters gives 1,4-dihydro-1,2,4-triazin-6-ones [242].

20.3.4.3 Cycloaddition of [4þ 2] Fragments
As for other six-membered rings, cycloadditions of [4 þ 2] fragments are the most
frequently usedmethods to obtain 1,2,4-triazines. Several examples of combinations
of [4 þ 2] atom fragments are known [243]. Of all possible [4 þ 2] fragment
combinations, [N(1)N(2)C(3)N(4) þ C(5)C(6)] (A), [C(3)N(4)C(5)C(6) þ N(1)N(2)]
(B), [N(4)C(5)C(6)N(1) þ N(2)C(3) (C), [C(5)C(6)N(1)N(2) þ C(3)N(4)] (D), C(6)N
(1)N(2)C(3) þ N(4)C(5)] (E) and [N(2)C(3)N(4)C(5) þ C(6)N(1)] (F), many examples
have been reported save for combination (F) which is unknown to date.

The following examples of themore frequent combination (A) are now considered.
The reaction of symmetrical 1,2-dicarbonyl compounds 139a with derivatives 140

is themethodmost suitable to synthesize trisubstituted 1,2,4-triazines [180, 244, 245]
(Scheme 20.41). Thus, this procedure has been used to obtain the parent 1,2,4-
triazine and for the synthesis of compounds containingmore than one 1,2,4-triazine
nucleus [246]. When dione 139a is an asymmetrical compound the reaction often
leads to amixture of regioisomeric triazines. Also, reactions of semicarbazide 141a or
thiosemicarbazide 141b with 139a afford the corresponding 1,2,4-triazin-3-ones 103
or 3-thiones 107 [247] (Scheme 20.41). Furthermore, the reaction of compounds 141
with monosubstituted glyoxal oxime 139b (R5¼H) is a suitable method to obtain
6-substituted-1,2,4-triazin-3-ones 103 (R5¼H) and 3-thiones 107 (R5¼H) [248].
However, reaction of monosubstituted glyoxal 139a (R6¼H) with semicarbazide
(141a) affords mainly 5-substituted-1,2,4-triazin-3-ones 103 (R6¼H) [248].
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Substitution of 1,2-dicarbonyl compounds by acylcyanides 142 affords 5-amino-
1,2,4-triazines 143 and 144 [249] (Scheme 20.42). The condensation/cyclization
of aminoguanidine (141c) with the acylnitrile 142 leads to Lamotrigne (124)
(Scheme 20.42).

3-Amino-4,5-dihydro-1,2,4-triazine 146 can be synthesized by the reaction of
a-haloketones 145c and 140b (Scheme 20.43), whilst reaction of a-hydroxy 145a,
a-methoxy 145b, a-halo 145c or a-amino ketones 145d with semicarbazide (141a)
affords 4,5-dihydro-1,2,4-triazin-3(2H)-ones 147 [250] (Scheme 20.43).

Reaction of 149witha-ketocarboxylic acids 148 is a suitable way to obtain 4-amino-
1,2,4-triazin-5-ones 150 [251] (Scheme 20.44). On the other hand, carbonohydrazide
(151a) or thiocarbonohydrazide (151b) yields the 4-amino-3,5-diones 152a and 4-
amino-3-thioxo-1,2,4-triazin-5-ones 152b respectively. Cyclization of 148 with N-aryl
thiosemicarbazide 141c affords the 3-thioxo-1,2,4-triazin-5-one 153 [227]
(Scheme 20.44).

Another literaturemethod for obtaining 1,2,4-triazin-5-one involves the cyclization
of a-ketoamide 154 with 140d to give 3-methylthio-1,2,4-triazin-5-one 155 [252];
similarly, 156 can react with 2-methylsemicarbazide (157) to afford 6-hydroxy-2-
methyl-3-thioxo-1,2,4-triazin-5-one (158) [196] (Scheme 20.45).

R6

O

CN

142

N
N

NH2N

R6

R3

143

N
NH

NH2N

R6

X

N

H2N R3

H2N
NH

H2N X

H2N

141 144140

NH

H2N NH

H2N

141c

N
N

NH2N

R6

NH2

124

R6 = 2,3-dichlorophenyl

Scheme 20.42

R

O

N
N

N NH2

R

147

H
O

NH

H2N

N
NH

N

R

146

H

O

Y

R

NH2

N

H2N

H

R

a Y = OH
b Y = OMe
c Y = Halo
d Y = NH2

H

R

140b 145 141a

H2N H2N

Scheme 20.43

1800j 20 Six-Membered Heterocycles: Triazines, Tetrazines and Other Polyaza Systems



A recent example of the reaction between an a-ketocarboxylic acid and
derivatives 140a has been developed to obtain a ring-open isofervenulin analog
160 through triazine 159 [253] (Scheme 20.46).

The combination [C(3)N(4)C(5)C(6) þ N(1)N(2)] – listed as (B) above – is also
a much used method to prepare 1,2,4-triazines. In this method, hydrazine, its
derivatives or different diazo compounds are used as starting materials. Thus,
a-acylamino 161a and a-thioacylamino ketones 161b react with hydrazine to yield
4,5-dihydro-1,2,4-triazines 162, which can be oxidized to 1,2,4-triazines [254]
(Scheme 20.47). Since, compounds 161 can be obtained by acylation of a-amino-
ketones or thioketones, this procedure can also be considered as a [3 þ 1 þ 2]
combination method.

Similarly, hydrazine or substituted hydrazines react with N-alkyl(N-acyl) a-ami-
noester [255], malonamide [256], a-imidoyl esters [177], a-isocyano esters [257], and
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N-(cyanomethyl)-imidates [258, 259] to give 1,2,4-triazin-ones, diones, thioxo and
amino derivatives. Another method to introduce the [N(1)N(2)] fragment is the
reaction of diazonium salts or other diazo compounds with activated methylene
groups to obtain 1,2,4-triazin-3,5-dione [260].

The reaction of imidate ester 163 with substituted hydrazines is a known reaction
for the preparation of 1-substituted 4,5-dihydro-1,2,4-triazin-6(1H)-one 164
[177, 261, 262]. This synthesis has also been studied in the solid phase [263]
(Scheme 20.48). Another procedure for the solid-phase synthesis of functionalized
4,5-dihydro-1,2,4-triazin-6(1H)-ones 166 has been developed from thioamide 165
and hydrazine [264, 265] (Scheme 20.48).

Cycloaddition of 2-azabutadienes 167 with azo compounds 168 affords 1,2,3,6-
tetrahydro-1,2,4-triazines 169 [259, 266–268] (Scheme 20.49).

Frequently,five-membered heterocyclic systems have provided the [C(3)N(4)C(5)C
(6] fragment used in this method, as mentioned in Section 20.3.4.1.

The combination [N(4)C(5)C(6)N(1) þ N(2)C(3) – listed as (C) above – has been
used in the synthesis of 1,2,4-benzotriazines but for monocyclic 1,2,4-triazines there
are no examples.

NH2R5

R6 O

X

Y

R3 H
NR5

R6 O
R3

X
NH2NH2

a X = O
b X = S

N
N

H
NR5

H
R3

R6

162

N
N

N R3

R6

R5

oxid

161

a X = O
b X = S

Scheme 20.47

N
N

H
N R3

N

OEtR3 O

O
R1NHNH2

163 R1

164

O
N
H

N

H
N R3

HN

SR3 O

O

165
166

O

R5

NH2NH2
R5

Scheme 20.48

N
N N

R R

168167

N
N

N

R

R

169

Scheme 20.49

1802j 20 Six-Membered Heterocycles: Triazines, Tetrazines and Other Polyaza Systems



An interesting case of the combination [C(5)C(6)N(1)N(2) þ C(3)N(4)] – listed
as (D) above –has appeared in the literature inwhich the first solid-phase synthesis of
3-amino-1,2,4-triazin-5-ones are described. The polymer-bound isothiourea 170,
which supports the C(3)N(4) fragment, reacts with a stoichiometric amount of 2,3-
diaza-3-pentenoic anhydride 171, the C(5)C(6)N(1)N(2) fragment, to give 3-amino-
1,2,4-triazin-5(4H)-ones 172 [269] (Scheme 20.50).

Another reported combination (D) involves the reaction of aryl bromomethyl
ketone phenylsulfonylhydrazones with benzylideneaniline to give 6-aryl-3,4-diphe-
nyl-2-phenylsulfonyl-2,3,4,5-tetrahydro1,2,4-triazine [270].

1,2,4,5-Tetrazines are themain startingmaterial to use combination (E), C(6)N(1)N
(2)C(3) þ N(4)C(5), since they are reactive dienes in Diels–Alder reactions with
inverse electron demand and can react with both C�C and C�N multiple bonds
(Section 20.5.4.2).

20.3.4.4 Cycloaddition of [5þ 1] Fragments
Many of themethods discussed in this section can be considered as a combination of
more than two fragments, since the fragment with five atoms usually is obtained
previously from shorter chains.

Only C(3) and N(4) atom-fragments are found in the literature for the synthesis of
1,2,4-triazine derivatives using cycloadditions of [5 þ 1] fragments.

Compounds that provide the C(3) include aldehydes [271–274], isothiocya-
nates [275], nitriles [276], imidates [276, 277], thioimidates [276], ketones, ortho-
esters [278–281], carbon disulfide, phosgene, and thiophosgene [282]. Some exam-
ples are shown in Scheme 20.51.

The reaction of hydrazono-2-oximinoethane 178 with pyridine-2,6-dicarboxalde-
hyde led to 179 [283], however, in the presence of Pb3O4 yields 4-oxide-1,2,4-triazines
180 [284] (Scheme 20.52)

Compounds reported to date that provide N(4) are ammonia or its derivatives
[285–289] (Scheme 20.53).

20.3.4.5 Cycloaddition of [6þ 0] Fragments
Most reactions dealing with the cyclization of a six-membered chain can also be
considered as a synthesis of 1,2,4-triazines from more than one fragment since,
usually, the chain is obtained from two or more fragments. Several of these
cyclizations occur by photochemical or thermal processes, the latter carried out in
many cases in basic or acid conditions.
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Photolysis of 1,6-diazido-2,5-diphenyl-3,5-diaza-2,4-hexadiene afforded 3,6-diphe-
nyl-1,2,4-triazine [290], photochemical cyclization of thiosemicarbazones 182
yields 3-thioxo-1,2,4-triazin-5-ones 183 [291] and photolytic cyclization of 184 gives
5-amino-1,2,4-triazine 185 [252] (Scheme 20.54).
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Basic cyclization of hydrazonomalonic diamides 186 yields 3,5-dioxo-1,2,4-tri-
azine-6-carboxylic acids 187 while their thermal cyclization gives carboxamides
188 [292] (Scheme 20.55).

20.3.4.6 Synthesis from More than Two Fragments
Many of the above-mentioned examples could be considered under this section. The
synthesis of 1,2,4-triazines, via the condensation of 1,2-diketones 139a with acyl
hydrazides 189 and ammonium acetate under traditional thermal [293] and dry
media microwave-assisted reaction conditions [294], has been reported
(Scheme 20.56). The extension to hetaryl acyl hydrazides 190 and diaryl 1,2-diketones
using the microwave assisted-method on a Smith synthesizer has allowed the
synthesis of a 48-membered library of 1,2,4-triazines 191 in very high yields [295].

20.3.5
Reactivity

The most reactive position of the 1,2,4-triazine ring is position 5. This position is
easily attacked by nucleophilic agents and many times this attack is followed by an
electrophilic attack at positions 4 or 2.Most 1,2,4-triazines are less stable toward bases
than toward acids.

The reactivity of 1,2,4-triazinemonoN-oxides was reviewed in 2002 by Chupakhin
et al. [18].

20.3.5.1 Thermal and Photochemical Reactions
Since most 1,2,4-triazines are thermally very stable, only a few examples of thermal
reactions have been described [296–300].

EtO

O

N
H

O

N
NHR2

O

N
H

O

OEt

186

base

N
H

N

H
N O

HO2C

188

R2

O

N
H

N

H
N O

187

R2

O

O

H
N

EtO2C

Scheme 20.55

R5

O

R6

O

NH4OAc, HOAc

R3 NHNH2

O
6-24 h

NH4OAc, SiO2, Et3N

MW 5-15 minutes

or

N
N

N R3R5

R6

Ar

O

Ar

O

NH4OAc (10 eq)
HOAc

X NHNH2

O

180 ºC, MW
 5 minutes

N
N

N XAr

Ar

139a
189

Ar
Ar

190 191

Scheme 20.56

20.3 1,2,4-Triazines j1805



Photochemical hydration of the C(6)�N(1) bond of 1,2,4-triazines has
been described for 1,2,4-triazine-3,5-dione and 5-amino-1,2,4-triazin-3-ones to yield
6-hydroxy-1,2,4-triazine-3,5-dione and 5-amino-6-hydroxy-1,2,4-triazin-3-ones,
respectively [301]. Chemical and photochemical induced reduction of some dihy-
dro-1,2,4-triazines and aromatic 1,2,4-triazines have been described [302–305].

The [2 þ 2] cycloaddition reactions of 1,2,4-triazine-3,5-diones 192 with alkenes
193 involve a photochemical addition of the alkene to the C(6)–N(1) double bond of
1,2,4-triazines to give azeto[2,1-f ][1,2,4]triazinediones 194 [306–308] (Scheme 20.57).

20.3.5.2 Reactions with Electrophilic Reagents
The salts of simple 1,2,4-triazines are obtained by addition of dry acids to a solution
of the triazine in organic solvents. Addition of concentrated hydrochloric acid to
a solution of 5,6-diphenyl-1,2,4-triazine in sulfuric acid leads to the precipitation of
the crystalline hydrochloride [309].

Alkylation and acylation of 1,2,4-triazine systems have been extensively studied.
Alkylation of 1,2,4-triazines with methyl iodide gives mainly 1-methyl-1,2,4-triazi-
nium iodides 195a and in few cases the colorless 2-methyl isomers 195b. The
formation of 195a or 195b depends on the substituents on the triazine ring [175, 176,
310–312]. Alkylation and acylation of 1,2,4-triazin-3-ones 103 yield 2-alkyl(acyl)-1,2,4-
triazin-3-ones 196 [173, 313, 314] (Scheme 20.58).

When 1,2,4-triazin-5-ones aremethylated with diazomethane, 2-methyl-, 4-methyl-
and 5-methoxy- derivatives are obtained in different ratios depending on the solvent
used [311, 312].

Alkylation of 1,2,4-triazine-3,5-diones with methyl iodide affords the N(2)-methyl
derivative while dimethyl sulfate or diazomethane yield first the N(4)-methyl deriv-
ative. In all cases, the 2,4-dimethyl derivative is obtained on further alkylation [315].
Acylation of 1,2,4-triazine-3,5-diones yields mainly 2-acyl derivatives.
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The results of alkylation of 3-amino-1,2,4-triazines depend on the alkylating
agent and the nature of the 5- and 6-substituents. Reaction of 3-amino-5,6-diphe-
nyl-1,2,4-triazines with ethyl iodide [316] or halo-acetic acid [317] yields 2-alkyl-3-
imino-5,6-diphenyltriazine. However, alkylation with dimethyl sulfate affords 3-ami-
no-1-methyl-1,2,4-triazinium salts and other authors have reported the isolation
of a mixture of 1-methyl and 4-methyl-3-amino-1,2,4-triazinium salts on treating
3-amino-1,2,4-triazine with methyl iodide [318].

Direct halogenation of the parent 1,2,4-triazine (2) has not been reported, and any
electron-donating substituents present will not necessarily counteract the inherent
resistance of the ring to electrophilic substitution [319, 320]. An oxo substituent at the
5-position is sufficiently activating to permit the 6-bromination of some 1,2,4-triazin-
5-ones and -3,5-diones [183]. Although the presence of an N-oxide function proved
insufficient to allow chlorination and bromination, both the 3-amino- and 3-methoxy-
1,2,4-triazine 1- or 2-oxides gives 6-halogeno derivatives [321–323].

20.3.5.3 Reactions with Nucleophilic Reagents
Nucleophilic attack on the carbon atoms of the 1,2,4-triazine ring is well known [324].

1,2,4-Triazines and some of its 3-methoxy, 3-methylthio or 3-aminoderivatives 197
react with potassium cyanide to give two products, the 1,2,4-triazine-5-carboxamide
198 and the bis-1,2,4-triazin-5-yl derivatives 199 [325, 326] (Scheme 20.59).

Guillaumet has studied the control of relative positions 3, 5 and 6 of the 1,2,4-
triazine ring with Grignard reagents. Indeed, the most active position is C5 and the
least active is C3 [327]. As expected, the addition of aryllithium to 3-thiomethyl-1,2,4-
triazine 200 led to 5-substituted compounds and a further oxidation step gave 5-aryl-
1,2,4-triazine 201 [327] (Scheme 20.60). However, when palladium-catalyzed
the reaction of 200 with different organoboron compounds in the presence of
copper(I) 3-methylsalicilate affords the corresponding 3-substituted 1,2,4-triazines
202 in good yields [328]. Addition of arylmagnesium bromide to 201 occurs at the
6-position [327].
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Most leaving groups in the 3-, 5-, or 6-positions of 1,2,4-triazines can be substituted
by carbon nucleophiles prepared from aldehydes, malonates, acetonitrile, malono-
dinitrile, and other CH acidic compounds [329–333].

Carbanions bearing leaving groups at the carbanionic centers react with 1,2,4-
triazines by replacement of hydrogen atoms in the 5-, 6-, and 3-positions with the
carbanionic moiety and loss of the leaving group. Carbanions of nitroalkanes,
chloromethyl, phenylsulfones, chloromethane, sulfonomorpholides and acetoni-
triles and 4-pentenyl iodide have been used in this vicarious nucleophilic substitu-
tion [334–339].

There are many examples of exchange of a heterosubstituent in the 3-, 5-, or 6-
position by another heterosubstituent. This class of exchange has been widely used
for the preparation of 3-, 5-, or 6-alkynyloxy-, alkynylthio- and alkynylamino-1,2,4-
triazines [340–344].

1,2,4-triazin-5-ones react with electron-rich heterocycles in acetic anhydride to
yield 6-aryl-1,2,4-triazin-5-ones [345].

An easy access to 3- or 5-heteroarylamino-1,2,4-triazines by selective nucleophilic
substitution of 1,2,4-triazines has been reported recently. In reactions of 3-amino-
1,2,4-triazine (203) with different halo-heterocycles using palladium acetate as
catalyst and xantphos as ligand, an SNAr process takes place and 3-heteroaryla-
mino-1,2,4-triazines 204 are obtained [346, 347]. In contrast, the use of bases such
as 2,20,6,60-tetramethylpiperidine/tBuOK/nBuLi (KTMP) in the reaction of
3-methylthio-1,2,3-triazines (200) and aminoheterocycles leads regioselectively to
5-substituted 1,2,4-triazines 205 via SNH substitution [347] (Scheme 20.61).

1,2,4-Triazine is converted in high yield into 5-amino-1,2,4-triazine on treatment
with liquid ammonia and potassium permanganate [348]. Similar reactions have
been reported for 3- and 6-substituted 1,2,4-triazine. The substitution of chlorine
by amino groups using potassium amide in liquid ammonia has been studied by
Rykowski and Van der Plas [349–351].

In the reactions of 5-unsubstituted-1,2,4-triazines 206, with a good leaving group at
C3, and a-chlorocarbanions 207, ring contraction into a pyrazole 208 is preferred to
vicariousnucleophilic substitution atC5 anddisplacement of theC3 substituent [352]
(Scheme 20.62). In contrast, the reaction of 206a with a carbon nucleophiles bearing
a cyano substituent yields the corresponding 3-aminopyridazines 210 via an
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ANRORC mechanism involving addition of the nucleophiles at position 5, ring
opening with cleavage of the N4�C5 bond and intramolecular ring closure of the
resulting open-chain intermediate [353].

Nucleophilic attack at the 5-position of 1,2,4-triazin-4-oxides is often accompanied
by ring-opening reactions [32, 354–356]. However, ammonia addition at the 5-
position of 6-aryl-3-pyrrolidin-1,2,4-triazine-4-oxides 211 is followed by a [1,5]sigma-
tropic hydrogen shift to give intermediate II followed by ring-opening with cleavage
of the C3�N4 bond. In this case, this ring opening is a reversible process that allows
the cyclic dihydro intermediates to be aromatized with elimination of the dialkya-
mino group, to give 5-amino-1,2,4-triazine-4-oxide 212 [357] (Scheme 20.63).

Nevertheless, reaction of 6-aryl-3-dimethylamino-1,2,4-triazine-4-oxide with the
cyanide anion causes a similar [1,5]sigmatropic hydrogen shift-ring-opening,
followed by recyclization into 3-amino-4-nitrosopyrazoles (according to theANRORC
mechanism) [358].

Reaction of hydroxylamine at the 3-position of 6-aryl-5-amino-1,2,4-triazine-4-
oxide leads to 6-aryl-5-hydroxylamino-1,2,4-triazines [359]. Cyanation of 3,6-disub-
stituted-1,2,4-triazine-4-oxide has been achieved with acetone cyanhidrine in the
presence of triethylamine to afford 3,6-disubstituted-5-cyano-1,2,4-triazine [284].
1,2,4-Triazine 4-oxides can be hydrolyzed by bases, affording 2-acylhydrazono
oximes. [354] In this case, initial attack occurs at the 3-position.

20.3.5.4 Cycloaddition Reactions
Diels–Alder reaction with inverse-electron demand is the most extensively studied
reaction of 1,2,4-triazines. Triazines behave as reactive electron-deficient dienes and
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so are able to react with dienophiles such as electron-rich alkenes and acetylenes
among others. Some reviews on inter- and intramolecularDiels–Alder reactions have
appeared [30, 120, 360, 361].

1,2,4-Triazines participate as electron-poor dienes in inverse type Diels–Alder
reactions with electron-rich dienophiles such as dienes [120, 244], enamines [362–
372] or methoxyethylene [373] to yield pyridine derivatives 213 (Scheme 20.64).
Cycloaddition of 1,2,4-triazines with ynamines to yield pyrimidines 214 [374–376]
has also been studied. It has been demonstrated that this type of reaction is a [4 þ 2]
cycloaddition toN2 andC5 andnot a [2 þ 2] cycloaddition to theN(4)-C(5) bond [377].
If the 5-position is substituted, dienophile attack occurs at the 3-position [375, 377,
378]. A tethered imine-enamine methodology has been developed for the direct
conversion of 1,2,4-triazines into highly substituted pyridines [379].

Several examples of a new and simple �LEGO� system to obtain 2,6-oligopyridines
216 [244, 246, 283, 284, 380–385] from 1,2,4-triazines have been described
(Scheme 20.65).

Ethynyltributyltin cycloadds to 3,5-disubstituted-1,2,4-triazine to furnish mainly
2,4-disubstituted-4-tributylstannylpyridine [386, 387]. A Diels–Alder reaction has
been employed to obtain 4,5-dihydroazocines from 3-(ethoxycarbonyl)-5-phenyl-
1,2,4-triazines, cyclobutanone and secondary amines [388].

In addition, the intermolecular Diels–Alder reaction has been studied and used to
obtain condensed pyrimidines, pyridines [339, 370, 389, 390] and b-carbolines [391],
tetrahydro-1,5-naphthyridines and related heterocycles [392].
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Reaction of the unsubstituted 1,2,4-triazine 1-oxides 217 with benzyne gives the
1,3-benzoxazepidines 218 via 1,3-dipolar cycloadducts [393] (Scheme 20.66).

20.3.5.5 Reactions with Reducing Reagents
Treatment of 1,2,4-triazines and their 3-oxo derivatives with reducing agents such as
Raney nickel, sodium borohydride, titanium(III) chloride, hydrogen and palladium
catalyst, or electrochemical reduction affords dihydro and further tetrahydro-1,2,4-
tetrazine derivatives [290, 310, 394, 395]. In the case of oxo derivatives reduction
occurs in the triazine ring, affording dihydrotriazinones that can further yield
tetrahydotriazinones or imidazoles [395, 396].

1-Methyl-3,5,6-triphenyl-1,2,4-triazinium iodide reacts with zinc in acetic acid to
yield 2,4,5-triphenylimidazole and methylamine, probably through 1,2-dihydro-
triazine [310].

Deoxygenative versus vicarious nucleophilic substitution of hydrogen in reactions
of 1,2,4-triazine-4-oxide with a-halocarbanions has been described [397].

20.3.5.6 Reactions with Oxidizing Reagents
Oxidation of 1,2,4-triazines can follow different ways, yielding several derivatives.
Thus, oxidation at nitrogens of the heterocyclic ring affords mainly 1- or 2-N-oxide
derivatives, whereas oxidation at the triazine ring occurs first at the 5-position and
then at 6-position, affording 5-oxo or 5,6-dioxo derivatives. Dihydro-1,2,4-triazines
can be oxidized to the corresponding aromatic derivatives; p-benzoquinone is one of
the best reagents for this purpose.

20.3.5.7 Relevant Examples
A metallation and intramolecular inverse Diels–Alder strategy may open up a short
pathway for the synthesis of various fluorenones; in this way, 1,2,4-triazine 219
(Scheme 20.67) reacts with LiTMP, followed by addition of several 2-bromobenzal-
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dehydes to give 220. Several transformations led to 221, which upon intramolecular
Diels–Alder reactions in triisopropylbenzene and desilylation under TBAF-condi-
tions resulted in 1-azafluorenones 222 [398].

A Diels–Alder reaction takes place when 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine
(223) reacts in a thermal liquid-phase with fullerene C60 to afford aza open-cage
fullerene derivative 224, which has an eight-membered-ring orifice in the fullerene
cage [399] (Scheme 20.68).

20.4
1,3,5-Triazines

20.4.1
Relevant Computational Chemistry, Physicochemical and Spectroscopic Data

1,3,5-Triazines have been studied extensively both theoretically and experimentally.
The 1,3,5-triazine ring is known as an important conjugated heterocycle whose
electronic properties are expected to show subtle differences from those of benzene
due to the alternate replacement of CH groups by nitrogen atoms.

The IR and Raman spectra of 1,3,5-triazine have been determined [400–407].
Likewise, different approaches for the calculation of a force field for this molecule
have been accomplished [407–412]. The analysis gave: C�N bond length¼ 1.338A

�
,

C�H¼ 1.106A
�
, CNC bond angle¼ 113.9�, NCN¼ 126.1�, HCN¼ 116.9�. The

geometries of 3 and its protonated form have been fully optimized at STO-3G,
3-21G levels [413].Ab initio calculations of the electronic spectra of 1,3,5-triazine have
been determined via the complete active space method (CASSCF). This method
describes the major features in the electronic structure of the excited state of 3 [414].
More recently, the molecular structure of 1,3,5-triazine (12C3

14N3H3) and its iso-
topomers (12C3

15N3H3, 13C3
14N3H3, 13C3

15N3H3 and 12C3
14N3D3) in gas, solution

and crystal phases and by ab initio calculations (6-31G�, 6-311G��) has been studied.
By combining gas- and solution-phase data in a single analysis a very precise structure
has been obtained, with final parameters values (ra�) of r(C�N) 133.68(1) pm,
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r(C�H) 108.9(2) pm, and <(CNC) 113.82(9)� [415]. The photodissociation of sym-
triazine has been widely studied [416–424].

A computational study of the stability, homodesmotic stabilization energy, electron
distribution and magnetic ring current of 1,3,5-triazines has been described [53].
Recently, density functional theory has been used to study the geometries, electronic
structure, harmonic vibrational frequencies and high energy density material
properties of 1,3,5-triazines [425]. The heat of formation of 1,3,5-triazine has been
calculated [61, 146]. The calculated energies for the addition of one equivalent of
hydrogen suggest that 1,3,5-triazine has lower resonance energy than benzene,
pyridine, pyrazine and pyrimidine, which have essentially the same resonance
energy [426]. Photoelectron spectra of 1,3,5-triazines have been recorded [427] and
the parent compound 3 shows five major bands [428].

Creuzet and Langlet have employed ab initio and semi-empirical calculations in
a comparative study of the structural parameters for 1,3,5-triazine and amino
derivatives [429]. The results showed that the introduction of amino groups at the
2- and 4-positions did not distort the ring, AM1 revealed that 2- and 4-amino-
substituents affect the bond lengths but the bond angle remains unchanged.Ab initio
computations of bond dissociation energies of hexahydro-1,3,5-trinitro-1,3,5-triazine
(RDX) [430] and an ab initio study ofRDXdecompositionmechanisms [431, 432] have
been described. Theoretical predictions for 2,4,6-trinitro-1,3,5-triazine have been
carried out [433].

Most 1,3,5-triazines are solids at room temperature. Cyanuric acid (4), thiocya-
nuric acid and melamine (8) melt above 300 �C due to strong intermolecular
hydrogen bonding. 1,3,5-Triazines decompose to hydrogen cyanide under thermal
(T> 600 �C) and photochemical conditions.

X-Ray crystallographic studies have been used to obtain themolecular dimensions
of 1,3,5-triazines. The C�N bond length has been reported as 1.319A

�
with CNC and

NCNbond angles of 113.2� and 126.8�, respectively. The presence of substituents has
little effect on the bond lengths or bond angles [434].

Cyanuric acid (4) has C�N, C�O and N�H bond lengths of 1.37, 1.22 and 0.9A
�

respectively. The CNC and NCN bond angles have been reported to be, respectively,
124.6� and 115.4�. An X-ray analysis confirms the predominance of the triketo form.
The molecule is hydrogen bonded and the bond lengths are 2.77–2.80A

�
[435]. 2,4,6-

Trihydrazino-1,3,5-triazine molecules are hydrogen bonded; the shortest hydrogen
bond is particularly close, 2.83A

�
[436].

An X-ray crystal structure determination of 2,4-diphenyl-6-(2-hydroxyphenyl-4-
methoxyphenyl)-1,3,5-triazine has been carried, out together with absorption and
emission spectra and 1H and 13C NMRstudies, as this compound canbe employed to
inhibit the photodegradation of polymers. These studies have established the
intramolecular hydrogen bond in this type of 1,3,5-triazines for the solid state [437].

The reader is referred to the Cambridge Structural Database for further structure
determinations of 1,3,5-triazines.

The 1H NMRspectra of 1,3,5-triazines are quite simple, as expected [438–444]. The
chemical shifts of the ring protons are 1 to 2 ppm downfield from benzene protons,
due to the effect of the ringnitrogens. The presence of electron-releasing substituents
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leads to slight upfield shifts. The parent compound 3 shows one signal in the
1H NMR spectrum at 9.25 ppm [438].

1H NMR of dihydrotriazines has been used to examine the position of the NH
protons [445]. Structural determination and a study of the dynamic behavior of
2-chloro-4,6-bis(pyrazolylamino)-1,3,5-triazines have been carried out by means
of 1H and 13C NMR dynamic studies [446].

The 13C chemical shifts of ring carbon atoms of some 1,3,5-triazine derivatives are
gathered in Table 20.3.

The 13C NMR spectrum of 3 shows a peak at 166.1 ppm. The introduction of
a methyl group at position 2 results in a deshielding of 10 ppm. The 13C NMR
spectrumof cyanuric acid (4) shows only one signal whilst the spectrumof 230 shows
two broad signals at 165.32 ppm and 157.19 ppm with a sharp peak at 160.09. This
indicates a keto-enol tautomeric exchange process [442]. The room temperature
proton decoupled spectrumof 227 displays three distinct signals for the triazine ring,
indicating non-equivalence of C(2) and C(4) due to the hindered rotation of the C
(6)–NHEt bond at room temperature [447].

The 15N NMR spectrum of the parent compound 3 shows a unique signal at
98.5 ppm (relative to nitromethane) [454, 455], which reflects the high p-electron
density at the nitrogens. This chemical shift ranges from 95.3 to 106.1 ppm,
depending on the solvent used [456]. Table 20.4 shows 15N chemical shifts of some
1,3,5-triazine derivatives.

Table 20.3 13C NMR data of 1,3,5-triazines (CDCl3).
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Compound C2 (d, ppm) C4 (d, ppm) C6 (d, ppm)

A R2¼R4¼R6¼H (3 [446]) 166.1 166.1 166.1
A R2¼R4¼R6¼OH (4 [442]) 149.8 149.8 149.8
A R2¼R4¼R6¼Cl (6 [442]) 172.5 172.5 172.5
A R2¼Me, R4¼R6¼H (225 [446]) 176.7 165.8 165.8
A R2¼Ph, R4¼R6¼H (226 [446]) 171.2 166.3 166.3
A R2¼R4¼Cl, R6¼NHEt (227 [447]) 169.2 170.8 165.4
A R2¼R4¼CF3, R

6¼CCl3 (228 [448]) 161.6 161.6 164.0
A R2¼R4¼CF3, R

6¼NH2 (229 [449]) 166.6 166.6 168.9
B (230 [440]) 160.1 157.2 165.3
C R1¼Me, R3¼R5¼H, X¼O (231 [450]) 149.0 148.3 149.0
C R1¼Ph, R3¼R5¼H, X¼ S (232 [451]) 177.8 143.0 177.8
D R1¼ tBu, R3¼R5¼Me, (233 [452]) 70.2 77.8 70.2
D R1¼R3¼R5¼ iPr, (234 [453]) 74.7 74.7 74.7
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15N NMR spectroscopy has been used to study internal rotation and structural
information in the solid state of 2,4,6-tris(amino)-1,3,5-triazines [459], thione-thiol
tautomerization in the solid state and acetone solution of 6-[(4-vinylbenzyl)propy-
lamino]-1,3,5-triazine-2,4-dithione (VBATDT) [460] and 15N–1H couplings in natural
abundance in the nematic phase [461]. Some 35Cl NMR [462] and 19F NMR [463]
studies in halogen derivatives of 1,3,5-triazine have been carried out.

Mass spectra of 1,3,5-triazine (3) show themolecular ion (m/z 81) as base peak. The
major fragments (m/z 54 and 27) are formed by the stepwise loss of twomolecules of
hydrogen cyanide. Aryl-1,3,5-triazines show molecular ions with base peaks of the
aryl cyanide ions [464, 465]. The spectra of cyanuric chloride (6) and other chloro-
1,3,5-triazines are characterized by either loss of a chlorine atomor ring cleavagewith
elimination of cyanogen chloride [466].

The UV spectrum of 1,3,5-triazines has been reported in a review [37]. The UV
absorption of the parent 3 shows two bands, at 272 and 222 nm, assigned as n-p� and
p–p� transitions, respectively. The UV spectra of 1,3,5-triazine derivatives that
contain p-electron donors have also been studied [467]. The presence of substituents
that can conjugate with the triazine ring results in the expected bathochromic shift
and the band may be very intense [468].

20.4.2
Tautomerism

The tautomerism of 1,3,5-triazines has been reviewed [469]. 1H NMR, IR, UV, and
X-ray studies have shown that cyanuric acid exists in the trioxo form. Although the
cyanurates 5 and isocyanurates 7 are the twomajor derivatives, compoundswith both
types of functional groups present in the samemolecule are possible (Scheme 20.69).
In general, triazine derivatives bearing oxygen or sulfur atoms at 2-, 4-, and/or
6-positions exist in the oxo/thioxo instead of the OH/SH form. In contrast melamine
(8) exists mainly in the triamino form.

Table 20.4 15N NMR data for 1,3,5-triazinesa).

Compound N(1) N(2) N(3) (d, ppm)

Ab) R2¼R4¼R6¼H (3 [455]) 98.5c)

A R2¼R4¼R6¼Cl (6 [457]) 110.6c)

A R2¼R4¼R6¼F (235 [457]) 168.8c)

A R2¼R4¼R6¼ 1-pirazolyl (236 [458]) 173.9d)

A R2¼R4¼R6¼ 1-imidazolyl (237 [458]) 158.2d)

A R2¼R4¼R6¼ 1-triazolyl (238 [458]) 160.3d)

A R2¼R4¼R6¼ 1-benzaimidazolyl (239 [458]) 157.0d)

a) Referenced to NO2CH3.
b) See Table 20.3 for structure.
c) CDCl3 as solvent.
d) CF3CO2H as solvent.
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The hydroxy tautomer of 2,4,-diamino-6-hydroxy-1,3,5-triazine predominates in
the gas phase.Ab initio calculations found thehydroxyl tautomer to be 4.82 kcalmol�1

lower in energy than the carbonyl one [470].
Prototropic tautomerism of dihydro-1,3,5-triazines has been studied by means of

1H NMR, UV, and IR techniques [445]. The existence of the two possible tautomers,
1,2-dihydro (242a) and 1,4-dihydro (242b) (Scheme 20.70), in an equilibriummixture
of both tautomers, with a ratio of 2 : 1 in favor of the 1,2-dihydro form, has been
confirmed by 1H NMR spectroscopy.

20.4.3
Relevant Natural and Useful Compounds

One of themost important applications of 1,3,5-triazines is in the agricultural field as
fungicides, insecticides and herbicides. Some representative examples include Ani-
lazine(243)asfungicide,Menazon(244) [471]andN-oxydihydrotriazines(245) [472]as
insecticides and Simazine (246), Atrazine (247), Hexacinone (248), Chlorsulfuron
(249a), Metsulfuron (249b) [473], Dipropetryn, Prometon, Prometryn, Propazine,
Simetryn, Thifensulfuron-methy, Trietazine and Cyanazine as herbicides.
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1,3,5-Triazines are also important as pharmaceuticals [474–477] and are claimed as
antibacterial (5-Azacytidine, Sulfasymazine), antimalarial (Cycloguanil), antiproto-
zoal (Melarsoprol), antispasmodic (Hydramitrazine), antitrypanosomal (Antiproto-
zoal), antiulcerative agents (Irsogladine), antineoplastic (Triethylenemelamine;
Altretamine) and to possess diuretic properties (Amanozine, Chlorazanil).

5-Azacytidine (250a) exhibits cancerostatic, bacteriostatic and mutagenic proper-
ties. It is incorporated into both RNA and DNA, and it disrupts protein synthesis,
probably through its incorporation into RNA [478]. It has proved particularly effective
against myelogeneous leukemia [479, 480] but the full clinical use of the drug has
been limited by its facile hydrolysis. The dihydro derivative 250b is more stable and
shows potential as an antitumor drug [481].
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Almitrine (251), which is useful in respiratory problems, served as the lead
compound to develop triazine derivatives as potent modulators of multidrug resis-
tance in cancer therapy [482]. On the other hand, Melarsoprol (252) (Mel B, Arsobal,
Aventis), anotherderivativeofmelamine, isoneof thedrugs licensedfor the treatment
of sleeping sickness [483]. An extensive range of 1-aryl substituted 2,4-diamino-1,6-
dihydro-6,6-dimethyl-1,3,5-triazines have shown potent antimalarial activity, such as
Cycloguanil (253) [484]. Triazinetriones are an important class of molecules with
pharmaceutical [485–487] and agricultural utility [488–490]. An example of such
biologically interesting derivatives is toltrazuril (254). Compound 255 (TPT) is a new
and mild esterification agent for the preparation of penicillin and cephalosporin
ester [491].Thisesterificationprocedurehasbeensuccessfullyappliedtotheindustrial
production of diphenylmethyl 6b-(4-toluamido)penicillate, an important intermedi-
ate for the production of Shionogi b-lactam antibiotics Lactamoxef, Flomoxef and
Ceftibuten. The use of 255 is safer andmore economical on a large scale with a better
product yield than other known esterification procedures. 1,3,5-Triazine-2,4-dithione
derivative 256 (VBATDT) is an important dental material [460].
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1,3,5-triazine derivatives are important reagents for the synthesis of pep-
tides [492–495]. High-loading resins functionalized with 1,3,5-triazine dendri-
mers can be used as scavenger resins for combinatorial chemistry [496, 497].
1,3,5-Triazines have been used to form new classes of star-shaped discotic liquid
crystals (LC) for potential nonlinear optical applications [498–502]. Substituted
1,3,5-triazines have been used as chiral solvating agents for chiral discrimina-
tion [503–506]. For the separation of (þ ) and (�) isomers of amino acids by
HPLC, bis[carbamoyl](alkyl)methylamino]-6-chloro-1,3,5-triazine derivative can be
used as stationary phase [507]. Transition metal complexes of 2,4,6-trimercapto-
1,3,5-triazine (TMT) can be used as precursors of nanoparticulate metal
sulfides [508].

Melamines are an important class of organic compounds since they have shown
a wide range of biological activities such as anti-angiogenesis [509], anti-tumor
activity for breast [510, 511] and ovarian [475] cancer treatment, effective treat-
ments for menopausal symptoms and postmenopausal osteoporosis [512, 513] and
anti-metastatic activities [514]. Melamine and its polymers have application in
many industrial fields. The major uses of the resins are in the formation of high-
pressure laminates for home furniture, as moldings for crockery and in finishing
textiles, to improve crease resistance, and as coatings for wet strength paper.
Polymer gels containing melamine derivatives are stable catalytic systems [515].
Melamine derivatives bearing a guanidinium ion can recognize nucleotides
through hydrogen bondings [516]. Melamine derivatives bearing thiourea and
thiouronium ions have been prepared as flavin receptors [517]. Trichloromelamine
is a useful reagent for the selective oxidation of alcohols to the corresponding
carbonyl compounds [518].

Cyanuric chloride (6) is the precursor of many fiber-reactive dyes [519, 520]. The
fiber-reactive dyes are prepared by nucleophilic displacement of one or two chlorines
with a dye or dyes, then the product is bound on to the textile by displacement of the
third chlorine with the hydroxyl group in cellulose fiber or with amino functions in
polyamide, silk and wool. Cibacron blue 3GA (257) and Procion scarlet MXG (258)
are typical examples of reactive dyes.
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Cyanuric chloride has been loaded on different types of NH2-functionalized
resins [521, 522]. This reagent has been used for the solution-phase synthesis of
different amides [521, 522] and dipeptides [522, 523]. Cyanuric chloride is used
as a coupling reagent in the formation of macrocyclic lactones [524] and b-lac-
tams [525, 526]. In addition, it has been employed as condensing agent in several
reactions to utilize mild conditions such as Beckmann transformation of ketoxime
into amides and aldoximes intonitriles [527]; the transformation of carboxylic acids to
alcohols [528], to Weinreb amides [529] or to diazoketones [530]; the oxidation of
alcohols to carbonyl compounds [531, 532]; the selective conversion of primary
alcohols into the corresponding esters [533]; and the preparation of sulfonyl chlorides
from sulfonic acids [534] or to prepare pyrazoles from ketones [535].

2,4-Dichloro-6-methoxy-1,3,5-triazines have been used to prepare affinity chro-
matography adsorbents; these compounds are valuable for the purification of
enzymes [536]. 2-Chloro-4,6-dimethoxy-1,3,5-triazine has been used as reagent for
the synthesis of aldehydes [537], esters [538], amides [539, 540] or oxazolines [541]
from carboxylic acids; as coupling agents for cephalosporin derivatives [542]; and to
separate an enantiomeric mixture of amides or dipeptides [543].

4-(4,5-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride has been
employed as condensing agent for the preparation of amides or esters by coupling
between carboxylic acids and amines [544–546] or alcohols [547].

Triallyl cyanurate is used as a minor comonomer with a range of monomers and
performed polymers, imparting heat resistance, solvent resistance, adhesion and
strength to the polymers. It is particularly valuable for the preparation of high
temperature electrical insulation components. It is also used in curing fluoro
polymers such as Vinton. Triallyl isocyanurates may be used similarly. 1,3,5-
Trichloroisocyanurate is used as a disinfectant of swimming pools.

Substituted perhydro-1,3,5-triazines have shown utility as corrosion inhibi-
tors [548], biocides [549], crosslinking agents for the manufacture of polyur-
ethanes [550, 551], stabilizers for natural rubber latex foam and scavengers for the
removal of sulfide gases from petroleum fuels.

20.4.4
Synthesis

This section is divided according to the nature of the compounds to be synthesized
and not to the class of reactions used.
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20.4.4.1 Synthesis of 1,3,5-Triazines and Mono-, Di- and Tri- 2-, 4-, 6-Substituted
Derivatives
The best method to obtain the parent compound 1,3,5-triazine (3) is the reaction of
ammonium acetate and triethyl orthoformate described by Maier and Bredereck in
1979 [552] (Scheme 20.71). Various imino derivatives 259 have been used in the
synthesis of 1,3,5-triazine (3) via a cyclotrimerization reaction.

Melamine (8) is synthesized from cyanimide on heating above its melting point or
by fusing dicyanamide [553] (Scheme 20.72). Substituted cyanamides 260 react to
afford either the expected 1,3,5-triazine derivative 261 [554, 555] or their imino
isomers 262 [554].On the other hand, nucleophilic displacement of chlorine atoms of
cyanuric chloride is the most useful method to obtain symmetrical 2,4,6-trisubsti-
tuded-1,3,5-triazines. Thus treatment of 6 with different amines [556–558] or
arylamine 263 [558–561] affords 2,4,6-trisubstituded-1,3,5-triazines 261.

Trimerization of cyanogen chloride in the gas phase on activated charcoal is
probably the most useful industrial route to obtain cyanuric chloride (6) [562].
Trimerization of isocyanates, isothiocyanates and carbodiimides lead to isocyanu-
rates (7), isothiocyanurates and¼NRderivatives of compound 262, respectively [563].

Cyanuric acid (4), cyanurates (5) and thiocyanuric acid can be synthesized by
treatment of cyanuric chloride (6) with acetic acid, alcohols in basic medium or
sodiumsulfide, respectively. The reaction of cyanuric chloridewith hydroxyaryl(alkyl)
compounds affords 2,4,6-triaryl(alkyl)oxy-1,3,5-triazines (5) [557, 564, 565].

Cyclotrimerization of aryl [555, 566, 567] or alkyl [555, 557] nitriles 264,
thiocyanates [555] 265, ethyl cyanoformate [237] 266, trifluoroacetonitrile
267 [568], or imidates 268 [569] yields symmetrical 2,4,6-trisubstituted-1,3,5-triazines
(Scheme 20.73).
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The use of solvent-free reactions is an alternative in organic synthesis to eliminate
substances hazardous to human health and environment [570]. In the literature,
methods of synthesis of tris(aryl)-1,3,5-triazines by cyclotrimerization of aromatic
nitriles in solvent-free conditions have been described [566, 571].

Unsymmetrical 2,4,6-substituted 1,3,5-triazines are formed in different ways. The
condensation of imidates or acylamidines with amidines proved an excellent route to
obtain 6-substituted 2,4-dialkyl-1,3,5-triazines. 2,4,6-Substituted 1,3,5-triazines are
synthesized conveniently by the reaction of acylamidines 269with amidines 270 [572]
(Scheme 20.74).

In general, the best routes available to obtain trisubstituted 1,3,5-triazines are
substitution reactions of chlorine atoms of cyanuric chloride with different nucleo-
philes [207, 497, 522, 556, 565, 573–583]; it is possible to substitute one, two or three
selectively (Section 20.4.5.3).

2-Amino-1,3,5-triazines can be obtained by treatment of 1,3,5-triazine (3) with
1-amidinopyrazole. However, they are best prepared by reaction of triformamido-
methane with formyl guanidine [38]. 2-Amino-4,6-bis(disubstituted-amino)-1,3,5-
triazines can be obtained in one pot from disubstituted cyanamindes and
formamides [584].

6-Substituted 2,4-diamino-1,3,5-triazines 271 have been prepared by reaction of
dicyandiamidewith nitriles 264undermicrowave irradiation [585–587]. Thismethod
can be considered as a green procedure due to the reduction in the use of solvents
during synthesis and purification (Scheme 20.75). Various aldehydes 272 reacted
with iodine in ammonia/water to give the nitrile intermediates 264, which have been
trapped by addition of dicyandiamide to produce 271 [588]. Aldehyde 272 also reacts
with guanidine to give diaminotriazine 271 [589]; this method was employed to
protect aldehydes. Diamino-1,3,5-triazines 273 have been synthesized from ami-
dines 270, which are readily prepared from the corresponding phenylacetonitriles,
and isoureas 274 [577] or from carboxylic acid ester 275 with biguanidine 276
[444, 590, 591] (Scheme 20.75).
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There are several ways of obtaining unsymmetrical trisubstituted 1,3,5-triazines
from other heterocycles, with pyrimidines being the most used starting material.
Photosensitized oxygenation of 5-aryl 2,4-diaminopyrimidines 277 in protic solvents
affords 4-amino-1,3,5-triazin-2-yl ketones 278 [592] (Scheme 20.76).

The reaction of chloroacetamidine and phosgene followed by treatment of POCl3
and then H2/Pd has been used to obtain 2,4-dimethyl-1,3,5-triazine [593].
Muchowski has reported a specific way to prepare 2-dimethylamino-4-trichloro-
methyl-1,3,5-triazine from trichloroacetonitrile and 4-dimethylamino-4-trichloro-
methyl-1,3-diaza-1,3-butadiene [594].

Phenyl-1,3,5-triazine [595] and triphenyl-1,3,5-triazine [596] have been obtained by
irradiation or electroreduction of 5-phenyl-1,2,4-thiadiazole and 3,4-diphenyl-1,2,5-
thiadiazole respectively.

With respect to monosubstituted 1,3,5-triazines, 2-alkyl(aryl) derivatives 279 are
prepared by the reaction between 1,3,5-triazine (3) and imidates 268 [597, 598]
(Scheme 20.77).

Triazine has elicited considerable interest as an ideal combinatorial library scaffold
duetoitseaseofmanipulationandthelowpriceofthestartingmaterial, resultinginthe
publication of several triazine libraries [575, 578, 599–605]. All of the reported library
synthesis procedures utilize the reactivity differences of the three reaction sites.
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20.4.4.2 Synthesis of 1,3,5-Triazinones and 1,3,5-Triazinthiones
Known synthesis of 4(6)-amino-1,3,5-triazin-2-ones include: cyclocondensation of
N-carbamoylguanidine hydrochloride with orthoesters 281 [606] (Scheme 20.78);
reactions of biguanidines 282 with diethyl azodicarboxylate [607]; reactions of
cyanoguanidines with carboxylic acid [608, 609], cyclizations of N-acyl-N-cyanogua-
nidines [610], cyclization of isobiurets with ethyl orthoformate [610, 611], reactions of
guanylureas with dimethylformamides dimethylacetal [610] and sequential displace-
ments of two chlorine atoms followed by hydrolysis of the third chlorine in cyanuric
chloride [556]. More recently, Katritzky and coworkers have described a newmethod
to prepare 4(6)-amino-1,3,5-triazin-2-ones 286 and 289 and 2-thiones 287, consisting
in the reaction of 1-acyl derivatives of 1H-benzotriazole-1-carboxamides 283 with
ureas 284 or thioureas 285 in the presence of potassium tert-butoxide [612]
(Scheme 20.78).

Triazapentadienium iodides react with arylisocyanates or isothiocyanates to give
1,3,5-triazinones and triazinethiones [613]. Cyclization of N-acyl-N�-carbamoyl-S-
methylisothioureas affords 1,3,5-triazin-2-ones [572].

Cycloaddition reactions of 2,4-diphenyl-1,3-diazabuta-1,3-dienes 290 with aryl
isocyanates 291, alkyl isocyanates 292 and isothiocyanates 293, in a sealed tube
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under nitrogen atmosphere without solvent, afford various 1,3,5-triazin-2-one and
2-thione derivatives 294 [614] (Scheme 20.79).

Hexahydro 1,3,5-triazin-2-thione 295a can be prepared by aminomethylation of
thioureas 285 with formaldehyde and aromatic/heterocyclic amines 263 [615]
(Scheme 20.80). This reaction can be performed under microwave irradiation [616].
1,3,5-Triazin-2-ones 295b can be obtained by a multi-component condensation of
substituted ureas 284, aqueous formaldehyde and substituted amines 263 under
microwave irradiation [616, 617] (Scheme 20.80).

In general, hexahydro 1,3,5-triazine-2,4-dione derivatives 298 are obtained by
cyclocondensation of biurets 296 with aldehyde acetals 297 in the presence of boron
trifluoride etherate [618] (Scheme 20.81). The reaction of carbomethoxy O-methy-
lisoureas with isocyanates is another general way to obtain 1,3,5-triazinediones [619].

Metal complex 299 reacts with two equivalents of alkyl isocyanates 292 to yield
complex 300. Reaction of 300with triflic acid (HOTf) cleanly gives demetallated 1,3,5-
triazine-2,4-diones 301 [620] (Scheme 20.82)
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A novel route to synthesize 1,3,5-triazin-2,4-diones consists in the desulfurization
of thiocarboamides, such as 1,3-disubstituted 2-thioureas, trisubstituted thioureas
and N-substituted thioamides, by silver cyanate [621]. A new synthetic method to
afford 6-aryl-1,3,5-triazine-2,4-diones lies in the reaction of N-t-butylbenzamidines
with diphenyl imidodicarboxylate [622].

Several papers have described the solid-phase synthesis of 6-amino-1,3,5-triazine-
2,4-diones. Scheme 20.83 shows two approaches to employ the resin–bound gua-
nidine, 302 and 304. 6-Amino-1,3,5-triazine-2,4-dione 303 was synthesized utilizing
chlorocarbonyl isocyanates [623] while 305 was synthesized via intramolecular
cyclization of guanidine 304 with potassium ethoxide [624].

1,3,5-Triazine-2,4-diones 307 have been obtained unexpectedly by intramolecular
aza-Wittig reaction of 306 with aryl isocyanate 291 followed by attempted hetero-
cyclization by use of primary amines 263 [625] (Scheme 20.84). Another unexpected
reactionwas found in the reduction of themethylpyridinium salt 308, which afforded
the piperidine spiro 6-thioxo-1,3,5-triazin-2-one derivative 309 [626].

1,3,5-Triazine-2,4,6-triones can be prepared by cyclotrimerization of isocyanates
with several catalysts, such as Lewis bases [627], anions [628] and metallic
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compounds [629, 630]. However, the best catalysts are CsF or tetrabutylammonium
fluoride (TBAF). Trimerization of aryl isocyanates 291with CsFor TBAFas catalyst at
room temperature yields triazinetrione 310 [628] (Scheme 20.85). Phenyl isocyanate
trimerized in the reaction with (C5Me5)2Nb(¼O)H [631]. Zirconacyclopentanes react
with p-chlorophenyl isocyanate to give the trimerization product [632].

The electrochemical approach of Carelli et al. is also a useful procedure to obtain
1,3,5-triazinetriones [633]. This method consists of the cyclotrimerization of aryl
isocyanates in the presence of the anionic species generated in situ by electrochemical
reduction of catalytic amounts of a-bromoesters in dipolar aprotic solvents.

1,3,5-Trihydroxycyanuric acid 314 (THICA) and its alkoxy derivatives can be
prepared by several methods [634–637]. Butula and Takac [638] have reported an
alternative synthesis of THIC in three steps using 1-benzotriazolecarboxylic acid 311
as a key compound (Scheme 20.86). Recently, a new synthetic route to THICAusing
benzyloxycarbamic acid phenyl ester 312, synthesized from O-benzylhydroxyamine
and phenyl chloroformate, has been developed [639].

Symmetrical 1,3-disubstituted triazinetriones can be prepared by condensation of
twomolecules of isocyanateswith ametal isocyanate in a dipolar aprotic solvent [640].

There are few literature reports on the synthesis of asymmetric triazinetriones
with two or three different substituents. Kappe and coworkers have synthesized
1-(benzimidazol-2-yl-methyl)-3-phenyl-s-triazine-2,4,6-trione from the correspond-
ing urea andN-ethoxycarbonyl isocyanate [641]. Biouret 296a cyclized with NaOEt in
EtOH with diethyl carbonate to give 1-aryl-1,3,5-triazine-2,4,6-trione 315 [642]
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(Scheme 20.87). Recently, a one-pot synthesis of asymmetric 1,3,5-triazine-2,4,6-
triones 316was developed by loss of an equimolar amount of isocyanate 291/292 and
primary amine 263 in dichloromethane, followed by addition of N-chlorocarbonyl
isocyanate [643].

An efficient parallel solid-phase synthesis of 1,3,5-trisubstituded 1,3,5-triazine-
2,4,6-triones 319 from chlorocarbonyl isocyanate with resin-bound urea 317 has
been reported [644]. Triazinetrione 318 was cleaved from the resin using HF
(Scheme 20.88).

20.4.4.3 Synthesis of Hydro-1,3,5-Triazines
Acid-catalyzed reaction between the corresponding biguanidine and carbonyl com-
pounds is an effective route to obtain 4,6-diamino-1,2-dihydro-1,3,5-triazine [645].
This method has been used to synthesize a solution-phase combinatorial library
of 1-aryl-4,6-diamino-1,2-dihydro-1,3,5-triazines 322 from a set of carbonyl com-
pounds 321 and arylbiguanidines 320 (Scheme 20.89) [646, 647].

Microwave assisted parallel synthesis of a library of 20 aryl dihydrotriazines 323
was successfully achieved from dicyandiamide, acetone and primary amines [648]
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(Scheme 20.90). This reaction can be considered as a cycloaddition of [4þ 1þ 1]
fragments. This method decreased the reaction time from an average of 22 h to
35min in comparison to conventional parallel synthesis.

Wakefield and coworkers have described the formation of triphenyl dihydrotria-
zines by the reaction of 2,4,6-triphenyl-1,3,5-triazine with lithium reagents [649].
Lappert and coworkers have reported the facile synthesis of monosubstituted
dihydrotriazines 325 from parent triazine (3) and alkyllithium reagent and
subsequent protonolysis of the presumed lithio(alkyl)triazines 324 [650, 651]
(Scheme 20.91).

Reaction of aziridines 326with cesium fluoride andHMPA, followed by treatment
of intermediate 327 with water, yields triazines 328 [652] (Scheme 20.92).

The reaction of aniline derivatives with 1,3,6,8-tetrazatricyclo[4.4.1.13,8]dodecane
affords 1,3,5-triaryl-hexahydro-1,3,5-triazines 329 [653] (Scheme 20.93).

Nitroimino-1,3,5-triazine derivatives 331 are formed viaMannich condensation of
nitroguanidine 330, formaldehyde and the appropriate primary amine 263 [654, 655]
(Scheme 20.94).

A general way to obtain 1,3,5-triazinetriimines is the co-trimerization of amines
with cyanogen bromide [656, 657].

NH2

HN

NCHN
MeCOMe RNH2

N

N
H

N

H2N

NH2

R

Me
Me

Cl

323

MW

Scheme 20.90

N

N

N LiR4 H2O

3

324 325

N

N

N

R4

Li

N

N
H

N

R4

Scheme 20.91

N
RO2C

TMS

CsF, HMPA

rt

N

CO2R

H2O
N

N

N

723623

CO2RRO2C

CO2R
328

Scheme 20.92

1828j 20 Six-Membered Heterocycles: Triazines, Tetrazines and Other Polyaza Systems



20.4.4.4 Synthesis of N-Amino and N-Oxide 1,3,5-Triazines
N-Amino-1,3,5-triazine derivatives 332 have been synthesized from ethoxycarbo-
nylhydrazones 333 and two equivalents of aryl or methyl isocyanates followed by
hydrolysis of intermediate triazine 334 [658] or by transformation of sodium salts of
1,3,4-oxadiazol-2-ones 335 with two equivalents of aryl or ethyl isocyanates and
hydrolysis of intermediate 336 [659] (Scheme 20.95).

With respect to the preparation of N-oxide derivatives of 1,3,5-triazines, Shaw has
described the oxidation of triazines with peracetic acid and the preparation of 2,6-
diamino-4-methyl-1,3,5-triazine N-oxides from potassium dicyanoacetamide and
hydroxylamine [660]. Formation of triazine N-oxides by reaction of amidooxime
with ethyl orthoacetate gives poor yields [661].
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20.4.5
Reactivity

The reactivity of 1,3,5-triazine (3) has been thoroughly reviewed [26, 39, 41, 474, 662]
and the chemistry of melamine, cyanuric acid and cyanuric halides has also been
reviewed [34, 35, 120, 663]. In general, many of the reactions of 1,3,5-triazines reflect
the chemistry of the ring substituents.

20.4.5.1 Thermal and Photochemical Reactions
Theparent compound 3decomposes to form threemolecules of hydrogen cyanide on
heating above 600 �C. The thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-
triazine has been studied [664]. Thermal isomerization of cyanurates and thiocya-
nurates to isocyanurates and thioisocyanurates, respectively, is also known [665, 666].

A novel reversible thermal electrocyclic reaction of chiral 1,2-dihydro-1,3,5-tria-
zines has been described [667].

Photodissociation of 1,3,5-triazine to yield hydrogen cyanide is also known [419,
421, 422]. Photolysis of 2-azido-4,6-dichloro-1,3,5-triazine, in a low temperature
argonmatrix, yields a cyclic carbodiimide containing four nitrogen atoms in a seven-
membered ring [668]. Consecutive photolysis of triazido-1,3,5-triazine, in a low
temperature nitrogen matrix, has been studied [669, 670]. 2,2,4,6-Tetraphenyldihy-
dro-1,3,5-triazine undergoes photochemical reactions to yield a mixture of six
products, among which 2,4,5-triphenylimidazole and 2,4,6-triphenyl-1,3,5-triazine
could be identified [671, 672]. The S-chlorination reaction of isothiocyanuric
acid under UV-irradiation at �45 �C affords 1,3,5-triazine-2,4,6-
trisulfenyltrichloride [673].

20.4.5.2 Reactions with Electrophilic Reagents
Chlorination and bromination of 1,3,5-triazine occur only under vigorous condi-
tions, bromination being rather more successful. The reactions are probably not
electrophilic [35, 39, 43, 320, 674]. Treatment of 1,3,5-triazine with chlorine or
bromine at room temperature gives rise to perhalides [43]. Melamine has been
halogenated to form products containing one to six halogens, depending on the
reaction conditions [35]. Sulfonation or nitration preferentially leads to the ring
hydrolysis [39]. Alkyl side chains of 1,3,5-triazine are quite readily a-halogenated by
what are believed to be ionic mechanisms [675].

Someexamples on the preparation of nitro derivatives of 1,3,5-triazine are found in
the literature. Thus, when 1,3,5-triazine is allowed to react with dinitrogen pentoxide,
at 0 �C, and quenched with methanol the cis and trans isomers of 2,4,6-trimethoxy-
1,3,5-trinitrohexahydro-1,3,5-triazine 337 and 338 can be isolated in equimolar
ratio [676] (Scheme 20.96).

Alkylation of thiocyanuric has been described [565]. Phase-transfer has been
employed to catalyze polycondensation of 6-dialkylamino-1,3,5-triazine-2,4-dithiols
with 1,10-dibromodecane [677].

Carboxylic acids have been condensed with 1,3,5-triazine by activation of the
triazine ring. Thus, chlorotriazine 339 is activatedwith amine, to give the salt 340 that
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reacts with a carboxylic acid to generate the ester 341 [522, 539, 543, 544]
(Scheme 20.97).

N-Alkylation of 1,3-disubstituted 1,3,5-triazine-2,4,6-triones is well documen-
ted [643, 644]. Silylation of the amino groups of melamine and 2,4-diamino-6-
substituted-1,3,5-triazines is achieved by reaction with chlorotrimethylsilane
and triethylamine in refluxing acetonitrile to give the monosilylated amino
derivatives [678].

20.4.5.3 Reactions with Nucleophilic Reagents
1,3,5-Triazines are extremely sensitive to nucleophilic substitution, particularly
hydrolysis in the presence of even trace atmospheric water [35]. Nucleophilic attack
at the aromatic 1,3,5-triazines results in ring cleavage in most cases. The reaction of
1,3,5-triazine 3 with a primary amine is an example of this fact [39] (Scheme 20.98).

In theGattermann aldehyde synthesis, 1,3,5-triazine can be used as a substitute for
hydrogen cyanide [679]. On treatment of triazine (3) with aryl Grignard reagents the
corresponding aryl aldehyde is obtained.

Several nucleophilic substitutions of halogen derivatives of 1,3,5-triazines can be
found in the literature. Themore commonmethod is displacement of chlorine atoms
of cyanuric chloride with different nucleophiles. It is possible to obtain mono-, di- or
tri-substituted-1,3,5-triazine by controlling the nature of the nucleophiles or the
reaction temperature. Thus, 2-amino-1,3,5-triazine 342, 2,4-diamino-1,3,5-triazine

N

NN

R6 Cl

R4

N

R''

R R'
N

N

N

R4

R N
R'

R

R''
N

N

N

R4

R O

RCOOH

R

O

339 340 341Cl

Scheme 20.97

N2O5

CH3NO2 0 ºCN

N

N

3

MeOH

N

N

N

OMe

MeO OMe

NO2

O2N NO2
N

N

N

OMe

MeO OMe

NO2

O2N NO2

337 338

1.

2.

Scheme 20.96

3

RNH2 RNH2 NR

NHR N

NH2

NH
263

263

N

N

N N

N
H

N

NHR

N

N

NH2

NHR

N

N

NH2

NHR
NHR

Scheme 20.98

20.4 1,3,5-Triazines j1831



343, or 2,4,6-triamino-1,3,5-triazine 344 can be obtained by sequential addition of
amines [497, 558, 577, 578, 580–582, 680, 681] (Scheme 20.99). 2,4-Diamino-1-
alkoxy-1,3,5-triazine [565, 578, 579], 2-amino-4-alkoxy-1,3,5-triazine [576, 577],
2-amino-4,6-dialkoxy-1,3,5-triazine [207, 544, 682], 2,4-dialkoxy-1,3,5-triazine [573,
574], and 2,4,6-triaryloxy-1,3,5-triazines [564] have also been described.

Reaction of cyanuric chloride with 1-benzylpyrazole under solvent-free conditions
and microwave irradiation yielded, within 10min, tris-2,4,6-(pyrazol-1-yl)-1,3,5-tri-
azine by a quaternization–dequaternization procedure [683]. This compound has
been employed as a 5-connecting building-block for infinite nets [684].

Organometallic alkylations of cyanuric acid (6) [577] or 2-chloro-4,6-dimethoxy-
1,3,5-triazine (345) [685] have been described to afford alkyl-1,3,5-triazines 346
(Scheme 20.100). Alkynyl-1,3,5-triazines 347 have been synthesized by reaction of
cyanuric chloride 6 with Grignard reagents [583] or by Pd-catalyzed cross-coupling
between alkynes and 345 [686, 687].

Anew synthetic route, via the Suzuki cross-coupling of resin-bound 2,4-diamine-6-
chlorotriazines, using various arylboronic acids and palladium catalysts has been
developed to prepare a 2,4-diamine-6-aryl-1,3,5-triazine library [604].

Reaction of 2,4,6-trifluoro-1,3,5-triazine and hexafluoropropene yields perfluoro-
(isopropyl)-1,3,5-triazines, which react with a range of oxygen nucleophiles [688].
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There are other similar reactions to obtain 2,4,6-tris(perfluoroalkyl)- and perfluor-
oalkylether-1,3,5-triazines from 2,4,6-trihalotriazines [689].

Other substituents than halogen at 2-, 4- and 6-positions may be displaced by
nucleophilic reagents. Thus, reactions of 2,4,6-tris[di(t-butoxycarbonyl)nitromethyl]-
1,3,5-triazine with nucleophiles have been reported [690]. Substitution of an
OMe group by a hydrazino group in a methoxyribosyltriazinone has been
accomplished [691].

N-Methyleneamine equivalents can be generated in situ from hexahydro-1,3,5-
triazines 348 (Scheme 20.101) in the presence of a Lewis acid (LA) and reacted with
various nucleophiles for the synthesis of aziridine 349 [692, 693], azetidin-2-ones
350 [694, 695], anilines 351 [696, 697], tetrahydroquinolines 352 [697], 5-amino-
methyl-dihydrofuran-2-ones [698], and anilinomethylazides [699]. Synthetic applica-
tions of N-methyleneamine equivalents were reviewed in 2002 [700].

20.4.5.4 Cycloaddition Reactions
1,3,5-Triazines may also undergo inverse electron demand cycloaddition reactions,
although in to minor extent compared with 1,2,4-triazines, to yield heterocyclic
compounds such as substituted [120] or condensed [701–707] pyrimidines. Theo-
retical studies [708, 709] of an inverse-electron demandDiels–Alder reaction between
amino-substituted heterocycles and 1,3,5-triazines have been described.
Scheme 20.102 show the mechanism proposed for this reaction.
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An isocyanurate-containing fullerene has been obtained by [3 þ 2]-cycloaddition
of 5-[50-azidopentyl)]-1,3-diallyl-1,3,5-triazine-2,4,6-trione to C60 [710].

20.4.5.5 Reactions with Reducing Reagents
A fewexamples of reduction reactions of 1,3,5-triazines can be found in the literature.

2,4,6-Tricyano-1,3,5-triazine 354 (TCT) undergoes an irreversible one-electron
reduction with Na or K to form 355 [711] (Scheme 20.103). Chemical reduction of
TCTwith strong reducing agents, such as bis(mesitylene)chromium(0), affords the
dimerized compound 356 (TCBT) [712, 713] (Scheme 20.103)

20.4.5.6 Reactions with Oxidizing Reagents
There are few oxidation reactions on the ring of 1,3,5-triazines. Study of the kinetics
and energies of one-electron oxidation of 1,3,5-triazines has been published [714].

Oxidation of a substituent cyano group to the corresponding amide has been
described recently. One-pot preparation of triazinyl amide 358 via a sequential SNAr
substitution and oxidation has been achieved using diethylaminoacetonitrile as
amide synthon. An important advantage of this process is that the oxidation of the
intermediate 357 occurs under mild conditions using NiO2–H2O in THF at room
temperature [715] (Scheme 20.104).
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Reactions of substituted 1,3,5- triazines with peroxides [716] and peracids [717]
afford the corresponding oxygenated substituents.

Dihydro-1,3,5-triazines are aromatized to triazines on oxidation with potassium
permanganate [718].

20.4.5.7 Reactions of Metallated 1,3,5-Triazines
Metallated triazines react with electrophiles to give different substituted derivatives.
Chloro-1,3,5-triazines are lithiated using lithium powder and naphthalene in the
presence of various electrophiles such as aldehydes and ketones to give, after
hydrolysis, the expected substituted triazines. The reaction presumably takes place
through the organolithium intermediate [719].

1,3,5-Triazine reacts with lithium alkyl to give 1,4-adducts, which on hydrolysis
yielded thefirst simple 4-substituted 1,4-dihydrotriazines [650]. The reaction of 1,3,5-
triazines and lithium amidinate, alkyl- or 1-azaallyllithium affords substituted 1,3,5-
triazines [651].

20.5
Tetrazines

Tetrazine chemistry has been extensively reviewed in Comprehensive Heterocyclic
Chemistry I [4] and Comprehensive Heterocyclic Chemistry II [9]. A whole chapter is
devoted to 1,2,4,5-tetrazine in Comprehensive Heterocyclic Chemistry II [8]. The
chemistry of 1,2,3,4-tetrazines has recently been updated in Chemical Reviews [44].

Therefore, only the most important relevant data that have appeared since these
publications is considered here.

20.5.1
Relevant Computational Chemistry, Physicochemical and Spectroscopic Data

Theoretical calculations of the 1,2,3,4-tetrazine [53] and 1,2,3,5-tetrazines [53, 720]
system have been published.

The 1,2,4,5-tetrazine system is the only stable isomer of the three possible
tetrazines. Most theoretical studies have dealt with the 1,2,4,5-tetrazine isomer.
Fabian and Lewars have described a computational study of the stability, homo-
desmotic stabilization energy, electron distribution and magnetic ring current of
tetrazines [53]. Harmonic [58] and anharmonic [58, 59] frequencies have also been
calculated. The electronic spectrum [721–725] and density functional calculations
[57, 726–728] have been published. Heats of formation of tetrazines have been
calculated [61]. The coordination chemistry of 1,2,4,5-tetrazines and its 3,5-disub-
stituted derivatives has been described [729].

The X-ray crystallographic analysis of 1,2,4,5-tetrazines derivatives
recently reported include: trans-3,6-dibenzyl-1,2,4,5-tetrazine 3,6-diphenyl-1,2,4,5-
tetrazine [730]; diphenyl 3,6-bis(4-chlorophenyl)-1,2-dihydro-1,2,4,5-tetrazine-1,2-
dicarboxylate [731]; 3,6-diphenyl-1,4-bis(p-tolylsulfonyl)-1,4-dihydro-1,2,4,5-tetra-
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zine [732]; dipropyl 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine-1,2-dicarboxylate [733];
1-acetyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazine [734]; ethyl 3,6-diphenyl-1,4-dihy-
dro-1,2,4,5-tetrazine-1-carboxylate [735]; 1-acyl-3,6-disubstituted phenyl-1,4-dihydro-
1,2,4,5-tetrazines [736]; 3,6-bis(2-chlorophenyl)-1,4-dihydro-1,2,4,5-tetrazine [737];
3,6-bis(2-pyridinio-1,2,4,5-tetrazine) diperchlorate [738]; 3,6-bis(2-pyridinyl)-1,2,4,5-
tetrazine [739]; hexahydro-1,2,4,5-tetrazines [740]; and 1,5-dimethyl-1,2,4,5-tetrazi-
nane-3,6-dione [741].

20.5.2
Tautomerism

Unexpected azido-tetrazolo tautomerizations and irreversible tetrazolo transforma-
tion have been studied in a report dealing with 3,6-diazido-1,2,4,5-tetrazine (DiAT),
for which an improved synthetic pathway is also provided [742]. DiAT undergoes
azido-tetrazolo equilibria in CD3OD, (CD3)2CO and CD3CN and transforms into
tetrazolo isomer 359 in DMSO (Scheme 20.105). The transformation from 359 into
360 only occurs when the temperature is at least 80 �C.

20.5.3
Relevant Natural and Useful Compounds

Recent reports have dealt with the antitumor activity of the 1,2,4,5-tetrazine skele-
ton [736, 743–751]. On the other hand, 1,2,4,5-tetrazines have demonstrated pow-
erful synthetic utility through their ability to participate in inverse electron demand
Diels–Alder reactions, providing access to a wide range of other heterocycles and
natural products [30, 752] (Section 20.5.4.2).

The 1,2,4,5-tetrazine ring system displays uniquematerial properties as well. This
electroactive, colored ring system typically exhibits high electron affinity, low lyingp�

orbitals and n-p� transitions in the visible light region – attractive properties for
optical and electroactive materials applications [753]. Furthermore, tetrazines also
posses high positive heats of formation and crystal densities, properties important in
energetic material applications [754, 755].
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3,6-Diethyl-1,2,4,5-tetrazine has been employed as unique solvatochromic probe
in the Solvent Acidity Scale [756]. 3,6-Diazido-1,2,4,5-tetrazine has been synthesized
for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides [757].

20.5.4
Synthesis of 1,2,4,5-Tetrazines

Only recent synthetic methods of tetrazines are commented on here.
Kaszynski has developed an alternative route to obtain 3,6-diphenyl-1,2,4,5-

thiatriazine 362 in a one-pot reaction from a nucleophilic double substitution on
dichloride 361 [758] (Scheme 20.106).

3,6-Bis(phenanthrolin-2-yl)-1,2,4,5-tetrazine has been synthesized from the reac-
tion of 2-cyanophenanthroline with hydrazine followed by oxidation with nitric acid
in acid acetic [759]. Hydrazine reacts with 4-hydroxybenzimidic acid methyl ester
followed by oxidation with sodium nitrite to give 3,6-bis(4-hydroxyphenyl)-1,2,4,5-
tetrazine [760]. Aryl nitriles react with hydrazine to form 1,2-dihydro-3,6-diarylte-
trazines [761], which are oxidized to 3,6-diaryl-1,2,4,5-tetrazines [753].

Imidate 363 reacts with hydrazine hydrate to afford 1,4-dihydrotetrazine 364.
Deliberate oxidation of 364 has been accomplished by treatment with ferric chloride
to provide tetrazine 365 [762] (Scheme 20.107).

New 1,2,4,5-tetrazines derivatives has been synthesized from substituted nitrili-
mines and different hydrazines [763–765] or hydrazones [765, 766].

A new neutral oxoverdazyl radical conjugated with the corannulene system
has been designed and synthesized for the first time as a stable solid in air [767].
The radical 367 was synthesized by the condensation of aldehyde 366 with
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2,4,-dimethylcarbonohydrazide at room temperature followed by treatment with
PbO2 (Scheme 20.108).

The synthesis of 1,5-diisopropyl substituted 6-oxo-verdazyls has been accom-
plished starting from 2,4-diisopropylcarbonohydrazide bis-hydrochloride. The intro-
duction of isopropyl groups results in free radicalsmore stable and soluble than their
methyl counterparts [768]. 6-(4-Substituted-phenyl)-2,4-diphenylverdazylium salts
have been prepared by the reaction of 3-(4-substituted-phenyl)-1,5-diphenylforma-
zans with formaldehyde and different organic and inorganic acids in a two-phase
chloroform/water medium by brief and gentle heating [769].

20.5.5
Reactivity of 1,2,4,5-Tetrazines

Some examples of the reactivity of 1,2,4,5-tetrazines published since 1995 are
described here.

20.5.5.1 Reactions with Nucleophilic Reagents
The electron-deficient aromatic ring of tetrazine and its reactivity towards nucleo-
philes have been utilized in the preparation of non-symmetrically substituted
tetrazines by substitution of leaving groups, such as chloro [770, 771],
methylthio [770, 772–775] or dimethylpyridazolyl [755, 757, 776, 777] with nitrogen,
oxygen or sulfur nucleophiles. The use of carbon nucleophiles, such as organo-
lithium or Grignard reagents, with 3,6-disubstituted 1,2,4,5-tetrazines 368 led to
the addition of an organic group onto a ring nitrogen atom to afford 1,4-dihydro-
tetrazines 369 [778] (Scheme 20.109).

The first cross-coupling reactions in tetrazines have been described: a series of
substituted chlorotetrazines 370 were reacted with different terminal alkynes under
Sonogashira or Negishi coupling conditions to furnish alkynyl-tetrazines 371 [779]
(Scheme 20.110).
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20.5.5.2 Cycloaddition Reactions
A simple, yet non-obvious method for the construction of pyrazol-4-ols 374 by
a consecutive series of condensation–fragmentation–cyclization extrusion reactions
of thietanone 372 with 1,2,4,5-tetrazine 373 has been described [780]
(Scheme 20.111).

InverseelectrondemandDiels–Alderreactionof1,2,4,5-tetrazinesarewellknownin
the literature. Cycloadditions with electron-rich alkynes [759, 762, 774, 776, 781–788]
or alkenes [602,762, 772, 773, 781,784, 789–792] afford the expecteddonor-substituted
pyridazines(Scheme20.112).Fusedpyridazineshavealsobeenobtained[269,770,775,
784, 793–802].

1,2,4-Tetrazine 377 can be obtained the from reaction of thioimidate 375 with
1,2,4,5-tetrazine 376 [762] (Scheme 20.113).

Zhou et al. have described an alternative Diels–Alder route to the well-known C,C
cycloaddition (Carboni–Lindsey reaction). Quantum mechanical calculations
showed that N,N cycloaddition of alkenes and alkynes to s-tetrazines is possible.
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The formation of 1,2,4-triazole derivatives (formal product of N,N cycloaddition)
along with the pyrazole (formal product of C,C cycloaddition) corroborates this
theoretical prediction [803].

Thermal Diels–Alder reactions between C60 and electron-deficient 3,6-diaryl-
1,2,4,5-tetrazines yielded monoadducts possessing a diaryldihydropyridazine func-
tion nested atop the fullerene [804]. However, when 3,6-diaryl-1,2,4,5-tetrazines and
C60 react upon irradiation with visible light, the four membered ring-containing C62

derivatives were obtained [805].

20.5.5.3 Reactions with Oxidizing Reagents
1,4-Dihydrotetrazines have been aromatized to tetrazines by exposure to nitrous
gases [784]. 1,2,4,5-Tetrazines have been oxidized by DBU to obtain a novel azepine
derivative [806]. In contrast, 1,2,4,5-tetrazines have been oxidized by methyl(trifluor-
omethyl)dioxirane to form the N(1)-oxide isomer [807].
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Seven-Membered Heterocycles: Azepines, Benzo
Derivatives and Related Systems
Juan J. Vaquero, Ana M. Cuadro, and Bernardo Herrad�on

21.1
Introduction

The replacement of a carbon atom by a heteroatom in a seven-membered carbocycle
leads to the corresponding seven-membered heterocyclic ring system. Different
types of heterocycles can be formed depending on the nature of the carbocycle. In
a cycloheptatriene the replacement can involve any of the six sp2 hybridized carbons
or the sp3 carbon atom, whereas in cycloheptane all carbon atoms are equivalent
and replacement affords exclusively the fully saturated heterocyclic systems. Partially
saturated seven-membered heterocycles can be viewed as derivatives or related
systems of these two main seven-membered heterocyclic units arising from carbon
replacement in cycloheptatriene and in cycloheptane.

Replacement of the sp3 hybridized carbon atom in cycloheptatriene by a nitrogen
leads to an azacycloheptatriene known as 1H-azepine (1) and the corresponding 2H-,
3H-, and 4H-azepines (2–4) are the tautomeric forms generated by the replacement
of the sp2 carbons. 1H-Azepine is an unstable red oil that is prone to rearrange to the
also unstable 3H-azepine in the presence of acids and bases. However, this tautomer
seems to be more stable than both 4H- and 2H-azepine.

The structures related to 1H-azepine that bear an oxygen or sulfur atom are known
as oxepine (5) and thiepine (6) (thiepin is favored by Chemical Abstracts Service).
Oxepine is much more stable than thiepine and has been synthesized, isolated, and
characterized at room temperature while thiepine has not been detected to date.
Stablemonocyclic thiepineswere prepared and characterized in the 1980s. Azepines,
oxepines, and thiepines that are constrained to planar or almost planar conforma-
tions should be antiaromatic molecules with negative resonance energy and, as
a consequence, these compounds are unknown.

The fully saturated seven-membered heterocycle containing one nitrogen is
azepane (7) (hexahydroazepine or perhydroazepine); the oxygen and sulfur analo-
gues are known as oxepane (8) and thiepane (9). All of these compounds are stable
and show typical behavior of secondary amine, ether and thioether, respectively. Two
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other interesting systems are the sulfur-oxidized forms of 6 and 9, which are known
as thiepine 1,1-dioxide (10) and thiepane 1,1-dioxide (11), respectively.
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Annelation of all these seven-membered heterocycles to aromatic and heteroaro-
matic rings leads to a great variety of heterocyclic systems. The most widely studied
are those generated by fusion of one or two benzene rings to the fully unsaturated
nuclei. There are three possible ways for this annulation of a benzene ring
to heterocycles 1–11 and four isomeric possibilities result from the fusion with two
benzene rings (12–32). In general, the resulting benzo derivatives and dibenzo
derivatives are more stable than the parent monocyclic systems.
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The chemistry and properties of most common seven-membered heterocycles
have been reviewed in previous surveys, mainly in Comprehensive Heterocyclic
Chemistry I [1, 2], Comprehensive Heterocyclic Chemistry II [3–5] and Comprehensive
Heterocyclic Chemistry III [6–8]. Other reviews on azepines have been published
[9–11] andbenzazepines have been covered in a reference series [12]. The synthesis of
oxepines and oxepanes has been reviewed elsewhere [13–16], as have the synthesis
and applications of some dibenzoxepines [17]. Earlier studies on the chemistry of
thiepines and thiepanes have been reviewed [18, 19] and, more recently, these
heterocycles have been described in Houben-Weyl�s Science of Synthesis [20]. A
review of dibenzo[b,f ]thiepine has also been published [21]. In addition to these
general surveys, annual accounts on seven-membered heterocyclic ring systems are
given in Progress in Heterocyclic Chemistry [22].

21.2
Relevant Natural and Useful Compounds

The seven-membered lactam 33 (e-caprolactam or hexahydroazepin-2-one) is prob-
ably the most relevant azepine derivative to date. This compound has been isolated
from natural sources and has biological properties such as growth-inhibiting
activity [23] and allelopathy [24]. However, its most relevant use is as an intermediate
in the synthesis of nylon 6 through a polymerization process [25, 26]. The structural
fragment of e-lactam is incorporated into various naturally occurring products such
as the bacterial translocase 1 inhibitor 34 isolated from Streptomyces griseus SANK 50
196 [27] and the azepinone bengamides Z (35) and Q (36) isolated from a Jaspis
species [28]. Muscaflavin (37) has been isolated from the poisonous mushroom
Amanita muscaria and is one of the few examples of simple monocyclic azepine
derivatives found in nature [29].

The most useful compounds based on the azepine system are fused-ring deriva-
tives that exhibit a wide range of pharmacological activities. Examples of benzazepine
derivatives with pharmacological interest are the 1H-2-benzazepine derivative 38,
which is an inhibitor of acetylcholinesterase [30], and the potential anti-HIV agent
39 [31]. Examples of dibenzazepines include imipramine (40) and clomipramine
(41), two 10,11-dihydrodibenz[b,f ]azepine alkaloids that have been used for the
treatment of depressive disorders [32], perlapine (42), a dibenzo[b,e]azepine with
antipsychotic and sedative activities [33], and azapetine (43), an antiadrenergic
dibenzo[c,e]azepine [34].

The instability of most monocyclic oxepines precludes any significant commercial
application, although they do play a remarkable role as intermediates in the
biosynthesis and metabolism of natural products and xenobiotics [35]. It has been
assumed that oxepines such as 44 and 45 are involved in the biosynthesis of
tyrosine [36] and gliotoxin [37] and that the formation as intermediates of oxepines
46 and 47 occurs in the conversion of cinnamic acid into ortho- and para-coumaric
acid, respectively [38]. Methyl-substituted oxepines 48 have also been postulated as
intermediates in the metabolism of arenes by liver enzymatic systems [39]. Some
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annelated oxepines are found in nature and these include bauhiniastatin (49) [40],
janoxepin (50) [41], and perillosin (51) [42], and some relevant pharmacological
activities have been described for some dibenzoxepine derivatives inter alia anxiolytic
activity for 52 [43] and anti-inflammatory action for artocarpol (53), a natural product
isolated from the root bark of Artocarpus rigida [44].

Oxepanes and partially reduced oxepines are of considerable interest, with oxepan-
2-one (54) (e-caprolactone) being an important monomer used in the synthesis of
poly-e-caprolactone, a polymer with a wide range of relevant applications [45]. A
remarkable number of natural marine products contain oxepane or a reduced
oxepine in their structure [46]. Representative examples are isolaurepinnacin
(55) [47] and lobatrienetriol (56) [48], both of which are structurally based on a
monocyclic tetrahydrooxepine, armatol A (57) [49], with two oxepane and one
tetrahydrooxepine rings, and ciguatoxin 3C (58), which is one of the most powerful
polyether neurotoxins [50].

Significant applications of simple monocyclic thiepines and thiepanes and their
monobenzo derivatives have not been reported to date. On the other hand, interesting
biological activities have been described for some dibenzo derivatives – especially
those belonging the dibenzo[b,f ]thiepine and dibenzo[b,e]thiepine series. Dibenzo[b,f ]
thiepine derivatives of the general structure 59 display a wide range of pharmaco-
logical activities, including antischizophrenic, anti-inflammatory, antidepressant,
antihistaminic, anti-bradykinin, neuroleptic, and as 5-HT2A/2C inhibitors [51, 52].
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The activity of dibenzo[b,e]thiepines is represented by 60, which has antidepressant
activity [53], tiopinac (61), an anti-inflammatory agent [54], and 62, a calcium
antagonist [55].

Apart from these applications, liquid crystals based on the dibenzo[c,e]thiepine
scaffold have been reported and the enantiomerically pure compound 63 shows axial
chirality [56].

21.3
Relevant Computational Chemistry, Physicochemical, and Spectroscopic Data

1H-Azepine (1) was first obtained in 1963 [57] by hydrolysis and decarboxylation of
ethyl 1H-azepine-N-carboxylate, but it was not characterized until 1980 [58].
This azepine isomer is stable for only a few hours in solution even at �78 �C
[it polymerizes and tautomerizes to the 3H-tautomer (3)]. 3H-Azepine (3) is less
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prone to polymerization than 1 and it can be distilled under vacuum. N-Substituted
1H-azepines are oils or stable solids with well-defined melting points. Azepane (7)
was first obtained in 1963 and is a typical secondary amine with a pKa of 11.29 [59].

Oxepine (5) is a heterocyclic compound that at room temperature is in equilibrium
with its valence bond isomer, the benzene oxide, but it has been synthesized, isolated,
and characterized. Thiepine (6) is a highly unstable structure and this compound
remains unknown. Oxidation of the sulfur atom to form the thiepine 1,1-dioxide (10)
stabilizes the thiepine ring system. Table 21.1 gives the bond lengths for some of
these seven-membered heterocycles.

S

R

S

NMe
2

S

O

CO
2
H

S

HNCO(CH
2
)
3

N N F H
25

C
12

O

S

Me
Me

O

O
O-C

12
H

25

O

O

59 60 61

62 63

Table 21.1 Bond lengths (A
�
) for some representative seven-membered heterocycles.

Heterocycle Het�C1 C1�C2 C2�C3 C3�C4 Method Reference

N
H 1

1.420 1.347 1.466 1.350 SCF-MO [60]

O 5
1.434 1.284 1.444 1332 Ab initio [61]

S 6
1.791 1.347 1.466 1.450 HMO [62]

S
O O 10

1.723 1.344 1.429 1.333 X-ray [63]

S 14
1.781 1.321 1.448 1.308 X-ray [64]

Het¼Heteroatom.
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The conformation of these fully unsaturated seven-membered heterocycles has
made them the focus of enormous interest since a planar structure would involve an
overlap of the nitrogen lone pair with the cyclic triene system, leading in turn to the
formation of an antiaromatic 8p electronic system [60, 65].

Theoretical calculations carried out on 1H-azepine (1) have demonstrated that this
tautomer is not a planarmolecule; instead the results suggest that this heterocycle has
a boat conformation with a significant contribution (22%) of the chair conformation.
Consequently, this out-of-plane conformation allows the destabilizing overlap of the
nitrogen lone pair to be avoided and the p-delocalization of the cyclic triene is at
a similar level to that found in a linear polyene (Scheme 21.1). Comparative
molecular-orbital-based molecular mechanics (MOMM) calculations carried out on
1H- and 3H-azepine (3) show that the p-electronic system is highly localized in both
systems and the geometry of 1H-azepine is better represented for a defined boat
conformation. Similarly, a boat conformation is the preferred geometry for 3H-
azepine, which is predicted to be 4.7 kcalmol�1 more stable than the planar
conformation and 17 kcalmol�1 more stable than 1H-azepine [66]. Recent stud-
ies [67] using DFTmethods (B3LYP6-31G� and B3LYP/6-311 þ þG��) and MP2/6-
311 þ þG�� calculations show that destroying the antiaromaticity of 1 results in
a reward of 10.8 kcalmol�1.

Extensive 1H NMR studies have been carried out to establish the energy barriers
for the ring inversion between the two stable boat conformations of the azepine ring.
The barrier for boat-to-boat inversion depends on the number and nature of the
substituents and the azepine tautomer. For simple substituted azepines it has been
established that the barrier is below 5 kcalmol�1.

Semiempirical and ab initio studies have shown that both oxepine (5) and thiepine
(6) also adopt a boat-type conformation similar to that found in 1H-azepines, with
four carbons (C2, C3,C6, andC7) arranged in the sameplane and the heteroatomand
the remaining two carbons (C4 andC5) out of themain plane (Scheme 21.1). Barriers
for the ring inversion of thiepine have been obtained at different levels of theory [68]
and range from 5.8 to 11.4 kcalmol�1. From nucleus-independent chemical shift
(NICS) values the planar structure is antiaromatic and the boat-like conformation
appeared to be nonaromatic.

Experimental evidence for the boat-like conformation in azepines [69], oxe-
pines [70], and thiepines [71] has been obtained by X-ray crystallography. These
studies confirmed the boat-like conformation for the seven-membered rings of
derivatives 64–66, with bond lengths for C2�C3, C4�C5, and C6�C7 very close to
those of theC(sp2)�C(sp2) single bond and theC�heteroatom lengths very similar to
the distance of a single bond.

X

X

X = NH, O, S

Scheme 21.1
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Conformational analyses of azepane (7) [72], oxepane (8) [73] and thiepane (9) [74]
using different force fields have been described. Such compounds show a complex
pseudorotational equilibrium between the chair, twist-chair, boat, and twist-boat
forms, with the twist-chair conformations generally the most abundant conformers
(Scheme 21.2). When a double bond is introduced into the ring, the number of
conformations present in the pseudorotational equilibrium is reduced and the twist-
boat or chair forms are usually stabilized.

The potential structural diversity of benzo and dibenzo fused seven-membered
heterocycles and the lack of systematic conformational studies make it difficult to
establish general conclusions for the preferred conformations of these systems. It is
clear that the annelation of a benzene ring results in an increase in the barriers to ring
inversion and that chair conformations appear to be preferred in benzo derivatives of
the fully saturated systems 7–9 [75]. However, analysis of the benzoannelated system
involving the fully unsaturated heterocycles 1–6 is much more complex because of
the potential whole range of aromatic, antiaromatic, and nonaromatic situations and
valence tautomerism (detailed below) that can be found.

NMR data for azepines, oxepines, and thiepines have also been very valuable in
establishing their preferred conformations and provide detailed information about
the ring inversion energies of these ring systems. The nonplanar character of the
seven-membered nuclei results in the chemical shifts of the protons and carbons
lying in the polyene region of the spectra. Tables 21.2 and 21.3 give 1H NMR and 13C
NMR data for some representative compounds.

1H and 13C NMR data for monocyclic thiepines also provide relevant structural
information. In the 1H NMR spectra the ring proton signals clearly appear in the
alkene region, with coupling constants consistent with a nonplanar seven-membered
triene structure. This finding confirms the nonaromatic character of the nucleus.
Chemical shifts in the 13C NMR spectra are also consistent with the triene structure.

X

X X
X

 X = NH, O, S

Boat Twist-boat Twist-chair Chair

Scheme 21.2
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MS, IR, and UV spectroscopic methods seem to be considered less significant for
the structural elucidation of seven-membered heterocycles except for some isolated
cases and systematic studies have not been reported. The UV data for some stable
monocyclic derivatives have been used to confirm the nonplanar structure of the
trienic ring. The UV spectra of 1H-azepine derivatives show three bands at 210–215,
240–247 and 285–330 nm, with the latter being the strongest absorption band [84].
The simplest stable compound2,7-di-tert-butylthiepine shows three bands at 226, 252
and 362 nm with log e values of 4.02, 3.35 and 2.51, respectively [85]. Notably, the
mass spectrumof 2,7-di-tert-butylthiepine does not show ions generated by the loss of
sulfur, an observation that is unexpected.

Table 21.2 1H NMR data (ppm) for some representative seven-membered heterocycles.

Heterocycle H1 H2 H3 H4 H5 H6 H7 H8 H9 Reference

N
H 1

— 5.22 4.69 5.57 5.57 4.69 5.22 — — [58]

N 2
— 3.61 5.69 6.35 6.74 6.60 7.84 — — [76]

N 3
— 6.2–6.7 2.42 5.35 6.2–6.7 6.2–6.7 7.55 — — [58]

O 5
— 5.7 5.7 6.3 6.3 5.7 5.7 — — [77]

N

Me

— 5.62 4.47 2.32 2.32 4.47 5.62 — — [78]

O CO
2
Me

— — 6.9 6.4 6.5 5.8 5.9 — — [79]

SBu
t

Bu
t

CO
2
Et

— — 6.76 7.43 6.40 — — [80]

O 13 
— 6.21 5.45 6.01 6.63 6.89–7.22 [81]

S 14
— 5.86 6.40 6.40 7.06 7.16–7.28 [81b,82]

S

20
6.72 5.89 — 5.89 6.72 7.10–7.18 [82]
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Tautomerism in azepines via an allowed 1,5-hydrogen shift has been studied for
different azepine isomers and it was found that the ratio of azepine tautomers is
related to their relative thermal stabilities [69d, 86]. For instance, when heated in
toluene both 2H- and 3H-azepines 2 and 3 are converted intomixtures containing the
2H-, 3H-, and 4H-azepine tautomers in similar ratio (about 10: 50: 1). A similar result
has been found in the demethoxycarbonylation of the 3H-azepine derivative 67,
which upon heating in toluene in the presence ofDBUaffords amixture of 67 and the
2H- and 4H-tautomers 68 and 69, respectively. However, under the same conditions
the methyl 2,5-di-tert-butyl-3H-azepine-1-carboxylate 70 gave only the 3H-tautomer
71 (Scheme 21.3).

21.4
Valence Tautomerism in Seven-Membered Heterocycles

An interesting structural feature of fully unsaturated seven-membered heterocyclic
systems is the possibility of valence tautomerism [87]. Early studies based on X-ray
analysis discarded the azepine–benzeneimine equilibrium (Scheme 21.4) for simple
1H-azepines in the solid state, and 1H NMR data obtained at different temperatures
were also consistentwith the azepine structure [58].However, otherNMRstudies [88]

Table 21.3 13C NMR data (ppm) for some representative seven-membered heterocycles..

Heterocycle C2 C3 C4 C5 C6 C7 C8 C9 Reference

N
H 1

138.0 113.0 132.3 132.2 113.0 138.0 — — [58, 83]

N 2
50.9 126.7 129.3 136.7 130.8 158.5 — — [76, 83]

N 3
136.4 34.3 113.3 127.3 117.5 141.0 — — [58, 83]

O 5
141.8 117.6 130.8 130.8 117.6 141.8 — — [77b]

SBu
t

Bu
t

CO
2
Et

126.0 127.0 134.0 140.0 151.0 158.2 — — [80]

O 13 
146.74 115.09 126.68 132.55 121.01 24.61,

128.97
130.10 [81b]

S 14
124.5 130.5, 133.9 136.9 127.9, 128.7, 130.1, 132.0 [81b,84]
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demonstrated the existence of the azepine–benzeneimine equilibrium in densely
substituted 1H-azepines such as 72, where the bicyclic isomer 73 is present at a level
of 3–10% in the equilibrium mixture (Scheme 21.5). Further theoretical studies
(MINDO/3) showed that the benzeneimine is a nonplanar bicycle in which the
aziridine ring is 72.6� out of the plane of the six-membered ring. Moreover, the
stability of the tautomers was calculated from their heats of formation, which
showed that 1H-azepine 73 is much more stable than the benzeneimine form
(43.10 versus �8.50 kcalmol�1) [61].

Valence tautomerism studies on 4H-azepines proved that 4H-azepine can also
be in equilibrium with its bicyclic tautomer, the 3-azanorcaradiene. Early studies
showed that 4H-azepine was the most stable isomer [89]. However, in some
substituted derivatives such as 74 the equilibrium is displaced towards the bicyclic
isomer 75 and it is necessary to heat the sample to 178 �C to detect the 4H-azepine
form in the 1H NMR spectrum [90].

With regard to 3H-azepines, it was found that acid treatment of some 7-amino-3-
trityl-3H-azepines (76) led to the stable azanorcaradiene salts 77, which reverted to 76
when treated with potassium carbonate (Scheme 21.5) [91]. Moreover, the selective
formation and isolation of 2-methoxy-2H-azepine 79 from 3,6-di-tert-butyl-3H-aze-
pine (78) – probably via an azatropylium cation – has been reported. The isolated
compound 79 did not revert into its valence isomer at room temperature [92].

X

X

X = NH, O, S

Scheme 21.4
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The parent oxepine (5) is in spontaneous equilibrium with the valence isomer
benzene oxide at room temperature (a thermal disrotatory electrocyclic reaction
according to Woodward–Hoffmann rules). Different NMR and UV studies have
been carried out to investigate this equilibrium. At room temperature the 1H NMR
spectrumof5containsthreemultipletsatd5.20,5.65,and6.10 ppm,whichcorrespond
to H4, H3, and H2, respectively, involved in a fast exchange process. At lower
temperatures (�134 �C) both the oxepine and the benzene oxide are distinguishable
in the 1H and 13C NMR spectra [77b]. UV spectroscopy has also proven to be very
valuable in detecting both isomers since the oxepine tautomer shows an absorption
bandat305nmwhilebenzeneoxideabsorbsat271nm(e¼ 900and1430,respectively).

Studies on monosubstituted oxepines 80 also support the existence of two
enantiomers in equilibrium with the oxepine (Scheme 21.6) [93]. The oxepine–ben-
zene oxide ratio depends on temperature, solvent, and substitution of the oxepine
ring. The oxepine form seems to be favored in less polar solvents [94] while at low
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temperatures the benzene oxide is the preferred form. As a general remark,
substituents at the C3 position favor the benzene oxide tautomer and substitution
at C2 and C4 the oxepine form. Recent theoretical studies (ab initio) have also
being carried out on the tautomerization oxepine benzene-oxide of substituted
oxepines [95].

Theoretical studies at a high level of theory dealingwith the stability of thiepine and
its valence tautomer have shown a significant preference for the valence tautomer
benzene sulfide, which was estimated to be 7.02 kcalmol�1 more stable than the
parent thiepine [96]. A remarkable difference with azepines or oxepines is that
valence isomers in simple thiepines are prone to extrude the sulfur atom in an
irreversible process (Scheme 21.7). It is assumed this loss of sulfur precluded the
isolation of the parent thiepine (6). Monocyclic thiepines can be stabilized by steric
effects. For example, the presence of bulky substituents at C2 and C7 produces
derivatives that are very stable at high temperatures (130 �C) with long half-lives
(>250 h) [85]. Recent theoretical studies show how steric effects can favor thiepines
over their benzene sulfide tautomers [97].

Azepines, oxepines, and thiepines fused with benzene rings are stabilized by
electronic effects and may also be in equilibrium with their corresponding valence
isomers. Resonance energies have been calculated for the three possible isomeric
benzoxepines 13, 16, and 19 as 19.55, 1.15, and 18.77 kcalmol�1, respectively [98].
These data support experimental evidence that benzo derivatives 13 and 19 are
relatively stable compounds while the formation of 16 from the 1,2-naphthalene
oxide would involve a significant loss of resonance energy since one of the benzene
nuclei in this valence tautomer retains aromatic character [99].

Aromatic ring annelation of thiepine (6) can lead to quite stable derivatives [100].
Resonance energy calculations for benzothiepines 14 (þ 6.14 kcalmol�1), 17 (�5.90
kcalmol�1), and 20 (þ 7.13 kcalmol�1) have been used to predict that 14 and 20
should have nonaromatic character whereas 17 should be a highly unstable mole-
cule [101]. As was the case with the oxepine–arene oxide equilibrium, electronic
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Scheme 21.6
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effects could also strongly affect the thiepine–episulfide equilibrium of naphthalene.
Benzothiepine 14 only exists in the thiepine formandhas been characterized byX-ray
analysis [64]. The higher stability of the valence tautomer of 17 explains why this
thiepine has not been isolated (Scheme 21.8).

21.5
Synthesis

21.5.1
Synthesis of Azepines

21.5.1.1 From Acyclic Compounds
The formation of the seven-membered ring of an azepine from an appropriate acyclic
compound through a cyclization reaction has been extensively used for the synthesis
of azepine fused-ring derivatives but had rarely been used for monocyclic azepine
derivatives until the advent of the metathesis reaction [102]. The power and utility of
the ring-closing metathesis (RCM) reaction (Scheme 21.9) for the preparation of
different tetrahydroazepines usingGrubbs I andGrubbs II catalysts is exemplified in
Table 21.4.
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Table 21.4 Synthesis of tetrahydroazepines by ring-closing metathesis (RCM) reactions.

Diene Conditions Azepine Yield (%) Reference
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R
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Other alternatives to the ring-closing metathesis reaction to access tetrahydroa-
zepine derivatives through cyclization include the different approaches shown in
Scheme 21.10. The intramolecular insertion of nitrenes by thermolysis of the
corresponding azides (the Staudinger reaction) [111] is an efficient route to cyclic
imines [112] that has been applied to the synthesis of the tetrahydroazepine derivative
81, an intermediate in the synthesis of (þ )-croomine [113]. The reaction of a
bromoallene in the presence of Pd(Ph3)4 afforded the tetrahydroazepine derivative
82 in good yield [114]. Azepinones can also be obtained from substituted allenes,
which on deprotection followed by reflux in acetonitrile gave the azepinone derivative
83 in excellent yield [115]. Simple substituted azepine derivatives 84 have been
obtained by ruthenium-catalyzed intramolecular hydroamination of an aminoalk-
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yne [116]. Amore classical cyclization leading to azepine derivatives is exemplified by
the formation of azepinone 86 by acid treatment of 85 [117].

N-Substituted dihydroazepines 87 and 88 can be obtained by lithium-promoted
electrocyclization of imine-dienes followed by N-alkylation or N-acylation. Yields
are poor to moderate depending on the R1 substituent [118]. A carbanion-promoted
1,7-electrocyclization of 89 led to the antiaromatic azepine anion 90, which
loses methylthiolate to generate the thienyl-substituted 3H-azepine 91
(Scheme 21.11) [119].

A novel synthesis of azepinone derivatives 92 has been reported and a key
step in this process is an intramolecular cycloaddition of a nitrone followed by
rearrangement through N�O homolysis and subsequent electrocyclic recyclization.
On heating 92a (R1¼R2¼Ph) in toluene an isomerization was observed to the
azepinone isomer 93a, although the latter is present in the equilibrium at a level of
only 3% (Scheme 21.12) [120].
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The parent 2H-azepine (2) and the enantiomerically pure derivatives 94 were
obtained for the first time by cyclization of an N-protected e-amino aldehyde or
ketone [76]. The ring formation involves deprotection with TFA followed by treat-
ment with a base (Scheme 21.13). Although the yield of 2 was only 1%, this isomer
was stable enough at 25 �C to allow its characterization. 2H-Azepines 94 were
obtained in yields in the range 45–72% but are prone to isomerize to the more
stable 3H-isomers [121].

The formation of the azepine nucleus by processes involving the formation of two
bonds is exemplified by a few cases such as the [4 þ 3] annulations of Fischer
chromium carbene complexes with azadienes [122]. Thus, the reaction of 95 and 96
affords the dihydroazepine 97 through the formation of an aziridine followed by an
aza-Cope rearrangement and 1,3-proton shift (Scheme 21.14). The dihydroazepine
derivatives 98 have been obtained by reaction of ylides generated in situ from
styryldiazoacetates and imines [123] (Scheme 21.14).
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21.5.1.2 From Cyclic Compounds

21.5.1.2.1 From Carbocycles The first approach to fully unsaturated azepines was
reported byWolff in 1912 and involves the thermal decomposition of a phenylazide in
aniline, although it wasHuisgen in 1955 who assigned the structure of 7-anilino-2H-
azepine to the reaction product, which had remained unknown. On the basis of 1H
NMRdata, this initialstructureassignmentsubsequentlyhadtobemodifiedinfavorof
the 3H tautomer 101. This procedure is considered to be themost useful method for
the synthesis of 3H-aminoazepines [124] and some related compounds since nucleo-
philes other than amines have been successfully used [125]. The mechanism of the
formationof the3H-azepines isshowninScheme21.15andinvolves the intermediacy
ofabenzazirine (99)via the initialgenerationofanitrene.Theattackof thenucleophile
on the azirine ring promotes an electrocyclic ring opening to give the 1H-azepine 100,
which rearranges to the more stable 3H-tautomer. Nitroso and nitroarenes have also
been used as alternatives to azides as the source of nitrenes. In this case the nitrene is
generated by treatmentwith phosphines or phosphites. The aryl nitrene generated by
photochemical decomposition of the corresponding azide is trapped with tetracya-
noethylene and this leads to the formation of spiroazepine 102 (Scheme 21.15) [126].

