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Preface

Throughout my whole career including student time I have had a feeling that leaning
and teaching electromagnetism, especially macroscopic Maxwell equations (M-eqs)
is difficult. In order to make a good use of these equations, it seemed necessary to
be able to use certain empirical knowledges and model-dependent concepts, rather
than pure logics. Many of my friends, colleagues and the physicists I have met
on various occasions have expressed similar impressions. This is not the case with
microscopic M-eqs and quantum mechanics, which do not make us feel reluctant to
teach, probably because of the clear logical structure.

What makes us hesitate to teach is probably because we have to explain what we
ourselves do not completely understand. Logic is an essential element in physics,
as well as in mathematics, so that it does not matter for physicists to experience
difficulties at the initial phase, as far as the logical structure is clear. As the well-
known principles of physics say, “a good theory should be logically consistent and
explain relevant experiments”. Our feeling about macroscopic M-eqs may be related
with some incompleteness of their logical structure.

There seem to have been explicit and implicit arguments about the problematic
points of macroscopic M-eqs with respect to the uniqueness and consistency. A
most frequent question I heard was how to uniquely separate total current density
into the true and polarization charge densities. A similar problem of non-uniqueness
seems to exist when we divide transverse current density into the contributions of
electric and magnetic polarizations. Also, there has been no answer to the question,
“why do we need two susceptibility tensors in macroscopic M-eqs, while we need
only one in microscopic response ?”. Further, it is strange that no general model-
independent expression of magnetic permeability, except for the case of spin reso-
nance, is known, while there are many general descriptions of dielectric function.

I have devoted myself to the studies of light-matter interaction and optical sci-
ence, where M-eqs play an essential role. The main effort has been spent for the con-
struction of microscopic nonlocal response theory. The result is published in a book
“Optical Response of Nanostructures: Microscopic Nonlocal Theory” (Springer
Verlag, 2003), where I intended to give a clear description of a well-founded micro-
scopic semi-classical theory of light-matter interaction. Through the construction
of this microscopic nonlocal response theory, we have established a deeper under-
standing of the hierarchical structure of the electromagnetic response theories as
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vi Preface

(i) quantum electrodynamics (QED), (ii) microscopic nonlocal response theory, and
(iii) macroscopic local response theory with the descending accuracy. The main
application of this theory has been to the studies of nano-structures, which have
sensitive dependence on the size, shape and internal structure of matter. An entirely
new direction of its application, as the basis of deriving macroscopic M-eqs in a
logically more complete fashion, was born, when I heard a talk on metamaterials
in a research meeting some years ago. More specifically, I thought it feasible, as a
new method of derivation of macroscopic M-eqs, to apply long wavelength approx-
imation to the fundamental equations of the microscopic nonlocal response theory.
The result was expected to be more reliable than the conventional ones, because the
microscopic theory is built from the first principles.

What is the “derivation” of the macroscopic from the microscopic M-eqs? A
reasonable answer would be to extract the relations among the macroscopic (long
wavelength) components of the relevant dynamical variables from the microscopic
motions of charged particles and the microscopic M-eqs. The logically correct
way to do so is to apply the approximation for macroscopic averaging to reliable
microscopic equations. Thereby, it is important not to fix the goal of the argument
beforehand. In many textbooks dealing with the derivation of macroscopic M-eqs,
it is argued how one derives the “known” form of macroscopic M-eqs from the
microscopic equations of matter and electromagnetic (EM) field. To fix the result
of argument from the beginning is logically dangerous, because it may lead to an
insufficient check of the validity condition of each step of the argument. In fact,
the macroscopic M-eqs obtained in this book by a new method of derivation has a
more general form than the conventional ones, and the former reduces to the latter
only under a certain limited condition, which has nothing to do with macroscopic
averaging. The new form of macroscopic M-eqs is free from all the problematic
points of the conventional form with respect to the uniqueness and consistency. This
is a relief of the long standing discomfort.

Although I believe that the logical structure of the new derivation is more com-
plete than many previous arguments, I would still need to fight with a big pile
of historical facts and arguments before the new result is widely accepted in the
physics communities. Since the initial phase of this study, I have had a plenty of
chances to discuss with experts personally and to give talks in various seminars and
conferences for domestic and international audience. On such occasions, I did not
encounter any embarrassing questions and comments, which require a fundamental
change in my theory. Some gave me very positive comments and advices, but many
others remained silent. This reaction is understandable, if we consider the rebelling
aspect of this work against the well accepted knowledge of physics community.
Some of my friends and colleagues made comments, with the tone of warning, such
as “Isn’t it bold ?”, “You are brave” or “Retired professors tend to be interested in
such a problem”.

In order to make this theory acceptable to the physics community, the study of
historical aspects would certainly be important, because there are long accumulated
results of the very successful conventional macroscopic M-eqs, with which the new
theory must coexist. Since the author’s knowledge on such historical aspects is
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limited, I would very much like to have readers collaboration. If a reader knows
or finds a past argument which might be in conflict with the present theory, please
bring it to my attention for further considerations.

In constructing this theory, I have been indebted to Professors K. Shimoda,
K. Ohtaka, F. Bassani, G. La Rocca, W. Brenig, M. Saitoh, and M.-A. Dupertuis
for useful discussions. Especially, the very positive comment of Prof. Bassani, who
passed away in fall 2008 to my great regret, was quite encouraging. I am also grate-
ful to Prof. Y. Ohfuti for careful reading of the manuscript and suggestions of correc-
tion. This work started almost at the same time when I moved into Toyota Physical
and Chemical Research Institute (TPCRI) in 2006. Its unique founding policy since
1940, allowing a very wide range of research works of fundamental and applica-
tional nature, has been quite an encouraging support for this work. Financially, this
work was supported in part by TPCRI, and by the Grant-in-Aid (No.18510092)
of the Ministry of Education, Sports, Culture, Science and Technology of Japan.
Finally I would like to thank my wife Satsuki for her continual support of my life as
a physicist.

Nagakute Kikuo Cho
January 31, 2010
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The meaning of the notations of physical quantities is tabulated. The choice is made
for the frequently appearing ones in the text. Those limited only to a particular
section are omitted.

1. current densities

• J : (orbital) current density
• Jorb: orbital current density
• J s: current density due to spin magnetization
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• χem: macroscopic susceptibility derived from χcd
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(T)
em : the component of χem producing transverse field
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• HEM: Hamiltonian of vacuum EM field
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Chapter 1
Introduction

1.1 Purpose of the Book

Maxwell equations (M-eqs) are the essence of electromagnetic theory, consisting
of a set of Gauss laws for electricity and magnetism, Ampère law and Faraday law.
They have played one of the main roles in the tremendous development of physics in
the last century. There are two sets of M-eqs, i.e., microscopic and macroscopic M-
eqs. Historically, the latter appeared first and the former was derived from the latter
according to the particle picture of matter. The former is used as one of the basic set
of equations to construct quantum electrodynamics (QED). The agreement between
the prediction of QED and related experiment is quite high in accuracy, which guar-
antees the reliability of its constituent theories, quantum mechanics, relativity, and
microscopic M-eqs.

The macroscopic M-eqs, an approximate form of the microscopic M-eqs, have
been quite successfully applied to a vast range of macroscopic phenomena including
both fundamental and applicational problems, so that they have been well accepted
by most research people. Still today they are indispensable as an essential tool in
various research fields such as metamaterials, left-handed systems, near field optics,
photonic crystals, etc., and they are also of basic importance as a curriculum in
physics.

Since M-eqs describe the relationship between electromagnetic (EM) field and
the dynamical variables of matter, i.e., charged particles, all the EM phenomena are
governed by, not only M-eqs, but also Schrödinger (or Dirac, Newton) equations.
The diversity of the EM phenomena is endless through that of matter. Since the
proposal of the M-eqs in the latter half of the 19th century, various aspect of matter-
EM field coupled systems have been studied, but we still find new problems in both
fundamental and applicational phenomena.

The research subjects mentioned above (metamaterials, etc.) are those for macro-
scopic M-eqs. A common central feature of metamaterials, left-handed systems and
multi-ferroic systems is the coexistence of electric and magnetic polarizations of
matter. Though such an aspect existed before as individual problems, its appearance
as a central feature of a group of macroscopic phenomena seems to be a new trend.
This gives a motivation to re-investigate whether the macroscopic M-eqs are good
enough for the study of such problems.

K. Cho, Reconstruction of Macroscopic Maxwell Equations, STMP 237, 1–19,
DOI 10.1007/978-3-642-12791-5_1, C© Springer-Verlag Berlin Heidelberg 2010
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2 1 Introduction

There are a number of attitudes toward the macroscopic M-eqs. The easiest one
is to regard them as a phenomenology, as they were proposed in the 19th century,
when there were neither quantum mechanics, nor relativity theory, and also the par-
ticle picture of matter was not yet well established. From this viewpoint, one does
not pursue the rigorous logic and consistency of the macroscopic scheme, regard-
ing dielectric constant ε and magnetic permeability μ just as free material param-
eters. The second one is to accept the conventional macroscopic M-eqs as semi-
quantitatively correct scheme, admitting the standard ways of deriving macroscopic
from microscopic M-eqs found in many textbooks. The third one, though seemingly
a minority, finds the standard derivation logically incomplete, and requires a new
one which will give solutions to a number of questionable points in the conventional
macroscopic M-eqs.

The present author belongs to the third group of mind mentioned above, and
therefore the aim of this book is [a] to discuss the incompleteness in the deriva-
tion of the conventional macroscopic M-eqs from the microscopic ones based on
the particle picture of matter, [b] to show an alternative method of derivation and
its result, and [c] to discuss the conventional form in the light of the new result.
The new result is a macroscopic scheme with a single susceptibility describing all
the effects of linear EM responses. This could be rewritten into the form of the
conventional M-eqs with a different set of the definitions of electric and magnetic
susceptibilities including chiral ones. Also, the various questionable points inher-
ent to the conventional scheme, mentioned in Sect. 1.5, are answered by the new
formulation.

Another motivation of this work is to stress the importance of using microscopic
description of matter-EM field systems as a basis of arguments from both logical
and practical points of view. This is because such a microscopic theory with a
sufficiently general applicability has been established rather recently (due to the
popularity of nanostructure studies), so that most of the previous derivations of
macroscopic M-eqs had no chance to make use of it, neither an intension to do so
because all the measurements in previous time were macroscopic. (See, for exam-
ple, p. 1 (footnote) of [1].) As will be understood later, the use of such a micro-
scopic theory as the basis of derivation allows us to establish a better scheme of
macroscopic M-eqs in a mathematically well-defined form without loss of logical
generality.

Since Galilei’s time, physics has made a firm and extensive progress on the two
fundamental principles, “logical consistency of theory” and “agreement between
theory and experiment”. In particular, the requirement of logical consistency applies
to every step of any theoretical frameworks from very fundamental to applica-
tional levels. The existing EM response theories constitute the hierarchy shown in
Table 1.1, where the accuracy of each theory decreases from the top to the bottom.
If we have two theoretical frameworks T1 and T2, where T1 is derived from T2 under
an approximation C, the reliability of T1 depends, not only on that of T2, but also
on the clear definition (including the validity condition) of C. In the case of macro-
and microscopic M-eqs, T1 is the conventional macroscopic M-eqs, T2 is the micro-
scopic M-eqs plus the (classical or quantum) mechanics of charged particles, and
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C is the “long wavelength approximation to the fundamental equations of micro-
scopic EM response theory”. From the requirement of logical consistency of the
whole EM theory, any form of EM response theory should belong to the hierarchy
of Table 1.1A and 1.1B. Table 1.1A gives the main hierarchy and Table 1.1B the
substructure inside the semiclassical theory.

Table 1.1A Main hierarchy

EM field Matter Theory Applied mainly to

Quantized Rel. q-mechanics Rel. QED elementary particles
Quantized Non-rel. q- mechanics Non-rel. QED Atoms
Classical Non-rel. q-mechanics Semiclassical

rel. = relativistic; q-mechanics = quantum mechanics

Table 1.1B Substructure of semiclassical theory

Theory Applied mainly to

Microscopic nonlocal theory Atoms ∼ nanostructures
Macroscopic local theory Macroscopic media

In the conventional way of derivation, one looks for the arguments which repro-
duce the known form of macroscopic M-eqs without considering the possibility of
finding a more general scheme than the known one. Another frustrating point, which
will be mentioned in more detail in Sect. 1.6, is the lack of generality and unambigu-
ous definition of T2 and C. In the new derivation in this book, on the other hand, we
take the fundamental equations of microscopic EM response theory [2] for T2, and
LWA for C, which are all physically and mathematically well defined concept and
procedure without empirical knowledge and model-dependence. This leads in fact
to a new macroscopic scheme with more general character than the conventional
one. Fig. 1.1 shows the historical developments, from the author’s viewpoint, about
the micro- and macroscopic M-eqs including the present one.

The remarkable simplicity and generality of the new derivation arise from the
form of the constitutive equation in the microscopic nonlocal response theory, where
the nonlocal susceptibility is written as a separable integral kernel in general. This
feature has been utilized in the microscopic nonlocal response theory to reduce
the integral equations into simultaneous polynomial (linear in the case of linear
response) equations, but it is also useful in performing LWA in the microscopic
constitutive equation to obtain the macroscopically averaged constitutive equation.
It is not an exaggeration to say that without this separability we could not construct
a general scheme of the new macroscopic M-eqs.

In the rest of this book, the author explains all the details of the background, the
motivation of this study, the formulation of a new scheme, the results, the compari-
son with the conventional theories, and the consequences to various researches and
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Fig. 1.1 Historical development of Maxwell equations

teaching. Mathematical details and subsidiary physical aspects are given in Chap. 5,
where each section is devoted to an independent subject.

As for the units system to be used in this book, we give all the numbered equa-
tions in two forms with cgs Gauss units and SI units. The latter is given in braces[ · · · ]SI. When they are same, the latter is often omitted. Short equations in the
text are given in cgs Gauss units only to avoid congestion. The different dimension
of field variables and susceptibilities in SI units, a tedious aspect of SI units in
comparison with cgs Gauss units, is explicitly considered in Sect. 5.8 for the new
susceptibilities defined in Sect. 3.1.

1.2 Macro- and Microscopic Maxwell Equations

The fundamental equations of electromagnetism are a set of equations to determine
the electric field E and magnetic field B from a given set of charge and current
densities. Their macroscopic form, established by Maxwell, Heaviside, and Hertz is
the collection of Ampère law

∇ × H = 4π

c
Jc + 1

c

∂D
∂t
,

[
∇ × H = Jc + ∂D

∂t

]

SI
, (1.1)

Faraday law

∇ × E = −1

c

∂B
∂t
,

[
∇ × E = −∂B

∂t

]

SI
, (1.2)
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and Gauss laws of electricity and magnetism

∇ · D = 4πρt,
[∇ · D = ρt

]
SI, (1.3)

∇ · B = 0,
[∇ · B = 0

]
SI, (1.4)

respectively, where Jc and ρt are the conduction current density and true charge
density satisfying the continuity equation

∇ · Jc + ∂ρt

∂t
= 0, (1.5)

and the field amplitudes D and H are defined as

D = E + 4π P,
[

D = ε0 E + P
]

SI, (1.6)

H = B − 4πM,

[
H = 1

μ0
B − M

]

SI
, (1.7)

in terms of the electric polarization P and magnetization M. The electric permittiv-
ity (or dielectric constant) of vacuum ε0 and the magnetic permeability of vacuum
μ0 satisfy the relation ε0μ0 = 1/c2, where c is the light velocity in vacuum.

Both P and M represent the response of matter to an applied EM field, so that
they have characteristic behavior of each material. For a weak EM perturbation, they
are usually treated as linear functions of EM field as

P = χe E,
[

P = ε0χe E
]

SI, (1.8)

M = χm H,
[
M = χm H

]
SI, (1.9)

where electric and magnetic susceptibilities, χe and χm, respectively, are considered
to be material parameters. This kind of additional relationships to solve the M-eqqs
are called constitutive equations.

On the other hand, the microscopic form of M-eqs is again the collection of
Ampère law

∇ × B = 4π

c
J + 1

c

∂E
∂t
,

[
1

μ0
∇ × B = J + ε0

∂E
∂t

]

SI
, (1.10)

Faraday law

∇ × E = −1

c

∂B
∂t
,

[
∇ × E = −∂B

∂t

]

SI
, (1.11)
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and Gauss laws of electricity and magnetism

∇ · E = 4πρ,

[
∇ · E = 1

ε0
ρ

]

SI
, (1.12)

∇ · B = 0,
[∇ · B = 0

]
SI. (1.13)

The charge and current densities, ρ and J , respectively, are given as the summa-
tions of the delta functions at the positions of all the charged particles of matter with
weighting factors, i.e.,

ρ(r) =
∑

�

e� δ(r − r�) (1.14)

J(r) =
∑

�

e�v� δ(r − r�), (1.15)

where e�, r�, v� are the electric charge, coordinate, and velocity, respectively, of
the �-th particle. The actual forms of ρ(r, t) and J(r, t) to be used in the M-eqs
should be determined by giving the motions of all the charged particles. In quantum
mechanics, these expressions are the operator forms of these quantities, and what
we use in the M-eqs are their expectation values. It should be noted that they satisfy
the continuity equation

∇ · J + ∂ρ

∂t
= 0 (1.16)

as operators (see Sect. 5.1).
The microscopic M-eqs need also to be supplemented with a constitutive equa-

tion, which relates the induced current density J(r, ω)with source EM fields, which
in this book are chosen transverse vector potential A(r, ω) and longitudinal exter-
nal electric field EextL(r, ω). The characteristic point in this case is the nonlocal
relationship between J(r) and source fields, through which the microscopic spatial
variation is correctly taken into account reflecting the details of quantum mechanical
excited states of matter. This is the core part of the microscopic nonlocal response
theory, and will be described in Chap. 2.

Historically the microscopic form of M-eqs was obtained, i.e., correctly guessed,
from the macroscopic one [3], but from the hierarchical viewpoint the macroscopic
one is an approximate form of the microscopic one. This recognition has lead to var-
ious attempts to derive the latter from the former (including the constitutive eqs) by
applying macroscopic averaging. Using an appropriate procedure for “macroscopic
averaging”, we should be able to rewrite the microscopic forms into the macroscopic
ones.

The M-eqs can be simplified by the use of vector and scalar potentials. The Gauss
law for magnetism ∇ · B = 0 describes the transverse (T) nature of the vector field
B, so that we may introduce a vector potential A as
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B = ∇ × A,
[
B = ∇ × A]SI (1.17)

which always satisfies ∇ · B = 0. Inserting this into the Faraday law, we have

∇ ×
(

E + 1

c

∂A
∂t

)
= 0,

[
∇ ×

(
E + ∂A

∂t

)
= 0

]

SI
(1.18)

Since this relation claims the longitudinal (L) nature of E + (1/c)(∂A/∂t), we may
introduce a scalar potential φ to write E as

E = −1

c

∂A
∂t

− ∇φ,
[

E = −∂A
∂t

− ∇φ
]

SI
, (1.19)

by using the identity ∇ × ∇φ = 0.
The definition of the T and L characters of a vector field C with translational

symmetry is usually made in terms of its Fourier components as k·Ck = 0 for T, and
k×Ck = 0 for L field. For a general case without translational symmetry, “∇·C = 0
for T, and ∇ × C = 0 for L field, at all points” is the generalized condition, which
reduces to the usual one for translational symmetry by taking Fourier transform.

The relation between (E, B) and (A, φ) is not unique, since the new set (A′, φ′)

A′ = A + c∇ψ, [
A′ = A + ∇ψ]

SI , (1.20)

φ′ = φ − ∂ψ

∂t
,

[
φ′ = φ − ∂ψ

∂t

]

SI
(1.21)

in terms of an arbitrary analytic function ψ(r, t) gives the same set of (E, B). This
is called gauge transformation, and each choice of ψ defines a new gauge.

Among various choice of ψ , there are two frequently chosen cases, i.e., Coulomb
gauge

∇ · A = 0,
[∇ · A = 0

]
SI (1.22)

and Lorentz gauge

∇ · A + 1

c

∂φ

∂t
= 0,

[
∇ · A + 1

c2

∂φ

∂t
= 0

]

SI
. (1.23)

The M-eqs in the Coulomb gauge are given as

−∇2φ = 4πρ,

[
−∇2φ = 1

ε0
ρ

]

SI
, (1.24)

−∇2 A + 1

c2

∂2 A
∂t2

= 4π

c
J − 1

c

∂∇φ
∂t

,



8 1 Introduction

[
−∇2 A + 1

c2

∂2 A
∂t2

= μ0 J − 1

c2

∂∇φ
∂t

]

SI
(1.25)

and in the Lorentz gauge as

−∇2φ + 1

c2

∂2φ

∂t2
= 4πρ,

[
−∇2φ + 1

c2

∂2φ

∂t2
= 1

ε0
ρ

]

SI
, (1.26)

−∇2 A + 1

c2

∂2 A
∂t2

= 4π

c
J,

[
−∇2 A + 1

c2

∂2 A
∂t2

= μ0 J
]

SI
. (1.27)

The symmetric form in Lorentz gauge is useful for the description of relativistic
regime because of its apparently invariant form for Lorentz transformation.

The M-eqs in the Coulomb gauge can be split into T and L components, i.e.,
Eq. (1.24) is ∇ E(L) = 4πρ for the L field, and the T component of Eq. (1.25) is

− ∇2 A(T) + 1

c2

∂2 A(T)

∂t2
= 4π

c
J (T),

[

−∇2 A(T) + 1

c2

∂2 A(T)

∂t2
= μ0 J (T)

]

SI
(1.28)

where the suffix T is deliberately attached to A to stress the T character. The L
component of eq.(1.25) leads, by taking its divergence, to

4π

c
∇ · J (L) − 1

c

∂∇2φ

∂t
= 0,

[
μ0∇ · J (L) − 1

c2

∂∇2φ

∂t
= 0

]

SI
(1.29)

which is equivalent to the continuity equation (1.16) by the use of the Poisson equa-
tion (1.24).

It is noteworthy that the gauge transformation affects only the way to split E(L)

into −∇φ and −(1/c)∂A(L)/∂t , while E(T), i.e., A(T), remains intact. Thus the T
components of M-eqs, Eq. (1.28), is not affected by the gauge transformation. It
suggests the usefulness of the separate consideration of the T and L components of
EM response. An additional support of this viewpoint is obtained from rewriting the
self-energy of L field

H (L)
EM = 1

8π

∫
dr {E(L)}2, (1.30)

[
= ε0

2

∫
dr {E(L)}2

]

SI
(1.31)

produced by all the charged particles. Using the Gauss law ∇ · E(L) = 4πρ and its
solution
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E(L)(r) = −∇
∫

dr ′ ρ(r ′)
|r − r ′|

[
= − 1

4πε0
∇

∫
dr ′ ρ(r ′)

|r − r ′|
]

SI
(1.32)

we can rewrite H (L)
EM into the well-known form of Coulomb potential as

H (L)
EM = = − 1

8π

∫
dr ∇

∫
dr ′ ρ(r ′)

|r − r ′| · E(L)(r) (1.33)

= 1

2

∫ ∫
drdr ′ ρ(r)ρ(r ′)

|r − r ′| (1.34)

=
∑

�

∑

�′>�

e�e�′

|r� − r�′ |
[

= 1

4πε0

∑

�

∑

�′>�

e�e�′

|r� − r�′ |

]

SI

. (1.35)

This rewriting is gauge independent, because we use only the Gauss law and
the charge density in particle picture. As discussed in Sect. 5.2.3, the choice of
Coulomb gauge removes the L field from the kinetic energy term of the Hamiltonian∑{ p − (e/c)A}2/2m. In this way, the T field is represented by the vector poten-
tial, and the L field is included in the Coulomb potential. The external L field is
described by an external charge, and the external T field by a solution of Eq. (1.28)
for J (T) = 0. In the absence of external L field, all the charges are included in
the “matter”, and the matter-EM field interaction is described by the (T) vector
potential alone. This scheme introduces different forms of interaction term, i.e.,
− ∫

dr E · P for the L -field, and (−1/c)
∫

dr J · A for the T field. The main part of
the microscopic response theory is constructed for the T field response with all the
L component of E is incorporated in the internal field of matter. The M-eqs in this
case are represented only by the single equation, (1.28), which is gauge independent.
The case of excitation by external L field is described in Sect. 5.7.

1.3 Standard Derivation of Macroscopic Maxwell Equations

The standard argument to derive the macroscopic form from the microscopic one
is as follows. The charge and current densities after macroscopic averaging are
considered to have several components, according to which the charge density ρ
consists of true and polarization charge densities, ρt and ρp as

ρ = ρt + ρp. (1.36)

The latter represents the distortion of a neutral charge density perturbed by an elec-
tric field, and the former the remaining part of ρ in the case with net charges. Since
the distortion of a neutral charge density causes an unbalance of charges, it should
produce an electric polarization P in such a way as



10 1 Introduction

∇ · P = − ρp. (1.37)

On the other hand, the current density is caused by the motion of the charge density,
which again consists of several components. One is the motion of ρt which causes
Jc (∇· Jc+∂ρt/∂t = 0), and the other is the motion of P which causes polarization
current density

Jp = ∂ P
∂t
. (1.38)

Similarly, it is known that magnetization M with rotational structure produces a
current density

JM = c∇ × M,
[

JM = ∇ × M
]

SI . (1.39)

Altogether, J is the sum of the three components as

J = Jc + ∂ P
∂t

+ c∇ × M,

[
J = Jc + ∂ P

∂t
+ ∇ × M

]

SI
. (1.40)

This decomposition is consistent with the two continuity Eqs. (1.5) and (1.16), since

∇ · J = ∇ · Jc − ∂ρp

∂t
= −∂(ρt + ρp)

∂t
= −∂ρ

∂t
(1.41)

where we used the T character of the vector field ∇ × M, i.e., ∇ · ∇ × M = 0.
The microscopic Gauss law, Eq. (1.12), after substitution of Eq. (1.36) and (1.37)

becomes

∇ · E = 4πρt − 4π∇ · P,
[
∇ · E = 1

ε0
(ρt − ∇ · P)

]

SI
, (1.42)

which is equivalent to the macroscopic Gauss law Eq. (1.3), and the microscopic
Ampère law Eq. (1.10) inserted with Eq. (1.40) is

∇ × B = 4π

c
(Jc + c∇ × M)+ 1

c

∂(E + 4π P)
∂t

,

[
1

μ0
∇ × B = Jc + ∇ × M + ε0

∂(E + P)
∂t

]

SI
, (1.43)

which is equivalent to the macroscopic Ampère law Eq. (1.1).
The macroscopic variables Jc, P, M represent the conduction current density

due to the motion of true charge density, electric polarization, and magnetization,
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respectively, of the matter in consideration. They are dependent on the EM field
in the matter. It is usual to introduce electric and magnetic susceptibilities, χe and
χm, respectively, dielectric constant ε, and magnetic permeability μ in the regime
of linear response as

P = χe E
[

P = ε0χe E
]

SI , (1.44)

M = χm H
[
M = χm H

]
SI , (1.45)

D = εE
[

D = εE
]

SI , (1.46)

B = μH
[
B = μH

]
SI (1.47)

with additional relationship as

ε = 1 + 4πχe
[
ε = ε0(1 + χe)

]
SI , (1.48)

μ = 1 + 4πχm
[
μ = μ0(1 + χm)

]
SI . (1.49)

As macroscopic material constants, they describe the response of individual material
samples. Later we raise a question about the appropriateness of these linear response
coefficients from the viewpoint of the new single susceptibility theory.

1.4 Hierarchy of EM Response Theories

There are several different theoretical schemes to describe the light-matter interac-
tion. They are classified in the hierarchy:

(1) Relativistic QED (quantum electrodynamics)
(2) Non-relativistic QED
(3) microscopic nonlocal response theory (non-relativistic & semi-classical)
(4) macroscopic local response theory (non-relativistic & semi-classical)

The schemes (3) and (4) are semi-classical theories, where EM field is treated as
classical variables. The matter variables are treated quantum mechanically in (3),
and as macroscopically averaged quantities in (4). The conventional macroscopic
M-eqs correspond to (4). Table 1.1 summarizes the relationship of these different
schemes.

The scheme (1) is the fully quantum mechanical treatment of coupled matter-
EM field system in the relativistic regime. The matter part, e.g. electrons, should
be described by Dirac equation. The scheme (2) is the non-relativistic version of
the scheme (1), treating the matter motion in terms of Schrödinger equation. If we
treat the EM field as classical dynamical variables without introducing quantized
photons, the schemes (3) and (4) arise. While the quantum mechanical motions of
charged particles (in the non-relativistic regime) are precisely taken into account
in the scheme (3), all the dynamical variables in the scheme (4) are treated as
classical or macroscopically averaged quantities. From this sketch of the different
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schemes, it is obvious that the accuracy decreases according to the order from
(1) to (4).

Since there is only one EM theory in physics, these four schemes are, or should
be, logically related. A lower rank scheme is derived from the upper one by a certain
approximation. Namely, we derive (2) from (1) by assuming that the velocity of
matter particles is generally much smaller than the light velocity c. For the step from
(2) to (3), we neglect the commutation relations of photon operators and describe
the state of each mode in terms of a complex c-number, i.e., we replace the statistical
distribution of photon states in amplitude and phase with a complex c-number for
each mode. In these two cases, the logics are clear. One uses a reliable scheme as
a starting point, then applies a well defined approximation to the starting scheme
without presetting the resulting form. As a consequence, we find a less exact but
often simpler form of theory.

As for the derivation of (4) from (3), the treatments in various textbooks of elec-
tromagnetic theory do not seem to be so logical as the cases from (1) to (2), and from
(2) to (3). As we discussed in Sect. 1.3, the past derivations aimed at rewriting the
microscopic M-eqs into the already known macroscopic M-eqs which had been his-
torically established. This “derivation” was motivated by the belief that the micro-
scopic scheme based on the particle picture and quantum mechanics, established in
the 20th Century, is more fundamental than the macroscopic one known since the
19th Century. It is understandable to be lured to set the aim of the derivation to
the search of a reasoning somehow to reproduce the known form of macroscopic
M-eqs. From the logical point of view, however, it is not appropriate to fix the goal
of argument from the beginning. The goal should be the result of an argument, not
the aim to be fixed beforehand. If one fixes the goal at the onset, the arguments in the
intermediate stage tend to be oriented toward the fixed goal. This contains a risk to
miss the proper check of logical steps to be taken, e.g., whether or not the separation
of J into the sum of the contributions from two independent variables P and M can
be done without restrictions.

The attempt of this book to reconstruct the macroscopic Maxwell eqs from the
microscopic ones is motivated by the observation mentioned above. The proposed
logic to derive the scheme (4) from (3) is very simple, i.e., to apply LWA to the
fundamental equations of (3). This will establish the deeper understanding of the
hierarchy.

1.5 “Problems” of the Conventional Maxwell Equations

One of the problems about the standard “derivation” of the macroscopic M-eqs,
mentioned in Sect. 1.3, is the non-uniqueness of splitting ρ into ρt and ρp, (1.36),
and J into Jc, ∂ P/∂t , and c∇ × M, (1.40). It is possible to raise examples how
these split components arise on a given model. For example, a neutral atom affected
by an external electric field gives rise to a dipole moment, which contributes to
P . However, for a given vector field of induced current density J(r, t), there is no
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general recipe, to the author’s knowledge, to split it into Jc, ∂ P/∂t , and c∇×M, and
ρ(r, ω) {= (−i/ω)∇ · J(r, ω)} into ρt and ρp. In order for the standard derivation
of macroscopic M-eqs to be logically acceptable, there should be a general recipe to
make the decomposition uniquely.

The second problem is related to the first one. As a result of the splitting, we
have P and M, which represent the electric and magnetic properties of matter via
susceptibilities χe and χm, defined in Eq. (1.44). These susceptibilities are tensors
in general, and independent of each other. As functions of frequency, χe has poles at
electric excitation energies, and χm at magnetic excitation energies. We need the two
susceptibility tensors to describe the linear response of a matter macroscopically.
However, in the microscopic M-eqs, we need only one susceptibility between J and
E (or B). (The charge density is related with ∇ · J , i.e., the L component J (L), so
that it does not require a new susceptibility.) This susceptibility has poles at all the
excitation energies of matter system, and it is sufficient to have this susceptibility to
describe the microscopic linear response. Thus, a question arises, why the macro-
scopic averaging in deriving macroscopic M-eqs increases the number of necessary
susceptibility tensors ? The answer to this question, like the first one, cannot be
found in textbooks.

This problem is the core part of this book, about which the author claims a single
susceptibility scheme of macroscopic M-eqs in contrast to the conventional scheme
with two susceptibilities. It will be discussed later if we can reduce the single sus-
ceptibility of the new scheme into the two components corresponding to χe and χm.
This requires us to check two points: (i) chiral and non-chiral symmetry condition,
and (ii) the rewriting of interaction Hamiltonian −(1/c) ∫ dr J · A into the form lin-
ear in electric and magnetic fields as a legitimate procedure of analytic mechanics,
which leads to the preference of B to H as source magnetic field.

The third problem is about the form of dispersion equation. In the charge neutral
system (ρt = 0, Jc = 0), the dispersion equation for a plane wave with frequency
ω and wave vector k is given as

c2k2

ω2
= εμ,

[
k2

ω2
= εμ

]

SI
(1.50)

This is easily obtained by eliminating E or B from Eqs. (1.2) and (1.1). The ω
dependence of ε and μ is generally a superposition of single poles, according to
the time dependent perturbation theory, and the poles correspond to the matter
excitation energies of the electric dipole (E1) and magnetic dipole (M1) characters,
respectively.

