
 123

LN
BI

P
20

0

7th International Conference, SWQD 2015
Vienna, Austria, January 20–23, 2015
Proceedings

Software Quality
Software and Systems Quality
in Distributed and Mobile Environments

Dietmar Winkler
Stefan Biffl
Johannes Bergsmann (Eds.)

Lecture Notes
in Business Information Processing 200

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Dietmar Winkler • Stefan Biffl
Johannes Bergsmann (Eds.)

Software Quality

Software and Systems Quality
in Distributed and Mobile
Environments

7th International Conference, SWQD 2015
Vienna, Austria, January 20–23, 2015
Proceedings

123

Editors
Dietmar Winkler
Vienna University of Technology
Vienna
Austria

Stefan Biffl
Vienna University of Technology
Vienna
Austria

Johannes Bergsmann
Software Quality Lab GmbH
Linz
Austria

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes In Business Information Processing
ISBN 978-3-319-13250-1 ISBN 978-3-319-13251-8 (eBook)
DOI 10.1007/978-3-319-13251-8

Library of Congress Control Number: 2014956222

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Message from the General Chair

The Software Quality Days (SWQD) conference and tools fair started in 2009 and has
grown to one of the biggest conferences on software quality in Europe with a strong
community. The program of the SWQD conference is designed to encompass a
stimulating mixture of practical presentations and new research topics in scientific
presentations as well as tutorials and an exhibition area for tool vendors and other
organizations in the area of software quality.

This professional symposium and conference offer a range of comprehensive and
valuable opportunities for advanced professional training, new ideas, and networking
with a series of keynote speeches, professional lectures, exhibits, and tutorials.

The SWQD conference is suitable for anyone with an interest in software quality,
such as test managers, software testers, software process and quality managers, product
managers, project managers, software architects, software designers, user interface
designers, software developers, IT managers, development managers, application
managers, and similar roles.

January 2015 Johannes Bergsmann

Message from the Scientific Program Chair

The Seventh Software Quality Days (SWQD) conference and tools fair brings together
researchers and practitioners from business, industry, and academia working on quality
assurance and quality management for software engineering and information tech-
nology. The SWQD conference is one of the largest software quality conferences in
Europe.

Over the past years a growing number of scientific contributions were submitted to
the SWQD symposium. Starting in 2012 the SWQD symposium included a dedicated
scientific track published in scientific proceedings. For the fourth year we received an
overall number of 13 high-quality submissions from researchers across Europe, which
were each peer-reviewed by three or more reviewers. Out of these submissions, the
editors selected four contributions as full papers, an acceptance rate of 31 %. Further,
four short papers, which represent promising research directions, were accepted to
spark discussions between researchers and practitioners at the conference.

The main topics from academia and industry focused on systems and software
quality management methods, improvements of software development methods and
processes, latest trends in software quality, and testing and software quality assurance.

This book is structured according to the sessions of the scientific track following the
guiding conference topic “Software and Systems Quality in Distributed and Mobile
Environments”:

• Risk Management and Inspection
• Change Impact Analysis and Systems Testing
• Software and Systems Architectures

January 2015 Stefan Biffl

Organization

SWQD 2015 has been organized by Software Quality Lab GmbH and the Vienna
University of Technology, Institute of Software Technology and Interactive Systems,
and the Christian Doppler Laboratory “Software Engineering Integration for Flexible
Automation Systems.”

Organizing Committee

General Chair

Johannes Bergsmann Software Quality Lab GmbH, Austria

Scientific Program Chair

Stefan Biffl Vienna University of Technology, Austria

Proceedings Chair

Dietmar Winkler Vienna University of Technology, Austria

Organizing and Publicity Chair

Petra Bergsmann Software Quality Lab GmbH, Austria

Program Committee

SWQD 2015 established an international committee of well-known experts in
software quality and process improvement to peer-review the scientific submissions.

Maria Teresa Baldassarre University of Bari, Italy
Miklos Biro Software Competence Center Hagenberg, Austria
Matthias Book University of Duisburg-Essen, Germany
Ruth Breu University of Innsbruck, Austria
Fabio Calefato University of Bari, Italy
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Frank Elberzhager Fraunhofer IESE, Germany
Michael Felderer University of Innsbruck, Austria
Gordon Fraser University of Sheffield, UK
Marcela Genero University of Castilla-La Mancha, Spain
Volker Gruhn University of Duisburg-Essen, Germany
Jens Heidrich Fraunhofer IESE, Germany
Frank Houdek Daimler AG, Germany

Slinger Jansen Utrecht University, The Netherlands
Marcos Kalinowski Federal University of Juiz de Fora (UFJF), Brazil
Petri Kettunen Helsinki University, Finland
Mahvish Khurum Blekinge Institute of Technology, Sweden
Ricardo Machado Universidade do Minho, Portugal
Eda Marchetti ISTI-CNR, Italy
Paula Monteiro Universidade do Minho, Portugal
Juergen Muench University of Helsinki, Finland
Dietmar Pfahl University of Tartu, Estonia
Rick Rabiser Johannes Kepler University Linz, Austria
Rudolf Ramler Software Competence Center Hagenberg, Austria
Andreas Rausch Technical University Clausthal, Germany
Klaus Schmid University of Hildesheim, Germany
Rini Van Solingen Delft University of Technology, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Dietmar Winkler Vienna University of Technology, Austria

Sub-reviewers

Michael Brunner, João M. Fernandes, Jan-Peter Ostberg, Nuno Santos, Philipp Zech

VIII Organization

Contents

Risk Management and Inspection

Improving the Requirement Engineering Process with Speed-Reviews:
An Industrial Case Study . 3

Viktor Pekar, Michael Felderer, Ruth Breu, Martin Ebner,
and Albert Winkler

Towards a Perspective-Based Usage of Mobile Failure Patterns
to Focus Quality Assurance (Short Paper) . 20

Konstantin Holl, Frank Elberzhager, and Vaninha Vieira

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches
(Short Paper) . 32

Michael Felderer, Christian Haisjackl, Viktor Pekar, and Ruth Breu

Change Impact Analysis and Systems Testing

Improving Manual Change Impact Analysis with Tool Support:
A Study in an Industrial Project . 47

Thomas Wetzlmaier and Rudolf Ramler

Heterogeneous Systems Testing Techniques: An Exploratory Survey 67
Ahmad Nauman Ghazi, Kai Petersen, and Jürgen Börstler

Software and Systems Architectures

Integrating Heterogeneous Engineering Tools and Data Models:
A Roadmap for Developing Engineering System Architecture Variants 89

Richard Mordinyi, Dietmar Winkler, Florian Waltersdorfer,
Stefan Scheiber, and Stefan Biffl

Evaluation of JavaScript Quality Issues and Solutions for Enterprise
Application Development (Short Paper) . 108

André Nitze

Refinement-Based Development of Software-Controlled Safety-Critical
Active Medical Devices (Short Paper) . 120

Atif Mashkoor, Miklos Biro, Marton Dolgos, and Peter Timar

Author Index . 133

http://dx.doi.org/10.1007/978-3-319-13251-8_1
http://dx.doi.org/10.1007/978-3-319-13251-8_1
http://dx.doi.org/10.1007/978-3-319-13251-8_2
http://dx.doi.org/10.1007/978-3-319-13251-8_2
http://dx.doi.org/10.1007/978-3-319-13251-8_3
http://dx.doi.org/10.1007/978-3-319-13251-8_3
http://dx.doi.org/10.1007/978-3-319-13251-8_4
http://dx.doi.org/10.1007/978-3-319-13251-8_4
http://dx.doi.org/10.1007/978-3-319-13251-8_5
http://dx.doi.org/10.1007/978-3-319-13251-8_6
http://dx.doi.org/10.1007/978-3-319-13251-8_6
http://dx.doi.org/10.1007/978-3-319-13251-8_7
http://dx.doi.org/10.1007/978-3-319-13251-8_7
http://dx.doi.org/10.1007/978-3-319-13251-8_8
http://dx.doi.org/10.1007/978-3-319-13251-8_8

Risk Management and Inspection

Improving the Requirement Engineering Process
with Speed-Reviews: An Industrial Case Study

Viktor Pekar1(B), Michael Felderer1, Ruth Breu1, Martin Ebner2,
and Albert Winkler2

1 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{viktor.pekar,michael.felderer,ruth.breu}@uibk.ac.at

2 Porsche Informatik, Bergheim, Austria
{martin.ebner,albert.winkler}@porscheinformatik.at

Abstract. Requirement engineering (RE) is a fundamental process in
software engineering. RE is based on the software requirement specifica-
tion (SRS) that contain the systems description. It is a crucial basis for
the success of every software project to have understandable and com-
plete SRS. Nevertheless it is a still a challenging task due to the problem
that most SRS are written in natural language. Informal textual descrip-
tions involve issues like ambiguity, inconsistency or incompleteness. In
this case study we address such issues by introducing a special form of
reviews to RE process in an industrial environment. We show improve-
ments in the SRS after the Speed-Reviews started and additionally we
present expert-opinions about Speed-Reviews. We conclude that Speed-
Reviews are an improvement method that lead to more understandable
and less ambiguous SRS.

Keywords: Software engineering · Requirements engineering · Software
requirement specifications · Reviews · Inspections · Speed review · Case
study

1 Introduction

The requirement engineering (RE) process is an essential part to the success
of a medium to large project [1–5]. Software requirement specifications (SRS)
are the key artifact in RE [6–8], and therefore are related directly to the over-
all success of a software project. Incomplete, ambiguous, inconsistent or some-
how deficient SRS are even considered as the direct cause for project failures
[3,6,8–14]. Still companies have difficulties with SRS and are not satisfied with
their results [9].

Consequently, research exists in the field of SRS improving. The IEEE-830
standard (1998) [15] presents a set of criteria that define high quality SRS:
Correctness, unambiguity, completeness, consistency, ranking for importance
and/or stability, verifiability, modifiability and traceability. Approaches exist,
which directly address ambiguity (Nocuous Ambiguity Identification (NAI) [16],

c© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-13251-8 1

4 V. Pekar et al.

Collective Intelligence for Detecting Pragmatic Ambiguities [17]), incomplete-
ness (Marama based on EUC-IP [18]) or some other issue. Alternatively, some
approaches attend to solve multiple issues at the same time (QuARS [19]).
One well-known method-type that addresses several issues at once is the review
method.

Related to the IEEE-830 standard [15] criteria set for SRS we classify Speed-
Reviews to focus on the following criteria: correctness, unambiguity, complete-
ness and consistency. The term Speed-Review and its concept are inspired by the
idea of speed-dating. Speed-dating is based on quick rounds where the attendees
switch tables to meet someone new. Each round is limited by a maximum time
limit. We perform the case study at one of the largest automobile trade compa-
nies in Europe that provides dealer management systems for the international
market.

In Sect. 2, we present alternative review methods and explain the Speed-
Review procedure detailed in Sect. 3. The case study design and research ques-
tions are shown in Sect. 4. Afterwards, we provide our results in Sect. 5 and
discuss them in Sect. 6. In the last Sect. 7, we round up the case study and talk
about future work insights.

2 Related Work

Even though SRS reviews can be considered commonly as improvement method,
which leads to better SRS, we focus on related work only in the area of reviews
and no further improvement methods.

Fagan introduced the first basis for reviews in 1976 as a software inspection
process [20]. Since then several approaches related to reviews were researched.
We distinguish review types by the addressed problem. Above we mentioned
that the review methods basically relates to all SRS criteria according to [15].
But it highly depends on the configuration of reviews what SRS problems are
in focus. Berling et al. [21] states techniques for reviews as ad-hoc, checklist
and scenario based. The ad-hoc process does not provide the reviewer with any
guidance, whereas the checklist is a collection of tasks that has to be consid-
ered. The scenario based method includes a perspective that the reviewer has
to represent, like for instance tester- or customer-perspective. Dependent on the
review-method different SRS problems are likely to be addressed. As an example
imagine a review with a checklist that states to check for completeness of use
cases and artifact-structure. Textual criteria like understandability and ambigu-
ity are likely to be neglected. On contrary, an ad-hoc review will motivate the
reviewer to understand the SRS, which automatically involves a higher concen-
tration on informal descriptions, while other criteria lose importance.

A well known method is the Perspective Based Reading (PBR) procedure
introduced by Basili et al. [22]. PBR is a method that improves requirement
inspections by providing the reviewer with a certain perspective like for instance
tester, developer or customer. The reviewer considers the artifact with varying
focus on SRS with his role in mind. Based on PBR there exist modification like

Improving the Requirement Engineering Process with Speed-Reviews 5

a specialized form for teams; the PBRM(T) method [21]. Another example is
Problem Driven PBR by Chen et al. [23]. All those methods are related to our
Speed-Review approach since the procedure of SRS inspection is addressed. But
the boundary conditions for Speed-Reviews consider the whole process and not
just the review itself. Actually it would be possible to combine PBR with the
Speed-Review method.

Laitenberger et al. [24] present a non-traditional inspection implementation
in a case study at Daimler Chrysler. It exceeds the traditional inspections due
to restrictions that take place in the case study environment. Inspections differ
from reviews since the defect count is primary.

3 Speed-Review Procedure

In order to avoid certain misunderstandings before we define the term Speed-
Review, we need to clarify some of the following terms. The term review is a
generic term that is defined in the International Software Testing Qualification
Board (ISTQB) glossary [25] as “an evaluation of a product or project status to
ascertain discrepancies from planned results and to recommend improvements.”
As a result from this definition there exist several more precise review-types like
peer- (also known as inspection), formal-, management-, informal- (also known
as ad-hoc), technical- and testability-review. In our context the relevant types
are informal-reviews and inspections. Informal-reviews are simply not limited by
any formal procedure. Inspection is defined by ISTQB as “A type of peer review
that relies on visual examination of documents to detect defects, e.g. violations
of development standards and non-conformance to higher level documentation.
The most formal review technique and therefore always based on a documented
procedure”.

3.1 Speed Review Description

Based on the previous definitions we now define the term Speed-Review. Our
approach is purely addressing the organizational aspect in reviews and leaves
flexibility to content-decisions. For instance, it is possible to perform Speed-
Reviews informally or based on formal-checklists. Basically, a Speed-Review is
a peer-review under specific constraints and limited by a time factor. Before
we explain the process in detail, there is need to specify some requirements.
First, there needs to be an artifact in form of a document like SRS or target
specifications. Second, the artifact needs to be addressable to some responsible
person. Usually this will be the author, or someone who becomes responsible for
the maintenance of the document.

As the first precondition for a Speed-Review the responsible persons have to
choose a number of artifacts that should be reviewed. As an alternative, other
colleagues or the project manager might perform this selection. The second pre-
condition before a Speed-Review takes place, is to determine the review part-
ners. We see advantages when authors of similar artifact-types review each other:

6 V. Pekar et al.

SRS #342

A CB D

SRS #012 SRS #098 SRS #212

E F G H

Speed-Review Prepraration

(1) Responsible
choose SRS for
review

(2) Chosen SRS are
distributed to co-
workers as
reviewers (strictly
cross-team). [Head

erent
teams]

(3) Reviewers
analyse SRS and
prepare for Speed-
Review

SRS
#342

SRS
#012

SRS
#098

SRS
#212

Fig. 1. Speed-Review preparation

(1) It is time efficient. The authors are experienced in, at least, the process where
the artifacts take place and might have some degree of know-how related to the
domain as well. (2) Authors gain additional insights while reviewing other arti-
facts and can use such knowledge in their future work. Having reviewers with a
similar expertise has the disadvantage of the risk to loose the overview. SRS are
a basis for communication with the customer, who has not the expertise as the
SRS author. In the end a SRS has to be understandable for all stakeholders.

The method to determine review-partners is highly dependent on the project
context and environment size. One option is to do this randomly with certain
constraints so that the review-partners vary sufficiently. There are cases where
more constraints take place, like in our case study scenario, where other team
members should only review multiple teams from different domains. The reason
for such a decision was to maximize the information-flow across the department.
Information-flow in this context means knowledge about how other colleagues
manage SRS.

After review-partners are determined, the last step before the Speed-Review
meeting is preparation (see Fig. 1). Every reviewer should study the artifact and
take notes. This step should be limited by a maximum amount of time. Obvi-
ously, this depends on the average size of the artifacts, but with no limitation
there is the danger of a large time effort variety. Besides the time-constraint
this step is adequate for deciding what kind of review-type to use. The reviewer
might be provided with checklist for the preparation. Speed-Reviews has to be
performed regularly. Multiple iterations offer the opportunity to use different
approaches for each iteration. As an example for constraints, we look at our
case study scenario. The review-partners were determined by a semi-automatic

Improving the Requirement Engineering Process with Speed-Reviews 7

Fig. 2. Speed-Review procedure overview

random procedure. The algorithm considered the cross-team-constraint and
offered several constellations of review partners. From this set, some constella-
tions were chosen manually, by assuming interesting review-partners. The selec-
tion is performed by the moderator, whose role is explained below.

Once all preparations are finished, the Speed-Review takes place (see Fig. 2).
The term Speed-Review is based on the idea of speed dating. This even
affects the positioning of the tables in the room where the review-meeting takes
place. The review-partners sit in front of each other, with a table in between.
The whole meeting is organized in rounds. After an introduction and explana-
tion about the review-procedure, the first round begins and the review-partners
take their seats. A round is limited by a specific time limit. This limit is, as well
as the time limit for the preparation, dependent on the average artifact size.
For our experiments we achieved good results with fifteen-minute time slots.
After one round is finished the next takes place and the review-partners change
seats according to the new constellation. It proved helpful to have the round-

8 V. Pekar et al.

constellations visible all the time for all attendees. A review-partner constellation
per one round means that just one person is giving review-feedback to the other.
It is not meant, that both persons give each other feedback at one single round.
Obviously, the listener still might interact in form of questions and comparable
input. The last part of a Speed-Review takes place after all rounds have been
completed. An additional time slot should give all attendees the possibility to
give feedback in an open discussion. Preferably the input should address the
review procedure or provide ideas for the next iteration.

A crucial factor for a successful Speed-Review is a well-organized moderator.
He is responsible for motivating the product owners (PO) to select and prepare
the SRS. Furthermore, he sets and coordinates the appointment. Coordination
includes the planning of review-partner constellations and paying attention to
time limits. Additionally the moderator has the difficult task to analyze the
Speed-Review meetings and validate the success. For instance, imagine the case
that most review-partners are already done by half of the time limit. The moder-
ator has to notice such occurrences and take countermeasures, which could be a
time limit reduction for the next meeting or an extended preparation template.

4 Case Study Design

We use the recommended methodology for case studies provided by Runeson
et al. [26].

4.1 Research Questions

The goal of the case study is to show what improvements happen due to Speed-
Reviews and how applicable this measure is in practice. For that reason we eval-
uate the effort for instantiating Speed-Reviews. The following research questions
break this goal down into subtasks.

RQ 1. What effort is needed for establishing and maintaining Speed-
Reviews?
Effort in this context means the time outlay for all participants. This
includes the preparation time, the meetings and the organization expen-
diture for the moderator. Furthermore the difficulty of the related tasks
is considered.

RQ 2. What improvements are performed by Speed-Reviews?
Improvements are either visible changes in the SRS evolution or expert-
opinions, which we evaluated with surveys.

4.2 Context

We perform the case study at Porsche Informatik, one of the largest automobile
trade companies in Europe that provides dealer management systems for the
international market. The organization consists of approximately 320 employees.

Improving the Requirement Engineering Process with Speed-Reviews 9

Customer requests and changes lead up to approximately 75 SRS per release.
One release lasts for three month and a project related to a SRS can have a
varying effort in a range of ten to a thousand hours. The process from a client
request to the SRS consists of multiple steps, which are justified by the history
of the organization. We neglect the steps between the client request to the SRS,
since the process in between is not relevant for the case study.

The organization exerts agile methods, mainly Scrum, even though the overall
RE process is still based on the Waterfall-model. A SRS is passed to a PO who
is responsible for managing it. The SRS is the basis for future communication
with the customer and has contractual value. The POs are separated in three
different teams, based on business expertise. This fact is important, because
different teams might process multiple requests of the same client. The teams
are assigned to service, sales and internal base domains. For us it is important
to know that expertise varies across teams.

The process of creating SRS based on the client request is subject to the
responsible PO and strongly intuitive. Beside an editor template, that is purely
optional, there were no guidelines for this process step at the time we performed
the case study. The editor template was an attempt to maintain sections for a
new SRS and reach an uniform structure. The template was never introduced
properly nor reached a satisfying state, according to the POs statements.

We observed a range of documents that are described in much detail using
primarily natural language and on the other hand SRS with very brief descrip-
tions in bullet-list format. The cause for this variety in SRS is the POs unequal
expertise and experience.

This lack of correspondent unity between SRS has following drawbacks:
(1) Customer and (2) internal colleagues cannot rely on an expected artifact
structure. In case of (1) this leads to an increased workload for the customer to
break into the SRS. Additionally, the communication effort between customer
and PO is likely to increase. The drawback for (2) is of course an increased
time expense when working with varying document structures as well. Internal
colleagues are all persons that contribute or use the document. This includes
the programmers as well as the head of department. We observed the circum-
stance where colleagues avoided reading the SRS and instead directly contacted
the responsible author for explanation. Obviously, such a detour does not scale
and we do not consider this as a solution for non-uniform SRS.

We target the mentioned issues with the introduction of Speed-Reviews. In
this work we show how the review procedure is performed at Porsche Informatik
and how we documented parts of the RE process before and after.

4.3 Data Collection Procedure

As the very first step we analyzed key issues in SRS by interviewing the POs.
Those interviews were organized as one-on-one sessions that took half an hour
each. The procedure was a combination of a predefined questionnaire (see Table 1)
and ad-hoc interview. The reason for this hybrid-approach was to give the POs
the opportunity to express their perspective. Nevertheless some key questions
were discussed with each person. You find an overview of the questions in the

10 V. Pekar et al.

appendix Sect. 1. Furthermore the POs stated problems that overlapped across
the interviews. Resulting from the information we gathered with the interviews
from the previous step, we decided to establish reviews as a first measure (see
Tables 2, 3 and 4).

According to the small number of POs the reviews were performed as Speed-
Reviews. Speed-Reviews are a newly defined concept, which we explained in
detail in Sect. 3. Before the Speed-Review meeting each PO had to prepare two
reviews of a SRS, with a maximum effort of fifteen minutes each. Additionally
everyone had to choose two SRS from under her own responsibility. The con-
stellation about who reviews whom, was calculated by a random procedure and
controlled by the moderator. In this specific scenario it was a requirement that
POs from the same team would not review each other. With cross-team pairing
only the efficiency of experience exchange was intended to be increased. While
the Speed-Review was taking place, two transcribers where switching between
the tables and writing down the most important statements. Most statements
addressed the problems we identified in the one-on-one interviews. The Speed-
Review meeting was completed with an open discussion with the intention to
gather feedback on the Speed-Review experiment. The transcribers logged the
POs responses.

Besides the qualitative investigation, we conduct analysis on the SRS data-
base throughout the process. Due to technical restrictions this analysis has to be
performed manually. We have access to historical SRS that were created before
the initiation of Speed-Reviews. Therefore, we compare SRS from before and
after the first Speed-Review took place. We chose two requirements from before
and after the Speed-Review beginning of each PO. That leads to an analysis of
24 SRS in whole. The reason why we compare old with new SRS and not the
evolution of single SRS during time, is the restriction that existing SRS has not
be reworked according to Speed-Review findings. In the Introduction we state
that Speed-Reviews attempt to improve correctness, unambiguity, completeness
and consistency. It requires expertise in the domain of Dealer Management Sys-
tems to analyze correctness, which is why we have to limit our comparison to
unambiguity, completeness and consistency. The authors from University of Inns-
bruck and not employees from Porsche Informatik selected the analyzed SRS.
This decision reduces the risk of POs selecting their favorite SRS and therefore
reducing objectivity of the analysis.

As last step for evaluation we performed a survey including all eight POs.
The goal was to question usefulness and deploy-ability of Speed-Reviews. The
survey uses a seven-step Likert-Scale with an intuitive range like in Fig. 3. The
interviewed persons had to mark a position on the scale depending on their
opinion. We explicitly did not offer a neutral-option since all questions were

No Yes

Fig. 3. Sample for used Likert-Scala in the Product Owner Survey

Improving the Requirement Engineering Process with Speed-Reviews 11

Fig. 4. Rating distribution related to difficulty for Speed-Review preparations

answerable for all POs. All POs performed the survey at once in the same room
and anonymously.

5 Results

In this section we present our results. We distinguish between the evaluation
based on expert opinions considering the Speed-Review process and visible
changes in the SRS artifacts.

5.1 Speed-Review Process Evaluation

The questionnaire that was handed out to the POs after several Speed Reviews
meetings. The full questionnaire is available in Table 5 but in the following we
present only the results that are mostly relevant to the research questions.

In Fig. 4 we see the results related to the opinion of the POs about the review-
preparation difficulty. Besides one neutral rating all surveyed persons rated the
preparation as quite easy. Out of eight POs five even considered the preparation
as almost very easy. The average rating is 5,25 with 7 having the meaning most
easy.

Besides the difficulty for the review preparation we asked about the effort
for the Speed-Review process. This includes the preparation time as well as the
Speed-Review meetings. In Fig. 5 we show the distribution for the single ratings.
As average the POs considered this effort as low, with 2,13 where 1 represents
the lowest effort in the scale. The results about preparation-difficulty and Speed-
Review effort are related to the first research question about overall-effort when
performing Speed-Reviews.

In Fig. 6 we present two layers of an improvement degree. This degree relates
to the SRS-writing-skills of the POs. We asked two separate questions whether

12 V. Pekar et al.

Fig. 5. Rating distribution related to effort for the Speed-Review process

Fig. 6. Improvement Degree as SRS author

the interviewed person improved as SRS author either by receiving or
providing feedback. Averagely the surveyed audience considered the receive of
feedback (5,25) less productive than providing it (6,25 ; while 7 is the most pos-
sible improvement degree on scale). Three cases indicated an equal improvement
degree for both methods.

For one question the POs estimated the durability of Speed-Reviews in a
long term. At the time the survey took place, Speed-Reviews still were new and
so it was hard to predict its position in long term. Nevertheless, the feedback is
highly positive with five out of eight POs estimations for a very long durability.
The average rating is 6,38 with no estimation that predicts a short durability.
For details check Fig. 7.

Improving the Requirement Engineering Process with Speed-Reviews 13

Fig. 7. Durability of Speed-Reviews in long term

5.2 Software Requirement Specification Results

In this Section, we present the second part of our results that are based on our
observations on the SRS evolution. In Sect. 4.3 we explain why we choose 12 (old)
SRS that were created before the Speed-Review initiation and 12 (new) SRS
that were started afterwards. First, we explain the criteria for the comparison
procedure. These are based on our findings from the interviews with the POs:
(1) uniformity of structure, (2) readability and (3) understandability. In Sect. 4.3
we stated that we also consider the IEEE-830-1998 [15] criteria unambiguity,
completeness and consistency. Because of the size and varying complexity of
the SRS we cannot analyze the artifacts in full detail. While analyzing a SRS
we ask the following questions: (1) Is a short overview provided? (2) Has the
artifact a complexity hierarchy that leads the reader from an abstract level to
more details? (3) Has the artifact a structure at all? Structured in this context
means that recommended procedures were followed. (4) Is the basic SRS idea
understandable by a non-professional reader? Already at the first Speed-Review
the POs decided that there is need for an abstract that provides a short overview
about the SRS. None of the old analyzed SRS showed an abstract. Of 12 new
considered SRS, 11 provided such a short description. We analyze, whether or
not the SRS has a complexity hierarchy. It means that technical explanations or
use cases appear in lower sections while generic descriptions introduce the whole
SRS. Of the old SRS, 7 show no hierarchy and 5 approaches with shortages.
The new SRS consist of 9 that have a clear complexity hierarchy, 1 SRS with
shortages and 2 that still miss this criterion. A shortage can be for instance
a missing information gap between the abstract and the use cases. With no
proper business process explanation it still can be difficult for the reader to
understand technical use cases. The new SRS, which were analyzed compose from
9 hierarchically structured, 2 unstructured and 1 partially structured artifacts.

14 V. Pekar et al.

Additionally we regard the structure without a focus on complexity. For
instance recommended sections are missing or copied conversations compensate
for explanations. The old SRS show 1 structured, 8 partially and 3 unstructured
formats. The improvements we observed with new SRS are at 9 structured and 3
partially structured SRS. Both criteria related to structure are overlapping, since
a hierarchical complexity structure can only exist with a generic structure. In
Sect. 3, we explain that SRS are the basis for communicating with the customer.
Therefore, it is an important criterion that reader with no specialized expertise
can at least understand the rudiments of every SRS. The authors of this case
study that are no employees at Porsche Informatik, have the perfect lack of
specialized expertise to analyze the SRS from customer-perspective. For the case
that we are able to understand the rudiments in less than 5 min, we consider the
SRS as understandable for non-professionals. It was hard to get an understanding
with old SRS: 8 are rated as not understandable, 2 partially and 2 as fully
understandable. Due to the abstract and improved structure, the results for new
SRS are: 9 SRS fully, 1 partially and 2 not understandable.

6 Discussion

In the following, we discuss whether the research questions are answered in
this work. The effort that is needed for establishing Speed-Reviews is stated in
Sect. 3. The exact effort value is dependent on the SRS size, number of assigned
persons and on the variable settings (like maximum preparation time limit).
We surveyed the POs to determine whether the extra effort is justified and the
feedback was positive without exception. After introducing Speed-Reviews at
Porsche Informatik we quickly recognized more uniform structured SRS with a
better understandability compared to old SRS.

We observe that new SRS become more similar to each other in terms of
structure. Non-uniform SRS is one major problem and therefore, this change is
a success. We explain this changes by triangulation based on both evaluation
methods. For the SRS comparison it is obvious since the structure in SRS sim-
ply becomes visible for the reader. POs stated during the survey that a better
coordination of the SRS creation process is given due to Speed-Reviews, which
leads to structure alignment. Better coordination occurs because of review tem-
plates that show the PO how to analyze SRS but as well how to write them.
Additionally, the knowledge exchange across employees and teams increases the
degree of coordination and leads to better group dynamics. Besides structure
and uniformity we experienced an improvement in understandability and read-
ability. Some old SRS did not provide any introduction, which makes it hard and
time-consuming to understand even the basics of a SRS. Due to Speed-Reviews
the POs identified the need for an abstract. Our results from Sect. 5.2 verify the
success of this decision.

Quantitative measurements that show improvements to SRS would be a valu-
able complement. Such a data collection might be considered in future projects.

Improving the Requirement Engineering Process with Speed-Reviews 15

6.1 Threats to Validity

The greatest threat to validity is that visible improvements in SRS after the Speed-
Review launch, might have other causes than the reviews itself. For instance, the
POs were provided with highly technical checklists for the SRS creating-process
during the time of Speed-Review introduction. Those lists remind the PO for
example to consider dependencies to other systems. We do not believe this bias
our results but nevertheless, to guarantee a better reliability of the case study we
decided to perform the qualitative evaluation based on PO opinions additionally
to the SRS comparison.

A threat that directly affects the SRS comparison is the varying technical
complexity of SRS. Especially for criteria like understandability and readability
it is obvious that simple SRS are easier to understand than complex SRS. To
ease this risk we selected SRS with similar effort estimations. Still the threat
remains because complexity of a topic does not need to be only size-related.

A third threat related to SRS analysis is the lack of formality in the compari-
son procedure. The varying structure of the SRS, the use of natural language and
non-uniformity between SRS prohibited formal methods. Therefore the authors
performed the SRS comparison informally, which might include a certain degree
of subjectivity.

Furthermore, we are not able to compare the Speed-Review method to other
review-methods. We show that Speed-Review bring improvements to the RE
process. But how these effects would differ from alternative methods is out of
scope, since no review measures existed beforehand.

7 Conclusions and Future Work

First, we explained the importance of SRS and the term review in Sect. 1.
In Sect. 2 we gave an overview about related review-approaches and finally
explained Speed-Reviews in detail in Sect. 3. We introduce the Speed-Review
procedure at Porsche Informatik and present the results in a case study begin-
ning in Sect. 4. The actual results are shown in Sect. 5 and discussed in Sect. 6.

We defined the Speed-Review procedure and successfully established it at
Porsche Informatik. The improvements are evaluated by expert opinions of the
POs who are the responsible persons for SRS. Additionally, we analyzed the
evolution of SRS. For that we compared artifacts that were initiated before
Speed-Reviews with those that were created afterwards. Speed-Reviews lead to
more structured, understandable and readable SRSs.

It is yet to be evaluated whether Speed-Review improvements only appear in
short-term or also in long-term. We plan to observe the Speed-Review evolution
at Porsche Informatik with the future goal to answer this question. Furthermore,
the Speed-Review technique is in a prototype state. In practice, we already
experienced shortages like long time limits, which lead to concentration loss of
the participants. Besides that the POs mentioned the risk when the person who
is to be reviewed is the selector of the artifacts at the same time. It is necessary
to test Speed-Reviews for longer time-periods and to refine the method.

16 V. Pekar et al.

A Interview Guidelines and Questionnaires

Table 1. Interview guidelines for product owners

Significance for Target Specifications

How important do you consider the target specification quality for the overall
success of a project?

How important do you consider the completeness of target specifications?

How important do you consider the understandability of target specifications?

How important do you consider the severity of ambiguity in target specifications?

How important do you consider a uniform structure across all target specifications?

Target Specification Problems

How effective do you consider the requirements engineering process at you
company?

How effective do you consider the used tooling?

Do you think the quality of an end product could be increased by improving the
requirement engineering process?