Based on this approach to the azepine system, Hafner [57] and Lwowski [127]
reported independently the most synthetically useful procedure for the synthesis of
1H-azepines. They discovered that some nitrenes were able to react with arenes to
afford azanorcaradienes (the valence isomers of azepines), which rearrange to give
stable azepines (Scheme 21.16). The nitrene is usually generated by thermal or
photolytic decomposition and, in general, the reaction is more appropriate for
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N-substituted azepines 103 bearing electron-withdrawing substituents. The reaction
of the nitrene with substituted benzenes usually has poor regioselectivity and
mixtures of 1H-azepines are formed, a fact that limits the scope of this method
(Scheme 21.16) [128].

4,5-Dihydroazepines have been synthesized using cyclopropane derivatives in
a multicomponent reaction that also involves primary amines and dimethyl acet-
ylenedicarboxylate (DMAD). Initial formation of the corresponding cyclopropyli-
mines followed by a rhodium-mediated [5 þ 2] cycloaddition afforded substituted
4,5-dihydroazepines 104 in good yields (Scheme 21.17) [129].

21.5.1.2.2 From Heterocycles 2H-Azirines react with cyclopentadienones in a
[4 þ 2] cycloaddition reaction to give polysubstituted 3H-azepines 106 by loss
of carbon monoxide from the endo adduct 105 [130]. Aziridines have also been
transformed into dihydroazepine or azepine derivatives 107 [78, 131] and 108 [132]
by a Cope-type rearrangement on warming or at room temperature. Studies on these
rearrangements show that the trans isomers are less prone to cyclization than cis
isomers and higher temperatures are needed to produce the rearrangement
(Scheme 21.18).

Five-membered heterocyclic rings can also be converted into azepine systems by
cycloaddition and rearrangement reactions. One example of the first process is the 1,3-
dipolar cycloaddition of heterobetainic compounds with cyclobutenes to yield the 4,5-
dihydro-1H-azepines 109 through the loss of carbon dioxide from the initially formed
cycloadduct (Scheme 21.19) [133]. Rearrangements leading to azepines from five-mem-
bered rings are illustrated by the examples shown in Scheme 21.19. In the first case
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cycloadducts110,obtainedfromDMADandpyrroles,arephotochemicallyconvertedinto
thermally unstable azaquadricyclanes, which rearrange to the substituted 1H-azepine
derivatives 111 [134]. The other two examples concern the synthesis of the 1-phenyl-1H-
azepine 113 by thermal decomposition of the triazole derivative 112 [135] and the
preparationofazepinones115byringexpansionof thedioxopyrrolederivatives114 [136].

The ring expansion of six-membered heterocycles is one of the main strategies for
the formation of 4H-azepines. 4-Chloromethyl-1,4-dihydropyridines can be trans-
formed into the 4H-azepine derivatives 116 in the presence of various nucleophiles,
including alkoxides, amines, cyanide, thiolates, and enolates [137]. On the other
hand, the 4H-azepine derivatives 117 are obtained by sequential Diels–Alder reaction
of 1,2,4-triazines and cyclopropenes [138] followed by N2 extrusion and ring enlarge-
ment (Scheme 21.20). In both cases the isolated 4H-azepines are prone to isomer-
ization to the more stable 3H-isomers. A substituted 2-pyridone has also been
transformed into the 3H-azepinone 118 by treatmentwith LDA (Scheme21.20) [139].

21.5.2
Synthesis of Oxepines

21.5.2.1 From Acyclic Compounds
As with azepines, ring-closing metathesis (RCM) has become the main strategy for
the synthesis of dihydro- and tetrahydrooxepines through a C¼C bond forming
reaction as this approach is simple and allows the easy identification of the target
acyclic precursor of the desired oxepine. Although most of the RCM strategies have
been applied to benzo and other fused azepine derivatives, one of thefirst examples of
the application of the RCM to simple oxepines was reported by Nicolaou during the
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total synthesis of the complex polyethers ciguatoxin and brevetoxin. Different 4,5,6,7-
tetrahydroazepine derivatives 119 were obtained in a tandem reaction involving the
metathesis of an alkene and a vinyl ether promoted by a titanium catalyst [140]. An
alternative approach to tetrahydroazepine 120 involvedRCMreactions of two alkenes
(Scheme21.21) [141]. The reactionwas carried out in the presence ofGrubbs� second-
generation catalyst (G-II) andH2 (5%) to facilitate the double bondmigration through
the formation of a ruthenium hydride species.

The 2,5,6,7-tetrahydroazepine 122 has been reported by van Boom and was
synthesized by RCM of 121 in 68% yield using Grubbs� first-generation catalyst
(G-I) [142]. This catalyst was also employed successfully in the synthesis of the more
complex 2,3,6,7-tetrahydroazepine derivative 124, which was obtained in 95% yield
from 123 [143] (Scheme 21.22). In an example of a double RCM reaction, the bis-
tetrahydrooxepine 126 has been obtained from the tetraene derivative 125 [144].

An ene-allene carbocyclization reactionmediated by rhodium(I) has been reported
to give 2,3,4,5-tetrahydrooxepines 127 in moderate yields (Scheme 21.23) [145].
Complete decomposition of the same substrates was observed depending upon their
substitution pattern.
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Formation of the oxepine ring through C�Obond formation has been achieved by
exploiting the nucleophilicity of the oxygen towards an appropriate electrophilic
carbon. Several different strategies leading to tetrahydrooxepine derivatives based on
this bond formation have been described. The cyclization of 1,6-diols is one of the
classical approaches to oxepane and oxepane derivatives. It was also found that
hexane-1,6-diol cyclizes to give 4,5,6,7-tetrahydrooxepine (128) in the presence of
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Cu-Cr catalyst at high temperature (250 �C) [146]. Substituted derivatives 129 are
obtained from acyclic hydroxy-acetals (Scheme 21.24) [147]. 2,7-Dimethyl-4,5-dihy-
drooxepine (131) has been synthesized by the cyclization of diester 130 upon
treatment with hydrochloric acid [148].

The intramolecular version of the Nicholas reaction [149] has been employed
to obtain oxepine derivatives by attack of the oxygen of an alcohol to propargylic
carbocations, which are stabilized by alkynyl-dicobalt complexes. The decomplexa-
tion is carried out under reducing conditions or with cerium ammonium nitrate
(CAN). Two different arrangements of the carbocation and the oxygen, leading to the
2,5,6,7-tetrahydrooxepine and 2,3,6,7-tetrahydrooxepine derivatives 132 and 133,
respectively, are shown in Scheme 21.25. The first approach has been used in the
synthesis of ciguatoxin [150] and the second one in the preparation of 2,7-disubsti-
tuted oxepines similar to isolaurepinnacin [151].

The transitionmetal-mediated cycloisomerization of alkynols, which is extensively
used for five- and six-membered rings, has also been expanded to the synthesis of
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some4,5,6,7-tetrahydrooxepines such as 134 and 135 from furanose-derived alkynols
(Scheme 21.26) [152]. The cycloisomerization to the corresponding seven-membered
cyclic enol ethers under tungsten carbonyl catalysis proceeds with good yields and
virtually complete regioselectivity for all diastereomers, favoring the product result-
ing from endo-mode cyclization. The unexpected regioselectivity may be dependent
on the presence of the dioxolane structure tethering the terminal alkyne and diol
functional groups.

Palladium-mediated C�O bond formation via a cationic p-allylic palladium
complex has proven its utility in the cyclization reaction of bromoallenes
through intramolecular attack of an oxygen nucleophile. Appropriate allenes can
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lead to seven-membered rings that, in the presence of a second nucleophile, afford
substituted 3,4,5,6-tetrahydrooxepines [153] 136 and 137 (Scheme 21.27). A mech-
anistically related reaction is the cyclization of allenyl sulfoxides and sulfones, which
under basic conditions afford the corresponding 1-methyl-2-sulfinyl- and 1-methyl-2-
sulfonyl-tetrahydro-oxepines 138a and 138b in goods yields [154].

21.5.2.2 From Cyclic Compounds

21.5.2.2.1 From Carbocycles Three-, four-, and seven-membered carbocycles have
been employed as starting materials for the construction of the oxepine ring system,
although the most synthetically useful procedures involve cyclopropanes and cyclo-
hexenes as starting carbocycles. The most efficient method for the synthesis of
dihydro- and tetrahydrooxepines involves the ring expansion of alkenylcyclopropyl-
carbinols. These cyclopropane derivatives are transformed into the corresponding
aldehydes under controlled oxidation conditions (Swern or Dess–Martin period-
inane). Subsequent hetero-Cope rearrangement affords substituted 2,5-dihydroox-
epines 139 (Scheme 21.28) [155]. MP2/6-31G� studies on vinylcyclopropane carbal-
dehyde as a model show that the aldehyde and the oxepine are almost isoenergetic
and the activation energy is about 25 kcalmol�1 [156].

The ring expansion of a four-membered ring is illustrated by the formation in
low yield of oxepine (5) from bicyclo[2.2.0]hexa-2,5-diene (Scheme 21.29). The
method involves epoxidation of the bicyclobutene ring followed by rearrangement
of the resulting tricycle [157]. The method has also been applied to the formation in
low yield of perfluorinated dihydrooxepines 140 from perfluorobicyclo[2.2.0]
hexanes [158].
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The formation of the oxepine ring from six-membered carbocycles is one of the
most useful routes to monocyclic oxepines. The method is based on the epoxidation
and bromination of 1,4-cyclohexadienes. The dibromoepoxides, when subjected to
dehydrohalogenation conditions, afford the corresponding oxepine–benzene oxides
and these tautomerize to oxepines (Scheme 21.30). The electronic nature of the
substituents in the cyclohexadiene ring determines which of the two possible
substituted azepines is formed and this depends on which of the two double bonds
are initially involved in the epoxidation or bromination reactions [159]. 2-Vinylox-
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epine, one of the less stable oxepines, has been synthesized using this approach [160],
which has also been used for the synthesis of disubstituted oxepines such as 2,7-
diphenyloxepine [70a].

Arene oxides can also be formed by the acid-catalyzed dehydration of some
substituted cyclohexene-1,4-diols. The subsequent ring expansion produces
relatively stable polysubstituted oxepines 141 (Scheme 21.31) [161].
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21.5.2.2.2 From Heterocycles Oxiranes have been used as extensively starting
heterocyclic compounds in the preparation of oxepanes. Some oxirane derivatives
have also been employed in the synthesis of oxepine derivatives. The two examples
shown in Scheme 21.32 lead to 2,6- and 2,3-disubstituted-4,5-dihydrooxepines 142
and 143, respectively [162].

The parent oxepine (5) can be prepared by a short and efficient route starting from
7-oxanorbornadiene as the five-membered heterocycle. Isomerization of this bicyclic
compound into the monocyclic oxepine is promoted photochemically and this is
followed by thermal rearrangement [163]. Several di-, tri-, and tetrasubstituted
oxepines 144 have been prepared using the same approach, which is based on
a Diels–Alder reaction of substituted furans with alkynes to give the corresponding
7-oxonorbornadienes (Scheme 21.33) [164].

A 2,3-dihydrofuran is the starting material in a [2 þ 2] cycloaddition reaction with
alkynyl or alkenyl compounds to give bicyclic adducts, which in turn give 2,3-
dihydrooxepines 145 by thermolysis or acid Lewis catalysis (Scheme 21.34) [165].
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In a similar approach the substituted oxepine 146 can be obtained from a bicyclic
furan derivative under thermolysis conditions [166].

An alternative procedure for the synthesis of 4,5-dihydrooxepine (148) involved the
use of the fused sulfolane 147. This tricyclic system under flash vacuum pyrolysis
produces the cis-2,3-divinyloxirane, which by a Cope rearrangement affords 148 in
55% yield (Scheme 21.35) [167].

Six-membered O-heterocycles have also been used as starting materials in differ-
ent approaches to oxepines.One of themost efficient routes starts with pyriliumsalts,
which are converted into the 4-diazomethyl-4H-pyrans. A ring enlargement pro-
moted by allylpalladium chloride as a catalyst affords the corresponding substituted
oxepines 149 in almost quantitative yield (Scheme 21.36) [168].

Another route to dihydrooxepinones involves the reaction of 2,3-dihydropyran
derivatives with carbenes. The intermediate bicycles undergo a similar ring expan-
sion process to that shown in Scheme 21.37, giving the corresponding tetrahydroox-
epinones 150 [169] and 151 [170].

Alkynylpyranosides have also been used as starting heterocyclic compounds for
the synthesis of oxepines. Examples of this strategy are shown in Scheme 21.38 for
the synthesis of tetrahydrooxepines 152 and dihydrooxepine 153. The synthetic
route starts with the formation of the cobalt complexes and this is followed by a
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ring-opening reaction catalyzed by TfOH.Recyclization of the resulting ring-opening
products followed by decomplexation affords the corresponding oxepine
derivatives [171].

21.5.3
Synthesis of Thiepines

21.5.3.1 From Acyclic Compounds
Although cyclization reactions have been used extensively for the synthesis of
thiepane derivatives, the use of acyclic compounds as starting materials in thiepine
synthesis is very limited. One of the few examples was reported in 2001 for the
synthesis of the 2-tosyl-4,5,6,7-tetrahydrothiepine (155), which was obtained by
cyclization of the hexane derivatives 154 in the presence of sodium iodide in DMF
(Scheme 21.39) [172]. It was suggested that cyclization of the chloride and metha-
nesulfonate takes place via the iodo derivative.

Based on a reported method for the synthesis of the parent thiepane by a double
nucleophilic substitution, the reaction of the dienic dichlorides 156 with Li2S
gave the corresponding 2,7-dihydrothiepines 157 in moderate or good yields
(Scheme 21.39) [173]. An excellent yield has been reported for the reaction of
decadiyne 158 with S2Cl2 to afford the 4,5-dihydrothiepine 159 [174] through the
mechanism shown in Scheme 21.39.
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21.5.3.2 From Cyclic Compounds

21.5.3.2.1 From Heterocycles A similar thermal rearrangement to that used for
the synthesis of 4,5-dihydrooxepine from divinyloxirane has been reported for the
preparation of the corresponding 4,5-dihydrothiepine 160 from cis-1,2-divinylthiir-
ane (Scheme 21.40) [175].

Stablemonocyclic thiepines have beenobtained from thiophenederivatives, which
react with DMAD in a cycloaddition reaction to afford the corresponding bicyclic
adduct. Subsequent thermal isomerization gave the first monocyclic thiepine 161,
which has been fully characterized (Scheme 21.41) [176].

The ring expansion of thiopyrans has been used as themain strategy to synthesize
monocyclic thiepines, although moderate or low yields have usually been obtained.
For example, one of the most widely studied thiepines, 2,7-di-tert-butylthiepine 163,
was obtained in 30% yield from the thiopyran derivative 162 by treatment with acetic
acid in the presence of sodiumacetate and acetic anhydride at 90 �C.The formation of
the seven-membered ring is assumed to take place via the carbenium ion interme-
diate under the solvolysis conditions (Scheme 21.42) [71].
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Six-membered thiopyrylium salts have also been used as starting heterocycles in
the synthesis of other stable monocyclic thiepines. For example, salts 164 react with
ethyl lithiodiazoacetate to give the corresponding thiopyrans, which in the presence
of palladium or under acidic conditions are able to generate the corresponding
substituted thiepines 165 via a carbene intermediate (Scheme 21.43) [177].

21.5.4
Synthesis of Azepanes, Oxepanes, and Thiepanes

Most of the synthetic methodologies based on cyclization reactions used for the
preparation of monocyclic azepine, oxepine, and thiepine derivatives can also be
applied to the synthesis of fully unsaturated seven-membered systems 7–9,
especially given that hydrogenation of dihydro-, tetrahydro-, or even fully unsat-
urated seven-membered heterocyclic rings is an easy process that can be carried
out under very mild conditions. A RCM reaction followed by hydrogenation of
the resulting dihydro derivative is one of the most successful approaches to
azepane systems. Several examples of this strategy are represented in
Scheme 21.44 [109, 178].

Several densely functionalized chiral azepanes have been prepared by multistep
sequences starting from carbohydrates. In a typical example, an appropriate carbo-
hydrate is transformed into a suitable amine or azide, such as 170 [179] or 172 [180],
and this is cyclized to the corresponding azepane derivatives 171 and 173 under the
conditions shown in Scheme 21.45.

Two classical synthetic approaches are useful in the synthesis of azepin-2-ones and
these include the industrial synthesis of hexahydro-1H-azepin-2-one (33) (e-capro-
lactam). One is the Beckmann rearrangement of oximes generated from cyclohex-
anones [181] and the other is the Schmidt reaction applied to cyclohexanones [182].
The main problem associated with these reactions as synthetic strategies for some
azepinone derivatives is that unsymmetrically substituted cyclohexanones can give
two isomeric products (Scheme 21.46).

In a similar strategy to that used for the synthesis of azepane, dihydro- and
tetrahydrooxepines have been transformed into oxepane (8) by catalytic hydrogena-
tion under standard conditions, such as those used on the conversion of 2,3-
tetrahydrooxepine into oxepane (Scheme 21.47) [183].

S Bu
t

Bu
t

Me

S Bu
tBu

t

CO
2
EtMe

F4B

Li

CO
2
Et

N
2

S

Me

Bu
t

Bu
t

N
2

EtO
2
C

S

Me

Bu
t

Bu
t

EtO
2
C

+

:Pd

164

165

CHCl3
100%

Scheme 21.43

1898j 21 Seven-Membered Heterocycles: Azepines, Benzo Derivatives and Related Systems



Another of themostwidely used approaches to oxepane (8) and oxepanederivatives
such as 174 is the intramolecular cyclization of 1,6-hexanediols using various
dehydrating agents (Scheme 21.48) [184].

Other similar cyclization reactions of 1,6-disubstituted hexanes involving different
leaving groups in the presence of various catalysts have also been employed in the
synthesis of oxepane derivatives (Scheme 21.49) [185]. One of the most interesting
versions of this cyclization is the regioselective intramolecular ring-opening reaction
of epoxyalcohols catalyzed by acidic or basic conditions, a strategy that has been
successfully used in the total synthesis of polyethers [16, 186]. Careful control of the
ring-opening process is necessary to avoid the formation of the tetrahydropyran
derivative.

The Baeyer–Villiger oxidation [187], a typical transformation of cyclic ketones into
lactones, has been used in the synthesis of seven-membered lactones (e-caprolac-
tones) from cyclohexanone derivatives in the presence of typical peracids
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(Scheme 21.50). Some recent developments include oxidation by urea/hydrogen
peroxide and trifluoroacetic anhydride [188], and aqueous hydrogen peroxide with
diaryl diselenides [189] or tin zeolite [190]. Additionally, some biocatalytically driven
methods include monooxygenase [191] and genetically modified yeasts [192] as well
as the combination of hydrogen peroxide andmyristic acid catalyzed by lipases [193].
The use of oxygen as an oxidant catalyzed by mixtures of Fe(II) and Ni(II) or with
MnO2 or RuO2 in the presence of benzaldehyde has also been reported [194]. The use
of chiralmetallic complexes gave lactones in high ee yields [195]. Some representative
examples of these oxidations are shown in Scheme 21.50 for lactones 179–181.

Thiepane (9) was first obtained by a radical cyclization reaction of 5-hexenethiol
under photolysis conditions (Scheme 21.51) [196]. It has also been prepared by
a double nucleophilic substitution from 1,6-dibromohexane either using
sodium sulfide (59%) [197] or, better still, by in situ generated lithium sulfide
(from hexamethyldisilathiane and methyllithium in a polar aprotic solvent)
(Scheme 21.51) [198].

Chiral thiepane derivatives such as 182 and 183 have been synthesized by a thio-
heterocyclization method involving bis-epoxides and a sulfide salt [199]. This
approach is based on an initial regioselective ring opening of one of the epoxides
followed by attack of the resulting thiolate to the other epoxide to form the seven-
membered thiepane ring (Scheme 21.52).

Thiepan-2-one (184) has been prepared by a similar strategy to that employed for 9
by cyclization of 6-bromohexanoic acid chloride using lithium sulfide generated
in situ (Scheme 21.53) [200]. The synthesis of thiepan-3-one (185) was described
initially by a Dieckmann-type cyclization [201] and later by reaction of the thiacy-
clohexan-3-one with diazomethane [202], a procedure also employed for the prep-
aration of the thiepan-4-one (186) [203] (Scheme 21.53).
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21.5.5
Synthesis of Benzo Derivatives

21.5.5.1 Synthesis of Benzazepines
The three isomeric parent benzazepines are not known, although stable derivatives
of 12, 15, and 18 have been prepared usingmany of the synthetic strategies employed
in the preparation of monocyclic azepines.

1H-1-Benzazepine derivatives 187 have been obtained by cyclization reactions
[204, 205]. An unusual ring expansion of quinolinium salts also afforded N-substi-
tuted derivatives 188 in good yields [206], and the ring-closing metathesis reaction is
an important method for the preparation of stable dihydro derivatives [207]
(Scheme 21.54).
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2H-2-Benzazepine (15) is unknown and only a few 1H-, 3H-, and 5H-derivatives
have been prepared. The examples shown in Scheme 21.55 include a ring expansion
of dihydroisoquinolines 190 [208], the ring-closing metathesis reaction of diene
193 [209], the acid-catalyzed cyclization of phenylsulfanylacrylamides 195 [210],
and the transformation of nitrones 197 into the 1H-2-benzazepin-3-ones 198 by
a complex mechanism [211].

3H-3-Benzazepines are known as 1H-tautomers or N-substituted derivatives but
the parent compound 18 remains unknown. As is the case for 2H-2-benzazepines,
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the number of known derivatives is limited and only a few procedures are synthet-
ically useful for the preparation of such compounds. These methods include the
synthesis of derivatives 200 from 199 [212], the insertion of nitrenes generated in situ
from thermolysis of azidocinnamates such as 201 and 202 [213], and the ring
expansion of isoquinolinium salts 204 [214] (Scheme 21.56).

21.5.5.2 Synthesis of Benzoxepines
The parent 1-benzoxepine (13) was first obtained from a tetrabromoepoxide precur-
sor (207), which under basic conditions is transformed into the corresponding arene
oxide 208. The valence tautomerization of 208 yields a mixture of 13 and the bicyclic
oxepine 209 [215]. The reaction of pyridazine N-oxide with benzyne produced 13
(and some derivatives from pyridazines) in moderate yield, via a 1,3-cycloadduct
[81b]. An intramolecular Wittig reaction on 210 also afforded 13 in 25% yield
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(Scheme 21.57) [216]. The RCM reaction of enynes 212 has also been used in the
synthesis of dihydro-1-benzoxepines 213 with yields ranging from 61% to 99%
depending on the reaction conditions [217].

2-Benzoxepine (16) has not been prepared to date and only a few derivatives are
available. For example, the dihydro derivatives 214 have been obtained by the
cyclization of allene ethers in the presence of palladium catalysts [218]. 2-Benzox-
epin-5-ones 215 have been prepared in a multistep synthesis from phthalides
(Scheme 21.58) [219].

3-Benzoxepine (19) has been prepared in 55% yield from phthalaldehyde and an
appropriate bis-phosphonium salt by a double Wittig reaction (Scheme 21.59) [220].

21.5.5.3 Synthesis of Benzothiepines
The parent 1-benzothiepine (14) and various substituted 1-benzothiepines 218 have
been obtained from 2H-1-benzothiopyrans 216. This precursor reacts with n-BuLi/
CH2Cl2 and the intermediate anions formed by quenching with electrophiles afford
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the tetracyclic compounds 217, which under mild conditions in the presence of a Rh
(I) catalyst isomerize to the corresponding 1-benzothiepines (Scheme 21.60) [221].
An alternative route to 14 has been described from the 1-benzothiepinone 219 in
a four-step sequence that involves isomerization of the double bond in the presence
of Et3N, reduction of the ketone with CeCl3/NaBH4, formation of the tosylate, and
elimination with potassium tert-amylate [81b] (Scheme 21.60).

The ring expansion method shown in Scheme 21.43 for the preparation of
monocyclic thiepines has also been employed in the synthesis of ethoxycarbonyl-
substituted 1-benzothiepines 220 from benzo-1-thiopyrilium tetrafluoroborate [222].
The reaction of dibromostyrene with alkynes in the presence of a palladium catalyst
leads to the formation of the corresponding enynes in good yields. These enynes can
be transformed into 2-alkyl-1-benzothiepines 221 in moderate or low yields by
metalation with tert-butyllithium followed by reaction with sulfur and ethanol
(Scheme 21.61) [223].

Although 2-benzothiepane and some derivatives have been described, the parent
2-benzothiepine (17) and stable simple derivatives remain unknown. However,
3-benzothiepine (20) has been prepared from phthalaldehyde [224] under the
conditions shown in Scheme 21.62.

Among the few simple 3-benzothiepine derivatives known, the dicarboxylic acid
was the first 3-benzothiepine derivative obtained from phthalaldehyde by a double
Knoevenagel condensation (Scheme 21.63) [225]. The 2-tert-butyl-4,5-dihydroben-
zothiepine (223) is reported to be obtained by cathodic reduction [226].
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21.6
Reactivity of Azepines

21.6.1
Reactivity of Azepines and Benzofused Derivatives

As stated above, the azepine systems occur in four tautomeric forms, and the
derivatives of the 1H- and 3H-tautomers are the most widely studied. The parent
heterocycle 1H-azepine (1) is a red oil that rearranges in the presence of acid or base to
the more stable 3H-azepine (Scheme 21.64). The 1H-azepine tautomer is unsta-
ble [83, 227] and, as a consequence, onlyN-substituted derivatives of 1H-azepine exist
in the 1H-tautomeric form. The 4H-azepine can be isolated and stored but in basic
solution also isomerizes to the 3H-azepine.

The stability of the 1H-azepine is enhanced by the presence of electron-withdraw-
ing substituents, particularly at the 1-position, because they decrease the electron
density in the 8p antiaromatic ring system. Consequently, reduced and partially
reduced azepines are particularly common, together with the benzo derivatives.

The increase in ring size constrains these compounds and they are nonplanar so as
to decrease the ring strain. The lack of planarity, however, affects aromaticity, and so
the reactivity of unsaturated azepines is similar to that of cyclic polyenes. In general,
the reactions of these compounds involve neutral molecules. Although stable as
anions, the cations or radicals derived from azepines are less common, but some
processes have been described as occurring through these species, particularly for
partially saturated systems. Thus, anions derived from 1H-, 3H-, and 4H-azepines
are difficult to obtain because they would lead to the formation of antiaromatic 8p
species; however, annulation increases the stability and in 2004 the generation of the
first azepinium ion reported [228]. Recently, attention has been drawn to the role of
azepinium ions as intermediates in different reactions.

21.6.1.1 Cycloaddition Reactions
The polyenic structure of an azepine and its bicyclic tautomer both determine its
reactivity in cycloaddition reactions [9]. Thus, azepines can participate in cycload-
dition reactions as 2p, 4p, or 6p components (Scheme 21.65).

Cycloaddition reactions of N-substituted azepines with various dienophiles have
been studied. For example, 1-alkoxycarbonyl-1H-azepines undergo [4 þ 2] p Diel-
s–Alder reactions with most dienophiles at the C2�C5 positions, as exemplified in
Scheme 21.66 with tetracyanoethylene (TCNE) [229]. On the other hand, asymmet-
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rically substituted 1H-azepines can undergo addition at C4�C7 or a mixture of
isomers can result from C2�C5 and C4�C7 addition [230].

However, the presence of sterically bulky substituents at C3 and C6 makes the
azepine function as a triene-[6 þ 2]p-system; this is the case evenwith unsubstituted
azepineswhenthereactionisperformedinthepresenceof tricarbonylchromium(0) to
produce thehomotropane as a single diastereomer in77%yield (Scheme21.67) [231].

The ability of alkyl-1H-azepine-1-carboxylate to participate simultaneously as a
diene and dienophile in cycloaddition reactions can be exemplified by the reaction of
methylpyrone-3-carboxylate (Scheme 21.68) and the 5-isomer [232]. The 3-substi-
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tuted pyrone adducts 224a and [6 þ 4]-type dimer 224b were obtained in low yield.
Under similar reaction conditions, 5-substituted pyrone gave adducts 225a and 225b.
The former, on prolonged heating, lost carbon dioxide to form benzo[d]azepine 226.

The reaction of 1-ethoxycarbonyl-1H-azepine with 3,4,5,6-tetrachloro-1,2-benzo-
quinone [233] acting as a heterodiene gave a [6p þ 4p] and two regioisomeric
[2p þ 4p] adducts. This behavior is representative of the dual character of azepine
in cycloaddition reactions. Furthermore, interestingly, the [6p þ 4p] adduct rear-
ranges to the [2p þ 4p] isomer on heating in toluene (Scheme 21.69).

The reported examples of 1,3-dipolar cycloaddition to azepines are limited to
diazomethane andN,a-diphenylnitrone. Thus, the reaction of 1-ethoxycarbonyl-1H-
azepine with N,a-diphenylnitrone afforded exo- and endo-cycloadducts in similar
distributions through a concerted process (Scheme 21.70) [234].

21.6.1.2 Reaction with Metal Carbonyl Complexes
In contrast to cycloheptatriene, the metal complex chemistry of azepine has received
rather limited attention. In 1965 Fisher and R€uhle [235] reported the formation of
iron carbonyl complexes of several azepines, including the parent system 1H-
azepine. The isolated azepine is very unstable and was generated in the complexed
state from the N-ethoxycarbonyl derivative.

The tricarbonyl chromium, molybdenum, and tungsten complexes of azepine
1-carboxylate have also been prepared by treating the azepine 1-carboxylate with the
metal tricarbonyl tris-acetonitrile complex in THF solution. The tricarbonylruthe-
nium complex has also been reported (Scheme 21.71) and this undergoes interesting
cycloaddition reactions with electron-deficient alkenes and ketones.
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The synthesis, structure, and dynamic behavior of some cyclopentadienyl- and
pentamethylcyclopentadienyl-cobalt complexes of N-methoxy- and N-ethoxycarbo-
nylazepines or N-methylazepine have been carried out by Wadepohl [236]. Cyclo-
pentadienylcobalt complexes ofN-ethoxy- andN-methoxy compounds were obtained
by treatment of the 1-ethoxycarbonyl-1H-azepinewith Jonas reagent [(CpCo(C2H4)2].
Subsequent reaction with excess NaOMe in methanol gave approximately 50%
conversion to the N-methoxy derivative, although these compounds could not be
separated by column chromatography (Scheme 21.72).

The complexes undergo a degenerate valence tautomerization, which is more
facile in pentamethylcyclopentadienylcobalt[2-5-g-(N-methyl)azepine] (227c) than in
cyclopentadienylcobalt[2-5-g-N-ethoxycarbonyl)azepine] (227a) and pentamethylcy-
clopentadienylcobalt[2-5-g-(N-ethoxycarbonyl)azepine] (227b). At low temperatures,
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compound 227a has restricted rotation around the amide bond, which leads to the
presence of two diastereomers.

Tricarbonyl(N-cyanoazepine)metal(0) complexes of chromium (228a), molybde-
num (228b), and tungsten (228c) are formed when tricarbonyl-tris(acetonitrile)chro-
mium(0), -molybdenum(0) and -tungsten(0), respectively, are treated photochemi-
cally withN-cyanoazepine at room temperature in toluene (Scheme 21.73) [237]. The
resulting complexes take part in [6 þ 2] cycloadditions with alkynes (see next section).

21.6.1.3 Reactions through Metal Carbonyl Complexes
The ease with which 1H-azepines form transition metal carbonyl complexes has led
to interesting reactions. For example, tricarbonyl(2-5-g-1H-azepine)iron, which is
unstable, reacts with the tropylium cation and several electrophiles to give derivatives
that, after decomplexation with trimethylamine oxide, afforded 3-(2,4,6-cyclohepta-
trienyl)-3H-azepine. This compound is stable but undergoes a facile 1,5-hydrogen
migration in benzene to give 6-(2,4,6-cycloheptatrienyl)-3H-azepine in 97% yield
after purification [238] (Scheme 21.74).

Chromium(0)-mediated higher-order cycloaddition reactions have emerged as an
importantmethod for the rapid assembly of structurally elaborate polycyclic systems.
Rigby�s group have been particularly active in this area, using both thermally and
photochemically activated cycloadditions of chromium(0) complexes of azepines
with alkenes and alkynes. A successful route to the tropane alkaloid (þ )-ferruginine
by reaction between tricarbonyl N-(methoxycarbony1)azepinechromium(0) and
(�)-8-phenylmenthyl acrylate provided the desired diastereomerically homogeneous
homotropane endo adduct as the major product with high diastereomeric excess
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(Scheme 21.75) [239]. Furthermore, [6p þ 2p] cycloaddition reactions mediated
by solid-supported Cr(0) [240] have also been described for azepines with yields
comparable to those obtained in photochemical and thermal versions.

Other examples of [6p þ 2p] cycloadditions with alkynes through the Cr(0)
complex have been reported. The decomplexation can be performed either thermally
or oxidatively, depending on the nature of the substituent (Scheme 21.76).

21.6.1.4 Pericyclic Reactions
The nonplanar polyene nature of azepines allows them to take part in awide variety of
intra- and intermolecular pericyclic processes. Irradiation of 2-methyl-1H-azepine
selectively gives a 4,7-ring closure product due to the steric interaction between
the methyl group and the N-substituent. In contrast, the 3-methyl and 4-methyl
derivatives give two four-membered products in a 1 : 1 ratio (Scheme 21.77) [221].
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The orbital symmetry-allowed disrotatory processes of 2-substituted 3H-azepines
could yield both 3-substituted- and 5-substituted 6-azabicyclo[3.2.0]hept-2,6-dienes.
However, the reaction is selective and gives only the 3-substituted derivative through
a 4,7-closure rather than a 2,6-closure (Scheme 21.78) [241].

Different photochemical behavior for 3,6-di-tert-butyl-3H azepines and 2,5-di-tert-
butyl-3H-azepines has been observed [242]. For example, photoisomers were not
detected upon photoirradiation of the 3,6-isomer in hexane through a Pyrex filter. In
contrast, irradiation through a quartz filter in hexane gave the 4,7-di-tert-butyl-2-
azabicyclo[3.2.0]hepta-2,6-diene along with the azepine 68 (Scheme 21.79). Irradi-
ation of 2,5-di-tert-butyl-3H-azepine (71) through a Pyrex filter gave the 2,5-di-tert-
butyl-6-aza-bicyclo[3.2.0]hepta-2,6-diene through a 2,6-closure, as confirmed by
formation of the methanol addition product (Scheme 21.79). These results indicate
that the regioselectivity for photoelectrocyclization is not exclusively caused by the
steric hindrance of the product.

It is known that the four tautomeric monocyclic azepines are interchangeable to
the more stable derivative by 1,5-sigmatropic hydrogen shift, and the accepted order
of stability of the azepines is 3H> 4H> 2H> 1H. The 1H-azepine isomerizes under
thermal catalytic (acid/base) and non-catalytic conditions and 2H-azepines isomerize
easily to the thermodynamically more stable 3H derivatives by 1,5-sigmatropic
hydrogen shift [121, 238, 243]. This rearrangement occurs on standing in organic
solvents at room temperature or on warming. Thus, (S)-2-methyl-6,7,8,9-tetrahydro-
2H-l-benzazepine undergoes a thermally allowed suprafacial [1,5]-sigmatropic
H-shift (Scheme 21.80) in tert-butyl methyl ether at 30 �C to give the optically active
3H-azepine derivative 229a in low yield, which exhibits a high optical rotation
and supports a stereoselective mechanism for the rearrangement. At elevated
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temperatures a second, reversible hydrogenmigration occurs and this establishes an
equilibrium with the achiral 3H-azepine 229b.

Recently, Satake and co-workers [244] have described an unusual competitive
reaction between a [1,5]-sigmatropic alkylthio shift and a [1,5]-sigmatropic hydrogen
shift in a 2H-azepine ring, to afford 7-propylthio- and 3-propylthio-3H-azepines 230a
and 230b, respectively, in a 1 : 1 ratio (Scheme 21.81). Kineticmeasurements revealed
that the observed [1,5]-propylthio shift proceeds through a concerted mechanism.

On the other hand, when 2-methoxy-2H-azepine 231 was heated in chloroform
a hydrogen shift was observed exclusively to give a mixture of 5-tert-butyl- (231a) and
4-tert-butyl-2,7-dimethoxy-3H-azepine (231b) in a 1 : 8 ratio (Scheme 21.82). The
thermal [1,5]-sigmatropic hydrogen shift was studied by 1H NMR spectroscopy and
the spectrum of the isomerization of 4-tert-butyl-2,7-dimethoxy-2H-azepine (231) in
CDCl3 showed that 231a and 231b were formed in a 1 : 8 ratio with a simultaneous
decrease in 231, suggesting that the [1,5]-hydrogen shift from 231a and 231b is very
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fast. These results indicate that the rapid equilibrium between 231a and 231b is
reached as soon as the isomerization of 231 occurs. The [1,5]-methoxy shift was not
observed in the thermal isomerization of 231.

The same group has described the formation of 4H-azepines (232c) for the first
time from the 2-methoxyazepiniun ion and its sigmatropic isomerization. This
process apparently occurs as a two-step reaction from 232c to initially give 232d,
which is then converted into the most thermally stable 232e (Scheme 21.83) [245].
The absence of a substituent at position 5 in the azepiniumring offers a good example
of the reactivity and electrophilic character and allows the formation of rare 4H-
azepines.
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The dimerization of 1H-azepines [246] involves a temperature-dependent
cycloaddition process, which in turn depends on substitution. N-Methylazepine
undergoes dimerization at 0 �C to give a [6 þ 6] dimer. On the other hand, the
N-cyano- and N-ethoxycarbonyl derivatives dimerize at higher temperature through
a [6 þ 4] process. The initially formed [6 þ 4] adducts rearrange to the [6 þ 6]
adducts on heating at high temperature (Scheme 21.84).

In contrast to N-substituted 1H-azepines and their 3- and 4-methyl derivatives,
which readily undergo dimerization at elevated temperatures, in cases where the
positions directly involved in the dimerization process (2-, 4-, and 7- positions) are
substituted the dimerization process is hindered and a valence tautomerization
reaction takes place [247]. Thus, 2-methyl-, 4,5-dimethyl-, and 3,6-dimethyl deriva-
tives (233) at 200 �C were converted into the aromatic carbamates (Scheme 21.85).
This behavior is not shared by the 2,7-dimethyl derivative, which is stable even at
250 �C, probably due to steric hindrance.
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Recently McNab and co-workers [248] have identified a new thermal ring con-
traction of dibenzo[b,f ]azepines by controlledflash vacuumpyrolysis (FVP) ofN-allyl-
or N-benzyldibenzo[b,f ]azepine at temperatures (750–950 �C). When the N-benzyl
derivative was subjected to FVP at 750 �C, four products were identified from the
reaction mixture (Scheme 21.86).

The formation of bibenzyl (20%) provided confirmation that radical generation
had been successful. Cleavage of N-benzyl or N-allyl groups led to recovery of 5H-
dibenzo[b,f ]azepine (20%) and, in addition, two ring-contraction products were
obtained. One of them, 9-methylacridine (2%), is likely to be formed by ring
contraction of 5H-dibenzo[b,f ]azepines (by the 1,5-shift, electrocyclization, ring
cleavage, hydrogen shift sequence mechanism indicated in Scheme 21.87) and the
major product is pyrrolo[3,2,1-jk]carbazole (35%). However, under more vigorous
conditions (950 �C) this process gave 9-methylacridine as the sole product in 60%
yield.

The temperature of the pyrolysis proved to have a dramatic effect on the product
distribution, because the N-allyl derivative at 950 �C gave 63% yield of pyrrolocarba-
zole (Scheme 21.88).
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Although several N-substituted derivatives of 5H-dibenzo[b,f ]azepines are known
to give [2 þ 2] cycloadducts photochemically to form a cyclobutane (Scheme 21.89),
the parent compound and its N-alkyl derivatives are photochemically inactive [249].

A structural analysis by 1H NMR spectroscopy of the photoproducts of N-acyl
derivatives of 5H-dibenzo[b,f ]azepines proved the presence of two stereoisomers
(Scheme 21.90), probably due to restricted rotation of the amide bond [250].

21.6.1.5 Reactions with Electrophiles
The conjugated azepines – and their partially unsaturated derivatives – are unstable
in acidicmedia and undergo either rearrangement or ring contraction to an aromatic
system. 1H-Azepines with N-alkyl substituents are unstable in acidic solutions and
afford resinous products. However, N-acyl- or N-ethoxycarbonyl derivatives lead
rapidly toN-phenylcarbamate under acidic conditions (Scheme 21.91). For example,
the 3,6-dimethyl-1H-azepine (233c) on standing in 10% sulfuric acid at room
temperature for 2 h yields 82% of the corresponding carbamate [247]. Similar
treatment of the 2,7-dimethyl derivative for 4 h led only to recovery of unreacted
startingmaterial, probably due to steric hindrance.However, when the samemixture
was heated under reflux for 1 h, the 2,7-dimethylazepine 234 was completely
transformed into a viscous brown oil. The major identifiable component of this oil
was the 2,6-dimethyl-N-methoxycarbonylaniline (16%) in addition to 3,4- and 2,6-
dimethylphenols, with the remainder being polymeric material (Scheme 21.91).
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The acid-catalyzed rearrangement of dibenzo[b,f ]azepines to 9-methylacridines
was first described by Schindler and Blattner [251] (Scheme 21.92).

In general, the alkylation of azepines is effected by alkyl halides or tosylates in the
presence of base. Quaternization of 2-dialkylamino-3H-azepine with methyl iodide
takes place at the exocyclic nitrogen and its hydrolysis provides a useful path to 3H-
azepinones [252].

The N-alkylation of some 5H-dibenzo[b,f ]azepines (and 10,11-dihydro derivatives)
has been studied extensively under classical conditions and under phase-transfer
catalysis (PTC) [253], although the method is less successful with 10,11-dihydro
derivatives [254].

The alkylation can be effected with an alkyl chloride, bromide, or tosylate, using
a wide range of bases and refluxing in toluene. N-Methyl-, N-ethyl-, and N-propyl
derivatives, for example, can be prepared in good yield under mild conditions from
the iminostilbene and the corresponding alkyl iodide using thallium ethoxide as base
(Scheme 21.93) [255].
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C-Alkylation, described by Streef and van der Plas [256], is achieved through
reaction of the anion of 2-diethylamino-5-phenyl-3H-azepine with different electro-
philes to give azepines substituted at C3 (Scheme 21.94).

Satake and co-workers reported the specific formation of 2-methoxy-2H-azepine
derivatives 235a–e by sequential reaction of 3H-azepines with bromine, methanol,
and aqueous potassium carbonate (Scheme 21.95). Studies on themechanism of the
reactions of 3H-azepines with bromine and NBS [243, 257] suggest the 1,4-addition
of an electrophile and subsequent 1,2-dehydrobromination.

On the other hand, the sequential reaction of 235b with half an equivalent of
bromine and aqueous potassium carbonate (Scheme 21.96) gives the 7-bromo-3H-
azepine derivative 236 (12% yield) and the ether 237 (82% yield).

An alternative attempt to understand the mechanism of the previously described
conversion of 3H-azepines into 2H-azepines has been carried out by replacing
bromine with NBS (Scheme 21.97). In the presence of methanol, quantitative
conversion of 3H-azepines 235a,b into 2-methoxy-2H-azepines was observed,
although the reaction with 235c produced both 2-methoxy-2H-azepine (66% yield)
and the 2-succinimido-2H-azepine (33% yield). In the absence of methanol the 3H-
azepines 235a–c and efficiently gave 2-succinimido-2H-azepines in good yields

N

H

N

R

R = Me, Et, Pr 

MeI/ EtOH/ Tl

DMF-Et2O

Scheme 21.93

N NEt
2

H

H

Ph

N NEt
2

Ph

H

N NEt
2

Ph

H
R

LDA
_

R-X

R = CH3, SCH3, CH2Ph

(60-65%)

Scheme 21.94

N R
3

R
1

R
2

R
2

N

R
2

R
1

R
1

R
3

MeO

1. Br2

2. MeOH

3. aq. K2CO3
235a-e

a: R1 = R2 = H; R3 = OMe (46%)
b: R1 = H; R2 = tBu; R3 =OMe (52%)
c: R1 = H; R2 = Me; R3 = OMe (30%)
d: R1 = tBu; R2 = R3 = H (43%) 
e: R1 = H, R2 = R3 = tBu (52%)

(1.0 equiv.)

Scheme 21.95

21.6 Reactivity of Azepines j1925



together with the brominated products (19–22%). Replacing bromine by NBS led
to improved yields due to the chemoselectivity of the reagent as well as the lower
concentration of HBr [258]. Reaction of 235b and NBS in a 2 : 1 molar ratio at room
temperature produced the ether 238 in 84% yield.

Acylation of 2-amino-3H-azepines under Schotten–Baumann conditions did not
afford the azepine derivative but the 2-(benzamido)diphenylamine through the
intermediacy of an azanorcaradiene [259] (Scheme 21.98). However, benzenesulfo-
nylation proceeds normally at the exocyclic nitrogen.

Treatment of the densely substituted 3H-azepines 239 with benzoyl chloride in
the presence of DABCO gave the 2-methylene-3H-azepine derivatives 240
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(Scheme 21.99) [260]. When the 2-methyl group was replaced by a phenyl group,
there was no reaction even under forcing conditions. Attempts to isomerize the exo-
methylene azepine 240 to the conjugate 1H-isomer 241 failed, both by treatmentwith
weak or strong bases. In the latter case the starting 3H-azepine was obtained.

The reaction of 2-amino-3H-azepinewith either trityl tetrafluoroborate or dimethyl
(methyl)sulfonium tetrafluoroborate [91] has been reported to give the product
substituted at C6 (Scheme 21.100). In the former case, the corresponding azanorcar-
adiene was isolated.

21.6.1.6 Reactions with Nucleophiles
Satake and co-workers have reported the formation of the azepinium ion from the
reaction of a 2-methoxy-2H-azepine derivative and titanium tetrachloride (TiCl4)
(Scheme 21.101) [243,257b].

In contrast to analogous tropylium systems, which have poor reactivity [261], the
azepinium ions are quite reactive [249, 262] – as shown in Schemes 21.102
and 21.103. The results indicate that the azepinium ion is a strong electrophile. In
the reaction with aromatic compounds these systems undergo nucleophilic substi-
tution primarily at position C7 and, less frequently, at position C3. An interesting
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result was obtained in the reaction with pyrrole, which gave a ring-contracted
product.

4H-Azepine-2,7-dicarboxylic esters undergo 1,4-addition of nucleophiles [263]
catalyzed by either acid or Pd(II) (Scheme 21.103).

Although it is known that the alkoxy group of the 2-alkoxy-3H-azepine derivative is
displaced by alkylamines or carbanions from active methylene compounds, Satake
and co-workers have explored the reactivity of 3H-azepines having an imidate
conjugation with various alkoxy groups at the 2-position (Scheme 21.104). Thus,
the nucleophilic reaction of 5-tert-butyl-2-methoxy-3H-azepine 235b with an appro-
priate alkoxide [264] took place effectively at the 2-position of the ring. When a bulky
alkyllithium was used as a nucleophile, a similar displacement occurred to give the
2-alkyl-3H-azepine derivative as a single product.

In contrast, the reaction of 235b with methyllithium gave not only 2-methyl-3H-
azepine 242, but also 2,2-dimethyl derivative 243 (37%) andmethylenedi-3H-azepine
244, which tautomerized into the thermodynamically more stable vinamidine or
5-tert-butyl-2-(5-tert-butyl-2,3-dihydro-1H-azepin-2-ylidenemethyl)-3H-azepine 245
(25%).

21.6.1.7 Reactions with Oxidants
To investigate similarities and differences in the chemical behavior of 3H-azepines
and the isoelectronic 1,3,5-cycloheptatriene, Kimura and co-workers [265] have
studied the oxidative ring cleavage of dialkyl-3H-azepines on treatment with sele-
nium dioxide. Thus, the oxidation of 2,5-di-tert-butyl derivative 71 afforded, inter alia,
4-oxo-octa-2,5-dienal by a new ring cleavage along with the 2-azatropone 246
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(Scheme 21.105). Under the same conditions the isomeric 3,6-di-tert-butyl-3H-
azepine 78 gave pyridylpropanol as the major product.

The putative reaction course for the formation of 246 from 71 is indicated in
Scheme 21.106. Compound 71 gave the dihydroxy derivative I, which rearranged to
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the 2-amino-2H-oxepine II. Subsequent elimination of ammonia was followed by
Claisen rearrangement to 246, On the other hand, the formation of pyridinecarbal-
dehyde or pyridylpropanol can be explained in terms of electrophilic attack of
selenous acid on the C¼N double bond in 3H-azepine 71 or 78 and subsequent
nucleophilic attack by the carbonyl group of selenous acid on themethylene proton in
the 3-position (Scheme 21.106). After this attack, the intermediates are formed with
an N�Se bond, and this leads to intermediates through a [2,3]-sigmatropic shift.
Finally, the intermediates are converted into the 2-azanorcardienes, which ultimately
give the final products.

A different type of behavior has been described for N-methoxycarbonyl-2,7-
dimethyl-1H-azepine in dioxane, which by oxidation with SeO2 gave N-methoxy-
carbonyl-1H-azepine-2,7-dicarboxaldehyde (Scheme 21.107) inmoderate yield [266].
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In this case, as expected, oxidation of the alkyl groups is faster than oxidation of the
aromatic ring.

The reaction of benzazepines with m-CPBA [267] proceeds through N-oxidation
and double bond epoxidation (Scheme 21.108). On the other hand, the oxidative
behavior of N-substituted dibenzo[b,f ]azepines 248 is complex because several
products were obtained depending on the nature of the N-substituents. N-Alkyl
derivatives, with the exception of N-methyl, afford mixtures of diphenylamines and
acridones (Scheme 21.108). The N-methyl derivative 248d gave the N-oxide along
with ring-opening and ring-contracted products (Scheme 21.108). The N-acyl deri-

vatives undergo epoxidation of the C10–11 bond and the N-aryl derivatives are
hydroxylated at the phenyl ring [268].

Electrochemical oxidation [269] by ring contraction of N-alkoxycarbonyl-1H-aze-
pine leads toN-alkoxycarbonylaniline by initial oxidation of the carbamate to give the
radical cation, followed by electrocyclic rearrangement and C�N cleavage
(Scheme 21.109).
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catalyst. Extensive use of Raney nickel, palladium charcoal [270] and platinum
oxide [271] has been reported.

With 2-aminobromoazepine 249 [12a, 72], partial reduction is accompanied by
hydrodebromination. Initially, the hydrogenation in aqueous dimethylformamide in
the presence of potassium bicarbonate or in dioxane containing triethylamine in the
presence of a 10% palladium-charcoal catalyst was unsuccessful, but in ethanol, in
the absence of a base, reduction occurred rapidly through a hydrogen-transfer
reaction. However, only the saturated amidine hydrobromide could be isolated
(Scheme 21.110). Partial reduction of 2-dimethylamino-3H-azepine can be effected
in the presence of 5% Pd/C to give 4,5-dihydro- and 4,5,6,7-tetrahydro-3H-azepine
derivatives [273].

The similarity of keto derivatives of azepines and tropones has prompted some
studies on the reactivity of the former systems. As shown here, there are three types
of azepinones –aza analogues of tropone – corresponding to the three isomeric
parent compounds, 2H-azepin-2-one, 3H-azepin-3-one, and 4H-azepin-4-one.
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The chemistry of these systemshas been reviewed. Examples of all three types have
been synthesized, although the parent compounds themselves are unknown. By far
the most common are derivatives of 2H-azepin-2-one. Among them, 2H-azepin-2-
one and 4H-azepin-2-one have been obtained from azepinediones with trimethyl- or
triethyloxonium tetrafluoroborate in acceptable yields [274]. These compounds
undergo facile hydrogenation – to the perhydro-derivatives – and acid hydrolysis
(Scheme 21.111).

Although these compounds do not exhibit special chemical reactivity, the
3-hydroxy-2H-azepin-2-one derivative 250, described for first time in 1990 by Sano
and co-workers [275], is extremely reactive in protic solvents, undergoing a ring
contraction to give the pyridine-2-carboxylate 251 (Scheme 21.112). This result
demonstrates that the azatropolone nucleus has a strongly electrophilic character.

21.6.2
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similarities with the azepine reactivity considered previously (some examples are
given here).
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Among these compounds, the 2,3-dihydro-1H-azepines are relatively stable due to
the conjugated dienamine structure. Protonation takes place at the C4 position [276].
Thus, Paquette has described the preparation of 6,7-dihydroazepinium 252a by
reaction of 252 with perchloric acid (Scheme 21.113).

The [4 þ 2] cycloaddition reaction occurs readily even with DMAD [277], which
ordinarily reacts with enamines in a [2 þ 2] manner following a ring expansion
process [278]. However, the 6,7-dihydro-1H-azepine reacts with DMAD to give
the tetrahydroindole derivative 253 [279]. The first step is the formation of
a [2 þ 2]p adduct, which undergoes ring expansion and subsequent recyclization
(Scheme 21.114). Alternatively, the reaction in polar solvents [280] proceeds due to
the enamine character of the dihydroazepine, generating a heterobetainic interme-
diate that, depending on the solvent, affords different products.

Dihydroazepines and tetrahydroazepines can undergo several rearrangements
that generally involve a ring contraction. As an example, oxidation of 6,7-dihydro-1H-
azepine 254 [281] with DDQ (2,3-dicyano-5,6-dichoro-para-benzoquinone)
(Scheme 21.115) gives the arylurethane 255.

4,5-Dihydro-1H-azepines are sensitive tomany reagents. TheN-alkyl derivatives of
4,5-dihydro-1H-azepines appear to be rather reactive [78,132b,282] because they
contain a double enaminemoiety, but the N-acyl derivatives are more easily handled.
Electron-withdrawing groups at C2, C3, C6, and C7 have an effect on the stability.
Catalytic hydrogenation of these materials affords azepanes [283].
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In the case of 2,3-dihydro-1H-azepines, protonation occurs at the d-position and
for 4,5-dihydro-1H-azepines protonation occurs at the electron-rich b-position. For
example, the rearrangement of 5-cyano-4,5-dihydro-1H-azepine 256 to the furo[2,3-b]
pyridine 257with sodiumnitrate in acetic acid in aqueous ethanol proceeds by initial
protonation of C3 or C6 (Scheme 21.116) [284].

The synthesis of derivatives of 4,5-dihydro-1H-azepines fused with thiophene
and pyrazole rings has also been reported [284] from b-chlorovinyl aldehydes with
2-mercaptoacetate or phenylhydrazine, respectively (Scheme 21.117).
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21.6.2.2 Tetrahydroazepines
The 2,3,4,5-tetrahydro-1H-azepines are enamines and are fairly reactive compounds,
particularly those that are unsubstituted on theN atom. Alkylation or acylation on the
N atomproducesmore stable compounds, which reactmostly as enamine derivatives
(Scheme 21.118) [285].

2,3,4,5-Tetrahydro-1H-azepines also undergo ring contraction reactions by treat-
ment with bromine followed by water/triethylamine. The enamino ester 258 was
converted into the formyl ester 259 in quantitative yield. A similar reaction on the
enamino aldehyde 260 gave the aldehyde derivative 261a as the major product. In
this case, the formation of about 5% of the minor isomer 261b was observed
(Scheme 21.119) [286].
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hydrolysis over Amberlyst gave the fused azepines 265 in 41% yield together with a
smaller amount of azepine unsaturated ketone 266 (13%) [287].

Although the functionalization of lactams to substituted heterocycles via the
corresponding enol triflates has been reported, they are rather unstable and the
triflate reagent is expensive. In contrast, lactam-derived phosphate [288] intermedi-
ates present remarkable stability. Thus, N-Boc or N-CO2Ph protected lactams, via
their potassium enolates, gave the diphenyl phosphate derivatives 267 and the
reactions with appropriate partners under Stille or Sonogashira coupling conditions
and carbonylation (Scheme 21.121) have been tested.

21.6.2.3 Dihydroazepinones
This section describes only several relevant examples of all the possible derivatives.

21.6.2.3.1 Dihydroazepin-2-ones The most extensive research on 1,5-dihydroaze-
pin-2-ones has been carried out by Sano and co-workers [275]. The chemistry is
essentially based on their relationship with azatropolones and azatropones by
dehydrogenation. For example, dehydrogenation of 268 with DDQ yielded the
corresponding azatropolones, but the reaction is affected by the nature of the
substituents. The oxidation of 6-OEt and 6-H derivatives gave the corresponding
azatropolones in moderate yields (65% and 50%, respectively) but with the other
derivatives the yields were lower (2–17%) (Scheme 21.122).
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The vinyl derivative of 268, when heated with DDQ in toluene, underwent a
Diels–Alder reaction to give the adduct 269 in 60% yield rather than the dehydro-
genationproduct (Scheme21.122).Methylation of 1,5-dihydro-2H-azepin-2-ones 268
with diazomethane takes place at the enolic 3-OH and gives the corresponding
compound 270, and the reaction with triethyloxonium tetrafluoroborate occurs at the
lactamoxygen to afford the azepine 271. Treatment of themethyl ether 270withDDQ
in benzene at 100–120 �C gave the dehydrogenated product or azatropolone 272 in
moderate yield. Dehydrogenation of 271 (R¼H) and (R¼OEt) occurred in a few
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minutes while for the rest of compounds longer reaction times were required
(Scheme 21.123). These results indicate that the rate of dehydrogenation is affected
by the electronic character and the bulk of the substituent in C6 position.

Treatment of 1,3-dihydroazepin-2-ones 274withHCl yielded the lactone [289] 275.
O-Alkylation is achieved using triethyloxonium tetrafluoroborate and the hydrolysis
of 276 (X¼O) in dilute acid gives the lactone 275. Further transformation of
dihydroazepinones 274 with P2S5 led to the thio analog 277, which can also react
with triethyloxonium tetrafluoroborate to give the corresponding derivative 276
(X¼S) (Scheme 21.124).

Although treatment of compound 274 [290] with maleic anhydride or N-phenyl-
maleimide failed to produce the corresponding adduct, theDiels–Alder reactionwith
DMAD did proceed upon heating without solvent at 120–130 �C to give the adduct
278 in a poor yield (20%). In contrast, 274 reacted readily with tetracyanoethylene
(TCE) in tetrahydrofuran to afford a quantitative yield of the adduct 279
(Scheme 21.125).

The photochemical behavior of dihydroazepin-2-ones has also been studied. For
example, compound 274 (R¼H) inTHFormethanol and itsN-methyl derivative give
in each case a single photoisomer in 70% yield (Scheme 21.126) [276b, 291].
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Irradiation of derivatives functionalized in position-7 of dihydroazepin-2-ones (280)
gave different products depending on the solvent. For example, in ether or benzene
the ketoamide-annelated cyclobutene 281 was obtained by intramolecular 2p þ 2p
cycloaddition. In contrast, irradiation in MeOH gave the cyclopentenone derivative
282 (Scheme 21.126) by a ring contraction (1,3-acyl shift) and subsequent double-
bond migration [292].

21.6.2.3.2 Dihydroazepin-3-ones A summary of the more important aspects of the
reactivity of these compounds is given here [293]. The 1,2-dihydroazepin-3-ones 283
(R¼Me, Ph) are smoothly protonated with trifluoroacetic acid and the solutions
are stable for several weeks. The azepinium derivative 284 has been obtained by
treatment of 283 with triethyloxonium tetrafluoroborate in DCM (dichloromethane)
(Scheme 21.127).
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The reaction of 283 (Scheme 21.128) with one equivalent of N-chlorosuccinimide
in methanol at 0 �C gave the 4-chloroderivatives, which are stable in the solid state
but not in solution. Further chlorination led to the 4,6-dichloroderivative. Treatment
of 1-methylazepinone with either one or two equivalents of N-bromosuccinimide
gave the 4,6-dibromo derivative as the only product in 8% and 60% yield, respectively
(regardless of the amount of reagent).

1,2-Dihydroazepin-3-one 283 reactswith dienophiles to give [4 þ 2] adducts,many
ofwhich are important intermediates in ring transformation products. Cycloaddition
of 283withmaleic anhydride at room temperature in benzene gave the adducts 285 in
64% (R¼Ph) and 81% (R¼Me) yield. However, the cycloaddition with DMAD or
ethyl propiolate yielded benzoic acids 286 by a sequentialDiels–Alder, retroMannich,
and decarbonylation process (Scheme 21.129) [294].

In contrast, the cycloaddition of the more reactive 7-dimethyl derivative 287
with two equivalents of methyl propiolate gave a 1,3,4-trisubstituted pyrrole in
91% yield. The mechanism for this unexpected transformation is shown in
Scheme 21.130 [295].

Photolysis of azepinone 283 (R¼Ph) by an electrocyclization process gave the
expected product 288 in 64% yield. The bicycloheptanone is stable at room temper-
ature or below, but this compound reverts to the starting material on thermolysis in
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toluene [294]. Treatment of the azepinone 283 with sodium methoxide in methanol
led to a ring contraction to give 2-aminophenol (Scheme 21.131) [296].

21.7
Reactivity of Oxepines

Monocyclic oxepines exist in equilibrium with isomeric benzene oxides and the
existence of a rapid oxepine–benzene oxide equilibration does not allow oxepines to
be treated as separate entities, thus helping to interpret their reactivity because some
reactions can involve the benzene oxide tautomer (Scheme 21.132).
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The spontaneous oxepine–benzene oxide isomerization [297] proceeds as a
thermally allowed disrotatory process according to the Woodward–Hoffmann rules.
Oxepine and substituted derivatives are highly reactive compounds due to ring strain
present in the benzene oxide tautomer. Furthermore, the oxepine–benzene oxide
equilibrium position depends on the nature and position of the substituent [61, 298].
Generally, substitution at position-2 with electron-acceptor groups favors the oxepine
ring while substitution at position-3 favors the benzene oxides. This effect has been
explained in terms of the maximum number of alternative resonance contributors.
Some examples are shown in Scheme 21.133.

Owing to their structure and functionality, the reactivity of oxepines encompasses
those reactions expected for a conjugated cyclic triene or those reactions of vinyl
ethers, starting from reactions of annular oxygen. Consequently, twomain groups of
reactions can be considered in general terms: addition and cycloaddition reactions
and the cleavage of the oxepine ring. This reactivity has been covered extensively in
Comprehensive Heterocyclic Chemistry, I, II and III [2, 4, 7] and the present section is
intended to provide only a summary and update.

21.7.1
Reactivity of Oxepines and Benzofused Derivatives

21.7.1.1 Thermal and Photochemical Reactions
Thermal ring closure reactions are thermally allowed disrotatory process. An
illustrative example is the oxepine–benzene oxide equilibrium in which the oxepine
tautomer is favored at high temperatures (Scheme 21.132).
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The oxepine–benzene oxide (5a/5b) system is also attractive for photochemical
studies, because the equilibrium varies with the solvent polarity and, to some extent,
with the temperature. The photochemical rearrangement of the system (5a/5b) using
UV light has been described by Holovka and Gardner [299] and gives the corre-
sponding cyclobutene, via an excited singlet state, when the reaction was carried out
in diethyl ether at l >310 nm, which allows only the excitation of 5a. By contrast,
irradiation of (5a/5b) at a shorter wavelength (254 nm) at �80 �C produces mainly
phenol (triplet), minor amounts of the cyclobutene, and benzene (singlet), indicating
that these products come from 5b. Irradiation at 254 nm in acetone produces phenol
(Scheme 21.134).

The photolysis of (5a/5b) has been reexamined [300] using isotopically labeled
compounds (D at the 3- and 6-positions). Thus, irradiation at 254 nm (acetone-d6 and
room temperature) gave (NMR-analysis) phenol (40%) along with 12% of the
isomeric oxepine 5c through an oxygen-walk or circumambulatory [301] rearrange-
ment of arene oxides.

The photoreactions of benzoxepines are analogously dependent on thewavelength
and the yields are higher on using wavelengths up to 310 nm (Scheme 21.134) [302].

21.7.1.2 Cycloaddition Reactions
Oxepines undergo cycloaddition reactions with unsaturated molecules due to their
cyclic polyenic character. This structure possesses different reaction centers and can
behave as an ene, diene, and triene according to the kind of dienophile and
considering the oxepine–benzene oxide (5a/5b) system.

The cycloaddition reaction proceeds more readily on the benzene oxide form
(5a/5b) in which the diene is closer to planarity. Thus, with dienophiles such as
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DMAD or maleic anhydride [88] the [4 þ 2] cycloadducts were obtained as indicated
in Scheme 21.135.

The reaction of 4,5-disubstituted oxepines [303] with azo compounds gives similar
adducts to those indicated above (Scheme 21.136), whereas 2,7-disubstituted oxe-
pines afforded an adduct from the oxepine valence isomer that is not stable but
undergoes Claisen rearrangement to a cyclopropyl ketone (Scheme 21.136) [304].

Similar behavior has been described by Boyd and Berchtold [305]. In this case, the
reaction of 1-(trimethylsilyl)benzene oxide–oxepines 289 with 4-methyl-1,2,4-triazo-
line-3,5-dione is also affected by substituents and affords the expected Diels–Alder
adducts 290a and 290c from the benzene oxide valence isomer, and the adduct 290b
(100%) from reaction of the oxepine valence isomer (Scheme 21.137).

More recently, Golding and co-workers [306] have described the reaction of
benzene oxide–oxepine (5a/b,292a/b) with 4-phenyl-1,2,4-triazoline-3,5-dione
(291a) in acetone at �80 �C. This gave a single adduct 294b,295b, whose structure
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was validated by NMR and X-ray diffraction, showing that the dienophile approaches
the diene anti to the epoxide moiety of the diene. These data are consistent with the
previous adducts of benzene oxide obtained with other dienophiles [307, 308] and
with other studies carried out recently by Harper and co-workers [35c]. The reaction
of 293a/b with 291a gave two adducts, one of which is the expected [1 þ 1] adduct
296b (derived from 293b) and shows again the preference for anti addition (dieno-
phile versus epoxide) and the second adduct arises from two molecules of
dienophile 291a and one molecule of 293a/b (Scheme 21.138). Formation of 297
requiresmolecular rearrangement and its structure has been elucidated byNMR and
X-ray diffraction analysis.

Oxepines also undergo cycloaddition reactions at the C4�C5 bond, where they
participate as a dienophile in [2 þ 4] cycloaddition with cyclopentadienone [270] and
with 1,2,4,5-tetrazine or 1,2,4-triazine derivatives [309] bearing electron-withdrawing
groups (Scheme 21.139).

The benzo derivatives also undergo cycloaddition reactions. For example, reaction
with tetracyanoethylene (TCE) [82, 310] affords the corresponding adduct 298
(Scheme 21.140).
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21.7.1.3 Reactions with Electrophiles
The protonation of oxepine–benzene oxides takes place at the ring oxygen atom and
generally results in C�O ring cleavage with the formation of several carbocations
before conversion into phenol (Scheme 21.141). The acid-catalyzed isomerization
has been studied extensively [311]. Deuterium and tritium labeling experiments have
established a sequence that involves a 1,2-shift of the hydrogen isotope (X ¼ 2H, 3H)
and an enolization step. This process has been described as the NIH-shift1)

(Scheme 21.141).
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The acid-catalyzed isomerization is dependent on the nature and position of the
substituents relative to the ring oxygen atom.The sequence observed in theNIH-shift
was also found for Cl, Br, Me, and CO2R substituents.

Potential reaction pathways are indicated in Scheme 21.142 at C2 in the acid-
catalyzed process and these include: (a) loss of R, (b) loss of X, (c) 1,6-migration and
retention of X, and (d) 1,3-migration and retention of X.

The parent compound 5 has been halogenated by successive addition of bro-
mine [312] and the resulting compound reacted with cyclopentadienylmagnesium to
give 299, which upon treatment with triethylamine gave fulvalene derivatives
(Scheme 21.143).
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nitrogen nucleophiles such as NH3, NH2
–, and RNH2 although it reacts with the

azide anion to give cyclohexadiene derivatives (Scheme 21.144) [313].

The reactivity of benzeneoxide–oxepinehas also been studiedwith carbon, oxygen,
and sulfur nucleophiles, affording in most instances 1,2-dihydroaromatic products.

The reaction with methyllithium gave only cis-6-methylcyclohexa-2,4-dien-1-ol in
67% yield by 1,6-addition (Scheme 21.145). On the other hand, reaction with
dimethylmagnesium gave a mixture of alcohols consisting of 37% cis isomer by
1,6-addition and 63% trans isomer by 1,2-addition. The mechanistic rationale was
established by reactions with benzene-oxide oxepin-3,6-d2.

Alcohols add only with difficulty, and the addition of water occurs in the presence
of epoxide hydrolase enzyme [314]. Sulfur nucleophiles readily attack the oxepine
ring as soft nucleophiles to produce the corresponding trans derivative as a result of
direct 1,2-opening (Scheme 21.145).

The reaction of the 3-benzoxepine (19), which appears to exist exclusively in the
oxepine form, with methyllithium was much slower and resulted in ring-opening to
give the propenylphenylpropanol 300 (Scheme 21.146).
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2-ol, which underwent dehydration to S-phenylglutathione, the precursor of
S-phenylmercapturic acid. In an effort to validate the proposed route to S-phenyl-
glutathione, reactions of benzene oxide–oxepine with glutathione and other sulfur
nucleophiles have been studied by Golding and co-workers [35b]. The data obtained
confirm that benzene oxide–oxepine canbe capturedby glutation to give (1R,2R) and/
or (1S,2S) products as indicated in Scheme 21.147. Further dehydration leads to the
S-phenylglutathione. The process at pH 7 is relatively inefficient but is accelerated at
higher pH.

Herrad�on and co-workers have reported the opening of dibenzo[c,e]oxepin-5,7-
dione (301) with amino acid and peptide derivatives to give peptide-biphenyl hybrids
that are calpain inhibitors (Scheme 21.148) [315]. The method has also been applied
in the solid phase [316].

21.7.1.5 Reactions with Oxidants
The reactions of oxepine with NBS/H2O or m-CPBA gave only stereoisomers of
muconaldehyde (Scheme 21.149) [317]. The epoxides are assumed to be
intermediates.
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However, in 2004 Nauduri and Greenberg [318] described the first unambiguous
observation of an oxepine-2,3-oxide, as determined by 1H-NMR spectroscopy
(Scheme 21.150). 3-Benzoxepine (19) reacted with deuterated dimethyloxirane
(DMDO) at 50 �C in acetone-d6 to give the corresponding 2,3-oxide, which at 5–10 �C
rearranged rapidly to its isomer 1H-2-benzopyran-1-carboxaldehyde. In contrast, 2,3-
oxides of monocyclic oxepines rearrange to stable ring-opened dialdehydes or
diketones as occurs, for example, with 2,7-dimethyloxepine.
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21.7.2
Reactivity of Partially Reduced Oxepines

21.7.2.1 Dihydrooxepines
Rovis and Nasveschuk [319] have described an interesting ring contraction reaction
from 2,5-dihydrooxepins to cyclopentenes, which involved a diastereoselective 1,3-
rearrangement promoted by ethylaluminium dichloride as a Lewis acid. The scope
of the 1,3-ring contraction was evaluated with various substituents in different
positions.

The reaction provides access to cis- and trans-cyclopentene carboxaldehydes with
good selectivities and can lead to tetrasubstituted cyclopentenes in high enantiomeric
excess and with high diastereoselectivity (Scheme 21.151).

2-Trifluoromethyl-substituted 4,5-dihydrooxepines 302 have been obtained by
palladium(0)-mediated cross-coupling reactions from boryl, silyl, and stannyl dihy-
drooxepines (Scheme 21.152) [320].

2-Trifluoromethyl-2,5-dihydrooxepine 303 has been hydrogenated to the fully
saturated 304 and oxidized to oxepine 305 (Scheme 21.153).
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The photochemical behavior of 3,30-dimethyl-3H-oxepin-2-ones has been
reported [321]. The method efficiently proceeds through cyclization to give exclu-
sively compound 306.However, reexaminationof this photoreaction also found small
amounts of the product arising from a 1,2-acyl shift (2.5–5%). A study of the
photochemical process showed that the product distribution is greatly affected by
the reaction temperature and that the yield of the 1,2-acyl shift product may be
increased up to 28% at 70 �C (Scheme 21.154).

Other photochemistry studies have been carried out on 3-acetyl and 3-benzoyl
3-methyloxepine-2-ones (307), which efficiently undergo a 1,5-acetyl or 1,5-benzoyl
shift (Scheme 21.154) followed by double bond isomerization [322]. Cyclization of
1,5-products by a second photoreaction to give the bicyclic systems is a common
reaction, but this process can be suppressed completely when the photolysis
is carried out at �60 �C (6 h, R¼Me) and the reaction mixture is allowed to stand
at room temperature overnight, yielding only the 1,5-acethyl product in 80%.
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Oxepine-2,7-diones [323] also undergo photochemical ring closure to the correspond-
ing bicyclic anhydrides (Scheme 21.154).

Pterulone a, a chlorinated benzoxepine derivative that has potent antifungal
activity, has been synthesized from 4,5-dihydro-2H-benzoxepin-3-one in a sequence
of three reactions (Scheme 21.155). The first step is an oxidation to generate the
double bond and this was carried out by radical bromination with NBS. This was
followed by elimination of HBr to give the 3(2H)-oxepinone in 67% yield. The keto
group was transformed into a chlorovinyl group by a Wittig reaction to afford only
the (Z)-isomer in 76% yield. Finally, a Friedel–Crafts acetylation with silver triflate
and acetyl chloride inDCMyielded a 1: 3mixture of peterulone a and its(Z)-isomer in
60% overall yield [324].

21.7.2.2 Tetrahydrooxepines
Several syntheses of acyclic and carbocyclic natural products are based on the use of
(Z)-4-hexenolide (4,7-dihydro-3H-oxepin-2-one) and substituted derivatives. This
lactone reacts with allyltrimethylsilane [325] in the presence of trimethyloxonium
tetrafluoroborate in a ring-opening process to give methyl 4,8-nonadienoate with
exclusive (Z)-configuration in 87% yield (Scheme 21.156).

To understand the role of the heteroatom on the rate of hydroboration, Brown
and co-workers [326] undertook a study of representative heterocyclic olefins in
comparison with the corresponding carbocyclic analogues. The results showed that
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2,3,4,5-tetrahydrooxepine reacts 30 times slower than cycloheptene (Table 21.5),
and the hydroboration with 9-borabicyclo[3.3.1]nonane (9-BBN) is exclusively
directed to the 3-position, which is probably controlled by a strong mesomeric
contribution of the oxygen (Table 21.5, Scheme 21.157).

Another type of reactivity that has been studied [327] is the metallation of 2,3,4,5-
tetrahydrooxepine with n-BuLi or t-BuLi to afford 7-lithio-2,3,4,5-tetrahydrooxepine
by vinylic deprotonation (Scheme 21.158).

Under standard silylation [328] conditions (LDA, t-BuMe2SiCl, THF, �70 �C)
lactone 308 gave 309 in 97% yield and this rearranged to give cyclopropane carboxylic
acids (e.g., the cis-chrysanthemic ester) by Claisen–Ireland rearrangement
(Scheme 21.159).

Although seven-membered a,b-unsaturated lactones can be used as dienophiles,
they are less reactive than their acyclic counterparts and the Diels–Alder reaction is
not a general approach to complex polycyclic systems. In an effort to overcome these
synthetic problems, Taguchi and co-workers [329] have developed an efficient Lewis

Table 21.5 Relative reactivity of olefins towards 9-BBN in THF at 25 �C (1-hexene¼ 100).

Hetero and related olefins Relative rates

1-Hexene 100
Cycloheptene 6.9
1-Methyl-1-cyclopentene 1.59
2,5-Dihydrofuran 1.54
2,3,4,5-Tetrahydrooxepin 2.31� 10�1

X X

B9-BBN

 25 ºC

X= O,   0.034
        X= CH2,  100

Scheme 21.157
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acid by mixing Tf2CH2 andMe3Al for the Diels–Alder reaction with cyclopentadiene
(CP), which in the case of c- or e-methylated seven-membered lactone derivatives
preferentially reacted with CP by the syn face (Scheme 21.160).

The 1,3-cycloaddition reaction of nitrones to olefins is an effective tool for the
preparation of isoxazolidones. In particular, the adduct from the cycloaddition of
cyclic nitrones to a,b-unsaturated lactones [330] such as 6,7-dihydro-5H-oxepin-2-
one was converted into the corresponding piperidyl (and pyrrolidyl) oxepinone by
reduction of the nitrogen–oxygen bond (Scheme 21.161) [331].
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21.8
Reactivity of Thiepines

The development of the chemistry of thiepines is linked to their theoretical and
biological interest. The theoretical interest concerns the question of whether thie-
pines with 8p electrons are nonaromatic or antiaromatic. Research in this field has
focused on simple derivatives that could provide information to increase our
understanding of the nature of thiepines while the biological interest is linked to
the pharmacological activity of this system.

Since simple thiepines are generally very reactive, the chemical reactivity has been
studied on polycyclic systems. On the other hand, the reactivity of this system can be
considered separately from the bicyclic isomer thiirane, which on desulfurization
and ring contraction yields arenes (Scheme 21.7). Thiepine thus appears to exist
exclusively in this valence isomer. The stability of thiepines is enhanced by the
presence of bulky substituents [332] at the C2 and/or C7 positions and electron-
donating or -withdrawing groups. Additional stability is achieved in the transfor-
mation to S,S-dioxides (sulfones) and thiepinium salts.

21.8.1
Reactivity of Thiepines and Benzofused Derivatives

As simple thiepines are thermally unstable, the reactivity of these heterocycles has
been studied with either monocyclic structures stabilized by tert-butyl groups at the
2,7-positions or annulated thiepines, 1,1-dioxide derivatives, or as transition metal
derivatives.

21.8.1.1 Reactions with Metal Carbonyl Complexes
The capacity of transitionmetals to stabilize labile species by complexation allows the
isolation of unstable conjugated molecules such as, for example, norcaradiene [333]
amongothers. In thefield of thiepines, the transitionmetal complexation strategyhas
been used to synthesize and isolate thermally unstable compounds. Thiepine-1,1-
dioxide has been isolated as a stable crystalline compound, but the 1-oxides
are considered to be extremely unstable [18]. In relation to the benzo-derivatives,
1-benzothiepine and its 1,1-dioxide are well characterized but the 1-benzothiephine
1-oxides are referred to polysubstituted derivatives. Consequently, efforts have been
directed to the unstable 1-benzothiepine-1-oxide and thiepine and its 1-oxide.

The first synthesis and characterization of thiepine-iron tricarbonyl (310) was
carried out by Nishino and co-workers [177a] from thiepine 1,1-dioxide with
Fe2(CO)9, a process that gave (thiepine 1,1-dioxide)iron tricarbonyl in 99% yield.
Subsequent treatment of this complex with p-toluenediazonium tetrafluoroborate
promoted by ultrasound irradiation led to the corresponding tolyloxysulfoxonium
tetrafluoroborate as amixture of stereoisomers, which were reduced by reaction with
samarium diiodide/THF complex without affecting the 6,7-double bond to pro-
duce 310 in 38% yield (Scheme 21.162). Other complexes of thiepine 1,1-dioxidewith
Cr-, Mo-, and W-carbonyls have also been described [334].
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Application of the transition metal strategy to 1-benzothiepine (14) gave the
complex 311 in 41% yield, which on oxidation with m-CPBA was converted into
monoxide 312 in 98% yield [335]. This compound, under analogous reaction
conditions, gave the 1,1-dioxide complex (Scheme 21.163).

21.8.1.2 Cycloaddition Reactions
One of the essential characteristics of conjugated polyenes is their capacity to
undergo cycloaddition reactions and, as a consequence, this reaction has been
studied with different thiepines. For example, the cycloaddition of 2,7-di-tert-
butylthiepine (163) with tetracyanoethylene (TCNE) produced only the [4 þ 2]
cycloadduct, although the steric repulsion of tert-butyl groups could promote
a [2 þ 2] process (Scheme 21.164) [336]. The reaction in toluene at 60 �C under
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high pressure for 3 days gave the adduct in 46% yield as the major product and the
same reaction in acetonitrile at atmospheric pressure over two weeks gave 49% yield.

In an analogous way to azepine derivatives, the higher-order cycloaddition reac-
tions (i.e., 6p þ 4p, 4p þ 4p, and 6p þ 2p) have emerged as a powerful method for
the construction of stereochemically and structurally complex polycyclic systems.
Rigby�s group have been particularly active in this area, using both thermally and
photochemically activated cycloadditions of chromium(0) complexes of azepines and
thiepines. Scheme 21.165 shows selected examples [337].

Photolysis of decomplexed cycloadduct 313a afforded the all-(Z) cyclodecatetraene
in 54% yield through a chelotropic reaction (Scheme 21.166). Extension of the
reaction with alkynes [338] afforded substituted cyclooctatetraenes. The two-step
process involves consecutive [6p þ 2p] cycloaddition and the elimination of sulfur
dioxide (Scheme 21.166).

A complementary application of the cycloaddition–chelotropic extrusion sequence
is the benzannulation (Scheme21.167) inwhich the elimination of SO2 occurs as part
of a Ramberg–B€acklund (R-B) rearrangement process [339].

This protocol includes the simultaneous formation of two rings. The overall
process takes place with a high level of convergency, with all of the carbon atoms
comprising the arene substructure introduced in a single step through the thiepine
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dioxide triene system (a good example of atomeconomy [340]). Scheme21.168 shows
a typical benzannulation process.

Modifications through a multicomponent reaction [341] have been described
that involve three-components, that is, a Cr(0) complex in combination with
two terminal alkyne units to give cycloadducts in good yields in a process that can
be viewed formally as two consecutive Cr(0)-mediated [6p þ 2p] cycloadditions
(Scheme 21.169).

An extension of this concept has been applied to four-component chromium(0)-
mediated cycloaddition processes involving thiepine 1,1-dioxide/tricarbonylchro-
mium(0) and various tethered diyne reaction partners. In a typical example of this
process, photocycloaddition of the complex with excess 1,7-octadiyne in dichloro-
ethane afforded thepentacyclic triene sulfone314 in 45%yield (Scheme21.170) [342].
A similar reaction with 1,8-nonadiyne gave the corresponding product in 38% yield.
The reaction with 1,6-heptadiyne afforded only the three-component cycloadduct.

The adduct is formally derived from a sequential [6p þ 2p]/[6p þ 2p]/[2s þ 2p]
process. The first two steps involve a similar transformation to the pathway observed
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in the three-component process [6p þ 2p]/[6p þ 2p] and the third cycloaddition
[2s þ 2p] takes place with the cyclopropene unit and the additional alkyne compo-
nent. The role of chromium(0) in promoting the critical [2s þ 2p] process is not
yet clear.

21.8.1.3 Thermal and Photochemical Reactions
The most common thermal reaction of thiepines is the extrusion of a sulfur
atom [343]. A similar reaction occurs with thiepine 1-oxide and 1,1-dioxide, which
lose sulfur monoxide and sulfur dioxide, respectively (Scheme 21.171).

The relative stability of fused benzo derivatives of thiepine [344] is assessed by the
temperature at which sulfur extrusion occurs: 47 �C for compound 14, 250 �C for 29,
and 380 �C for the tribenzo derivative 29b [345].
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Thermolysis of stable monocyclic thiepines such as 2,7-di-tert-butylthiepines 163
gave the sulfur-extruded benzene derivative as the major product, together with the
thienothiophene derivative 315, the structure of which was confirmed by X-ray
diffraction [346]. The formation of 315 can be explained by addition of extruded
sulfur, which is in a highly reactive monomeric form, to the thiepine to produce
different intermediates that can be transformed into 315 by 1,3-shifts, as indicated in
Scheme 21.172.

On the other hand, it is worth noting that the reactivity of benzo[b]thiepine
derivatives depends on the substituent at position-5 and this can occur by either
sulfur extrusion or rearrangement to 4-mercapto-1-naphthol (Scheme 21.173), prob-
ably via the thianorcaradiene as an intermediate [347].

Other benzothiepine derivatives undergo the same transformation, depending on
the solvent [348]. Thus, heating in cyclohexene gives the usual desulfuration
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products, whereas in carbon tetrachloride or nitromethane the benzothiepine
isomerizes to the thionaphthol as indicated in Scheme 21.174.

The photochemical reactivity of benzothiepine and substituted benzothiepine
derivatives is similar to that found with benzoxepines and the valence tautomeric
cyclobutene is formed by a concerted disrotatory ring closure mechanism
(Scheme 21.175) [349]. Under prolonged irradiation [221], compound 316 (R3¼OH,
R1¼R2¼CO2Me) was converted into another isomer (316a). This transformation
proceeds by rupture of the C�S bond to give a stabilized diradical with subsequent
formation of a new C�S bond.

In general, 1-methylbenzothiepiniumsalts aremore stable than the corresponding
benzothiepines and the thermolysis of such salts gives the naphthyl thioethers 317
(Scheme 21.176) [350]. However, thermolysis of 1,2-dimethyl-4-phenyl-1-benzothie-
pinium salts gives sulfur-free reaction products [351].
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21.8.1.4 Reactions with Electrophiles
4H-Thiepinium ions have been generated by treatment of thiepines with fluoro-
sulfuric acid (FSO3H/CD2Cl2/SO2) solution at �70 �C or sulfuric acid at room
temperature [352]. The 1H NMR analysis showed that these ions possess a homo-
thiopyrylium structure. Protonation occurs regiospecifically at position-5 in thie-
pines to give the 4H-ions (Scheme 21.177).

Both 5H- and 3H-1-benzothiepinium ions have been generated under analogous
conditions (FSO3H/CD2Cl2/SO2) and have been characterized by 1H and 13C NMR
spectroscopy. The former ion can be regarded as having a benzohomothiopyrylium
ion structure whereas the 3H-benzothiepinium has a localized ion structure rather
than a delocalized one (as shown here).
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gave compound 318 in low yield along with several unidentified products
(Scheme 21.178).

Although reaction of thiepine 163 with a dioxane/bromine complex in CH2Cl2 at
�70 �C produced a complex mixture in a nucleophilic solvent (AcOH/CH2Cl2, 3 : 1)
at 0 �C, the bromo acetate 319was obtained in 10% yield.However, when the reaction
was carried out with pyridinium hydrotribromide in AcOH at room temperature
compound 319 was obtained in 71% yield (Scheme 21.179).

Alkylation of 2,7-di-tert-butylthiepine with methyl iodide/silver tetrafluoroborate
in CH2Cl2 at room temperature did not give the expected 1-methylthiepinium
derivative, but the reaction afforded compounds 320a and 320b in 17% and 77%
yield, respectively; compound 320a is an intermediate, as demonstrated by the fact
that further identical treatment of 320a gave 320b in 75% yield (Scheme 21.180).

Methyl fluorosulfonate, methyl 2,4,6-trinitrobenzosulfonate, and trimethyloxo-
nium tetrafluoroborate have been used as methylating agents for the formation of
S-methylthiobenzothiepinium salts (Scheme 21.181).
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21.8.1.5 Reactions with Oxidants
While thiepine 1-oxide has not been prepared, the 1,1-dioxide is a stable crystalline
compound. In relation to benzo derivatives, the oxidation of benzothiepine to
1-benzothiepine 1-oxide failed, as indicated previously, but its 1,1-dioxide has been
synthesized by direct treatment with two equivalents of m-CPBA. On the other
hand, oxidation of 2,7-di-tert-butylthiepine (163) has been tested with o-benzylmo-
noperoxycarbonic acid in an NMR tube. Signals consistent with the structure of
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2,7-di-tert-butyl-thiepin-1-oxide were observed, but when the mixture was allowed to
warmup to�15 �C the compound gradually transformed into o-di-tert-butylbenzene.
The 1-oxide was not further oxidized to the sulfone, probably because the two bulky
tert-butyl groups sterically hinder the approach of the second equivalent of the peracid
(Scheme 21.182).

Oxidation of substituted benzothiepines [354] with m-CPBA afforded the corre-
sponding 1-oxides and 1,1-dioxides, respectively (Scheme 21.183).

21.8.2
Reactivity of Partially Reduced Thiepine Derivatives

In this section the reactions are classified into several categories: reactions on the
sulfur atom, reactions of the substituents on the sulfur atom, reactions that occur in
other parts of the molecule that are able to form adducts, at the carbons, or reactions
of substituents attached to ring carbon atoms.

21.8.2.1 Dihydrothiepines
S-Chloro and S-bromo derivatives of dihydrobenzothiepines [355] have been syn-
thesized by treatment with NCS or NBS at room temperature. The chlorosulfuranes
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aremore thermally stable than bromosulfuranes during the recrystallization process.
To investigate the covalent nature of these species, the corresponding thiepinium
salts were synthesized (Scheme 21.184) and their physicochemical data compared
with those of sulfuranes. Furthermore, the sulfur–halogen bond was studied by 1H
NMR spectroscopy, MS, and X-ray diffraction analysis.

As indicated previously, the oxidation with m-CPBA is readily conducted and the
dihydrodibenzo[b,f ] thiepine is transformed into the sulfoxide in quantitative yield.
This process usually has to be conducted carefully to avoid over-oxidation to the
sulfone [356]. However, this was not the case with 321 because it did not react under
various oxidizing conditions, probably due to the electron-withdrawing nature of the
fluoro-substituents (Scheme 21.185).

A 1-benzothiepine fused to a pyridine ring has also been oxidized to the corre-
sponding sulfone using m-CPBA in DCM containing 3–5 equivalents of methane-
sulfonic acid to avoid pyridine N-oxide formation (Scheme 21.186) [357].
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The reaction of sulfides with diazo compounds bearing electron-withdrawing
groups to give stabilized sulfonium ylides is a well known process. The reaction of
dihydrobenzothiepine 322 with dimethyl diazomalonate and dibenzyl diazomalo-
nate in the presence of 5mol.% Rh2(OAc)4 gave the ylides 323a and 323b in 75% and
65% yields, respectively (Scheme 21.187) [325].

Flash vacuum thermolysis of dihydrobenzothiepine dioxide 324 (550 �C/0.2
mmHg) led to 9,10-dimethyl-9,10-dihydrophenanthrene 325 in 86% yield with loss
of SO2. When the product was subjected to more extreme conditions (730 �C/1
mmHg) 9,10-dihydrophenanthrene 326was obtained as themajor product. Labeling
studies indicate that the mechanism of dihydrophenanthrene formation involves
a biradical as an intermediate, which undergoes ring closure to 325 followed by loss
of two methyl radicals to give 326 (Scheme 21.188) [358].

Cycloaddition of dihydro benzothiepines 327a with DMAD gave the nine-mem-
bered ring compound at room temperature through a ring-opening reaction. The
initially formed adduct, with a cis,trans configuration of the resulting butadiene,
isomerized to the cis,cis-isomer by heating under reflux in toluene for 4 h. The initial
cyclobutene adduct was not obtained [359]. However, the reaction of 327b with
DMAD yielded an equilibrium mixture of the cyclobutene and its cis,trans cyclooc-
tadiene valence isomer, which was irreversibly transformed into the cis,cis isomer
(Scheme 21.189) [360].

Nucleophilic attack at the carbon can occur on the 4,5-dihydrothiepinium ion,
generated by treatment of alcohol 328 with FSO3H/CD2Cl2/SO2 in an NMR tube
under nitrogen at �78 �C, by subsequent reaction with methanol in the presence of
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sodium hydrogen carbonate (Scheme 21.190). Delocalization of the charge is
indicated by the proton chemical shifts in the homothiopyrylium ion (average
d¼ 7.9 except for H4a,b), which demonstrates that the C-atoms at 2, 3, 5, 6, and
7 are part of a six-membered ring. Retention of the seven-membered ring was
confirmed by quenching the solution of homothiopyrylium with methanol [361].

The reactivity of carbanions depends on the capacity of the substituents to stabilize
a negative charge. Thus, the reaction of 329 with n-butyllithium in hexane/ether
generates a carbanion that undergoes a rearrangement to the stable thiolate anion.
On the other hand, the carbanion can be generated with sodium hydride in DMF
followed by treatment with electrophiles (Scheme 21.191) [362].
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Although organolithium compounds can be prepared through a wide range of
methodologies [363], the last few years have witnessed their use as reagents for
the reductive opening of heterocycles [364]. This method has been applied to the
transformation of dihydrobenzothiepines and dihydrodinaphthothiepines [365]. For
example, the reaction of 5,7-dihydrodibenzo[c,e]thiepine (329) with excess lithium in
the presence of a catalytic amount of 4,40-di-tert-butylbiphenyl (DTBB, 5 mol%) in
THFat�78 �C followed by treatment with different electrophiles (e..g, with carbonyl
compounds) led, after hydrolysis, to the corresponding hydroxymercaptans in
47–82% yield (Scheme 21.192) [366].

An interesting sequential reductive lithiation has been described. The lithium
derivative I is generated from 329 and reacts with a first electrophile (i.e., a carbonyl
compound) to give II, which instead of being hydrolyzed was further lithiated to III
and reacts with a second electrophile to afford IV. Scheme 21.193 gives some
examples [366].

21.8.2.2 Tetrahydrothiepines
Bridged bicyclic sulfolenes can be easily converted into the corresponding 1,3-dienyl
carbocycles in good yield by direct thermolysis (Scheme 21.194) [367] or by treatment
with lithium aluminum hydride at room temperature [368].

Tetrahydrothiepines such as 330 are easily oxidized with m-CPBA in dichloro-
methane (Scheme 21.195) or with sodium periodate in methanol [350] to give the
corresponding sulfoxide or sulfone.Oxidationwith two equivalents ofm-CPBAyields
the sulfone.

Attempts to achieve ring expansion processes [369] by heating a methanolic
solution of 5-methylene-2,3,4,5-tetrahydrothiepine 331 and silver nitrate under reflux
in the presence of iodine gave a benzothiophene derivative as a consequence of
intramolecular attack by sulfur at the initially formed halomethyl group
(Scheme 21.196) [370]. No evidence for the formation of ring expansion products
was found.

In general, the treatment of sulfoxides that have a-hydrogens with electrophiles
such as carboxylic acid anhydrides affords products in which sulfur is reduced and
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the adjacent carbon is oxidized (Pummerer reaction). This reaction has been applied
to the sulfoxide 332 [371], although the conversion was carried out under modified
Pummerer conditions using H€unig�s base or N,N-diisopropylethylamine in DCM
and trimethylsilyl iodide under nitrogen (Scheme 21.197).
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21.8.2.3 Thiepinones
Reported examples of the reactivity of thiepinones are typical of cyclic ketones. Some
examples are shown in Scheme 21.198 [372]. The transformation of 333a into the
biologically active dibenzo[b,f ]thiepine 334 involves several transformations of
ketone, alcohol, olefin, and iodide.

The dibenzo[b,d]thiepine 336 has been obtained from the benzo[b]thiepinone 335
by sequential conjugate addition/elimination and Claisen-type condensation
(Scheme 21.199) [373].

On the other hand, thiepinone dioxide 337 reacts with aromatic aldehydes to
produce the Knoevenagel condensation products 338 in moderate to good yields
(Scheme 21.200) [374].
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22
Heterocycles Containing a Ring-Junction Nitrogen
Juan J. Vaquero and Julio Alvarez-Builla

22.1
Introduction

In addition to the biologically important purines and pteridines and the major
benzofusedheterocycles such as indole,many other aromatic, fused heterocyclic ring
systems are known and the most important of these are ones that contain a ring-
junction nitrogen, that is, where a nitrogen is common to two rings. The vastmajority
of these systems do not occur naturally, but they have been the subject of numerous
studies from the theoretical viewpoint or in the preparation of potentially biologically
active analogues and for other industrial uses. For brevity, only combinations of five-
and six-membered rings are considered here, althoughmany other combinations are
possible and are known.

N N N N

3H-Pyrrolizine 4H-Quinolizine Indolizine Quinolizinium 

+

Of the parent systems that have the ring-junction nitrogen as the only heteroatom,
only indolizine (often called �pyrrocoline� in the older literature) has a neutral, fully
conjugated ten-electron p-system, consisting of four pairs of electrons from the four
double bonds and a pair from nitrogen, much as in indole. Another such system is
pyrrolizine, which is already aromatic in being a pyrrole (with a Q-vinyl substituent).
Similarly, 4H-quinolizine is not aromatic as a saturated atom interrupts the conju-
gation. However, the cation (quinolizinium) formed by the formal loss of hydride
from quinolizine does have an aromatic 10p-electron system. This system is
isoelectronic with naphthalene and the positive charge results from the higher
nuclear charge of nitrogen versus carbon. Replacement of a carbon atom and its
attached hydrogen by heteroatoms either in five- and/or six-membered rings leads to
a wide variety of heterocycles. Coverage of these systems is, however, beyond the
scope of this book.

Figure 22.1 shows some of the general structures for combinations of five- and six-
membered rings.
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Figure 22.1 General structures for combinations of five- and six-membered rings: (a) pyrrolizines;
(b) indolizines; (c) quinolizinium (16), quinolizines (17–19), quinolizidine (20) and
azaquinolizinium isomers (21–24); and (d) benzoquinolizinium salts and related systems.
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22.2
Pyrrolizines

22.2.1
General Structure and Reactivity

The trivial name pyrrolizine [1] is applied to the fused C5-C5 bicyclic system having a
bridgehead nitrogen, which is systematically named as pyrrolo[1,2-a]pyrrole. There
are two possible tautomeric pyrrolizidines and it has been demonstrated that 3H-
pyrrolizine (1) is more stable than the 1H-tautomer (2). The partially hydrogenated
structure, which retains aromaticity, is considered as a dialkyl pyrrole derivativewhile
hexahydro-1H-pyrrolizine is known as pyrrolizidine or 1-azabicyclo[3.3.0]octane (3).

The inclusion of a second heteroatom produces a diverse range of structures (18
basic heterocycles) due to the different arrangements that the double bonds can adopt
in the bicyclic system. Pyrrolo[1,2-b]pyrazole (4), pyrrolo[1,2-a]imidazole (5), and
pyrrolo[1,2-c]imidazole (6) are representative structures with two nitrogen atoms, all
of which can exist as four tautomeric systems.

The literature on pyrrolizines is compiled in two reviews [2, 3] and a chapter in the
Comprehensive Heterocyclic Chemistry II, 1996 [4]. Pyrrolizidines have also been
reviewed [5, 6], although their chemistry and that of natural pyrrolizidines is beyond
the scope of this book.

22.2.2
Relevant Natural and/or Useful Compounds

Pyrrolizine and pyrrolizidine derivatives occur as natural secondary metabolites in a
large number of plants. The alkaloids based on the skeleton of these two heterocycles
appear to have a function in protecting the plants from predators and some of these
alkaloids are toxic to animals and to humans, causing liver disease and in some cases
cancers. However, some of these plants have been used in folk medicine to treat
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�tumors� [7], menstrual disorders [8], and as emetic and diuretic compounds [9].
The pyrrolizidine nucleus is widespread in nature in pyrrolizidine alkaloids [10].
Examples of these alkaloids are the family of mitomycins (46) [11], which exhibit
important antitumor activity, and the family of polyhydroxylated pyrrolizidine
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alkaloids represented by alexine (47) and casuarine (48), which are glycosidase
inhibitors [12]. 3,5-Dioxopyrrolizidine (49, Rolziracetam) is a cognition activator of
the nootropic class [13].
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22.2.3
Relevant Computational Chemistry and Physicochemical and Spectroscopic Data

3H-Pyrrolizine (1) is an oil that has a high boiling point (68–70 �C/15Torr). The
resonance energy (REPE) of 1 has been obtained fromHMO calculations and clearly
indicates that this tautomer is more stable than 2 (0.0107b versus 0.0153b) [2, 14].
This finding is consistent with the results of 1H NMR studies, which show 3H-
pyrrolizine (1) to be more stable than the 1H-tautomer (2) – which could not be
detected at all.

The pKa of 1 (29) has been estimated by measuring the rate of exchange of the
protons with 5M D2O in DMF containing triethylamine (1M). This high value is
attributed to the aromaticity of the pyrrolizine anion [15]. However, attempts to
explain the acidity of 1 by the HMO theory met with limited success [15].

Table 22.1 shows 1H NMR data for 1, its anion, and some simple derivatives. It is
worthnothing the shielding ofH2andH7 in1 and the deshielding ofH1andH5.The
main coupling constants are J1,2¼ 6.2Hz and J2,3¼ 2.2Hz and long-range coupling
constants are observed betweenH1 andH3,H1 andH5, andH3 andH7.H1 andH3
are strongly modified in the spectrum of the anion, with H3 appearing strongly
deshielded while H5 and H6 have similar displacements in both compounds.

The UV abortion spectra of compound 1 and simple alkyl derivatives show two
major bands at 210–220 nm and 285–295 nm of similar intensity and little difference
can be observed between the spectrum of 1 and its anion [8]. The IR spectrum of 1 is
not particularly characteristic and the common feature of the few published mass
spectra of 3H-pyrrolizines is a strong Mþ or (M� 1)þ peak [2].

Monosubstituted pyrrolizines can exist as four tautomers (1a–d). For simple
derivatives, and in the absence of strong substituent influences, 3H-isomers 1b
and 1c are more stable than 1H-pyrrolizines 1a and 1d. In the parent compound 1
(R¼H) the 1H-tautomer could not been detected in the 1H NMR spectrum.
However, in the attempted preparation of 5-methyl-3H-pyrrolizine (R¼ 5-Me)
the formation of a mixture of 1a, 1c, and 1d in a 44 : 66 : 10 ratio was observed [22].
In pyrrolizines substituted in the C2(C6) position, the tautomeric equilibrium

22.2 Pyrrolizines j1993



depends on the electronic nature of the substituent. For example, tautomer 1b is the
stable form for 2-methyl- and 2-phenylpyrrolizine [22, 23] whereaswhenR¼ 2-COPh
or 2-CO2Me the tautomeric form 1c is more stable [24].

N

R

N

R

N

R

N

R

1a 1b 1c 1d

In terms of reactivity, 3H-pyrrolizines are vinylpyrroles and a predominant
reactivity towards electrophiles can be expected. However, the instability of pyrro-
lizines limits the application of electrophilic substitution.

22.2.4
Synthesis of Pyrrolizines

All of the syntheticmethodologies reported for the construction of the 3H-pyrrolizine
system are based on a pyrrole ring, which is used as a template to build up the second

Table 22.1 1H NMR chemical shifts (ppm) of 3H-pyrrolizine (1), its anion, and some simple
derivatives.

Compound (solvent) H1 H2 H3 H5 H6 H7 Reference

N

1 (neat) 

6.20 5.63 3.75 6.54 6.08 5.77 [16]

N

(THF) 

4.75 6.03 7.62 6.43 6.03 4.75 [17]

N
Me

CDCl3

6.40 — 4.18 6.0 5.92 5.50 [18]

N
COMe

CDCl3

6.1 — 4.6 7.2 6.9 6.2 [19]

N
CO2Me

CDCl3

7.05 — 4.69 7.44 6.24 6.36 [20]

N

EtS

Acetone-d6

6.6 6.25 4.26 — 6.4 5.96 [21]
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pentacyclic ring. Cyclizations and [3 þ 2] approaches are the most representative
synthetic strategies for building up the pyrrolizine nucleus (Figure 22.2).

22.2.4.1 By Cyclization Reactions
Formation of the second pentacyclic ring by a cyclization reaction involving 1,2-bond
formation has been widely employed for the preparation of pyrrolizine and different
derivatives. The synthesis of the parent heterocycle 1 is based on an intramolecular
Wittig reaction of the vinylphosphonium salt 50, which is obtained from formyl-
pyrrole and vinyltriphenylphosphonium bromide in the presence of sodium
hydride [25]. Numerous substituted pyrrolizines have been prepared by this strategy
from 2-acylated pyrroles [24, 26]. The same 1,2-bond formation to give the bicyclic
system is also employedwith appropriate 1,6-dicarbonyl compounds to prepare some
derivatives. For example, diketone 51 has been used to obtain a mixture of pyrro-
lizines 53 and 54 under basic conditions [27]. A similar mixture (55/56) is obtained
from the 2-formylpyrrole derivative 52 (Scheme 22.1) [27].

Several derivatives (60–62) have been obtained from pyrrolyl carboxylic acids [28],
nitriles [29], and nitroenamines [30] under acid or basic conditions through a strategy
based on N–C bond formation (3,4-bond). This approach exploits the nucleophilic
character of the pyrrole nitrogen, which can be enhanced by deprotonation with
appropriate bases (Scheme 22.2).

Cyclizations involving 2,3- and 1,8-bond formation [2] have also been used in the
synthesis of various derivatives. Representative examples of 1,8-bond formation
include the Houben–Hoesch cyclizations of 1-cyano-b-ethylpyrroles. For example,
nitrile 63 in the presence of hydrogen chloride yields the 3H-pyrrolizine derivative
64 [31] or 1-oxo-2,3-dihydropyrrolizines (65) if the nitrile is hydrolyzed to the
corresponding acid prior to reaction. Malonic acid derivative 66 in the presence of
phosphorus pentachloride gives pyrrolizin-1-one 67 under very mild conditions [32]
(Scheme 22.3).

1,2-Diacylated pyrroles have been used as appropriate substrates for the
cyclization reaction involving 2,3-bond formation. The synthesis of the 2,3-diphe-
nylpyrrolizin-1-one (69) from68 is theonly representative example of this strategy [33]
(Scheme 22.4).
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Figure 22.2 Cyclization and [3 þ 2] approaches for building up the pyrrolizine nucleus.
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22.2.4.2 By [3 þ 2] Approaches
The most useful syntheses based on a [3 þ 2] strategy are those involving 1,2/3,4-
bond formation, with 1,3-dipolar cycloaddition being one of the representative
reactions of this approach. Vilsmeier bases of pyrroles such as 70 react with
electron-deficient olefins [34] and ketenes [35] to yield substituted dihydropyrroli-
zines 71 and the 2-phenylpyrrolizin-3-one (72), respectively. Reaction of pyrrole
carboxaldehyde 73 with alkenes is also a good example of this type of strategy, which
allows the synthesis of 2-substituted derivatives 74 [36]. Vinylsulfones react to give 2-
phenylsulfonyl-3H-pyrrolizine (75). Keteniminophosphoranes react to form 3H-
pyrrolizin-3-imines (76) (Scheme 22.5) [37].