If the symmetry of matter is high, the E1 and M1 characters of excitations do
not mix with each other from a symmetry ground, i.e., they belong to different irre-
ducible representations of the group of a given symmetry. In this case, the excitation
energies of E1 and M1 transitions are generally different, so that the product εμ
is a superposition of single poles. On the other hand, if the symmetry of matter
mixes the E1 and M1 characters of transitions, the excitation energies of the mixed
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transitions contribute to both ε and μ. In this case the product εμ would be no more
a superposition of single poles, but contains second order poles. This change of
the pole structure is bizarre in the linear response regime. Any excitation of matter
should contribute to the response function of matter as a single poles in the lowest
order time dependent perturbation theory as shown in Sect. 2.2. This is so even in
the presence of an additional term of matter Hamiltonian corresponding to the lower
symmetry, because after diagonalizing the total Hamiltonian we again have a series
of eigenvalues which give the poles of the response function. Thus the change in the
pole structure of the dispersion equation depending on the coupling or decoupling of
the E1 and M1 transitions is physically unacceptable. (Later in Chap. 3 we discuss
this problem from two points of view. One is the validity condition of this dispersion
equation, and the other is the correct definition of μ when this form of dispersion
equation is allowed.)

One could raise another problem as an example showing the incompleteness of
the conventional treatment of macroscopic M-eqs. The magnetic permeability μ
represents the effect of magnetic transitions of matter. There are two well-known
examples of M1 transitions. One is the spin resonances of electron, nucleus, etc.,
and the other is the orbital M1 transitions which induce orbital magnetic moments.
The latter occurs at large variety of transition energies in various systems, such as
atoms, excitons in solids, and nuclei. The famous Mössbauer line at 54.7keV of 57Fe
nucleus is M1 transition, and this is why it is so sharp (10−7 eV width). However,
the conventional ways to connect these transitions to μ (or to spectral intensity) are
different.

In the case of spin resonance [4], one writes the resonant part of magnetic sus-
ceptibility as

χm = βm

ω0 − ω − iγ
(1.51)

where h̄ω0 is the spin flip energy, βm the intensity of the magnetic transition and
γ is the width of the transition energy. From this expression, μ is obtained as a
ω-dependent but wave vector (k) independent quantity. Such μ together with ε
of matter leads to the response spectra, from which we get the resonance energy,
intensity, and width.

On the other hand, the intensity of (orbital M1 + E2) transitions is calculated by
expanding the matrix element of the light-matter interaction p · A under the LWA
of A = A0 exp(i k · r) = A0(1 + i k · r + · · · ). Omitting the first E1-active term,
one gets the (M1 + E2) term as the matrix element of

i( p · A0)(k · r). (1.52)

The matrix element of the dyadic pr becomes non-zero for (M1 + E2) transitions
[5, 6], while that of p is non-vanishing for E1 transitions. Since the matrix element
of (1.52) is linear in k, the intensity of this transition is O(k2). Thus,μ is proportional
to k2 in this case.
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In spite of the same M1 character, the above two treatments lead to different
k-dependence, O(k0) and O(k2). This difference seems to have been overlooked for
a long time. However, if we consider the popularity of meta-materials or left handed
systems, where the coexistence of E1 and M1 transitions leads to new subjects, we
need to have a general expression of μ including both spin and orbital M1 tran-
sitions. In Sect. 3.1 and 3.2, this problem will be solved by rewriting the single
susceptibility tensor of the new scheme.

There is a related question, the historical truth of which the present author has
been asking to many of his friends, colleagues and teachers including experts with-
out getting a satisfying answer. In the early days, the microscopic magnetic field
was written as, not B, but H . The microscopic Ampère law had the form

∇ × h = 4π

c
j + 1

c

∂e
∂t
,

[
= j + ε0

∂e
∂t

]

SI
(1.53)

where the dynamical variables for E, H, J are written in the lower case letters to
stress their microscopic character. In taking a macroscopic average of this equation,
we often see a statement “macroscopic average of microscopic magnetic field h is
usually written as B” in various textbooks [7, 1, 8]. It means that, by the macro-
scopic averaging, we should, not only extract the LW component of h, but also
rewrite H into B, a different physical quantity including magnetization. Without
rewriting H into B, we cannot obtain the macroscopic Ampère law, because of
Eq. (1.7). This requirement is understandable as a mean to derive the macroscopic
Ampère law, but logically not acceptable. Macroscopic averaging of a physical
quantity should be the elimination of the short wavelength and the preservation of
the LW components of the quantity. The rewriting of h into B contains an idea
outside the macroscopic average.

This is not just a problem of semantic. It is related with the definition of magnetic
susceptibility. Since the microscopic form of magnetic interaction should be

Hmag = −
∫

dr m · h, (1.54)

in the same way of using the lower case letters for microscopic quantities, the linear
response calculation would give an induced magnetization proportional to h. Its
macroscopic average should lead to macroscopic constitutive equation for magne-
tization. In the conventional definition of macroscopic magnetic susceptibility χm,
Eq. (1.9), it seems that h is simply replaced by H . However, if one should rewrite
h into B in the process of macroscopic averaging, the same replacement in the
interaction Hamiltonian Hmag and in the calculated result of linear response would
give a constitutive equation M = χB B. This definition of magnetic susceptibility
leads, by the use of B = H + 4πM, to μ = 1/(1 − 4πχB). This means that
the magnetic excitation energies in χB correspond to the zeros of μ, while those
in χm correspond to the poles of μ. One would ask, which is the correct excitation
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energy of a given matter ? This difference in physical picture needs to be clarified
together with the form of corresponding matter Hamiltonian defining the excitation
energies.

Thus, the last question is “When and how was the earlier way of writing vacuum
magnetic field as H changed to the today’s form B, and is it done consistently with
the definition of magnetic susceptibility and μ ?”. If the use of χB instead of χm
were the general understanding today, this problem would not bother us very much.
But χm seems to be widely used still today in various fields using macroscopic
M-eqs. Most textbooks use χm, though a rare case using χB does exist [9].1 In
view of the fact that susceptibilities are not just parameters, but the quantities to
be calculated quantum mechanically with their poles at the excitation energies of
a well-defined matter Hamiltonian, this mismatch would lead to an essential error
in the resonant region of EM response. Although the rewriting of field variables
is allowed within the framework of analytic mechanics (Sect. 5.3), which leads to
various sets of “matter Hamiltonian and interaction term”, the use of E and H
does not fit to the well-accepted matter Hamiltonian, i.e., the sum of the kinetic and
Coulomb potential energies of charged particles.

All the problems in the conventional macroscopic M-eqs seem to arise from the
lack of simple logical step, i.e., the preparation of the object to be averaged in an
explicit mathematical form. The arguments in Chap. 2 will show how to fill this gap
from the first-principles approach.

1.6 Meaning of Macroscopic Averaging

In order to derive the macroscopic from microscopic M-eqs, we need to take a
macroscopic average of the latter. However, what does a macroscopic average mean
in practice ? There should be a clear mathematical definition of what is the object to
be averaged and how it is done. In view of the fact that the microscopic response is
obtained from the solution of “microscopic M-eqs and constitutive eqs”, a straight-
forward logic with a clear mathematical meaning would be to extract the LW com-
ponents of these fundamental equations of microscopic response.

But the past derivations do not seem to follow this line of argument. The main
point is how to write the constitutive equations for macroscopic variables, and for
this purpose, we need to have the general form of the microscopic constitutive
equations containing all the wavelength components. But it is rather recently that

1 At the final stage of writing this book, the author was suggested to examine the relevant docu-
ments of IUPAP and IUPAC on this subjects. In the IUPAC-2007 document [Quantities, Units and
Symbols in Physical Chemistry, 3-rd Edition, IUPAC 2007 RSC Publishing], we find χ = µr −1 in
the table of Sect. 2.3, which is also given in the IUPAP-1987 document [Table 12 of Physica, 146A
(1987) 1–67]. This corresponds to χm = µ/µ0 − 1 according to the notations of this book (in SI
units) . Since the IUPAP document has not been revised since 1987, it is the valid recommendation
today by IUPAP and IUPAC to use the definition of χm as M = χm H . In addition to this, there is no
description in these documents about the chiral susceptibility (or admittance). From the viewpoint
of the present author, these documents need to be revised by taking the microscopic consideration
of susceptibility into account.
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this kind of microscopic constitutive equations for a general matter-EM field sys-
tem has become in practical use. In the former days where most of these deriva-
tions were made, one had rather used empirical or model-dependent treatments.
The main stress was, not on the general nature of a model, but on the technical
point of macroscopic averaging. A typical expression for this procedure was “to
take an average over a distance much larger than atomic scale but smaller than
the relevant wavelength of EM field”. From this statement, we can guess that the
coherence of matter excitations were assumed to be of atomic (or molecular) scale.
The use of appropriate models for the matter excitations leads to the electric and
magnetic polarizations, respectively, which can be used to derive the typical expres-
sions of χe and χm. Within a given model, this is an acceptable treatment. What
the present author believes to be the origin of the various incompleteness of the
conventional M-eqs is the lack of arguments about the general, model-independent
criterion to split current density into an independent sum of the components due to
P and M.

The microscopic M-eqs are the equations to determine E and B from the given
dynamical variables of matter, ρ and J , which are determined by the quantum
mechanics of charged particles. Since the motion of ρ and J is affected by EM
field, we have to determine E, B, ρ and J selfconsistently. The auxiliary equation
to allow this self-consistent determination is “microscopic constitutive equation”,
which together with the M-eqs gives a unique solution for a given initial condition
of the dynamical variables.

All of the variables E, B, ρ and J are generally functions of position and time,
and their position dependences contain all the wavelength components if one solves
the set of M-eqs and constitutive equation selfconsistently. To extract the equations
for the LW components alone, should we apply LWA to all the M-eqs, (1.24) and
(1.25), and the constitutive equations relating {ρ, J} with {φ, A} ?

Though there is a proposal by Nelson [10] to apply LWA to the Hamiltonian of
matter, which corresponds to making LWA of Eq. (1.24), we do not take this view-
point. Since Eq. (1.24) gives the (microscopic) Coulomb potential due to a charge
density, it is directly related with the quantum mechanical energy eigenvalues and
eigenfunctions. Application of LWA to the microscopic Coulomb potential would
make a drastic change in the eigenvalues and eigenfunctions. Then, the poles of the
macroscopic response functions do not represent the quantum mechanical excitation
energies.

What we actually want to have is the susceptibilities with poles corresponding to
the quantum mechanically correct eigen energies of matter, and with LWA averaged
spatial structure. In this sense, we apply LWA only to the matrix elements of current
density operator in the constitutive equation relating J and A. The concrete form of
this constitutive equation is given in the next chapter.

In some cases, macroscopic average is meant to contain also a statistical aver-
age, when we consider the statistical distribution of (A) the initial ensemble of
matter states in calculating its susceptibilities and/or (B) randomly located defect
or impurity centers with given transition energies. In carrying out the time depen-
dent perturbation theory to calculate the susceptibilities of matter, we need to
define the initial states of matter. This can be given as an ensemble of microscopic
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matter states, e.g., a canonical ensemble for a given macroscopic temperature T,
which leads to an expression of susceptibilities with a weighted average via the
initial ensemble. The explicit expression in the next chapter is a special case of
T = 0◦K , and a general case is described in Sect. 5.4. It is explicitly shown
that this part of weighted average via the initial ensemble is not affected by LWA,
i.e., the same weighting factor remains in the macroscopic susceptibility. There-
fore, the macroscopic average should not contain this kind of ensemble aver-
age.

In the case of the randomly distributed impurities or defects, however, statistical
average has a meaning of macroscopic average. Though the system has no transla-
tional symmetry in a microscopic sense, it can be regarded as homogeneous after
taking its macroscopic average, if the distribution is uniform. Even in this case,
however, one could observe scattered light due to the absence of translational sym-
metry, especially near the resonance, which may be ascribed to the invalid situation
of macroscopic averaging.

When we make LWA to a given microscopic system, we may introduce an inter-
mediate step of LWA in addition to the full LWA regime. An example is the reso-
nant Bragg scattering of the inner-core excitations of a crystal. The induced current
density due to the excitation of an inner core level of an atom is well localized in
comparison with the wavelength of a resonant X ray, which allows us to use LWA
to the description of the induced current density at each atom site. If we assume the
full LWA regime, the crystal is described as a uniform assembly of the E1, M1, E2
etc. multipoles of the resonant inner core transitions, which does not give any Bragg
scattering. Bragg scattering becomes possible when we admit that the resonant X
ray has a wavelength λ comparable to the lattice constant dL of the crystal. This
corresponds to describing the crystal as a periodic array of the E1, M1, E2 etc.
multipoles, where we introduce two typical lengths of matter, the size of atom aA

and the lattice constant dL , where LWA is applicable only for λ 	 aA. This should
be called “intermediate LWA”, in contrast with “full LWA” where the conditions
λ 	 aA and λ 	 dL do not allow Bragg scattering. This will be discussed more in
detail in Sect. 4.3.

A similar situation arises in metamaterials made, e.g., of an array of split ring
resonators (SRR). Though the conventional treatment of such an array is done in
the full LWA regime, called homogenization, it is conceivable that an intermediate
LWA may bring about a new regime where the interaction among SRR’s due the
induced charge densities on them introduces the nonlocality of coherent excitation
made of the induced current densities. This may lead to a new category of the field,
“nonlocal metamaterials”, an intermediate entity between nano- and macroscopic
materials. More discussion will be given in Sect. 4.1.4.
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Chapter 2
New Form of Macroscopic Maxwell Equations

2.1 New Strategy for Derivation

As mentioned in the introduction, a proper derivation of macroscopic M-eqs would
need a new strategy to make the whole processes of the derivation logically and
mathematically well-defined, and to avoid the problems described in Sect. 1.5.

Since a reliable approximate theory can generally be obtained from a higher rank
theory by applying a valid approximation, we need to choose such a theory and an
approximation for the present problem of deriving macroscopic M-eqs. In the con-
ventional derivation, this process is described as “to derive macroscopic M-eqs from
the microscopic M-eqs by applying macroscopic averaging”, but the mathematical
procedure to do it was not quite clear in the sense mentioned above. The main point
of derivation was to derive the constitutive equations for macroscopic variables
from appropriate models of matter. In such a derivation, it was admitted that the
induced current density J consists of the contributions of the induced electric and
magnetic polarizations as (∂ P/∂t)+c∇ × M. A frequently used model to calculate
polarizations is an assembly of molecules, which gives a detailed description of
susceptibilities through the quantum mechanical properties of molecules.

This type of argument is acceptable as an example, but may contain a risk to miss
something important about its generality. In fact, when a material system has a low
symmetry, which does not allow to distinguish axial and polar vectors, we cannot
define electric and magnetic polarizations independently. (The symmetry condition
of matter has nothing to do with the macroscopic averaging. If it affects the final
result, we should consider it separately.) In this case, we have to go back to the
microscopic description and see how it is possible to introduce P and M from
the microscopic J . For this purpose, the microscopic scheme needs to be general
enough to enable us to judge it. Though this kind of general scheme had not been
established during the time where most of the conventional derivations of macro-
scopic M-eqs were made, one could have derived it via standard time dependent
perturbation theory, as shown in the next sections. The lack of the motivation to do
it was, to the author’s opinion, the origin of the problems discussed in Sect. 1.5.

As a new strategy, we employ the recently established scheme of microscopic
optical response [1] as the basic theory, to which we apply LWA and derive the new
macroscopic M-eqs and constitutive eqs [2]. The formulation of this microscopic
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optical response theory is made in a model independent way, so that one can choose
any cases of symmetry through the choice of eigen functions of quantum mechanical
matter states. The merit of this scheme is that we can start with a very general form
of matter Hamiltonian and matter-EM field interaction within the semi-classical and
non-relativistic regime, which however allows the inclusion of relativistic correction
terms, such as spin Zeeman interaction, spin-orbit interaction and so on. Therefore
this scheme can cover most of the matter Hamiltonians used for materials studies
in non-relativistic regime, including various effective Hamiltonians applicable to a
restricted energy range used for certain selected purposes.

It should be stressed that all we use here are the well-known principles and meth-
ods of physics and mathematics, such as analytic and quantum mechanics, time
dependent perturbation theory, Taylor expansion, Fourier transform, etc.. No exotic
or fancy method is employed. The only new aspect is the attempt to make the logics
as firmly consistent as possible.

The fundamental equations of this microscopic nonlocal response theory consist
of the microscopic M-eqs and a microscopic constitutive equation between current
density and source EM field. All the detailed information about the material is
included in the microscopic nonlocal susceptibility, including the symmetry related
aspects, which is a sufficiently general basis to answer the problems of Sect. 1.5.
Another practical merit of this theory is the separability of the microscopic nonlocal
susceptibility as an integral kernel, which is quite useful both for the microscopic
calculation and for the application of LWA in deriving the macroscopic M-eqs.

2.2 Microscopic Nonlocal Response Theory

In this section, we give a detailed description of microscopic nonlocal response
theory, from which we derive the new form of macroscopic M-eqs later by applying
LWA. Though a similar description is found in [1], we give it here because it is
the core part of the present theory. We try to present the description as general as
possible, so that the final result can be applied to a broader range of problems. This is
done by choosing the matter Hamiltonian and matter-EM field interaction in a model
independent form, and their explicit spin dependence is taken into account via rel-
ativistic correction terms (spin-orbit interaction, spin Zeeman interaction, etc.). By
preparing the matter Hamiltonian and matter-EM field interaction in such a general
form, we can cover a wide range of problems of EM response of matter. We will
be mostly concerned with linear response, since it is the main field of interest in
comparing the conventional and new schemes of macroscopic M-eqs. Extension to
nonlinear response will be mentioned in Sect. 4.5.

The interaction of matter and EM field may be divided into two categories
according to the T and L characters of the vector fields involved. Though there can
be mixing between two cases, the T-field interaction is essentially related with opti-
cal response, and the L-field interaction with the response of matter to the excitation
by external charges. For this reason, and for an additional one mentioned just below,
we split the formulation into two parts, and give the T-field part in this section, and
the L-field part in Sect. 5.7. The second reason to split the description into two
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parts is that the interaction Hamiltonians for the T and L fields appear in different
forms. In Coulomb gauge, the L and T components of interaction arise from the
Coulomb potential and the A dependent terms of the kinetic energy, respectively.
The former can be rewritten as − ∫

P (L) · E(L) dr . The standard form of the latter
is −(1/c) ∫ J (T) · A(T) dr , and it is not possible to rewrite it into − ∫

P (T) · E(T) dr
without distorting the matter Hamiltonian in an unusual way. (See Sect. 5.3
for details.)

There is an another aspect of L field to be mentioned at this point. When charged
particles are excited by some external field, they induce L, as well as T, field by the
change induced in their quantum mechanical states. The problem is whether we treat
this L field as an external field or not. Concerning this point, we have two choices,
either (I) consider it as a part of matter Hamiltonian, or (II) regard it as a component
of external EM field. The interaction of this L field with the polarization of matter is
generally written as the interaction energy HC among the induced charge densities
of matter (p. 8 of [1]). Therefore, the choice (I) or (II) means whether we keep
this interaction energy as a part of matter Hamiltonian or add it to matter-EM field
interaction. Depending on this choice, the energy levels of the states containing
L-mode character change by the amount caused by HC. Historically, this energy
difference has been called by various names, such as LT splitting, depolarization
shift, or electron-hole exchange energy. Their unified description in terms of the
induced charge densities of the relevant modes has been given rather recently [3].
This scheme, applicable to any type of L field caused by electron or phonon systems,
localized or extended states, etc., is used in Sect. 5.7. In the following section, we
consider E(L) as the internal field of matter, i.e., we take the full Coulomb interac-
tion energy into the matter Hamiltonian.

2.2.1 Precise Definition of “Matter, EM Field and Interaction”

In order to answer the questions raised in Sect. 1.5, we need to define “matter, EM
field, and their interaction” as precisely as possible, because some of the problems
are related with the definition of the starting Hamiltonian. For that purpose, it will be
most appropriate to take the general Lagrangian of matter-EM field coupled system

L =
∑

�

{
1

2
m�v

2
� − e�φ(r�)+ e�

c
v� · A(r�)

}

+ 1

8π

∫
dr

{(
1

c

∂A
∂t
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}
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)2

− c2(∇ × A)2
} ]

SI

(2.1)
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where A and φ are the vector and scalar potentials, respectively, and the integral
part on the r.h.s. is the Lagrangian of vacuum EM field. It is noteworthy that the
interaction part of the Lagrangian can be rewritten in the following integral form

∑

�

{
−e�φ(r�)+ e�

c
v� · A(r�)

}
=

∫
dr

{
−ρ(r)φ(r)+ 1

c
J(r) · A(r)

}

[
∑

�

{−e�φ(r�)+ e�v� · A(r�) } =
∫

dr {−ρ(r)φ(r)+ J(r) · A(r)}
]

SI
(2.2)

where charge density ρ and current density J are defined as Eqs. (1.14) and (1.15),
respectively. This integral expression is useful in carrying out the least action prin-
ciple for A and φ.

As a Lagrangian, this contains three kinds of generalized coordinates, r�, A(r),
φ(r) and the corresponding generalized velocities v�, ∂A/∂t (the time derivative of
φ is not contained). The least action principle of Lagrangian, or Lagrange equation
for each set of generalized coordinate and velocity, gives the Newton equation of
motion, and microscopic M-eqs for φ (Poisson equation) and A (wave equation).
(See Sect. 5.2) The Newton equation is

m�

dv�

dt
= e�

{
E(r�)+ 1

c
v� × B(r�)

}
(2.3)

= [e�{E(r�)+ v� × B(r�)}]SI (2.4)

where B = ∇ × A and E = −∇φ − (1/c)∂A/∂t . The r.h.s. is the Lorentz force
due to the EM field acting on the charged particle. The Poisson equation is the same
as Eq. (1.24), and the wave equation for A is Eq. (1.25). (See Sect. 5.2.)

The fact that this Lagrangian gives the well established equations of motion for
charged particles and EM field, as mentioned above, guarantees the soundness of
this Lagrangian as a basis of further developments in various directions. In fact,
it is used for the (non-relativistic) QED, and now we are going to use it for the
semiclassical arguments.

Hamiltonian is obtained by the standard procedure of Lagrangian formal-
ism. Defining the generalized momentum p� for a generalized coordinate q� via
p� = ∂L/∂q̇�, where q̇� is the time derivative of q�, we derive Hamiltonian as
H = ∑

� p�q̇� − L . The details of this argument applied to the present Lagrangian
are given in Sect. 5.2.3, and the Hamiltonian is given as

H =
∑

�
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[

=
∑

�

1

2m�

{ p� − e�A(r�)}2 + UC

+ε0

2

∫
dr

⎡

⎣

{
∂A(T )

∂t

}2

+ c2
{
∇ × A(T )

}2

⎤

⎦

⎤

⎦

SI

, (2.5)

where UC is the Coulomb potential among the particles

UC = 1
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In this expression, we have rewritten the self-energy of the longitudinal EM field
into the Coulomb potential by using the Gauss law ∇ · E = 4πρ and the definition
of ρ in the particle picture. This form of Hamiltonian applies to any gauge, i.e., the
vector potential in the first term on the r.h.s. can have the L, as well as T, component.

Now we choose the Coulomb gauge ∇ · A = 0, i.e., A = A(T), A(L) = 0, i.e.,
the vector potential appearing in the following arguments has pure T character. We
omit the superscript T from A(T) = 0 hereafter, unless it is better to stress it. The
Hamiltonian is a sum of two contributions. One is the Hamiltonian of vacuum EM
field
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and the other is the Hamiltonian of the charged particles in a given EM field in the
Coulomb gauge

HMem =
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The matter Hamiltonian H0 is defined as HMem for A = 0, i.e.,

H0 =
∑

�

p2
�

2m�

+ UC
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[

=
∑
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(2.9)

which is the sum of the kinetic energy and potential energy of particles, and the
matter-EM field interaction is the A-dependent terms of HMem, which is the sum of
the two terms Hint1 + Hint2. The A-linear term is

Hint1 = −1

c

∫
dr J0(r) · A(r)

[
= −

∫
dr J0(r) · A(r)

]
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and the A-quadratic term is

Hint2 = 1

2c2
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dr N̂ (r)A(r)2 ,
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where N̂ is defined as

N̂ (r) =
∑

�

e2
�

m�

δ(r − r�) , (2.12)

and J0 is the A independent part of current density, i.e., (1.15) with v� replaced by
p�/m�,

J0(r) =
∑

�

e�
2m�

[
p�δ(r − r�)+ δ(r − r�) p�

]
. (2.13)

The (orbital) current density operator (1.15) is the sum of O(A0) and O(A1)

terms

Jorb(r) = J0(r)− 1

c
N̂ (r)A(r) ,

[ = J0(r)− N̂ (r)A(r)
]

SI . (2.14)

We write a suffix “orb” to stress its orbital character and to distinguish it from the
current density induced by spin magnetization to be discussed later.

When an external L field exists, it should be ascribed to an external charge density
ρext in the Coulomb gauge. This means that the charge density in UC contains the
internal and external parts, ρint and ρext. In this case, there arises a new term of
interaction due to the Coulomb interaction between ρint and ρext. As discussed in
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Sect. 5.7, the natural form of the interaction Hamiltonian is − ∫
dr J0 · A for T field

and − ∫
dr P · E(L) for L field, and it does not seem possible to write them in one

unified form − ∫
dr P · E without distorting the matter Hamiltonian (Sect. 5.3).

This point is often overlooked in the conventional EM response theories, so that it is
appropriate to stress it at this stage of the present formulation. Since the calculation
of the susceptibilities goes similarly in both cases, we describe the case of the T
field in detail in the main text and leave the case of L field in Sect. 5.7. (For the
discussion of T-field response, the relevant ρ is ρint alone and the suffix “int” will
be omitted.)

For the linear response to the T field excitation, we need only Hint1. As an
operator to be used in quantum mechanical calculation, we have symmetrized the
non-commutative quantities { p�, r�} in J0(r). The operator N̂ (r) has contributions
from various charged particles, but, because of the factor e2

�/m�, lighter electrons
make much more contribution than heavier ions. The electron term is written as
(e2/m0)ρ̂el(r), where e,m0, ρ̂el(r) are the charge, mass, and the density of elec-
tron(s), respectively.

For a given set of matter Hamiltonian and matter-EM field interaction, we can
calculate the induced current density, which gives the microscopic constitutive equa-
tion. The forms of H0 and Hint1 given above are model independent and have a rather
general character. However, in order to increase the range of their applicability, we
would like to include their explicit spin dependence, which is important for the
magnetic properties of matter. Paramagnetism is typically caused by localized spin
states due to the spin Zeeman interaction with static magnetic field. The resonance
transition between these spin levels can be induced by a microwave with correspond-
ing frequency. This transition is caused by the (spin Zeeman) interaction between
spin magnetization and microwave EM field. This interaction is also necessary to
analyze the intra- and interband magneto-optics in semiconductors. In addition, the
spin-orbit interaction gives rise to spin-dependent energy level structure for matter
systems containing heavy atoms. These examples show the necessity of introducing
the explicit spin dependence of the matter Hamiltonian and matter-EM field interac-
tion, which leads to the realistic resonant structure of susceptibilities of spin related
systems.

The explicit spin dependence of H0 and Hint1 arises from the relativistic correc-
tion to the non-relativistic Hamiltonian [4]. In the Dirac equation dealing with an
electron in the relativistic regime, there emerges the entity “spin” by the requirement
of relativistic invariance of the equation consisting of the linear terms of time and
space derivatives. The expansion of the positive eigenvalue E = E ′ + m0c2 of the
Dirac equation with respect to (E ′ − V )/2m0c2, where V is the potential energy
of the electron, gives various correction terms. Among them we have spin-orbit
interaction

h̄

2m2
0c2

σ · [(∇V )× p]. (2.15)
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Similar expansion for an electron in an EM potential gives the spin-Zeeman term

− eh̄

m0c
σ · B

[
− eh̄

m0
σ · B

]

SI
(2.16)

as an additional term of the Hamiltonian in the (non-relativistic) Schrödinger equa-
tion. Here, h̄σ is the spin angular momentum of an electron. (The magnetic field
H in [4] is rewritten into B in accordance with our definition of magnetic field in
microscopic M-eqs.)

In addition to these spin dependent correction terms, there are spin independent
correction terms, such as mass velocity term (due to the velocity dependent mass
correction) and Darwin term (due to the velocity-induced nonlocality of the poten-
tial V .) [5].

From our viewpoint to put L field into matter Hamiltonian, the spin-orbit inter-
action, Hso, mass velocity term, and Darwin term should be included in the matter
Hamiltonian H0, and the spin Zeeman term into Hint1. For many electron systems,
we should take a sum over all the electrons for (2.16) and (2.15). Thus, the matter
Hamiltonian is now

H (0) = H0 + Hrel-corr (2.17)

where Hrel-corr = Hso + Hmass-v + HDarwin.
For the new form of Hint1, we can rewrite the spin Zeeman term as

HsZ = −
∑

�

eh̄

m0c
σ � · B , (2.18)

= −
∫

dr Ms(r) · (∇ × A(r)) , (2.19)

= −
∫

dr ∇ × Ms(r) · A(r) , (2.20)

where B = ∇ × A and partial integration are used, and the spin magnetic polariza-
tion is

Ms(r) =
∑

�

eh̄

m0c
σ � δ(r − r�) . (2.21)

Defining spin induced current density as

J s(r) = c∇ × Ms(r) ,[ = ∇ × Ms(r) ,
]

SI (2.22)
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we can rewrite the last line of the equations for HsZ as

HsZ = −1

c

∫
dr J s(r) · A(r) .

[ = −
∫

dr J s(r) · A(r) .
]

SI (2.23)

Adding this term to Hint1, we generalize linear matter-EM field interaction as

Hint = −1

c

∫
dr I(r) · A(r) ,

[ = −
∫

dr I(r) · A(r) ,
]

SI (2.24)

where the generalized current density I is the A-independent part of the total current
density (the sum of orbital and spin-induced current densities)

I t(r) = Jorb(r)+ J s(r) , (2.25)

= I(r)− (1/c)N̂ (r)A(r) , (2.26)

= [
I(r)− N̂ (r)A(r)

]
SI ,

i.e.,

I(r) = J0(r)+ J s(r) , (2.27)

where J0 is defined in Eq. (2.13). In terms of these generalized Hamiltonians with
explicit spin dependence, H (0) and Hint, we can treat a broader range of problems
of matter-EM field coupled systems.

It may be worth mentioning that most of the effective Hamiltonians used for vari-
ous specialized purposes are in fact derived via certain approximation from the first-
principles Hamiltonian discussed above. A typical example is a spin Hamiltonian
for the analysis of spin resonance [6], where one looks at a very small energy range
corresponding to the energy levels of the spin system in consideration, and derives
an effective Hamiltonian of spin operators. Thereby, one adds a consideration on
symmetry to restrict the possible invariant forms of the combinations of spin oper-
ators. The coefficients of such allowed terms are usually taken as free parameters,
but one could estimate them by the perturbational calculation using the basis set of
states including the abandoned ones. Besides the effective spin Hamiltonians, there
are many examples of effective Hamiltonians to describe a particular properties of
matter states and various interactions, such as energy band Hamiltonian with an
effective one-particle potential, Heisenberg model of ferro- and antiferromagnetism,
Hubbard Hamiltonian to study the electron correlation, BCS Hamiltonian for super-
conductivity, Frölich Hamiltonian for electron-LO phonon coupling, etc. All of them
should be derivable from the first principles form of Hamiltonians H (0) and Hint, as
far as one stays in the weakly relativistic regime of charged particle systems.
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2.2.2 Calculation of Microscopic Nonlocal Susceptibility

We now calculate the current density I(r) of a system of charged particles induced
by the application of a T field A(r, t) to the lowest order of A. For this calculation,
we only need the matter Hamiltonian H (0), (2.17), and the matter-EM field interac-
tion Hint, (2.24). (At this stage, A is just a T field interacting with the matter system.
Later, on looking for a selfconsistent solution, it turns out to be the sum of an inci-
dent field and the one induced by the induced current density.) The induced current
density is written in terms of the eigen values and eigen functions of H (0). In this
sense, our result is model independent. Model dependence arises when we evaluate
the energy eigen values and the matrix elements of current density operator for a
particular system. The expression of induced current density is given in a general
form, so that it can be applied to any model systems. The necessity of relativistic
correction should also be judged at the stage of such an evaluation.

Let us consider the Schrödinger equation of a system of charged particles in a
EM field A(r, t)

i h̄
∂�

∂t
= (H (0) + Hint) � . (2.28)

Using the interaction representation �(t) = exp(−i H (0)t/h̄) �̃(t), we rewrite the
Schrödinger equation as

i h̄
∂�̃

∂t
= Hint(t) �̃ (2.29)

where

Hint(t) = exp(i H (0)t/h̄) Hint exp(−i H (0)t/h̄) . (2.30)

Assuming that the matter state was initially in its ground state of H (0) and the
interaction was switched on adiabatically from the remote past, we can solve this
equation by iteration as

�̃(t) = �0 + −i

h̄

∫ t

−∞
dt1 Hint(t1) eγ t1 �0 + · · · , (2.31)

where the wave function �̃(−∞) is written as�0, the ground state wave function of
H (0). (The case of more general initial state described by an ensemble will be treated
in Sect. 5.4.) The factor γ = 0+ is a positive infinitesimal quantity, representing the
adiabatic switching of the interaction at the remote past.