Did you have problem understanding target specifications? (If yes - why?)

Did you experienced misunderstandings about term definitions or processes? Or
any misunderstandings related to ambiguity?

If you are the initiating author of a target specification - were you always certain
where to start?

Can you recall other issues related to target specifications that were not mentioned
yet?

Table 2. Final Questionnaire for Product Owners related to Review-Preparation

Evaluation for the preparation

How much time did you approximately spent for review preparation? (in
minutes) [Keep in mind that in this case study an recommendation of an
maximum of 20min was given]

24,38

Did you consider the preparation as easy? 2,13

Did you feel limited by the maximum time limit you should spend for the
preparation?

5,25

Did you prefer to have presets for the review-preparation or the ad-hoc
approach?

3,38

Did you started to re-think your artifacts while reading others? 5,38

Improving the Requirement Engineering Process with Speed-Reviews 17

Table 3. Final Questionnaire for Product Owners related to the Speed-Review process

Evaluation for the Speed-Review meeting

Did you find the organization of the Speed-Review intuitive from the
beginning?

6,75

Did you consider the dialog maximum time as sufficient? 6,88

Was your feedback accepted by your review-partner? 6,88

Did you received constructive feedback? 6,63

Consider the feedback you received from different review-partners. Was it
similar?

4,63

Table 4. Final Questionnaire for Product Owners related an overall estimation about
Speed-Reviews

Evaluation for the Speed-Review process

Consider the overall effort that you experienced for one review iteration
(including preparation and meeting time). How do you rate the ratio
between effort and benefit?

6,13

Did you improved as author due to receiving feedback? 6,25

Did you improved as author due to performing reviews? 5,25

Would you consider Speed-Reviewing as a sustained improvement
method?

6,38

How much are Speed-Reviews dependent to the organization procedures? 3,75

Table 5. Final Questionnaire for Product Owners related to key statements

Evaluation for the Speed-Review Process Ideas

Please name advantages that appear due to Speed-Review usage

Can you come up with disadvantages that appear after Speed-Review execution?

Where do you sense weaknesses in Speed-Reviews?

Please provide improvement measures if possible

References

1. Bucchiarone, A., Gnesi, S., Pierini, P.: Quality analysis of NL requirements: an
industrial case study. In: Proceedings of the 13th IEEE International Conference
on Requirements Engineering, pp. 390–394, Aug 2005

2. Ormandjieva, O., Hussain, I., Kosseim, L.: Toward a text classification system for
the quality assessment of software requirements written in natural language. In:
Fourth International Workshop on Software Quality Assurance: In Conjunction
with the 6th ESEC/FSE Joint Meeting, SOQUA ’07, pp. 39–45. ACM, New York
(2007). http://doi.acm.org/10.1145/1295074.1295082

http://doi.acm.org/10.1145/1295074.1295082

18 V. Pekar et al.

3. Scheffczyk, J., Borghoff, U., Birk, A., Siedersleben, J.: Pragmatic consistency man-
agement in industrial requirements specifications. In: Third IEEE International
Conference on Software Engineering and Formal Methods, SEFM 2005, pp. 272–
281, Sept 2005

4. Hu, H., Zhang, L., Ye, C.: Semantic-based requirements analysis and verifica-
tion. In: 2010 International Conference on Electronics and Information Engineering
(ICEIE), vol. 1, pp. V1-241–V1-246, Aug 2010

5. Tjong, S., Hallam, N., Hartley, M.: Improving the quality of natural language
requirements specifications through natural language requirements patterns. In:
The Sixth IEEE International Conference on Computer and Information Technol-
ogy, CIT ’06, pp. 199–199, Sept 2006

6. Belfo, F.: People, organizational and technological dimensions of software require-
ments specification. In: 4th Conference of ENTERprise Information Systems Align-
ing Technology, Organizations and People (CENTERIS 2012), vol. 5, pp. 310–318.
http://www.sciencedirect.com/science/article/pii/S2212017312004653

7. Mat Jani, H., Tariqul Islam, A.: A framework of software requirements quality
analysis system using case-based reasoning and neural network. In: 2012 6th Inter-
national Conference on New Trends in Information Science and Service Science
and Data Mining (ISSDM), pp. 152–157, Oct 2012

8. Heck, P., Parviainen, P.: Experiences on analysis of requirements quality. In: The
Third International Conference on Software Engineering Advances, ICSEA ’08, pp.
367–372, Oct 2008

9. Gross, A., Doerr, J.: What you need is what you get!: the vision of view-based
requirements specifications. In: 20th IEEE International Requirements Engineering
Conference (RE), pp. 171–180, Sept 2012

10. Saito, S., Takeuchi, M., Hiraoka, M., Kitani, T., Aoyama, M.: Requirements clinic:
third party inspection methodology and practice for improving the quality of soft-
ware requirements specifications. In: 2013 21st IEEE International Requirements
Engineering Conference (RE), pp. 290–295, July 2013

11. Abernethy, K., Kelly, J., Sobel, A., Kiper, J., Powell, J.: Technology transfer issues
for formal methods of software specification. In: Proceedings of the 13th Conference
on Software Engineering Education amp; Training, pp. 23–31, Mar 2000

12. Polpinij, J.: An ontology-based text processing approach for simplifying ambiguity
of requirement specifications. In: IEEE Asia-Pacific Services Computing Confer-
ence, APSCC 2009, pp. 219–226, Dec 2009

13. Huertas, C., Jurez-Ramrez, R.: NLARE, a natural language processing tool for
automatic requirements evaluation. In: Proceedings of the CUBE International
Information Technology Conference, CUBE ’12, pp. 371–378. ACM, New York
(2012). http://doi.acm.org/10.1145/2381716.2381786

14. Salger, F., Engels, G., Hofmann, A.: Inspection effectiveness for different quality
attributes of software requirement specifications: an industrial case study. In: ICSE
Workshop on Software Quality, WOSQ ’09, pp. 15–21, May 2009

15. IEEE, Ieee recommended practice for software requirements specifications. Insti-
tute of Electrical and Electronics Engineers (1998)

16. Yang, H., Willis, A., De Roeck, A., Nuseibeh, B.: Automatic detection of nocu-
ous coordination ambiguities in natural language requirements. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
ASE ’10, pp. 53–62. ACM, New York (2010). http://doi.acm.org/10.1145/1858996.
1859007

http://www.sciencedirect.com/science/article/pii/S2212017312004653
http://doi.acm.org/10.1145/2381716.2381786
http://doi.acm.org/10.1145/1858996.1859007
http://doi.acm.org/10.1145/1858996.1859007

Improving the Requirement Engineering Process with Speed-Reviews 19

17. Ferrari, A., Gnesi, S.: Using collective intelligence to detect pragmatic ambiguities.
In: 20th IEEE International Requirements Engineering Conference (RE), pp. 191–
200, Sept 2012

18. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using
essential use case interaction patterns. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pp. 531–540. ACM, New York
(2011). http://doi.acm.org/10.1145/1985793.1985866

19. Bucchiarone, A., Gnesi, S., Fantechi, A., Trentanni, G.: An experience in using a
tool for evaluating a large set of natural language requirements. In: Proceedings of
the 2010 ACM Symposium on Applied Computing, SAC ’10, pp. 281–286. ACM,
New York (2010). http://doi.acm.org/10.1145/1774088.1774148

20. Fagan, M.E.: Design and code inspections to reduce errors in program develop-
ment. In: Broy, M., Denert, E. (eds.) Pioneers and Their Contributions to Software
Engineering, pp. 301–334. Springer, Heidelberg (2001)

21. Berling, T., Runeson, P.: Evaluation of a perspective based review method applied
in an industrial setting. IEE Proc. Softw. 150(3), 177–184 (2003)

22. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumg̊ard, S.,
Zelkowitz, M.V.: The empirical investigation of perspective-based reading. Empir-
ical Softw. Eng. 1(2), 133–164 (1996)

23. Chen, T., Poon, P.-L., Tang, S.-F., Tse, T. H., Yu, Y.: Towards a problem-driven
approach to perspective-based reading. In: Proceedings of the 7th IEEE Interna-
tional Symposium on High Assurance Systems Engineering, pp. 221–229 (2002)

24. Laitenberger, O., Beil, T., Schwinn, T.: An industrial case study to exam-
ine a non-traditional inspection implementation for requirements specifica-
tions. Empirical Softw. Eng. 7(4), 345–374 (2002). http://link.springer.com/
article/10.1023/A:1020519222014

25. I. ISTQB, Glossary of Testing Terms (2012)
26. Runeson, P., Hst, M.: Guidelines for conducting and reporting case study

research in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009).
http://link.springer.com/article/10.1007/s10664-008-9102-8

http://doi.acm.org/10.1145/1985793.1985866
http://doi.acm.org/10.1145/1774088.1774148
http://link.springer.com/article/10.1023/A:1020519222014
http://link.springer.com/article/10.1023/A:1020519222014
http://link.springer.com/article/10.1007/s10664-008-9102-8

Towards a Perspective-Based Usage of Mobile
Failure Patterns to Focus Quality Assurance

Konstantin Holl1(&), Frank Elberzhager1, and Vaninha Vieira2

1 Information Systems Quality Assurance, Fraunhofer Institute for Experimental
Software Engineering IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{konstantin.holl,

frank.elberzhager}@iese.fraunhofer.de
2 Computer Science Department, Fraunhofer Project Center for Software

and Systems Engineering at UFBA, Federal University of Bahia,
Av. Ademar de Barros, 500, Ondina, Salvador-BA 40110-170, Brazil

vaninha@dcc.ufba.br

Abstract. The use of mobile applications for business tasks calls for effective
quality assurance during development to prevent potential failures of the mobile
application and the consequential costs. Essential activities of quality assurance
are to inspect the requirements specification and to test the realized mobile
application. Both activities ideally benefit from the knowledge of typical failure
patterns in order to guide quality assurance engineers and to focus the quality
assurance, i.e., to direct the attention of quality assurance on these failure pat-
terns. For this purpose, a mobile-specific failure pattern classification was
derived in previous work. In this paper, we introduce an initial quality assurance
approach, which considers inspection and testing in a combined way and
methodically uses the classification within the mobile context. The developed
method FIT4Apps, which is based on the flexible, efficient reading technique
perspective-based reading, allows purposeful use of the proposed failure pattern
classification. As proof of concept, we developed a tool prototype, which
generates basic perspective-based scenarios considering the derived failure
pattern classification in order to support inspection and testing activities.

Keywords: Quality assurance �Mobile testing � Inspection � Perspective-based
reading � Failure pattern classification

1 Introduction

The market for mobile devices is rapidly growing [1]. Furthermore, new mobile
applications are continuously developed and shipped. Especially in the context of
mobile business applications, several advantages are expected, e.g., higher availability,
quick distribution of new information, and faster reaction time. However, as it is true for
software development in general, a high quality of such applications is a necessity due to
the risk of severe consequences, such as lost revenue or reduced efficiency. For example,
consider a mobile application for production process control, which offers (i) infor-
mation about the current status for monitoring the production, and (ii) decision support,
like the collection and interpretation of environment parameters. An application failure

© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 20–31, 2015.
DOI: 10.1007/978-3-319-13251-8_2

could lead to wrong decisions or unintended production effects, controlled by the mobile
application. In this example, the usual consequences are very costly due to the high run-
up time of production processes.

During the last decades, several quality assurance methods, techniques and tools
were developed and are usually applied during software development. For instance,
different inspection [2] and testing techniques [3] support, e.g., quality assurance
engineers, inspectors and testers, to ensure the high quality of a software. However, as
the mobile trend is relatively new, such quality assurance techniques are barely adapted
to the new needs and challenges, such as:

• Mobile applications are developed in short, often agile, development cycles, and a
fast time to market is expected [4].

• The set of requirements as the basis for the implementation and also for testing is
changing during the development [5].

• Quality assurance is often unfocused due to unknown failure patterns in the mobile
domain [6].

Consequently, compared to traditional quality assurance, mobile quality assurance
has to be adapted to these new challenges by an approach, which aims eventually at
being more efficient to be suitable for short development cycles, and being more
effective by coping with a changing test basis and by focusing on typical failure patterns.
Failure patterns represent the relation of fault aspects and their corresponding failures.

In an earlier publication [7], we presented how we derived a mobile-specific failure
pattern classification. In this paper, we show a combined quality assurance method,
which uses the failure classification. Furthermore, we demonstrate our method partially
via a proof-of-concept using a tool prototype. The research question we address is the
following:

RQ: How to use the derived mobile-specific failure pattern classification to
focus quality assurance of mobile applications?

The structure of the paper is as follows: Sect. 2 describes the related work, where
we provide an overview of quality assurance aspects regarding mobile applications.
Furthermore, the section explains the failure pattern classification, which can be used to
focus quality assurance, i.e., to direct the attention of quality assurance to these failure
patterns. Section 3 presents our combined quality assurance method, which is tailored
for mobile development. It also describes a detailed example, our tool prototype, and a
discussion regarding the overall approach. Finally, Sect. 4 concludes our paper and
gives an outlook on future work.

2 Related Work

The related work is divided into a general mobile quality assurance part, which
describes recent publications about issues in this field, and into an outline of the
recently developed failure pattern classification, which is fundamental to lead over to
the development of the method to focus quality assurance of mobile applications.

Towards a Perspective-based Usage of Mobile Failure Patterns 21

2.1 Quality Assurance of Mobile Applications

Launching a mobile application development project often leads to questions regarding
how the methods, techniques, and tools differ from classical software development
projects, e.g., in the field of desktop applications. Methodological questions arise
regarding the peculiarities of aspects, such as the application’s architecture and secu-
rity, and phases like requirements engineering and quality assurance. Those questions
can usually be answered by using established approaches for non-mobile development
projects. Also, existing tools are basically the same used in classical software devel-
opment projects. For instance, recording and playback tools, which are popular in the
area of mobile applications, are based on the already established concepts.

Differences in developing and using mobile applications are often related to
technological aspects. The main peculiarities of applications on mobile devices such as
smartphones and tablets are, according to Muccini et al. [8]:

• limited resources (e.g., battery)
• user interface (e.g., touchscreen)
• context awareness (e.g., mobile connectivity)
• diversity (e.g., devices and operating systems).

Muccini et al. [8] answered and confirmed their research questions, whether mobile
applications are different from traditional ones and whether they require different and
specialized new testing techniques, by discussing the peculiarities of mobile applica-
tions. They concluded with regard to mobile applications testing that there are many
challenges “related to the contextual and mobility nature of mobile applications” and
furthermore that “performance, security, reliability, and energy are strongly affected by
the variability of the environment where the mobile device moves toward”.

Dantas et al. [6] considered mobile applications so specific that the derivation of
testing requirements is necessary to enable efficacious and productive quality assur-
ance. One of the conclusions drawn from the conducted interviews was that “most
companies do not have a specific testing process for mobile applications” and that
“tests are not executed systematically, and are defined based on previous experience or
intuition of developers and testers”. Furthermore, it is possible to achieve effective
quality assurance in spite of the given challenges by helping “the testers to find specific
errors on mobile environment”.

Franke and Weise [9] claimed that the challenges of mobile applications devel-
opment “make great demands on software and ask for specific approaches and methods
for quality assurance” and that quality assurance methods “vary between different kinds
of software, in particular between software for mobile and desktop applications”. Their
contribution describes the provision of a software quality framework based on finding
and defining key qualities of mobile applications.

Overall, existing methods and insights regarding quality assurance in mobile
application development projects – which are typically conducted using ad hoc, clas-
sical (e.g., regression testing within the waterfall model), or agile state-of-the-art
approaches (e.g., test first within Scrum) [4] – have increased in importance as a key
discipline, but lacks specialized methods, expertise, and environment [10] and are often
not effective due to the missing focus on the peculiarities of mobile applications.

22 K. Holl et al.

2.2 Focus Quality Assurance on Mobile-Specific Failure Patterns

Due to the problem that there is no established information about typical mobile
application failure patterns, our previous contribution [7] described how to collect and
to classify frequently mentioned fault aspects of mobile application failures. Further-
more, approaches for creating classifications of defects respectively failures found in
the literature were described like the schemes of Li et al. [11] and Mauser et al. [12],
which were encouraged, among others, by the ODC [13] and the IEEE Standard
Classification for Software Anomalies [14]. Considering the experiences, made in
multiple mobile application development projects, the previous contribution explained
and classified types of typical mobile application faults and failures.

The project experience comprised four mobile applications, which have been
developed within six months, in 2013. The quality assurance team analyzed the failure
reports of this project with the intention to create a classification for failures and typical
fault aspects. In our previous contribution [7], we used the term fault as the origin of a
failure, and the term fault aspect as the focus of a test case that leads to a specific failure
of the mobile application, which is called fault class (as part of the failure pattern
classification) in the current contribution.

The state of the art regarding typical mobile failures and typical fault classes was
captured based on publications by a literature review according to Kitchenham [15].
The review was done for the time span between the year 2006 and the contribution date
in 2014, what resulted in 26 publications, which could be identified to support the
development of the classification (see Fig. 1).

In our earlier publication, the fundamental research question “How to classify
detected mobile-specific failures?” was answered based on project experiences and
related work regarding failure classifications. The ensuing research question “Which
typical fault aspects exist and how to integrate them into the failure classification?” was
answered based on project experiences and the literature review regarding mobile failures
[7]. We concluded that the “work on both research questions resulted in overlapping

Fig. 1. Distribution of publications containing related work

Towards a Perspective-based Usage of Mobile Failure Patterns 23

information on the one hand and complementary information on the other hand. Com-
bination with the knowledge of other classification schemes enabled the creation of a
basic mobile-specific failure classification including categorized typical fault aspects
[…]. This classification could be successfully evaluated and optimized by applying it to
multiple mobile application developments.” [7] Due to the defined relations between
failures and fault aspects, we call this classification for short: failure pattern classification.

3 A Method to Focus Quality Assurance of Mobile
Applications

The creation of the failure pattern classification led to the question how to use it within
quality assurance. This section explains the developed method, gives an example of its
application and describes a first prototype for a partial automation.

3.1 Description of the FIT4Apps Method

A quality assurance method that addresses the main reasons for the insufficiency of
common approaches can be approached by combining testing activities with an
inspection technique, both influenced by the mobile-specific failure pattern classifica-
tion. Therefore, the method FIT4Apps (Focus Inspections and Tests for Mobile
Applications) was developed.

FIT4Apps contains two preparation steps, Definition and Merge, which enable the
application of the method: Inspection and Testing (see Fig. 2).

Fig. 2. The process model of the FIT4Apps method.

24 K. Holl et al.

1. Definition. The method’s first step is the definition of descriptions of roles, which
are taking part in the development, the defect classification regarding potential defi-
ciencies of the requirements specification, and the failure pattern classification. The
definition comprises also the relations between these artifacts. The classified Failure
Patterns are structured by:

• Failure Sections (Behavior, Design and Content), which categorize the
• Failure Classes (e.g., Interaction Element, Transition, and Static Text), which

comprise by their entities (wrong, missing and extra) aspects “in which a system or
system component does not perform a required function within specified limits”
[14]. The failure classes are related to

• Fault Classes (e.g., Network Disconnect, Low Battery, and Screen Orientation),
which comprise typical fault aspects [7] and belong to several

• Fault Sections (e.g., Connection, Energy, and User Interface) for the purpose of
categorization.

Furthermore, the Failure Patterns are related to:

• Roles (Tester, Designer, and User), which are each qualified for the detection of
certain failure patterns and defects of certain

• Defect Classes (Missing Information, Ambiguous Information, Extraneous Infor-
mation, Inconsistent Information and Incorrect Facts), which comprise potential
deficiencies of requirements specifications [16].

The failure pattern classification contains three failure sections, which were split
into nine failure classes. Each failure class has three entities, which were related to a
maximum of 4 of 21 defined fault classes. Overall, 44 failure patterns (i.e., typical
relations between failure classes and fault classes) were defined [7]. As part of the
current contribution, the failure pattern classification was related to the typical roles and
defect classes to enable a perspective-based usage of the derived classification (see
Fig. 3).

Fig. 3. Relation between failure patterns, roles, and defect classes.

Towards a Perspective-based Usage of Mobile Failure Patterns 25

2. Merge. The defined artifacts of the first step are merged to perspective-based reading
(PBR) scenarios structured according to Shull et al. [17]. This represents a convenient
reading technique for inspecting the requirements specification in the mobile context,
due to its efficiency and flexibility [17]. Each scenario contains:

• an introduction, to understand and, if necessary, to adopt the characteristics of a
special role,

• instructions, which describe the tasks the reader has to fulfill while inspecting the
requirements specification,

• and questions, which indicate aspects of the requirements specification to be
checked by the reader concerning the defect classes and failure patterns.

The merge occurs based on the defined relations. For instances: the tester is qualified to
detect missing information in the requirements specification; a changing orientation of
the mobile device can lead to a missing interaction element in the user interface.

3. Inspection. As first step of applying the method, the inspector of each perspective
reads every PBR scenario belonging to his role. The definition of typical roles taking
part in the project is intended to support the inspection due to the separation of the
points of view of the different inspectors. This intention aims at less overlapping results
regarding the findings. Typical roles would be, for instance: a user, who is determined
to use the mobile application after it has been fully developed, marketed, and installed;
or a tester, who operates the mobile application under specified conditions, observing
and recording the results and evaluating some aspects of the mobile application.
Inspectors of every role are instructed to perform perspective-specific tasks. This means
in case of the user’s perspective, to conduct risk estimations with focus on given failure
patterns. In case of the tester’s perspective, it means to derive test cases with focus on
given failure patterns. Furthermore, every role has to answer perspective-specific
questions to find defects in the requirements specification while following the
instructions. The motive of this technique is, to perform an inspection in parallel to
those tasks, which have to be performed anyway by this role.

4. Testing. As last step of the method, the derived test cases, which have got the focus
on the mobile-specific failure patterns, are composed to a test suite which is part of the
development project’s test plan. According to the test plan’s strategy, the test cases are
executed. This leads depending to the test level to the detection of faults and failures in
the implemented mobile application. The knowledge about the findings are used to
enhance the definition of the failure pattern classification for future development
iterations. Furthermore, findings of unit tests, which are not part of the quality assur-
ance method, support as well the enhancement of the failure pattern classification.

3.2 Exemplified Application of the Perspective-Based Inspection

To illustrate the inspection of the quality assurance method, two scenarios are presented
in Tables 1 and 2 for quality assurance performed for a possible mobile application to
be used for production process control. The requirements of this application are
specified by screen mockups and free text. In this example, the defect classes and

26 K. Holl et al.

failure classes are underlined to illustrate that these contents are variable according to
the merge process and based on the failure pattern classification.

A user, or an inspector taking the user’s perspective, reads the introduction to adjust
his mind to this perspective. Then he follows the instruction and answers the question
shown in Table 1. The failure class missing interaction element is linked to a typical
fault class, which will be used in the next scenario. The result in this example of the
production process control application is that the inspector marks a designated status
bar, which has to show critical warnings regarding the production process, with high
risk. He does not find any extraneous information and quits the scenario.

A tester of the development project, respectively an inspector taking the tester’s
perspective, reads the introduction and follows the instructions of the scenario shown in
Table 2. He considers the high risk mark for the derivation of test cases. Hence he
knows that the marked part of the requirements specification is critical in case of the
failure missing interaction element and that typical fault classes causing this failure are:
a changing orientation or screen resolution. Consequently, he derives a test case,
which will be focused on the typical failure pattern (shown in Table 3).

Table 2. Scenario “Tester Perspective”.

Introduction You operate a mobile application under specified conditions, observing and
recording the results and evaluating some aspects of the mobile application.

Instruction Derive test cases considering the mark “high risk” due to a missing
interaction element. Focus on failures that could be related to changing
orientation or screen resolution.

Question Are there parts of the specification with missing information?

Table 1. Scenario “User Perspective”.

Introduction You are determined to use the mobile application after it has been fully
developed, marketed, and installed. The end goal of the mobile application
is to be useful to the consumer.

Instruction Identify and mark parts of the requirements specification with an estimated
high failure impact with “high risk” in the case of a missing interaction
element.

Question Are there parts of the specification with extraneous information?

Table 3. Focused test case.

Precondition Main screen viewed in horizontal orientation.
Action Change orientation to vertical.
Postcondition Status bar information completely visible.

Towards a Perspective-based Usage of Mobile Failure Patterns 27

While deriving the test case (Table 3), the inspector in the tester’s role answers in
parallel the question whether there is any missing information. In this example, it is the
absence of information regarding how the application has to react to an orientation
change. Several questions will arise depending to the experiences of the inspector: Is it
allowed to cut interaction elements off? Is there a priority of displaying elements?
Should vertical orientation be deactivated? Should the screen be scrollable?

The defects found in the requirements specification will be sent to the requirements
engineers or designers and the test case will be performed as part of the system test by
the tester, who thus has a focused test case to detect failures in the implemented mobile
application.

3.3 Tool Prototype

In the previous example, the PBR scenarios were created manually. In order to enhance
the efficiency of applying the method, the tool FOCUST (Focus and Control by
Updated Scenarios and Tests) was initially developed. FOCUST represents a partial
proof of concept by realizing the merge step of the method (see Sect. 3.1) in an
automated way.

FOCUST has an interface to the failure pattern classification including the relation
to roles and defect classes. The user interface of FOCUST offers the selection of a
specific role like Tester (see Fig. 4). Furthermore, the fault section (here: Connection)
and the failure section (here: Behavior) can be selected. Based on that input, the

Fig. 4. Output example of the tool prototype for the tester’s perspective.

28 K. Holl et al.

prototype generates basic PBR scenarios by listing the matching possibilities consid-
ering the given input. In future work, these basic scenarios will be linguistically
enhanced according to Sect. 3.2.

3.4 Discussion

The development of the method and the partial implementation as a proof of concept
revealed on the one side possible benefits due to the application of the method and led
on the other side to open issues.

Benefits. The main advantage compared to common state-of-the-art approaches is that
the developed quality assurance method focuses by different perspectives on typical
failure patterns supposed to lead to a higher quality assurance effectiveness (see
challenges in Sect. 1). Together with the PBR technique, the failure pattern classifi-
cation [7] enables multiple benefits by being usable for inspection and testing activities
through PBR scenarios. These PBR scenarios are efficient due to less overlapping of
the findings of different inspectors [17]. A designer usually has another perspective and
hence other findings than a tester or a user. Another benefit of those scenarios is the
optimized work process during their performance. For the tester, this means that he
derives test cases for those parts of the requirements specification that he is currently
inspecting (i.e., checking for defects).

A defect in the requirements specification, such as ambiguous information, can
cause a failure in the implemented mobile application. Hence, information about a
found defect could be used to adjust the failure pattern classification as part of the fault
classes and can be considered during the derivation of test cases. This can result in
interaction between the testing and inspection activities and hence in a control loop (see
Fig. 5), as both are related to the commonly used failure pattern classification.

Open Issues. A crucial open issue is the missing basis to appraise the method’s
applicability within mobile application development projects with typical challenges
like short iteration-cycles and a changing test basis. Insights for an evaluation could be
reached by a first case study using the developed quality assurance method.

Before, several other issues needs to be solved. The scenarios cannot be generated
completely due to a missing linguistic template. Furthermore, we need a determination
of reasonable integration of the scenarios into the working process of the tester,

Fig. 5. Quality assurance control loop based on the information flow regarding the findings.

Towards a Perspective-based Usage of Mobile Failure Patterns 29

inspector, etc. That comprises, among others, the question “how to achieve an adequate
cognitive load regarding the usage of the scenarios”.

4 Conclusions and Future Work

This work resulted in a FIT4Apps method to focus quality assurance of mobile
applications and encourages research on several topics as future work.

4.1 Conclusion

The research question, “How to use the failure pattern classification to focus quality
assurance?”, was answered by the development and exemplified partial application of
the proposed quality assurance method, which uses the failure pattern classification
presented in our previous contribution [7] (see Sect. 2.2). The combined testing and
inspection method FIT4Apps based on the perspective-based reading technique enables
the usage of the failure pattern classification. The resulting scenarios aim on focused
defect detection by the inspection method and focused derivation of test cases con-
sidering typical failure patterns including their risks. The inspection may be applied to
changing requirements specifications, working as a control loop, which could enable
focused rework of quality assurance activities with reduced effort.

The developed method was partially implemented as a tool to support a quality
assurance process through information processing, such as the generation of basic
scenarios. These scenarios are actually based on previously defined input, like the
derived failure pattern classification of the previous contribution [7].

Overall, we assume that the developed method could enable a higher quality
assurance effectiveness, which can reduce the risk of failures remaining in mobile
applications and hence their costly consequences.

4.2 Future Work

As future work, the integration of a defect causal analysis into the method’s control will
be investigated considering the possibilities of defect prevention.

One of the most important further steps, besides the enhancement of the prototype,
is the evaluation of the method to get evidence for its effectiveness and to obtain the
possibility to compare it with other approaches (such as testing using defect taxonomies
[18]). The primary metric will be the detection rates of defects and failures. This will be
conducted first by a questionnaire consulting the target group and later by an experi-
ment. One future research question will be about the indications, which exist that such
our tailored quality assurance method is more efficient, stable and focused against a
changing test basis.

Acknowledgment. The research described in this paper was conducted in the context of the
Fraunhofer Project Center for Software and Systems Engineering at UFBA, a joint initiative of
Fraunhofer Society and the Federal University of Bahia in Brazil, with support from the Bahia
State Government.

30 K. Holl et al.

References

1. Portio Research: Mobile applications futures 2013-2017, analysis and growth forecasts for
the worldwide mobile applications market, pp. 22–28 (2013)

2. Aurum, A., Petersson, H., Wohlin, C.: State-of-the-art: software inspections after 25 years.
Softw. Test. Verif. Reliab. 12(3), 133–154 (2002)

3. Juristo, N., Moreno, A.M., Vegas, S.: Reviewing 25 years of testing technique experiments.
Empir. Softw. Eng. 9(1–2), 7–44 (2004)

4. Linz, T.: Testing in Scrum: A Guide for Software Quality Assurance in the Agile World
(original title: Testen in Scrum-Projekten: Leitfaden für Softwarequalität in der agilen Welt,
dpunkt.verlag), 1 edn. (2013)

5. Wasserman, A.: Software engineering issues for mobile application development. In:
Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research
(FoSER), pp. 397–400. ACM, New York (2010)

6. Dantas, V.L.L., Marinho, F.G., da Costa, A.L., Andrade, R.M.C.: Testing requirements for
mobile applications. In: 24th International Symposium on Computer and Information
Sciences (ISCIS), pp. 555–560 (2009)

7. Holl, K., Elberzhager, F.: A mobile-specific failure classification and its usage to focus
quality assurance. In: Euromicro Conference Series on Software Engineering and Advanced
Applications (2014) (accepted)

8. Muccini, H., Di Francesco, A., Esposito, P.: Software testing of mobile applications:
challenges and future research directions. In: 7th International Workshop on Automation of
Software Test (AST), pp. 29–35 (2012)

9. Franke, D., Weise, C.: Providing a software quality framework for testing of mobile
applications. In: IEEE Fourth International Conference on Software Testing, Verification
and Validation (ICST), pp. 431–434 (2011)

10. Makarand, T., Buenen, M.: World quality report key findings, executive summary. World
Quality Report 2013–2014, Capgemini, Sogeti and HP, Fifth Edition, pp. 6–8 (2013)

11. Li, N., Li, Z., Sun, X.: Classification of software defect detected by black-box testing: an
empirical study. In: Proceedings of Second World Congress on Software Engineering
(WCSE), vol. 2, pp. 234–240. IEEE (2010)

12. Mauser, D., Klaus, A., Holl, K., Zhang, R.: GUI Failures of in-vehicle infotainment:
analysis, classification, challenges and capabilities. Int. J. Adv. Softw. 6, 142–154 (2013)

13. Chillarege, R.: Orthogonal defect classification. In: Lyu, M.R. (ed.) Handbook of Software
Reliability Engineering, pp. 359–399. McGraw-Hill, New York (1996)

14. IEEE Standard Classification for Software Anomalies, IEEE Std., Rev. 1044-2009 (1994)
15. Kitchenham, B.: Guidelines for performing systematic literature reviews in software

engineering. EBSE Technical Report, version 2.3, Software Engineering Group (2007)
16. IEEE Recommended Practice for Software Requirements Specifications, IEEE Std., Rev.

830-1993 (1998)
17. Shull, F., Rus, I., Basili, V.: How perspective-based reading can improve requirements

inspections. Computer 33(7), 73–79 (2000). (IEEE Computer Society Press)
18. Felderer, M., Beer, A.: Using defect taxonomies for testing requirements. IEEE Softw. IEEE

Computer Society Digital Library (2014)

Towards a Perspective-based Usage of Mobile Failure Patterns 31

An Exploratory Study on Risk Estimation
in Risk-Based Testing Approaches

Michael Felderer(B), Christian Haisjackl, Viktor Pekar, and Ruth Breu

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{michael.felderer,christian.haisjackl,viktor.pekar,ruth.breu}@uibk.ac.at

Abstract. Risk estimation is a core activity in every risk-based test-
ing process because it determines the significance of the risk values
assigned to tests and therefore the quality of the overall risk-based test-
ing process. In this paper we explore how risk estimation is performed
in risk-based testing approaches. For this purpose, we classify 17 col-
lected risk-based testing approaches according to predefined dimensions
risk item type, factors, criteria, estimation technique, risk scale, esti-
mation date, automation of measurement as well as tool support, and
analyze the classification. Results from this classification reveal that a
broad range of estimation variants is used but most approaches estimate
risk for functional artifacts, consider probability and impact explicitly,
use a quantitative scale and are based on manual measurement.