Another example of a [3 þ 2] strategy with the formation of 1,8/3,4-bonds is the
reaction of pyrrolewithmalonic acid derivatives to give 1-pyrrolizin-3-ones (77) in the
presence of phosphorus oxychloride [38] (Scheme 22.6).

22.2.5
Reactivity of Pyrrolizines

22.2.5.1 Electrophilic Attack
Electrophilic substitution on pyrrolizines is similar to that on 1,2-disubstituted
pyrroles in terms of reactivity and orientation of the electrophile. The C5 position
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is usually the most reactive, although most electrophilic reactions give mixtures of
products onC5 andC6 and/orC7positions,with the product composition depending
on the conditions.

Most pyrrolizines are unstable in dilute acids but pyrrolizine (1) is protonated in
concentrated sulfuric acid to give stable derivatives 78 and 79 in 45% and 55% yields,
respectively (Scheme 22.7) [24]. The Vilsmeier reaction of 1, by treatment with
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dimethylformamide and phosphoryl chloride at low temperature (�60 �C), affords
the Vilsmeier salt 80while from the reaction with dimethylthioformamide and acetic
anhydride derivative 81 was obtained as the main reaction product [39]. The
syntheses of cyclazine (82) [40] and azacyclazine (83) [39] have also been reported
from the reaction of 1 with appropriate iminic dienes.

Acyl Derivatives of 1 are formed by a reaction with ketenes. Good yields of acylated
derivatives 84 are obtained from the reaction of acyl chlorides in ether in the presence
of anhydrous potassium carbonate, although the 2-acetyl derivative can not be
obtained from acetyl chloride under these conditions [41]. The reaction with amyl
nitrite affords the oxime 85, which is probably formed by an electrophilic attack [24]
according to the mechanism detailed in Scheme 22.7.

Deprotonation of 1 is an easy process due to its high pKa and the aromatic character
of the pyrrolizine anion 86. The anion is usually formed with lithium bases and its
behavior resembles that of reactive carbanions towards electrophiles such as carbonyl
compounds. For example, the reaction with benzophenone gives the fulvene-like
product 87 (Scheme 22.8) [42].
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22.2.5.2 Cycloaddition Reactions
The 1,2-double bond of 3H-pyrrolizine can be involved in cycloaddition reactions. An
example of such reactivity is the reaction of 1 with the carbene generated from
dichloromethane and n-butyllithium. The addition of the carbene to 3H-pyrrolizine
gives a 3-pyrrolizinyl carbene 88 and subsequent addition to the C1–C2 bond affords
the tetracyclic pyrrolizine derivative 89, which evolves to indolizine (7) [43] by a ring
expansion process (Scheme 22.9). Tricyclic derivatives 90 and 91 are obtained in low
yield by [2 þ 2] cycloadditions with DMAD and dichloroketene generated from
trichloroacteyl chloride and activated zinc in ether, respectively [22, 44].

22.2.5.3 Reduction Reactions
The 1,2-double bond of 3H-pyrrolizine is muchmore easily reduced than the pyrrole
ring. Thus, 1 can be reduced to the dihydro derivative 92 with hydrogen at
atmospheric pressure and room temperature using a rhodium on carbon catalyst
in ether without affecting the pyrrole ring (Scheme 22.10). The same catalyst yields
the fully hydrogenated derivative (pyrrolizidine) if the reaction is carried out in
ethanol [25a]. The pH of the reaction medium is important for hydrogenation using
platinum oxide as catalyst, with acidic conditions promoting the total reduction and
neutral media favoring partial hydrogenation [33a].
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22.2.5.4 Ring-Opening Reactions
Ring-opening reactions are known in pyrrolizine and some related derivatives.
Lithium dicarbenoid species react with 1 to give an anionic intermediate 93, which
was converted into indolizine (see Scheme 22.9) and butenyne 94 [45], presumably by
the mechanism shown in Scheme 22.11. Benzoylpyrrolizines such as 95 can also be
converted into pyrroles 96 by treatment with dilute aqueous sodium hydroxide.
Initially, the pyrrolizine isomerizes to the 1H-isomer, which after two sequential
hydrolysis steps gives the pyrrole derivative 96 (Scheme 22.11) [24].

22.2.6
Derivatives

Among the 3H-pyrrolizine derivatives only oxo-derivatives warrant further consid-
eration. These derivatives are represented by 1-oxo- and 3-oxopyrrolizinones 97 and
98, both of which have high resonance energies (REPE¼ 0.0110b and 0.0155b,
respectively) that account for the high stability of these compounds [1].

The natural product pyrrolizin-3-one (98) has been synthesized as shown in
Scheme 22.12 from 2-pyrrolecarboxaldehyde [46]. Electrophilic additions have been
reported for 98with dry hydrogen chloride to give the 1-chloro-1,2-dihydro derivative
99 [47]. The halogen is readily displaced by O-nucleophiles to give methoxy, hydroxy,
or acetoxy derivatives 100 in good yields. Derivative 98 can also be brominated by N-
bromosuccinimide (NBS) under free radical conditions to give 2-bromopyrrolizin-3-
one (102) (Scheme 22.12) [47]. Wittig reactions on the parent 98 to give azafulvenes
such as 101 are also known [22].
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Examples of the above reactions for 98 have not been described for 97, which has
been prepared [32] from 66 as shown in Scheme 22.13. Examples of its reactivity are
Michael additions with some derivatives such as the 2-chloro derivative 97 [32]
(Scheme 22.13). Examples of reduction with hydride donors such as sodium
borohydride have also been described for derivatives of 97 and these reactions afford
the corresponding alcohol [48].
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22.3
Indolizines

22.3.1
General Structure and Reactivity

Indolizine (7) possesses a delocalized 10p-electron system resulting from the
combination of a p-excessive (pyrrole-like) and a p-deficient (pyridine-like) ring.
The aromatic character of indolizine is expressed by three main mesomeric con-
tributors, two ofwhich incorporate a pyridiniummoiety; other forms that incorporate
neither a complete pyrrole nor a pyridinium are less important (Figure 22.1b).

Aza-indolizines of general structure 8–14 are the most representative and inter-
esting C5-C6 heterocycles bearing and extra heteroatom (Figure 22.1b). The fully
unsaturated heterocyle 15 is known as indolizidine or 1-azabicyclo[4.3.0]nonane. The
chemistry of these bicyclic C5-C6 systems with one ring junction nitrogen atom has
been the subject of previous surveys. Reference textbooks on this subject include
Comprehensive Heterocyclic Chemistry I [49] and Comprehensive Heterocyclic Chemistry
II [50]. Heterocyclic series such as Advances in Heterocyclic Chemistry have also dealt
with indolizines [51] and the other significant heterocycles included in this chapter.
Additionally, a review covering the chemistry of pyridines containing a ring-junction
nitrogen [52] and the excellent text from Joule and Mills [53] and some of the
references cited therein have been considered in this chapter and the reader is
referred to them for further coverage of this topic.

22.3.2
Relevant Natural and/or Useful Compounds

Aromatic indolizines are very rare in nature but the fully reduced (indolizidine)
nucleus is widespread, particularly in alkaloids. These compounds belong to two
main classes: the amphibian and the polyhydroxy indolizidine alkaloids. The first
family belongs to a large class of compounds isolated from the skin of neotropical
brightly colored frogs and they have attracted interest in recent years for their
numerous biological properties, including neurotoxicity, potentiation of muscle
contraction, and immunomodulatory activity [54]. This interest has resulted in the
development of numerous total syntheses of these alkaloids and several reviews have
been published on the subject [55]. Most of the compounds that contain the
perhydroindolizine ring with substituents in positions C3, C5, C6, and C8 belong
to the class of gephyrotoxins. The structures of some relevant compounds (103–107)
are detailed below and relevant references can be obtained for 103a [56].

The polyhydroxyndolizidine alkaloids (sugar mimetics), the most important
examples of which are castanospermine (108), lentiginosine (109), and swainsonine
(110), are interesting due to their potent glycosidase inhibitory activity [57]. Glyco-
sidases play a crucial role in many important biological processes, opening up the
possibility of these compounds to behave as therapeutic targets for the treatment of
diseases like diabetes, cancer, and viral diseases. Therefore, a great deal of interest in
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the synthesis of this class of natural compounds has been shown in recent years and
relevant references related to their synthesis can be found for 108 [58].
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Other natural products bearing the indolizidine nucleus have been isolated. Some
representative structures (111–115) are shown and relevant references concerning
the synthesis of these products can be seen for 111 [59]. Other important compounds
include A-289 099 (116), an orally active antimitotic agent against various cancer cell
lines that acts through inhibition of tubulin polymerization by binding at the
colchicine site [60]. A series of indolizidinones of general structure 117 has been
designed and synthesized to evaluate their inhibitory effect on Factor VIIA (FVIIa) in
comparison to thrombin [61]. The bicyclic 2-pyridone derivative 118 has been
described as a 3CP (human rhinovirus 3C protease) inhibitor and exhibited potent
antirhinoviral activity in cell cultureswhen tested against different human rhinovirus
(HRV) serotypes [62]. The synthesis and cytotoxicity of septicine (119) and several
analogues has been reported [63].
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22.3.3
Relevant Physicochemical Data, Computational Chemistry, and NMR Data

The reactivity of the system is characterized as outlined above: the five-membered
ring undergoes electrophilic substitutions whereas the six-membered ring shows
reactivity similar to that of a pyridine ring. Recent density functional theory (DFT)
calculations (B3LYP/6-31G�) showed that the pyrrole-like ring has an extended
highest occupiedmolecular orbital (HOMO), whereas the lowest unoccupiedmolec-
ular orbital (LUMO) is mostly located on the pyridine ring, a distribution that is not
appreciably varied by the introduction of an electron-withdrawing group at the C6
position [64]. Moreover, another study performed on substituted indolizines (DFT,
B3LYP/6-31G) indicated that C3 is always the carbon atom with the highest electron
density and with the largest atomic coefficient in the HOMO and is, therefore, the
preferential site of attack by an electrophile [65].

The NMR spectra of indolizidine derivatives have already been extensively
described [54]. More recently, the use of mono- and bidimensional 1H and 13C
NMR spectra has allowed the structural assignment of natural compounds posses-
sing an indolizidine nucleus [66]. Table 22.2 gives typical 1H and 13C NMR chemical
shifts of the indolizine nucleus.
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22.3.4
Synthesis of Indolizidines

22.3.4.1 Intramolecular Condensation: Approaches Related to the Chichibabin
Synthesis
The most general approach to indolizines is the Chichibabin synthesis
(Scheme 22.14) [70]. This route involves quaternization of a 2-alkylpyridine with
an a-haloketone followed by base-catalyzed intramolecular cyclization by deprotona-
tion of the pyridinium o-methyl group, which is easier when the alkyl group is further
activated. A representative process is the synthesis of 2-phenylindolizine (120) [71].

The synthesis of indolizines by the Chichibabin reaction has been revisited and
some variations have been proposed. The process can be simplified by using the
pyridine as a basic catalyst, thus producing the indolizine in one step. Indolizine 121

Table 22.2 1H and 13C NMR chemical shifts for indolizine (7).
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(Scheme 22.15) bears a triazole moiety that has proved useful in the construction of
benzo-annulated indolizines [72].

A process related to the Chichibabin approach has been described in which cyclic
iminium ylides like 122 can generate, after solvolysis, intermediates 123, which can
afford the corresponding indolizin-2-ones 124 through a Dieckmann process
(Scheme 22.16) [73].

Another related process has been described by Sun and co-workers and involves
the preparation of 3-acylated indolizines 126 (Scheme 22.17) from picolinium
salts 125 and an iminium salt. This is a straightforward process with short reaction
times, low cost, and easy isolation of the products [74].

22.3.4.2 By a [3 þ 2] Approach: 1,3-Dipolar Cycloaddition
Another usefulmethod involves the intermediacy of a pyridinium ylide as a 1,3-dipole
in a cycloaddition. The 1,3-dipolar cycloaddition of pyridinium ylides such as 128with
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electron-deficient alkenes and alkynes has long been used. Scheme 22.18 shows an
example of the synthesis of substituted indolizine derivative 129. More recently, this
reaction has been applied to the synthesis of 3-unsubstituted indolizines 131 using
(carboxymethyl)pyridinium halides, which underwent decarboxylation upon cycload-
dition [75]. The reactionwas performed using electron-deficient alkenes together with
a mild oxidant such as MnO2 to obtain the fully conjugated product (Scheme 22.18).

A recent method for the synthesis of the indolizine skeleton is represented by a
three-component reaction between a-bromoketones, pyridine, and ethyl propiolate
or diethyl acetylenedicarboxylate. These three reagents, undermicrowave irradiation
and catalysis by basic alumina, afford a wide variety of 3-arylindolizines 132
(Scheme 22.19) [76].

Another variation of this procedure is provided by the use of N-(silylmethyl)-
pyridinone analogues 133, which through 1,4-silatropy and subsequent 1,3-dipolar
cycloaddition afford the corresponding indolizines 134 (Scheme 22.20) [77].

A useful method for the synthesis of 1-unsubstituted 2-arylindolizines 136 is
provided by the 1,5-dipolar cyclization of pyridinium ylides in the presence of the
oxidant tetrakis(pyridine)cobalt(II) dichromate (TPCD), which oxidizes the interme-
diatedihydroindolizine135 (Scheme22.21).Thestudydemonstrated that thepresence
of an aryl group on the double bond was necessary for the reaction to occur [78].
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22.3.4.3 Organometallic Processes
Alkenyl and alkynyl Fischer carbene complexes 137 react with pyrrole imine 138 to
give, through a 1,2- and 1,3-metal migration, respectively, indolizine derivatives 140
at a different level of unsaturation [79] (Scheme 22.22).

22.3.4.4 Rearrangement of Acetylenic Derivatives
Allene-substituted lactams or cyclic imines are useful intermediates in the synthesis
of indolizine derivatives. The former are stable and require a Pd(0) catalyst and
the presence of phenyl iodide to react [80], whereas the latter are produced in situ
and react immediately [81]. On the other hand, the substituted pyridine 141 was
proposed to undergo a base-induced propargyl allenyl isomerization. Allene 142
underwent the transformation into 143 [81] through the mechanism proposed in
Scheme 22.23.

Variations on the above scheme have been studied in recent years. For example, 2-
pyridyl-substituted propargylic acetates 144 offer an efficient route to C1 oxygenated
indolizines 145 [82] according to mechanism shown in Scheme 22.24. A similar
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process has been described with the use of iodine in dichloromethane, which
produces the corresponding 2-iodoindolizine [83].

Further variations on the strategy described in Scheme 22.24 have allowed the
synthesis of indolizin-1-ones 147, starting from 2-pyridyl-substituted propargyl
alcohols 146 (Scheme 22.25) [84]. The same process was simultaneously
described [85] with the use of either Pt or InCl3. Furthermore, the same process
has also been described without the need for a catalyst by the use of microwaves in
ethanol [86].

A related process, mediated by organocopper reagents, has been described. In this
approach propargyl mesylates 148, when treated with an organocopper reagent,
undergo a cascade involving addition and cyclization to give the indolizine 150 [87] via
the allenic intermediate 149 (Scheme 22.26).
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22.3.5
Reactivity of Indolizidines

Indolizine is an electron-rich system and the easiest reactions for this system are
mainly electrophilic substitutions, which occur as readily as for indole and prefer-
entially at C3. Indeed, only when this position is blocked does the attacking
electrophile enter at C1. Consistent with their similarity to pyrroles, indolizines are
not attacked by nucleophiles and there are no examples of nucleophilic displacement
of halide.

22.3.5.1 Reactions with Electrophilic Reagents
Indolizine (pKa 3.9) [88] is much more basic than indole (pKa �3.5) and the implied
relative stability of the cationmakes it less reactive and thus resistant to acid-catalyzed
polymerization. Indolizine protonates at C3, but 3-methylindolizine protonates
mainly at C1; other derivatives such as 1,2,3-trimethyl- and 3,5-dimethylindolizines
protonate exclusively at C3 (Scheme 22.27).
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The nitration of indolizines with nitric acid and with nitric and sulfuric acids [89]
produced mixtures. The major product was l-nitro-derivative 153 (Scheme 22.28),
when the process was performed at 0 �C, and 1,3-dinitroindolizines 154when higher
temperatures were used. Borrows, Holland, and Kenyon have also studied the effect
of acetic anhydride and nitric acid on 2-methylindolizine but were unable to isolate
any solid product, while Scholtz [90] reported that indolizine cannot be nitrated
because of its sensitivity to oxidizing agents. Treatment of indolizine and 2-methy-
lindolizine with nitric acid in excess acetic anhydride at�70 �C gavemoderate yields
of the corresponding 3-nitroindolizines 155 and other isomers were not detected
(Scheme 22.28) [91]. Thus, indolizines fall into the category of aromatic substrates
that show awide variation in the proportion of isomers according to the conditions of
nitration. By analogy with other reactive aromatic species, it appears possible that the
nitronium ion is the effective electrophile in both instances, whereas the substrate
varies with the solvent. In the case of acetic anhydride the substrate is presumably the
free indolizine, which is nitrated at C3 – that is, the position commonly susceptible to
electrophilic attack.With nitric or sulfuric acid as solvent, however, where 1-nitration
predominates, the species that is attacked should be a 3-protonated indolizine. In any
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case, the low yields obtained in most of the examples are due to extensive decom-
position of the heterocyclic ring associated with oxidation.

The process based on the use of nitric acid/acetic anhydride at low temperature has
been used to nitrate functionalized indolizines such as 8-nitro derivatives [92]. The
use of nitric/sulfuric acid to produce 1,3-dinitro derivatives 154, as indicated in
Scheme 22.28, has been described in relation to the development of new antimi-
crobial agents (Scheme 22.29) [93].

Reaction of 1- and 3-substituted indolizines with HNO2 gave ipso-substituted
nitro derivatives 157 (Scheme22.30). An electron-transfer process has beenproposed
for the initial step, ultimately yielding nitro derivatives either at the 1- or 3-
position [94].

A similar process to obtain 3-nitrosoindolizines, using sodium nitrite and hydro-
chloric acid, has been described by Hickman and Wibberly [95] along with diazo-
coupling [96]. These reactions occur at C3 in all cases.

Acylation of indolizines was initially described by Scholtz [90] but the process has
been extensively applied by simply heating the substrate with the acyl halide or
anhydride in a nonpolar solvent. In certain cases the use of a base improves the final
yield. As in other electrophillic substitutions, acylation occurs at C3, but if this
position is occupied then C1 is acylated.

A classical paper describes acylation of 2-phenylindolizine using oxalyl chloride
(Scheme 22.31) [97]. Related processes with oxalyl derivatives have been described
with essentially the same procedure and results [98]. A similar procedure has been
performed using pyridine as a base at �78 �C [98b].

A very simple method has been described for the functionalization of indolizines
159 to afford the acyl derivative 160 [99] in excellent yield (Scheme 22.32). Very
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similar results are described in other papers as part of the synthesis of differently
functionalized indolizines [100].

Another representativemethodhasbeendescribedbyBabaev andBobrovskii [101],
who studied the acylation of indolizines with aliphatic and aromatic halides. Small
percentages of the 1-isomer 162 were detected on acylation of 2-methylindolizine
(Scheme 22.33).

Ethyl chloroformate has recently been used to generate the corresponding diester
163 from 6-ethoxycarbonylindolizine and, as expected, this reaction occurs in the 3-
position (Scheme 22.34) [102]. A similar process involving thermal treatment using
b-oxoesters as acylating agents has been described [103].

Similarly, acylation has been performedusing isocyanatophosphoryl chloride [104]
to yield the amide 164, which can be transformed further (Scheme 22.35).
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Mannich bases such as 165 have been prepared from indolizine derivatives,
following the general pattern of reactivity, with selective attack on C3 [105] as
indicated in Scheme 22.36. Other papers have been published concerning different
medicinal activities of these compounds [106].

Vilsmeier formylation has also been used in the field of indolizines to generate
aldehydes, mostly in the 3-position of the ring (Scheme 22.37) [107]. Depending on
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the substrate and the reaction conditions, formylation does not stop at aldehyde 166
but continues to give 167.

22.3.5.2 Reactions with Oxidizing Agents
Indolizines are special in terms of their electronic structure in that they have a
bridgehead nitrogen atom, which causes a large dipole moment in the molecule,
making the pyridine electron deficient and the pyrrole electron rich. This structure
makes the system and its derivatives sensitive to light and to aerial oxidation, which
leads to destruction of the ring system.

Despite the instability associated with the system, several groups have published
processes that involve the use of different oxidants. As a representative example,
Tielmann andHoenke [108] have described the oxidation of 8-aminoindolizine 168 to
form, in DMSO solution and in the presence of air, the quinonoid structure 169
(Scheme 22.38).

Similarly, Xu and co-workers [109] have described the photooxygenation of
indolizines like 170, which gives mixtures of products with a pyridine structure
through ring-opening reaction of the pyrrole moiety (Scheme 22.39).

22.3.5.3 Reactions with Nucleophilic Reagents
On considering the structure of indolizine, one would expect that C5 of the system
would be themost suitable for nucleophillic attack based on the earliest statements by
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Coulson [110] and Fukui [111]. Nucleophillic attack, however, has only been con-
firmed for indolizines with an additional electron-withdrawing group at the C6 or C8
position. For example, 8-nitroindolizines have been described to undergo amination
at position C5 (SNH substitution) under the action of secondary amines [112]. In
addition, substitution of the chloro-substituent in 5-chloro-6-cyanoindolizine deri-
vatives 174 has been studied by Babaev and co-workers [113], who described the
process with oxygen, nitrogen, and sulfur nucleophiles to give derivatives 175–178
(Scheme 22.40). The reactivity of simple 5-haloindolizines remains unclear [114].

22.3.5.4 Reactions with Bases
2-Phenylindolizine can be lithiated at C5 and the resulting lithium derivative has
been reacted with ClSiMe3 and other C-electrophiles [115]. The same process has
been optimized by Babaev and co-workers [116], using the lithium derivative to
prepare the corresponding 5-iodoindolizine. This group also described the same
lithiation to obtain, using parallel chemistry, the corresponding 5-bromo- and iodo
derivatives, which were later used as substrates in Pd-catalyzed reactions
(Scheme 22.41) [117]. In addition, 5-methylindolizine undergoes lithiation at the
methyl group [118].

22.3.5.5 Reactions with Reducing Agents
Catalytic reduction in acidic solution of the indoliziniumcation in the presence of Pd/
C has been described as giving a pyridinium salt [119]. Complete saturation,
affording indolizidines, has been achieved with reductions over platinum [120].
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The most recent results concern a study into the reduction of substituted pyrroles,
with the reduction of indolizine 181 to the corresponding indolizidine 182 [98b]
(Scheme 22.42). As indicated by related examples, the carbonyl group is reduced
before the indolizine system.

Kim andGevorgyan [121] have described recently the Birch reduction of indolizine
derivatives. As a result, the simpler indolizines yielded 5,6-dihydro derivatives.

22.3.5.6 Electrocyclic Reactions
Despite being a ten-electron aromatic p-system, indolizine apparently participates in
reactionswith activated acetylenes such asDMAD.When the reactionwas carried out
in the presence of a noble metal catalyst, the initial adduct 183 was converted into an
aromatic cyclazine 184 (Scheme 22.43) [122].
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A similar process has been studied by Babaev and co-workers [117] starting from a
5-bromoindolizine derivative. In this case, the dihydro analogue to 183 aromatizes,
not by oxidation, as indicated inScheme22.43 (so thePd catalyst is not necessary), but
by HBr elimination, which produced higher yields.

22.3.5.7 Reactions of C-Metallated Indolizines
A classical paper from Renard and Gubin concerns the preparation of 5-Li-indoli-
zines and the reactions with different electrophiles [115]. However, the most recent
advances in the chemistry of metallated indolizines concern the chemistry of
palladium-catalyzed reactions. For example, Gevorgyan and co-workers [123] have
described a Heck arylation of indolizines (Scheme 22.44). A combination of kinetic
and computational studies indicates an intermediate like 185 in the mechanistic
proposal for the formation of 186.

As indicated above, Babaev and co-workers [117] have described a halogenation
method to prepare 5-haloindolizines and a Suzuki arylation performed in parallel to
obtain 187 (Scheme 22.45). The use of the iodo analogues as starting materials
usually led to higher yields.

Themost recent addition to this field has been the dimerization of 188, which was
described by You and co-workers [124], through homocoupling using a combination

N
R

1
Br

R
2

N
R

H Pd-Ar

N
R

1

R
2

PdCl2(PPh3)2

KOAc, H2O

NMP, 100 ºC

186a: R1 = COOEt, R2=NO2 (91%)

185

186b: R1 = Me, R2 =OMe (73%)

+

+

Scheme 22.44

N
R

1

X

B(OH)
2

R
2

R
2

N
R

1PdCl2
1,4-dioxane/H2O

K2CO3

80 ºC, 24h

X = Br, I

+

187a: R1= t-Bu, R2=OMe (70%)

187b: R1= Ph, R2=OMe (64%)

Scheme 22.45

22.3 Indolizines j2019



of palladium and copper acetates (Scheme 22.46). The synthesis has been carried out
on a wide variety of functionalized indolizines and has also been used as a key step in
the preparation of a macrocyclic compound.

22.3.6
Derivatives

Only a few functional derivatives of this system are available at present. To give a
general view, it is necessary to bear in mind the easy cleavage of carboxyl and acyl
groups on heating with aqueous acid and the instability of amino indolizines, which
are unstable to oxidation and cannot be diazotized, but which can be converted into
stable amides.

22.4
Quinolizinium Salts

22.4.1
General Structure and Reactivity

The C6-C6 fused bicyclic ring systems containing a bridgehead nitrogen atom are
represented by different heterocycles depending on the oxidation state of the system.
The representative heterocycle of the fully aromatized structure is the pyrido[1,2-a]
pyridinium, which is known as quinolizinium (16, Figure 22.1c), an approved name
that has the advantage of simplicity but is not consistent with the rules of nomen-
clature, which assign this name to any of the cations formed by protonation of a
quinolizine. The quinolizines themselves (17–19) are the archetypes of partially
unsaturated C6-C6 fused bicyclic systems. None of the three possible isomeric
quinolizines have been isolated although 4H-quinolizine (17) is documented as
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having a transient existence. Quinolizidine (20) is the representative heterocycle of
the C6-C6 fully saturated system containing a nitrogen ring-junction.

Replacement of a carbon atom and its attached hydrogen by heteroatoms in
quinolizines leads to various heterocycles. The aza analogues of 16 are known as
azaquinoliziniums, a simple and convenient name that is not used for the rest of
these systems, probably because the presence of other heteroatomsmay lead to some
confusion. Of the four possible azaquinolizinium isomers (21–24, Figure 22.1c),
the 3-azaquinolizinium system 23 is currently unknown. A detailed discussion of the
chemistry and properties of non-aromatic and non-cationic systems is beyond the
scope of this chapter. Likewise, an exhaustive discussion of the benzo derivatives of
these systems is not undertaken, although a brief survey of the properties and
chemistry of tricyclic and polycyclic cations having a bridgehead quaternary nitrogen
is included at the end of this chapter.

Thefirst review covering the literature on these polycyclic aromatic nitrogen cation
systems appeared in 1961 [125] and in 1965 the chemistry of quinolizinium salts was
reviewed by Thyagarajan [126]. Jones [127] published a review covering the chemistry
of quinolizinium and its benzo derivatives, and a fourth review is devoted to
polycyclic aromatic nitrogen cations [128]. Two more reviews appeared [129, 130]
before a chapter in Comprehensive Heterocyclic Chemistry in 1984 [131] and another
chapter in the updated version in 1996 [132], which provided a comprehensive
treatment of these cationic heterocycles. Amore recent review has been published by
Ihmels [133].

22.4.2
Relevant Natural and/or Useful Compounds

The quinoliziniumcation is present in the structure of relevant natural alkaloids such
as the berberine family. Berberine (190) is one of the most widely distributed of all
alkaloids, having been found in plants of the nine botanical families [134, 135].
Berberine and related protoberberine alkaloids such as palmatine (191) [136] and
jatrorrhizine (192) incorporate the dihydro form of the quinolizinium system.
Berberine has been used extensively in folk medicine [137] and exhibits a wide
range of pharmacological activities [138]. Coralyne (193), thefirst reported compound
containing the fully aromatic quinoliziniumnucleuswas described by Schneider and
Shroeter in 1920 [139]; it is another important member of this group of alkaloids and
possesses significant antitumor activity [140] and interacts with DNA through
intercalation [141].

Many relevant alkaloids are based on a betainic structure (neutral conjugated
molecules that can be represented only by dipolar structures in which both the
negative and the positive charges are delocalized within the p-electron system) [142].
Quinolizinium ylides are well-known conjugated heterocyclic mesomeric betaines
(CMBs) that are present in different families of alkaloids such as those based on the
indolo[2,3-a]quinolizinium system represented by sempervirine (194), flavopereir-
ine (195), afrocurarine (196), neooxygambirtannine (197), and flavocarpine (198),
among others [143].
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The quinolizidine alkaloids are also widely distributed in nature; nearly 30% of all
known alkaloids belong to the quinolizidine-indolizidine family. Some representa-
tivemembers of this group of alkaloids are the structurally simple lupinine (199) and
nupharidine (200). Tetracyclic and tricyclic systems are exemplified by the Lupinus
alkaloid sparteine (201) and the Lythrceae alkaloid vertaline respectively (202) [144].
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Different pharmacological properties have been described for quinolizinium
derivatives. For example, 2-aminoquinolizinium compounds are anthelmintic
agents [145], nolinium bromide (203) possesses antispasmodic and antisecretory
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properties [146], 6-hydroxybenzo[c]quinolizinium (204) is a potent protein kinase
CKII inhibitor [147] and the azaquinolizinium derivatives 205 and 206 exhibited
DNA intercalating properties and antiproliferative activity [148], acridizinium deriv-
ative 207 has been described as a fluorescent probe for DNA and protein detec-
tion [149] and the cyanine dyes 208 are based on a benzo[a]quinolizinium
system [150].

Many quinolizidine derivatives also show pharmacological activities and remark-
able affinity towards various receptors. For example, the ortopramides 209 showgood
gastric prokinetic properties [151]. (þ )-Butaclamol (210) is a potent neuroleptic
agent [152], emetine (211) is an antitumor and amoebicidal agent [153], and the
quinolizine derivative 212 is an inhibitor of the angiotensin-converting enzyme
(ACE) [154].
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22.4.3
Relevant Computational Chemistry, and Physicochemical and Spectroscopic Data

The structures of quinolizinium hexafluorophosphate [155] and some benzo[b]
quinolizinium derivatives [156] have been determined by X-ray diffraction analysis.
As expected, the quinolizinium ring is planar; the maximum deviation from the best
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plane through the non-Hatoms is for atomC1,which deviates by only 0.010(1) A
�
. The

most significant structural differences between this aromatic cation and naphtha-
lene [157] are contractions of the N�C bond lengths in 16, by 0.04A

�
for N5�C9a and

by 0.03A
�
for N5/C9a�C1.

Quinolizinium and related heterocyles are isoconjugate with the corresponding
aromatic hydrocarbons and the delocalization energy or resonance energy of the
heteroaromatic cations is nearly the same as for the parent hydrocarbon [142], as
shown by the calculated values for quinolizinium and benzoquinolizinium
(Table 22.3).

Electronic densities of quinolizinium and benzo derivatives have been calculated
using different molecular orbital methods [(H€uckel molecular orbital theory
(HMO) [142] and the Pariser–Parr–Pople method (PPP) [158]] and results for 16
are summarized in Table 22.4. Perturbation theory supports the idea that the azonia
nitrogen gathers electronic density from the carbon atoms of opposite parity.

In the 1H NMR spectrum of quinolizinium bromide [159] the signals due to H2
and H3 appear in the aromatic region at lower frequencies (d¼ 8.43 and 8.14 ppm,
respectively) than those of H1 and H4 (d¼ 8.69 and 9.58 ppm, respectively). The H4
andH6protons appear to be strongly deshielded by the effect of the positive charge of
the nitrogen, an effect that can also be observed in benzo- and naphthoquinolizinium
cations. Table 22.5 shows the chemical shifts and coupling constants for quinolizi-
nium and some simple quinolizinium derivatives [160].

Table 22.6 shows the 13C NMR resonances of the quinolizinium cation and some
simple derivatives [161]. In quinolizinium the chemical shifts of theC1 andC3 atoms
appear at lower frequencies than those of the C2 and C4 atoms, an observation that is
consistent with data reported for electron densities and electrophilic reactivity, which
is predicted to occur preferentially at theC3 andC7 positions. The 13C14N coupling is
responsible for the broadening of C4 and C6 signals. The 1J(CH) values for these two
carbons are also higher than those for the other carbon atoms. Substitution leads to
either shielding or deshielding of the carbon towhich the substituent is bonded. This
effect is particularly significant in the case of the hydroxy group.

Quinolizinium, azaquinolizinium, and polycyclic cations that have a quaternary
bridgehead nitrogen are chromophoric molecules that absorb light by a transition of

Table 22.3 Delocalization energies (DE) for aromatic hydrocarbons and azonia heteroaromatic
cations.

Compound DE

Naphthalene 3.68
Quinolizinium (16) 3.89
Anthracene 5.32
Benzo[b]quinolizinium (25) 5.53
Phenanthrene 5.45
Benzo[a]quinolizinium (26) 5.66
Benzo[c]quinolizinium (27) 5.67
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the electronic state of the aromatic p-electron system. The absorption spectrum of
quinolizinium iodide [162] shows well-defined absorption bands in the near-UVand
visible regions at 226 (log e 4.25), 272 (3.42), 283 (3.47), 310 (4.03), 316.5 (3.98), and
323.5 (4.23) nm. Comparison with naphthalene shows a bathochromic shift due to
the presence of the cationic nitrogen.

Noncovalent interactions between these heteroaromatic chromophores and bio-
molecules such as DNA causes changes in the UV absorption spectra of the
chromophore (usually hyperchromic and bathochromic effects), which in turn
provide information about whether an interaction takes place. The benzo[b]quino-
lizinium chromophore exhibits pronounced emission properties [163].

Chromophores based on the quinolizinium ion are colored solids that have high
melting points, which usually increase with the molecular weight of the compound
(Table 22.7). Changes in the counter anions can significantly modify the melting
points of these cationic compounds and in some cases these salts can even become
hygroscopic. Some derivatives of these polycyclic cations are fluorescent at room
temperature.

Table 22.4 Electron densities of the quinolizinium cation (16).

Method C1 C2 C3 C4 N5 C9a

HMO 1.005 0.916 1.011 0.856 1.550 0.874
PPP 1.010 0.976 1.013 0.940 1.185 0.940

Table 22.5 1H NMR chemical shifts (ppm) of quinolizinium and some derivatives (in DMSO-d6).

Substituent H1 H2 H3 H4 H6 H7 H8 H9

H 8.65 8.42 8.15 9.49 9.49 8.15 8.42 8.65
2-OH 7.68 — 7.62 9.23 9.06 7.63 7.99 8.23
2-Br 9.07 — 8.36 9.42 9.51 8.13 8.41 8.54
3-Me 8.49 8.16 — 9.56 9.50 7.96 8.24 8.53
4-NMe2 8.26 8.46 7.89 — 9.54 8.12 8.36 8.56
4-Br 8.79 8.59 8.34 — 9.69 8.25 8.52 8.74

Table 22.6 13C NMR chemical shifts (ppm) of quinolizinium and some derivatives (in DMSO-d6).

Substituent C1 C2 C3 C4 C6 C7 C8 C9 C9a

H 127.9 138.0 125.0 137.0 137.0 125.0 138.0 127.9 143.0
2-OH 108.9 164.4 117.0 139.2 135.5 120.8 135.9 125.7 145.9
2-Br 130.1 133.2 128.4 137.4 137.4 125.2 139.2 127.1 143.4
3-Me 126.1 139.0 134.6 134.0 135.1 123.6 135.7 126.6 140.5
4-Br 137.8 126.5 131.5 128.0 136.7 129.8 138.7 128.8 146.6

22.4 Quinolizinium Salts j2025



The low volatility and thermal degradation of quinolizinium and related cations
precludes the gathering of useful information from themass spectra of these cations
using the electron impact ionization (EI) technique. It is necessary to use fast atom
bombardment (FAB) and field desorption (FD) techniques to obtain information
about molecular ions of the cations.

22.4.4
Synthesis of Quinolizinium Salts

All of the synthetic methodologies reported for the construction of the quinolizinum
cation are based on a pyridine ring, which is used as a template to build up the second
heterocyclic ring. Depending on the number of atoms of the pyridine or pyridine
derivative involved in the formation of the bicyclic system, there are different general
approaches to the quinolizinium nucleus and the most relevant are summarized
here.
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22.4.4.1 By [3 þ 3] Approaches
In 1920 it was reported that treatment of the natural alkaloid coralyne (193) in a
strongly alkaline solution led to a new compound that in an acidicmediumgenerated
coralyne once more (Scheme 22.47) [139]. It is assumed that this is the first example
of cyclization leading to the quinoliziniummoiety and this inspiredWoodward in his
quinolizinium synthesis used in the total synthesis of the methochloride of sem-
pervirine (194). The Woodward method is the first [3 þ 3] approach to the quino-
lizinium system [164] involving a 1,3-dicarbonyl equivalent and a 2-methylpyridine
(picoline) (Scheme 22.47).

Table 22.7 Physical properties of some quinolizinium cations.

Counterion Mp (�C) Solvent Appearance

Iodide 220–230 (dec) EtOH/EtOAc White crystals
Picrate 180–181 EtOH Yellow needles
Perchlorate 285–288 EtOH Yellow needles
Bromide 260–261 EtOH White crystals
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The drawbacks of this method are the limited variety of substituents accessible
(only alkyl and phenyl substituents are reported), the low yields obtained in the
preparation of most of the substituted quinolizinium compounds (21–60%), and the
parent quinolizinium itself, which is reported to be obtained in very poor yield.
Moreover, the presence of at least one substituent at the C2 position seems to be
critical for the success of this reaction. In a variant of this method the carbonyl group
is protected as an acetal or ketal, with compound 213 also being an intermediate. The
acidic conditionswere achievedwith ethanolic picric acid, acetic anhydridewith a few
drops of sulfuric acid, or dry hydrobromide in acetic anhydride, with the latter being
the best conditions [161b, 165].

Boekelheide andGall described the first synthesis of the parent quinolizinium salt
(16) using the same [3 þ 3] strategy [166]. In this case the reaction of 2-picolyllithium
with b-ethoxypropionaldehyde gives the corresponding alcohol, which by consecu-
tive treatment with hydroiodic acid and potassium carbonate is converted into the
tetrahydroquinolizinium alcohol. Dehydration followed by dehydrogenation
yields 16 in an overall yield close to 5%, although yields obtained in the final
dehydrogenation step of the dihydroquinolizinium derivative 215 have thus far been
low (Scheme 22.48).

A more useful [3 þ 3] approach to 16 and some derivatives involves the reaction
between 2-cyanopyridine and 3-ethoxypropylmagnesium bromide [167] to give the
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corresponding ketone after hydrolysis of the resulting imine. Cleavage of the ether
with hydrobromic acid allows the formation of the bromide, which cyclizes to the
bicyclic ketone 216 by heating in chloroform. This ketone is the common interme-
diate to produce 16 by heating under reflux in acetic anhydride [168] and can also give
1-hydroxy-, 2-hydroxy- and 2-bromoquinolizinium derivatives (217–219) using sim-
ple reagents [169]. Ketone 216 can be obtained in better yield by reaction of 2-
ethoxycarbonylpyridine and c-butyrolactone in the presence of NaH followed by
treatment with hydrobromic acid to produce decarboxylation, bromination, and
cyclization (Scheme 22.49) [170].

The mechanism of the aromatization of 216 to 16 is thought to occur via the enol
acetate 220, which rearranges to the 1,4-dihydro derivative 221. Elimination of acetic
acid affords the fully aromatized quinolizinium cation (Scheme 22.50).

The 3-bromoquinolizinium derivative 222 is obtained by reaction of 5-bromo-2-
ethoxycarbonylpyridine and c-butyrolactone [170]. This method also allows the
preparation of the 2-, 3-, and 4-methylquinolizinium salts (223–225) by using 3-
ethoxypropylmagnesiumbromideswith the appropriate substitution [168]. 1-Methyl-
quinolizinium picrate (226) can be obtained by reaction of 3,3-diethoxypropylmag-
nesium chloride with 2-acetylpyridine [165c] (Scheme 22.51).

4-Bromo- and 4-hydroxyquinolizinium salts are also prepared by a [3 þ 3]
approach involving the reaction at 180 �C of ethyl 2-pyridylacetate and diethyl
ethoxymethylenemalonate [171]. The quinazolone 227 – initially formed on heating
under reflux in hydrochloric acid – yields the 4-hydroxyquinolizinum derivative 228,
which was converted into 4-bromoquinolizinium bromide (230) by reaction with
phosphorus tribromide (Scheme 22.52) [160b]. NMR studies have shown that 4-
quinazolone (229) is the main component in the equilibrium of the tautomeric
species [172].

Malondialdehyde (and its acetal) and malonic acid derivatives have also been
successfully used in the reaction with 2-pyridylacetonitrile to form 1-cyanoquinoli-
zinium derivatives, although the 1-cyanoquinolizinium perchlorate 231a was only
obtained in 8% yield [173] (Scheme 22.53).
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22.4.4.2 By [4 þ 2] Approaches
The Westphal reaction was described in 1961 [174] and is the representative [4 þ 2]
approach to a wide variety of substituted quinolizinium salts and some polycyclic
cations based on this system. The partners for this synthesis are a pyridinium salt
(232) bearing active methylenes attached directly to the N1 and C2 positions (1,4-
dinucleophile) and a 1,2-dicarbonyl compound (233) (1,2-dielectrophile). In the
presence of a base (usually a secondary or tertiary amine or NaHCO3) a double
condensation reaction occurs to give the quinolizinium system.

Nowadays, the Westphal condensation can be viewed as a general process
involving different types of pyridinium (or azinium) salts, namely, C�C, N�C,
N�N, and C�N substrates, and different 1,2-dicarbonyl partners (Scheme 22.54) to
afford quinolizinium and aza- and diazaquinolizinium cations [175]. While C�C,
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N�C, andN�Nsubstrates arewell represented inWestphal-like reactions, attempted
condensations involving C�N substrates have been unsuccessful to date.

The first example of this reaction involved the synthesis of various substituted
quinolizinium salts 234 by reaction of N-alkyl-substituted 2-picolinium salts and 1,2-
diketones in the presence of an organic base (Scheme 22.55) [174]. The reaction was
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successful with different alkyl- and aryl-diketones and quinones and pyridinium salts
bearing electron-withdrawing substituents at N1 to facilitate ylide formation.

The condensation of 1-ethoxycarbonylmethyl-2-hydroxymethylpyridinium and
diacetyl and benzyl led to 1-hydroxyquinolizinium derivatives 235a,b in 5% and
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60% yields, respectively. 1-Amino- and 7-aminoquinolizinium salts 236 were also
obtained from appropriate picolinium salts bearing protected amino groups and 2,3-
butanedione and 3,4-hexanedione, in ethanol, using di-n-butylamine as the base
(Scheme 22.56).

As a result of the large number of studies and applications for this useful
reaction [175] the following conclusions have been established:

1) The choice of base, solvent, and reaction conditions play a significant role in the
success of the reaction.

2) The reactivity of the 1-methylene is mainly influenced by the nature of the
stabilizing group, whereas the reactivity of the a-alkyl substituent strongly
depends on the heterocyclic moiety and the presence or absence of further
substituents (methyl or alkyl/arylmethyl groups), which could eventually stabi-
lize canonical forms without charge separation (anhydrobases) and these would
predominate in the resonance hybrid and make the intermediate less reactive.

3) The presence of a carbonyl moiety in the group attached to the quaternary
nitrogen usually results in lower yields of the quinolizinium cation due to the
competitive Chichibabin reaction, which involves a cyclization leading to 2-
indolizin-2-one derivatives.

4) In the reaction of azinium salts bearing N-ethoxymethylcarbonylmethyl sub-
stituents and 1,2-diketones the ester group was lost in most of the isolated
quinolizinium salts. It was proved that hydrolysis and decarboxylation was an
easy process if the resulting quinolizinium salt is partially soluble in the reaction
medium, otherwise the ester group remained in the condensation product.

The regioselectivity of this condensation has also been investigated for C�C and
N�C substrates with different unsymmetrical 1-aryl-2-propanediones under basic
conditions [176]. Deprotonation of the starting salt produces the more stable N-ylide
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intermediate 237. The reaction of this ylide with the diketone should produce the
intermediate 239 under kinetic control whereas the more conjugated intermediate
240 should be the thermodynamic control product. The molar ratio of 241/242 is
highly dependent on the electronic character of the aryl group (phenyl or heteroaryl)
in the starting diketone (Scheme 22.57).

The results show how kinetic control predominates with 1-(4-pyridyl)- and
1-phenyl-1,2-propanediones, which produce only 2-methyl derivatives 241. In con-
trast, p-excessive aromatic systems such as 1-(2-thienyl)-1,2-propanedione produced
significant amounts of regioisomer 242 as a consequence of the higher stability of the
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more conjugated intermediate. When 2,3-pentanedione was used as a representative
example of a diketone without electronic effects to differentiate between carbonyls,
1 : 1 mixtures of the two regioisomers were formed.

The Westphal process has also been useful for the preparation of resins for ion
exchange [177]. The polymeric substrate 243, bearing 2-methylpyridine, reacted with
ethyl 2-bromoacetate to give the corresponding salt, which condensed with 2,3-
butanedione in the presence of di-n-butylamine to afford the 2,3-dimethylquinoli-
zinium 244 incorporated in the resin (Scheme 22.58).

Based on this precedent, the C–C Westphal reaction has been described in the
solid phase [178]. The appropriate substrate 245 is prepared in two different
ways (Scheme 22.59) using Wang resin as the solid support. A study of the
reaction conditions was reported and shows that the optimal yields were obtained
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with three equivalents of triethylamine as base in THF at 70 �C. Under these
reaction conditions, the initial Westphal condensation product is not stable and
spontaneously undergoes hydrolysis of the ester and decarboxylation of the resulting
acid. This hydrolysis/decarboxylation sequence has also been observed in the
conventional Westphal reaction, as stated earlier. A small library of nitrogen
bridgehead azinium and azolium compounds has been synthesized with high yields
and purities. Some examples of quinolizinium derivatives (246a–f) are shown in
Scheme 22.59.

The reaction of 2-ethoxycarbonyl-1-methylpyridium salts with acrylonitrile is also a
synthetically useful [4 þ 2] approach for building up bicyclic quinolizinium and
simple derivatives, although in this procedure the pyridine derivative 247 behaves a
nucleophile–electrophile substrate [179]. The initial product of this reaction is the
heterobetaine 248. Removal of the cyano substituent by acid hydrolysis and decar-
boxylation affords the ketone 216, which through the same treatment as shown in
Scheme 22.49 afforded 16 or 2,7-dibromoquinolizinium bromide 249 [160b] under
the conditions shown in Scheme 22.60.

22.4.4.3 By Cyclization Reactions
Quinolizinium syntheses based on cyclization methods are represented by a few
examples involving different bonds to form the second ring. For example, formation
of a bond in the b-position with respect to the heteroatom is represented by the
reaction of 2-picolinaldehyde with benzyl phenyl ketone to form the corresponding
aldol, which is acetylated and quaternized with phenacyl bromide to afford the
pyridinium salt 250 [180]. Treatment with di-n-butylamine then generates the
quinolizinium derivative, which undergoes debenzoylation to afford 2,3-diphenyl-
quinolizinium bromide (246b) (Scheme 22.61).
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An example involving the formation of a bond d to the heteroatom represents the
most efficient route to prepare 3-hydroxyquinolizinium bromide [181]. This deriv-
ative is obtained by reaction of bromoacetonewith 2-piconaldehyde acetal followed by
acid deprotection and intramolecular condensation to give a 77% overall yield of 251
(Scheme 22.62).

Diketones 252 are obtained by quaternization of 2-acetylpyridines with phenacyl
bromides and these are cyclized under basic conditions to the 1-hydroxyquinolizi-
nium hydroxides, which are converted into the salts 253 by treatment with hydro-
bromic acid. This cyclization involves the formationof a bond c to the heteroatomand
allowed the synthesis of a series of 1-hydroxyquinolizinium bromides with yields
ranging from 47% to 84% (Scheme 22.63) [182]. A similar approach starting from an
oxime quaternary salt has been used to prepare 1-hydroxy-2-methylquinolizinium
salt (254) in moderate yield.

Thus far the most general and efficient method for the preparation of the
dihydroquinolizinium system by a cyclization strategy is a recently reported proce-
dure based on a ring-closingmetathesis (RCM) reaction of 1-butenyl-2-vinylpyrinium
salts (255) in the presence of a second-generation Grubbs catalyst [183]. In this case
the construction of second ring also involves the formationof adbond to thenitrogen.
These reactions afford various heteroaromatic cations in good overall yield from
readily available starting materials (Scheme 22.64). The dihydroquinolizinium salts
(256a–d) obtained by this method are oxidized to the corresponding quinolizinium
salt 16 and quinolizinium derivatives 257b–d with Pd/C in acetic acid in 67–89%
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yield by improving a reported oxidationmethod [184]. This metathesis reaction leads
to various quinolizinium triflates in 10–54% overall yields, thus making this
procedure one of the most efficient and general to date to obtain quinolizinium
cations.

Pyridinium enynes can also be employed as suitable substrates in this type of
metathesis reaction using the Hoveyda–Grubbs catalyst in combination with high
dilution and an atmosphere of ethylene to prevent the intermolecular process and/or
polymerization of the enyne. Two versions of this enyne RCM reaction allow the
synthesis of 1-vinyl- and 2-vinyl-substituted 3,4-dihydroquinolizinium salts in good
yields [185]. 1-Vinyl-3,4-dihydro-quinolizinium salts (259) were obtained by the RCM
of 1-(3-butenyl)-2-ethynylpyridinium salts (258) under the optimized conditions
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found for this reaction. The substrates 258 for themetathesis reaction are obtained by
N-alkylation of 2-ethynylpyridines with 3-butenyl triflate (Scheme 22.65).

2-Vinyl-3,4-dihydroquinolizinium derivatives (261) have prepared from 1-(3-buty-
nyl)-2-vinyl-3,4-dihydroquinolizinium substrates (260) under the same conditions as
used for the synthesis of 259. In this case the reaction does not seem to be as general
because both the enyne and the dihydroquinolizinium derivative are prone to
polymerization under the reaction conditions.

Pyridiniumsubstratesbearingsubstituents inboththeethynylandethenylmoieties
were also testedbut only in one casewas themetathesis reaction successful and in this
case the 3,4-dihydroquinolizinium compound was obtained in only 19% yield.

22.4.5
Reactivity of Quinolizinium Salts

The key feature of the quinolizinium ion (16) is its aromatic cationic nature along
with the partial iminic character of the carbon–nitrogen double bond. For this reason
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this heterocycle behaves as an electron-poor aromatic system, lacks reactivity towards
typical electrophiles used in electrophilic heterocyclic chemistry, and offers a
potential site for the attack of nucleophilic reagents. On the other hand, the high
symmetry of the quinolizinium cation only allows the existence of four monosub-
stituted isomers for any given substituent.

22.4.5.1 Reactions with Electrophilic Reagents
As stated earlier, themost activated positions towards electrophilic substitution in the
quinolizinium cation are C3 and C7, but an unequivocal case of electrophilic
substitution on the unsubstituted cation has not been reported. Bromine reacts in
a reversible process with quinolizinium bromide to form the perbromide salt, which
when heated at high temperature (>200 �C) is converted into the 1-bromoquinoli-
zinium bromide (262) (Scheme 22.66) [160b, 186]. The high temperature needed for
this process is consistent with a radical reaction but an electrophilic mechanism can
not be ruled out despite the fact that the C1 position is not the preferred site for the
entry of the electrophile.

Electrophilic aromatic substitution on the quinolizinium cation requires strongly
electron-donating substituents such as hydroxy or amino groups for the success of
this reaction [169, 181]. 1-Hydroxyquinolizinium salts (219) undergo electrophilic
substitution preferentially at the C2 position [187]. Nitration is carried out with nitric
acid but this gives a yield of only 31% of the 2-nitrated betaine. In contrast, a much
better yield (80%) is obtained with bromonation using bromine and hydrobromic
acid (Scheme 22.67).

Under the same conditions of bromination as for 219, the 2-hydroxyquinolizinium
(218) gives the 1-bromo derivative 266 in 67% yield. Quinolizin-4-one (229) [themost
stable tautomeric form of the 4-hydroxyquinolizinium (228)] yields the 1,3-dinitro
derivative 267 when the nitration is carried out with nitric acid in acetic acid.
Mononitration can be achieved using cupric nitrate in acetic anhydride to yield a
mixture of the 1- and 3-nitro isomers (Scheme 22.68) [187b].

1-Amino- and 2-aminoquinolizinium salts behave in a similar way to the hydroxy
derivatives in promoting electrophilic substitution at the C2 and C1 positions,
respectively. In the only reported example of activation by amino groups, substituted
1-amino quinolizinium salts give 2-bromo- or 4-bromo-substituted derivatives 270
and 271while 8-amino-2,3-dimethylquinolizinium bromide undergoes bromination
at the C1 position (Scheme 22.69) [188].
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22.4.5.2 Reactions with Nucleophilic Reagents: Ring-Opening Reactions
The lability of the quinolizinium cation towards nucleophiles is a key feature of its
reactivity, although substitution can modify this reactivity, depending on the nature
and position of the substituents. Theoretical calculations predict that the reaction of
nucleophiles should take place at C4 although the resulting product (pseudobase) 273
is an intermediate that evolves to the most stable ring-opened compound 274
(Scheme 22.70).
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Early in the study of the chemistry of natural alkaloids having a quaternary
bridgehead nitrogen it was observed that treatment of tetracyclic coralyne 193 with
an alkaline solution gave the corresponding isoquinoline derivative (see
Scheme 22.47), which is presumably formed by nucleophilic attack of the hydroxide
anion followed by ring opening to form the enol and tautomerization to the
most stable ketone [164]. This is the first and only example of the isolation of the
carbonyl compound by reaction of the hydroxide ion with a quinolizinium system.
Treatment of the parent quinolizinium iodide (16) with 10M NaOH leads to
decomposition and both rings lose their aromaticity. When 16 reacts with N-
nucleophiles such as aniline a complex mixture of fragmentation products is also
formed [189] but good yields of trans,trans-1-piperidinyl-4-(2-pyridyl)butadiene (275)
have been obtained from the reaction of 16 with secondary amines such as
piperidine [190]. 1-Methyl-4-(2-pyridyl)-1,3-butadiene (276) is also isolated when
Grignard reagents are reacted with 16 although in this case the main product is
the cis,trans isomer (Scheme 22.71) [191].
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Although the reaction with stabilized carbanions is exemplified with benzoqui-
nolizinium salts, examples with quinolizinium itself have not been reported.
Similarly, the reaction with the cyanide anion has not yet been described.

22.4.5.3 Reactions with Reducing Reagents
Quinolizinium iodide is fully hydrogenated in the presence of Adams catalyst to give
quinozilidine hydroidide (277). This reaction with five moles of hydrogen was
initially used to prove the structure of the quinolizinium cation [171]. Partial
reduction can be accomplishedwith sodiumborohydride in ethanol to give amixture
of the tetrahydro and hexahydro products. However, the attempted reduction
with a stronger hydride donor such as lithium aluminum hydride in THF affords
1-(2-pyridyl)-1,3-butadiene (279) with cis stereochemistry, presumably via the 4H-
quinolizine (278) (Scheme 22.72) [192].

22.4.5.4 Cycloaddition Reactions
A common reaction of some benzo[b]quinolizinium cations is as dienes in the
Diels–Alder cycloaddition. However, neither quinolizinium nor 2,3-dimethylquino-
lizinium react with typical electron-poor or electron-rich dienophiles such as maleic
anhydride or 1,1-diethoxyethylene. The only quinolizinium derivative known to
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undergo the Diels–Alder reaction is the anhydride of the quinolizinium 2,3-dicar-
boxylic acid (280), which reacts with styrene to yield the adduct 281 across the C1 and
C4 positions (Scheme 22.73) [193].

22.4.6
Quinolizinium Derivatives

22.4.6.1 Alkyl Derivatives
The fourmost common substituents on the quinoliziniumnucleus (methyl, hydroxy,
amino, and bromo) usually enhance the reactivity of the substituted quinolizinium
cation. Hydrogens of the methyl groups attached to the quinolizinium cation are
acidic, particularly those at the C2 andC4 positions. The acidity of themethyl protons
can be theoretically estimated on the basis of the resonance stabilization energy.
Perturbation theory suggests that this energy is highest for methyl groups in
positions C2 and C4. In addition, the values for p energy carbanion formation
predict that methyl groups in the a- and c-positions to the nitrogen are the most
reactive in benzoquinolizinium salts. Experimental results are in good agreement
with these theoretical expectations [160f,194]. For example, in the presence of a base
the methyl groups at C2 are easily deprotonated and the resulting anion behaves as a
reactive stabilized carbanion towards different electrophiles such as aldehydes or
nitroso compounds to afford styryl and anyl derivatives 282 and 283 in moderate
yields (Scheme 22.74) [165b]. The 2,4,6-trimethylquinolizinium salt reacts selectively
at the 2-methyl-substituent [165a].

The activation of these methyl groups makes 2-methyl- and 4-methylquinolizi-
nium salts good substrates for the Ortoleva–King reaction, forming dications 284 in
the presence of iodine and pyridine. Reaction of these salts with nitrosoarenes
produces the expected nitrones 285 (Scheme 22.75) [195].

The electronic effect on these two positions also facilitates the oxidation of alkyl
substituents and this can be used to achieve selective oxidation in the presence of
other substituents in the C1 and C3 positions. In an example of this behavior the
reaction of 1-acetylamino-2,3-dimethylquinolizinium (286) with selenium dioxide
affords amixture of the aldehyde 287 and the acid 288 as result of the oxidation of the
2-methyl substituent while the 3-methyl remained unaltered (Scheme 22.76) [196].
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22.4.6.2 Hydroxy and Amino Derivatives
Hydroxy and amino substituents clearly enhance the reactivity of the quinolizinium
cation towards electrophiles. In fact, most of the electrophilic substitution reactions
on the quinolizinium nucleus are facilitated by the presence of this type of strongly
electron-donating substituent. Although substituted 1-, 2-, and 3-aminoquinolizi-
nium derivatives are known, only the parent 1-aminoquinolizinium cation (290) has
been obtained, from ketone 216 (Scheme 22.77) [197]. Examples of 4-aminoquino-
lizinium derivatives have not been described.

The four isomeric hydroxyquinolizinium derivatives are known and their acidities
have been determined by UV spectroscopy and calculated using both a resonance
effect and a solvation effect. The calculated pKa (Table 22.8) largely depend on
solvation effects rather than on resonance effects [198] and they are in good
agreement with those experimentally determined for hydroxyl groups at the C1 and
C3 positions. Calculated values predict that hydroxyl groups in the C1 and C4
positions (d and a to the nitrogen, respectively) should be more acidic than those in
theC2 andC3positions (c andb to thenitrogen, respectively) but experimental values
show that the most acidic hydroxyls are located at C2 and C4, which is in better
agreement with reactivity results.

Notably, all of these hydroxyl derivatives are much more acidic than the corre-
sponding naphthols, and the hydroxyl at C4 is so acidic that this derivative loses HBr
very easily to form the uncharged covalent structure 4-quinolizone (229). 2-Quino-
lizone 291 is also obtained from a 2-hydroxyquinolizinium salt in moderate yield by
treatment with potassium carbonate (Scheme 22.78).

1-Hydroxy- and 3-hydroxyquinolizinium salts 219 and 251 can also be easily
deprotonated to generate the corresponding dipolar structures. In these isomers
both the negative and the positive charges can be delocalized within the common
p-electron systembut, in contrast with the 2- and 4-hydroxyquinoliziniumderivatives

N

O

N

NOAc

N

NHAc

N

NH
3

+

Br

NH2OH

+
Br

HCl/
HOAc/Ac2O

+
Br

HBr

heat
+
2Br

+

216

290289

NaOAc
EtOH

43%

43%

Scheme 22.77

Table 22.8 pKa values for monohydroxyquinolizinium bromides.

Position C1 C2 C3 C4
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in which at least one uncharged covalent structure can be drawn, 292 and 293 can not
be represented by one uncharged covalent structure. As a result, both compounds are
classified as conjugated mesomeric betaines that are isoconjugate with the
a-naphthylmethyl anion and the b-naphthylmethyl anion, respectively [142].
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As stated above, electrophilic substitution only occurs in quinolizinium systems
bearing electron-donating substituents such as hydroxy and amino groups. Diazo-
tization is a typical reaction of 1-amino- and 3-aminoquinolizinium derivatives and
this leads to the hydroxy derivative when carried out with pentyl nitrite in ethanol.
However, if diazotization is carried out under classical aqueous conditions
(dilute HCl/NaNO2) unexpected compounds can be formed. For example, [1,2,3]
triazolo[1,5-a]pyridylacrolein (294) is isolated as the main reaction product from the
diazotization of 1-aminoquinolizinium [199]. It was proposed that the formation of
this product involves a ring-opening reaction by attack of water on the C4
position followed by cyclization of the resulting intermediate. This ring-opening
reaction is not a general process in the diazotization of all 1-aminoquinolizinium
systems in aqueous solution. As an example, 1-amino-2-hydroxyquinolizinium
bromide is diazotized (HBr/NaNO2) and affords the diazonium bromide, which
decomposes on heating to yield 1-bromo-2-hydroxyquinolizinium bromide (295)
(Scheme 22.79) [200].

In contrast, the amino groups attached at the C2 and C4 positions are weakly basic
due to the delocalization of the nitrogen electrons across the heterocyclic cationic
system. As a consequence of this low basicity the attempted diazotization of 2-amino-
7,8-dimethylquinolizinium (296) with HCl/NaNO2 failed and nitrozation at the C1
position to form 297 was followed by condensation of the nitroso group with the
methyl group at C7 of 296, a process that explains the isolation of 298 as the main
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reaction product (Scheme 22.80). An increase in the basicity of the C2 amino group
by the presence of other strong electron-donating substituents in the quinolizinium
ring can promote the normal diazotization reaction, for example, in the transfor-
mation of 2-amino-1-hydroxyquinolizinium bromide (299) into the 2-bromo-1-
hydroxyquinolizinium picrate (300) (Scheme 22.80) [188].

Phenolic-type reactions are produced on 1-hydroxy- and 3-hydroxyquinolizinium
salts [169a]. Thus, 219 can be acetylated and alkylated under conventional conditions
to yield the corresponding quinolizinium derivatives 301 and 302, albeit in low yields
(Scheme 22.81). An example of a quinone within the quinolizinium system by
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oxidation of 1- or 4-hydroxy derivatives has yet to be described, although some
examples involving the benzo[b]quinolizinium system have been reported [201].

The betainic compound 293 is obtained from 3-hydroxyquinolizinium 251
and reacts with ethyl propiolate in boiling nitrobenzene in a 1,3-cycloaddition
reaction to give the tricyclic cycloadduct 303. This compound has been transformed
in a four-step sequence into the azonia derivative of acenaphthylene 304
(Scheme 22.82) [202].

Quinolizin-2-one (291) and quinolizin-4-one (229) are useful intermediates in
the synthesis of some quinolizinium derivatives [169b, 203], as shown in
Schemes 22.49, 22.52, and 22.83.

22.4.6.3 Halo Derivatives
Quinolizinium systems bearing halogens (Br, Cl) in all four possible positions [160b]
are prone to react with nucleophiles at the position to which the halogen is attached.
However, the reactivity of such compounds has not been studied systematically.
Nucleophilic substitutions are common reactions on these types of quinolizinium
derivatives. One of the most extensive applications of haloquinoliziniums has been
their conversion into aminoquinolizinium salts 308 by reaction with primary or
secondary amines [145]. Silver acetate or hot water has been used to obtain the
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hydroxy analogues [169b]. The 4-chloroquinolizinium 309 also reacts with secondary
amines such as piperidine, to give 310, although less satisfactory results were
obtained. Other nucleophiles that have been employed include sodium sulfide and
the sodium salt of diethyl malonate, with quinolizine-4-thione 311 and diethylqui-
nolizin-4-ylidene malonate 312 obtained, respectively, in good yields
(Scheme 22.84) [204]. Dehalogenations by hydrogenolysis have been achieved with
Pd/H2 but this does not appear to be an efficient process [200].

One of the most recently described applications of bromoquinolizinium deriva-
tives is their use as electrophilic partners in palladium-catalyzed cross-coupling
reactions. It has been demonstrated that the four isomers of bromoquinolizinium
bromide can be involved in the catalytic cycle of the well-known palladium-promoted
C–C bond forming Stille and Suzuki reactions. This palladium methodology pro-
vides an easy and efficient procedure for the functionalization of quinolizinium
cations [205], which is otherwise very difficult or impossible by classical methods in
heterocyclic chemistry. The coupling process of the four bromoquinolizinium salts
has been tested with tributylvinyl-, alkenyl-, alkynyl-, phenyl-, and heteroaryl-stan-
nanes and boronic acids. In a comparative study, the Stille reaction proved to bemore
general than the Suzuki reaction and also gave better yields of derivatives 313 in those
cases in which both reactions were used to afford the same coupling products
(Scheme 22.85) [206].
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In relation to the reactivity of the different bromo-derivatives and the yields of the
coupling products, a correlation was established between the halogenated position of
quinolizinium and the efficiency of the Stille process. Thus, with deactivated
positions C1 and C3, the transfer of groups with different electrodonicity did not
have a large effect on the yield. However, for 2-bromoquinolizinium there was a
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correlation between the electronic effect on the transfer ligands on tin and the
electron-deficient position at C2, although this behavior is surprising with electron-
deficient stannanes such as 2-tributylstannyl-pyridine in the deficient position at C4.
The above methodology, however, failed to transfer alkyl groups on using
trialkylbutylstanannes.

More recently it has been demonstrated that organotrifluoroborates can be used as
efficient partners for the Suzuki coupling reaction with the four isomeric bromo
quinolizinium bromides [207]. This cross-coupling reaction allows the synthesis of
new quinolizinium derivatives 313 that were not achieved by the Stille reaction or
clearly improves the yields of those previously obtained by this reaction. Moreover,
the ease with which these potassium organotrifluoroborates reacted with quinoli-
zinium salts in water (greener procedure) and the fact that the coupling products can
be isolated are further advantages of this procedure (Scheme 22.86).

The four isomeric bromoquinolizinium bromides also react with various aryl- and
heteroarylacetylenes under Sonogashira conditions [208]. The reactions proceedwith
moderate-to-high yields, particularly at the C2 and C3 positions, to afford aryl- and
heteroarylethynyl quinolizinium cations 314 and 315. The coupling reactions at the
C1 and C4 positions give lower yields of 316 and 317 because of the lower stability of
these substrates under the reaction conditions (ring-opening products are observed
in the reactions of 1-bromo- and 4-bromoquinolizinium salts) (Scheme 22.87).

Another interesting aspect of the bromoquinolizinium salts is their ability to
participate in palladium-promoted homocoupling processes to give biquinolizinium
dications. The homocoupling reaction was achieved by forming in situ the trialk-
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ylquinolizinium stannane 318 from bromoquinolizinium and slow addition of one
further equivalent of the bromoquinolizinium. The 1,10-, 2,20-, and 3,30-biquinoli-
zinium cations (319–321) were formed in low or moderate yields but the reaction
failed to give the 4,40-biquinolizinium (322) [209]. The homocoupling from 2-bromo-
and 3-bromoquinolizinium, which have different electronic character, gave the same
yields; by contrast, the low yield of 1,10-biquinolizinium, the formation of which
involves a position that is electronically similar to C3, is explained by the steric
hindrance around the coupling positions. Steric considerations along with a strong
charge repulsion are the likely reasons for the failure of the homocoupling of 4-
bromoquinolizinium. Theoretical calculations predict a rotational energy barrier of
44 kcalmol�1 for the 1,1-carbon bond and as a consequence 319 can adopt two non-
convertible conformations at room temperature (atropoisomers) (Scheme 22.88).

22.4.7
Benzoquinolizinium Salts and Related Systems

In a simple way quinolizinium and related cations can be envisaged as polycyclic
aromatic hydrocarbons in which the bridgehead carbon (or one of the bridgehead
carbons) is replaced by an azonia nitrogen. When the quaternary nitrogen replaces
C4a in naphthalene, the resulting heterocycle is quinolizinium. Similarly, replace-
ments in anthracene and phenanthrene lead to benzo[b]-, benzo[a]-, and benzo[c]
quinolizinium salts (25–27) (Figure 22.1d). A total of 18 heteroaromatic cations can
be envisaged from the six possible tetracyclic aromatic hydrocarbons and the number

N

Br

R

N

R

X
Br

N

RX

N

R

X

N

R

X

+

+

Et3N (1.5 equiv.)

10% CuI
5% Pd2Cl2(PPh3)2

DMF, 60 ºC

+

50-80%

+

X = Br, PF6

43-82%

+

+
Conditions:

R = OMe (47%)
R = CF3 (40%)

R = OMe (61%)
R = CF3 (50%)

314

315

316

317

R = TIPS, Ar, 2-pyridyl

Scheme 22.87

2052j 22 Heterocycles Containing a Ring-Junction Nitrogen



of azonia cations increases to 83 when the 15 possible pentacyclic hydrocarbons are
considered, although only 17 of these pentacyclic cations have been synthesized to
date.

Most of the synthetic strategies developed for 16 can be applied to the synthesis of
the three benzoquinolizinium cations, their derivatives, and other polycyclic systems
containing a bridgehead quaternary nitrogen. However, in some cases these systems
have been obtained by procedures specifically developed to build up the tricyclic
system. This is the case for the benzo[a]quinolizinium cation (26) prepared by four
different routes based on a cyclization reaction as the key step. In one of these
routes 26 is obtained by photocyclization of a styrylpyridinium salt (322) in the
presence of iodine. It is assumed that under UV irradiation the trans-styryl salt is
isomerized to the cis configuration, which is the appropriate isomer to produce the
cyclization followed by loss of hydrogen [210]. The salt 323, prepared from 2-
phenylthiopyridine and the oxime of bromoacetaldehyde, is cyclized to the thiaze-
pinium salt 324 with PPA or boiling hydrobromic acid (Scheme 22.89). The salt 324,
upon exposure to hydrogen peroxide in acetic acid, is oxidized to the corresponding
sulfoxide and this led to ring contraction through loss of sulfur with the formation
of 26 [211]. The cyclodehydrationmethod to produce 26 requires quaternization of 2-
phenylpyridine with bromoacetaldehyde and acid treatment of the resulting pyridi-
nium salt 325 [130]. The most recent synthetic route – the ring-closing metathesis
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reaction of the pyridinium salt 204 – also allowed the formation of 26 in good
yield [212]. These procedures have also been used for the preparation of a large
number of derivatives.

There are three other methods for the preparation of benzo[a]quinolizinium
systems using isoquinoline derivatives as starting materials. Of the three only one
of them enabled the isolation of the parent compound 26 while the two other are
useful for the synthesis of derivatives. The same strategy used for the synthesis of the
ketone 216 (Scheme 22.49) when applied to 1-cyanoisoquinoline, afforded the
tricyclic ketone 327, which under the aromatization conditions gave 26 in 66% yield
(Scheme 22.90) [168]. The Westphal reaction between 1,2-diketones and the appro-
priate isoquinolinium salts 328 yields 9,10-disubstituted derivatives 330 [213] while
the 8,10-dimethyl derivative is also obtained by reaction between isoquinoline
perchlorate (329) and mesityl oxide [214].

The benzo[b]quinolizinium salt 25 is obtained by different classical synthetic
methods based on the cyclodehydration of the appropriate 1-benzylpyridinium salt
under acidic conditions. Thefirst synthesis of this systemgave a 60%yield by reaction
of 2-pyridinecarboxaldehyde with benzyl bromide in the presence of hydrobromic
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acid (48%) [215]. Modification of this procedure using oximes and acetals instead of
the aldehyde allowed the synthesis of benzo[b]quinolizinium derivatives (333) using
different acidic media (PPA, HCl, HF, H2SO4) [216]. Alternative methods that
produce 25 and alkyl- and phenyl-derivatives 333 in poor yields involve cyclization
of 2-(2-picolyl)benzonitrile and 2-(2-picolyl)benzaldoxime (Scheme 22.91) [217].

Treatment of the ketone 334, obtained in a similar way to 327, with boiling acetic
anhydride also furnished 25 in 62% yield [168] while cyclization of 2-benzylpyridine
with acetic acid/sulfuric acid is also a convenient procedure for the preparation of the
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6-methyl derivative 337a (Scheme 22.92) [218]. Two more recent methods have also
allowed the synthesis of the 6-phenyl-derivative 337b and the parent 25 using
different strategies. In the first case the use of an organopalladium compound
(335) that can react with 3-phenylpropiolate afforded the 6-phenylbenzo[b]quinoli-
zinium salt, albeit in low yield (17%) [219]. In the last approach to 25 the metathesis
reaction developed for the synthesis of the quinolizinium system shown in
Scheme 22.64 has been adapted to the preparation of 25 from isoquinolinium
substrate 336. This approach gave good yields under the same conditions employed
for the synthesis of 16 [183].

The benzo[c]quinolizinium system 27 has been prepared by five differentmethods
and these resemble those employed for the other two benzoquinolizinium cations.
Quinoline derivatives are used as starting materials in the synthesis of the precursor
ketone 338 [168] and in the Westphal substrate 339 [174]. From methylpyridine two
similar approaches have been developed to construct the cationic tricycle by reaction
with 2-chlorobenzaldehyde and 2-chlorobenzonitrile. In the first case the reaction
product, the trans-chlorostilbazole 341, is isomerized under UV irradiation to the cis
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isomer 342, which cyclizes to 27 on heating [220]. In a closely related cyclization the
imine 343 or the ketone 344 (obtained by hydrolysis of 343) are cyclized by heating to
form the corresponding 6-amino- and 6-hydroxybenzo[c]quinolizinium chlorides
345a,b [221]. Finally, 1,3-disubstituted derivatives 346 have been synthesized by the
reaction of pyrilium salts and 2-aminobenzaldehyde (Scheme 22.93) [222].

Most of the synthetic methods developed for systems 25–27 have been slightly
modified for the preparation of currently known polycyclic cations. Table 22.9
gives some representative examples of the synthesis of parent tetracyclic and
pentacyclic cations.
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23
Phosphorus Heterocycles
François Mathey

23.1
Introduction

The official start of phosphorus–carbon heterocyclic chemistry took place in 1915
with the description of 1-phenylphosphinane (1) [1], but the actual development of the
field began only in the 1970s. As with nitrogen, oxygen, and sulfur, the two most
significant heterocycles in this category are the fully unsaturated five- and six-
membered species, that is, phospholes and phosphinines. The other P-C hetero-
cycles are briefly considered in Section 23.4.

P
Ph 1

23.2
Phospholes

23.2.1
History and Nomenclature

The story of phospholes started in 1959 with the discovery of the pentaphenyl
derivative 2 [2]. The unstable parent system was characterized by NMR spectroscopy
at low temperature in 1987 [3]. As initially shown by Quin and coworkers [4],
phospholes are pyramidal at P. The reason lies in the intrinsically high inversion
barrier of trivalent phosphorus, which overcomes the aromatic stabilization of the
planar state. As a result, phospholes are poorly aromatic and their chemistry is widely
different from that of pyrroles. Several reviews describing phosphole chemistry are
available [5].
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Three isomers of the phosphole system are known, namely, the 1H-, 2H-, and 3H-
phospholes (A, B, C, Figure 23.1) but, in practice, the 2H and 3H systems incor-
porating dicoordinate P-centers are unstable except when fully substituted by bulky
groups and mainly intervene in the chemistry of phospholes as reactive intermedi-
ates. Conversely, the phospholide ion (D), isoelectronic with thiophene, is highly
stable and aromatic.

23.2.2
Spectral, Structural and Theoretical Studies

Phospholes have been characterized mainly by 1H, 13C, 31P NMR spectroscopy and
X-ray crystal structure analysis and thoroughly studied from a theoretical standpoint.
Broadly speaking, the NMR spectra of phospholes do not show any exceptional
features, for example, d 31P (1-methylphosphole)¼�8.7 ppm [6] (85% H3PO4 as
external reference, d positive for downfield shifts). Extensive tabulation of data is
available from the reviews of Quin [5]. The data for the simplest species are quoted in
Reference [3]. In contrast, whereas phosphide ions resonate around 0 ppm (Ph2P

�

d� 19 ppm in THF with Naþ as the counterion [7]), the parent phospholide (Liþ )
resonates at þ 77.2 ppm in THF [3], and resonances at much lower fields can be
observed according to the substitution scheme (e.g., with 2,5-dibenzoyl-3,4-dimethyl,
d þ 209.6 ppm [8]). This deshielding has been explained by the presence of the in-
plane P-lone pair, which is only weakly coupled to the ring and induces a large
downfield paramagnetic shift of the 31P resonance [9].

X-Ray structural studies of phospholes show a somewhat flattened P-pyramid and
some shortening of the P�C ring bonds. The alternation between single and double
CC ring bonds is higher than in the corresponding pyrroles, thiophenes and furans.
The structure of 1-benzyphosphole is given as an example [4]: ring P�C, 1.783A

�
;

C¼C, 1.343A
�
; C�C, 1.438A

�
; internal <C�P�C, 90.7�; S<C�P�C, 302.7�. These

data reflect the low aromaticity of the phosphole ring. Sizeable variations have been
observed in the pyramidality of the phosphole phosphorus. Presently, the most
pyramidal structure has been recorded for 1-cyano-3,4-dimethylphosphole: S<

C�P�C¼ 290.3� [10], and the flattest for 1-(2,4,6-tri-t-butylphenyl)-3-methylphosp-
hole: S<C�P�C¼ 331.7� [11]. As a general trend, the cyclic delocalization
increases when the pyramidality decreases but other factors also play a role, as

P

H

P P P(A) (B) (C) (D)

Figure 23.1 The three isomers of the phosphole system (A–C) and the phospholide ion (D).
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shown with 1-alcoxyphospholes, which are relatively flat with a negligible delocal-
ization [12]. Contrary to phospholes, the structure of phospholide ions reflects
their high aromaticity. For example, the planar 2,3,4,5-tetramethylphospholide with
Li(TMEDA)þ as the counterion displays the following parameters [13]: P–C, 1.715A

�
;

C¼C, 1.396A
�
; C�C, 1.424A

�
; <C�P�C, 90.5�.

Theoretical studies have mainly dealt with two problems, the aromaticity of the
ring and the equilibrium between 1H-, 2H-, and 3H-phospholes. It is now well
established that the phosphole ring is poorly aromatic, the most recent estimate of
its aromatic stabilization energy being 3.2 kcalmol�1 for the parent ring [14].
Conversely, the planar transition state is even more aromatic than pyrrole [15].
As a result, the pyramidal inversion barrier of phospholes is quite low, ca.
16–17 kcalmol�1, confirming early NMR measurements [16]. As expected, the
aromaticity of the phospholide ion is of the same order of magnitude as that of
the cyclopentadienide ion [15]. A recent study has shown that 2H-phosphole is more
stable than 1H-phosphole by 6.0 and 3H-phosphole by 3.3 kcalmol�1, thus con-
firming earlier calculations [17, 18]. The barrier between 1H- and 2H-phospholes is
very low at 19.6 kcalmol�1 but much higher between 2H- and 3H-phosphole at
30.7 kcalmol�1.

Whereas hydrogen migrates very easily from phosphorus to the a-carbon, the
migrating ability varies widely for other groups. Some groups such as alkyl or alkoxy
do not migrate under conditions that are compatible with the stability of the
phosphole ring, while others migrate under acceptable heating such as aryl, alkynyl,
CN, SR, and so on, and others migrate even below room temperature, such as acyl
and silyl. These trends have been discussed in a recent review [19]. Another recent
study has given an interpretation of the characteristic UV absorption band of
alkylphospholes (280–290 nm, e 3.3–3.9), of their PES spectra and correlated the
low basicity of phospholes with their strained cyclic structure [20].

23.2.3
Synthesis

23.2.3.1 Synthesis of Phospholes
There are three main syntheses of the phosphole ring. The first involves the
cycloaddition of primary phosphines with substituted 1,3-diynes. The reaction is
catalyzed by strong bases (in general BuLi) and provides a convenient access to 1,2,5-
trisubstituted phospholes [16, 21]. (Scheme 23.1)

This method has been used to prepare a phosphole with two optically active
(�)-menthyl substituents at the 2,5-positions [22]. Another interesting application
concerns the synthesis of phospholes bearing bulky substituents (such as tert-butyl)

P

R

R' R'
PhLi or BuLi

RPH2  + R'C C C CR'

30-89%

THF-benzene, RT

Scheme 23.1
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at the a-positions of the ring [23]. These groups stabilize otherwise unstable g5-
phospholyl complexes.

The second method relies on the dehydrohalogenation of diene-dihalophosphine
cycloadducts [24]. The postulated mechanism is depicted in Scheme 23.2 [25].

In most cases, the initial cycloadduct is obtained via the well-known McCor-
mack reaction of conjugated dienes with dihalophosphines at, or near, room
temperature. Recently, a bicyclic phosphole 3 [26], which can serve as a precursor
of g5-3,4-benzophospholide complexes, has been prepared by this route. Alter-
natively, it is also possible to use the addition of bromine onto trivalent phosphol-
3-enes. This variant has been used to prepare a 2,20-biphosphole (4) [27], 2-aryl- or
heteroarylphospholes such as 5 [28] and a flattened phosphole (6) with a bulky
substituent at P [11].

P

Ph

P

Ph

Me Me MeMe

P

Ph
3

4

P

Ph
S P

Ph

Me Me Me Me

5

P

Me

ButBut

But

6

Generally, the base used in the process is a tertiary amine such as a-picoline.
However, recently, the much stronger LiHMDS has been used to prepare 1-
aminophospholes (Scheme 23.3) [29].

Both the cycloaddition and the dehydrohalogenation reactions proceed much
faster than in the usual process.

The third method relies on a zirconium to phosphorus exchange upon reaction of
dihalophosphines with zirconacyclopentadienes (Scheme 23.4) [30].

The starting zirconacyclopentadienes are prepared by [2 þ 2 þ 1] cycloaddition
between twomolecules of alkynes and a zirconocene unit. Numerous persubstituted

iPr2N
P+

Cl
AlCl4

-

R R
-20oC to RT

P
iPr2N Cl

R R

(Me3Si)2NLi

P
iPr2N

R R

-78oC to RT

     THF

CH2Cl2
R = Me 68%
R = Ph 84%

Scheme 23.3

P
R X

- HX

P
R X

H [1,5]-shift

P

H
R X

- HX

P

R

Scheme 23.2
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phospholes have been recently prepared by this route, most of them for applica-
tions in the field of molecular materials. 1-Halophospholes are also accessible
from phosphorus trihalides. Some representative examples are compounds
7–10 [31–34].

P
Cl

Me Me

SiMe3Me3Si

7
P

Me Me

MeMe

8

P

Me Me

MeMe

P
Ph 9

N N P
Ph 10

S S

Several other syntheses of phospholes have been reported in the literature but their
applicability seems to be rather limited.

23.2.3.2 Synthesis of Phospholide Ions
In most cases, phospholide ions are synthesized from preformed phospholes by
cleavage of the exocyclic P�R bond by alkali metals (Scheme 23.5). The first report
was published by Braye [35].

The driving force behind this selective cleavage of the exocyclic P�C bond is, of
course, the high aromaticity of the phospholide ion. The reaction involves the initial
formation of a radical anion that collapses to give the phospholide ion and a phenyl
radical [36]. In some cases, it is advantageous to use a variant relying on the base-
induced dealkylation of 1-(b-ethoxycarbonylethyl)phospholes, thus avoiding unde-
sired side-reactions due to the radical process. A striking illustration is provided in
Scheme 23.6 [37].

Finally, in one instance, a phospholide ion has been directly synthesized from
acyclic precursors by a process similar to the synthesis of phospholes from primary
phosphines and diynes (Scheme 23.7) [38].

P

Ph

M

THF, RT P

M = Li, Na, K

Scheme 23.5

Zr
Cp2

P

R

RPX2

pentane, RT
R = Cl 85%

Scheme 23.4
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23.2.4
Reactivity

Since phospholes are not aromatic, their chemistry is completely different from that
of their nitrogen, oxygen or sulfur analogues. The classical electrophilic substitution
reactions are unknown and the ring can behave either as a phosphine or as a
cyclopentadiene. It is quite convenient to divide the reactions of phospholes between
those taking place at P, at the diene, the [1,5]-sigmatropic shifts, the functionalization
reactions, the ring openings and the ring expansions. A few words on the rich and
diverse complexation chemistry will close this survey.

23.2.4.1 Reactions at Phosphorus
The reactivity of the phosphole phosphorus is essentially normal although both the
basicity and the quaternization ability are somewhat reduced [6] as a result of both the
slight delocalization of the P-lone pair and the increase of cyclic strain occurring upon
the P(III) into P(IV) conversion. The P-Hþ salts are only stable when the counterion
(e.g., TaCl6

�) does not display any coordinating ability [39]. Otherwise they evolve to
give phospholene oxides via a pentacoordinate intermediate and a [1,5]-shift ofH [25].
The oxides tend to dimerize via a [4 þ 2] Diels–Alder reaction and display a limited
life time at room temperature [40] except when heavily substituted on the ring. The
sulfides are more stable as monomeric species, although they also dimerize upon
prolonged heating at high temperature. Themost specific reaction of phospholes at P
is the exocyclic P�C bond cleavage by alkali metals that has been discussed already
(Scheme 23.5). All of the chemistry of the resulting phospholides takes place at
phosphorus. Among the various electrophiles that have been allowed to react with
these ions, one of the most interesting from a practical standpoint is cyanogen
bromide (Scheme 23.8) [41].

The resulting 1-cyanophospholes display a high electrophilicity at P and provide a
convenient access to 1-alkoxy- and 1-amino-phospholes by reaction with the appro-
priate anions.

P

CH2CH2CO2Et

Me Me

Br

tBuOK

THF, 0oC P

Me Me

Br

K+

Scheme 23.6

PPh Ph

toluene
PhC C C CPh[(Me3Si)2P]-M+  +

Me3Si SiMe3

M  = Ca 82%M = Ca, Sr

RT, 10-12 h

Scheme 23.7
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23.2.4.2 Reactions at the Diene
The reactivity of the dienic system is somewhat reduced by the cyclic delocalization
and several dienophiles such as dimethyl acetylenedicarboxylate tend to react at the P-
lone pair. This is the reason why most of the initial studies were performed with
phosphole sulfides or phosphole complexes. From this standpoint, the most studied
sulfide has been the 1-phenyl-3,4-dimethylphosphole sulfide 11. This species can
behave either as a diene or a dienophile according to the nature of the reaction
partner [42]. One of the most spectacular applications of this chemistry is the
synthesis of a phosphinine shown in Scheme 23.9 [43].

The diene reactivity tends to increase upon complexation of the P-lone pair. If the
dienophile also contains a coordinating group, intramolecular [4 þ 2] cycloadditions
become extremely easy (Scheme 23.10). This kind of chemistry has been developed
by the group of Nelson [44].

The same general approach has served to prepare a range of optically active
chelating ligands [45]. Whereas the adducts of phosphole sulfides with dimethyl
acetylenedicarboxylate are unstable, those with selected phosphole complexes are
stable and can serve as useful precursors of electrophilic terminal phosphinidene
complexes (Scheme 23.11) [46].

P
R

Me Me

M

P

X

MR

Me

Me
X

X = R2P, PhS, PhS(O), 2-pyr., etc.

M = Mo(0), Fe(II), Ru(II), Ni(II), Pd(II), Pt(II)

Scheme 23.10
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Me

Me
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61%

Scheme 23.9

P

Me Me

BrCN, AlCl3 cat.

P

Me Me
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Scheme 23.8
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These transient species display a rich carbene-like chemistry that has been the
subject of several reviews [47]. Phosphole complexes also undergo reactions other
than the Diels–Alder cycloadditions. With nickel derivatives, a reductive C�C
coupling is observed in high-boiling alcohols (Scheme 23.12) [48].

The dienic system ofmolybdenum carbonyl complexes can be used to perform the
electrophilic Friedel–Crafts alkylation of electron-rich arenes or heteroarenes
(Scheme 23.13) [49].

Without activating and protecting groups at phosphorus, tervalent phospholes
behave as rather poor dienes. Thefirst clear-cut example of dienic behavior is depicted
in Scheme 23.14 [50].

Electronegative substituents at P such as CN orOR enhance the dienic reactivity of
phospholes [10]. A spectacular consequence of this fact is the spontaneous intra-
molecular [4 þ 2] cycloaddition taking place within 1-allyloxyphospholes
(Scheme 23.15) [51].
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Finally, in another vein, the reaction of phospholes with diazomethane is worth
mentioning (Scheme 23.16) [52].

23.2.4.3 [1,5]-Sigmatropic Shifts
As a result of the pyramidal structure of phospholes, there is a significant overlap
between the s-orbital of the exocyclic P�R bond and the p�-orbitals of the dienic
system. This situation favors the [1,5]-sigmatropic shifts of the R-substituent from
phosphorus to thea-carbons of the ring.Migrations to the b-carbons are also possible
but far more difficult. The overall picture is depicted in Scheme 23.17.

P

Ph

Me Me

NPh

O

O

P

N
Ph

O

O

Ph

Me

Me

40°C

CH2Cl2
50%

Scheme 23.14

P

CN

Me Me

OLi

P

O

Me Me

25oC
P O

Me

Me 85%

Scheme 23.15

P

Ph

Me Me

P
Ph

Me
Me

O

N
N

P
Ph

Me
Me

O

hνCH2N2

H2O

Scheme 23.16

P

R

R[1,5]

P P

R[1,5]

R

R

H[1,5]

P

H

R

H[1,5]

P
R

(E) (F)

Scheme 23.17

23.2 Phospholes j2079



It must be stressed that the P-to-aCmigrations in the phosphole ring need, in the
general case, far less energy than the corresponding migrations in the cyclopenta-
diene ring. In practice, the 2H-phospholes resulting from these migrations are far
more reactive than the starting 1H-phospholes, so that the equilibriummixtures can
serve to investigate the chemistry of pure 2H-phospholes of type (F). This chemistry
has been reviewed recently [53]. Two points must be stressed. The migration ability
varies widely according to the nature of R. Some R-substituents migrate below room
temperature, such as H, acyl or silyl groups. This explains why the parent phosphole
has been so difficult to characterize [3]. Some others migrate upon heating, such as
phenyl, thienyl, SR, CN, alkynyl groups. Some others do notmigrate, such as alkyl or
alkoxy groups. Since these migrations are concerted, the migrating substituent
remains attached to the ring by the same atom both before and after the migration.
This fact has numerous useful consequences.

When no trapping reagent is added to the equilibrium mixture of Scheme 23.17
andwhen the reaction takes place around or below room temperature, 2H-phosphole
(F) evolves to give a [4 þ 2] P�P bonded endo-dimer. One such dimer has been
characterized by X-ray crystal structure analysis (Scheme 23.18) [54]. This dimer
equilibrates with its exo stereoisomer around 100 �C.

When the equilibrium mixture of Scheme 23.17 stands at around 200 �C, a
dehydrogenative dimerization takes place, probably at the expense of phosphole
(E), to give a 1,10-biphosphole (Scheme 23.19) [55].

Upon further heating, if the two a-positions carry hydrogen, the final evolution
leads to P�P bonded tetramers (Scheme 23.20) [56].

One such tetramer has been characterized by X-ray crystal structure analysis [57].
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When a trapping reagent (inert toward phosphorus lone pairs) is added to the
equilibrium mixture of Scheme 23.17, then 2H-phosphole (F) is efficiently trapped
before any further evolution. These reagents include MeOH, non-activated alkynes,
conjugated dienes [58], alkenes [59] and aldehydes (Scheme 23.21) [60].

This cycloaddition chemistry is extremely effective. It has served to prepare a new
series of efficient bicyclic phosphorus ligands for enantioselective catalysis [61]. All
these ligands are characterized by a chiral bridgehead phosphorus that cannot
racemize.
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23.2.4.4 Functionalization Reactions
Since phospholes are not aromatic, their chemistry is normally devoid of the
electrophilic substitution anda-metallation reactions that characterize the chemistry
of pyrrole, furan and thiophene and serve to prepare most of their functional
derivatives. Electrophilic substitutions become possible to a limited extent with
�flattened� phospholes carrying a very bulky group at phosphorus [11]. In practice,
only two reliable and versatile methods exist that allow functionalization of a
preformed phosphole ring. The first relies on the existence of 2-bromophospholes,
which can be prepared from their non-bromo precursors by a classical sequence
involving protection, bromination, dehydrobromination and deprotection. These 2-
bromophospholes are readily transformed into 2-lithiophospholes at low tempera-
ture (Scheme 23.22) [62].

This chemistry has served to prepare a-alkynyl derivatives [63], an a-connected
tetraphosphole [64] and a tetraphosphole macrocycle [65].

The second method relies on the 1H$ 2H-phosphole equilibrium. The function
is first grafted onto P, then the equilibrium is established and the resulting 2-
functional-2H-phosphole is deprotonated by a base (Scheme 23.23) [66–71].

Two conditions must be met by the functional group: it must be compatible with
the base and able to migrate. This last condition excludes alkyl and alkoxy groups.
This chemistry has served to prepare the first easily accessible 2,5-difunctional
phospholes [Z¼CO2H, CO2R, C(O)R].

23.2.4.5 Ring Openings and Expansions
The best documented ring-opening reaction takes place upon hydrolysis of phos-
pholium salts (Scheme 23.24) [72, 73].
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In the transient hydroxyphosphorane, the phosphole ring probably occupies a
axial–equatorial position, leading to cleavage of the elongated axial P�C bond.

The best documented ring expansion reaction also relies on the hydrolysis of
intermediate phospholiumsalts. It takes place during the reaction of phospholeswith
aromatic acid chlorides in the presence of water and triethylamine
(Scheme 23.25) [74–76].

This reaction is the first step of a route transforming phospholes into
2-arylphosphinines.

23.2.4.6 Phospholes and Phospholides in Coordination Chemistry
Phospholes and phospholides give a large range of complexes. The possible struc-
tures are shown in Figure 23.2. Several reviews deal with all or some of these
complexes [77, 78].

In the first complexes (G in Figure 23.2), phospholes behave as normal phosphine
ligands. As we have seen earlier, the reactivity of the diene is enhanced [44–46].
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The second type (H) is extremely rare. One g4-Fe(CO)3 complex has been studied in
some depth [79]. The third type (I) is more frequent. The most spectacular example
incorporates a chain of four cobalt atoms sandwiched between two phospholes acting
as 6e-ligands [80].

The variety of phospholide complexes is even larger. The g1- complexes (J) can be
viewed as organometallic phospholes. Since the transition metal substituent is, in
general, rather bulky they tend to be more planar than usual. In a g1-W(CO)3Cp
complex [81], the sum of the angles around phosphorus has been found to be as high
as 319.6�. Otherwise, their chemistry is remarkably similar to that of normal
phospholes. The m2-complexes (K) are completely devoid of aromaticity. Their dienic
system is rather reactive and easily givesp-complexes (L). Oneof themost spectacular
complexes of this type incorporates a heptanuclear Mn4Pd3 core surrounded by four
phospholyl rings [82]. By far the most important phospholyl complexes are the g5

species (M). They are known for almost all of the transition metals of the periodic
table, including rare earths [83] and uranium [84]. Most of them are 18e species but,
recently, a 16e phosphachromocene [85], a 17e phosphaferricinium [86], a 19e
phosphacobaltocene [87] and a 20e phosphanickelocene [88] have been described.
They are also known for some main group metals such as gallium [89], germanium,
tin, and lead [90]. From an organic standpoint, the most interesting chemistry is that
of phosphaferrocenes. These species display a complete range of electrophilic
substitution reactions (acylation [91], formylation [91] and carboxylation [92]) and
thus occupy a unique position among phosphorus heterocycles. Their complexes at
phosphorus (N) also play an interesting role in asymmetric catalysis (Section 23.5).

23.3
Phosphinines

23.3.1
History and Nomenclature

The discovery of 2,4,6-triphenylphosphinine (12) byM€arkl in 1966was a landmark of
phosphorus chemistry [93]. It proved simultaneously that simple compounds con-
taining dicoordinate phosphorus could be stable and that phosphorus could partic-
ipate in a cyclic delocalization. The somewhat less stable parent system 13 was
characterizedfive years later byAshe [94]. Since phosphorus is less, whereas nitrogen
is more, electronegative than carbon, the heteroatom is electron-poor in phosphi-
nines and electron-rich in pyridines. Thus, although both systems are highly
aromatic, their chemistry is completely different. Several reviews describing phos-
phinine chemistry are available [95].

P
12

Ph

PhPh P
13
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The ring has been called phosphabenzene, phosphorin or phosphinine. The latter,
the official (IUPAC) name, is now prevalent. Two Dewar phosphinines, 14 and 15,
stabilized by bulky substituents, have been described [96]. Besides trivalent phos-
phinines, the so-called l5-phosphinines 16, incorporating a tetracoordinate phos-
phorus atom, display a distinct chemistry resulting from their delocalized ylidic
structure [97].
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tBu
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P

tBu
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But

CO2R

15
tBu P

16R R

23.3.2
Spectral, Structural and Theoretical Studies

Phosphinines have been extensively characterized by 1H, 13C, and 31P NMR
spectroscopy. The data for the parent compound 13 are given hereafter [98] (d in
ppm): d31P þ 211, d13Ca 154.1, 1JðC-PÞ ¼ 53 Hz, d13Cb 133.6, 2JðC-PÞ ¼ 14 Hz,
d13Cc 128.8, 3JðC-PÞ ¼ 22 Hz, dHa 8.61, 2JðH-PÞ ¼ 38:0 Hz, dHb 7.72,
3JðH-PÞ ¼ 8:0 Hz, dHc 7.38, 4JðH-PÞ ¼ 3:6Hz. Phosphinines display the charac-
teristic low-field shifted 31P resonances of phosphaalkenes. The huge 1JðC-PÞ
coupling is also noteworthy. Conversely, l5-phosphinines show more conventional
ylid-like resonances. The 1,1-dimethyl derivative 16 (R¼Me) displays a 31P reso-
nance around 0 ppm and shows highly shielded Ha and Ca resonances at 3.98 and
67.5 ppm, respectively [99]. High-field shifts are also observed for c-CH: dHc 4.62,
d13Cc 94.0. These data are in linewith the high concentration of negative charge at the
a- and c-positions of 16.

The structure of parent phosphinine has been established by a combination of
electron diffraction andmicrowave data [100]. The ring is planar, the P�C bonds are
short (1.732A

�
) and the C�C bond alternation is minimal (1.413 and 1.384A

�
). The

intracyclicC�P�Cangle is relatively acuteat101� (vs.116.9� forC�N�Cinpyridine).
All these data are compatible with a high electronic delocalization within the ring.

The theoretical data on phosphinines have been summarized in a review [101]. The
most important points are selected hereafter. The computed aromatic stabilization
energy lies in a range from88 to 97%of that of benzene. TheNICS(1) value at�10.8 is
very close to that of benzene (�11.3). The best computed structures indicate a
negligible alternation of the C�C bond lengths (less than 0.01A

�
). Also of interest is

the order of the occupied orbitals. Whereas the lone pair corresponds to the HOMO
inpyridine, it corresponds to the third occupied level in phosphinine.More recently, a
careful evaluation of the proton affinity and the pKa of the protonated form has been
carried out [102]. At 195.8� 1.0 kcalmol�1, the PA of phosphinine is substantially
smaller than that of pyridine (219.4 kcalmol�1). The pKa of C5H5PH

þ has been
evaluated at �16.1 in water, vs. 5.2 for pyridinium. The drastic differences between
the chemistry of pyridines and phosphinines are already quite visible.
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23.3.3
Synthesis

There is a wealth of synthetic methods for making phosphinines and discriminating
between those which, ultimately, will prove the most useful is difficult. The initial
method ofM€arkl relying on theOþ to Pexchange in pyrylium salts is still amethod of
choice due to its simplicity (Scheme 23.26).

The source of PH3 can be either P(CH2OH)3 [93], P(SiMe3)3 [103] or PH4I [104].
The synthesis of the parent phosphinine by Ashe [94] relies on a tin to P exchange in a
1,4-dihydro-stannabenzene (Scheme 23.27). A detailed description of the procedure
is available [95c].

This route has been generalized by M€arkl for the preparation of 4-substituted
phosphinines [105]. The parent phosphinine is more easily obtained by pyrolysis of
vinyldiallylphosphine (Scheme 23.28) [106].

The mechanism of this reaction sequence has been studied recently from a
theoretical standpoint [107].

Various specialized routes start from phosphacyclohexenones and end with the
thermolysis of 1,2-dihydro- or l5-phosphinines. Two examples are given in
Scheme 23.29 [108, 109].
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Phospholesarealsoversatilestartingpointsforthesynthesisofphosphinines.Several
examples are depicted in Schemes 23.30–23.33 (see also Scheme 23.9) [110–113].

Azaphosphinines constitute another versatile starting point for the synthesis of
phosphinines. The first illustration of this approach was described by M€arkl [114].
The 1,3-azaphosphinines arefirst synthesized from1,3-azapyrylium salts. Then, they
are reacted with alkynes (Scheme 23.34).
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Amore versatile approach starts from1,3,2-diazaphosphinineswhich are prepared
in situ from the corresponding titanacycles (Scheme 23.35) [115].

The most spectacular application of this approach is the synthesis of macrocycles
incorporating three or four phosphinine units [116].

Another group of methods involve the [4 þ 2] cycloaddition of a conjugated diene
with a phosphaalkyne or a precursor of phosphaalkyne. An example is given below in
Scheme 23.36 [117].
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The simplest application of this approach is the one-pot synthesis of 2-halopho-
sphinines from dihalomethyldihalophosphines and conjugated dienes
(Scheme 23.37) [118].

The most difficult part of the scheme concerns the preparation of the starting
dihalophosphines. A detailed procedure is available [95c].

Finally, a zirconium route has been described recently (Scheme 23.38) [119].

Numerous other approaches have been described but they are either cumbersome
or of very limited generality.

23.3.4
Reactivity

23.3.4.1 Reactions at Phosphorus
As we have already pointed out, the reactivity of the phosphorus lone pair in
phosphinines is extremely low. As a result, phosphininium salts remained unknown
for a very long time. However, recently, the preparation and full characterization of
such species has proved possible (Scheme 23.39) [120].
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The 31P resonance of the salts occurs at about 160 ppm, that is, about 100 ppm at
lower fields by comparison with the l5-phosphinine precursors. The Ca and Cc

resonances are similarly shifted to low fields. The structure of the salt for R¼Ph
shows a very short P�C bond at 1.697A

�
and a widened C�P�C angle at 117.7�. The

most significant reaction of these salts takes place with alkynes at room temperature
to give phosphabarrelene derivatives (Scheme 23.40).

The P-oxides are unstable and immediately add water upon formation
(Scheme 23.41) [121].

TheP-sulfides canbe detected in solution by 31P NMRspectroscopy [122], but none
has been completely characterized until now [123]. Upon further sulfurization,
polycyclic structures are formed (Scheme 23.42) [124].

When the a and c positions are substituted, halogens add onto phosphorus under
UV irradiation (Scheme 23.43) [125].
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The 1,1-difluoro-l5-phosphinines are obtained by metathesis (SbF3 or AgBF4)
from the corresponding chloro or bromo derivatives. Oxidative addition of alcohols,
amines, and so on is also possible (Scheme 23.44) [126–128].

Modified crown ethers have thus been prepared from poly(ethylene glycol)s.
Diarylation at P is observed with diarylmercury derivatives (Scheme 23.45) [129].

The reaction of strong nucleophiles such as organolithium or organomagnesium
compounds also takes place at phosphorus. A delocalized dihydrophosphinine
carbanion is thus formed (Scheme 23.46) [130–132].

The X-ray crystal structure analysis of several such carbanions has been reported
recently [133]. The lithiumcounterion isg5-coordinated to theC5 delocalizedunit and
DFTcalculations indicate a high concentration of negative charge on the a-carbons.
These anionic species react with hard electrophiles at the a- or c-carbons to give
dihydrophosphinine derivatives and with soft electrophiles at phosphorus to give
l5-phosphinines.

Another point of interest concerns the reduction of phosphinines. This study has
been carried out using sodiumnaphthalenide, potassiummirror or electrochemistry

P P
AAA = RO, ArO, R2N

+  2 AH
Hg(OAc)2

Scheme 23.44
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as the reduction techniques and amonophosphinine (17), a bis-phosphinine (18) and
a bis-phosphinine macrocycle (19) as substrates. The reduction products have been
characterized by EPR, 31P NMR, and X-ray analysis whenever possible. DFT
calculations have completed the study [134, 135].
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Me2
Si

Me2
Si

PhPh Si
Me2

Si
Me2

O

OPh Ph

19

In all cases, the overall scheme appears identical. The monoelectronic reduction
product reacts with another neutral phosphinine ring to give a dimeric structure with
a one-electron P�P bond. Then, a second reduction takes place to give a dianionic
dimeric structurewith a normal two-electronP�Pbond. The process is shown for the
macrocycle in Scheme 23.47. In this case, the one-electronP�Pbondhas a computed
length of 2.763A

�
.

23.3.4.2 Substitution and Functionalization Reactions
Since most nucleophiles and electrophiles tend to attack at P, only a few substitution
and functionalization reactions at the ring carbons are known and it is impossible to
develop a classical aromatic chemistry with phosphinines.

Whenever a a or c position is unsubstituted, it is possible to brominate it via a
Br2-addition-HBr-elimination sequence (Scheme 23.48) [136].
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This formal substitution reaction must be compared with the addition reaction
depicted in Scheme 23.43. In the same vein, the reactionwith PBr3 ultimately affords
the Br2P-substituted phosphinines (Scheme 23.49) [137].

A few nucleophiles react with halophosphinines to give the substituted products.
This is the case with lithium amides [138], trimethylstannylsodium [139] and lithium
phospholides [140].

Sincemost of the reagents attack phosphinines at phosphorus, one obvious way to
redirect the attacks at the carbons of the ring is to protect phosphorus. This has been
done using l5-phosphinines or phosphinine complexes. Examples of the two
approaches are given hereafter in Schemes 23.50–23.52 [141–143].