The induced current density is the expectation value of the total current density
operator I t(r) = Jorb(r)+ J s(r) ( = I(r)− (1/c)N̂ (r)A(r) ) with respect to the
wave function �(t)(= exp(−i H (0)t/h̄)�̃(t)). Let us expand �(t) as
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�(t) =
∑

ν

aν(t)|ν〉 (2.32)

where |ν〉 is an eigenstate of H (0), i.e., H (0)|ν〉 = Eν |ν〉. Then, for ν = 0, we have

a0(t) = exp(−iω0t) , (ω0 = E0/h̄) (2.33)

to the lowest order of A, and for ν 
= 0, we have

aν(t) = i

h̄
〈ν|

∫ t

−∞
dt1 exp(−i H (0)t/h̄)Hint(t1) exp(γ t1)|0〉 . (2.34)

Using the Fourier expansion of A(r, t)

A(r, t) =
∑

ω

A(r, ω)e−iωt , (2.35)

we can calculate the integral over t1 as

∫ t

−∞
dt1〈ν|Hint(t1) exp(γ t1)|0〉

= −1

c

∑

ω

∫
dr〈ν|I t(r)|0〉 · A(r, ω)

∫ t

−∞
dt1 exp[i(ων0 − ω − iγ )t1]

= i

c

∑

ω

exp[i(ων0 − ω − iγ )t]
ων0 − ω − iγ

∫
dr〈ν|I t(r)|0〉 · A(r, ω) , (2.36)

= [
same expression without 1/c

]
SI ,

where h̄ων0 = Eν − E0 is the excitation energy of matter. This leads, for ν 
= 0, to

aν(t) = − 1

h̄c

∑

ω

exp[−i(ω0 + ω + iγ )t]
ων0 − ω − iγ

∫
dr〈ν|I t(r)|0〉 · A(r, ω) ,

= [
same expression without 1/c

]
SI . (2.37)

The A-linear part of the induced current density 〈�(t)|I t(r)|�(t)〉 arises in two dif-
ferent ways. One is from the first term 〈�0|I t(r)|�0〉, proportional to |a0|2, through
the A-linear term of Jorb, (2.14), and the other is from the terms proportional to{
a0a∗

ν

}
’s or

{
a∗

0aν
}
’s through the A-linear dependence of aν with the A-independent

part of I t. The sum of these two terms gives the full expression of the A-linear part
of the induced current density of frequency ω as

I t(r, ω) =
∫

dr ′ χcd(r, r ′;ω) · A(r ′, ω) (2.38)
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where the microscopic susceptibility χcd is given as

χcd(r, r ′;ω) = − 1

c
〈0|N̂ (r)|0〉 δ(r − r ′)

+ 1

c

∑

ν

[
gν(ω)I0ν(r)Iν0(r ′)+ hν(ω)Iν0(r)I0ν(r ′)

]

= [
same expression without 1/c

]
SI (2.39)

in terms of

Iμν(r) = 〈μ|I(r)|ν〉 , (2.40)

gν(ω) = 1

h̄(ων0 − ω − iγ )
, (2.41)

hν(ω) = 1

h̄(ων0 + ω + iγ )
. (2.42)

As mentioned in the previous section, the first term on the r.h.s. of Eq. (2.39) is
mainly contributed from the electron density in the ground state (times e2/mc), and
the second term represents the contribution from all the excited states, where the
factor gν(ω) and hν(ω) give the resonance condition, and the product of two matrix
elements of current density works as position-dependent weighting factors of each
resonance.

The (r, r ′) dependence of χcd(r, r ′) shows the nonlocal character of the
response, i.e., an EM field applied to the position r ′ can induce current density
at a different position r . This nonlocal response occurs within the spatial exten-
sion of relevant wave functions {|ν〉, |0〉}. It should be stressed that this nonlocal
character arises from the quantum mechanical extension of the wave functions. The
matter-EM field interaction itself is local, as explicitly given in Eq. (2.10), i.e., they
interact only at the same positions in space. Therefore, we should strictly distinguish
between the “nonlocal response” and “nonlocal interaction”.

The nonlocal response is the characteristic feature of microscopic response. In
the macroscopic response, we generally use a local relationship between polariza-
tion(s) and source EM field, e.g., P(r, ω) = χe(ω)E(r, ω). Thus, the macroscopic
averaging should contain a recipe to reduce the nonlocal response to a local one.
For this purpose, the expression of χcd given above has a very convenient general
form with respect to the (r, r ′) dependence, i.e., it is a sum of the products of a
function of r and that of r ′. As an integral kernel, this behavior is called separable,
and greatly serves to simplify the solution of the integral equations, as shown below.

2.2.3 Fundamental Equations to Determine Microscopic Response

From the arguments of the previous sections, the fundamental equations to deter-
mine the set of microscopic variables {A and I t} in the linear response regime are
the microscopic M-eqs
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− ∇2 A + 1

c2

∂2 A
∂t2

= 4π

c
I (T)t

[
= μ0 I (T)t

]

SI
(2.43)

and the constitutive equation (2.38). These are the coupled equations to determine
the T components of the two vector fields A and I t for a given initial condition. In
the M-eqs I (T)t is the source term of A, and in the constitutive equation A induces
I (T)t (and also I (L)t if symmetry allows), and the solution of the coupled equations
gives us a self-consistent set of A and I (T)t . The L component of I t is obtained from
the selfconsistently determined A via the constitutive equation, and A has no L com-
ponent in Coulomb gauge. The case of exciting matter via external charge source,
which introduces an L electric field as initial condition, will be treated in Sect. 5.7.

The initial condition of matter is already taken into account in calculating the
induced current density by choosing the ground state of H (0) as the matter state at
the remote past as mentioned in the previous subsection. (Its extension to the more
generalized case of density matrix description will be given in Sect. 5.4.) The initial
condition for the vector potential corresponds to the choice of incident EM field
inducing matter polarization, which is contained in the solution of the M-eqs (2.43).
The solution is a sum of the general solution for the homogeneous equation for
I (T)t = 0 and a special solution in the presence of finite I (T)t . The general solution
contains two free parameters corresponding to the two independent solutions of the
second order differential equation. The values of these parameters are chosen to fit
the asymptotic situation, e.g., in the remote past in accordance with the incident
field.

In order to solve Eqs. (2.43) and (2.38) in a neat way, we renormalize the
〈0|N̂ (r)|0〉 term of χcd(r, r ′;ω) into the resonant terms as given in the Sect. 5.5.
This approximation is valid in LWA and in the non-relativistic regime. In this case,
the microscopic susceptibility is written as

χcd(r, r ′;ω) = 1

c

∑

ν

[
ḡν(ω)I0ν(r)Iν0(r ′)+ h̄ν(ω)Iν0(r)I0ν(r ′)

]
(2.44)

= [
same expression without 1/c

]
SI

where

ḡν(ω) = gν(ω)− 1

h̄ων0
, (2.45)

h̄ν(ω) = hν(ω)− 1

h̄ων0
. (2.46)

Using this form in the susceptibility χcd, we can rewrite the ω-Fourier component
of Eqs. (2.43) and (2.38) into a set of linear equations for new variables Fμν(ω)
defined as

Fμν(ω) =
∫

dr 〈μ| Î(r)|ν〉 · A(r, ω) . (2.47)
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In terms of {Fμν}, the induced current density I t(r, ω) is written as

I t(r, ω) = 1

c

∑

ν

[
ḡν(ω)I0ν(r)Fν0(ω)+ h̄ν(ω)Iν0(r)F0ν(ω)

]
(2.48)

= [
same expression without 1/c

]
SI

The variables {Fμν} depend on the quantum numbers μ, ν and frequency ω, but not
on the coordinate r , and as shown just above, they are the expansion coefficients
of the induced current density in terms of the basis set {I0ν(r), Iν0(r)}. Namely,
I t(r, ω) is a linear combination of {Fμν}. Since the basis set {I0ν(r), Iν0(r)} should
be given for any fixed model of matter, we only need to determine the expansion
coefficients {Fν0, F0ν}.

Taking the ω-Fourier component of the M-eqs (2.43), we obtain its general solu-
tion in the form

A(r, ω) = A0(r, ω)+ 1

c

∫
dr ′ Gq(r, r ′) I (T)t (r ′, ω) , (2.49)

= [
same expression with1/c replaced by μ0/4π

]
SI ,

where A0 is the incident field satisfying the homogeneous equation (for I (T)t = 0).
The field A0 is a linear combination of two independent solutions of the homoge-
neous equation, with their coefficients to be chosen according to the initial condi-
tion, and I (T)t (r, ω) is given as Eq. (2.48) with the vector fields Iμν(r) replaced by

their T components I (T )μν (r). The EM Green function is defined as

− ∇2Gq(r, r ′)− q2Gq(r, r ′) = 4πδ(r − r ′) , (2.50)

where q = ω/c is the wave number in vacuum of the EM field with frequency ω,
and a special solution of Gq is given as

Gq(r, r ′) = eiq|r−r ′|

|r − r ′| . (2.51)

By applying the operation −∇2 − q2 from the left to Eq. (2.49), we can assure that
it is the general solution of (2.43) for frequency ω. The scattered field, the integral
part, of (2.49) is also a T-field, which can be seen by taking its divergence and
carrying out partial integration.

There is an another useful expression of the same quantity, where the T character
is carried by the tensor EM Green function Gq(r, r ′) as

A(r, ω) = A0(r, ω)+ 1

c

∫
dr ′ G(T )

q (r, r ′) · I(r ′, ω) , (2.52)

= [
same expression with 1/c replaced by μ0/4π

]
SI ,
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where

G(T )
q (r, r ′) = Gq(r − r ′)1 + 1

q2

[
Gq(r − r ′)− G0(r − r ′)

]∇′∇′ . (2.53)

For details, see Sect. 5.7.1.
In terms of {Fν0, F0ν}, Eq. (2.49) can be rewritten as

A(r, ω) = A0(r, ω)+ 1

c

∑

ν

[
ḡνFν0 A0ν(r, ω)+ h̄νF0ν Aν0(r, ω)

]
, (2.54)

= [
same expression with 1/c replaced by μ0/4π

]
SI ,

where

Aμν(r, ω) = 1

c

∫
dr ′ G(T )

q (r, r ′;ω) · Iμν(r ′, ω) (2.55)

= [
same expression with 1/c replaced by μ0/4π

]
SI ,

is the vector potential produced by the current density I (T )μν (r ′).
If we further insert this result into the definition of {Fμν}, (2.47), it gives us a set

of linear equations for {Fν0, F0ν}. In doing so, let us note that we can replace the
current density Iμν(r) in Eq. (2.47) with its T component I (T )μν (r). This is because
a L-field can be written as the gradient of a scalar function (∇ f (r)), and because
the integral of the inner product of a L-field and A (T-field) turns out to be zero as

∫
dr ∇ f (r) · A(r) = −

∫
dr f (r) ∇ · A(r) = 0 . (2.56)

where we have made partial integration and used ∇ · A(r) = 0. This leads to

Fμν(ω) =
∫

dr I (T )μν (r) · A(r, ω) . (2.57)

Inserting eq. (2.54) into the definitions of Fν0 and F0ν , (2.57), we obtain

Fν0 = F (0)ν0 −
∑

μ

[
ḡμAν0,0μFμ0 + h̄μAν0,μ0 F0μ

]
(2.58)

F0ν = F (0)0ν −
∑

μ

[
ḡμA0ν,0μFμ0 + h̄μA0ν,μ0 F0μ

]
(2.59)

where

F (0)μν =
∫

dr I (T )μν (r) · A0(r, ω) , (2.60)
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and

Aνσ,μτ = −1

c

∫
dr

∫
dr ′ I (T )νσ (r) Gq(r, r ′, ω) I (T )μτ (r

′) (2.61)

= [
same expression with1/c replaced by μ0/4π

]
SI

represents the radiative (radiation mediated) interaction energy between the two cur-
rent densities associated with the transitions {ν ↔ σ } and {μ ↔ τ }. The real and
imaginary part of the diagonal element Aν0,0ν gives the shift and radiative width of
the transition energy Eν0. (See Sect. 3 of [1].) As mentioned above in connection
with the tensor Green function (Sect. 5.7.1), it is possible to write the radiative
correction in terms of G(T )

q (r, r ′) as

Aνσ,μτ = −1

c

∫
dr

∫
dr ′ Iνσ (r) · G(T )

q (r, r ′, ω) · Iμτ (r ′) , (2.62)

= [
same expression with1/c replaced by μ0/4π

]
SI .

This rewriting is a rather general feature in describing T (L) field propagation,
i.e., one ascribes the T (L) nature either to the source or to the propagator (Green
function).

For a given incident field, {F (0)μν } is a known set of quantities, so that it is straight-
forward to solve the simultaneous linear equations (2.58) and (2.59). The solution
{Fν0, F0ν}, directly determines the response fields, A and I . Originally, this scheme
was developed to describe the microscopic variation correctly, as given in [1] in
detail. It has been used mainly for the study of nanostructures, but it can be used
also as a starting theory to derive the macroscopic M-eqs, because it describes both
microscopic and macroscopic spatial variations correctly. This is what we are now
going to do in the following.

Before we proceed to derive the new macroscopic M-eqs and the corresponding
constitutive equation, we give some characteristic aspects of the microscopic non-
local response theory to show that our derivation of macroscopic M-eqs is based on
a reliable foundation.

2.2.4 Characteristics of Microscopic Nonlocal Response Theory

Though the contents of this subsection will not be used directly in the derivation
of the new macroscopic M-eqs, they will show the nature of the higher rank theory
from which we are going to derive the macroscopic theory.

2.2.4.1 Microscopic Spatial Variation

The response fields A and I t are expanded in terms of Aμν(r, ω) and Iνμ(r),
respectively. Since the basis for the matrix representation consists of the eigen
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functions of H (0), they have microscopic spatial variations like atomic wave func-
tions, which is reflected in the spatial structure of A and I t. But, at the same time,
they also contain rather smooth, or macroscopic, spatial variation, as a superposition
of the contributions from infinitely many excited states. The relative weights of the
contributions of individual excitations depend on the frequency range of interest.
In the neighborhood of a particular resonance, the spatial structure of the induced
current density of the resonant transition is dominant. The microscopic nonlocal
theory is a scheme enabling us to treat these effects correctly in principle, and also
in practice within the limit of numerical calculation.

2.2.4.2 Resonant Enhancement of Microscopic Spatial Structure

The selfconsistent solution of response is obtained by solving the equations of the
variables Fμν(ω), which is the expansion coefficients of I t. Since the solution has
resonance effect at each excitation energy of matter, the response fields A and I t
show corresponding resonant behavior. Each resonance is accompanied by a char-
acteristic spatial structure of the resonance fields, so that this structure is enhanced
at the resonance. The microscopic structures accompanying various resonances are
different from one another.

This feature does not exist in the macroscopic case, because the resonances in
macroscopic response are specified by the resonant frequencies and the correspond-
ing residues given by the (mainly first order) moments of the matrix element of the
induced current density. Thus, at any resonance, the spatial structure is specified
only by a wave number, which becomes infinitely large, in the absence of non-
radiative damping, as ω approaches the resonant frequency. This is an unphysical
behavior introduced by the macroscopic averaging. The spatial structure of the res-
onance before carrying out LWA is quite different from the one described by a wave
number. Therefore, unless it is smeared out by a non-radiative damping, we should
be aware of its unphysical nature.

The spatial coherence is closely related with the applicability of LWA. If the
extension of the spatial coherence is comparable to or larger than the wavelength
of interest, LWA is not a good approximation, and we should keep the microscopic
description of the resonance. Bulk excitons are typical examples of this kind. Since
any quantum mechanical excitations has its own coherence, we should judge the
applicability of LWA for each resonance in the frequency region of interest. In
the case of impurity transitions, we can usually neglect the coherence over dif-
ferent impurities, if the density is low. For a high density case, we need to con-
sider that a large number of degenerate transitions occur at various positions in
a medium. Generally, there exists a coupling between the excitations at differ-
ent positions via the Coulomb interaction among electrons, working even if the
overlap of wave functions is negligible. Its main term is the dipole-dipole inter-
action, which is proportional to 1/R3 (R= distance between two impurities), and
its strength reflects the dipole moments of the transitions. For a small density case,
average R is large, so that this energy is negligible in comparison with the non-
radiative width of each excitation or the fluctuation of site energy. Then, all the
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excitations can be treated independently, and the spatial coherence has an exten-
sion of a single impurity transition. If, however, the dipole-dipole interaction is
not negligible (due, for example, to the high density of impurities, or to the large
E1 moment of the transition), the eigenstates of the impurity transitions need to
be diagonalized with the inclusion of the dipole-dipole interaction, which greatly
changes the coherence character of the transitions. By this rearrangement, some
of the eigenstates may have a large spatial extension. (If the impurities are reg-
ularly positioned, all the rearranged states are specified by some wave vector, so
that all of them are extended infinitely.) There is a possibility that metamaterials
might have a situation of this kind. Then, we need to describe the response of such
metamaterials microscopically, i.e., with the nonlocal character kept explicitly. (See
Sect. 4.1.4.)

2.2.4.3 Self-sustaining Modes

The formalism of the microscopic nonlocal response is applicable to a large vari-
ety of matter systems from individual atoms to bulk materials. As discussed in
detail in Sect. 2.2.3, its fundamental equations for linear response are the simul-
taneous linear equations SX = F(0) (in a matrix notation rewritten for variables
Xν0 = ḡνFν0, X0ν = h̄νF0ν), where the incident field is included in F(0), and
the solution X gives the amplitudes of selfconsistently determined current densities.
The response EM field is obtained by solving the M-eqs with this current density as
the source term. The coefficient matrix S of the equations consist of the eigenvalues
of matter Hamiltonian H (0) and the matrix elements of induced current density with
respect to the eigenfunctions of H (0).

The condition for the existence of non-trivial solution in the absence of an inci-
dent field, i.e., the vanishing of the determinant of the coefficient matrix, det|S| = 0
has a particular physical meaning. It gives the finite amplitude solution in the
absence of incident field, representing the eigen mode of coupled matter excitation
and EM field, which are sustaining each other without the help of incident field. In
this sense, they may be called the “self-sustaining (SS) modes” of the interacting
matter-EM field system.

The eigen-frequency of a SS mode is generally complex, the difference of which
from the matter excitation energy represents the radiative shift and width of the
relevant matter excitation. Since det|S| occurs in the denominator of the solution,
X = S(−1)F(0), the (real) ω dependence of X is resonant at the real part of the SS
mode with a width given by its imaginary part. In this way the SS mode frequencies
describe the resonant behavior of the response spectrum.

In the presence of several resonances, they affect each other, so that the exact
positions of resonances (peaks and/or dips) are shifted from the isolated reso-
nances. For an isolated resonance, the complex frequency of the self-sustaining
mode exactly gives the peak position and, in the absence of non-radiative damping,
its half width.
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The realistic picture of the SS modes takes various form. In the case of an isolated
atom, it is the atomic excitation energy with radiative correction. In the case of an
exciton in a non-metallic crystal of infinite size, the condition det|S| = 0 gives the
dispersion equation of exciton – polariton without radiative width. Similarly, various
surface polaritons, such as surface (exciton, phonon, or plasmon) polaritons, are
also SS modes. More exotic examples are the cavity modes of the dielectrics with
a particular size and shape, and the dynamically scattered X rays in a crystal. See
Sect. 3.1 of [1] for more details.

2.2.4.4 Radiative Correction

It is one of the characteristic points of the microscopic nonlocal response theory
that it contains the interaction among the induced current densities via the T and
L components of EM field. The L component represents the Coulomb field due to
the current density (or charge density), and its interaction with matter polarization
is included in the matter Hamiltonian as the Coulomb potential among charged
particles. The interaction among the induced current densities mediated by the T
component of induced EM field plays an important role in this framework as “radia-
tive correction”. This is the interaction energy of the T field produced by a current
density with another current density (or with itself), as defined in Eq. (2.61). Since
the EM Green function connecting the two current densities is generally a complex
quantity, the resultant interaction energy is complex, too. Its physical meaning is
that the continuum of the EM field energy works as a bath for the decay of a matter
excitation energy, giving a finite lifetime to the matter excitation.

This kind of interaction via T field is also taken into account in the macroscopic
M-eqs, if we solve them selfconsistently with the constitutive equation. The main
difference is that the radiative correction is defined quantum mechanically with all
the details of matter excitations in the microscopic theory, so that we can calculate
the radiative correction from the first-principles. In fact, we can study the size and
shape dependence of the radiative correction for a given finite matter system. See
Sect. 4.1 of [1].

It is worth mentioning that the radiative width calculated from this general
expression is exact in comparison with the result of QED. For a single atom in
vacuum, the self interaction of an induced current density via emitted EM field of
a given frequency produces radiative shift and width of the current density. The
radiative width (FWHM) is exactly the same as the result of QED, which is usually
given in LWA as

� = 4

3
q3|μ|2 (2.63)

where μ is the electric dipole moment of the transition with energy E , and q =
E/h̄c. (The corresponding radiative shift depends on the details of the wave func-
tions of the transition, so that it cannot be uniquely fixed by the value of μ alone.)
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The definition of radiative correction (2.61) is valid also outside LWA. Therefore,
the size dependence mentioned above can be calculated smoothly across the validity
limit of LWA, which allows to discuss the connection of two different regimes, i.e.,
within and beyond LWA. See Sect. 4.5 of [1].

2.2.4.5 Boundary Conditions

It is the most pronounced aspect of the microscopic nonlocal response theory, that
it does not require the boundary conditions (BC’s) to connect the EM fields in- and
outside a matter system. It is a matter of fact for a microscopic theory not to use
BC’s, because no boundary can be drawn for a microscopic material distinguishing
the in- and outside the matter, and because the fundamental equations SX = F(0)

to determine the response for a given incident field are complete without BC’s. A
given shape of matter in its ground state defines the BC’s for electrons which govern
the EM response of matter. This allows us to calculate the microscopic nonlocal
susceptibility in a position dependent manner. As we described in Sect. 2.2.2 and
Sect. 2.2.3 in detail, this knowledge of nonlocal susceptibility is enough to deter-
mine the selfconsistent response uniquely. The use of BC’s in macroscopic M-eqs
is a standard technique to solve problems, but it is a specialty only in macroscopic
M-eqs. It should be remembered that no BC is required in the higher rank theo-
ries.

The necessity of BC arises when we approximate a part or all of the induced
current density by a macroscopic one, which is the subject of Sect. 3.7.

2.3 Long Wavelength Approximation (LWA)

We now proceed to make the macroscopic average of the fundamental equations of
microscopic nonlocal response, i.e., the microscopic M-eqs (2.43) and the constitu-
tive equation (2.38). As discussed previously, this means mathematically to take the
LWA of these equations. Since it is an approximation, there is a validity condition
which may be fulfilled or not according to the system in consideration. We will
consider this problem later in Sect. 3.6. In this section, we just apply LWA, leaving
the first few terms of the expansion. This means that we derive the expected form of
macroscopic equations when LWA is a good approximation.

Application of LWA to a microscopic system does not necessarily lead to a uni-
form system in general. It is possible to result in a macroscopically non-uniform
system, as, for example, in the case of an impurity system with macroscopically
non-uniform distribution of density. Such a system would require an additional con-
sideration after introducing a macroscopic description depending on the details of
each problem. In this book, we omit these macroscopically non-uniform cases from
our consideration. However, to complement this point, the case of resonant X-ray
diffraction from a crystal will be discussed in Sect. 4.3.
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The omission of macroscopically non-uniform systems after LWA allows us to
work only in a uniform system, where wave vector k is a good quantum number.
We use a space Fourier transform of an arbitrary field B(r) as

B(r) = V

8π3

∫
dk B̃(k) exp(i k · r), B̃(k) = 1

V

∫
dr B(r) exp(−i k · r) . (2.64)

where V is a volume to define discrete k via periodic boundary condition, leading to
the uniform density V/8π3 of k in the continuum limit V → ∞. The (k, ω) Fourier
component of microscopic M-eqs is (q = ω/c)

(k2 − q2) Ã(k, ω) = 4π

c
Ĩ
(T)
t (k, ω) =

[
μ0 Ĩ

(T)
t (k, ω)

]

SI
. (2.65)

This equation is not affected by LWA, except that both A and I (T) are appreciable
only for small k. (If LWA is a good approximation, all the physical quantities should
mainly consist of their LW components.)

The Fourier component of the constitutive equation (2.48) is

Ĩ t(k, ω) = 1

c

∑

ν

[
ḡν(ω) Ĩ0ν(k)Fν0(ω)+ h̄ν(ω) Ĩν0(k)F0ν((ω)

]
, (2.66)

= [
same expression without 1/c

]
SI ,

and the factor Fμν is written in terms of the Fourier components as

Fμν(ω) = V 2

8π3

∫
dk Ĩμν(−k) · Ã(k) . (2.67)

Substituting (2.67) into (2.66), we have

Ĩ t(k, ω) = V 2

8π3c

∫
dk′ ∑

ν

[
ḡν(ω) Ĩ0ν(k) Ĩν0(−k′)

+h̄ν(ω) Ĩν0(k) Ĩ0ν(−k′)
] · Ã(k′) (2.68)

= [
same expression without 1/c

]
SI .

In evaluating the matrix element of the current density in LWA, we begin with
the operator form of the current density

Ĩ(k) = 1

V

∫
dr e−i k·r {J0(r)+ c∇ × Ms(r)} (2.69)

= 1

V

∫
dr e−i k·r J0(r)+ i

c

V
k ×

∫
dr e−i k·r Ms(r) , (2.70)

= [
same expression without c

]
SI ,
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where J0 is the A independent part of orbital current density, (2.13)), and Ms is the
spin magnetization, (2.21), and the second equation is derived via partial integration.
The (μν)matrix element of this operator is given by the same expression with J0(r)
and Ms(r) replaced by the matrix elements 〈μ|J0(r)|ν〉 and 〈μ|Ms(r)|ν〉.

If LWA is a good approximation, we can expand exp(i k · r) in Taylor series, and
keep the first few terms. These terms are the various moments of 〈μ|J0(r)|ν〉 and
〈μ|Ms(r)|ν〉. Since the values of the moments depend on the center about which
they are defined, we need to specify the center. In the situation where LWA is a good
approximation, the transition μ ↔ ν is usually localized, so that we can choose
a “center” in the region where the wave functions �μ and �ν have appreciable
amplitudes. Let us denote the center as r̄ . Then, the matrix element of the current
density in LWA is given as

Ĩμν(k) = exp(−i k · r̄)
V

[
J̄μν − i k · Q̄μν + ick × M̄

(s)
μν + · · ·

]
(2.71)

= [
same expression without c

]
SI

up to the O(k1) terms, where

J̄μν =
∫

dr 〈μ|J0(r)|ν〉 , (2.72)

Q̄μν =
∫

dr (r − r̄)〈μ|J0(r)|ν〉 , (2.73)

M̄
(s)
μν =

∫
dr 〈μ|Mspin(r)|ν〉 (2.74)

From the form of the one particle operators included in J0(r), the matrix element
J̄μν is nonzero when the transition μ ↔ ν contains electric dipole (E1) charac-
ter, and Q̄μν is nonzero for the transition with magnetic dipole (M1) and electric
quadrupole (E2) characters. We can explicitly separate Q̄μν into the M1 and E2
components as shown in Sect. 5.6. This allows us to rewrite (2.71) as

Ĩμν(k) = exp(−i k · r̄)
V

[
J̄μν − i k · Q̄(e2)

μν + ick × M̄μν + · · ·
]
, (2.75)

= [
same expression without c

]
SI ,

where M̄μν is the sum of spin and orbital magnetizations

M̄μν = M̄
(s)
μν + M̄

(orb)
μν . (2.76)

The explicit form of the orbital magnetization M̄
(orb)
μν is given in Sect. 5.6. Sub-

stituting this expression into (2.68), we can express the induced current density in
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terms of the separate contributions of E1, E2, and M1 transitions. Because of the
assumption, at the beginning of this section, of neglecting the non-uniformity in the
LWA averaged system, we should choose the k′ = k term in the integral over k′ in
(2.68). Supplying (8π3/V )δ(k − k′) (which corresponds to δk,k′ in discrete case)
in the k′-integral, we obtain

Ĩ(k, ω) = V

c

∑

ν

[
ḡν(ω) Ĩ0ν(k) Ĩν0(−k)+ h̄ν(ω) Ĩν0(k) Ĩ0ν(−k)

] · Ã(k) ,

= [
same expression without 1/c

]
SI , (2.77)

i.e., the susceptibility is

χem(k, ω) = V

c

∑

ν

[
ḡν(ω) Ĩ0ν(k) Ĩν0(−k)+ h̄ν(ω) Ĩν0(k) Ĩ0ν(−k)

]

= [
same expression without c

]
SI . (2.78)

Note that the explicit r̄-dependence in (2.75) cancels out in this expression because
of k = k′. When a same transition occurs at various positions with number density
n0, the factor (1/V )

∑
ν is replaced by n0

∑′
ν , where the prime on the summation

sign means that a same transition (at different positions) is counted only once.
The T component of the induced current density, required in the M-eqs (2.65), is

I (T)t = χ(T)em A (2.79)

where

χ(T)em (k, ω) = (
1 − k̂k̂

) · χem(k, ω) , (k̂ = k/|k|) . (2.80)

The inner product k̂ · (k̂ · Q̄) appearing in this quantity is defined as

k̂ · (k̂ · Q̄) =
∑

ξ

∑

η

∑

ζ

k̂ξ k̂η Q̄ηξ . (2.81)

This allows us to calculate the dispersion equation of the coupled waves of Ã and

Ĩ
(T)
t in a general form.

2.4 New Macroscopic Susceptibility

We have derived the LWA average of microscopic susceptibility to be used in the
macroscopic constitutive equation. Combining this susceptibility with the M-eqs
(2.65), we can selfconsistently determine the T components of vector potential
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and induced current density. Since a vector potential contains both electric and
magnetic fields, and a current density is written in terms of the matrix elements
of “E1, E2, M1· · · ” characters, this selfconsistent solution describes the complete
(linear) response of a coupled matter-EM field system for T field excitation. (The
L components of E and I , if they are allowed by symmetry, can be determined
from the selfconsistent solution of the T components. See the last argument of this
sub-section.)

The new macroscopic susceptibility relating Ĩ t with Ã can be classified into
O(k0), O(k1), O(k2) terms as

χem(k, ω) = χem0(ω)+ k χem1(k̂, ω)+ k2 χem2(k̂, ω)+ · · · (2.82)

Each matrix element of current density consists of a sum of E1, E2, and M1 compo-
nents, as seen from Eq. (2.71). Since the products of two matrix elements of current
density are contained in the susceptibility χem in a dyadic form, the first one (on
the l.h.s.) indicates the character (E1, E2, or M1) of the induced current density,
and the second one represents the character of the interaction contributing to the
term. In this sense, we can specify the contributions of (E1, E2, or M1) transitions
in {χemj(ω); j = 1, 2, 3}.

The term χem0(ω) has contribution only from the (E1, E1) transitions as

χem0(ω) = 1

cV

∑

ν

[
ḡ(ω) J̄0ν J̄ν0 + h̄(ω) J̄ν0 J̄0ν

]
, (2.83)

= [
same expression without 1/c

]
SI .

In a favorable symmetry condition, this term is related with the conventional electric
susceptibility χe, as shown in Sect. 3.1.3.

The term χem2(ω) consists of the (M1+E2, M1+E2) transitions, i.e., the (M1,
M1), (E2, E2) terms and their cross terms (M1, E2) and (E2, M1). The (M1,
M1+E2) terms contribute to the current density due to the induced magnetiza-
tions, and (E2, M1+E2) terms contribute to the current density due to the induced
electric quadrupole (E2) polarizations. The M1 and E2 characters can be distin-
guished, not by space inversion, but by time reversal. It will be shown in Sect. 3.1.3
that the (M1, M1) term can be used to derive the magnetic susceptibility χB, and
μ = 1/(1 − 4πχB) in the case of non-chiral symmetry.

In contrast, the χem1 term consists of the mixed transitions of (M1+E2, E1) and
(E1, M1+E2) types. In order for this term to be non-vanishing, there must be the
quantum mechanical excited states {|ν〉}, which are active to both E1 and M1 (or
E1 and E2) transitions. This is possible only when the system has no inversion
symmetry, i.e., the case of chiral symmetry, or a system with optical activity. In
this case, common poles appear among {χemj(ω); j = 1, 2, 3}.

If the system has inversion symmetry, all the excited states are classified accord-
ing to the parity, so that the states contributing to E1 transitions and (M1and E2)
transitions belong to different irreducible representations. No excited state is active
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to both E1 and (M1and E2) transitions, so that χem1 is zero in this case. Then,
the summation over the index ν can be divided into two groups, each of which
contributes to either E1 or M1 (E2), i.e., the excitations contributing to χem0 are
different from those contributing to χem2.

Though the induced current density is given as a power series expansion about
k, it would be more physical to decompose it into the current densities due to elec-
tric field-induced electric polarization IeE , magnetic field-induced magnetic polar-
ization Im B , magnetic field-induced electric polarization IeB , and electric field-
induced magnetic polarization Im E . Their explicit forms are obtained by the substi-
tution of Eq. (2.75) into Eq. (2.77):

IeE = 1

cV

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

) (
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

) (
J̄0ν + i k · Q̄(e2)

0ν

)]
· Ã(k) ,

= [
same expression without 1/c

]
SI ,

(2.84)

ImB = c

V
k × ∑

ν

[
ḡν M̄0ν(k × M̄ν0)+ h̄ν M̄ν0(k × M̄0ν)

] · Ã(k) ,

= [
same expression without c

]
SI ,

(2.85)

IeB = −i

V

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

)
(k × M̄ν0)

+ h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

)
(k × M̄0ν)

]
· Ã(k) ,

(2.86)

ImE = i

V
k × ∑

ν

[
ḡν M̄0ν

(
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν M̄ν0

(
J̄0ν + i k · Q̄(e2)

0ν

)]
· Ã(k) .

(2.87)

In Sect. 3.1, this result is used to rewrite the constitutive equations in terms of elec-
tric and magnetic polarizations. This is an attempt to reproduce the conventional
form of macroscopic M-eqs, but the result shows the difference in an essential way.

When the symmetry allows the mixing of the T and L components of response,
there are non-zero elements in χem describing the L component of current density
induced by the T field A. In this case,

Ĩ
(L)
(k, ω) = k̂k̂ · χem(k, ω) · A(k, ω) (2.88)

is a non-zero vector. The magnitude of this vector is determined, by substituting A
of the selfconsistent solution (A and I (T)) into the r.h.s. of this equation. If, in this
case, there exists also an external L-field, it induces the T, as well as L, components
of current density. This case is treated in Sect. 5.7 and the result is shown to be
neatly combined with that of the T field excitation in Sect. 3.2.