Keywords: Risk-based testing · Risk estimation · Risk assessment ·
Software risk management · Test management · Software testing

1 Introduction

Risk-based testing (RBT) is a type of software testing that explicitly considers
risks of the software product as the guiding factor to solve decision problems
in all phases of the test process, i.e., test planning, design, implementation,
execution and evaluation. It is a pragmatic and well-known approach to address
the problem of ever limited testing resources based on the intuitive idea to focus
test activities on those scenarios that trigger the most critical situations for a
software system [1]. Risk estimation is a core activity in every risk-based testing
process because it determines the significance of the risk values assigned to tests
and therefore the quality of the overall risk-based testing process.

A risk is the chance of injury, damage or loss and typically determined by
the probability of its occurrence and its impact. As it is the chance of something
happening that will have an impact on objectives [2], the standard risk formal-
ization [3] is based on the two factors probability (P), determining the likelihood
that a failure assigned to a risk occurs, and impact (I), determining the cost or
severity of a failure if it occurs in operation. Consequently, estimating the risk
exposure of a feature or component requires estimating both factors [4] either
implicitly or explicitly.
c© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 32–43, 2015.
DOI: 10.1007/978-3-319-13251-8 3

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches 33

Mathematically, the risk exposure R of an arbitrary asset a, i.e., something to
which a party assigns value, is determined by the formula R(a) = P (a) ◦ I(a).
The depicted operation ◦ represents a multiplication of two numbers or a cross
product of two numbers or letters (and can principally be an arbitrary mathe-
matical operation used to determine risk). In the context of testing, assets are
arbitrary testable artifacts also called risk items. For instance, requirements, ser-
vices, components or security risks are typical risk items for which risk exposure
values R are estimated.

Within testing, a risk item is assigned to test cases which are typically asso-
ciated with risk exposure values themselves derived from the risk items’ risk
exposure values. Risk exposure values are assigned to risk levels. A risk level [3]
indicates the criticality of risk items and serves the purpose to compare risk
items as well as to determine the use of resources. If explicitly considered, the
factors P and I may be estimated directly or indirectly via intermediate criteria
and metrics based on the Factor-Criteria-Metric model [5]. The metrics can be
measured manually or automatically.

The use of risk estimation for software testing is considered in several studies,
e.g., [4,6–8], but has so far not been investigated in a structured way. Kläs
et al. [6] present an industrial case study on planning and adjusting quality
assurance activities based on expert opinion as well as automatically collected
metrics. Felderer et al. [7] present an approach to integrate manual and automatic
measurement to estimate risks for testing purposes. Ramler and Felderer [4]
discuss experiences from a study on risk probability estimation based on expert
opinion. Finally, Haisjackl et al. [8] present a risk estimation tool for risk-based
testing called RisCal.

In this paper we fill the gap of missing structured investigation of risk esti-
mation for software testing by exploring how risk estimation is performed in
risk-based testing approaches. For this purpose, we classify available risk-based
testing approaches from literature according to predefined dimensions, and draw
conclusions from it. The paper is an initial exploratory study with the primary
aim to reveal the range of risk estimation approaches used for risk-based testing
according to the classification dimensions risk item type, factors, criteria, esti-
mation technique, risk scale, estimation date, automation of measurement, and
tool support defined in Sect. 3.

The remainder of this paper is structured as follows. Section 2 presents the
collected risk-based testing approaches. Section 3 defines classification dimen-
sions for risk estimation, classifies the risk-based testing approaches according
to them and discusses the results. Finally, Sect. 4 concludes and presents future
work.

2 Risk-Based Testing Approaches

The overall purpose of risk-based testing approaches is to test in an efficient and
effective way driven by risks. Every available risk-based testing (RBT) approach
therefore integrates risk estimation into the testing process. In [9], the authors

34 M. Felderer et al.

present a risk assessment framework for testing purposes based on a systematic
collection of 14 significant RBT approaches published in scientific literature.
The collection was created on the basis of four recently published comprehen-
sive journal articles on risk-based testing [10–13]. We take this collection of 14
RBT approaches as a basis and complement it by three relevant industrial RBT
approaches reported in the literature [10,11] but not considered in [9], i.e., the
approaches of Bach [14], Rosenberg [15], and van Veenendaal [16]. The result-
ing 17 risk-based testing approaches are shown in Table 1 ordered by the date
of their first publication. Some approaches, i.e., Redmill, Stallbaum, Souza, as
well as Felderer and Ramler are covered by more than one cited publication (see
entries with identifiers 05, 06, 07 and 16 in Table 1).

3 Risk Estimation in RBT Approaches

In this section we present the classification dimensions for risk estimation in
RBT approaches and their possible values (Sect. 3.1) as well as the concrete
classification of the RBT approaches of Table 1 (Sect. 3.2).

3.1 Classification Dimensions for Risk Estimation

In the following we present the applied classification dimensions (also referred to
as characteristics) for risk estimation in testing approaches, i.e., risk item type,
factors, criteria, estimation technique, risk scale, estimation date, automation of
measurement, and tool support. These characteristics and their possible values
or items are based on the risk model of Sect. 1 as well as the risk assessment
framework for testing purposes introduced in [9] and the taxonomy of risk-based
testing presented in [30].

Risk Item Type. The risk item type determines the risk items, i.e., the ele-
ments to which risk exposure values and tests are assigned. Risk items can be
of type generic risk, i.e., assets independent of a specific artifact like security
risks, test case, i.e., directly test cases themselves as in regression testing scenar-
ios, runtime artifact like deployed services, functional artifact like requirements
or features, architectural artifact like component, or development artifact like
source code file. The risk item type is determined by the test level. For instance,
functional or architectural artifacts are often used for system testing, and generic
risks for security testing.

Factors. Risk is determined by probability and impact resulting in a risk expo-
sure value (see Sect. 1). This classification characteristic captures which of these
factors are explicitly considered and estimated.

Criteria. Factors can be estimated indirectly via intermediate criteria like the
Factor-Criteria-Metric model [5]. These criteria can be business criteria like
monetary loss or technical criteria like complexity of components.

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches 35

Table 1. Overview of identified risk-based testing approaches based on [9]

ID Approach Description

01 Bach [14] The approach defines a heuristic risk estimation framework
for testing. The underlying risk analysis can be either
inside-out which begins with details of a situation (like
concrete weaknesses or threats) and identifies risks, or
outside-in which begins with a set of potential risks
(defined in a list) and matches them to details of the
situation. In addition, different ways to communicate
risks and organize testing around them are defined, i.e.,
check lists, risk/task matrix, and component risk matrix

02 Amland [17] The approach defines a process which consists of the steps
(1) planning, (2) identification of risk indicators,
(3) identification of cost of a fault, (4) identification
of critical elements, (5) test execution as well as
(6) estimation to complete. In addition, it is presented
how the approach was carried out in a large project

03 Rosenberg [15] The approach addresses risk-based testing of object
oriented software. Risk is defined as the product of the
severity of potential failure events and the probability of
its occurrence. The failure probability is measured based
on the metrics number of methods, weighted methods
per class, coupling between objects, response of a class,
depth of inheritance tree as well as number of children

04 Chen et al. [18] The approach defines a specification-based regression test
selection with risk analysis. Each test case is a path
through an activity diagram (its elements represent
requirements attributes) and has an assigned cost and
severity probability. The test selection consists of the
steps (1) assessment of the cost, (2) derivation of
severity probability, and (3) calculation of risk exposure
for each test case as well as (4) selection of safety tests.
The risk exposure of test cases grouped to scenarios is
summed up until one runs out of time and resources.
The approach is evaluated by comparing it to manual
regression testing

05 Redmill [19,20] The approach reflects on the role of risk for testing in
general and proposes two types of risk analysis, i.e.,
single-factor analysis based on impact or probability as
well as two-factor analysis based on both factors

06 Stallbaum
et al. [21,22]

The approach is model-based. Risk is measured on the
basis of the Factor-Criteria-Metrics model and
annotated to UML use case and activity diagrams from
which test cases are derived

(Continued)

36 M. Felderer et al.

Table 1. (Continued)

ID Approach Description

07 Souza
et al. [23,24]

The approach defines a risk-based test process including
the activities (1) risk identification, (2) risk analysis,
(3) test planning, (4) test design, (5) test execution, as
well as (6) test evaluation and risk control. In addition,
metrics to measure and control RBT activities are
given. The approach is evaluated in a case study

08 Zimmermann
et al. [25]

The approach is model-based and statistical using Markov
chains to describe stimulation and usage profile. Test
cases are then generated automatically taking the
criticality of transitions into account. The approach
focuses on safety-critical systems and its application is
illustrated by examples

09 Kloos et al. [26] The approach is model-based. It uses Fault Tree Analysis
during the construction of test models represented as
state machine, such that test cases can be derived,
selected and prioritized according to the severity of the
identified risks and the basic events that cause it. The
focus of the approach are safety-critical systems and its
application is illustrated by an example

10 Yoon and
Choi [27]

The approach defines a test case prioritization strategy for
sequencing test cases. Each test case is prioritized on
the basis of the product of risk exposure value manually
determined by domain experts and the correlation
between test cases and risks determined by mutation
analysis. The effectiveness is shown by comparing the
number and severity of faults detected to the approach
of Chen et al.

11 Zech [28] The approach is model-based and derives a risk model from
a system model and a vulnerability knowledge base. On
this basis a misuse case model is derived and test code
generated from this model is executed. The approach is
intended to be applied for testing cloud systems

12 Bai et al. [10] The approach addresses risk-based testing of service-based
systems taking the service semantics which is expressed
by an OWL ontology into account. For estimating
probability and impact dependencies in the ontology are
considered. The approach considers the continuous
adjustment of software and test case measurement as
well as of rules for test case selection, prioritization and
service evaluation. The approach is evaluated by
comparing its cost and efficiency to random testing

(Continued)

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches 37

Table 1. (Continued)

ID Approach Description

13 Felderer et al. [7] The approach defines a generic risk-based test process
containing the steps (1) risk identification, (2) test
planning, (3) risk analysis, (4) test design as well as
(5) evaluation. Steps (2) and (3) can be executed in
parallel. For this test process a risk assessment model
based on the Factor-Criteria-Metrics model is defined.
The metrics in this model can be determined
automatically, semi-automatically or manually. The
approach is illustrated by an example

14 van Veenen-
daal [16]

The approach called PRISMA (Practical Risk-Based
Testing) provides a test process improvement approach
based on product risk management. The standard
PRISMA process consists of the activities (1) initiating,
(2) planning, (3) kick-off meeting, (4) extended risk
identification, (5) individual preparation, (6) processing
individual scores, (7) consensus meeting, (8) define
differentiated risk-based test approach, (9) monitoring
and control, as well as (10) evaluation. Its risk model
considers factors for impact of defects, mainly
determined by business aspects, and their probability,
mainly determined by technical aspects

15 Wendland et
al. [1]

The approach is model-based. It formalizes requirements as
integrated behavior trees and augments the integrated
behavior tree with risk information. Then for each risk
an appropriate test directive is identified, and finally
both the risk-augmented integrated behavior tree and
the test directive definition are passed into a test
generator

16 Felderer and
Ramler [13,29]

The approach defines a process to stepwise introducing
risk-based testing into an established test process. On
this basis four stages of risk-based test integration are
defined, i.e., (1) initial risk-based testing including
design and execution of test cases on the basis of a risk
assessment, (2) risk-based test results evaluation, (3)
risk-based test planning, as well as (4) optimization of
risk-based testing. The approach is evaluated in a case
study

(Continued)

38 M. Felderer et al.

Table 1. (Continued)

ID Approach Description

17 Ray and
Mohapatra [12]

The approach defines a risk analysis procedure to guide
testing. It is based on sequence diagrams and state
machines. First one estimates the risk for various states
of a component within a scenario and then, the risk for
the whole scenario is estimated. The key data needed
for risk assessment are complexity and severity. For
estimating complexity inter-component state-
dependence graphs are introduced. The severity for a
component within a scenario is decided based on three
hazard techniques: Functional Failure Analysis,
Software Failure Mode and Effect Analysis and Software
Fault Tree Analysis. The efficiency of the approach is
evaluated compared to another risk analysis approach

Estimation Technique. The estimation technique determines how the risk
exposure is actually estimated and can be expert judgment or formal model [31].
The essential difference between formal-model-based and expert-judgment-based
effort estimation is the quantification step-that is, the final step that transforms
the input into the risk estimate. Formal risk estimation models are based on a
mechanical quantification step such as a formula or a test model. On the other
hand, judgment-based estimation methods are based on a judgment-based quan-
tification step-for example, what the expert believes is most risky. Judgment-
based estimation processes range from pure gut feelings to structured, historical
data and checklist-based estimation processes.

Risk Scale. The risk scale determines the level of risk measurement and can
be quantitative or qualitative. Quantitative risk values are numeric and allow
computations, qualitative risk values can only be sorted and compared. An often
used qualitatively scale for risk levels is low, medium, high [1].

Estimation Date. The estimation date determines when the risk estimation
takes place. This can be only initially as soon as risk items are available but
before testing activities are performed or iteratively in each test cycle.

Automation of Measurement. Risk estimation can be supported by metrics
which can be measured manually or automatically. The manual measurement
is often supported by strict guidelines and the automatic measurement is often
performed via static analysis tools.

Tool Support. Risk estimation can be supported by tools to perform it in
a more efficient way. Software tools supporting estimation for testing may be

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches 39

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

Generic Risk x x x x x x
Test Case x x
Runtime Artifact x
Functional Artifact
Architectural Artifact
Development Artifact

Risk Exposure x
Probability
Impact

Business Criteria x
Technical Criteria x

Expert Judgment
Formal Model x

Quantitative
Qualitative x

Initial
Iterative x

Manual Measurement
Automatic Measurement

x x x x
x x x x x x x x x
x x x x x x

x x x

x x
x x x x x x x x x x x x x x
x x x x x x x x x x x x x x

x x x x x x
x x x x x x x x x x x x x

x x x x x x x x x
x x x x x x x x x x

x x x x x x x x x x x
x x x x x

x x x x x x x x x
x x x x x x x

x x x x x x x x x x x x x x x
x x x x x

Spreadsheets x x x
Specific Risk Estimation Tool x x x
Test Management Tool

RBT Approach

RiskItemType

Factors

Criteria

Tool Support

Estimation Date

Estimation Technique

Risk Scale

Automation of Measurement

Fig. 1. Risk estimation characteristics and classification of risk-based testing
approaches of Table 1

spreadsheets, specific risk estimation tools, or test management tools either out
of the box or customized.

3.2 Classification of RBT Approaches

Figure 1 shows the resulting classification of the collected 17 risk-based testing
approaches according to the classification characteristics defined before. For each
classified risk-based testing approach several values can be selected for each
classification dimension, despite risk scale which is quantitative as soon as risk
values are numeric and estimation date which is either initial or iterative.

With regard to the risk item type, the classification shows that more than
50 % of the RBT approaches (9 out of 17) assign risks to functional artifacts,
i.e., requirements, use cases or system features. As most RBT approaches con-
sider system-level testing, functional artifacts are the natural type of risk items
supporting the early estimation of impact. To also consider probability on the
basis of architectural or development artifacts for risk estimation, traceability
between these artifacts and functional artifacts is required. Figure 2 shows the

40 M. Felderer et al.

6

2

5

9

6

3

0

1

2

3

4

5

6

7

8

9

10

Generic Risk Test Case Runtime Artifact Functional Artifact Architectural Artifact Development Artifact

Fig. 2. Risk item types and their frequencies in the classified risk-based testing
approaches

number of RBT approaches considering a specific risk item type. Besides func-
tional artifacts, also generic risks (used in 6 approaches), architectural artifacts
(used in 6 approaches) and runtime artifacts (used in 5 approaches) are quite
common as they also play an important role for functional or non-functional
system testing.

Most RBT approaches (14 out of 17) measure risks via probability and impact
factors, and only two approaches measure risk exposure values directly with-
out explicitly considering probability and impact factors. This indicates that
measuring risk via probability and impact, which is sometimes also called cost,
is widely used in established risk-based testing approaches. If probability and
impact are considered, then technical criteria like complexity of components are
often used to determine probability and business criteria like monetary loss are
often used to determine impact. But it is also common to only consider technical
or impact criteria. Most approaches (15 out of 17) are based on manual mea-
surement. Whenever metrics are measured automatically, then technical criteria
are considered for which automatic measurement is possible. For instance, the
technical criterion complexity of a component can be measured automatically by
the McCabe complexity [32] and the monetary loss can be estimated manually
by a customer.

The estimation techniques expert judgment and formal models are almost
equally applied. The used formal models are often based on fault models (e.g.,
in Zech [28]), the Factor-Criteria-Metrics approach (e.g., in Stallbaum et al.
[21,22]), or on explicit test models (e.g., in Kloos et al. [26]).

An astonishing large number of RBT approaches (11 out of 17) uses a
quantitative scale to measure risk. Several approaches, for instance Zech [28],
Felderer [7] and van Veenendaal [16], combine quantitative and qualitative scales
by mapping numeric risk exposure values to qualitative risk levels. These risk
levels often combine qualitative scales for probability and impact each with val-
ues low, medium and high, which are then displayed in a 3× 3 risk matrix.

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches 41

Case studies or a survey on risk-based testing in industry could investigate
whether the number of quantitative scales in industry is as high as in the ana-
lyzed publications.

About the same number of RBT approaches report initial (9 out of 17) and
iterative estimation (8 out of 17). So not in all cases risks are periodically re-
estimated to support decisions continuously but often are only used for initial
decisions. Nevertheless, most RBT approaches for which only initial estimation
is reported could also be estimated iteratively.

Only a few RBT approaches report on tool support. If tools are explicitly
mentioned, then spreadsheets or specific risk estimation tools are used. None of
the collected RBT approaches reports on the application of test management
tools for risk estimation. Again, an empirical study in industry could reveal the
actual situation in practice compared to the reported situation.

4 Conclusion

In this exploratory study we investigated how risk estimation is performed
in risk-based testing approaches. For this purpose, we classified 17 relevant
risk-based testing approaches from the literature according to the classification
characteristics risk item type, factors, criteria, estimation technique, risk scale,
estimation date, automation of measurement as well as tool support, and ana-
lyzed the results. The study reveals that a broad range of estimation variants
is used, but most approaches estimate risk on the system level for functional
artifacts, consider probability and impact explicitly, use a quantitative scale and
are based on manual measurement. Expert judgment is almost as common as
a formal estimation model, and so are initial and iterative measurement. Tool
support for risk estimation is hardly reported.

These results of our study have several consequences for future research as
well as the industrial application of risk-based testing. First, due to the high
importance of risk-based testing for functional artifacts on the system level,
research has to provide further traceability support to enable expressive for-
mal models, to integrate technical criteria and to increase automation for more
effective and efficient risk estimation. Second, our study shows that quantitative
risk scales are used which would in principle enable predictive analytics which
is very powerful but not commonly used in risk-based testing today. Therefore,
research could provide suitable predictive analysis approaches, for instance based
on bug prediction and system reliability models, and integrate them into risk-
based testing approaches applied in practice. Third, additional tool support,
which is according to our study rare at the moment, could support beforemen-
tioned traceability and predictive analytics but also estimation models as well
as the automatic and iterative risk estimation. Finally, our results are based on
reported academic and industrial RBT approaches. Case studies or a survey on
risk-based testing in industry could investigate commonalities and differences to
our results.

42 M. Felderer et al.

Acknowledgment. This research was partially funded by the research projects MOB-
STECO (FWF P 26194-N15) and QE LaB - Living Models for Open Systems (FFG
822740).

References

1. Wendland, M.F., Kranz, M., Schieferdecker, I.: A systematic approach to risk-based
testing using risk-annotated requirements models. In: ICSEA 2012, pp. 636–642
(2012)

2. Standards Australia/New Zealand: Risk Management AS/NZS 4360:2004 (2004)
3. ISTQB: Standard glossary of terms used in software testing, version 2.2. Technical

report, ISTQB (2012)
4. Ramler, R., Felderer, M.: Experiences from an initial study on risk probability

estimation based on expert opinion. In: IWSM-MENSURA 2013, pp. 93–97. IEEE
(2013)

5. McCall, J., Richards, P., Walters, G.: Factors in software quality. Technical report,
NTIS, vol. 1, 2 and 3 (1997)

6. Kläs, M., Elberzhager, F., Münch, J., Hartjes, K., von Graevemeyer, O.: Transpar-
ent combination of expert and measurement data for defect prediction: an indus-
trial case study. In: ICSE 2010. ACM (2010)

7. Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic
risk assessment for risk-based testing. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 159–180. Springer, Heidelberg (2012)

8. Haisjackl, C., Felderer, M., Breu, R.: Riscal-a risk estimation tool for software
engineering purposes. In: 39th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA 2013), pp. 292–299. IEEE (2013)

9. Felderer, M., Haisjackl, C., Pekar, V., Breu, R.: A risk assessment framework for
software testing. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS,
vol. 8803, pp. 292–308. Springer, Heidelberg (2014)

10. Bai, X., Kenett, R.S., Yu, W.: Risk assessment and adaptive group testing of
semantic web services. Int. J. Softw. Eng. Knowl. Eng. 22(05), 595–620 (2012)

11. Alam, M.M., Khan, A.I.: Risk-based testing techniques: a perspective study. Int.
J. Comput. Appl. 65(1), 42–49 (2013)

12. Ray, M., Mohapatra, D.P.: Risk analysis: a guiding force in the improvement of
testing. IET Softw. 7(1), 29–46 (2013)

13. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes.
Softw. Qual. J. 22(3), 543–575 (2014)

14. Bach, J.: Heuristic risk-based testing. Softw. Test. Qual. Eng. Mag. 11, 99 (1999)
15. Rosenberg, L., Stapko, R., Gallo, A.: Risk-based object oriented testing. In: Pro-

ceedings of 13th International Software/Internet Quality Week-QW 2 (2000)
16. van Veenendaal, E.: Practical Risk-Based Testing - The PRISMA Approach. UTN

Publishers (2012)
17. Amland, S.: Risk-based testing: risk analysis fundamentals and metrics for software

testing including a financial application case study. J. Syst. Softw. 53(3), 287–295
(2000)

18. Chen, Y., Probert, R.L., Sims, D.P.: Specification-based regression test selec-
tion with risk analysis. In: Proceedings of the 2002 Conference of the Centre for
Advanced Studies on Collaborative Research, p. 1. IBM Press (2002)

19. Redmill, F.: Exploring risk-based testing and its implications. Softw. Test. Verif.
Reliab. 14(1), 3–15 (2004)

An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches 43

20. Redmill, F.: Theory and practice of risk-based testing. Softw. Test. Verif. Reliab.
15(1), 3–20 (2005)

21. Stallbaum, H., Metzger, A.: Employing requirements metrics for automating early
risk assessment. In: Proceedings of MeReP07, Palma de Mallorca, Spain, pp. 1–12
(2007)

22. Stallbaum, H., Metzger, A., Pohl, K.: An automated technique for risk-based test
case generation and prioritization. In: Proceedings of the 3rd International Work-
shop on Automation of Software Test, pp. 67–70. ACM (2008)

23. Souza, E., Gusmao, C., Alves, K., Venancio, J., Melo, R.: Measurement and control
for risk-based test cases and activities. In: 10th Latin American Test Workshop,
pp. 1–6. IEEE (2009)

24. Souza, E., Gusmão, C., Venâncio, J.: Risk-based testing: a case study. In: 2010
Seventh International Conference on Information Technology: New Generations
(ITNG), pp. 1032–1037. IEEE (2010)

25. Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T., et al.: Risk-based statistical
testing: a refinement-based approach to the reliability analysis of safety-critical
systems. In: EWDC 2009 (2009)

26. Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical embedded
systems driven by fault tree analysis. In: ICSTW 2011, pp. 26–33. IEEE (2011)

27. Yoon, H., Choi, B.: A test case prioritization based on degree of risk exposure and
its empirical study. Int. J. Softw. Eng. Knowl. Eng. 21(02), 191–209 (2011)

28. Zech, P.: Risk-based security testing in cloud computing environments. In: ICST
2011, pp. 411–414. IEEE (2011)

29. Felderer, M., Ramler, R.: Experiences and challenges of introducing risk-based
testing in an industrial project. In: Bergsmann, J., Biffl, S., Winkler, D. (eds.)
SWQD 2013. LNBIP, vol. 133, pp. 10–29. Springer, Heidelberg (2013)

30. Felderer, M., Schieferdecker, I.: A taxonomy of risk-based testing. STTT 16(5),
559–568 (2014)

31. Jorgensen, M., Boehm, B., Rifkin, S.: Software development effort estimation: for-
mal models or expert judgment? IEEE Softw. 26(2), 14–19 (2009)

32. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976)

Change Impact Analysis
and Systems Testing

Improving Manual Change Impact
Analysis with Tool Support:

A Study in an Industrial Project

Thomas Wetzlmaier and Rudolf Ramler(&)

Software Analytics and Evolution, Software Competence Center
Hagenberg GmbH, Softwarepark 21, 4232 Hagenberg, Austria
{thomas.wetzlmaier,rudolf.ramler}@scch.at

Abstract. Change impact analysis is a challenging activity due to the usually
huge number of dependencies that have to be considered. Nevertheless it is still
often performed manually, relying on expert knowledge and intuition. The aim
of this paper is to evaluate the practice of manual change impact analysis and to
explore the benefits of tool support in the context of an industrial project.
A study has been conducted with experienced developers estimating the changes
necessary for implementing bug fixes and feature requests extracted from the
project’s history. The results of the manual change impact analysis showed a
low estimation performance, which could be improved with tool support to
achieve a higher number of hits at the expense of more false positives.

Keywords: Change impact analysis � Change prediction � Evolutionary
coupling

1 Introduction

Change impact analysis is an important task in the incremental development, mainte-
nance and evolution of software systems. It identifies the set of software entities that
need to be changed when fixing a bug or when enhancing an existing system with a
new feature. The information provided by change impact analysis supports a wide
range of activities including planning and estimation, program comprehension,
implementation, refactoring, as well as evaluation and testing.

In practice, analyzing the impact of changes can be a challenging task. Many
software systems show characteristics such as a large size in terms of code base and
implemented functionality, a high complexity due to feature interactions and techno-
logical dependencies, a rapid evolution due to a fast-paced agile development pro-
cesses, and a substantial legacy in terms of existing code without sufficient
documentation and regression tests.

In response, research has proposed numerous techniques and approaches for change
impact analysis, which involve static program analysis, dynamic analysis and mining of
software repositories [6, 9, 10]. Furthermore, many of these techniques and approaches
have been implemented in tools providing automated support for change impact
analysis, as their pure manual application is usually impractical or impossible due to the
large amount of dependencies to be analyzed.

© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 47–66, 2015.
DOI: 10.1007/978-3-319-13251-8_4

However, attempts to transfer change impact analysis techniques and accompa-
nying tools to industry are often unsuccessful. For example, van de Laar [12] reports a
case study conducted at Philips Healthcare MRI, where a tool implementing a state-
of-the art change impact analysis approach has been rejected by the practitioners.
Despite the tool’s excellent prediction performance, the practitioners claimed that
number of false positives and false negative produced by the tool was too high for
industry use. As a consequence, many software projects still lack a systematic approach
and subsequent automation support for change impact analysis. The pragmatic
approach is usually based on the estimations of experienced developers or the dis-
cussions conducted in team meetings.

To explore the applicability and benefits of change impact analysis in practice, we
conducted an experiment with experienced developers from an industrial project. The
developers were asked to estimate the changes necessary for implementing different
bug fixes or feature requests to the system. Change impact analysis was, first, per-
formed manually – as practiced in the project – and, second, with additional support by
a tool for exploring dependencies. The objective of the paper is to evaluate the practice
of manual change impact analysis, to explore the benefits of automation support in an
industrial context and, thereby, to contribute to the answer of the two general research
questions: (1) How well do experienced developers estimate changes? and (2) Can tool
support improve the developers’ estimates?

The paper is structured as follows. Section 2 provides the necessary background
and discusses the related work in the area of change impact analysis. Section 3
describes the organization of the study. The results of the study and its limitations are
described in Sect. 4. The discussion of the results follows in Sect. 5. Finally, Sect. 6
presents our conclusions and plans for future work.

2 Background and Related Work

This section provides a brief introduction to change impact analysis, commonly used
techniques and approaches, as well as suggested tool support. Furthermore, it presents
related studies discussing manual versus automated change impact analysis.

2.1 Change Impact Analysis Process

Change impact analysis has been defined by Bohner and Arnold [1] as “the process of
identifying the potential consequences of a change, or estimate what needs to be
modified to accomplish a change”. It is a key activity in the maintenance and evolution
of software systems. The inputs for change impact analysis are change requests in the
form of bug reports or requirement specifications together with the implementation of
the existing system. The change requests are typically specified in natural language by
the stakeholders, e.g., users, customers, or product managers. The output is a set of
software entities that have to be changed in order to implement the bug fix or
requirement. The general process for conducting a change impact contains three main
steps that produce the following change sets:

48 T. Wetzlmaier and R. Ramler

1. Initial Change Set: Each change request is analyzed to estimate the corresponding
initial change set. The change set includes the elements of the software system (e.g.,
modules, files, documents, tests) that need to be changed to fulfill the request.

2. Extended Change Set: Based on the initial change set, the impact set is determined
by estimating the ripple effects of the changes. The estimated impact set contains
the elements that are affected by the changes and, in consequence, also need to be
changed. Typically, the result is an extended change set including the elements from
the initially estimated change set as well as those from the estimated impact set.

3. Actual Change Set: Once the requested change has been implemented by modifying
all directly or indirectly affected elements, the actual change set can be derived. The
actual change set contains all elements that have actually been affected by the
change.

In practice, these three steps are not clearly separated and there are many inter-
actions as well as feedback loops between the different steps. For example, developers
usually start to think about potential ripple effects concurrently to estimating the initial
change set and, by exploring the potential impact of the changes they also reveal
elements that should be part of the initial change set. The feedback from exploring the
potential impact of a change may even lead to a discussion and adjustment of the
change request originally specified by the stakeholders. Therefore we do not distin-
guish between change set and impact sets in this study. Instead we consider the union
of these two sets when using the term change set.

2.2 Change Impact Analysis Techniques and Approaches

Since the work by Bohner and Arnold [1] in 1996, numerous further research works
have proposed and explored a wide range of techniques and approaches for change
impact analysis. The applied techniques range from (traditional) static and dynamic
analysis of a program’s structure and its execution to (more recent) approaches based
on information retrieval and mining of software repositories – as well as any combi-
nation thereof. Furthermore, the research extended change impact analysis for program
code to other types of software artefacts such as requirements, design or test cases and
supports various application scenarios such as software comprehension, debugging,
change propagation, or regression test selection.

Several attempts have been made to survey the existing research related to change
impact analysis and to provide an overview by means of comparative studies. Li et al.
[10] conducted a survey of change impact analysis techniques based on program source
code. The survey includes 30 publications describing a total of 23 change impact
analysis techniques from four perspectives based on software repository mining, exe-
cution information, traditional dependency analysis and coupling measurement.
Lehnert developed a taxonomy for software change impact analysis [8] and conducted
a comprehensive literature review [9] of 150 studies concerned with impact analysis of
source code, architecture and requirements models, and miscellaneous artifacts (e.g.,
documentation, bug trackers, configuration files). He classified the studies according to
the proposed taxonomy to provide a structured overview of the research field.

Improving Manual Change Impact Analysis with Tool Support 49

Cornelissen et al. [3] provided a literature survey on using dynamic analysis to support
program comprehension, which also includes articles closely related to change impact
analysis. They studied a total of 176 articles on program comprehension through
dynamic analysis published between 1999 and 2008.

All surveys found a variety of techniques, which derive dependency data from the
software change history stored in versioning systems such as CVS or Subversion
(SVN) by mining these repositories. Such dependencies can be utilized for change
impact analysis. Hence, the survey of Kagdi et al. [6] on mining software repositories
considers change impact analysis as a typical application. The survey includes many
studies that apply repository mining in context of change impact analysis and, thus,
also provides a good overview of related works. This survey is particularly relevant in
context of our work as we used an automated approach for change impact analysis
based on repository mining.

2.3 Tool Support for Change Impact Analysis

Many of the different techniques and approaches are implemented by tools that provide
automated or semi-automated support for program comprehension, feature localization
as well as change impact analysis [10]. Many prominent examples of such tools have
been released as research prototypes, which are described in detail in related
publications.

JRipples is presented in the work by Buckner et al. [2] as a tool that assists
programmers in performing impact analysis and change propagation when adding new
functionality to an existing software system in incremental software development and
evolution. The tool supports the analysis of Java programs. It parses the Java files to
extract class dependencies, which are the basis for estimating the impact throughout
incremental changes. JRipples has been implemented as a plug-in for the Eclipse and is
available via jripples.sourceforge.net.

EvoLens has been developed and described by Ratzinger et al. [14]. The tool
implements a visualization approach for explorations of evolution data across multiple
dimensions. The graphical representation allows navigating through the hierarchical
structure of a software system and along the time dimension by user-defined sliding
time windows. The data basis is established by mining the version history of the
analyzed system.

The tool Hipikat described by Cubranic and Murphy [4] is a recommender system
for software development based on a broad collection of information about a project’s
history. This information is extracted from various sources including change tasks (i.e.,
bug reports and feature requests recorded in Bugzilla), source file versions (e.g., in a
repository such as CVS), messages posted on developer forums (e.g., newsgroups and
mailing lists), and other project documents (e.g., design descriptions). Change impact
analysis is supported as one of the many different application scenarios of Hipicat [5].