Of course, it is far better to avoid these protection–deprotection steps. Two
methods achieve this aim. Both rely on the activation of the C�X bonds of
2-halophosphinines, either by Pd(0) [144, 145] or by zirconocene [146, 147]
(Schemes 23.53 and 23.54).
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The phosphabenzyne dimeric complex has been characterized by X-ray crystal
structure analysis [147]. As expected, the formal C:C triple bond is rather long at
1.361A

�
. This value is similar to those found in benzyne-zirconium complexes. This

dimeric complex reacts exclusively via its Ca�Zr bond. An interesting application of
this zirconium chemistry is the synthesis of 2,20-biphosphinines, which are very
interesting ligands for transition metals (Scheme 23.55) [148].

23.3.4.3 Cycloaddition Reactions
Due to their aromaticity, phosphinines are unreactive as dienophiles and poorly
reactive as dienes. In practice, they only react with highly activated (electron-poor)
alkynes (Scheme 23.56) [149].

The reactivities as dienes or dienophiles are sharply enhanced upon P-complex-
ation [150–153] or sulfurization [122, 154, 155]. Some examples are depicted in
Schemes 23.57–23.59.

Activation by sulfur has served to devise the first known access to 2,20-
biphosphinines [155].
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23.3.4.4 Phosphinines in Coordination Chemistry
Phosphinines give mainly four types of complexes (O to R in Figure 23.3).

By far the most common are those of type O. Among them, the most noteworthy
are a series of homoleptic complexes of the parent phosphinine (13) prepared by the
group of Elschenbroich, NiL4, FeL5, CrL6 [156–158]. In this type of complexes,
phosphinines behave as relatively weak s-donors and strong p-acceptors, somewhat
resembling CO. The ability of phosphinines to stabilize low oxidation states has been
spectacularly demonstrated with 2,20-biphosphinines (P-P). These complexes are
either prepared from neutral 2,20-biphosphinines or from their dianions
(Scheme 23.60) [159].
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A series of homoleptic complexes derived frommetals in negative oxidation states
has thus been prepared, such as [M(P-P)3]

2� (M¼Ti, Zr, Hf) [160]. Another illus-
tration of this phenomenon is the stabilization of a gold(0) complex by a tetrapho-
sphinine macrocycle [161].

Even though the g6-coordination mode (Q) is much less common, it has
produced some interesting species such as the bis(g6-phosphinine)vanadium
(0) sandwich complex,the structure of which has been established by X-ray
analysis [162].

23.4
Other P Heterocycles

The heterocyclic chemistry of phosphorus is now so vast a domain that it is
impossible to cover all of its aspects in the limited space available. Two books have
been specifically devoted to the subject [163, 164]. This brief survey is restricted to the
three-, four-, and five-membered phosphorus–carbon heterocycles containing a
single heteroatom. Phospholes and phosphinines are, of course, excluded.

23.4.1
Three-Membered Rings: Phosphiranes and Phosphirenes

A review on this topic is available [165]. The saturated ring (phosphirane) was
discovered byWagner in 1963 (but was not reported in the literature until 1967) [166]
and its synthesis is remarkably simple (Scheme 23.61).

The unsaturated ring (phosphirene) was discovered in 1982 via a trickier
approach [167] (Scheme 23.62).
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The terminal phosphinidene complexes that are used in this synthesis are
generated by cycloreversion from the appropriate 7-phosphanorbornadiene
complexes.

As expected, both rings have a very small C–P–C internal angle (phosphirane
47� [168], phosphirene 42� [169]) and display a high ring strain (phosphirane
DE� 22 kcalmol�1) [170]. Their more characteristic spectral feature is their 31P
resonances at very high field (parent phosphirane �341 ppm [171], 1,2,3-triphenyl-
phosphirene �190 ppm [169]).

The chemistry of these rings is controlled by their strain. They tend to cleave upon
oxidation. The phosphiranium salts aremarginally stable and can be used as efficient
precursors of phosphenium cations (Scheme 23.63) [172].

Phosphireniumsalts aremore stable than their saturated counterparts due to some
aromatic stabilization [173]. In the same vein, a highly reactive dicoordinate phos-
phirenylium cation has been characterized in liquid SO2 at low temperature [174].

Most of the reactions of these species involve ring opening or ring expansions.
A few representative examples are depicted in Schemes 23.64–23.66 [175–180].

Since both phosphiranes and phosphirenes are heavily stabilized by complexation
with [M(CO)5] (M¼Cr, Mo,W), a lot of work concerning these rings has been carried
out in the coordination sphere of these transition metals. The phosphirane com-
plexes are directly obtained from the reaction of terminal phosphinidene complexes
and alkenes (Scheme 23.67) [181].
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The corresponding work has been summarized in two reviews [182, 183]. A
surprisingly simple synthesis of phosphirenes has also been devised
(Scheme 23.68) [184, 185].

Of interest too is the synthesis of phosphirenes from titanacyclopropenes
(Scheme 23.69) [186].
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23.4.2
Four-Membered Rings: Phosphetanes, Dihydrophosphetes and Phosphetes

A review on phosphetanes is available [187]. The ring was discovered by McBride in
1962 [188]. Its initial synthesis relied on the condensation of halophosphines with
polymethyl-substituted olefins in the presence of AlCl3 (Scheme 23.70).

The mechanism involves a methyl 1,2-migration (Scheme 23.71).

Owing to its simplicity, this route to phosphetanes is still a method of choice today.
The structure of a tervalent phosphetane shows a C�P�C intracyclic angle of

76.9�, with relatively long intracyclic P�C bonds at 1.863–1.887A
�
[189]. According to

a theoretical study, the ring strain of phosphetane is relatively low at
17.9 kcalmol�1 [190].

Apart from a classical chemistry at phosphorus (oxidation, quaternization, com-
plexation, etc.), the phosphetane ring undergoes several ring openings and ring
expansions. Some examples are collected in Scheme 23.72 [191–193].

Besides the McBride synthesis, the most convenient access to phosphetanes
relies on the reaction of primary phosphines with 1,3-diol derivatives
(Scheme 23.73) [194, 195].

The 1,2-dihydrophosphete (phosphetene) ring was unambiguously characterized
for the first time in 1985 [196]. A review is available [197]. The intracyclic angle in
1,2,3-triphenylphosphet-2-ene is 74.0�, the P�Csp2 bond length is normal at 1.821A

�
,

and the P�Csp3 bond length is long at 1.886A
�
[198].

1-Phosphadienes and 1,2-dihydrophosphetes are connected by a cyclization–
cycloreversion equilibrium that has been studied from a theoretical standpoint [199].
When appropriately substituted, a phosphetene ring can be used as a masked
1-phosphadiene as shown in the following example (Scheme 23.74) [200].

Two interesting ring expansion reactions have also been described (Schemes 23.75
and 23.76) [201, 202].

The most straightforward synthesis of phosphetenes relies upon a titanium-
phosphorus exchange in titanacyclobutenes (Scheme 23.77) [198].
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The ring can also be obtained by cyclization of 1-phosphadienes [203, 204] and by
[2 þ 2] cycloaddition between electron-poor phosphaalkenes and electron-rich
alkynes [205].
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As expected, the phosphete ring is antiaromatic and is only known as stable g4-
transition metal complexes [206].

23.4.3
Five-Membered Rings: Phospholenes

Saturated phospholanes were discovered as early as 1916 [207]. Neither their
synthesis nor their chemistry show some specificity by comparison with their acyclic
counterparts. Conversely, unsaturated phospholenes, discovered in 1953 by McCor-
mack [208], can be considered as the genuine starting point of phosphorus–carbon
heterocyclic chemistry. Their synthesis, via the so-calledMcCormack reaction, has no
equivalent in nitrogen or arsenic chemistry (Scheme 23.78).

This original cycloaddition reaction and its various applications have been
reviewed in some depth in the book of Quin [163]. As a general rule, the reaction
takes place slowly at room temperature. Heat cannot be used because the cycload-
ducts are thermally unstable, but high pressure accelerates the process [209].
Hydrolysis of the adducts gives the phospholene oxides [210], magnesium reduction
the tervalent phospholenes [210] and dehydrohalogenation the phospholes [24].

A lot of classical and non-classical chemistry has been performed with phospho-
lene oxides. Ring expansion has been observed upon dichlorocarbene addition
(Scheme 23.79) [211].

Another ring expansion occurs upon metallation and reaction with aromatic
nitriles (Scheme 23.80) [212].
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23.5
Applications of Phosphorus Heterocycles

The use of phosphorus–carbon heterocycles as ligands for homogeneous catalysis
was considered very early on [213]. It was soon noticed that 1,2,5-triphenylphosphole
(20) is an excellent ligand, both for the cobalt- and rhodium-catalyzed hydroformyla-
tion of olefins. A curious feature of the Rh/(20) system is that its catalytic activity does
not depend on the Rh/P ratio [214]. The active species appears to be [RhH(CO)
(20)2] [215]. In the same vein, both the 1-phosphanorbornadiene (21) [216] and its
water-soluble version (22) [217] are efficient ligands for alkene hydroformylation, the
second one in the rhodiumbiphasic Rhône-Poulenc process converting propene into
butyraldehyde. More recently, it has been shown that 2,4,6-triarylphosphinine (23) is
exceptionally efficient for the rhodium-catalyzed hydroformylation of polysubsti-
tuted alkenes [218]. The low-lying LUMO of the phosphinine would favor the
reductive–elimination steps.
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In a different vein, a series of C2-, C3-, C4-bridged bis-(2,3,4,5-teramethylphosp-
holes) have been shown to give remarkably active catalysts for the palladium-
promoted copolymerization of ethylene and CO [219]. But the most spectacular
applications of heterocyclic phosphines are in the field of enantioselective catalysis.
To cite only the best known examples, the phospholane-based DuPHOS (24) [220],
phosphetane-based FerroTANE (25) [221, 222], phosphanorbornane-based Penn-
Phos (26) [223] and the phosphanorbornadiene-based BIPNOR (27) [224] all display
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impressive efficiencies in the rhodium- or ruthenium-catalyzed asymmetric hydro-
genation of dehydroamino-acids or ketones.
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Phosphorus heterocycles are also showing some promise in the field of molecular
materials. A low-molecularweight polymer (up to 7800) has been obtained by cationic
polymerization of a phosphirane (Scheme 23.81) [225].

Based on the chemistry described inScheme23.64, the anionic polymerization of a
phosphirene has yielded a much higher molecular weight polymer (up to 60 000)
(Scheme 23.82) [226].

More is certainly to come, since a careful theoretical study has predicted
that phosphetanes are better candidates than phosphiranes for radical
polymerization [227].

Theoretical studies have shown thata-connected polyphospholes would be better
substrates for the preparation of molecular electroconducting materials than the
well-known polypyrroles or polythiophenes [228–230]. However, the synthesis of
oligophospholes is difficult and only a tetraphosphole is presently known [231].
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Interesting results have, nevertheless, been obtained by R�eau with mixed thio-
phene-phosphole and pyridine-phosphole systems. This work has been
reviewed [232]. As an illustration, it has been possible to manufacture powerful
light-emitting diodes based on phosphole (28) [233].

In a completely different vein, a highly potent gold-phosphole inhibitor (29) of
human glutathione reductase has been described [234].
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Ph
(28)

SS

P
Ph
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NN
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It is, thus, quite clear that phosphorus–carbon heterocyclic chemistry is on the eve
ofmajor applications in thefields of homogeneous catalysis,molecularmaterials and
biology.

23.6
Addendum

By far themost significant advances that have taken place in phosphorus heterocyclic
chemistry during the last five years (2006–2010) deal with phospholes and phos-
phinines. Of special interest is the discovery that phospholes are extremely versatile
building blocks for the manufacture of optoelectronic materials and that phosphi-
nines display very specific properties as ligands for homogeneous catalysis. These
applications are, of course, outside of the scope of this addendum but numerous
recent papers and reviews cover these aspects [235–237].

23.6.1
Phospholes

Undoubtedly, the most spectacular results concerning phosphole chemistry have
been obtained by the group of Matano while working on the synthesis of phospha-
porphyrins. This work has been summarized in a review [238]. Amilder variant of the
zirconium route to phospholes (Scheme 23.4) using titanium is first used to
synthesize phosphole 2,5-diesters (Scheme 23.83) [239].
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After reduction and acidic condensation with pyrrole, the phosphatripyrrane thus
obtained is allowed to react with a heterocyclic 2,5-diol to give the corresponding
porphyrinogen, whose oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ) affords the heteroporphyrin (Scheme 23.84) [240].

Several variations around this basic scheme lead to phosphole-containing calix-
pyrroles, calixphyrins, and sapphyrins. The use of a perfluorophenyl substituent at
phosphorus enhances the yields and the stability of these rings [241]. Extensive 18p
cyclic delocalization in these structures has been demonstrated by NMR and DFT
calculations. The coordination chemistry of these newmacrocycles has been studied
extensively [242–244].

We have previously mentioned the synthesis of a a-connected tetraphosphole [64].
Unfortunately, higher oligomers were not accessible by this route. Very recently,
the group ofMatano has demonstrated that this impossibility is a consequence of the
3,4-dimethyl substitution preventing the coplanarity of the phosphole rings. Indeed,
when using the less demanding cyclopentane annulation, a polyphosphole oxide can
be efficiently obtained (Scheme 23.85) [245].

The dodecyloxy substituent is used for solubility. The polymer is obtained as
a deep-blue solid in 51% yield with an average molecular weight of 13 000.

P
Ph

CO2EtEtO2C P
Ph

iBu2AlH

HO OH

P
Ph

H
N

F3B-OEt2

HNNH

X

F3B-OEt2

CH(OH)PhPh(HO)HC

(X = NH, S)

N

P
Ph

N

X

Ph Ph

1)

2) DDQ

Scheme 23.84

P SnBu3Bu3Sn

Ar O
P II

Ar O

Fu[Pd(0)], 3 CuIP,

h49rt,NMP,

=Ar p-dodecyloxyphenyl

P
Ar O

n

Scheme 23.85

2106j 23 Phosphorus Heterocycles



The polyphosphole oxide displays a very narrow band gap and an absorption
maximum at 655 nm – significantly redshifted by comparison with polythiophene.

Matano has also reinvestigated the synthesis of a-substituted alkynylphospholes
using his titanium route [246]. This has led to the synthesis of an original terphosp-
hole (Scheme 23.86).

The three phosphole rings are coplanar, contrary to what was previously observed
in the quaterphosphole [64].

Finally, the group of Mathey has described the synthesis of phosphole isomers
whose nucleophilicity is similar to that of tris(tert-butyl)phosphine as a result of the
destabilizing overlap between the lone pair and the HOMO of the diene
(Scheme 23.87) [247].

These ligands look promising for catalytic applications.

23.6.2
Phosphinines

A conversion of phospholes into phosphinines via 1-phosphanorbornadienes has
been described in Scheme 23.32. Its drawback is that the extrusion of the carbene
bridge works only for the diphenyl-substituted species at high temperature
(230 �C). To generalize this potentially useful route, a selective oxidation of the
P�C bridge bond has been carried out. The non-concerted extrusion of the triplet
diphenylcarbene is replaced by the concerted extrusion of singlet formaldehyde.
The aromatization takes place at lower temperature (180 �C) and the reaction is
compatible with several functionalities (Scheme 23.88) [248].

A potentially versatile transformation of furans into phosphinines has also been
devised. All the steps are performed at or below room temperature. Protection of the
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OH group is necessary to avoid a ring expansion into 1,2-oxaphosphepines
(Scheme 23.89) [249].

The main advance in the chemistry of phosphinines is the description of the
first protonated species. The protonation of 2,4,6-tris(tert-butyl)phosphinine at
phosphorus is carried out with a carborane superacid H[CHB11Me5Cl6] [250]. The
resulting salt gives a 31P resonance at 60 ppm with a 1JPH coupling of 625Hz. The
X-ray crystal structure analysis shows a strictly planar ring with short P�C bonds
(1.696–1.698 A

�
). In the same vein, stable phosphinine sulfides have been fully

characterized by NMR spectroscopy and X-ray crystal structure analysis. Their
electronic structure has been studied by DFT [251].

Finally, another noteworthy result concerns the synthesis of the first enantio-
pure atropisomeric phosphinines using the original synthesis of M€arkl
(Scheme 23.26) [252]. The enantiomers are separated by HPLC on a chiral
stationary phase. The barrier to racemization has been determined:
DG„

298¼ 109.5� 0.5 kJmol�1.
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24
The Chemistry of 2-Azetidinones (b-Lactams)
Benito Alcaide, Pedro Almendros, and Amparo Luna

24.1
Monocyclic Derivatives

24.1.1
Introduction

The large number of recent reports on b-lactam chemistry demonstrates the
increasing interest in this important class of compounds. Monocyclic b-lactams
frequently serve as precursors for the synthesis of classical bicyclic b-lactam anti-
biotics. The cyclic 2-azetidinone skeleton has been extensively used as a template on
which to build the heterocyclic structure fused to the four-membered ring, using the
chirality and functionalization of theb-lactamnucleus as a stereocontrolling element.
The discovery of nonclassical b-lactam antibiotics, such as monobactams and
nocardicins, coupled with ever-growing new applications such as enzyme inhibition
has triggered a renewed interest in the building of new monocyclic b-lactam
derivatives. Besides the utility of b-lactams as biologically active agents, they are
used as intermediates in a- and b-amino acid synthesis, as well as building blocks
for alkaloids, heterocycles, taxoids and other types of compounds of biological and
medicinal interest.

24.1.2
Physicochemical Data

24.1.2.1 Computational Chemistry
Theoretical studies show that b-lactams are weaker bases, in the gas phase, than
acyclic amides [1]. The attenuation of basicity upon cyclization is stronger than that
found for cyclic ketones of similar size due to the existence of a negative hypercon-
jugation effect that is present in b-lactams but not in cyclic ketones. Ab initio
calculations indicate that both b-lactams and acyclic amides are oxygen bases, but
the gap between the oxygen and nitrogen intrinsic basicities is much smaller in the
former due to the aforementioned cyclization effects. This decrease of the oxygen
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intrinsic basicity of b-lactams with respect to the aliphatic amides of the same size is
a direct consequence of the hybridization changes undergone by the carbonyl carbon
and is very well described by a topological analysis of the corresponding electronic
charge densities. The topological analysis of bond activations upon protonation
reveals that for 2-azetidinones these effects are not dramatic when protonation takes
place at the oxygen atom, whereas they are quite significant if protonation takes place
at the ring nitrogen.

Model chiral b-lactam molecules, (3S)- and (4R)-fluoro-2-azetidinone, have been
calculated at the B3PW91/aug-cc-pVTZ level to be hydrogen bonded with achiral HX
molecules (X¼F,Cl, Br) [2]. Two stable structures of the complex are possible: a cyclic
or a bentH-bond, inwhich theHXmolecule interacts with theCOgroup and is either
close to NH or CH2 (CHF) moiety, respectively. The VCD effect of these two forms
differs in several respects; however, the main difference is the sign of the VCD
rotational strength of the n(HX) stretching vibrations, revealing the geometry of the
hydrogen bond complex. A related report on halogenoazetidinones has considered in
the influence of the halogen atom, at the C4 position of the 2-azetidinone ring, on the
geometry, IR, Raman and vibrational circular dichroism spectra [3]. The vibrational
spectra were calculated for the chiral (4R)-X-2-azetidinone (X¼F,Cl or Br)molecules
at the B3PW91/aug-cc-pVTZ level. It was shown that the geometry of the molecules
studied do not change much upon changing the halogen atom. In case of the
vibrational spectra, the position and, evenmore so, the intensities depend strongly on
the kind of halogen substituent.

Ab initioMP2/6-31G(d,p) and 6-31 þ þG(d,p) calculations have been performed
to investigate the intramolecular hydrogen-bonding in two model monocyclic
b-lactams: monobactams and nocardicins [4]. It was found that the intramolecular
C¼O � � �H�O¼S� hydrogen bond stabilizes a monobactam, while a nocardicin is
destabilized by C¼O � � �H�O�C¼O� hydrogen bond formation. This observation
suggests that monobactams could block themselves by the intramolecular bond and,
therefore, could be less active towards a receptor active site than nocardicins.

The effect of an ancillary water molecule on the neutral and alkaline hydrolysis
mechanisms of a simple b-lactammolecule (N-methylazetidinone) has been studied
at the Hartree–Fock and MP2 levels using the 6-31G� and 6-31 þ G� basis sets [5].
Solvent effects have been also considered by means of a polarizable continuum
model. In neutral hydrolysis, the additional water molecule diminishes the free-
energy barriers only when correlation energy is taken into account, Concerted and
stepwise mechanisms have been described. The corresponding barriers are close,
and the actual mechanism could be conditioned by the molecular environment,
solution, protein, and so on. Using the results of amolecular dynamics simulation of
N-methylazetidinone in aqueous solution, it has been shown that the stepwise
process is more likely to occur in such conditions. In alkaline hydrolysis, the first
reaction step consists of the formation of a tetrahedral intermediate that requires
a desolvation of the hydroxyl anion, which is difficult to reproduce by calculation.
Afterward, the hydrolysis reaction proceeds through either concerted or stepwise
mechanisms for ring opening and proton transfer. The concerted channel presents
a very low energy barrier, and the species involved are dependent on the calculation
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level. The stepwise mechanism is virtually the same as that previously reported for
the unassisted hydrolysis, the relative energy of all the points along the path being
diminished and the energy barriers remaining essentially unaltered.

Kinetic experiments have been performed to characterize the reactivity of
aztreonam against amine nucleophiles relative to that of penicillin compounds
(6-APA) [6]. The magnitude of the experimentally determined kinetic constants (k1,
k2 and k3) shows that aztreonam is slightly more reactive than 6-APA, despite
common assumptions that the amide bond should be less activated in mono-
bactams. Interestingly, these kinetic results are consistent with the experimentally
determined rate for aztreonam covalent linkage to the e-amino groups of lysine
residues in HSA plasma proteins (70% of the initial aztreonam fixed to HSA after
24 h of reaction), which is higher than that reported for benzylpenicillins (3% after
48 h). Furthermore, the kinetic influence of substitution on the attacking nucle-
ophile was also investigated. Most remarkably, for ethanolamine in reaction with
either aztreonam or 6-APA, the corresponding rate law has a kinetic term
proportional to [RNH2][RNH3

þ ], in contrast with previous reports on the reaction
between benzylpenicillin and ethanolamine. To gain a better understanding of the
various effects controlling the rates of the reactions between b-lactams and amines,
the molecular details of the reactive processes have been investigated by quantum
chemical calculations. The APA and MONO model systems were considered to
compute the rate-determining DGsolution barriers corresponding to various reaction
mechanisms, all involving bifunctional catalysis by water, a second amine molecule
or the N-sulfonate groups of monobactams. The theoretical results confirm the
ability of the water-assisted (k1) and amine-assisted (k2) mechanisms to explain
experimental data on the aminolysis of b-lactams. Thus, the computed DGsolution

barriers have moderate values ranging from about 26 to about 34 kcalmol�1. For
the aminolysis of monobactams, the previously proposed N-SO3

�-assisted mech-
anism turns out to be 5.2 kcalmol�1 less stable than the water-assisted route.
Moreover, the theoretical calculations undertaken in this study satisfactorily
reproduce several experimentally observed kinetic trends: the prevalence of the
amine-assisted mechanism (k2 term in the rate law) over the water-assisted route
(k1) and the higher reactivity exhibited by the monobactam. Nevertheless, the most
interesting prediction made by these calculations is that the kinetic term in the
experimental rate law proportional to [CH2OHCH2NH2]�[CH2OHCH2NH3

þ ] can
be interpreted in terms of the bifunctional catalysis performed by the hydroxy
group of the protonated amine molecule. Finally, from comparison between
experimental and theoretical data, it was concluded that a combination of standard
DFT gas-phase calculations with SCRF solvation methodologies can yield relative
DGsolution barriers with semiquantitative accuracy and give valuable insights into
the various factors controlling the rate of chemical processes in the condensed
phase.

24.1.2.2 Experimental Structural Methods
The analysis of b-lactams by X-ray diffraction indicates that the four-membered ring
is planar. Several 2-azetidinone derivatives, for example,b-lactampseudopeptides [7],
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4-aryl-substituted b-lactams [8], 3,3-dichloro-N-p-methoxyphenyl-4-(2-phenylstyryl)-
2-azetidinone [9], 4-(2-oxoethylidene)azetidin-2-ones [10], isoxazolidinyl- and
pyrrolidinil-b-lactams [11], 4-(1-hydroxy-3-oxobutyl)-b-lactams [12] and an oxiranyl-
b-lactam [13], have been recently studied by X-ray crystallography.

The method most useful for the determination of the relative stereochemistry of
b-lactams is 1H NMR spectroscopy. The assignment of the cis-stereochemistry to
b-lactams is based on the observed coupling constants of about 5.0Hz for methine
protons H3 and H4, whereas trans-stereochemistry is consistent with methine
coupling constants of about 2.0Hz in their 1H NMR spectra [14]. The 13C NMR
spectra of 2-azetidinones show the carbonyl resonance between 160 and 167 ppm.
Interestingly, the carbonyl resonances of c- and larger-membered lactams appear
between 170 and 180 ppm. The infrared C¼O absorption frequency for the mono-
cyclic 2-azetidinone ring is about 1745 cm�1.

24.1.3
Biologically Relevant Monocyclic b-Lactams

The word �antibiotic� refers to a chemical agent that either kills or prevents the
growth ofmicroorganisms and is itself derived from amicroorganism. Although the
term �antimicrobial� is better and more precise because it includes the synthetic
agents that have been commonly employed for several decades to treat infections, for
ease of use the prevalent term antibiotic will be kept herein.

Theminimum structural features believed to be essential for antimicrobial activity
in the b-lactam antibiotics have undergone considerable revision. Since in recent
years several natural monocyclic b-lactams have been shown to exhibit high anti-
bacterial activity, it now appears that theminimumrequirement for biological activity
is a suitably substituted monocyclic 2-azetidinone ring. The most representative
examples of these monocyclic b-lactams exhibiting antibiotic activities are the
naturally occurring nocardicins 1 [15], and monobactams 2 [16].
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The common structural feature of these monocyclic b-lactams is the absence
of substitution at the C4 carbon of the 2-azetidinone ring. The antibiotic activity
of this type of b-lactams has stimulated considerable activity in this area. As a
consequence, aztreonam (3) [17] and carumonam (4) [18], both with a monobactam
structure but bearing substituents at C4, have been synthesized. The relevant
feature of these compounds is the b-lactam nucleus, but the nature as well as the
sterical arrangement of the substituents also play an important role in the antibiotic
activity.
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Recent discoveries have shown other biological properties of these compounds
apart from their antibacterial action. Some of themore notable advances concern the
use in gene activation as well as the development of mechanism-based serine
protease inhibitors of elastase, cytomegalovirus protease, thrombin, prostate specific
antigen, and cell metastasis and as inhibitors of acyl-CoA cholesterol acyl transfer-
ase [19]. The cholesterol-lowering agent ezetimibe (5) [20], as well as the irreversible
inhibitor of glutamine synthetase tabtoxinine-b-lactam (6) [21], are representative
example of these trends.
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24.1.4
2-Azetidinone Nucleus Synthesis

The vast number of syntheses of b-lactams amply illustrates the ongoing vitality of
2-azetidinone chemistry. Obviously, this chapter cannot offer a comprehensive
description of all the aspects of the various types of b-lactam syntheses emanating
from research groups active in this area, and so we have concentrated our efforts on
the more relevant aspects. Major synthetic routes, for example, the cycloaddition of
ketenes and imines, cannot be covered completely and readers are advised to consult
reviews on this topic for more details.

24.1.4.1 Ketene-Imine Cycloaddition (Staudinger Reaction)
[2 þ 2] Cycloaddition reactions between ketenes, bearing amino-, oxy-, or halo-
groups, and imines are recognized as being among the most important and direct
routes to b-lactams [22]. Alkyl-substituted ketenes also furnish the corresponding
b-lactams upon reaction with activated imines (iminoesters). In general, ketenes are
generated from the appropriate acid chloride and a tertiary amine. The major or sole
product of the cycloaddition is usually the cis-b-lactam, although a few exceptions
showing trans selectivity are known. In this way b-lactams with a widely varying
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substitution pattern at the C3 and C4 positions of the ring are constructed stereo-
selectively. The diastereoselection of the cycloaddition process can be controlled with
variable success from chiral groups attached to either the ketene or the imine
component, or alternatively to both. More recently, chiral catalysts have been used
in the asymmetric Staudinger reaction.

Staudinger-like cycloaddition between proline-derived formaldehyde hydrazones
and functionalized ketenes constitutes an efficient methodology for the stereose-
lective construction of 4-unsubstituted b-lactams 7 (yield: 80–96%, dr up to 99 : 1)
(Scheme 24.1) [23]. Enantiopure N,N-dialkylhydrazones react with N-benzyloxycar-
bonyl-N-benzyl glycine as an aminoketene precursor to afford trans-3-amino-4-
alkylazetidin-2-ones 8 as single diastereomers [24a]. Oxidative N�N bond cleavage
of cycloadducts 7 and 8 afforded free N-H-azetidinones in high yields [24b].

Lectka and colleagues have reacted achiral ketenes with achiral imines to achieve
asymmetric induction in the synthesis of cis-b-lactams through the use of a bifunc-
tional catalyst system consisting of a chiral nucleophile (benzoylquinine) and an
achiral Lewis acid [25], while a catalytic, highly diastereoselective process for the
synthesis of trans-b-lactams has been reported based on a phosphonium fluoride
precatalyst that both activates the nucleophile and directs the reaction process for
high yield and diastereoselectivity [26a]. It has been demonstrated as well that a
planar-chiral azaferrocene derivative of 4-(pyrrolidino)pyridine is an excellent catalyst
for the enantioselective Staudinger reaction, providing b-lactams 9 with very good
stereoselection and yield (Scheme 24.2) [26b].

More recently, azolium salts that belong to the extraordinary class ofN-heterocyclic
carbenes (NHCs) have been found to be efficient catalysts for the enantioselective
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synthesis of b-lactams through Staudinger reaction of ketenes with N-tosyl, N-ben-
zyloxycarbonyl, N-tert-butoxycarbonyl, or N-(4-nitrobenzenesulfonyl) imines [27].

The rapid development of solid-supported combinatorial chemistry has increased
in a spectacular way the complexity and the diversity of reactions by using solid
support. Among others, the Staudinger reaction has found various uses in polymer-
assisted synthesis [28]. Sasrin, preloaded with an Fmoc-protected (Fmoc¼ 9-fluor-
enylmethoxycarbonyl) amino acid, has beenused byGallop as the startingmaterial 10
(Scheme 24.3) [29]. After deprotection, the resin yields a free primary amine, which
can be reacted with aldehydes, in the presence of trimethyl orthoformate as a
desiccant, to afford the desired polymer-bound imines 11. These, in turn, are treated
with an acid chloride in the presence of triethylamine to produce the polymer-
supported b-lactams 12, which are liberated from the resin to give in good yields 2-
azetidinones 13 by treatment with CF3COOH. The polymer-bound lactams can be
further derivatized by Suzuki and Heck coupling reactions, upon selection of
properly functionalized aldehydes, to form the imines. The Staudinger reaction on
a solid phase has also been accomplished using imines obtained from commercially
available fluorinated a-amino acids. Thus, the b-lactam formation on a solid phase
can be monitored by 19F NMR spectroscopy [30].

The stereochemical selectivity of this procedure, through the effect of chiral
ketenes and chiral imines, has also been investigated [31]. In both cases only cis-
diastereomers are observed. The diastereoselectivities of the b-lactams produced
were in a range of 8 : 1 to greater than 25 : 1 when using a ketene bearing a chiral
oxazolidinone moiety, and a range of 2 : 1 to greater than 25 : 1 when using chiral
aldehydes to form the imines.

In the previous examples, the imine intermediate is generated from a polymer-
bound amine, but it may also be generated from a polymer-bound aldehyde [32]. The
use acetoxyketene [33] allows further modifications to give carbamate products. This
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chemistry has been extrapolated to the synthesis of enantiomerically enriched
b-lactams starting from a polymer-bound version of Garner�s aldehyde [34]. A
polymer-supported Mukaiyama-type reagent has been used for the preparation of
b-lactams, using the Staudinger reaction. The products were obtained by generating
the ketene from a carboxylic acid under sonicationwith the resin followed by reaction
with the imine [35]. These approaches also exclusively produce the cis-diastereomers
of the lactams. The solid-phase synthesis of trans-3-alkyl-b-lactams from non-acti-
vated acid chlorides has been reported recently [36].

Lectka has devised a method in which a polymer-bound base, used as a packing
material for a jacketed column cooled to�78 �C, effects the dehydrohalogenation of
acyl halides to generate ketenes [37]. When a solution of the acid chloride is added to
the top of the column, a solution of the ketene percolates at the bottom and can be
either trapped by another reagent or eluted through another column packed with
a different polymer-bound reagent/scavenger for further transformations. The use of
a polymer-bound cinchona alkaloid as both the nucleophilic catalyst and the base
effecting the dehydrohalogenation has been reported [38]. This polymeric reagent
was regenerated in situ with K2CO3 or sodium hydride in a rather unusual solid-gel
shuttle deprotonation between a solid and a gel. Although this b-lactam formation
involves a single step, the presence of a regenerating base seems to induce some
scrambling in its stereoselectivity. All of the polymers can be recycled by simply
elutingwashing solutions through the columns,which seems to have only amarginal
effect on the reaction results.

24.1.4.2 Metalloester Enolate-Imine Condensation
The metalloester enolate-imine condensation represents one of the most popular
entries to b-lactams [39]. Various ester types and imine types can be utilized in this
one-pot reaction between imines and metal ester enolates (or their synthetic
equivalents, the silylketene acetals). The reaction can be promoted by variousmetals,
including aluminium, boron, indium, lithium, titanium, zinc and zirconium.

The Reformatsky addition reaction to imines has been employed as a method to
synthesize b-lactams. For example, in the presence of Zn/Cp2TiCl2 (cat.), a-bro-
moacetates, or c-bromocrotonates, react with imines in one-pot to form b-lactams, at
room temperature without the need for pretreatment of the solvent and Zn [40].
Reformatsky reactions between enolizable and non-enolizable aldimines and a-bro-
moesters of differing steric demands, in the presence of zinc dust and a catalytic
amount of iodine in dioxaneunder high intensity ultrasound (HIU) irradiation afford
short reaction times and high yields of b-lactams 14 (Scheme 24.4) [41]. In a similar
way, indium can mediate the synthesis of 3-unsubstituted b-lactams [42].
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The use of silyl enolates or S-thioester, instead of carboxylic ester, metal enolates in
the condensation with imines provides a mild route to 2-azetidinones. 2,20-Diben-
zothiazolyl disulfide is a versatile reagent that provides a convenient and efficient
route for the synthesis of b-lactams from Schiff�s bases and alkoxy/aryloxy acetic
acids. The process involves the formation of thioester of the corresponding acid.
Finally, condensation of titanium enolates, derived from these esters, with imines
completes the synthesis of 2-azetidinones [43]. Highly substituted b-lactams have
been synthesized by addition of air-stable ethyl(trimethylsilyl)acetate derivatives to
N-(2-hydroxyphenyl)aldimine sodium salts [44].

The asymmetric version of the metalloester enolate-imine condensation route
has been explored using a chiral enolate. The diastereoselectivity of the reaction of
the lithium enolate of menthyl isobutyrate with imines has been improved by the
addition of a catalytic amount (5mol%) of a chiral tridentate aminodiether ligand to
give the corresponding b-lactams in high enantioselectivities [45a]. Matching
and mismatching phenomena were observed by the reaction of L- and D-menthyl
isobutyrates. The asymmetric Reformatsky-type reaction of (–)-menthyl
bromodifluoroacetate with imines in the presence of RhCl(PPh3)3 affords (S)-
difluoro-b-lactams inmoderate to good yields and high diastereoselectivities through
spontaneous removal of the auxiliary [45b]. A systematic investigation of chiral ligand
mediated addition of imines to lithium ester enolates to give b-lactams has been
carried out to study the effects of the variation of the alkoxy group in the latter
reagent [46]. A maximum of 93% ee was obtained.

The ester enolate-imine condensation route to b-lactams via an immobilized ester
enolate has been achieved [47]. The key reaction in the synthesis is the cyclization of
the resin-bound ester dianion and an imine. Traceless cleavage from the T1-triazene
linker system yields the desired b-lactams (Scheme 24.5).

24.1.4.3 Isocyanate-Alkene Cyclocondensation
The reaction of isocyanates with alkenes to give b-lactams requires activation of the
isocyanate moiety by electron-withdrawing substituents or activation of the alkene
partner by electron-donating groups. 4-Aryl-2-azetidinones have been prepared by
reacting N-chlorosulfonyl isocyanate with styrene and 4-methylstyrene [48]. The
reaction between the same isocyanate with an enantiopure (E)-vinyl sulfide gives
a 2.5 : 1 diastereomeric mixture of phenylthioazetidinones [49]. The facial selectivity
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in the cycloaddition is explained by the conformational preference of the allylic
groups in the transition structure. The [2 þ 2] cycloaddition of chlorosulfonyl
isocyanate (CSI) to alkoxyallenes derived fromethylidene and benzylidene erythritols
and threitols proceeds with a moderate asymmetric induction in the case of
the erythritols (Scheme 24.6) and with a very low induction in the case of threitols.
This indicates that the erythritol derivatives may exist in solution in one
predominant conformation while the threitol derivatives behave as a conformational
ensemble [50].

24.1.4.4 Chromium Carbene-Imine Cyclization
The preparation of 2-azetidinones through the photochemical reaction of chromium
carbene complexes with imines is a convenient method [51]. A vast array of imines,
including simple imines, a-iminoketones, a-diimines, iminodithiocarbonates, and
ferrocene imines [52], can be used. The asymmetric version of this route can be
accomplished on using enantiopure chromium carbenes, such as the (R)-phenyl-
glycine derivative 17, which allowed the preparation of optically active b-lactams 18
(Scheme 24.7) [53]. A theoretical-experimental approach to the mechanism of the
photocarbonylation of chromium(0) (Fischer)-carbene complexes and their reaction
with imines to give b-lactams has been published [54].

24.1.4.5 Cyclization of b-Amino Acids and Derivatives
The cyclization of b-amino acids to give b-lactams can be achieved through the use of
a numerous reagents and conditions [55]. Interesting examples include the prepa-
ration of C3 unsubstituted b-lactams by using tert-butylmagnesium chloride [56], the
synthesis of 2-azetidinones bearing a C4 quaternary stereocenter by using 4-pyrro-
lidinopyridine [57], the preparation of the key b-lactam precursor in the total
synthesis of lankacidin C [58], the preparation of the chartelline framework by
simple heating [59], the LHMDS-promoted cyclization of an aspartic acid derivative to
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provide a carbapenem PS-6 precursor [60] and the preparation of the spirocyclic
b-lactam 19 by sequential base and acid treatment (Scheme 24.8) [61].

24.1.4.6 Hydroxamate Cyclization
The cyclization of a b-hydroxyhydroxamate derived from an amino acid is
a straightforward approach to 2-azetidinones [62]. The stereoselective synthesis of
3,4-substituted b-lactams by bromine-induced oxidative cyclization of O-acyl
b,c-unsaturated hydroxamic acid derivatives is a classical example [63]. The intra-
molecular Mitsunobu reaction of a b-hydroxy hydroxamic acid derivative has been
used for the preparation of the b-lactam precursors in the preparation of cobactin
analogs and in the total syntheses of pateamine A and sitagliptin [64]. A related
contribution is the cyclization of b-hydroxy-a-thioalkylhydroxamates in the presence
of AgClO4 [65]. The hydroxamate synthesis of b-lactams carried out on solid phase
has been reported [66]. The strategy chosen was to link the amino acid derivative to
a polystyrene-supported hydroxylamine, and finally carry out the cyclization under
Mitsunobu conditions. This approach is particularly suitable for solid-phase syn-
thesis as the supported b-lactam can be easily separated from the by-products of the
Mitsunobu reaction. The linker employed was a polystyrene resin carrying aO-trityl-
hydroxylamine linker. The cyclization occurred in THFusing freshly distilled DEAD
and PPh3. The resin was treated with a commercially available solution of SmI2 in
THF, and free 2-azetidinones 20 were recovered from the solution after hydrolytic
workup and passage through a short silica gel column (Scheme 24.9).

24.1.4.7 Metal-Catalyzed Insertions of Diazo Compounds
In recent years, metal-catalyzed intramolecular C�H insertion has emerged as
a general strategy for the construction of numerous cyclic and heterocyclic
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compounds, among which b-lactams are especially noteworthy [67]. The success of
this approach is related to the level of regio- and stereocontrol and, in some cases, to
the high enantioselectivity of the C�H insertion process. It has been recently
demonstrated that water is an efficient solvent for the Rh2(OAc)4-catalyzed intra-
molecular C�H insertion of a range of diazo substrates to yield 2-azetidinones 21
without competitive water insertion (Scheme 24.10) [68]. Owing to the high solubility
and stability of the catalyst in water, the catalyst can be efficiently reused.

An operationally simple catalytic system based on [RuCl2(p-cymene)]2 has been
developed for the stereoselective cyclization of a-diazoacetamides by intramolecular
carbenoid C�H insertion, and b-lactams 22 have been produced in excellent yields
and>99% cis-stereoselectivity (Scheme 24.11) [69a]. The Ru-catalyzed reactions can
be performed without the need for slow addition of diazo compounds and inert
atmosphere. The stereoselectivity of the related polymer-supported ruthenium-
catalyzed intramolecular carbenoid C�H insertion of a-diazoacetamides to yield
b-lactams has been shown to be similar to the analogous reactions with the
homogeneus [RuCl2(p-cymene)]2 catalyst [69b].

Aryl tosylhydrazones are converted into b-lactams in good yields and remarkable
cis selectivity (up to 99%) using a ruthenium porphyrin-catalyzed stereoselective
intramolecular carbenoid C�H insertion [70].
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24.1.4.8 Multicomponent Reactions
Multicomponent reactions (MCRs) have recently emerged as a highly valuable
synthetic tool in the context of modern drug discovery. The atom economical and
convergent character, the simplicity of a one-pot procedure, the possible structural
variations, the accessible complexity of the molecules, as well as the very large
number of accessible compounds are among the described advantages of MCRs.
Thus, for example, the reactivity of transition-metal catalysts can be exploited to
design one-step methods to convert readily available building blocks directly into
a diverse array of products, including b-lactams [71]. A multicomponent reaction of
b-aminothiocarboxylic acids, aldehydes and 3-dimethylamino-2-isocyanoacylate has
been used for the preparation of b-lactams 23 (Scheme 24.12) [72]. During this
reaction two heterocyclic moieties, a thiazole and a 2-azetidinone ring, are formed
simultaneously and under mild conditions. The increase in molecular complexity
here is dramatic as twoC�N, twoC�S and oneC�Cbonds are formed in a new �one-
pot� multicomponent reaction.

A tandem Petasis–Ugi multicomponent condensation strategy and 1,3-diisopro-
pylcarbodiimide condensation reaction can be used to prepare aza-b-lactams contain-
ing two to four elements of diversity [73a]. Although the yields are onlymoderate, the
methods provide rapid entry into this interesting structural class of molecules. The
creation of the b-lactam ring by Ugi reaction with b-keto-acids is unknown in organic
solvents, as exemplified by the complete failure of the reaction in MeOH, THF or
CH2Cl2. However, this reaction proceeds well in water to give 2-azetidinones 24
(Scheme 24.13) [73b]. A library of 32 b-lactams has been created by Ugi reaction in
water. TheHPLCpurity of the crude reactions productswas 70–99%, and the yields of
these products were 71–89%.
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24.1.4.9 Coupling of Terminal Alkynes and Nitrones (Kinugasa Reaction)
The Kinugasa reaction is a convergent route to b-lactams through the reaction of
a copper acetylide with a nitrone [74]. Appealing features of this process include the
ready availability of the startingmaterials and its high functional group tolerance. The
Kinugasa reaction has been used for the asymmetric synthesis of b-lactams 25 via
cycloaddition between chiral oxazolidinyl propynes (or related chiral ynamides) and
nitrones, in the presence of cuprous iodide (Scheme 24.14) [75].

Recently, asymmetric Kinugasa reactions have been accomplished using enantio-
selective catalysis. Thus, 3-exomethylene b-lactams have been obtained via Cu(I)-
mediated cycloaddition between propargyl alcohol and nitrones in the presence of L-
proline [76a], while 3,4-diaryl b-lactams have been observed for the asymmetric
intermolecular Kinugasa reaction using P,N-ligands [76b]. A chiral bis(oxazoline)/
Cu(OTf)2 derivative, a chiral tris(oxazoline)/Cu(II) system, and a chiral i-Pr-trisoxazo-
line/Cu(ClO4)2�6H2O complex under air atmosphere catalyzed the coupling of
terminal alkynes and nitrones to afford b-lactams with reasonable enantioselectiv-
ities [77]. A versatile system for the copper-catalyzed asymmetric coupling of alkynes
with nitrones to form cis-b-lactams has been developed using a bis(azaferrocene)
ligand [78].

24.1.4.10 Photochemical and Radical Methods
a-Oxoamides 26 undergo c-hydrogen (with respect to the benzylic carbonyl) abstrac-
tion under photochemical treatment in the crystalline state, leading tob-lactams 27 in
which a new chiral center is generated at the benzylic carbon (Scheme 24.15) [79]. It
has been shown that the crystal lattice preorganizes the reactant molecules towards
a single diastereomer of the b-lactam and prevents large motions of the 1,4-diradical
intermediate that would result in the loss of stereochemical memory.
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Photosensitized decomposition of oxime oxalate amides and a-oxoamides is
a useful new route to carbamoyl radicals that may cyclize to afford b-lactams [80].
The kinetics of the 4-exo cyclizations of these carbamoyl radicals onto C¼C and
C¼NO bonds, leading to b-lactam-containing species, have been studied by EPR
spectroscopy [81]. Similarly, b-lactams have been prepared via ring closures of
unsaturated carbamoyl radicals derived from 1-carbamoyl-1-methylcyclohexa-2,5-
dienes [82]. The free-radical mediated stannylcarbonylation of azaenynes provides
a 4-exo annulation approach leading to a-stannylmethylene b-lactams 28
(Scheme 24.16) [83]. The stereochemical results of b-lactam formation with respect
to newly formed C�C double bonds depend strongly on the substitution pattern at
the propargylic position. Thus, if the substituent is anything other than hydrogen, the
tributyltin group tends to be disposed syn to the carbonyl group to avoid strain.

24.1.4.11 Synthesis from Carbo- or Heterocycles
The regioselectivity and efficiency of the ring opening of aziridines has been
exploited for the synthesis of b-lactams through carbonylation of the aziridine
nucleus in the presence of a catalytic amount of [Rh(CO)2Cl]2 [84a], or using a
four-component reaction [84b]. The carbonyl insertion is regio- and stereospecific,
occurring at the most substituted carbon–nitrogen bond in the aziridine ring, and
proceeding with retention of stereochemistry of the substituents linked to the
aziridinic carbon atoms. The four-component reaction for the rapid synthesis of
1,3,4,4-tetrasubstituted b-lactams from methyleneaziridines consists of a sequence
that involves aziridine opening, C-alkylation, and Staudinger [2p þ 2p] cycloaddi-
tion. cis-Aziridines 29 have been employed in the carbonylation reaction by treatment
with Co2(CO)8, giving rise to trans-b-lactams 30, which were obtained as single
diastereo- and regioisomers in good yields (Scheme 24.17) [85a]. Nucleophilic ring
opening of the cis startingmaterial results in inversion of configuration, thus leading
to the trans-b-lactam. The exclusive formation of the 2-azetidinones 30 is a conse-
quence of the completely regioselective ring opening of the aziridine [85b].
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A theoretical investigation of the related Co2(CO)4
�-catalyzed carbonylative ring

expansion of N-benzoyl-2-methylaziridine to b-lactams has been performed [85c].
The synthesis of 3-unsubstituted 4,4-disubstituted b-lactams by silver-induced

ring expansion of the corresponding 2,2-disubstituted N-chloro-1-hydroxycyclopro-
pylamines is, according to theoretical calculations, a very efficient process that
yields a regio- and stereoselective product [86]. This process presents a two-step
mechanism proceeding through a nitrenium intermediate. The rate-determining
step corresponds to the extrusion of AgCl. This pathway could be an interesting new
synthetic route for obtaining the useful 3-unsubstituted 4-alkoxycarbonyl-4-alkyl-2-
azetidinones.

A single-pot, mild conversion of b-lactones into N-benzyloxy-b-lactams has been
accomplished by a ring opening/Mitsunobu sequence [87]. The transformation
proceeded with high stereochemical fidelity, with the Mitsunobu reactions proceed-
ing as expected with inversion of configuration at the b-carbon. In contrast to what
was expected, the reaction of 1,3-thiazolium-4-olates (thioisom€unchones) 31 with
aromatic aldehydes yielded b-lactams 32 bearing a sulfur-containing side chain
(Scheme 24.18) [88]. In every case, b-lactams 32 were formed as a mixture of cis and
trans isomers (with respect to the orientation of aryl substituents at C–3 and C–4).
Individual diastereomers were separated either by fractional crystallization or
preparative chromatography. A plausible rationale to account for the formation of
b-lactams involves first a [3 þ 2] cycloaddition in which thioisom€unchones play the
role of the dipole to produce a transient cycloadduct that undergoes a spontaneous
C�N bond cleavage, followed by a rearrangement under the reaction conditions.

1,3-Dipolar cycloaddition of nitrones to bicyclopropylidene or fluoroalkenes gives
the corresponding cycloadducts [89]. Catalytic hydrogenolysis of theN�Obondof the
fluorinated isoxazolidine derivatives leads to a-trifluoromethylated b-lactams, while
treatment of the bis-spirocyclopropanated isoxazolidines 33 with trifluoroacetic acid
in acetonitrile furnishes the corresponding 3-spirocyclopropanated b-lactams 34 in
good yields. Thus, this newmethod affords compounds with a 5-azaspiro[2.3]hexan-
4-one skeleton in 68–94% overall yield in two simple steps (Scheme 24.19).

1-(o-Nitrobenzyl)-2-acylpyrazolidin-3-ones upon irradiation through Pyrex and
then through Vycor yield 1-(acylamino)azetidin-2-ones. Removal of the acyl residue
from the extraannular nitrogen produces 1-aminoazetidin-2-ones. The suggested
mechanism for this tandem photochemical synthesis of b-lactams involves initial
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removal of the N1 o-nitrobenzyl substituent, followed by ring contraction via
a diazabicyclo[2.1.0]pentane intermediate [90]. Highly enantioselective photocycliza-
tion in the solid state of 1-alkyl-2-pyridones has been achieved in inclusion crystals
with optically active host compounds to give cyclobutene fused b-lactams, which after
sequential treatment with ozone and sodium borohydride afford the corresponding
monocyclic b-lactams [91].

24.1.4.12 Miscellaneous
The asymmetric synthesis of 4-alkyl-4-carboxy-2-azetidinones 35 has been achieved
through base-mediated intramolecular cyclization of the corresponding N-a-chlor-
oacetyl derivatives bearing (þ )- or (�)-10-(N,N-dicyclohexylsulfamoyl)isoborneol as
chiral auxiliary (ee up to 82%) [92]. More recently, it has been noted that the
asymmetric induction observed during cyclization of N-alkyl-N-chloroacetyl amino
acid derivatives to b-lactams 35 may be ascribed to chirality memory, being depen-
dent on the substituents on the starting material, and can be controlled by the
appropriate choice of the base and solvent (Scheme 24.20) [93].

Cycloaddition of lithium ynolates toN-sulfonyl imines has been reported to afford
2-azetidinones [94]. Unactivated imines such as N-4-methoxyphenyl imines are,
however, much less reactive in this reaction. The benzylic lithiation of substituted
acrylamides bearing a b-electron-withdrawing group, followed by 4-exo-trig cycliza-
tion, has yielded b-lactams in modest yields [95]. Iridium-catalyzed reductive
coupling of acrylates and imines provides trans b-lactams 36 with high diastereo-
selection (Scheme 24.21) [96]. The optimal catalyst allows for the synthesis of trans
b-lactams bearing aromatic, alkenyl and alkynyl side chains. This reaction appears to
proceed through a reductive Mannich addition–cyclization mechanism. Examina-
tion of substituent effects reveals a linear Hammett correlation for both the N-aryl
group on the imine and the aryloxy group on the acrylate, thereby pointing to rate-
determining cyclization in the reaction mechanism.
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Allyl halides of different structures, under CO pressure, undergo a [2 þ 2]
cycloaddition with imines in the presence of Pd(OAc)2, PPh3, and Et3N to afford
2-azetidinones [97]. The PdCl2-catalyzed cyclocarbonylation of propargylic amines
with CuCl2 and benzoquinone affords (E)-a-chloroalkylidene-b-lactams 37 in mod-
erate to good yields (Scheme24.22) [98]. Formation of the corresponding (Z)-isomers
or five-membered products was not observed. The stereoselectivity in this reaction is
different from that observed with propargylic alcohols.

The electrochemically induced synthesis of b-lactams by C3�C4 bond formation
has been accomplished [99]. 4-Alkylidene gem-difluoro b-lactams have been synthe-
sized through intramolecular hydroamination reaction of difluoropropargyl amides
via a Baldwin disfavored 4-exo-digonal cyclization using palladium acetate as the
catalyst [100a], while 4-alkylidene b-lactams have been obtained by Cu(I)-catalyzed
intramolecular C�Ncoupling of amides with vinyl bromides, revealing that the 4-exo
ring closure is preferred over othermodes (5-exo, 6-exo, and 6-endo) [100b]. A copper-
catalyzed skeletal rearrangement of O-propargyl arylaldoximes has produced the
corresponding 4-arylidene-2-azetidinones in good yields [101]. It was found that
the thermal rearrangement of aminocyclobutenones in the presence of an appro-
priate amine produced either cis- or trans-b-lactams with high selectivities [102].

24.1.5
Reactivity of the 2-Azetidinone Ring

24.1.5.1 Nucleophilic Attack at Carbon
The functionalization of 4-acetoxy-b-lactams at the C4 position is a key step in the
synthesis of 1-b-methylcarbapenems. Most of these efforts have been devoted to
the stereoselective introduction of different moieties on the commercially available

N
O

R

PMP

Me

NR
PMP OC6F5

O

+

36

[(cod)IrCl]%mol2.5 2,

P(OPh)%mol10 3,

Et2 60MeSiH, oC

58–80%

Scheme 24.21

N
O

R1 R2

R1

Cl

NHR3

R2

R3

37

PdCl%mol5 2,

CuClequiv.2 2,

benzoquinone,equiv.1

psi),(300CO

40THF, oC

32–80%

Scheme 24.22

2134j 24 The Chemistry of 2-Azetidinones (b-Lactams)



4-acetoxy-b-lactam 38, including a highly diastereoselective condensation between
the titanium enolate of 20-hydroxypropiophenone with 2-azetidinone 38 followed by
ozonolysis of the resulting ketone to the carboxylic acid [103], the synthesis of 4-(2-
oxoethylidene)azetidin-2-ones by a Lewis acid mediated reaction of acyldiazo com-
pounds with 4-acetoxy derivative 38 [104], the reaction of 38 with organoindium
reagents generated in situ from indium powder and c-substituted propargyl
bromides in the presence of KI in DMF to selectively produce 4-allenyl-2-azetidi-
nones 39 in good to excellent yields, the reaction of 4-acetoxy-2-azetidinones with
organoindium reagents generated in situ from indium and 1,4-dibromo-2-butyne in
the presence of LiCl in DMF to selectively produce 2-azetidinones that contain a 1,3-
butadienyl-2-yl group at theC4-position in good yields [105], the reaction of 4-acetoxy-
b-lactams with organoindium reagent generated in situ from indium and 1,6-
dibromo-2,4-hexadiyne in the presence of LiCl in DMF to selectively produce
2-azetidinones possessing 1,2,4,5-hexatetraen-3-yl group on the C4-position [106],
as well as the coupling with a-substituted propargyl bromides to give 4-propargyl-2-
azetidinones 40 selectively (Scheme 24.23) [107].

The stereoselective anti SN20 attack of NaN3 to 3-alkenyl-3-bromo-azetidin-2-ones
gives a mixture of diastereomeric azides in rapid equilibrium. The [3,3]-sigmatropic
rearrangement of allylic azides occurs with complete stereocontrol, allowing the
equilibrium to be directed preferentially toward the (E)- or (Z)-isomer, which are
useful precursors of 3(20-amino)-b-lactams [108]. Azetidine-2,3-diones 41 and var-
ious stabilized organic halides undergo coupling under Barbier-type conditions in
the presence of different metals (indium, tin, zinc) and additives [ammonium
chloride, hydrobromic acid, bismuth(III) chloride, hafnium(IV) chloride]. The
regiochemistry of the processes (carbonyl-allylation [109], bromoallylation [110],
1,3-butadien-2-ylation [111], propargylation [112] or allenylation [112] reactions) are
generally excellent. Similarly, the reaction of various activated vinyl systems, includ-
ing 2-cyclopenten-1-one, with enantiopure azetidine-2,3-diones 41 has been pro-
moted byDABCO to afford the corresponding optically pure Baylis–Hillman adducts
without detectable epimerization [110]. In addition, the reactions of enantiopure
azetidine-2,3-diones with unmodified ketones or nitromethane were catalyzed
by proline and N-methylephedrine, respectively, to give the corresponding aldol
and nitroaldol adducts [113]. On this basis, simple and fast protocols for the synthesis
of the bioactive 3-substituted 3-hydroxy-b-lactam moiety have been developed
(Scheme 24.24).
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24.1.5.2 Electrophilic Attack at Carbon
Using a halogen–lithium exchange reaction on 4-aryl-3,3-dichloro-2-azetidinones 42,
followed by treatment with alkyl halides as electrophiles, the synthesis of cis-3-alkyl-3-
chloro-4-arylazetidin-2-ones 43 has been accomplished (Scheme 24.25) [114].

It has been reported that the achiral bis(trimethylsilyl)methyl group acts as an
efficient stereochemical determinant of the a-alkylation reaction in b-branched
a-phenyloxazolidinyl-b-lactams 44 andprovides stereocontrolled access to syn-a-ami-
no-a,b-dialkyl(aryl)-b-lactams 45 (Scheme 24.26) [115], which are readily trans-
formed into type II b-turn mimetic surrogates [116]. In situ generated organozinc
reagents of 3-alkenyl-3-bromoazetidin-2-ones react with aromatic and aliphatic
aldehydes to give the corresponding alcohol derivatives, which could be of interest
on account of their structural similarity with known cholesterol adsorption
inhibitors [117].

24.1.5.3 Electrophilic Attack at Nitrogen
Conventionally, an alkyl or acyl side chain is introduced at the N1 position by base-
mediated N-alkylation or N-acylation of the nitrogen atom with the appropriate alkyl
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or acyl halide [118]. A representative example is shown in Scheme 24.27 for the
preparation of 2-azetidinone 46 [119]. However, some unexpected results have been
reported. For example, in a tentative acylation reaction of the b-lactam nitrogen atom
of (E)- and (Z)-4-alkylidene-b-lactamswith acetic anhydride under basic conditions it
was found that the (E) isomer is readily acylated, whereas the (Z)-isomer reacted
sluggishly, rearranging to the corresponding oxazin-6-one. The N-acylation of (Z)-
isomers has been successful, though, with oxalyl- or malonyl chlorides in benzene at
reflux [120]. The treatment ofNH-b-lactams with aldehydes under heat or sonication
formed the corresponding N-hydroxyalkyl-2-azetidinones [121].

The copper-catalyzed couplings of NH-b-lactams with aryl and vinyl halides have
been developed as an efficient procedure for the preparation of unsubstituted N-aryl
and N-vinyl-2-azetidinones [122]. This protocol has been fruitful for the synthesis of
the spiro-b-lactam 47, which contains the enamide moiety of natural chartellines
(Scheme 24.28) [123].

24.1.5.4 Radical Transformations
The treatment of 4-thiophenyl-2-azetidinoneswith tributyltin hydride in the presence
of AIBN initiator yields the corresponding C4-desulfenylated b-lactam [124]. The
generation of radicals at C4 has been used for the synthesis of C4-unsubstituted
b-lactams 48, which are conveniently prepared using as the key step a radical
reductive decarbonylation of 4-carboxy derivatives through their phenyl selenoesters
(Scheme 24.29) [125]. 3,3-Dibromosubstituted b-lactams can be dehalogenated or
C3-functionalizated by treatment withmethyl acrylate under radical conditions [126].
Upon using triethylborane as the radical initiator, b-lactamido N-sulfonyl radicals
could be allylated and added onto electron-rich olefins [127]. The radicals do not
undergo desulfonylation and are electrophilic in nature.
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24.1.5.5 Reduction Reactions
The application of metal hydrides in the search for general and efficient methods for
the one-step conversion of b-lactams into different building blocks has been
examined. The reaction of different b-lactams with diborane gives rise to c-amino
alcohols [128]. Lithium aluminium hydride (2 molar equiv) in diethyl ether under
reflux for 7–16 h converted 1,4,4-trisubstituted b-lactams into azetidines 49 in good
yields 63–82% yield (Scheme 24.30) [129]. By contrast, treatment of 4-(1-chloroethyl)-
b-lactams with two molar equivalents of lithium aluminium hydride in diethyl ether
at 0 �C for two hours afforded 3-chloropyrrolidines [130], while various novel syn-2-
alkoxy-3-amino-3-arylpropan-1-ols, easily converted into antimalarial cis-5-alkoxy-4-
aryl-1,3-oxazinanes, have been prepared through LiAlH4-promoted reductive
ring-opening of cis-3-alkoxy-4-aryl-b-lactams in Et2O [131].

Attempted reduction by BH3.THF (22 h in refluxing dioxane) and NaBH4–AlCl3
(3.5 h in refluxing ether) resulted in a complete recovery of the starting 2-azetidinone.
The reduction with LiAlH4, LiBEt3H or LiB-sec-Bu3H in THF at room temperature
gave exclusively the corresponding c-amino alcohol through 1,2-bond fission. It was
found that the reduction of various 2-azetidinones with DIBAL-H in THFaffords the
corresponding azetidines in reasonable yields, although a small amount of c-amino
alcohols was also produced. The use of alane (AlH3) for the reduction of the
azetidinone nucleus results in the formation of a mixture of compounds, with the
four-membered heterocycle and the c-amino alcohol being the minor and major
component, respectively [132]. Examination of the reactivities of monochloroalane
(AlH2Cl) and dichloroalane (AlHCl2) toward b-lactams has revealed that AlH2Cl and
AlHCl2 prepared in situ from LiAlH4 and AlCl3 in ether converts 2-azetidinones 50
into azetidines 51 in quite high yields (50–97%) without being accompanied by
c-amino alcohols (Scheme 24.31) [133]. The reduction of 2-azetidinones by metal
hydrides to afford azetidines is not compatible with the presence of ester groups.
Reduction with diphenylsilane and catalytic amounts of tris(triphenylphosphine)
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rhodium(I) carbonyl hydrides is a chemoselective method for the transformation of
b-lactams into the corresponding azetidines [134].

24.1.5.6 Cis/Trans Isomerization
Regarding the stereochemical outcome of the routes to prepare b-lactams, a very
strong preference for cis-b-lactam formation, a kinetic control product, is observed.
Consequently, the development of different strategies to access to trans-2-azetidi-
nones is of interest. Isomerization of cis-b-lactams to trans-b-lactams usually
requires as starting materials 2-azetidinones bearing acid or basic sensitive
moieties (e.g., aldehyde, ketone, ester, amine, amide) at the position susceptible
to epimerization. Epimerization at C3 and/or C4 is effected by different reagents,
such as CF3COOH [135], Me3SiOTf [136], DBN [137], DBU [138] and NaOH/
BuLi [139]. A more recent report involves Na2CO3-promoted regiospecific C4-
epimerization of cis-4-formyl-b-lactams 52 into trans-4-formyl-b-lactams 53
(Scheme 24.32) [14b].

A thermal conversion method for switching the stereochemistry of the 4-aryl-
b-lactam ring from cis to trans involving a homolytic cleavage of the C3�C4 bond has
been reported (Scheme 24.33) [140]. These results are the only available examples of
isomerization in b-lactams induced by heat.
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24.1.5.7 Ring-Opening and Rearrangement Reactions
In recent years many 2-azetidinone-based methods for the synthesis of nitrogen-
containing compounds of biological relevance have appeared [141]. b-Lactams are
precursors to a- and b-amino acids. They have been used to introduce the C13 side-
chain of the anticancer compound paclitaxel (taxol) and related analogues [142]. The
ring expansion of a-hydroxy b-lactams 55 through a regioselective Baeyer–Villiger
rearrangement of an in situ generated azetidine-2,3-dione by means of sodium
hypochlorite and a catalytic amount of TEMPO, affords N-carboxy anhydrides
(NCAs) 56, which after coupling with amines or alcohols produces a-amino acid
derivatives 57 (Scheme 24.34) [143]. A related one-pot procedure starting from
azetidine-2,3-diones has been documented [144].

Palladium-catalyzed hydrogenolysis of 4-aryl-b-lactams 58 proceeds exclusively
to give a-amino acid derivatives 59 (Scheme 24.35). The ring strain of the 2-
azetidinone nucleus greatly accelerates the cleavage of the N1�C4 bond, rather
than the more usual N1�C2 bond breakage, when an aryl substituent is attached to
the C4 position [145]. Addition reaction of 2-(trimethylsilyl)thiazole to cis- or trans-
4-formyl-b-lactams has been reported to give enantiopure a-alkoxy-c-keto acid
derivatives [146]. Also, the first organocatalytic N1�C4 bond breakage of the
b-lactam skeleton has been uncovered, providing a direct method for the prepa-
ration of enantiopure 5-arylimino-pyrrolidin-2-ones as well as pyrrolidin-2,5-diones
(succinimides) from 4-(arylimino)-methyl-azetidin-2-ones [147]. In addition, a
single-step catalytic ring expansion approach from 4-oxoazetidine-2-carbaldehydes
to enantiopure succinimides has been achieved by the use of a base (DBU) and
a thiazolium salt precatalyst [148], and its mechanism has been studied using
DFT methods [149].
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The stereoselective synthesis of different sized heterocycles has been accom-
plished from conveniently functionalized 2-azetidinones. Ring sizes from three
through to complex macrocycles have been synthesized using b-lactams. For
example, indolizidine type-alkaloids 60 have been prepared using b-lactams as chiral
building blocks by an aza-Diels–Alder reaction of 2-azetidinone-tethered imines
combined with amide bond breakage and rearrangement reactions on the b-lactam
ring (Scheme 24.36) [150].

The synthesis ofmedium-sized azalactams 61 fused to a benzene ring via a tandem
copper-catalyzed C�N bond formation–b-lactam ring-expansion process has
been accomplished recently (Scheme 24.37) [151]. Starting from b-lactam cyanohy-
drin hybrids, two concise, complementary stereocontrolled routes to optically
pure orthogonally protected anti,anti-4-amino-3,5-piperidine diols have been
achieved [152]. In addition, molecular iodine (10mol.%) efficiently catalyzes the
ring expansion of 4-oxoazetidine-2-carbaldehydes in the presence of tert-butyldi-
methyl cyanide to afford protected 5-cyano-3,4-dihydroxypyrrolidin-2-ones with
good yield and high diastereoselectivity, through a novel C3–C4 bond cleavage of
the b-lactam nucleus [153]. A new one-pot approach, which relies on the regiocon-
trolled cyclization of b-allenamine intermediates derived from the ring opening of
2-azetidinone-tethered allenols, to both racemic and enantiopure densely substituted
pyrroles has been developed from b-lactams [154]. The total synthesis of several
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natural products such as biotin [155], cribrostatin 4 [156], and himandrine [157]
has also been carried out using 2-azetidinones as important building blocks. The
syntheses of pyrrolizidines [158], fused prolines [159], oxazinones [160], amino
glycals [161], aminocyclobutanes [162], bicyclic c-lactams [163], medium-sized
heterocycles [164], and complex macrocycles [165] deserve to be mentioned as well.

24.1.5.8 Reactions of Substituents Attached to Carbon Atoms
The oxidation of a-ethylidene b-lactams is a useful method to prepare azetidine-2,3-
diones [166]. A general and efficient synthesis of cis and trans b-lactams bearing
a quinone moiety at N1, C3 or C4 positions, which can be regarded as hybrids of the
pharmacologically relevant subunits of b-lactam and quinone, has been developed.
The target molecules 62 are smoothly prepared via oxidative demethylation of the
appropriate 2,5-dimethoxyphenyl substituted-b-lactams using ceric ammonium
nitrate (CAN) in aqueous acetonitrile (Scheme 24.38) [167].

A stereoselective synthesis of 1,2,3-trisubstituted b-lactam-1,3-dienes 63 has been
developed from 2-azetidinone-tethered a-allenols just by treatment with a metha-
nesulfonyl chloride/tertiary amine system. This transformation might be tentatively
explained through a migration of the methanesulfonyl group in the initially formed
a-allenic methanesulfonate to give the corresponding mesyloxy-diene via [3,3]-
sigmatropic rearrangement (Scheme 24.39) [168]. Mesylates of 2-azetidinone-teth-
ered homoallylic alcohols by gentle heating in benzene or toluene in the presence
of DBU have been used for the stereoselective preparation of 4-butadienyl-2-
azetidinones [169].

The benzylidene moiety of b-lactam 64 is cleaved by ozonolysis and reductive
treatment with NaBH4 to afford the primary alcohol, which is then activated as the
tosylate. After replacement of the benzyl group with the TBS group, a four-step
sequence including SN2 reaction of caesium thioacetate, methanolysis of the
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thioacetate, chloromethylation of the thiol, and SN2 reaction of N-hydroxyphthali-
mide sodiumsalt, gives the protectedN-alkoxyamine 65 (Scheme 24.40), which bears
the side chain required for the construction of the oxathiazepin ring of natural
eudistomins [170]. N-Terminal chain elongation on amido substituents at the C3-
position of the b-lactam moiety has been achieved using conventional peptide
synthesis (saponification, activation as pentafluorophenyl esters and subsequent
cleavage of theN-terminal Boc-protecting group) [171]. The olefin crossmetathesis of
a-methylene-b-lactams [172] and the selective Diels-Alder reaction of a-dienyl-
b-lactams [173] have been developed. Vinylic halogenation and halodecarboxylation
reactions of 4-alkylidene-b-lactams have been performed [174]. It has been reported
that, by adopting Pd(II)-catalyzed conditions, the cycloisomerization/dimerization
ratio of 4-buta-2,3-dienoyl-azetidin-2-ones is controlled by the substitution of the
allene moiety: unsubstituted allenones mainly afford dimerization, whereas alle-
nones bearing an internal substituent favor the formation of cycloisomerization
products [175].

24.1.5.9 Reactions of Substituents Attached to Nitrogen Atom
A three-step synthesis of N-vinyl-2-azetidinones starting from a- or b-amino ester
imines has been developed [176]. Enolate formation on the amino estermoiety of the
2-azetidinone 66, selenylation and finally MCPBA treatment affords N-vinyl-2-
azetidinones 67 in good yields (Scheme 24.41).

N
O

BnO

65 (34%)64

OMOM

Ph
S

N
O

TBSO

OMOM

H H H H

O
NPhth

Oi) 3 CH, 2Cl2 –78–MeOH, oC,

NaBHthen 4 –78, o RTtoC

CHpyridine,TsCl,ii) 2Cl2 RT,

HCOPd/C,iii) 2NH4 refluxMeOH,,

RTDMF,imidazole,TBSCl,iv)

CsAcSH,v) 2CO3 60DMF,, oC

0MeOH,NaOMe,vi) oC

ClCHvii) 2 BnEtKOH,Br, 3 (cat.),NCl

CH2Cl2–H2 RTO,

NaH,viii) N-hydroxyphthalimide,

RTDMF,

Scheme 24.40

N
O

R3

67

R4

R1

R2
N

O

R3 R4

R1

R2

66

–78THF,LHMDS,i) oC

–78THF,PhSeBr,ii) oC

CHMCPBA,iii) 2Cl2 –78, oC

55–91%

Scheme 24.41

24.1 Monocyclic Derivatives j2143



The selective N-oxidation of the most nucleophilic amino nitrogen atom of the
hydrazidemoiety in 1-dialkylamino azetidin-2-ones is central for the cleavage of their
N�N bonds under oxidative conditions by treatment with peracids such as magne-
sium monoperoxyphthalate hexahydrate (MMPP�6H2O) or meta-chloroperbenzoic
acid (MCPBA) [177]. A Grubbs� carbene catalyzed isomerization ofN-allyl b-lactams
intoN-vinyl b-lactams affords, after RuCl3–NaIO4 treatment, the correspondingNH-
b-lactams [178]. It has been shown thatN-(4-methoxy or 4-ethoxyphenyl) groups can
be oxidatively removed by silica gel supported ceric ammonium nitrate under mild
conditions in solution and on column [179]. The cis-2-azetidinones 68 have been
reactedwith PhI(CF3CO2)2 andNaHCO3 and the crude reaction products purified by
column chromatography on silica gel to give a diastereomericmixture of hemiketals,
which was quantitatively converted into the lactones 69 by oxidation with PDC
(Scheme 24.42) [180].

24.2
Penicillins and Cephalosporins

24.2.1
Introduction

The antibacterial effect of b-lactam antibiotics such as penicillins (70) and cepha-
losporins (71) is due to their capacity to disrupt bacterial cell wall biosynthesis [181].
This is achieved by the antibiotics acting as inhibitors of penicillin binding proteins
(PBPs), which are membrane bound serine peptidases. PBPs recognize D-alanyl-D-
alanine peptide termini and the structural and conformational similarity of the
b-lactam antibiotics to these natural peptide substrates for PBPs is believed to ensure
their acceptance by the target proteins. The high reactivity of the fused b-lactam ring
towards nucleophiles then results in the formation of a covalent PBP–antibiotic
complex that prevents the PBPs from taking further part in bacterial cell wall
synthesis.
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b-Lactamase hydrolytic enzymes are the most common, and growing, form of
bacterial resistance to their normally lethal action [182]. b-Lactamases catalyze the
hydrolysis of the b-lactam antibiotic to give the ring opened and bacterially inert
b-amino acid (Scheme 24.43). The problem of b-lactamases became critical in 1960
when widespread use of penicillin G led to an alarming increase of Staphylococcus
aureus infections. These problem strains had gained the lactamase enzyme and had
thus gained resistance to the drug. At one point, 80% of all Staphylococcus aureus
infections in hospitals were due to virulent, penicillin-resistant strains. Alarmingly,
these strains were also resistant to all other available antibiotics.

Two main therapeutic strategies have been adopted to counteract bacterial resis-
tance to b-lactam antibiotics. One strategy consists of modifying the structure of the
b-lactam antibiotic, aiming to render it insensitive to the b-lactamase attack. Recently,
trinems antibiotics (Figure 24.1) have been the subject of considerable study owing to
their broad spectrum of antibacterial activity, resistance to b-lactamases and stability
to renal dehydropeptidases [183]. As a result of their impressive biological activity,
tricyclic b-lactams have become interesting targets for synthesis. A second approach
uses a reagent, typically a b-lactam derivative, which incapacitates the b-lactamase, in
synergy with the b-lactam antibiotic. Clavulanic acid (Figure 24.1) is the archetype of
b-lactamase inhibitors [184]: in synergistic mixture with amoxicillin (Figure 24.1),
under the name �augmentin,� it arrived at the practice some years ago. Both
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approaches have produced results and a new generation of antibiotics has been
developed.

24.2.2
Physicochemical Data

24.2.2.1 Computational Chemistry
The calculated STO-3G energy of formamide in a penicillin-like geometry is only
2.8 kcalmol�1 higher than the planar geometry [185]. In addition, the geometrical
parameters associated with the 2-azetidinone nucleus generally suffer a slight
variation with changes in the hybridization at nitrogen. However, the C�N bond
length becomes longer as the nitrogen atom becomes pyramidal.

Two penicillin derivatives, the active penamecillin and the inactive penamecillin-
1b-sulfoxide, have been used to study the relationship between their charge density
and their activity [186]. Single crystals of both compounds have beenmeasured at the
synchrotron beamline F1 at the HASYLAB/DESY, at 100K and up to resolutions of
around 0.4A

�
. Experimental charge densities have been obtained by using the

Hansen–Coppens multipole formalism. The cleavage of the amide bond in the
b-lactam ring is of paramount importance in the mechanism of action of penicillins.
Topological analysis of this bond in terms of Bader�s AIM theory showed that its
strength is equal in both compounds; therefore, a direct influence of bond strength
on the activity can be ruled out. However, the two derivatives differ significantly in
their experimental electrostatic potentials. These differences provide further insight
into the chemistry and activity of penicillins.

Theoretical results have been reported on the conformational properties of
benzylpenicillin, which are characterized by means of quantum chemical calcula-
tions (MP2/6-31G� and B3LYP/6-31G�) and classical molecular dynamics simula-
tions (5 ns) both in the gas phase and in aqueous solution [187]. In the gas phase, the
benzylpenicillin conformer in which the thiazolidine ring has the carboxylate group
oriented axially is the most favored one. Both intramolecular CH � � � O and disper-
sion interactions contribute to stabilize the axial conformer with respect to the
equatorial one. In aqueous solution, a molecular dynamics simulation predicts
a relative population of the axial : equatorial conformers of 0.70 : 0.30 in consonance
with NMR experimental data. Overall, the quantum chemical calculations as well as
the simulations give insight into substituent effects, the conformational dynamics of
benzylpenicillin, the frequency of ring-puckeringmotions, and the correlation of side
chain and ring-puckering motions.

The mechanisms of antibiotic resistance have been studied using a combined
quantum mechanical and molecular mechanical (QM/MM) modeling of the acyl-
ation reaction of a class A b-lactamase with benzylpenicillin [188]. Hybrid Car–
Parrinello QM/MM calculations have been used to investigate the reaction mech-
anism of hydrolysis of a common cephalosporin-type substrate (cefotaxime) by the
monozinc b-lactamase from Bacillus cereus [189]. Theoretical studies on the confor-
mational similarity of penicillins and cephalosporins to X-D-alanyl-D-alanine and
correlation of their structure with activity has been examined by stereochemical
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criteria, concluding that the conformation of these b-lactam antibiotics is similar to
X-D-alanyl-D-alanine due to the presence of the lactam ring [190].

24.2.2.2 Experimental Structural Methods
The degree of coplanarity of the b-lactamnitrogen atom inb-lactam antibiotics can be
expressed either by the perpendicular distance, h, of the nitrogen from the plane of
its three substituents or by the sum of the bond angles about nitrogen. The former is
easier to visualize and the nitrogen ranges from being essentially in the plane of its
three substituents in monocyclic b-lactams to being 0.5A

�
out of the plane in bicyclic

systems [191]. There is no direct correlation between h values and chemical reactivity.
In non-planar penicillins and cephalosporins there is a general trend for the C�N
bond length to increase as the C¼O bond length decreases. However, this trend is by
no means linear. Bond lengths for C¼O vary from 1.17 to 1.24A

�
and for C�N from

1.33 to 1.46A
�
. There is also a tendency for the C�N bond length to increase with h. It

is difficult to discern reasons and reactivity consequences of these differences in
bond length. Penicillin V (70 R¼PhOCH2) shows the longest C–N bond length of
1.46A

�
and yet the C¼O bond length (1.21A

�
) is identical to that commonly found in

planar monocyclic b-lactams. In monocyclic b-lactams the nitrogen is coplanar with
its three substituents and yet the bond length differences are also in the direction
predictedby inhibitionof amide resonance.Thedegree ofnon-planarity inpenicillinV
and ampicillin [70 R¼PhCH(NH2)] is similar (h¼ 0.40 and 0.38A

�
, respectively) and

yet the C�N bond length in the former is 0.10A
�
longer than in the latter. Structural

data have also been used to support the suggestion that enamine resonance is
important in cephalosporins and that this also reduces amide resonance [192].
However, there is no significant difference in the C�O and C�N bond lengths in
cephalosporins from the general trend exhibited by penicillins. It became apparent
that variations in bond lengths within penicillins and cephalosporins are due to the
nature of substituents and the minimization of unfavorable strain energies caused by
the geometry of the molecule rather than to the inhibition of the amide resonance.

The 13C NMRspectra of bicyclicb-lactamantibiotic show the carbonyl resonance at
about 165 ppm. The 2-azetidinone carbonyl carbon in penicillins resonates around
10 ppm to lower field than that in cephalosporins. The chemical shifts for the
biologically active D3- and the inactive D2-cephalosporins are similar. The 15N NMR
spectra show an upfield shift of 30 ppm in the b-lactam nitrogen on going from non-
planar penicillins to planar 2-cephems [193]. The infraredC¼Oabsorption frequency
for the bicyclic b-lactam antibiotics is in the 1760–1780 cm�1 range. The frequency in
cephalosporins increases by about 5 cm�1 when the ring sulfur is substituted by
oxygen but decreases by a similar amount when the 7-a-hydrogen is replaced by
amethoxy group. Structural studies confirm that N-fused b-lactam systems generally
have a higher C¼O stretching frequency than the C-fused structures, indicating a
greater amount of ring strain and chemical reactivity toward nucleophiles [194].
N-Fused lactams are highly respondent to the geometric constraints imposed by the
second ring to which it is fused, as evidenced from the increase in the infrared
absorption frequency for the lactam carbonyl as the size of the second ring is
decreased. 13C NMR spectroscopic data for third-generation cephalosporins, such as
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cefotaxime, cefixime, cefdinir, and cefpodoxime proxetil, have been assigned by
combination of one- and two-dimensional experiments; the effect of the substitution
at C3, C7, and C4 acid group positions on the chemical shifts of the cephem nucleus
is discussed [195].

24.2.3
Synthesis of Penicillins and Cephalosporins

24.2.3.1 Classical Syntheses
Sheehan published in 1957 thefirst total synthesis of a natural penicillin, penicillin V
(Scheme24.44) [196]. At the timeof this synthesis it was believed that the instability of
penicillin was due to the presence of the strained four-membered b-lactam ring.
Therefore, the creation of the 2-azetidinone nucleus was postponed for as long as
possible in the synthetic sequence. t-Butyl phthalimidomalonaldehydate (72) was
condensed with D-penicillamine 73 to afford the thiazolidine 74 as a mixture of
two of the four possible stereoisomers. The configuration of one of the isomers
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corresponded to the stereochemistry found in natural penicillin. The other stereo-
isomer could be epimerized into the required isomer by simple heating in the
presence of pyridine. Sequential hydrazinolysis of the phthalimido group and
acylation of the free amine with phenoxyacetyl chloride gave the phenoxyacetamide
75. The t-butyl ester was then cleaved with dry hydrogen chloride to produce the
diacid 76. The b-lactam formation, the final step of the synthesis, was achieved
through the use of a reagent introduced by Sheehan for amide bond formation, the
dicyclohexylcarbodiimide.

Another masterly synthesis of b-lactam antibiotics is Woodward�s total synthesis
of cephalosporin C (Scheme 24.45) [197]. Complete stereocontrol was afforded by
starting from enantiopure L-cysteine 77, which was protected and activated at its
methylene group as the cyclic thiazolidine 78. Oxidative cleavage using lead tetra-
acetate gave the corresponding acetate accompanied by a small amount of its cis
epimer, which could be separated. Transesterification liberated alcohol 79, whichwas
transformed into aminoester 80 by sequential mesylation, azide displacement with
inversion, and final reduction with aluminium amalgam. Triisobutylaluminium
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effected smooth conversion of aminoester 80 into the bicyclic 2-azetidinone 81,
which is a key intermediate containing the basic structural features common to both
penicillins and cephalosporins. Conjugate addition of the b-lactam nitrogen atom to
ester 82, which was obtained through the condensation between malondialdehyde
and trichloroethyl glyoxylate, generated compound 83. All the functionalities
required for the cephem skeleton formation are present in fused 2-azetidinone 83.
Treatment of 83 with trifluoroacetic acid induced cyclization with concomitant
deprotection of both the amino and mercapto groups to give bicycle 84. The total
synthesis of cephalosporin C was completed after acylation with a protected N-
b,b,b-trichloroethyloxycarbonyl-D-a-amino adipic acid, followed by aldehyde reduc-
tion with diborane, acetylation, isomerization of the olefin under basic conditions,
and treatment with zinc in acetic acid. This last step was the first use of the
trichloroethyl moiety as protecting group in synthesis.

24.2.3.2 Industrial Production of b-Lactam Antibiotics
The industrial production of b-lactam antibiotics by fermentation over the past 50
years is one of the outstanding examples of biotechnology [198]. Today, b-lactam
antibiotics, particularly penicillins and cephalosporins, are the world�s major bio-
technology products with worldwide dosage form sales of�US$ 15 billion or�65%
of the total world market for antibiotics. Over the past five decades, major improve-
ments in the productivity of the producer organisms, Penicillium chrysogenum and
Acremonium chrysogenum (syn. Cephalosporium acremonium) and improved fermen-
tation technology have culminated in enhanced productivity and substantial cost
reduction. Major fermentation producers are now estimated to record harvest titers
of 40–50 g L�1 for penicillin and 20–25 g L�1 for cephalosporin C. Recovery yields for
penicillin G or penicillin V are now >90%. Chemical and enzymatic hydrolysis
process technology for 6-aminopenicillanic acid (6-APA) 85 or 7-aminocephalos-
poranic acid (7-ACA) 86 is also highly efficient (�80–90%), with new enzyme
technology leading to major cost reductions over the past decade.
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24.2.3.2.1 Commercial Production of Penicillins The fermentation production of
penicillin-G or -V is a fed-batch process carried out aseptically in stainless steel tank
reactors of 30 000–100 000 gallon capacity. The fermentation usually involves two to
three initial seed growth phases followed by a fermentation production phase having
a time cycle ranging from 120 to 200 h. High dissolved oxygen levels are critical,
especially during peak growth periods that often occur at the 40–50 h time-period of
the cycle. The fermentation mode is fed-batch and crude sugar and precursor are
fed throughout the cycle. Current penicillin fermentations are highly computerized
and automated. Temperature, pH, dissolved oxygen, carbon dioxide, sugar,
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precursor, ammonia, and so on are closely monitored and controlled for optimal
antibiotic production [199]. Various carbon sources have been adopted for the
fermentation, including glucose, sucrose and other crude sugars. About 65% of the
carbon is metabolized for cellular maintenance, 20–25% for growth and 10–12% for
penicillin production [200]. Sugar and precursor are fed continuously and the sugar is
also used to help regulate the pH of the fermentation to between 6.4–6.8 during the
active penicillin production phase. Corn steep liquor and cottonseed or soybeanmeal,
ammonia and ammonium sulfate represent major nitrogen sources. The essential
precursor substances are phenylacetic acid (for penicillin G) or phenoxyacetic acid
(for penicillin V) that are either fed or batched.

Mini-harvest protocols are often used in penicillin fermentations. This �batch-fill
and withdraw� system involves the removal of 20–40% of the fermentor contents
with replacement with fresh sterile medium. This procedure can be repeated several
times during the fermentation without yield reduction and, in reality, can enhance
the total penicillin yield per fermentor. Penicillin is excreted into the medium and is
recovered at the end of the fermentation.Whole broth extraction is usually performed
at acidic pH by most manufacturers and has resulted in a 2–5% improvement in
overall extraction efficiency by the elimination of the rotary vacuum filtration step.
Solvent extraction of chilled acidified broth is carried out with amyl, butyl or isobutyl
acetate. Multiple back-extractions into buffer and solvent at varying pH using
countercurrent contactors has led to considerable penicillin concentration in the
early recovery stages of the purification process. Pigments and other broth impurities
are removed by the use of activated charcoal. The penicillin is crystallized upon the
addition of potassium acetate and is isolated as a crystalline potassium salt. Addi-
tional carbon treatments and solvent washes result in a highly purified final product.

Approximately 75% of the total bulk penicillin volume produced in 1995,�33 000
tons, was used for the production of semi-synthetic penicillins and cephalosporins.
The penicillin nucleus (6-APA) has enabled researchers to develop many excellent
semi-synthetic penicillins. 6-APAcan also be chemically ring-expanded to 7-ADCA to
generate several important orally-active cephalosporins (cephalexin, cephradine,
cefadroxyl, etc.). 6-APA has now grown to be the world�s largest selling b-lactam
bulk intermediate.

24.2.3.2.2 Commercial Production of Cephalosporin C High-yielding strains of A.
chrysogenum are used in large-scale, fed-batch fermentations. Major fermentation
producers of cephalosporin C obtain harvest titers in the range of 20–25 g L�1.
Production-scale fermentations are fed-batch with carbon supplied as simple or
complex carbohydrate feeds during the growth phase of the fermentation. As the
fermentation progresses, sugar feeds are reduced and are usually replaced by higher
energy oils such as soybean oil or peanut oil. Energy conservation from oil as
a substrate is considerably less efficient and leads to slower growth, with the
vegetative mycelium becoming largely transformed into multicellular arthrospores.
The arthrospore stage leads to greater oxygen availability to the organism and results
in rapid cephalosporin production. DL-Methionine addition, which also results in the
onset of arthrospore formation, is often added to themediumduring the early growth
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phase of the fermentation. The formation of arthrospores is also correlated with
improved dissolved oxygen concentration in the broth and is critical for maximal
expression of the important biosynthetic cyclase and expandase enzymes. Organic
nitrogen is often supplied as a combination of soybean and cottonseed meals
supplemented with ammonium sulfate and ammonia that is also used to help
control the pH throughout the fermentation. Corn steep liquor is also supplied as a
cheap nitrogen source and is rich in amino acids, vitamins, organic acids and trace
elements. The pH of the fermentation is maintained between 6.2 and 7.0 and the
temperature range is controlled between 24 and 28 �C.

A major problem associated with cephalosporin C fermentation is the inherent
chemical instability of the cephalosporin C molecule. This is probably one of
the major reasons why long-cycle cephalosporin C fermentations often result in
reduced cephalosporin production compared to typical long-cycle penicillin fer-
mentations. Cephalosporin C is readily degraded to 2-(D-4-amino-4-carboxybutyl)-
thiazole-4-carboxylic acid, which can account for as much as a �40% loss of the
cephalosporin C produced [201]. The biosynthetic precursor molecules of cepha-
losporin C, deacetylcephalosporin C and DAOC have much more chemical stability.
Strains of the yeast Rhodosporidium toruloides possess a potent acetyl esterase and,
when the organism is added to active cephalosporin C fermentations, result in
increased levels of deacetylcephalosporin C with an increase in total cephalosporin
nucleus levels of �40%. Over the past decade, the cloning of many of the genes
involved in the biosynthetic pathway of cephalosporins has resulted in more
productive strains.

The purification and recovery of harvest cephalosporin C broth begins with the
rapid chilling of the active broth to 3–5 �C followed by removal of the mycelial solids
either by filtration or by centrifugation. The active broth contains not only the desired
cephalosporin C component but also small quantities of the biosynthetic precursors
penicillin N, DAOC, deacetylcephalosporin C and the degraded cephalosporin C
product, 2-(D-4-amino-4-carboxybutyl)-thiazole-4-carboxylic acid. Two major strate-
gies can be used for the recovery and purification of cephalosporin C. One strategy
involves the use of activated carbon or the use of a non-ionic resin. Because of the
high selectivity of the resin, cephalosporinC is preferentially adsorbed over penicillin
N or the contaminating biosynthetic precursor molecules. Most of the penicillin N is
removed in the pH 2.0 acidification step. An additional anion- and cation-exchange
step usually results in high quality cephalosporin C. A large fraction of the ceph-
alosporin C is converted into 7-ACA and derivatized to semi-synthetic cephalospor-
ins. A second purification strategy involves the substitution of the amine moiety on
the a-aminoadipyl side-chain at C7. Two substituted derivatives, N-2,4-dichloroben-
zoyl cephalosporin C and tetrabromocarboxybenzoyl cephalosporin C, can be crys-
tallized from acidic aqueous solution. Alternatively, salts can be formed between the
N-substituted derivatives, and an organic base such as dicyclohexylamine or
dimethylbenzylamine results in cephalosporin salts that are solvent extractable.
Bristol-Myers Squibb uses a solvent-extractable process resulting in the isochlor-
obutylformate (ICBF) ester of cephalosporin C, termed cephalosporin D.
Several extraction steps are usually necessary to achieve the final desired purity.
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N-Substituted cephalosporin C salts containing small amounts of contaminants can
be effectively converted into 7-ACA. Efficient enzymatic processes are now utilized
for the conversion of cephalosporins into 7-ACA, which has resulted in a dramatic
cost reduction for this important bulk intermediate. Two key genetically engineered
enzymes are involved. The initial step is reaction of the a-aminoadipyl group with
D-amino acid oxidase to produce glutaryl-7-ACA. This reaction proceeds through
a keto-7-ACA intermediate that undergoes an oxidative decarboxylation in the
presence of hydrogen peroxide. A glutaryl acylase is used to remove the glutaryl
side-chain to produce 7-ACA. Two-thirds of the commercial cephalosporins are
derived from 7-ACA that is produced from cephalosporin C by either chemical or
enzymatic deacylation. In the chemical process, after protection of the amino and
carboxyl groups, reactionwith potassiumpentachloride in the presence of base forms
an iminochloride derivative. The iminoether is formed on the addition of alcohol.
The iminoether is hydrolyzed to form 7-ACA.

24.2.4
Reactivity of Penicillins and Cephalosporins

24.2.4.1 Basicity of b-Lactam Nitrogen
If amide resonance in penicillins is inhibited because of the pyramidal nature of the
b-lactamnitrogen, penicillins should show enhanced basicity comparedwith normal
amides. By contrast, penicillins appear to show reduced basicity and cannot be
detectably protonated even in 12M hydrochloric acid [202]. Another indication of
increased nitrogen basicity would be a large binding constant of penicillin to metal
ions. The equilibrium constant for metal-ion coordination between the carboxyl
group and the b-lactam nitrogen in penicillins is about 100–200M�1 for various
metal ions [203], which is the same order of magnitude expected for coordination
between a normal amide and a carboxyl group. Therefore, it became evident that
there is not a substantial enhancement for the electron pair donating ability either to
a proton or to a metal in penicillins.

24.2.4.2 Hydrolysis
The bicyclic system in penicillin consists of a four-membered ring and a five-
membered ring. As a result, penicillin suffers large angle and torsional strains.
Ring opening relieves these strains by cleavage of the more highly strained
four-membered lactam ring (Scheme 24.46).
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The carbonyl group in the b-lactam ring is highly susceptible to nucleophiles and
as such does not behave like normal tertiary amides, which are usually quite resistant
to nucleophilic attack. This difference in reactivity is due mainly to the fact that
stabilization of the carbonyl is possible in the tertiary amide but impossible in the
b-lactam nucleus. The b-lactam nitrogen is unable to feed its lone pair of electrons
into the carbonyl group since this would require the bicyclic rings to adopt an
impossibly strained flat system. As a result, the lone pair is localized on the nitrogen
atom and the carbonyl group is far more electrophilic than one would expect for
a tertiary amide.

The acyl side chain can actively participate (neighboring group participation) in
a mechanism to open up the 2-azetidinonemoiety (Scheme 24.47). Thus, penicillins
have a built-in self-destruct mechanism. However, if a good electron-withdrawing
group is attached to the carbonyl group, then the inductive pulling effect should
draw electrons away from the carbonyl oxygen and reduce its tendency to act as
a nucleophile.

Enzyme-catalyzed hydrolysis of the b-lactam ring uncovers the thiazolidine-ring
nitrogen as a nucleophile that drives a rapid intramolecular displacement on the side
chain. Attachment of 7-hydroxy-4-methylcoumarin as the releasable group of this
side chain generates a penicillin structure that can function as a fluorescence-based
reporter substance/diagnostic for the presence of low levels ofb-lactamase enzyme in
solution [204].

The major structural differences between penicillins and cephalosporins are that
the five-membered thiazolidine ring of penicillins is replaced by a six-membered
dihydrothiazine ring in cephalosporins and that the degree of pyramidalization of the
b-lactam nitrogen is generally smaller in cephalosporins. In addition, many cepha-
losporins bear a potential leaving group at theC30 position (pyridine, acetate, or thiol),
which is expelled during the hydrolysis of the 2-azetidinone nucleus to give an
exo-methylene cyclic imine (Scheme 24.48). Experimental observations have led to
the conclusion that b-lactamC�Nbond fission is not concerted with the departure of
the leaving group, and that the tetrahedral intermediate breaks down by proton
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transfer to generate an intermediate enamine,which subsequently, in a separate step,
expels the leaving group [205]. The similarity in the second-order rate constants for
the hydroxide-promoted hydrolysis of penicillins and cephalosporins points to an
absence of influence of the leaving group at C30 in cephalosporins.

The hydrolysis of an acetoxy ester side chain at C3 in cephalosporins is competitive
with the hydrolysis of the b-lactam ring. It may be due to the comparable reactivity of
the 2-azetidinone nucleus of cephalosporins and a simple ester such as ethyl acetate.
No significant spontaneous hydrolysis is observed in the pH–rate profile for the
hydrolysis of penicillins, but the b-lactam moiety does undergo an acid-catalyzed
degradation. By contrast, the hydrolysis of cephalosporins shows a spontaneous pH-
independent hydrolysis and is less reactive by a factor of about 104 towards acid than
are penicillins [206]. Penicillins undergo an acid- and a base-catalyzed hydrolysis, but
there is no significant uncatalyzed reaction, the pH minimum being around 7 for
spontaneous or water-induced degradation. However, cephalosporins often exhibit
a significant pH-independent reaction in the pH range 3–7. The evaluation of
different glutaryl acylase mutants to improve the hydolysis of cephalosporin C in
the absence of hydrogen peroxide has been reported [207].

24.2.4.3 Alcoholysis, Thiolysis, and Aminolysis
The reactions of b-lactam antibiotics and their derivatives with nucleophiles have
been studied extensively. For example, nucleophilic substitution at the b-lactam
carbonyl center of penicillins occurs, in water, with amines [208], alcohols [209], and
thiols [210] in competition with that by hydroxide ion. These are acyl transfer
processes involving covalent bond formation between the carbonyl carbon and the
nucleophile and C�N bond fission of the b-lactam. In general, covalent bond
formation to the incoming nucleophile occurs before b-lactam C�N bond fission,
resulting in the reversible formation of a tetrahedral intermediate. The rate-limiting
step in these reactions is thus commonly ring opening and breakdown of the
tetrahedral intermediate. Formation of the tetrahedral intermediate also changes
the basicity of the leaving group amine, as amide resonance in the b-lactam is lost and
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proton transfer to nitrogen changes from an unfavorable to a thermodynamically
favorable process. Thus, many of these reactions require general acid catalysis and
protonation of the amine nitrogen leaving group to facilitate C�N bond fission and
avoid amine anion expulsion. Although the release of strain energy, which accom-
panies ring opening, could possibly decrease the need for protonation, C�N fission
in penicillins appears to require some form of catalysis. For example, the alcoholysis
and thiolysis of penicillins occur with rate-limiting breakdown of the tetrahedral
intermediate facilitated by proton transfer from solvent water to the departing amine.
Exceptionally, the thiolysis of some cephalosporins appears to involve the breakdown
of the tetrahedral intermediate by the expulsion of an enamine anion [211].

Unlike the strongly base catalyzed aminolysis of b-lactam antiobiotics, such as
penicillins and cephaloridines, the rate law for the aminolysis ofN-aroyl b-lactams is
dominated by a termwith afirst-order dependence on amine concentration in its free
base form, which is indicative of an uncatalyzed aminolysis reaction that proceeded
by a concertedmechanism [212]. The relative sequence of bondmaking and breaking
between heavy atoms in the aminolysis of b-lactam antibiotics is a result of subtle
effects that often involve proton transfer. A step-wise process for aminolysis occurs
through the formation of a tetrahedral intermediate, resulting from the attack on the
carbonyl center by an amine,which gives rise to a large change in the pKa of the amine
NH as a result of covalent bond formation. Proton transfer from the amine
nucleophile to a base catalyst thus occurs after full covalent bond formation, as it
changes from a thermodynamically unfavorable to a favorable process. Hence
aminolysis usually requires general base catalysis to remove a proton from the
attacking amine and this is the dominant term in the rate law – in fact it is
experimentally difficult to determine the rate constant for any uncatalyzed reaction.
With penicillins and cephalosporins this proton transfer occurs after initial C�N
bond formation in a rate-limiting step that is diffusion controlled. The aminolysis of
b-lactam antibiotics also requires b-lactam C�N bond fission and expulsion of an
amine. The rate of aminolysis of benzylpenicillin and cephaloridine by hydroxyl-
amine, unlike other amines, shows only a first order dependence on amine
concentration [213]. The rate enhancement compared with that predicted from a
Brønsted plot for other primary amineswith benzylpenicillin is greater than 106. This
is much more than an a-effect and is compatible with rate-limiting formation of the
tetrahedral intermediate due to a rapid intramolecular general acid catalyzed
breakdown of the intermediate. For cephaloridine, the rate enhancement is greater
than 104, which demonstrates that b-lactam C�N bond fission and expulsion of the
leaving group at C30 are not concerted.

24.2.4.4 Destruction of b-Lactam Antibiotics by b-Lactamases
b-Lactamases hydrolyze the four-membered b-lactam ring in both penicillin and
cephalosporin classes of antibiotics (Scheme 24.49). They thereby destroy the
antibacterial activity by deactivating the chemical warhead in the molecule [182],
the strained b-lactam that is the chemically reactive acylating group formodifying the
active-site serine side chains in the penicillin-binding proteins (PBPs) (the trans-
peptidases and carboxypeptidases in peptidoglycan [PG] crosslinking).
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b-Lactamase activity was detected a few years before clinical use of penicillins in
humans, indicating its presence in soil bacteria that combat the natural product
penicillins, and to date more than 190 b-lactamases have been described [214], and
categorized into class A, B, C and D lactamases [215]. The A, C and D classes are
active-site serine enzymes, with architectural and mechanistic similarities to the
PBPs [216], suggesting evolution from PBPs. In the A, C and D classes of b-lacta-
mases the same type of penicilloyl-O-Ser enzyme covalent intermediate is formed as
in the catalytic cycle of PBPs that attack and open the 2-azetidinone ring and become
self-acylated. There is no such covalent penicilloyl enzyme intermediate in the
catalytic cycle of the zinc-dependent class B b-lactamases, which has consequences
for the failure of class B b-lactamases to be inhibited by certain drugs, because direct
attack by water is carried out (Scheme 24.50).

A simple, novel gold nanoparticle based colorimetric method has been developed
for efficient screening of class A b-lactamase activity and inhibitors in vitro and in
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bacterial strains [217]. A novel protein labeling system that combines a genetically
modified, noncatalytic b-lactamase variant and specific mechanism-based fluores-
cent probes has also been developed [218].

BcII is a B1 metallo-b-lactamase that is found in both mononuclear and dinuclear
forms. Despite very elegant studies, there is still controversy over the nature of the
active BcII species. Anon-steady-state study of the hydrolysis of penicillinG catalyzed
by Co(II)-substituted BcII has been carried out, and the modifications occurring at
the active site of the enzyme have been followed.Working at different metal/enzyme
ratios it has been demonstrated that both mono-Co(II) and di-Co(II) BcII are active
metallo-b-lactamases. In addition, evidence has been presented that during penicillin
Ghydrolysis catalyzed bymono-Co(II) BcII themetal is localized in theDCHsite (the
Zn2 site in B1 enzymes) [219].

To probe the role of the Zn(II) sites in metallo-b-lactamase L1, mononuclear
metal ion containing and heterobimetallic analogues of the enzyme have been
generated and characterized using kinetic and spectroscopic studies. Mononuclear
Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to
be slightly active; however, this enzyme did not stabilize a nitrocefin-derived
reaction intermediate that had been previously detected. Mononuclear Co(II)- and
Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest
that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic
analogues (ZnCo and ZnFe) analogues of L1 have been generated, and stopped-
flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and
that there are large amounts of the reaction intermediate formed during the
reaction. These studies demonstrate that the metal ion in the Zn1 site is essential
for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of
the nitrocefin-derived reaction intermediate [220].

24.2.4.5 Conversion of Penicillins into Cephalosporins
The chemical relationship of the penicillin (thiazolidine) and the cephalosporin
(dihydrothiazine) skeletons was established in the early 1960s, when it was dem-
onstrated that penicillin sulfoxides could be rearranged to form 3-methylated
cephalosporins [221]. Treatment of phenoxymethylpenicillin sulfoxide methyl ester
87, which can be obtained from phenoxymethyl penicillin via periodate oxidation
followed by esterificationwith diazomethane, with a trace of p-toluenesulfonic acid in
xylene at reflux temperature gave the cephalosporin derivative 88. A plausible
pathway for this acid-catalyzed ring-expansion involves a sulfoxide elimination to
intermediate 89, subsequent addition of the sulfenic acid to the double bondwith the
sulfur becoming attached to the primary carbon and the loss of a proton to yield 88
(Scheme 24.51).

Eventually, amore efficient processwas developed using silyl protection during the
ring expansion rearrangement. Silyl protection chemistry has led to efficient chem-
ical production of 7-ADCA and has led to highly efficient production of the oral
cephalosporins, cephalexin and cephradine. Cephadroxyl is synthesized after silyla-
tion of 7-aminocephalosporanic acid (7-ACA) followed by acylation with a mixed
anhydride prepared from a salt of p-hydroxyphenylglycine and ethylchloroformate.
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Amoxicillin is synthesized using a similar process. An important Lilly product,
cefaclor, involves a ring enlargement of a penicillin V ester to an expanded ceph-
alosporin-S oxidewith an exocyclic double bond. The product is a useful intermediate
in that it can be converted into 3-substituted cephalosporins and into cefaclor, a highly
prescribed oral cephalosporin with chlorine on the C3 position.

24.2.4.6 Reactions for the Transformation of Functional Groups in Side Chains
This chapter cannot give a complete overview of all the possible transformations for
penicillins and cephalosporins at a specific position, because of the enormous variety
of reactions involved. We focus instead on some of the most relevant reactions [181,
222]. The most important transformation for the amino function in penicillins and
cephalosporins is the protection, which is introduced in general as amide by acylating
the 6-APA or 7-ACA [223]. In a recent contribution, 6-aminopenicillanates 90 have
been N-acylated in a three-component reaction with an aldehyde and Ph3PCCO to
give the corresponding 6-[(E)-20-alkenoyl]amides 91 via a domino addition–Wittig
alkenation sequence (Scheme 24.52) [224]. In addition to the amide group, several
different protective groups are used for the transformation of the amino moiety of
penicillins and cephalosporins. The amine can be converted into a carbamate group,
to give the corresponding Boc [225], Cbz [226] or Teoc [227] derivatives. The Dane
protecting group is very suitable for penicillins and cephalosporins, because the
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proton remaining on the nitrogen is stabilized by hydrogen bonding with the ester
carbonyl group, which allows reactions that are normally possible only in doubly
protected derivatives [228]. Double protection of the amino group is desirable in
many operations, particularly with strongly basic reagents, and imines are often
used [229].