Thus, the single susceptibility tensor χem(k, ω) describes all the possible
situations, including electric and magnetic polarizations, and their mutual inter-
ference effect due to chiral symmetry. It should be stressed that this result is not
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a phenomenology, but a first-principles theory with explicit quantum mechanical
expressions in a model-independent form, which allows both symmetry arguments,
as given above, and numerical analysis of model systems.

2.5 Dispersion Equation

The coupled equations for A(k, ω) and Ĩ
(T )
t (k, ω), (2.65) and (2.79), have a solution

when a particular relation between k and ω, i.e., dispersion relation, is satisfied.
Such an equation is obtained by substituting Eq. (2.79) into the M-eqs (2.65) as

(k2 − q2)A(k, ω) = 4π

c
χ(T)em (k, ω)A(k, ω) , (2.89)

= [
same expression with 4π/c replacedby μ0

]
SI ,

(q = ω/c). This is the homogeneous linear equations for the two T components
of A, and the condition for the existence of non-trivial solution is the vanishing of
the determinant of the (2 × 2) coefficient matrix, i.e.,

det

∣∣
∣∣
c2k2

ω2
1 −

{
1 + 4πc

ω2
χ(T)em (k, ω)

}∣∣
∣∣ = 0 (2.90)

[
same expression with 4πc replacedby 1/ε0

]
SI ,

In the conventional case, the dispersion equation is obtained from the M-eqs ∇ ×
∇ × E = (ω2/c2)εμE, rewritten by eliminating magnetic field. The condition for
the existence of non-trivial solution of T-character leads to

det

∣∣∣∣
c2k2

ω2
1 − {(1 + 4πχe)(1 + 4πχm)}(T)

∣∣∣∣ = 0 . (2.91)

As mentioned in Sect. 1.5, it looks that the contributions of electric and magnetic
transitions occur as a product in (2.91), while all the transitions in the new dispersion
equation (2.90) occur as a sum of single poles of χem. Since the E1 and (M1 and E2)
transitions are mutually mixed in chiral symmetry, χe and χm will have common
poles, which will lead to the occurrence of second order poles in the εμ part of
Eq. (2.91). This is a clear distinction from the new result, and requires explanation.
This apparent contradiction can be solved, in the case of non-chiral symmetry, by
using the magnetic susceptibility defined as M = χB B, as shown in Sect. 3.3.

In the case of chiral symmetry, the dispersion equation of the conventional
scheme needs a modification from Eq. (2.91). For this purpose, a phenomenology
has been used with the name of Drude – Born – Fedorov constitutive equations,
which generalize the relations D = εE, B = μH so as to include the effect of
“magnetic field induced electric polarization” and “electric field induced magnetic
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polarization”. The dispersion equation in this case is also different from the new
one eq. (2.90), which will be discussed in Sect. 3.4. Though the form (2.89) is
valid in both chiral and non-chiral symmetries, one could rewrite it in terms of the
susceptibilities defined with respect to the electric and magnetic fields E and B
(not E and H), which leads to a of constitutive equations somewhat similar to, but
essentially different from, the DBF eqs as shown in Sect. 3.1.

If the symmetry of matter is low, the excited states contributing to the poles of
the susceptibilities χem, χeand χm may have LT-mixed character. This aspect is auto-
matically taken care of by these susceptibilities through the pole positions and the
residues of each term of the summands, though the T parts of the susceptibilities are
selected in these dispersion equations. The contribution of pure L modes is excluded
because of the vanishing interaction with A (T-field).
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Chapter 3
Discussions of the New Results

3.1 Rewriting of the New Constitutive Equation

In Sect. 2.4, we have decomposed the new constitutive equation into the terms
due to the electric field-induced electric polarization IeE , magnetic field-induced
magnetic polarization Im B , magnetic field-induced electric polarization IeB , and
electric field-induced magnetic polarization Im E , as in Eqs. (2.84), (2.85), (2.86),
(2.87). In this form, there are two points of worth noting. The two terms due to
induced magnetizations, ImB and ImE, have the factor k × M0ν in front of their
expressions. This means that these induced current densities correspond to the form
“∇× magnetization”.

The second noteworthy point is that IeB and ImB contain the factor (k × M̄0ν) ·
Ã(k) at the end of their expressions. If we use the manipulation

(k × M̄0ν) · Ã(k) = −(k × Ã(k)) · M̄0ν = i B(k) · M̄0ν , (3.1)

we understand that these components of the induced current density are the
linear response of the system to the applied magnetic field B. On the other
hand, the induced electric polarization terms, IeE and ImE, contain the factor(

J̄0ν − i k · Q̄(e2)
0ν

)
· Ã(k, ω) at the end. Rewriting Ã(k, ω) into −i(c/ω)E(T)(k, ω),

we see that these terms are caused by the interaction with (transverse) electric field.
By using these relations, we can rewrite the IeE , Im B , IeB , and Im E terms, i.e.,
Eqs. (2.84), (2.85), (2.86), (2.87), as

IeE = −i

ωV

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

) (
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

) (
J̄0ν + i k · Q̄(e2)

0ν

)]
· Ẽ

(T)
(k) , (3.2)

ImB = ic

V
k ×

∑

ν

[
ḡν M̄0ν M̄ν0 + h̄ν M̄ν0 M̄0ν

] · B̃(k) , (3.3)

= [
same expression without c

]
SI ,

K. Cho, Reconstruction of Macroscopic Maxwell Equations, STMP 237, 49–75,
DOI 10.1007/978-3-642-12791-5_3, C© Springer-Verlag Berlin Heidelberg 2010

49



50 3 Discussions of the New Results

IeB = 1

V

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

)
M̄ν0

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

)
M̄0ν

]
· B̃(k) , (3.4)

ImE = c

ωV
k ×

∑

ν

[
ḡν M̄0ν

(
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν M̄ν0

(
J̄0ν + i k · Q̄(e2)

0ν

)]
· Ẽ

(T)
(k) (3.5)

= [
same expression without c

]
SI .

If we put

ImB = ick × MB , ImE = ick × ME , (3.6)
[
ImB = i k × MB , ImE = i k × ME

]
SI ,

the B-induced and E-induced magnetizations, MB and ME, are given as

MB(k, ω) = 1

V

∑

ν

[
ḡν M̄0ν M̄ν0 + h̄ν M̄ν0 M̄0ν

] · B̃(k) , (3.7)

ME(k, ω) = −i

ωV

∑

ν

[
ḡν M̄0ν

(
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν M̄ν0

(
J̄0ν + i k · Q̄(e2)

0ν

)]
· Ẽ

(T)
(k) . (3.8)

Similarly, by using the definition of E- and B-induced electric polarizations

IeE = −iωPE , IeB = −iωPB , (3.9)

we have

PE = 1

ω2V

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

) (
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

) (
J̄0ν + i k · Q̄(e2)

0ν

)]
· Ẽ

(T)
(k) , (3.10)

PB = i

ωV

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

)
M̄ν0

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

)
M̄0ν

]
· B̃(k) . (3.11)

(3.12)

In this way, we can redefine the induced magnetizations MB and ME, and the
induced electric polarizations PE and PB for general symmetry conditions. This
allows the new definitions of the “electric, magnetic, and chiral” susceptibilities as
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PE = χeE E, PB = χeB B, ME = χmE E, MB = χmB B. (3.13)

(Though we should write E as E(T) more exactly, we may leave it as it is, because
the argument in the next section allows the same form of χem as the susceptibility
to relate induced current density and L source field EextL.) The precise expressions
of these susceptibilities are

χeE = 1

ω2V

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

) (
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

) (
J̄0ν + i k · Q̄(e2)

0ν

)]
, (3.14)

χeB = i

ωV

∑

ν

[
ḡν

(
J̄0ν − i k · Q̄(e2)

0ν

)
M̄ν0

+h̄ν
(

J̄ν0 − i k · Q̄(e2)
ν0

)
M̄0ν

]
, (3.15)

χmB = 1

V

∑

ν

[
ḡν M̄0ν M̄ν0 + h̄ν M̄ν0 M̄0ν

]
, (3.16)

χmE = −i

ωV

∑

ν

[
ḡν M̄0ν

(
J̄ν0 + i k · Q̄(e2)

ν0

)

+h̄ν M̄ν0

(
J̄0ν + i k · Q̄(e2)

0ν

)]
. (3.17)

In terms of these new, quantum mechanical definitions of P and M, the micro-
scopic Ampère law, Eq. (1.10) can be rewritten as

i k × (B − 4πM) = −i
ω

c
(E + 4π P) , (3.18)

[
i k ×

(
1

μ0
B − M

)
= −iω(ε0 E + P)]SI , (3.19)

i.e., the same form as the conventional macroscopic one by writing B − 4πM = H
and E + 4π P = D. Combining this result with the usual definition D = εE and
B = μH , we have

εE = (1 + 4πχeE)E + 4πχeB B [= (ε0 + χeE)E + χeB B]SI , (3.20)
1

μ
B = (1 − 4πχmB)B − 4πχmE E

[
=

(
1

μ0
− χmB

)
B − χmE E

]

SI
.

(3.21)

This is the constitutive equations in terms of E and B in the general case includ-
ing chiral symmetry. Though this looks like two vector equations, it is actually
one, because it was derived from the single one I = χem A, or I = χem[A +
(c/ iω)EextL], including the content of the next section. The Eqs. (3.20) and (3.21)
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are those to be compared with DBF constitutive equations, which is done in
Sect. 3.4.

In the case of non-chiral symmetry, these equations reduce to

εE = (1 + 4πχeE)E [= (ε0 + χeE)E]SI , (3.22)

B = μ(1 − 4πχmB)B
[
= μ

μ0
(1 − μ0χmB)B

]

SI
, (3.23)

i.e., ε = 1 + 4πχE and μ = 1/(1 − 4πχmB), or χeE = χe = (c/ω2)χem0, μ =
1 + 4πχm = 1/(1 − 4πχmB), i.e., χm = χmB/(1 − 4πχmB).

The new scheme in terms of the single susceptibility χem can deal with the gen-
eral situation including the chiral symmetry. But the popular trend in the study of
metamaterials, near-field optics, photonic crystals etc. is to use ε and μ as indepen-
dent free parameters. The criterion to allow this is the non-chiral symmetry of the
system in consideration, as discussed above. This is particularly important in the
resonant region of ε and μ. If this condition is not fulfilled, the description via “ε
and μ” has no justification. Even when the use of independent ε and μ is allowed
in the non-chiral case, one should use, not χm, but χmB, since the matter excitation
energies to describe the resonance are correctly included as the poles of, not the
former, but the latter.

The problem about the statement “the macroscopic average of microscopic mag-
netic field h is usually written as B” described in Sect. 1.5, does not exist in the
present scheme, because the magnetic field is always written as B both in the inter-
action Hamiltonian Hint and in the vacuum EM field Hamiltonian H (T)

EM without any
change before and after the application of LWA. The macroscopic average defined
in this scheme does not logically allow such a change.

The expressions of the formulas in SI units system, especially in this section, will
need a check from the dimensional point of view, which is done in Sect. 5.8.

3.2 Unified Susceptibility for T and L Source Fields

In the previous subsection, we have rewritten the new constitutive equation in a
form similar to the conventional ones. However, this is limited to the response to
the transverse field A. The response to the longitudinal field is treated in Sect. 5.7,
where the source field is an external L electric field EextL. In order to consider the
general cases of EM response, we have only to combine these two formulations.
In doing so, however, we find it awkward to have constitutive equations for T and
L fields defined with respect to different kinds of field, A for T and EextL for L
field. In this subsection we will show how to unify them, i.e., how to rewrite the
susceptibility χJEL in Sect. 5.7.2 in terms of χem. The result is quite simple, i.e., the
whole macroscopic constitutive equation is given in the form
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I(k, ω) = χem(k, ω) ·
[

A(k, ω)+ c

iω
EextL(k, ω)

]
, (3.24)

= [
same expression without c

]
SI .

where the sum of A and (c/ iω)EextL represents the general form of source EM field
with T- and L-components.

The induced current density by EextL contains the matrix elements of the (L-
component of) polarization operator P (L), as shown in Sect. 5.7.2. The operator
equation J = ∂ P/∂t +c∇ × M discussed in Sect. 5.1 leads us to J (L) = ∂ P (L)/∂t .
Since we need the matrix elements of P (L) and J (L) with respect to the eigenstates
of matter Hamiltonian H (0), we consider the motion of P (L) driven by H (0) by
means of Heisenberg equation, which leads to

J (L) = (i/h̄)(H (0)P (L) − P (L)H (0)). (3.25)

Taking the matrix elements of the both sides with respect to the eigenfunctions of
H (0), we have

〈μ|J (L)(r)|ν〉 = i

h̄
(Eμ − Eν)〈μ|P (L)(r)|ν〉 , (3.26)

which allows us to rewrite χJEL as

χJEL = −i h̄
∑

ν

[
gν(ω)J0ν(r)J (L)ν0 (r

′) 1

Eν0
+ hν(ω)Jν0(r)J (L)0ν (r

′) −1

Eν0

]
,

(3.27)
where Eν0 = Eν − E0. In this way we can rewrite χJEL in terms of the matrix
elements of J alone.

The manipulation

[
1

Eν0 ∓ z

]
1

Eν0
= ±1

z

{
1

Eν0 ∓ z
− 1

Eν0

}
, (z = h̄ω + i0+) (3.28)

allows us to rewrite χJEL as

χJEL = − i

ω

∑

ν

[{
gν(ω)− 1

Eν0

}
J0ν(r)J (L)ν0 (r

′)

+
{

hν(ω)− 1

Eν0

}
Jν0(r)J (L)0ν (r

′)
]

(3.29)

The r.h.s. of this expression is exactly same as the susceptibility χcd (times c/ iω)
derived in Sect. 2.2.2, except for the difference in the assignment of tensor compo-
nents. Thus, we may write
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χJEL = c

iω
χcd

[
= 1

iω
χcd

]

SI
. (3.30)

(The L component of the current density induced by the T field is already included
in the susceptibility χcd of Sect. 2.2.2. ) Altogether, we have shown that the 3 × 3
matrix χcd describes the linear response of matter generally for both the T field A
and the L field (c/ iω)EextL.

To derive the macroscopic susceptibility for the EextL-induced components, we
can repeat the same calculation as that for the A-induced components, which leads
to the same form of χem, except for the assignment of the tensor components (τ, ζ ).
Hence, we obtain Eq. (3.24).

In Sect. 2.4, we decomposed the induced current density into a sum of the current
densities IeE, IeB, ImB, ImE, and they are rewritten as the sum of −iω(PE + PB)

and ick × (MB + ME) in Sect. 3.1.3. Since this part of the current densities is
caused by the transverse field A, we rewrite them as −iω(PET + PB) and ick ×
(MB + MET) to distinguish T and L electric fields. In the presence of external L
field, we add the induced current densities, IeEL and ImEL, due to the L electric
field. These terms are defined by the same expression as (3.2) and (3.5) simply by

replacing Ẽ
(T)
(k) with ẼextL(k), and can be rewritten as (−iωPEL + ick × MEL),

where PEL and MEL are defined by Eq. (3.10) and (3.8), respectively, by replacing

Ẽ
(T)
(k) with ẼextL(k).

Thus, the general LWA form of the induced current density in the presence of
EextL can be written as

Ĩ(k, ω) = −iω P̃(k, ω)+ ick × M̃(k, ω) , (3.31)

= [
same expression without c

]
SI .

where

P̃(k, ω) = P̃ET(k, ω)+ P̃EL(k, ω)+ P̃B(k, ω) , (3.32)

M̃(k, ω) = M̃ET(k, ω)+ M̃EL(k, ω)+ M̃B(k, ω) . (3.33)

Using this extended definition of P̃ and M̃ to define

D = E + 4π P̃
[ = ε0 E + P

]
SI , (3.34)

H = B − 4π M̃
[
= 1

μ0
B − M

]

SI
, (3.35)

we can write the macroscopic Gauss law for electricity and Ampère law in the con-
ventional form. It should be stressed that all this reformulation arises from the single
susceptibility χem as a full 3 × 3 matrix for the constitutive equation relating I and
[A + (c/ iω)EextL]. Since the T part of the source field A contains both electric and
magnetic fields, this susceptibility describes both electric and magnetic responses.
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It should be stressed that this rewriting does not affect the polariton dispersion equa-
tion, Eq. (2.90).

3.3 New and Conventional Dispersion Equations

The new dispersion equation is (ck/ω)2 = 1 + (4πc/ω2)χem(k, ω), while the con-
ventional one is (ck/ω)2 = εμ (more rigorously, (2.90) and (2.91)). Though it is
usually not explicitly mentioned, the conventional form applies only to the case of
non-chiral symmetry. In the case of chiral symmetry, where one cannot distinguish
polar and axial vectors by their transformation properties with respect to space inver-
sion, electric field induces M, as well as P , and magnetic field induces P , well as
M. In order to describe such an extended situation, a phenomenology called Drude –
Born – Fedorov (DBF) constitutive equations [1] has been used. As will be shown in
Sect. 3.4, DBF equations lead to a dispersion equation different from the new one.
Thus, the new dispersion equation is different from the conventional one in the both
cases of chiral and non-chiral symmetries.

The apparent difference between the two dispersion equations in non-chiral sym-
metry is in the pole structure of χem and εμ on the r.h.s. of the equations. In
χem, the contribution of all the quantum mechanical transitions appears as a sum
of single poles, which is a general result of the perturbation calculation given in
Sect. 2.2.2. On the other hand, the poles of the product εμ appear differently.
Since ε is a sum of single poles of E1 (+ E2) character and μ that of M1 char-
acter, the contributions of E1 (+ E2) and M1 transitions appear as a product in
εμ. This apparent controversy can be solved by using the magnetic susceptibil-
ity χB(= χmB for cgs Gauss units, = μ0χmB for SI units) rather than χm, where
M = χB B = χm H . This leads, together with B = μH , to μ = 1 + 4πχm =
1/(1 − 4πχB), which allows us to rewrite the conventional equation (ck/ω)2 = εμ

into

(
ck

ω

)2

= ε

1 − 4πχB

[
= 1 + χe

1 − χB

]

SI
,

= ε + 4π

(
ck

ω

)2

χB

[

= 1 + χe +
(

ck

ω

)2

χB

]

SI

. (3.36)

In this form, the r.h.s. is the sum of the single poles due to E1 (+ E2) and M1
transitions, and the magnetic contribution appears with a multiplication factor of
O(k2). This fact coincides with the derivation, in Sect. 2.4, of induced magnetization
from the O(k2) term of the induced current density.

This solves also one of the problems of Sect. 1.5, i.e., the k-dependence of μ. The
apparent difference in the k-dependence of μ between the two typical cases of M1
transition, spin resonance and optical (orbital) M1 transitions, is due to the differ-
ent stages of theoretical description. In both types of experiment, a proper analysis
would require the comparison of spectral peak position and intensity with those
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of theoretical prediction. For that purpose, we need to calculate the EM response
of the medium based on the dispersion relation. The frequently used expression
μ = 1 + 4πχm for spin resonance should be rewritten as μ = 1/(1 − 4πχB), and
the dispersion equation takes the form of Eq. (3.36). The argument for the intensity
of orbital M1 transition given in Sect. 1.5 is made in accordance with Eq. (3.36).
Thus, the apparent difference in the k-dependence of μ is actually the problem of
correct definition of magnetic susceptibility.

It should be stressed that the discussions given above are meaningful only in
non-chiral symmetry. The argument in the case of chiral symmetry will be given in
Sect. 3.4.

3.4 Case of Chiral Symmetry: Comparison with DBF-eqs

For materials with chiral symmetry, where polar and axial vectors are indistinguish-
able, the conventional scheme of macroscopic M-eqs with ε and μ is not sufficient.
As a symmetry argument within macroscopic regime, it was thought appropriate to
add to the constitutive equations those terms which allow the electric field induced
magnetization and magnetic field induced electric polarization. The generalized
constitutive equations are called Drude – Born – Fedorov equations (DBF-eqs) [1].
In a homogeneous isotropic case, they are written in the form [2]

D = ε(E + β∇ × E) , (3.37)

B = μ(H + β∇ × H) . (3.38)

The parameter β is called chiral admittance, which leads to the different phase
velocities for left and right circularly polarized light in this medium, as shown below.

In Sect. 3.1 we have rewritten the new constitutive equation Ĩ = χem Ã into
Ĩ = −iω P̃ + i k × M̃, from which we “defined” electric polarization P̃ and mag-
netization M̃. The source fields of these induced polarizations are T electric field
(iω/c) Ã and magnetic field i k × Ã. In the presence of an external L electric field,

we add the contributions of Ẽ
(L)

induced terms, which leads to

P̃ = χeET Ẽ
(T) + χeEL Ẽ

(L) + χeB B̃ , (3.39)

M̃ = χmET Ẽ
(T) + χmEL Ẽ

(L) + χmB B̃ . (3.40)

In terms of these P̃ and M̃, we obtain the Ampère law in the conventional form,
∇ × H = (1/c)∂D/∂t , whereby we use

D = (1 + 4πχeE)E + 4πχeB B
[ = (ε0 + χeE)E + χeB B

]
SI , (3.41)

H = (1 − 4πχmB)B − 4πχmE E
[
=

(
1

μ0
− χmB

)
B − χmE E

]

SI
. (3.42)
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Here, we have used a short-hand notation

χeE E = χeET E(T) + χeEL E(L) , (3.43)

χmE E = χmET E(T) + χmEL E(L) . (3.44)

Equations (3.37) and (3.41) are equivalent, if we note B̃ = −(ic/ω)k×E. However,
Eqs. (3.38) and (3.42) cannot be equivalent. (If E on the r.h.s. of Eq. (3.42) were D,
they would be equivalent.) Therefore, the conventional DBF eqs are different from
the similar expressions (3.41) and (3.42). The essential difference is that the appar-
ently two vector equations (3.41) and (3.42) are originally a single vector equation,
Ĩ = χem Ã, while Eqs. (3.37) and (3.38) are not. This difference manifests itself in
that of the dispersion equation as shown below.

The dispersion equation obtained from Ĩ = χem Ã is given as Eq. (2.90), where
χ
(T)
em (k, ω) consists of a superposition of single poles corresponding to matter exci-

tation energies. However, the dispersion equation derived from DBF eqs has a dif-
ferent behavior, as shown below. Substituting M-eqs, ∇ × H = −(iω/c)D and
∇ × E = (iω/c)B into the DBF eqs, we have

εE + εβ∇ × E = (ic/ω)∇ × H = [
(i/ω)∇ × H

]
SI , (3.45)

μH + μβ∇ × H = −(ic/ω)∇ × E = [
(−i/ω)∇ × E

]
SI . (3.46)

These equations can be solved for X = ∇ × E and Y = ∇ × H as

A0 X = εμβE + iμ(c/ω)H , (3.47)

A0Y = −iε(c/ω)E + εμβH , (3.48)

= [
same expression without c

]
SI ,

where A0 = (c/ω)2 − εμβ2. From Eq. (3.45), we have ε∇ · E = 0, i.e., E is
transverse. Taking the curl of Eqs. (3.45) and (3.46), we have

εX + εβ(∇ × ∇ × E) = i(c/ω)∇ × ∇ × H , (3.49)

= [
(i/ω)∇ × ∇ × H

]
SI ,

μY + μβ(∇ × ∇ × H) = −i(c/ω)∇ × ∇ × E , (3.50)

= [ − (i/ω)∇ × ∇ × E
]

SI .

Since both E and H are transverse, the ∇ × ∇× parts of these equations can be
simplified as ∇ × ∇ × E = k2 E and ∇ × ∇ × H = k2 H (for plane waves).
Substituting Eqs. (3.47) and (3.48) into these equations, we get

ε {εμβE + iμ(c/ω)H} + εβk2 A0 E = i(c/ω)k2 A0 H , (3.51)

= [
(i/ω)k2 A0 H

]
SI , (3.52)
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μ {εμβH − iε(c/ω)E} + μβk2 A0 H = −i(c/ω)k2 A0 E , (3.53)

= [
(−i/ω)k2 A0 E

]
SI , (3.54)

which are the homogeneous linear equations for E and H . The condition for the
existence of nontrivial solution is the vanishing of the determinant of the coefficient
2 × 2 matrix, which gives

(
ck

ω

)2

=
( √

εμ

1 ± (βω/c)
√
εμ

)2

=
[(

c
√
εμ

1 ± (βω)
√
εμ

)2
]

SI

. (3.55)

For finite β, the refractive index (= ck/ω) takes two different values, which
correspond to different polarizations of the eigen modes in this medium, i.e., two
different circular polarizations of this isotropic medium. In this sense, DBF eqs.
give a qualitative description of an optical active medium. However, the dispersion
equation is different from the first principles result. The r.h.s. of the dispersion equa-
tion given above has poles through the ω-dependence of ε and μ. From the form of
the expression, all the poles of the r.h.s. are second order (or higher). This is in sharp
contrast to the result (2.90) in Sect. 2.5, where the corresponding part of the equa-
tion consists of a superposition of single poles. In view of the fact that Eqs. (3.37)
and (3.38) are given in textbooks as a typical case of chiral symmetry and used in
research works, this essential difference in the pole structure in dispersion equa-
tion cannot be overlooked. Moreover, the difference between DBF equations and
Eqs. (3.41), (3.42) shows their difference at a more fundamental level. For this rea-
son, we have to conclude that DBF eqs cannot be justified from the first-principles.

In contrast, the present scheme provides a general expression of macroscopic
susceptibility χem(k, ω), (2.78) in a quantum mechanical form, applicable to both
chiral and non-chiral symmetry. Its O(k1) term, kχem1, vanishes in non-chiral sym-
metry, so that it plays a central role in chiral symmetry. The O(k0) and O(k2) terms
are also affected by the chirality induced mixing of the eigenfunctions, but the effect
is secondary. Since each element of the 2 × 2 matrix in the dispersion equation

det
∣∣(c2k2/ω2)1 −

{
1 + (4πc/ω2)χ

(T)
em (k, ω)

}∣∣
∣ = 0 , (2.90) is at most second order

in k, this dispersion equation leads to a quartic equation of k for a given ω. Further,
this would become a quadratic equation of k2 with solutions k = ±k1(ω),±k2(ω)

in the absence of kχem1, i.e., in the case of non-chiral symmetry. The presence of
the odd power terms of k in the quartic equation breaks this mirror symmetry (for
+k ↔ −k). In Sect. 3.8.1, we show an example of this kind. In the neighborhood
of k = 0, dispersion curves show a k-linear behavior. The dispersion curves and the
boundary conditions of EM field allow us to determine the response spectrum of
the system. Thereby, the knowledge of the microscopic character of the resonance
according to this scheme will be a good help for our physical interpretation of the
result.
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3.5 Other Unconventional Theories

3.5.1 Single Susceptibility Theories

There are attempts by Agranovich and Ginzburg (AG) [3], and Il’inskii and Keldysh
(IK) [4] to describe the macroscopic EM response of matter in terms of a single
susceptibility, i.e., by using only one of the two polarization vectors P and M, which
had been indicated by Landau and Lifshitz (Sect. 83 of [5]). They renormalize the
whole current density into displacement vector D, or P via

P(r, t) =
∫ t

−∞
dt ′ J(r, t ′) (3.56)

and treat it as the single dynamical variable of matter. This P(r, t) contains both
electric and magnetic polarizations, so that the generalized susceptibility defined by

P = χ(gen)E (3.57)

describes all the effect of electric and magnetic polarizations. The vector field for
magnetic field is B(= H).

Though we all share the motivation to give a more general formulation of macro-
scopic M-eqs than the conventional one, there is an essential difference between the
two groups and the present author with respect to the very concept of macroscopic
average. AG and IK reject LWA as a meaningful physical procedure, but the present
author regards LWA, as far as its clear definition is given, as the essential step toward
macroscopic description. AG and IK claim to use a statistical average in terms of
Gibbs ensemble instead of LWA. There is an explicit statement about this point in
Sect. 2.1.1 of AG to supplement their own form of macroscopic M-eqs, i.e., “The
fields E, D, B may vary in anyway in space and time without requiring any kind of
averaging (apart from quantum mechanical and statistical kinds) of the fields with
respect to r . Such averaging is not only unnecessary, but, generally speaking, is
unfeasible in the electrodynamics of media if spatial dispersion is properly taken
into account.”

The present author also uses ensemble average in the case of finite temperature,
but this has nothing to do with macroscopic averaging, as discussed in Sect. 1.6.
In fact, an ensemble average does not erase the microscopic spatial variation of
induced current density. For example, the ensemble average (for T 
= 0) of the cur-
rent density due to a discrete level of excitation will keep it discrete (apart from the
increased width due to lattice vibrations), with a change only in its spectral weight.
If this transition is localized, LWA is a good approximation, and it can be treated
by a macroscopic theory. If, on the other hand, it has a long spatial coherence, as in
the case of an exciton, the induced current density keeps its long coherence, which
invalidates LWA and a macroscopic description.
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If one uses only ensemble average and drop LWA for a macroscopic description,
as in the comment of AG, how does one distinguish the micro- and macroscopic
responses ? The scheme of the present author starts from the recognition of the hier-
archy of various theoretical frameworks of EM response (Sect. 1.4). The micro- and
macroscopic M-eqs with the corresponding constitutive equations are those belong-
ing to the semiclassical regime, and the approximation separating them is the LWA
applied to the fundamental equations of microscopic response theory. The calcula-
tions of microscopic susceptibility in Sect. 2.2 and 5.7 is essentially same as those
of AG and IK. The refusal of using LWA by AG and IK as the next step to derive
macroscopic susceptibility may indicate that they do not share the understanding
about the hierarchy of the micro- and macroscopic M-eqs with the present author.

As for the use of LWA, our concept is as follows. Depending on the matter sys-
tem of interest and also on the quantity to be observed, LWA can be a good or
bad approximation. When LWA is a good approximation, its use is the simple and
logically acceptable way of macroscopic averaging, and only in this case the macro-
scopic description is meaningful. Whenever the quantum mechanical transitions of
interests have larger coherence length than the wavelength of EM field, we cannot
apply LWA. This kind of situation is frequently encountered in resonant responses,
and it is the case to be handled by the microscopic nonlocal theory in Sect. 2.2.
Typical cases appropriate for a macroscopic description would be the non-resonant
phenomena where no particular transition make a significant contribution. The res-
onant phenomena for localized transitions can also be a subject for macroscopic
description, if we do not want to see the precise dependence on the positions of
localized states. (The resonant X-ray diffraction in Sect. 4.3 is an example of the
position-sensitive case, which should be treated as a nonuniform system.)

The k dependence of susceptibility is generally called spatial dispersion effect. It
will make sense to divide the k dependence into two cases, [a] the k dependence only
in the numerators of susceptibility, and [b] the k dependence also in the denomina-
tors. The case [b] leads to a qualitatively new situation of multi-branch polaritons,
which has been studied as ABC (additional boundary condition) problem for nearly
half a century [6, 7, 8]. However, it is a problem to be treated as a microscopic
response, because the k dependence of denominator arises from that of the transi-
tion energy, which means a coherently extended excited state specified by k (and
material boundaries), an inappropriate situation for LWA. Thus, only the case [a] is
suitable for the macroscopic description. As explicitly discussed in Sect. 2.3 and 2.4,
susceptibility is expressed as a power series expansion with respect to k, reflecting
the Taylor expansion of current density matrix elements. Since long wavelength
means a small |k|, it is quite reasonable to express LWA as a power series expansion
with respect to k. The merit of this expansion is that one can see the meaning of the
expanded terms (moments of E1, E2, M1 transitions etc.) from the quantum mechan-
ical expression of the matrix elements, which gives us the symmetry condition by
which we keep or abandon a certain class of them.

In order to calculate a microscopic susceptibility, one uses a time dependent per-
turbation theory of Schrödinger or Liouville equation with appropriately defined
unperturbed Hamiltonian and perturbation Hamiltonian. In this sense, all of AG, IK
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and the present author get similar expressions. However, IK use the “unperturbed
Hamiltonian” (H0 in their notation) different from others. IK split vector and scalar
potentials into external and induced ones, and keep the induced ones in the unper-
turbed Hamiltonian. It means that this unperturbed Hamiltonian does not represent
a pure matter system, but a coupled one of matter and EM field. In the case of crys-
tals, the excited states of this unperturbed Hamiltonian are polaritons, rather than
excitons and/or LO phonons. This is different from the usual definition of suscepti-
bility with respect to the total (incident plus induced) EM field, the poles of which
represent, not the polariton energies, but the excitation energies of matter. Knowing
this difference, IK discuss the explicit relationship between the two susceptibilities
(Sect. 1.6 of [4]), and show the occurrence of polariton poles in the susceptibility
defined for H0. This argument establishes the relationship between the two suscepti-
bilities, so that it may seem unnecessary to worry about which susceptibility should
be used.

However, there is a technical detail which becomes significant for nanostructures
having strong interaction with EM field. Generally, the interaction between matter
and EM field leads to the radiative correction (width and shift of excitation ener-
gies), dependent on the “size and shape” of matter and on the “state” of excitation.
For appropriately designed matter systems, there can occur radiative width exceed-
ing non-radiative one [9]. This problem can be handled straightforwardly by our
formulation in Chapt. 2, where the matrix elements of radiative correction appear
directly in the equations to determine the selfconsistent solution. In the case of IK,
this effect is formally included in the unperturbed Hamiltonian H0, but the recipe
is missing to calculate the radiative correction for each excited level in a “size and
shape” dependent way.

Though AG and IK are keen in presenting a single susceptibility scheme of
macroscopic M-eqs, they do not put their result in conflict with the conventional
macroscopic M-eqs. Rather than that, Agranovich et al. try to reconcile their result
with the conventional one, by proposing one-to-one correspondence between the
two schemes [10]. In contrast, we claim the explicit differences between our new
result and the conventional M-eqs. Especially, the explicit derivation of the chirality
induced components of susceptibility, χeB and χmE in Sect. 3.2, is a new result
exceeding the phenomenology of DBF constitutive equations.