Zimmermann et al. [20] presented the tool ROSE in context of their works on
mining version histories to guide software changes by making suggestions in the form
“programmers who changed these functions also changed …”. The tool is implemented
as an Eclipse plug-in. It extracts rules from a software system’s version history and,

50 T. Wetzlmaier and R. Ramler

after an initial change made in the development environment, it predicts further
locations to be changed.

The tool HATARI by Śliwerski et al. [17] takes this approach further by relating
changes extracted from the version history (such as CVS) to a bug database (such as
Bugzilla) to detect those locations where changes have been risky in the past. The risk
is made visible for developers by annotating source code with color bars by providing
the risk history of a particular location.

Chianti is an example where tool support for change impact analysis has been used
in context of testing. The design and implementation of the tool has been described by
Ren et al. [15]. The tool analyzes two versions of a Java software system and
decomposes their difference into a set of atomic changes. Change impact is then
reported in terms of affected (regression or unit) tests whose execution behavior may
have been modified by the applied changes.

For improving the task of change impact analysis in software development,
Pirklbauer et al. [13] suggested a change process accompanied by tool support. The tool
is based on dependencies between artifacts extracted by mining CVS and SVN software
repositories and analyzing check-ins as well as check-in comments. The resulting
dependencies can be graphically visualized, interactively explored and adjusted to
compute an estimated change and impact set (Fig. 1). We adopted the tool support for
our study, in which it has been used to compute the dependencies of the studied project
and to support the participants in performing change impact analysis tasks.

2.4 Manual Versus Automated Change Impact Analysis

In many software projects, change impact analysis is still a mainly manual activity
conducted by developers and architects. Kilpinen [7] examined the applicability of
proposed change impact analysis approaches and identified gaps in practical applica-
tions. To reflect the state of practice, she introduced the category of Experiential Impact

Fig. 1. Visualization of the dependency graph.

Improving Manual Change Impact Analysis with Tool Support 51

Analysis that refers to the widespread approaches based on tacit expert knowledge
prevalent in informal team discussions and design or change review meetings.

However, the large size of current software systems and the often enormous
number of dependencies between the involved entities limit the efficiency and effec-
tiveness of manual approaches in change impact analysis [8]. The experiments and case
studies conducted by Kilpinen [7] show that substantial benefits can be achieved when
improving the support for pure manual change impact analysis in the development
process. Nevertheless, there are only few studies of change impact analysis available
that actually involve human experts, and results from automated approaches are rarely
compared to results from manual approaches.

Lindvall and Sandahl [6] report on a long-term case study based on a development
project of a telecom support system. The authors analyzed how well experienced,
professional software developers are able to predict the necessary changes to imple-
mented new requirements in the existing system. An approach called “requirements-
driven impact analysis” was introduced to support developers in making predictions.
The authors found that the correctness of the prediction is high although the under-
prediction is worse than expected by well-regarded system developers. They also found
a great improvement potential in using the requirements-driven change impact analysis
approach, as the approach recommended additional classes to be taken into consider-
ation by developers when making predictions. The paper also mentions that a large
effort was necessary for the change impact analysis when using the tool-based
approach.

Toth et al. [16] conducted an empirical comparison of four static impact analysis
techniques (call information, static slice, SEA relation and co-changing files retrieved
from SVN repositories) and dependencies which were estimated by programmers. The
aim of the study was to investigate how well the different approaches supported pro-
gram comprehension and change impact analysis. They found that the different auto-
mated approaches produced quite heterogeneous results and the intersection between
the dependencies identified by the different approaches was rather small. Furthermore,
when comparing the precision and recall rates of automated approaches to the col-
lective programmer opinion they found a large deviation. They concluded “that no
single algorithm can be relied upon and that the human opinion may depend on many
different things” [16]. Finally, when allowing the developers to revise their estimated
based on the results produced by the freely available tool JRipples they found that there
was only a little improvement, but the programmers were generally open to accept new
dependencies.

3 Study Organization

This sections describes the industry context in which our study took place, and the
experiment design and procedures used to provide answers to the two initially stated
research questions: “(1) How well do experienced developers estimate changes?” and
“(2) Can tool support improve the developers’ estimates?”.

52 T. Wetzlmaier and R. Ramler

3.1 Analyzed Industry Project

The purpose of the software project that served as context for our study was the
development of an ERP application for the building and construction industry. The
project followed an agile process that fostered an incremental development over a
timespan of more than eight years. The size of the development team varied throughout
these years; most of the times it consisted of five to ten persons. In total, 15 different
developers were involved in the project.

The software system, client/server application, has been based on Java, Eclipse
RCP, JBoss, Hibernate, MySQL and various other technologies. The tools used by the
developers included the Eclipse development environment, a SVN software repository,
and Bugzilla for managing issues and change requests. These tools were tied together
with Mylyn, providing task and application lifecycle management support integrated in
Eclipse.

For our study, the project’s version history of six consecutive years was made
available. Table 1 shows the key characteristics of the project in this timespan as
extracted from the SVN repository. An earlier report [19] describes the techniques
applied for detecting dependencies and provides a detailed analysis of the change
history found in the project’s source code repository as well as the extracted depen-
dency information.

3.2 Selection of Change Impact Analysis Cases

The decision was to use past changes recorded in the project’s version history and to relate
them to real bug fixes and feature requests for our study. We divided the project’s history
in two parts: (1) The first five years were used to populate the dependency database that
built the data basis for the tool support. (2) The bug reports and feature requests selected
for the experiment were drawn from the changes resolved in the sixth year.

In order to obtain a representative selection of changes for our experiment, we
included cases with a variety of different characteristics (e.g., attribute values in the
Bugzilla database) such as type of change (bug report, change request or feature
request), severity and priority rating (high to low), number of check-ins required to
complete the change (1–23). Table 2 shows the cases that were selected.

Table 1. Data from 6 year project history.

Measure Values

Number of Check-Ins 70,070
Number of Developers 15
Check-Ins/Developer [avg.] 4,671
Number of Transactions 8,134
Check-Ins/Transactions [avg.] 8.61
Number of Files 28,914
Check-Ins/File [avg.] 2.42
Number of Check-Ins with Change-ID [abs.] 21,905

Improving Manual Change Impact Analysis with Tool Support 53

Three different types of change were distinguished in the Bugzilla database: “bug
report”, “change request” and “feature request”. Bug reports describe failures and the
related change set usually involves only a few modified files. Change requests affect the
existing functionality and, thus, the change set involves existing as well as newly added
files. The number of added files is generally low and typically also lower than the
number of changed files. Feature requests concern new functionality that has to be
added to the system. This is also reflected in the number of newly added files, which is
generally high and typically much higher than the number of changed files.

Table 2. Cases selected for the experiment.

54 T. Wetzlmaier and R. Ramler

3.3 Participants and Tool Support

The study participants were three developers from the project team who had partici-
pated in the team for several years. Each of them had extensive knowledge about the
system and its implementation. Thus, when assigning the cases to be estimated to
participants, we made sure that none of the participants was assigned a case that he had
actually resolved in the past.

In a preparation meeting, we explained the details and purpose of the experiment to
the participants. Furthermore, they received a brief hands-on tutorial introducing the
provided tool support for change impact analysis as described in [1]. When conducting
the experiment, the participants used the provided tool as well as their personal
development environment for examining the source code for potentially necessary
changes.

3.4 Experiment Setup and Execution

Each participant received a share of the selected cases (a mix of bug reports, change
and feature requests) together with the system’s source code in the state before the
corresponding changes had been made. Each case included the full description and any
optional attachments from the Bugzilla database.

The goal of the estimate was defined as follows: “Identify the files in the code base
that have to be changed in order to implement the specified bug fix, change or feature
request.” For each case the participants were asked to conduct series of estimates
producing five result sets. Figure 2 provides an overview of the sequence in which the
estimates were made and how they depend on each other.

1. ICS-Adhoc (Ad hoc Initial Change Set): The first estimate that had to be made was
an ad hoc estimate based on the description of the requested change and the sys-
tem’s file structure. The participants were asked to produce the estimate spending
only a few minutes on the case. The time limit reflects the typical situation of giving
a quick advice when asked about a change.

2. ICS-Informed (Informed Initial Change Set): For the second estimate of the same
case, the participants were asked to take as much time as needed for carefully
analyzing the necessary changes in the code base. The participants were able to
consult the documentation of the system and to use their development environment
to investigate implementation details in order to identify relevant files and depen-
dencies. This step reflects the typical change analysis approach in the project.

3. ECS-Informed (Extended Change Set derived from the Informed Initial Change
Set): The tool support was used to extend the initial change set produced in the
informed estimate. The tool computed the potential impact of the initial change set
and suggested additional files that may also need to be changed. All changes
suggested by the tool were included in the change set produced in this step to reflect
the (worst) case of overestimation.

4. ECS-Revised (Revised Extended Change Set derived from the Informed Initial
Change Set): The participants were asked to revise the previously extended change
set that included all changes suggested by the tool. The participants were encouraged

Improving Manual Change Impact Analysis with Tool Support 55

to “play” with the tool and to fine-tune the computed results. In the end, the revision
could be anything from keeping the tool’s suggestions to removing them entirely, as
well as reconsidering the initial change set produced by the informed estimated under
the light of the suggestions made by the tool. This step reflects the suggested use of
the tool support for change impact analysis.

5. ECS-Adhoc (Ad hoc Extended Change Set): Finally, the tool support was also used
to extend the initial change set produced in the ad hoc estimate. Again, all changes
suggested by the tool were included in the change set. The obtained result reflects
the application of the tool by an uninformed user seeking a quick “second opinion”.

3.5 Evaluation Procedure and Measures

Each of the five change sets is compared to the actual change set (ACS). The actual
change set is the set of actually changed files in the SVN repository associated with the
resolved bug report, change or feature request in the Bugzilla database. For the com-
parison we use the measures Recall and Precision, which are frequently used in
information retrieval [16]. Recall is the fraction of correctly estimated changes in the
actual change set. It is computed for an estimated change set xCS and the actual change
set ACS as

Recall xCSð Þ ¼ xCS \ ACSj j=jACSj ð1Þ

Precision is the fraction of correctly estimated changes in the estimated change set.
It is computed for an estimated change set xCS and the actual change set ACS as

Precision xCSð Þ ¼ xCS \ ACSj j=jxCSj ð2Þ

These two measures cannot be evaluated separately as an increase of Recall usually
leads to a decrease in Precision and vice versa. In most cases the preference of one
measure over the other depends on the users’ priorities and risk models. In our

Fig. 2. Estimates made in the experiment (black arrows = sequence of estimates, blue dashed
arrows = comparisons for evaluation) (Color figure online).

56 T. Wetzlmaier and R. Ramler

evaluation, we value Recall higher than Precision since we assume that false positive
(superfluous) estimates can be easily identified and discarded when implementing the
change, while false negative (missing) estimates will most likely remain unnoticed also
in later activities.

The Precision and Recall values of the individual estimates are aggregated over all
cases for each of the five change set types to support the comparisons shown as blue
dashed lines in Fig. 2. Based on these comparisons, the following questions will be
discussed:

1. How do developer estimates improve when they have enough time for analyzing the
changes? (ICS-Adhoc vs. ICS-Informed).

2. How do the suggestions made by the tool improve the ad hoc estimates of the
developers? (ICS-Adhoc vs. ECS-Adhoc).

3. How do the suggestions made by the tool improve the informed estimates of the
developers? (ICS-Informed vs. ECS-Informed).

4. How do developers revise and improve their informed estimates with tool support?
(ICS-Informed vs. ECS-Revised).

5. Is it better to invest time and effort in manually analyzing changes or to rely on tool
suggestions? (ECS-Adhoc vs. ICS-Informed).

4 Results

Table 3 shows the evaluated estimates for the 27 selected and processed cases. Each
case is identified by the case number given in the first column (Case No.) of the table.
The second column (ACS size) reports the size of the actual change set, i.e., the number
of actually changed files in the code base. The actual change set served as reference for
evaluating the participants’ estimates.

For each case the participants provided estimates for the five different change sets
described in Sect. 3.4 (columns ICS-Adhoc, ESC-Adhoc, ICS-Informed, ECS-Informed
and ECS-Revised). Exceptions (marked as gray cells in the table) are the cases #1 for
which only the ad hoc estimate ICS-adhoc and the derived extension were provided,
and the cases #25, #26 and #27 for which only the informed estimate ICS-Informed and
the subsequent estimates were provided. In these cases the participants simply forgot to
record the most recent list of identified files before submitting the estimates.

The estimates for each change set are described by the values Size, Recall and
Precision (see corresponding columns in the table). Size is the number of files in the
change set. The measures Recall and Precision were computed as explained in
Sect. 3.5. A considerable number of change sets do not contain any correctly estimated
change. Thus, the Recall (and the Precision) of these estimates is 0 %. To clearly
distinguish these estimates from those estimates that had at least one hit, the estimates
with a Recall > 0 (hit) are printed in bold font with a green background.

For each column, the measures min, max, median, average and standard deviation
have been computed. Furthermore, recall > 0 shows the percentage of estimates with at
least on correctly identified change for each of the five different change sets. The
statistical measures are heavily impacted by the large number of cases for which the

Improving Manual Change Impact Analysis with Tool Support 57

participants were not able to provide correct estimates (Recall = Precision = 0.00). To
gain a better insight about the more successful cases with Recall and Precision val-
ues > 0, we calculated the statistics for these cases separately. The results are depicted
for Recall in Fig. 3 and for Precision in Fig. 4.

5 Discussion

This section discusses the estimation results in terms of the five comparisons suggested
in Sect. 3.5 and highlights the main observations. Furthermore, it lists the limitations of
the study and the involved threats to validity.

Table 3. Overview of the estimation results (highlighted cells indicate a Recall > 0, gray cells
indicate missing data).

58 T. Wetzlmaier and R. Ramler

5.1 Comparisons

An overview of the comparisons discussed in the following is provided in Table 4. The
table shows how the compared estimates (columns left and right) have been produced,
i.e., by human estimation based on manual change analysis (H) or with the automated
support of the tool (T). Furthermore, the percentage values in the columns Recall delta
and Precision delta show the delta between the right and the left hand side of the
comparison. For example, by extending the ICS-Adhoc change set to ICS-Informed the
median Recall increases by +13 % and the median Precision by +67 %.

(1) ICS-Adhoc vs. ICS-Informed: How do developer estimates improve when they have
enough time for analyzing the changes? We found that a thorough analysis is able to
increase Recall and Precisions at the same time, so it is most valuable for
improving estimates of the initially proposed change set. This finding is based on
following observations:

Fig. 3. Recall for cases with at least one correct estimate.

Fig. 4. Precision for cases with at least one correct estimate.

Improving Manual Change Impact Analysis with Tool Support 59

• The number of cases in which the developers were not able to identify any of the
actually changed files was quite high. With ad hoc estimates they achieved a
Recall > 0 only in 46 % of the cases – 11 out of 24.

• The developers were able to improve through a detailed analysis and found four
more such cases (#11 to #14) with at least one changed artefact, thus, increasing the
share of cases with a Recall > 0 to 50 %. In one case (#16), however, the user
removed the one correctly estimated change and selected a not affected artefact.

• The size of both, the ad hoc and the informed estimated change sets is almost the
same. The average size increased from 3.3 files to 3.4 files. In some cases a few files
were added, in others a few files were removed, or the set was kept the same.

• The average Recall rose from 17 % to 24 %, and the average Precision from 30 % to
39 %. This is the only comparison where an increase in both measures, Recall and
Precision, could be observed.

(2) ICS-Adhoc vs. ECS-Adhoc: How do the suggestions made by the tool improve the
ad hoc estimates of the developers? We found that the automation support consid-
erably increases the size of the estimated change set, which results in a higher
Recall but a sharp decrease of the Precision. This finding is based on following
observations:

• The tool extended the average size of the change set estimated by the developers
from an average of 3.3 files to an average of 62.6 files when all tool suggestions
were added. The maximum size of the extended set is 272 files even though the
initial size was 3 files. Yet for six cases the tool provided no or only a small number
of suggestions (0–3 additional files).

• In two cases (#11, #18) in which the users were unsuccessful in providing a correct
initial estimate (Recall = 0), the tool support was able to improve the initial estimate
and produced an extended change set that included actually affected files. In both
cases the size of the estimated change set had been tremendously increased, from 3
to 85 files and from 3 to 98 files respectively.

• The average Recall more than doubled from 17 % to 40 % but the average Precision
dropped from 30 % to 6 %. The situation remains the same when ignoring all
unsuccessful estimates (Recall = 0).

(3) ICS-Informed vs. ECS-Informed: How do the suggestions made by the tool improve
the informed estimates of the developers? We again found that the automation

Table 4. Overview of comparisons.

Left Right Comparison Recall
delta

Precision
delta

H H (1) ICS-Adhoc vs. ICS-Informed 13 % 67 %
H T (2) ICS-Adhoc vs. ECS-Adhoc 55 % −31 %
H T (3) ICS-Informed vs. ECS-Informed 67 % −95 %
H H + T (4) ICS-Informed vs. ECS-Revised 334 % −67 %
T H (5) ECS-Adhoc vs. ICS-Informed −42 % 98 %

60 T. Wetzlmaier and R. Ramler

support considerably increases the size of the estimated change set, which results
in a moderately higher Recall but a sharp decrease of the Precision. The tool
support had the same effect as when applied to the ad hoc estimates. These findings
are based on following observations:

• All observations and, thus, also our findings are very similar to those made in the
previous comparison (ICS-Adhoc vs. ECS-Adhoc), even though that basis on which
the tool had been applied had been considerably improved (see ICS-Adhoc vs. ICS-
Informed).

• The tool extended the average size of the change set estimated by the developers
from an average of 3.4 files to an average of 59.1 files when all tool suggestions
were added. The maximum was again the case with 272 files.

• Three previously unsuccessful predictions (#15to #17) were improved to a
Recall > 0 by the tool support. Again, each improvement seems to be the result of a
massive increase in the size of the change set.

• The average Recall also approximately doubled, in this instance from 24 % to 47 %
and the average Precision dropped again notably, in this instance to about one fifth
from 39 % to 8 %.

(4) ICS-Informed vs. ECS-Revised: How do developers revise and improve their
informed estimates with tool support? This comparison reflects a complete change
impact analysis process including the use of tool support. We found that the inter-
active application of the tool resulted in a slight improvement of the Recall that is
weakened by a loss of Precision. In a setting where Recall is preferred over
Precision, these results can still be considered moderately positive. Three appli-
cation scenarios can be distinguished, in which the users mainly (a) accepted,
(b) revised or (c) discarded the suggestions of the tool. These findings are based on
following observations:

• The average size of the change set increased from 3.4 files to 22.2 files, with a
maximum of 145 files. This increase is due to the interactive revision of the sug-
gestions made by the tool (see ICS-Informed vs. ECS-Informed).

• In two cases (#15, #16) the initially unsuccessful estimate of the developer could be
turned into an estimate with a Recall > 0 based on the suggestions provided by the
tool. In another case (#17), however, the correct suggestion of the tool was dis-
carded in the revision process.

• The tool suggestions based on an informed estimate and combined with the revision
by the developers led to a slight decrease in the overall prediction performance,
which has to be attributed to the loss of Precision (39 %–23 %) that could not be
compensated by the increase of the Recall (24 %–36 %).

• When the developers interactively reworked the tool’s suggestions, they always
improved the Precision. Thereby, in several instances, the Recall was decreased
when compared to the full set of suggestions produced by the tool. The revision of
the tools suggestions (ECS-Informed) is therefore essential for improving the
estimates.

• For five cases the tool was not able to provide a suggestion. In the other 21 cases the
tool extended the developers’ initial estimate; 7–269 suggested files were added.

Improving Manual Change Impact Analysis with Tool Support 61

In 6 cases the developers decided to keep the added suggestions almost unchanged
(0–6 % of the suggestions were removed), in 7 cases the developers discarded the
suggestions almost entirely (0–6 % were kept), and in 8 cases the suggestions were
revised (on average 49 % were removed).

(5) ECS-Adhoc vs. ICS-Informed: Is it better to invest time and effort in manually
analyzing changes or to rely on tool suggestions? We found that a manual
improvement of the initial estimates achieves better results than solely relying on
the tool’s suggestions. This finding is based on following observations:

• The comparison of the Recall values (40 % vs. 24 %) suggests a potential advantage
of the tool, which is due to the massive number of additional suggestions. The tool
support led to more than 1,400 additional files, while the developers’ informed
estimates led to only 1 additional file. The consequences are also clearly visible in
the different Precision values (6 % with the added tool suggestions vs. 39 % for
informed manual estimates).

• However, the effects of the informed estimates seem to run even deeper. While the
tool support helped to find actually affected files in two cases for which the initial ad
hoc estimates of the developers were initially unsuccessful (Recall = 0), their
informed estimates improved four such cases. One can therefore assume that in the
process of making a more informed estimation the developers also gain additional
insights and knowledge about the system and the relevant dependencies.

A. General Observations and Lessons Learned
In the course of our study we made additional observations that led to the following

insights.

• A high number of estimates are “unsuccessful”, i.e., do not identify any of the
actually changed files: In half of the cases, the developers were not able to produce
an estimation that contained even a single correctly estimated file. This generally
high number of “unsuccessful” estimates existed in both of the scenarios, regardless
whether estimates were made ad hoc or informed. This observation seems in
consent with the observation mentioned by Lindvall and Sandahl, where the
developers were “surprised by the large discrepancies between the prediction and
the actual outcome” [11].

• The main benefit of the automation support is the large number of additional
suggestions: The tool generally demonstrated the typical effect of “conservatively”
increasing the recall at the cost of decreasing the precision. This effect was
observable in an equal manner in the ad hoc and in the informed estimation sce-
nario. In the latter one, however, it provided the benefit that the best estimates of the
developers, for which they had “as much time as needed for carefully analyzing the
necessary changes in the code base”, could still be further improved.

• Automation support provides a starting point for further manual change impact
analysis: The tool cannot be productively applied without revising the generated
results. This revision can be done as part of the change impact analysis process or it
can be left to the developer actually implementing the change. In either case the
tool’s suggestions are mainly a starting point guiding the user to the potentially

62 T. Wetzlmaier and R. Ramler

relevant dependencies. The actual investigation of these dependencies always incurs
further manual work. The time and effort necessary for producing accurate estimates
can therefore be quite high. In our study, the participants required four to six hours
each for the assigned cases.

5.2 Limitations and Threats to Validity

The industrial context of our study and its limitations have to be considered when
interpreting the results and drawing conclusions.

The tool used in the study to support the developers in making and revising
estimates was at the level of a stabilized prototype. The dependency database was
constructed and evaluated before the experiment to make sure the data basis was
correct and complete. Nevertheless, the included dependencies were entirely based on
the project’s change history and may not capture the entire set of existing dependencies
[18]. For example, the repository mining approach implemented by the tool did not
analyze the static dependencies in the source code. In the experiment the participants
used their development environment to analyze relevant dependencies of this type.

Furthermore, for accessing and analyzing the dependency data stored in the tool’s
database, participants had to use the tool’s graphical interface. The effort for under-
standing and using the tool as well as usability issues of the tool support such as its low
performance may have had an impact on the analysis and the estimation results.

The study was conducted ex-post, based on historical project data. Developers were
assigned cases to be estimated based on bug reports and feature requests from the
project’s history. We made sure that none of the developers was assigned a case that he
had actually resolved in the past. This strategy avoided that developers remembered
their actual changes instead of estimating the changes. However, it introduced a bias
since developers may have been assigned cases outside of their main area of
knowledge.

The ex-post approach of the study required developers to “travel back in time” and
to analyze the change impact in context of the specific historic state of the system.
Hence, the estimation performance of the developer may have been influenced by the
additional effort required to recollect relevant details and dependencies “at that time”.

The study has been conducted in context of a specific project. The selected cases as
well as the involved tasks can be considered representative for this project. The
involved developers had been involved in the project for several years and contained a
detailed knowledge about the software system and excellent technical skills. However,
the findings of the study may not be generalizable beyond projects and organizations
with similar characteristics.

6 Conclusions and Future Work

Despite the usually huge number of dependencies in modern software systems, change
impact analysis is still a mainly manual task relying on expert knowledge and intuition.
In this paper we reported the results of an experiment that involved experienced

Improving Manual Change Impact Analysis with Tool Support 63

developers from an industrial project estimating the changes necessary for imple-
menting bug fixes and feature requests extracted from the project’s history. The
developers were asked to provide a series of change estimates ranging from pure
manual estimates conducted in an ad hoc fashion to estimates based on a thorough tool-
supported analysis of the dependencies.

The results related to the first research question “(1) How well do experienced
developers estimate changes?” can be summarized as follows. First of all, the results
show a surprising low prediction performance by the developers. We found a high
number of cases – 46 % of all estimates – in which the developers were not able to
identify at least one of the files that were changed when the bug report or feature
request had actually been resolved. The results appear less disastrous when the “cat-
egory of unsuccessful estimates” is ignored; for those cases where the developers “had
a clue” when making estimations the best average recall values reached 62 %, best
average precision 78 %. The positive aspect we found is that prediction results
improved with an increasing investment of time and effort in estimating the changes.

Concerning the second research question “(2) Can tool support improve the
developers’ estimates?” the results indicate a general overestimation when the sug-
gestions produced with the tool were added to the developers’ estimates. The average
size of the estimated change sets rose from initially 3 to about 60 files to be considered;
in several cases the change set was extended to far more than 100 files. The observable
effect was an increase of the recall accompanied by a sharp decrease of the precision.
The benefit of the tool support is therefore limited. Nevertheless, developers favoring a
“conservative” estimation scenario may still consider these results as an acceptable
improvement [11]. Thus, when the developers had the chance to revise the extended
change set, we observed several cases in which they decided to keep most of the added
suggestions.

By studying one specific project, we were able to present only a glimpse in the
situation prevalent in practice. The replication and extension of this study is strongly
recommended and part of our plans for future work. Moreover, the tool support used in
this study may have introduced limitations that are specific for the approach imple-
mented in this particular tool. In our future work we intend to apply additional tools to
extend the range of automation support.

Acknowledgements. This work has been supported by the competence centers program
COMET of the Austrian Research Promotion Agency (FFG). Furthermore, the authors would
like to thank the developers involved in the analyzed industry project for participating in the
study.

References

1. Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society
Press, Los Alamitos (1996)

2. Buckner, J., Buchta, J., Petrenko, M., Rajlich, V.: JRipples: a tool for program
comprehension during incremental change. In: Proceedings of the 13th International
Workshop on Program Comprehension (IWPC ’05), pp. 149–152. IEEE Computer Society
(2005)

64 T. Wetzlmaier and R. Ramler

3. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A systematic
survey of program comprehension through dynamic analysis. IEEE Trans. Softw. Eng. 35
(5), 684–702 (2009)

4. Cubranic, D., Murphy, G.C.: Hipikat: recommending pertinent software development
artifacts. In: Proceedings of the 25th International Conference on Software Engineering
(ICSE ’03), pp. 408–418 (2003)

5. Cubranic, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: a project memory for software
development. IEEE Trans. Softw. Eng. 31(6), 446–465 (2005)

6. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. J. Softw. Maint. Evol. 19(2),
77–131 (2007)

7. Kilpinen, M.S.: The emergence of change at the systems engineering and software design
interface: an investigation of impact analysis. Ph.D. thesis, University of Cambridge,
Cambridge, UK (2008)

8. Lehnert, S.: A taxonomy for software change impact analysis. In: Proceedings of the 12th
International Workshop on Principles of Software Evolution and the 7th Annual ERCIM
Workshop on Software Evolution (IWPSE-EVOL 2011), Szeged, Hungary, September
2011, pp. 41–50 (2011)

9. Lehnert, S.: A review of software change impact analysis. Technical report, Technische
Universität Ilmenau (2011). URN: urn:nbn:de:gbv:ilm1-2011200618

10. Li, B., Sun, X., Leung, H., Zhang, S.: A survey of code-based change impact analysis
techniques. Softw. Test. Verification Reliab. 23, 613–646 (2013)

11. Lindvall, M., Sandahl, K.: How well do experienced software developers predict software
change? J. Syst. Softw. (archive) 43(1), 19–27 (1998). Elsevier Science Inc., New York,
NY, USA

12. Van de Laar, P.: Transferring evolutionary couplings to industry. In: Van de Laar, P., Punter,
T. (eds.) Views on Evolvability of Embedded Systems, pp. 69–88. Embedded Systems.
Springer, Rotterdam (2011)

13. Pirklbauer, G., Fasching, Ch., Kurschl, W.: Improving change impact analysis with a tight
integrated process and tool. In: 7th International Conference on Information Technology:
New Generations (ITNG 2010), Las Vegas, Nevada, USA, April 2010, pp. 12–14 (2010)

14. Ratzinger, J., Fischer, M., Gall, H.: EvoLens: lens-view visualizations of evolution data. In:
Proceedings of the 8th International Workshop on Principles of Software Evolution (IWPSE
’05), pp. 103–112. IEEE Computer Society (2005)

15. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: a tool for change impact
analysis of java programs. In: Proceedings of the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’04),
pp. 432–448 (2004)

16. Rijsbergen, C.J.V.: Information Retrieval. Butterworths, London (1979)
17. Sliwerski, J., Zimmermann, T., Zeller, A.: HATARI: raising risk awareness. In: Proceedings

of the 10th European Software Engineering Conference, 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE), Lisbon (2005)

18. Tóth, G., Hegedűs, P., Beszédes, Á., Gyimóthy, T., Jász, J.: Comparison of different impact
analysis methods and programmer’s opinion: an empirical study. In: Proceedings of the 8th
International Conference on the Principles and Practice of Programming in Java (PPPJ ’10),
New York, NY, USA, pp. 109–118 (2010)

Improving Manual Change Impact Analysis with Tool Support 65

19. Wetzlmaier, T., Klammer, C., Ramler, R.: Extracting dependencies from software changes:
an industry experience report. In: Proceedings of the 2013 Joint Conference of the 23rd
International Workshop on Software Measurement and the 8th International Conference on
Software Process and Product Measurement (IWSM-Mensura). IEEE Computer Society
(2014)

20. Zimmermann, T., Zeller, A., Weißgerber, P., Diehl, S.: Mining version histories to guide
software changes. IEEE Trans. Softw. Eng. 31(6), 429–445 (2005). IEEE Press

66 T. Wetzlmaier and R. Ramler

Heterogeneous Systems Testing Techniques:
An Exploratory Survey

Ahmad Nauman Ghazi(B), Kai Petersen, and Jürgen Börstler

Blekinge Institute of Technology, Karlskrona, Sweden
{nauman.ghazi,kai.petersen,jurgen.borstler}@bth.se

Abstract. Heterogeneous systems comprising sets of inherent subsys-
tems are challenging to integrate. In particular, testing for interoperabil-
ity and conformance is a challenge. Furthermore, the complexities of such
systems amplify traditional testing challenges. We explore (1) which tech-
niques are frequently discussed in literature in context of heterogeneous
system testing that practitioners use to test their heterogeneous systems;
(2) the perception of the practitioners on the usefulness of the techniques
with respect to a defined set of outcome variables. For that, we conducted
an exploratory survey. A total of 27 complete survey answers have been
received. Search-based testing has been used by 14 out of 27 respondents,
indicating the practical relevance of the approach for testing heteroge-
neous systems, which itself is relatively new and has only recently been
studied extensively. The most frequently used technique is exploratory
manual testing, followed by combinatorial testing. With respect to the
perceived performance of the testing techniques, the practitioners were
undecided regarding many of the studied variables. Manual exploratory
testing received very positive ratings across outcome variables.

1 Introduction

Over the years, software has evolved from simple applications to large and com-
plex system of systems [8]. A system of systems consists of a set of individual
systems that together form a new system. The system of systems could contain
hardware as well as software systems. Recently, system of systems has emerged
as a highly relevant topic of interest in the software engineering research com-
munity investigating its implications for the whole development life cycle. For
instance, in the context of system of systems, Lane [20] studied the impact on
development effort, Ali et al. [2] investigated testing, and Lewis et al. [22] pro-
posed a process of how to conduct requirements engineering.

Systems of systems often exhibit heterogeneity [21], for instance, in imple-
mentation, hardware, process and verification. For the purpose of this study, we
define a heterogeneous system as a system comprised of multiple systems (system
of systems) where at least one subsystem exhibits heterogeneity with respect to
the other systems [13]. Heterogeneity may occur in terms of different system
complexities [33], programming languages and platforms [44], types of systems
[10], system supply (internal vs. third party) [19], development processes and
c© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 67–85, 2015.
DOI: 10.1007/978-3-319-13251-8 5

68 A.N. Ghazi et al.

distribution among development sites [15]. However, no frameworks are avail-
able as yet to measure these heterogeneity dimensions. The system of systems
approach taken in development of heterogeneous systems give rise to various
challenges due to continuous change in configurations and multiple interactions
between the functionally independent subsystems. The challenges posed to test-
ing of heterogeneous systems are mainly related to interoperability [28,44], con-
formance [28] and large regression test suites [2,6]. Furthermore, the inherent
complexities of heterogeneous systems also pose challenges to the specification,
selection and execution of tests.

In recent years, together with the emergence of system of systems research
testing of heterogeneous systems received an increased attention from the
research community. However, solutions proposed have been primarily evaluated
from the academic perspective, and not the viewpoint of the practitioner.

In this study, we explored the viewpoint of practitioners with respect to
testing heterogeneous systems. Two main contributions are made:

C1: Explore which testing techniques investigated in research are used by practi-
tioners. Thereby, we learn which techniques practitioners are aware of, and
which ones are most accepted.