The amino moiety of penicillins and cephalosporins can be transformed into
different heteroatomic groups, as shown in Scheme 24.53. 6-Hydroxypenicillanic
acid (92) has been synthesized by treatment of a solution of 6-APA in aqueous
perchloric acid with sodium nitrite [230], while 6,6-dibromopenicillanic acid 93 has
been prepared on reacting 6-APA with bromine [231]. A regiospecific methodology
for the preparation of penicillate derivatives 6a-(1R-hydroxyoctyl)penicillanic acid
and 6b-(1R-hydroxyoctyl)penicillanic acid – which will be valuable tools in the
investigation of mechanistic and structural details of class D b-lactamases – has
been described from 6,6-dibromopenicillanic acid 93 [232]. Esterification of 7-ACA
followed by sequential treatment with excess triethylamine and trifluoromethane-
sulfonic anhydride gives an imine, which can then be hydrolyzed to generate the
7-oxo-cephalosporanate 94 [233]. A carbenechromium(0)-containing tether may
be incorporated into penicillin G or cephalotin by using a (bromopropylamino)
carbenechromium(0) complex to give metalla-penicillin and-cephalosporin deriva-
tives, stable compounds which can be transformed into antibiotic derivatives bearing
tripeptide side-chains [234].

6-Aminopenicillanic acid and two of its derivatives, 6-APA benzyl ester and
penicillin G, have been evaluated as catalysts for use in direct cross-aldol reactions
in different solvents and mixtures [235]. A thermal decarbonylation of penam
b-lactams has been reported [236]. With the exception of monobactams, a carboxylic
acid functiona to theb-lactamnitrogen is essential for good antibacterial activity, and
it is nearly always necessary to protect this carboxylic acid function during the
preparation of derivatives. The first esterification of the carboxylic acid of penicillins
was achieved on preparing penicillin G benzhydryl ester [237]. For penicillins and
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cephalosporins, the most often used protective groups are functionalities that can
be removed under acidic conditions, such as benzhydryl [238], tert-butyl [239] and
p-methoxybenzyl [240]. A procedure that has been employed for some time to
improve the absorption of penicillins and cephalosporins after oral administration
is the use of special esters that readily undergo enzymatic hydrolysis in vivo, with
liberation of the active drug. These esters, which are mostly bis-acyl derivatives of
formaldehyde or acetaldehyde, can also provide protection for carboxylic acid
functions during derivatization and synthetic transformations [222].

Transformations of 3-acetoxymethyl cephalosporins are of central importance. The
cleavage of the acetyl residue can be carried out both enzymatically [241] and
chemically [242] under mild conditions. Oxidation of alcohols obtained in this way
allows preparation of the corresponding 3-formylcephalosporins, which can suffer
further transformations such as the Wittig olefination [243] or Barbier-type allyla-
tion [244]. 3-Halomethyl cephalosporins canbe synthesized via substitution reactions
in 3-acetoxy(hydroxy)methyl cephalosporins [245]. These 3-halo derivatives usually
act as building blocks for more complex derivatives. For example, the cephalosporin
derivative 96, which has been confirmed as a novel fluorogenic substrate for imaging
b-lactamase gene expression, has been prepared from the 3-chloromethyl cephalo-
sporin 95 (Scheme 24.54) [246]. Apractical route to the preparation of nitrocefin from
a 3-chloromethyl cephalosporin related to 95 has been reported using a similar
synthetic sequence [247]. Employing a multivalent approach to drug discovery,
vancomycin and cephalosporin synthons have been chemically linked to yield
heterodimer antibiotics, which simultaneously target the principal cellular targets
of both glycopeptides and b-lactams [248].

The sulfur in penicillins and cephalosporins can be oxidized, leading to sulfoxides
or sulfones [224, 231, 246, 249]. This oxidation is usually accomplished for one of
three reasons: (i) sulfoxide formation to obtain reactive intermediates for further
transformations; (ii) sulfoxide formation with subsequent reduction in cephems
to shift the double bond from position 2 to position 3; (iii) preparation of sulfones as
b-lactamase or elastase inhibitors.
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Abbreviations

AIBN a,a0-azoisobutyronitrile
7-ACA 7-aminocephalosporanic acid
6-APA 6-aminopenicillanic acid (6-APA)
Bn benzyl
Boc tert-butyloxycarbonyl
BOM benzyloxymethyl
BTPP phosphazene base P1-t-Bu-tris(tetramethylene)
CAN ceric ammonium nitrate
Cbz benzyloxycarbonyl
Cp cyclopentadienyl
CSI chlorosulfonyl isocyanate
DABCO 1,4-diazabicyclo[2.2.2]octane
DBN 1,5-diazabicyclo[4.3.0]non-5-ene
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
DCC N,N0-dicyclohexylcarbodiimide
DEAD diethyl azodicarboxylate
DIBAL-H (diisobutyl)aluminium hydride
DMAP 4-dimethylaminopyridine
DMF dimethylformamide
DMSO dimethyl sulfoxide
de diastereomeric excess
dr diastereomeric ratio
ee enantiomeric excess
Fmoc 9-fluorenylmethoxycarbonyl
HIU high intensity ultrasound
HMDS hexamethyldisilazane
HPLC high-performance liquid chromatography
IR infrared
LHMDS lithium hexamethyldisilazane
LDA lithium diisopropylamide
MCPBA meta-chloroperoxybenzoic acid
MCR multicomponent reaction
MOM methoxymethyl
MM molecular mechanical
MMPP magnesium monoperoxyphthalate
MS mass spectrometry
NCA N-carboxy anhydride
NMP N-methylpyrrolidone
NMR nuclear magnetic resonance
PBP penicillin binding protein
PDC pyridinium dichromate
Phth phthalimidoyl
PMB p-methoxybenzyl
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PMP p-methoxyphenyl
PPTS pyridinium p-toluenesulfonate
PTSA p-toluenesulfonic acid
QM quantum mechanical
RCM ring closing metathesis
RT room temperature
TBDPS tert-butyldiphenylsilyl
TBS tert-butyldimethylsilyl
TES triethylsilyl
TFA trifluoroacetic acid
THF tetrahydrofuran
TIPS triisopropylsilyl
TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
Ts tosyl
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25
The Chemistry of Benzodiazepines
Carlos Vald�es and Miguel Bayod

25.1
Introduction

25.1.1
General Introduction

The discovery of the psychotropic activity of 1,4-benzodiazepine derivatives
(Figure 25.1) [1] opened a whole new area of activity in the treatment of mental
diseases associated with depressive processes and affective alterations. More recent-
ly, compounds featuring the basic structure of 1,4-benzodiazepine, and exhibiting
non-psychotropic biological activity, such as anti-cancer [2], anti-HIV [3], and
anti-Alzheimer [4] activities have been discovered. Prominent examples are the
benzodiazepinic alkaloids circumdatin A, B, and C, 1–3, which are employed in the
treatment of gastrointestinal disorders [5], and the naturally occurring pyrrolo[2,1-c]
[1,4]benzodiazepines (4), which are potent antitumor antibiotics isolated from
various species of Streptomyces (Figure 25.2) [6].

Currently, the structure of 1,4-benzodiazepine represents one of most important
privileged structures inmedicinal chemistry, a term coined by Evans to define �a single
molecular framework able to provide ligands for diverse receptors� [7]. In fact, the
development of benzodiazepines chemistry has been directed to the search for new
and more active compounds.

The introduction of chlordiazepoxide (5) (Figure 25.3) in clinical medicine, in
1961, can be regarded as the starting point of the benzodiazepine era. Since then,
thousands of these compounds have been synthesized through conventional and
combinatorial techniques. Currently, over 50 benzodiazepines find clinical applica-
tion in different regions of the world. Most of the benzodiazepines that have reached
the market were selected due to their high anxiolytic potency due to their depressing
function of the central nervous system.Most of them feature some sedative hypnotic
properties to various extents, and therefore also find clinical application as sleep
promoters. Moreover, their low tendency to induce lethal depression of the CNS has
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ensured that benzodiazepines have replaced almost completely the barbiturics as
sedative hypnotics.

Over the last decade it has been shown that the effects of most of the 1,4-
benzodiazepines with clinical application result from benzodiazepine�s modulation
of c-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the central
nervous system, by influencing the GABAA receptor complex [8]. Benzodiazepines
bind to the GABAA receptor, reducing the quantity of GABA required to open the
chloride channel, hyperpolarize the neuron, and inhibit neurotransmission [9].

Benzodiazepines are lipo-soluble substances that are easy to crystallize and have
basic character. The common characteristic of benzodiazepines is a bicyclic structure
composed of a benzene ring fused to a diazepine (a seven-membered ring with two
nitrogen atoms). In addition, most of the biologically active benzodiazepines feature
substitution at C5 with an aromatic ring. Each particular benzodiazepine is derived
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Figure 25.3 Structure of chlordiazepoxide (5).
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Figure 25.1 General Structure of 1,4-benzodiazepines.
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Figure 25.2 Some compounds that feature the basic structure of 1,4-benzodiazepine and exhibit
non-psychotropic biological activity.

2176j 25 The Chemistry of Benzodiazepines



by the incorporation of different substituents at the different positions of the basic
structure [10].

25.1.2
Structural Classification of Benzodiazepines

Depending on the position of the two nitrogen atoms in the seven-membered
heterocyclic ring, the benzodiazepines can be classified in four main different
groups (Figure 25.4):

. 1,4-benzodiazepines

. 1,5-benzodiazepines

. 2,3-benzodiazepines

. 2,4-benzodiazepines.

By far, 1,4-benzodiazepines are the most interesting derivatives, due to their
clinical applications. In addition, some examples of therapeutic applications of 1,5-
and 2,3-benzodiazepines exist. Thus, this chapter will focusmainly on the chemistry
of 1,4-benzodiazepines, and in particular on the biologically more activemembers of
this family. Nevertheless, 1,5- and 2,3- derivatives are covered in Sections 25.7
and 25.8, respectively.

25.2
Relevant Benzodiazepines

25.2.1
Most Common 1,4-Benzodiazepines

Table 25.1 gives the particular structures of some of the most important 1,4-
benzodiazepines with clinical applications.

Variations on the substituents denoted by R1, R2, R3, R4, and R5 are responsible for
the different biological activity of 1,4-benzodiazepines.
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Figure 25.4 Basic structures of benzodiazepines.
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Regarding the benzene ring, only substitution at C7 (R5) presents pharmacological
interest. Moreover, usually anionic derivatives are more interesting than cationic
forms. Substitution at positions 6, 8, and 9 diminishes substantially the activity or
even makes the benzodiazepines biologically inert.

Table 25.1 Chemical structure of the most common 1,4-benzodiazepines.

N

N

R5

R
1

R2

R3

R4

1 2

3

4

5

6

7

8
9

Compound Name R1 R2 R3 R4 R5

6 Bromazepam H O H a) Br
7 Camazepam Me O OCONMe2 H Cl
8 Clonazepam H O H Cl NO2

9 Clorazepate H O CO2K H Cl
5 Chlordiazepoxideb),c) — NHMe, H H H Cl
10 Demoxepamc) H O H H Cl
11 Diazepam Me O H H Cl
12 Fletazepam CH2CF3 H, H H F Cl
13 Flunitrazepam Me O H F NO2

14 Flurazepam (CH2)2NEt2 O H F Cl
15 Fosazepam CH2POMe2 O H H Cl
16 Halazepam CH2CF3 O H H Cl
17 Lorazepam H O OH Cl Cl
18 Lormetazepam Me O OH Cl Cl
19 Medazepam Me H, H H H Cl
20 Metaclazepam Me CH2OMe, H H Cl Br
21 Nimetazepam Me O H H NO2

22 Nitrazepam H O H H NO2

23 Nordazepam H O H H Cl
24 Oxazepam H O OH H Cl
25 Pinazepam CH2CCH O H H Cl
26 Prazepam CH2 O H H Cl
27 Quazepam CH2CF3 S H F Cl
28 Temazepam Me O OH H Cl
29 Tetrazepam Me O H d) Cl
30 Tifluadom Me e) H F H
31 Uldazepamb) — f) H Cl Cl

a)2-Pyrido as substituent at C5.
b)Double bond between N1 and C2.
c)Oxygen at N4.
d)1-Cyclohexenyl as substituent at C5.
e)Thieno-2-carbonylaminomethyl.
f )Allyloxiamino.
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Alterations in the substituent attached at C5 render some compounds pharma-
cologically interesting. For instance, bromazepam (6) with anxiolytic activity, features
a 2-pyridyl substituent, and themuscle relaxant tetrazepam (29) a cyclohexenyl group.

Modifications in the diazepinic ring give rise to most of the benzodiazepines with
pharmacological activity. For example, methylation of the amide nitrogen of position
1 (R1¼Me; R2¼¼O) is found in diazepam (11), while the addition of longer alkyl
chains is detrimental to the anxiolytic activity. Other variations of R1 determine the
formation of compounds with a high sedative effect: flurazepam (14, R1¼ (CH2)2
NEt2), anticonvulsant; halazepam (16, R1¼CH2CF3), with activity similar to chlor-
diazepoxide (5); and pinazepam (25, R1¼CH2C:CH) and prazepam (26, R1¼CH2-
cyclopropyl) with diazepam-like activity.

The introduction of modifications at position 2 leads to chlordiazepoxide (5),
metaclazepam (20), and uldazepam (31). The 2-acylaminomethyl derivatives do not
have affinity for the same receptor, and therefore lack anxiolytic activity. However,
these type of derivatives act selectively on the opiaceous receptors. This is the case for
tifluadom (30), which has shownK-selective agonist activity, with a potential of action
over this subgroup of receptors 25-fold superior than that of morphine [11].

The introduction of functionality at position 3 leads to a new family of benzodia-
zepines,withcamazepam(7), clorazepate (9), lorazepam(17), andoxazepam(24) as the
most distinguishedmembers. Camazepam (7) has shown excellent anxiolytic activity,
with low sedative and relaxant effects. Reduction of the lactam of camazepam leads to
fletazepam(12) andmedazepam(19), compoundswith lowerpharmacological activity.

The structural variants in which the benzene ring is replaced by a heterocycle hold
great interest, since they exhibit similar pharmacological properties to the classic
benzodiazepienes, and extend the therapeutic scope of these drugs. In this context,
thienodiazepines, such as brotizolam (32), clotiazepam (33), and bentazepam (34)
(Figure 25.5) have been extensively studied.

25.2.2
1,4-Benzodiazepines with a Heterocycle Condensed at sides a or d

Another interesting variation of pharmacological interest is present in systems that
feature an additional five- or six-membered nitrogenated heterocycle condensed at
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Figure 25.5 Thienodiazepines brotizolam (32), clotiazepam (33), and bentazepam (34), which
have been studied extensively in terms of their pharmacological properties.
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the a face of the benzodiazepine. Triazino-, triazolo-, and imidazobenzodiazepines
(A,B, and C respectively in Figure 25.6) have been studied thoroughly. Triazino-
benzodiazepines (A) have shown an effect similar to diazepam (11) (with the
exception of the anticonvulsant effect), but the derivatives featuring a nitrogenated
five-membered ring have attracted more interest in the pharmaceutical industry.

Figure 25.6 shows some of the most relevant members of this type of benzodia-
zepines. Triazolam (36) is the most active triazolo-benzodiazepine. Both triazolam
and estazolam (35) have exhibited excellent action as hypnotic agents. Of particular
interest is alprazolam (37), which features rapid and strong anxiolytic activity, and
antidepressive effects [12]. Regarding the imidazobenzodiazepines C, worth noting
is midazolam (38), a benzodiazepine with relatively short action, which holds
anxiolytic, hypnotic anticonvulsive, amnesic, and muscle relaxant effects [13].

Among the cyclofunctionalized 1,4-benzodiazepines, another interesting sub-
group is formed by structures that feature a fused heterocycle at the d face (N4-
C5) of the diazepine ring (Figure 25.7). In particular, oxazolobenzodiazepines and
oxazinobenzodiazepines have been studied extensively. Representative members of
these families of heterocycles are oxazolam (40), cloxazolam (41), and mexazolam
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Figure 25.7 Benzodiazepines with a heterocycle condensed at the d face.

N

N

N
N

Cl

X

R

35 R=H, X=H; Estazolam
36 R=Me, X=Cl, Triazolam
37 R=Me, X=H, Alprazolam

N

N

N

Cl

38 Midazolam

F

N

N
N

O

N N

O2N

Cl

39 Loprazolam

B C

N

NCl

X

R=Me, CH2 NMe2,CH2Cl
X= O, H2

A

N

NX

R

Figure 25.6 Benzodiazepines with a heterocycle condensed at the a face.

2180j 25 The Chemistry of Benzodiazepines



(42) for the oxazolobenzodiazepines, and ketazolam 43 for the oxazinobenzodiaze-
pines. The latter is an analog of diazepam (11) that features good anxiolytic activity
with low secondary effects.

25.2.3
Other Benzodiazepines with Clinical Application

Although 1,4-benzodiazepines represent the vast majority of benzodiazepines with
pharmaceutical applications, some other examples exist of benzodiazepine drugs
that feature the nitrogen atoms in different positions. This is the case of tofisopam
(44), a 2,3-benzodiazepine with anxiolytic properties, and clobazam (45), a 1,5-
benzodiazepine employed in the treatment of several psychotic disorders
(Figure 25.8).

25.2.4
Naturally Occurring Benzodiazepines

Many years after the discovery of synthetic 1,4-benzodiazepines as biologically active
substances, several natural alkaloids featuring the basic 1,4-benzodiazepine sub-
structure have been discovered. The benzodiazepine-quinazoline scaffold is found in
several alkaloids with interesting biological activity. The simplest member is scler-
otigenin, isolated from the sclerotia of Penicillium sclerotigenum [14]. More complex
structures are found in benzomalvins A–C, isolated from the fungus Penicillium
sp. [15], asperlicins [16] (Figure 25.9), and circumdatins A–G (Figure 25.2), isolated
from the fungus Aspergillus ochraceous [5, 17].

Another important class of natural products that contains the 1,4-benzodiazepine
structure are pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). These compounds are a
family of naturally occurring of antitumor antibiotics that have attracted great
attention in recent years. Section 25.6 provides more detailed coverage of these
systems.
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Figure 25.8 Tofisopam (44), a 2,3-benzodiazepinewith anxiolytic properties, and clobazam (45), a
1,5-benzodiazepine used in the treatment of several psychotic disorders.
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25.3
1,4-Benzodiazepines: General Synthetic Methods

25.3.1
1,4-Benzodiazepines Ring Synthesis: Introduction

Since 1960, when the first benzodiazepine with clinical applications (chlordiazepox-
ide, 5) was introduced onto the pharmaceutical market, several methods have been
developed for the preparation of a large variety ofmembers of this family of products.
With the advent of parallel and combinatorial techniques, the solid-supported
synthesis of 1,4-benzodiazepines has been thoroughly developed. The synthetic
strategies applied are common to both solution- and solid-supported synthesis. For
this reason, the differentmethodologies will be presented regardless of whether they
are employed in solution or solid support.

This section is divided in two parts, dedicated to the most important members of
this family, namely, 1,4-benzodiazepin-2-ones and 1,4-benzodiazepin-2,5-diones
(Figure 25.10).

25.3.2
Ring Synthesis of 1,4-Benzodiazepin-2-ones

25.3.2.1 Quinazoline N-Oxide Route: Sternbach�s Classical Synthesis
The synthesis of chlordiazepoxide (5) was reported by Leo Sternbach back in 1961 [18]
by treatment of quinazoline N-oxide 48 with amines, followed by ring expansion of
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Figure 25.9 Compounds containing the benzodiazepine-quinazoline scaffold.

2182j 25 The Chemistry of Benzodiazepines



the piperazine ring formed (Scheme 25.1). Hydrolysis of the amidine function of
chlordiazepoxide gives rise to the corresponding lactamdemoxepam (10) and further
reduction of the N-oxide provides nordazepam (23) (Scheme 25.1).

The discovery of thefirst benzodiazepine by Sternbach is a fascinating example of a
serendipitous discovery that turned out to have an enormous impact in our society.
Readers are encouraged to read Sternbach�s own version [1]. Chlordiazepoxide (5)
had been prepared inadvertently and its structure had beenwrongly assigned in 1955
during a synthetic project aimed at substituted quinazoline N-oxides (Scheme 25.1).
Treatment of quinazoline N-oxide (48) with methylamine led to chlordiazepoxide (5)
through an unexpected nucleophilic addition/ring-opening/ring-closure sequence,
instead of the desired SN2 reaction. The crystals of chlordiazepoxide, which had
remained in a flask in the bench for two years, were discovered during a laboratory
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Scheme 25.1 Sternbach�s synthesis of chlordiazepoxide (5).
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Figure 25.10 The two most important members of the 1,4-benzodiazepine family.
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clean-up operation and then submitted for pharmacological testing. The unparalleled
properties found for that compound triggered the development of this important type
of drugs in pharmaceutical industry.

Demoxepam (10) can be directly obtained from 2-chloromethylquinazoline N-
oxide 48 by treatment with base [19]. In addition, reaction with anhydrides or acid
chlorides leads to 3-acyloxy derivatives through the Polonovsky rearrangement [20],
which upon hydrolysis gives 3-hydroxybenzodiazepines. This route has been
employed for the synthesis of highly active benzodiazepines such as lorazepam
(17) [21], lormetazepam (18) [22], oxazepam (24), and temazepam 28, which are
marketed as anxiolytic, anticonvulsants, or hypnotics (Scheme 25.2).

25.3.2.2 2-Aminobenzophenone Route
Scheme 25.3 presents the typical disconnections for the synthesis of 1,4-benzodi-
azepine-2-ones: (i) formation of an amide bond between N1 and C2; (ii) imine
condensation between N4 and C5.

Thus, the most straightforward strategies for the preparation of 1,4-benzodiaze-
pin-2-ones are based on the condensation of 2-aminobenzophenones and a-func-
tionalized carboxylic acid derivatives. Scheme 25.4 depicts the most typical synthetic
routes.
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Scheme 25.3 Retrosynthetic analysis of 1,4-benzodiazepines.
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The first procedure consists in the treatment of the aminobenzophenone 46with a
bromoacetyl bromide 49 followed by reaction with ammonia [23]. Then, intramo-
lecular condensation occurs easily in the reaction media to provide the 1,4-benzo-
diazepine without the need to isolate the open chain intermediates. The second
approach implies the treatment of the o-aminobenzophenone (46) with the hydro-
chloride of an amino ester 50 in pyridine, which leads directly to the final benzo-
diazepine. This procedure is particularly useful for the introduction of different
substituents (R4) at C3 [24]. Typical examples of this procedure are the classical
syntheses of bromazepam (6) [25].

This methodology has been adapted to the preparation of 3-amino-1,4-benzodia-
zepines. A very convenient methodology employs a-benzotriazol-1-yl-N-(benzylox-
ycarbony1)glycine (51) as synthetic equivalent of a-aminoglycine [26]. After acylation
of the NH2 group of 2-aminobenzophenone 52, treatment with ammonia yields the
open chain derivative 54, which features a free NH2 and undergoes cyclization to the
3-aminobenzodiazepine 55 (Scheme 25.5).

The condensation of 2-aminobenzophenones with a-amino acids was also applied
by Ellman in one of the first examples of solid-supported synthesis of benzodiaze-
pines (Scheme 25.6) [27]. To the aminoketone attached at the polymeric support (56)
is coupled a Fmoc-protected amino acid. Deprotection of the Fmoc group followed by
treatment with acid leads to the solid supported benzodiazepine 58. Additional
diversity is achieved by alkylation of the N1 nitrogen to give solid-supported
benzodiazepines 59. Final cleavage from the resin gives rise to the free benzodiaz-
epine 60 featuring four points of diversity.

A different strategy for the solid supported synthesis of 1,4-benzodiazepine-2-ones
was reported by DeWitt et al. in 1993 (Scheme 25.7) [28]. Reaction of 2-aminoben-
zophenone imines 61with solid-supported amino acids 62 renders the intermediate
imine 63, which provides the benzodiazepine upon cyclization. Interestingly, the
cyclization-release strategy allows for the obtention of the benzodiazepines 64 with
very high purity.
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Scheme 25.4 Synthesis of 1,4-benzodiazepin-2-ones from o-aminobenzophenones.
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25.3.3
Synthesis of 1,4-Benzodiazepine-2,5-diones

25.3.3.1 Standard Synthesis: from Anthranilic Acid and a-Amino Acid Derivatives
Among the different classes of structures featuring the benzodiazepine structure,
1,4-benzodiazepine-2,5-diones hold a prominent position, not only because they are
direct precursors of 1,4-benzodiazepine-2-ones, but also due to the diverse of
biological properties that they feature. The retrosynthetic analysis of 1,4-benzodi-
azepine-2,5-diones is very obvious, as they are generally prepared by the condensa-
tion of an anthranilic acid and an a-amino acid. Finally, treatment with an alkylating
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Scheme 25.6 Ellman�s solid-phase synthesis of 1,4-benzodiazepine-2-ones.
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reagent introduces the substitution at N1 (Scheme 25.8). Most modern advances
regarding the preparation of such molecules have concentrated on the development
of high-throughput methodologies that could be adapted to combinatorial
techniques.

In the following schemes are represented two different synthetic routes that
employ isatoic anhydride (65) as synthetic equivalent of anthranilic acid. Treatment
of 65 with an aniline gives rise to o-amino amide 66. Alkylation of the amino group,
followed by acylation with methyl malonyl chloride gives 68, which is treated with a
brominating agent to produce the intermediate 69, which undergoes cyclization by
treatment with base to produce the benzodiazepine-dione 70 (Scheme 25.9) [29].

The 1,4-benzodiazepine-2,5-dione 71 can be constructed in a single step by
reaction of isatoic anhydride 65 with an a-amino ester (Scheme 25.10). Further
substitution at both nitrogens to obtain 73 can be achieved by sequential alkylation.
Notably, the N1 nitrogen on 71 can be selectively alkylated to form 72 by taking into
account the higher acidity of the anilide nitrogen.

Microwave irradiation promotes the cyclization between isatoic anhydride and
a-amino acids very efficiently, as represented by the solvent-free synthesis of pyrrolo
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Scheme 25.8 Retrosynthesis of 1,4-benzodiazepine-2,5-diones.
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[2,1-c][1,4]benzodiazepine-5,11-diones 75 from isatoic anhydride and a proline
derivative 74 (Scheme 25.11) [30].

o-Nitroacyl chlorides 76 and o-azidoacyl chlorides 79 [31] can be employed as
starting point for the preparation of 1,4-benzodiazepine-2,5-diones. Condensation
with an amino ester provides the N-acylated precursors 77 and 80, respectively, that
can be cyclized directly into the benzodiazepine-1,3-diones 78 and 81 upon reduction
of the masked amine functionality (Scheme 25.12).

25.3.3.2 Ugi 4CC Reaction in the Synthesis of 1,4-Benzodiazepines-2,5-diones
A particularly appealing advance in the synthesis of benzodiazepines was the
incorporation of the Ugi four-component condensation reaction to prepare the
intermediate that ultimately leads to the benzodiazepine upon cyclization. The Ugi
four-component condensation (4CC) consists of the reaction of a carboxylic acid, an
amine, a carbonyl compound (ketone or aldehyde), and an isocyanide to provide an
a-acylamino amide 82 (Scheme 25.13), and has been extensively employed in
diversity oriented synthesis [32].
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Themechanism proposed for the Ugi reaction (Scheme 25.14) involves formation
of an imine I by condensation of the aminewith the aldehyde, followed addition of the
carboxylic acid oxygen and the imino carbon across the isocyanide carbon. The
resulting acylated isoamide II then rearranges by acyl transfer to give the final
product.

When the Ugi reaction is conducted employing an anthranilic acid derivative (83)
as carboxylic acid component, the resulting a-acylamino amide 84 suffers an
intramolecular cyclization in acidic media that leads to the 1,4-benzodiazepine-
2,5-dione 85 (Scheme 25.15) [33]. Several modifications of this synthetic route have
been adapted to combinatorial solid-phase synthesis [34].
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A completely different approach to the synthesis of 1,4-benzodiazepin-2,5-diones
relies on an intramolecular transition metal catalyzed arylation of o-iodoamides 86
The cyclization reaction is carried out employing either Pd [35] or Cu [36] catalysts,
depending on the nature of the starting iodoamide [37]. This strategy allows for the
preparation of structurally diverse 1,4-benzodiazepines-1,5-diones, as the starting
amides are readily prepared through the Ugi 4CC reaction. Copper-catalyzed
cyclizations of iodoamides 86 lead to typical benzodiazepine-diones 87
(Scheme 25.16). A similar approach employing o-bromobenzoic acids has been
reported recently [38].
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Scheme 25.16 Synthesis of 1,4-benzodiazepine-2,5-diones by Cu-catalyzed intramolecular
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In contrast, the Pd-catalyzed reaction of diamides 88, which feature two iodo-
substituted benzene rings, provides the benzodiazepine containing tetracycles 89
(Scheme 25.17).

The cyclization reaction to build the seven-membered ring of benzodiazepines has
been also accomplished by a SNAr reaction on the corresponding fluoro-substituted
amides 92. Again, a diverse range of the acyclic precursors 92 can be prepared
employing the Ugi 4CC, consisting of in this case 2-fluoro-4-nitrobenzoic acid (90), a
N-Boc-protected amino aldehyde 91, a primary amine, and the isonitrile. The SNAr
cyclization occurs upon deprotection of the Boc group. Interestingly, the whole
sequence has been performed employing solid-supported scavenging reagents, and,
thus, the benzodiazepines 93 are isolatedwithout the need of further purification. An
80-member library has been synthesized employing this methodology
(Scheme 25.18) [39].

The intramolecular Ugi 4CC reaction has been employed in the preparation of
pyrrolobenzodiazepines 95 and structurally related systems. Thus, employment of
the bifunctional pyrrole 94, which features both the carboxylic acid and the aldehyde
functionalities in the Ugi condensation, leads directly to the benzodiazepines with
the pyrrole fused at the a side (Scheme 25.19) [40].

25.3.4
Other 1,4-Benzodiazepines

An intramolecular aza-Wittig reaction is the key step for the preparation of 1,4-
benzodiazepine-5-ones 97 from azido esters 96 [41]. Scheme 25.20 presents an
example that employs a solid supported equivalent of triphenylphosphine and allows
for the very easy isolation of the pure benzodiazepines [42].
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benzodiazepine-2,5-diones.
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25.4
Modifications of the 1,4-Benzodiazepine Ring

25.4.1
Introduction

Modifications on the 1,4-benzodiazepine skeleton have led to the discovery of new
therapeutic agents with diverse functions. As presented in Figure 25.11, the
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diazepine ring in 1,4-benzodiazepin-2,5-diones and 1,4-benzodiazepin-2-ones can be
subjected to several different types of reactions oriented to the preparation of more
elaborated drug candidates.

Amide NH groups can be acylated and alkylated employing conventional chem-
istry. Several examples have been shown in the previous sections, see for instance
Scheme 25.10, and will not be further discussed. The carbonyl groups can undergo
nucleophilic additions, reductions, and, moreover, can also be transformed into
imidoyl halides or triflates and subjected to nucleophilic additions and cross-
coupling reactions. The C3 methylene can be acylated, oxidized to introduce an
oxygen functionality, or subjected to electrophilic amination to introduce a nitroge-
nated function. Finally, the iminic double bond can be reduced and also participate in
[2 þ 2] and [3 þ 2] cycloaddition reactions.

25.4.2
Reactions of the C2 Carbonyl Group

The C2 carbonyl of benzodiazepines is fairly unreactive, and therefore it requires
activation prior to any type of reaction. Formation of thiolactam 98 is one of the most
frequent solutions for the activation of position 2 of benzodiazepines, because it is a
very reactive functional group towards nucleophilic attack. This transformation is
carried out employing phosphorous sulfide as thiolating agent (Scheme 25.21). The
original procedure developed by Sternbach [43], which employed phosphorous
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Figure 25.11 General picture of the modifications of the 1,4-benzodiazepine basic skeleton.
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Scheme 25.21 Formation of a thiolactam of a 1,4-benzodiazepine-2-one.

2194j 25 The Chemistry of Benzodiazepines



sulfide in pyridine as solvent, can be modified to employ more environmentally
benign solvents, for instance, reflux of acetonitrile in the presence of sodium
bicarbonate [44].

An example of nucleophilic addition on the thiolactam is the hydrazination
reaction, which gives rise to the important triazolobenzodiazepines after intramo-
lecular cyclization of intermediate 99. This route has been employed in the synthesis
of triazolam, alprazolam, estrazolam, and more elaborated triazolobenzodiazepines
(Scheme 25.22) [45].

On the other hand, reduction of the thiolactam by treatment with Ni/Raney
represents the classical route for the synthesis of medazepam (19) from diazepam
thiolactam (Scheme 25.23) [46].

Other methods for the activation of the C2-carbonyl include the formation of
imidoyl chlorides and imidoyl phosphates (examples of these transformations are
provided in Section 25.5.1, Scheme 25.30).
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25.4.3
Functionalization at C3

The standardway to introduce a hydroxy functionality at C3 in 1,4-benzodiazepines is
by oxidation of the 4-nitrogen to obtain the N-oxide, followed by treatment with acetic
anhydride, leading to the 3-acetoxy compound via a Polonovsky rearrangement
(Scheme 25.2). Recently, a new direct acetoxylation procedure has been developed
that uses catalytic amounts of iodine (20–50mol.%) andK2S2O8 as the stoichiometric
oxidant. This method has been reliably scaled up for the synthesis of oxazepam and
lorazepam, with overall yields of 83% and 64%, respectively (Scheme 25.24) [47].

The reaction most likely involves the formation of the 3-iodobenzodiazepine 100,
which undergoes nucleophilic substitution to give the acetoxy derivative 101.

The 3-amino-1,4-benzodiazepine structure is present in several pharmacologically
relevant molecules. 3-Amino-1,4-benzodiazepines can be prepared through two
different approaches: from 2-aminobenzophenones and a-aminoglycine derivatives
(previously discussed see Scheme 25.6) or by electrophilic amination of a 1,4-
benzodiazepin-2-one (102). The amination takes advantage of the acidity of the
hydrogens at C3, and can be carried out by, among othermethods [48], azidation with
trisyl azide under basic media to form 3-azidobenzodiazepine 103, followed by
reduction by treatment with triphenylphosphine to furnish 3-aminobenzodiazepine
104 (Scheme 25.25) [49].

Carbon substituents at can be introduced at C3 by treatment with the correspond-
ing electrophile under basicmedia. For instance, acylation of diazepam (11) to obtain
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ethoxycarbonyl benzodiazepine 105 is performed by reaction with ethyl chlorofor-
mate in the presence of KOtBu (Scheme 25.26).

25.4.4
Substitutions at C5

In the standard methods for the synthesis of 1,4-benzodiazepin-2-ones the substit-
uent at C5 is established in the initial condensation step and cannot be further
modified. However, it is possible to introduce different substituents on 1,4-benzo-
diazepin-2,5-diones 106 upon transformation into imidoyl chloride 107 by treatment
with phosphorous oxychloride [50]. Apatent by Sanofi [51] describes the formation of
different 5-substituted 1,4-benzodiazepin-2-ones 108 by nucleophilic addition of
organomanganese derivatives to the imidoyl chlorides (Scheme 25.27).
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Scheme 25.27 Synthetic strategy for the introduction C-substituents at C5.
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More recently, the imidoyl chlorides 109 have been employed as substrates for Pd-
catalyzed Suzuki, Negishi, and Sonogashira cross-couplings leading to the corre-
sponding 5-aryl substituted benzodiazepines (Scheme 25.28) [52].

25.5
1,4-Benzodiazepines with a Fused Heterocycle

The introduction of a heterocyclic ring fused with the seven-membered ring of a
benzodiazepine is a type of modification that renders in many examples new
benzodiazepines with enhanced or modified biological activities. For this reason,
since the beginning of the benzodiazepine era much effort has been devoted to the
preparation of benzodiazepines featuring additional heterocyclic rings fused at
different positions of the original structure.

25.5.1
Benzodiazepines with a Heterocycle Fused at the a Side (N1-C2 Position)

Estazolam (35) [53], triazolam (36) [54], and alprazolam (37) (Figure 25.12), which
bear an additional triazole ring fused at the N1-C2 positions of the benzodiazepine,
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feature interesting anxiolytic properties, and are among the most commonly pre-
scribed benzodiazepines. The imidazole-containing midazolam (38) possesses sed-
ative andhypnotic properties, and is employed in the treatment of insomnia. Another
important benzodiazepinic drug is flumazenil (111) [55], an analog of 1,4-benzo-
diazepines-2,5-diones, which features an imidazole ring at the N1-C2-positions, and
is employed as a benzodiazepine antagonist and also as a cognitive enhancer in
Alzheimer�s patients.

These classes of benzodiazepines can be synthesized through three different
general strategies: (i) incorporation of the five-membered ring by modification of a
preformed benzodiazepine (A) (Figure 25.13, path a); (ii) formation of the benzo-
diazepine ring from an appropriate benzophenone (B) that contains the additional
heterocycle (Figure 25.13, path b); (iii) intramolecular dipolar cycloaddition on an
appropriate acyclic precursor (C) that creates simultaneously both the five- and the
seven-membered rings (Figure 25.13, path c).

The most general approach is path a. This route requires the activation of the C2
carbonyl group, which is usually achieved by formation of the corresponding
thiolactam (Scheme 25.22) followed by the addition of the appropriate nucleophiles
(Section 25.4.2) [56–62], Of particular interest is the transformation into N-nitro-
soamidines 113, which are prepared from benzodiazepines in a sequence that
includes (i) activation of C2 by formation of a thiolactam, (ii) conversion into
amidine 112 by treatment with methylamine, and (iii) nitrosation with NaNO2 in
acetic acid (Scheme 25.29). Nitrosoamidines 113 have been employed extensively
since themid-1970s in the preparation of heterocycle fused benzodiazepines [63]. For
instance, in some recent examples, reaction with acetylhydrazine gives rise to [1,2,4]
triazolo[4,3-a][1,4]benzodiazepines 114, treatmentwith aminoacetaldehyde dimethyl
acetal yields imidazo[1,2-a][1,4]benzodiazepines 115 [64], and reaction with TosMIC
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Figure 25.13 General strategies for the synthesis of benzodiazepines with a heterocycle fused at
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(tosylmethyl isocyanide) [65] leads to imidazo[1,5-a][1,4]benzodiazepines 116
(Scheme 25.29) [66].

The C2 position can be also activated by formation of an imidoyl phosphate 117 or
an imidoyl chloride 119, as illustrated in two different syntheses of flumazenil
derivatives (Scheme 25.30). In the first case, the enol phosphate is reacted with the
anion of an isonitrile to build the imidazole moiety of 118 [67, 68]. In the second
example, amidine 120 is employed as an efficient synthetic equivalent of the isonitrile
to build the imidazolebenzodiazepine [69].

The strategy sketched in Figure 25.13, path b usually requires multistep synthetic
sequences, and the employment of protecting groups. Scheme 25.31 presents one
example of this approach, taken from a 1998 patent for the synthesis of midazolam
[7070b]. The synthesis starts with benzophenone 122, then, after protection of the
ketone functionality as thioacetal 123, the 2-carboxaldehydeimidazole 125 is built via
amidine 124. The intermediate 127 required for the cyclization is obtained by
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formation of an oxime 126 and reduction with NaBH3CN. Cyclization to form
midazolam 38 occurs upon cleavage of the thioacetal with ceric ammonium nitrate
(CAN).

A more convergent approach is path c in Figure 25.13, since both the five- and
seven-membered rings are built in a single synthetic operation. This pathway is
particularly useful for the preparation of [1,2,3]triazolo[5,4-a][1,4]benzodiazepines
130, by application of the alkyne azide dipolar cycloaddition [71]. In the example
presented in Scheme 25.32 the azido alkyne 129 required for the cyclization is easily
prepared from the amino alkyne 128, which results from the reaction of isatoic
anhydride and N-methylpropargylamine (Scheme 25.32). Diazotization followed by
substitution with NaN3 gives intermediate 129, which suffers intramolecular dipolar
cycloaddition to form 130. Notably, the transformation from 128 into 130 occurs in a
one-pot process without the isolation of the intermediates.

Interestingly, this approach has been combined with the Ugi 4CC to implement a
multicomponent synthesis of [1,2,3]triazolo[4,3-a][1,4]benzodiazepines 132. To this
end, the alkyne and azide functionalities have to be incorporated in the amine,
aldehyde, or carboxylic acid components. In the example presented in Scheme 25.33
the Ugi 4CC conducted employing propargylamine and o-azidobenzaldehyde gives
the azido alkyne 131, which undergoes thermally induced cyclization to form the
triazolobenzodiazepine 132 [72].

The intramolecular dipolar cycloaddition has been also applied to prepare pyrazolo
[1,5-a]pyrrolo[2,1-c][1,4]benzodiazepines 136, employing a nitrilimine as dipole [73].
The intermediate 135 that suffers the intramolecular cycloaddition is generated in
situ from hydrazonyl chloride 134 (which is easily prepared employing conventional
chemistry) (Scheme 25.34).
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Many naturally occurring alkaloids feature a benzodiazepine ring fused at the a
face with a quinazoline ring (Section 25.2.4). The benzodiazepine-quinazoline
skeleton has been constructed following different strategies. The synthesis of
asperlicins C and E was first achieved by Bock et al. in 1987. In their approach, the
quinazoline ring was prepared from the corresponding 1,4-benzodiazepine-2,5-
dione and methyl anthranilate (Scheme 25.35). To activate the C2 position, the
benzodiazepinedione was converted into the methyl imino thioether 137 [74].
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A different approach from 1,4-benzodiazepine-2,5-diones involves an intramo-
lecular aza-Wittig reaction as key step. Selective acylation of the more acidic anilide
nitrogen of the corresponding 1,4-benzodiazepine-2,5-dione 138with o-azidobenzoyl
chloride gives the acylated benzodiazepine 139. Then, aza-Wittig cyclization pro-
moted by Bu3P [75] leads to the benzodiazepine-quinazoline hybrids
(Scheme 25.36) [76]. A similar procedure has been applied for the preparation of
a library of circumdatin analogs employing a solid-supported phosphine [77].

Circumdatins C and F have been synthesized by the stepwise dehydration of
tripeptidic acyclic precursors 140 following the disconnections depicted in
Scheme 25.37 [78].

Finally, a very direct synthesis of quinazolinobenzodiazepines has been recently
disclosed by condensation of twomolecules of anthranilic acidwith onemolecule of a
N-Boc protected amino acid 141. This one-pot domino process takes place in only
20min under microwave heating (Scheme 25.38) [79].

25.5.2
Benzodiazepines with a Heterocycle Fused at the d Side (N4-C5 Position)

The presence of a heterocycle at the N4-C5 positions also renders biologically active
benzodiazepines with therapeutic application. The most important structures are
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oxazolam (40) [80], cloxazolam (41) [81], andmexazolam (42) [82] that incorporate an
oxazolidine, and ketazolam (43), which features an oxazino ring (Figure 25.7) [83].

As shown in Scheme 25.39, the oxazolo derivatives are generally prepared N-(2-
bromoacetyl)benzophenones 142, generated by reaction of benzophenones with
bromoacetyl bromide. Reaction with the appropriate amino-alcohol gives rise to the
tricyclic systems 40–42 upon cyclization of the intermediate iminium cation 143
(Scheme 25.39) [84–86]. Variations of this methodology include the reaction of 1,4-
benzodiazepines with the carbonate of 1,2-propylene [87] or epoxides [88]. An
alternative route is the cyclization of a conveniently substituted 2-aryloxazolidine
144 with bromoacetyl bromide (Scheme 25.40) [89].

The same strategy can be applied to the incorporation of different heterocycles. For
instance, the reaction of 142 with ethylenediamine gives imidazolino[1,4]benzodi-
azepine derivatives 145 (Scheme 25.41) [43].
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25.5.3
Cycloaddition Reactions in the Synthesis of 1,4-Benzodiazepines with Fused
Heterocycles

The presence of the imine functionality at the N4-C5 positions in 1,4-benzodiaze-
pines makes them viable substrates for cycloaddition reactions. In fact, many
examples have been described of [2 þ 2] and [3 þ 2] cycloadditions.

25.5.3.1 [3 þ 2] Cycloadditions
The reaction of 1,4-benzodiazepin-2-ones with nitrile imines 147 generated in situ
from hydrazinoyl chlorides 146 gives rise to new benzodiazepines 148 incorporating
an additional 1,2,4-triazolino ring, in a process that proceeds with total regioselec-
tivity (Scheme 25.42) [43, 90, 91].

Analogously, the reactionwith nitrile oxides 149 give rise to [1,2,4]oxadiazolo[4,5-d]
[1,4]benzodiazepinederivatives150, againassingleregioisomers (Scheme25.43) [92].

Thelesscommon1,4-Benzodiazepin-5-ones153and1,4-benzodiazepin-3-ones [93]
also react with nitrilimines. In this case the N1-C2 imine acts as dipolarophile, to
provide [1,2,4]triazolo[4,3-a][1,4]benzodiazepines 154 [94]. Interestingly, the initial
1,4-benzodiazepin-5-ones 153 are prepared in a sequence that includes formation of
an unstable [1,2,3]triazolino[3,4-a][1,4]benzodiazepine 152 through an intramolecu-
lar [3 þ 2] cycloaddition of the azide 151, followed by N2 extrusion (Scheme 25.44).

The nitronemoiety, a typical dipole, is present in 1,4-benzodiazepineN-oxides 155
(Figure 25.14); these systems react as dipoles in [3 þ 2] cycloadditions with elec-
trophilic dipolarophiles such as a,b-unsaturated carbonyl compounds and sul-
fones [95], maleimides, and alkyl isocyanides [96].
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The generation of the 1,4-benzodiazepineN-oxide 157 and the cycloaddition can be
carried out in a one-pot sequential process from the acyclic oxime 156. In the example
presented in Scheme 25.45, intramolecular dipole formation–intermolecular cyclo-
addition with N-phenylmaleimide gives rise to the corresponding isoxazolobenzo-
diazepinone 158 as a single diastereoisomer [97].

25.5.3.2 [2 þ 2] Cycloadditions
The first reaction between ketenes and 1,4-benzodiazepines was carried out in 1970,
employing diazepam 11 and acetyl chloride in the presence of triethylamine. The
reaction furnished the oxazinobenzodiazepine 43, commercially known as ketazo-
lam [98]. The reaction is the result of the addition of diketene to the iminic bond of
diazepam, instead of the expected [2 þ 2] adduct (Scheme 25.46).

Thefirst example of the synthesis of 1,4-benzodiazepines fusedwithb-lactamswas
reported by Gunda and Eneb€ack in 1983 [99]. The azetidino[1,2-d][1,4]benzodiaze-
pines 159 were prepared by reaction of 1,4-benzodiazepine-2-ones with the ketene
generated from glycine Dane-salt, phosphorous oxychloride, and triethylamine
(Scheme 25.47).
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More recently, the cycloaddition of ketenes with 1,4-benzodiazepines has been
conducted under the typical conditions of Staudinger-type reactions, in which the
ketene partner is generated in situ by the dehydrohalogenation of an acid chloride
with triethylamine as base. The reactions proceed with high stereoselectivity, leading
to 1-heterosubstituted and 1-spiro azeto[1,2-d][1,4]benzodiazepin-2,5-ones 160 and
161, respectively [100]. In all cases the heterosubstituent coming from the ketene is
placed cis to the aromatic substituent of the benzodiazepine (Scheme 25.48).

For the preparation of the N-H analogs of 160 an alternative Staudinger reaction
has been developed, employing derivatives 162 that have the a bond amide group of
the 1,4-benzodiazepine masked as a thioimidate. The NH-derivatives 164 are
obtained after treatment of the intermediate adduct 163 with Amberlyst
(Scheme 25.49).

The [2 þ 2] cycloaddition of benzodiazepineswith ketenes has also been employed
as key step in the preparation of b-amino acids containing the benzodiazepine
substructure 166, as potential antagonists of the endothelin receptor. The [2 þ 2]
cycloaddition with the ketene derived from benzylacetic acid occurs with very high
yield and stereoselectivity under Staudinger conditions, leading to adduct 165
(Scheme 25.50). Interestingly, after derivatization, the b-lactam can be selectively
hydrolyzed to obtain b-amino acid derivatives 166 [101].
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The [2 þ 2] reaction can be also applied to introduce modifications to 1,4-
benzodiazepines with a heterocycle fused at the a side, such as midazolam (38),
alprazolam (37), and triazolam (36). Following the typical conditions of Staudinger
reactions the b-lactams 167 are obtained withmoderate yield and cis stereoselectivity
(Scheme 25.51).

25.6
Pyrrolo[2,1-c][1,4]Benzodiazepines (PBDs)

Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a class of DNA-interactive potent
antitumor agents that are produced by various species of Streptomyces [102].
Figure 25.15 shows some examples [103].

These compounds exert their cycotoxic effect due to the covalent union between
the iminic C11 (or the carbonylamino equivalent) of the PDB and the NH2 group of
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the guanine base [104], in theminor groove of the DNAdouble helix, with preference
to the purine-guanine-purine sequences (Figure 25.16) [105].

The PBDs have also been employed as scaffolds to attach different organic
substituents, mainly attached at C2 and C8, in the search for new conjugates with
enhanced biological properties, such as sequence-selective DNA-cleaving or cross-
linking activity, and enhanced DNA-binding affinity and selectivity [106].

The key step in the synthesis of PBDs is the formation of the carbinolamino or
imino N10–C11 bond, which is usually incorporated in the last step of the synthetic
sequence, due to its lability. Nevertheless, there are in the literature numerous
methods for the synthesis of these systems [107]. Most of the methodologies share
the retrosynthetic analysis shown in Scheme 25.52 and, thus, the pyrrolobenzodia-
zepine ring 169 is prepared from an acyclic precursor 168 that has both amino and
aldehyde (X¼O) functionalities, and which is accessible, for instance, from 2-
nitrobenzoic acid and a proline derivative [108]. The different methodologies differ
in the way the amino and the aldehyde groups are masked along the synthesis.

A widely used method implies the intramolecular cyclization of the readily
available amino dithioketals 170, promoted by mercury chloride, to yield the final
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iminic derivatives. This strategy has been applied to the preparation of DC-81 (171)
(Scheme 25.53) [109].

A different cyclization methodology, which provides the carbinolamino function-
ality is based on the Swern oxidation of a N-protected amino alcohol such as 172
(Scheme 25.54), to give N-protected PBD 173. In the example featured in
Scheme 25.54, after some chemical transformations to give 174, cleavage of the
Troc protecting group at N10 leads to the imine-containing PDB 175 [110, 111].
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25.7
1,5-Benzodiazepines

The discovery that certain 1,5-benzodiazepines indeed produced similar pharma-
cological effects to the 1,4-derivatives fostered considerable interest for their syn-
thesis. In addition to their knownpsychotropic potential, the biological interest of 1,5-
benzodiazepines has been expanded to other therapeutic applications in diseases
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such as cancer [112], viral infections (non-nucleoside inhibitors of HIV reverse
transcriptase) [113], and cardiovascular disorders [114]. Moreover, the 1,5-benzodi-
azepine scaffold is found in compounds that are active against various peptidic
hormones such as CCK [115], interleukin-converting enzymes [116], and potassium
blockers (IK) [117].

25.7.1
General Methods of Synthesis of 1,5-Benzodiazepines

Most of the methods of synthesis of 1,5-benzodiazepines are based on the conden-
sation of a benzene-1,2-diamine or a synthetic equivalent with a 1,3-dielectrophile
such as a dicarbonyl or dicarboxy compound (Figure 25.17).

Clobazam 45, which has beenmarketed as an anxiolytic since 1975 and is themost
representative compound of 1,5-benzodiazepines, is prepared by a variation of this
route. The ring is synthesized by intramolecular cyclization of ethyl N-phenyl-N-(2-
nitro-5-chlorophenyl)malonate 177. The regioselectivity of the reaction is determined
by employing a starting material that features two nitrogenated functionalities of
different nature, such as 3-chloro-6-nitro-N-phenylaniline (176). Reaction of 176with
ethyl 2-(chlorocarbonyl)acetate, followed by reduction of the nitro group of 177 gives
amino ester 178, which undergoes cyclization to 1,5-benzodiazepine 179 by treat-
mentwith dilute acid. The synthesis of clobazam 45 is completed byfinalmethylation
of the amide NH (Scheme 25.55) [118].

Several variations of thismethodology have beendeveloped [119], butmost of them
rely on the employment of o-nitroanilines 180 as synthetic equivalent of the o-
phenylenediamine that acts as double nucleophile. The starting o-nitroanilines can
be easily obtained, for instance, from N-unsubstituted o-nitroanilines 181 or by
nucleophilic aromatic substitution on o-halonitrobenzene derivatives 182
(Scheme 25.56).

This methodology has also been adapted to solid-phase organic synthesis. As
presented in Scheme 25.57 the solid-phase anchored benzodiazepine 183 is prepared
following the methodology discussed in Schemes 25.55 and 25.56. Then, a high
degree of diversity can be generated by the incorporation of different substituents R2
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and R3, by selective alkylation of the aniline NH to obtain 184, followed by alkylation
of the anilide NH, which gives 185. The final 1,5-benzodiazepine-2-one 186 is
obtained after cleavage from the solid support [120].

1,5-Benzodiazepines featuring an amino group at C3 are particularly interesting,
due to the biological activity of some of their members. They are synthesized by a
similar strategy, by condensation of the diacid chloride 187 with an o-phenylene
diamine 188. Final reduction of the hydrazone functionality of 189 yields the 3-
amino-1,5-benzodiazepine 190 (Scheme 25.58) [121].

Derivatives of 1,5-benzodiazepines 192 have also been prepared by condensation
of o-phenylene diamines with two equivalents of an enolizable ketone (191)
(Scheme 25.59). Numerous reagents, such as BF3-etherate, polyphosphoric acid,
SiO2, MgO/POCl3, Yb(OTf)3, Sc(OTf)3, Al2O3/P2O5, AcOH under microwave and
ionic liquids, and NBS [122] have been utilized to promote this condensation
reaction. In the example shown, ceric ammonium nitrate is employed to promote
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the condensation [123]. Obviously, this three-component reaction is limited to the
incorporation of two identical ketone subunits.

25.7.2
1,5-Benzodiazepines with a Fused Heterocycle

Similar to the analogous 1,4-benzodiazepines, the incorporation of an additional
fused ring renders interesting biological properties to 1,5-benzodiazepines. For
instance, s-triazolo[4,3-a][1,5]benzodiazepines 193 [124], imidazo[1,2-a][1,5]benzo-
diazepines 194 [125], and also thiazolo[3,2-a] derivatives 195 [126] show moderate
anticonvulsant and SNC depressor properties in animals (Figure 25.18).

These types of benzodiazepines can be readily prepared by 1,3-dipolar cycloaddi-
tions on one iminic double bond. For instance, cycloaddition of the imine of a 1,5-
benzodiazepinone (196) with a nitrilimine leads to triazolo-1,5-benzodiazepines
197 [127–129]. Analogously, the dipolar cycloaddition reaction with nitrile oxides
provides oxadiazolo-1,5-benzodiazepines 198 [130] (Scheme 25.60).

25.8
2,3-Benzodiazepines

The chemistry of 2,3-benzodiazepines has attracted great attention since the dis-
covery that some members of this family serve as orally active anticonvulsant and
noncompetitive antagonists of the AMPA subtype of glutamate excitatory amino acid
receptors [131]. Tofisopam (44) and talampanel (199) (Figure 25.19) are the most
representative 2,3-benzodiazepines. Tofisopam (44) possesses anxiolytic proper-
ties [132] and is prescribed in the treatment of anxiety and alcohol withdrawal.
Talampanel (199) has been studied to treat epilepsy, multiple sclerosis, and
Parkinson�s disease, and also in the treatment of brain tumors and traumatic brain
injuries [133].
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Figure 25.18 Tricyclic 1,5-benzodiazepines.
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25.8.1
2,3-Benzodiazepine Ring Synthesis

The obvious strategy for the construction of the 2,3-benzodiazepine ring involves the
double condensation of a proper dielectrophile with hydrazine or a hydrazine
derivative (Figure 25.20).

The first strategy is exemplified by the synthesis of GYKI 52 466 (201), a direct
precursor of talampanel. The 2,3-benzodiazepine is constructed by condensation of
hydrazine hydrate with benzophenone derivative 200, which features a carbonyl and
a ketal functionalities in the appropriate positions (Scheme 25.61) [134].

1-Aryl-3,5-dihydro-4H-2,3-benzodiazepin-4-ones 206 are prepared by reaction of
hydrazines with ketoacid 205. The ketoacid 205 is prepared in two steps from
phenethyl alcohols 202 and aromatic aldehydes 203. Condensation in hydrogen
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chloride saturated dioxane gives rise to 1-arylisochromans 204. Then, oxidation with
CrO3 provides the ketoacid, which is further condensed with hydrazine
(Scheme 25.62) [135].
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Figure 25.20 Benzodiazepine ring synthesis.
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Alternatively, precursor ketoester 208 can be prepared by Friedel–Crafts acylation
of phenylacetic acid derivative 207 (Scheme 25.63) [136, 137]. Notably, a solid-
supported version of this strategy has been also developed [138].

Talampanel (199) features a chiral center in the seven-membered ring. Chirality
can be introduced by selective reduction of the N3-C4 iminic double bond from a 5H-
2,3-benzodiazepine (201) [139]. Otherwise, the stereocontrolled synthesis of this
molecule can be achieved by cyclization through an intramolecular SN2 reaction of
enantiomerically pure mesylate 213. The synthesis starts from ketone 209, which is
biocatalytically reduced to alcohol 210 in 99.9% ee (Scheme 25.64) [140]. Conden-
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sation with p-nitrobenzaldehyde followed by air autoxidation gives hemiketal 211.
The substrate for the intramolecular cyclization is then generated by formation of
hydrazone 212 followed by mesylation of the alcohol to give 213. The intramolecular
SN2 reaction proceeds with total inversion of configuration, leading to 214. Finally,
reduction of the nitro group gives talampanel (199). A modification of this strategy
has been applied to the preparation of analogs with diverse substitution at N4 [141].

Very recently, it has been shown that 2,3-benzodiazepine 220 derivatives can be
obtained from benzocyclobutenones 215 and lithiated diazo compounds 216. The
process involves nucleophilic addition of the lithiated diazo compound 216 to the
carbonyl group of 215, to give alkoxide intermediate 217, which easily undergoes an
oxy-anion-accelerated ring opening to generate o-quinodimethane 218. Then, a
formal 8p-electrocyclic ring closure recovers the aromaticity of the benzene ring
to form 220 via its enolate form 219 (Scheme 25.65).

25.8.2
2,3-Benzodiazepines with a Fused Heterocycle

In the search for new 2,3-benzodiazepines with enhanced pharmacological proper-
ties, derivatives featuring a condensed heterocyclic ring have been prepared. A
heterocycle has been attached at the C1-N2 face by dipolar cycloaddition. For instance
reaction of 3,5-dihydro-4H-2,3-benzodiazepin-5-ones 221 with benzonitrile oxide
leads to new benzodiazepines 222 with an oxadiazole ring condensed at the C1-N2
face (Scheme 25.66) [142].

OR1

R2

+
R Li

N2 R1

R2 NH

N

O
R

THF, -78 ºC to rt

R1, R2 = H, OMe

R = TMS, CO 2Et

69 - 82%

215 216 220

R1

R2

O

N2

R1

R2

O
R

N

N

R1

R2 N

N

O
R

electrocyclic
ring-opening

8π-electrocyclization

217

218

219
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A fused heterocycle can be incorporated at the N3-C4 position through stepwise
procedures similar to those described for 1,4-benzodiazepines. In a first step 3,5-
dihydro-4H-2,3-benzodiazepin-5-ones 223 are activated by thiolation with Law-
esson�s reagent [143]. Reaction of 224 with ethyl carbazate affords 11H-[1,2,4]
triazolo[4,5-c][2,3]benzodiazepin-3(2H)-one derivatives 225.Moreover, condensation
of 224with hydrazine gives rise hydrazinyl derivatives 226, which are converted into
2,12-dihydro-[1,2,4]triazino[4,3-c][2,3]benzodiazepine-3,4-dione derivatives 227 by
treatment with oxalyl chloride (Scheme 25.67) [144].
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26
Porphyrins: Syntheses and Reactions
Venkataramanarao G. Anand, Alagar Srinivasan, and Tavarekere K. Chandrashekar

26.1
Introduction

26.1.1
General Introduction

Porphine (1) is the parent formof porphyrin (Figure 26.1). Porphyrin is a tetrapyrrolic
pigment (2–4) with various substitutions on the macrocycle. Based on the substi-
tution, they are known as octaethyl porphyrins (OEPs), tetra phenyl porphyrins
(TPPs) and octaethyl tetra phenyl porphyrins (OETPPs). It is recognized chiefly for
the role of its metal complexes in oxygen transport/storage in animals and for the
conversion of carbon dioxide into oxygen in plants, apart from amultitude of diverse
functions that it executes in various other biological processes [1, 2]. This has led it to
acquiring the sobriquet �Pigment of Life� [3].

From a chemist�s point of view, it has been fascinating to study the properties of
thismacrocycle to understand its role in biology. From an organic perspective, it has
four pyrrole sub-units that are interlinked through four methine (ormeso) carbons
in a cyclic fashion. Its stability is attributed to the aromatic character due to the
delocalization of p electrons. The conjugated pathway accounts for a formal 18p
system, which satisfies Huckel�s 4n þ 2 rule for aromaticity. Owing to this
conjugation, porphyrin absorbs strongly in the visible part of the electromagnetic
spectrum. A characteristic porphyrin spectrum has an intense absorption band
around 420 nm, also known as the Soret band, followed by weak absorptions in the
region 500–650 nm [1]. Its ability to absorb visible light and to carry out energy/
electron transfer has been the backbone of photosynthesis in plants. Based on this
natural phenomenon, several attempts are being directed towards artificial pho-
tosynthesis to harness solar energy. From the inorganic viewpoint, the core of the
porphyrin ring is an excellent binding site for variousmetal ions due to the presence
of imino and amino type nitrogen of the pyrrole rings [2]. Porphyrin complexes,
with biological significance, of Fe, Mg, and Co are found abundantly in nature.

Modern Heterocyclic Chemistry, First Edition.
Edited by Julio Alvarez-Builla, Juan Jose Vaquero, and José Barluenga.
� 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.
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In fact, it is a versatile ligand for complexing not only metals, but also for a few
metalloids [4] in the periodic table.

With such diverse functionality, porphyrin has attracted many researchers across
the globe, who have explored its role in various applications. New synthetic strategies
have evolved to fine-tune the properties of the macrocycle for applications ranging
frommicroelectronics [5] tomedicine [6]. The outcome of this process has led to new
derivatives such as contracted porphyrins [7], expanded porphyrins [8], confused
porphyrins [9], and core-modified porphyrins [10]. In this chapter,wehighlight recent
advancements in the synthesis of porphyrin and porphyrinoids (porphyrin-like
macrocycles) and their reactions with various reagents.

26.1.2
System Isomers

26.1.2.1 Tetrapyrrolic Systems
Isomersofporphyrinhave thesamenumberofpyrrolicsubunitsbutwithaltered links
between the heterocyclic units. One of the ways to name porphyrin and its isomers is
through numbering themeso carbons and themanner inwhich the heterocyclic units
are linked to each other. Eachmeso carbon is identified by one (1) and each direct link
between two adjacent heterocyclic units is given a zero (0). For example, porphine (1)
and its isomer porphycene (5) [11] are recognized as [1.1.1.1] and [2.0.2.0] 18p
tetrapyrrolic systems, respectively (Figure 26.2). Similarly, 6–8 are identified as
[2.1.0.1], [2.1.1.0], and [3.0.1.0] 18p tetrapyrrolic systems. Their trivial names are
corrphycene [12], hemiporphycene [13] and isoporphycene [14], respectively.
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Figure 26.1 Tetrapyrrolic pigments.
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26.1.2.2 Pyrrole Inverted Systems
In some cases, a pyrrole sub-unit exhibits a and b connectivity leading to, for
example, N-confused porphyrin 9 (Figure 26.3) [15]. Instead of two alpha connec-
tivities, a beta and an alpha carbon become part of the conjugated framework.
Furuta and Latos-Grazynski independently reported the formation of such por-
phyrins, wherein a sp2 carbon replaces one of the nitrogens in the core of the
macrocycle. The skeleton structure is similar to that of porphyrin, except for
the inversion of a pyrrole ring. Possible isomers with more than one confused
pyrrole ring were reported later and these are called doubly confused porphyrins.
Depending on the location of the confused pyrrole rings with respect to each other,
they are identified as trans-doubly N-confused porphyrin (10) [16] and cis-doubly
N-confused porphyrin (11) [17]. Depending on the location of hydrogen on the
pyrrolic nitrogen atoms, different tautomeric structures have been identified
through proton NMR. N-Confused porphyrin 9 is also found to form a fused
structure known as N-fused porphyrin, 12. Some expanded porphyrins with
confused pyrrole rings have also been reported.

26.1.2.3 Core-Modified Porphyrins
Another kind of porphyrin isomer is known as core-modified porphyrins [10]. Here,
one or more pyrrole rings in porphyrins can be replaced by other heterocyclic units
such as furan/thiophene/selenophene/tellurophene. Depending on the number of
heteroatoms in the macrocycle they are named as mono or di-oxa/thia/selena
porphyrins [18, 19] (13 and 14, Figure 26.4). Some representative examples are
shown below. Porphyrins can also have a confused non-pyrrolic heterocyclic ring.
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In some macrocycles, pyrrole or the other heterocyclic ring have a and b links in
themacrocycle. They are known as core-modifiedN-confused porphyrins (15 and 16)
[20, 21]. They all exhibit properties similar to that of porphyrin and can bind metal
ions in a few cases. Since elements like S/Se are considered as poor donors, they are
ideal ligands to stabilize metal ions in lower oxidation states.

Apart from five-membered heterocycles, six-membered rings such as benzene [22]
and pyridine can also replace pyrrole in the porphyrin framework. Some examples
are oxybenziporphyrin (17) [23], oxypyriporphyrin (18) [24] and p-benziporphyrin
(19) [25] (Figure 26.5).

Larger carbon rings such as a seven-membered cycloheptatrienyl ring and fused
cyclic derivatives such as indene and azulene can also replace a pyrrole ring to form,
for example, tropiporphyrin (20) [26], azuliporphyrin (21) [27] and benzocarbapor-
phyrin (22) [28] (Figure 26.6). They exhibit interesting features in terms of p electron
delocalization and their effect on diatropic ring currents. In some cases they are
found to be aromatic and in others the ring current is disrupted based on thenature of
the six- or five-membered ring present in the conjugated pathway.

A six-membered cyclic sub-unit and a non-pyrrolic heterocycle can also be a part of
the porphyrin framework. Macrocycles such as core-modified oxybenziporphyrin
(23) [29], azuliporphyrin (24) [30] and dithiadiazuliporphyrin (25) [31] represent a
combinationoffive-andsix-memberedcyclicsub-unitswithinaporphyrinframework
(Figure 26.7).
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In the case of telluraporphyrin (26) [32], the carbon–tellurium bond can be broken,
leading to the formation of vacataporphyrin (27) [33] (Figure 26.8).

26.1.2.4 Expanded Porphyrins
The delocalization of p electrons in porphyrin can be extended either by increasing
the number of heterocyclic units or meso carbons linking them in a cyclic fashion.
Molecules synthesized based on this concept are called expanded porphyrins [8].
Even though thiswas not realized by any forethought, the serendipitous discovery of a
22p five pyrrolic macrocycle byWoodward and coworkers [34] generated a new trend
towards the design and synthesis of giant conjugated macrocycles. Expanded
porphyrins synthesized through an increased number of meso carbons are called
vinylogous porphyrins. The groups ofMarkl [35] and Franck [36] have independently
synthesized tetraoxa and tetrapyrrolic vinylogous porphyrins with multiple methine
bridges between four heterocyclic rings (Figure 26.9).

Expanded porphyrins with more heterocyclic rings have attracted attention for
their potential in various applications [8]. Synthetically, they challenge chemists to
create large,flat conjugatedmacrocycles. To date, amaximumof 24pyrrole units have
been linked to each other in a cyclic fashion [37]. Unlike the parent porphyrin, these
macrocycles have a combination of meso carbon bridges and direct carbon–carbon
bonds between two or more heterocycles as bridges to link each other in a circular
fashion. They have been studied extensively for their potential in applications such as
molecular recognition [38], nonlinear optics [39] and as sensitizers for photodynamic
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therapy. Their photo-physical properties canbe altered by replacing pyrrole ringswith
other heterocyclic units such as furan/thiophene/selenophene/tellurophene and
even other six-membered cyclic sub-units such as benzene and pyridine.

Even though various macrocycles have been described above, their synthesis is
mainly dependent on either acid-catalyzed condensations or oxidative coupling
reactions under acidic conditions [8]. Butmost of them aremade in poor tomoderate
yields due to the tendency of pyrrole to polymerize under acidic conditions. An
overview of the synthesis of these macrocycles along with interesting examples is
discussed below.

26.2
Synthetic Chemistry of Porphyrins and Expanded Porphyrins

TheRothemund reaction [40] of pyrrole andbenzaldehyde in refluxing propionic acid
is the simplest way to synthesize porphyrin in general and TPP (3) in particular
(Scheme 26.1). Most porphyrin isomers such as porphycene, corrphycene, hemi-
porphycene and isoporphycene have substituents on the b positions of the pyrrole
rings. In general, the synthesis of b-substituted porphyrins is a multi-step process.
Vogel and coworkers [11] were the first to synthesize porphycene (5) through a
McMurry coupling of bipyrrole dialdehydes in 10–25%yield depending on thenature
of the substitutent on the pyrrole ring.

Corrphycene (6) has also been synthesized by a McMurry-type coupling of a
tetrapyrrolic dialdehyde in 15–20% yield (Scheme 26.2) [12]. The next isomer,
hemiporphycene (7) was discovered by Callot [41] and coworkers through a ring
contraction of homoporphyrin through a demetallation–metallation sequence as
shown in Scheme 26.2. Later, Vogel and Sessler developed a rational synthesis for
7 through a McMurry coupling of a tetrapyrrole dialdehyde in 25% yield.

Isoporphycene (8) has also been synthesized, through Pd-catalyzed condensation
of tetrapyrrole vinylogousaldehyde in 3% yield (Scheme 26.3) [14]. This molecule is
thermally stable, but can undergo interconversion at the double bounds upon
exposure to light.
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Owing to similar 18p conjugation, all the porphyrin isomers described above
display physical characteristics comparable to the parent porphyrin system. They also
exhibit intense Soret-like absorption in the vicinity of 400 nm along with relatively
intense Q-type bands in the lower energy region 500–700 nm. Owing to these
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characteristics they appear attractive as sensitizers for their use in photodynamic
therapy (PDT). The synthesis of porphycene led to many reports on core-modified
porphycene isomers [42] by replacing some or all pyrrole rings by other heterocyclic
systems such as furan, thiophene or selenophene (Scheme 26.4). Most of themwere
synthesized through low-valent titanium coupling of appropriate dialdehyde
precursors.

TheN-confusedporphyrins 9–12 and analogues are recent entries into the growing
list of porphyrin isomers. The first synthesis of 9 was reported simultaneously and
independently by the groups of Furuta and Latos-Grazynski (Scheme 26.5) [15]. Both
groups were able to isolate the novel isomer under different reaction conditions
depending on the nature of the acid catalyst and the time required to complete the
reaction. In either case, the product yield was very low (4–7%). Subsequently, Lindsey
and coworkers [43] performed a detailed study on modified Rothemund reaction
conditions to optimize the yield of N-confused porphyrin and were able to improve
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the yields up to 39%. These porphyrinoids were also prepared in a stepwise manner
using MacDonald-type [2þ 2] condensation by Dolphin�s group in 25% yields [49],
respectively.

Furuta and coworkers have developed the chemistry of N-confused porphyrins
further by the synthesis of doubly N-confused porphyrins 10 and 11 (Scheme 26.6).
They are synthesized in a step-wise manner from modified dipyrromethanes, in
which one of the pyrrole rings has a b link to themeso carbon. In the cis case, the two
inverted rings are adjacent [17], while they are diagonally opposite in the trans
case [16].

The inverted pyrrole ring, in 9, can be dibrominated with N-bromosuccinimide
(NBS) under ambient conditions. It undergoes a transformation, under basic
conditions, by losing HBr, leading to the formation of N-fused porphyrin 12
(Scheme 26.7) [44]. This is the first report of the formation of covalent bonds
between nitrogen and carbon inside the core of porphyrin; 12 can be converted
back into 9 upon treatment with a strong base such as NaOMe in 72% yield. All the
macrocycles described above have 18p electron conjugation and show physical
characteristics similar to that of the parent porphyrin.
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Porphyrin 9 can have different isomers depending on the location of hydrogen on
the nitrogen of the pyrrole rings. This enables it to act as a ligand for stabilizing
either þ 2 or þ 3 oxidation states of transition metal ions. Latos-Grazynski and
coworkers [15] were the first to report the formation of a metal–carbon bond in a
porphyrin macrocycle. Porphyrin 9 forms a Ni(II) metal complex with a metal–
carbon bond in the core of the porphyrin ring (Scheme 26.8). Furuta and cow-
orkers [17] have isolated the Ag(III) complex of 9, with a metal–carbon bond in the
core of the porphyrin ring. Metal complexes of 9–11 have been reported, with some
having coordination with metal ions both inside and on the periphery of the
macrocycle [45].

In porphyrins, one or more pyrrole rings can be replaced by other heterocyclic
units such as N-methylpyrrole, furan, thiophene, selenophene, and telluro-
phene [10]. This can accommodate other elements such as O, S, Se, and Te,
leading to a modified core of the porphyrin ring. Therefore, they are called core-
modified porphyrins (e.g., 13 and 14). They can be synthesized easily from 2,5-
diols of heterocyclic units under acid-catalyzed conditions (Schemes 26.9
and 26.10). The diols of such heterocycles are synthesized in good yields by
bis-lithiation at the 2- and 5-positions of the heterocyclic units followed by addition
of aryl aldehydes. Porphyrins with a single non-pyrrolic unit can be synthesized in
two different ways (Scheme 26.9) [46].

With the same approach, two similar or different non-pyrrolic units can replace
two pyrroles in a porphyrin. Such compounds can be synthesized by a one-pot
synthesis or frommodified tripyrrane precursors depending on the kind of the core-
modification desired in the porphyrin [47].
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N-confused porphyrin 9 is also a core-modified porphyrin, since one of the four
nitrogens is replaced by carbon. InN-confused porphyrins, one of the normal pyrrole
rings can also be replaced by other heterocyclic units, such as furan, thiophene or
selenophene, giving rise to core-modified N-confused porphyrins (e.g., 15). Our
group has reported three different core-modified N-confused porphyrins bearing
oxa, thia or selena (15a–c) derivatives [21]. They can be synthesized inmoderate yields
by condensing N-confused tripyrrane with 2,5-diols of heterocyclic units followed by
oxidation (Scheme 26.11).

The confused pyrrole ring can also be replaced by another inverted non-pyrrolic
heterocyclic ring. Latos-Grazynski and coworkers have synthesized S-confused and
O-confused porphyrins, 16, bearing an inverted thiophene ring (16a) and furan ring
(16b) (Scheme 26.12) [20]. They were synthesized by condensing the 2,4-diol of
thiophene or furan, respectively, with pyrrole and benzaldehyde in 4–5% yields.
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They are highly susceptible to further oxidations or substitutions on the free alpha
position of the confused ring. A pyrrole is added to the furan ring in 16b under the
reaction conditions employed, but can be altered to an ethoxy derivative by changing
the solvent system from dichloromethane to ethanol. The thiophene keto derivative
16a (Oxd) is obtained upon prolonged oxidation.

Thepossibility of replacing the pyrrole ring in a porphyrin byfive- or six-membered
cyclicp sub-units has been explored extensively. In this process,many aromatic units
like pyridine, benzene, azulene and similar such units have successfully replaced one
or more pyrrolic units in the macrocycle. Earlier attempts by Breitmaier and cow-
orkers [48] yielded only the non-aromatic form of a benziporphyrin. This was
attributed to the fact that the thermodynamically more stable 6p aromaticity of
benzene could not be disrupted to be part of an 18p system. Therefore, early reports
suggested that benzene and porphyrinoid aromaticity were mutually exclusive in
benziporphyrin-type macrocycles. Lash and coworkers were also unsuccessful in
their attempts to synthesize aromatic pyriporphyrins, and could isolate only non-
conjugated meso-meso dimers or meso-keto derivatives (Figure 26.10).
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However, they were successful in the synthesis of oxybenziporphyrin (17) [23] and
oxypyriporphyrins (18) [24], wherein the benzene or the pyridine ringwas substituted
with a keto group upon the formation of the macrocycle. The synthesis involved
condensation of tripyrrane dicarboxylic acid and 2,4-diformylphenol or 3-hydroxy-
2,6-diformylpyridine under acidic conditions, with yields up to 44% and 86%,
respectively (Scheme 26.13). These macrocycles were found to be aromatic, as
analyzed by NMR spectroscopy, since the 6p conjugation of the benzene or the
pyridine could be disrupted by the exocyclic keto group, thereby favoring stabilization
of the 18p system over the benzenoid aromaticity.

In both the macrocycles 17 and 18 benzene is connected by two meta links within
the porphyrin ring. Latos-Grazynski and coworkers [25] have reported an isomer of
benziporphyrin (19) by changing the nature benzene ring incorporation within the
porphyrin framework. When the benzene ring was connected by a 1,4 (para) link it
exhibited aromatic features indicating the flow of 18p conjugation through the
benzene ring. Compound 19 was synthesized by acid-catalyzed reaction of a 1,4-diol
of benzene with pyrrole and benzaldehyde in 1% yield (Scheme 26.14). 1H NMR
studies showed that the benzene ring rotates very rapidly at room temperature but is
stable at low temperatures. Two doublets seen at 7.68 and 2.32 ppm at 168K are
indicative of a diatropic ring current, which deshields protons outside the ring and
shields the protons inside the ring.

The flow of conjugation in such systems is of great interest and porphyrins with
different cyclic units have been the targets of synthetic chemists. This has led to the
formation of a new class of macrocycles called carbaporphyrinoids, wherein a
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carbon acts as a coordinating site for metal ions inside the cavity of the porphyrin
ring. Even though some of themwere envisaged as probable macrocycles they were
not realized due to lack of easy and efficient synthetic routes. Tropiporphyrin (20) is
one successful example synthesized by Lash and Chaney. After the initial attempts
of Breitmaier and coworkers [48], they were able to synthesize aromatic tropipor-
phyrin (20) with modified reaction conditions in 23% yield (Scheme 26.15) [26].
Unlike benziporphyrin, interestingly, the meta link of cycloheptatriene-1,6-dicar-
boxaldehyde is attuned to accommodation into the 18p conjugated network of the
macrocycle.

Azuliporphyrin (21) [27] and benzocarbaporphyrin (22) [28] are remarkable
examples of incorporating five-membered carbon rings inside the 18p aromatic
porphyrin ring. Compound 21 can be synthesized by reacting azulene-1,3-dicar-
boxaldehyde with tripyrrane in a MacDonald-type condensation (Scheme 26.16).
With trifluoroacetic acid (TFA) as the catalyst, Lash and Chaney isolated 21 in 28%
yield. The azulene unit interrupts the 18p aromaticity of the macrocycle, and
hence it would seem that the molecule cannot be aromatic. However, the observed
aromatic nature of 21 is attributed to its dipolar resonance contributor, which
allows both the porphyrinoid and tropylium aromaticity to be attained
simultaneously.

Breitmaier and coworkers had carried out the same reaction with HBr as the acid
catalyst and obtained 21 along with various benzocarbaporphyrins in low yields [49].
Subsequently, Lash and Hayes established a rational synthetic route for 22, by
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reacting 1,3-diformylindene with tripyrrane using TFA as the catalyst, with yields of
up to 43% (Scheme 26.17) [28]. Upon protonation, the carbon is protonated, leading
to an altered 18p conjugated pathway.

Thesemolecules have different isomers depending on the location of the proton on
the nitrogen of the pyrrole rings. Owing to this, they display interesting solution state
dynamics in free base and in protonated form, too. We have also noted such an
interesting observation in core-modified oxybenziporphyrin (23) [29] and core-
modified azuliporphyrin (24) [30]. They were synthesized under similar conditions
as described above – using diformylphenol and diformylazulene, respectively, and
modified meso aryl tripyrrane – in 28% and 51% yield, respectively (Scheme 26.18).
Compound 23 forms palladium metal complexes, with metal–carbon bonds in the
center of the macrocycle, in 77% yield.
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When two azulene rings are incorporated inside a porphyrin framework, the
macrocycle cannot be oxidized to obtain an aromatic macrocycle alone. Latos-
Grazynski and coworkers [31] have reported the synthesis of dithiadiazuliporphyrin
25 in moderate yields (Scheme 26.19). Upon oxidation, however, 25 forms a mixture
of its radical cation and its dication. The authors employed successfully NMR
characterization under controlled conditions and also single-crystal crystallography
to confirm the exact structure of the macrocycle.

Of all the core-modified porphyrins, telluraporphyrins, both mono and ditellura
derivatives, show remarkable traits in terms of reactivity and structural features.
Latos-Grazynski and coworkers have reported the synthesis a telluraporphyrin (26,
Scheme 26.20) [32]. It can undergo transformation to formmono-oxa porphyrin. But
of more interest is its interaction with acids like HCl. The macrocycle loses the
tellurium atomowing to a weak C�Te bond under acidic conditions. This gave rise to
a new macrocycle, named vacataporphyrin 27 (vacata, meaning vacancy, in the
place of N in porphyrin) [33]. It was found to be aromatic in nature as determined by
proton NMR spectroscopy.

Latos-Grazynski and coworkers reported the first ditelluraporphyrin (28)
(Scheme 26.21) [50]. The most interesting feature was the ring inversion of a
tellurophene ring such that the tellurium atomwas outside the core of the porphyrin
ring. This differs from 9, in the sense that the heterocyclic ring undergoes a complete
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inversion for both b carbon atoms to be inside the core of the ring. Upon protonation
with TFA, the tellurophene ring flips back to a regular structure. This is the first
observation of ring inversion in an 18p porphyrin macrocycle.

So far we have seen only one or two non-pyrrolic heterocyclic rings in an 18p
porphyrin ring. Vogel and coworkers [51] reported the first ever non-pyrrolic
porphyrin-like macrocycles bearing four furan, thiophene or selenophene rings.
In freebase form they account for a 20p conjugated pathway, but can be oxidized by
perchlorates or perchloric acid to obtain an aromatic 18p dication. Tetraoxa- and
tetrathia-porphyrinogens are synthesized from 2-hydroxymethyl-3,4-diethylthio-
phene/furan, which upon further oxidation forms the aromatic tetraoxaporphyrin,
29a, and tetrathiaporphyrin, 29b, dications (Scheme 26.22).

Interestingly, the tetraoxa-porphyrinogen acts as a precursor to generate tetrathia
(30) or tetraselena (31) derivatives by treating it with H2S or H2Se under acidic
conditions (Scheme 26.23) [52].

Apart from modifying the core of the porphyrin ring, periphery modifications in
terms of extended conjugation is attracting considerable attention due to the
photophysical properties of the products. Owing to their strong absorption in the
red region of the visible spectrum, they are potential chromophores for sensitizers in
photodynamic therapy (PDT). Various porphyrins with extended conjugation on the
pyrrole rings have been synthesized in this regard. A few representative examples,
which have the maximum redshifted absorption with respect to the 18p porphyrin
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system, are described below. In addition, the group of Kopranenkov [53] andRein and
Hanack [54] have explored the synthesis of zinc tetra-(2,3-naphtho)porphyrin (34) by
employing zinc acetate (Scheme 26.24).

Lash and Novak [55] have demonstrated the synthesis of tetraphenanthropopr-
hyrin (35) by self-condensation of phenanathropyrrole carbinol under modified
Rothemund conditions (Scheme 26.25). Its solubility in freebase was poor in
common organic solvents compared to its diprotonated derivative.

Further, Lash and coworker [56] were able to synthesizemeso-aryl tetracenaphtho-
porphyrin, 36, by condensing acenaphtho[1,2-c]pyrrole with aryl aldehydes under
Lindseyconditions (Scheme26.26) [57].Thecorrespondingmeso-free tetracenaphtho-
porphyrin was highly insoluble, whereas 36 is deep violet in chloroform, which is
indicative of extended conjugation. It displayed a record-breaking bathochromic
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shift, with an intense Soret-like absorption at 556 nm and Q-like bands at 638, 705,
and 790 nm.

By incorporating chromophoric groups on the pyrrole ring or onmeso carbons, the
photophysical properties can be tuned to make the porphyrin absorb light of lower
energies. A similar effect can be achieved by increasing the conjugation pathway to
more than 18p electrons. This can be carried out by either adding more carbon
bridges between the heterocyclic rings or by increasing the number of heterocyclic
units in the porphyrin ring. Suchmolecules are known as expanded porphyrins. The
concept of expanded porphyrins is directly linked to the serendipitous discovery of
sapphyrin, a pentapyrrolic 22p system, byWoodward and coworkers [34] during their
attempts to synthesize the naturally occurring corrin ring. Expanded porphyrins
provide novel insights into extended conjugation and their effect on aromatic
behavior in general. Several expanded porphyrins, from 22p to 96p systems, are
known in the literature [8]. Further, they exhibit properties such as binding anions,
cations and neutral guests, in some cases, which are unknown to porphyrins.Most of
them are synthesized by similar methodologies employed for various porphyrin
systems. A brief description based on commonmethods engaged in the synthesis of
expanded porphyrins and their interesting structural features with specific examples
is given below.

The one-pot synthesis discovered by Osuka and Furuta and coworkers [58] is the
simplest way to generate expanded porphyrins, 37–42, with five to ten pyrrolic units
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(Scheme 26.27). They all exhibit different structural features, contrasting sharply
with the parent porphyrin system (3). The macrocycles with seven or more pyrrole
rings (39–42) were non-planar.

The synthesis of expanded porphyrins with 22p and 26p electrons is well
established and various isomers have been reported in the literature [59]. They can
be classified as aza macrocycles and core-modified macrocycles. In the case of aza
macrocycles, the porphyrinoid has only nitrogen in the core, while the core-modified
macrocycles can have other chalcogens such as O, S, or Se, too, apart from carbon.
They are exclusively synthesized by acid-catalyzed condensation of bi-heterocyclic or
heterocyclic diols with appropriate precursors. Scheme 26.28 shows representative
syntheses for various expanded porphyrins.

Sapphyrin is the most studied 22p pentapyrrolic systems. The b substituted
sapphyrin 43 and the meso phenyl sapphyrin [60] 44 are structurally different. In
free base, 44, the pyrrole ring opposite to bipyrrole is inverted and undergoes a ring
inversion protonation. Hence all the nitrogens point towards the center of the
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macrocycle, as in 43. A few core-modified sapphyrins [61] show ring inversions both
in freebase and in protonated forms. Depending on the nature of the heteroatom,
some macrocycles are planar and others exhibit inverted structures. For example,
dithia-sapphyrin (45) is planar, while dioxa-(46) and trithia-(47) sapphyrins display
inverted ring systems (Figure 26.11).

Rubyrins are 30p macrocycles with six heterocyclic rings and are aromatic in
nature. Sessler and coworkers [62] reported the first example of a hexapyrrolic 26p
rubyrin, 48, by a [4 þ 2] condensation of a tetrapyrrole and diformyl-bipyrrole under
acidic conditions (Scheme 26.29).

Other kinds of hexapyrrolic systems are also known in the literature [8]. Rubyrins
with non-pyrrolic rings show interesting structural diversity, in comparison to all-aza
isomers. Our group has synthesized two different kinds of rubyrins, 49 and 50,
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having two or four non-pyrrolic rings [63] by an acid-catalyzed condensation of
bithiophene diols with pyrrole or by oxidative coupling reactions of thia-tripyrranes.
Even furan and selenophene derivatives of such macrocycles are synthesized under
similar reaction conditions. They are 26p aromatic macrocycles and exhibit different
structures depending on the nature and the number of heteroatoms present in the
macrocycle.

Further, aromatic 30p heptaphyrins have been synthesized by MacDonald-type
[3 þ 4] or [5 þ 2] condensation of appropriate precursors [64]. Even though several
seven-membered macrocycles are known, very few of them are aromatic. We have
employed terthiophene diol or bithiophene diol with dithia-tetrapyrranes or trithia-
pentapyrrane to obtain core-modified heptaphyrin 51 (Scheme 26.30). Analogous
macrocycles with bifuran and biselenophene are also synthesized under similar
reaction conditions.

Octapyrrolic macrocycles are known as octaphyrins. Invariably porphyrinoids
with seven or more heterocyclic rings undergo a twist and hence are non-planar.
Sessler and coworkers were the first to identify such a twisted conformation for
turcasarin, a decapyrrolic system. Subsequently, various research groups across
the globe have reported various octapyrrolic macrocyclic systems that are non-
planar. Their aromatic behavior is strongly dependent on the topology of the
macrocycle. A 4n þ 2p system was found to be non-aromatic in nature due to the
non-planar geometry [65]. Only two macrocycles – 52 and 53 – stand out
prominently for displaying a flat structure and aromatic characteristics. We have
reported a series of flat core-modified 34p octaphyrins with thiophene, seleno-
phene or furan, in which two heterocyclic rings are inverted [66]. The 34p
tetrathiaoctaphyrin, 52, is synthesized by the oxidative coupling of dithia-tetra-
pyrrane (Scheme 26.31) (cf. 26p dithia-rubyrin, 50). To date, 52 and its analogues
of furan and selenophene are the largest aromatic molecules to be characterized in
the solid state.

Later, Sessler and coworkers reported a flat 30p octapyrrolic macrocycle, 53, with
no meso-carbon bridges between the heterocyclic rings [67]. b-Substituted bipyrrole
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can be coupled under acidic conditions to form the flat eight-membered macrocycle
in over 70% yield (Scheme 26.32). Owing to the b-substitution, the pyrrole rings do
not undergo ring inversion, thereby allowing all the nitrogens to face the center of the
macrocycle. The cavity was found to bind a molecule of sulfuric acid upon proton-
ation of 53.

Expanded porphyrins with more than eight rings generally show a figure-of-eight
conformation. Figure 26.12 shows the structures for some of them (54–56). Setsune
and coworkers have reported a one-pot synthesis for the largest expanded porphyrin
to-date [37, 68]. It contains 24 pyrrole rings with a twisted conformation and accounts
for 96p electrons. The 64p hexadecaphyrin 56 is the largest expanded porphyrin to be
characterized in the solid state [37].

The synthetic methodologies described above do not give an exhaustive account
of the synthesis of porphyrin isomers or expanded porphyrins. It is a glimpse of
the current trend in heterocyclic chemistry, towards the generation of large
macromolecules so far unknown in the literature. It paves the way to under-
standing the fundamental concept of aromaticity with respect to conjugation in
giant macrocycles.
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26.3
Reactivity of Porphyrins

Porphyrins undergo series of electrophilic and nucleophilic reactions. One or two
double bonds on the periphery can undergo addition reactions, without losing the
aromaticity, to form chlorins (57), bacteriochlorins (58) and isobacteriochlorins (59)
(Figure 26.13). The electrophilic aromatic substitutions can occur either at the four
meso or the eight b-pyrrolic positions with concomitant loss of a proton. In some
cases, the substitution occurs by an alternative mechanism such as addition
followed by elimination, or via oxidation with formation of intermediate p-cation
radicals.

Porphyrins readily form complexes with various metals. The central metal ions
have an inductive effect with the p-electron of the macrocycles, which greatly
influences the chemical reactivity and biological functions. Metalloporphyrins
containing electrophilic metals such as Fe(III) and Sn(IV) favor substitution at
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the b-pyrrolic positions, while divalent metals such as Mg, Zn, Ni, Cu, and Pd
tend to facilitate substitution at the meso positions. Most of the electrophilic
substitutions occur in the presence of divalent metal complexes since these are
more stable to electrophilic attack. Steric effects are also an important consid-
eration for electrophilic substitution, especially if bulky electrophiles are involved
in the reaction, in which case substitution occurs at the b-positions. In contrast,
directive effects, which are the combination of both steric and electronic effects of
the substituents, affect the electron distribution of the macrocycle. For example,
diformylation of metallo-octaalkyl porphyrin furnishes 5,10- and 5,15-regioi-
somers, whereas the 5-nitro and/or 5-halo derivatives of octaalkyl porphyrins
favor the formation of 5,15-disubstituted products rather than the 5,10-disub-
stituted regioisomers.

Here, we describe a series of electrophilic substitution reactions, such as formyla-
tion, halogenation, nitration, acylation and cyanation reactions. The first two are the
most widely studied reactions and have been used as potential starting materials for
many derivatives. Finally, we discuss nucleophilic substitution reactions. This is
often the chosen methodology for direct functionalization of readily oxidizable
macrocycles.

26.3.1
Electrophilic Reactions

26.3.1.1 Formylation
A formyl group was first introduced in themeso position of the metallo b-substituted
porphyrin by Inhoffen and his group, affording high yields of corresponding
formylated products [69]. The formylation reactions generally utilize DMF/POCl3
to produce the reactive Vilsmeier complex, which undergoes basic hydrolysis of the
iminium salt intermediate, by using NaOH or Na2CO3 or NaOAc. As the free base
porphyrin (1) was easily protonated under acidic conditions, metallated complexes,
such as with Cu(II), were used for the formylation reactions. The Cu(II) complexes
of 1 were treated with one equivalent of Vilsmeier reagent to form meso-substituted
5-formylporphyrin (60) in excellent yield, suggesting the higher reactivity of themeso-
positions [70].

The Ni(II) and Cu(II) complexes of metallo-b-octa substituted porphyrins, under
Vilsmeier reaction conditions, afford the corresponding metallo-5-formyl deriva-
tives (61), while increasing the Vilsmeier reagents to two equivalents gives the
metallo-meso-5,10- and metallo-5,15-formylated regioisomers (62, 63) in good yield
(Scheme 26.33). All fourmeso-positions are formylated (64) by prolonged treatment
with excess Vilsmeier reagent [71]. The Cu(II) complex usually gives higher yields
than the corresponding Ni(II) derivatives. The electron-rich Mg(II) and Zn(II)
complexes are easily demetallated under Vilsmeier conditions, while trivalent
complexes such as Mn(III) and Fe(III) are less reactive towards electrophilic
formylation reactions, affording lower yields of the formylated products.
In contrast, metallo-meso-tetra-aryl porphyrins under Vilsmeier conditions form
the 2-formyl derivative (65) in good yield [72].
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26.3.1.2 Reactions of Formyl Porphyrins
The metal-free 5-formylporphyrin (66) can be easily converted into a wide variety of
functional groups (Scheme 26.34). For example, 66 gives predominantly the oxime
acetate (67), which on heating with acetic anhydride forms the 5-cyano (68) and 5-
formamido (69) derivatives [73]. Dehydration of 68, in the presence of phosgene and
base or in refluxing acetic anhydride, affords isocyanoporphyrin (70).

The metallo-vinyl porphyrins (71) are easily obtained by the Wittig reaction, by
using Ph3P¼CH2 and metallo-formyl porphyrins (61) [74]. Compound 61 further
reacts with Grignard and aryllithium reagents to produce the corresponding alcohol
derivatives, such as phenyl hydroxy methyl (72) or methyl hydroxy methyl (73)
derivative [75]. Dehydration of 73 in the presence of p-TSA gives the vinylporphyrin
(71), which is further converted into the ethyl derivative (74) by catalytic hydrogena-
tion. Selective bromination of 71, using pyridiniumhydrobromide, gives amixture of
trans- (major) and cis-2-bromovinyl derivatives (75), which undergo dehydrobromi-
nation, by using sodium hydride in refluxing 1,2-dimethoxyethane, to form the
ethynyl compound (76) [75].

Reduction of 61 with NaBH4 gives the corresponding hydroxy-methyl derivatives
(77), whereas reduction with NaBH4 in acetic acid directly affords to meso-methyl
derivatives (Scheme 26.35) [76]. In the presence of conc. H2SO4, 77 dimerizes to
produce a dimer linked by a CH2-CH2 bridge (78), which on further heating with
acetic acid yields the trans-ethylene-bonded porphyrin dimer (79) [77]. A similar
dimer was also obtained by treating 61 with an excess of TiCl3(DME)1.5 in the
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presence of a Zn-Cu couple. Apart from the trans-dimer, the kinetically stable cis-
dimer was also formed, which was further converted into the thermodynamically
stable trans-dimer by heating or irradiation [78]. Under similar reaction conditions,
Ni(II)formylheptaethylporphyrin (80) produced a hydroxymethylene-bridged dimer
(81) by loss of one of the formyl groups (Scheme 26.36) [78].

26.3.1.3 Halogenation
Porphyrins can undergo a series of halogenation reactions, such as fluorination,
chlorination, bromination and iodination; the latter is less favored due to steric and
electronic factors. The site of the halogenation is determined by the size and reactivity
of the halogen.
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26.3.1.3.1 Fluorination The electrophilic fluorination of 2 using caesium fluorox-
ysulfate in dioxane gives a mixture of mono-, di-, tri- and tetra-fluorinated (82–85,
Figure 26.14) compounds [79]. Better yields of fluorinated 2 were obtained by using
an excess of N-fluoropyridinium triflates in hexafluorobenzene [80]. In the presence
of ametal fluoride (CoF2 or AgF2), under an inert atmosphere, a refluxing solution of
the Zn(II) complex ofmeso-tetra-aryl porphyrin in CHCl3 affords the octafluorinated
derivative 86 [81].

26.3.1.3.2 Chlorination Chlorination of 2 with HCl/H2O2 in aqueous THFaffords
the 5-mono- (87) and 5,15-dichloro products (88), while the meso-tri (89) and meso-
tetra chlorinated products (90) have been obtained by using HCl/H2O2 in acetic acid
(Figure 26.15) [82]. In the presence ofN-chlorosuccinimide (NCS) andAIBN, only the
5- and 5,15-dichlorinated products (87, 88) were produced [83].Metallated derivatives
[Ni(II) or Cu(II) complex] of 2 react with PhSeCl or PhSeCl3 in CHCl3 to formmeso-
mono-, di-, tri- and tetra-chlorinated products (91–94) [84]. Octa-chlorination and
octa-bromination of meso-tetraarylporphyrins are achieved by refluxing solution of
metalloporphyrin [Ni(II) or Cu(II)] in CH3OH or CCl4, in the presence of an excess
NCS and NBS (95) [85]. Similarly, mono-chlorination and -bromination has been
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achieved by using one equivalent of NCS or NBS, although dihalogenated products
are also formed in lesser yield. Furthermore, chlorine gas in the presence of FeCl3 or
bromine in CH3OH, CHCl3 or in a 1: 1 CHCl3–CCl4mixture have also been used for
the chlorination or bromination of meso-tetra-aryl-metallo-porphyrins. Under these
conditions, halogenation mainly occurs at the b-position [85].

26.3.1.3.3 Bromination Lango and coworkers have discussed the bromination of
free-base porphyrin (1), where 1was brominated predominantly at themeso positions
in the presence of NBS in CHCl3, or pyridinium bromide perbromide, or bromine
in CHCl3 or acetic acid, to give the 5-mono- (96), 5,15-di- (97), and 5,10,15-tribromo-
porphyrins (98), respectively (Scheme 26.37) [86]. In contrast, the Mg(II) complex
of 1 affords the meso-tetrabromoporphyrin (99) in the presence of an excess of
N-bromoacetamide [70].

Meso-bromination of 2 does not occur, due to overcrowding at the pyrrolic
b-positions [87], while the metallated-OEP [Cu(II) or Ni(II)] complexes react with
PhSeBr or PhSeBr3 in CHCl3 to form the meso-mono bromo derivative (100) as a
major yield [84]. 5,15-Diphenylporphyrin, in contrast, when treated with two equiva-
lents of NBS in CHCl3, furnishes the meso-tetra-substituted porphyrin (101)
(Figure 26.16) [70].

26.3.1.3.4 Iodination Iodination of 2 has not been reported, due to the size of
the atom to be introduced at the sterically crowded meso-positions. However,
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5,15-diphenylporphyrin reacts with bis(trifluoroacetoxy)iodobenzene–iodine to
form the mono iodo derivative (102), while the diiodo porphyrin was also formed,
where the second iodo group occupies the b-position instead of the readily
available other meso-positions [88].

Metallobromoporphyrins undergo nucleophilic substitution reactions with CuCN
in quinoline and with thiolate ions to form the corresponding metallo-cyanopor-
phyrins and thiol-substituted macrocycles [89]. Metallated mono-bromo and mono-
iodo porphyrins also undergo a Pd-catalyzed Heck-type reaction with various
terminally substituted acetylenic derivatives [89, 90]. With aryl- and alkyl-boronic
acids, the b-bromo tetra-aryl porphyrins undergo a Suzuki cross-coupling reaction to
form the b-substituted aryl or alkyl derivatives [91]. This is the most suitable method
for the synthesis of b-octasubstituted tetra-aryl porphyrins.

26.3.1.4 Nitration
Electrophilic nitration can be achieved with a mixture of nitric acid in acetic or
sulfuric acid, PhSeNO2 in THF or with nitrate salts in acetic anhydride. Like
halogenation reactions, nitration also occurs in the 5,15-positions of the H2(OEP)
derivatives.

In the presence of nitric acid in sulfuric acid, porphyrin (1) is exclusively nitrated at
the meso positions to form, predominantly, the meso-5-nitro (103) and 5,10-dinitro
derivatives (104), instead of the meso-5,15-dinitro derivatives [92]. The meso-mono-
nitro derivative of 2 is formed by using nitric acid in acetic acid (105), whereasmeso-di
(106, 107), and tri- (108) derivatives are formed by using nitric acid in sulfuric acid at
0 �C. Themeso-di-substituted products (both 106 and 107) are formed roughly in 1: 1
ratio (Figure 26.17). The meso-tetra-substituted product (109) is not formed under
thismethodology [93]. Extensive nitration of 2 is achieved by usingZn(NO3)2 in acetic
anhydride, affording the Zn(II) complexes of 5-mono, 5,15-di, 5,10,15-tri and
5,10,15,20-tetra-meso-nitrated derivatives. Under these reaction conditions, 5,15-
disubstituted products are formed predominantly as compared to the 5,10-disub-
stituted derivative [94].

The room temperature reaction of meso-aryl-N-confused porphyrin 4, in contrast,
with aqueous NaNO2/HCl or with aqueous 30 wt% nitric acid without sulfuric acid
affords the inner C-nitrated derivative of 4 in moderate to excellent yields (110,
Scheme 26.38) [95].
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Meso-tetra-nitro substituted H2(OEP) (109, R¼NO2) undergoes aromatic nucle-
ophilic substitution reactions withHCl andHBr, where the nitro groups are replaced
by the respective halide ions. Under bromide reaction conditions, a side reaction was
also observed that furnishes a lesser amount octaethylxanthoporphyrinogen (111).
The yield can be improved by treating 109 with acetic acid in sodium acetate or with
acetic acid in sulfuric acid (Scheme 26.39) [96].

The 2-nitro substituted meso-tetra-aryl porphyrin undergoes reduction with tin
(II)chloride in conc. HCl [93] or with NaBH4 and 10% Pd-C in methanol [97] to
afford the corresponding amino derivative, which can be further functionalized.
For example, with sodium nitrite in the presence of acid the corresponding
diazonium salts are formed [98] that react with aldehydes to afford the corre-
sponding Schiff base complexes [99]; in addition, they react with acetic anhydride
and pyridine to produce the respective acylated derivatives [93]. In contrast,
metallated 2-nitro-meso-tetraphenyl porphyrin undergoes reduction with NaBH4

to form the nitrochlorins, which further react with tributyltin hydride in the
presence of AIBN to afford denitrated chlorins or are converted into porphyrins
upon heating on silica [100]. In addition, metallated derivatives react with
Grignard and organolithium reagents, yielding b-alkyl-tetraaryl porphyrins [101],
and with a-isocyanoacetic esters, malonates and malononitriles in the presence of
base to form b-fused pyrroloporphyrins, cyclopropanochlorins and functionalized
trans-chlorins [102].
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26.3.1.5 Acylation
Friedel–Crafts acylation of 2 is usually unreactive due to the presence of two ethyl
groups near the meso positions. The Ni(II) and Cu(II) complexes of unsubstituted
b-pyrrolic porphyrins are normally used for the electrophilic acylation reactions, to
form the 2-acylated derivative (112), while the Fe(III) and V(II) complexes also
undergo Friedel–Crafts acylation in the presence of stonger Lewis acids.

The peripheral acetyl derivative 112 undergoes reduction reaction with NaBH4 to
form the 2-methyl hydroxy methyl derivative (113), which further reacts with p-TSA
in 1,2-dichlorobenzene, or with DMFand benzoyl chloride, to afford the correspond-
ing vinylporphyrins (114) (Figure 26.18) [103].

26.3.1.6 Cyanation
The electrophilic cyanation of metalloporphyrins is accomplished by Friedel–Crafts
cyanation – boiling under reflux the metalloporphyrin in a CHCl3 solution of
cyanogen bromide and AlCl3 or SnCl4 results in moderate yields after demetalla-
tion [104]. More practical methods of cyanation reactions have been introduced.
Some of them are: (i) Vilsmeier formylation, converted into oxime, followed by
dehydration, (ii) nucleophilic displacement of bromoporphyrins, and (iii) reaction of
cyanide ion with metalloporphyrin p-cation radicals.

26.3.2
Nucleophilic Reactions

26.3.2.1 Reactions of p-Cation Radicals
The p-cation radicals of the metalloporphyrins, particularly 2, are usually formed
by various oxidizing agents such as iodine, thallium(III) nitrate, tris(p-bromo-
phenyl)ammonium hexachloroanitimonate (TBAH) and N-chlorobenzotriazole,
which are stable in methanolic solution but do react with various nucleophiles
such as cyanide, thiocyanate, chloride, imidazole, acetate, azide, pyridine and
triphenylphosphine to produce the corresponding meso-substituted macro-
cycles [105]. For example, the Mg(II), Zn(II) and Co(II) complexes of 2 react
with N2O4 in CH2Cl2 to produce the corresponding meso-nitro derivatives in good
yield [106].