3.5.2 Use of LWA on a Different Stage

LWA plays an essential role in the present derivation of macroscopic M-eqs from
microscopic ground. Though it has been used also in the conventional ways
of derivation, the one adopted here has a logically and mathematically clearer
definition, and we believe it to be the most appropriate way of using LWA to derive
macroscopic M-eqs in a general form. However, there is a proposal by Nelson [11] to
use LWA in quite a different manner to derive a new scheme of macroscopic M-eqs.
His intension was to build a consistent theory of dynamical response of crystalline
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medium from the first-principles in a unified manner, to avoid “the patchwork of
phenomenologically assumed constitutive relations of so many treatments” (Preface
of [11]).

As a systematic method to describe macroscopic dynamical response (including
EM response) of matter, Nelson applies LWA to the Lagrangian for matter (both
electronic and lattice vibrational) and EM field. In terms of the averaged Lagrangian,
he discusses linear and nonlinear “optics, acoustics, and acousto-optics” of dielectric
crystals. This may well be a meaningful approach to the phenomena related with
these LW modes, though it has a rather unusual form.

However, if it is meant to be a general unified theory of EM response, it contains a
serious drawback, i.e., it abandons the dynamical variables contributing to localized
excitations of matter. By the application of LWA to Lagrangian,the dynamics of
matter is described solely by the LW components of acoustic & optical phonons,
excitons etc. Thus the only contribution to susceptibility is made from these LW
modes of matter, i.e. the susceptibility has poles only at the frequencies of these
LW modes. Since all the dynamical variables of short wavelength components are
eliminated by the LWA of Lagrangian, there is no chance for localized excitations
to contribute to susceptibility.

When we consider a problem, for example, of changing the refractive index of a
material by adding impurities, we need to consider the macroscopic average of the
contributions from localized transitions due to impurities. According to the scheme
of Chap. 2 of this book, we obtain a finite contribution reflecting the density of
impurities and the oscillator strength (or the magnitude of E1 transition moment)
of the transition. If we use the Nelson’s scheme to this problem, however, all the
dynamical variables to build the localized excitations are erased out on the level of
Lagrangian (and then, Hamiltonian), from which we cannot expect a finite contri-
bution to the macroscopic susceptibility.

Optical phenomena are not always caused by the matter excitations with the
wavelength comparable to the observed light. In fact, the absorption, emission and
scattering of visible lights by atoms, molecules, defects and impurities are the well-
known examples which built the basis of our fundamental knowledge of optical
phenomena. The birth of quantum mechanics was motivated by the interpretation
of the atomic spectra of hydrogen, and the earliest solid state spectroscopy was the
study of color centers in alkali halides, which is a good example of macroscopic
optical problems of dielectrics. These examples are all related with the interaction
of localized electrons and long wavelength lights. If this group of phenomena is not
covered by a theory, one would not call it a “unified” theory.

3.6 Validity Condition of LWA

The LWA in this book is a process of approximation to extract a new set of equa-
tions for the LW components of the variables of EM field (A) and matter (I) from
the more fundamental equations containing all the wavelength components, i.e.,
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from the microscopic M-eqs and microscopic constitutive equations. The new set of
equations contains only the LW components of the dynamical variables, and hence,
it is macroscopic. The description in Chap. 2 clarifies the logical and mathematical
aspects of this procedure. Mathematically, we apply Taylor expansion to (the Fourier
component of) the matrix element of current density for each transition (around each
center coordinate), keeping a few lower order terms. These lower order terms are
described by the lower order (E1, E2, M1, etc.) moments of the matrix element of
current density.

As an approximation, LWA can be good or bad, depending on the case of inter-
ests. The criterion to judge it is the relative size of the wavelength (�) of the EM
field in consideration compared with the coherence length of induced current den-
sities. This corresponds to whether or not we can neglect the higher order terms
of Taylor expansion. Since the induced current density consists of a sum of the
contributions of all the excited states of matter, we cannot always assume that “all”
the excitations have shorter coherence length than a given�. If we need the response
of these modes, we should treat them, not in LWA, but microscopically. The LWA
formulation in Sect. 2.3 assumes that the contribution of these modes is negligible
in amplitude compared with that of remaining modes.

At this point the argument may have a subjective aspect, i.e., which physical
process we want to observe or discuss. For example, an incident field may induce
several different physical processes, each one of which can have different criterion
for the use of LWA. An example is the inner core level excitation of a crystal, which
leads to absorption and emission of light and also a resonant (X-ray) scatterings, as
will be discussed in Sect. 4.3. Though the scattering intensity will be much smaller
than the absorption signal, one can observe it in the specific directions of diffraction,
and this requires a treatment beyond LWA. This example shows that there are cases
where a subjective choice of a physical process may require a microscopic treat-
ment of particular modes together with the macroscopic treatment of the remaining
modes. The standard criterion for the use of LWA is the smallness of the signal inten-
sity due to the LW modes, which need to be treated microscopically, in comparison
with the signal due to the macroscopically averaged short wavelength modes.

The choice of � is connected with the physical quantity and the frequency range
to be measured or discussed, and it should be noticed that this is not the wavelength
in vacuum, but the one in the medium determined by the background polarization in
the frequency range of interest. (If there is a resonance in this range, the contribu-
tion of this resonance should be omitted in estimating the background polarization.)
Once the choice of � is made, one can compare it with all the candidates of exci-
tation modes which will make the main contribution to the EM response of this
system.

A reliable test of the validity of LWA for a given model would be to calculate the
microscopic nonlocal response, and see whether the LW components are dominant
in the response spectra. This theory gives us response spectra properly containing all
the short and long wavelength components of excitations of the matter of interest.
If the amplitudes of the LW components are not dominant in the response spectra,
LWA is valid, and otherwise, LWA is not a good approximation. Though this kind
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of calculation would generally require a large scale numerical treatment, i.e., a suffi-
ciently large size of the simultaneous linear equations of {Fμν} in Sect. 2.2.3, we can
obtain explicit results for simple systems (e.g., Sect. 4.1.1 of [12]), and, for larger
realistic systems, we know at least the equations to solve. With this kind check of
LWA, we can safely proceed to use the macroscopic M-eqs and the corresponding
constitutive equation.

The derivation of a macroscopic scheme is justified when the validity condition
of LWA is checked properly. Though an accurate check is generally difficult, one
could develop a feeling of valid and invalid cases. In fact, the situations which allow
the description in terms of the macroscopic susceptibilities are rather limited. As a
macroscopic description, the ω-dependence of susceptibility may be included with
poles at the energies of material excitations. As to the k-dependence, on the other
hand, its appearance in the excitation energies (in the pole positions of macroscopic
susceptibility) is not allowed. Such a k-dependence would mean that the eigen-
states are coherently extended, an invalid condition for the use of LWA. Only when
the band width (due to the k-dispersion) is negligible in comparison with the level
width (due to phonon scattering or inhomogeneity, etc.), the coherence length can
be regarded as negligibly small, and the use of LWA will be allowed for the macro-
scopic description. In contrast, the k-dependence of the numerator of susceptibility
is acceptable, since the Taylor expansion, the mathematical representation of LWA,
is a power series expansion of susceptibility with respect to k, as shown in Chap. 2.

When we consider the case containing non-negligible LW modes, we need an
intermediate scheme between the microscopic nonlocal and fully macroscopic ones.
In such a scheme, we ascribe microscopic current densities to the modes with
long coherence lengths, and LWA averaged current density to the short wavelength
modes. The selfconsistent motions of the long coherence modes is determined by
a new scheme derived from the microscopic nonlocal one. As the examples of this
case, we discuss (i) resonant X ray scattering from the inner core transitions of a
crystal in Sect. 4.3, and (ii) metamaterials with long coherence modes of excitations
in Sect. 4.1.3.

3.7 Boundary Conditions for EM Fields

When we determine the EM response of matter from the macroscopic M-eqs, we
usually proceed as follows. First, we solve the M-eqs in- and outside the matter
separately, select the incident and the response fields according to the geometry in
consideration, and connect the fields across the matter boundary according to the
EM boundary conditions (BC’s). The physical origin of the BC’s must be in the
matter with a given size and shape, but the BC’s are requested to the EM field. This
is a peculiar aspect of the macroscopic response theory.

In the microscopic response, no BC is required to the EM field, because
the microscopic nonlocal susceptibility contains all the necessary information of
BC’s, requested to the charged particles in matter [12]. The problem of response
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calculation is formulated as a scattering problem, where the response field is
obtained as a convolution of incident field, the position dependent susceptibility,
and the EM Green function describing the propagation of the scattered field. The
information about the material boundary is included in the susceptibility in a com-
plete form, so that the introduction of the BC for EM field is no more necessary.
Based on this understanding at a fundamental level, we can connect the argument
about BC’s between microscopic and macroscopic response as follows.

The introduction of the BC’s for EM field becomes necessary, when we replace
the position dependent nonlocal susceptibility with the position-independent macro-
scopic susceptibility via the LWA of the former. Since LWA erases out the posi-
tion dependence of the susceptibility, the macroscopic description mentioned above
would not contain the information about the size, shape, and geometrical configura-
tion. In order to obtain the meaningful solution for the response from such a position
independent susceptibility, the BC’s for EM field are introduced. This was done
in a very smart way. The BC’s are provided, not from an independent source, but
from the macroscopic M-eqs themselves via Gauss and Stokes theorems. Though
the arguments are found in many textbooks, we reproduce the relevant ones here,
because we use them for the new macroscopic M-eqs, i.e., the LW parts of the
microscopic M-eqs.

The Faraday law is known to lead to the continuity of the tangential component
of E. Integrating the Faraday law (in differential form) over a closed surface S as
shown in Fig. 3.1, and using the Stokes theorem to convert

∫
dS · ∇ × E into a line

integral (along the line s enclosing the surface S), we have

∫

s
ds · E = −1

c

1

dt

∫

S
dS · Bn =

[
− 1

dt

∫

S
dS · Bn

]

SI
, (3.58)

where Bn is the component of B normal to the surface S.
Let us choose S as the square ABCD across the surface of matter (at a certain

point on the surface), and s as its periphery ABCD, as shown in Fig. 3.1. By taking
the limit AD, BC → 0, the surface integral on the r.h.s. becomes zero, because B is
finite while the integration area becomes vanishing. This means that the line integral
on the l.h.s. vanishes, leading to

S

s

surface

lineA B

CD

(Medium 1)

(Medium 2)

Boundary

Fig. 3.1 The closed line s and the surface S enclosed by s for the application of Stokes theorem
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E · sAB + E · sC D = 0 . (3.59)

Since sAB = −sC D , this proves the continuity of the tangential component of E
across the surface.

Gauss law ∇ · D = 4πρt is known to lead to another type of BC. In this case, we
take a volume integral of the equation for a rectangular parallelepiped in Fig. 3.2,
which contains the boundary surface at z = 0 between the two basal planes. When
the height h of this parallelepiped goes to zero, the Gauss law

∫

S
dS · Dn = 4πρtSh =

[
ρt

ε0
Sh

]

SI
(3.60)

leads to

D(1)
z − D(2)

z = 4πρth
∣∣
h→0 = 4πρs =

[
ρt

ε0

]

SI
, (3.61)

because the contribution of the side surface of the parallelepiped becomes zero. The
superfix 1, 2 denote the two media divided by the surface at z = 0. The quantity
ρth (h → 0) represent the surface charge density ρs in the macroscopic sense. If
ρs = 0, the r.h.s. becomes zero, which means the continuity of the normal compo-
nent of D across the surface. If, on the other hand, there is a finite surface charge
density ρs, the normal components of D have a finite difference across the boundary
by the amount 4πρs.

In Sect. 3.2 we showed that the new macroscopic constitutive equation (for
k, ω Fourier component) I = χem A + (c/ iω)χem EextL can be rewritten as
I = −iω(PET + PEL + PB) + i k × (MB + MET + MEL), which allows us
to rewrite the microscopic Ampère law into the well-known conventional form
i k×H = (4π/c)I (T)−i(ω/c)D via the definition H = B−4π(MB+MET+MEL)

z
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0

Medium 2 (z < 0)

Medium 1 (z > 0)

A’

A

B

C

D

B’

D’

C’

Fig. 3.2 Rectangular parallelepiped to relate the volume and surface integrals for the application
of Gauss theorem
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and D = E + 4π(PET + PEL + PB). Since this manipulation gives us a formally
same set of macroscopic M-eqs as the conventional one, we may also expect the
same set of BC’s in terms of the newly defined {E, D, B, H}. However, in view of
the fact that the direct form of the selfconsistent response is obtained in terms of A
(and I), we provide the BC’s in a form easily rewritable into those for A and EextL.
For this purpose, it is useful to write the macroscopic M-eqs for T and L components
separately in the following form.

The L components arise from the Gauss law of electric charges, and also from
the Ampère law as

∇ · E(L) = 4πρ =
[
ρt

ε0

]

SI
, (3.62)

4π

c
I (L) + 1

c

∂E(L)

∂t
= 0 =

[

I (L) + ε0
∂E(L)

∂t

]

SI

. (3.63)

As easily seen by taking the divergence of the second equation, this relation holds
identically in the presence of continuity equation and the first equation. Therefore,
we need to consider only the first one as a macroscopic equation of L component.
The charge density ρ is not the one in the microscopic M-eqs, which determines
the quantum mechanical details of the matter eigen states. Rather, it is the charge
density to be calculated from the macroscopically averaged current density Ĩ via the
continuity equation

ρm(r, ω) = − i

ω
∇ · Ĩm(r, ω) . (3.64)

(For the static case, i.e., ω = 0, ρm is calculated from the induced electric polariza-
tion P (L), explicitly given in Sect. 5.7.2.)

The T components arise from the Ampère law and Faraday law as

∇ × H = 4π

c
I (T) + 1

c

∂D(T)

∂t
=

[

I (T) + ∂D(T)

∂t

]

SI

,

∇ × E(T) = −1

c

∂B
∂t

=
[
−∂B
∂t

]

SI
. (3.65)

Applying the Gauss theorem to Eq. (3.62), we obtain

n · (E(L1) − E(L2)) = 4πρs =
[
ρs

ε0

]

SI
, (3.66)

where n is a surface normal unit vector at the point to consider BC, and ρs is the
surface density of the total charge, defined in a similar way as in Eq. (3.61). Thus the
BC for the L-field is given as the difference of the surface normal components by the



68 3 Discussions of the New Results

surface charge density (times 4π ). Using the same manipulation as in Eq. (5.160) of
Sect. 5.7.2, we have

Ẽ
(L) = −4π

iω
Ĩ
(L) =

[
− 1

iωε0
Ĩ
(L)

]

SI
. (3.67)

Since Ĩ
(L)

is given as

Ĩ
(L) =

∑

τ

χ(ζτ)em Ãτ + c

iω
χ(ζζ )em ẼextL , (3.68)

= [
same expression without c

]
SI ,

the boundary condition (3.66) can be written in terms of Ã and ẼextL.
The application of the Stokes theorem to Eqs. (3.65) leads to the boundary con-

ditions for the surface tangential components as

n × (H(1) − H(2)) = 4π

c
I (T)s

[
= I (T)s

]

SI
, (3.69)

n × (E(1) − E(2)) = 0 , (3.70)

where the surface current density (of T character) I (T)s is defined as

I (T)s = I (T)m h , (h → 0) . (3.71)

To rewrite these BC’s in terms of Ã and ẼextL, we make use of E(T) = (iω/c)A
and

H = B − 4πMB − 4πMET − 4πMEL , (3.72)

= (1 − 4πχmB)∇ × A − 4πχmET
iω

c
A − 4πχmEL EextL (3.73)

=
[(

1

μ0
− χmB

)
∇ × A − χmET

iω

c
A − χmEL EextL

]

SI
.

In this way we can write all the BC’s in terms of Ã and ẼextL. The general case
described by these BC’s become simplified when the symmetry of the system does

not mix T and L modes
(
χ
(ζτ)
em = 0, χ(ζτ)mEL = 0; τ = ξ, η

)
. Further, if the system

is non-chiral, χmET = 0, so that the conventional relation H = (1 − 4πχmB)B (in
terms of the magnetic susceptibility defined with respect to B) is recovered.
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3.8 Some Examples of Application

In this section, we show how to use the new macroscopic M-eqs, taking simple
examples. The general procedure to calculate the response of a given macroscopic
medium is quite similar to the conventional case. The whole space is occupied by
materials with different susceptibility tensors and/or vacuum. First we solve the
dispersion equation in each region, which generally give plural number of solutions.
In order to obtain the response of the system for a given incident EM field, we need
to make linear combinations of these solutions in all the regions plus the incident
and response field, which satisfy the boundary condition at each interface of the
different regions. From the solution of these simultaneous equations, we can express
the response field as a function of the incident field.

The difference from the conventional procedure is that the susceptibility of mat-
ter and the dispersion equation are different from the usual one, and that the field
variable to be used are J , A and EextL.

3.8.1 Dispersion Relation in Chiral and Non-chiral Cases

The dispersion relation of the EM waves in the macroscopic medium averaged via
LWA is determined by

det

∣∣∣∣
c2k2

ω2
1 −

{
1 + 4πc

ω2
χ(T)em (k, ω)

}∣∣∣∣ = 0 , (3.74)

[
same expression with 4πc replaced by 1/ε0

]
SI

of Sect. 2.5 giving the condition for the existence of finite amplitude solution of
A and induced current density I (T)t in the absence of incident field A0, i.e., the
eigen modes of coupled EM wave and T current density. The susceptibility χ(T)em is
given as a power series expansion with respect to k, i.e., the sum of O(k0), O(k1)

and O(k2) · · · terms, which consist of (E1,E1), {(E1,M1+E2), (M1+E2,E1)},
(M1+E2,M1+E2), . . . transitions, respectively, as discussed in Sect. 2.4.

In view of the fact that the new susceptibility is obtained by LWA, we may gener-
ally expect that the O(k0), O(k1), and O(k2) terms have decreasing magnitudes in
this order. This will be true except for the resonant region of χem1 and χem2, where a
particular term of them can become resonantly large. Unless we concentrate on the
resonances of the weaker components, we may generally expect that the principal
contribution is made by χem0.

Let us use the Cartesian coordinate system (ξ, η, ζ ), where ζ axis is parallel to
k. Then, χ(T)em is the 2 × 2 matrix in the (ξ, η) space. If we keep only the leading
order term O(k0), χ(T)em is a k-independent 2 × 2 matrix. Choosing a new coordinate
system (ξ ′, η′) in the (ξ, η) space, which diagonalize the 2 × 2 matrix χ(T)em , we can
decompose the dispersion equation into two components
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(
ck

ω

)2

= 1 + 4πc

ω2
χ(ξ

′,ξ ′)
em (ω) , (3.75)

[
same expression with 4πc replaced by 1/ε0

]
SI

(
ck

ω

)2

= 1 + 4πc

ω2
χ(η

′,η′)
em (ω) . (3.76)

[
same expression with 4πc replaced by 1/ε0

]
SI

The (ξ ′, η′) axes constitute an oblique coordinate system in general. Since the r.h.s.
of these equations does not contain k, it is easy to solve them in the form k =
±kξ (ω) and k = ±kη(ω).

In using these dispersion equations, where we neglect magnetization, we should
also neglect the magnetization induced current density (c∇ × M) in considering the

boundary conditions, i.e., the boundary condition n × (H̃
(1) − H̃

(2)
) = (4π/c) Ĩ s

is simplified as n × (B̃
(1) − B̃

(2)
) = (4π/c) Ĩ s. The l.h.s. of this equation can be

expressed in terms of E’s by using the Faraday law B = (c/ω)k × E . This allows
us to write all the BC’s in the form of simultaneous linear equations of E’s or A’s,
which can easily be solved. These processes are applicable to both resonant and
non-resonant case of χem0(ω).

As discussed in Sects. 2.4 and 2.5, O(k1) terms are non-zero in the case of chiral
symmetry. Let us consider the case of Td symmetry for k in one of the cubic axis (z-
axis), i.e., ξ = x, η = y, ζ = z. Typical transitions contributing to E1 transition are
those between an s-like state and (px , py, pz)-like states (in the usual notation for a
hydrogen-like atom). In the Td symmetry, an s-like state has a mixed component of
xyz-like state, and px -like state has a mixing with yz-like state. This means that the
transition between the s- and px -like states has non-zero matrix element, not only
for the operator p̂x , but also for ẑ p̂y . Namely, this transition is active both as E1 and
(M1 + E2) transitions. Therefore, the current density produced by a y-polarized light
propagating along z-axis (for which k · r p · A is kẑ p̂y Ay) can have an x-component
as

χem · A ∼< s + xyz| p̂x |x + yz >< x + yz|kẑ p̂y Ay |s + xyz > (3.77)

This corresponds to the element χ(xy)
em (kz, ω), i.e., the O(k1) term, of χem. Thus,

if we consider up to O(k1) term, the components of χ(T)em are given as

(
χ(xx)

em , χ
(xy)
em

)
= (a, ibk) , (3.78)

(
χ
(yx)
em , χ

(yy)
em

)
= (−ibk, a) , (3.79)

where a, b are the ω-dependent factors representing the diagonal and non-diagonal
components of the susceptibility χ(T)em with the contributions from the (E1,E1) and
(E1, M1+E2) transitions, respectively.
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The dispersion equation reduces to

(
ck

ω

)2

= 1 + 4πc

ω2
(a ± |b|k) , (3.80)

[
same expression with 4πc replaced by 1/ε0

]
SI ,

which can be solved in the form k = ±k+, ±k− where

ck±
ω

= 1

2

{
±β̃ + (β̃2 + 4ε̃)1/2

}
, (3.81)

given in terms of simplified notations β̃ = 4π |b|/ω [= |b|/cωε0]SI and ε̃ = 1 +
(4πca/ω2) [= 1 + (a/ω2ε0)]SI . From the form of the matrix χeB, Eq. (3.15),
the eigen vectors of these solutions are ∼ Ax ± i Ay , i.e., right and left circularly
polarized waves. The difference in k+ and k− leads to the optical activity of the
medium, i.e., the phase velocity is different for the two circularly polarized lights,
which is a well-known properties of chiral medium (of cubic symmetry). This effect
appears already in non-resonant spectral region, and in a resonant region it will be
enhanced through the resonant behavior of β̃. As mentioned already in Sect. 3.3,
the present result and that from the DBF-eqs show a qualitative difference in the
dispersion curve in a resonant region (because of the different order of pole).

3.8.2 Transmission Window in Left-Handed Materials:
A Test of New and Conventional Schemes

Let us consider a simple case of non-chiral symmetry. This corresponds to the sus-
ceptibility without O(k1) term, i.e.,

χem(k, ω) = χem0(ω)+ k2χem2(k̂, ω) . (3.82)

Let us also assume that χem is a diagonal tensor giving two orthogonal directions
of polarization. The dispersion equation split into two independent components for
two polarizations, each of which has the form

(
ck

ω

)2

= 1 + 4πc

ω2
[χem0(ω)+ k2χem2(ω)] , (3.83)

= [
same expression with 4πc replaced by 1/ε0

]
SI

with {χem0(ω), χem2(ω)} dependent on each polarization. As discussed in Sect. 2.4,
χem0 and χem2 represent the E1 and {E2, M1} transitions, respectively, so that
1 + (4πc/ω2)χem0 is essentially ε in the conventional M-eqs. If a M1 type reso-
nance of χem2 occurs in the frequency range where 1 + (4πc/ω2)χem0 < 0, a LHM
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feature is expected to emerge. In the following, we neglect the E2 component for
simplicity.

The dispersion equation can be rearranged in the form

(
ck

ω

)2

= 1 + (4πc/ω2)χem0(ω)

1 − (4π/c)χem2(ω)
. (3.84)

= [
same expression with 4πc replaced by 1/ε0

]
SI

In order for the real k solution to exist, the r.h.s. must be positive. For the resonance
of χem2 expressed as

χem2(ω) = cβ

ω0 − ω − i0+ , (β > 0) (3.85)

in the frequency range where 1 + (4πc/ω2)χem0 < 0, the real k solution appears
for ω satisfying ω0 − (4πβ) < ω < ω0. This is in contrast with the situation in
the conventional scheme based on (ck/ω)2 = εμ, which gives the real k solution
in the frequency range higher than ω0. Assuming the magnetic susceptibility χm
in the form χm(ω) = β ′/(ω0 − ω − i0+), one can rewrite the condition μ = 1 +
4πχm < 0 for the appearance of LHM behavior as ω0 < ω < ω0 +4πβ ′. Figure 3.3
shows the two dispersion curves mentioned above. Though their forms are very
similar, their positions with respect to the resonance at ω0 are just opposite. This is
a very fundamental problem, which requires experimental tests or some theoretical
explanation.

Fig. 3.3 Dispersion curves of non-chiral LHM for (A) the conventional χm and (B) the new χem.
The frequency and wave number are normalized by ω0 and ω0/c, respectively. The parameter
values are: ε = −1.0, δ = 4πβ/ω0 = 4πβ ′/ω0 = 0.001
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As a simple experimental test, it would be appropriate to measure the spectrum of
transmission window due to the propagating mode of Fig. 3.3 for normal incidence
of light on a slab. Measuring the resonant frequency (ω0) of the magnetic suscep-
tibility of the same sample independently, we can compare the relative positions of
the transmission window and the pole ω0. This will be a simple, but definitive check
from the experimental side.

The spectrum of the transmission window according to the new scheme can be
calculated as follows. The slab occupies the region 0 ≤ z ≤ d in vacuum, and the
incident field is polarized along x-axis. For χem with a diagonal form with respect
to (x, y) axes, all the E fields are x-polarized. The field amplitudes of incident
(Ei), reflected (Er), transmitted (Et), and the two waves in the medium (E1, E2) are
defined as in Fig. 3.4. The reference point (z-coordinate) of each field is marked
by a solid dot in the figure. The arrows for E1 and E2 indicate the direction of the
group velocity (or that of the decay of their amplitudes).

The solution of the dispersion equation is given as

k� = ±ω
c

√
1 + (4πc/ω2)χem0

1 − (4π/c)χem2
, (3.86)

= [
same expression with 4π replaced by 1/cε0

]
SI

where � = 1 and � = 2 corresponds to the roots with the positive and negative
imaginary parts, respectively. As discussed in Sec.4.1.1, the solution with positive
(negative) real part has negative (positive) group velocity, and negative (positive)
imaginary part, which is the peculiar point of LHM.

As the boundary conditions, we require the continuity of E and H across z = 0
and z = d, as discussed in Sect. 3.7. The continuity of H(= B − 4πM) can be
rewritten as that of [1 − (4π/c)χem2]By , which is further rewritten as (ck/ω)[1 −
(4π/c)χem2]Ex by using Faraday law k × E = (ω/c)B. The boundary conditions
at z = 0 are

Fig. 3.4 Configuration of relevant wave components. The reference point (z-coordinate) of each
wave is marked by a solid dot in the figure
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Ei + Er = E1 + f2 E2 (3.87)

Ei − Er = n1 E1 + n2 f2 E2 (3.88)

where

f2 = exp(−ik2d) , n� = ck�
ω

(
1 − 4π

c
χem2

)
, (� = 1, 2) (3.89)

Similarly the boundary conditions at z = d are

Et = f1 E1 + E2 (3.90)

Et = n1 f1 E1 + n2 E2 (3.91)

where f1 = exp(ik1d). The factors f1 and f2 are defined in such a way that they go
to zero for d → ∞.

From the four equations of boundary conditions, we obtain the reflection ampli-
tude of the form Er/Ei = a(−1 + f1 f2)/(b + c f1 f2), where

a = (n1 − 1)(n2 − 1), b = (n1 + 1)(n2 − 1), c = (n1 − 1)(n2 + 1) . (3.92)

In the limit of d → ∞, Er/Ei = −a/b = −(n1 − 1)/(n1 + 1), which is the reflec-
tion amplitude for a semi-infinite medium. It should be noted that, though Re[k1] is
negative, Re[n1] is positive in the frequency region of the dispersion branch, so that
|Er/Ei|2 = |(n1 − 1)/(n1 + 1)|2 ≤ 1. Namely, it is guaranteed that the reflectivity
never exceeds unity. It is also worth noting that, for d = ∞, the incident wave
is connected with, not the k2, but the k1 branch which has negative real part and
positive imaginary part, i.e., positive group velocity, corroborating the LHM nature
of this system. Figure 3.5 shows the transmission window due to this propagating

Fig. 3.5 Reflectivity spectrum with a transmission window due to the left-handed mode of
Figure 3.3 calculated by (A) the conventional χm, and (B) the new χem
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mode. For comparison, the result of the conventional method is also given. Cor-
responding to the curves in Fig. 3.3, the transmission window opens in the lower
(higher) frequency region of ω0 by the new (conventional) method. The calculation
by the conventional method is very similar to the one given above, except for the
replacement of n1 and n2 with

n� → n′
� = 1

1 + 4πχm

ck�
ω
, (� = 1, 2) (3.93)

The experiment proposed above would be a crucial test of the two definitions,
M = χm H or M = χB B with the interpretation of the poles of the susceptibil-
ity as magnetic excitation energies. The arguments about the definition of matter
Hamiltonian (Sect. 2.2) and the rewriting of χcd (Sects. 2.4, 3.1) obviously prefer
the latter definition. Since, however, the use of the former definition is still the main
trend today, and since a correct theory should have an experimental support, it is
desirable for the proposed experiment to be performed.
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Chapter 4
Further Considerations

4.1 Consequences to the Metamaterials Studies

4.1.1 Definition of Left-Handed Materials (LHM)

For the conventional definition of LHM, “ε < 0, μ < 0”, one needs two indepen-
dent susceptibilities. If we describe the same physical situation in terms of a single
susceptibility, we obviously need a different definition. The common language for
this purpose is, not the susceptibility, but dispersion curve, as explained below. We
give a conventional description of LHM in the first half of this subsection, and in
the latter half, we rephrase the same (but inequivalent) physics by the new single
susceptibility scheme.

The first proposal of LHM by Veselago was made as a medium with ε < 0, μ <
0 [1]. The dispersion equation (ck/ω)2 = εμ for a plane wave ∼ exp (i k · r − iωt)
in the conventional macroscopic M-eqs has real solutions k = ±(ω/c)√εμ in this
case. Both ε and μ are functions of ω, and can take positive and negative values.
If εμ < 0 in a frequency region, the medium is totally reflecting, because the
dispersion equation allows only evanescent waves. In a frequency region where
ε < 0, μ < 0, the medium becomes transmissive due to the existence of propa-
gating modes with real wave number.

The ω dependence of ε and μ is generally written as sums of single poles
according to the lowest order time-dependent perturbation calculation of quantum
mechanics. Except for the very neighborhood of the poles (corresponding to the
excitation energies of matter), both ε(ω) and μ(ω) are increasing functions of ω
between neighboring poles. (This is due to the positiveness of the residue of each
pole, which is generally the case for materials in equilibrium.)

If we increase ω starting from a certain frequency where ε < 0, μ < 0, both ε
and μ increase toward zero. This means that the product εμ is a positive, decreas-
ing function of ω, eventually crosses zero and becomes negative. The propagating
modes are allowed only while the product is positive. If we combine this fact with
the dispersion relation k = ±(ω/c)√εμ, the frequency ω1 for which εμ = 0 cor-
responds to k = 0 is a local maximum of the dispersion curve, i.e., as ω decreases
from ω1, the corresponding |k| increases. Altogether, the dispersion curve is convex

K. Cho, Reconstruction of Macroscopic Maxwell Equations, STMP 237, 77–96,
DOI 10.1007/978-3-642-12791-5_4, C© Springer-Verlag Berlin Heidelberg 2010
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toward higher ω, and the lower bound of this branch corresponds to the closest
resonance frequency of ε or μ on the lower ω side. (See an example in Fig.3.3(A),
which shows a LHM branch for a resonance of μ in the broad range of negative ε.)
For the positive k side, the group velocity vg = dω/dk is negative. This is a typical
example of the dispersion curves representing the LHM character.

If we send an incident light in the frequency range of this branch, we can excite
this mode. To determine the amplitude of this mode, we need to apply boundary
conditions to the relevant waves in- and outside the boundary. For normal incidence
of light on a semi-infinite slab, we have a plane wave with one of the wave vectors
k = ±(ω/c)√εμ. For normal (right handed) system, we know that the choice of
positive sign leads to correct answer. What is the underlying reason for it and what
is the correct choice in the case of LHM ?

The right answer is obtained from the consideration of the spatial and tempo-
ral decay of this wave. The (non-radiative) decay occurs through the excitation
of phonons and other electronic transitions. Since the heat bath system consists of
infinitely many degrees of freedom, the direction of energy flow must be from the
EM field to the medium (heat bath). Therefore, the amplitude of the induced (matter
- EM field coupled) mode should be decreasing from the incident surface to the
interior. The change in the phase (and amplitude) of the wave after a distance d is
exp(ikd), so that we need I m[k] > 0 in order for this change to be a spatial decay,
i.e., a decreasing function of d. Therefore the correct choice is the k with positive
imaginary part when we allow damping effect.

The damping effect in the time region is expressed by considering a positive
imaginary part to ω. This is understood by a simple example of damped oscillator
to calculate polarizability (Lorentz oscillator model). Suppose we have an electric
oscillators with mass m0, charge q0, resonant frequency ω0 exposed in an electric
field E0(t). The Newton equation of motion of this oscillator is

m0
d2x

dt2
= q0 E0(t)− K x − m0γ

dx

dt
(4.1)

where −K x is the restoring force (Hook’s law, K = m0ω
2
0), and the last term on

the r.h.s. is the damping force proportional to velocity (γ > 0). The solution of
this equation is obtained by Fourier expansion, which leads, for frequency ω, to the
induced polarization as

P̃(ω) = N0q2
0/m0

ω2
0 − ω2 − iγω

Ẽ0(ω) (4.2)

where N0 is the number density of the oscillators. If E0(t) is a delta function at
t = 0, i.e., E0(t) = E0

∫
dω exp(−iωt), the induced polarization as a function of t

P(t) = 1

2π

∫
dω P̃(ω) exp(−iωt) (4.3)
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is evaluated by the residue at the pole of P̃(ω), which leads to the time dependence
∼ exp(−iω0 − γt/2). This shows that γ > 0 leads to the damping of P(t) in the
positive t direction, which of course leads to the same damping behavior of the
induced field by this P(t).