C2: Explore the perception of the practitioners of how well the used techniques
perform with respect to a specified and frequently studied set of outcome
variables. Understanding the practitioners’ perception of the techniques rel-
ative to each other allows to identify preferences from the practitioners’
viewpoint. The findings will provide interesting pointers for future work
to understand the reasons for the findings, and improve the techniques
accordingly.

The contributions are made by using an exploratory survey to capture the
opinion of practitioners.

The remainder of the paper is structured as follows: Sect. 2 presents the
related work. Section 3 outlines the research method, followed by the results in
Sect. 4. Section 5 presents a discussion of observations from the results. Finally,
in Sect. 6, we conclude this study.

2 Related Work

The related work focuses on testing of heterogeneous systems, first discussing
testing of heterogeneous systems as such, followed by reviewing solutions of
how to test them. However, no surveys could be found that discuss any aspect
of testing of heterogeneous systems.

2.1 Testing in Heterogeneous Systems

Testing heterogeneous systems is primarily considered to be a challenge ema-
nating from the problem of integration and system-level testing [9,41]. There-
fore, the current research in the area of heterogeneous systems considers it as

Heterogeneous Systems Testing Techniques: An Exploratory Survey 69

a subsystem interaction issue [41]. It is also observed that solving the inher-
ent complexities underlying the testing heterogeneous systems is not a priority.
Therefore, most of the related research is focused on addressing the acciden-
tal complexities in testing of heterogeneous systems by tuning and optimizing
different testing techniques and methods.

A number of research studies discuss system-level testing in general terms
without addressing specific test objectives. For automated functional testing,
Donini et al. [9] propose a test framework where functional testing is conducted
in an external simulated environment based on service-oriented architectures.
The researchers demonstrated that functional system testing through simulated
environments can be an approach to overcome the challenge of minimizing test
sets. The test sets identified were representative of the real operational usage
profile for the system. Wang et al. [41] study heterogeneous systems that exhibit
heterogeneity at the platform level and discussed different factors considered in
system-level testing of heterogeneous systems. Other than the studies focusing
on system and integration testing, a relatively small set of studies attempt to
discuss the problem of testing in heterogeneous systems in other test phases. Mao
et al. [23] study this problem in the unit test phase whereas Diaz [7] addresses
the problem of testing heterogeneous systems in the acceptance testing phase.

Research literature related to testing of heterogeneous systems frequently dis-
cusses the interoperability as a common issue. Interoperability testing is also a
key test objective in different applications and technology domains. Xia et al. [44]
address the interoperability problem in the web service domain and propose a
test method to automate conformance and interoperability testing for e-business
specification languages. Narita et al. [28] propose a method supported by a
testing framework for interoperability testing for web service domain focus-
ing on communication in robotics domain. However, interoperability remains a
challenge in other domains as well. In context of large scale component based sys-
tems, Piel et al. [35] present a virtual component testing technique and demon-
strated how virtual components can be formed using three different algorithms.
This technique was further implemented and evaluated in industrial settings.
Furthermore, Kindrick et al. [18] propose a technique combining interoperability
testing with conformance testing and conclude that combining the two tech-
niques will reduce the cost of setting up and executing the test management
processes improving the effectiveness.

2.2 Testing Techniques

We surveyed techniques on testing heterogeneous systems that have been
reported to be used in literature or industry for that purpose. These have been
identified through a systematic literature review and a case study [12] and rep-
resent three coarse categories of testing techniques, namely manual exploratory,
combinatorial, and search-based testing.

Manual Exploratory testing: Manual exploratory testing (ET) is an app-
roach to test software without pre-defined test cases in contrast with traditional

70 A.N. Ghazi et al.

test case based testing. The main characteristics of exploratory testing are simul-
taneous learning, test design and execution [16,40]. The tester has the freedom
to dynamically design, modify and execute the tests.

In past, exploratory testing was seen as an ad-hoc approach to test software.
However, over the years, ET has evolved into a more manageable and structured
approach without compromising the freedom of testers to explore, learn and
execute the tests in parallel. An empirical study comparing the effectiveness of
exploratory testing with test-case based testing was conducted by Bhatti and
Ghazi [4] and further extended (cf. [1]). This empirical work concludes that ET
produces more defects as compared to test case based testing where time to test
is a constraint.

Combinatorial Testing: Combinatorial testing is used to test applications for
different test objectives at multiple levels. A comprehensive survey and discus-
sion is provided by Nie and Leung [29]. It has been used for both unit and
system-level testing in various domains. Combinatorial testing tends to reduce
the effort and cost for effective test generation [5]. There exist a number of
variants of combinatorial testing, which are used in different domains to test
heterogeneous systems.

The problem of testing web services is the most common area in heteroge-
neous systems that is addressed in literature using different test techniques as
discussed in Sect. 2.1. Mao et al. [23] and Apilli [3] proposed different frame-
works for combinatorial testing to test component based software systems in a
web services domain.

Wang et al. [42] study the problem of how interaction faults can be located
based on combinatorial testing rather than manual detection and propose a
technique for interactive adaptive fault location. Results from this study show
that the proposed technique performs better than the existing adaptive fault
location techniques.

Changing configurations pose challenges to combinatorial testing techniques.
To that end Cohen et al. [6] conducted an empirical study to quantify the
effectiveness of test suites. The study shows that there is an exponential growth of
test cases when configurations change and subsets of test suites are used, similar
to what is common in regression testing.

Mirarab et al. [27] conducted an industrial case study and propose a set of
techniques for requirement-based testing. The SUT was software for a range of
wireless, mobile devices. They propose a technique to model requirements, a
technique for automated generation of tests using combination strategies, and a
technique for prioritization of existing test cases for regression testing.

Search-Based Software Testing: In search-based testing meta-heuristics are
used to solve software testing problems by using, for example genetic algorithms,
to search for a solution for a problem (e.g. to generate test data).

Marin et al. [24] present an integrated approach where search-based tech-
niques are applied on top of more classical techniques to derive optimal test
configurations for web applications. The authors describe state of art and future
web applications as complex and distributed, exhibiting several dimensions of
heterogeneity. The study describes an approach that integrates combinatorial

Heterogeneous Systems Testing Techniques: An Exploratory Survey 71

testing, concurrency testing, oracle learning, coverage analysis, and regression
testing with search-based testing to generate test cases.

Shiba et al. [38], proposed two artificial life algorithms to generate mini-
mal test sets for t-way combinatorial testing based on a genetic algorithm (GA)
and an ant colony algorithm (ACA). Experimental results show that when com-
pared to existing algorithms including AETG (Automatic Efficient Test Gen-
erator) [5], simulated annealing-based algorithm (SA) and in-parameter order
algorithm (IPO), this technique works effectively in terms of size of test set as
well as time to execute.

Another study by Pan et al. [31] explores search-based techniques and defines
a novel algorithm, i.e., OEPST (organizational evolutionary particle swarm tech-
nique), to generate test cases for combinatorial testing. This algorithm combines
the characteristics of organizational evolutionary idea and particle swarm opti-
mization algorithm. The experimental results of this study show that using this
new algorithm can reduce the number of test cases significantly.

There are refinements of exploratory, combinatorial, and search-based test-
ing. However, these have not been surveyed to keep the questionnaire at a man-
ageable length in order to avoid dropouts. Manual exploratory testing is a manual
testing technique where the tester simultaneously learns, designs, and executes
tests. The thought process (e.g. whether a specific technique inspires the test
design) is not prescribed. Both combinatorial and search-based testing are usu-
ally supported by tools and automated, while they have different approaches in
solving the testing problem (see above).

3 Research Method

The survey method used in this study is an exploratory survey. Thörn [39] dis-
tinguishes statistical and exploratory surveys.

In exploratory surveys the goal is not to draw general conclusion about a
population through statistical inference based on a representative sample. A rep-
resentative sample (even for a local survey) has been considered challenging, the
author [39] points out that: “This [remark by the authors: a representative sam-
ple] would have been practically impossible, since it is not feasible to characterize
all of the variables and properties of all the organizations in order to make a rep-
resentative sample.” Similar observations and limitations of statistical inference
have been discussed by Miller [26].

Given that the focus of this research is specific to heterogeneous systems,
the population is limited. We were aware of specific companies and practitioners
that work with such systems, but the characteristics of companies and their
products were not available to us. Hence, an exploratory survey was conducted to
answer our research questions. Though, aim was to gather data from companies
with different characteristics; different domains, sizes, etc. represented; for the
obtained answers, external validity is discussed in Sect. 3.5.

72 A.N. Ghazi et al.

3.1 Study Purpose

The goal of the survey is formulated based on the template suggested in [43] to
define the goals of empirical studies. The goal for this survey is to explore the
testing of heterogeneous systems with respect to the usage and perceived useful-
ness of testing techniques used for heterogeneous systems from the point of view
of industry practitioners in the context of practitioners involved in heterogeneous
system development reporting their experience on heterogeneous system testing.

In relation to the research goal two main research questions (RQs) were asked:

RQ1: Which testing techniques are used to evaluate heterogeneous systems?
RQ2: How do practitioners perceive the identified techniques with respect to a

set of outcome variables?

3.2 Survey Distribution and Sample

We used convenience sampling to obtain the answers. Of interest were practition-
ers that were involved in the testing of heterogeneous systems before, thus not
every software tester would be a suitable candidate for answering the survey. The
sample was obtained through personal contacts as well as postings in software
engineering web communities (e.g. LinkedIn and Yahoo Groups). 100 personal
contacts were asked to respond, and to distribute the survey later. Furthermore,
we posted the survey on 32 communities.

Overall, we obtained 42 answers, of which 27 were complete and valid. One
answer was invalid as each response was given as “others”, without any fur-
ther specification. The remaining respondents did not complete the survey. We
provide further details on the respondents and their organizations in Sect. 4.1.

3.3 Instrument Design

The survey instrument is structured along the following themes1.

– Respondents: In this theme information about the respondent is collected.
This information is comprised of: current position; duration of working in
the current position in years; duration of working with software development;
duration of working with testing heterogeneous systems.

– Company, processes, and systems: This theme focuses on the respondents’
organizations and the characteristics of the products.

– Test coverage: Here the practitioners rate the importance of different coverage
criteria on a 5-point Likert scale from “Very Important” to “Unimportant”.
The coverage criteria rated were specification-based, code-based, fault-based,
and usage-based.

– Usage of testing techniques: We identified three categories of testing tech-
niques through our ongoing systematic literature review that have been
attributed and used in testing heterogeneous systems, namely search-based,

1 The survey can be found at https://www.surveymonkey.com/s/RP6DQKF.

https://www.surveymonkey.com/s/RP6DQKF

Heterogeneous Systems Testing Techniques: An Exploratory Survey 73

Table 1. Surveyed variables

Variable References

Ease of use [17,34]

Effectiveness in detecting critical defects [1]

Number of false positives [1]

Effectiveness in detecting various types of defects [1]

Time and cost efficiency [1,34]

Effectiveness in detecting interoperability issues [32]

Effectiveness for very large regression test sets [14]

External product quality [30]

combinatorial, and manual exploratory testing (see also Sect. 2). The concepts
of the testing techniques were defined in the survey to avoid any confusion.
Two aspects have been captured, usage and evaluation. With respect to usage
we asked for the frequency of using the different techniques on a 7-point Likert
scale ranking from “Always” to “Never”. We also provided the option “Do
not know the technique”.

– Usefulness of testing techniques: Each technique has been rated according to
its usefulness with respect to a set of outcome variables that are frequently
studied in literature on quality assurance techniques. The usefulness for each
technique for each variable was rated on a 5-point Likert scale from “Strongly
Agree” to “Strongly Disagree”. Table 1 provides an overview of the studied
variables and their definitions.

– Contact details: We asked the respondents for their company name and e-mail
address. The answer to this question was optional in case the respondents
wished to stay anonymous towards the researchers.

The design of the survey has been pretested by three external practitioners
and one researcher. The feedback led to minor reformulation and changes in the
terminology used to become clear for practitioners. Furthermore, the number
of response variables has been reduced to make the survey manageable in time
and avoid maturation. Furthermore, the definition of heterogeneous system was
revised to be more understandable. We further measured the time the respon-
dents needed in the pretest to complete the survey. The time was between 10
and 15 min.

3.4 Analysis

For reflection on the data (not for inference) we utilized statistical tests to high-
light differences for the techniques surveyed across the outcome variables. The
Friedman test [11] (non-parametric test) has been chosen given multiple variables
(treatments) were studied, the data being on ordinal scale.

74 A.N. Ghazi et al.

3.5 Validity Threats

Internal Validity. One threat to capturing truthfully is if the questions asked
in the survey are misunderstood. To reduce this threat we pretested the survey
and made updates based on the feedback received. Another threat is maturation
where the behavior changes over time. This threat has been reduced by designing
the survey so that no more than 15 min were necessary to answer the survey.

Construct Validity. Theoretical validity is concerned with not being able to
capture what we intend to capture (in this case the usefulness of different tech-
niques across different outcome variables). To reduce this threat we defined
variables based on literature, in particular focusing on variables that are fre-
quently studied when evaluating quality assurance approaches. Given that the
study is based on the subjects’ experience, the lack of experience in search-
based testing limits the comparability, given that eight respondents did not know
the technique, and five have never used it. However, the remaining respondents
had experience using it. For the other techniques (manual exploratory testing
and combinatorial testing) only few respondents did not know them, or lacked
experience. Given that the aim of the study is not to generalize the findings
through inference, but rather identify interesting patterns and observations in
an exploratory way, threats related to statistical inference were not emphasized.

External Validity. The exploratory nature of the survey does not allow to
statistically generalize to a population. However, as suggested by [39], interesting
qualitative arguments can be made such studies. The context captured in the
demographics of the survey limits the external generalizability. In particular,
the majority of respondents were related to the consulting industry (35.7 %),
followed by computer industry (28.6 %), and communications (25.0 %), other
industries only have very few responses and are not represented in this study
(e.g. accounting, advertising, etc.). With regard to company size, all four size
categories are equally well represented. With regard to development models,
agile and hybrid processes have the highest representation. The data is hence not
relevant for the other models. Overall, the external validity could be strengthened
by a higher number of answers. Though, given that the survey was focused on
heterogeneous systems the possible sample was reduced. In comparison, with a
similar strategy of distributing a survey on a wider topic (automated software
testing) over 100 valid responses could be obtained [36].

Conclusion Validity. Interpretive validity is primarily concerned with conclu-
sions based on statistical analysis, and researcher bias when drawing conclusions.
Given that the involved researchers have no particular preference on any of the
solutions surveyed based on previous research, this threat can be considered as
being under control.

4 Results

We first describe the study context as this allows companies to compare their
own context, and hence being able to determine to what degree the results are

Heterogeneous Systems Testing Techniques: An Exploratory Survey 75

Table 2. Roles of subjects

Responsibility Percent Responses

Software developer (implementation, coding etc.) 22.2 6

Software architect (software structure, architecture, and
design)

18.5 5

Software verification & validation (testing, inspection, reviews
etc.)

18.5 5

Software quality assurance (quality control, quality
management etc.)

14.8 4

System analyst (requirements elicitation, analysis,
specification and validation etc.)

7.4 2

Project manager (project planning, project measurement etc.) 3.7 1

Product manager (planning, forecasting, and marketing
software products etc.)

0.0 0

Software process engineer (process implementation and
change, process and product measurement etc.)

0.0 0

Other 11.1 3

relevant for them. Thereafter, we characterize the heterogeneity dimensions of
the systems being reported by the practitioners. Thereafter, the answers to the
research questions are presented.

4.1 Context

Subjects. Table 2 provides an overview of the primary roles of the subjects par-
ticipating in the survey. The roles most frequently presented are directly related
with either quality assurance, or the construction and design of the system.
Overall, the experience in years in the current role indicates a fair to strong
experience level of the respondents in their current positions.

Looking at the overall experience related to software engineering in years,
the average experience is 10.55 years with a standard deviation of 7.04. This
indicates that the overall experience in software development is very high.

We also asked for the experience of the practitioners in testing heterogeneous
systems themselves. The average experience in testing heterogeneous systems is
4.63 years with a standard deviation of 5.22, while 8 respondents did not have
experience as testers on heterogeneous systems themselves. The survey focused
on practitioners involved in developing heterogeneous systems though, as those
also often gain insights on the quality assurance processes (e.g. people in quality
management). Hence, those responses were not excluded.

Company, processes, and systems. The number of responses in relation
to company size are shown in Table 3. All sizes are represented well by the
respondents, hence the results are not biased towards a specific company size.

The companies surveyed worked in 24 different industry sectors (one
company can work in several sectors, hence multiple answers were possible).

76 A.N. Ghazi et al.

Table 3. Company size (number of employees)

Size (no. of employees) Percent Responses

Less than 50 18.5 5

50 to 249 29.6 8

250 to 4499 29.6 8

5400 and more 22.2 6

Table 4. System types

System type Percent Responses

Data-dominant software 63.0 17

Control-dominant software 25.9 7

Computation-dominant software 25.9 7

Systems software 22.2 6

Other 14.8 4

Table 5. Development models

Model Percent Responses

Agile 29.6 8

Hybrid process (dominated by agile
practices, with few plan-driven practices)

29.6 8

Waterfall 11.1 3

V-Model 11.1 3

Hybrid process (dominated by plan-driven
practices, with few agile practices)

11.1 3

Spiral 3.7 1

Other 7.4 2

The industries that were represented by the highest number of respondents were
consulting (9 respondents), computer industry (hardware and desktop software)
(7 respondents), communications (6 respondents), and business/professional ser-
vices (5 respondents).

The systems developed are characterized by different types as specified in
[10]. As shown in Table 4 the clear majority of respondents was involved in data-
dominant software development, though all types were represented through the
surveyed practitioners.

The development models used in the surveyed companies are illustrated in
Table 5. The clear majority of respondents is working with agile development
and hybrid processes that are dominated by agile practices.

Heterogeneous Systems Testing Techniques: An Exploratory Survey 77

Fig. 1. Importance of test objectives

Test coverage. A key aspect of testing is the test objectives that drive the
selection of test cases (cf. [25]). We captured the objectives of the participating
industry practitioners in their test case selection as shown in Fig. 1. Specification-
based coverage is clearly the most important criterion for the studied companies,
followed by fault-based coverage. Overall, all coverage objectives are considered
important by at least half of the participants.

4.2 Heterogeneity of Systems

There exist no agreement in literature on the definition of heterogeneity in sys-
tems. However, individual papers defined different dimensions of heterogeneity.
In the survey, we asked the participants which dimensions are applicable to
them, as illustrated in Table 6. The table shows that systems of different com-
plexity, platforms and programming languages, and types of systems were the
most common dimensions.

The respondents could select multiple heterogeneity items, as several may
apply to their development context. For at least half of the systems the respon-
dents selected three or more heterogeneity dimensions that apply to them.

Table 6. Heterogeneity dimensions in the studied systems

Heterogeneity dimensions Percent Responses

System complexity 70.4 19

Programming language and platforms 59.2 16

Type of systems 55.56 15

System supply (internally developed and third party) 48.1 13

Development processes 40.7 11

Distribution of development systems in different locations 25.9 7

78 A.N. Ghazi et al.

VAR00001

6.00

5.00

4.00

3.00

2.00

1.00

Fig. 2. Number of heterogeneity dimensions selected

Fig. 3. Usage of techniques in heterogeneous systems

A quarter of all systems surveyed is characterized by four or more dimensions
(see Fig. 2). Only few systems are only characterized by one of the dimensions.

4.3 RQ1: Usage of Testing Techniques

We captured the frequency of usage for the three different techniques introduced
earlier (search-based, manual exploratory, and combinatorial testing). The fre-
quencies are illustrated in Fig. 3.

Looking at the overall distribution of usage, it is clearly visible that manual
exploratory testing is the most frequently used technique, followed by combi-
natorial testing and search-based testing. There was not a single respondent
indicating of never having used manual exploratory testing.

Search-based testing is the least-used technique, as well as the technique
that is least-known. However, 3 respondents who mentioned that they always
use search-based testing are all test consultants. Another consultant mentioned
frequent usage of the technique along with 2 more respondents who are in educa-
tion and professional services industries, respectively. Only very few respondents
are not aware of manual exploratory and combinatorial testing, while the usage
appears to depend on the role of the respondent.

Heterogeneous Systems Testing Techniques: An Exploratory Survey 79

Fig. 4. Practitioners’ perceptions of testing techniques for heterogeneous systems (1 =
Strongly Disagree, 2 = Disagree, 3 = Uncertain, 4 = Agree, 5 = Strongly Agree)

4.4 RQ2: Perceived Usefulness

Figure 4 provides the rating of the variables for the three different techniques
studied. To highlight patterns in the data, we also used statistical testing as
discussed in Sect. 3.4. The results of the test are shown in Table 7.

The highest undecided rates are observed for search-based testing. This can
be explained by the observation that people were not aware of the technique, or
never used it (see Fig. 3). Also, a relatively high undecided rate can be seen for
combinatorial testing, however, this cannot be attributed to the lack of knowl-
edge about the technique, or that practitioners never used it, as the numbers
on both items were relatively low. The opposite is true for manual exploratory
testing, where only very few practitioners were undecided.

Variables that are more unique and emphasized for heterogeneous systems
(effectiveness in detecting interoperability issues and effectiveness for very large
regression test sets) have higher undecided rates for all the techniques. That
is, there is a high level of uncertainty across techniques. In the case of regres-
sion tests manual exploratory testing was perceived as the most ineffective. For
interoperability testing no major difference between the ratings can be observed,
which is also indicated by the statistical tests shown in Table 7.

Of all techniques, manual exploratory testing is rated exceptionally high in
comparison to other techniques for ease of use, effectiveness in detecting critical

80 A.N. Ghazi et al.

Table 7. Friedman test statistics

Item N χ2 df p-value

Easy to use 27 22.522 2 0.000

Effective in detecting critical defects 27 19.500 2 0.000

High number of false positives 27 0.090 2 0.956

Effective in detecting various types of defects 27 17.848 2 0.000

Time and cost efficiency 27 3.797 2 0.150

Effective in detecting interoperability issues 27 7.000 2 0.030

Effective for very large regression test sets 27 1.509 2 0.470

Helping to improve product quality 27 25.400 2 0.000

defects, detecting various types of defects, and in improving product quality.
The high rating is also highlighted through the statistical tests, which detected
this as a difference in the data sets (see Table 7). At the same time, it also
received the strongest negative ratings, which was the case for false positives
and effectiveness for very large regression test suites.

5 Discussion

Based on the data collected, we highlight interesting observations, and present
their implications.

Observation 1: Interestingly, search-based testing was applied by several prac-
titioners in the scoped application of testing heterogeneous systems (in total 14
of 27 used it at least very rarely), even though in comparison it was the least
frequently applied technique. Literature surveying research on search-based test-
ing reported acknowledges that testing is primarily a manual process [25]. Also,
in heterogeneous systems we only identified few studies in our search for litera-
ture that used search-based testing. Hence, it is an interesting observation that
companies are using search-based testing. At the same time, many practitioners
were not aware of it at all. This leads to the following lessons learned:

Lessons learned: First, given the presence of search-based testing in
industry, there exist opportunities for researchers to study it in real indus-
trial environments and to collect experiences made by practitioners; Sec-
ond, practical relevance of search-based testing in heterogeneous testing is
indicated by the adoption of the technique, which is encouraging for this
relatively new field.

Observation 2: Although, the survey was targeted towards a specific group
of practitioners that have experience with developing and testing heterogeneous

Heterogeneous Systems Testing Techniques: An Exploratory Survey 81

systems, the practitioners were largely undecided on whether the techniques
used are suitable for detecting interoperability issues. Figure 4 shows that search-
based testing has comparatively high undecided rates for all the variables.

Lessons learned: Practitioners require further decision support and
comparisons to be able to make informed decisions about the techniques
given the high level of uncertainty. In particular, further comparative studies
(which were lacking) are needed in general, and for heterogeneous systems
in particular. If people are undecided, adoption is also hindered; hence one
should aim to reduce the uncertainty on outcomes for the variables studied.

Observation 3: Manual exploratory testing is perceived as very positive by
practitioners for the variables “Ease of use”, “Effective in detecting critical
defects”, “Effective in detecting various types of defects”, “Time and cost effec-
tive” and “Helping to improve product quality”. On the other hand, it has been
perceived poorly in comparison to other techniques for the variables “High num-
ber of false positives” and “Effective for very large regression-test suites”. Given
the context of testing heterogeneous systems, these observations are interest-
ing to compare with findings of studies investigating exploratory testing. Shah
et al. [37] investigated exploratory testing and contrasted the benefits and advan-
tages of exploratory and scripted testing through the application of a systematic
review combined with expert interviews. Their review is hence used as a basis
for the comparison with literature.

The finding with respect to ease of use was understandable, but could also be
seen as a paradox. On the one hand there are no perceived barriers as one does
not have to learn testing techniques; however, the quality of tests is not known
because there is such a high dependency on the skills of the testers (cf. Shah et al.
[37]), which could potentially lead to a wrong perception. Shah et al. identified
multiple studies indicating time and cost efficiency, and also confirmed that the
exploratory testing is good at identifying the most critical defects. Overall, this
appears to be well in-line with the findings for heterogeneous systems. With
respect to false positives, the practitioners were in disagreement on whether
manual exploratory testing leads to a high number of false positives. Literature
on the other hand suggests that fewer false positives are found. With respect to
regression testing, the findings indicate the potential for better regression testing
in case that sessions are properly recorded, but it was also recognized that it is
difficult to prioritize and reevaluate the tests.

Lessons learned: Even though not representative, the data indicates a
gap between industry focus and research focus. Therefore, research should
focus on investigating exploratory testing, how it should be applied, and
how efficient it is in capturing interoperability issues to support companies
in improving their exploratory testing practices.

82 A.N. Ghazi et al.

6 Conclusion

In this study we explored the testing of heterogeneous systems. In particular,
we studied the usage and perceived usefulness of testing techniques for hetero-
geneous systems. The techniques were identified based on an ongoing systematic
literature review. The practitioners surveyed were involved in the development
of heterogeneous systems. Two main research questions were answered:

RQ1: Which testing techniques are used to assess heterogeneous systems?
The most frequently used technique is exploratory manual testing, followed by
combinatorial and search-based testing. As discussed earlier, it is encouraging for
the field of search-based testing that a high number of practitioners have made
experiences with search-based testing. This may provide opportunities to study
the technique from the practitioners’ perspective more in the future. Looking
at the awareness, the practitioners were well aware of manual exploratory and
combinatorial testing, however, a relatively high number was not aware of what
search-based testing is.

RQ2: How do practitioners perceive the identified techniques with respect to
a set of outcome variables? The most positively perceived technique for testing
heterogeneous systems was manual exploratory testing, which was the highest
rated in five (ease of use, effectiveness in detecting critical defects, effective in
detecting various types of defects, time and cost efficiency, helping to improve
product quality) out of eight studied variables. While manual exploratory testing
was the most used technique in the studied companies, it is the least investigated
technique in the literature on testing heterogeneous systems.

In future work, based on the results of the study, several important directions
of research were made explicit:

– Given there are no frameworks available that can help identify, to what degrees
one system is heterogeneous in comparison to other systems. Therefore, a
framework will be provided to measure different dimensions of heterogeneity.

– In order to reduce the uncertainty with respect to the performance of the tech-
niques comparative studies are needed. In particular, in the context of het-
erogeneous systems variables more relevant to that context should be studied
(interoperability, large regression test suits). However, in general more com-
parative studies may be needed, for instance by comparing their performance
on heterogeneous open source systems (e.g. Linux).

– Given the positive indications of the adoption of search-based in the industry,
the focus should also be on understanding how and with what success search-
based is used in the industry for heterogeneous and other systems.

– Interesting patterns identified and highlighted in the discussion should be
investigated in further depth, two examples should be highlighted: First, does
(and if so how) heterogeneity affect the performance of exploratory testing
in terms of false positives reported? Second, how could it be explained that
manual exploratory testing is so positively perceived? Possible propositions
are there is a low perceived entry level of using the technique, while it is at
the same time very hard to master given its dependence on the testers’ skills.

Heterogeneous Systems Testing Techniques: An Exploratory Survey 83

Furthermore, interestingly it was perceived as being time- and cost efficient,
which should be understood further. Overall, large and complex systems have
many interactions that could require automation to be able to achieve a sat-
isfactory level of coverage.

References

1. Afzal, W., Ghazi, A.N., Itkonen, J., Torkar, R., Andrews, A., Bhatti, K.: An exper-
iment on the effectiveness and efficiency of exploratory testing. Empir. Softw. Eng.
1–35 (2014)

2. Ali, N.B., Petersen, K., Mäntylä, M.: Testing highly complex system of systems: an
industrial case study. In: Proceedings of the ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM 2012), pp. 211–220.
ACM (2012)

3. Apilli, B.S.: Fault-based combinatorial testing of web services. In: Companion
to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2009, 25–29 October 2009,
Orlando, Florida, USA, pp. 731–732 (2009)

4. Bhatti, K., Ghazi, A.N.: Effectiveness of exploratory testing: an empirical scrutiny
of the challenges and factors affecting the defect detection efficiency. Master’s the-
sis, Blekinge Institute of Technology (2010)

5. Cohen, D., Dalal, S., Fredman, M., Patton, G.: The AETG system: an approach
to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7), 437–444
(1997)

6. Cohen, M.B., Snyder, J., Rothermel, G.: Testing across configurations: implications
for combinatorial testing. Softw. Eng. Notes 31(6), 1–9 (2006)

7. Diaz, J., Yague, A., Alarcon, P.P., Garbajosa, J.: A generic gateway for testing
heterogeneous components in acceptance testing tools. In: Seventh International
Conference on Composition-Based Software Systems (ICCBSS 2008), pp. 110–119,
Feb 2008 (2008)

8. DoD. Systems and software engineering. systems engineering guide for systems of
systems, version 1.0. Technical Report ODUSD(A&T)SSE, Office of the Deputy
Under Secretary of Defense for Acquisition and Technology, Washington, DC, USA
(2008)

9. Donini, R., Marrone, S., Mazzocca, N., Orazzo, A., Papa, D., Venticinque, S.:
Testing complex safety-critical systems in SOA context. In: 2008 International
Conference on Complex, Intelligent and Software Intensive Systems, pp. 87–93
(2008)

10. Forward, A., Lethbridge, T.C.: A taxonomy of software types to facilitate search
and evidence-based software engineering. In: Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collaborative Research: Meeting of Minds,
p. 14. ACM (2008)

11. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

12. Ghazi, A.N.: Testing of heterogeneous systems. Blekinge Institute of Technology
Licentiate Dissertation Series 2014(03):1–153 (2014)

13. Ghazi, A.N., Andersson, J., Torkar, R., Petersen, K., Börstler, J.: Information
sources and their importance to prioritize test cases in the heterogeneous systems
context. In: Barafort, B., Messnarz, R., O’Connor, R.V., Poth, A. (eds.) EuroSPI
2014. CCIS, vol. 425, pp. 86–98. Springer, Heidelberg (2014)

84 A.N. Ghazi et al.

14. Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A., Rothermel, G.: An empirical
study of regression test selection techniques. In: Proceedings of the 20th Interna-
tional Conference on Software Engineering, ICSE ’98, Washington, DC, USA, pp.
188–197. IEEE Computer Society (1998)

15. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordi-
nation. In: 2007 Future of Software Engineering, pp. 188–198. IEEE Computer
Society (2007)

16. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing. Wiley,
New York (2008)

17. Karahanna, E., Straub, D.W.: The psychological origins of perceived usefulness
and ease-of-use. Inf. Manag. 35(4), 237–250 (1999)

18. Kindrick, J.D., Sauter, J.A., Matthews, R.S.: Interoperability testing. Stand. View
4(1), 61–68 (1996)

19. Kontio, J.: A case study in applying a systematic method for cots selection. In:
Proceedings of the 18th International Conference on Software Engineering, 1996,
pp. 201–209. IEEE (1996)

20. Lane, J.A.: SoS management strategy impacts on SoS engineering effort. In: Münch,
J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 74–87. Springer,
Heidelberg (2010)

21. Lewis, G., Morris, E., Place, P., Simanta, S., Smith, D., Wrage, L.: Engineering
systems of systems. In: 2008 2nd Annual IEEE Systems Conference, pp. 1–6. IEEE
(2008)

22. Lewis, G.A., Morris, E., Place, P., Simanta, S., Smith, D.B.: Requirements engi-
neering for systems of systems. In: 2009 3rd Annual IEEE Systems Conference, pp.
247–252. IEEE (2009)

23. Mao, C.: Towards a hierarchical testing and evaluation strategy for web services
system. In: 2009 Seventh ACIS International Conference on Software Engineering
Research, Management and Applications, pp. 245–252 (2009)

24. Marin, B., Vos, T., Giachetti, G., Baars, A., Tonella, P.: Towards testing future
Web applications. In: 2011 Fifth International Conference on Research Challenges
in Information Science (RCIS), May 2011, pp. 1–12 (2011)

25. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

26. Miller, J.: Statistical significance testing-a panacea for software technology exper-
iments? J. Syst. Softw. 73, 183–192 (2004)

27. Mirarab, S., Ganjali, A., Tahvildari, L., Li, S., Liu, W., Morrissey, M.: A
requirement-based software testing framework : an industrial practice. Test, pp.
452–455 (2008)

28. Narita, M., Shimamura, M., Iwasa, K., Yamaguchi, T.: Interoperability verification
for Web Service based robot communication platforms. In: IEEE International Con-
ference on Robotics and Biomimetics, 2007, ROBIO 2007, pp. 1029–1034, Decem-
ber 2007

29. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
1–29 (2011)

30. Ortega, M., Pérez, M., Rojas, T.: Construction of a systemic quality model for
evaluating a software product. Softw. Qual. J. 11(3), 219–242 (2003)

31. Pan, X., Chen, H.: Using organizational evolutionary particle swarm techniques
to generate test cases for combinatorial testing. In: 2011 Seventh International
Conference on Computational Intelligence and Security, December 2011, pp. 1580–
1583 (2011)

Heterogeneous Systems Testing Techniques: An Exploratory Survey 85

32. Perumal, T., Ramli, A.R., Leong, C.Y., Mansor, S., Samsudin, K.: Interoperability
among heterogeneous systems in smart home environment. In: IEEE International
Conference on Signal Image Technology and Internet Based Systems, 2008, SITIS
’08, pp. 177–186 (2008)

33. Petersen, K., Khurum, M., Angelis, L.: Reasons for bottlenecks in very large-scale
system of systems development. Inf. Softw. Technol. 56(10), 1403–1420 (2014)

34. Petersen, K., Rönkkö, K., Wohlin, C.: The impact of time controlled reading on
software inspection effectiveness and efficiency: a controlled experiment. In: Pro-
ceedings of the Second ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ESEM ’08, pp. 139–148. ACM, New York
(2008)

35. Piel, É., Gonzalez-Sanchez, A., Gross, H.-G.: Built-in data-flow integration testing
in large-scale component-based systems. In: Petrenko, A., Simão, A., Maldonado,
J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 79–94. Springer, Heidelberg (2010)

36. Rafi, D.M., Moses, K.R.K., Petersen, K., Mäntylä, M.: Benefits and limitations of
automated software testing: systematic literature review and practitioner survey.
In: 2012 7th International Workshop on Automation of Software Test (AST), pp.
36–42. IEEE (2012)

37. Shah, S.M.A., Gencel, C., Alvi, U.S., Petersen, K.: Towards a hybrid testing process
unifying exploratory testing and scripted testing. J. Softw. Evol. Process 25(3),
261–283 (2013)

38. Shiba, T.: Using Artificial Life Techniques to Generate Test Cases for Combina-
torial Testing. In: Computer Software and Applications Conference (COMPSAC
2004) (2004)

39. Thörn, C.: Current state and potential of variability management practices in
software-intensive SMEs: results from a regional industrial survey. Inf. Softw. Tech-
nol. 52(4), 411–421 (2010)

40. Van Veenendaal, E., et al.: The Testing Practitioner. UTN Publishers, Den Bosch
(2002)

41. Wang, D., Barnwell, B., Witt, M.B.: A cross platform test management system for
the SUDAAN statistical software package. In: 2009 Seventh ACIS International
Conference on Software Engineering Research, Management and Applications, pp.
237–244 (2009)

42. Wang, Z., Xu, B., Chen, L., Xu, L.: Adaptive interaction fault location based on
combinatorial testing. In: 2010 10th International Conference on Quality Software,
July 2010, pp. 495–502 (2010)

43. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.: Experimentation
in Software Engineering. Springer, Heidelberg (2012)

44. Xia, Q.-M., Peng, T., Li, B., wen Feng, Z.: Study on automatic interoperability
testing for e-business. In: CiSE 2009, International Conference on Computational
Intelligence and Software Engineering, Dec 2009, pp. 1–4 (2009)

Software and Systems Architectures

Integrating Heterogeneous Engineering Tools
and Data Models: A Roadmap for Developing
Engineering System Architecture Variants

Richard Mordinyi(B), Dietmar Winkler, Florian Waltersdorfer,
Stefan Scheiber, and Stefan Biffl

Christian Doppler Laboratory, Software Engineering Integration for Flexible
Automation Systems, Vienna University of Technology, Vienna, Austria

{richard.mordinyi,dietmar.winkler,florian.waltersdorfer,
stefan.scheiber,stefan.biffl}@tuwien.ac.at

http://cdl.ifs.tuwien.ac.at

Abstract. Developing large systems engineering projects require com-
bined efforts of various engineering disciplines. Each engineering group
uses specific engineering tools and data model concepts representing
interfaces to other disciplines. However, individual concepts lack in com-
pleteness and include strong limitations regarding interoperability and
data exchange capabilities. Thus, highly heterogeneous data models
cause semantic gaps that hinder efficient collaboration between various
disciplines. The design of an integration solution within a systematic
engineering process typically requires re-modelling of the common data
model (used for mapping individual local tool data models) to enable
efficient data integration. However, designing and implementing integra-
tion approaches include continuously collecting new knowledge on the
related application domains, in our case automation systems engineering
projects, and integration capability that meet requirements of related
domains. In this paper we report on a sequence of different architectural
designs for an efficient and effective integration solution that lead to a
similar and stable data model design for application in the automation
systems domain. By means of iterative prototyping, candidates for mod-
elling styles were tested for feasibility in context of industry use cases. In
addition we applied an adjusted Architecture Tradeoff Analysis Method
(ATAM) to assess the resulting final architecture variant.