The Zn(II) complex of 3 is oxidized into its p-cation radical by using iodine/silver
perchlorate or dibenzodioxin/sodium dichromate and, analogously, reacts with
nitrite ion to form the b-substituted [107] as well as themeso-substituted ring-opened
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Figure 26.18 Products derived from the acylation of 1.
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products [106]. Selective meso-nitration of 5,15-diphenylporphyrin is accomplished
by using the same methodology [108].

26.3.2.2 Substitution Reactions. Reactions with H2(OEP)
H2(OEP) (2) and several of its metal complexes undergo nucleophilic substitution
reactions by using alkyl- and aryl-lithium reagents at low temperatures, to form the
corresponding meso-substituted alkyl or aryl porphyrins (115) by oxidation via
porphodimethene intermediates (Scheme 26.40). By using this methodology,
mono-, di-, tri- and tetra-meso-substituted H2(OEP) can be obtained [109].

Nucleophilic attack of organolithium reagents with Rh(III)-OEP (116) occurs
in two stages: initially at the Rh atom and subsequently at the meso-position via the
Rh(III)phlorin complex, which undergoes further oxidation to form the correspond-
ing meso-substituted product (117, Scheme 26.41) [110].

Most detailed studies on Ni(II)-OEP (118) with n-BuLi showed that the porphyrin
had undergone a meso-alkylation reaction (119) (Scheme 26.42) [109]. Comparative
investigations with other metal complexes such as Zn(II), Co(II), and Cu(II) also
showed similar results, with the yield ranging from 40% to 90%, while a similar
reaction was not successful with the Fe(II) complex due to degradation of the
porphyrin unit. The reactionwas further extended to various organolithiumreagents,
including those yielding porphyrins suitable for subsequent chemical transforma-
tions andC–Ccoupling reactions [111]. Except for t-BuLi, the organolithium reagents
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gave good to excellent yields. In contrast, Ni(II)-OEP gives a lower yield with
aryllithium reagents than with alkyllithium reagents, while the reaction of free-base
porphyrinswith aryllithium reagents afford better yields. Thus, alkyllithium reagents
with metalloporphyrin give higher yields, while the aryllithium reagents with free-
base porphyrin afford better yields.

Under similar reaction conditions, meso-mono-alkyl metalloporphyrin 119 forms
the meso-di-5,10- (120) and -5,15-dialkyl (121) derivatives, with 120 as the predom-
inant product (Scheme 26.43) [109, 111]. Both 120 and 121 further react with n-BuLi
at �100 �C to afford the meso-tri-substituted derivative (122), which under similar
reaction conditions forms the meso-tetra-substituted product (123) in 50% yield.
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As expected, gradual introduction ofmeso-butyl residues led to a bathochromic shift
of the absorption bands, suggesting an increase in macrocyclic distortion [112].
Using this methodology, various meso-aryl and -alkyl residues of dodecasubstituted
derivatives have been synthesized with over all yields of 20–40% [113].

26.3.2.3 Reactions with 5,15-Disubstituted Porphyrins
Krattinger andCallot have reported that the reaction ofmeso-tetra-aryl porphyrinwith
n-BuLi and t-BuLi leads to both themeso- and b-alkylated products [114]. Unlikemeso-
tetra-aryl porphyrin,meso-5,15-diaryl metallated porphyrins (124), in the presence of
a linear alkyllithium, afforded the A2B type porphyrins (meso-tri-substituted pro-
ducts) (125) in good to excellent yields, showing complete regioselectivity towards the
meso-position (Scheme 26.44) [115].

Treatment of meso-5,15-diaryl- (124) and dialkyl-metallated (126) porphyrins with
n-alkyl or aryl-lithium, under similar reaction conditions, followed by hydrolysis of
excessRLi and addition of alkyl iodides givesA2BC (127–130) type porphyrins in good
to excellent yield (Scheme 26.45). This simple two-step, one-pot reaction is suitable
for the synthesis of three different meso-substituted porphyrins [116].

In contrast, meso-5,15-dialkyl- (131) and diaryl- (132) substituted free-base por-
phyrins – under similar reaction conditions as mentioned above, but omitting the
final hydrolysis step – afforded the meso-meso linked bisporphyrins in good yields
(133, 134) (Scheme 26.46) [117]. The dimerization proceeds via oxidation of the initial
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intermediate of the p-stabilized radical, followed by radical dimerization. Apart from
the bisporphyrins,meso-5,10,15-tri-substituted andmeso-5,10,15,20-tetra-substituted
porphyrins are also formed.Under similar reaction conditions, theNi complex of 124
and 126 afforded only meso-substituted products, instead of the bis-porphyrin
derivatives. This method gives convenient access to bisporphyrins with mixed
substituents by using simple starting materials and complements Ag(I)-promoted
coupling of Zn(II) porphyrins, which is a facile method for the synthesis of
unsubstituted bis- and oligoporphyrins [118].

26.3.2.4 Reactions with H2TPP
In 1996, Callot reported the nucleophilic substitution reaction of the Co(III)
complex of meso-tetra-aryl porphyrins (136) [119]. In the presence of n-BuLi at
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0 �C, apart from the axial ligand exchanging product he observed numerous other
products, such as mono-, di- and tri-b-butylated porphyrins and chlorins, with
<3% yield [120]. Reaction of the free-base H2TPP (3), under similar reaction
conditions, forms phlorin 138 (28% yield) and chlorin 139 (18%) [114, 120], while
the Zn(II) complex (137) gives mono- (139) and di-butylated chlorin (140)
(Scheme 26.47) [109, 111]. The use of s-BuLi, instead of n-BuLi, leads to similar
chlorins, among other products, while the more hindered t-BuLi produces a
mixture of b-alkylated chlorins and 5,10-di-tert-butylated porphyrins (141) in <5%
yield [121]. Thus, H2TPP and other meso-aryl porphyrins can undergo both meso-
and b-addition reactions.

In contrast to metal-free meso-tetra-aryl porphyrins, the Ni(II) 142 reacts with
n-BuLi to form in quantitative yield the porphodimethene, which is further
oxidized at the meso- and ipso- positions to produce the novel 5,50-didehydropor-
phodimethenes (143) with an exocyclic double bond (Scheme 26.48) [109, 111].
Depending on the steric bulk of the meso-alkyl substituents, the macrocycle
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conformation varies from planar to highly ruffled [122]. Similar results are
observed, with porphyrins bearing iso-butyl, 1-ethylpropyl or tert-butyl residues.
Thus, meso-alkyl porphyrins react with sterically unhindered organolithium
reagents to form exclusively the meso-substituted product. This is a further
indication of the higher reactivity of the meso-position toward nucleophilic attack.

26.3.2.5 Reactions with Porphine
Porphine (1) reacts with n-alkyl or aryl-lithium reagents to form 5-monosubstituted
(144–146) and 5,10-disubstituted porphyrins (147–149) in low to excellent yields,
depending on the number of equivalents of RLi used in the reaction
(Scheme 26.49) [123].
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27
New Materials Derived From Heterocyclic Systems
Javier Santamar�ıa and Jos�e L. Garc�ıa- �Alvarez

27.1
Introduction

The understanding and applicability of the properties exhibited by natural and
synthetic compounds has long been an important target for the chemical community.
Heterocycles, due to their special structure, have contributed greatly to this purpose.

In this sense, this chapter briefly summarizes the different properties induced,
enhanced or simply modified by the participation of heterocyclic systems in a
material. Some of them have fulfilled important gaps in terms of applicability and
are now in common use in modern society.

27.2
Color and Fluorescent Agents

27.2.1
Heterocyclic Pigments and Industrial Applications

There are numerous natural pigments, as expressed by the wide range of colors we
can find in nature [1]. In the vast majority, the presence of organic compounds with
one or more heterocycles in the skeleton is largely responsible for their colorful
properties. Remarkable examples are the red iron complex heme (1) in hemoglobin
and the green chlorophyll (2), a magnesium complex present in green plants. Both
these compounds belong to the porphyrin family (Figure 27.1) [2].

Another family of heterocycles usually present in a large variety of plants and
involved in their color is the flavonoids, which contain a benzopyran skeleton.
Figure 27.2 shows the structure of flavone (3) and its derivative flavonol (4). These
natural products are compounds with almost no light absorption in the visible region
but are responsible for the white color of the splendid spring postcards of flowered
apple and cherry trees [3].

Among the flavonoids with intense color are anthocyanidin derivatives.
Several examples of anthocyanidins are present in nature such as the brilliant red
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pelargonidin (5), responsible for the color of geranium petals [4], and the crimson
cyanidin (6) found in apples [5] and raspberries [6]. Other examples are blue to dark
purple delphinidin (7), which colorizes some types of grapes [7], and dark purple
malvidin (8) as the main pigment of red wines (Figure 27.3) [8]. A combination of
different anthocyanidins results in a wide range of colors in flowers such as tulips [9].

Other natural pigments, not belonging to the flavonoid family, are pterins. These
are present in some insects, such as butterflies, as part of the coloration of their
wings. Figure 27.4 shows the structures of yellow xanthopterin (9) (2-amino-1,5-
dihydro-4,6-pteridinedione) and white leucopterin (10) (7-hydroxyxanthopterin) the
two first pteridine pigments isolated and characterized from butterfly wings [10].
Other pterin pigments are 7-methylxanthopterin, a yellow pigment known as
chrysopterin (11), and red erythropterin (12) [11].

Humanity has taken advantage of the presence of pigments in nature, from paints
in prehistoric caves to the modern ages. Nowadays it is difficult to imagine life
without the use of pigments. Notable examples of famous pigments extracted from
nature, and slightly modified for use as a dye, are the indole derivatives indigo
(13) [12] (blue) and its derivative tyrian purple (14) [13] (Figure 27.5).

However, extracting pigments from nature suffers from a major inconvenience:
the usually very low availability of some of them. In some cases, a very large amount
of plants or animal parts need to be processed to obtain just a few milligrams. This
is why cloth dyed with a particular pigment was originally considered as a symbol
of power. Tyrian purple 14 (also known as Royal purple), discovered by the
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Phoenicians [14], is perhaps the most representative example of this, as it was
restricted to dye coats for kings, emperors and popes. In some periods tyrian purple
(14) was worth 10–20 times its weight in gold.

Additionally, some natural pigments lack the necessary thermal, chemical and
photochemical stability to be commonly used as dyes.

These two major limitations of natural pigments began to be overcome with the
development of modern organic chemistry, allowing the preparation of synthetic
pigments in large quantities and at low cost. Synthetic indigo (13) and its derivatives
are good examples. Scheme 27.1 shows the first synthetic procedure for commercial
indigo (13), accomplished by BASF in 1897. Consequently, although the purple color
of the tyrian purple (14) is considered by tradition to be a symbol of power it has, in
fact, lost such significance.

Slight modifications in the structure of pigments can be used to modulate their
physical or chemical properties, affecting not only their stability but also the
coloration. With these two premises in mind, it is easy to imagine that almost every
color of pigment can be obtained for use as a dye for most purposes.
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The first unnatural pigment synthesized in an organic laboratory – a few years
before the synthesis of indigo –was the phenazine derivativemauveine (23) [15], used
to incorporate mauve coloration to some textile fibers such as silk. Scheme 27.2
shows the original, serendipitous, synthesis ofmauveine, accomplished by Perkin in
1856, from aniline (21) and different toluidines 22.

In modern industry, there are many synthetic pigments that can be used as a dye.
Of the heterocyclic synthetic dyes, the family of the quinolinium blue dye cyanine 24
is worth mentioning (Figure 27.6).

A cyanine dye usually consists in a cationic molecule with a bridge of conjugated
bonds between two rings, at least one of them heterocyclic in nature. One side of the
system, the cationic ring, acts as acceptor and the other side, a neutral heterocycle or
an aromatic ring with a heteroatomic substituent, as donor. This electronic delocal-
ization ismainly responsible for the coloration of the cyanine dyes. Figure 27.7 shows
the structure of two quinolinium salts commonly used as dyes, namely, pseudocya-
nine (25) [16] and pinacyanol chloride (26) (quinoline blue) [17].

The family of cyanines is not restricted to quinolinium compounds, as different
types of heterocycles can appear in the molecule. As selected examples, Figure 27.8
shows the structures of indolinium cyanines Basic Yellow 21 (27) [18], benzothia-
zoliumBasic Blue 41 (28) [19] and triazolium Basic Red 46 (29) [20]. Additionally, the
bridge chain is not restricted to carbon atoms as carbocyanines, they can also be
nitrogen atoms (azamethines) or the two rings can even be directly connected
(apocyanines) [21].
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Other types of dyes, very commonly used in laboratories as stains of bacteria or
blood cells, are azine, oxazine or thiazine dyes. The structure of these dyes consists of
two six-membered rings containing amino or imino groups and bridged by nitrogen,
oxygen or sulfur atoms, respectively. These systems are cationic dyeswith the positive
charge delocalized on both nitrogen atoms at the ends of the molecule, and on the
nitrogen, oxygen or sulfur atoms of the bridge. Azine neutral red (30), oxazine
brilliant cresyl blue (31) and thiazines thionin (32) and methylene blue (33) are
characteristic examples of these compounds, used for DNA detection [22]
(Figure 27.9).

Of great importance for the synthetic dye industrywas the accidental discovery – by
De Diesbach in the late 1920s – of a family of phthalo-derivatives named phthalo-
cyanines (34) (Figure 27.10) [23]. These compounds are not related to the cited
cyanines but have been named as cyanines due to its blue color. In fact, these
compounds are structurally related to porphyrins. Their main structural character-
istics are the presence of benzene rings fused to the pyrrole b-positions and a
porphyrin core where the carbons at the meso-positions have been replaced by
nitrogen atoms.
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Porphyrins have not found widespread application in the dye industry due to the
usually low intensity of the absorption bands (Q bands) in the visible region, having
instead more intense bands in the near-UV region (Soret band). In contrast,
phthalocyanines have also bands in the near-UV region but the highest intense
bands have shifted into the visible region (600–700 nm) absorbing red light and
resulting in their characteristic intense blue color. These differences in UV/visible
spectra derive from two fundamental structural changes: (i) replacement of the
carbon atoms at the meso-positions by more electronegative nitrogen atoms, which
attract thep-electrondensity to themselves, (ii) the presence of fused benzene-pyrrole
rings, which extend the p-electron density.

On the other hand, phthalocyanines are very stable. As a notable example, iron is
not removed fromaphthalocyanine core in concentrated sulfuric acid and the intense
blue coloration is not modified up to 500 �C. This stability together with the intense
coloration has rendered phthalocyanines as powerful pigments for the dye industry.
A good example of the industrial applicability of phthalocyanines is the use of
remazol turquoise blue (35) as a textile dye (Figure 27.11) [24].
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27.2.2
Fluorescence and Fluorescent Heterocycles

A luminescent or photoluminescent agent is a molecule that upon excitation with
ultraviolet or short wavelength visible light can spontaneously emit a photon to
recover the original energy state. Among the two different kinds of luminescence,
fluorescence or phosphorescence, fluorescence does not involve a spin change in the
excited electron, since the transition occurs from a singlet excited state to the singlet
ground state. Conversely, phosphorescence involves a transition froma triplet excited
state to the singlet ground state, a forbidden transition by the selection rules and, as a
consequence of this, it is less common than fluorescence.

Luminescence can operate in numerous compounds but it is easier in those with a
narrow energy gap between the HOMO (highest occupied molecular orbital) and
LUMO (lowest unoccupied molecular orbital). In this sense, two important factors
that contribute to narrow this energetic gap are the presence of p-conjugated bonds
and conjugated electron-donating or electron-withdrawing groups. On the other
hand, contributions to the energy dissipation (rotation, vibration, etc.) are respon-
sible for falls in the emitted energy related to the energy of excitation. As a result of
this, the wavelength of the luminescent is always longer than that of the absorbed
light. Thus, molecular rigidity favors luminescence that avoids energy dissipation
through vibration modes.

Among the different molecules that can exhibit the so-called luminescent prop-
erties (luminophores), heterocycles are good candidates because of their p-extended
conjugation, together with the rigidity induced by the usual heteroatom participation
in the conjugation. Selected examples from the many fluorescent heterocycles are
described below.

In the field of medicine, fluorescent agents – especially those containing hetero-
cycles – are important as chemical markers. In this sense, fluorescence in situ
hybridization (FISH) is a good example of practical application for early cancer
detection that has been applied to studies in colon [25], lungs [26], prostate [27], and so
on. In addition, specific fluorescent heterocyclic molecules have been designed to be
selectively attached to biological substances to serve as tracers of these components.
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Figure 27.11 Structure of the remazol turquoise blue.

2282j 27 New Materials Derived From Heterocyclic Systems



Figure 27.12 shows acridine orange (36) [28] and ethidium bromide (37) [29],
pyridinium derivatives used to distinguish cancerous from healthy cells.

A different, but no less important, medical application is the use of fluorescent
substances, for example fluorescein (38), to check the quality of the blood vessel walls
(Figure 27.13). A very small concentration of fluorescein salt injected in the blood
flow can be followed by fluorescent detectors to obtain information related to the
permeability of the vessels [30].

The application of fluorescent heterocycles as markers is not restricted to the
medical field. Fluorescent dyes also have found industrial application in the
detection of small fissures in different types of materials [31]. The piece to be
checked is immersed in the fluorescent agent and, after the corresponding
washing, a fluorescent detector looks for small amounts of the agent in micro-
fissures of the tested material.

Fluorescence has also emerged as a valuable tool for ecophysiologists. Thus, a non-
invasive technique known as chlorophyll fluorescence is routinely used to monitor
the photosynthetic performance of plants. Light energy absorbed by chlorophyll 2
(Figure 27.1) in plants is put to three possible uses: to drive photosynthesis, dissipated
as heat or re-emitted as light-chlorophyllfluorescence [32].Detection of an increase in
the yield of chlorophyll fluorescence gives information about a decay in photochem-
istry efficiency, as all three processes are in competence. Among the wide range of
applications for agriculture are the improvement of crop productions by plant
selection [33], studies of adaptation of maize to low temperature [34], responses to
water stress in grapevine leaves [35], early detection of interactions of tobaccomosaic
virus and chloroplasts [36], and so on.

Related to industrial applications of fluorescent chemicals in modern industry is
the preparation offluorescent paints. These substances increase the brightness of the
reflected light upon irradiation and their use over a surface permits its identification

N
H

Me2N NMe2

Cl-

36

N

H2N NH2

EtPh
Br

37
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even at night. Thus, fluorescent paints are very commonly used for road markings,
traffic signals, coloration of safety cloths, and so on [37]. Figure 27.14 shows two
examples of heterocycles with this property, xanthene 39 and benzimidazole 40.

The application offluorescence phenomena to thewhitening of differentmaterials
such as paper or white cloths is very interesting. Thewhiteness of thesematerials can
be increased upon treatment with substances known as �optical bleachers.� These
compounds are colorless fluorescent agents that after absorbing energy reemit a part
of it by fluorescent in the blue region of the visible spectrum, thereby creating the
appearance of an increasedwhiteness [38]. �Optical bleachers� can be included in the
synthetic fibers or used as part of washing mixtures.

Several systems incorporating heterocyclic compounds exhibit this property.
Figure 27.15 shows three of them: oxazole 41, pyrazoline 42, and triazinylaminos-
tilbene derivative 43 [39].

Many other applications are possible using fluorescent or simply luminescent
heterocycles but remarkable among them is theparticipation in laser devices. Theuse
of laser devices has increased progressively to the point where they play now an
important role not only in industrial or research fields but in everyday life as well.
Representative examples of these applications are lasers in medical surgery, super-
market code readers, credit cards readers, musical devices, computers, and so on.
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A solution of heterocyclic fluorescent compounds contributes, in liquid lasers, to
transform the energy into the necessary coherent light for the laser functionality.
Many heterocyclic compounds are used for laser devices. Figure 27.16 shows a
selection of them: oxazole 44, oxadiazole 45 [40], oxazine 46 [41], coumarin 47 [42],
and xanthenes such as Rhodamine 6G (48) [43].

The advantage of liquid lasers, compared with solid or gas lasers, lies in the fact
that, although they are not very powerful, they are usually easy to smoothly modulate
in terms of the operating wavelength.

Finally, another interesting application of fluorescent heterocycles is their use as
detectors for ionizing particles. 2,5-Diphenxyloxazole (PPO) (49), 1,3,5-triphenyl-D2-
pyrazoline (50) and 1,4-bis-2-(5-phenyloxazolyl)benzene (POPOP) 51 are heterocyclic
compounds commonly used as counters (Figure 27.17). These substances emit short
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lived flashes when they are struck by ionizing particles. This use of heterocycles as
counters has found applications in space investigations to detect neutrons, neutrinos
and a-, b-, or c-rays [44].

27.3
Self-Assembling Materials and Molecular Containers

27.3.1
Introduction

As a reflection of increasing interest in knowledge of the mechanistic bases of life at
the molecular level, molecular recognition has been the focus of increasing effort
in recent decades. This discipline can be considered as an art involving the creation
and/or study of supramolecular structures held together through complementarity
in size, shape, non-covalent or even electrostatic interactions, among others. As
pioneers in thisfield, Jean-Marie Lehn,Donald J. Cram, andCharles J. Pedersenwere
awardedwith theNobel Prize inChemistry in 1987 �for their development and use of
molecules with structure-specific interactions of high selectivity�.

This section gives a brief compilation of several macrostructures assembled by
non-covalent bonds, with the crucial participation of one or more heterocyclic rings.
It is divided in three sub-sections according to the type of interaction involved:
electrostatic andp-stacking interactions, coordination chemistry and hydrogen-bond
interactions. A fourth section covers a special type of assemblies capable of encap-
sulating small molecules.

27.3.2
Assembly Mediated by Electrostatic and p-Stacking Interactions

Electrostatic interactions play an important role in the formation of a large number of
assemblies. A good example is the early work done by Nobel Laureate Charles J.
Pedersen in late 1950swith the synthesis of crown ethers and the formation of simple
assemblies with cations [45]. From this work to now, numerous supramolecular
structures have been described using electrostatic interactions as the main driving
force.

Heterocycles, especially nitrogenated heterocycles such as pyridines, have actively
participated in the formation of assemblies in their cationic forms. A representative
example of this type of work is shown in Figure 27.18 with the formation of the
assembly 52 between a tetrapyridiliumporphyrin and a tetracarboxylate calyx[4]arene
derivative [46]. The assembly is highly dependent on the pH of themedia, pointing to
the electrostatic interactions between pyridinium and carboxylate ions as the most
important driving forces involved in the assembly.

Many other examples can be mentioned for the formation of supramolecular
structures through electrostatic interactions, including their participation together
with other non-covalent forces. In this sense, these electrostatic interactions emerge
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inmany cases as themain factor in the control of protein interactions [47], and are the
ultimate cause of some biological properties.

Particular types of non-covalent forces, with an important component of electro-
static interaction, are p-stacking interactions. These interactions between two
aromatic systems are considered to have two main components: electrostatic inter-
actions and van der Waals forces [48].

The formation of supramolecular assemblies such as catenanes and rotaxanes are
ruled out inmany cases byp-stacking interactions between a donor group, usually an
electron-rich aromatic ring, and an acceptor one as a heterocyclic cation. A good
exponent of this work is Stoddart and coworkers. Since the formation of their first
catenane 56 (Scheme 27.3) [49], numerous interlocked self-assembled superstruc-
tures [50], including molecular switches [51], have been produced.
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Additionally, a change in the electronic properties of the molecules can be used to
modify the assembly. In this regard, Scheme 27.4 shows a [2]rotaxane, assembled by
p-stacking interaction of the tetracationic derivative with the tetrathiafulvalene
unit [52]. This interaction prevails over the interaction with the 1,5-dioxynaphthalene
unit present in the same rotaxane 57. However, a redox-switching can be accom-
plished through an oxidation of the tetrathiafulvalene, whichpromotes a switch of the
cationic unit to the 1,5-dioxynaphthalene.

27.3.3
Self-Assembly Through Coordination Chemistry

The formation of labile metal–ligand bonds has emerged, in the last two or three
decades, as an important tool in the field of supramolecular chemistry. Examples of
this type of behavior can be taken from nature, like the selective coordination
exhibited by metalloproteins, such as hemoglobin. The selective and reversible
binding of different molecules to the metal centre is one of the most crucial factors
in the control of the protein activity.
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In this sense, chemists, taking advantage of increasing knowledge of metal
coordination, have been able to design and construct architectures of increasing
complexity. Although many factors affect the formation of these supramolecular
structures it can be controlled by taking account of three major aspects:

. The shape of the self-assembled structure is highly dependent on the metal
coordination geometry. Thus, metals with different coordination possibilities can
drive different to architectures.

. The choice of the ligands also plays an important role through the orientation of
their interaction sites, usually heteroatom functions.

. Finally, although metal–ligand interactions are stronger than other weak forces
(hydrogen bonds, wan der Waals forces, etc.), metal–heteroatom bonds are
thermally labile. On the one hand, the higher strength of the metal–ligand
bonds helps to overcome the entropic cost of the supramolecular assembly, as
several discrete molecules have to be held together. On the other hand, the
lability of the bond gives rise to the formation of the thermodynamically most
favored assembly, through a process that involves the self-correction of initially
formed kinetic structures.

As mentioned earlier, heterocyclic systems have been widely selected for the
formation of supramolecular coordination structures due to the ability of heteroa-
toms to act as donors to the metal acceptor centre. A brief selection of these
supramolecular architectures, accomplished throughmetal coordination of different
heterocyclic rings, is given below.

A wide variety of heterocycles, especially nitrogen heterocycles, can act as metal
ligand and can be potentially used as ligands in self-assembly coordination chem-
istry [53]. However, pyridine derivatives, due to their well known ability to form
complexes with a large number of metals, have been used in most cases. This is also
favored by the back-bonding from themetals into thep�-orbitals of the pyridine rings.

Figure 27.19 shows an example of two different binuclear assemblies through the
coordination of pyridine rings. The driving force for the assembly formation emerges
from the silver [54] and palladium [55] coordination, respectively.

Pyridine derivatives participate in numerous self-assembly processes even with
two different metals [56], resulting in structures with diverse sizes and forms. An
interesting example of this, carried out by Fujita et al. [57], is shown in Scheme 27.5.
This work resulted in the formation of tetranuclear 61 or trinuclear 62 complexes in
equilibrium, assembled from the nucleation of bipyridine ligands around palla-
dium atoms.

As a representative example of the increasing complexity in the supramolecular
structures with pyridine or bipyridine ligands, it is worth mentioning the work of
Lehn and collaborators. Scheme 27.6 describes the formation of pentanuclear 64 [58]
or hexanuclear 65 [59] iron helicates with the same trisbipyridyl ligand 63. The
formation of one double helicate over the other is dependent on the counterion size,
which acts as a template. Thus, chloride drives the assembly to the pentameric
helicate 64, isolated with a chloride ion within its central cavity, whereas sulfate gives
rise to the hexameric helicate 65.
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A careful design of ligands, which combines pyridine with pyridazine, pyrimidine
or pyrazine rings, together with the appropriate selection of themetal has allowed the
design and building of grid-type architectures of diverse size and complexity [60].
Scheme 27.7 shows two of the simplest examples of these type of complexes: the
tetrameric compounds 68 and 69, containing bis(pyridyl)pyridazine (66) [61]and bis
(terpyridine) 67 [62] ligands, respectively. Owing to the structure of the ligands, the
metal is coordinated tetrahedrally in the first case and octahedrally in the second.

Metal coordination assemblies can also act as molecular machines. Scheme 27.8
shows a [2]rotaxane producedbySauvage and coworkers [63]. The axle of the rotaxane,
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assembled by bipyridine–copper coordination, can be electrochemically switched
between the two coordination sites of the ring. A change in the copper oxidation state
promotes the rotation of the ring and the metal changes from tetra- to pentacoordi-
nation and vice versa.

Inadditiontothesix-memberednitrogenheterocyclicrings(pyridines,pyridazines,
pyrimidines,pyrazinesor tetrazines [64])andcombinationsof theseheterocycles,five-
membered rings have also been involved in self-assembly metallomolecular arrays.
Scheme 27.9 presents the tetrameric structure 73, which involve double zinc por-
phyrin-pyridinecoordination [65].Eachzincatomissurroundedby theporphyrincore
and by a pyridine ligand, placed at the meso-position of a different porphyrin unit.

Five-membered rings with two or more nitrogen atoms such as pyrazole [66],
imidazole [67], triazole [68], benzotriazole [69], or tetrazole [70] have also participated
in this type of assemblies. Figure 27.20 shows the hexameric assembly 74 involving a
copper metal and a ligand bearing an imine and pyridine and imidazole rings [71].
The fourth coordination site of the copper is saturated with a second imidazole
nitrogen atom of a different ligand.

Finally, although the participation of heteroatoms other than nitrogen is not very
common inmetal coordination assemblies, heterocycles such as thiazoline [72] have
been used in this type of supramolecular architecture.
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27.3.4
Self-Assembly Through Hydrogen-Bond Chemistry

Hydrogen-bonding interactions can be considered as a weak force that, taking
advantage of the principle of cooperativity [73], can be used to hold together large

Zn

N

N

N

N

N

N

N

N

N

N

Zn

Zn

Zn

Zn

72

73

Zn

Scheme 27.9 Tetrameric porphyrin assembly.

NNN
N
Cu

N

N

N

N
Cu

N

N

N

N
Cu

N NN
N

Cu

N

N

N

N
Cu

N

N

N

N
Cu

6+

(ClO4
-)6

74

Figure 27.20 Hexameric structure assembled through copper coordination.

27.3 Self-Assembling Materials and Molecular Containers j2293



structures consisting of several discrete molecules. Owing to the weakness of this
type of interactions and the entropic cost of keeping several molecules together,
assemblies based on an isolated hydrogen bond lack stability. In this sense, coop-
erativity is crucial as the stability of the assemblies increases exponentially with the
number of hydrogen bonds.

However, the weakness of the single hydrogen bond facilitates two important
features:

. The low energy of the hydrogen bond carries a selection capability as hydrogen
bonds are made and broken until stable structures are reached.

. This property habilitates, as nature does, the transfer of biological information. In
this sense, the transcription and translation of the genetic information represents
a noteworthy example. During that processes both single strands of the DNA and
RNA double helix, which are held together by hydrogen bonds, are partially taken
apart and regenerated after the information has been transferred.

Owing to the difference in electronegativity between nitrogen or oxygen and
hydrogen, these are the twomost common atoms acting as proton donors and also as
proton acceptors in hydrogen bonds. Heterocycles bearing these types of atoms
commonly participate in supramolecular assemblies through hydrogen bonding.

To show here all the different heterocycles that participate in the formation of
supramolecular assemblies is far from the aim of this section and so only a brief
compilation of some relevant examples is given. Perhaps themost important example
of this type of assemblies, in terms of life implication, is the self-complementarily of
DNA double helix through Watson–Crick base pair interactions [74] (adenine–thy-
mine and guanine–cytosine). Figure 27.21 shows the structure of the purine (fused
pyrimidine-imidazole) nucleosides adenine (75) and guanine (77) and pyrimidones
thymine (76) and cytosine (78). The pairs adenine–thymine and guanine–cytosine are
held together with the formation of two and three hydrogen bonds, respectively,
contributing to the overall stability of the DNA double helix [75].

In addition to observations from nature, scientists have also focused a great deal of
effort to designing and synthesizing molecules with the appropriate complementa-
rily, to create new superstructures held together through hydrogen bonding.
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Thus, Sessler et al. [76] have described an artificial dinucleotide with purine and
piperidindione derivatives, which can self-assemble, leading to the corresponding
dimer 79 (Figure 27.22).

Assemblies are not restricted to dimers as supramolecular structures with differ-
ent numbers of monomerical components have also been realized. Figure 27.23
shows a circular array, developed by Zimerman et al., as a hexameric assembly of
fused pyridines and pyrimidinones. Thus, the complementarily of both edges of the
monomer, in the adequate angular disposition (60�), results in the formation of the
hexameric structure 80, which is held together with 18 hydrogen bonds [77].

N

NN

N

N
HH

R

N

O

O

R

H N

N N

N

N
H H

R

N

O

O

R

H

79

Figure 27.22 Self-assembled artificial nucleotide.

N N N

N

O

H

NN
H

H

R

Et

N

N

N N

O

H

N

N

H

H

Et
N

N

N

N O

H

N

N

H

H R

Et

NNN

N

O

H

N N
H

H

R

Et

N

N

NN

O

H

N

N

H

H

R

Et
N

N

N

NO

H

N

N

H

HR

Et

80

Figure 27.23 Hexameric structure assembled through hydrogen bonding.

27.3 Self-Assembling Materials and Molecular Containers j2295



In a similar approach, a hexameric assembly starting from fused pyrimidinones
has also been described by Lehn and coworkers [78].

Linear, even polymeric [79], structures have also been described. For example,
Timmerman has reported the formation of the linear discrete assembly 81 through
hydrogen-bond interactions between a trimer of the triazine derivativemelamine and
a bis(barbituric acid) derivative [80]. The cyclic-ureido structure of the bis(barbituric
acid) canconnect two linear strandsofmelaminecomponents.Figure27.24shows the
structure of four components, which involves the formation of 24 hydrogen bonds.

Finally, in the literature it is also possible to find three-dimensional structures –
assembled by hydrogen-bond self-complementarity –with different sizes and shapes.
Rebek�s �tennis ball� (83) is a good example (Scheme27.10) [81]. This supramolecular
structure is held together by eight hydrogen bonds between two self-complementary
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units. The monomer 82 consists of two glycoluril subunits attached to a central
skeleton that provides the necessary curvature.

Other glycoluril capsules have also been attained [82] and some of these capsules
are able to host discretemolecules inside. Encapsulation features are described in the
next section.

27.3.5
Capsules and Encapsulation Behavior

Synthetic molecular recognition and host–guest chemistry have their origin in the
complementarity of threemain characteristics: size, shape and chemical interaction.
This is very well illustrated in the pioneering work of Pedersen, in the 1960s, by the
synthesis and study of crown ethers [45]. Pedersen demonstrated that these hetero-
cycles can selectively bind cations of only a given size (Figure 27.25).

This concept of �molecules within molecules,� a term coined by Nobel Prize
winner Donald Cram [83], has been extended to modern supramolecular chemistry
and an increasing number ofmolecules can be almost completely surrounded by self-
assembled capsules. In the last decade, host–guests chemistry has been a field of
increasing interest and capsules of different shapes and sizes have been
synthesized [84].

Apart from, or perhaps due to, the selective binding, these capsules are able to
feature special properties such as catalysis, chiral discrimination, intermediate
stabilization, traces capture, and so on. A brief compilation of some of these features
is given below.

A very interesting observation made by several authors is that self-assembled
capsules can accelerate or even catalyze different reaction processes. Of note in this
regard is the report by Fujita of an octahedral capsule acting as a phase-transfer
catalyst [85]. The water-soluble capsule 86 is assembled from pyridine ligands
coordinated to palladium complexes. Capsule 86 encapsulates styrene, which lacks
water solubility, allowing its effective participation in a Wacker oxidation
(Scheme 27.11).

In addition, Rebek et al. have reported the participation in a catalytic process of
glycoluril-based capsule 88, which is assembled through the formation of 16
hydrogen bonds (Scheme 27.12). A Diels–Alder reaction between p-benzoquinone
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(89) and 2,5-dimethylthiophene 90 is catalyzed in the presence of the capsule 88 [86].
Thus, one of the twomolecules of p-benzoquinone 89, which initiallyfills the capsule,
is replaced by onemolecule of 2,5-thiophene 90. After the Diels–Alder reaction takes
place the product 91 is replaced bymore p-benzoquinone 89due to its poor affinity for
the capsule, and a new cycle begins.

The capsule 88 also participates in the acceleration of Diels–Alder reactions with
other substrates [87].However, in these cases, the high affinity of the reaction product
for the capsule prevents its replacement by more reagents and no true catalysis is
observed. This product inhibition has also been observed by other authors [88].

Asymmetric behavior has also been observed in self-assembled capsules. For
example, Rebek et al. have synthesized a glycoluril-based dimeric capsule starting
from achiral monomer 92. These capsules can be assembled in two different
enantiomeric forms, as a racemic mixture (Scheme 27.13) [89]. Enantiopure guests
can be selectively recognized by one of the enantiomers, affording an enriched
diastereomericmixture of capsules. Additionally, taking advantage of themuch faster
guest exchange compared with capsule dissociation, an enantiomerically enriched
mixture of capsules 93 and 94 is obtained, replacing the chiral by an achiral guest [90].

Examples of chiral discrimination have also been reported frommetal coordinated
nanocages [91]. Thus, a racemic mixture of supramolecular structures assembled by
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pyridine coordination to palladium can be discriminated by the addition of
chiral guests.

Finally, among the special features that can be addressed by a self-assembled
capsule is the stabilization of reactive intermediates. A relevant example is the
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formation of the highly reactive trimer of phenyltrimethoxysilane inside a capsule
similar to 86 [92].Owing to the special characteristics of the host–guest size and shape
complementarity, polymerization of this intermediate is avoided inside the capsule.
Similar behavior has been observed in the stabilization of benzoyl peroxide inside an
hydrogen-bond self-assembled capsule [93].

27.4
Unnatural Enzyme Models

The quest for synthetic molecules to mimic one or more features of enzymatic
systems is ongoing. These organic molecules, known as enzyme models, are
structurally simpler than enzymes, as they usually lack the peptide chain, and are
used to reproduce the characteristics and properties of the enzyme active site. The
simplicity of the coenzyme model, compared to the biomolecule, and the possi-
bilities of manipulation of its structure facilitates the study of a specific property of
the enzyme.

Becausemany coenzymes belong to the family of nitrogenmolecules, heterocycles
– specifically nitrogen heterocycles – have been widely used as enzyme models.
Among such heterocycles, porphyrin derivatives, imidazole rings and pyridines are
perhaps themost commonly described. Several examples of such systems are, briefly,
given in this section.

Several molecules have been synthesized to simulate the active site of the
cytochrome P450�s, a very important family of enzymes involved in the biocatalysis
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of several organic compounds from dioxygen. The structure of the P450cam [94],
–one of the best characterized P450s – is a hemoprotein with a special characteristic
that bears a thiolate group – belonging to a cysteine amino-acid – as a ligand to the
heme. A number of porphyrin derivatives have been synthesized to mimic the
coenzyme of this cytochrome P450 [95]. Figure 27.26 shows two remarkable
examples, 95 and 96.

In both cases, porphyrins 95 and 96 have a thiolate group covalently attached to
the porphyrin and coordinated to the iron centre [96]. Additionally, they have on
both sides of the porphyrin hydrophobic cavities protected with binaphthyl
moieties. The binaphthyl walls of one side protect the iron centre from a possible
autoxidation. On the other side, these moieties protect the thiolate from oxidation
and disulfide formation. Finally, the hydroxyl groups attached to the binaphthyls on
the open side of the iron centre interact with the bound dioxygen through
hydrogen bonding.

This enzyme model has been used in studies of binding and activation of
dioxygen by cytochrome P450. The dioxygen adduct has been characterized and
direct evidence of hydrogen bonding of the hydroxyl groups to the bound dioxygen
has been obtained.

Owing to the complexity of the active site of the enzymes, a precise combination of
heterocycles andmetals could also be required for the synthesis of an enzymemodel.
For example, the active site of the copper-zinc superoxide dismutase consists of a
bimetallic Cu(II)-Zn(II) core bridged by an imidazolate moiety [97].

Few systems have been synthesized to reproduce this coenzyme due to the
special characteristics of the bimetallic bridged core [98]. Figure 27.27 shows an
enzyme model of superoxide dismutase (97) accomplished with a macrocyclic
nitrogenated ligand [99] that selectively coordinates a copper cation on one side and
a zinc on the other.

The appropriate distance between the two coordination sites in 97makes it suitable
for the coordination of imidazolate as a bridge between the two metallic centers.
Finally, the fifth coordination sites in both metals are saturated by oxygen atoms.

N
N

N
NFe O

O
O

PivO OH HO

O

O

O

O

S
O

OPiv

OPiv

HO
PivO

N
N

N
NFe O

O
O

PivO OH HO

O

O

O
O

OPiv

OPiv

HO
PivO

S

9695

Figure 27.26 Enzyme models for cytochrome P450cam.

27.4 Unnatural Enzyme Models j2301



Experimental measures of the catalytic activity towards the dismutation of super-
oxide show that complex 97 is a good enzymemodel, although its activity is lower than
the native enzyme.

An interesting, third example, of heterocyclic participation in the synthesis of an
enzyme model is the recent use of a macroheterocycle that includes a terpyridine
derivative. This macrocycle has been used to simulate the active site of the enzyme
Rubisco, which is involved in the fixation of carbon dioxide by green plants and the
formation of a carbamate moiety [100]. The natural enzyme fixes carbon dioxide by
reaction with the nitrogenated amino acid lysine, with the participation of a
magnesium or manganese complex.

This feature, the formation of a carbamate from atmospheric carbon dioxide and
its stabilization, has been reproduced by an artificial model (Figure 27.28) [101].

In this case, the enzyme model 98 involves the participation of a copper cation
coordinated to a terpyridine included in a nitrogenated macrocycle. The copper
complex acts as Lewis acid, facilitating the carbon dioxide reaction and helping
carbamate stabilization by coordination.

Finally, we end this section bymentioning other systems that can be considered as
enzyme models although they do not mimic any particular natural enzyme. These
compounds are included here because they reproduce some enzymatic properties
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such as catalysis or chiral recognition. Examples have been given in Section 27.3.5,
where we describe Diels–Alder reactions catalyzed or simply accelerated by a self-
assembled glycoluril capsule [86, 87]. These systems follow the �Michaelis kinetics�
typically observed in enzymology.

Similarly, Diels–Alder acceleration has been accomplished inside the cavity of the
covalently bonded porphyrin trimer 99 [102]. The reagents have been attached to a
pyridinemoiety andDiels–Alder acceleration takes place through coordination of the
pyridine rings to the metallic centre of the porphyrin core (Figure 27.29).

Although the acceleration is truly remarkable, it cannot be considered true catalysis
due to product inhibition. The Diels–Alder adduct binds to the trimer and so the
complex lacks catalytic turnover.

Chiral recognition by organic synthetic molecules has also been observed by self-
complementarity in size and shape between the host and one of a pair of enantio-
mers. Rebek et al. have described an example of this approach [89] (Section 27.3.5).

In a different approach, chiral discrimination can also be accomplished by the
differences between both enantiomers in number and quality of the interactionswith
the host.

For example, Figure 27.30 show a bowl shape complex 100 that binds selectively
(�)-morphine 101 (natural morphine) 43-fold versus (þ )-morphine 102 [103]. This
�bowl� is formed by a porphyrin core covalently surrounded by four cholate units.

The difference in selectivity towards the natural isomers lies in the fact that
(�)-morphine 101 has three binding-points to the host: coordination of the nitrogen
to the zinc and formation of two hydrogen bonds through the hydroxyl groups,
whereas the non-natural morphine 102, apart from the nitrogen–zinc coordination,
is only able to make a single hydrogen bond with the �bowl� 100.
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Figure 27.29 Diels–Alder acceleration inside a porphyrin trimer.
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27.5
Organic Conductors

27.5.1
Introduction

Low-cost, lightweight and flexibility are themain requirements for electronic devices
used on a massive scale [104]. The latest research on this technology demonstrates
that organic-based materials fulfill those requirements. In fact, thin film displays
based on organic light emitting devices (OLEDs) are already commercial. Obviously,
the organic compounds useful for these purposes are those with semiconducting or
conducting properties.

Many heterocyclic structures are included in materials showing electronic con-
ductivity, especially those heterocyclic rings with a heteroatom that is part of an
aromatic ring. The common role played by the heterocycle is tomodify the electronic
properties of thematerial. In this sense, electron-rich heterocyclesmake thematerial
easier to oxidize, so they will be a better carrier of holes. In contrast, electron-poor
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heterocyclesmake thematerial easier to reduce, and sowill be better electron carriers.
Taking this into account, the conductive characteristics may be tuned by adequate
selection or combination of the appropriate heterocycles.

Applying the same terminology used for semiconductors, donor (electron-rich)
heterocycles are p-type molecules, and acceptor heterocycles (electron poor) n-type
molecules. Additionally, the term �doping� is used in the sense of oxidizing
(generation of a positive charge) or reducing (generation of a negative charge) the
molecule chemically or electrochemically.

As with other organic compounds, the conductivity of one heterocycle may be
modified by a change in its chemical structure or by interactions between molecules
in the solid state. The chemical substitution of the molecule modulates the oxidation
or reduction potentials, and the interactions between molecules greatly modify the
conductivity of the bulk material.

This section discusses the conductivity of several heterocyclic materials. The
synthesis and properties of heterocyclic polymers is discussed first, followed by a
description of the conductivity of heterocyclic molecules in the bulk and how the
structure of the bulk material in the solid state affects the final properties. Finally,
single-molecule conductivity is described.

27.5.2
Conducting Heterocyclic Polymers

From the mid-1970s, conjugated polymers have attracted increasing interest due to
their electronic properties and the applications derived from them. In 2000, Heeger,
MacDiarmid and Shirakawa were awarded the Nobel Prize in Chemistry for the
discovery of metallic-type electronic conductivity in doped poly(acetylene). As there
are only a few conjugated polymers with only carbon in the backbone, the
incorporation of heterocyclic structures permits different kinds of conjugated
polymers with tunable properties. Some of these properties are related to enhanced
stability; it is generally agreed that heterocyclic polymers are more stable than all-
carbon conducting polymers. Other properties depend on the energy of the band
gap between the conduction and the valence band, which is typically 1 to 3 eV in the
neutral state. As the excitation of carriers in the neutral state would occur at energy
levels less than 2 eV, these polymeric systems would be insulators or, at best,
semiconductors [105], and they only become conductors when they are doped.
Recent efforts in conducting polymers have focused on diminishing the band gap,
but conjugated polymers with a vanishing band gap have not yet been
synthesized [106].

Figure 27.31 shows a selection of the most important heterocyclic conducting
polymers: poly(thiophene)s 103, poly(thiazole)s 104, poly(pyrrole)s 105, poly(sele-
nophene)s 106, poly(furan) (107), poly(pyridine-2,5-diyl) (108), poly(pyridazine-3,6-
diyl) (109), poly(quinolinediyl-5,8-diyl) (110), poly(isoquinoline-1,4-diyl) (111), poly
(1,5-naphthyridine-2,6-diyl) (112), and poly(quinoxaline-5,8-diyl) 113. In general,
these polymers are synthesized by two different methodologies: electrochemically
and/or chemical coupling. As the final properties verymuch depend on the synthetic
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method used, we discuss the alternative synthetic methods for each polymer and the
consequences of selecting one or the other.

Poly(thiophene)s 103 are the most extensively studied conducting heterocyclic
polymers. The first electrochemical synthesis, directly from thiophene, was devel-
oped in 1982 [107], yielding an oxidized doped, black film over the electrode. The
material was insoluble in common organic solvents. However, some physical
properties could be measured, such as the band gap [108] and conductivity [107],
from the film removed from the electrode. The neutral polymer was obtained by
carrying out a reduction over the electrode.

Several improvements to the reaction conditions, changing concentration, elec-
trolyte, solvent, electrodematerial and electrical conditions [109], have produced poly
(thiophene)s with increased conductivity [110]. Another approach for the electro-
synthesis of high-conducting polymers is the use of substituted thiophenes. The aim
of such substitution is to make the material more ordered and more processable,
facilitate the electropolymerization by reduction of the oxidation potential, and, in
some cases, make the polymer more stable in air. Consequently, the electropolymer-
ization of many different substituted thiophenes has been reported; Figure 27.32
shows a selection of the most relevant.
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Polymer 114 has been used as a model compound owing to its better stereoreg-
ularity and conductivity [111], which are intimately related. Polymer 115 (PEDOT) is a
processable polymer with an environmental stability that makes it a commercial
polymer solution [112].

Poly(thiophene)s are also prepared by chemical methods, following two general
approaches: chemical oxidation (typically using Fe3þ as oxidant), resulting in
polymers in their oxidized state, and chemical coupling of organometallic com-
pounds as the best method for directly synthesizing polymers in their neutral state.

Themost efficient method for the preparation of stereoregular poly(thiophene)s is
the chemical coupling of organometallic thiophene derivatives. The stereoregularity
is an important issue in conducting polymers because it affects directly the transport
of carriers between chains. A good stereoregularity in 3-substituted thiophenes is
achieved with a head to tail coupling along the polymer chain.

Two approaches to total regioregular polymers have been independently developed
by McCullough [113] and Rieke [114] using magnesium and zinc organometallic
derivatives, respectively (Scheme 27.14). For example, a polymer with R¼CH2O
(CH2)2O(CH2)2OCH3 has been prepared with very high regioselectivity by McCul-
lough [115], showing, to the best of our knowledge, the highest conductivity reported
for a polythiophene.

Poly(thiazole)s 104 have been prepared by dehalogenation–polycondensation of
2,5-dibromothiazoles [116] using a Ni(0) complex. This synthetic method does not
allow the preparation of regioregular polymers head to tail, and mixtures of head to
tail and head to head are obtained along the polymeric chain. In this sense, the
polymerization of 5,50-dibromo-2,20-bithiazoles is more convenient [117], resulting
in polymers with the structure shown in Figure 27.33.

S Br

R

S

R

BrM
n

Ni(DPPP)Cl2, THF

-5  to 25ºC

M = Mg, Zn
117116

20 - 98%
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As expected for these polymers, the introduction of an imine nitrogen in the
heterocyclic structuremakes thematerialmore electron poor than the equivalent poly
(thiophene)s, which is demonstrated by a shift in the redox potential [117]. These
polymers are insulators in their neutral state, but the conductivity increases in the n-
doped state (with sodium naphthalide in THF [117]).

Poly(pyrrole)s 105 were the first conducting heterocyclic polymer directly synthe-
sized [118] by electropolymerization (of pyrrole), although they showed moderate
conductivities. Substitution by a methyl group at the 3-position of the pyrrole ring
improves the stereoregularity and conductivity of these polymers [119]. Chemical
oxidative coupling, using FeCl3 as oxidant, allows its synthesis with a conductivity
similar to the best poly(pyrrole) prepared by electropolymerization [120].

Poly(selenophene)s 106 and poly(furan) (107) are prepared by direct electro-
polymerization of selenophene [121] and furan [122], respectively. The both show
low conductivity.

Polymers 108–113, having one or more imine nitrogens, have been prepared by
dehalogenation–polycondensation of the appropriate dihalogen monomer, using
zero-valent Ni complexes [123], except for poly(pyridazine-3,6-diyl) (109) [124],
which has been prepared by the electrochemical polymerization of pyridazine. In
the neutral state, the conductivity of these polymers is very low, but when doped
with sodium naphthalide the conductivity increases, in some cases by several
orders of magnitude.

The electronic properties of heterocyclic conducting polymers have been taken
account for their application in several devices [125, 126]. Although much work is
necessary to use conducting polymers in the same way as metals (copper has a
conductivity of 50 000 S cm�1, and in the best case for polythiophenes the
conductivity is 5500 S cm�1), in some cases very good behavior as semiconductors
is found. These applications are divided into two groups, depending on the
oxidation state of the polymers. Thus, in the oxidized or reduced forms, conduct-
ing polymers may act as anticorrosion protectors (mainly polymers with conduc-
tivities that are not pH dependent), sensors and electrochemical devices, batteries,
electrochromic cells, controlled-release applications, radar applications, infrared
polarizers, and so on. In the neutral state, they have been used as OLEDs and TFTs
(thin film transistors).

27.5.3
Conducting Heterocyclic Molecules in the Bulk

Well-ordered systems based on heterocyclic molecules also show very interesting
electronic properties, related to their semiconductor character. To obtain good
performance of the devices made with these compounds (OLEDs, TFTs and solar
cells), they have to be disposed over a surface with the maximum of interactions
between the molecules, allowing a good mobility of hole and electron carriers [127].
There are several methods by which to create such well-ordered arrangements of
molecules: crystallization, chemical vapor deposition (CVD), Langmuir–Blodgett
films, mesomorphic structures arrangements, and so on.
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Thiopheneoligomers119, or structures based in the thiophene ring, are among the
most interestingheterocyclicmoleculeswithapplications inTFTs(Figure27.34) [128].
These compoundsaremainlyp-type semiconductors; although thereare somen-type,
it is well known that p-type heterocyclic molecules are more stable than n-type [129].
Themain reason for thehighmobility of carriers lies in their ability to formp-stacking
face to face structures in the solid state after depositionover a surface,which facilitates
charge transport between the molecules [130].

Of the synthesized oligomers 119, from tetramer to octamer, the hexamer 120with
R¼C6H13 shows the best behavior [131]. To increase the air stability of oligothio-
phenes, the p character has been lowered by incorporation of electron-poor thiazole
(Figure 27.35) [132]. Air stability is crucial for application in real devices.

Commercially available pentacene, a non-heterocyclic compound used for TFT
purposes, shows promising results. Consequently, some heterocyclic compounds
with a related structure have been prepared and tested (Figure 27.36). Dimer
121 [133] and dialkyl anthradithiophene 122 [134] show very good performances in
TFTs devices.

Tetrathiafulvalene derivatives (Figure 27.37) have been extensively used as charge-
transfer salts and are discussed below. However, in the context of TFTs, some
derivatives have prepared recently and their electronic properties studied. Com-
pound 123 [135] shows the best performance, although tetrathiafulvalene 124 [136]
with electron-poor nitrogen heterocycles is more stable in air.

Thiophenesmay also act as n-type semiconductors if appropriate groups are linked
to the thiophene ring. Thus, alkyl fluorinated oligomers of thiophene (from two to six
thiophene rings) have been studied [137]. Among them, the best performance was
found for tetramer 125 (Figure 27.38). The inclusion of ketone groups in 125 (126)
increases the performance by several orders of magnitude and also improves air
stability [138].

Although thiophene oligomers are the most commonly used heterocyclic com-
pounds for TFTdevices, other heterocycles can also participate, and several studies of
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TFTdevices based on nitrogen heterocycles have been performed. For example, very
good results have been obtainedwith compound 127, a p-type semiconductor derived
from carbazole (Figure 27.39) [139].

Finally, an interesting heterocyclic skeleton that has been used as an n-type charge
carrier is the metallophthalocyanine 128 substituted with 16 fluoro atoms [140]
(Figure 27.40). Molecule 128withM¼Cu in combination with hexamer 119 (R¼H)
has found application in large-scale complementary integrated circuits [141].

Other types of organic molecular conductors are those formed by charge-transfer
complexes. The discovery of the high conductivity (10 000 S cm�1 at 54K) of the 1 : 1
donor–acceptor charge-transfer complex salt between tetrathiafulvalene (129) and
tetracyano-p-quinodimethane (130) [142] (Figure 27.41) has opened a new field in
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materials, with conductive properties varying from semiconductors to superconduc-
tors. A brief description of several heterocycles used as donors or acceptors for
charge-transfer complexes is given below.

Several modifications of compound 129 have been made to obtain newmolecules
so as to increase the interactions in the crystalline state and reduce the ionic potential,
to favor the electron donation. Some of those heterocyclic compounds, shown
in Figure 27.42 [143, 144], exhibit either metallic conduction, when they interact
with organic acceptors, or even superconduction when crystallized with some
inorganic anions.

The incorporation of heteroatoms other than O, S and Se also produces materials
for charge-transfer complexes salts. The structure of these compounds (136) is
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similar to that of tetrathiafulvalenes although they present lower air stability
(Figure 27.43) [145].

In general, all these molecules present conductivity when they form charge-
transfer complexes. Of particular note is the remarkable superconductivity transition
at low temperature for molecule 132 (X¼Se; Figure 27.42) when salts are formed
with anions such as PF6

�, AsF6
�, SbF6

�, TaF6
�, BF4

�, ClO4
�, ReO4

�, or NO3
� [146].

Although less work has been carried out on charge-transfer complexes with
acceptors derived from heterocycles, several compounds have been reported
(Figure 27.44) [147, 148]. Molecule 137, a Ni complex with heterocyclic ligands,
forms an interesting charge-transfer salt with Li(15-crown-5-ether), which is, at the
same time, electron conductor by 137 and ionic conductor by the crown ether [149].

Very interesting systems are those in which the conduction is tailored to a
preferred direction, such as in columnar discotic mesogens. These systems are
packed in columns and have the appropriate electronic characteristics. They can
transport electron or hole carriers along the column direction. Several heterocyclic
structures, mainly based on pyridine derivatives, have been described for the
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preparation of n-type molecules capable of being ordered in columnar discotic
mesophases. Figure 27.45 shows two examples of well-characterized compounds
of this type [150, 151].

27.5.4
Single Molecule Conductivity

A very intriguing technological challenge is the reduction of the size of the
components in computers and computerizedmachines. Surprisingly, this reduction
has followed the �Moore�s law� for the last 30 years, whichpredicts that thenumber of
components per chip doubles every 18 months [152]. It is expected that technology
based on siliconwill not be useful when a certain size is reached, and, consequently, it
will be necessary to change that technology. In an extreme approach, the electronic
components could be formed by appropriate monomolecules [153].

One of the most studied devices at the molecular level has been the rectifier. The
structure of molecules that shows a rectifier effect follows two proposals: the first is a
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linkage between donor and acceptor parts of the molecule through a s-bridge, as
suggested Aviram and Ratner [154], and the second is related to the p-n junction in
silicon diodes. Figure 27.46 shows two molecular examples related to the latter.

Compound 141 [155], which can form Langmuir–Blodgett films, has been layered
over ametal surface and the I–V (intensity of electric current versus electric potential)
curves obtained using STM (scanning tunneling microscopy). The curve is asym-
metric, as it is expected for a rectifier. Molecule 142 [156] has been directly linked to a
gold surface at one extreme and to a gold nanoparticle at the other extreme, allowing a
more convenient way to measure the rectifier effect by STM. Moreover, the rectifier
effect observed for this molecule can be inverted by protonation.
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Figure 27.46 Two molecules showing a rectifier effect.
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28
Solid Phase and Combinatorial Chemistry in the Heterocyclic Field
Jos�e M. Villalgordo

28.1
Introduction

Over recent years, disciplines like molecular biology, biochemistry and genomic
sciences, have undergone enormous development and an ever increasing number of
potentially relevant biological targets (e.g., receptors, enzymes, transcription factors,
modulators, chaperones) have been identified, expressed and isolated in pure form
and in macroscopic quantities, allowing the study their structure, function and
biological role in living systems. In addition, the elucidation of the entire human
genome is expected to further expand the number of novel biological targets.
Through techniques of crystallization and co-crystallization, numerous crystal
structures of pharmacologically relevant proteins (e.g., HIV-proteinase [1], insulin
receptor kinase domain [2, 3], calcineurin/FKBP12-FK506 complex [4], platelet
derived growth factor (PDGF) [5, 6] and collagenase [7]) became available, opening
the way to drug development programs that turned out to be very successful. As a
direct consequence, during last 20 years, drug discovery has been strongly influenced
by structural knowledge of target proteins and molecular modeling techniques,
which have allowed in some cases the design of tailor-made ligands through the
so-called �rational drug design approach.�

The discovery of novel biological targets has been paralleled by the development of
novel assays. Usually, after a target protein has been identified and selected it is
expressed and purified using modern biochemical techniques. Once the material is
available in pure form and sufficient quantity, the phases of structural determination
and assay development generally start simultaneously. The use ofmodern informatic
systems, robotics and miniaturization has allowed successful transfer of the new
developed assays into a format suitable for high-throughput screening (HTS). By
using HTS techniques it is possible to test several thousand compounds per day
against a given biological target (Figure 28.1).

Depending on the type of biological assay, once it is transferred to a suitable HTS
format, the compound collection is screened (as individual compounds or as
mixtures) in a completely random fashion, or, in turn, only a subset is selected
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based on 2D- and 3D-clustering techniques [8] and then screened. After an active
ligandmolecule has been identified it can serve as a starting point for hit-to-lead and
lead optimization programs. Alternatively, in the case where crystals suitable for X-
ray crystallography are available, the ligand molecule can be co-crystallized and the
resulting structural information used for structure-based �de novo� design to find
more potent ligands. In the ideal situation the rational and random approaches
converge into lead compounds showing common structural features that are
ultimately transferable into a development compound.

In addition, since a successful clinical candidate originates on average from the
evaluation of a pool of 10 000 related analogues, the appearance of this literal burst of
novel biological targets together with the introduction ofHTS techniques has created
an increasing need for novel sources of structurally and chemically diverse com-
pound collections.

How could we then satisfy this increasing demand for novel compounds that can
feed our HTS systems in the different drug discovery programs? The different
sources for novel lead compounds can be grouped basically into the categories given
below.

28.1.1
Natural Products

Natural products isolated from plants, microorganisms and animals of terrestrial or
marine origin have a long tradition inmedicine [9]. Nature offers a virtually unlimited
plethora of diverse chemical scaffolds, often going beyond human imagination.

New Biological

Targets

Molecular BiologyBiochemistry

Genomics

High Throughput Screening

(HTS)

Assay developments
Informatics
Robotics
Miniaturisation

Rational Drug Design

Crystallization
Co-crystallization

Computer-aided
drug design

Screening Capacity: Several thousands of different compounds per day

Figure 28.1 Flow chart outlining the steps in modern drug discovery.
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Natural products are, structurally and chemically, themost diverse source for finding
new lead compounds; with a molecular weight within the range �400 to �1000Da,
they are often biologically active (biological activity through evolution). For example,
taxol [10], monensin [11], avermectin [12], mitomycin [13–15], FK506 [16], and
epothilones are just a few natural products that have served as inspiration sources
for intense lead optimization programs (Figure 28.2). Usually, natural products
display such enormous structural complexity that, often, the process of lead opti-
mization is very time consuming. In addition, the development of a technical
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synthesis is generally very challenging and therefore the manufacturing costs of the
final drugs are very high.Despite these drawbacks, natural productswill undoubtedly
always play a key role in finding leads.

28.1.2
Peptides, Peptoids and Peptidomimetics

Peptides are another source for feeding HTS systems for novel lead finding. There
are many bioactive peptides known and their preparation is generally fast through
linear assembly of similar building-blocks. They have usually a molecular weight
higher than 600Da and in general they have a low bioavailability, undergo easy
proteolytic degradation and, therefore, are usually �drug-like.� The transformation of
a bioactive peptide into a molecule that maintains biological activity, while removing
the undesired properties (conformationalflexibility, low bioavailability, etc.), requires
the design and preparation of peptidomimetic structures. This is, however, a complex
and non-trivial task that usually requires several trial and error cycles.

Therefore, although peptides are not usually good candidates for effective drugs,
many pharmacologically relevant target receptors exhibit large surface spanning
areas where it is still very difficult to find small molecules as inhibitors. For such
purpose, peptoids, peptides and peptidomimetics derived from structural informa-
tion of the targets can be of great value as tools for finding leads.

28.1.3
Small Synthetic Organic Molecules

A highly useful source for finding novel lead compounds is compound collections of
synthetic small-molecular-weight compounds that have been accumulated over the
past in industrial companies and academic institutions. These compound collections
are usually derived from a limited amount of �privileged� core structures such as
benzodiazepines, pyridines, dihydropyridines, pyrimidines, phenothiazines and
others and, therefore, they exhibit a more limited chemical and structural diversity
than natural products, but, in turn, due to their usually simpler structure, a given hit
or lead can be subsequently optimized in a rather straightforward manner, resulting
in low manufacturing and development costs.

In fact, examination of the list of themost successful prescription drugs already on
the market (data from 2004), reveals that most of them are small-molecular-weight
compounds that generally bearing a heterocyclic nucleus (Figure 28.3).

Hence, chemists have been challenged to develop new high throughput synthesis
techniques to satisfy this growing demand for screening compounds and allow a
reasonable rate to be maintained for the detection of valuable hits and leads for
subsequent lead optimization. This new demand stands behind the birth of com-
binatorial and parallel chemistry. Small-molecular–weight compound libraries from
combinatorial and parallel chemistry are excellent tools to complement other feeding
sources of HTS systems in terms of numbers and diversity. Hits and leads that have
emerged from such a library are especially valuable since the optimization process is
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speeded up by the usually fast and convergent assembly strategies that have been
used to synthesize the compounds. The structural complexity of the resulting
compounds is only limited by the possible chemical strategies, the reactive mono-
mers or building-blocks that can be employed and the number of those that are
available and can be engaged for the final derivatization of a given library.

Combinatorial chemistrywas initially developed to generate vast arrays of different
peptidic molecules and can be performed in solution and/or on solid support. The
resulting products can be obtained as individual compounds (parallel synthesis) or as
mixtures of defined composition. In fact, combinatorial chemistry was inspired by
nature. Nature, starting from just 20 simple amino acids, can obtain large combina-
tions of different peptides with different functions. In conventional organic synthe-
sis, one building block of typeA (e.g., an acid chloride) is allowed to react with another
building-block of type B (e.g. an amine) to afford one product C (e.g., an amide). If,
however, we can employ ten different building-blocks of type A and ten different
building-blocks of typeB, all possible combinations of the availablemonomerswould
afford up to 100 different compounds of type C, and that just in one single synthetic
step (Figure 28.4).

In a multistep, linear assembly, a synthetic sequence for instance, the combina-
torial capacity is of course greatly expanded. This is shown schematically in
Figure 28.5, where in a four-step synthesis, simply by using ten different build-
ing-blocks of each class for every step, their combinations could afford potentially up
to 10 000 different compounds.

Organic synthesis in solution requires that, for every single synthetic step, the
product or intermediate produced be isolated and purified. Common techniques
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used in organic synthesis for the isolation and purification of the compounds are
extraction, distillation, chromatography and crystallization. The fastest way to isolate
a compound in pure form is crystallization: The product is precipitatedwith a suitable
solvent, filtered off, washed and used readily in the next step. This is only possible of
course when the product is a solid. This is then the rationale behind the use of solid-
phase organic synthesis (SPOS).

Schematically, SPOS consists in having a suitable solid support that is chemically
modified to introduce a linker that in turn bears a given available functional group
where the synthetic procedure can begin. The targeted molecule is then grown onto
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the solid support through suitable synthetic procedures and, finally, cleaved from the
support (Figure 28.6).

28.2
Solid Supports

Formany years, polymeric supports have beenmainly used to immobilize substrates,
reagents, and catalysts. In addition, insoluble polymeric matrices are widely used in
solid–liquid separations processes. The polymers that have been used in the
synthesis of small organic molecules can be grouped into the following classes:

. Crosslinked organic polymers: these are insoluble in organic solvents. They can
be in the form of microporous polymers or gels [e.g., polystyrene, poly(4-
vinylpyridine)] or as a macroporous polymers (e.g., polystyrene-derived beads).

. Linear organic polymers: these are usually soluble in certain organic solvents but
insoluble in others [e.g., poly(ethylene glycol) (PEG), polystyrene].

. Dendrimers: their solubility depends on size and shape.

. Inorganic supports: such as silica gel, alumina, clays, graphite or porous glass.

Solid phase chemistry began with Merrifield�s seminal polypeptide synthesis [17].
Owing to the highly repetitive cycles of removal of protecting groups, washing and
coupling procedures, peptide synthesis became an ideal target for solid-phase
synthesis. In recent decades, solid-phase peptide synthesis has matured to become
a highly automated and powerful technology. Closely related to the linear assembly
strategy of polypeptides, other biopolymers like oligonucleotides [18, 19] and
oligosaccharides [18, 20] have also attracted great interest. In recent years, and due

Solid Support Solid Support Linker FG

Chemical Functionalisation

Solid Support Linker FG Molecule

Synthetic manipulations
Cleavage from Support

Compound

Figure 28.6 Schematic outline of solid phase organic synthesis (SPOS).
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to the increasing demand for novel molecules for HTS, the synthesis of small
molecules on solid supports has been generally performed by using either soluble
linear polymers (usually PEG [21, 22] or polystyrene-derived supports [23–26]) or
insoluble matrices. With the former, the polymer-bound substrates are isolated and
purified by precipitation [21, 22, 24, 25], ultrafiltration [27], or dialysis or gel
filtration [23]. This technology takes advantage of combining the well-established
solution chemistry with simple purification procedures. These purification proce-
dures, however, are often very time-consuming and not generally easily adapted to
automated systems.

However, the vast majority of applications in the field of solid-supported organic
synthesis use insoluble polymeric matrices – some advantages of which can be
summarized as follows:

. Purification can be performed by simply washing and filtration cycles.

. The use of large excesses of reagents is allowed, with the general benefit of driving
the reactions to total completion. The excess of reagents are easily removed by
washing with suitable solvents.

. Reaction, washing and filtration steps can be easily automated.

Among the polymeric supports that have been employed in solid phase synthesis,
polystyrene-derived resins crosslinked with varying amounts of divinylbenzene
(DVB, typically 1–5%) are of the most widespread use. These resins are simply
spherical beads of different sizes. Depending on the polymerization protocol, these
resins can be micro- or macroporous. Resins that have found wide applications in
organic synthesis are:

. Micro- and macroporous polystyrene/DVB-crosslinked resin beads (Merrifield
type-resins). These resins are fairly available, can be easily functionalized with
high loading (between 1 and3.5mmol g�1) and arewidely used in solid-supported
polypeptide as well as in small molecule synthesis.

. Polystyrene/DVB-crosslinked polymeric matrix coated with poly(ethylene glycol)
spacers of various sizes (e.g., Tentagel). These resins are less hydrophobic and
show better swelling properties in aqueous and in alcoholic solvents, but in turn
they are usuallymechanically less stable and show a lower loading degree than the
Merrifield-type resins. They have found widespread use in solid-supported
peptide- and small molecule synthesis.

. Polystyrene/DVB-derived resin beads sealed in a porous polypropylene bag (tea-
bags), developed originally byHoughten et al., have been also used,mainly for the
combinatorial and parallel synthesis of peptides. Each bag contains one type of
polymer-boundmolecule.Different tea-bags can bemixed and are allowed to react
with the same building-block, can be washed in parallel and then be separated.
Since the reactions take place in separate compartments there will be only one
type of well specified molecule in each bag. This protocol allows the synthesis of
larger amounts of material and similar to the �split-mixed� technology the
number of coupling steps is reduced while all benefits of solid-supported
chemistry are maintained.
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. Polystyrene- or polymethacrylamide-dimethylacrylamide-(copolymerized) derived
matrices grafted onto polyethylene crowns that are attached to the top of pins are
another system widely used for solid-support organic synthesis. These pins are
usually assembled in the 96-deepwell plate format. This technology, originally
developed byGeysen et al. [28–30] for the parallel synthesis of peptide libraries, has
also found applications in the synthesis of small-molecular-weight compound
collections [31–34].

. Other solid supports include foils [35] and cellulose disks [36].

28.2.1
Crosslinked Polystyrene-Derived Matrices

Crosslinked polystyrene beads are obtained by free radical initiated copolymer-
ization of styrene and variable amounts of divinylbenzene (DVB). A suspension of
water, styrene and DVB are mixed in the presence of a free radical initiator like
dibenzoyl peroxide or azoisobutyronitrile (AIBN) and heated to a suitable tem-
perature for polymerization. The aqueous phase initiates a fine dispersion of the
mixture of monomers that serves as a medium to control the reaction temperature
but does not participate in the reaction. Coalescence of monomer droplets leads to
association and the formation of conglomerates. Suspension stabilizers such as
poly(vinyl alcohol) or derivatives of cellulose are added to avoid these aggregations
and to ensure a reproducible polymerization process. These aggregation phe-
nomena can also be suppressed by addition of salts to the aqueous phase,
producing a change in the surface interface forces. Thus, the polymerization
proceeds in each droplet and initiates the formation of a polymer bed. The size of
the bed can be controlled by the stirring speed, the relative ratio between aqueous
and monomer phase, the amount and nature of the suspension stabilizers and by
the reaction temperature.

In essence, the swelling properties of the resin beads depend on the crosslinking
degree and, therefore, on the relative amount of DVB in the core monomer [37, 38].
Resins containing a low crosslinking degree (typically 1–2% DVB) show a higher
swelling capacity than those with a higher content of DVB (>5%) [39]. The size and
shape of the resin particles can be controlled to some extent by suspension
polymerization.

28.2.2
Functionalized Polystyrene Resins

The application of polystyrene-derived resins is widespread because styrene consists
of a chemically inert alkyl backbone carrying chemically reactive aryl side chains that
can be easily modified. Nowadays, a wide range of different types of polystyrene
resins with various physical properties can be easily generated by simply modifying
the crosslinking degree. In addition, numerous styrene-derived monomers are
commercially available. The main feature of polystyrene, and hence one of the main
reasons for its widespread use, is that it is chemically stable to many reaction
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conditions, while the benzene moiety can be easily functionalized in many ways
through electrophilic aromatic substitutions or through lithiations.

In general, there are twomain ways of obtaining functionalized polystyrene/DVB-
copolymers. As shown in Scheme 28.1, in approachA, a polystyrene crosslinkedwith
DVB (3) is obtained through copolymerization of styrenemonomers (1) with varying
amounts of DVB (2) followed by subsequent chemical introduction of the corre-
sponding functional group; in approach B, the functional group is already incorpo-
rated in a modified styrene-derived monomer (4).

The chemical modification of crosslinked polystyrene (approach A) offers the
advantage that only accessible benzene rings and positions on the aromatic rings are
functionalized. In turn, the disadvantage of this approach is that the reactions on
polymers are usually slower and difficult to monitor. This can significantly affect the
yields due to side reactions and thus the loading degree. ApproachB assures the exact
positioning of the functional groups and usually a high loading degree, but it needs
prior synthesis of the appropriate monomers. Since the first functionalization
determines the loading of the resin, it is important that these reactions proceed
with high yields and reproducibility.

28.2.3
Chloromethylated Polystyrenes

Although chloromethyl polystyrene was first used as an intermediate for the
synthesis of anion exchange resins [40], it was not until the introduction by
Merrifield [17] of the solid-phase peptide synthesis that its use attracted a burst of
attention. Chloromethylated polystyrenes (6) are best synthesized by Friedel–Crafts
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alkylation of polystyrene with methoxymethylene chloride in the presence of a Lewis
acid such as SnCl4 (Scheme 28.2) [17, 40].

Regarding the swelling properties of chloromethylated polystyrenes, it has been
shown [41] that up to a chlorine content of 19% (about 0.75 chlorine atoms per
aromatic ring) there is no significant drop in swelling. An increase of loading,
however, leads to a markedly less swelling capacity, indicating a higher degree of
crosslinking by �interstrand� couplings (Scheme 28.2).

For soluble polystyrenes (without DVB crosslinking), it has been shown by NMR
that the ratio of para- to ortho-chloromethylation was 95 : 5 [42]. The same ratio,
therefore, can be expected for resins with a low degree of crosslinking. The use of
ZnCl2 instead of SnCl4 in the chloromethylation reaction with methoxymethylene
chloride leads to a resin with a low degree of functionalization [43]. In addition, by
using BF3.OEt2 as catalyst and ethoxymethylene chloride as alkylating agent, the
loading degree can be controlled by the amount of catalyst used [44].

Chloromethylated resins have also been synthesized by copolymerization of
styrene, divinylbenzene and chloromethylstyrene 7 (usually as a 3 : 2 mixture of
meta and para isomers), although this approach can lead to substantial losses of
chlorine content [45–47] (Scheme 28.3).

Merrifield resin 6 with a chlorine content up to 22% (which corresponds to 1.0
chlorine atom per aromatic ring) can be obtained by copolymerization of 4-methox-
ymethylstyrene (9) and DVB and subsequent conversion using BCl3 in CCl4
(Scheme 28.4) [47].
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Chlorination of 4-methylpolystyrene 12 (obtained by copolymerization of styrene,
DVB and 4-methylstyrene) with NaOCl in the presence of a phase-transfer cata-
lyst [48] proved to be a valuable method for the preparation of microporous (1%DVB
crosslinking) as well as macroporous (20% DVB-crosslinking) chloromethylpolys-
tyrene 6 (Scheme 28.5).

+ +

Cl

m-/p-,  3:2

Cl
Copolymerisation

8721

Scheme 28.3

+ +

OMe

OMe

Cl

BCl3 / CCl4 / 0ºC

Copolymerisation

21 109

6

Scheme 28.4

+ +

CH3

CH3

Cl

NaOCl / CHCl3

Copolymerisation

BnNEt3
+Cl- / SO2Cl2

AIBN /C6H6 / 60ºC

211121

6

Scheme 28.5

2332j 28 Solid Phase and Combinatorial Chemistry in the Heterocyclic Field



Again, through NMR techniques, it could be shown that for a loading degree
higher than 2.5mmol g�1 dichloromethyl groups were also present [48]. Since the
elemental combustion analysis gave higher chlorine contents than those determined
by NMR, it was concluded that partial chlorination of the backbone also occurs.

28.2.4
Aminomethylated Polystyrene Resins

Aminomethylated, crosslinked polystyrenes constitute very valuable and versatile
resins for various applications. The amino group can be easily acylated for the
introduction of spacer and linker molecules [49–52]. It has been used also
for the synthesis of polymer-bound carbodiimides [53–55]. Scheme 28.6 shows
some of the most common synthetic procedures for the synthesis of ami-
nomethylpolystyrenes.

Although aminomethyl resins 15 can be obtained through reaction of chloro-
methylated polystyrene (6) with non-aqueous ammonia [56] with good conversion,
the reaction is rather slow. Excellent conversions are obtained, however, by using
potassiumphthalimide [51, 53–55, 57] instead, followed by treatmentwithhydrazine.
The same phthalimido intermediate can be obtained from polystyrene 3 and
N-(hydroxymethyl)- or N-(chloromethyl)phthalimide in the presence of an acid
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catalyst such as HF, CF3SO3H or SnCl4 [49, 50]. The loading degree (typically
0.05–3.6mmol g�1) can be controlled by the amount of reagent and the concentration
of the catalyst by using N-(chloromethyl)phthalimide in CH2Cl2 and using FeCl3 as
catalyst [58]. Loadings as high as 7.3mmol g�1 can be achieved, but the resultant
resins show very limited swelling properties. Aminomethylated resins can also be
obtained through the reaction of polystyrene with N-(hydroxymethyl)trifluoroaceta-
mide followed by hydrolysis with KOH in EtOH [50].

28.2.5
Other Functionalized Polystyrene Resins

Besides aminomethylpolystyrene 15, many other functionalized polystyrene resins
can be prepared from chloromethyl resin through nucleophilic displacement. For
instance, when Merrifield resin 6 is treated with KOAC in DMA at 85 �C, acetylated
polymer 16 is obtained [59, 60]. Reduction of 16 with LiAlH4 or hydrazinolysis at
room temperature affords hydromethyl polystyrene resin [60] 17. Alternatively, 17
can be obtained directly by reaction of 6 with KOH in refluxing 1-pentanol
(Scheme 28.7) [61].

Reaction of 6 with thiourea in refluxing ethanol/dioxane leads to polymer-bound
thiouronium salt [62] 18 that can be hydrolyzed to thiol 20. Alternatively, reaction of 6
with KSAc in DMFaffords 19, which can be also reduced with LiBH4 to give the thiol
resin (Scheme 28.8) [63].

In addition, Merrifield resin 6 is easily transformed into cyanide derivative 21,
which in turn can be transformed into the corresponding carboxylic acid 22 or acid
chloride [64] 23. Phosphine 24 is also easily available by reaction with Li/ClPPh2
(Scheme 28.9) [65].

Finally, oxidation of Merrifield resin 6 can also afford the corresponding benzal-
dehyde resin 25 and, hence, polymer-bound benzoic acid 26 (Scheme 28.10) [66, 67].
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The synthesis of other functionalized polymers containing spacer or linker units
usually starts with a Friedel–Crafts alkylation of the basic polystyrene resin 3.
Reaction of polystyrene with propylene oxide in the presence of SnCl4 yields a resin
containing a b-hydroxyl group (27). Prior to addition of the reagent, the resin is
treated with the Lewis acid catalyst to afford a complex [68]. Alkylation of polystyrene
resins withv-bromoalkenes in the presence of trifluoromethane sulfonic acid yields
bromoalkyl polystyrene 28. This reaction presumably proceeds without additional
crosslinking, as shown, in comparison to similar experiments with soluble polymers
(Scheme 28.11) [69].

Friedel–Crafts acylation of micro- and macroporous polystyrene resins yields the
corresponding benzophenone-derived resins 29. These functionalized resins can
be further transformed into trityl- (30 and 31), oxime-derived (32) or into photolabile
o-nitrobenzhydryl derived resins (33), which have been widely used in peptide
synthesis and oligonucleotide chemistry (Scheme 28.12) [70–72].

Strongly acidic cation-exchange resins of type 34 can be obtained by sulfonylation
of polystyrene using H2SO4 or ClSO3H (Scheme 28.13).

Nitration of polystyrene resins 3 followed by reduction with SnCl2 results in the
formation of aniline 36, which can be further transformed into the corresponding
isothiocyanate 37 (Scheme 28.14). This polymer has found applications as an
insoluble reagent for Edman degradation [73].
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As discussed above, many different functionalized polystyrene-derived resins can
be obtained through electrophilic aromatic substitution reactions; however, another
valuable synthetic route to other functionalized resins is based on the lithiation of
polystyrenes.
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Lithiated polystyrene resins can be obtained either via convenient bromine–lithium
exchange using n-BuLi, starting from 4-bromo-substituted polystyrene [65, 74–78], or
by direct lithiation of polystyrene using n-BuLi in cyclohexane in the presence of
TMEDA [74, 79]. The latter method, however, yields a mixture of para and meta
isomers (40). Bromination of microporous resins in the presence of a Lewis acid
catalyst is generally carried out in the dark, whereby the loading degree can be
conveniently controlled by the amount of bromine used in the reaction [74]. Macro-
reticular resins canbebrominatedusingBr2 andFeCl3 [39], or byusing a stoichiometric
amount of thallium acetate as Lewis acid catalyst (Scheme 28.15) [76, 77].

The bromine–lithium exchange on macroreticular polystyrene resins can be
driven to completion by using iterative lithiation reactions with n-BuLi in THF [74].
Highly loaded microporous resins can be lithiated successfully in toluene or
benzene. Direct lithiation reaction of microporous polystyrene-derived resins (2%
DVB) using n-BuLi in cyclohexane in the presence of TMEDA is much faster than
that of macroreticular resins (20% DVB) [79]. Notably, for this reaction, THF and
benzene are not adequate solvents. The use of cyclohexane as solvent allows the
synthesis of resins with a low or medium loading degree (up to 2.0mmol g�1). For
higher loadings, the bromination–lithiation route needs to be used.
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Lithiated polystyrene is a very versatile intermediate, since many differently
functionalized polystyrene-derived resins can be obtained through different chem-
ical reactions [76, 78, 80]. Scheme 28.16 shows several examples.

28.2.6
Polyacrylamide Resins

Inmicroporous resins, the corresponding functional groups can only react when the
polymers show a high degree of swelling. These swelling properties depend largely
on the nature of the functional groups present. Thus, during a synthesis on a
polymeric support, the swelling properties of the resin can undergo significant
changes. For instance, in the Merrifield peptide synthesis, the starting polystyrene-
derived resin is highly hydrophobic but becomes increasingly hydrophilic as the
synthesis of the peptide evolves and the peptidic chain grows. Owing to such
phenomena, certain peptide sequences are rather difficult to synthesize on standard
Merrifield resins. To improve this situation, Sheppard et al. [81] have altered the
hydrophobic nature of the polystyrene polymer backbone by introducing a poly-
acrylamide polymer backbone, which they felt is quite similar to a peptide.
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The first polyacrylamide resins were prepared by copolymerization ofN,N-dimethy-
lacrylamide (46) (basicmonomer), ethylenebisacrylamide (47) (crosslinking agent) and
N-acryloyl-N0-(tert-butoxycarbonyl-b-alanyl)hexamethylene diamine (48) (functiona-
lized monomer) (Scheme 28.17) [82]. Monomer 48 is essentially used to functionalize
thepolyacrylamidepolymerafter liberationof theprimaryaminogroupof theb-alanine
moiety. The hexaethylenediamine groups serve as spacers to separate the reactive
groups.Monomer48was later replacedbyacryloylsarcosinmethyl ester (49) [83],which
is chemically very similar to the basicmonomer, to achieve a homogenous distribution
of the functional groups. Copolymerization of monomers 46, 47, and 49 initiated by
persulfate in an emulsion with 66% aqueous DMF, 1,2-dichloroethane and cellulose
acetate or butyrate yields beads with a high swelling degree (in H2O, DMF, MeOH,
Py or CH2Cl2, the volume increases ten times with respect to the original volume; in
1,4-dioxane about five times) [81, 83]. Aminolysis of the ester groups using ethylene-
diamine affords resins containing free primary amino groups.

28.2.7
TentaGel Resins

TentaGel polymers, originally developed by Bayer and Rapp [84, 85], consist of a
polystyrene matrix covalently coated with poly(ethylene glycol) (PEG) chains and
were intended initially for solid-phase peptide synthesis in analogy to the polyacryl-
amide resins. Subsequently, TentaGel resins have foundwide applications in thefield
of solid-supported synthesis of small molecule libraries [33, 86]. The PEG chains are
introduced by anionic polymerization of ethylene oxide with hydroxylated cross-
linked polystyrene beads (Scheme 28.18).
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An alternative procedure towards TentaGel resins uses the functionalization of
b-hydroxy-polystyrenes, which avoids the grafting of acid-labile benzylether groups to
the polymeric backbone (Scheme 28.19) [68].

TentaGel resins are composed up to 60–80% w/w of PEG units. These PEG
units largely determine their physical properties. Thus, they show good swelling
properties in protic and polar solvents such as H2O, MeOH, CH2Cl2, MeCN,
THF or DMF, whereas in apolar solvents, like diethyl ether, they hardly swell at
all. In general, they show complementary swelling properties to polystyrene
resins.

Important features of TentaGel resins are those derived from the high flexibility
imparted by the PEG chains, which can be observed in NMR [84, 85]. The reactive
centers are allocated at the end of the PEG spacers and are, therefore, easily
accessible. However, loadings of commercially available TentaGel resins range
between 0.15 and 0.3mmol g�1, which are significantly lower than those of poly-
styrene resins.

28.2.8
Novel Polymeric Supports

PEGA is a copolymerizate of bis(2-acrylamidoprop-1-yl)-PEG1900 (54), 2-acrylami-
doprop-1-yl[2-aminoprop-1-yl] PEG300 (55) and N,N-dimethylacrylamide (46)
(Scheme 28.20) [87].
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PEGA can be obtained by bulk-polymerization followed by granulation of the
polymerizate or alternatively by suspension polymerization resulting in the forma-
tion of suitable beads for synthesis. The PEGA beads show excellent swelling
properties in non-protic solvents like CH2Cl2 and DMF and also in protic solvents
like alcohols, H2O and even aqueous buffers. For difficult peptide synthesis on other
polymeric supports, the corresponding amino acid coupling reactions proceeds
faster and with higher efficiency on PEGA resins. In addition, PEGA resins are
also compatible with enzyme-catalyzed reactions and have been employed for the
enzymatic synthesis of a glycopeptide using a b-(1–4)-galactosyltransferase [88].

In recent years, two novel PEG-crosslinked resins derived from polyoxyethylene
polystyrene (POEPS) and polyethylene polyoxypropylene (POEPOP) have beenmade
available for solid-phase organic synthesis. These resins lack the amide-derived
polymer backbone and, thus, show increased chemical stability [89]. POEPShas been
obtained by radical polymerization of monomers 56 and 57 as shown in
Scheme 28.21.

POEPOP resins are obtained by anionic polymerization of monomer 58 and 59
(Scheme 28.22).
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The loading capacity can be controlled by the corresponding ratio of the mono-
mers. Both POEPS and POEPOP resins show excellent swelling properties in
solvents such as CH2Cl2, DMF and H2O.

28.2.9
CLEAR Resins

CLEAR resins (cross-linked ethoxylate acrylate resins) belong to a group of highly
crosslinked resins with good swelling properties. They are obtained by polymer-
ization of monomers 60–65. CLEAR resins differ from the standard crosslinked
polymers by the incorporation of branched molecules such as 60 and 65. The amino
groups present in monomers 61 and 62 constitute the attachment points for
potential linker groups (Scheme 28.23). CLEAR resins show excellent swelling
properties in protic and aprotic polar solvents such as DMF, TFA, H2O, MeOH,
MeCN, THF and CH2Cl2, whereas they swell gradually in more lipophilic solvents
such as toluene, AcOEt and hexanes. In addition, these resins show a high
mechanical stability. Their properties have been compared with polystyrene, PEGA
and TentaGel resins [90].

28.3
Linkers for Solid-Phase Organic Synthesis

Linker molecules play a key role in every successful synthetic strategy on solid
support. They covalently link the polymeric support and themolecules that are being
synthesized. Linkers are usually bifunctional spacer molecules that contain on one
end an anchoring group for attachment to the solid support and on the other end a
selectively cleavable functional group used for the subsequent chemical transforma-
tions and cleavage procedures.Whereas linkerswere traditionally designed to release
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one specific functional group (e.g., carboxylic acids and amides in peptide synthesis),
the synthesis of diverse small-molecular-weight compound libraries has required the
introduction of new additional linkers and hence of new cleavage strategies. Among
those, the use of traceless linkers, and linkers that allow cyclization-assisted cleavage
andmultidirectional cleavage, has emerged as a powerful tool in solid-phase organic
synthesis.

A given linker should allow the easy attachment of the startingmaterial to the solid
support through a given functional group. It should be also chemically inert during
the construction of the targetmolecules and, therefore, be stable under a wide variety
of reaction conditions. Finally, it should allow for a selective cleavage under very
specific reaction conditions without damage of the final targeted product. Upon
cleavage, either the originally attached or a new functional group may be generated.
In addition, the so-called �safety-catch� linker principle has been rediscovered for
combinatorial synthesis. A �safety-catch� linker is usually converted from a chem-
ically inert entity into reactive species in the very last step before cleavage.

Linker molecules, and therefore cleavage strategies, can be grouped into the
following categories:

. Linker molecules releasing one specific functional group; monofunctional
cleavage.

. Linkers that allow for cyclization-assisted cleavage.

. Linkers that allow for multidirectional cleavages, by:

– direct nucleophilic or electrophilic substitutions,

– using �traceless linkers,�

– activation of the linker molecules (�safety-catch principle�).

28.3.1
Linker Molecules Releasing One Specific Functional Group. Monofunctional
Cleavage

Monofunctional resin-cleavage has attracted wide interest in the field of organic
synthesis on a solid support [91, 92]. Monofunctional resin-cleavage strategies are
well suited for the construction of focused combinatorial libraries, where a given
important pharmacophoric group, which remains constant, is released in the very
last step. Hence, the linkage to the resin also serves as a protective group
throughout the entire synthesis. The linkers may be classified according to the
functional groups that are released from the resin. Thus, we have linkers
releasing:

. carboxylic acids

. amides

. sulfonamides

. amines

. alcohols and phenols

. other functional groups.
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28.3.1.1 Linkers Releasing Carboxylic Acids
The largest number of linkers described so far is for those releasing carboxylic
acids (and also amides) as they are closely related to peptide synthesis. In addition,
many relevant classes of pharmacologically active compounds contain this moiety.
Therefore, strategies on a solid phase that lead to compounds containing a
carboxylic acid, which is generally released at the very end of the synthesis, are
of interest for many compound classes.

Three different strategies are generally used for the attachment of carboxylic acids
to resins: (i) acylation of resin-bound benzyl alcohols 67 [93–95], (ii) O-alkylation of
carboxylates by resin-bound benzylic halides 66 [96–98], or (iii) O-alkylation of
carboxylic acids under Mitsunobu conditions [99, 100] (Scheme 28.24).

Linkers releasing a carboxylic acid group can be grouped according to the cleavage
method (Table 28.1); thus, there are linkers that are cleaved under acidic conditions
(Table 28.1 entries 1–8), under basic or neutral conditions (entries 9–14), under
transition metal catalysis (entry 15), and linkers that are photocleavable (entries
16 and 17).

28.3.1.2 Linkers Releasing Amides
As in the case of linkers releasing carboxylic acids, there are a large number of
linkers known that, upon cleavage, release an amide functional group. Table 28.2
shows widely used linkers that release an amide group, gathered according to the
cleavage conditions: acidic conditions (entries 1–6) and photocleavable linkers
(entries 7 and 8).

28.3.1.3 Linkers Releasing Amines
Some of the most widely used linkers that release an amine group are depicted and
grouped according to their releasing reaction conditions in Table 28.3.

28.3.1.4 Linkers Releasing Alcohols, Diols and Phenols
Various linker strategies for the attachment of alcohols and phenols have been
developed and some of the most widely employed examples are shown in
Table 28.4.

28.3.1.5 Linkers Releasing Hydroxamic Acids
Matrix metalloproteinases (MMPs) such as collagenase, gelatinase and others [132]
have emerged as prime targets in several therapeutic areas (e.g., in antiinflammatory
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Table 28.1 Some of the most widely used linkers that release a carboxylic acid.

Entry Name Structure Cleavage Reference

1 Merrifield resin Cl HF,
CF3SO3H

[101]

2 Hydroxymethyl
resin

OH HF,
CF3SO3H

[102]

3 Pam resin N
H

O

O

OH

HF/TFA [103]

4 Wang resin
O

OH

50% TFA [104]

5 Sasrin resin

O

OH

OMe

1% TFA [105]

6 HAL resin

O

OH

OMe

OMe

0.1% TFA [106]

7 Rink resin

O

OH OMe

OMe

1% TFA [107]

8 Trityl resin

O

R

Cl

R = H, Cl

1% TFA/
AcOH

[108]

9 — X

O

S

O O

OH

X = O, NH

NaOH [109]

10 —
X

O

S
OH

X = O, NH

NH3/TFE [110]
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and in oncology). An important class of inhibitors of MMPs is hydroxamic acids;
several drugs or drug candidates contain a hydroxamic acidmoiety. Therefore, linker
molecules releasing the hydroxamic acid moiety are very valuable tools for the
construction of focused libraries toward MMPs. Table 28.5 shows some linkers that
release the hydroxamic acid functional group.

Table 28.1 (Continued)

Entry Name Structure Cleavage Reference

11 —
X

O

OH

X = O, NH

NO2

DBU/
piperidine

[111]

12 — X

O

X = O, NH

SiMe3

OH

Bu4NF [112]

13 —

O

OH

SiMe3

Bu4NF,
CsF

[113]

14 Kaiser
resin

N

NO2

OH

N2H4 [70]

15 —
N
H

O

OH Pd(PPh3)4 [114]

16 —
X

O

OH

X = O, NH

NO2

hn/
350 nm

[56]

17 —
X

O

X = O, NH

O

O2N

OMe

OH
hn/
350 nm

[115]
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28.3.2
Cyclization-Assisted Cleavage

Among the various cleavage strategies described in the literature, cyclization-
assisted-cleavages are extensively used since they offer advantages:

. First, only those molecules attached to the solid support that have gone through
the entire synthetic sequence necessary for the cyclization reactionwill be cleaved.

Table 28.2 Some of the most widely used linkers that release an amide group.

Entry Name Structure Cleavage Reference

1 BHA

NH2

HF, CF3SO3H [116]

2 MBHA

NH2

HF, CF3SO3H [117]

3 Rink-Amide resin
X

O

O

NH2

O O

X = O, NH

TFA [107]

4 PAL resin
X

O

X = O, NH

O

NH2

O

O
TFA [118]

5 —

O

NH2

OMe

TFA [119]

6 Sieber resin

O O

NH2

1% TFA [120]

7 —

NH2 NO2

hn/350nm [121]

8 —
X

O

X = O, NH

O

OMe

NO2

NH2
hn/350nm [122]
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. Secondly, even in those cases where single synthetic steps do not proceed
quantitatively, the cyclization will nevertheless lead to pure products.

As expected, cyclization-assisted cleavage is largely independent of the nature of
the linker molecule (it depends only on the synthetic sequence that is necessary to
create the corresponding precursors) and therefore many available linkers are
perfectly compatible with cyclization-assisted cleavage procedures. One of the first
examples described in the literature was the pioneering benzodiazepine solid-
phase synthesis by Camps et al. in 1974 [136].

Table 28.3 Some of the most widely used linkers that release an amine group.

Entry Name Structure Cleavage Reference

1 Rink
chloride O

Cl OMe

OMe

TFA [123]

2 Chlorotri-
tyl resin

Cl

Cl

TFA [124]

3 BAL resin

O

CHO

OMe

OMe

TFA/
Et3SiH

[125]

4 —

O

Cl

SiMe3

Bu4NF/
CsF

[113]

5
SO2Cl

NO2

PhSH,
K2CO3

[126]

6 N
H

O
H
N

O

O

O NR1NR2

O

Pd(0) [127]
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Table 28.4 Linkers that release alcohols, diols and phenols.

Entry Name Structure Cleavage Reference

1 Rink chloride

O

Cl OMe

OMe

TFA [123]

2 Chlorotrityl resin
Cl

Cl

TFA [124]

3 — O
O

TFA,
PPTS/EtOH

[128]

Wang Resin
O

OH

TFA [104]

Sasrin resin
O

OH

OMe

1% TFA [105]

4 —

O

Cl

SiMe3

Bu4NF/CsF [113]

5 — O

Cl

TFA

6 — B

O

O R1

R2

H3O
þ [129]

7 — CH

O

O

R1

H3O
þ [129]

8 —
SH

LiBH4 [130]

9 O

O

OR
HF, anisole [131]

10
N
H

O

NO2

O OR

O

hn/350 nm [131]
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A more recent prominent example is shown in Scheme 28.25, where 2-chloro
nicotinic acid (69) is attached to benzyl thiol resin 20 in basic media. Introduction of
different amines through standard amide couplings affords amides of type 70.
Oxidation to the corresponding sulfoxide 71 through Davis� reagent followed by

Table 28.5 Linkers that release hydroxamic acid functional groups.

Entry Name Structure Cleavage Reference

1 —
O

O
NH2

TFA/iPr3SiH [133]

2 Trityl resin

X

O

NH2

X= H, Cl

TFA/Et3SiH [134]

3

HN

O

O

OMe

O

NH2

TFA/iPrSiH [135]

SH

20

+

NCl

HO

O

NS

HO

O

69

R NH2
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NS
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O
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R
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N
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O O
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R
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Scheme 28.25

28.3 Linkers for Solid-Phase Organic Synthesis j2351



Pummerer rearrangement affords heterocyclic derivatives of type 73 with concom-
itant release from the resin [137, 138].

28.3.3
Multidirectional Cleavage Strategies

Monofunctional resin cleavage procedures are well suited for the generation of
targeted libraries where the given key pharmacophoric group that remains
constant forms the link between the resin and the molecules that are being
synthesized. Multidirectional cleavage, in addition, offers the advantage that, in
the final cleavage step, an additional element of diversity is incorporated into
the final compound being produced. Thus, the number of compounds is
multiplied by the number of elements that can be incorporated. Most the
linkers that have been described for multidirectional cleavage procedures are
also termed �traceless� linkers as no element of the linker remains in the final
molecules.

The main strategies include:

. direct cleavage by nucleophilic substitution reactions;

. direct cleavage by electrophilic substitution reactions;

. cleavage through cross-coupling reactions;

. activation of the linker group prior to cleavage (�safety-catch� principle).

28.3.3.1 Direct Cleavage by Nucleophilic Substitution
The following schemes show some representative examples of linkers and strategies
that allow the final multidirectional cleavage from the resin using nucleophiles such
as amines, alcoholates, thiolates and C-nucleophiles such as organolithium or
Grignard reagents. Thus, for instance, carboxylic acids attached to Kaiser resins
type 74 react with different nucleophiles [70, 139] (e.g., amines, alcoholates) to afford
different amides/esters of type 75 with simultaneous release from the polymeric
support (Scheme 28.26).
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Another illustrative example of multidirectional cleavage through nucleophilic
substitution is the one shown in Scheme 28.27, which is based on Weinreb amides
(77). Again, the introduction of a new element of diversity and release from the
polymeric support are simultaneous [139].

28.3.3.2 Direct Cleavage by Electrophiles
Most of the developed linkers that allowmultidirectional electrophilic cleavage from
the resin are based on the chemistry of silicon and also to a less extent on
germanium [140–142]. Silyl linkers have broad appeal in solid-phase synthesis.
Many encoded diversity-oriented synthesis (DOS) libraries rely almost exclusively on
immobilizing alcohol building-blocks via the silyl ether [143, 144]. Cleavage condi-
tions are tunable, depending upon the type of alkyl substituents present on the silicon
atom. Scheme 28.28 shows a few early interesting examples.
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28.3.3.3 �Safety-Catch� Linkers
Among the several successful linker strategies that are being developed specifically
for the solid-supported synthesis of small organic molecules, the �safety-catch�
principle has gained wide acceptance as it offers several advantages:

. Through the entire synthetic sequence of the library, the linker moiety is
completely stable under a wide range of reaction conditions.

. The linkage between the resin and the molecule can be specifically designed
according to the structure and chemical stability of the desired final
products.

. The linker group can often be reduced to a single atom such as sulfur, silicon, tin
and others. Thus, full advantage can be taken of the rich chemistry of these
elements, integrating the final activation and cleavage step into the whole
synthetic strategy.

. The �safety-catch� principle generally leads to multidirectional resin cleavage,
which allows multiplication of the final library members both in terms of
structural and functional diversity.

The safety-catch principle was first described by Kenner et al. [145] in the field of
peptide chemistry and was originally based on the reactivity of the sulfonimide
group.

As shown in Scheme 28.29, after suitable syntheticmanipulations onmolecule 83,
alkylation of the polymer-bound sulfonimido nitrogen atom with diazomethane or
iodoacetonitrile activates the linker towards the action of a nucleophile (e.g., amines,
alcoholates), thereby introducing a new element of diversity with simultaneous
release from the resin (multidirectional cleavage) to afford compounds of type 85 in
high yields [145, 146].

A further example that illustrates the safety-catch principle, designed by Frank
et al., is based on imidazole chemistry. Thus, Boc-protected polymer-bound
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imidazole 86 is activated by cleavage of the Boc protective group. Acyl transfer in 87
and subsequent nucleophile cleavage leads to products of type 85 [147, 148] in a
multidirectional cleavage (Scheme 28.30).

In addition, a novel safety-catch principle for the multidirectional cleavage of
pyrimidines and related heterocycles was first developed by Obrecht et al. [62, 149].
Here, polymer bound thiopyrimidines of type 89 are activated at the end of the
synthesis to the corresponding sulfones 90 by oxidation. Multidirectional cleavage
with various nucleophilic agents such as amines, alcoholates and C-nucleophiles
allows the formation of diverse pyrimidines of type 91 with simultaneous release
from the resin (Scheme 28.31).

More recently, other novel safety-catch linkers have been developed. Starting from
4-hydroxythiophenol (92), S-tritylation, coupling to the Merrifield resin (6) and
detritylation afford linker 93 (Scheme 28.32).

Safety-catch linker 93 reacts with various electrophiles, such as halides and
sulfonate esters (NaH is required as the base) and epoxides (Et3N is required as a
base), or alcohols under Mitsunobu conditions, yielding a sulfide resin 94. This
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sulfide linker is stable to a wide range of reaction conditions. Subsequent activation
through the corresponding sulfoxide followed by Pummerer rearrangement pro-
moted by trifluoroacetic acid anhydride releases alcohols 97 or aldehydes 98
depending upon the reaction conditions used (Scheme 28.33) [150].

Nitrobenzyl linker 101 has been designed as a new safety-catch linker for solid-
phase synthesis, possessing both acid and base stability. This is a Wang-type resin
whose acid stability is dramatically improved by virtue of the nitro substituent. It
is activated by reduction of the nitro group to the corresponding aniline followed
by sulfonylation (also acylation); the corresponding synthesized products are
then released from resin upon exposure to mild acid. Linker 101 has been
prepared upon Mitsunobu coupling of 4-hydroxy-3-nitrobenzaldehyde (100) to

HO
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2-hydroxyethylpolystyrene (99) followed by aldehyde reduction with NaBH4

(Scheme 28.34) [151].

28.4
Heterocyclic Synthesis on Solid-Phase

As discussed earlier, for more than two decades most developments in solid-phase
synthesis focused on the preparation of biopolymers. In recent years, interest in other
synthetic targets including heterocycles has begun to grow. Today the field of solid-
phase heterocyclic chemistry is rapidly expanding and numerous preparations and
methodologieshave been reported.Heterocycles are very important compounds due to
their chemical, biological and technical significance: heterocycles count among their
numbermany natural products, such as vitamins, hormones, antibiotics, alkaloids, as
well as pharmaceuticals herbicides, dyes and other products of technical importance.

Interest in solid-phase heterocyclic chemistry originated mainly from the phar-
maceutical industry. Heterocycles not only enable the spatial fixation of a set of
structural elements relevant to reversible binding to proteins but can also have a
strong influence on the solubility and on other physicochemical properties of a
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compound. Heterocycles play a key role in the development of new drugs. Therefore,
syntheticmethodologies that enable the rapid production of arrays of heterocycles are
of critical importance to the pharmaceutical industry.

Several review articles have appeared covering the synthesis of heterocycles on
insoluble supports for the production of compound libraries [152–154].

It is not the purpose of this chapter to comprehensively review all synthetic
methodologies available for the preparation and further manipulation of all hetero-
cycles classes on solid supports. Instead, we illustrate how the technical develop-
ments on solid-phase chemistry and the concepts previously discussed have been
successfully translated to the heterocyclic field.

For this purpose, recent prominent examples according to the type of heterocycle
prepared and its relevance are presented here.

28.4.1
Synthesis of b-Lactams

b-Lactams are clinically valuable pharmacophores. There preparation on a solid
support can be best achieved by reaction between resin-bound imines and ketenes.
Owing to the highly reactive nature of ketenes, resin-bound ketenes are less suitable
intermediates for the preparation of b-lactams. An illustrative example has been
reported by Gallop et al. [155].

Fmoc-amino acids tethered to the acid labile Sasrin resin (105) have been
condensed quantitatively to imines 106 by using a large excess of alkyl, aryl or
a,b-unsaturated aldehydes in a mixture of CH2Cl2 and trimethylorthoformate (as
dehydrating agent) (Scheme28.35).Optimization studies of the [2 þ 2] cycloaddition
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step showed that conversion into b-lactams 107 could only take place by slow
addition of acid chlorides to a suspension of the imine resin at 0 �C in the presence
of Et3N. By using a large excess of ketene at high concentration, the cycloaddition
of imines derived from even sterically hindered amino acids (e.g., valine) could be
carried out with full conversion. After mild TFA cleavage from the resin and
preparative HPLC purification, b-lactams 108 and 109 were isolated in yields of
55–97% (Scheme 28.35).