The general expressions of induced current density, Eqs. (2.38) and (2.66), have
also the similar pole structure with the imaginary part 0+, so that its temporal
response to δ(t)-like incident field is the (very slow) time decay with 0+/2. Thus,
the analytic continuation of real (k, ω) dispersion to the complex ω with positive
imaginary part gives a correct behavior of temporal decay in general.

For the calculation of the spectral response (for real ω), we need to choose
the appropriate wave number(s) satisfying the dispersion equation, and to set up
the boundary conditions on each relevant surface/interface. If we consider a semi-
infinite slab and a normally incident light propagating in the positive z direction, for
simplicity, we need to consider which of the two solutions k = ±k(ω) should be
chosen as the wave inside the slab induced by the incident light. From the argument
given above, we should choose the branch with positive Im[k]. This corresponds
to the branch with positive group velocity vg [3]. The reason is as follows. From
the relation dk/dω = 1/vg , or �ω = vg�k, where �ω and �k are the small
increments from the real (ω, k) solution, the relative sign of�ω and�k is the same
as the sign of vg . For the correct temporal decay, it is required that �ω represents
a positive imaginary part. Then, vg�k must also give a positive imaginary part. In
order for both �ω and �k to give positive imaginary part, vg = �ω/�k must be
positive.

The dispersion curves k = ±(ω/c)√εμ consist of positive and negative k
branches. As seen from Fig. 3.3, the positive vg occurs on the negative k branch. If
the medium of this LHM behavior occupies the semi-infinite space z = 0 ∼ ∞, the
right mode to be connected to the incident field in the positive direction (exp[ikz])
is this mode on the negative k branch with positive vg . This choice gives us the
occurrence of a transmission window in the total reflection range, which is a general
feature of LHM. Since the convex dispersion curve toward higher ω and the occur-
rence of transmission window arise also in the new macroscopic scheme without
using ε and μ, we can use this feature as a new definition of LHM.

In the non-chiral case, the maximum of the dispersion curve occurs at k = 0, and
the dispersion curve is symmetric for the ± directions of k. When such a disper-
sion curve is degenerate for two polarizations, the introduction of chiral symmetry
leads to the k-linear splitting. This gives rise to the lifting of the degeneracy, and in
the neighborhood of k = 0 two branches cross linearly with positive and negative
group velocities. Nevertheless, the convex character toward higher ω is kept for
these dispersion curves. Figure 4.1 shows an example of this kind corresponding
to the dispersion curves of (3.80). For this calculation, we modified the model for
Fig. 3.3 by adding a mixed character of E1 and M1 transitions to the (degenerate)
single pole. This type of dispersion curves also show the characteristic behavior of
LHM.

Thus the alternative definition of LHM without depending on the use of ε and μ,
or χe and χm, would be “a medium with dispersion curves of convex form toward
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Fig. 4.1 Dispersion curves of a chiral LHM for an extended model of Fig. 3.3 by including the
E1-M1 mixed character to the pole on the background of negative ε. Both ordinate and abscissa
are normalized by the frequency of the pole as ω/ω0 and ck/ω0. The frequency (1−δ) corresponds
to the zero of μ in the absence of chiral symmetry, as in Figure 3.3

higher ω”. Though this feature is common to both conventional and the new macro-
scopic schemes of M-eqs, the relative position of the resonance frequency and the
dispersion curve are different in these two schemes, as described in Sect. 3.8.2,
which can be a simple test to decide the consistency of the schemes.

4.1.2 Use of (ε, μ) and Homogenization

Today’s popularity of metamaterials study seems to be driven by the idea of free
designing of ε and μ beyond the hitherto accepted range of these parameter values.
Typical examples are the case of LHM [3], where one needs an exotic situation
“ε < 0, μ < 0”, and the case of cloaking [4], where the spatially varying values of
ε according to the form of a body makes the body invisible.

Since these are all man-made substances consisting of an array of the unit struc-
tures, each one of which can be made smaller than the wavelength of EM field. In
order to make theoretical analysis simpler, the response of such a system is replaced
by a uniformly homogenized material obtained from the original one. Usually, the
homogenization (or LWA) is justified by claiming the smallness of the unit struc-
ture in comparison with the wavelength of EM field. As explained in Sect. 3.6, this
justification is not always correct, since the interaction among the induced charge
densities on the unit structures may produce excitations with long spatial coherence.
If we are interested in the resonant behavior of such an artificial structure, we need to
take account of this possibility, because it may well invalidate the homogenization,
unless the non-radiative scattering mechanism is strong enough.

In the narrow definition of metamaterials, it is said or is taken for granted that
they are uniform materials obtained by homogenization. If one takes this defini-
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tion, a rather large group of material systems will be omitted from “metamaterials,
because, among the possible man-made substances, the condition for the homog-
enization will not be generally satisfied. There is, on the other hand, a broader
definition of metamaterials. In fact, the metamaterials made of circuit elements
(L, C, R) are interested in their dispersion behavior [5], i.e., the eigen frequencies
of an extended circuit array depending on the phase difference between neighbor-
ing circuit elements (which is equivalent to the wave number). For this group of
researchers, the existence of large spatial coherence in metamaterials is an impor-
tant subject for metamaterials, which for example may make an antenna emitting
microwaves in a wide angle by changing frequency [6]. In view of this type of activ-
ity, and also of the fact that “the metamaterials with non-homogenized components”
is also theoretically tractable, as will be mentioned in Sects. 4.1.4 and 4.3, it is not
necessary to include homogenization as the necessary condition for metamaterials.

4.1.3 “Microscopic”, “Semi-macroscopic” and “Electric Circuit”
Approaches

Within the semiclassical framework of EM response theory, macroscopic M-eqs are
derived from the microscopic M-eqs by assuming the validity of LWA. This requires
a comparison of the coherent extension of induced current densities and a relevant
wavelength of EM field. Since the former depends on each quantum transition of
matter, it is not rare that the condition for LWA is not satisfied. If such a transi-
tion is off-resonant with the incident frequency, one may rather safely neglect its
microscopic contribution. If, on the contrary, it is resonant, LWA is certainly a bad
approximation to handle the contribution of such a transition. There will be rather
many cases of this kind in both natural and artificial materials. From the viewpoint
of microscopic nonlocal theory, it is usual to treat some group of resonant transitions
microscopically and the rest as a background medium with uniform dielectric con-
stant [7]. This is a mixed use of micro- and macroscopic responses. Both of these
examples show the existence of the matter systems to be theoretically treated by a
mixed use of micro- and macroscopic responses.

Since the mixed use is rather undeveloped from the side of macroscopic response,
we describe two examples in this book. One is the nonlocal response of metamate-
rials in the next subsection, which may be a new concept in a system consisting
of semimacroscopic unit structures such as SRR. The other is the resonant Bragg
scattering due to inner core excitations in Sect. 4.3, which turns out to lead to a
general expression of refraction including chiral systems. It will theoretically be
more reasonable to leave a room for the definition of metamaterials so as to allow a
partially microscopic character.

The macroscopic response is described in terms of susceptibility χem in this
book. In the low frequency regime of EM response, there is a well established way
of describing the response in terms of electric circuit elements, such as capacity C,
inductance L, and resistivity R. In principle, these constants of circuit elements can
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be calculated from the knowledge of the material constants of a bulk matter. The
resistance is a bulk material constant (reciprocal of conductivity) times the length
divided by the cross section, of a wire. The capacity C is the coefficients of the elec-
tric potential as functions of accumulated charge on a sample, and the inductance L
the coefficient of magnetic potential as a flowing current through the element. For
a simple geometry, this type of calculation will not be too difficult. For a realistic
structure, however, this would require a large scale numerical calculations.

4.1.4 Nonlocal Response of Metamaterials

Taking a broader definition of metamaterials, we consider arrays of unit structures,
which are electronically separated but are interacting with one another through the
induced charge densities. This interaction may cause a long coherence length in the
excitations of matter, which does not justify the use of LWA or homogenization
procedure.

The unit structure can be anything, a quantum dot, a fine particle, or a man-made
piece of matter with particular shape and size. Each one of them will have its own
excited levels contributing to some resonant response to EM field. If the interaction
among unit structures is not important, one could treat the response of the whole
system in terms of homogenized macroscopic susceptibilities. It is essentially the
response of a single unit structure multiplied by the number density. If the interac-
tion is strong, however, some of the excited states may have long spatial coherence,
which should be treated microscopically.

Because of the large microscopic degrees of freedom of quantum dots, fine par-
ticles, and SRR’s, a complete description of the quantum mechanical motions of
matter will be quite difficult. But a fair description will be possible by concentrating
on special modes of excitation, which have strong interaction with EM field. In the
case of a quantum dot, confined excitons are such modes. In the case of a SRR
specified by a conductivity, shape and size, numerical simulations (such as FDTD
or else) give us resonant frequencies and the corresponding current densities [8],
from which we make use of the knowledge of the eigen energy of excited states
(with damping), En (−i�n), and the corresponding current densities, Jn(r), where
n = 1, 2, 3, · · · represents the mode number of the excited levels. Putting the unit
structures of this kind in a regular lattice, we look for the EM response of this sys-
tem. The induced current density of this array is written as a linear combination of
Jn(r), and the selfconsistent equations for the expansion coefficients {Fn0} can be
built in terms of the eigen energies En − i�n and the matrix elements of Coulomb
interaction and radiative correction (Eqs. (2.86) and (2.87) of [7]).

The interaction between the induced current densities on a different unit cells
takes place via the T and L components of EM field. An induced current density,
generally consisting of T and L vector fields, produces T and L EM fields around it
according to the microscopic M-eqs, and they interact with the T and L components,
respectively, of the current density on the other cell. This interaction can be calcu-
lated in the following way.
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The interaction between two current densities I1(r, ω) and I2(r, ω) is mediated
by both T and L components of EM field. Using the EM Green function described
in detail in Sect. 5.7.1, we can write the electric field produced by I1 as

E(r, ω) = iω

c2

∫
dr ′ G̃q(r, r ′, ω) · I1(r ′, ω) , (4.4)

= [
same expression with 1/c2 replaced by μ0/4π

]
SI .

This Green function is the sum of T and L components, G̃
(T)
q and G̃

(L)
q defined in

Sect. 5.7.1, which produce T and L fields, respectively, by taking a convolution with

I1(r, ω). The sum G̃q = G̃
(T)
q + G̃

(L)
q satisfies ∇ ×∇ × G̃q − q2G̃q = 4πδ(r − r ′).

Let us divide the induced electric field and current density into T and L compo-
nents as

E(r, ω) = E(T)(r, ω)+ E(L)(r, ω) , I(r, ω) = I (T)(r, ω)+ I (L)(r, ω) . (4.5)

The T component of E and the L component of I can be rewritten as

E(T)(r, ω) = iq A(r, ω)
[ = iωA

]
SI I (L)(r, ω) = −iωP (L)(r, ω) , (4.6)

because of the Coulomb gauge and the T character of magnetization induced current
density. The (time averaged) interaction energy between the EM field (E(T)+ E(L))
due to I1(r, t) and a current density I2(r, t) is written as

Eint = −2π

c

∫ ∞

−∞
dω

∫
dr

[
A(r,−ω) · I (T)2 (r, ω)+ cE(L)(r,−ω) · P (L)2 (r, ω)

]
, (4.7)

= [
same expression without 1/c

]
SI ,

which can be rewritten in terms of E and I2 as

Eint =
∫ ∞

−∞
dω

∫
dr

(−2π i

ω

)[
E(T)(r,−ω)· I (T)2 (r, ω)+ E(L)(r,−ω)· I (L)2 (r, ω)

]
.

(4.8)
Thus, by using the T and L parts of Eq. (4.4), the interaction energies mediated by
T and L fields are expressed as

E (Y)int = −2π

c2

∫ ∞

−∞
dω

∫
dr

∫
dr ′ I (Y)2 (r, ω) · G̃

(Y)
q (r − r ′, ω) · I (Y)1 (r ′,−ω) ,

(4.9)
where Y = T or L. This expression is valid for arbitrary I1 and I2 including I1 =
I2. The term E (L)int is the Coulomb interaction energy between the induced charge
densities accompanying I1 and I2 as
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E (L)int = 2π
∫ ∞

−∞
dω

∫
dr

∫
dr ′ ρ2(r, ω) ρ1(r,−ω)

|r − r ′| , (4.10)

which can be easily seen by rewriting the current density via continuity equation

∇·I+∂ρ/∂t = 0 and the explicit form of G̃
(L)
q in Sect. 5.7.1. On the other hand, E (T)int

is the radiative correction, and plays an important role in the equations to determine
the expansion coefficients Fμν(ω), Eq. (2.47), of current density. This interaction
energy is complex even for the diagonal element, i.e., for I1 = I2, giving the shift
and width to the resonant energies of matter [7].

The simultaneous linear equations of {Fμ0, F0μ} mentioned at the end of Sect. 2
has a clear physical meaning. If we rewrite the set of equations in terms of a new
set of variables {Xμ0 = gμ(ω)Fμ0} and {X0μ = hμ(ω)F0μ}, the coefficient matrix
is the sum of material excitation energies (plus or minus ω) and the radiative cor-
rection. Since the basis of the matrix is chosen as the eigen functions of matter
excitation, the material excitation energies are diagonalized, while the radiative cor-
rection contains both diagonal and off-diagonal elements. The essential point is that
the solution of the coupled linear equations of {Xμ0} and {X0μ} have resonances at
the matter excitation energies with radiative shifts and widths. If we keep only the
resonant part for simplicity, the set of the linear equations to determine {Xμ0} is

F (0)μ0 =
∑

ν

{
(Eν0 − h̄ω)δμν + A0μ,ν0

}
Xν0 (4.11)

where A is the matrix element of the radiative correction, (2.61), and the current
density (resonant part) is

I(r, ω) = 1

c

∑

ν

Xν0 I0ν(r). (4.12)

This scheme can be combined with the problem of regular arrays of unit struc-
tures (metamaterials), in the following way. On each unit cell, we have a set of
local current densities. Their eigen frequencies (with damping) and the correspond-
ing spatial structures can be prepared by a numerical calculation for a single unit
structure, i.e., a single SRR for example. The effect of E (T)int and E (L)int for a single
cell will be contained, but the inter-cell components are not included in a single cell
calculation. The linear equations to determine {Xμ0} is given in a matrix form as

F (0)μ0 =
∑

ν

[
E(T)int + E(L)int + (En − i�n)1 − h̄ω1

]

μν
Xν0 . (4.13)

The suffices μ, ν of the matrix elements contain both lattice site index and the
sublevel index (n) of a unit structure. The matrix elements of E (T)int and E (L)int are
calculated from (4.9), where I1, I2 represent the current densities in each unit
structure, distinguished by the cell number � and the internal quantum number n
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of each unit structure. Therefore, the input information is {En, �n, I�,n(r)}. (Since
we assume a same unit structure in each cell, {En, �n} do not depend on �.) If
the eigen energy is calculated with the effects of the interaction energies E (T)int and

E (L)int , then we should omit the corresponding contributions in the matrix elements of
Eq. (4.13). Once we have prepared the coefficient matrix and initial condition F(0),
we just invert the matrix to obtain

Xν0 =
∑

μ

[
E(T)int + E(L)int + (En − i�n)1 − h̄ω1

]−1

νμ
F (0)μ0 , (4.14)

which gives the induced current density via (4.12). From this result, we can further
calculate the induced EM field via the M-eqs.

When the interaction E (T)int and E (L)int are large for the inter-cell components, it
will lead to the spatial dispersion effect in the resonance energy. Then, the response
will be delicately dependent on the geometry to calculate the response spectra,
which is an aspect missing in homogenized metamaterials systems. Since the above-
mentioned scheme does not have an essential difficulty to prevent the procedure, we
may claim that the nonlocal response of metamaterials can also be treated in this
fashion.

Of course, there are some additional aspects to be discussed about how one takes
the effects of non-resonant components into account. A standard way to treat the
effect is to ascribe a background dielectric constant to the non-resonant part of
susceptibility. If we further assume that this background dielectric is extended to
the infinity, we could renormalize the effect into the EM Green function rather
easily. This will change the estimate of E (T)int and E (L)int . If, however, we want to
treat this background dielectric as a finite confined object, which may cause a cav-
ity effect, we need to prepare a more complex renormalized EM Green function
[9]. The preparation of this renormalized EM Green function is feasible for sim-
ple geometries, such as a multilayer slab or a multi-layer sphere [10]. For such a
case, the procedure mentioned above can be carried out just by replacing G with the
renormalized EM Green function.

4.2 Spatial Dispersion in Macro- vs. Microscopic Schemes

The wave vector (k) dependence of ε and μ in the conventional scheme, or χem
in the present one, is generally called spatial dispersion effect. The k-dependence
may occur both in the denominators and in the numerators, but, from the view-
point of the physics involved, we should distinguish the k-dependence (a) in the
denominators (and numerators) and (b) only in the numerators. The underlying
physics is as follows. If the k-dependence appears in the microscopic susceptibility,
it reflects the translational symmetry of the microscopic system in consideration.
Unless the k-dependence, especially of the denominator, is negligible, LWA is not a
good approximation, so that we need to stay in the regime of microscopic (nonlocal)
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response as described in Sect. 2.2. On the other hand, if the microscopic system has
no translational symmetry and if LWA is a good approximation, the macroscopic
average of this susceptibility can be expressed as a macroscopic susceptibility χem
with a k-dependence only in the numerator. Therefore, this is the only k-dependence
allowed in the macroscopic description.

If we consider the Taylor expansion of each component of the microscopic sus-
ceptibility up to the O(k2) terms, as we explicitly show for χem(k, ω) in Sect. 2.3,
the dispersion equation of the coupled waves of matter and EM field, (2.90), is the
quartic equation of k for a given frequency ω. Since the four waves correspond
to the forward and backward propagating waves for two polarizations, there arises
no problem of “additional waves” as in the next case of resonant spatial disper-
sion described below. In this case, the standard treatment of macroscopic boundary
conditions, given in Sect. 3.7, is enough to determine the response uniquely. The
k-linear term in the dispersion equation may lead to a complex situation involv-
ing the mixing of polarizations, but the number of the boundary conditions does
not increase in comparison with the conventional case of non-spatially dispersive
medium.

An essentially new situation arises, when the k-dependence appears in the
denominator of microscopic susceptibility. Though this is the case outside the
macroscopic response, we give an outline of the physics involved in this situation.
The essential point here is that the microscopic eigenstates of the medium are the
coherent waves specified by k, which does not allow the use of LWA. The coherence
effect appears not only in the denominator of susceptibility via excitation energies,
but also in the numerators through the corresponding eigenfunctions. Because of the
k-dependence in the denominator, the dispersion equation becomes a polynomial
equation higher than the quartic equation of k. In the first example of this category
discussed by Hopfield in early days [11], the k-dependence in the denominator was
considered as the O(k2) dependence of exciton energy, which leads to the quadratic
equation of k2 as the dispersion equation for a given polarization. This equation
gives four solution for k (for a given polarization), i.e., two waves in a given direc-
tion (forward or backward). Therefore, there is an additional wave in each direction
of propagation in this medium, which gives rise to a famous problem of additional
boundary condition, ABC problem, to determine the relative amplitude of the waves
and, then, the response of the matter uniquely.

How to determine the form of ABC for a given medium with such a spatial dis-
persion effect has been a long debated problem in the physics of excitons [12]. There
have been both phenomenological and first-principles approaches to this problem.
An essential progress has been made by the latter through considering the suscepti-
bility of the medium as that in the presence of surface, which breaks the translational
symmetry of the medium. The solution of M-eqs in terms of such a susceptibility can
determine the form of ABC, which (in principle) reflects the details of the surface
contribution to the susceptibility. Also, it was noticed that the same M-eqs can be
solved without referring to ABC [13], which was an essential seed of the micro-
scopic nonlocal response theory given in Sect. 2.2. The details of this development
is described in Sect. 3.8 of [7].
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Since the spatial dispersion effect in the denominator of susceptibility has a
much more profound meaning than that in the numerator, we should specify which
case is meant on mentioning spatial dispersion effect. To summarize this section, it
should be noted that the only spatial dispersion effect compatible with LWA is the
k-dependence in the numerator.

4.3 Resonant Bragg Scattering from Inner-core Excitations

The arguments in the main formulation in Sect. 2.3 are all based on the assumption
that all the excited states of matter can be treated in LWA. As discussed in Sect. 3.6,
there are various cases where this assumption is not valid, which, however, does not
mean our incapability of handling such cases. In this section, we show an example
of this kind, for which we can present a useful framework to analyze some relevant
experimental results.

If we irradiate a crystal with an X ray which can excite the inner shell of its
constituent atoms, we can expect a resonant diffraction of X ray, which is mediated
by the inner shell excitations. The scattering process reflects how the resonant atoms
are arranged in the crystal lattice. The clearest signal of X ray scattering is that the
change in the wave vector k is equal to one of the reciprocal lattice vectors {G}.
It is a linear process in the sense that the signal amplitude is linear in the incident
field amplitude. Since an inner shell excitation is localized on each atom, which has
much smaller spatial extension than the X ray, it seems to be all right to apply LWA
to the microscopic susceptibility of this process. However, the LWA averaged sus-
ceptibility χem(k, ω) obviously does not describe the diffraction process, because
χem(k, ω) is the susceptibility for a given wave vector without any change before
and after the interaction with matter.

The key to solve this discomfort is Eq. (2.68) of Sect. 2.3, which shows that
the LWA averaged induced current density can have a different wave vector k from
that of the incident EM field k′. It should be reminded that we picked up only the
scattered fields with k = k′ by assuming the spatial uniformity of the LWA averaged
macroscopic medium. At this point, we should realize the possibility that the LWA
average of a localized inner shell excitation does not necessarily mean the smeared
out distribution of the similar excitations. In other words, we keep the meaning of
Eq. (2.68) as it is, and note that the summation index ν contains the positions of
inner shell atomic excitation in a regular lattice, which leads us to the selection rule
k − k′ = G. The explicit formulation goes as follows.

The linear susceptibility describing the diffraction process can be obtained in
the following manner. Since we are interested in the resonant excitation of inner
shell transition, we keep only the resonant terms in the microscopic susceptibility.
Dividing the summation index ν into the atomic position R and the quantum number
ν̄ for the resonant transition of a particular species of atoms in the crystal, we obtain
the resonant terms
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χcd(r, r ′, ω) = 1

c

∑

ν̄

∑

R

gν̄ (ω)I0ν̄ (r − R)I ν̄0(r ′ − R) . (4.15)

= [
same expression without 1/c

]
SI

Though the final state of the transition is affected by the surrounding atoms or the
band structure in the corresponding energy range, the induced current density of the
transition is well-localized because of the strong localization of the core state wave
function. When the crystal consists of sublattices, we may write R = r̄ + τ , where
τ is the vector defining the position of sublattices in a unit cell, and r̄ is the vector of
Bravais lattice, for which reciprocal lattice vectors {G} are defined as r̄ · G = 2π×
integer.

The (k, ω) Fourier component of the current density induced by this χcd is

Ĩ(k, ω) = V 2

8π3c

∑

ν̄

∑

R

e−i(k−k′
)·R gν̄ (ω) Ī0ν̄,τ (k)

∑

k′
Ī ν̄0,τ (−k′) ·

A(k′, ω),
= [same expression without 1/c]SI (4.16)

where the k Fourier component of the matrix element at the site R = r̄ + τ is
defined as

Ī0ν̄,τ (k) = 1

V

∫
dre−i k·r I0ν̄,τ (r − R) = 1

V
e−i k·R

∫
dr ′ e−i k·r ′

I0ν̄,τ (r ′) (4.17)

to extract the position dependent phase factor from Ĩ0ν̄,τ (k). We attach the τ -
dependence explicitly to the matrix element of current density, since a same atomic
transition 0 → ν̄ can give different results for different sublattices because of the
difference in the surroundings.

The microscopic current density given above could be used as the source term
of the M-eqs for vector potential. However, in view of the short localization length
of the induced current density at each site, we can apply LWA to the microscopic
current density. Using the result (2.75), we have

Ĩ0ν̄,τ (k) = 1

V
e−i k·R {

J̄0ν̄,τ − i k · Q̄
(e2)
0ν̄,τ + ick × M̄0ν̄,τ

}
, (4.18)

= [same expression without c]SI .

In terms of this LWA expression of Ĩ0ν̄,τ (k), we obtain the current density as a
function of A(k′, ω) as
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Ĩ(k, ω) = 1

c

∑

ν̄

∑

R

e−i(k−k′
)·R gν̄ (ω)

×
{

J̄0ν̄,τ − i k · Q̄
(e2)
0ν̄,τ + ick × M̄0ν̄,τ

}

×
∑

k

{
J̄ ν̄0,τ + i k′ · Q̄

(e2)
ν̄0,τ − ick′ × M̄ ν̄0,τ

}
· A(k′, ω) , (4.19)

= [
same expression without 1/c

]
SI

The Bravais lattice part of phase factor exp[i(k − k′) · r̄] becomes unity for the
wave vector transfer by a reciprocal lattice vector k − k′ = G. Thus, (4.16) gives
the induced current density satisfying the Bragg condition for an arbitrary incident
X ray with wave vector k′. The amplitude of scattered X ray is calculated from the
Maxwell equation with this current density as a source term, which is rewritten as a
set of linear equations for the variables Ĩ(k′+G, ω) and A(k′+G, ω), containing the
incident field A0(k′, ω) as a parameter. The number of G’s to be considered depends
on the strength of interaction. Since X-ray scattering is usually a weak process, even
at a resonance, it will be a reasonable approximation to treat it kinematically, i.e.,
to consider single scattering process alone. This approximation corresponds to the
use of Eq. (4.19) with the A(k′, ω) replaced with the incident wave A0(k′, ω). The
scattered wave is polarized perpendicular to k, and the amplitudes of each polarized
component is determined by the projection of Ĩ(k, ω) on the (unit) polarization
vector ê(k) (⊥ k).

The scattering amplitude for a given incident field A0(k′) is

A(k, ω) = 4π

ω2 − c2k2

∑

ν̄

∑

R

exp
{−i(k − k′) · R

}
gν̄ (ω)

×
{

J̄0ν̄,τ − i k · Q̄
(e2)
0ν̄,τ + ick × M̄0ν̄,τ

}

×
∑

k′

{
J̄ ν̄0,τ + i k′ · Q̄

(e2)
ν̄0,τ − ick′ × M̄ ν̄0,τ

}
· A0(k′, ω) , (4.20)

= [
same expression with 4π replaced by c2μ0

]
SI

where k = k′ + G.
The uniqueness of this result is that it contains the case of chirality-induced Bragg

scattering in a general form applicable to any inner shell transition and any symme-
try of crystal. Usually X ray scattering is said to be unable to distinguish left (L-)
and right (R-) handed chirality, which is a conjecture derived from the intensity of
the allowed beams. Recently, there has appeared a paper reporting the successful
distinction of L- and R-handed quartz by means of the forbidden beams enhanced
by the resonance with inner shell transitions [14]. The expression obtained above is
suitable to such a description, as shown below.
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At low temperatures, quartz crystals show L- and R-handed distortion around
its trigonal (c-) axis. Both of them consist of triangular sublattices stacked along
the trigonal axis with three layers as a unit. The lattice points of the three lay-
ers are arranged in a three fold rotation symmetry with a non-primitive trans-
lation by c/3, so that the lattice vector characterizing the three sublattices are
τ 1 = (a1, b1, 0), τ 2 = (a2, b2, c/3), τ 3 = (a3, b3, 2c/3), where the 2 dimen-
sional vectors (a1, b1), (a2, b2), (a3, b3) are related with one another by the three
fold rotation around the c-axis. The reciprocal lattice vector in the c-direction is
written as Gc = (2π/c)(0, 0, �) for an arbitrary integer �. For any lattice point
R = r̄ + τ j , we have

R · Gc = 2π × integer + 2π�

3
( j − 1) , (4.21)

which will be used below.
In a simple theory of X-ray diffraction, we assume a regular array of spherical

scatterers. To calculate the amplitude of scattered waves, we sum up the contribu-
tions from all the scatterers, which is the product of “atomic scattering factor” times
the sum of phase difference of all the scatterers. The latter is

∑

R

exp(i R · G) , (4.22)

which in the case of (4.21) is zero except for � = multiples of 3. This means that the
diffraction with Gc = (2π/c)(0, 0, �) is forbidden except for � = multiples of 3.

The result given just above is due to the τ independence of the “atomic scat-
tering factor”. The forbidden character of the scattering is generally relaxed, when
we use a resonance condition, since it picks up a detailed electronic structure of
the resonant state, which can be dependent on the sublattices. More specifically,
this relaxation occurs through the lowering of the symmetry of the induced current
densities contributing the resonant scattering. In the case of an isolated atom, there
always exists a set of degenerate excited states belonging to an irreducible represen-
tation of electric dipole (E1) character. Because of the degeneracy, we can choose
any Cartesian framework to express the dipole moments, so that this set of states act
to the EM field as a spherical scatterer. This argument can be checked by Eq. (4.20).
If we can assume spherical symmetry at each site R, we can choose the basis for
{ |ν̄〉’s } independent of τ . Then, the summation over τ acts only on the phase
factor exp(i G · τ ), leading to zero. Thus, non-zero scattering amplitude is due to
the deviation of the site symmetry from a spherical one. This deviation is obvious,
since lattice structures have always lower symmetry than spherical. Even in cubic
symmetry, � = 2 (or higher) angular momentum states are no more completely
degenerate, so that the contribution from these states will give non-spherical effect.
If the symmetry is lower, even E1 transitions (� = 1 angular momentum states) will
split into several levels in a different way for each sublattice τ . The eigenfunctions
are also affected by this splitting, giving a τ -dependence to the matrix elements. All



4.4 Renormalization of L Current Density into E(L) 91

these effects will preserve the τ -dependence of the matrix elements J̄0ν̄ , Q̄
(e2)
0ν̄ , M̄0ν̄

in Eq. (4.20), leading to the relaxation of the forbidden character of the scattered
beams with Gc.

A detailed analysis of experimental result of [14] is being done in terms of this
theoretical scheme, which will be reported elsewhere.

4.4 Renormalization of L Current Density into E(L)

4.4.1 Use of E(L) as External Field

As mentioned in Sect. 2.2, the main part of this new formulation is made according
to the scheme where matter Hamiltonian contains the complete Coulomb interac-
tion. This means that the interaction between the induced L electric field and matter
polarization, which can be rewritten as the Coulomb interaction energy among the
induced charge densities (see below), is, not a part of interaction Hamiltonian, but
a part of matter Hamiltonian. This energy appears as a part of matter excitation
energies defining the poles of susceptibility, and has been called LT splitting energy,
electron-hole exchange interaction, or depolarization energy. Thus the EM field
inducing matter polarization is E(T) alone, while E(L) is an internal quantity. For a
T-field incidence, the physical variables to be determined selfconsistently are A and
I (T), i.e., the T-components of EM field and induced current density. In this process
there is no need of considering E(L) and P (L), as long as the Coulomb potential is
properly handled in the quantum mechanical calculation. If one dare to know E(L)

and P (L), they can be calculated by using the selfconsistently determined values of
A and the T-L mixing components of χem. The case of L-field incidence caused by
an external charge density is described in Sect. 5.7.2.

There is an alternative scheme to treat the induced E(L) as, not an internal,
but an “external” field even in the absence of external charge density. In this
case, − ∫

P ·E(L)dr is the interaction between “external” field E(L) and matter. This
point of view requires a change in the definition of matter Hamiltonian and matter-
EM field interaction, as discussed below. The interaction energy − ∫

P · E(L)dr can
be rewritten, in terms of the induced charge density ρ, as

−
∫

P · E(L)dr =
∫

dr
∫

dr ′ P · ∇ ρ(r ′)
|r − r ′| (4.23)

= −
∫

dr
∫

dr ′ ∇ · P(r)
ρ(r ′)

|r − r ′| (4.24)

=
∫

dr
∫

dr ′ ρ(r)ρ(r ′)
|r − r ′| (4.25)

which is the Coulomb (self-) interaction energy of induced charge density Hcc.
Since this energy appears in the presence of induced polarization or induced charge
density, i.e., in the excited states of matter, it is a part of the Coulomb interaction
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among the charged particles of matter. If we treat this energy as the interaction
between matter and EM field, we have to subtract this part of Coulomb interaction
from the (original) matter Hamiltonian in order to keep the consistency within the
total Hamiltonian.

Since this affects the eigenvalues and eigen functions of matter, this new choice
requires a certain modification of EM response theory, which we describe in this
subsection with a stress on the difference compared with the scheme used in the
description of Chaps. 2 and 3. If we use them properly, the two schemes should pro-
duce the same response. However, there can arise a difference in judging the validity
of LWA to derive macroscopic M-eqs, which is discussed in the next subsection.

In the scheme of Chap. 2, the matter Hamiltonian H (0), (2.17), is the sum of
kinetic energy and full Coulomb potential (and relativistic corrections), and the
interaction Hint, (2.24), contains only T-field A. In the new scheme of EM response,
the matter Hamiltonian is

H̃ (0) = H (0) − Hcc (4.26)

and the matter - EM field interaction is

H̃int = Hint −
∫

dr P (L) · E(L) (4.27)

where E(L) is the sum of incident and induced L-fields as

E(L)(r) = −∇
∫

dr ′ ρ(r ′)
|r − r ′| + EextL . (4.28)

In the interaction Hamiltonian, the first part Hint takes care of the response of the
T-components, and the second part − ∫

dr P (L) · E(L) that of the L-components. In
chiral symmetry, A can induce P (L) (or J (L)), as well as J (T), and EextL can induce
J (T), as well as P (L).