Keywords: Semantic integration · Data modelling · Service design ·
Service modelling

1 Introduction

The development of today’s automation systems, like power plants or steel mills,
requires the combined efforts of engineers from several disciplines such as soft-
ware, electrical, and mechanical engineering. Software tools used by engineers

c© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 89–107, 2015.
DOI: 10.1007/978-3-319-13251-8 6

90 R. Mordinyi et al.

are rarely interoperable [9] and focus on distinct tasks for each engineering dis-
cipline. Related data models are often highly heterogeneous, causing so-called
“semantic gaps” between disciplines and groups of engineers. In addition, mod-
els used in individual engineering disciplines and their best-practice tools often
apply a range of different terms and/or modelling structures to describe a given
data model concept leading to semantically heterogeneous models on project
and team level [36]. In order to handle integration concerns at the interfaces
of different engineering disciplines [3,4], common concepts aims at bridging the
gap between different disciplines on project and team level. Exchanging data
between disciplines and different engineering groups needs to be done “man-
ually”, as parts of the common data model are simply missing in some tools.
These missing parts have to be added either via custom fields in the specific tool
(i.e., fields with no special meaning to that tool) or have to be added after data
exchange by editing export/import files “outside” of the tools. These tasks are
typically executed by experts who are familiar with at least two related tools.

In an ongoing project1 we focus on the development of different integration
strategies in the automation systems domain that help engineers and managers
in integrating data from heterogeneous engineering environments coming from
various sources. In this paper we report on a series of architecture approaches
and discuss lessons learned of individual architecture variants with respect to
feasiblity, flexiblity, and applicabilty in heterogeneous engineering environments.
Derived design guidelines - aligned with architecture variants - can support deci-
sion makers by enabling to (a) determine whether individual architecture vari-
ants are suitable for specific scenarios, (b) ease the initial modelling effort by
avoiding known mistakes, and (c) enable later modifications of the data models
without breaking the initial design. Finally, we evaluated the resulting “final”
architecture variant with the adapted Architecture Tradeoff Analysis Method
(ATAM) [21], a well-established approach for architecture evaluation based on
requirements and scenarios. The resulting architecture was found useful in con-
text of integration challenges in automation systems engineering projects with
a heterogeneous set of tools and data models.

The remainder of this work is structured as follows: Sect. 2 presents related
work on integration issues and data model approaches, Sect. 3 introduces to the
industry use case in the automation systems domain and Sect. 4 presents the
research issues. We report on the data model candidates and lessons learned of
individual approaches in Sect. 5. Section 6 includes the evaluation results of the
final architecture variant based on ATAM. Finally, Sect. 7 discusses the results,
concludes the paper, and identifies future work.

2 Related Work

This section summarizes relatedwork on integration scenarios anddata integration
approaches and introduces to the concept of “Enterprise Application Integration”
1 Christian Doppler Laboratory “Software Engineering Integration for Flexible

Automation Systems”, http://cdl.ifs.tuwien.ac.at.

http://cdl.ifs.tuwien.ac.at

Architecture Variants for Engineering Tool Integration 91

(EAI) and related state-of-the-art approaches required to design and evaluate
software architectures.

2.1 Enterprise Application Integration

Enterprise Application Integration (EAI) approaches focus on four levels [23],
i.e., Data Level, Application Interface Level, Method Level, and User Interface
Level.

Integration on a Data Level refers to a scenario in which the “integrated”
applications are not addressed directly by the integration solution, but via their
data sources. Using the approach usually requires a very detailed understand-
ing of a tool’s database schemas, how the database is used during runtime and
when/how it is safe to access. As stated in [13], data level integration is consid-
ered as the most basic form of application integration and can serve as a starting
point for future integration efforts [14,42].

Application Interface Level Integration refers to using external access
(API) features, provided by tools and tool vendors, to link applications and
extend their capabilities as current software development best practices highly
embrace open and reusable software architectures [11]. In contrast to Data Level
Integration, this approach allows a more stable tool integration [7].

Method Level Integration refers to invasive coupling of applications in
the way that internal methods and/or functionalities of software component are
exposed to outside tools to enable an integrated solution. Because this approach
requires a close cooperation of partners and most likely frequent refactoring steps
to meet (evolving) integration requirements, this strategy may not be efficient
in all cases [23]. However, this approach is strongly motivated around the idea of
software reuse [25,27], and composition [2]. Following the DRY-principle [39] on a
higher level, Method Level Integration aims at exploiting tool features to couple
several different tools more efficient. Some research effort has been conducted to
support [20,40] and measure [12] the development of extendible software with
“clean” architectures [38] to make integration more feasible compared to earlier
stages of software and data integration approaches [15].

Finally, the goal of User Interface Level Integration is not to connect
parts of the software into larger systems, but to simulate user interaction or
forward user interaction to the software component [30]. Thus, the “connected”
software is treated as an isolated system to a much higher degree compared to
other integration approaches.

2.2 Data Modeling and Integration

Designing and implementing integration solutions, especially in an enterprise
environment, is a complex process with little to no standard solutions available.
Yet there exists a series of guidelines, common terminology and well-defined
patterns to deal with most known scenarios on an abstract level [16,17] as
well as with concrete technological environments [18,26]. However, the degree
of abstraction of data integration leaves much room for details about how to

92 R. Mordinyi et al.

connect and/or combine heterogeneous data sources. Outside the scope of EAI,
works dealing with data integration separately, also retain a relatively high level
of abstraction, either focusing on the granularity and frequency of the data inte-
gration and its use [33,37] and on the technical means to access and combine data
sources [1]. In [35]2 a brief introduction to data integration styles, illustrating
the connection between application and data integration, is given.

2.3 Data Modelling Styles

There are three commonly known and accepted styles about the basic structure
of an integration model, with the first two defined in the early stages of data
integration [8,22] and a third one which was added as an extension/advancement
later on [24,28].

The basic assumption behind Local as View is that all data sources with
their local schemas are more prone to change then the global schema against
which they have to be integrated. Source models are treated as variants of a
global model, allowing for an easy extension of the system, as long as the global
schema remains “intact”. The downsides of this style comes to light if either the
global schema is unstable (i.e. due to changing integration requirements) or if
the local sources are the true drivers for a data model.

The Global as View assumes that all data sources with their local schemas
are more stable then the global schema against which they have to be integrated.
All parts of the global model are treated as variants of a local model, allowing
for an easy aggregation of the data from many local sources, as they are already
configured in the mappings. Adding a new type of local source model to a GAV-
modelled integration solution however, can result in a much higher effort.

In Global-Local as View both the local and the global model are treated
as views (regardless if one or both are stored as actual data base instances) in
the way that each element which is query-able from one of the views can be
queried from the other view as well. This is achieved by using the model for
GLAV itself to express the mappings between the local sources and the global
mediation scheme. The main downside of this approach lies in its much higher
complexity to model, implement and maintain a solution.

2.4 Architecture Evaluation with ATAM

The Architecture Tradeoff Analysis Method (ATAM) [21] provides for a frame-
work to analyze, validate and improve software architecture designs (“styles”)
against a given set of requirements and how to derive said requirements (i.e.
“quality attribute characterization”). With offering a more holistic approach
for architecture analysis, ATAM has been evaluated extensively [34] and been
applied to a variety of fields [5,10,19,31,32].

The ATAM core process consists of nine steps 1 separated into four stages:
2 Downloadable http://cdlflex.org/conf/swqd15.

http://cdlflex.org/conf/swqd15

Architecture Variants for Engineering Tool Integration 93

Business Driver

Software Architecture

Quality Attributes

Architectural
Approaches

Scenarios

Architectural Decisions

Analysis

Risks
Classification (themes)

Tradeoffs

Sensitivity Points

Non-Risks

Risks

impacts

Distilled Into

Fig. 1. The nine steps of the ATAM [21]

1. Presentation - consisting of steps 1–3 to present the ATAM itself, the business
goals of the project and the current architecture

2. Investigation and Analysis - with steps 4–6 to analyze the architecture of the
system under review, formulate current assumptions based on the business
goals and evaluate the system under that knowledge

3. Testing - during steps 7 & 8 a larger set of stakeholders is invited to correct the
business goal assumptions by comparing them to use cases and re-evaluating
the system

4. Reporting - in step 9 to summarize and distribute the results of the ATAM
execution

3 Use Case

The common use case in a multi-disciplinary engineering project is the review
process, called “Signal Deletion with Review” involving electrical and software
engineers.

While the Electrical Engineer (EE) works on the Circuit Design and uses
a tool like EPlan3, software engineers (SE) use logi.CAD4 for control software
programming. Those two programs use different data models to store their data,
but they are mapped via a common data model, called “signals” (referring to
the I/O-pins of the hardware or the respective variables in the software). The
structure of these signals is a simple list of key-value pairs. The transformation
from the original representation of the values to the common data model is either
provided by the program itself, a script or by a connector that links the program
to the information system. As the engineers collaborate in a project, this means
that their individual work can affect the work of others, even if they are not
changing someone else’s data directly.

In case the electrical engineer (EE) modifies some local wire circuit design,
the change made within the tool demands a propagation of modified data to
the integration solution, which triggers the review process (see Fig. 2). If the
modification done by EE does not cause any signal deletions (that is, all changes
3 http://www.eplan.us
4 http://www.logicals.com

http://www.eplan.us
http://www.logicals.com

94 R. Mordinyi et al.

Fig. 2. Review circle of change management.

affect the local data model only), nothing else happens. Otherwise, SE-A and
SE-B (let’s assume there are two SE in the scenario), as being from a different
discipline then EE, receive a notification about the changes which they either
accept or deny.

Assuming that SE-A rejects the change, he provides corrections and publishes
them. This means that after applying the (undesired) changes locally, SE-A
introduces the (now) missing variables again to produce a change-set fixing their
local issue. This change-set can be seen by the EE as well and could potentially
trigger a new review cycle. After propagating, SE-A has voted and the review
will be finished once all other participants (in this case: SE-B) have submitted
a vote (or a timeout has expired). SE-B then simply accepts the change (most
likely aware of SE-A’s adoptions) and “unlocks” the final change-set (changes of
EE with fixes of SE-A) for their continuing work.

4 Research Issues

In every multi-disciplinary software and systems engineering project, project
participants from different disciplines using role-specific (and often isolated) soft-
ware tools need to cooperate in order to plan, design and evaluate project results
and intermediate artefacts. Most of these tools were designed for a specific phase
during development and therefore only provide a limited view of the artefacts
engineers work on. Based on the described challenges, we derive the following
research questions:

Architecture Variants for Engineering Tool Integration 95

RQ1 - Modeling Data Integration Solutions: Which modelling concept
is needed to allow for seamless data integration in a heterogeneous software
landscape? Out of the necessity for the different engineering groups to work
together, the groups agree on some common data model for specification and
progress/artefact exchange. However, with a variety of proprietary tools used in
this sector and the varying engineering workflows of the companies, there is not
“the” one data model to cover all scenarios, even if limited to a very specific
subset (e.g. the design of hydro-power stations).

RQ2 - Modifying Existing Integrations Solutions: With reoccurring
changes to the data models, how can we distinguish between valid changes and
erroneous modifications? From the observed diversity of tools, data models and
workflows, it is assumed that data models must cover the following aspects [29]:

– Tool Data Models (TDMs): covering proprietary models of the tools in place
as best as possible

– Tool Domain Data Models (TDDMs): abstracting from the tools how engi-
neers of one discipline view their artifacts

– Common Data Models (CDMs): the view that is used between disciplines to
collaborate, and that may be addressed directly

Data models used for integration and the data models to integrate will change
over time, even within a specific group or company. Our observations in the
automation industry have shown that engineers of the same discipline may have
very distinct workflows and modelling approaches. This is due to the fact that
people are specialized in the design and implementation of different facilities
and have adopted to whatever style works best for their field of expertise. Under
these circumstances, an engineer may not only introduce slight differences in the
importance of parts of a data model, but also introduce new fields (or discard
some) for their personal “workflows”.

Based on literature review, iteratively developed and implemented research
prototypes helping to find data design model patterns for a specific cross-discipline
engineeringworkflow, and evaluation of the design for a given scenario usingATAM
a guideline to validate instances/updates of the design were created.

5 Data Model Candidates

This section details the design, testing and inspection of four different architec-
tural styles, each promoting another modelling style. We illustrate the devel-
opment process of the initial candidate for a data integration style and its
evaluation by prototyping and user testing. The approaches have been imple-
mented in an Enterprise Service Bus environment [6], called Engineering Service
Bus5 (EngSB) to a varying degree for testing under real-world conditions.

5 Downloadable under http://github.com/openengsb.

http://github.com/openengsb

96 R. Mordinyi et al.

Prototype-Iteration 1: Virtual Common Data Model - The VCDM
[41] is based on a LAV modelling style, and depicts a variant to integrate het-
erogeneous data sources and derive new functionality from these sources, i.e. for
versioning and quality assurance. On the client side, each tool holds data in its
own model, but upon transmitting its data instances to a central bus system,
the data is transformed into a single common (global) data model in the first
step. After transformation, the data is stored into a central schema-less repos-
itory which holds a change history of the data as well as the actual instances,
the “Engineering Data Base” (EDB) [41].

The limitation of the approach is the lack of an actual global data schema
in the storage solution (which allows for easier integration of new data models)
demanding schema-enforcement in the software used to push the data into the
EDB. This enforces either the use of a constant data model in the top layer of
the application, interlocking software and data model across several layers or the
use of a highly generic data model, which creates lots of boiler-plate code on the
front-end level. In both cases, changes to the data model cause code refactoring
in a multitude of places, making the code hard to maintain.

Prototype-Iteration 2: Service-Based Single Domain - Align with the
classic Enterprise Service Bus [6] concept each single functionality of the EngSB
is encapsulated in a service and data is transferred along the services by a work-
flow and turning the model explicit in a single domain. The workflow encapsu-
lates the instructions to send data from the tools along a pipeline of services
before using a e.g., the “Signal Domain” (see Sect. 3) to store the data in the
EDB. Illustrated services include a “Transformer Service” that translates tool
data into common data and vice versa, and an “Analyzer Service” which ensures
data format validity (e.g. by inserting default values into fields that should not
be empty or verifying the format of primary keys) and checks new data for well-
known errors (which do not violate the data model, but cause validity issues
later on in the project). The “Signal Domain” (being the common data model)
is acting as an interface masking the actual storage system.

Unlike the VCDM style, the approach makes the data model explicit, allow-
ing for easier testing and refactoring of individual components, also allowing new
developers to understand the common data model much easier. In addition, by
using a “service pipeline”, new processing steps (for new features) can easily be
added without having to change existing workflow from the user’s point of view.
The main weakness of this design lies in the fact that changing the data model
still causes changes in all services along a workflow, as there is no central author-
ity governing the data models inside the bus system. Although these changes are
now fairly easy to perform, as every service is a smaller, less complex component
then before, failure to adapt all components can yield unexpected results which
are not detected at first glance.

Prototype-Iteration 3: ESB-Domains only - Introduces a central authority
for data models across workflows which turns every service into a domain and
the common data model into the tool’s entry point to the EngSB. This results in:

Architecture Variants for Engineering Tool Integration 97

– smaller components: with each service of the EngSB wrapped into a domain,
much boiler-plate code for setup and data transfer is delegated to the generic
domain implementation. This reduces code duplication in the services and
reduces maintenance costs as services only contain their own “functional”
code.

– robustness against data model changes: by transforming a domain (a generic
interface with an attached modell) to an entry point via third party applica-
tions interact with the EngSB, the effects of changing tool models were limited
to the tool’s connector, thus causing no other changes inside the EngSB. Even
if the domain data model changed, it did not affect the EngSB, as the data
model of a domain is never used directly, but via generic methods unaware of
the actual implementation and its specific model. The only case in which a
model change affects the EngSB is if a field that was explicitly addressed for
workflow rules or inside an internal domain changed.

– simpler workflows: since every services deployed into the EngSB is present as
a domain, their use in workflows is standardized, meaning that configuring
workflows become easier.

The downside of the approach is that the EngSB enforces the domain model
as a standard onto the companies using it. In addition, by keeping the tool
data models “outside the EngSB”, neither the workflow nor any of the EngSBs’
internal services could exploit distinct features of the connected tools or provide
any functionality based around tool-specific data. Additionally, connecting all
third party tools via a single domain moved the focus on the role of the tool
in the engineering process. Tools are either data sources or sinks but not both
and have a certain hierarchy, i.e. one tool’s changes will always override another
tool’s changes. If all tools’ input is merged together into a single domain when
executing a workflow, it is hard to treat them differently and calls for solutions
implemented outside the EngSB.

Prototype-Iteration 4: Multiple Domains and one EngineeringObject -
After reorganizing tool-model relations, for each group of tools belonging to
the same engineering discipline a so called tool domain was assigned relieving
the “common data domain” from holding tool-specific data. The former “data
domain” any coupling to specific engineering tools, and is used for data vali-
dation and cross-discipline interactions only - and is referred as “Engineering
Object”. The separation changed the nature of data conversions - there is a
tool-to-domain (“mapping”) and domain-to-domain (“transformation”). Map-
pings mostly consider simple field renamings and basic string operations (such
as splitting, concatenating, extracting substrings and formatting) due to the fact
that a tool’s data model and its corresponding domain’s data model are seman-
tically similar by design. Domain-to-domain transformations may be complex
since they intend to connect heterogeneous models - the prototype makes use of
ontologies to describe such transformations [29]. By introducing two conversion
types, the solution enables power-users to deal with frequently changing con-
figuration of tool-to-domain mappings (as the tool’s export formats are project
dependent), while integration application developers can focus on tackling the
domain-to-domain transformations.

98 R. Mordinyi et al.

The drawback of the approach is the overall higher complexity. Data models
to design (tool domains and common data models) are more complex then before.
Thus, it may pose an over-engineered solution if one or two tools from a single
discipline should be integrated. Additionally, considering the components used
for mapping, transforming, storing and processing (workflows) the data, this
approach contains a higher number of isolated subsystems which are configured
differently posing consequently a higher chance of “transitive” errors. A missing
or invalid configuration in one component, which has no immediate negative
effects, causes unintuitive behaviour in another component.

Table 1 summarizes the features of the data model design styles presented
before. The table indicates that the “Multiple Domains and one Engineering
Object”-style is our best candidate for a good integration solution.

Table 1. Feature comparison of the data model design styles.

VCDM ESB-like ESB-Domains EngObj

Robust against changes no no yes yes

Can hold multiple common models no yes yes yes

Versioning yes yes no yes

Service-Reuse yes no no yes

Only valid data no yes yes yes

Data sovereignty yes yes no yes

6 Evaluation

This chapter illustrates the investigation of a Engineering Object-based data
modelling style by evaluating it against our main scenario (see Sect. 3) using
the ATAM. Changes to the given scenario that influence mentioned data model
design are listed to understand the volatility of (seemingly) stable data models.

6.1 Adapted ATAM

The execution of the ATAM (see Fig. 1) was modified to reduce the time effort for
participants from industry partners and to make use of existing documentation.
However, as the project chosen for this evaluation was already running, the time-
frame of the ATAM was adapted from the (recommended) block of several days
to a period of two months.

1. Present the ATAM: The process was presented in a meeting with stake-
holders from industry and academia to inform project participants about the
conducted ATAM process.

Architecture Variants for Engineering Tool Integration 99

2. Present business drivers: existing minutes of meetings and knowledge
of the project were used to identify the business goals and non-functional
requirements. Additionally, the focus of this inspection was shifted even more
in favour of non-functional requirements, as the functional requirements.

3. Present architecture: the architectural review is limited to the data model
design style and therefore only the goals that can be covered by it.

4. Identify architectural approaches: Step 4 was merged into step 3, as the
chosen architecture is known at this point and the relation to the business
goals is being identified in step 3.

5. Generate quality attribute utility tree: Step 5 is left unchanged regard-
ing its way of execution, but limited onto the data model design, in contrast
to the entire architecture. This, combined with the results from step 4, allows
to identify which of the business goals should be addressed via the data model
design and which actually are covered this way.

6. Analyse architectural approaches: Step 6 is left unchanged, since it is
based on results from step 5.

7. Brainstorm and prioritize scenarios: This step is separated into two
parts. First, use cases/scenarios already covered by the prototype are evalu-
ated in terms of user satisfaction and future (desired) use cases are voted for.
Second, the results of that vote are used for clarifying existing specifications.
The results and main (intermediary) results gathered and processed in this
step remains the same, however the time-frame of its execution is altered
again.

8. Analyze architectural approaches: Step 8 is left unchanged, as architec-
ture has already been analysed by the relevant stakeholders in step 6.

9. Present results: The findings of the (modified) ATAM execution were pre-
sented to industry partners.

6.2 Results of the ATAM

Using the modified ATAM, the eight steps were performed to gain a better under-
standing of the integration project’s goals and the effectiveness of the proposed
architecture.

Step 2 - Present Business Drivers. From meetings three forces towards a
better solution were identified: (1) Failure to properly track changes and their
propagation, causing misconceptions about a project’s status, (2) High costs to
re-use assets from previous projects (i.e. mostly partial designs for components),
and (3) Strict coupling of the inter-disciplinary workflows to each software tool
in use, restricting the flexibility of all groups.

Thus, the main functional requirements to the integration solution are as
follows: (1) Convert and transfer data instances from one of the tools into the
respective other two models and vice versa, (2) Track changes of one’s work
compared to the last known working copy and changes which were propagated
to other disciplines, and (3) Keep older copies of the data available to revert to
those should current changes cause dissent between the engineering groups.

100 R. Mordinyi et al.

Step 3 and 4 - Present Architecture and Identify Architectural
Approaches. The architecture / data model under review consists of five com-
ponents:

Tool Data Models (TDM) which are pre-defined data models originating
from the tools to integrate.

Tool Domain Data Models (TDDM) which abstract the TDMs and rep-
resent a common but tool independent model for the integration solution.

Common Data Models (“Engineering Objects”) that are used to connect
TDDMs with each other and allow for a generic, discipline-independent view of
the data instances.

Mappings define “parsing configurations” thus enabling an import and
export of “raw” tool data into their respective domains.

Transformations are the translation instructions to convert data from one
TDDM or Engineering Object into another.

From the previous steps six goals the architecture has to server were
identified:

– “Update Propagation & Notification” demands that specific data instances
can be identified across model boundaries.

– “Ease of Refactorings” requires the ability to extract and batch-modify large
sets of data.

– “Reducing Tool Restrictions” requires to check whether shortcomings of the
tools’ data models are isolated and bypassed by the data model design or
introduced into the integration solution.

– “Data Exchange” requires that (changing) data models can hold and exchange
(tool) data instances.

– “Traceability” requires identification of data instances and operations.
– “Versioning” as a general property all data storages in the integration solution

need to have.

Regarding the design decisions made for the data model design, two main
(modelling) concepts can be identified Inheritance (as TDMs can be referred
to as subclasses of TDDMs) and Abstraction (as Common Data Models aim
to aggregate “interesting” parts of the TDDMs). On the other hand, “Global-
Local-As-View” can be identified as the dominant paradigm for the overall data
modelling strategy, since the “main” models present TDDMS and Common Data
Models treat each other as views of them, while “real” data models are used to
access and modify the data instances.

Step 5 - Generate Quality Attribute Utility Tree. Although the goals
“Update Propagation & Notification” and “Traceability” are based on different
use cases/scenarios, they require the same quality, namely tracking the links
between data instances across tool (data model) boundaries. Additionally, not
all of the identified goals have the same degree of immediacy attached, as “Ease
of Refactorings” is to be considered in follow-up (engineering) projects once
data is already stored and handled with the application integration solution.

Architecture Variants for Engineering Tool Integration 101

Utility

Usability

Performance

Modifiability

Effectiveness

(1) Filter change sets by project status

(2) Find the source/target of a change in < 5min

(3) Versioning is completed in < 10min

(4) Check-in & change propagation in < 10min

(5) of (data model) conversions by users

(6) of data models w/o changing related models

(7) Filter out invalid change sets

(8) Automatic change propagation

Fig. 3. Categorization of quality attributes these attributes

This reduces to four goals that are connected to several quality requirement
attributes.

1. “Traceability” goes hand in hand with usability, as users may need to (re)view
data change-sets and effectiveness, as invalid data instances should be filtered
out.

2. “Data Exchange” is connected to performance as well as effectiveness, since a
functioning data exchange that does not slow down the engineers’ workflows
is the core motivation to build an application integration solution.

3. “Reducing Tool Restrictions” is linked to modifiability and extensibility, as
the data models “inside” the application integration solution have to embrace
new features and should withstand a change of the underlying tool (or its data
model).

4. “Versioning” also is linked to performance as it should not slow down “main”
user interactions.

As shown in Fig. 3 eight quality attributes were derived and specified in
more detail as follows: (1) Being able to filter important/unimportant change
sets by project status. (2) Be able to navigate/display the source/target for a
local/propagated change set in <5 min. (3) Versioning of change sets must be
completed in <10 min (should not stall later check-ins). (4) A check-in and the
following propagation of data has to be finished in <10 min (after user interac-
tions). (5) Allow for modification of the conversions between data models by
(power) users. (6) Allow for modification of data models without the need to
change related models. (7) Automatically filter out invalid change sets before
further propagation. (8) Automatically propagate changes across tool bound-
aries (after a check-in of data into one model).

From reviewing previous minutes of meeting and feedback from delivered
prototypes, the assumed priorities (importance for the overall success) and risks
(cost to satisfy) of the goals are summarized in Table 2 (sorted by priority, fol-
lowed by effort):

102 R. Mordinyi et al.

Table 2. Priority and effort of goals.

Name Priority Effort

8 Change propagation high high

5 Modify conversions high medium

6 Modify data models high low

7 Filter invalid data medium high

1 Filter by status medium low

2 Change source/target lookup low medium

3 Fast versioning low low

4 Fast check-in & Follow-up low low

Step 6 - Analyze Architectural Approaches. There is a total of three high-
priority goals which have to be analysed in further detail in order to answer the
following questions:

1. Does the proposed architecture satisfy the requirements imposed by the goal?
2. Are there any risks/conditions under which the requirement will not be sat-

isfied?
3. Does satisfying the requirements impose any trade-offs on the architecture or

the final solution which may hinder addressing other goals?

Therefore, for the three high priority goals (“Automatic Change Propaga-
tion”, “Modifying Data Model Conversions”, “Modifying Data Models”) quality
attribute characterizations (QACs) were created (see [35] for details), concluding
that all major business goals (regarding data integration) are addressed by the
data model design.

Step 7 - Brainstorm and Prioritize Scenarios. During presentation of and
discussion about the importance of the eight goals to our industry partners, they
decided to change two prioritizations:

1. “Modifying Data Models without having to update related models” (6) was
down-voted to low priority under the assumption that tools or their respective
models do not change very often, especially not during projects. However,
after showing counter-examples from the initial prototyping iterations, it was
agreed that this goal should have a priority of at least medium (priority
of high was not necessary as it was not immediately needed for a working
prototype).

2. “Being able to filter important/unimportant change sets by project status”
(1) was up-voted to high priority, as tracking and preventing changes to
“finalized” data sets (i.e. “Accepted by the customer”) is perceived to be a
major cost-cutting factor - which was unknown until that discussion.

Architecture Variants for Engineering Tool Integration 103

In addition, a new goal of medium priority was introduced with a discipline-
specific scenario, called “Creating and querying custom data hierarchies”. From
the UI design point of view, this refers to the user being able to categorize, sort
and query data instances from their discipline by more then one “hierarchies”.

Step 8 - Analyze Architectural Approaches. Since the prioritization of
business goals was changed, an additional QAC was created (see [35] for details).
The main trade-off of the proposed data model design style is a higher complexity
in comparison to a 1-or 2-tiered approach, but at the benefit of serving the major
business goals.

Step 9 - Present Results. Summarizing the results from the previous steps,
the validation of the data model design style using the ATAM yields the following
results:

1. Six main business drivers were identified in the beginning of the ATAM exe-
cution, of which five are (partially) relevant when validating the data model
design style. Out of these five goals, two are identical from the data modelling
point of view.

2. These four business drivers were used to extrapolate a total of eight architec-
ture goals, marking three as highly important for the success of the project.

3. The three quality attribute characterizations created from these goals sup-
ported the theory that the data model design style serves to satisfy the
requirements.

4. “Customer” review caused a down-vote of one of the QACs, up-voted one
goal to high priority and introduced a new medium-priority goal.

5. Repeated QAC creation again resulted in a positive evaluation of the pro-
posed data model design style.

7 Discussion and Conclusion

When designing and implementing application integration solutions that enable
the exchange of engineering artefacts across discipline and tool boundaries, the
data model design at the very start can ultimately decide the success of such an
integration effort. Most of these integration scenarios can be simplified to a fixed
number of tools (usually 3 to 5) which are each used by one discipline (such as
electrical, mechanical and software engineering).