Although the formation of the corresponding b-lactams occurred with high cis
selectivity, the diastereoselection induced by the asymmetric center of the amino acid
was only moderate. Higher induction could be achieved, however, with an optically
active ketene.

28.4.2
Synthesis of Pyrrolidines

1,3-Dipolar cycloaddition reactions are important processes for the preparation of
several heterocyclic systems due to the generally mild reaction conditions and the
simultaneous formation of several bonds in a single operation. The preparation of
pyrrolidines via cycloaddition reactions of azomethine ylides is a well-known
process and has been extensively studied. One of the earliest described examples
of preparation of pyrrolidines on solid support was reported by Hollinshead [156],
who developed a solid-phase protocol for the preparation of highly functionalized
pyrrolidines based on the reaction of azomethine ylides with polymer-bound
a,b-unsaturated ketones. Thus, chlorinated Wang resin 110 [157] is coupled to
3-hydroxyacetophenone 111 with Cs2CO3/NaI in DMF, affording acetophenone
tethered to the solid support (112). Knoevenagel condensation with different
aromatic aldehydes using a 0.5M solution of MeONa/MeOH affords the corre-
sponding enones 113. These a,b-unsaturated ketones attached to the solid support
are then subjected to standard 1,3-dipolar cycloaddition with N-metallated azo-
methine ylides in the presence of DBU and LiBr as Lewis acid to give highly
substituted pyrrolidine derivatives 114 with high regio- and diastereoselectivity.
Derivatives 114 can be further manipulated by introducing acyl or sulfonyl groups
on the pyrrolidine nitrogen atom (Scheme 28.36).

Monofunctional cleavage of pyrrolidines of type 116 from Wang resin is then
achieved under standard acidic conditions (50% TFA in CH2Cl2) for this linker to
afford a collection of compounds that can be purified by chromatography or
crystallization.

In a similar approach, but generating the corresponding azomethine ylide on
the solid support, Gallop et al. [158] have developed a protocol for the solid-phase
synthesis of highly substituted pyrrolidines. Starting from Fmoc-amino acids
tethered to the acid labile Sasrin resin 105, deprotection of the Fmoc group with
piperidine and subsequent condensation reaction with different aromatic and
heteroaromatic aldehydes at room temperature in neat trimethylorthoformate as
dehydrating agent provides the corresponding resin-bound aryl imines 106.
Lewis acid-promoted formation of N-metalloazomethine ylides and subsequent
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cycloaddition reaction with different electron-deficient olefins (e.g., acrylates,
cinnamates, conjugated enones, maleinimides, etc.) under basic conditions
affords pyrrolidines 117. Representative proline analogues 118 have been char-
acterized by mild acid cleavage from the resin by means of 10% TFA in yields
ranging between 50 and 80% and with diastereoselectivities ranging from 2.5 : 1
to greater than 10 : 1 (Scheme 28.37).

Again in this case, a strategy based on monofunctional cleavage (releasing a
carboxylic acid) was used. In this particular case, since functionalized prolines and
proline analogues are frequently found as C-terminal residues in numerous ACE
inhibitors, this chemistry was used to generate a focused library of mercaptoacyl
prolines as potential ACE inhibitors whereby the release of a carboxylic acid group
had to remain constant.

A further example of pyrrolidine synthesis on solid support employs a silicon-
based traceless linker of type 119 that is chlorinated with 1,3-dichloro-5,5-dimethyl-
hydantoin under mild conditions to afford 120. Reaction with azaallyl anions
generated in situ fromN-alkylidene N-benzylamines and LDA yields the correspond-
ing polymer-bounda-silylimines 121. Thermal 1,2-silatropic shift affords 122, which
reacts in situ with the corresponding dipolarophiles to provide pyrrolidines 123.
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A further element of diversity can be introduced into the pyrrolidine ring during the
cleavage step (multidirectional electrophilic cleavage) with different electrophiles
(HCl, acid chlorides, allyl iodide, and so on) to furnish collections of pyrrolidines of
type 124 in good yields (Scheme 28.38) [159].
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28.4.3
Synthesis of Pyrroles

Substituted pyrroles are commonly found in natural products [160, 161], drugs [162,
163], conducting materials [164, 165] and insecticides [166]. The pyrrole ring system
has been synthesized on solid-supports by few methods. An early example is shown
in Scheme 28.39, where pentasubstituted pyrroles are synthesized using a multi-
component condensation. The condensation of a resin-bound amine 125 to an
aldehyde, followed by the addition of carboxylic acid and isocyanide (Ugi reaction),
results in the formation of resin-bound N-alkyl-N-acyl-a-amino amides 126, which
are acylated and hydrolyzed in one-pot to 127. Treatment with neat acetic anhydride
or isobutyl chloroformate and triethyl amine in toluene, followed by the addition of
a series of acetylenic esters, provides the polymer-bound pentasubstituted pyr-
roles 126. The reaction proceeds via in situ cyclization of the intermediate through a
[3 þ 2] cycloaddition with various alkynes. The corresponding products are released
from the resin with 20% TFA to afford 128 (monofunctional cleavage releasing
amides) in 35–75% overall yield over eight steps. For asymmetrically substituted
alkynes, an isomeric mixture of pyrroles 128 in an approximately 4 : 1 ratio has been
obtained.

Another method toward the solid-phase of pyrroles was developed by Jung
et al. [167]. by adapting the Hantzsch pyrrole synthesis to the solid support. Thus,
acetoacetylated Rink amide resin 129 has been converted into resin-bound enam-
inones 130 upon reaction with primary amines. These enaminones 130 react with
a-bromoketones 131 to yield polymer-bound pyrroles 132. Cleavagewith 20%TFA in
CH2Cl2 affords pyrrole-3-carboxamides 133 in excellent purities (Scheme 28.40).
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Furthermore, related resin-supported Hantzsch methodology has used been suc-
cessfully for the cyclocondensation of nitroalkenes 134 with enaminones 130– or,
alternatively, inathree-componentpathwaywithaldehydes135andnitroalkanes136– to
furnish polymer-bound resin 132. As in the previous case, monofunctional cleavage
under acidic conditions (releasing an amide group) affords pyrrole carboxamide
derivatives (133, Scheme 28.41) [168].

Other prominent recent examples for the solid-phase synthesis of pyrroles include
the Paal–Knorr condensation of polymer-supported 1,4-diketones with primary
amines [169]. In another approach, 1,3-dipolar cycloadditions onto polymer-bound
vinyl sulfones and subsequent pyrrole annulation have been reported to deliver
isoxazolinopyrrole-2-carboxylates [170, 171].

28.4.4
Synthesis of Furans

A traceless linker strategy for the synthesis of substituted furans based on the
generation on a solid support of mesoionic isom€unchnones has been developed by
Gallop et al. The key step of this protocol takes advantage of an efficient [3 þ 2]
cycloaddition reaction with electron-deficient acetylenes, followed by a thermally
promoted cycloreversion reaction. For this synthesis, an amino TentaGel resin (137)
was employed. Thus, 137 was primarily acylated with different carboxylic acids 138
using diisopropyl carbodiimide (DIC) in the presence of catalytic amounts of DMAP.
The amide 139 was converted into imide 141 by treating the resin twice with a 1 : 1
(v/v)mixture ofmalonyl chloride 140 in benzene at 60 �C.Quantitative diazo-transfer
reaction to diazoimide 142 was effected at room temperature using tosyl azide in

129
O

H
N

O

O

O

HN

O

CH3

O

130

CH3

HN

N
H

O
R

R1

131

N

R1
H3C

N
H

O

R3

R2
R

N

R1
H3C

H2N

O

R2

R3

132

+ Br

O

R2

R3

133

Scheme 28.40

28.4 Heterocyclic Synthesis on Solid-Phase j2363



CH2Cl2/Et3N. Optimization of this reaction sequence was facilitated by using gel-
phase 13C NMR, by monitoring these transformations with initially acetylated resin
with 2-13C-labeled Ac2O. The analysis indicated that both the imide and diazoimide
formation proceeded with >95% conversion (Scheme 28.42).
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Resin-bound diazoimides 142 have subsequently been allowed to react with
different electron-deficient acetylenes 143 in benzene at 80 �C for 2 h in the presence
of Rh2(OAc)4 as a catalyst (Scheme 28.43). Analysis of the crude products showed
exclusively the presence of the desired furans 144 and excess of unreacted acetylene,
which, when sufficiently volatile (e.g., propiolate esters), is eliminated in vacuo to
provide furans 144 of high purity. To avoid contamination of the desired furan
product with residual, non-volatile acetylene, a two-step sequence has been imple-
mented for the cycloaddition reaction. Thus, 13C-labeled diazoimide 146 has been
allowed to react with a large excess (10 equivalents) of dimethyl acetylenedicarbox-
ylate (DMAD) 147 in the presence of Rh2(OAc)4 at room temperature in anticipation
of trapping the bicyclic intermediate 149 on the polymeric support. After washing the
beads with suitable solvents to remove excess acetylene, resin 148 is suspended in
fresh benzene and heated at 80 �C to promote cycloreversion. HPLC analysis of the
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Reagents and conditions: i) Rh2(OAc)4, benzene, 80ºC; ii) Rh2(OAc)4, benzene, r.t.; iii) benzene, 80ºC
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crude product from this reaction showed the presence of pure furan 150with neither
starting acetylene nor any other impurities. Resin washings did not contain any 13C
label, indicating that no cycloreversion occurs at room temperature, while gel-phase
13C NMR of the resin after thermolysis showed no resonances from enriched
carbons, suggesting that the cycloaddition to the polymer-bound isom€unchnone 148
proceeds efficiently at room temperature.

This stepwise (room temperature/thermal) cycloreversion sequence failed, how-
ever, to provide furans from acetylene derivatives activated by just a single electron-
withdrawing moiety (e.g., propiolate esters). These derivatives, less reactive than
DMAD, do not undergo cycloadditions to the immobilized dipoles at an appreciable
rate at room temperature.

In another traceless strategy, 2,5-disubstituted furans have been synthesized
on solid support through hydroxyalkylation of polymer-bound allylsulfones. Thus,
4-hydroxyphenylsulfonylmethane (151) is attached directly toMerrifield resin (6) to
give the corresponding resin-bound arylsulfonylmethane 152. Deprotonation of
this resin with LDA and treatment with diethylchlorophosphate and subsequent
addition of 2-methoxy aldehydes (Horner–Wadsworth–Emmons reaction) affords
resin-bound vinyl sulfones 153. Treatment with t-BuOK allows isomerization to
alkoxyallyl aryl sulfones 154 that when treated with a strong base at 0 �C react with
aldehydes to afford 155. Optimal conversion into hydroxyalkylated resins 155 was
observed when DMPU was used as an additive. Finally, treatment of resins 155
with two equivalents of TFA inCH2Cl2 at room temperature effects the formation of
2,5-disubstituted furans 156 with simultaneous release from the resin. The overall
yields for this five-step sequence range from 13 to 32%, but no other purification
other than removal of the solvents under reduced pressure was necessary [172]
(Scheme 28.44).

28.4.5
Synthesis of Thiophenes

Based on an aminoalkylurethane linker attached to the Wang resin 157, Zaragoza
et al. [173] have developed a solid-phase synthesis of substituted 3-aminothiophenes
by adapting Lalibert�e�s thiophene synthesis [174, 175]. Thus, as shown in
Scheme 28.45, Wang resin 157 was primarily treated with 4-nitrophenyl chlor-
oformate (158) in the presence of pyrimidine to give 159 and then reacted with
piperazine in DMF to produce 160, which on treatment with cyanoacetic acid
afforded 161. Subsequent reaction of the resin-bound (cyanoacetyl)piperazine 161
with aliphatic or aromatic isothiocyanates in the presence of DBU, followed by
S-alkylation with a-haloketones under slightly acidic or neutral conditions gave the
intermediates 162 and 163 (the predominant form being determined by the
electronic properties of the substituents R1–R3). Treatment of intermediates 162/
163 with DBU in DMF and subsequent acidolytic cleavage of the resin with TFA
yielded 3-aminothiophene 164 as trifluoroacetates (monofunctional cleavage releas-
ing an amide group). This synthetic sequence toward 164 has, however, some
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limitations. For instance, a complex mixtures of products is obtained in those cases,
where strongly electron-donating isothiocyanates or a-haloketones are used and, in
general, no thiophenes results from aliphatic haloketones.

In contrast, direct treatment of the intermediates 162 and 163 with TFA yields the
2-methylene-2,3-dihydrothiazoles 165 and 166 of unknown configuration. The
reaction sequence leading to 165 and 166 shows higher tolerance towards variation
of the substitution pattern. Generally pure products are obtained for both electron-
donating and electron-withdrawing isothiocyanates and a-haloketones. For most of
the studied cases, dehydrated 2-methylenethiazoles 166 are obtained as single
products. 4-Hydroxythiazolidines of type 165 result only in those cases where R2

is a strongly electron-withdrawing group (Scheme 28.45).
Since thiophene is sufficiently acidic to be metallated directly by treatment with n-

BuLi, this direct lithiation can also be carried out with polystyrene-bound thiophenes.
The resulting organolithium compounds react as expected with several electrophiles
such as amides (to yield ketones), alkyl halides, aldehydes and Me3SiCl [176]. In
addition, polymer-bound bromothiophenes can be metallated by treatment with
Grignardreagents.Theresulting thienylmagnesiumcompoundscanbedirectly treated
with carbon nucleophiles to afford the corresponding derivatized thiophenes [177].

Polymer-bound halothiophenes are also good substrates for Suzuki, Heck,
Negishi, and Stille coupling reactions [178, 179]. For instance, the Suzuki coupling
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of soluble PEG-bound bromothiophene 167 and p-formylphenylboronic acid (168)
provide biaryl 169. Owing to the high solubilizing power of PEG, the reaction is
conducted as a liquid-phase synthesis. Treatment of 169 with o-pyridinediamine
170 results in a two-step-one-pot heterocyclization through an imine intermediate.
Nitrobenzene serves as an oxidant in the ring closure step. Finally, transesterification
with NaOMe in MeOH furnishes thiophene derivative 171 (Scheme 28.46).
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28.4.6
Synthesis of Imidazoles

The imidazole ring system is of particular interest since it is a component of histidine
and its decarboxylation metabolite histamine. The wide application of the imidazole
pharmacophore can be attributed to its hydrogen bond donor–acceptor capability as
well as its high affinity for metals (e.g., Zn, Fe, Mg) that are present in many protein
active sites.

Based on a four-component condensation reaction (the Ugi reaction), Mjalli
et al. [180] have developed a solid-phase protocol for the synthesis of tetrasubstituted
imidazoles. Because of the limited number of commercially available isocyanides,
the selected strategy started with the generation of an isocyanide component tethered
to the Wang resin.

A series of N-formylated aliphatic amino acids 172 have been attached to Wang
resin 157 (Scheme 28.47), affording 173. Dehydration of 173 provides resin-bound
isocyanides 174. Multicomponent condensation of resin 174 with arylglyoxals 175,
primary amines and carboxylic acids the affords resin-bound a-(N-acyl-N-alkyla-
mino)-b-ketoamides 176 that further react with excess of NH4OAc in AcOH to give
immobilized imidazoles 177. Finalmonofunctional cleavage with 10%TFAprovides
imidazoles 178.

The length of the isocyanide linker, the electronic nature of the aryl glyoxals,
the use of different primary amines (except anilines), and the use of both
aliphatic and aromatic carboxylic acids showed no effects on the yields of
imidazoles 178.

This methodology has been further extended [181] by attaching the aldehyde or
amine component to the Wang resin. Hence, functionalized polymers 180 and 182
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have been prepared by standard coupling methods of carboxybenzaldehyde 179 and
N-Fmoc-6-aminohexanoic acid (181), respectively. Resin 184 has been prepared via a
modified Mitsunobu coupling of 4-hydroxybenzaldehyde (183) to Wang resin 157
(Scheme 28.48).

The protocol for the preparation of solid supported imidazoles 185 and 186
involves the condensation of resins 180 and 182with a large excess of 1,2-dicarbonyl
compounds, NH4OAc and primary amines or aldehydes. Imidazoles of type 187 have
been prepared in a similar manner by replacing primary amines with NH4OAc.
Subsequent monofunctional resin cleavage with 20% TFA afforded imidazoles 188,
189, and 190 in high yields and purities (Scheme 28.49).

Tetrasubstituted imidazoles of type 196 have also been prepared by using polymer-
bound sodium benzenesulfinate as a traceless linker. Thus, polystyrene 1% DVB
sodium sulfinate 191was allowed to react with concentratedHCl inDMF–H2O (3 : 1)
at room temperature. Condensation of 192with an aldehyde and a primary amide in
the presence of Me3SiCl at 50 �C afforded resin 193. The a-ketoamide 195 was
generated by treatment of resin 193 with excess triethylamine in the presence of
thiazolium catalyst 194 in CH2Cl2. Concentration of the reaction product 195 and in
situ treatmentwith primary amines in refluxingEtOH/AcOHaffords imidazoles 196,
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which were isolated in pure form after flash-chromatography in 24–40% overall
yields [182] (Scheme 28.50).

In addition to imidazoles 196, the a-ketoamido intermediates 195 have also been
used to obtain thiazoles 197 and oxazoles 198 by reaction with Lawesson�s reagent
and PPh3/I2 respectively (Scheme 28.51).

Another approach, reported recently [183], involves a simple, efficient synthesis of
1-alkyl-4-imidazolecarboxylate derivatives on solid support through a cyclization-
assisted cleavage strategy (which in general is largely independent of the linker type).
By this approach, N-methylaminomethylated polystyrene 199 was allowed to react
with alkylisocyanate 200 in the presence of N-formyl imidazole diethylacetal 201
under acid-catalyzed conditions (10% CSA) in DMF to afford functionalized support
202 (Scheme 28.52). Although this transformation could be achieved on heating the
mixture at 80 �C for 36 h, the reaction was preferentially conducted undermicrowave
heating to reduce the reaction time to just 10min. The free amine on the polymerwas
monitored using the chloranil test [184]. This rather sensitive assay enables the
detection of even very small amounts of free secondary amines on the resin, a
negative test indicating complete anchoring to the solid support. Treatment of
the resin 202 with a primary amine 203 in n-butanol affords the isomerically pure
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1-substituted-4-imidazolecarboxylate derivatives 204 in excellent yields (80–97%,
overall, two steps).

A particular feature of this approach is that the solid-support 199 can be
regenerated and used for 3–4 cycles with similar levels of yields and purities of
desired imidazoles 204. A similar strategy has employed resin-bound 3-N,N-
dimethylamino-isocyanoacrylate for the regioselective synthesis of 1-substituted-
4-imidazolecarboxylates [185].

28.4.7
Synthesis of Thiazoles

Most of the solid-phase syntheses described so far are based on the cyclocondensa-
tion reaction between thioamides or thioureas and a-halocarbonyl compounds.
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Using this general strategy, Masquelin et al. [186] have developed a solid-phase
synthesis of highly diverse 2,4-diaminothiazoles through a cyclization-assisted
cleavage approach. Starting from Merrifield resin (6), reaction with thiourea in
DMA affords polymer-bound thiouronium salt 18. Subsequent reaction with several
isothiocyanates in DMF at room temperature in the presence of DIPEA leads to the
formation of thioureido thioureas attached to the polymer support of type 205. Next,
the reaction of resins of type 205 with a slight excess of different a-bromoketones in
DMFat room temperature in the presence of diethylaminomethylpolystyrene 206 for
several hours affords the corresponding 2,4-diaminothiazoles 209 in high yields
(49–96%) and purities (Scheme 28.53).
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1914–1916
– – with nucleophiles 1927–1929
– – with oxidants 1929–1932
– – pericyclic reactions 1917–1923
– – through metal carbonyl complexes 1916,

1917
– synthesis 1898
– tautomerism in 1874
R/S-azetidine-2-carboxylic acids 163
azetidines 163, 164
– chemical shifts 165
– cleavage of the azetidine ring 186
– cyclization reactions 166–173
– cycloadditions 176–177
– enzymatic resolutions of azetidines

186–188
– oxidizing reactions 180, 181
– physicochemical data 165
– reactions
– – of C-metallated azetidines 182
– – at nitrogen atom 177–180
– – with nucleophiles and bases 181, 182
– ring expansions 182–186
– ring transformations 173–176
– synthesis 166
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azetidino[1,2-d][1,4]benzodiazepines
synthesis 2211

2-azetidinone
– ab initio calculations 2117
2-azetidinone nucleus synthesis
– b-amino acids cyclization and

derivatives 2126, 2127
– chromium carbene-imine cyclization 2126
– hydroxamate cyclization 2127
– isocyanate-alkene cyclocondensation

2125, 2126
– ketene-imine cycloaddition (see Staudinger

reaction)
– metal-catalyzed insertions of diazo

compounds 2127, 2128
– metalloester enolate-imine

condensation 2124, 2125
– multicomponent reactions 2129
– photochemical, and radical methods

2130, 2131
– synthesis from carbo/heterocycles

2131–2133
– terminal alkynes and nitrones coupling

(see Kinugasa reaction)
2-azetidinones 3
2-azetidinones. see b-lactams
azetidin-2-ones (b-lactams) 163
2-azetidinone-tethered imines
– aza-Diels–Alder reaction 2141
4-aziadamant-1-amine 124
azide addition 29
azide–alkyne cycloaddition reaction 992
azide-containing amino acids 993
azide-functionalized glycosides 992
azides, cycloaddition reaction 895
ortho-azidoaryl ketones
– thermolysis 766
azidocinnamates 1906
2-azido-4,6-dichloro-1,3,5-triazine,

photolysis 1830
azido esters 898
4-azido-5-nitrothiophene-2-carboxylic acid

ester
– photolysis 1149
azinomycin 11
azinomycin A 13
azinomycin B 13
azirdinyl anion chemistry 37, 38
aziridinates N-tosyl pivaldimine 26
aziridination
– of diactivated alkenes 23
– of epoxyalkenes 19
– of imines 23–27
aziridination of alkenes 12–23

– asymmetric aziridination of styrene 16
– bromine-catalyzed aziridination 18
– catalysts for racemic aziridination 15
– chiral catalysts for asymmetric alkene

aziridination 17
– general synthetic routes to 14
– reaction conditions
– – for asymmetric styrene aziridination 17
– – for bromine-catalyzed aziridination 18
– – for styrene aziridination 15, 16
aziridinecarboxylate esters 30
aziridines 11, 447, 875
– azirdinyl anion chemistry 37, 38
– general synthetic routes 14
– geometry 12
– naturally occurring 13
– N-elaboration reactions 35, 36
– nucleophilic ring opening 30–35
– reactivity 30–38
– from ring-closing protocols 28
– ring closure of amines 27–29
– ring contraction of other heterocycles

29, 30
– ring expansions 38–41
– ring opening 449
– synthesis 12–29
meso-aziridines 31
aziridinyl alcohol 37
aziridinyl esters 29
aziridinylmagnesium bromide 38
aziridinyl sulfide 53
azirines 41, 48
– addition of nucleophiles 50–53
– cycloadditions 54–55
– Neber route 42–45
– from other heterocycles 48–50
– from oximes with activating groups 43
– properties 41, 42
– from quaternary hydrazonium salts 44
– reactivity 50
– rearrangements into other heterocycles 55
– synthesis 42
– from vinyl azides 45–48
2H-azirines. see azirines
azirinyl aldehyde 55
azirinyl phosphonate 50
azobenzenes, photoreduction 1200
azofurazan annulated macrocycles 1135
azoisobutyronitrile (AIBN) 2329
1,3-azole derivatives
– arylation 855
azole functionalization 856
azole-N-oxides
– reactivity of 904
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azole ring 836
azoles
– acidity 697
– basicity 697
1,2-azoles
– class 636
– derivatives 704–710
– electrocyclic reactions 704
– importance 636
– indazoles synthesis 678–696
– nomenclature 637, 638–644
– number of publications 636
– pyrazoles synthesis 651–678
– reactions
– – of C-metallated pyrazoles 702
– – with electrophilic reagents 697–701
– – of N-metallated pyrazoles 702
– – with oxidizing agents 701, 702
– – with radicals 702
– – with reducing agents 703
– reactivity 696–704
– relevant natural/useful compounds

644–651
– ring transformations 703, 704
1,3-azoles 809
– alkyl-1,3-azoles 890–891
– anticancer properties 810
– azole N-oxides 902–904
– azoline N-oxides 902–904
– benzo-1,3-azoles 880–886
– computational chemistry 810–814
– Diels–Alder reactions 866–870
– dihydro-1,3-azoles 871–880
– 4,5-dihydroazoles 871
– 1,3-dipolar cycloadditions 866–870
– direct electrophilic silylation of 840
– five-membered ring systems 809
– free radical reactions 864, 865
– IUPAC nomenclature 810
– NMR data 810–814
– order of reactivity 838
– oxy/amino-1,3-azoles 894–902
– photochemical reactions 870–871
– physicochemical data 810–814
– pKa, values of 814
– quaternary 1,3-azolium salts 891–894
– reactions with reducing agents 865, 866
– reactivities of 834
– structure 812
– tautomeric equilibrium of 815
– tautomerism 814, 815
– tetrahydro-1,3-azoles 886–889
– transition metal mediated reactions

855–864

– use of 861
azole silanes 852
azoles, N-arylation of 858
1,3-azoles, synthesis of
– imidazoles 815–824
– oxazole 824–834
1,3-azole structure
– natural compounds, contains 812
azolic stannanes 853
azolic zinc derivatives 854
azolides 706
azolidin-2-ones 898
azolinium salts
– synthesis of 891
azolium ions
– pKa, values of 814
2-azolylstannanes 854
azomethine imines 670
azomethine nitrogen
– electrophilic attack 834
azomethinimines
– 1,3-dipolar cycloaddition of 1201
azoxyfurazans 1135
– crystal structure simulations 1134
azulenes synthesis 1646

b
Bacillus cereus 1205
Bacillus subtilis 1222
Bader�s AIM theory 2146
Baeyer–Villiger oxidation 1899
Baeyer–Villiger type rearrangement 565
Banert cascade 994
Barbier-type allylation 2161
barbituric acid 1690
Bartoli protocols 398
Bartoli reaction 397
Bartoli synthesis 397
base-catalyzed rearrangement of epoxides,

to allylic alcohols 99
base-promoted processes 382
batch-fill and withdraw system 2151
bauhiniastatin 1868
Baylis–Hillman adducts 662, 1542, 2135
– a-substituted c-butenolides 581
Beckmann transformation of ketoxime 1819
Beirut reaction 1162
benzaldehyde 1577
benzaldehyde N0-(5-benzoylmethyl-1,3,4-

thiadiazol-2-yl)hydrazone
hydrobromides 1346

1H-benzazepine 1586
2H-2-benzazepine 1904
1H-2-benzazepine derivative 1867
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1H-1-benzazepine derivatives 1902
benzazepine ring
– 1,2,3-thiadiazole ring 1262
benzazepines 1867, 1902
3H-3-benzazepines 1904
benzazirine 1883
benzobromarane analogs 623
benzene
– catalytic hydrogenation of 1489
benzenecarbothiohydrazide 1353
benzene, complex alkyl-substitution in 433
benzene-1,2-diamine derivatives
– diazotization of 1009, 1010
benzene ring 880
– electron-withdrawing nature of 886
benzenesulfinic acid 821
benzils, electrochemical reduction 934
5-benzilydene-1,3,4-thiadiazole-2,2(5H)-

dicarbonitrile 1364
benzimidazoles 882, 886, 1118, 1164
– oxides 1164
– synthesis of 883
benzimidazolium salts 892
1,2-benzisothiazole 1,1-dioxides. see saccharins
2,1-benzisothiazole 2,2-dioxides 771
1,2-benzisothiazoles 768–770, 769,

770–772
benzisothiazole saccharin 736
1,2-benzisoxazole 763
– base-promoted intramolecular

displacement reactions 762
– isosteric relationship 735
2,1-benzisoxazole
– 1,3-dipolar cycloadditions 782
1,2-benzisoxazole-3-acetic acid 765
benzisoxazoles, chemical behavior 772
1,2-benzisoxazoles synthesis 761–765, 768
– bond 7a-1/3-3a formation 764, 765
– bond 7a-1 formation 761, 762
– bond 1-2 formation 762, 763
– bond 2-3 formation 763, 764
– from other heterocycles 765
2,1-benzisoxazoles synthesis 765–772
– bond 1-2 formation 765–766
– bond 2-3 formation 766–768
– by introduction of C-3 768
2,1-benzisoxazolium salt reaction 780
benzoalium salts 892
benzo analogues 928
benzo[a]quinolizinium systems

preparation 2054
benzoazoles 882
benzo-1,3-azoles
– formation of 881

benzo[b]furan-3-carboxylic acids
– synthesis 600
benzo[b]furans 617
– electron populations 594
– investigation 593
– skeleton 595
– structure 594
– UV and NMR data 594
benzo[b]quinolizinium derivatives

synthesis 2055
benzo[c]quinolizinium system 2056
benzo-15-crown-5 1642
benzo-derivatives 3, 1631
benzodiazepine 1127
1,4-benzodiazepine-N-oxides
– as dipoles for [3þ2] cycloadditions 2208
benzodiazepine-quinazoline scaffold 2182
benzodiazepines 3, 2175, 2192
– 1,4-benzodiazepine-2,5-diones

synthesis 2186–2192
– 1,4-benzodiazepine ring

modifications 2193, 2194
– 1,4-benzodiazepines 2177–2179
– 1,5-benzodiazepines 2213–2217
– 2,3-benzodiazepines 2217–2222
– 1,4-benzodiazepines ring synthesis 2182
– 1,4-benzodiazepines synthesis, cycloaddition

reactions 2206–2210
– 1,4-benzodiazepines with fused

heterocycle 2198–2210
– 1,4-benzodiazepines with heterocycle

condensed at sides a or d 2179–2181
– 1,4-benzodiazepin-2-ones ring

synthesis 2182–2186
– clinical application 2181
– [2þ2] cycloadditions 2208–2210
– [3þ2] cycloadditions 2206–2208
– functionalization at C3 2196, 2197
– general introduction 2175–2177
– with heterocycle fused at side (N1-C2

position) 2198–2204
– naturally occurring 2181, 2182
– pyrrolo[2,1-c][1,4]benzodiazepines

(PBDs) 2210–2213
– reactions of C2 carbonyl group 2194, 2195
– structural classification 2177
– structure 2176–2178
1,4-benzodiazepines
– hydroxylation of 2196
benzo-1,3-dithiolylium ion
– 13C chemical shifts 949
12H-benzo[e]indolo[3,2-b]benzofuran 626
benzofuran
– derivatization 593
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– in drug discovery 623–625
– in material science 625–628
– naturally occurring, isolation 594–596
– structure and reactivity 594
– synthesis 596–623
– transformation of 1676
benzofurazans 1134, 1143, 1144, 1150,

1152, 1154, 1165, 1167
– homocyclic ring of 1152
benzofuroxans 1134, 1136, 1150, 1154,

1155, 1156, 1158, 1164, 1165
– Boulton-Katritzky rearrangement of 1162
benzofuroxan system 1149
benzo-fused derivatives
– NMR chemical shifts 1135
benzonitrile derivatives 817
benzopentathiepine 1272
benzophenone reacts 870
2H-1-benzopyran-2-ones 1660
2H-benzopyran-2-ones. see coumarins
4H-1-benzopyran-4-ones 1674–1676
2-benzopyrilium salts 1581
1-benzopyrylium ring
– synthesis of 1637–1639
2-benzopyrylium ring
– synthesis of 1639–1640
1-benzopyryliums
– synthesis 1639
benzopyrylium salt 1648
1-benzopyrylium salts, preparation 1638
2-benzopyrylium salts, preparation 1639
2-benzopyryliums synthesis 1640
1,4 benzoquinone 881
1,2,3-benzothiadiazole
– molecular dimensions for 1256
– oxidation of 1282
benzothiadiazoles
– photochemical decomposition of 1274
– reduction 1283
1,2,3-benzothiazole 1265
– thermolysis of 1272
benzothiepines
– synthesis 1907–1910
1,2,3-benzotriazine
– Hetero-Diels–Alder reaction of 1551
benzotriazole
– acylation of 1-benzotriazoles and

benzotriazole methodology 1012–1014
– benzotriazole-mediated amino-, amido-,

alkoxy-, and alkylthio-alkylations 1015
– benzotriazole-mediated

imidoylation 1014–1015
– 1H/13C NMR spectra of 1009
– physicochemical data and NMR data 1009

– reagents 1016–1017
– ring-closure reactions, synthesis

1009–1012
– tautomeric forms of 1009
1H-benzotriazole-1-carboxamides 1823
benzotriazole imidates, synthesis 1014
benzotriazole mediated substitution 1647
benzotriazole methodology
– applications of 1012
benzotriazoles
– 1H/13C NMR spectra of 1010
– tautomerism in 1010
N-benzotriazoles 1014
benzotriazole (Bt)-substituted pyrrole 433
benzotriazolyl carboximidoyl chlorides 1014
benzotriazolyl group, nucleophilic

substitution 888
5-benzotriazolyl-1,2,3-triazoles
– thermal rearrangement of 1271
1,2,3-benzoxadiazole 1048, 1055
– UV spectrum of 1055
benzoxadiazole ring, UV irradiation 1059
1,2,3-benzoxadiazoles 1057
– IR spectra of 1055
2,1,3-benzoxadiazoles 1129
benzoxazoleimines 895
benzoxepines
– synthesis 1648, 1906, 1907
N-benzoylated hydrazone 1226
1-benzoyl-cis-1-buten-3-yne
– cyclization reaction 549
2-benzoyl derivative 891
benzoylhydrazines 683
N-benzoylhydrazinium salts 935
1-benzoyl-1-methylhydrazine

hydrochloride 1210
3-benzoyl-1,2,4-oxadiazoles
– phenylhydrazones of 1117
3-benzoyl-5-phenyl-1,2,4-oxadiazole 1142
N-benzoyl-5-phenyltetrazole 1184
benzoyl protected 3-ribofuranosyl-4-

nitroisoxazole-5-carboxylate synthesis
750

3-benzoyl-2-substituted-5-phenylfurans 673
N-benzylamidoxime
– oxidation of 1097
benzylamine 33
2-benzyl-1,3-azoles
– carbanions of 812
2-benzyl-5-chloro-1,2,4-thiadiazole-3-

one 1322
benzylcyclohexanone 937
benzylic carbonyl compound
– Friedel –Crafts acylation 1639
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2-benzylidenehydrazinecar-
bothioamide 1344

4-benzylisoquinolines 1592
N-benzylketenimines 1583
1-benzyl-2-methylimidazole
– with benzoyl chloride 891
1-(benzyloxy)-1H-1,2,3-triazoles 1006
3-benzyloxyisothiazole lithiation 796
benzyloxyl (OBn) N-protecting groups 1006
benzyloxymethylthiirane 115
5-[4-(Benzyloxy)phenyl]-3-(2-cyanoethyl)-1,3,4-

thiadiazol-2(3H)-one 1356
1–2-(2-cyanoethyl)hydrazine 1357
2-benzyloxypropanal 1198
benzylpenicillin, conformational

properties 2146
benzyl peroxide, photolysis 865
N-benzylpiperidine fragment 1330
1-benzylpyrazole 1832
1-benzylpyrrole 323
2-benzylthio-4-fluorobenzaldehyde

reaction 769
5-(Benzylthio)-N-ethyl-1,3,4-thiadiazol-2-

amine 1385
berberine 2021
Bergman cyclization 1749
betaine 1609
b-glycosides 1072
bicarbonate-activated hydrogen peroxide

(BAP) 67
bicyclic b-lactam antibiotic
– 13C NMR spectra 2147
bicyclic dioxolane, thermolysis 928
bicyclic 4H-pyrans
– synthesis 1660
bicyclic imidazo[1,2-d][1,2,4]thiadiazol-3(2H)-

one 1299
c-bicyclic lactams 1703
bicyclic oxazolidinone 55
bicyclic system
– formation 2026
bicyclic 1,2,4-triazolium salts 1034
bi(4,5-dihydro-1,3,4-thiadiazol-5-

imines) 1360
Biginelli reaction 1706
biguanidines 1823
bipyridine–copper coordination 2292
Birch reduction 567, 568
bis(benzotriazolyl) carboximidamide 1014
4,5-bis(benzoylthio)-1,3-dithiole-

2-thione 959
Bischler–Napieralski synthesis 1576
Bischler synthesis 415, 416
bis-chlorodibutyltin oxide 97

bis(cyclooctadienyl) iridium(II) chloride
complex 23

2,5-bis(dimethylaminomethyl)pyrrole 331
bis-dithiocarbonates
– thermolysis of 973
bis-1,2-dithiole dimers 944
bis-dithiole salt 952
bis(hydrazones)
– oxidation/cyclization 1002
bis(hydroxyiminomethyl)furoxan 1155
bis(isoquinoline-N-oxide) 1575
bismetanes 254
1-bis(methoxy)-4-bis(methylthio)-

3-buten-2-one
– cyclocondensation 661
bismuth trichloride 32
bismuth triflate 95
bis-1,2,4-oxadiazoline complexes
– in vitro cytotoxicity 1081
bis-oxadiazolyl sulfides 1214
bis(oxazolinyl)pyridine scandium(III)

triflate complex 310
bis(2-oxo-3-oxazolidinyl)phosphinic

chloride (BOP-Cl) 1087
2,5-bis(perfluoroalkyl)-1,3,4-

oxadiazoles 1203
3,6-bis(phenanthrolin-2-yl)-1,2,4,5-

tetrazine 1837
1,4-bis-2-(5-phenyloxazolyl)benzene

(POPOP) 2285
2,5-bis(phenylthiomethylene)pyrrole 331
bis(pyrrol-2-yl)methane

(dipyrromethane) 307
bis(tributyltin) oxide 1407
2,5-bis(trifluoromethyl)-1,3,4-

oxadiazole 1216
3,5-bis(trifluoromethyl)-1,3,4-

oxadiazole 1023, 1204
N,O-bis-(trimethylsilyl)hydroxylamine 1722
1,2-bis(triphenylphosphonium)ethane

dibromides 955
bite-angle diphosphinine 1643
bithiophene diols
– acid-catalyzed condensation 2252
bi-/tricyclic heterocycles
– synthesis of 865
B3LYP/6-31G� level
– DFT calculations 1148
3-(boc-amino)isoxazole
– direct lithiation 786
N-Boc-indole 455
N-Boc-protected amino aldehyde 2192
N-Boc-pyrrolidine 348
Boekelheide reaction 1513, 1514
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Bohlmann–Rahtz heteroannulation
reaction 1462

bond-switching reaction 1324
bond-switching rearrangement 1320, 1321
borane 849
boron trifluoride di-Et etherate (BFEE) 625
boron trifluoride etherate 1413
Boulton–Katritzky rearrangement 1149,

1158, 1159
bradykinin
– receptors 1550
– tetrazolyl analogs 1405
B-Raf kinase inhibitors 1596
bromide ion 843
brominated/iodinated porphyrins 2259
bromination 45, 1830
bromine-catalyzed aziridination 18
– reaction conditions for 18
bromine–lithium exchange

methodology 849, 851
m-bromoacetophenone 463
2-bromoalkylamine hydrobromide 27
N-2-bromoalkylimine 27
1-(bromoalkyl)pyrroles 319
1-bromobenzocyclobutene 1586
bromocyclopropenes 1703
2-bromo derivatives, reactivity of 895
bromo enol ethers 819
2-bromoindole
– Bergman�s synthesis 455
3-bromo-2-isocyanoacrylate (BICA) 819
4-bromoisoquinoline derivative 1597
4-bromo-5-lithio-2-phenyloxazole

intermediate 849
2-bromo-3-methylfuran 535
5-bromo-1-methyl-1H-1,2,3-triazole

reacts 1006
3-bromo-4-phenylfuroxan 1167
bromopyridine 854
bromopyrimidines 1759
2-bromopyrrole 333
3-bromoquinolin-2-ones 1565
1-bromoquinolizinium bromide 2039
4-bromo-2-stannylthiazoles
– lithiation of 854
bromo-substituted pyrrole
– 6-exo-trig cyclization 433
N-bromosuccinimide (NBS) 535, 838,

2001, 2239
5-bromo-1,2,3-thiadiazoles 1285
2-bromothiazole 861, 863
bromothiazole, dimerization 859
Brønsted acids 872, 1468
Buchwald–Hartwig amination 394, 464

Buchwald–Hartwig arylation
– applications 463
Buchwald–Hartwig palladium-catalyzed

aryl-amino coupling reaction 1547
BuLi reagent 890
Burgess reagent 1176
– use of 873
(þ)-butaclamol 2023
t-butanol 82
v-butenyl sulfonamide 18
1-butenyl-2-vinylpyrinium salts
– ring-closing metathesis (RCM)

reaction 2036
t-butoxide 119
N-tert-butoxycarbonylanilide 1540
N-(t-butoxycarbonyl)-N-

(2-nitrobenzenesulfonyl) aminoalcohol 27
1-(tert-butoxycarbonyl)pyrrole 325, 334
trans-t-butyl cinnamate 22
5-tert-butyl-3-(2,4-dichloro-5-

isopropoxyphenyl)-1,3,4-oxadiazolin-2-
one 1192

5-tert-butyl-3-[2,4-dichloro-5-(2-propynyloxy)
phenyl]-1,3,4-thiadiazol-2(3H)-one 1355

3-t-butyl-2,3-dihydro-1,2,4-oxadiazoles 1104
2-tert-butyldimethylsilylimidazole 852
o-tert-butyldimethylsilylimidazolyl

aminals 852
butyl (2-carbamothioylhydrazinylidene)

ethanoate
– oxidation 1342
t-butyl hydroperoxide (TBHP) 82
t-butylhypochlorite 15
t-butylhypoiodite 15, 50, 119, 126, 1145
n-butyl-lithium 1006
– hydrogen–metal exchange 1030
tert-butyl peroxide 1602
N-t-butyl-2-phenylaziridine 39
tert-butyl 2-(5-phenyl-1,3,4-thiadiazol-2-yl)

acetate 1382
t-butyl phthalimidomalonaldehydate 2148
tert-butyl-substituted benzofuran trimer 626
t-butylsufinyl imines 25
t-butylsulfonyl (Bus) protected

pentylaziridine 37
tert-butyl tetramethylguanidine (BTMG) 509

c
calcium oxide 23
C-alkyl derivatives 163
camphorsultam
– as chiral auxiliary in aziridination 27
– mediated aziridination, yield data for 27
camphorsultam bromoacetamide 26
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cancer therapy
– potent agent for 426
cannabinoid receptor antagonists 646
Canthine alkaloids 486
N-carbamoylguanidine hydrochloride 1823
carbamoyl-1H-benzotriazole 1016
carbanions
– X-ray crystal structure analysis 2091
carbaporphyrinoids 2243
carbazole-derivative p-type

semiconductors 2311
5-carboalkoxydihydroazepines 1704
carbocycles 1883, 1890
– synthesis 1644, 1645
carbocyclic compounds 1
carbocyclic-fused indoles 400
carbodiimide 68
carbon-carbon bond forming reactions 857,

1479
carbon–carbon cross-coupling reactions
– catalyst 1516
carbon–heteroatom bnd formation 857
carbon monoxide 106
carbon nucleophiles 844
carbon tetrabromide (CBr4) 599
carbonyl insertions, into aziridines 40
carbonyl tautomeric formation 1495
5-carboxamide-3-phenyl-1,2,4-thiadiazole

4-oxide
– X-ray structure of 1293
N-carboxy anhydrides (NCAs) 2140
carboxylic acids 36, 269, 1012, 2346
– derivatives of 875
carboxylic sulfonic anhydride 1012
4-carboxy-1,2,3-triazoles
– azides with methylene compounds 1000
cardiovascular system 1329
carzinophilin 11
catalyst–substrate complex 81
catalytic cycle 412, 466
catalytic hydrogenation of pyrroles 321
catenane synthesis 2287
cation-exchange resins 2336
cationic indolinylarylpalladium complex 468
cationic zirconium species 932
CB1 receptor subtype antagonist 646
C–C bond formation 937
[CCCNO] reactions 748
C3/C6 cycloaddition
– regioselectivity of 1450
C,N-diphenyl nitrilimine 1198
cefuzonam 1286
central nervous system (CNS) 1287
cephalosporin C

– isochlorobutylformate (ICBF) ester 2152
– synthesis 2150
– Woodward�s total synthesis 2149
cephalosporins 2144–2161
– classical syntheses 2148–2150
– conversion 2158–2161
– industrial production 2150–2153
– with 3-morpholinosydnonimine 1072
– physicochemical data 2146–2148
– reactivity 2153–2158
ceric ammonium nitrate (CAN) 33, 310,

2142, 2202
cerium trichloride heptahydrate 33
cesium fluoride 1011
cetyl(trimethyl)ammonium hydroxide

(CTAOH) 66
c-glycosidic bond 1763
chalcones 663, 664, 1635
charge-transfer complexes 2311
– structures 2312
cHBOX ligands 22
chelating sulfonamides 19
chemical markers
– as medical tracers 2283
chemical shifts 189
chemical vapor deposition (CVD) 2308
chemotherapeutic agents 1168
Chichibabin approach 2007
Chichibabin reaction 1573, 2032
– of diazines 1741
Chichibabin synthesis 2006
chiral aldimine 25
chiral aziridination using diazoesters 25
chiral bis(oxazoline) (BOX) ligands 21
chiral camphor-derived ligand 21
Chiral capsules 2300
chiral catalysts
– for asymmetric alkene aziridination 17
– and auxiliaries for electron-deficient

alkenes 84
chiral dihydroquinoline carbonitriles 1569
chiral 1,2-dihydro-1,3,5-triazines 1830
chiral Fischer-type furan carbene

complex 563
chiral c-sultones
– asymmetric synthesis of 968
chiral imidazolium salts 892
chiral nonracemic aminoalcohol 27
chiral 1,2,4-oxadiazoles 1087
chiral pyridine derivatives 1441
chiral S-benzyl sulfonium triflate 26
chiral sulfur ylide approach 26
chiral sulfur ylide precursors 88
chiral tetrahydroisoquinoline alkaloid 1575
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chiral tetrazole compound 1427
chiral thiepane derivatives 1901
chiral thiourea organocatalyst 443
chlordiazepoxide
– Sternbach�s synthesis 2183
– structure 2176
– synthesis 2182
chlorinated porphyrins
– examples 2258
chlorination 347, 1830
chloroacetamidine 1822
a-chloroaldehyde bisulfite adducts
– hetero Diels–Alder reactions of 1034
chloroalkynes
– Ti-catalyzed hydroamination 393
2-chloro-5-aroyl-1,3,4-thiadiazoles 1382
o-chloroarylacetaldehyde hydrazones
– intramolecular cyclization 500
2-chloroaryl alkynes 604
2-chloro-N-(5-aryloxymethylene/aryl-1,3,

4-thiadiazolo-2-yl)acetamides 1383
chloroaziridine 51
4-chlorobenzaldehyde 86
2-(3-chloro-1-benzothien-2-yl)-1,3,4-

thiadiazole 1345
chlorocarbonyl isocyanate 1827
N-chlorocarbonyl isocyanate 1827
chlorocarbonyl isocyanates 1825
chlorocyanogen oxide 1092
2-chloro-4,6-dimethoxy-1,3,5-triazine 1819,

1832
chlorodithioformates 1266
chloroesters, treatment 931
chloroethanol 98
2-chloroethyl methyl carbonates 936
5-(4-chloro-3-ethyl-1-methyl-1H-pyrazole-5-yl)-

1,3,4-oxadiazole-2-one 1214
4-chloro-2-(hydroxyamino)phenyl

derivative 1213
1-chloroisoquinoline 1600
chloromethylated polystyrenes 2330–2333
– swelling properties 2331
chloromethyl benzothiazole 25
1-(chloromethyl)benzotriazole
– with sodium dialkyl phosphites 1015
3-chloromethyl-1,2,4-oxadiazole
– Arbuzov reaction of 1123
5-(chloromethyl)-1-pyrroline derivatives

347
4-chloro-2-methylthiopyrimidine 1758
2-chloro-N-(5-aryloxymethylene/aryl-1,3,4-

thiadiazol-2-yl)acetamides 1377
2-chloro nicotinic acid 2351
1-chloro-2-nitrobenzenes

– benzotriazol-1-ols from 1011
5-chloro-N-substituted-1,2,3-triazoles
– nucleophilic displacement of 1007
2-chloro(or fluoro)-1,3,5-

trinitrobenzene 1007
m-chloroperbenzoic acid (MCPBA) 1327,

1599, 2144
m-chloroperbenzoic acid (mCPBA) 64
chloroperoxidase (CPO) 79
3-chloroperoxybenzoic acid
– oxidation of 903
6-(2-chlorophenyl)-3-ethyl-[1,2,4]triazole[3,4-b]

1,3,4-thiadiazole
– crystal structure of 1336
p-chlorophenyl isocyanate 1826
2-chloro-4-phenylpyrimidine 1744
N-4-(p-Chloro)phenyl-1,2,4-triazole-3,5-

dione 1033
chlorophyll-a 273
chloropyrazines 1760, 1762
3-chloropyridazines 1756
chloropyridines 1485
(6-chloro-3-pyridyl)acetylene derivative 324
2-chloropyrimidine 1745
chloroquine 1532
N-chlorosuccinimide (NCS) 1095, 1454
N-chlorosuccinimide, manganese

dioxide 1116
chlorosulfonic acid 1576
chlorosulfonyl isocyanate (CSI)
– [2þ2] cycloaddition 2126
5-chloro-1,2,3-thiadiazoles 1278
chlorotriazolinone
– synthesisof 1026
cholinergic channel activator ABT-418

synthesis 740
4H-chromen-4-ones 1674–1676
chromone
– iron-promoted formation of 1675
– structure of 1661
chromones 1660, 1661
chromophore
– UV absorption spectra 2025
chrysopterin 2276
ciguatoxin 1868
Cinchona alkaloid organic catalysts 445
cinnamate esters 22
– asymmetric aziridination of 23
cinnamic acid 1867
cinnamylideneacetophenones 664
cis-aziridine 51
cis-2,3-divinyloxirane 1894
Claisen condensation
– with acetophenone, and condensation 1069
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Claisen-like condensation 738
Claisen-like sigmatropic rearrangement 386
Claisen-like [3,3]-sigmatropic

rearrangement 398
Claisen rearrangement 489, 512
Claisen–Schmidt reaction 1462
Clavulanic acid 2145
CLEAR resins 2343
clobazam 2181, 2214
– synthetic route to 2215
clomipramine 1867
C-metallated azoles, reactions of
– azolyl copper reagents 855
– copper azoles 855
– lithium azoles 847–850
– magnesium azoles 850–852
– silicon azoles 852–853
– tin azoles 853–854
– zinc azoles 854–855
C-metallated pyridines 1479
c-metallated pyrroles 314–318
CNS depressant 734
C-nucleophiles 2352
co-catalysis system 599
colchicine
– total synthesis 571
2,4,6-collidine 1470
Combes reaction 1534
combretafurazan 1169
[CONCC] reactions 750, 751
N-CONEt2 protected indole
– treatment 456
N-confused porphyrin 2241
conjugated ene-yne-carbonyl 554
conjugated heterocyclic mesomeric betaines

(CMBs) 2021
p-conjugated nonsymmetrical liquid

crystals, 1125
20p conjugated pathway 2247
Conrad–Limpach synthesis 1534
Cope rearrangement 329
copper(II) hexafluoroacetylacetonate 38
copper(II) permanganate 83
copper(II) sulfate 82
copper-zinc superoxide dismutase
– enzyme model for 2302
core-modified oxybenziporphyrin

2245
core-modified sapphyrins 2251
Corey–Chaykovsky synthesis 86
corrphycene 2236
coumarins. see 2H-benzopyran-2-ones
– Pechmann condensation, synthesis

of 1670

– synthesis of 1669, 1670
coumestrol synthesis 613
COX-2-selective inhibitors 1712
CpCo catalyst 1438
crisscross cycloadditions 670
cromoglicic acid 1674
cross-coupling protocols 410
cross-coupling reactions 464, 2051
cross-linked ethoxylate acrylate resins (CLEAR)

resins 2343
crosslinked polystyrene
– chemical modification 2330
Crown ethers 2297
crystallographic data 1134
crystallographic techniques 1078
C–S bond 114
Cu-based chiral catalysts 447
Cu-Cr catalyst 1888
CuI/CuIII system 510
C4-unsubstituted isoquinolines 1578
C4-unsubstituted-N-oxides 1579
cupric triflate 94
Curtius rearrangement 413
Cusmano–Ruccia/Boulton–Katritzky

rearrangement 1117
5-cyanimino-4,5-dihydro-3-aryl-1,2,4-

thiadiazoles 1309
cyanine dye 2279
– structure 2279, 2280
cyanoacetamide 1673
3-(cyanoacetyl)pyrrole 303
cyanoacetylureas 1719
N-cyanoamidines
– cyanamide 1089
1-cyanobenzotriazole
– electrophilic cyanations 1015
cyano compounds
– palladium-catalyzed three-component

coupling reaction of 1409
b-cyano enolate 848
cyanogen chloride 894
cyanohydrines 1090
5-(cyanoimino)thiadiazolines 1320
1-cyanoisoquinoline N-oxides 1606
cyanomethyl-1,2-dihydro-N-

methylquinolines 1568
5-cyanomethyl-1,3-diphenylpyrazoles
– induced addition–elimination 692
5-(p-cyanomethylphenyl)-2-n-nonyl-1,3,4-

oxadiazole 1227
2-cyano-1-methylpyrrole 339
1-cyano-4-(N,N-dimethylamino)-pyridinium

bromide 841
cyanopyrazine 1760
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2-cyanoquinolines 1560
3-cyanoquinolines 1534
cyanurates 1820
cyanuric acid 1820, 1830
cyanuric chloride 1818, 1820, 1832
cyclic azomethine imines 1070
cyclic b-ketoesters 392
cyclic C-alkoxynitrones 903
cyclic C-aminonitrones 903
cyclic compounds 1
cyclic diazo compound 491
cyclic guanosine monophosphate

(cGMP) 651
cyclic imines 1102
cyclic pyrrolo-2,3-quinodimethanes
– Diels–Alder cycloaddition 435
cyclic sulfides
– ring contraction 970
cyclization approaches 593
cyclization-assisted cleavage strategy 2349,

2371
– advantages 2348
cyclization of hydrazones of 4-oxoalkenoic acid

derivatives 1699
cyclization reactions 385, 407, 424,

1995–1997, 2053
cyclization-release strategy 2185
cycloaddition cascades
– applications 484
cycloaddition–elimination process

1298
[4þ2] cycloaddition methodology 435
– applications 482
cycloaddition reactions 54, 480–487,

780–782, 791, 793, 1648–1652, 2000,
2042–2043, 2095, 2096

– of aziridines 39
– with azirines 55
cyclobutadiene
– tautomerization of 1221
cyclodehydration method 2053
b-cyclodextrin 94, 111
cyclodimerization
– of a-amino acids 1726
– of a-amino carbonyl compounds 1726
– of nitrile ylides 1728
cycloheptatriene 1865
cyclohexane spiroepoxide 57
cyclohexanones 1557
cyclohexene 82
cyclohexene imine 36
– conditions for N-elaboration 36
cyclohexene oxide 110
cyclohexenyl carbamate 19

cyclohexylaziridine 34
N-cyclohexyl-N-benzoylhydrazine 1213
1,5-cyclooctadiene 1071
cyclooxygenase-2 inhibitors 576
cyclopentene oxide derivative 101
cyclopropanes
– with SO2 969
cyclopropenyl ketone
– Cu-catalyzed ring-opening

cycloisomerization reaction 555
cycotoxic effect 2210
cysteine-derived chiral 4-amino-1,2-

oxathiolane 2-oxide
– nucleophilic attack on 971
Cystobacter violaceus 164
cytochrome P450cam, enzyme models

for 2301

d
DABCO 176, 177, 661, 683, 684, 1927, 2136
Danishefsky�s diene 483, 1672
Davis� reagent 2351
DBU/Lewis acid 1537
Dean-Stark apparatus 689
Debus� reaction 816
decarboxylation 339
– of pyrrole-3-carboxylic acids 337
p-deficient heterocycles 1572
dehydrobrominations 46
dehydrochlorinations
– of pyridazines 1736
a-dehydrophenylalanine
– irradiation of 1587
4,5-dehydropiperidine 1509
delocalization energies (DE) 2024
demoxepam 2184
Dendrobates histrionicus 1558
density functional theory (DFT) 1134, 1292
– calculations 379, 1573, 2005, 2092
deoxyglucitol-derived aziridine 32
1-deoxymannojirimycin analogs 32
deprotonation 5
Dess–Martin conditions 98
desulfurization 116–117
– of thiiranes 118
Dewar phosphinines 2085
Dewar pyridines 1495
Dewar pyrimidine intermediate 1731
DeWitt�s solid-phase synthesis
– of 1,4-benzodiazepine-2-ones 2187
DFT/6-31G computational method
– vs. experimental bond lengths 1332
diactivated alkenes 23
2,4-diacylpyrroles 304
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6-dialkylamino-1,3,5-triazine-2,4-
dithiols 1830

3-N,N-dialkylamino-1,2,4-triazoles 1025
dialkylation 1733
2,3-dialkylaziridine residue 12
1,2-dialkyl-1,2-dihydroisoquinolines
– Grignard reagents 1610
N,N-dialkyldithiocarbamidates 953
N,N-dialkylfurazanamidoximes 1143
O,N-dialkylhydroxamic acids 1013
1,3-dialkylisoquinolines 1608
2,5-dialkyl-1,3,4-oxadiazoles 1203
3,4-dialkylpyrrole-2,5-dicarboxaldehydes 302
3,4-dialkylpyrrrole-2-carboxylic acids 302
dialkyl-1,2,4-thiadiazoles 1306
dialkylzinc reagents 1762
diamides
– Pd-catalyzed reaction 2192
1,2-diaminoalkene 1724
1,2-diaminobenzene 1017
4,6-diamino-1,2-dihydro-1,3,5-triazine 1827
1,2-diaminoethanes 1723
diaminomaleonitrile (DAMN) 820
2,4-diaminothiazole 896
diaryl diselenides 1901
1,3-diarylimidazolium chlorides 892
4,6-diarylpyrimidine-2-ylamines 1712
3,4-diaryl substituted 1,3,4-

oxadiazolidines 1200
3,6-diaryl-1,2,4,5-tetrazines 1840
2,5-diaryl-1,3,4-thiadiazoles 1349
2,4-diaryl-1,2,3-triazoles
– preparation of 1002
2,5-diaryl-3-trimethylsilylmethyl-1,3,

4-oxadiazolium
trifluoromethanesulfonates 1191

diastereomeric mixtures 888
diastereoselective epoxidations, with

chiral auxiliaries 87
diastereoselectivity 28, 79, 114
3,6-diaza-bicyclo [3.1.0]hexane system 12
1,2-diaza-1,3-butadienes 1260
– Pd(0)-catalyzed carbonylation 672
diazepam 2179
– acylation 2196
3,6-diazido-1,2,4,5-tetrazine (DiAT) 1836
diazines 3, 1683
– bicyclic variants 1683
1,2-diazines 1757
diaziridines
– cis–trans isomerism in 119
– diaziridines 122, 123
– diaziridinimines 123, 124
– diaziridinones 123, 124

– geometry 118
– other methods 121, 122
– oxidative methods using hypohalites

119, 120
– properties 117–119
– reactivity 122
– synthesis 119–122
– via hydroxylamine derivatives 120, 121
diaziridinimines 119, 123
diaziridinones 122, 123
– ring enlargement 671
diazirines
– properties 124
– reactivity 126–129
– synthesis 124–126
3H-diazirines. see diazirines
diazoalkanes 1265
– dipolar cycloaddition of 1050
a-diazoanhydrides
– 1,3-dioxolium salts 930
diazocarbonyl compounds
– InCl3-catalyzed 1,3-dipolar

cycloaddition 668
diazo compounds
– decomposition of 931
– 1,3-dipolar cycloaddition reaction 651
– metal-catalyzed insertions 2127, 2128
diazo coupling, nitrosation 701
diazocyclohexadienone valence isomer 1049
2-diazo-1,3-dicarbonyl compound
– copper-catalyzed decomposition of 931
2-diazo-1,3-dicarbonyl derivatives 1264
diazo esters
– rhodium-catalyzed reaction of 931
diazoketones 1724
diazomethane 1901
– frontier molecular orbital theory

prediction of 1256
diazonium ions 840
diazothiocarbonyl compounds 1263
a-diazothiocarbonyl compounds 1264
2-diazothione
– isolation of 1254
diazotization reaction 2046, 2047
diazo(vinyl)methanes bearing a carbonyl group
– reductive cyclization of 1700, 1701
dibenzazepines 1867
dibenzo[b,e]thiepines 1869
dibenzylthiirane 115
3,5-dibromo-2-aminopyrazine 1737
dibromobithiazole
– formation of 859
1,3-dibromo derivative 971
a,b-dibromoesters 29
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1,6-dibromohexane 1901
3,5-dibromo-1H-1,2,4-triazole 1032
3-(2,4-dibromophenyl)-2-methylthio-5-phenyl-

1,3,4-thiadiazolium methosulfate 1353
2,4-dibromothiazole
– chemoselective reaction of 863
5,7-di-t-butyl-1,2,3-benzoxadiazole 1049
N,N-di-t-butyldiaziridinone 123
N,N-dibutyldiaziridine 119
1,5-dicarbonyl/ammonia 1462
1,2-dicarbonyl compounds
– monooximes of 902
1, 3-dicarbonyl compounds
– ring construction, synthesis 926–927
1,4 dicarbonyl compounds 821
1,3-dicarbonyl derivative 1533
1,5-dicarbonyl derivatives
– cycloaddition of 1461
1,2-dicarbonyl monohydrazones 1698
1,4-dicarbonyl reagents
– structures of 821
dicarbonyl synthons 1713
2,6-dichlorobenzaldehyde 87
2,3-dichloro-5,6-dicyano-1,4-benzoquinone

(DDQ) 1465, 1738, 2106
2,2-dichlorodiethyl sulfide
– imidazole, reaction 835
1,2-dichloroethane (DCE) 1568
4,5-dichloro-3-iodopyrrole-2-carboxylate

336
dichloromethane (DCM) 1346, 1827
2,4-dichloro-6-methoxy-1,3,5-triazines

1819
N,N-dichloro-o-nitrobenzenesulfonamide

(2-NsNCl2) 879
2,6-dichloro-3-nitropyridine 1471
2,3-dichloro-4-oxobut-2-enoic acid 1696
2-(2,4-dichlorophenylamino)-5-(2,4-

dihydroxyphenyl)-1,3,4-thiadiazole 1387
2,4-dichloroquinoline 1563
4,7-dichloroquinoline
– palladium-catalyzed carbonylation of 1563
3,5-dichloro-1,2,4-thiadiazole 1306
N,N-dichlorotosyl sulfonamide 29
5,6-dicyano-1-methylindole 327
4,5-dicyanopyridazine 327, 1748
dicyclic 1,2-dithiolane 940
dicyclohexylcarbodiimide (DCC) 36, 1086,

1182
Dieckmann-type cyclization 1901
1,3-dielectrophile
– condensation of 1533
Diels–Alder adducts 323, 704, 869
Diels–Alder catalysis 2299

Diels–Alder cycloaddition 693
– of propargylic aldehyde 1697
Diels–Alder cycloaddition–retro-Diels–Alder

reaction strategy 542
Diels–Alder cycloadditions 704,

793, 1453, 1670, 2078
Diels–Alder (DA)/1,3-dipolar cycloaddition

(1,3-DC) cascade 1218
Diels–Alder/hetero-Diels–Alder

cycloaddition 1551
[4þ2] Diels–Alder reaction 2076
Diels–Alder reactions 54, 273, 324, 480, 482,

486, 533, 537, 570, 572, 616, 780, 781, 791,
866, 867, 1172, 1216, 1378, 1444, 1445, 1446,
1564, 1585, 1665, 1893, 2043, 2297, 2298,
2303

– products 546
– from 2-quinolones and butadiene

compounds 1566
Diels–Alder reagent 1131
dienic system
– of molybdenum carbonyl complexes 2078
– reactivity 2077
dienophile
– LUMO 485
– nucleophilic carbon of 1450
dienophile (p-toluenesulfonyl)acetylene 324
a-dienylb-lactams
– Diels–Alder reaction 2143
1-(diethoxymethyl)imidazole
– use of 847
diethoxyphosphinyl acetic

acylhydrazine 1020
4-(diethoxyphosphoryl)methyl-N-(3-phenyl

[1,2,4]thiadiazol-5-yl)benzamide 1331
diethylaluminium azide 95
diethylaluminium 2,2,6,6-

tetramethylpiperidide (DATMP) 98
diethylaminoacetonitrile 1834
3-diethylaminoacrylonitrile 669
diethylaminosulfur trifluoride (DAST) 872
diethyl azodicarboxylate 1823
diethylazodicarboxylate (DEAD) 1403
N,N-diethylcarbamyl chloride 902
diethylepisulfide 114
diethyl ethoxymethylenemalonate 339
o,o-diethyl hydrogen phosphodithioate 114
diethyl (pyrrol-2-yl)methylphosphonate 331
N,N-diethyl-1-propynylamine
– hetero-Diels–Alder reaction of 1449
3,6-diethyl-1,2,4,5-tetrazine 1837
5,5-difluoro-1-methyl-3-pyrrolin-2-one 339
N,N0-diformylhydrazine 1341
4,5-dihydroazepines 1884
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dihydro-1,4-dithiins 963
2,3-dihydrofuran 1893
dihydrofuran-2,5-dione 1
dihydrofuran-2-one 1
3,5-dihydro-4H-2,3-benzodiazepin-5-

ones reaction 2221
1,2-dihydro-3H-indazol-3-ones 688
2,3-dihydro-4H-pyran-4-ones 673
2,4-dihydro-3H-1,2,4-triazolin-3-ones 1026
4,5-dihydroimidazoles 873
– synthesis of 871
dihydroisoquinolines 1602
1,2-dihydroisoquinolines 1604
– diastereoselectively 1611
3,4-dihydroisoquinolin-1-ones 1577
2,3-dihydroisovalerate 1167
4,5-dihydro-3-methyl-1,2,3-oxadiazolinium

salts 1059
2,5-dihydro-1,2,4-oxadiazin-5-ones 1102
4,5-dihydro-1,2,4-oxadiazole 5-ones 1116
– oxidation of 1116
4,5-dihydro-1,2,3-oxadiazole 2-oxides 1052
4,5-dihydro-1,2,4-oxadiazole ring 1080
2,3-dihydrooxadiazoles 1198
2,3-dihydro-1,2,4-oxadiazoles 1105
– crystal structures for 1080
4,5-dihydro-1,2,4-oxadiazoles
– mass spectrometric analysis of 1083
– synthesis of 1099
4,5-dihydro-1,2,4-oxadiazoles ring 1076
dihydro-1,2,3-oxadiazoline structures 1050
4,5-dihydro-1,2,4-oxadiazol-5-ones 1099,

1111
4,5-dihydro-1,2,3-oxadiazolo 2-oxides 1052
4,5-dihydro-1,2,4-oxadiazol-5-thiones 1099
dihydrooxazaphosphole derivatives 50
4,5-dihydro-1,2,3-oxazolidinium salts 1058
dihydrooxepine 1894
D3-dihydropyran derivatives 1654
2,3-dihydropyrazines 1723
dihydropyrazoles 1071
4,5-dihydropyridazin-3(2H)-ones 1693
1,4-dihydropyridine derivatives
– formation of 1457
1,4-dihydropyridines
– Hantzsch synthesis of 1458
3,4-dihydropyrimidine-2-(1H)-ones 1706
1,4-dihydropyrimidines 1707
1,6(1,4)-dihydropyrimidines 1716
2,5-dihydropyrroles (3-pyrrolines) 320
dihydroquinine–dihydroquinidine 1530
2,3-dihydroquinolin-4-ones 1542
4,5-dihydro-1,3,4-thiadiazole-2-

carboxamides 1362

2,3-dihydro-1,3,4-thiadiazole
derivatives 1361

2,5-dihydro-1,3,4-thiadiazoles 1379
4,5-dihydrothiazoles
– synthesis of 873
4,5-dihydrothiepine 1896
2,3-dihydro-[(thioacyl)methylene]

thiadiazoles 1379
dihydro-1,3,5-triazines 1835
4,5-dihydroxazoles 871
2,4-dihydroxy-6-methylpyrimidine 1736
2,5-dihydroxypyrrole-O-benzoates 311
4,5-dihyro-3-methyl-1,2,3-oxadiazolium

tosylate
– synthesis of 1058
diisobutylaluminium hydride

(DIBALH) 339, 1489
diisopropyl carbodiimide (DIC) 2363
1,5-diisopropyl substituted 6-oxo-

verdazyls 1838
diketones 2036
1,4-diketones
– Stetter reaction 1035
a-diketones 816
1,2-diketones, synthesis 816
dimedone, coupling 608
dimeric benzo[b]furans
– split-pool synthesis 622
4,6-dimethoxy-2-aminopyrimidine

1691
1-(3,4-dimethoxybenzyl)pyrrolidines 345
2,5-dimethoxy-2,5-dihydrofuran 537
4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-

methylmorpholinium (DMTMM)
chlorides 742, 1819

dimethyl acetylenedicarboxylate
(DMAD) 322, 323, 753, 781, 1070,
1884, 1885, 2365

– Diels–Alder adduct 870
– dipolarophiles 868
– thiazoles 869
dimethyl acetylene-dicarboxylate

(DMAD) 1613
N,N-dimethylacrylamide
– copolymerization 2340
5-(dimethylamino)benzofuroxan
– nitrosation of 1162
N0-[(dimethylamino)methylidene]-N,N-

dimethylhydrazonoformamide 1340
5-(dimethylamino)-4-methylisosydnone 1190
2-(dimethylaminomethyl)pyrrole 308
2-[4-(N,N-dimethylaminophenyl]-4-

substituted-(3,4,5-trimethoxyphenyl)-
D2-1-3-4-oxadiazolines 1197
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dimethylaminopropenoates
– nitrosation of 1090
1-[(3-dimethylamino)propyl]-3-

ethylcarbodiimide (DMAP) 178
– catalytic amounts 2363
1-[3-(dimethylamino)propyl]-3-

ethylcarbodiimide (EDC) 1086
4-dimethylaminoquinoline
– acylation of 1559
4-dimethylamino-4-trichloromethyl-1,3-

diaza-1,3-butadiene 1822
2-dimethylamino-4-trichloromethyl-1,3,5-

triazine 1822
N,N-dimethylaniline 303
2,3-dimethylbutane 137
2,4,-dimethylcarbonohydrazide 1838
3,4-dimethylcoumarin 1668
dimethyldioxirane (DMD) 70
– catalytic epoxidation using 60
– epoxidation of sensitive substrates 59
2,2-dimethyl-1,3-dioxolanes 935
dimethylformamide 98, 106
N,N-dimethylformamide (DMF) 1480
dimethylfurazan 1137
3,4-dimethylfurazan 1166
1,2-dimethylimidazole 869
– butyllithium reacts 890
– Diels–Alder adduct 870
dimethylpyridazolyl 1838
dimethylpyridine 1505
trans-2,5-dimethylpyrrolidine derivative 349
dimethyl sulfoxide (DMSO) 87, 453, 991
1,3-dimethyl-3,4,5,6-tetrahydro-2-

pyrimidinone (DMPU) 1553
2,4-dimethyl-1,2,4-thiadiazolidine-3,5-

dithione 1317
2,4-dimethyl-1,3,5-triazine 1822
4,40-di(morpholin-1-yl)azoxyfurazan 1134
2,5-di m-/p-tolyl-1,3,4-oxadiazoles
– oxidation of 1211
Dimroth reaction 1282
Dimroth rearrangements 1280, 1312, 1324,

1370
1,3-dinitrobenzene 1732
4,6-Dinitrobenzofurazan 1153
4,6-dinitro compounds 1158
Diol formation 67
1,2-diols
– with oxalyl chloride and triethylamine 935
1,3-dioxane
– treatment of 935
dioximes 1139
1,2-dioximes
– oxidation of 1149

dioxirane-mediated sulfoxidation 139
dioxiranes
– epoxidation of alkenes 137
– hydroxylation of alkanes 137, 138
– oxidation of sulfur 138–140
– properties 135, 136
– reactivity 137
– synthesis 136, 137
1, 2-dioxolane 925
– electron diffraction 926
– heterocycles, ring transformations of 927
– reactivity of 928
1,3-dioxolane
– derivatives 938
– – 1H NMR data 929
– with ferrous sulfate 937
dioxolanes 933
1, 2-dioxolanes
– formation of 926
1,3-dioxolanes 928
– derivatives 938
– heterocycles, ring transformations of 935
– NMR spectroscopy 929, 930
– reactivity of 935–938
– ring construction, synthesis 930–935
– X-ray diffraction studies 929
1,2-dioxolan-2-yl cation
– X-ray diffraction studies 929
1, 2-dioxole 925
– heterocycles, ring transformations of 927
– reactivity of 928
1,3-dioxoles 928
– derivatives
– – 13C NMR data 930
– – 17O NMR data 930
– 1,3-dioxolane derivatives 938
– heterocycles, ring transformations of 935
– ketones 933
– NMR spectroscopy 929, 930
– reactivity of 935–938
– ring construction, synthesis 930–935
– X-ray diffraction studies 929
1, 2-dioxoles systems 926
1,3-dioxolium salts 928
2,5-diphenxyloxazole (PPO) 2285
diphenyl derivatives
– electrophilic reaction 1223
2,4-diphenyl-1,3-diazabuta-1,3-dienes 1823
3,7-diphenyl-5,6-dihydro-4H-1,2-

diazepines 1705
diphenylfurazan decomposes
– thermal process 1154
diphenyl imidodicarboxylate 1825
1,3-diphenylisobenzofuran 330
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diphenylnitrilimine
– prepared from 2,5-

diphenyltetrazole 1193
2,5-diphenyl-1,3,4-oxadiazole 1207, 1219
3,5-diphenyl-oxadiazole fragment 1080
N,N0-diphenyl-oxalodihydrazonoyl

dichloride 1361
2,5-diphenyloxazole
– irradiation of 870
diphenylphosphinoferrocene (DPPF) 332
diphenyl phosphorazidate (DPPA) 48
3,6-diphenylpyridazine 1705
2,6-diphenylpyridine
– reduction of 1490
2,6-diphenylpyrylium salt
– synthesis 1635
2,5-diphenyl-1,3,4-thiadiazole 1338
3,5-diphenyl-1,2,4-thiadiazole
– reduction of 1311
4,5-diphenyl-1,3,4-thiadiazolium 2-

thiolate 1372
3,6-diphenyl-1,2,4,5-thiatriazine 1837
3,5-diphenyl-1,2,4-triazole 1207
diphosphorus tetraiodide 27
1,3-dipolar azomethyne imines 1054
1,3-dipolar cycloaddition 877, 904, 1071,

1147
– of azides to alkynes 991
– of nitrile oxides 1083
– of nitrones 1104
1,3-dipolar cycloaddition 29
dipolar cycloaddition reactions 1060
– of 1,4-benzodiazepine-5-ones with

nitrilimines 2207
1,3-dipolar cycloadditions 1027
– of alkynes 998
– of azides and alkynes 992
dipole–dipolarophile interaction 666
dipole moments 270, 1132
2,5-di(4-pyridyl)-1,3,4-oxadiazole
– molecular dimensions for 1173
di(pyrrol-2-yl)ethenes 309
di(pyrrol-2-yl)methanes 332
direct aziridination, with alkyl

azides 30
directing metallation groups (DMG) 1476
discotic liquid crystals 2313
2,5-disubstitued-1,3,4-oxadiazoles 1180
3,30-disubstituted-4,40-azofuroxans
– transformation of 1160
2,3-disubstituted benzofurans

preparation 611
o,o-disubstituted biaryl systems 1645
2,2-disubstituted-1,3-dioxolanes 934

– to carbonyl compounds, hydrolysis of 936
2,5-disubstituted furans preparation 548
2,2-disubstituted glycines 52
1,6-disubstituted hexanes 1899
1,5 disubstituted imidazole-4-

carboxylates 819
4,5-disubstituted imidazoles 816
2,3-disubstituted indoles 423
– solid-phase synthesis 423
1,3-Disubstituted isoquinolines 1584
1,4-disubstituted isoquinolines 1580
3,4-disubstituted isoquinolines 1582
1,5-disubstituted 3-[1-nitroethyl(benzyl)]1,2,

4-triazoles 1160
2,5-disubstituted 1,3,4-oxadiazoles
– synthesis of 1181
2,5-disubstituted-1,3,4-oxadiazoles
– synthesis of 1176
3,5-disubstituted-1,2,4-oxadiazoles
– photochemistry 695
3,4-disubstituted 1,2,4-oxadiazoline-

5-thiones 1300
N,N0-disubstituted oxamides
– cyclization of 817
2,4-disubstituted oxazoles 824, 826
2,5 disubstituted oxazoles 827
N-(1,1-disubstituted propargyl)anilines 1544
1,3-disubstituted pyrazole-4-

carbonitriles 669
2,4-disubstituted pyrimidines 1734
2,5-disubstituted pyrrolidines 344
1,1-disubstituted taurine 116
1,5-disubstituted tetrazoles 1411
2,5-disubstituted-1,3,4-thiadiazoles 1349
4,5-disubstituted-1,3,4-thiadiazolium 2-

thiolate 1351
2,4-disubstituted thiazoles 834
1,3-disubstituted 2-thioureas 1825
1,4-disubstituted-1,2,3-triazoles 996
1,5-disubstituted-1,2,3-triazoles 994
3,5-disubstituted-1,2,4-triazoles
– synthesis of 1028
4,5-disubstituted-1,2,3-triazoles 991
2,4-disubstituted-1,2,4-triazol-3-ones 1029
2,5-disubstituted-3-trimethylsilymethyl-1,3,4-

thiadiazolium trifluoromethanesulfonates
– 1H and 13C NMR data 1337
1,4-dithiafulvenes 1276
4-dithiafulvenes 1270
1,3-dithianes 941
– ring contraction of 941
1,2,4-dithiazol-3-one 976
dithiocarbamates 949
– cyclized with conc. sulfuric acid 951
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1,2-dithiolane
– 13C NMR chemical shifts 939
– 1H NMR spectrum of 939
1,3-dithiolane
– enantioselective oxidations of 965
– heterocycles, ring transformations of

956, 957
1,2-dithiolane-4-carboxylic acid 946
1,3-dithiolane derivatives
– bond lengths 948
– 13C NMR data for 949
– ethylenediamine reacts 966
– 1HNMR data for 948
1,3-dithiolane ring 956
1,2-dithiolanes 938, 939, 940, 941
– carbenes react 946
– compounds of interest 946, 947
– cyanide ion 946
– 1,2-dithiolium salts 942–944
– heterocycles, ring transformations of

941, 942
– physicochemical data 939
– preparation of 940
– reactions
– – with carbenes 946
– – with electrophiles 945, 946
– – with nucleophiles 946
– ring construction, synthesis 940, 941
– synthesis of 940
1,3-dithiolanes 947, 964
– acid and alkaline hydrolysis 963
– cleavage of 964
– electrochemical oxidation of 957
– NMR spectroscopy 947–949
– ring synthesis of 954–956
– synthesis of 954, 956
– theoretical methods 949
– X-ray crystal structure 947
– X-ray diffraction studies 947
– X-ray methods for 939
1,3-dithiolanes, reactivity of
– cleavage reactions 963, 964
– electrophilic attack at carbon 964
– oxidations 964, 965
– radical reactions 965
– ring transformation reactions

965, 966
1,2-dithiolane system 938
dithiolane, with WCl6 965
1,3-dithiolan-2-yl radical
– intramolecular addition of 965
dithiolate disodium salt 755
1,3-dithiole-2-one 960
– decarbonylation 960

1,2-dithiole-3-ones
– acyclic ketones and thiones 944
1,2-dithioles 938, 943, 944
– 1,2-dithiolium salts 942–944
– heterocycles, ring transformations of 941,

942
– physicochemical data 939
– reactions
– – with carbenes and nitrenes 945
– – with electrophiles 944
– – with nucleophiles 944, 945
– ring construction, synthesis 940, 941
– synthesis of 940, 941
1,3-dithioles 947
– coupling reactions 962, 963
– heterocycles, ring transformations of 953,

954
– NMR spectroscopy 947–949
– reactions
– – with electrophiles 961
– – with nucleophiles 961, 962
– reductions 962
– synthesis of 949–953
– theoretical methods 949
– thermal and photochemical reactions 960
– X-ray crystal structure 947
– X-ray diffraction studies 947
1,2-dithioles react 945
– carbene and nitrenes 945
1,2-dithiole system 938
1,2-dithiole-3-thione
– reaction of 945
1,3-dithiole-2-thione 952
1,3-dithiole-2-thiones 951, 953, 961
– synthesis of 952
1,2-dithiole-3-thiones react 944
1,3-dithiole tributyl tin 962
1,2-dithiolium cations 939
dithiolium salts 943
1,2-dithiolium salts 942, 943
– with carbon nucleophiles 944
– electrochemical reduction of 944
– formation of 944
1,3-dithiolium salts 947
– synthesis of 949–953
dithiolones
– conversion of alkynes into 951
1,3-dithiolones
– synthesis of 949–953
1,3-dithiol-2-ones 950
1,2-dithiol-3-thione
– geometry of 939
1,3-dithiolylium bromides 950
1,3-dithiolylium ions
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– coupling reactions 962, 963
– reactions
– – with electrophiles 961
– – with nucleophiles 961, 962
– reductions 962
– thermal and photochemical reactions 960
1,3-dithiolylium-4-oate
– photolysis of 960
1,3-dithiolylium-4-olates 962
1,3-dithiolylium salts 952, 958, 961, 962
– with nucleophiles 961
– preparation of 949
diversity-oriented synthesis (DOS)

libraries 2353
divinylbenzene (DVB) 2328–2330
1,2-dixolanes 927
DMAD 869, 1062, 1897
DNA topoisomerases 649
1-dodecyl-1-methyl-4-oxopiperidinium

triflate 61
Doebner–Miller methods 1535, 1536
domino-reaction 580
donor–acceptor charge-transfer

complex 2310
dopamine antagonist 735
Dost�s bases 1306
Dysidea fragilis 42

e
Eaton�s acid 388
Eaton�s reagent 1535
Ehrlich carcinoma 1074
electrocyclic reactions 570–573, 2018–2019
electrocyclizations 435, 488, 1729
– of 2,3-dialkenyl-4-nitropyrrole 435
electron-deficient nitriles 1092
electron-deficient olefins 20
electron-deficient oxadiazole ring

carbon 1203
electron-deficient pyrazine ring 1763
electron density 813
electron diffraction 926
electron-donating groups 1576
electron impact ionization (EI)

technique 2026
electron-poor nitrogen heterocycles 2309
electron-rich alkynes 1658
electron-rich arenes
– electrophilic Friedel–Crafts alkylation 2078
electron-rich system 2011
electron spin resonance (ESR)

spectroscopy 1337
electron-transfer process 2013
electron-withdrawing effect 812

electrophilic amide activation 1578
electrophilic attack on pyrrole 6
electrophilic cyclization reactions 1578
electrophilic reactions 2255–2262
– formylation 2255
– halogenation 2257–2262
– reactions of formyl porphyrins 2256, 2257
electrophilic reagents 834–842
– at carbon 837–842
– C-metallated azoles, reactions of 847–855
– at N3 834–837
– N-metallated imidazoles 846
– nucleophilic reagents 843–846
– oxidizing agents 842, 843
electrophilic replacement reactions
– at C4 in sydnones 1066
electrophilic ring 849
electropolymerization 274
electrostatic interactions 2286
elemental fluorine
– oxidative addition of 926
Ellman�s solid-phase synthesis
– of 1,4-benzodiazepine-2-ones 2186
enamine ketone
– amine exchange reaction 738
enamines 1450
– cyclocondensation synthesis o 1459
– Michael-type addition 427
– 1,2,4-triazines, [4þ2] cycloaddition

of 1451
enamino derivatives
– Michael addition of 1455
b-enamino ketoester 740
enamino ketones
– one-pot reaction 738
enaminones
– cyclization 506
enamino thioaldehydes 754
enantioenriched chiral triptophols 448
enantiospecific preparation, of episulfides

from epoxides 111
6-endo-dig cyclization 1658
energies of the LUMO (ELUMO) 1589
energy gap 1701
enolizable enones 1585
enolization, stabilizing effect 574
ensaculin 1668
enthalpy 73
entropy 73
enzyme interactions 1127
enzyme Rubisco model 2302
enzyme topoisomerase I 1531
(–)-ephedradine, synthesis 604
epoxidations
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– of alkenes using catalytic dioxiranes 61
– of alkenes using hydrogen peroxide 67
– of alkenes using other non-metal oxidizing

agents 68
– of alkenes using peracids 65
– of allylic alcohol with performate 66
– of carbonyl compounds 86
– of carbonyls withmethylene equivalents 88
– with chiral catalysts and reagents 86
– of 1,2-dihydronaphthalene 77
– of (E)-2,3-diphenyl-2-propenol 78
– of electron-deficient alkenes 83–86
– with immobilized metal salen catalysts 77
– of phenylstilbene 64
– under Sharpless conditions 78
– using metalloporphyrins 80
– using methyltrioxorhenium (MTO) 82
– using polyoxometallates (POMs) 81
epoxide 68
– cyclized with triethylamine 969
epoxide–episulfide conversions 112
– using other sulfur sources 112
epoxide ring opening
– with carbon nucleophiles 93
– with halide nucleophiles 98
– with nitrogen nucleophiles 94
– with oxygen nucleophiles 96
– with sulfur nucleophiles 97
epoxides 447
– activation using cyanuric chloride 112
– from ring-closing reactions 91
6,7-epoxygeraniol 66
Epstein–Barr virus early antigen

(EBV-EA) 1530
Escherichia coli 1222
esoteric N-iodo-N-potassio-p-

toluenesulfonamide (TsN KI) 14
estazolam 2198
ethane-1,3-dithiol also reacts 956
ethanolic ammonia 1461
3-ethoxyacryloylisocyanate 1718
5-ethoxycarbonylamino-3-(1-nitroalkyl)-1,2,4-

thiadiazole derivatives 1160
3-ethoxycarbonyl-1,4-benzodiazepines

synthesis 2197
2[(ethoxycarbonyl)hydrazono]propanoic

acid 1259
4-(3-ethoxycarbonylthioureido)-3-substituted-

furoxan intermediate 1160
5-ethoxy-4-methyloxazole 867
ethyl acetoacetate 1456
2-ethylbenzothiazoles 891
ethyl 2-(2-benzoylhydrazinyl)-2-oxoacetate
– cyclocondensation of 1175

ethyl 4-bromopyrrole-2-carboxylate 335
ethyl 2-(2-chlorophenyl)hydrazine-carboxylate
– condensation of 1192
ethyl diazoacetate 24
N-ethyldiisopropylamine 892
ethyl-diisopropylcarbodiimide (EDC) 822
ethylene glycol 1027
ethylene oxide 312
5-ethyl-4-ethoxycarbonyl-1,2,3-

thiadiazole 1264
ethyl glyoxylate
– with amines/ammonia 818
ethyl nosyloxycarbamate 23
ethyl pyrrole-2-carboxylate 304
S-ethyl thioamides 1025
ethyl trifluoroacetate
– three-component condensation of 1027
2-ethynylbenzaldehydes
– copper(I)-catalyzed domino four-component

coupling–cyclization method 1578
o-ethynylphenols reaction 597
p-excessive aromatic systems 2033
exocyclic carbonyl bond length 1055
exocyclic C–O bond
– X-ray structural measurements 1054
exocyclic nitrogen atom 1058
exocyclic P–C bond cleavage by alkali

metals 2076
4-exo-digonal cyclization 2134
3-exo-tet ring closure 27
expanded porphyrins
– figure-of-eight structure 2254
extended Hückel theory (EHT) 1528, 1573
– electron densities 1574

f
fast atom bombardment (FAB) 2026
Fenton-type reaction 1492
ferrocenyllithium
– direct C-C coupling of 1591
ferrocenylpyrazoles 707
fibrous histiocytoma tumor 1074
ficellomycin 13
field desorption (FD) techniques 2026
Fischer carbene complexes
– coupling 604
Fischer-carbene complexes 2126
Fischer cyclization 394
Fischer indole synthesis 386, 387,

501–508
– application of 389
– cyclizations by C2–C3 bond formation 504
– cyclizations by C3–C4 bond

formation 504–506
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– cyclizations by N–C2 bond formation
502–504

– cyclizations with N–C7a bond
formation 506, 507

– by [4þ2] cycloaddition 507
– with enol ethers and enol lactones 392
– under kinetically controlled conditions 388
– regioselectivity in 388
Fischer indolization 389, 502
Fischer synthesis 398
five-membered heterocycles 3, 269
– acylation 302–306
– Barton–Zard synthesis 287, 288
– computational chemistry 270
– conjugate addition to a,b-unsaturated

carbonyl compounds 309, 310
– cyclizations of four-carbon precursors

278–281
– cycloaddition reactions 322–328
– – and related approaches 289–291
– fundamental reactivity patterns 271–273
– general reactivity 270
– halogenation 295–299
– Hantzsch synthesis and related

approaches 284
– heteroatom versus benzene 271
– IUPAC rules 269, 270
– Knorr synthesis and related routes 281–283
– ligand–receptor interactions 271
– miscellaneous transition metal catalyzed

methods 291–293
– multi-component reactions 291
– nitration 299
– NMR data 270
– Paal–Knorr pyrrole synthesis 275–278
– photochemical reactions 330, 331
– physicochemical data 270
– protonation 294, 295
– pyrrole derivatives 336–349
– pyrrole ring synthesis 274, 275
– pyrryl-C-X compounds, synthesis and

reactions 331–333
– reactions
– – with aldehydes, ketones, nitriles and

iminium ions 309, 309
– – with bases 313–318
– – with carbenes and carbenoids 328–330
– – with electrophilic reagents 293
– – with nucleophiles 312, 313
– – with oxidants 310, 311
– – with radical reagents 318–320
– – with reducing agents 320–322
– – with sulfur-containing electrophiles

299–301

– reactivity and regioselectivity, in electrophilic
substitution 293, 294

– relevant natural and/or useful
compounds 273, 274

– syntheses involving glycine esters 284, 285
– transition metal catalyzed coupling

reactions 333–336
– Trofimov synthesis 288
– Van Leusen method 285–287
flash thermolysis 695
flash vacuum pyrolysis 773, 928
flavone 2276
– structure 2275
flavones 1674
flavonoids 2275
flavonol 2276
flavyliums
– synthesis 1638, 1639
flavylium salts 1633
flumazenil 2199
– derivatives synthesis 2201
fluorescein 2283
– structure 2283
fluorescence in situ hybridization

(FISH) 2282
fluorescent agents 2284
fluorescent compounds 2285
fluorescent coumarin
– in laser devices 1669
fluorescent dyes 2283
fluorescent heterocycles
– application 2283
fluorescent organic nanoparticles (FONs1)

formation 628
fluorescent paints
– dyes for 2284
fluorinated 1,2,4-oxadiazoles 1024
fluorinated 1,3,4-oxadiazoles 1024
fluorinated pyrimidones 1745
3-fluoroalkylated benzo[b]furans

synthesis 603
5-fluoroalkylated 1H-1,2,3-triazoles 999
5-fluoroalkyl-1,2,4-oxadiazoles 1097
fluorobenzenes
– nucleophilic addition 1425
N-fluorobenzenesulfonimide 318
6-fluoro-1,2-benzisothiazoles 769
1-fluoro-2-nitrobenzene
– aryl halides 1007
2-fluoro-4-nitrobenzoic acid 2192
3-(2-fluorophenyl)-1H-indazole 682
2-fluoropyridines 1494
fluoro(tributylstannyl)acetylene 667
Fmoc-protected amino acid 2185
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FMO theory 666
formamide, STO-3G energy 2146
o-formamidoarylamine
– cyclization of 884
formylation of pyrrole 302
4-formylbenzofurazan 1162
4-formylbenzoic acid 1101
2-formyl glycals 674
N-formylisoquinolinium imines 1612
4-formyl-3-phenylsydnones 1069
3-formylpropenoic acids 1695
4-formylsydnones, reduction 1069
four-membered oxygenated heterocycles 188
free radical reactions 864
Friedel–Crafts acylation 304, 841, 1590, 1640
– of 3-alkyl-1-(phenylsulfonyl)pyrroles 305
Friedel–Crafts acylations 381, 451, 2262
Friedel–Crafts alkylations 38, 1109
Friedel–Crafts alkylations of indole 438–449
– epoxide and aziridine ring opening

447–449
– indole as nucleophile in palladium-catalyzed

allylic alkylations 449
– Michael additions 439–443
– reactions
– – with carbonyl compounds 444, 445
– – with imines and imminium ions, Mannich

reaction 445–447
– – with unactivated olefins 444
Friedel–Crafts chlorination 1590
Friedel–Crafts conditions 1013, 1568
Friedel–Crafts-like transition state 32
Friedel–Crafts reactions 701, 1545
– pyrylium salts as electrophiles 1648
frontier molecular orbital theory 1255
Fuligo septica 274
fulminic acid (HCNO) 752
fumagillin 57
fuming nitric acid
– nitration of 1589
a-functionalized alkylfurazans 1166
5-functionalized imidazole 855
4-functionalized-quinoline derivatives
– preparation of 1551
2-furaldehyde 38
furan 1
– ab initio methods 540
furan-2-carboxylate
– asymmetric cyclopropanation 573
furan-3-carboxylic acid synthesis 545
furan derivatives 1703
furan-2,3-diones 673
furanocoumarin
– synthesis of 1669

furanophanes, transannular Diels–Alder
reactions 570

furans
– additional reactions 581–583
– additional syntheses 577–580
– aminofurans 577
– disubstituted furans 546–551
– electrocyclic reactions 570–573
– p-electron excess 540
– enantioselective organocatalytic [4þ3]

cycloaddition 571
– furan ring system, numbering 534
– general reactivity 534–538
– gold-catalyzed intramolecular

cycloisomerization 572
– microwave spectroscopy 538
– monosubstituted furans 544–546
– natural and useful compounds

540–542
– nomenclature 534
– oxyfurans 574–577
– photochemical reactions 573, 574
– reactions
– – of C-metallated furans 568
– – with electrophilic reagents 561–563
– – with nucleophilic reagents 563
– – with oxidizing reagents 563–567
– – with radical reagents 569
– – with reducing reagents 567, 568
– reactivity 560–574
– relevant physicochemical data 538–540
– synthesis 542–560, 2363–2366
– tetrasubstituted furans 557–560
– trisubstituted furans 551–557
– UV/Visible spectroscopic absorption

maximum 539
furazanobenzimidazoles 1169
furazano[3,4-b]pyrazines 1169
furazan ring cleavage 1152
furazans 1167
– electron impact mass spectra of 1137
– N-ethyl salts of 1151
– gas-phase thermolysis of 1154
– heterocyclic ring of 1155
– IR spectra of 1136
– NMR chemical shifts 1135, 1136
– oxidation of 1145, 1151
– reduction of 1153
furfurylamines
– aza-Achmatowicz oxidation 566
furocarbazole alkaloids 595
furoclausine A synthesis 612
furoxans 1144, 1155, 1158, 1161
– NMR chemical shifts 1135
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– nucleus 1154
– oxadiazole ring of 1134
– synthesis of 1147
Fürstner synthesis 424
2-furylcarbene 554
furylcyclopropane synthesis 559
N0-[3-furyl(phenyl)methylene]phenyl-

hydrazide 1221
2-furylzirconocene complexes
– dyotropic rearrangement 569
trans-fused diastereomer 536
fused heterocyclic aromatic molecules 2310
fused pyrimidones 1717
[1,2-a]-fused pyrroles 319
fused ring system 1410

g
Gabriel synthesis 833
(–)-galanthamine framework 608
Garner�s aldehyde 886
– polymer-bound version 2124
gas-phase electron diffraction 1334
Gassman synthesis 395
Gattermann aldehyde synthesis 1831
Gelsemium elegans 164
gem-dialkyl effect 567
gephyrotoxins
– class 2003
germetanes 252
– preparations 252, 253
– reactivity 253, 254
c-fagarine 1530
gibepyrones
– compounds of 1661
ginkgolide B synthesis 574
glacial acetic acid 951
– thiocarbonyldiimidazole 953
glaucoma 1253
gliotoxin 1867
glutamate excitatory amino acid receptors
– AMPA subtype 2217
glutamate receptors
– implication 646
glutamine synthetase tabtoxinine-b-

lactam 2121
glutathione S-transferase (GST) 1168
glycidic amides, enantioselective

synthesis 90
glycidic esters, treatment 932
glycosylidene-derived diaziridine 121
glyoxal o-benzyloxime hydrazone 1003
glyoximes, cyclization 1138
glyoxylic acid with amines/ammonia 818
gold-phosphole inhibitor 2105

G protein-coupled receptors 1303
gramines
– chemistry 493
– derivatives 446
Grandberg indole synthesis 389, 390
Grandberg strategy 393
grid-type self-assembled complexes 2291
Grignard derivatives 1479
Grignard reagents 347, 504, 563, 864, 894,

946, 1155, 1548, 1568, 1611, 1646, 1738,
1743, 1838, 2256, 2261, 2352, 2367

– under nickel catalysis 964
Grubb�s catalyst 55, 348, 546, 619, 968
– generation 619
Grubbs I/Grubbs II catalysts 1878
guest–host complexation 98
GYKI 52 466 synthesis 2218, 2219

h
halide displacement reactions 780
haloallenyl aldehyde
– 1,2-halogen migration 556
o-haloanilines 420
2-haloazoles 843
7-halodinitrobenzofurazans 1137
o-haloenamines
– Heck reaction 420
2-halogenated azoles 858, 861
halogenated pyrroles 295–299
halogenating agents 476
N-halogenation 700
halogenation reactions 452, 453, 535,

2257–2262
– acylation 2262
– bromination 2259
– chlorination 2258, 2259
– cyanation 2262
– fluorination 2258
– iodination 2259, 2260
– nitration 2260–2262
halogen atoms 843
halogen–lithium–tin interchange 854
2-halogeno 1,3,2-dithiaborolanes 956
haloisoquinolines 1599
a-haloketones
– cyclocondensation of 826
– dehalogenation of 830
o-halo-N-allylanilines
– intramolecular Heck reactions 418
1-halo/nitro-2-nitrobenzenes 1012
2-halophosphinines
– C–X bonds 2093
– one-pot synthesis 2089
1-halophospholes 2075
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halopyridazines 1743
3-haloquinolines
– oxidation of 1560
– synthesis of 1545
5-halo-1,2,3-thiadiazole 1281
o-halothioanilides 885
o-halo-N-trifluoroacetylanilines 1549
Hammick reaction 1507
Hantzsch procedure 895
– thiazoles preparation 831
Hantzsch process 830
Hantzsch synthesis 897
– a-tosylketones 832
– pyrrole synthesis 2362
Hartree–Fock computational methods 1333
H/D exchange 700
Heck based cyclizations 506
Heck coupling reactions 2123
Heck couplings 1599
– cross-coupling reaction 1487, 1763
Heck reactions 457, 458, 837
– of 2-chloro-3,6-dimethylpyrazine 1763
Heck sequence 1563
Heck-type couplings 859
HeLa cells 540
Helminthosporium oryzae 1225
Hemetsberger indole synthesis 429
HepG2 human hepatic carcinoma

1168
herbicide 1691
heteroaryllithium reagents 1014
heteroatom 1, 2
heteroatomic nucleophiles 32
heterobenzylic hydrogen atoms 1608
heterobimetallic Ti-Ga-salen catalyst 97
heterocalixarenes 1734
heterocycle 1
heterocycle[a]azeto[1,2-d][1,4]benzodiazepines

synthesis 2211
heterocycles 2293, 2357
– feature 772
– in liquid lasers 2285
– role in 2358
– synthesis 1642
– use 2286
heterocycles, ring contraction of 29, 30
N-heterocyclic carbenes (NHCs) 560, 1035
– class 2122
heterocyclic chemistry 1
heterocyclic compounds 1, 2
– basic literature on 8, 9
heterocyclic conducting polymers

2305–2314
– electronic properties 2308

– structure 2306
heterocyclic derivatives 1, 2
heterocyclic field
– aminomethylated polystyrene resins 2333,

2334
– chloromethylated polystyrenes 2330–2333
– conventional vs. combinatorial organic

chemistry 2326
– crosslinked polystyrene-derived

matrices 2329
– functionalized polystyrene resins 2329,

2330, 2334–2339
– heterocyclic synthesis on solid-

phase 2357–2374
– natural products 2322–2324
– peptides, peptoids and

peptidomimetics 2324
– small synthetic organic molecules

2324–2327
– solid phase and combinatorial chemistry

in 2321, 2322
– solid supports 2327–2343
heterocyclic ring, reduction 478–480
– catalytic hydrogenation 478, 479
– metal hydride complexes 479, 480
– metal-promoted reductions 479
heterocyclic systems 1253, 2289
– color and fluorescent agents 2275–2286
– 1,3-dipolar cycloaddition reactions 2359
– self-assembling materials and molecular

containers 2286–2300
– unnatural enzyme models 2300–2304,

2304–2314
hetero-1,2-diazepines 1705
hetero-Diels–Alder processes 1584
– with electron-rich alkenes 1702
– pyridine synthesis 1444
N-heteroenesulfonylbenzenetriazoles 1016
heteronucleophiles 476
hexahydroazepine 1865
hexahydro 1,3,5-triazin-2-thione 1824
hexameric structure 2293, 2295
hexamethyldisilathiane 1901
hexamethyldisilazane (HMDS) 1026
hiepan-4-one 1901
high-conducting polymers
– electrosynthesis 2306
highest occupied molecular orbital

(HOMO) 2005, 2107, 2282
high intensity ultrasound (HIU)

irradiation 2124
high-throughput screening (HTS) 2321,

2322, 2324
– feeding sources 2324
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histamine H2-receptor antagonist 541
histamine H3 receptor antagonists 624
Hþ/Kþ ATPase 1316
Hoffmann-rearrangement 503
hole-transporting material (HTM) 627
HOMO electron density 1528
homopropargylamine 32
Horner–Wadsworth–Emmons reaction 423,

2366
Hoveyda–Grubbs catalyst 2037
5-HT1A receptors 645
Hückel molecular orbital theory

(HMO) 1993, 2024
Hugershoff�s method 897
Huisgen rearrangement 1184
human DNA topoisomerases 1127
human immunodeficiency virus (HIV) 1075
human phospho-diesterase 5

(hPDE5A) 1531
human rhinovirus 3C protease (3CP)

inhibitor 2004
human rhinovirus (HRV) serotypes 2004
Hünig�s base 581
Hurd–Mori reaction 1259, 1260, 1279
hybrid DFT B3LYP method 1189
hydrazide 1201
1,2-hydrazinedicarbothioamide
– oxidation method 1344
hydrazines 390
– cyclocondensation 665
hydrazino(3-arylsydnon-4-yl)methanone

oximes 1069
hydrazones 659
– formation 392
– indolizidation 392
– lead tetraacetate cyclization of 1023
hydrazones, transformation of 1280
N2-(a-hydrazonotrifluoromethyl)-N1-

(trifluoroacetyl)hydrazine 1204
hydride donors 2002
hydroamination-based Fischer indole

synthesis 393, 394
hydroamination-based Grandberg indole

synthesis 394
2-hydrodestannylation sequence 862
hydrogen-bonding interactions 2293
hydrogen cyanide 1720
hydrogen disulfide 941
hydrogen sulfide 1706
hydrolytic kinetic resolution (HKR) 95
hydroperoxide, reduction 566
5-hydroperoxycarbonylphthalimide 66
2-hydroperoxy-hexafluoropropan-2-ol 69
3-hydroperoxypyrazolines 927

hydroquinine-derived catalyst 22
hydroquinone
– oxidation 427
hydroximoyl chlorides
– Huisgen�s base-induced

dehydrohalogenation of 1092
hydroxyalkyldioxolanes 931
2-(hydroxyamino)alkan-1-one oximes
– treatment of 903
o-hydroxyarylketone
– chromone, formation of 1675
4-(o-hydroxyaryl)-1,2,3-thiadiazoles 1277
3-hydroxy-1,4-benzodiazepines

synthesis 2184
o-hydroxybenzophenone oxime
– Beckmann rearrangement of 883
1-hydroxybenzotriazole
– in peptide coupling reactions 1015
3-hydroxy-2-carboxysydnone dianion 1051
hydroxy derivatives, tautomerism 1077
1-hydroxy-2,3-diphenylpyrrole 338
3-hydroxy-6(1H)-pyrazinone 1689
b-hydroxyhydroxamate
– cyclization 2127
N-hydroxy-2-(hydroxyimino)-2-

arylacetimidamide 1140
3-hydroxyindoles
– synthesis 406
N-hydroxyindoles
– structure 498
hydroxyindolomorphinans 428
hydroxyisoquinolines 1608
3-hydroxy-isoxazole 738
hydroxylamine 1084, 1089
– nucleophilic attack of 1152
hydroxylamine reaction
– with three-carbon atom components 739
hydroxylamine-O-sulfonic acid (HSA) 1308
– plasma proteins 1308, 2119
2-hydroxylamino-4,5-dihydroimidazolium-O-

sulfonate 1301
2-(6-hydroxy-2-methoxy-3,4-

methylenedioxyphenyl) benzofuran
synthesis 614

3-hydroxymethyl-5-arylisoxazole
– polymer-supported synthesis 745
hydroxymethylation 1604
N-hydroxymethyl moiety 889
5-hydroxy-2-methyl-6-phenyl-7H-[1,3,4]

oxadiazolo[3,2-a]pyrimidin-7-one 1194
2-(hydroxymethyl)pyrroles 331
3-(hydroxymethyl)pyrroles 331
7-hydroxy-5-methyl-1,2,4-triazolo[1,5-a]

pyrimidine 1691
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b-hydroxyoximes 762
hydroxyperoxy zwitterion 1061
5-hydroxy-3-phenyl-1,2,4-oxadiazole
– keto forms 1076
3-hydroxy-5-phenyl-1,2,4-thiadiazole 1313
hydroxypyrazines 1747
6-hydroxypyridazin-3(2H)-ones 1695
3-hydroxypyridines 1496
– electrophilic substitutions 1497
– pKas of 1496
hydroxypyrimidines 1689
6-hydroxypyrimidin-4(3H)-ones 1719
3-hydroxyquinoline-2-carboxylates 1539
4-hydroxyquinolinone esters
– preparation of 1555
4-hydroxy-2-quinolinones
– microwave synthesis of 1535
4-hydroxystilbenes
– oxidative dimerization 609
trans-4-hydroxy-5-substituted 2-

cyclopentenones 568
4-hydroxy-3-substituted-2-pyranones 1667
3-hydroxysulfinyl chloride 967
3-hydroxy-1,2,4-thiadiazoles 1288
– with electrophiles 1326
5-hydroxythiazoles
– hydrolysis of 846
hydroxy-(tosyloxy)iodobenzene (HTIB) 833
5-hydroxytryptamine 1127
hyperconjugation effect 2117
hypervalent iodine reagent 575

i
imidazole-4,5-dicarboxylic acid 886
imidazole N-oxides 903
imidazoles 841, 842, 845, 865
– derivatives 860
– 1,2-dicarbonyl compounds 816
– direct alkylation of 846
– nitration of 838
– nomenclature and numbering of 811
– photosensitized oxidation 842
– preparation methods of 816
– preparation of 816
– quaternizing alkylations of 835
– ring system 2369
– self-condensation, preparation 822
– synthesis of 819, 2369–2372
– vinylation of 836
imidazolide ions
– resonance structures of 815
imidazolidine
– synthesis of 876
imidazoline 877

imidazolino[1,4]benzodiazepines
– synthesis 2206
imidazolium cations 839
imidazolium ions
– resonance structures of 815
N-imidazolium-N-methylamides 894
imidazolsugars
– synthesis of 848
imidazol-4-yl-zinc chloride 855
imidazo[1,2-b]thiazolines 845
imidoylbenzotriazoles 1027
N-(imidoyl)benzotriazoles 1014
imidoyl chloride 877
imidoyl phosphate formation 2200
imine
– hydrazones 1003
– in situ formation of 822
2-Imino-1,3-dioxoles 934
2-imino-1,3-oxathioles
– preparation of 975
5-imino-3-oxo-1,2,4-thiadiazolidines 1298
iminophosphoranes 829, 897, 1716
iminoposphoranes 655
5-imino-1,2,4-thiadiazole-3-ones 1298
3-imino-1,2,4-thiadiazoline 1322
imipramine 1867
o-immobilized ketoester
– with diverse aldehydes 1460
immobilized metal epoxidation catalysts 83
2H-indazole-2-oxides 680
1H-indazoles 687, 696
– preparation 682
indazoles synthesis 678–696
– one C3–C3a bond formation 687, 688
– one N1–C7a bond formation 683–687
– one N2–C3 bond formation 680–683
– one N–N bond formation 678–680
– ring synthesis from heterocycles