The calculation of microscopic susceptibilities and the application of LWA go in
a very similar way as in Chap. 2 (for T-response) and Sect. 5.7.2 (for L-response).
What we need anew is to use the eigenvalues and eigenfunctions of the new matter
Hamiltonian H̃ (0), which changes the positions of poles and their intensities. The
constitutive equations in this case are

I(k, ω) = χ̃em(k, ω) A(k, ω)+ χ̃JEL(k, ω) E(L)(k, ω) , (4.29)

where χ̃em and χ̃JEL are defined in the same way as χem and χJEL in terms of the
energy eigen values and eigen functions of H̃ (0).

In terms of the new susceptibilities and the source fields {χ̃em, χ̃JEL, A, E(L)}, we
can make a similar selfconsistent scheme as that in terms of {χem, χJEL, A, EextL}.
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For high symmetry cases where L and T modes do not mix, the first and second term
on the r.h.s. describes the T and L response, respectively. When LT mixing occurs,
we pick up the T and L components of the response as follows. The T-component of
I(k, ω), needed for the M-eq of A, is obtained by applying the projection operator
(1 − k̂k̂) · I(k, ω), and the L-component of P , to be used in Eq. (4.28) via ∇ · P =
−ρ, is P (L)(k, ω) = (i/ω)k̂ · I(k, ω).

The change in the pole positions due to the change in the matter Hamiltonian
is reflected in the conditions for the eigen modes of L character. In the case of
χem and χJEL, the poles represent the transition energies of H (0) containing Hcc, so
that the T and L modes energies are directly included in the pole position. In fact,
I (L) = χJEL EextL indicates the presence of finite amplitude L-mode current density
I (L) for vanishing EextL when χIEL goes to infinity, i.e. at the excitation frequency
of a L-mode. On the other hand, the poles of χ̃JEL do not have the contribution of
Hcc, but the equation

E(L) = −4π P (L) + EextL , (4.30)

which is an extension of (5.160) by including the incident L field, indicates that the
condition for the existence of finite amplitude solution of E(L) in the absence of
EextL is

1 + 4πχ̃JEL = 0 . (4.31)

This means that, though the susceptibility χ̃JEL does not have the poles at L mode
excitations, it provides the eigen mode condition for them. It should be noted that
this is the same condition as εL = 0 in the conventional macroscopic M-eqs, which
is the direct consequence of the conventional definition of χe as P = χe E and
ε = 1 + 4πχe, where E contains E(L). In this sense, the conventionally defined χe
should be calculated from the matter Hamiltonian H̃ (0).

4.4.2 Difference in the Criterion for LWA

The validity condition of LWA is that, among various quantum mechanical excita-
tions of a matter system, we can neglect the contribution of those with long range
coherence in the spectral range of interest. A simple example allowing the use of
LWA is an assembly of impurities (of a single species, for simplicity). The support-
ing argument is that the spatial extension of the wave functions of the transition is
well localized in comparison with the wavelength of the EM field corresponding to
the transition energy. In this argument, we usually neglect the dipole-dipole inter-
action between different impurities, which is the leading term of Hcc, Eq. (4.25). If
we consider this interaction among the impurities, it will cause reorganized energy
levels with a certain distribution, or, if the impurities are in a regular lattice, a band
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structure. In any case, it will lead to a band of new energy eigen values. If this
band width is larger than the (non-radiative) width of the impurity levels, we cannot
neglect the LW coherence of matter excitations, so that LWA is not a good approxi-
mation. The validity condition of LWA is therefore the larger (non-radiative) width
of the impurity levels than the band width due to dipole-dipole interaction.

However, if we replace such impurities with split-ring resonators (SRR’s) to
make metamaterials of desired resonant frequency, we need to reconsider the valid-
ity of LWA in homogenizing the contributions of SRR’s to obtain an effective
macroscopic susceptibility. Especially, if we want to get a high resonant frequency,
one uses small structures containing coherent motions of electrons, or plasmons,
which produce large amplitude charge densities on each SRR.

The various resonances of a SRR are accompanied by different modes of such
charge densities. A high resonant frequency is caused by a strong restoring force,
which means that the mode is accompanied by a large amplitude of charge density.
This contributes, not only to the high resonant frequency, but also to the large inter-
SRR interaction through the long range nature of the Coulomb interaction between
charge densities. (The overlap of wave functions is not needed for this interaction.)
This inter-SRR interaction leads to the formation of the coherent excited states
among the SRR’s. Then, each of the coherent state has different eigen frequency
with a fully extended wave function over the positions of all the SRR’s. These new
eigenstates have a band of eigen frequencies. (If SRR’s are arranged in a periodic
lattice, there arises an energy band structure for the excited states.) If the band width
is larger than the width of each level, one cannot neglect the coherence. In other
words, LWA or homogenization is not applicable to this system.

Now, if we take the scheme with “H̃ (0), H̃int”, the eigenstates of matter are
constructed without Hcc, so that the coherence of induced polarization due to the
interaction of charge densities is not brought in the eigenstates. Therefore, if we
judge the validity of LWA for these eigenstates, an important factor will be missing.
Thus, there is a possibility in this scheme to make a mistake in judging the validity
of LWA.

In contrast, the scheme with “H (0), Hint” contains Hcc in H (0), so that the long
range coherence of induced polarization is determined solely by H (0). Since all the
elements contributing to the coherence of eigenstates are considered in H (0), we can
make a correct decision about the validity of LWA, in contrast to the scheme with
“H̃ (0), H̃int”.

4.5 Extension to Nonlinear Response

The higher rank theory which we use for the derivation of macroscopic M-eqs is the
microscopic nonlocal response theory consisting of the microscopic M-eqs and the
microscopic constitutive equation. The latter is given as a power series expansion
with respect to A(r, ω) in the form of integrals containing various susceptibilities as
integral kernels. Since these kernels are separable, the N-th order nonlinear induced
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current density is an N-th order polynomial of the factor

Fμν(ω) =
∫

dr 〈μ|I(r)|ν〉 · A(r, ω) (4.32)

for various combinations of μ, ν and ω’s, including the linear case N = 1. (See
Sect. 2.6 of [7].)

For example, one of the eight components of the third order nonlinear cur-
rent density is given, for the field components with frequencies ω1, ω2, ω3, as
(Eq. (2.119) of [7])

J (3)(ω1 + ω2 + ω3) = −1

(h̄c)3

∑

μ

∑

ν

∑

σ

F0μ(ω3)Fμν(ω2)Fνσ (ω1)〈σ |I(r)|0〉
(ω0μ −�3)(ω0ν −�2)(ω0σ −�1)

(4.33)
where �3 = ω3 + i0+, �2 = ω3 + ω2 + i0+, �1 = ω3 + ω2 + ω1 + i0+,
and ωμν = (Eμ − Eν)/h̄. The EM field components included in the Fμν(ω)’s
have various frequencies and polarizations, and the solution of such (microscopic,
nonlinear) constitutive equations and M-eqs turn out to be the solution of simulta-
neous cubic equations of Fμν(ω)’s. In general, it is possible to rearrange the integral
equations for the N-th order nonlinear problem into a set of N-th order polynomial
equations of Fμν(ω)’s [7]. By including enough number of the transitions in the
calculation, the microscopic spatial structure of the EM response is reproduced by
such a calculation.

For the macroscopic description, we need LWA averaged microscopic constitu-
tive equation. Since the integration coordinates included in various factors Fμν(ω)’s
are independent, LWA can be done for each Fμν(ω)’s separately. Thus, the process
of LWA is equivalent to the Taylor expansion of each factor Fμν(ω) where we retain
only a few leading terms representing the moments of Iμν(r) with E1, M1, E2, . . .
characters.

In the case of linear response, we have the factors Fμν(ω) appearing as a product
of the form I0ν(ω)Fν0(ω) or Iν0(ω)F0ν(ω) in the susceptibility, which contains a
single intermediate step |ν〉 between the initial and final states. On the other hand,
the N-th order nonlinear susceptibility contains N different intermediate steps. For
N=3, we have |μ〉, |ν〉, |σ 〉 as shown in the example given above. Via Taylor expan-
sion, each factor Fμν(ω) is expressed as a linear combination of the moments of
Iμν(r). Generally, the lowest moment (E1 transition) is the main contribution, so
that a large contribution will occur for the process connecting the initial and final
states (|0〉) via the E1 transitions alone. If the frequency of the EM field inducing
each E1 transition is resonant to the corresponding transition, the intensity of the
whole nonlinear process will become large. If some of the transitions are E1 for-
bidden, then M1 and/or E2 components will contribute to the finite amplitude of the
whole process. This mixture of E1 and (M1, E2) characters can occur for any system
including non-chiral case. This feature is different from the linear response, where
the mixture of E1 and (M1, E2) transitions is expected only in chiral symmetry.
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The merit of the present approach to the macroscopic description of nonlinear
response may not be so obvious because of the complexity of the macroscopic non-
linear susceptibilities in terms of the quantum mechanical eigenvalues and eigen
functions. For non-resonant processes such a representation does not have much
meaning. If one focuses on a particular resonant nonlinear process containing E1
forbidden transitions, there will be a chance for this kind of scheme to show its
merit, because it allows the precise description of the resonant nonlinear process
with explicit evaluation of E1, E2, and M1 components.

References

1. Veselago, V.G.: Soviet Phys. Uspekh 10 509 (1968) 77
2. Suga, S. Cho, K. Niji, Y. Merle, J.C., Sauder, T.: Phys. Rev. B22 4931 (1980)
3. Ramakrishna, S.A.: Rep. Prog. Phys. 68 449 (2005) 79, 80
4. Schurig, D. Mock, J.J. Justice, B.J. Cummer, S.A. Pendry, J.B. Starr, A.F. Smith, D.R.: Science

314 977–980 (2006) 80
5. Caloz, C. Itoh, T.: Electromagnetic Metamaterials. Wiley, Hoboken, NJ (2006) 81
6. Matsuzawa, S. Sato, K. Inoue, Y. Nomura, T.: IEICE. Trans. Electron., E89-C 1337–1344

(2006) 81
7. Cho, K.: Optical Response of Nanostructures: Microscopic Nonlocal Theory. Springer, Hei-

delberg, (2003) 81, 82, 84, 86, 95
8. Rockstuhl, C. Zentgraf, T. Guo, H. Liu, N. Etrich, C. Loa, I. Syassen, K. Kuhl, J. Lederer, F.

Giessen, H.: Appl. Phys. B84 219–227 (2006) 82
9. Cho, K.: J. Phys. Condens. Matter 16 S3695–S3702 (2004) 85

10. Chew, W.C.: Waves and Fields in Inhomogeneous Media. Van Nostrand Reinhold, New York,
NY (1990) 85

11. Hopfield, J.J. Thomas, D.G.: Phys. Rev. 132 563 (1963) 86
12. Birman, J.L.: Excitons. In: Rashba, E.I. Sturge, M.D. (eds.) p.72 North Holland, Amsterdam

(1982); Halevi, P.: Spatial Dispersion in Solids and Plasmas. In: Halevi, P. (ed.) p.339. Elsevier,
(1992) 86

13. Cho, K.: J. Phys. Soc. Jpn. 55 4113 (1986) 86
14. Tanaka, Y. Takeuchi, T. Lovesey, S.W. Knight, K.S. Chainani, A. Takata, Y. Oura, O. Senba,

Y. Ohashi, H. Shin, S.: Phys. Rev. Lett. 100 145502 (2008) 89, 91



Chapter 5
Mathematical Details and Additional Physics

In the previous sections, some mathematical details and additional physics are
omitted for the purpose of showing the central line of description straightforwardly.
In this chapter, the omitted subjects are given in detail. Each section is independent,
and the related subjects are given in subsections. Some of the problems can be found
in other books or papers, but they are reproduced here for the sake of self-containing
description.

5.1 Continuity Equation and Operator Forms of P and M in
Particle Picture

The continuity equation (1.5) or (1.16) represents the charge conservation during the
motion of charges. Therefore, unless we consider those phenomena such as electron-
positron pair production by photon in the relativistic regime, it is expected to be valid
for usual EM phenomena in non-relativistic regime, both in the continuum and the
particle picture of matter. But it will be of some interests to see its validity in particle
picture by explicit mathematics. This is shown by the Fourier representation of the
properly defined forms of ρ(r) and J(r) [1]. In the same manner, the operator forms
of P and M satisfying the relations expected in macroscopic M-eqs. are given.

The expressions of ρ(r) and J(r) in particle picture

ρ(r) =
∑

�

e� δ(r − r�) (5.1)

J(r) =
∑

�

e�v� δ(r − r�), (5.2)

are Fourier decomposed as

ρ(r) = V

8π3

∫
dk ρk exp(i k · r) , J(r) = V

8π3

∫
dk J k exp(i k · r) , (5.3)

K. Cho, Reconstruction of Macroscopic Maxwell Equations, STMP 237, 97–131,
DOI 10.1007/978-3-642-12791-5_5, C© Springer-Verlag Berlin Heidelberg 2010
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where V is the volume for periodic boundary condition to define discrete k’s and is
supposed to take the limiting value ∞, i.e., �k → (V/8π3)

∫
dk in the continuum

limit. Their Fourier components are

ρk =
∑

�

e� exp(−i k · r�) , J k =
∑

�

e�v� exp(−i k · r�) . (5.4)

The time evolution of ρ occurs through that of each particle, so that we have

∂ρ

∂t
=

∑

�

v� · ∂ρ
∂ r�

= − iV

8π3

∑

�

∫
dk e�(v� · k) exp[i k · (r − r�)] , (5.5)

and

∇ · J = iV

8π3

∫
dk (J k · k) exp(i k · r) = −∂ρ

∂t
. (5.6)

In this way, the continuity equation is explicitly shown to be valid in particle picture.
The microscopic definition of electric and (orbital) magnetic polarizations, P

and M, respectively, is given as (Sect. IV.C of [1])

P(r) =
∫ 1

0
du

∑

�

e�r� δ(r − ur�) , (5.7)

M(r) = 1

c

∫ 1

0
u du

∑

�

e�r� × v� δ(r − ur�)

[

=
∫ 1

0
u du

∑

�

e�r� × v� δ(r − ur�)

]

SI

. (5.8)

This definition satisfies the expected relations

∇ · P = −ρ , (5.9)

J = ∂ P
∂t

+ c∇ × M
[

= ∂ P
∂t

+ ∇ × M
]

SI
(5.10)

for charge neutral systems.
The Fourier component of ∇ · P(r) is

(∇ · P)k =
∫ 1

0
du

∑

�

e�(i k · r�) exp(−iuk · r�) , (5.11)

= −
∑

�

e� exp(−i k · r�)+
∑

e� , (5.12)

= −(ρ)k +
∑

e� , (5.13)
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which shows the validity of ∇ · P = −ρ for charge neutral systems (
∑

e� = 0).
The Fourier component of ∂ P k/∂t is

∂ P k

∂t
= ∂

∂t

∫ 1

0
du

∑

�

e�r� exp(−iuk · r�)

=
∫ 1

0
du

∑

�

e� {v� − iur�(k · v�)} exp(−iuk · r�) (5.14)

The Fourier component of c∇ × M is

(c∇ × M)k = i
∫ 1

0
udu

∑

�

e�k × (r� × v�) exp(−iuk · r�) ,

[ = (∇ × M)k
]

SI (5.15)

The vector triple product is rewritten as

k × (r� × v�) = (k · v�) r� − (k · r�) v� (5.16)

The contribution of the first term on the r.h.s. cancels the second term in the braces
of ∂ P k/∂t , and the remaining contribution is rewritten as

−i
∫ 1

0
udu

∑

�

e�(k · r�) v� exp(−iuk · r�)

=
∑

�

e�v�

∫ 1

0
udu

d

du
exp(−iuk · r�) (5.17)

which, via partial integration, leads to

∑

�

e�v�

{

exp(−i k · r�)−
∫ 1

0
du exp(−iuk · r�)

}

. (5.18)

The second term on the r.h.s. cancels the remaining first term on the r.h.s. of
Eq. (5.14), and the final result is

∂ P k

∂t
+ ick × Mk =

∑

�

e�v� exp(−i k · r�) = J k ,

[
= ∂ P k

∂t
+ i k × Mk = J k

]

SI
(5.19)

which is the Fourier representation of Eq. (5.10).
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5.2 Equations of Motion Obtained from Lagrangian L

The Lagrangian for interacting EM field and charged particles in general is

L =
∑

�

{
1

2
m�v

2
� − e�φ(r�)+ e�

c
v� · A(r�)

}
+ LEM

[

=
∑

�

{
1

2
m�v

2
� − e�φ(r�)+ e�v� · A(r�)

}
+ LEM

]

SI

(5.20)

where

LEM =
∫

dr
1

8π

{(
1

c

∂A
∂t

+ ∇φ
)2

− (∇ × A)2
}

,

[

= 1

2

∫
dr

{

ε0

(
∂A
∂t

+ ∇φ
)2

− 1

μ0
(∇ × A)2

} ]

SI

(5.21)

is the Lagrangian for vacuum EM field. In such a system, each charged particle
feels the Lorentz force acting at its position, and the EM field should be deter-
mined by the charge and current densities of matter. The explicit forms of the
equations to describe such situations are derived from the least action principle for
the Lagrangian, or the Lagrange equations. The generalized coordinates for this
derivation are the coordinates of the particles {r�}, vector potential A(r) and scalar
potential φ(r).

The action for a Lagrangian is defined as

S =
∫

dt L (5.22)

which is a functional of the generalized coordinates. To consider a change in the
action for a generalized coordinate q(t), we allow a small variation of q(t) between
a certain time interval, but fix the values of q(t) at the both ends of the interval.
Denoting the physically allowed path as q̄(t) and the deviation from it as δq(t), we
request that the difference S[q̄ + δq] − S[q̄] should vanish in the first order of δq.
This requirement leads to an equation fulfilled by q̄ , which is the Lagrange equation
for the generalized coordinate q.

5.2.1 Newton Equation for a Charged Particle Under Lorentz
Force

First of all, let us take xi as q̄ , i.e., the x coordinate of the i-th particle. Then, the
difference S[q̄ + δq] − S[q̄] consists of three terms, those due to the kinetic energy
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term δSkin, scalar potential δSsp, and vector potential δSvp. The first two are easily
calculated, to the first order in δxi , as

δSkin =
∫

dt
mi

2

[{
d

dt
(xi + δxi )

}2

−
(

dxi

dt

)2
]

=
∫

dt

[
mi

dxi

dt

dδxi

dt

]
,

= −mi

∫
dt

d2xi

dt2
δxi , (5.23)

δSsp = −ei

∫
dt [φ(xi + δxi )− φ(xi )] = −ei

∫
dt
∂φ

∂xi
δxi . (5.24)

The last equation for δSkin is obtained via partial integration. (Since δxi (t) is zero
for the both ends of integration, no term appears from the boundaries of integral.)
The third one δSvp is a little complicated. The increment of

∑
�(e�/c)v� · A, when

only one coordinate component is changed from xi to xi + δxi , is

ei

c

[{
d

dt
(xi + δxi )

}
Ax (xi + δxi )+ dyi

dt
Ay(xi + δxi )+ dzi

dt
Az(xi + δxi )

−
{

dxi

dt
Ax (xi )+ dyi

dt
Ay(xi )+ dzi

dt
Az(xi )

}]

= ei

c

dδxi

dt
Ax (xi )+ ei

c

{
dxi

dt

∂Ax

∂xi
+ dyi

dt

∂Ay

∂xi
+ dzi

dt

∂Az

∂xi

}
δxi ,

[
= ei

dδxi

dt
Ax (xi )+ ei

{
dxi

dt

∂Ax

∂xi
+ dyi

dt

∂Ay

∂xi
+ dzi

dt

∂Az

∂xi

}
δxi

]

SI
(5.25)

where, the arguments of A without variation are not explicitly written, i.e., Ax (xi +
δxi ) = Ax (xi + δxi , yi , zi , t), Ay(xi + δxi ) = Ax (xi + δxi , yi , zi , t), etc., and the
derivatives are evaluated at (xi , yi , zi , t). The time integral of the first term on the
r.h.s. in calculating δSvp gives

∫
dt

dδxi

dt
Ax = −

∫
dt

d Ax

dt
δxi (5.26)

where we made partial integration with the fixed values of xi (t) at the lower and
upper ends of the integration. Note that the time evolution of Ax (xi , yi , zi , t) occurs
through the explicit t-dependence of Ax and that of xi , yi , zi , i.e.,

d Ax

dt
= ∂Ax

∂t
+

(
dxi

dt

∂Ax

∂xi
+ dyi

dt

∂Ax

∂yi
+ dzi

dt

∂Ax

∂zi

)
. (5.27)

Using these preliminary results, we can calculate
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δSvp = −
∫

dt
ei

c

∂Ax

∂t
δxi

+
∫

dt
ei

c
δxi

[{
dxi

dt

∂Ax

∂xi
+ dyi

dt

∂Ay

∂xi
+ dzi

dt

∂Az

∂xi

}

−
(

dxi

dt

∂Ax

∂xi
+ dyi

dt

∂Ax

∂yi
+ dzi

dt

∂Ax

∂zi

)]
(5.28)

= −
∫

dt
ei

c

∂Ax

∂t
δxi

+
∫

dt
ei

c
δxi

[
dyi

dt

(
∂Ay

∂xi
− ∂Ax

∂yi

)
− dzi

dt

(
∂Ax

∂zi
− ∂Az

∂xi

)]
(5.29)

= −
∫

dt
ei

c

∂Ax

∂t
δxi

+
∫

dt
ei

c
δxi

[
dyi

dt
(∇ × A)z − dzi

dt
(∇ × A)y

]
(5.30)

= −
∫

dt
ei

c

∂Ax

∂t
δxi +

∫
dt

ei

c
(vi × B)x δxi (5.31)

[
δSvp = ei

∫
dt
∂Ax

∂t
δxi + ei

∫
dt (vi × B)x δxi

]

SI
(5.32)

Denoting the sum δSkin + δSsp + δSvp as δSall, we have

δSall =
∫

dt δxi

[
−mi

d2xi

dt2
+ ei

(
− ∂φ

∂xi
− 1

c

∂Ax

∂t

)
+ ei

c
(vi × B)x

]
,

=
∫

dt δxi

[
−mi

d2xi

dt2
+ ei

(
E + vi

c
× B

)

x

]
,

[ δSall =
∫

dt δxi

{
−mi

d2xi

dt2
+ ei (E + vi × B)x

} ]

SI
(5.33)

In order for this increment to vanish for arbitrary δxi , the [· · · ] part of the integrand
should be zero, i.e.,

mi
d2xi

dt2
= ei

(
E + vi

c
× B

)

x[ = ei (E + vi × B)x
]

SI (5.34)

which is the Newton equation of motion for a charged particle under Lorentz force.
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5.2.2 Equations of Motion for φ and A

To calculate the variations for field variables φ and A, we rewrite the interaction
terms as

L int =
∑

�

{
−e�φ(r�)+ e�

c
v� · A(r�)

}

=
∫

dr
{
−ρ(r)φ(r)+ 1

c
J(r) · A(r)

}

[

=
∑

�

{−e�φ(r�)+ e�v� · A(r�)}

=
∫

dr {−ρ(r)φ(r)+ J(r) · A(r)}
]

SI
(5.35)

where the charge and current densities, ρ and J are defined as (1.14) and (1.15).
The action for the “φ, A” related part of the Lagrangian is a double integral over t
and r . The small variation δq is an arbitrary function of t and r except that they are
fixed to zero at the upper and lower limits of the integrations.

Let us first consider the variation of scalar potential from φ to φ + δφ. The
increment of the action δSφ due to this variation is given from the action for L int +
LEM as

δSφ =
∫

dt
∫

dr
[
−ρ δφ + 1

4πc
∇δφ · ∂A

∂t
+ 1

4π
∇φ · ∇δφ

]
(5.36)

= −
∫

dt
∫

dr
[
ρ + 1

4πc
∇ · ∂A

∂t
+ 1

4π
∇2φ

]
δφ

[
δSφ = −

∫
dt

∫
dr

[
ρ + ε0∇ · ∂A

∂t
+ ε0 ∇2φ

]
δφ

]

SI
(5.37)

The condition for this increment to vanish for arbitrary δφ is the vanishing of [· · · ]
in the integrand

ρ + 1

4π
∇2φ + 1

4πc
∇ · ∂A

∂t
= 0 ,

[
ρ + ε0

(
∇2φ + ∇ · ∂A

∂t

)
= 0

]

SI
(5.38)

which is ∇ · E = 4πρ, Eq. (1.12). For the Coulomb gauge, ∇ · A = 0, it is the
Poisson equation
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∇2φ = −4πρ

[
= − 1

ε0
ρ

]

SI
(5.39)

and for the Lorentz gauge, ∇ · A + (1/c)∂φ/∂t = 0, it is the wave equation for φ

1

c2

∂2φ

∂t2
− ∇2φ = 4πρ

[
= 1

ε0
ρ

]

SI
. (5.40)

The variation of vector potential leads to the change in action

δSA =
∫

dt
∫

dr
[

1

c
J · δA + 1

4πc
∇φ · ∂δA

∂t

+ 1

8πc2

{(
∂(A + δA)

∂t

)2

−
(
∂A
∂t

)2
}

− 1

8π

{
(∇ × A + ∇ × δA)2 − (∇ × A)2

}]
, (5.41)

=
∫

dt
∫

dr
[

1

c
J · δA − 1

4πc

∂∇φ
∂t

δA

+ 1

4πc2

∂A
∂t

· ∂δA
∂t

− 1

4π
∇ × A · (∇ × δA)

]

=
∫

dt
∫

dr
[

1

c
J − 1

4πc

∂∇φ
∂t

− 1

4πc2

∂2 A
∂t2

− 1

4π
∇ × ∇ × A

]
· δA

[ δSA =
∫

dt
∫

dr
[

J − ε0
∂∇φ
∂t

− ε0
∂2 A
∂t2

− 1

μ0
∇ × ∇ × A

]
· δA

]

SI
(5.42)

where we have used partial integration for t and r variables to rewrite the terms
containing ∂∇φ/∂t , ∂δA/∂t , and ∇ × δA. The condition for δSA to be zero for
arbitrary δA is the vanishing of the [· · · ] part of the integrand

1

c2

∂2 A
∂t2

− ∇2 A + ∇
(

∇ · A + 1

c

∂φ

∂t

)
= 4π

c
J , (5.43)

[
1

c2

∂2 A
∂t2

− ∇2 A + ∇
(

∇ · A + 1

c2

∂φ

∂t

)
= μ0 J ]SI (5.44)

where we have used ∇ × ∇ × A = ∇∇ · A − ∇2 A. For the Coulomb gauge, it is

1

c2

∂2 A
∂t2

− ∇2 A + ∇ 1

c

∂φ

∂t
= 4π

c
J [ = μ0 J ]SI (5.45)
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and for the Lorentz gauge it is a simple wave equation for A

1

c2

∂2 A
∂t2

− ∇2 A = 4π

c
J [ = μ0 J ]SI (5.46)

5.2.3 Generalized Momenta and Hamiltonian

The generalized momentum p conjugate to the generalized coordinate q is defined
by p = ∂L/∂q̇ , where q̇ = dq/dt , and the Hamiltonian is defined as

H =
∑

p
dq

dt
− L , (5.47)

where we omitted the suffices of the generalized coordinates and momenta to distin-
guish the particle number and Cartesian components, and the summation is meant
for these suffices. According to this rule of analytic mechanics, the momenta p�, Pφ ,
PA conjugate to the variables (generalized coordinates) r�, φ, and A, respectively,
are

p� = m�v� + e�
c

A(r�), Pφ = 0, � = 1

4πc

(
1

c

∂A
∂t

+ ∇φ
)
,

[
p� = m�v� + e�A(r�), Pφ = 0, � = ε0

(
∂A
∂t

+ ∇φ
) ]

SI
(5.48)

and the Hamiltonian is

H =
∑

�

p� · v� + 1

4πc

∫
dr

(
1

c

∂A
∂t

+ ∇φ
)
∂A
∂t

− L ,

=
∑

�

m�v
2
�

2
+ 1

8π

∫
dr

{(
1

c

∂A
∂t

+ ∇φ
)2

+ (∇ × A)2
}

[

=
∑

�

m�v
2
�

2
+ 1

2

∫
dr

{

ε0

(
∂A
∂t

+ ∇φ
)2

+ 1

μ0
(∇× A)2

} ]

SI

(5.49)

The manipulation from the first to the second line is made by rewriting the second
term of the first line as
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1

4π

∫
dr

(
1

c

∂A
∂t

+ ∇φ
)2

− 1

4π

∫
dr

(
1

c

∂A
∂t

+ ∇φ
)

· ∇φ (5.50)

= 1

4π

∫
dr

[
E2 + E · ∇φ

]
(5.51)

= 1

4π

∫
dr

[
E2 − ∇ · E φ

]
(5.52)

= 1

4π

∫
dr E2 −

∫
drρφ (5.53)

The second term on the r.h.s. cancels the corresponding term in L , and a half of the
first term cancels the vacuum E field energy. The first term on the r.h.s. of Eq. (5.49)
is

∑

�

p� · v� =
∑

�

{
m�v

2
� + e�

c
A(r�) · v�

}
. (5.54)

The second term and a half of the first term cancel the corresponding terms of L ,
and the remaining terms gives the second line of Eq. (5.49).

The last integral of Eq. (5.49) is the energy of EM field. Its T and L components
are

H (T)
EM = 1

8π

∫
dr

{(
4πc�(T)

)2 +
(
∇ × A(T)

)2
}

[
= 1

2

∫
dr

{
1

ε0
[�(T)]2 + 1

μ0

(
∇ × A(T)

)2
} ]

SI
(5.55)

H (L)
EM = 1

8π

∫
dr

⎧
⎨

⎩

(
1

c

∂A(L)

∂t
+ ∇φ

)2

= 1

8π

∫
dr

{
E(L)

}2

⎡

⎣ = ε0

2

∫
dr

⎧
⎨

⎩

(
∂A(L)

∂t
+ ∇φ

)2

= ε0

2

∫
dr {E(L)}2

⎤

⎦

SI

(5.56)

Using the Gauss law ∇ · E(L) = 4πρ, we can show that the L component H (L)
EM is

the Coulomb potential among the particles (Sect. 1.2), i.e.,

H (L)
EM = 1

2

∑

�

∑

�′

e�e�′

|r� − r�′ |

[

= 1

8πε0

∑

�

∑

�′

e�e�′

|r� − r�′ |

]

SI

(5.57)

Then, we have the total Hamiltonian in the following form
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H =
∑

�

1

2m�

{
p� − e�

c
A(r�)

}2 + 1

2

∑

�

∑

�′

e�e�′

|r� − r�′ |

+ 1

8π

∫
dr

[{
4πc �(T)(r)

}2 +
{
∇ × A(T)(r)

}2
]
,

[

=
∑

�

1

2m�

{ p� − e�A(r�)}2 + 1

8πε0

∑

�

∑

�′

e�e�′

|r� − r�′ |

+1

2

∫
dr

{
1

ε0
[�(T)]2 + 1

μ0
(∇ × A(T))2

} ]

SI
(5.58)

which is valid for any gauge. The L field is contained in both A of the first term
and the Coulomb potential, and the remaining part of EM field is written by the
conjugate variables of the T components, A(T) and �(T).

It should be noted that a gauge transformation determines the way to divide the L
field into the contributions of A and φ without affecting the T field. This allows us
to make a gauge independent definition of the Hamiltonians of matter and (T) EM
field in a usual way, i.e., the sum of kinetic energy and Coulomb potential for matter,
and H (T)

EM for the (T) EM field. This definition is very common to most studies in
non-relativistic regime. The choice of gauge is made to facilitate the treatment of the
interaction between matter and L field. The Coulomb gauge is simple in the sense
that T and L field is cleanly separated as A and φ, respectively, and, if an incident L
field does not exist, the L field is considered automatically by the proper treatment
of Coulomb potential. In this sense, we adopted the Coulomb gauge in most part of
this book. The case of L field incidence is treated in Sect. 5.7.

The Coulomb potential in Eq. (1.33) contains the summation over � = �′,
too. It is the self-interaction energy of each charged particle. For a point charge,
it is an infinitely large quantity, and it is finite if a particle size is finite. In the
non-relativistic treatment, we just neglect these terms, since it is a (large) quantity
attached to each particle separately, independent of the inter-particle behavior. In
this way, we arrive at the usual form of Coulomb potential term for a charged particle
system

UC = 1

2

∑

�

∑

�′ 
=�

e�e�′

|r� − r�′ |

⎡

⎣ = 1

8πε0

∑

�

∑

�′ 
=�

e�e�′

|r� − r�′ |

⎤

⎦

SI

. (5.59)

5.3 Another Set of Lagrangian and Hamiltonian

In the main text, we used the Hamiltonians for matter, radiation, and their mutual
interaction in the Coulomb gauge, as given in Sect. 5.2. It is assumed that there is
no external charge density, so that the treatment applies only the external excitation
by T field. (The case of the external excitation by L field is given in Sect. 5.7.) The
interaction is described by the current density and vector potential, so that any linear
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response due to this interaction gives an induced change linear in A. In order to
calculate the conventional electric and magnetic susceptibilities, χe, χm, via P =
χe E, M = χe H , we obviously need a new set of Lagrangian and Hamiltonian,
where the interaction term is linear in E and H explicitly. (In the case of L field
excitation, the interaction between the internal charge density and E(L) is already
written as − ∫

E(L) · P (L)dr , as shown in Sect. 5.7, so that the consideration of this
case is omitted from the argument given below.)