By iterative prototyping of solution candidates different modelling styles were
tested over the course of several months. During each iteration, a small set
of use cases (2–4) regarding tool integration was taken for testing the current
development iteration. Using the results from previous iterations, more detailed
specifications of those use cases were created, combined with sample data to
“simulate” runs of said use cases, and used to redesign current data models and
architecture, and modify or extend business logic.

104 R. Mordinyi et al.

These architectural changes also affected the way in which tool data and com-
mon data were stored, transformed and treated, introducing a set of different
data modeling styles for ostensibly similar scenarios. Styles align with the classic
Enterprise Service Bus [6] and Virtual Common Data Model [41] proved to be
feasible long-term solutions for the immediate purpose of model integration and
tool chain support. However, through regular user feedback and iterative evalu-
ation of the project’s requirements over time, it turned out that changes to the
common data model happen more frequently then expected, causing redeploy-
ment of a large number of components and intense re-configurations.

The proposed 3-layered approach, based on the Engineering Service Bus
(EngSB) framework, was designed after reworking the design behind previously
deployed, working prototypes which already allowed for a data exchange across
3 disciplines. This model was again evaluated using the ATAM before using it to
build a specific data model design for our test scenario. A limitation of the pro-
posed data modelling style is its relatively narrow area of applicability. The data
model design style was designed for middle-sized to large engineering project
with two or more (engineering) disciplines collaborating which each other. The
basic assumption is that there exists at least one common data model which may
be used to exchange the artefacts created by each respective group.

It may be therefore concluded that the proposed solution introduces high
complexity. The 3-layered approach consists of tool data models (TDM), tool
domain data models (TDDM) and common data models (“engineering objects”),
combined with transformations and mappings. This implies that these three data
models and two conversion configurations have to be carefully modelled and
maintained. Consequently, conversations and discussions between a representa-
tive of each engineering discipline is needed to ensure the quality of the overall
data model design.

As future work it is intended to minimize complexity of the proposed app-
roach by introducing additional tool-support for model and conversation man-
agement, and reviewing its limitations and benefits in other engineering areas,
like Automotive or Aerospace.

Acknowledgments. This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria.

References

1. Adelman, S., Moss, L., Abai, M.: Data Strategy. Addison-Wesley Professional,
Indianapolis (2005)

2. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In: Pro-
ceedings of the 25th International Conference on Software Engineering, ICSE ’03,
pp. 187–197. IEEE Computer Society, Washington, DC (2003)

3. Biffl, S., Schatten, A., Zoitl, A.: Integration of heterogeneous engineering environ-
ments for the automation systems lifecycle. In: 7th IEEE International Conference
on Industrial Informatics, INDIN 2009, pp. 576–581 (2009)

Architecture Variants for Engineering Tool Integration 105

4. Biffl, S., Schatten, A.: A platform for service-oriented integration of software engi-
neering environments. In: Proceedings of the 2009 Conference on New Trends
in Software Methodologies. Tools and Techniques: Proceedings of the Eighth
SoMeT’09, pp. 75–92. IOS Press, Amsterdam (2009)

5. Boucké, N., Weyns, D., Schelfthout, K., Holvoet, T.: Applying the ATAM to an
architecture for decentralized control of a transportation system. In: Hofmeister,
C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS, vol. 4214, pp. 180–198.
Springer, Heidelberg (2006)

6. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media, New
York (2004)

7. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing ui integration: a survey of problems, technologies, and opportunities.
IEEE Internet Comput. 11(3), 59–66 (2007)

8. Fan, H.: Investigating a Heterogeneous Data Integration Approach for Data Ware-
housing. Ph.D. Thesis, School of Computer Science & Information Systems Birk-
beck College (2005)

9. Fay, A., Biffl, S., Winkler, D., Drath, R., Barth, M.: A method to evaluate the open-
ness of automation tools for increased interoperability. In: Industrial Electronics
Society, IECON 2013–39th Annual Conference of the IEEE, pp. 6844–6849, Nov
2013

10. Ferber, S., Heidl, P., Lutz, P.: Reviewing product line architectures: experience
report of ATAM in an automotive context. In: van der Linden, F.J. (ed.) PFE
2002. LNCS, vol. 2290, p. 364. Springer, Heidelberg (2002)

11. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

12. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv.
28(2), 415–435 (1996)

13. Giordano, A.: Data Integration Blueprint and Modeling: Techniques for a Scalable
and Sustainable Architecture. IBM Press, Pearson (2011)

14. Gritton, B.: Inter-enterprise integration x2014; moving beyond data level integra-
tion. In: OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future:
Global and Local Challenges, pp. 1–10 (2009)

15. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: Pro-
ceedings of the 32nd International Conference on Very Large Data Bases, VLDB
’06, pp. 9–16. VLDB Endowment (2006)

16. Hentrich, C., Zdun, U.: Patterns for business object model integration in process-
driven and service-oriented architectures. In: Proceedings of the 2006 Conference
on Pattern Languages of Programs, PLoP ’06, pp. 23:1–23:14. ACM, New York
(2006)

17. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Boston (2003)

18. IBM Coporation: How service-oriented architecture (soa) impacts your it
infrastructure (2011-2008)

19. Islam, S., Rokonuzzaman, M.: Adaptation of atamsm to software architectural
design practices for organically growing small software companies. In: 12th Inter-
national Conference on Computers and Information Technology, ICCIT ’09, pp.
488–493 (2009)

20. Kamina, T., Tamai, T.: Lightweight scalable components. In: Proceedings of the
6th International Conference on Generative Programming and Component Engi-
neering, GPCE ’07, pp. 145–154. ACM, New York (2007)

106 R. Mordinyi et al.

21. Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluation.
Technical Report CMU/SEI-2000-TR-004, Carnegie Mellon Uiversity, Software
Engineering Institute (2000)

22. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of
the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’02, pp. 233–246. ACM, New York (2002)

23. Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley Professional,
Reading (1999)

24. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transfor-
mation rules. In: 19th International Conference on Data Engineering, 2003, Pro-
ceedings, pp. 227–238 (2003)

25. Meyer, B.: Reusability: the case for object-oriented design. IEEE Softw. 4(2), 50–64
(1987)

26. Microsoft Corporation: Integration Patterns (Patterns & Practices). Microsoft
Press (2004)

27. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research directions. IEEE
Trans. Softw. Eng. 21(6), 528–562 (1995)

28. Kwakye, M.M., Kiringa, I., Viktor, H.L.: Merging multidimensional data models:
a practical approach for schema and data instances. In: DBKDA 2013, The Fifth
International Conference on Advances in Databases, Knowledge, and Data Appli-
cations, pp. 100–107 (2013)

29. Moser, T., Biffl, S.: Semantic integration of software and systems engineering envi-
ronments. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(1), 38–50 (2012)

30. Paulheim, H.: Ontology-Based Application Integration. Springer, Berlin (2011)
31. Pena, C., Bastarrica, M.C., Perovich, D.: Atam-hw: extending atam for explic-

itly incorporating hardware-related trade-off decisions. In: Proceedings of the 2010
XXIX International Conference of the Chilean Computer Science Society, SCCC
’10, pp. 119–123. IEEE Computer Society, Washington, DC (2010)

32. Raza, A., Abbas, H., Yngstrom, L., Hemani, A.: Security characterization for eval-
uation of software architectures using atam. In: International Conference on Infor-
mation and Communication Technologies, ICICT ’09, pp. 241–246 (2009)

33. Reeve, A.: Managing Data in Motion: Data Integration Best Practice Techniques
and Technologies (The Morgan Kaufmann Series on Business Intelligence). Morgan
Kaufmann, Burlington (2013)

34. Reijonen, V., Koskinen, J., Haikala, I.: Experiences from scenario-based architec-
ture evaluations with ATAM. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS,
vol. 6285, pp. 214–229. Springer, Heidelberg (2010)

35. Mordinyi, R., Winkler, D.: F.W.S.B.: Ifs-cdl-14-15 - integrating heterogeneous engi-
neering tools and data models: A roadmap for developing architecture variants.
Technical report, Vienna University of Technology (2014)

36. Schafer, W., Wehrheim, H.: The challenges of building advanced mechatronic sys-
tems. In: 2007 Future of Software Engineering, FOSE ’07, pp. 72–84. IEEE Com-
puter Society, Washington, DC (2007)

37. Schwinn, A., Schelp, J.: Design patterns for data integration. J. Enterp. Inf. Manag.
18(4), 471–482 (2005)

38. Selby, R.: Enabling reuse-based software development of large-scale systems. IEEE
Trans. Softw. Eng. 31(6), 495–510 (2005)

39. Smith, S.: http://programmer.97things.oreilly.com/wiki/index.php/don’t repeat
yourself. Accessed 2 July 2013

http://programmer.97things.oreilly.com/wiki/index.php/don't_repeat_yourself
http://programmer.97things.oreilly.com/wiki/index.php/don't_repeat_yourself

Architecture Variants for Engineering Tool Integration 107

40. van der Storm, T.: Generic feature-based software composition. In: Lumpe, M.,
Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 66–80. Springer, Heidelberg
(2007)

41. Waltersdorfer, F., Moser, T., Zoitl, A., Biffl, S.: Version management and con-
flict detection across heterogeneous engineering data models. In: 2010 8th IEEE
International Conference on Industrial Informatics (INDIN), pp. 928–935 (2010)

42. Zhong, F.: Geological data integration and sharing on the semantic level. In:
2012 Fourth International Conference on Computational and Information Sciences
(ICCIS), pp. 369–372 (2012)

Evaluation of JavaScript Quality Issues
and Solutions for Enterprise
Application Development

André Nitze(B)

Berlin School of Economics and Law, 10825 Berlin, Germany
andre.nitze@hwr-berlin.de

Abstract. Today’s web applications heavily employ JavaScript to cover
wide parts of the applications’ front ends. The scripting language, often
called the “lingua franca” of the web, is also becoming increasingly
popular for building enterprise-grade applications. However, in practice,
the language is criticized for being too unstructured, flawed and inade-
quate for such projects. In this contribution, the major problems with
JavaScript as the language of choice for enterprise applications are ana-
lyzed and possible solutions to ensure the quality of such systems are
discussed.

Keywords: JavaScript · Enterprise applications · Software quality ·
Maintainability · Design patterns

1 Introduction

JavaScript is a functional, prototype-based and object-oriented scripting lan-
guage. Since its hasty and politically biased creation in 1995 [26], Web developers
were using it to make web sites more dynamic and user-friendly. Average scripts
were well under 150 lines of code. With the introduction of the “jQuery” library
in 2006 and its extensive dissemination, JavaScript could be used to enhance
web sites’ functionality and usability due to easy manipulation of the document
object model (DOM) and the ability of asynchronous remote calls. The language
is interpreted by all relevant browsers implementing the same ECMAScript stan-
dard from 2009 (ECMA-262 Edition 5.1, [7]). The responsiveness, functionality
and decreased loading times which can be achieved by client-side scripting are
crucial to meet the high expectations of users and provide a contemporary user
experience.

There also has been a significant increase in use of web technologies (Java
Script, HTML and CSS) to deliver more complex web-based and mobile software.
But regarding the history of the language, it seems justified to challenge the
adequacy of the language for larger projects and its ability to address the needs
of enterprise software development. There is no doubt that full-stack JavaScript
applications are feasible and can be highly functional and fast. The question is

c© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 108–119, 2015.
DOI: 10.1007/978-3-319-13251-8 7

JavaScript in the Enterprise 109

rather: Is it economically worthwhile to produce and maintain complex and long-
term enterprise software products with JavaScript today? And if so, how can the
common assumptions and objections about JavaScript as a “toy language” [19]
be addressed? This is why, in this paper, these issues shall be evaluated and
contrasted with possible solutions in the context of software maintainability.

2 JavaScript in the Enterprise

Although the choice of the programming language should be an implementation
detail [29], the decision for or against specific technologies for large organiza-
tions should rely on the technologies’ aptness to the use case and its estimated
sustainability. Sustainability includes the languages’ prospective market share,
its advancement and third-party support, the availability of developers and tools
and its long-term maintainability.

2.1 Enterprise Software

Software development in large organizations is distinct from the approach of
developing software with few developers and limited scope. Although there is no
generally accepted definition of “Enterprise Software” [12], the discussion can be
compared to the distinction between “tinkering” and “engineering” [10]. While
badly written, smaller software systems can provide their services for many years
without significant side effects, enterprise software tends to show earlier warn-
ing signs like performance degradation, hard extensibility and increased mainte-
nance effort as business needs change. This is why these products need a solid
development approach and a structural foundation which average developers can
understand and extend.

There are several models for defining and measuring the quality of a soft-
ware product. The ISO/IEC 25010 quality model (Systems and software Qual-
ity Requirements and Evaluation) [15], e. g., defines eight quality characteristics:
Functional suitability, performance efficiency, compatibility, usability, reliability,
security, maintainability and portability.

Some characteristics gain in importance as the software matures. One of the
core concerns for enterprise applications is the maintainability of the software as
these applications are supposed to be used for more than a few years and usually
for more use cases than they were originally intended for.

Maintainability can be composed of different quality criteria, e. g., under-
standability, modularity, changeability, extensibility and testability. It is gener-
ally accepted that maintainability is heavily influenced by the structural quality
of the software product. The metrics of McCabe [18] and Halstead [14] have been
popularized beside others to measure the quality of code. Also, there are sev-
eral static code analysis tools which indicate problematic constructs and actual
errors. On the architectural level there are mainly manual assessments like archi-
tecture reviews or the architecture trade-off analysis proposed by Kazman et al.
[16]. To evaluate the overall suitability of JavaScript in terms of maintainability,

110 A. Nitze

low-level code quality aspects must be discussed along with higher-level ideas
like modularity.

2.2 Related Work

Much research in terms of JavaScript has been done on obfuscation techniques.
However, researchers have not yet explored the role of JavaScript in the enter-
prise and its implications on software quality and especially maintainability.

Mikkonen and Taivalsaari, despite being in favor of JavaScript, expressed
several concerns [19]. Among others, they comment on the extreme permissive-
ness of the language, the maturity of core libraries, the lack of modularity and
classes, syntactic issues, an “overly complex and clumsy to use” I/O model, lack
of an “include” mechanism and performance and memory management issues.

A representative analysis of the runtime behaviour of real-world JavaScript
programs was conducted to verify several assumptions about the language [25].
The analysis revealed malpractices like the frequent and defective use of eval,
change of types even late in an objects’ lifespan, change of built-in object types
and redundant code. Furthermore, several typical JavaScript code smells have
been identified by Fard and Mesbah [11].

Ocariza et al. conducted empirical studies of client-side JavaScript code
and found many DOM-related bugs [22] and errors in popular production web
applications [23]. They also found that many of these errors (72 %) are non-
deterministic, i. e., they vary across executions.

In previous research, the modularity aspect of JavaScript frameworks and
libraries has been discussed in more detail [20].

3 Problems with JavaScript Software Development

The origin of some of the problems stated above and expressed by practition-
ers [1–3] can be seen in the backwards compatibility needed to support older
browsers and web sites. Others may be rooted in the original intention of the
language as a “lightweight complement” to Java [26]. Regarding the history of
the language, its suitability for large software projects has to be questioned.
Therefore, typical examples of the most often cited inadequacies shall be pre-
sented here.

3.1 Structure

The application structure can be organized via modules. A module in terms of
web applications can be considered a functionally self-contained part of the appli-
cation. Communication between modules should be conducted using a mediator.
The widely known principles behind modularity are loose coupling and high cohe-
sion. It is well-known, that high modularity of software significantly increases its
quality characteristics, especially testability and extensibility.

JavaScript in the Enterprise 111

In JavaScript, there is no import or include directive known from other
languages, which could help to structure the application. This is a common
problem when application modules are to be loaded dynamically at run time. It
occurs, when there are variable collisions in the global scope, e. g., two variables
have the same name and the first one is overridden by the other. In JavaScript,
this can happen easily due to implicit global variables and the use of variables
without declaration. Namespaces are the corresponding design pattern to solve
this problem. But namespaces are not part of the standard and thus are typically
provided by additional “module loaders”.

3.2 Typing

The dynamic typing of JavaScript is convenient at first but it can have severe
consequences. For example, having “flexible” types prevents static analysis tools
from finding problems in type conversions, interface definitions and comparisons.
The “duck typing” approach – determining the type of an object during runtime
and according to its context at a given point of time – is very flexible but can be
counterproductive in a corporate environment, where lots of differently skilled
people have to read and extend source code. – In particular, when that code
does not execute with easily predictable and comprehensible results. In that
case, it could be argued, that the additional code of statically typed languages
would add to the understandability of the program. A static type system, on
the other hand, can only prevent basic type errors as there are no semantic
checks. Despite the general discussion around type systems, an enterprise-grade
language will most likely be required to provide some guarantee on types to be
accepted by managers in terms of risk prevention.

3.3 Inconsistencies

There are inconsistencies in the language, which make it easy to create unex-
pected program behavior. This holds especially true for programmers who are
used to languages which had the chance to be created for and matured in enter-
prise environments.

Special language constructs. In JavaScript, everything is an object. A problem
with this is, that even null is an object, which can result in obscure behavior at
comparisons.

eval() and with are two other heavily debated language constructs. eval
enables the interpretation of strings as native code and thus can convey serious
security issues (Sect. 4.1). The comfortable with also has more harmful than
appropriate uses, which contributes to its use being a bad practice1.

Private properties of JavaScript “objects” can be defined within closures.
Public variables and methods can be exposed using different scopes and the
1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/

with

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with

112 A. Nitze

return statement enabling the prototypes to provide interfaces. However, this
way of providing object-oriented features is neither intuitive nor fail-safe.

Scope Ambiguity. Scopes normally help to reduce naming collisions and pro-
vide automatic memory management. In JavaScript, however, scopes sometimes
create additional problems, as it can be seen in the following listing [31]:

function foo(fn) {

if (typeof fn ==="function") {

fn();

}

}

var bar = {

barbar : "Hello, World!",

method : function() {

alert(this.barbar);

}

};

bar.method(); // alerts Hello, World!

foo(bar.method); // alerts "undefined."

foo(function() { bar.method(); }); // alerts Hello, World!

In the example, a function foo is created, which calls a function with the
name equal to the parameter fn. Then, an object bar is created with a prop-
erty and a method to alert the property. The call of the following expression
foo(bar.method) evaluates to “undefined”. The desired output can be achieved
using the more complex and less legible foo(function() bar.method();).
These inconsistencies are problematic as they cause defects which are hard to
trace and thus introduce significant risk into projects.

No Classes. As there are no classes in JavaScript, objects are created using a
constructor function:

function MyObject() {

this.myString ="Hello World!";

this.myInteger = 0;

}

myObject1 = new myObject();

JavaScript is a Prototype-based object-oriented language. The prototype is
a creational pattern [13, p.10] which allows the developer to use objects as tem-
plates for other objects. The prototype object is cloned and can then be extended.
This can result in complexity as new subclasses can be created at runtime and
the inheritance hierarchy can grow unrestricted. Additionally, the cloning process
can be very expensive.

Use of this. The use of this is problematic when it is used inside of methods.
The object-oriented programmer expects to operate on an object when using
this. In JavaScript however, the use of this depends on the scope it is used in.
Consider the following code listing (adapted from [4]):

JavaScript in the Enterprise 113

function MyObjectConstructor(message){

this.message = message;

this.show = function(){

alert(this.message);

};

}

myObject1 = new MyObjectConstructor("my test string");

var methodpointer = myObject1.show;

methodpointer(); // alerts ’undefined’

In this case, methodpointer() should access the method show of the object
instance myObject1 to alert the message property. But instead, it looks for
this in the global scope. Thus, the execution of the above script results in an
“undefined”-error. There are workarounds to solve this problem (i. e., using an
intermediate “that” variable, s. [27, p.47]), but it is not the behavior expected
by developers. Another example, derived from Crockford [9, p.28f], again shows
unexpected behavior regarding the scope:

var value = 0; // outer value (global context)

var myObject = {

value : 1, // inner value (object context)

increment : function () {

var helper = function () {

this.value++; // references outer value (wrong)

};

helper();

}

};

document.writeln(myObject.value); // 1 (correct)

myObject.increment(); // invoke increment method

document.writeln(myObject.value); // 1 (wrong, should be 2)

document.writeln(value); // 1 (wrong, should be 0)

Internal Code Completion. In the case of JavaScript, even code style has an
impact on functionality as commas and semicolons are added automatically. This
convenient function can lead to weird behavior as can be seen in the following
listing [31]:

return

{

foo : bar

};

For the interpreter, the code looks like this after the “improvement” of semicolon
insertion, ignoring the intended object creation:

return; // JavaScript incorrectly adds this semicolon

{

a :’b’; // semicolon added

};

114 A. Nitze

Global Variables. Many additional libraries and frameworks add variables to the
global scope to make their functionality available to other modules. The problem
is, that these variables “pollute” the global namespace, possibly resulting not
only in lack of overview but also in conflicts with other variables which have
been defined a priori.

3.4 Scalability

The extensive use of JavaScript as a front end technology constitutes a paradigm
shift to a more client-side focus of the application architecture with all the inher-
ent benefits and drawbacks. A major benefit is, that the scaling of an application
is less of an issue as significant parts of the main workload are processed on the
client. Scaling can be done on the server side by employing an event-driven archi-
tecture, which fits well to the non-threaded nature of JavaScript. This, however,
can require significant changes within the enterprise architecture and thus can
be a severe project constraint.

4 Possible Solutions

There are several directions from which the above mentioned problems can be
resolved. The solutions differ in terms of radicality, e. g., from relatively unobtru-
sive programming standards to changing to completely other primary languages.

4.1 Standards

Making use of programming standards or conventions should be common in
enterprises as they pave the way to decent software quality. These standards
range from high-level principles (e. g., Separation of Concerns, Don’t Repeat
Yourself, Keep It Short and Simple) to more operational practices (e. g., don’t
mix code and data; comment your code; apply naming conventions; don’t change
objects you don’t own) and very basic conventions (e. g., indentation with tabs;
no null comparisons; camel case and verbs for methods).

The application of architectural design patterns ensures long-term maintain-
ability and extensibility of the software. Style guides, in turn, can be less obstruc-
tive when they are automatically applied when pushing code to a version control
system or during the build process.

There are several resources on best practices and coding standards in
JavaScript:

– Google JavaScript Style Guide2

– jQuery JavaScript Style Guide3

2 http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
3 http://contribute.jquery.org/style-guide/js/

http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
http://contribute.jquery.org/style-guide/js/

JavaScript in the Enterprise 115

– Crockford/Rashbrook JavaScript Code Conventions4

– Dojo Style Guide5

There are integrated tools to automatically check for these (s. [8,27]). Practi-
tioners and scholars also have collected generic and JavaScript-specific program-
ming best practices (s. [9,13,17,24,27,33]). With such standards, testable and
legible JavaScript code can be produced and checked at least partly automated
while avoiding common programming pitfalls.

4.2 Language Evolution

As of writing this paper, the most recent version of the ECMAScript standard
is 5.1 [7]. The draft of the next version (“Harmony”6) addresses many of the
stated issues: module, import and export declarations, object literals, static
typing and arrow functions. “Troublesome” constructs are to be removed while
preserving “the start small and iteratively prototype nature of the language”.

The draft documentation also names the goals of the new version (excerpt):

– Be a better language for writing:
– complex applications;
– libraries (possibly including the DOM) shared by those applications;
– code generators targeting the new edition.

– Switch to a testable specification [...].
– Improve interoperation, adopting de facto standards where possible.

This shows, that the language is being changed and extended to better sup-
port the desired use cases of more complex, i. e., enterprise applications, but
also to prevent the issues stated above. However, it remains unclear, when the
new version will be completed, released and implemented by browser vendors. A
problem, which could arise from this process, is a fragmented support of different
JavaScript versions by web browsers.

4.3 Intermediary Languages

The main criticism against the standard is its time-to-market and the amount of
usable features probably included. An intermediary language could be used to
compensate the lack of some features. A survey from 2013 showed, that 22 % of
the participating developers used an intermediary language, most of them (85 %)
CoffeeScript [28].

TypeScript is another option and an early interpretation of the new Java
Script-version (ECMAScript 6). The code allows for ECMAScript-compliant code,
but provides a module system with namespaces, static typing and other features
which can be used immediately and without breaking old code. CoffeeScript, while
being already applied in practice, only covers a subset of the capabilities of Type-
Script.
4 http://javascript.crockford.com/code.html
5 http://dojotoolkit.org/community/styleGuide
6 http://wiki.ecmascript.org/doku.php?id=harmony:specification drafts

http://javascript.crockford.com/code.html
http://dojotoolkit.org/community/styleGuide
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

116 A. Nitze

The TypeScript source files are translated and compiled into ECMAScript 3-
compatible files, which can be interpreted by all major web browsers. Essentially,
TypeScript reduces the complexity of JavaScript syntax to write object-oriented
code. The more advanced object-oriented features are used (e. g., inheritance,
type casting, optional parameters), the more complex the resulting code gets.
An example can be found in the following code listing [5]:

class BankAccount {

balance = 0;

deposit(credit: number) {

this.balance += credit;

return this.balance;

}

}

The above code would be translated into this standard-compliant code:

var BankAccount = (function () {

function BankAccount() {

this.balance = 0;

}

BankAccount.prototype.deposit = function(credit) {

this.balance += credit;

return this.balance;

};

return BankAccount;

})();

But most of the documentation, best practices and conventions are based on
the standard implementation. Changing this may create barriers for new devel-
opers and increase the effort to port the intermediary language back to the
specification-compliant one depending on how differently they implement the
distinct features.

4.4 Another Language

Considering other languages to replace or circumvent JavaScript is a justifiable
option for those who want to leverage existing resources while profiting from the
speed and cross-platform capability of JavaScript.

Google’s “Dart” language has recently attracted developers’ attention. It is
positioned as a new virtual machine (VM) for the web beside and, in the long-
run, instead of the JavaScript interpreter. It provides classes, namespaces and
optional static types. Nevertheless, the language is not ready for production and
thus cannot be considered a solution yet.

Another approach is to use JavaScript as intermediary language using cross-
compilers like Emscripten [32]. That way, developers can leverage their experi-
ence in Java, C++, C# or Python to build JavaScript-based web applications.
The Google Web Toolkit (GWT) is a popular and production-ready example
of this approach using a Java-to-JavaScript cross-compiler. However, it is very
hard to maintain or even edit the resulting JavaScript as it is highly optimized.

JavaScript in the Enterprise 117

Table 1. Problems of JavaScript in the enterprise and possible solutions

Structure Typing Language Scalability

(3.1) (3.2) inconsistencies (3.3) (3.4)

Standards (4.1) YES NO YES NO

Intermediary languages (4.2) YES YES YES NO

Language evolution (4.3) YES YES YES NO

Another language (4.4) YES NO YES NO

Ecosystem (4.5) YES YES NO NO

4.5 Ecosystem

There is a remarkable amount of open-source frameworks and libraries avail-
able for JavaScript web development. Frameworks provide application structure
and solutions for typical scenarios. In particular, most web frameworks imple-
ment the separation of concerns principle using derivatives of the model-view-
controller and observer patterns and provide the syntactic sugar developers are
used to from other languages. Module loaders help to handle the task of resolv-
ing dependencies in large projects. Asynchronous Module Definition (AMD [6])
has become the de-facto standard for managing module dependencies in many
frameworks. The back end platform Node.js provides over 70.000 packages for a
vast amount of use cases at the time of writing [21]. jQuery UI offers hundreds
of plugins which build on and extend the core library. jQuery itself is one of the
best examples to show how the language can be used to provide great functional-
ity without leaving the standard. In terms of design patterns the library helps to
hide the complexity of cross-browser incompatibility using facades. For example,
the well-known CSS selector ($("#id")) abstracts the browsers’ different ways
of selecting an element from the DOM [24].

One drawback of using a framework lies in its uncertain long-term availability.
The continuity of an open-source project is a risk for enterprises. Beside the risk
of “framework lock-in”, there always is an overhead in terms of performance in
exchange for functionality and compatibility.

The ecosystem also includes tools to scaffold, develop, build, test and deploy
software products. The availability, maturity and integration of such develop-
ment tools often is significantly correlated with the popularity of the language
they support. Hence, these topics are considered a short-term problem, which
will be solved with further dissemination of the language in professional soft-
ware development companies. The TIOBE programming language index ranks
JavaScript at the 9th position as of May 2014 [30] indicating a significant impor-
tance which cannot be ignored by enterprises.

5 Conclusion

In this paper, an overview of general and enterprise-specific problems with
JavaScript has been given. Issues that are essential for several quality factors,

118 A. Nitze

especially maintainability, have been described and illustrated with code exam-
ples. The problems discussed are compared against the analyzed solutions in
Table 1. In accordance with the findings of the analysis, the question whether
JavaScript is suitable for enterprise-grade applications, can be answered with
“Yes”. Although the language and its ecosystem are evolving, JavaScript and
associated frameworks can be used to develop and maintain modern web-based
applications in enterprise environments. Many of the problems with JavaScript
can either be solved by using workarounds or additional frameworks and libraries.
Some of the languages’ problems are rooted in its specification and former use
cases (language inconsistencies) while others are the result of misconceptions
and prejudices. In fact, many deficiencies can be circumvented or alleviated by
employing one or more of the solutions stated above. The most significant con-
tribution to its appropriateness for large software projects is the foreseeable
object-orientation, which allows for better maintainability, and hence software
quality. TypeScript is considered a worthwhile intermediate language which can
be used until inconsistencies are fixed in the upcoming version(s) of JavaScript.

References

1. Why javascript still sucks /r/programming (2012). http://www.reddit.com/r/
programming/comments/14wk9o/why javascript still sucks/

2. Java script sucks (2014). http://c2.com/cgi/wiki?JavaScriptSucks
3. Yourlanguagesucks (2014). https://wiki.theory.org/YourLanguageSucks#Java

Script Sucks because
4. Administrator. The this problem, 19 May 2014. http://www.i-programmer.info/

programmer-puzzles/137-javascript/1922-the-this-problem.html
5. Hejlsberg, A., Lucco, S.: Typescript language specification. http://www.

typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
6. Burke, J.: amdjs/amdjs-api, 27 May 2014. https://github.com/amdjs/amdjs-api/

wiki
7. Charollais, P.: Final draft standard ECMA-262 edition 5.1, March 2011.