695, 696
– synthetic methods 691–695
– two bonds formation 688–691
indenoquinoline 1554
indigo structures 2277
indium chloride 954
indium tribromide 32
indium trichloride 23
1H-indole. see indole
indole-2-carboxylic
– decarboxylation 501
indole carboxylic acids 500, 501
indole reactivity
– oxidation reactions 475–478
– pericyclic reactions involving heterocyclic

ring 480–489

Index j2411



– photochemical reactions 489–491
– radical reactions 470–474
– reactions with bases 453–457
– reactions with carbenes and

carbenoids 491
– reactions with electrophiles 436–453
– reduction of heterocyclic ring 478–480
– transition metal catalyzed reactions

457–470
indole ring synthesis, by pyrroles annelation
– from 3-alkynylpyrrole-2-

carboxaldehydes 435, 436
– [4þ2] cycloadditions 435
– electrocyclizations 435
– palladium-catalyzed cyclizations 433, 434
– synthesis by electrophilic cyclization

431–433
indole ring synthesis, from benzene ring
– cyclization, N–C2 bond formation 398–415
– cyclizations with N–C7a bond

formation 427–431
– by formation of C3–C3a bond 415–421
– by formation of C2–C3 bond 421–427
– involving sigmatropic rearrangement

385–398
indoles 377
– addendum 501–513
– alkaloids 384
– N-alkylation 453
– alkylindoles 491–494
– o-alkynyl-N,N-dialkylanilines,

cycloisomerization 502
– N-amination 500
– aminoindoles 500
– catalytic asymmetric Michael reaction 441
– CDCl3,

1H and 13C NMR chemical
shifts 380

– C-metallation 454
– containing stilbenes 490
– coupling reaction 463
– 1,3-dipolar cycloadditions 485
– direct acylation 454
– discovery and structure 377
– electrophilic substitution reactions 381
– five-membered ring construction,

strategies for 386
– formation 419, 1651
– Friedel–Crafts alkylation 442, 444, 508
– frontier orbitals, graphical

representation 381
– general reactivity 379–382
– H-1 and H-2 , chemical shifts for 380
– Heck reaction 421
– 1H NMR spectra 379

– indole carboxylic acids 500, 501
– indole derivatives chemistry 491–501
– indole reactivity 436–491
– indole ring synthesis by pyrroles

annelation 431–436
– indole ring synthesis from benzene

ring 385–431
– indole synthesis 384–436
– intramolecular Pd(II)-catalyzed oxidative

cyclizations 464
– introduction 377
– N-metallation 453, 454
– natural products 383
– one-step tert-prenylation 511
– oxiderivatives 494–499
– Pd-catalyzed cascade synthesis 506
– physicochemical data 379
– preparation 446, 502
– properties 379–382
– regioselectivity in 380, 387
– relevant natural/useful compounds

383, 384
– structural parameters 379
– synthesis 384–436, 1650
– synthesis by cycloisomerization of

propargylanilines 502
– system isomers and nomenclature 378
– tautomers and isomers 378
indoles, NH-containing 464
indolinium cyanines Basic Yellow 21

structures 2279
3-H-indolium cation 438
indolizines 3, 2003–2020
– Birch reduction 2018
– derivatives 2020
– general structure and reactivity 2003
– 1H and 13C NMR chemical shifts 2006
– Heck arylation 2019
– intramolecular condensation 2006,

2007
– nitration 2012
– NMR spectra 2005
– organometallic processes 2009
– reactivity 2011–2020
– rearrangement of acetylenic

derivatives 2009–2011
– relevant natural/seful compounds

2003–2005
– relevant physicochemical data,

computational chemistry, and NMR
data 2005

– synthesis by [3þ2] approach, 1,3-dipolar
cycloaddition 2007–2009

indolizin-1-ones synthesis 2010
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2-indolylborates 455
indolyl Grignard reagent 844
indolyl palladium complex 466
indolyl rhodium complex 470
indomethacine analogs
– solid-supported synthesis of 391
infrared (IR) spectra 734
ingenol
– ABC-ring 571
in situ generated 1-(o-bromophenyl)-2-

ethylamine 430
in situ generated Rh carbenoid 423
intensity of electric current versus electric

potential (I-V ) 2314
intermediate oxime
– cyclization–dehydration 737
intramolecular aza-Wittig reaction 2204
intramolecular aziridinations 19
– of carbamates 20
– reaction conditions for 20
intramolecular aziridinations, reaction

conditions for 19
intramolecular Buchwald–Hartwig

amination 430
intramolecular cyclization of 1,6-

hexanediols 1899
intramolecular Diels-Alder reactions 582
intramolecular dioxirane-mediated

hydroxylation 139
intramolecular dipolar cycloaddition 2202
intramolecular Fujiwara-Moritani/oxidative

Heck reaction 602
intramolecular Heck reaction 418, 433
intramolecular Michael/hetero Michael

addition 561
N-inversion energy 11
a-l3-iodanil ketone
– formation of 833
iodinating reagents
– bis(pyridine)iodonium(I) tetrafluoroborate

(IPy2BF4) 410
iodine-mediated electrophilic cyclization
– of 2-alkynyl-1-azidomethyl benzenes 1579
iodoamides
– copper-catalyzed cyclizations 2191
o-iodoanilines
– direct annulation 420
3-iodo-6-arylpyridazines 1756
o-iodobenzaldehydes
– tert-butylimines of 1581
iodobenzene
– novel palladium-catalyzed carbonylation

of 885
iodobenzene diacetate 15, 24, 1023

iodocyclization 38
5-iodo-1,4-disubstituted-1,2,3-triazole
– synthesis of 994
iodomethylenetriphenylphosphorane 47
iodonium salt 975
o-iodophenols
– nucleophilic addition of 602
– palladium-catalyzed carbonylation 1675
2-iodo-1-(phenylsulfonyl)pyrrole 333
iodopyrimidines 1745
4-iodopyrrole-2-carbonitrile 318
4-iodopyrylium salt formation 1649
5-iodoquinoline
– with bromoenoate 1563
iodosobenzene 19
iodo-substituted diaminopyrazine 1763
N-iodosuccinimide (NIS) addition 1665
iodosylbenzene 79
5-iodouridine
– palladiumcatalyzed coupling of 862
ionic assembly 2287
ionic interactions
– potential enhancement 601
ionic liquid 603
ionizing radiation 1137
iridium-catalyzed asymmetric

hydrogenation 1612
IR spectroscopy 774, 1054, 1055
isatin, reduction 377
isocyanates
– use of 1108
isocyanatophosphoryl chloride 2014
isocyanides 824, 1410
– aldol-type addition of 878
1,2,5-isomer 1255
isomeric 2-oxide system 1052
isomeric 1,2,3-triazoles 993
isonitrile derivatives 878
isoporphycene 2236
2,3-O-isopropylidine-D-glyceraldehyde
– thiazole-based one-carbon homologation

of 866
2-isopropylthiazole 869
isoquinoline 3, 1572, 1573, 1589,

1590, 1594
– addition to nitrogen 1588
– aromatic nucleophilic substitution 1572
– Bischler–Napieralski synthesis, Pictet–Gams

modification of 1576–1578
– C-metallated isoquinolines
– – boron derivatives 1597, 1598
– – lithium derivatives 1596
– – metal-catalyzed reactions 1599–1601
– – tin derivatives 1598, 1599
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– – zinc derivatives 1596, 1597
– condensation reaction-based

methods 1580, 1581
– direct metallation 1595, 1596
– electrocyclic and photochemical

reactions 1604–1606
– electrocyclic ring closing methods 1584,

1585
– electrophilic cyclization-based

methods 1578, 1579
– hygroscopic solid 1572
– metal-catalyzed ring closing

methods 1581–1584
– natural compounds 1574, 1575
– NMR data 1573
– nucleophilic cyclization-based

methods 1580
– nucleophilic substitution with displacement

of halide 1594, 1595
– nucleophilic substitution with hydride

transfer 1591–1593
– photochemical methods 1587
– Pomeranz–Fristsch synthesis 1576
– reactions with bases 1595
– reactions with electrophilic reagents 1588
– reactions with nucleophilic reagents 1591
– reactions with oxidizing reagents 1590–

1591
– reactions with radical reagents

1602–1604
– reactions with reducing reagents 1601,

1602
– reactivity 1571, 1588
– ring contraction-based methods 1585–

1587
– ring expansion-based methods 1585–1587
– structural isomer of 1571
– substitution at carbon 1589, 1590
– synthetic methods 1575
– tautomerism 1574
isoquinoline alkaloids 1574
isoquinoline carboxylate 1577
isoquinoline-3-carboxylate 1581
isoquinoline derivatives
– alkylisoquinolines 1608, 1609
– aminoisoquinolines 1608
– isoquinoline carboxylic acids 1609
– isoquinoline N-oxides 1613, 1614
– oxyisoquinolines 1606, 1607
– quaternary isoquinolinium salts

1609–1613
isoquinoline magnesium derivatives 1595
isoquinoline-N-borane 1610
isoquinoline N-oxides 1590, 1613, 1614

– photolysis of 1606
isoquinoline reacts
– with potassium amide 1592
isoquinoline ring 1595
isoquinolines 1581
isoquinoline skeleton
– synthetic methods 1575
isoquinoline syntheses
– Larock�s group 1581
isoquinoline synthesis 1643
isoquinolinium cation 1590
isoquinolinium methylides 1605
isoquinolinium salts 1571
isoquinolin-1-ol 1574
isoquinolin-3-ol 1574, 1606
isoquinolin-1-ones
– classical reactions of 1607
4-isoquinolylzinc bromide 1597
1-isoquinolylzinc salt 1596
isosydnone 1210
isothiazole 728, 733
– 13C NMR chemical shifts 733
– 1H NMR chemical shifts 728
– physical properties 733
isothiazole 1,1-dioxides. see sultams
isothiazole-fused 3-sulfolenes 793
isothiazoles 753–760
– and benzisoxazoles, reactivity

772–787, 787–797
– general reactivity 729–734
– natural/useful compounds 734–736
– nomenclature 728, 729
– photochemical reactions 787
– ring transformations of heterocycles

758–760
– ring transformations of heterocycles leading

to isothiazoles 758–760
– synthesis from acyclic compounds 753–758
– synthesis, from acyclic compounds

753–758
isothiazolium salts 790, 791
– oxidation 794
isothiazol-3-ones, catalytic

hydrogenation 793
isoxazoles 49, 727, 736–753
– p-bond orders 730
– p-electron density distributions

729
– electrophilic substitution 730
– 1H NMR chemical shifts 731
– N–O bond 730
– one-pot synthesis 742
– oxidation reactions 784
– proton resonances 731
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– reductive ring cleavage 784
– ring-opening reactions 777
– [3þ1þ1] routes 751–753
– [3þ2] routes 737–747
– [5þ0] routes 748–751
– solid-phase synthesis 737
isoxazolidin-5-ones 1721, 1722
isoxazoline-3-thiones 942
isoxazoline transposition 1161
isoxazolium salts, deprotonation 779

j
Jacobsen catalyst 73
Jacobsen-type catalyst 95
Jacobson–Hunter method 885
Jacobson method 885
janoxepin 1868
Japp–Klingemann reaction 392, 393
jatrorrhizine 2021

k
Kaiser resins 2352
Katritzky synthesis 433
Katsuki catalyst 17
ketazolam synthesis 2209
keteneiminium salts 47
ketene silyl acetals 1556
ketenimine 1584
1,5-ketoacid derivatives 1662
a-ketoaldehydes 816
keto amide, cyclodehydration of 827
b-ketoamides 821
ketoconazole synthesis 938
5-ketoester 1662
2-ketomethylquinolines 1567
ketone enolates
– Pd-catalyzed arylation 401
ketone N-acylhydrazones
– electrolytic oxidation of 1179
ketone precursors for dioxirane oxidations 62
keto-1,2,4-oxadiazoles 1128
– allergic diseases 1128
– asthma 1128
ketorololac 274
b-keto sulfones 1014
khellin, structures 1674
Kinugasa reaction 2130
Knoevenagel adducts 23
Knoevenagel condensation 1655
Knorr synthesis 1534

l
labile metal–ligand bonds formation 2288
lachrymatory, uses 833

Lactam 1135
b-lactamase 2157
– hydrolytic enzymes 2144, 2145
– inhibitors 861
b-lactams 3
– analysis by X-ray diffraction 2119
– antimicrobials 2145
– 2-azetidinone nucleus synthesis

2121–2134
– 2-azetidinone ring reactivity 2134–2144
– benzylidene moiety 2142
– biologically relevant monocyclic b-

lactams 2120, 2121
– chemistry 2117
– enzyme-catalyzed hydrolysis 2154
– 1H NMR spectroscopy 2120
– trans-b-lactams synthesis 2122
– monocyclic derivatives 2117
– nonclassical antibiotics, discovery of 2117
– penicillins and cephalosporins

2144–2161
– physicochemical data 2117–2120
– synthesis 2358, 2359
Langmuir-Blodgett films 2308, 2314
Lansbury�s reagent 1489
lanthanide triflates 23
Larock indole synthesis 413
Larock�s heteroannulation 414
Larock�s indolization 415
Lawesson�s reagent 48, 940
L-cysteine methyl ester 888
lead optimization programs 2323
– natural products used in 2323
lead tetraacetate (LTA) 1198
Leimgruber–Batcho synthesis 402
lesopitron 645
leucopterin 2276
Lewis acid (LA) 35, 100, 386, 402, 440, 448,

452, 841, 849, 872, 900, 956, 1078, 1413,
1657, 1833, 2135, 2302

– catalyzed alkylation 536
– catalyzed halocyclization 1546
– catalyzed methods 25, 1092, 1462
LiAlH4 reduction 1115
ligand DPEphos effects 606
ligand–receptor interactions 271
Ligularia tongolensis
– genetic study 541
Li–halogen exchange reactions 1562
linkers 2350, 2351
lipoic acid, sulfonamide derivative 946
lipophilic alkenes 82
lipo-soluble substances. see benzodiazepine
liquid crystals (LCs) 1056
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lithiated allene reaction 1464
lithio(alkyl)triazines 1828
N-(2-lithioallyl)anilines
– carbometallation 417
2-lithioimidazoles 847
lithioisoquinolines
– metal–halogen exchange 1596
N-lithioketimines 1456
2-lithio-N-methylimidazole 847
4-lithio-3-phenylsydnone 1067
4-lithio-5-phenyl-1,2,3-thiadiazole 1277
2-lithiothiazoles 850
– used as nucleophiles 850
3-lithio-1-TIPS-pyrrole 318
lithium aluminum hydride 105, 1373, 1602
lithium azoles 847–850
lithium bis(trimethylsilyl) amide

(LHMDS) 1465
lithium–bromine exchange 859
lithium t-butoxide 98
lithium dialkylamides 1580
lithium (trimethylsilyl)diazomethane 1266
lithium diisopropylamide (LDA) 50, 99, 100,

1005, 1477, 1754
lithium–halogen exchange 86, 1483
5-lithiumimidazoles 848
lithium perchlorate 33, 95
lithium telluride 106
lithium tetrahydroaluminate 1612
lithium 2,2,6,6-tetramethylpiperidide

(LTMP) 37, 107, 691, 1477, 1562,
1613, 1752

lithium tetramethylpiperidine 1005
lithium trimethylsilyldiazomethane 1264
liver alcohol dehydrogenase 649
lobatrienetriol 1868
lowest unoccupied molecular orbital

(LUMO) 2005, 2282
luteolin, structures 1674

m
MacDonald-type condensation 2244
macrocycles 2234, 2236
– synthesis 2088
macrocyclic pyrazoles 710
macroreticular polystyrene resins
– bromine–lithium exchange 2338
Madelung indole synthesis 422
madurastatin A1 13
magnesium azoles 850–852
magnesium bis(monoperoxyphthalate)

hexahydrate 66
magnesium monoperoxyphthalate

(MMPP) 564

male erectile dysfunction (MED) 651
maleimide derivatives 760
manganese-picolinamide-salicylidene

complex 75
manganese to chromium 72
Mannich additions 1652
Mannich bases 2015
Mannich reactions 308, 445–447, 888
Marckwald synthesis 818, 894
Märkl relying method 2086
Märkl synthesis 2108
Markovnikov adducts 870
Martinella iquitosensis 1531
martinelline, synthesis of 1555
Martin�s sulfrane 872
massanalyzed ion kinetic energy (MIKE)

spectroscopy 1138
mass spectrum of 2,7-di-tert-

butylthiepine 1873
matrix metalloproteinases (MMPs) 2345
– inhibitors 110, 2347
mauveine synthesis 2279
McBride synthesis 2100
McCormack reaction 2102
– of conjugated dienes 2074
medazepam synthesis 2195
Meerwein�s reagent 1284, 1319
mefloquine 1533
Meisenheimer complex 688, 1153,

1158, 1572
melamine–barbituric acid 2296
melamines 1818, 1820
Meldrum�s acids 340, 738
MeMgBr utilization 598
MeOPEG-supported azide 1416
5-mercapto-1,2,4-thiadiazole
– IR spectrum of 1289
2-mercapto-1,3,4-thiadiazoles 1381
Merck researchers 1409
Merrifield resin 827, 1349, 2331, 2334
– oxidation 2334
Merrifield�s resin 77
Merrifield�s seminal polypeptide

synthesis 2327
mesitonitrile oxide 1165
O-(mesitylenesulfonyl) hydroxylamine 1308
mesitylenesulfonylhydroxylamine

(MSH) 892
mesoionic 1,3-dithiol-4-ones 1313
– coupling reactions 962–963
– reactions with electrophiles 961
– reactions with nucleophiles 961, 962
– reductions 962
– thermal and photochemical reactions 960
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mesoionic 5-(methoxycarbonyl)amino-3-
methyl-1,2,3-thiadiazole 1257

mesoionic 2-methylene-1,3,4-
thiadiazole 1350

mesoionic 1,3,4-oxadiazoles 1190
mesoionic 1,3-oxathiolium-4-olates 978
mesoionic 3-phenyl-1,2,3-thiadiazoles 1285
mesoionic sydnones 1049
meso-ionic 1,2,4-thiadiazoles 1291
mesotetraalkylporphyrinogens 307
mesylation 92
o-mesylation 27
metalation of diazines 1754
metal-based catalytic systems 407
metal-catalyzed approaches
– development 593
metal-catalyzed reactions 385
– cross-coupling reactions 382
– – types of 1482
– Heck reactions 403
– Stille coupling 403
metal–halogen exchange 1754
– methodology 543
metal hydrides
– application 2138
metal ions 1733
N-metallated pyrroles 313
metallation reactions 1065
– pyrroles at C3 273
metallo-b-lactamase 2158
metalloester enolate-imine condensation

route
– asymmetric version 2125
metallo-octaalkyl porphyrin
– diformylation 2255
metalloporphyrins 2254
metallo-vinyl porphyrins 2256
metathesis catalysts
– synthesis of 891
methanesulfonylbenzotriazole 1012
methanol, photochemical irradiation 1024
methoxyacryloylisothiocyanate 1718
p-methoxybenzylamine, condensation 1412
N-methoxycarbonylindoles 413
2-methoxy-2H-azepine 1875
1-(methoxymethyl)-1H-1,2,4-triazole 1030
3-methoxy-6-methylpyridazine 1733
2-(methoxymethyl)pyrrole derivative 310
N-methoxypyridazinium salts 676
5-methoxytriazoline
– thermal decomposition in vacuo of 1031
7-methoxytryptophan 414
methylaluminium bis(4-bromo-2,6-di-t-

butylphenoxide) (MABR) 101

5-methylamino-4-nitroisoxazole, alkaline
treatment 779

2-methylanilides, cyclocondensation 422
5-methyl/5-aryl-2-thioxo-2,3-dihydro-1,3,4-

oxadiazoles, methylation 1215
2-methylaspartate 52
1-methylazafulvenium ions 331
3-methyl-1,2-benzisoxazole
– photolysis 775
– synthesis 763
methyl 2,3-butadienoate 348
methylcyclohexadiene oxide 18
N-methyl-D-aspartate (NMDA) receptors 649
1-methyl-2,3-dinitropyrrole 312
2-methyl-1,3-dioxolane
– preparation of 931
2-methyl-3,5-diphenyl-1,2,4-thiadiazolium

chlorosulfate 1314
methyl 2,5-di-tert-butyl-3H-azepine-1-

carboxylate 1874
methylene-activated compounds 1698
methyleneaziridines 50
methylene blue (MB) 566
methylene chloride 23, 57
methylene cyclopropane 969
methylenedecalone 101
a-methylene group, carbonyl

compounds 954
3-methyleneindolines 417
3-methylene quinolones 1550
3-methylenindolines 419
N-[(1S)-1-(methylethyl)-2-oxoethyl](tert-butoxy)

carboxamide (N-Boc-L-valinal) 1226
N-methylformanilides 1554
3-methylfurazans 1136
a-methylglutamate 52
methyl group, deprotonation 812
2-methyl-2H-1,2,3-triazole, nitration 1008
1-methyl-1H-1,2,4-triazoles 1031
N-methylimidazol-2-yl-zinc iodide 855
4-methyl-5-imino-2-thienoyl-D2-1,3,4-

thiadiazolines 1358
1-methylisoquinoline 1592
N-methylisoquinolinium iodide 1605
N-methylisoquinolinium salts 1611
S-methyl isothioamide hydroiodide 1019
methylisoxazoles
– 13C NMR chemical shifts 733
– 1H NMR spectra 732
– physical properties 733
methyllithium 1901
N-methylmaleimide 323
methyl 2-[3-(4-methylphenyl)-1,2,4-oxadiazol-

5-yl]benzoate 1079
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– molecular dimensions 1079
methyl(methylthio)oxadiazolium

tetrafluoroborates 1216
N-methylmorpholine N-oxide (NMO) 71,

1022
S-methyl-N-acylisothioureas 1025
3-methyl-7-nitrobenzo[c]isoxazole 1162
2-methyl-4-nitro-2H-1,2,3-triazole 1008
methyl olenonate, oximes 1411
o-methyloxime 1539
methyl 3-oxo-6-heptynoate 859
4-methylpent-3-en-2-ol 79
N-methyl-N-phenyl amide 48
3-methyl-4-phenylfurazan 1151
2-methyl-6-phenylimidazo[2,1-b]

oxadiazole 1206
3-methyl-5-phenylisothiazole lithiation 797
3-methyl-5-phenylisoxazole 727
2-(methyl, phenyl, or styryl)chromones 674
3-methyl-5-phenyl-1,2,4-oxadiazole
– methyl group of 1121, 1122
5-methyl-3-phenyl-1,2,4-oxadiazole 1121
1-methyl-2-phenyl-,6-pyridazinedione 1736
3-methyl-4-phenyl sydnone, nitration 1066
4-methylpolystyrene chlorination 2332
5-(2-methylpropanenitrile)-D4-1,2,4-

oxadiazolines 1105
methylpyridines, nomenclature 1432
1-methylpyrrole 322
N-methylpyrrole 1748
methyl pyrrole-2-carboxylate 303
methyl 3-pyrroline-1-carboxylate 348
methylquinolines, aerobic oxidation 1567
N-methylquinolinium salts 1554
trans-b-methylstyrene 72
methyl-substituted oxepines 1867
2-methylsulfanyl-1,3-dithiolylium salts
– with Grignard reagents 962
2-methylsulfonyl-1,3,4-oxadiazoles
– nucleophilic substitution of 1222
2-methylsulfonyl-5-phenyl-1,3,4-oxadiazole
– nucleophilic substitution of 1221
2-methylsulfonyl-5-pyrazolyl-1,3,4-

oxadiazole 1222
3-methylsydnone 1055
methyl tetramate 341
1-methyl-tetrasubstituted imidazoles 821
3-methyl-1,2,4-thiadiazole 1323
5-methyl-1,3,4-thiadiazole-2-thiols
– trihalomethylsulfenyl derivatives of

1339
N-methyl-1,2,4-thiadiazolium salt 1290
2-methylthiazol-4-ylmagnesium bromide
– preparation of 851

2-(methylthio)-5-oxazolylmagnesium
bromide 851

1-methyl-1,2,4-triazole 1033
methyltrioxorhenium (MTO) 81
(M–60)þ fragment, acetylenic structure

1138
Michael acceptor 35, 443
Michael additions 439–443, 508, 695, 699,

1546, 1652, 1740
– ketone, enolate 1663
Michael fashion 819
Michael olefins 837
Micrococcus luteus 12
micro/macroporous polystyrene resins
– Friedel–Crafts acylation 2336
Micromonospora chersina 57
microporous polystyrene-derived resins
– direct lithiation reaction 2338
microreactors, uses 1084
microwave-assisted one-pot cyclization-Suzuki

coupling pproach 618
microwave assisted organic synthesis

(MAOS) 816
– a-hydroxyketones 817
microwave induced Claisen

rearrangement 620
microwave irradiation 993, 1715
microwave-mediated solvent-free

Rap–Stoermer reaction 618
microwave methodology 1185
microwave-promoted synthesis
– of 1,4-benzodiazepine-2,5-diones 2189
microwave spectroscopy 1134
midazolam, multistep synthesis 2201
migration–nucleophilic attack–cyclization

(MNAC) 1189
Minisci reaction 1492, 1602
3-minopyrazine-2-carboxylic acid 1737
miraziridine A 13
Miscini reaction
– with RHNCO radicals 1492
mitomycin C 12, 13
mitomycins 1992
Mitsunobu conditions 1404, 2345
Mitsunobu reaction 883, 1607
Mitsunobu reagent 27
MNDO calculations
– ab initio methods 1053
Mn-salen catalysts 73
modern drug discovery
– flow chart outlining 2322
modified salens and salen analogs 75
molecular orbital calculations 1131
Møller–Plesset (MP2) levels 1573
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molsidomine 1072
molybdenum alkylidene-catalyzed

ring-closing metathesis 619
molybdenum hexacarbonyl 106
monocyclic azepine derivatives 1867
monocyclic dioxolanes 928
monocyclic furazans 1137
monocyclic furoxans
– rearrangement of 1159
monocyclic 1,2,4-thiadiazole scaffold 1316
monocyclic 1,2,4-triazole-containing

structures 1033
monocyclic 1,2,3-triazole system 989
monofunctional resin cleavage

procedures 2352
monohydroxyquinolizinium bromides.
– pKa values 2045
monosubstituted alkynes
– addition of azides 992
– co-cyclization of 1439
monosubstituted furazans 1135
monosubstituted furoxans
– glyoximes 1155
4-monosubstituted 1,2,3-thiadiazoles
– ring cleavage of 1276
montmorillonite KSF
– use of 887
Moore�s law 2313
Morita–Baylis–Hillman acetate 562
Morita–Baylis–Hillman reaction 581
morphine 164
N-morpholino-N-

nitrosoaminoacetonitrile 1072
Mukaiyama�s dehydration
– of primary nitro compounds 1092
multicomponent reactions (MCRs) 822, 878,

2129
– advantages 2129
multidirectional cleavage strategies

2352–2357
– direct cleavage by electrophiles 2353
– direct cleavage by nucleophilic

substitution 2352, 2353
– safety-catch linkers 2354–2357
multi-step combinatorial synthesis 2326
muscaflavin 1867
Mycobacterium tuberculosis 57, 1194
myricetin 1675
– structures of 1674

n
Nafion NR50 1178
naphthoxadiazole 1057
– irradiation of 1059

naphthylacetone derivative 44
Natsume synthesis 432
naturally occurring 13
natural octapeptide celogentin 477
natural pigments 2275
– limitations 2278
N–C–N bond angle 118
Neber rearrangement 42
Negishi conditions 1601
Negishi coupling conditions 1838
Negishi couplings 1600
Negishi cross-coupling 1006
Negishi crosscoupling reactions 789
Negishi reaction 1761
Nenitzescu indole synthesis 427–429
Nenitzescu reaction 428
N–H bond 5, 6
NH-indoles
– arylation 467
NH-pyrazoles
– tautomerism 642
N7–H tautomer 1303
nickel catalysis
– aryl and alkylGrignard reagents 864
nickel-catalyzed zinc-based Colon

reaction 1599
nicotinamide adenine dinucleotide

(NADþ) 1431
nicotinamide adenine dinucleotide phosphate

(NADPþ) 1431
nicotine 1432
nitration 449–451, 700
N-nitration 700
nitrene
– cyclizations of 405
– generation reaction 406
– insertion, synthesis by 429
nitrene precursors 12
nitric oxide donor 1072
nitric oxide synthase (NOS) isoforms 650
– interaction 650
nitrile imines 1063
nitrile oxides 1108, 1148, 1158
– cycloaddition 745, 1095
– dipolar cycloaddition 2207
– 1,3-dipolar cycloaddition 743, 746, 764
– formation of 1094, 1156
– intramolecular 1,3-dipolar

cycloaddition 744
– stability 742
– ultrasound cycloaddition of 1092
nitriles
– microwave irradiation of 1088
o-nitroacylaminoarenes
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– in situ reduction 884
a-nitroalkanoic acids
– alkyl esters of 1148
nitroalkenes, cyclocondensation 2363
nitroalkenes/vicinal acetoxy nitro

derivatives 999
nitroamino derivative 1502
o-(2-nitroaryl)alkyl ketones 399
nitrobenzofurazans 1168
o-nitrobenzyl bromide 423
nitrobenzyl linker 2356
o-nitrochalcones 1542
o-nitrochlorobenzene 884
o-nitrocinnamaldehydes
– Baker�s yeast reduction of 1542
– Baylis–Hillman adducts 1542
nitrogen atom oxidation 1588
nitrogen chemical shift 1435
nitrogen transfer
– to amines 132
– to carbon 132
– common oxaziridines used 131
a-nitrohydrazones
– addition of amines 1022
2-nitroindoles 450
– Gribble�s syntheses 455
1-nitroisoquinoline 1592, 1593
nitroisoxazole reaction 780
a-nitroketone 1092
o-nitroketones 401, 402
a-nitro-ketoximes 1147
a-nitro ketoxime tautomer
– thermal isomerization 1146
nitrones
– 1,3-dipolar cycloaddition 1107, 2132
p-nitrophenylazirine 55
2-(4-Nitrophenyl)-5-phenyl-1,3,4-

oxadiazole 1225
o-nitrophenylpyruvate 398
3-nitropyridine 1732
N-nitropyridinium ion 1472
o-nitro-b-pyrrolidinostyrene 402
nitrosoamidines 2199
4-nitroso-5-aminopyrazoles 644
5-nitrosoamino-1,2,4-thiadiazoles 1325
1,2-nitrosoarenes 1133
nitrosobenzene derivative 398
nitrososydnonimines 1073
o-nitrostannylbenzene
– Stille cross-coupling 401
o-nitrostyrenes
– N-heteroannulation 403
– reductive cyclizations 402

4-nitro-6-trifluoromethansulfonyl-
benzofuroxan 1164

NMR spectroscopy 2071, 2243
N-nucleophilicity 1571
NOCCC reactions 750, 751
non-conventional chiral mesoionic liquid

crystals 1056
non-covalent forces
– types of 2287
non-cyclic derivatives 2
non-natural morphine 2303
non-steroidal anti-inflammatory drugs
– Indomethacin, Sumatryptan and

Etodolac 384
(5-Nonyl-1,3,4-oxadiazol-2-yl)benzothiazine

dioxide 1184
norchelerythrine, synthesis 1579
Nordlander synthesis 416
novel arsonium ylides 26
novel polymeric supports 2341–2343
N-protonated isoquinoline 1589
N–S bond 1314
nucleophilic agents 2355
nucleophilic catalyst 837
nucleophilic reactions 886, 2262–2268
– p-cation radicals reactions 2262, 2263
– reactions with 5,15-disubstituted

porphyrins 2265, 2266
– reactions with H2TPP 2266–2268
– reactions with porphine 2268
– substitution reactions. reactions with

H2(OEP) 2263–2265
nucleophilic replacement reactions 780
– at C4 in sydnones 1065

o
OCCCN reactions 749, 750
octaethyl porphyrins (OEPs) 2231
octaethyl tetra phenyl porphyrins

(OETPPs) 2231
octaethylxanthoporphyrinogen 2261
octaphyrins 2252
octapyrrolic macrocycles. see octaphyrins
olefinic epoxides 101
olefin-metathesis approach 618–620
olefins 68
oltipraz 946
one pot process 394, 420
one-pot reactions 1636
on-water methodology 617
optical bleachers 2284
optical microscopy 1056
organic electroluminescence (OEL) 626
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organic light emitting devices (OLEDs) 627,
1230, 2304, 2308

organocopper reagents 549, 2010
organohalides
– palladium-catalyzed cross-coupling reactions

of 1482
organoindium reagents 2135
organolithium reagents 2261
– nucleophilic attack 2263
organometallic alkylations of cyanuric

acid 1832
organometallic processes 2009
organometallic reagents 460
– use of 1540
organopalladium chemistry 1755
organopalladium compound 467
– use 2056
organotin(IV) compounds
– IR spectra of 1338
orthoesters 1411
Ortoleva–King reaction 2043
1,2,4-oxadiazole 1109
– aldol condensation with

benzaldehyde 1122
1,2,5-oxadiazole 1129
– heteroaromatic compound 1129
1,3,4 oxadiazole 1170, 1172
– aromatic and thermally stable

molecule 1170
– cyclization of acylhydrazones,

semicarbazones, and
thiosemicarbazides 1177–1183

– diacylhydrazines, cyclization
1175–1177

– furoxan moiety, drugs 1171
– heterocyclic ring 1214–1221
– mass spectrometry 1175
– mesoionic 1,3,4-oxadiazoles,

preparation of 1190, 1191
– metal complexes 1229–1231
– methanol use 1120
– NMR spectroscopy 1174
– 1,3,4-oxadiazolium cations, synthesis

of 1190, 1191
– oxidative and reductive processes

1211–1214
– reactions of substituents 1223–1229
– reactions with nucleophiles 1221–1223
– reactivity 1203
– ring cleavage reactions 1203–1211
– ring transformations 1183–1189
– structural aspects 1173
– synthesis of 1175
– – D2-1,3,4-oxadiazoline 1196–1203

– – oxadiazolinones, oxadiazolinethiones,
and oxadiazolimines 1191–1196

– – 2,3,4,5-tetrahydro-1,3,4-
oxadiazoles 1196–1203

– theoretical aspects 1172–1173
– UV/IR spectroscopy 1174–1175
– X-ray diffraction 1173, 1174
1H-[1,2,4]-oxadiazole[4,3-a] quinoxalin-

1-one (ODQ) 1075
1,2,3-oxadiazole derivatives 1072
1,3,4-oxadiazole derivatives 1229
1,3,4-oxadiazole-functionalized terbium (III)

b-diketonate
– synthesis of 1230
1,2,4-oxadiazole moieties 1086
1,2,3-oxadiazole 3-oxides 1051
oxadiazole ring
– nucleophilic attack 1156
1,2,4-oxadiazole ring 1075, 1076, 1127
– protons 1081
1,2,5-oxadiazole ring 1129
1,3,4-oxadiazole ring 1209, 1219, 1225
1,2,4-oxadiazole rings
– rearrangement reactions of 1117
– p-tolyl ring 1080
oxadiazoles
– photoreactivity of 1099
– types of 1047
1,2,3-oxadiazoles 1048
– benzo-1,2,3-oxadiazoles 1059
– DFT analysis 1048
– 4,5-dihydro-1,2,3-oxadiazoles 1059
– 1,3-dipolar cycloaddition reactions 1070,

1071
– electrophilic substitution at C4

1065–1067
– nucleophilic substitution at C4 1065
– reactivity of 1058
– ring cleavage 1060–1065
– ring system 1049
– substituents, reactions 1067–1070
– 40-substituted-30-

nitrophenylsydnones 1074
– sydnocarb 1073
– sydnones 1059, 1060
– sydnonimines 1049, 1050, 1057, 1058
– sydnonimines molsidomine 1072
– synthesis 1057
1,2,4-oxadiazoles 1074, 1075, 1083, 1084,

1088, 1089, 1090, 1092, 1094, 1095, 1109,
1118, 1127

– amidoxime route
– – N-acylamidoximes, cyclization of

1089–1091
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– – O-acylamidoximes, cyclization of
1084–1089

– catalytic hydrogenation of 1113
– 13C NMR shifts 1082
– cycloaddition route 1092–1095
– ester and amide isostere 1075
– fragmentation pattern of 1082
– human immunodeficiency virus

(HIV) 1075
– IR analysis 1082
– mass spectrometry 1082, 1083
– in medicine 1127, 1128
– NMR spectroscopy 1081, 1082
– N-[3-phenyl-1,2,4-oxadiazol-5-yl-methyl]

phthalimide 1074
– nucleophilic displacements on 1113
– phenyl moiety of 1213
– reactions with electrophiles 1109–1111
– reactions with nucleophiles 1111–1113
– reactivity of substituents 1121–1126
– reductions and oxidations of 1113–1117
– structure of 1076, 1077
– synthesis of 1095–1099
– – dihydro-1,2,4-oxadiazoles 1099–1102
– – 2,3-dihydro-1,2,4-oxadiazoles 1104–1107
– – 2,5-dihydro-1,2,4-oxadiazoles 1102–1104
– – 1,2,4-oxadiazole-N-oxides 1108, 1109
– – 1,2,4-oxadiazolidines 1107, 1108
– synthetic routes 1083
– theoretical studies 1077–1079
– thermal and photochemical ring

cleavage 1117–1121
– UV irradiation of 1119
– UV/IR spectroscopy 1081–1082
– X-ray data of 1079
– X-ray diffraction 1079–1081
– yttrium triflate, as catalyst 1094
1,2,5-oxadiazoles 1129, 1150
– aryl furazans 1165–1167
– benzofurazans 1143, 1144
– benzofuroxans 1154
– benzofuroxans, cycloaddition

reactions 1164, 1165
– benzofuroxans, heterocyclic ring

rearrangements of 1158
– benzofuroxans, rearrangements

1162–1164
– benzofuroxan system 1149, 1150
– 1,2-dioximes, oxidation of 1145
– dipole moments 1132
– electrophiles and oxidizing agents

1150–1152, 1154, 1155
– furazans, furoxans, and benzo-related

compounds in medicine 1167–1170

– furoxans 1144, 1154, 1165–1167
– furoxans, heterocyclic ring rearrangements

of 1158
– furoxans, rearrangements 1159–1161
– heteroaromatic compound 1129
– heterocyclic ring 1150
– Meisenheimer complex formation 1158
– nitrile oxides, dimerization of 1147–1149
– a-nitro ketoximes, dehydration of

1145–1147
– nucleophiles and reducing agents

1152–1154, 1155–1157
– ring systems of 1047
– structural aspects 1129–1131, 1134
– – mass spectrometry 1137, 1138
– – NMR spectroscopy 1135, 1136
– – UV/IR spectroscopy 1136, 1137
– – X-ray diffraction 1134, 1135
– synthetic routes 1145
– – furazans 1138–1143
– theoretical studies 1131–1134
– thermal and photochemical ring

cleavage 1154, 1157, 1158
1,2,3-oxadiazole system 1047, 1051, 1170,

1172, 1177, 1185, 1211, 1214, 1226, 1254
– Diels–Alder (DA)/1,3-dipolar cycloaddition

(1,3-DC) 1218
– electron impact mass spectra of 1175
– IR absorption spectra 1174
– proton NMR data, ring hydrogens 1174
– ring-opening reactions of 1203
– synthesis of 1181
– X-ray structures of 1173
1,3,4-oxadiazole system 1203
– electronic spectrum of 1174
1,2,4-oxadiazole systems 1083
– nucleophilic attack 1111
1,3,4-oxadiazole systems
– iridium(III) complexes 1231
1,3,4-oxadiazole-2-thione derivatives
– Mannich reaction of 1216
1,2,4-oxadiazolidine 3,5-dione 1111
1,2,3-oxadiazolidine ring system
– derivatives of 1053
1,2,4-oxadiazolidines 1107
1,2,4-oxadiazolidinones 1108
1,2,4-oxadiazoline
– acetylation of 1111
1,2-3-oxadiazolines 1050
– ab initio and DFTcalculations 1051
– mass spectra 1056
– NMR spectra 1055, 1056
– structural parameters 1054
– theoretical aspects 1053, 1054
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– thermotropic liquid crystals (LCs) 1056
– UV and IR spectroscopy 1055
– X ray crystallography and spectroscopic

data 1052
– X-ray diffraction 1055
1,3,4-oxadiazolin-5-ones 1191
1,3,4-oxadiazolium cations 1170, 1191
1,2,4-oxadiazolium salts 1110
1,3,4-oxadiazolium salts 1210
1,2,4-oxadiazolo[4,5-a]indolines 1116
1,2,4-oxadiazol-5-one moiety 1128
oxadiazolones 1205
1,2,4-oxadiazol-5-ones 1121
1,3,4-oxadiazol-2-ones 1205
oxadiazolopyrimidinium salts 1110
1,2,4-oxadiazol-5-yl carboxylic acids

1086
2-(oxadiazolyl)imidazo[1,2-a]

pyrimidines 1176
oxa-Pictet–Spengler procedure 545
1,4-oxathiane 977
1,4,2-oxathiazine 978
oxathiolane
– treatment of N-alkylcystinol 968
1,3-oxathiolane derivative 975
1,3-oxathiolane 2,2-dioxide
– diazosulfone 973
1,2-oxathiolane-2,2-dioxides 970
1,3-oxathiolane-5-ones 979
1,2-oxathiolane 2-oxides 970, 971
– SO, thermal extrusion of 970
1,2-oxathiolane-2-oxides 968
1,2-oxathiolanes 966
– 1H NMR data 967
– NMR spectroscopy 967
– nucleophilic attack 971
– thermal/photochemical reactions 970, 971
– X-ray diffraction 967
1,3-oxathiolanes 971, 980
– hydrolysis of 979
– NMR spectroscopy 972, 973
– oxidation of 978
– preparation of 975
– radical, electrochemical reactions 979
– reactions with electrophiles 978, 979
– reactions with nucleophiles 979
– ring expansion 979, 980
– ring synthesis of 973–976
– thermal reactions 978
– X-ray diffraction 972
1,2-oxathiolanes derivatives.
– 1H NMR data for 967
1,3-oxathiolane systems
– 1H NMR data for 972

1,3-oxathiolane-2-thione 974
1,2-oxathiolan-5-one 2,2-dioxide

derivative 970
1,3-oxathiolan-2-ones
– CO2, pyrolytic extrusion of 978
1,2-oxathioles 966
– heterocycles, ring transformations 970
– NMR spectroscopy 967
– nucleophilic attack 971
– ring synthesis of 967–969
– thermal/photochemical reactions 970, 971
– X-ray diffraction 967
1,3-oxathioles 971
– cycloaddition reactions 978
– heterocycles, ring transformations of 976,

977
– heterocyclic ring of 977
– NMR spectroscopy 972, 973
– reactions with electrophiles 977
– reactions with nucleophiles 978
– ring synthesis of 973–976
– X-ray diffraction 972
1,3-oxathiolium 4-oxide compound
– 13C NMR data for 972, 973
1,2-oxathiolium salts 966
1,3-oxathiolium salts 971
– with NaN3 978
– preparation of 973
1,2-oxathiolone derivative
– geometry of 967
oxazaphosphole 50
1,3-oxazin-6-ones 1446, 1722
– Hetero–Diels–Alder reaction of 1446
oxaziridines 1108
– nitrogen transfer reactions 131, 132
– oxygen transfer reactions 133
– properties 129
– reactivity 131
– rearrangements 133–135
– synthesis 129–131
oxazole. see also 1,3-oxazoles
– mercuration of 839
– ring bromination of 838
– synthesis of 902
oxazole nitrogen 849
oxazole ring 842
oxazoles 824, 865
– aza-Wittig rearrangement 829
– preparation of 826
1,3-oxazoles 809
– nomenclature and numbering of 811
oxazoles, preparation
– b-(acyloxy)vinyl azides 827
– using van Leusen–TosMIC route 828
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oxazolidine ring 889
oxazolidines 888
oxazolidinones 38, 901
oxazolidin-5-ones 1175
1,3,4-oxazolidinyl carbocation 1179
oxazoline N-oxides 1105, 1107
oxazoline–thiazoline conversion 879
oxazolo[3,2-d][1,4]benzodiazepines
– synthesis 2205, 2206
oxazolone
– with iso-pentyl nitrite 1003
5-oxazolyl cuprates 855
oxazolylmagnesiums
– use of 851
oxazol-2-yl-zinc 855
oxepanes 1868
– synthesis 1898
oxepine–arene oxide equilibrium 1877
oxepines 1867, 1870, 1871
– partially reduced, reactivity 1953
– – dihydrooxepines 1953–1955
– – tetrahydrooxepines 1955–1957
– reactivity 1943, 1944
– – and benzofused derivatives 1944–1952
oxetanes 188, 208
– acyl halide–aldehyde

cyclocondensations 198–200
– bond lengths and angles 188
– carbonylative ring expansion reactions

201, 202
– catalyzed [2þ2] cyclizations 193, 194
– C–H insertions 200, 201
– [2þ2] cycloaddition of ketene and carbonyl

compounds 197, 198
– electrophilic cyclizations 196
– b-hydroxy acid cyclizations 202
– infrared spectroscopy 189
– isomerization of oxiranyl hydroxyls 195,

196
– b-lactones, reactivity of 202–208
– natural/bioactive compounds 189, 190
– NMRspectroscopy 189
– nucleophilic attacks 208–214
– oxirane ring expansions 196
– oxirane ring opening by carbanionic

attacks 195
– [2þ2] Paterno–Büchi cyclizations 191–193
– physicochemical data 188, 189
– reactivity 202–214
– ring contraction of butanolides 194, 195
– synthesis 191–202
– Williamson reactions 195
2-oxetanone 188
N-oxidation 1734

oxidation reactions 475–478
oxidative acetoxylation 1546
oxidative coupling reaction 311
oxidative cyclization 607–609
5-oxide tautomers 1132
3-oxidopyrylium betaine
– [5þ2] dipolar cycloaddition 1652
– intramolecular dipolar cycloaddition 1652
oxime ethers
– [3,3]-sigmatropic rearrangement 620
oxime tosylates 756
oximino derivatives 1453
oxindole 495
– reactivity 498
– synthesis by cyclization reactions

496–498
– synthesis from indoles 495
– synthesis from isatins 495, 496
– zinc-dust pyrolysis 377
oxiranes 55, 56, 875
– epoxidation of carbonyl compounds 86–90
– epoxidation of electron-deficient

alkenes 83–86
– metal-catalyzed epoxidation of alkenes

69–83
– nucleophilic ring opening 92–98
– oxiranyl anions 107–109
– properties 56, 57
– radical chemistry 104
– reactivity 92
– rearrangements 98–104
– reduction and deoxygenation 104–107
– ring-closing reactions 90–92
– synthesis 58–90
– using dioxiranes 59–64
– using other oxidants without metal

catalysts 64–69
oxiranyl anions 107–109
– carbenoid behavior of 109
– reaction with electrophiles 108
4-oxoalkanoic acids 1693, 1694
a-oxoamides 2130
5-oxo compound 1111
5-(4-oxo-2,5-diphenyl-1,2,5-oxadiazolidine-

3-yl)-2,4(1H,3H)-pyrimidinedione
– synthesis of 1131
2-oxoesters
– glyoxalate 445
a-oxoketene dithioacetals 661
a-oxoketene N,S-acetals
– cyclocondensation 660
oxone 33
4-oxo-thiazolidine 1069
a-oxothioester
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– diazomethane 975
b-oxo thionoesters 738
oxybenziporphyrin synthesis 2243
oxygen transfer
– to carbon. 134
– common oxaziridines used for 133
– reactions 133
– to sulfur 134

p
Paal–Knorr condensation
– of polymer-supported 1,4-diketones 2363
Paal–Knorr synthesis 542
palladacycle, formation 505
palladium acetate 1763
palladium-catalyzed alkylation reactions of

chloropyrazines 1762
palladium-catalyzed carbonylation
– synthesis of chromone 1676
palladium-catalyzed C–H arylation

reaction 1033
palladium-catalyzed C–N coupling

reactions 1565
palladium-catalyzed cross-coupling

reactions 786, 2049
palladium-catalyzed cyclizations

426–427, 433, 434
– isomerization procedure 551
palladium-catalyzed–H bond arylation of

azoles 857
palladium-catalyzed hydrogenation/

heterocyclization 1544
palladium-catalyzed intramolecular

amidation 2192
palladium-catalyzed multicomponent

sequential coupling strategy 598
palladium-catalyzed Negishi coupling 1597
palladium-catalyzed oxidative

alkenylation 334
palladium-catalyzed reaction
– of propargyl acetates 933
palladium-catalyzed Sonogashira

reaction 612
palladium-catalyzed Stille reaction 1598
palladiumcatalyzed Suzuki–Miyaura

reactions 1597
palladium(0)-catalyzed termolecular queuing

processes 1550
palladium complex 346
palladium(II)-catalyzed oxidative

carbocyclizations 602
palladium-mediated sequential cross-coupling

Sonogashira reaction–Wacker-type
heteroannulation 558

palladium-promoted homocoupling
processes 2051

Pandaros acanthifolium 110
(R)-pantolactone derived ester 25
papaverine 1575
Pariser–Parr–Pople (PPP) approximation

method 540, 2024
Parish conditions 82
Paterno-Büchi reaction 537
– [2þ2] cycloaddition 573
PBD-DNA adduct formation 2212
Pd(0) catalyst 457
Pd-catalyzed allylic alkylations
– indole as nucleophile in 508, 509
Pd-catalyzed carbonylation 1764
Pd-catalyzed cyclization 420
Pd(0)-catalyzed domino reaction
– mechanism for 409
Pd-catalyzed intramolecular arylation 602
Pd-catalyzed process 877
Pd-catalyzed reactions 382, 385, 1761, 2017
Pd-catalyzed Suzuki–Heck sequence 506
Pd-catalyzed tandem process 415
Pd/C/CuI-catalyzed tandem Ullman/

Sonogashira couplings 605
trans-[-PdCl2]-1,2,4-oxadiazole complexes
– isolation of 1095
Pd(II)-catalyzed cycloisomerization 553
PdII-mediated carboxylative annulation 601
Pechmann synthesis 1255
PEDOT 2307
PEG-bound bromothiophene 2368
penicillin 2144–2161
– chemical relationship 2158
– classical syntheses 2148–2150
– conversion 2158–2161
– industrial production 2150–2153
– introduction 2144–2146
– physicochemical data 2146–2148
– reactivity 2153–2158
penicillin-binding proteins (PBPs) 2144,

2156
– catalytic cycle 2157
penicillin G 2160
– use 2145
penicillin V 2147
penicillin V ester, ring enlargement 2159
pentacyclic cations synthesis
– representative examples 2058–2061
N-pentafluorophenyl triazolium

tetrafluoroborate salts 1034
pentameric/hexameric helicates,

preparation 2291
pentane-1,5-dione
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– condensation 1633
pentapyrrolic 22p system 2249
peptidic hormones 2214
peracetic acid 66
perchlorinated pyridazines 1737
perfluorinated metallophthalocyanine, n-type

semiconductor 2311
perfluoroalkylether-1,3,5-triazines 1833
perfluoroalkyl iodides 314, 319
5-perfluoroalkyl-1,2,4-oxadiazoles
– hydrazinolysis of 1023
2-(perfluoroalkyl)pyrroles 319
perfluoroalkylquaterthiophenes 2310
perfluoroalkyl radicals 319
perfluoro-(isopropyl)-1,3,5-triazines

1832
perhydroazepine 1865
pericyclic reactions 512, 513
perillosin 1868
periodates 70
peroxisome proliferator-activated receptor-c

(PPAR-c) 541
Petasis–Ugi multicomponent condensation

strategy 2129
phase-transfer catalyst 2298
phase-transfer Gomberg–Bachmann

synthesis 544
phenacyl benzoate
– with H2S 974
phenacyldithiocarbamates 973
1-phenacylisoquinolines 1574
phenanthridine, synthesis 1557
phenolic-type reactions 2047
a-(phenoxy)alkyl ketones
– dehydrative cyclization 596
phenylacetic acid derivative
– Friedel–Crafts acylation 2220
phenylacetonitrile 1594
phenylalkoxyoxadiazoles
– alkyl iodide 1223
2-phenylamino-5-(4-fluorophenyl)-1,3,4-

thiadiazole 1342
N-phenyl-a-phosphinylhydrazone 657
phenyl azide 994
N-phenylbenzaldimine 24, 25
3-phenyl-1,2-benzisoxazole
– flash vacuum pyrolysis (FVP) 773
N-phenyl-benzyl imine 847
phenyl chloroformate 1826
2-phenylchromones. see flavones
o-phenylenediamine 53
b-phenylethylamines 1575
b-phenylethyl vinyl azide 46
phenylfurazans 1135, 1150

6-phenyl-3(2H)-pyridazinones 1756
phenylhydrazine 1368
phenylhydrazones
– (Z)-isomers of 1159
N-phenylimidazoles 857
phenyliminodioxolane 935
3-(phenylimino)-1,2,4-thiadiazolidin-

5-ones 1299
phenyl isocyanate
– imidazole-1-carboxamides, addition

841
5-phenyl isomer 1076
phenyl isothiocyanate 41, 1365
5-phenylisoxazole 942
phenyl ketone phenylhydrazones
– lead tetraacetate oxidation 684
phenylmagnesium chloride 405
N-phenylmaleimide 1071
– intramolecular dipole formation–

intermolecular cycloaddition 2208
5-phenyl-4-methyl-1,3,4-thiadiazolium-

2-olate 1368
2-phenyl monosulfoxide derivative 965
2-phenyl-1,3,4-oxadiazole 1209
3-phenyl-1,2,4-oxadiazole
– INDO studies 1078
N-[3-phenyl-1,2,4-oxadiazol-5-yl-methyl]

phthalimide 1074
1-phenylphosphinane, description 2071
phenyl radicals 865
N-phenylsulfonylindole 455
1-(phenylsulfonyl)pyrrole 304
3-phenylsydnone 1065
– oxidation of 1060
3-phenylsydnone-4-carboxylic acids 1067
3-phenylsydnones 1065
5-phenyltetrazole 1422
phenylthallium bis-trifluoroacetate 1605
3-phenyl-1,3,4-thiadiazolidine-

2-thiones 1366
N-(5-phenyl-1,3,4-thiadiazol-2yl)

benzamide 1341
4-phenyl-1,2,4-triazole-3,5-dione 1033
N-phenyltrifluoroacetohydrazonoyl

bromide 1359
phenyltrimethylammonium bromide

(PTAB) 18
3-phenyl-/3-(p-tolyl)-10bH-1,3,4-thiadiazolo

[2,3-a]isoquinoline-2(3H)-thiones 1365
Phillip�s method 882
pH-independent reaction 2155
phosgene 1822
phosphabenzyne dimeric complex 2095
phosphacene 1584
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phosphetanes 244
phosphine oxides 45
phosphinines 2084–2097
– history and nomenclature 2084, 2085
– reactivity 2089–2097
– spectral, structural and theoretical

studies 2085
– synthesis 2086–2089
l5-phosphinines 2085
phosphinine synthesis 1643
phosphodiesterase type 5 (PDE5) 651
phosphodiesterase type 3 enzymes

(PDE3) 647
phosphole system 2071–2084
– history and nomenclature 2071, 2072
– isomers 2072
– phospholide ions 2075, 2076
– reactivity 2076–2084
– spectral, structural and theoretical

studies 2072, 2073
– synthesis 2073–2075
phosphomolybdic acid (PMA) 34
phosphonate 1123
phosphonium salts 423
phosphonium ylides 944
phosphorus–carbon heterocycles, uses 2103
phosphorus heterocycles
– addendum 2105–2108
– applications 2103–2105
– five-membered rings 2102, 2103
– four-membered rings 2100–2102
– introduction 2071
– phosphinines 2084–2097
– phospholes 2071–2084
– three-membered rings 2097–2099
photoaffinity label (PAL) 128
photochemical free-radical alkylation 1605
photochemical reactions 489–491
photodynamic therapy (PDT) 2238, 2247
photoinduced rearrangements
– of O–N bond 1099
photolytic decomposition of vinyl azides 47
phthalimide aziridinations, reaction

conditions for 20
phthalocyanines 2280
– industrial applicability 2281
– structure 2281
Pictet–Gams modification 1577
Pictet–Spengler reactions, asymmetric

organocatalyzed 508
Pictet–Spengler syntheses 1576
pilocarpine analogues, synthesis 851
PINDOX 98
piperidine 2

piperidin-2-one 2
trans,trans-1-piperidinyl-4-(2-pyridyl)

butadiene 2040
piperylene 1220
platelet derived growth factor (PDGF) 2321
plieninger indole synthesis 404
31P NMR spectroscopy 2090
polar solvents 928
Polonovsky rearrangement 2184, 2196
polyacrylamide resins 2339, 2340
poly(2,3-benzofuran) (PBF) 625
poly(2,20-bithiazole-5,50-diyl)s 2307
polychloropyrimidines 1743
polycyclic adduct 482
polycyclic aromatic nitrogen cation

systems 2021
polycyclic ring system synthesis 569
polycyclic systems 550
polyethers 1899
poly(ethylene glycol) (PEG) 1028, 1101, 1417
– chains 2340
– with sodium methoxide 1101
poly(ethylene glycol)-supported azide
– 1,3-dipolar cycloaddition of 998
polyethylene polyoxypropylene

(POEPOP) 2342
2-(polyhydroxyalkyl)pyrroles 311
polyisoxazole systems 747
polymer-bound a-silylimines 2360
polymer-bound halothiophenes 2367
polymer-bound resin 2363
polymer-bound substrates 2328
polymer-bound triphenylphosphine 423
polymeric systems 2305
polymer-supported Mukaiyama-type

reagent 2124
polymer-supported triphenylphosphine
– use of 876
polyoxometallates (POMs) 79
polyoxyethylene polystyrene (POEPS) 2342
Polyozellus multiflex 595
polyphosphoric acid (PPA) 1176
poly(pyrrole)s 2308
poly(selenophene)s 2308
polysiloxane 1057
polystyrene-derived resins
– application 2329
polystyrene–polyethylether (PS-PEG) resin-

supported palladium-phosphine
complex 612

polystyrene resin
– Friedel–Crafts alkylation 2336
polystyrene resin-bound azide 996
polystyrene resins
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– nitration 2336
polystyrene-SO2-CH2-NC resin 827
polystyrene-sulfonyl hydrazide resins 1004
polysubstituted imidazolidinones 899
poly(thiazole)s 2307
poly(thiophene)s 2306, 2307
– organometallic synthesis 2307
porphine 2231, 2268
porphyrin 1510
porphyrin framework
– carbon rings in 2234
– core-modified porphyrins 2233–2235
– electrophilic reactions 2255–2262
– expanded porphyrins 2235, 2236
– five- and six-membered cyclic

sub-units 2235
– general introduction 2231, 2232
– isomers 2232
– nitro derivatives 2260
– nucleophilic reactions 2262–2268
– pyrrole inverted systems 2233
– reactivity 2254–2268
– six-membered ring 2234
– structures 2276
– syntheses and reactions 2231
– synthetic chemistry 2236–2254
– tetrapyrrolic systems 2232, 2233
– trimer, Diels–Alder acceleration 2303
potassium carbonate 45
potassium dodecatungstocobaltate 95
potassium hydrosulfide 904
potassium hydroxide
– hydroxylation of 1593
potassium permanganate 82
potassium 2-

phenylhydrazinecarbodithioate 1350
potassium thiocyanate 1361
potential energy surface (PES) 1133
poton affinities 1078
Povarov reaction 1552
prolyl endopeptidase (PEP) 595
a-propargyl a-keto ester
– palladium-catalyzed cyclization 554
propargyl alcohols
– palladium-catalyzed

cyclocarbonylation 575
propargylamides 877
propargylic alcohols
– hydroamination 416
– ruthenium/platinum-catalyzed sequential

reaction 557
propargyl vinyl ether
– gold-catalyzed reactions 558
propionic acids 1670

propylenediamine 119, 121
propyne conversion, regioselectivity 1440
N-protected (a-aminoacyl)

benzotriazoles 1087
N-protected-2,3-bis(dibromomethyl)

indoles 487
N-protected-2-indolylstannane, coupling 463
N-protected hydroxylamine tosylates 22
N-protected quinolin-4-ones 1567
N-protected 1,2,3-triazoles, lithiation 1005
proton sponge 1158
proton-transfer transition state 45
(þ)-pseudoephedrine-derived aziridine 38
Pseudomonas putida 1751
pterin family 2277
pterin pigments
– 7-methylxanthopterin 2276
1-(ptoluenesulfonyl)-4-(tributylstannyl)pyrrole-

2-carboxaldehyde 335
Pummerer rearrangement 2352, 2356
Pummerer-type reaction 553
4H-pyran
– synthesis by a Ni-catalyzed formal [4þ2]

cycloaddition 1659
2H-pyran derivatives
– characteristic property 1655
– Claisen rearrangement 1659
– strategies for synthesis 1657
– synthesis by Knoevenagel

condensation 1656
– synthesis by metal-catalyzed

cycloisomerization of diyneols 1657
– synthesis by metal-catalyzed

isomerization 1656
– synthesis by Pd-catalyzed 6-endo-dig

cyclization of enynols 1657
pyranoflavylium synthesis 1653
pyranone
– a-formylation of 1668
– formation of 1663
– Grignard reagent 1666
– O-enolate cyclization 1664
2-pyranone
– transformation of 1667
2H-pyran-2-one 1663
2H-pyran -2-one 1663
2H-pyran-2-one 1663
– retrosynthetic analysis for 1662
– structure of 1661
2H-pyran -2-one
– synthesis of 1664
2H-pyran-2-one
– resonance structures for 1661
4-pyranone
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– from diketone 1672
a-pyranone
– allenyl ketone to 1663
– via carbonylation–cyclization 1664
2-pyranones
– synthesis of 1664
– transformation of 1666
2H-pyran-2-ones. see a-pyrones
– synthesis of 1663
4-pyranones
– nucleophilic attacks on 1673
4H-pyran-4-ones. see c-pyrones
– mesomeric structures for 1671
pyranoquinoline alkaloids 1532
4H-pyrans
– bicyclic 1660
– Claisen rearrangement 1659
– synthesis of 1658, 1659, 1660
2H-pyran structures 1655
– ring synthesis 1655–1657
4H-pyran structures 1655
– ring synthesis 1657–1660
pyrazine 1683
pyrazine (1,4-diazine) 1731
pyrazines (1,4-diazines) 1737, 1746, 1755
pyrazoles
– 13C NMR spectra 641
– geometry 640
– 1H NMR spectra 641
– identification of isomers 638
– medicinal chemistry aspects 635
– 15N NMR spectra 641
– properties 638
– space filling models 640
– structures 639
– use 637
1H-pyrazoles
– preparation 668
pyrazoles synthesis 651–678
– one C–C bond formation 654, 655
– one N–C bond formation 653, 654
– one N–N bond formation 652, 653
– from other heterocycles 671–678
– two bonds formation 655–671
pyrazoline cycloadduct 1165
D2-pyrazolines
– NMR data on 642
pyrazolium 705
pyrazoloacridine (PZA) 649
pyrazolo[1,5-a]pyrrolo[2,1-c][1,4]

benzodiazepines synthesis 2203
pyrazolo derivatives 1165
pyrazolopyridines
– synthesis of 1459

pyridazine 1666, 1683
pyridazine, N–N bond 1684
pyridazines 1733
pyridazines (1,2-diazines) 1731, 1735,

1742, 1747
pyridazine thiocarboxamides 1753
pyridazin-3(2H)-one 1694
pyridazinones 1704
pyridine 2, 1431, 1558
– aldehydes, ketones, carboxylic acids and

derivatives 1506–1507
– alkyl derivatives 1504–1506
– amino derivatives
– – diazotization of 1503, 1504
– – electrophilic substitution reactions 1502,

1503
– – reactions with acids 1500, 1501
– – reactions with acylating agents

1501, 1502
– – reactions with alkylating agents 1501
– – reactions with electrophilic reagents

1499, 1500
– benzene derivative 1436
– tert-butyl acrylate of 1488
– electron-deficient heterocycles 1436
– electron-deficient nature of 1437
– electrophilic substitution reactions

(SEAr) 1471, 1472
– Heck reaction 1486–1489
– with hydroxide ions 1475
– with phenyllithium 1477
– IR spectrum 1435
– metal-catalyzed cross-coupling

reactions 1481–1483
– natural compounds 1433
– nitrobenzene charge distributions 1436
– nitrogen chemical shift of 1434
– 15N NMR signal for 1434
– nucleophilic aromatic substitutions 1476
– photochemical irradiation 1495
– photochemical reactions 1495
– proton coupling constants 1435
– reactions at ring carbon atom 1492–1494
– reactions at ring nitrogen atom 1490, 1491
– reactions of C-metallated 1479
– reactions of pyridyl lithium/grignard

derivatives with electrophiles 1479–1481
– reactions with acids 1468
– reactions with acyl halides 1470, 1471
– reactions with amide ions 1474, 1475
– reactions with bases 1476–1478
– reactions with carbon nucleophiles 1476
– reactions with electrophilic reagents 1467
– reactions with halides 1469, 1470
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– reactions with hydroxide ions 1475, 1476
– reactions with metal ions 1468, 1469
– reactions with nucleophilic reagents 1473,

1474
– reactions with oxidizing agents

1472, 1473
– reactions with reducing agents 1489, 1490
– reactivity 1436, 1437
– regioselectivity of reaction 1478
– resonance forms 1436
– six-membered heterocyclic aromatic

compound 1431
– SnAr reaction with 1476, 1477
– with sodium amide 1474
– Sonogashira coupling 1485, 1486
– spectroscopic data
– – IR data 1435, 1436
– – NMR data 1434
– – UV data 1434, 1435
– Stille coupling 1483, 1484
– Suzuki coupling 1484, 1485
– synthesis 1642
– synthesis of
– – azadienes/dienophiles, Diels–Alder

reaction of 1444–1453
– – by aza-electrocyclization reactions 1462–

1465
– – Bohlmann–Rahtz heteroannulation 1462
– – cycloaddition reactions with organometallic

derivatives 1454–1456
– – [2þ2þ2] cycloadditions 1437–1443
– – [4þ2] cycloadditions 1443
– – from 1,5-dicarbonyl derivatives 1461,

1462
– – dienes and azadienophiles, Diels-Alder

reaction of 1453, 1454
– – from enamines 1459–1461
– – from five-membered rings 1465, 1466
– – Hantzsch cyclocondensation 1456–1458,

1458, 1459
– – from six-membered rings 1466, 1467
– – via ring transformation 1465
– UV spectra 1434
pyridine boron derivatives 1485
pyridine carboxylic acids 1506, 1507
– zwitterionic forms of 1506
pyridine derivatives 1432
– for agrochemical 1434
– electrophilic substitution reactions 1497
– natural 1431, 1432
– oxyderivatives 1495, 1496
– oxygen function replacement 1499
– oxypyridine anionswith electrophiles 1497,

1498

– photochemical reactions 1499
– reactions with acid chlorides 1496,

1497
– reactions with acids 1496
– reactions with electrophilic reagents 1496
– unnatural 1432–1434
pyridine drugs 1433
pyridine-like nitrogen atom 898
pyridine nomenclature 1432
pyridine N-oxide (PNO) 77, 1511, 1512
– electrophilic substitutions 1513
pyridine nucleus 1494
pyridine ring 1472
– electron-deficient nature of 1473
– halogens 1594
pyridine rings 1462
pyridines 1468
– chelates 1469
– derivatives 1517
– electrophilic substitution reactions 1471
– hetero-Diels–Alder synthesis of 1448
– nitrogen atom 1467
– p-ligands 1469
– reactivity of 1516, 1517
– as reagents 1468
– synthesis of
– – by cycloaddition reactions 1515, 1516
pyridines N-oxides
– with electrophilic reagents 1517
pyridines salts 1455
pyridine–sulfur trioxide complex 535
pyridine-type nitrogen
– electronic density 836
pyridinium cyclopentadienides 1491
pyridinium ring
– reduction of 1509
pyridinium salt
– with nBuLi 1508
pyridinium salts 1455, 1468
– intramolecular free radical substitution

of 1510
– in situ generation of 1508
pyridinium salt synthesis 1643
pyridinium ylides 1491
pyridiniumylides
– 1,3-dipolar cycloaddition 2007
4(1H)-pyridinylidene complexes
– regioselective formation of 1455
pyridium salts, quaternary
– a-cyclizations 1510, 1511
– nucleophilic additions 1507–1509
– pyridine N-oxides 1511
– – deoxygenation reactions 1514, 1515
– – reactions at alkyl side chain 1513, 1514
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– – reactionswith electrophilic reagents 1512,
1513

– reactions at alkyl side chain 1510
– reduction reactions of 1509
2-pyridone 1498
pyridone oxygen 1499
pyridones
– electrophilic substitutions 1497
1-(2-pyridyl)-1,3-butadiene 2042
pyridyl-lithium derivatives 1480
3-(3-pyridyl)sydnone
– irradiation of 1064
pyrilium cation 3
pyrimidine 1683, 1741
pyrimidine esters 1763
pyrimidines (1,3-diazines) 1731, 1735, 1737,

1739, 1743, 1748, 1749
4-pyrimidinones 1722
5-(pyrimidinyl)magnesium chloride 1754
a-pyrone
– as dienophile 1666
– transformation of 1667
pyrones 1660, 1661
– pKas of 1496
a-pyrones 1661
– coumarins 1668–1670
– Diels–Alder cycloaddition of 1665
– reactivity of 1665, 1668
– structure of 1661
– synthesis of 1662–1665
c-pyrones. see 4H-pyran-4-ones
– chromones 1674–1676
– as dienophile 1673
– Hetero-Diels–Alder cycloaddition 1672
– intramolecular [5þ2] cycloaddition of 1673
– large-scale synthesis of 1671
– photochemical transformation of 1672
– reactivity of 1672–1674
– retrosynthetic approach 1671
– structure of 1661
– synthesis of 1671, 1672
pyrrocoline 1989
pyrrole-3-carbodithioates 314
pyrrole-2-carbonitrile 304
pyrrole-2-carboxaldehydes 333
pyrrole-2-carboxylates 337
pyrrole ring synthesis 274, 275
– Barton–Zard Synthesis 287, 288
– cyclizations of four-carbon precursors

278–281
– cycloaddition reactions and related

approaches 289–291
– Hantzsch Synthesis and related

approaches 284

– Knorr synthesis and related routes 281–283
– miscellaneous transition metal catalyzed

methods 291–293
– multi-component reactions 291
– Paal–Knorr Synthesis 275–278
– syntheses involving glycine esters 284, 285
– Trofimov synthesis 288
– Van Leusen method 285–287
pyrroles
– containing molecules 271
– electrophilic attack 431
– inverted systems 2233
– isomeric mixture 2362
– nitration of 299
– polymers 274
– protonation 294
– resonance hybrids 5
– ring system 2362
– synthesis 2362, 2363
– Vilsmeier bases 1997
1H-pyrroles 269
2H-pyrroles 269
3H-pyrroles 269
(pyrrole-2-yl)phthalimide 342
pyrrolidine derivatives 610
pyrrolidines synthesis 2359–2361, 2360
2-(pyrrolidin-2-yl)pyrrole 308
pyrrolizine 3
3H-pyrrolizine 1993
– 1H NMR chemical shifts 1994
pyrrolizines 1991–2002
– cycloaddition reactions 2000
– derivatives 2001, 2202
– general structure and reactivity 1991
– reactivity 1997–2000
– reduction reactions 2000, 2001
– relevant computational chemistry and

physicochemical and spectroscopic
data 1993–1994

– relevant natural/useful compounds
1991–1993

– ring-opening reactions 2001
– synthesis by [3þ2] approaches 1995–1997
– synthesis by cyclization reactions

1995–1997
– Vilsmeier reaction 1998
1-pyrrolizin-3-ones 1997
pyrrolobenzodiazepine ring 2211
pyrrolo[2,1-c][1,4]benzodiazepines

(PBDs) 2181, 2210, 2212
– synthesis 2212
– synthesis from amino dithioketals 2213
– triggered by Swern oxidation 2213
pyrroloquinoline-based alkaloids 1531
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pyrrolo[3,4-b]quinolines 1551
pyrrolyl ketone 432
pyrrolylmagnesium chloride 314
pyrrolylmagnesium halides 314
pyrrolylsodium 334
pyrylium cation 1631, 1650
– [2þ1] cycloaddition reactions 1648
– [5þ2] cycloaddition reactions 1651, 1652
– dienes in [4þ2] cycloaddition

reactions 1649–1651
– dienophiles in [4þ2] cycloaddition

reactions 1648, 1649
– heterocyclic systems, synthesis of

1641–1644
– reactions with nucleophiles 1641
– reactions with organometallic

reagents 1646–1648
– reactions with reducing agents 1654, 1655
– reactivity of pyrylium salts 1640, 1641
– retrosynthetic analysis 1634
– side chain reactions 1652, 1653
– structural parameters 1632
– synthesis of carbocycles 1644–1646
pyrylium cations
– chemical behavior 1640
– general reactivity 1641
– reactivity 1641
pyrylium dyes
– synthesis 1653
pyrylium ring
– synthesis of 1633–1637
pyrylium salts 1631, 1632, 1645, 1646
– aldol-like condensation 1653
– with ammonia 1466
– Balaban synthesis 1635
– catalytic hydrogenation 1654
– mechanism of synthesis 1637
– michael-type addition 1653
– one-pot synthesis 1637
– by oxidation of cyclopentadienes 1638
– reactivity of 1640, 1641
– reduction 1654
– reductive amination 1655
– stereocontrolled synthesis of dienals

from 1647
– synthesis 1634, 1635–1637, 1643

q
quantum chemical methods 1078
quaternary isoquinolinium salts 1612
quinazoline N-oxides 2183
quinazolobenzodiazepines
– microwave-promoted synthesis 2205
quinidine 45

quinoimmonium cation 427
quinoline alkaloids 1530
quinoline resin 1569
quinolines 1, 3, 1453, 1527, 1530,

1532, 1533, 1546, 1567
– o-acylanilines plus carbonyl

compounds 1537–1541
– addition to nitrogen 1558
– from alkynes, propargyl amines 1544–1546
– o-allyl/o-isopropenyl-N-tosylanilides,

palladium-catalyzed coupling of
1547–1550

– anilines plus 1,3-dielectrophiles
1533–1537

– benzo-fused pyridine heterocyclic
compound 1527

– C-deprotonation of 1562
– C-heterocycle 1529
– 13C NMR chemical shifts 1529
– cycloaddition processes
– – Diels–Alder and Aza-Diels–Alder

reactions 1551–1554
– – heterocycles, ring transformations

of 1555–1556
– – microwave preparation of 1557
– – radical reactions 1554, 1555
– – Vilsmeier�s reagent 1556
– electrophilic reagents at carbon 1558, 1559
– electrophilic substitution 1559
– Friedlander synthesis of 1539
– halogenation 1559
– 1H NMR chemical shifts 1528
– metal-free method 1564
– natural compounds 1530–1533
– nitrogen and oxygen substituents 1559,

1560
– NMR data 1528, 1529
– nucleophilic additions 1567, 1568
– nucleophilic substitution reactions 1561
– nucleophilic substitution with hydride

transfer 1561
– nucleophilic substitution with leaving

groups 1561
– oxidation of 1560
– with oxidizing reagents 1560
– from oximes, azadienes 1546, 1547
– presence of nitrogen 1528
– quinolinium salts, cycloadditions of 1568,

1569
– reactions of alkylquinolines 1567
– reactions of C-metallated

heterocycles 1562, 1563
– reactions of quinoline N-oxides 1570
– reactions of quinolinium salts 1567
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– reactions of quinolones 1565, 1567
– reactions with bases 1562
– reaction with radical reagents 1564
– reaction with reducing agents

1563, 1564
– reactivity and tautomerism 1529, 1530
– Reissert-type reaction 1569, 1570
– ring synthesis of 1533
– SNAr reactions of 1561
– sulfonation of 1559
– UV data for 1529
– vapor phase synthesis of 1536
– from ynones, enones 1541–1544
2-quinoline triflate, alkynylation 1562
quinolinium ion 1558
quinolinium salt
– as dyes 2280
quinolinium salts 1529, 1569
2-quinolinone derivatives
– microwave preparation of 1557
3H-quinolin-4-ones 1553
quinolinophanes 1533
quinolizinium salts 2003–2061, 2048
– alkyl derivatives 2043, 2044
– benzoquinolizinium salts and related

systems 2052–2061
– cation, electron densities 3, 2025
– 13C NMR chemical shifts 2025
– general structure and reactivity

2020, 2021
– halo derivatives 2048–2052
– hydroxy and amino derivatives

2045–2048
– ion, feature 2038
– physical properties 2026
– reactivity 2038–2043
– relevant computational chemistry, and

physicochemical and spectroscopic
data 2023–2026

– relevant natural/useful compounds
2021–2023

– synthesis 2023–2026, 2056
– synthesis by [3þ3] approaches

2026–2029
– synthesis by [4þ2] approaches 2029–2035
– synthesis by cyclization reactions

2035–2038
o-quinone dioximes
– oxidation of 1149
o-quinones, oximation 1144
quinoxaline-based antifolates 1405
quinoxaline-1,4-dioxides 1162
quinoxalines 1162
quinozilidine hydroidide 2042

r
racemic aziridinations
– with ethyl diazoacetate, reaction

conditions 24
– representative catalysts for 15
– using ethyl diazoacetate 24
radical [3þ2] annulation reaction 610
radical chemistry 104
radical cyclizations 424–426, 609, 610
radical reactions 470–474
– of functionalized epoxides 105
Radziszewski reaction 816
(R)-alkyl-2-benzofuranmethanamines

preparation 616
Raney nickel 1116
rearomatization 1740
rectifier effect 2314
red erythropterin 2276
redox molecular switch 2292
reductive deoxygenation of epoxides 107
reductive Mannich addition–cyclization

mechanism 2133
reductive ring opening of epoxides 106
Reformatsky addition reaction 2124
regioselective indole 469
regioselective intramolecular Heck

reaction 601
Reissert compounds 1612
Reissert–Henze reaction 1512
Reissert reaction 1738
– indole synthesis 398–402
– quinoline derivatives of 1569
remarkable antiplatelet 1330
remazol turquoise blue
– structure 2282
– use 2281
Remfry–Hull synthesis 1719
resin-bound amine
– condensation 2362
resin-bound diazoimides 2365
resin-bound isonitrile 823
resin-capture-release strategy 391
resin-supported Hantzsch

methodology 2363
retro-Claisen type rearrangement 573
retro-Diels–Alder fragmentation 752
retro-Diels–Alder reaction 867, 1452
retro-dipolar cycloaddition 484
Rh-catalyzed C–H insertion reaction 901
rhodium-catalyzed reaction 573
– epoxidations of carbonyls 90
Rhodosporidium toruloides 2152
Rho-kinase 1170
Rhône–Poulenc process 2103
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Rieke zinc 854
ring-chain tautomerism 1130
– interconversion of 2/5-oxide

isomers 1130
ring closing metathesis (RCM) 546, 1885,

2037
– enamides 347
ring contraction–ring expansion route

(RCRE) 1189
ring-junction nitrogen heterocycles
– general structures 1990
– indolizines 2003–2020
– introduction 1989–1991
– pyrrolizines 1991–2002
– quinolizinium salts 2003–2061
ring-opening reactions 2001
trans-5,6-ring system
– construction 613
Rink-isonitrile resin 1419
Ritter reaction 875
RNA synthesis 1168, 1426
Robinson–Gabriel synthesis 824
– of oxazoles 825
rosefuran 543
rotaxane 2288
– as molecular switch 2288
Rothemund reaction 2236
rubyrins 2251
Ru-catalyzed reaction 1660, 15440
ruthenium-catalyzed intramolecular

hydroamination 1880
ruthenium-catalyzed isomerization 995
ruthenium porphyrin catalysts 14

s
saccharides
– acid-promoted dehydration 533
saccharins 729
– derivatives 787
safety-catch linkers 2344, 2354–2357
– principle, advantages 2354
salen catalysts with chirality at the 3-

position 74
salen-chromium complex 95
salen(Cr) catalyst 73
– alkene epoxidation 72
salen metal catalysts for alkene

epoxidation 70
salen(Mn) catalyzed alkene epoxidation 74
salens designed for biphasic systems 76
salicylaldehydes 1669
Samarium diiodide 782
scanning tunneling microscopy (STM) 2314
Schiff base complexes 898, 2261

Schmidt reaction 1412
Schrock carbenes. see titanium benzylidenes
selenetanes 238
– formation by cycloaddition 242
– formation by ring regression 241, 242
– reactivity 242, 243
– synthesis 239
– synthesis by formation of one Se–C

bond 240, 241
– synthesis by formation of two Se–C

bonds 239, 240
self-assembled complexes
– artificial nucleotide 2295
– tetra/trinuclear 2290
semi-synthetic penicillins 735
seven-membered heterocycles 1865
– azepine derivative 1867
– bond lengths 1870
– 13C NMR data 1874
– computational chemistry 1869–1874
– 1H NMR studies 1871, 1873
– MOMM calculations 1871
– natural compounds 1867–1869
– semiempirical and ab initio studies 1871
– synthesis of azepines 1878
– – fromacyclic compounds 1878, 1880–1882
– – from cyclic compounds 1883–1885
– synthesis of oxepines
– – from acyclic compounds 1885–1890
– – from cyclic compounds 1890–1896
– synthesis of thiepines
– – from acyclic compounds 1896
– – from cyclic compounds 1897, 1898
– tetrahydroazepines synthesis by RCM

reactions 1879
– valence tautomerism 1872, 1874–1878
– valence tautomerism in 1874–1878
sigmatropic rearrangements 397, 488, 489
– indole ring syntheses 385
siletanes 245, 246
– [2þ2] cycloadditions 247
– other intramolecular cyclizations 246, 247
– preparation from chlorosilanes 246
– preparation from other heterocyclic

compounds 248
– reactivity 249–251
silica sulfuric acid 1033
silica-supported aluminium chloride 111
silicon azoles 852–853
silicon tetrachloride 98
silver(I) acetate 114
silylated acetylene
– uses 1486
N-silylated imidazolylzinc hloride 854
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2-silylated oxazoles 852
– preparation of 852
silylation 1831
silyl dioxolanones 931
silyl enol ethers 92, 844, 975
silyl linker-based macrobeads 621
N-silyl-methyleneaziridine 50
silyloxy-1,3-butadienes 1569
2-silyloxyfuran
– Mannich reactions 562
silyloxyfuran, Nazarov cyclization 583
silyloxy-furazan derivative 1151
4-silyloxyquinolinium triflate 1568
simple heterocycles 4
simple ketones, benzylimines 428
single-crystal crystallography 2246
six-membered heterocycles 4, 1683, 1777
– alkyldiazines 1766, 1767
– aminodiazines 1765, 1766
– diazines N-oxides 1764, 1765
– general reactivity 1684–1687
– halodiazines 1770
– hydroxydiazines 1767–1769
– pyrazines (1,4-diazines) 1691
– – cycloaddition reactions 1729, 1730
– – synthesis by ring-closure reactions

1723–1729
– pyridazines (1,2-diazines) 1688, 1689
– – cycloaddition reactions 1700–1702
– – synthesis by ring atom exchange 1704
– – synthesis by ring-closure reactions

1692–1700
– – synthesis by ring contraction 1704–1706
– – synthesis by ring enlargement 1703
– pyrimidines (1,3-diazines) 1689–1691
– – cycloaddition reactions 1720, 1721
– – one-component couplings 1719
– – synthesis by ring atom exchange 1722
– – synthesis by ring-closure reactions

1706–1710
– – synthesis by ring enlargement

1721, 1722
– – two-component couplings 1710–1719
– reactivity of diazines 1730–1764
– tautomerism 1687, 1688
– triazine isomers 1777, 1778
six-membered oxacycles 1631, 1632
Skraup reaction 1535–1537
Slid-supported aryl iodides 856
small-molecular-weight compounds 2325
small organic molecules synthesis
– classes 2327
SN2 reaction 53
sodium borohydride 1153

sodium cyanide
– use of 844
sodium-glucose co-transporter (SGTL) 648
sodium hexamethyldisilazide

(NaHMDS) 1714
sodium nitrite 1033
solid-phase Fischer indole synthesis 391
solid-phase organic synthesis (SPOS) 428
– cyclization-assisted cleavage 2348–2352
– linker molecules releasing one specific

functional group 2344–2348
– linkers 2343–2357
– multidirectional cleavage strategies

2352–2357
– schematic outline 2327
– use 2326
solid-phase synthesis
– progress in 621–623
– protocol 1090
– of pyrimidines 1715
solid-supported synthesis 2328
– of 1,5-benzodiazepines 2215
Sonogashira conditions 1562, 1838
Sonogashira coupling reaction 407, 1125,

1599, 1838
Sonogashira reaction 335, 458–460, 622,

860, 1485
Sophora tomentosa L 619
Soret band 2231
S-oxidized 1,2-oxathiolane systems
– 1H NMR data for 967
spiro [chroman-3,30-(20H)-benzofurans]

synthesis 610
spiro cyclopropyladamantane 137
spiroepoxide 104
3-spiro-fused benzofuran-2(3H)-ones 601
spiropyrrolidinyloxindoles 320
split-mixed technology 2328
SR141716A derivatives 646
stabilized iodonium ylide 933
p-stacking interactions 2286, 2287
4-stannylated azoles
– preparation of 854
5-stannylimidazoles 854, 862
3-stannylisoquinoline N-oxide 1598
stannylisoquinolines 1598
stanozolol 649
Staudinger [2pþ2p] cycloaddition 2131
Staudinger reaction 2121–2124, 2209, 2210
steric effects 2255
steric sensors 62
Stetter reaction 1035
[1,2]-Stevens rearrangement 503
stibetanes 254
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stilbene oxide 95
Stille couplings 862
– of chloropyrazines 1761
– cross-coupling 462, 463
Stille process 2050
[2,3]-Stille–Wittig rearrangement 620
stoichiometric organometallic reagents
– use of 861
stoichiometric silver(I) oxide
– use of 862
Streptomyces aureus 42
Streptomyces ficellus 12
Streptomyces griseofuscus 11
Streptomyces jamaicensis 1688
Streptomyces violaceoniger 1688
Streptomyces xanthocidiens 1688
strychnine, Shibasaki�s total synthesis 401
styrene aziridination, reaction conditions

for 16
styrene monomers
– copolymerization 2330
(R)-styrene oxide 79
trans-styrylpyrazoline derivative 1063
5-styrylthiadiazoles
– with CO2 1323
6-substitued-3-methyl-2-pyrones 1661
5-substitued-3-methyl-1,2,4-

thiadiazoles 1291
1-substituted 3-acyl-1,2,4-triazoles 1030
a-substituted alkynylphospholes

synthesis 2107
2-substituted amino derivatives 895
1-substituted-3-aminoisoquinolines 1580
1,5-substituted 3-aminopyrazole-4-carboxylic

esters 1210
3-(N-substituted)-aminoquinolin-2-ones 1565
2-substituted aniline 881
o-substituted benzaldimines 26
5-substituted-2,1-benzisoxazoles 765
3-substituted 2,1-benzisoxazoles

synthesis 768
2-substituted benzothiazole derivative 885
1-substituted 1H-benzotriazole
– physical and chemical properties of 1009
1-substituted benzotriazoles 1010
– synthesis of 1011
– synthetic utility of 1016
2-substituted benzotriazoles 1011
5-substituted-1-(benzyloxy)-1H-1,2,3-triazoles
– catalytic hydrogenation of 1007
4-substituted-3,5-bis(trifluoromethyl)-4H-

1,2,4-triazoles 1205
5-substituted-4-carbaldehyde-1,2,3-triazole

derivatives 991

1-substituted-4-carboxylic acid imidazoles
– synthesis of 823
1-substituted-3,5-diaryl-4,5-dihydro-1H-

pyrazoles 663
2-substituted-4,5-dicyanoimidazoles
– preparation of 820
N-substituted dihydroazepines 1881
2-substituted 5,7-diphenyl-1,3,4-thiadiazolo

[3,2-a]pyridilyum derivatives 1351
2-substituted-1,3-dithiolanes
– with NBS 964
2-substituted-1-hydroxybenzimidazole-3-

oxides 1164
1-substituted imidazoles
– phosphorylation of 840
2-substituted indoles
– one pot synthesis of 407
2-substituted isothiazolin-3-ones

bromination 788
2-substituted nitrobenzene 397
40-substituted-30-nitrophenylsydnones 1074
o-substituted nitrosoarenes
– cyclization of 1143
b-substituted-oazidostyrenes
– thermolysis of 405
2-substituted-1,3,4-oxadiazoles 1226
5-substituted-1,3,4-oxadiazolin-2-ones 1222
2-substituted 1,3-oxathiolanes 979
5-substituted 1,3-oxathiolanes 976
6-(4-substituted-phenyl)-2,4-

diphenylverdazylium salts 1838
meso-tetra-substituted porphyrin 2259
meso-substituted porphyrins 2265
4-substituted-4H-pyrans synthesis 1647
N-substituted pyrrole 5
2-substituted-5-stannylazoles 854
5-substituted-1,3,4-thiadiazole-2-

thiones 1357, 1358
1,4-substituted-1,2,3-triazole-peptide

compounds 997
1-substituted-1,2,3-triazoles 1005
N-substituted-1,2,3-triazoles
– nucleophiles 1006
Sugasawa synthesis 404
sulfides, oxidation of 1211
sulfinylfuran, nucleophilic substitution 553
sulfonamides 735, 1313
sulfonation 700, 886
– of pyrrole 299–301
N-sulfonyl-2-imidazolines 878
2-sulfonylimino-2H-1,2,4-thiadiazolo[2,3-a]

pyridine derivatives 1330
N-sulfonylpyridinium salts 1470
sulfonylurea 1691
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sulfoxide 1215, 1374
sulfur atom
– soft nucleophiles attack 1314
sulfur-mediated asymmetric epoxidation of

benzaldehyde 89
sulfur-mediated epoxidation of

benzaldehyde 89
sulfur ylide methodology 26
sultams 729
superoxide dismutase
– enzyme model 2301
Suzuki–Miyaura cross-coupling 460–462
Suzuki reactions 335, 862, 1484, 2049
– conditions 1421
– coupling reactions 335, 1416, 1485,

1756, 1761, 2123
– cross-coupling reactions 618, 789
– on imidoyl chlorides 2198
– reductive debenzyloxycarbonylation

sequence 1584
Swern oxidation
– of N-protected amino alcohol 2212
sydnone ring 1057
– electron impact mass spectra of 1056
sydnone system 1060
– acidhydrolysis of 1060
– carbonyl stretching frequencies of 1055
– cycloaddition reactions of 1071
– frontier orbital energies and coefficients

for 1054
– photosensitized oxidation of 1063
– ring cleavage of 1060
sydnonimines
– alkaline hydrolysis of 1060
– 1H/13C spectra of 1055
sydnonyl-substituted a,b-unsaturated

ketones 1068
synthetic indigo 2278

t
TADDOL complexes 937
talampanel, synthesis 2220
tandem Nef reaction 1740
tautomeric equilibria of some monofunctional

azines 1687
tautomerism 642–644, 733, 734
Te electrophiles 1066
telluretanes 244
tellurium-containing porphyrins 2235
TentaGel polymers 2340, 2341
– features 2341
TentaGel resins 2340, 2341
terpenes 101
tertiary ammonium salts 938

2,3,4,5-tetraalkyl-1-3-4-oxadiazolidines 1199
2,3,6,7-tetraarylbenzo[1,2-b:4,5-b]difurans

(BDFs) 627
meso-tetra-aryl porphyrins 2266
tetrabutylammonium bromide (TBAB) 116,

1214
tetrabutylammonium fluoride (TBAF) 32,

1826
tetrabutylammonium monopersulfate 70
tetracationic derivative
– p-stacking interaction 2288
tetrachlorobenzyne 325
tetrachloroethylene, uses 959
tetracyanobisimidazole 859
tetracyanoethylene (TCNE) 1364, 1911
tetrahalocyclopropenes 1703
2,5,6,7-tetrahydroazepine 1886
1,2,3,4-tetrahydroderivatives 1574
tetrahydrofuran (THF) 1, 1493
tetrahydro-1H-indazoles
– dehydrogenation 691
4,5,6,7-tetrahydro-2H-indazoles 690
2,3,4,5-tetrahydro1,3,4-oxadiazoles 1171,

1199
2,3,4,5-tetrahydrooxepines 1886
4,5,6,7-tetrahydrooxepines 1887, 1889
tetrahydropyran 1899
tetrahydropyridazines 1702
1,2,3,4-tetrahydropyridine 2
1,2,3,4-tetrahydroquinolines
– with zinc borohydride 1563
2,3,4,5-tetrahydro-1,3,4-thiadiazoles 1365
tetrahydro-1H-s-triazolo[4,3-d][1,4]

benzodiazepin-2-ones
– synthesis 2207
5-(1,2,3,4-tetrahydroxybutyl)-3H-[1,3,4]

oxadiazole-2-thione 1196
tetrakis(pyridine)cobalt(II) dichromate

(TPCD) 741, 2008
tetrameric porphyrin assembly 2293
1,1,3,3-tetramethoxypropane 1710
tetramethyl ethylenediamine (TMEDA) 536
tetramethylurea (TMU) 116
tetranactin synthesis 568
tetranitromethane 95
tetraphenanthropoprhyrin synthesis 2248
1,1,4,4-tetraphenyl-2,3-O-isopropylidene-D-

threitol (TADDOL) 81
tetra phenyl porphyrins (TPPs) 2231
tetrapropylammonium perruthenate

(TPAP) 1022
– oxidation of the hydroxyl group 1124
tetrapyrrolic pigments 2231
tetrapyrrolic systems 2232, 2233
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tetrasubstituted imidazoles
– preparation of 821
tetrathiafulvalene derivatives 2309
– as TFTs 2310
tetrathiafulvalene (TTF) system 947, 957
– 2-methylsulfanyl-1,3-dithiolylium

iodide 962
– synthesis of 957–960
1,2,4-tetrazine 1839
tetrazines 3
– physicochemical and spectroscopic

data 1835, 1836
– reactivity 1838
– – cycloaddition reactions 1839, 1840
– – reactions with nucleophilic

reagents 1838, 1839
– – reactions with oxidizing reagents 1840
– relevant computational chemistry 1835
– relevant natural and useful

compounds 1836, 1837
– synthesis 1837, 1838
– tautomerism 1836
1,2,4,5-tetrazines. see tetrazines
1,2,4,5-tetrazines derivatives
– X-ray crystallographic analysis of 1835
tetrazole compounds, uses 1402
tetrazole ring 1405
tetrazoles 1401
– acid chlorides as substrates 1406
– acylation reactions of 1423
– amides as substrates 1403–1406
– from amidines, carbodiimides, carbonimidic

dichlorides, isocyanates 1414, 1415
– arylation of 1424
– benzylation of 1422
– from b-keto esters 1413
– as catalysts 1426
– C-phenyltetrazoles 1425
– from cyclic ketones 1414
– derived from proline 1427
– electrophilic addition 1421
– with epoxides 1425
– five-membered ring aromatic

compounds 1401
– fused, multi-component syntheses of

1420
– isocyanides as substrates 1410, 1411
– from isothiocyanates, isocyanides, nitrilium

salts, oxazolones and thiocyanates 1414,
1415

– from ketones 1413, 1415
– ketones as substrates 1412–1414
– Michael addition reactions of 1423
– under microwave conditions 1418

– microwave syntheses 1416–1418
– multicomponent reactions 1418–1420
– nitriles as substrates 1406–1410
– orthoesters as substrates 1411, 1412
– oximes as substrates 1411
– reactions at C5 1420, 1421
– reactions at N1 and N2 1421–1425
– reactions of 1420
– ring as ortho-directing group 1425
– under solid-phase conditions 1415, 1416,

1417, 1419
– solid-phase syntheses 1415, 1416
– synthesis of 1403, 1404, 1406, 1407, 1408
– synthetic methods 1402, 1403
– tautomers of 1402
– Ugi reaction 1418
– using 1402
– – as catalysts 1426
– – multiple components 1419
– – nucleotide coupling 1426
– – PEG 1417
tetrazolo[1,5-a]pyrimidines
– thermolysis 677
Theonella aff. mirabilis 12
thermal decomposition 46
thermolysis 47
thiacyclohexan- 3-one 1901
thiadiazine dioxide 1267
thiadiazole 1263
1,2,3-thiadiazole
– geometry of 1255
– photochemical decomposition of 1273
– pyrolysis of 1275
– thermal decomposition of 1276
1,2,4-thiadiazole 1288, 1309
1,3,4-thiadiazole
– Fukui functions for 1333
– heterocyclic ring, reactivity of

1374–1382
– mass spectrometry 1338, 1339
– in medicine and agriculture 1385–1388
– NMR spectroscopy 1336
– reactions of substituents 1382–1385
– reductive and oxidative processes

1372–1374
– ring cleavage reactions 1367–1372
– ring systems 1331, 1332
– synthesis of
– – 2,3-dihydro-(D2), 3,4-dihydro-(D3), and

2,3,4,5-tetrahydro-1,3,4-
thiadiazoles 1361–1366

– – 2-oxo/2-thio mesoionic 1,3,4-
thiadiazoles 1349–1354

– – 1,3,4-thiadiazoles 1340–1349
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– – thiadiazolinones, thiadiazolinethiones, and
thiadiazolimines 1355–1361

– theoretical aspects 1332–1334
– thermodynamic aspects 1339, 1340
– UV/ESR/IR spectroscopy 1336–1338
– X-ray diffraction 1334–1336
1,2,4-thiadiazole[2,3-a]pyridinium salts
– structure of 1289
1,2,3-thiadiazole-4-carbonylhydrazide

derivatives
– basecatalyzed ring cleavage of 1277
1,2,3-thiadiazole derivatives 1269
1,2,4-thiadiazole derivatives 1308
1,3,4-thiadiazole derivatives 1361
– Mannich reaction of 1377
1,3,4-thiadiazole-2(3H)-thiones
– thiocarbonyl moiety of 1380
1,2,4-thiadiazole nucleus 1328
1,2,4-thiadiazole 4-oxides
– mass spectra of 1297
1,3,4-thiadiazole ring systems 1257, 1266,

1331
1,2,3-thiadiazoles 1253, 1254, 1257, 1258,

1281, 1282, 1285, 1286
– in agriculture 1286
– alkylation of 1283
– base-catalyzed decompositions 1276–1279
– 13C NMR spectral data 1258
– cornforth-type rearrangement 1281, 1282
– Dimroth rearrangement 1280, 1281
– elaboration of 1269
– electron-impact mass spectra of 1258, 1296
– heterocycles of 1253
– – transformations of 1266–1268
– heterocyclic ring, reactivity of 1283–1285
– Hurd–Mori synthesis 1259–1262
– mass spectrometry 1258, 1259
– in medicine and agriculture 1286, 1287
– methylation of 1284
– NMR spectroscopy 1257, 1258
– Nold synthesis 1265, 1266
– oxidative and reductive processes 1282,

1283
– Pechmann synthesis 1265, 1266
– photolysis of 1274
– proton NMR data for ring hydrogens

of 1257
– reactions with nucleophiles 1285, 1286
– reactivity of 1269
– rearrangement processes 1279, 1280
– ring cleavage reactions 1270–1276
– solid-phase synthesis of 1262
– structural aspects 1254, 1255, 1256
– synthesis of 1265

– theoretical studies 1255, 1256
– thermolysis of 953
– UV/IR spectroscopy 1258
– Wolff�s synthesis 1262–1265
– Wolff�s synthesis of 1262
– X-ray diffraction 1256, 1257
– X-ray structures of 1256
1,2,4-thiadiazoles 1273, 1289, 1294, 1306,

1310, 1316, 1328
– aromatic ring reactivity 1311–1316
– D2-1,2,4-thiadiazolines, reactions of

1317–1320
– D3-1,2,4-thiadiazolines, reactions of 1320,

1321
– D4-1,2,4-thiadiazolines, reactions of 1321,

1322
– IR/UV spectroscopy 1296
– mass spectrometry 1296, 1297
– in medicine 1328–1331
– NMR spectroscopy 1294, 1295
– properties of 1291
– reactions of substituents 1322–1328
– reactivity 1310, 1311
– ring systems 1287
– structure of 1288–1291
– synthesis of 1306–1310
– – D2-1,2,4-thiadiazolines 1300–1305
– – 1,2,4-thiadiazolidines 1297–1300
– theoretical studies 1291–1293
– 1,2,4-thiadiazolidines, reactions of 1317
– weak bases 1311
– X-ray diffraction 1293, 1294
1,3,4-thiadiazoles 1332, 1345, 1386
– electronic spectra of 1336
– 1H NMR signals of 1336
– IR absorption spectra for 1338
– Mulliken population analysis of 1334
– preparation of 1341
– reducing and oxidizing agents 1372
1,2,3-thiadiazoles, monocyclic 1275
thiadiazoles, types 1253
1,2,3-thiadiazole system 1259, 1269,

1279, 1367
– ring cleavage reactions 1270
1,2,4-thiadiazole system 1287, 1290
– cephalosporins 1329
1,3,4-thiadiazole system 1367
1,2,4-thiadiazol-5(2H)-iminium

chlorides 1330
1,3,4-thiadiazolidine 1366
thiadiazolidinediones 1329
1,3,4-thiadiazolidine-2-thiones 1340
1,2,4-thiadiazolidone system 1298
1,2,4-thiadiazoline nucleus
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– equilibrium geometry parameters 1292
1,2,3-thiadiazoline products 1266
thiadiazolines 1294, 1321
– ab initio calculations 1292
– with trichloroacetonitrile 1320
1,3,4-thiadiazolines
– synthesis of 1362
– thermolysis of 1372
1,3,4-thiadiazolin-2-ones 1339, 1355
1,3,4-thiadiazolium cations 1331, 1354
1,2,4-thiadiazolium ion 1310
1,3,4-thiadiazolium-3-methanide 1,3-

dipoles 1380
1,3,4-thiadiazolium perchlorates 1352
1,2,4-thiadiazol-3-one 976
1,3,4-thiadiazolo[3,2-a]pyrimidines 1370
1-(1,2,3-thiadiazol-5-yl)-1H-1,2,3-

benzotriazole 1269
thiazole 839
– electron-releasing substituent 838
1,3-thiazole
– nomenclature and numbering 811
thiazole analogs 860
1,2-thiazole, bicyclo[3.3.1]tetrasiloxane 1
thiazole moiety 862
thiazole reduction 866
thiazoles 842, 846
– synthesis of 809, 827
thiazoles derivatives
– b-hydroxythioamides, cyclodehydration

of 873
thiazoles synthesis 830, 833, 2372–2374
thiazolidine 888
1,3,4-thiazolidine-2,5-dione
– oxidation of 1374
1,2,4-thiazolidine N-oxide
– formation of 1295
thiazolidinones 942, 1291
thiazolines
– synthesis of 879
D4-thiazolin-2-ones
– alkylation of 898
thiazolylmagnesiums metalated
– bromine-magnesium exchange 851
thiazolyl peptides
– synthesis of 851
thiazolyl triflates 860
4-thien-2-yl furoxans
– hydroxylamine in aqueous KOH 1156
thiepane 1901
thiepane 1,1-dioxide 1866
thiepanes synthesis 1898
thiepan-2-one 1901
thiepan-3-one 1901

thiepine 1,1-dioxide 1866, 1870
thiepines 1870, 1871
– reactivity 1958
– – and benzofused derivatives 1958–1968
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2-thiopyridazines 1710
thiopyrylium synthesis 1644
thiosemicarbazides
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2-trifluoromethylated quinolines 1544
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Index j2443



2,4,6-trimercapto-1,3,5-triazine (TMT) 1818
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trimethylsulfonium iodide 25
1,3,3-trinitroazetidine 164
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– structures 2277
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(4CC) 2188, 2190, 2192
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synthesis 2191
– plausible mechanism 2190
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ultrasonic irradiation 1058
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of 980
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vicinal bis(arylsulfonylhydrazones) 1002
vicinal diamines 875
Vilsmeier formylation 2015
Vilsmeier–Haack conditions 535
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vinyl esters 931
vinylic fluoride 1580
vinylidene intermediate
– nucleophilic capture 606
3-vinylindoles
– enantioselective organocatalytic [4þ2]

cycloaddition 513
– intramolecular Diels–Alder reactions 485
vinylnitrenes generation 772
vinylpalladium intermediate 426
vinylphosphonate Michael acceptor 1034
von Braun–Rudolph reaction 1403

w
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