(Revised 6)
8. Crockford, D.: Jslint, the javascript code quality tool, 08 April 2014. http://www.

jslint.com/
9. Crockford, D.: JavaScript - The Good Parts: Working with the Shallow Grain of

JavaScript. O’Reilly, Farnham (2008)
10. Dahlbom, B., Mathiassen, L.: Computers in Context: The Philosophy and Practice

of Systems Design. NCC Blackwell, Cambridge, MA (1993)
11. Fard, A.M., Mesbah, A.: JSNose: detecting javascript code smells. In: IEEE 13th

International Working Conference on Source Code Analysis and Manipulation
(SCAM), pp. 116–125 (2013)

12. Foy, B.D.: What is enterprise software? 16 May 2014. http://www.perlmonks.org/?
node id=504043

13. Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-Wesley, Reading, Mass
(1995)

14. Halstead, M.H.: Elements of Software Science. Operating and Programming Sys-
tems Series, vol. 2. Elsevier, New York (1977)

http://www.reddit.com/r/programming/comments/14wk9o/why_javascript_still_sucks/
http://www.reddit.com/r/programming/comments/14wk9o/why_javascript_still_sucks/
http://c2.com/cgi/wiki?JavaScriptSucks
https://wiki.theory.org/YourLanguageSucks#JavaScript_Sucks_because
https://wiki.theory.org/YourLanguageSucks#JavaScript_Sucks_because
http://www.i-programmer.info/programmer-puzzles/137-javascript/1922-the-this-problem.html
http://www.i-programmer.info/programmer-puzzles/137-javascript/1922-the-this-problem.html
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
http://www.typescriptlang.org/Content/TypeScript%20Language%20Specification.pdf
https://github.com/amdjs/amdjs-api/wiki
https://github.com/amdjs/amdjs-api/wiki
http://www.jslint.com/
http://www.jslint.com/
http://www.perlmonks.org/?node_id=504043
http://www.perlmonks.org/?node_id=504043

JavaScript in the Enterprise 119

15. International Organization for Standardization. ISO/IEC 25000:2014 - systems
and software engineering - systems and software quality requirements and eval-
uation (square) - guide to square, 19 May 2014. http://www.iso.org/iso/home/
store/catalogue ics/catalogue detail ics.htm?csnumber=64764

16. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
architecture tradeoff analysis method. In: Fourth IEEE International Conference,
pp. 68–78, 10–14 Aug 1998

17. MacCaw, A.: Developing JavaScript Web Applications. O’Reilly, Sebastopol,
California (2011)

18. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
19. Mikkonen, T., Taivalsaari, A.: Using javascript as a real programming

language (2007). http://www.activemode.com/webroot/Workers/ActiveTraining/
Programming%5CJavascript AsProgrammingLanguage.pdf

20. Nitze, A., Schmietendorf, A.: Modularity of javascript libraries and frameworks
in modern web applications. In: Wuksch, D., Peischl, B., Kop, C. (eds.) Selected
Topics to the User Conference on Software Quality, Test and Innovation (ASQT
2014), OCG, Klagenfurt, AT (2014)

21. Node.js. npm, 16 May 2014. https://www.npmjs.org/
22. Ocariza, F., Bajaj, K., Pattabiraman, K., Mesbah, A.: An empirical study of client-

side javascript bugs. In: ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pp. 55–64 (2013)

23. Ocariza Jr., F.S., Pattabiraman, K., Zorn, B.: Javascript errors in the wild: an
empirical study. In: IEEE 22nd International Symposium on Software Reliability
Engineering (ISSRE), pp. 100–109 (2011)

24. Osmani, A.: Learning JavaScript Design Patterns. O’Reilly Media, Sebastopol, CA
(2012)

25. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of javascript programs. In: Zorn, B., Aiken, A. (eds.) The 2010 ACM SIGPLAN
Conference, pp. 1–12 (2010)

26. Severance, C.: Javascript: designing a language in 10 days. Comput. 45(2), 7–8
(2012)

27. Stefanov, S.: JavaScript Patterns. O’Reilly, Sebastopol, CA (2010)
28. Swift, J.: Javascript developer survey 2013, 23 Dec 2013. http://www.

i-programmer.info/news/167-javascript/6746-javascript-developer-survey-2013.
html

29. Szegedi, A.: Javascript in the enterprise. Presentation at QCon (2009)
30. TIOBE Software. Tiobe index, 05 June 2014. http://www.tiobe.com/index.php/

content/paperinfo/tpci/index.html
31. Way, J.: Top 10 things that javascript got wrong - tuts+ code tutorial (2010).

http://code.tutsplus.com/tutorials/top-10-things-that-javascript-got-wrong-net-
9266

32. Zakai, A.: Emscripten: an llvm-to-javascript compiler (2011). http://
davideglintine-new.googlecode.com/hg/docs/paper.pdf

33. Zakas, N.C.: Maintainable Javascript. O’Reilly, Sebastopol, CA (2012). (Revised
edition)

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64764
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=64764
http://www.activemode.com/webroot/Workers/ActiveTraining/Programming%5CJavascript_AsProgrammingLanguage.pdf
http://www.activemode.com/webroot/Workers/ActiveTraining/Programming%5CJavascript_AsProgrammingLanguage.pdf
https://www.npmjs.org/
http://www.i-programmer.info/news/167-javascript/6746-javascript-developer-survey-2013.html
http://www.i-programmer.info/news/167-javascript/6746-javascript-developer-survey-2013.html
http://www.i-programmer.info/news/167-javascript/6746-javascript-developer-survey-2013.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://code.tutsplus.com/tutorials/top-10-things-that-javascript-got-wrong-net-9266
http://code.tutsplus.com/tutorials/top-10-things-that-javascript-got-wrong-net-9266
http://davideglintine-new.googlecode.com/hg/docs/paper.pdf
http://davideglintine-new.googlecode.com/hg/docs/paper.pdf

Refinement-Based Development
of Software-Controlled Safety-Critical Active

Medical Devices

Atif Mashkoor1(B), Miklos Biro1, Marton Dolgos2, and Peter Timar2

1 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
{atif.mashkoor,miklos.biro}@scch.at

2 B. Braun Medical Hungary Ltd., Budapest, Hungary
{marton.dolgos,peter.timar}@bbraun.com

Abstract. Advanced medical devices exploit the advantages of embed-
ded software whose development, due to their direct impact on human
lives, is naturally subject to compliance with the stringent requirements
of safety standards and regulations. This paper presents initial results
and lessons learned from an ongoing project focusing on the develop-
ment of a formal model of a sub-system of a software-controlled safety-
critical Active Medical Device (AMD) responsible for renal replacement
therapy. The use of formal approaches for the development of AMDs is
highly recommended by standards and regulations, and motivates the
recent advancement of the state of the art of related methods and tools
including Event-B and Rodin applied in this paper. It is expected that
the presented model and analysis will contribute to the still sparse expe-
rience base available at the disposal of the scientific and practitioner
community in the domain of AMDs.

Keywords: Formal methods · Event-B · Renal replacement therapy ·
Active medical devices · Safety-critical software

1 Introduction

The risk of chronic kidney failure increases with age, and with hypertension
and diabetes becoming endemic phenomena. At the terminal phase of chronic
kidney failure, renal replacement therapy is required for treatment. One of the
possible forms of this therapy is hemodialysis, also known as “artificial kidney”
treatment. It is a process in which using a pump system, the patient’s blood is
flowed through a special filter (dialyser) which filters out the accumulated waste
to be removed together with the washer fluid at the other side of the dialyser.
The machine responsible for this therapy is the classical example of an Active
Medical Device (AMD).

The council directive 93/42/EEC of the European Union (EU) concerning
medical devices [1] classifies any medical device as an AMD whose operation
depends on a source of electrical energy or any source of power other than
c© Springer International Publishing Switzerland 2015
D. Winkler et al. (Eds.): SWQD 2015, LNBIP 200, pp. 120–132, 2015.
DOI: 10.1007/978-3-319-13251-8 8

Refinement-Based Development of Software-Controlled Safety-Critical AMDs 121

that directly generated by the human body or gravity and which acts by con-
verting this energy. Earlier AMDs were mostly based on hardware solutions.
However, lately embedded software has shown to have a determining impact
on the consumer value of AMDs and their competitive differentiation. Conse-
quently, according to the latest directive 2007/47/EC of the EU concerning med-
ical devices [2], a stand-alone software can also be considered as an AMD. The
main reason of this change is that software lend itself to adaptation to individual
requirements and requirements changes clearly much better than hardware.

As AMDs become more and more software-dependent, due to the immate-
rial nature of software, their certification becomes a crucial issue. Certification
regimes have responded to this issue by proposing various related international
standards such as IEC 60601-1 [3] and IEC 62304 [4]. However, instead of con-
taining actual recommendations for techniques, tools and methods for medical
software development, these standards often encourage the use of the more gen-
eral IEC 61508-3 [5] as a source for good software methods, techniques and
tools.

One of the key recommendations of IEC 61508-3 is to adopt formal meth-
ods for the development of software-intensive critical systems. Their use is, in
fact, “highly recommended” at higher Safety Integrity Levels (SILs). The safety
integrity of a system can be defined as the probability of a safety-related system
performing the required safety function under all the stated conditions within a
stated period of time. Highly recommended means that if the mentioned tech-
nique or measure is not used then the rationale behind this choice has to be
justified during safety planning and assessment. IEC 61508-3 further states that
the confidence that can be placed in the software safety requirements specifica-
tion, as a basis for safe software, depends on the rigor of the techniques by which
the desirable properties of the specification have been achieved.

The main aim of this paper is to present the initial findings of an ongoing
project focusing on the formal development of an AMD responsible for renal
replacement therapy. The ultimate goal of the project is to harness the poten-
tial of formal methods for automatically generating software that is correct by
construction. The presented formal model demonstrates an example of the way
in which the requirements of the software of modern AMDs can be rigorously
specified through a chain of refinements to represent them at different abstrac-
tion levels. The approach demonstrated in this paper leads to a software safety
requirements specification that guarantees correctness on the addressed aspects
of behavior, supports verification of the specification based on systematic analy-
sis, avoids intrinsic specification faults, and reduces ambiguities in specification
writing. As the project is still in an early stage, we have not thus far reached
the automatic code generation phase.

The paper is organized as follows. Section 2 provides a brief account of the
formal method we have used for modeling, the process of refinement, and the
process of assessing formal correctness. Sections 3 and 4 present the Event-B
model and analysis of a therapy mode of AMDs respectively. Section 5 presents

122 A. Mashkoor et al.

the lessons learned during this exercise. Section 6 presents some related work.
The paper is concluded in Sect. 7 with some proposed future work.

2 Background

2.1 The Event-B Method

The Event-B method [6] is based on Zermelo-Fraenkel set theory with the axiom
of choice. It is the successor of the B method [7] for the development of com-
plex reactive systems. We have chosen this method for its ability to represent
systems at different abstraction levels using its refinement mechanism, easy to
use modeling notation and extensive tool support.

A typical Event-B model is composed of machines and contexts. Machines
define the dynamic behavior of the model. They include the following:

– variables, which define the state space of a machine and can be expressed using
natural numbers, integers, real numbers, boolean, sets, relations, functions or
any other set-theoretical construct,

– invariants, which are used either to type variables or to constrain the state
space of a machine,

– variants, which are used to define the convergence property of events, i.e.,
they can be triggered only for a finite number of times. They are defined
using either a natural number or a finite set,

– and events, which describe state transitions. They are defined as a binary
relation composed of guards and actions of an event. A guard is a predicate
and all the guards together construct the domain of the corresponding relation.
An action is an assignment statement to a state variable and is achieved by
a generalized substitution. Combined together, all actions form the range of
the corresponding relation. The actions of a particular event are executed
simultaneously and non-deterministically.

Contexts define the static elements of a model. They contain carrier sets,
constants, axioms and theorems. Carrier sets are used to define types. Axioms
are used to constrain carrier sets and constants. Theorems define properties that
are derived from axioms.

Rodin [8] is the tool that supports modeling and analysis in Event-B. Rodin
is built upon the Eclipse platform and is extensible by plug-ins such as the
model checking and animation plug-in ProB [9]. The main tasks that are sup-
ported by Rodin are: specification of machines and contexts, their refinement,
and their consistency checking by automatically generating Proof Obligations
(POs). Proofs can be discharged either automatically, with the help of third-
party theorem provers, or interactively.

2.2 The Refinement Process

Refinement is the process to transform an abstract specification into a more
concrete one. An Event-B model can be refined in a number of ways:

Refinement-Based Development of Software-Controlled Safety-Critical AMDs 123

– new variables and invariants can be introduced and existing invariants can be
strengthened,

– existing events can be refined to include and preserve new and existing vari-
ables and invariants respectively,

– existing events can be split into several new events, and,
– completely new events can be introduced to the model.

A machine can be refined into another machine which then contains a more
detailed description of the model. A machine can see several contexts, i.e., use
the constants and axioms they contain. A context can also be further refined
into one or more contexts and can be seen by several machines.

2.3 Assessment of Formal Correctness

A model is considered to be formally correct when it is both verified and vali-
dated. Verification of a model is achieved when it is proved that it is free from
specification errors and inconsistencies. This is usually done either through the
system of POs or through model checking. A proved specification ensures that it
is consistent, well-defined and its events preserve its invariants. However, proving
a refinement requires to prove that concrete events maintain invariants of the
abstract model, maintain abstraction invariants, and, when appropriate, decrease
variants monotonically. Using model checking, we make sure that states of a
model are reachable, its formulas are satisfiable and it does not contain dead-
locks.

Validation of a model, on the other hand, is achieved when it is demonstrated
that the model is free from requirements errors and reflects the stakeholders’
wishes adequately. This can be done using several techniques, e.g., animation,
reviews or walktroughs. The most common way to validate a specification in
the Event-B method is to animate the specification by invoking its operation
semantics to inspect its behavior. It is then examined whether the specification
contains the desired functionality or not.

3 Formal Specification of the Model

The module of the AMD we have chosen to demonstrate as the case study in this
paper is responsible for monitoring a critical flow at set rates from a patient’s
arterial access.

During the requirements modeling process, following the advice of [10] to
take small refinement steps, we choose to introduce one requirement per refine-
ment level. The static data related to requirements is modeled in contexts and
the general behavior of the system is presented in machines using events. The
requirements are specified as machine invariants.

In order to improve the legibility of our requirements specification, as origi-
nally proposed by [11], we have classified our axioms into three groups: technical
axioms, typing axioms and property axioms. This practice helps in distilling the
actual software requirements from technical expressions.

124 A. Mashkoor et al.

As the Event-B method lacks the explicit notion of time, we have used the
timing pattern for Event-B proposed by [12]. In this technique, N is used to
model the notion of time.

In order to conserve space, the shown refinements contain only the newly
introduced information instead of the complete model.

3.1 Abstract Model

The abstract model contains the following requirement:

The software shall monitor the critical flow in the extra-corporeal circuit
and if no flow is detected for more than 120 s then the software shall stop
the critical flow pump and execute an alarm signal.

We first initiate a context (Context C0), as shown by Fig. 1, that contains the
basic data to specify this requirement. It has two sets, criticalFlowPumping
Values that models the state of the critical flow pumping process (Start or
Stop) and Alarms that contains different types of alarms of the system. In addi-
tion, the context also defines a constant noFlowMaxTime to specify the maximum
permissible time, i.e., 120 s during which, if no flow is detected, the software trig-
gers the alarm.

CONTEXT
C0

SETS
criticalFlowPumpingValues , Alarms

CONSTANTS
Start , Stop, noFlowMaxTime, ALM382, NULL

AXIOMS
tec1 partition (criticalFlowPumpingValues , {Start}, {Stop})
tec2 partition (Alarms, {ALM382}, {NULL})
typ1 noFlowMaxTime ∈ N

pro1 noFlowMaxTime = 120
END

Fig. 1. Context C0

The corresponding machine M0 specifies the aforementioned requirement as
shown by inv2 in Fig. 2. The involved variable noFlowDetectionTime detects
the time of the last critical flow and alarm specifies the alarm to be triggered.
An additional variable criticalFlowPumping is introduced to set the state of
the critical flow pumping process.

In order to model the behavior of the software, following events have been
introduced in the machine.

– The event INITIALISATION is the default event to initialize the value of newly
introduced variables.

Refinement-Based Development of Software-Controlled Safety-Critical AMDs 125

MACHINE
M0

SEES
C0

VARIABLES
noFlowDetectionTime, alarm, criticalFlowPumping

INVARIANTS
inv1 noFlowDetectionTime ∈ N // Typing
inv2 noFlowDetectionTime > noFlowMaxTime ⇒ alarm = ALM382
/∗ If no flow is detected in 120s then the alarm should be executed ∗/
inv3 alarm ∈ Alarms // Typing
inv4 criticalFlowPumping ∈ criticalFlowPumpingValues // Typing

EVENTS
Event INITIALISATION // Initialization values
Then
act1 noFlowDetectionTime := 0
act2 alarm := NULL
act3 criticalFlowPumping := Stop

End
Event stopCriticalFlowPumping // Stop critical flow pumping event
Where
grd noFlowDetectionTime > noFlowMaxTime ∧ criticalFlowPumping = Start

Then
act1 alarm := ALM382
act2 criticalFlowPumping := Stop // Stop critical flow pumping

End
Event startCriticalFlowPumping // Start critical flow pumping event
Where
grd criticalFlowPumping = Stop

Then
act1 criticalFlowPumping := Start

End
Event flowDetectionClock // The clock to simulate the time for flow detection
Where
grd noFlowDetectionTime < noFlowMaxTime ∧ criticalFlowPumping = Start

Then
act1 noFlowDetectionTime := noFlowDetectionTime + 1

End
END

Fig. 2. Machine M0

– The event stopCriticalFlowPumping actually specifies the monitoring
process of the critical flow. If no flow is detected within the specified limit
of time, the action part of the event stops the critical flow pumping process
and triggers the related alarm.

– The event startCriticalFlowPumping is trivial as it only starts the critical
flow pumping when it has already stopped.

– The event flowDetectionClock simulates the behavior of the clock that is
used to measure the time of no critical flow detection. N is used to represent
the notion of seconds.

3.2 First Refinement

The first refinement introduces the following requirement into the model:

126 A. Mashkoor et al.

If the system is not in BYPASS then the software shall monitor the critical
flow in the extra-corporeal circuit and if the actual critical flow is less than
70 % of the set critical flow then the software shall execute an alarm signal.

The context C0 is extended into C1, as shown by Fig. 3, which introduces
three new constants into the model: SetCriticalFlow that is used to prescribe
the critical flow, BYPASS that is used to set the mode of the system, and ALM755
that is the alarm to be triggered in the current requirement.

CONTEXT
C1

EXTENDS
C0

CONSTANTS
SetCriticalFlow , BYPASS, ALM755

AXIOMS
typ1 SetCriticalFlow ∈ N

typ2 BYPASS ∈ B

typ3 ALM755 ∈ Alarms
END

Fig. 3. Context C1

CONTEXT
C2

EXTENDS
C1

SETS
RotationDirection

CONSTANTS
Backward, Forward, ALM737

AXIOMS
tec1 partition (RotationDirection , {Backward}, {Forward})
typ1 ALM737 ∈ Alarms

END

Fig. 4. Context C2

The corresponding machine M1 at this level, as shown by Fig. 5, specifies
the requirement using the invariant inv2. The involved variable represents the
actual critical flow. The newly introduced event checkCriticalFlow models the
behavior of the software.

3.3 Second Refinement

The second refinement includes the following requirement into the model:

The software shall monitor the rotation direction of the critical flow pump
and if the software detects that the critical flow pump rotates backwards
then the software shall stop the critical flow pump and execute an alarm
signal.

The context C2, as shown by Fig. 4, extends the context C1 by adding a new
set RotationDirection that models the rotation direction of the critical flow
which can either be in the forward direction or backward. A new alarm type is
also introduced that concerns the current requirement.

Refinement-Based Development of Software-Controlled Safety-Critical AMDs 127

MACHINE
M1

REFINES
M0

SEES
C1

VARIABLES
actualCriticalFlow

INVARIANTS
inv1 actualCriticalFlow ∈ N // Typing
inv2 BYPASS = FALSE ∧ actualCriticalFlow < ((70/100) × SetCriticalFlow) ⇒ alarm = ALM755
/∗ If the actual critical flow is less than 70% of the set critical flow

then software shall execute an alarm signal ∗/
EVENTS
Event INITIALISATION // Initialization values
Then
act4 actualCriticalFlow := 0

End
Event checkCriticalFlow // Critical flow checking event
Where
grd actualCriticalFlow < ((70/100) × SetCriticalFlow) ∧ BYPASS = FALSE

Then
act1 alarm := ALM755

End
END

Fig. 5. Machine M1

MACHINE
M2

REFINES
M1

SEES
C2

VARIABLES
criticalFlowPumpRotationDirection

INVARIANTS
inv1 criticalFlowPumpRotationDirection ∈ RotationDirection // Typing
inv2 criticalFlowPumpRotationDirection = Backward ⇒ criticalFlowPumping = Stop ∧ alarm = ALM737
/∗ If the critical flow pump rotates backwards
THEN the software shall stop the critical flow pump and execute an alarm signal ∗/

EVENTS
Event INITIALISATION // Initialization values
Then
act5 criticalFlowPumpRotationDirection := Forward

End
Event rotationDetection // The event to monitor the rotation direction of critical flow
Where
grd criticalFlowPumpRotationDirection = Backward

Then
act1 criticalFlowPumping := Stop
act2 alarm := ALM737

End
END

Fig. 6. Machine M2

The corresponding machine at this level specifies the current requirement
by the invariant inv2 of the machine M2 shown by Fig. 6. The event rotation
Direction monitors the direction of critical flow and if it is backward, it stops
the critical flow pumping process and triggers the corresponding alarm.

128 A. Mashkoor et al.

4 Formal Analysis of the Model

In order to verify an Event-B model, all the POs generated by Rodin must be
discharged. For our model, Rodin generated three kinds of POs: (1) invariants
preservation, (2) well-definedness of guards and invariants, and (3) equality of a
preserved variable.

Invariants preservation relates to the condition that each variable affected by
the assignment statement must preserve the invariant. For example, the event
stopCriticalFlowPumping of machine M0 using its guard grd and action act1
ensures that inv2 of the machine is preserved.

The notion of well-definedness relates to the condition which leads to safe
evaluation of an expression. For example, inv2 of machine M1 states a condition
where the variable actualCriticalFlow of type N is compared to an expression
of type R. However, as the value assigned to actualCriticalFlow is always of
type N, so well-definedness is provable.

Equality of a preserved variable amounts to proving that if a variable is
present in both the abstract as well as the concrete machine and an event of the
concrete machine assigns a (new) value to this variable, then it must be proven
that this value is consistent with the previous one. For example, the variable
alarm in all three machines is assigned with a new alarm, however all the alarms
belong to the same type, i.e., Alarms.

There were a total of 19 POs. We have ensured that all of them are discharged.
In fact, as the model did not contain very complex formulas, the provers were
successful in discharging all of them automatically.

5 Lessons Learned

During this requirements modeling exercise, we learned the following lessons:

1. Formal models provide a consistent and complete repository of
requirements. The information presented in this paper as requirements
does not possess a one-to-one mapping from the requirements document to
the requirements specification. In fact, the data related to requirements was
spread across several documents. For example, the alarm numbers were not
explicitly stated in the requirements. Mining the relevant data from these doc-
uments is a time-consuming and tricky task. The broken or missing links may
sometimes lead to incoherent information that may impact the correctness of
the model. However, one of the advantages of the current modeling exercise is
also to provide a repository with adequate and consistent requirements that
will positively impact the development of the software.

2. Technical details impact the intelligibility of specifications. The orig-
inal purpose of formal specifications is to model and analyze requirements and
design decisions in a way that leads to their systematic transformation into
correct software. However, during the specification phase, sometimes we need
to introduce additional constraints that are necessary to discharge POs but

Refinement-Based Development of Software-Controlled Safety-Critical AMDs 129

are not part of the original requirements document. Such technical elements
impede the understandability of specifications for non-technical stakehold-
ers. The practice of classification of axioms as described in Sect. 3 not only
increases the intelligibility of a specification but also helps distilling software
requirements from technical constraints. The same procedure can be adopted
for specifying machines. The guidelines proposed by Kossak et al. [13] for writ-
ing understandable formal specifications by using proper naming conventions
and structuring also help rendering specifications intelligible.

3. Proving versus animation. Our requirements model is fully proven, thus
we are assured that it is consistent and free from specification errors, hence
correct. However, this is the modelers’ point of view. From the perspective of
customers, the model should also be validatable so that they can assess them-
selves whether their requirements are properly addressed. When we attempted
to execute the model for validation purposes, we could not achieve a meaning-
ful animation because of the high degree of abstraction at the current stage
of development. As the model was simple, it was easily validated through
reviews. However, during later phases of the project, when the complexity of
the model increases, we expect model validation to become a crucial issue.
We can, of course, lower the level of abstraction and non-determinism any-
time by adding simulation scenarios to the model that would permit ani-
mation, but this approach may lead to negative effects including noise and
over-specification as reported in the literature [14,15]. A middle ground has
to be trodden.

4. Model decomposition in Event-B is not straightforward. The easy-
to-use notation and the linear refinement structure of Event-B have been
well-suited for modeling stringent safety requirements so far. However, as
we attempt to incorporate new requirements, the size and complexity of
the model becomes increasingly difficult to manage. The solution offered by
Event-B to this problem is model decomposition.
Event-B supports three types of model decomposition styles:

– shared variable decomposition style [16] which partitions a model based on
its state,

– shared event decomposition style [17] which partitions a model based on
its events, and

– modularization style [18] which allows to introduce interfaces that can be
made visible to other components of the model. These interfaces contain
operations which can be performed by the calling module.

The wider range of Event-B decomposition styles may be interesting for theo-
reticians but confusing for practitioners. Additionally, all the styles have their
respective advantages and limitations (see [19] for more details). The chal-
lenges associated with these styles regarding their correctness and crude tool
support (from the industrial adoption perspective), coupled with the lack of
systematic guidelines and methodologies, will certainly make it necessary to
engage in trial and error steps before reaching the final decision about the
right decomposition style for our case.

130 A. Mashkoor et al.

As the requirements to be modeled are already compartmentalized into
several modules, another design strategy may be to model these modules inde-
pendently and then somehow compose/plug them together at the end of the
modeling process. So far we have not found any such technique/methodology/
plug-in for the Event-B method and Rodin platform.

6 Related Work

In recent years, the use of formal methods is escalating for the development of
software-intensive medical systems. For example, Osaiweran et al. [20] use the
formal Analytical Software Design (ASD) approach for developing the power con-
trol service of an interventional X-ray system, Jiant et al. [21] present a method-
ology based on timed automata to extract timing properties of a heart that can
be used for the verification and validation of implantable cardiac devices, and
Méry et al. [22,23] present an Event-B model of pacemakers. However, we could
not find any literature about the application of formal methods for the modeling
and analysis of AMDs for renal replacement therapy. We believe that our work
will inspire the manufacturers of such systems to adopt the formal paradigm for
the safe and trustworthy development of variants of this domain.

7 Conclusion and Future Work

This paper addresses the development of safety-critical software components
embedded in AMDs. Ethics, as well as compliance to standards and regula-
tions, make it imperative to follow a rigorous approach in analyzing, specifying,
implementing and testing such devices. The Event-B method supported by the
Eclipse-based open Rodin tool is shown to lend itself to the formal modeling of
the discussed example requirements. We found Event-B an adequate method for
the modeling and analysis of critical medical devices. Its easy-to-use notation,
refinement principles, and verification mechanism all provide the elements that
are necessary for the safe development of AMDs.

At the current refinement stage of our model, we can conclude that fol-
lowing the presented approach, we can continue building the model to achieve
a complete and consistent requirements repository. However, it is an impor-
tant consideration that, in addition to proving the verifiability of the model,
it should also be validated through animation. We expect that, as the model
grows and contains more concrete description of the software, it will be relatively
easy to execute its behavior because of the lower level of non-determinism and
abstraction.

Another future research direction is the handling of the foreseeable increasing
complexity using model decomposition, which has not been fully addressed so
far. We expect that this will additionally contribute towards the reusability of
the model and team development. The resulting sub-models could possibly be
developed by different individuals working in the same team, who can refine and
manage the model in parallel in a collaborative development environment.

Refinement-Based Development of Software-Controlled Safety-Critical AMDs 131

Once the requirements of software are sufficiently formalized, we will proceed
towards their automatic translation into executable programming language code,
the ultimate goal of the project. Our target language is C and there exist a
couple of plug-ins, such as [24], for the Rodin platform that claim to transform
the Event-B code into C language constructs. We want to assess to what extent
this automatic transformation is possible in our case.

References

1. EU: Council Directive 93/42/EEC. Official Journal of the European Union, June
1993

2. EU: Directive 2007/47/EC of the European Parliament and of the Council. Official
Journal of the European Union, September 2007

3. IEC 60601–1:2005: Medical electrical equipment Part 1: General requirements for
basic safety and essential performance (2005)

4. IEC 62304:2006: Medical device software - Software life cycle processes (2006)
5. IEC 61508–3 Ed 2.0: Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems - Part 3: Software requirements (2010)
6. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
7. Abrial, J.R.: The B Book. Cambridge University Press, New York (1996)
8. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

9. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

10. Mashkoor, A., Jacquot, J.P.: Guidelines for formal domain modeling in Event-B.
In: HASE’11, pp. 138–145. IEEE (2011)

11. Mashkoor, A., Jacquot, J.P.: Domain engineering with Event-B: some lessons we
learned. In: RE’10, pp. 252–261. IEEE (2010)

12. Cansell, D., Méry, D., Rehm, J.: Time constraint patterns for Event B development.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 140–154.
Springer, Heidelberg (2006)

13. Kossak, F., Mashkoor, A., Geist, V., Illibauer, C.: Improving the understandability
of formal specifications: an experience report. In: Salinesi, C., van de Weerd, I.
(eds.) REFSQ 2014. LNCS, vol. 8396, pp. 184–199. Springer, Heidelberg (2014)

14. Meyer, B.: On formalism in specifications. IEEE Softw. 2(1), 6–26 (1985)
15. Hayes, I., Jones, C.: Specifications are not (necessarily) executable. Softw. Eng. J.

4, 330–338 (1989)
16. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: application to Event-B. Fundamenta Informaticae 77(1–2), 1–28
(2007)

17. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20–38. Springer, Heidelberg (2009)

18. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic, D.,
Latvala, T.: Supporting reuse in Event B development: modularisation approach.
In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010.
LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010)

132 A. Mashkoor et al.

19. Hoang, T.S., Iliasov, A., Silva, R., Wei, W.: A survey on Event-B decomposition.
ECEASST 46, 1–15 (2011)

20. Osaiweran, A., Schuts, M., Hooman, J., Wesselius, J.: Incorporating formal tech-
niques into industrial practice: an experience report. Electron. Notes Theor. Com-
put. Sci. 295, 49–63 (2013)

21. Jiang, Z., Pajic, M., Connolly, A., Dixit, S., Mangharam, R.: A platform for
implantable medical device validation: demo abstract. In: WH’10, pp. 208–209.
ACM (2010)

22. Méry, D., Singh, N.K.: Formal specification of medical systems by proof-based
refinement. ACM Trans. Embed. Comput. Syst. 12(1), 15:1–15:25 (2013)

23. Méry, D., Singh, N.K.: Ideal mode selection of a cardiac pacing system. In: Duffy,
V.G. (ed.) HCII 2013 and DHM 2013, Part I. LNCS, vol. 8025, pp. 258–267.
Springer, Heidelberg (2013)

24. Wright, S.: Automatic generation of C from Event-B. In: Workshop on Integration
of Model-based Formal Methods and Tools (2009)

Author Index

Biffl, Stefan 89
Biro, Miklos 120
Börstler, Jürgen 67
Breu, Ruth 3, 32

Dolgos, Marton 120

Ebner, Martin 3
Elberzhager, Frank 20

Felderer, Michael 3, 32

Ghazi, Ahmad Nauman 67

Haisjackl, Christian 32
Holl, Konstantin 20

Mashkoor, Atif 120
Mordinyi, Richard 89

Nitze, André 108

Pekar, Viktor 3, 32
Petersen, Kai 67

Ramler, Rudolf 47

Scheiber, Stefan 89

Timar, Peter 120

Vieira, Vaninha 20

Waltersdorfer, Florian 89
Wetzlmaier, Thomas 47
Winkler, Albert 3
Winkler, Dietmar 89

	Message from the General Chair
	Message from the Scientific Program Chair
	Organization
	Contents
	Risk Management and Inspection
	Improving the Requirement Engineering Process with Speed-Reviews: An Industrial Case Study
	1 Introduction
	2 Related Work
	3 Speed-Review Procedure
	3.1 Speed Review Description

	4 Case Study Design
	4.1 Research Questions
	4.2 Context
	4.3 Data Collection Procedure

	5 Results
	5.1 Speed-Review Process Evaluation
	5.2 Software Requirement Specification Results

	6 Discussion
	6.1 Threats to Validity

	7 Conclusions and Future Work
	A Interview Guidelines and Questionnaires
	References

	Towards a Perspective-Based Usage of Mobile Failure Patterns to Focus Quality Assurance
	Abstract
	1 Introduction
	2 Related Work
	2.1 Quality Assurance of Mobile Applications
	2.2 Focus Quality Assurance on Mobile-Specific Failure Patterns

	3 A Method to Focus Quality Assurance of Mobile Applications
	3.1 Description of the FIT4Apps Method
	3.2 Exemplified Application of the Perspective-Based Inspection
	3.3 Tool Prototype
	3.4 Discussion

	4 Conclusions and Future Work
	4.1 Conclusion
	4.2 Future Work

	Acknowledgment
	References

	An Exploratory Study on Risk Estimation in Risk-Based Testing Approaches
	1 Introduction
	2 Risk-Based Testing Approaches
	3 Risk Estimation in RBT Approaches
	3.1 Classification Dimensions for Risk Estimation
	3.2 Classification of RBT Approaches

	4 Conclusion
	References

	Change Impact Analysisand Systems Testing
	Improving Manual Change Impact Analysis with Tool Support: A Study in an Industrial Project
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Change Impact Analysis Process
	2.2 Change Impact Analysis Techniques and Approaches
	2.3 Tool Support for Change Impact Analysis
	2.4 Manual Versus Automated Change Impact Analysis

	3 Study Organization
	3.1 Analyzed Industry Project
	3.2 Selection of Change Impact Analysis Cases
	3.3 Participants and Tool Support
	3.4 Experiment Setup and Execution
	3.5 Evaluation Procedure and Measures

	4 Results
	5 Discussion
	5.1 Comparisons
	5.2 Limitations and Threats to Validity

	6 Conclusions and Future Work
	Acknowledgements
	References

	Heterogeneous Systems Testing Techniques: An Exploratory Survey
	1 Introduction
	2 Related Work
	2.1 Testing in Heterogeneous Systems
	2.2 Testing Techniques

	3 Research Method
	3.1 Study Purpose
	3.2 Survey Distribution and Sample
	3.3 Instrument Design
	3.4 Analysis
	3.5 Validity Threats

	4 Results
	4.1 Context
	4.2 Heterogeneity of Systems
	4.3 RQ1: Usage of Testing Techniques
	4.4 RQ2: Perceived Usefulness

	5 Discussion
	6 Conclusion
	References

	Software and Systems Architectures
	Integrating Heterogeneous Engineering Tools and Data Models: A Roadmap for Developing Engineering System Architecture Variants
	1 Introduction
	2 Related Work
	2.1 Enterprise Application Integration
	2.2 Data Modeling and Integration
	2.3 Data Modelling Styles
	2.4 Architecture Evaluation with ATAM

	3 Use Case
	4 Research Issues
	5 Data Model Candidates
	6 Evaluation
	6.1 Adapted ATAM
	6.2 Results of the ATAM

	7 Discussion and Conclusion
	References

	Evaluation of JavaScript Quality Issues and Solutions for Enterprise Application Development
	1 Introduction
	2 JavaScript in the Enterprise
	2.1 Enterprise Software
	2.2 Related Work

	3 Problems with JavaScript Software Development
	3.1 Structure
	3.2 Typing
	3.3 Inconsistencies
	3.4 Scalability

	4 Possible Solutions
	4.1 Standards
	4.2 Language Evolution
	4.3 Intermediary Languages
	4.4 Another Language
	4.5 Ecosystem

	5 Conclusion
	References

	Refinement-Based Development of Software-Controlled Safety-Critical Active Medical Devices
	1 Introduction
	2 Background
	2.1 The Event-B Method
	2.2 The Refinement Process
	2.3 Assessment of Formal Correctness

	3 Formal Specification of the Model
	3.1 Abstract Model
	3.2 First Refinement
	3.3 Second Refinement

	4 Formal Analysis of the Model
	5 Lessons Learned
	6 Related Work
	7 Conclusion and Future Work
	References

	Author Index