Knowing that the Lagrangian in Sect. 2.2 is the sound basis for general systems of
interacting matter-EM field, we would need a unitary transformation which rewrites
the interaction term J · A into the types like P · E and/or M · H . However, no
such a transformation is known as a rigorous theory. It is known that the interaction
Hamiltonian −E · ∫

dr P is obtained via a unitary transformation based on the
electric dipole approximation, or LWA, (See e.g., p. 304 of [1]). Because of the LWA
assuming the uniformity of A (i.e., ∇ × A = 0) one cannot extend this argument to
determine the magnetic counter part −H · ∫

dr M.
A hint to proceed is obtained by the following argument. If we use the operator

identity J = ∂ P/∂t + c∇ × M, the interaction term
∫

dr J · A is rewritten as

1

c

∫
dr J · A = 1

c

∫
dr
∂ P
∂t

· A +
∫

dr (∇ × M) · A
[ ∫

dr J · A =
∫

dr
∂ P
∂t

· A +
∫

dr (∇ × M) · A
]

SI
(5.60)

The first and second terms on the r.h.s. are written as the invariants from the inner
products of polar and axial vectors, respectively, which are distinguishable for sys-
tems with inversion symmetry. The second term on the r.h.s. is rewritten, by partial
integration, into

∫
dr M · B. Therefore, the magnetic interaction term is

∫
dr M · B,

rather than
∫

dr M · H . Though the first term is not
∫

dr P · E, it is the same type
of invariant made from polar vectors. In this sense, the interaction (1/c)

∫
dr J · A

is divided into two independent terms in inversion symmetric systems, and one of
them is the magnetic interaction linear in B.

In order to study this point more in detail, we consider the Power-Zienau-Wooley
(PZW) transformation [1]. In analytic mechanics, it is well known that the addition
of a total time derivative of an arbitrary function F (of generalized coordinates and
time) to a Lagrangian L does not change the condition for least action. In PZW
transformation we use

F = −1

c

∫
dr P(r) · A(r, t)

[
= −

∫
dr P(r) · A(r, t)

]

SI
(5.61)

where the operator form of P(r) is explicitly given in Sect. 5.1. Then,
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d F

dt
= −1

c

∫
dr

{
∂ P(r)
∂t

· A(r, t)+ P(r) · ∂A(r, t)

∂t

}
,

[
= −

∫
dr

{
∂ P(r)
∂t

· A(r, t)+ P(r) · ∂A(r, t)

∂t

} ]

SI
(5.62)

where ∂ P/∂t = ∑
� v�(∂ P/∂ r�) corresponds to the current density due to P in

Eq. (5.10). The second term in the integral is P · E(T).
The old Lagrangian can be written as

L =
∑

�

m�v
2
�

2
− UC + 1

c

∫
dr J(r) · A(r)

+ 1

8π

∫
dr

{(
1

c

∂A
∂t

)2

− (∇ × A)2
}

[

=
∑

�

m�v
2
�

2
− UC +

∫
dr J(r) · A(r)

+1

2

∫
dr

{

ε0

(
∂A
∂t

)2

− 1

μ0
(∇ × A)2

}]

SI

(5.63)

where the terms related with the L field (or scalar potential) are written in terms
of the inter-particle Coulomb potential UC, (1.33). The EM field described by A is
purely T field. The conjugate momenta for r� and A(r) are m�v�+(e�/c)A(r�) and
(1/4πc2) Ȧ(= −E(T)/4πc), respectively, which should be compared with those for
the new Lagrangian, (5.68) and (5.69).

We can rewrite the sum of d F/dt and the interaction as

1

c

∫
dr J(r) · A(r)+ d F

dt
=

∫
dr

{
M · B + P · E(T)

}
,

[ ∫
dr J(r) · A(r)+ d F

dt
=

∫
dr

{
M · B + P · E(T)

} ]

SI
(5.64)

by the use of Eq. (5.10), partial integration, and

B = ∇ × A, E(T) = −1

c

∂A
∂t

,

[
B = ∇ × A, E(T) = −∂A

∂t

]

SI
. (5.65)

The (orbital) magnetization M(r) is defined by (5.8), so that its product with B can
be written as
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∫
dr M · B = 1

c

∫ 1

0
u du

∑

�

e� {B(ur�)× r�} · v�

[

=
∫ 1

0
u du

∑

�

e� {B(ur�)× r�} · v�

]

SI

(5.66)

The new Lagrangian is

L ′ =
∑

�

m�v
2
�

2
− UC +

∫
dr

{
M · B + P · E(T)

}

+ 1

8π

∫
dr

{
E (T)

2 − B2
}

[

=
∑

�

m�v
2
�

2
− UC +

∫
dr

{
M · B + P · E(T)

}

+1

2

∫
dr

{
ε0 E (T)

2 − 1

μ0
B2

} ]

SI
. (5.67)

Since P appears as an inner product with E(T), only its T component P (T) con-
tributes to the integral.

In order to derive the corresponding Hamiltonian, we calculate the conjugate
momenta ∂L ′/∂v� for r� and ∂L ′/∂ Ȧ for A, where Ȧ = ∂A/∂t . These generalized
momenta p̄� and �̄, respectively, are given as

p̄� = m�v� + 1

c

∫ 1

0
udu e� B(ur�)× r�

[

= m�v� +
∫ 1

0
udu e� B(ur�)× r�

]

SI

(5.68)

�̄ = − 1

4πc
(E(T) + 4π P (T)) = − 1

4πc
D(T)

[
= −(ε0 E(T) + P (T)) = −D(T)

]

SI
(5.69)

The new Hamiltonian HL ′ is obtained according to the standard rule as

HL ′ =
∑

�

p̄� · v� +
∫

dr �̄(r) · Ȧ(r)− L ′ , (5.70)

= H0(L ′) + HR(L ′) + Hint(L ′) (5.71)
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H0(L ′) =
∑

�

p̄2
�

2m�

+ UC + 2π
∫

dr P (T)(r)2 ,

[

=
∑

�

p̄2
�

2m�

+ UC + 1

2ε0

∫
dr P (T)(r)2

]

SI

, (5.72)

HR(L ′) = 1

8π

∫
dr

(
[D(T)]2 + B2

)
,

[
= 1

2

∫
dr

(
1

ε0
[D(T)]2 + 1

μ0
B2

) ]

SI
, (5.73)

Hint(L ′) = −
∫

dr
{

M ′ · B + P (T) · D(T)
}

+
∑

�

e2
�

2m�c2
Ã

2
�

[

= −
∫

dr
{

M ′ · B + 1

ε0
P (T) · D(T)

}
+

∑

�

e2
�

2m�

Ã
2
�

]

SI

(5.74)

where M ′ in Hint(L ′) is the B-independent part of the orbital magnetization operator
(5.8), i.e., the one with v� replaced by p̄�/m�, and

Ã� =
∫ 1

0
udu B(ur�)× r� . (5.75)

In this form, the matter Hamiltonian is H0(L ′), the vacuum EM field Hamiltonian
is HR(L ′), and the linear and quadratic interaction terms Hint(L ′). In particular, we
should note that the linear interaction term is − ∫

dr[M · B + P (T) · D(T)], and
that the matter Hamiltonian H0(L ′) contains an additional term ∝ ∫

dr P (T)(r)2 in
comparison with H0(L).

If we dare to write the interaction terms as − ∫
dr[M · H + P (T) · D(T)], we have

to add the difference −4π
∫

dr M(r)2 to the matter Hamiltonian H0(L ′). Similarly,
if we dare to write the interaction terms as − ∫

dr[M · B + P (T) · E(T)], we have
to add the difference −4π

∫
dr P (T)(r)2 to the matter Hamiltonian H0(L ′). Thus, the

attempts to rewrite the interaction Hamiltonian as −M · H or −P (T) · E(T) must
always face to the corresponding change in the matter Hamiltonian. This means that
the poles of the susceptibilities calculated by such a matter Hamiltonian are different
from those of χcd, (2.39) because of the difference in the matter Hamiltonians. In
the conventional definition of χe and χm, such a change in matter Hamiltonian is
not included. Moreover, the rearranged interaction is no more written in terms of
the conjugate variables {A, �̄}, i.e., it is no more a linear combination of photon
creation and annihilation operators (when quantized). This will bring about a new
complex situation.

The argument in this section shows the difficulty to derive a linear interaction
term proportional to (the T components of) E and H as an exact theory. The prin-
ciple of analytic mechanics allows us to use different sets of dynamical variables to
describe a given system, leading to another sets of “matter, interaction, and EM-field
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Hamiltonians”. On the other hand, there is a natural choice of matter Hamiltonian,
i.e., the sum of the kinetic energy and Coulomb potential of the charged particles,
written in terms of the masses and charges of the particles in a very simple way. The
argument of PZW transformation shows an example of a different set of “matter,
interaction, and EM-field Hamiltonians”, which however does not look a very use-
ful tool. From this consideration, the only reasonable choice as an exact treatment
is the scheme based on the Lagrangian L , with the matter Hamiltonian H0(L) and
the linear interaction Hint(L). The use of the susceptibilities χe and χm, rather than
χem of Sect. 2.4, in the conventional macroscopic M-eqs does not have a sound
foundation in the sense mentioned above. (Note, however, that the interaction with
L-field is well described by χe. See Sect. 5.7.)

Even if we admit the use of interaction Hamiltonian proportional to electric and
magnetic fields, their mutual interference in the case of chiral symmetry does not
allow the simple use of χe and χm. In this case, there has been a phenomenological
treatment called Drude – Born – Fedorov constitutive equations [2], which requires
additional “chiral admittances”. However, as the discussion in Sect. 3.4 shows, this
kind of phenomenology cannot be supported from the first-principles theory.

5.4 Derivation of Constitutive Equation from Density Matrix

In Chap. 2, we have calculated the induced current density from the matter Hamil-
tonian H (0), (2.17), and the matter-EM field interaction Hint, (2.24). Thereby, it is
necessary to fix the initial condition of matter state, and we assumed that the matter
state was in its ground state in the remote past (t → −∞). The result is therefore
dependent on the initial condition of matter. Though the one we used in Chap. 2 is
a standard one, one could use different conditions, too. A typical one is the use of
ensemble for the description of matter states, where the matter states are quantum
statistical ensemble. The time evolution of such an ensemble is described by density
matrix ρ̂(m), which obeys the equation of motion (Liouville equation)

i h̄
d

dt
ρ̂(m) = [H (0) + Hint, ρ̂

(m)] (5.76)

where [a, b] = ab − ba represents a commutator of two operators. Once we know
the solution of this equation ρ̂(m)(t), we can calculate the statistical average of
arbitrary physical quantity b̂ at time t as a diagonal sum (Trace) of the following
form

〈b〉(t) = Tr{ρ̂(m)(t) b̂} =
∑

ν

〈ν|ρ̂(m)(t) b̂|ν〉 . (5.77)

In the case of our interest, b̂ is the current density I(r), (2.27), or (1.15).
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The solution of Eq. (5.76) contains a density matrix corresponding to the initial
condition of the matter state. A typical case of such an initial condition is the canon-
ical ensemble at temperature T , which assumes the initial state of matter as a super-
position of various (ground and excited) states with the weight of the Boltzmann
factor exp(−Eν/kBT ). This initial ensemble allows the EM excitations among the
excited levels, as well as between the ground and excited levels, with the probability
of the Boltzmann factor for the initial quantum level, which is not included in the
calculation of Chap. 2. In this section, we show how this element is incorporated in
the final result.

To solve the equation for the density matrix (5.76) in the lowest order of Hint, we
first rewrite it in the interaction representation

ρ̂(m)(t) = exp(−i H (0)t/h̄) ρ̂(int)(t) exp(i H (0)t/h̄) . (5.78)

Substituting this form into Eq. (5.76), we obtain the equation for ρ̂(int) as

i h̄
d

dt
ρ̂(int) =

[
H ′

int(t), ρ̂
(int)

]
, (5.79)

where

H ′
int(t) = exp(i H (0)t/h̄) Hint exp(−i H (0)t/h̄) . (5.80)

One can solve Eq. (5.79) by iteration, assuming an initial condition

ρ̂(int)(t → −∞) = ρ̂0 . (5.81)

The first order solution satisfies

i h̄
d

dt
ρ̂(int) = [

H ′
int(t), ρ̂0

]
, (5.82)

where the ρ̂(int) on the r.h.s. is replaced by the initial condition ρ̂0. Since ρ̂0 is a
known quantity, we immediately have the solution

ρ̂(int)(t) = ρ̂0 − i

h̄

∫ t

−∞
dt1

[
H ′

int(t1), ρ̂0
]

exp(γ t1) (5.83)

satisfying the initial condition. Here also we assume the adiabatic switching of
matter-EM field interaction as in Eq. (2.31), described by the infinitesimal positive
constant γ (= 0+).

The initial density matrix ρ̂0 represents the matter state (as a statistical ensemble)
in the absence of Hint, it should be a stationary solution of Eq. (5.76) for Hint = 0.
Thus, ρ̂0 should satisfy the condition of stationarity

[H (0), ρ̂0] = H (0) ρ̂0 − ρ̂0 H (0) = 0 . (5.84)
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This commutability of H (0) and ρ̂0 will be used to write the statistical average in a
compact form later. As a typical model of ρ̂0, we take the canonical ensemble

ρ̂0 = 1

Z0
exp

(

− H (0)

kBT

)

=
∑

ν

|ν〉 Wν 〈ν| (5.85)

where Wν = 1

Z0
exp

(
− Eν

kBT

)
, (5.86)

and Z0 is the normalization factor (partition function)

Z0 =
∑

ν

exp

(
− Eν

kBT

)
. (5.87)

Thus, the matrix element of ρ̂0 is generally

〈μ|ρ̂0|μ′〉 = Wμ δμ,μ′ (5.88)

where δμ,μ′ (= 1 for μ = μ′, and = 0 for μ 
= μ′) is the Kronecker’s delta,
The A-linear terms of the statistical average Trace{I(r) ρ̂(m)(t)} arise from the

two sources, as already discussed in relation with Eq. (2.38). One (I1) is the contri-
bution of ρ̂0 in (5.83) combined with the A-linear term, (−1/c)N̂ (r)A(r), of I(r),
(2.14), and the other (I2) is the contribution of the H ′

int induced term of (5.83). In
this term, the linear A dependence is already included in H ′

int, so that we use the A
independent part of the operator I(r). Their explicit forms are

I1 = −1

c
Tr

{
N̂ (r) exp(−i H (0)t/h̄) ρ̂0 exp(i H (0)t/h̄)

}
A(r)

= −1

c

∑

μ

Wμ 〈μ|N̂ (r)|μ〉 A(r) (5.89)

I2 = − i

h̄

∫ t

−∞
dt1 exp(γ t1)

∑

ν

〈ν| exp(−i H (0)t/h̄)
[
H ′

int(t1), ρ̂0
]

exp(i H (0)t/h̄) I(r)| ν〉

= − i

h̄

∫ t

−∞
dt1 exp(γ t1)

∑

ν

〈ν| exp[−i H (0)(t − t1)/h̄]

{Hintρ̂0 − ρ̂0 Hint} exp[i H (0)(t − t1)/h̄] I(r) |ν〉 ,
= − i

h̄

∫ t

−∞
dt1 exp(γ t1)

∑

ν

∑

μ

exp[−i(Eν − Eμ)(t − t1)/h̄]

〈ν|{Hintρ̂0 − ρ̂0 Hint}|μ〉〈μ|I(r) |ν〉 , (5.90)
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For the last transformation, we have used the commutability of H (0) and ρ̂0. Assum-
ing that the vector potential inducing current density has frequency ω, i.e.,

Hint = −1

c

∫
dr ′ I(r ′) · A(r ′, ω) exp(−iωt1) (5.91)

we further rewrite I2 as

I2 = i

ch̄

∑

ν

∑

μ

∫ t

−∞
dt1 exp[−i(Eν − Eμ)(t − t1)/h̄]

∫
dr ′ exp(γ t1)

(Wμ − Wν)〈μ|I(r) |ν〉 〈ν|I(r ′)|μ〉 · A(r ′, ω) exp(−iωt). (5.92)

Carrying out the time integration over t1 and changing the summation induces μ, ν
in one of the summands with the factor Wμ or Wν , we finally obtain

I2 = 1

ch̄
exp(−iωt + γ t)

∑

ν

∑

μ

Wμ

∫
dr ′ [gνμ(ω)〈μ|I(r)|ν〉 〈ν|I(r ′)|μ〉

+hνμ(ω)〈ν|I(r)|μ〉 〈μ|I(r ′)|ν〉] · A(r ′, ω) , (5.93)

where

gνμ(ω) = 1

ωνμ − ω − iγ
, hνμ(ω) = 1

ωνμ + ω + iγ
, (5.94)

and ωνμ = (Eν − Eμ)/h̄.
The sum of I1 and I2 gives the total induced current density. Writing the sum in

the form of I(r, ω), we have

I(r, ω) =
∫

dr ′ χcan(r, r ′, ω) · A(r ′, ω) (5.95)

where

χcan(r, r ′, ω) = −1

c

∑

μ

Wμ〈μ|N̂ (r)|μ〉 δ(r − r ′)

+ 1

c

∑

μ

Wμ

∑

ν

[
gνμ(ω)〈μ|I(r)|ν〉 〈ν|I(r ′)|μ〉

+hνμ(ω)〈ν|I(r)|μ〉 〈μ|I(r ′)|ν〉] . (5.96)

If we take the limit of T = 0◦K, i.e., Wμ = δμ,0, χcan(r, r ′, ω) reduces to
χcd(r, r ′, ω), Eq. (2.39) of Chap. 2. The result obtained in this section is a simple
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extension of χcd by allowing the initial states of excitation at all the excited, as well
as the ground, states of H (0), with the probability Wμ (Boltzmann factor).

5.5 Rewriting the 〈0|N̂(r)|0〉 Term

In the induced microscopic current density, Eq. (2.38), the term proportional to
〈0|N̂ (r)|0〉 has a peculiar form, i.e., it represents a local response in contrast to
the remaining terms. However, there is a useful way of rewriting this term in the fol-
lowing manner, which facilitates the formulation of microscopic nonlocal response
theory. We will show that the following relation

〈0|N̂ (r)|0〉 A(r) =
∑

ν

1

Eν0
[I0ν(r)Fν0(ω)+ Iν0(r)F0ν(ω)] (5.97)

holds as a good approximation, when [a] the relativistic correction in H (0) is neg-
ligible in comparison with the main term, and [b] LWA is valid. This expression
allows us to rewrite the microscopic susceptibility χcd into a compact form (2.44).
Though an essentially same argument is given in [3], we reproduce it here with some
more details.

The relevant term appears as a part of induced current density arising from the A
dependent term of the current density operator

1

c
N̂ (r) A(r) , (5.98)

where

N̂ (r) =
∑

�

e2
�

m�

δ(r − r�) . (5.99)

The operator I(r) is the A-independent part of the current density operator,

I(r) =
∑

�

e�
2m�

[
p�δ(r − r�)+ δ(r − r�) p�

]
. (5.100)

The spin dependent terms are neglected, since the relativistic correction is assumed
to be small.

We introduce one more operator

R̂(r) =
∑

�

e�r�δ(r − r�) , (5.101)
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= r
∑

�

e� δ(r − r�) . (5.102)

Now we evaluate the commutators [R̂ξ , H (0)] and [R̂ξ (r), Îη(r ′)], where ξ, η are
Cartesian coordinates. We begin with

[R̂ξ (r), H (0)] = rξ
∑

�

e�
2m�

[δ(r − r�), p�2] (5.103)

where the relativistic correction terms are neglected in H (0). For the evaluation of
the commutators we use the relation

p� δ(r − r�) = − p δ(r − r�) , (5.104)

which allows us to move p to the outside of the summation over �.
The commutator in (5.103) is expanded as

[
δ(r − r�), p�2

]
= δ(r − r�) p�2 − p�2δ(r − r�)

= δ(r − r�) p�2 − p� · { p�δ(r − r�)} − p� δ(r − r�) · p�
= δ(r − r�) p�2 + p� · { p δ(r − r�)} − { p� δ(r − r�)}
· p� − δ(r − r�) p�2

= p · { p�δ(r − r�)+ δ(r − r�) p�} (5.105)

where (5.104) is used twice. Substituting this result into (5.103), we obtain

[
R̂ξ (r), H (0)

]
= rξ p · I(r) . (5.106)

Another commutator [R̂ξ (r), Îη(r ′)] is evaluated as

[
R̂ξ (r), Îη(r ′)

]
= rξ

∑

�

e2
�

2m�

[
δ(r − r�), p�η δ(r ′ − r�)

+δ(r ′ − r�) p�η
]

= rξ
∑

�

e2
�

2m�

{
δ(r − r�) p�η δ(r ′ − r�)− p�η δ(r ′ − r�) δ(r − r�)

+δ(r − r�) δ(r ′ − r�) p�η − δ(r ′ − r�) p�η δ(r − r�)
}
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= rξ
∑

�

e2
�

2m�

[
δ(r − r�) {p�η δ(r ′ − r�)} + δ(r − r�) δ(r ′ − r�) p�η

− {
p�η δ(r ′ − r�)

}
δ(r − r�)− δ(r ′ − r�)

{
p�η δ(r − r�)

}

−δ(r ′ − r�) δ(r − r�) p�η + δ(r − r�) δ(r ′ − r�) p�,η
−δ(r ′ − r�)

{
p�η δ(r − r�)

} − δ(r ′ − r�) δ(r − r�) p�η
]

= rξ
∑

�

e2
�

2m�

[
−p′

ηδ(r − r�) δ(r ′ − r�)+ p′
ηδ(r

′ − r�) δ(r − r�)

+pηδ(r ′ − r�) δ(r − r�)+ pηδ(r ′ − r�) δ(r − r�)
]

= rξ pη
∑

�

e2
�

m�

δ(r ′ − r�) δ(r − r�) (5.107)

= rξ
{

pηδ(r − r ′)
}

N̂ (r ′) (5.108)

Let us define two operators

Q̂(ω) =
∫

dr R̂(r) · A(r, ω) (5.109)

F̂(ω) =
∫

dr Î(r) · A(r, ω) , (5.110)

in terms of which Eqs. (5.106) and (5.108) are rewritten as

[
Q̂(ω), H (0)

]
= −i h̄

∫
dr r · A(r, ω)∇ · Î(r) (5.111)

[
Q̂(ω), Îη(r ′)

]
= −i h̄

∫
dr r · A(r, ω)

[
∂

∂rη
δ(r − r ′)

]
N̂ (r ′) . (5.112)

These two integrals can be rewritten via partial integration into

[
Q̂(ω), H (0)

]
= i h̄

∫
dr ∇ {r · A(r, ω)} · Î(r) (5.113)

[
Q̂(ω), Îη(r ′)

]
= i h̄

∫
dr

∂

∂rη
{r · A(r, ω)}δ(r − r ′)N̂ (r ′) . (5.114)

Both of them contain the following factor in the integrand

∂

∂rη
{r · A(r, ω)} = Aη +

∑

ξ

rξ
∂Aξ
∂rη

, (5.115)

which can be approximated as Aη(r, ω) when LWA is a good approximation. In this
case, these two commutators can be written as
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[
Q̂(ω), H (0)

]
= i h̄

∫
dr A(r, ω) · Î(r) (5.116)

[
Q̂(ω), Î(r ′)

]
= i h̄ A(r ′, ω) N̂ (r ′) . (5.117)

Equation (5.97) is the 〈0| · · · |0〉 matrix element of Eq. (5.117), i.e.,

〈0|N̂ (r)|0〉 A(r, ω) = −i

h̄

∑

ν

[〈0|[Q̂(ω)|ν〉〈ν| Î(r)|0〉

− 〈0|[ Î(r)|ν〉〈ν|Q̂(ω)|0〉] . (5.118)

To evaluate 〈ν|Q̂(ω)|μ〉, we take the 〈ν| · · · |μ〉 matrix element of Eq. (5.116) as

(Eμ − Eν) 〈ν|Q̂|μ〉 = i h̄Fνμ (5.119)

Thus, we obtain the desired result

〈0|N̂ (r)|0〉 A(r, ω) =
∑

ν

1

Eν0
[F0ν(ω)Iν0(r)+ Fν0(ω)I0ν(r)] , (5.120)

with Eν0 = Eν − E0.

The corresponding expression for the case of canonical ensemble is obtained as

∑

μ

Wμ 〈μ|N̂ (r)|μ〉 A(r, ω) =
∑

μ

∑

ν

Wμ

Eνμ
[
Fμν(ω)Iνμ(r)+ Fνμ(ω)Iμν(r)

]
. (5.121)

where Eνμ = Eν − Eμ, and this allows us to rewrite the susceptibility (5.96) into

χcan(r, r ′, ω) = 1

c

∑

μ

Wμ

∑

ν

[
ḡνμ(ω)〈μ|I(r)|ν〉 〈ν|I(r ′)|μ〉

+h̄νμ(ω)〈ν|I(r)|μ〉 〈μ|I(r ′)|ν〉] , (5.122)

where

ḡνμ(ω) = gνμ(ω)− 1

Eνμ
, (5.123)

h̄νμ(ω) = hνμ(ω)− 1

Eνμ
. (5.124)
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5.6 Division of Q̄μν into E2 and M1 Components

The Taylor expansion of the current density matrix element Ĩμν leads to the sum of
various moments, as in Eq. (2.71). The second term Q̄μν is the first order moment
of the orbital current density. As discussed in Sect. 5.1, the orbital current density
operator is the sum of the contributions of electric polarization and orbital magneti-
zation, which induce E2 and M1 transitions, respectively. From this viewpoint, it is
interesting to divide the matrix element Q̄μν into E2 and M1 components.

For this purpose, we write k̂ · Q̄μν as

k̂ · Q̄μν =
∑

�

e�
2m�

∫
dr

k̂ · {< μ|(r� − r̄) p� δ(r� − r)+ δ(r� − r)

(r� − r̄) p�|ν >} .
(5.125)

Since r̄ plays no important role in this discussion, we put r̄ = 0 for the moment.
We consider a particular � and omit � from r� and p�. Rewriting k̂ · r p as

(k̂ · r p)x = k̂x xpx + k̂y ypx + k̂z zpx

= x(k̂x px + k̂y py + k̂z pz)+ k̂y(ypx − xpy)+ k̂z(zpx − xpz)

(5.126)

we find

k̂ · r p = r(k̂ · p)− k̂ × (r × p) . (5.127)

Since r × p is the orbital angular momentum L (of each particle), this one-particle
operator induces M1 transition, while the remaining term r(k̂ · p) has the electric
quadrupole character contributing to E2 transition. The factor k · r p · A, which
appears in the variable Fμν(ω), can be rewritten as

k · r p · A = (k · p)(r · A)+ L · (k × A) . (5.128)

Since the factor k × A is the k Fourier component of −i∇ × A (= −i B), this term
is proportional to the orbital Zeeman energy.
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Thus, we have the desired division of k · Q̄μν into k · Q̄
(e2)
μν −ck̂× M̄

(orb)
μν , where

Q̄
(e2)
μν =

∑

�

e�
2m�

∫
dr

{< μ|(r� − r̄)k̂ · p� δ(r� − r)+ δ(r� − r) (r� − r̄)k̂

· p�|ν >} , (5.129)

and

M̄
(orb)
μν =

∑

�

e�
2m�c

∫
dr {< μ|L�(r̄) δ(r�− r)+δ(r�− r) L�(r̄)|ν >} . (5.130)

The angular momentum of the �-th particle is defined as L�(r̄) = (r� − r̄) × p�,
i.e., around the center position r̄ .

5.7 Problems of Longitudinal (L) field

5.7.1 T and L Character of Induced Field

In terms of vector and scalar potentials, the microscopic M-eqs are

∇2φ = −4πρ , (5.131)

1

c2

∂2 A
∂t2

− ∇2 A + ∇ 1

c

∂φ

∂t
= 4π

c
J , (5.132)

in the Coulomb gauge, and

1

c2

∂2φ

∂t2
− ∇2φ = 4πρ , (5.133)

1

c2

∂2 A
∂t2

− ∇2 A = 4π

c
J , (5.134)

in the Lorentz gauge. This J represents the orbital contribution, Jorb, and, in both
cases, we could add the relativistic correction term (spin induced current density)
J s to the r.h.s., as discussed in deriving Eq. (2.27), and this does not change the
following arguments.

The equation for A in the Coulomb gauge can be rewritten as

1

c2

∂2 A
∂t2

− ∇2 A = 4π

c
J (T) , (5.135)
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indicating that this is the equation only for T components. This rewriting is done by
substituting the solution of the Poisson equation

φ(r) =
∫

dr ′ ρ(r ′)
|r − r ′| (5.136)

into (5.132), and replacing the ∂ρ/∂t with −∇ · J (continuity equation). This gives

1

c2

∂2 A
∂t2

− ∇2 A = 4π

c
J(r)+ 1

c
∇

∫
dr ′ ∇′ · J(r ′)

|r − r ′| . (5.137)

The r.h.s. of this equation is (4π/c)J (T), because, if we apply divergence from the
left, it becomes zero by using ∇2(1/|r − r ′|) = −4πδ(r − r ′). Namely, the quantity

− 1

4π
∇

∫
dr ′ ∇′ · C(r ′)

|r − r ′| (5.138)

for a general vector field C is its L component.
The solutions of the M-eq for A in the Coulomb and Lorentz gauges are given in

terms of the scalar EM Green function defined by, for q = ω/c,

(−∇2 − q2) Gq(r − r ′) = 4π δ(r − r ′) , (5.139)

where its special solution is Gq(r) = exp(iq|r|)/|r|. The solution of the M-eq for
A in the Coulomb gauge is the T field as

A(r, ω) = 1

c

∫
dr ′ Gq(r − r ′) J (T)(r ′, ω) , (5.140)

and the solution in the Lorentz gauge is

A(r, ω) = 1

c

∫
dr ′ Gq(r − r ′) J(r ′, ω) , (5.141)

containing both T and L components. Obviously, the T component of the latter
agrees with the solution in the Coulomb gauge. The solution for φ in the Lorentz
gauge has a similar form

φ(r, ω) =
∫

dr ′ Gq(r − r ′)ρ(r ′, ω) . (5.142)

If we rewrite the Lorentz condition in terms of these solutions as

∇ · A + 1

c

∂φ

∂t
= 1

c

∫
dr ′ Gq(r − r ′){∇′ · J(r ′)− iωρ} = 0 , (5.143)
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its validity is guaranteed by the continuity equation.
The form of the induced L-field is the one due to J (L)(r) propagated via the

scalar Green function Gq , but there is an alternative way of description, i.e., the
one due to the “whole” current density J(r) propagated via the L component of the
tensor Green function. For this purpose, we rewrite the induced A(L)(r) as

− 1

c

∫
dr ′ Gq(r − r ′)J (L)(r ′)

= − 1

4πc

∫
dr ′

∫
dr ′′ Gq(r − r ′)∇

′′∇′′ · J(r ′′)
|r ′ − r ′′| (5.144)

where partial integration is made to convert ∇′ to ∇′′. From the equation (−∇2 −
q2)Gq = 4πδ(r − r ′) and that for G0, we get Gq = (−1/q2)∇2[Gq − G0]. Substi-
tuting this expression into (5.144), and performing the partial integration about ∇2,
we can rewrite the r.h.s. of (5.144) as

1

4πq2c

∫
dr ′

∫
dr ′′ [Gq(r − r ′)− G0(r − r ′)] ∇′2 1

|r ′ − r ′′| ∇′′∇′′ · J(r ′′) .
(5.145)

which leads, via ∇′2(1/|r ′ − r ′′|) = −4πδ(r ′ − r ′′), to the expression of the whole
L field E(L) = −∇φ + iqA(L) as

E(L)(r) = i

ω

∫
dr ′ G̃(L)

q (r − r ′) · J(r ′) . (5.146)

The tensor Green function describing the L part of the induced field is

G̃(L)
q (r − r ′) = 1

q2
G0(r − r ′) ∇′∇′ (5.147)

which produces a L field by operating on a full current density (with T and L com-
ponents). The counterpart, i.e., the tensor Green function describing the T part of the
induced field is obtained by subtracting this L part from the total one tensor Green
function G̃q as

G̃(T)
q (r − r ′) = Gq(r − r ′)1 + 1

q2
[Gq(r − r ′)− G0(r − r ′)] ∇′∇′ (5.148)

which produces a T field by operating on a full current density. (∇ × ∇ × G̃q −
q2G̃q = 4πδ(r − r ′)). Thus the T field induced by J can be expressed in the
following two ways, i.e.,

AT(r, ω) = 1

c

∫
dr ′ Gq(r − r ′) J (T)(r ′, ω) = 1

c

∫
dr ′ G̃(T)

q (r − r ′) · J(r ′, ω) .
(5.149)
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5.7.2 Excitation by an External L Field

When matter is excited by an external EM field, there arises an induced current
density which may also be described as charge density, electric polarization, or
magnetization. The eigenmodes of these induced polarizations correspond to the
quantum mechanical excited states of the matter, and can be classified into the L,
T, and LT-mixed modes according to their symmetry properties. The external EM
field inducing matter excitations as an incident field has also T and L characters.
Typically, light is a T field, and the field due to external charged particles is regarded
as a L field. (However, a moving charge produces T field as well as L field, which is
known as Cerenkov radiation [4] and Smith-Purcell radiation (SPR) [5]. Cerenkov
radiation is the propagating T waves produced by a moving charge when the particle
velocity exceed the light velocity in a dielectric medium. Below the critical velocity,
there arise evanescent waves of T character, which, together with the (evanescent) L
components, interact with the periodic crystals, producing scattered (propagating)
light modes of T character i.e., SPR.)

The incident T field can excite “T and LT mixed” modes of matter, and the inci-
dent L field with “L and LT mixed” modes of matter excitations. If the matter exci-
tations are purely T and purely L modes in a given geometry, they can be detected
by the spectroscopy using incident field of T- (light) and L- (charged particles) char-
acters, respectively. As a propagating wave, T mode is polarized perpendicular to
the wave vector of the mode, so that there are two independent directions of polar-
ization, while L mode, polarized along the wave vector, has only one direction of
the polarization. Therefore, we need two different polarizations to detect both types
of the T modes.

When the symmetry of matter is low, there arises a mixing between the T and
L modes. These LT mixed modes can generally be detected by either L or T inci-
dent field. When this mixing occurs, there is no purely L modes from symmetry
ground, while there can still be another, purely T modes, which do not mix with L
modes. Depending on the symmetry, we can classify all the modes into (a) LT-mixed
modes alone, (b) LT-mixed modes and purely T-modes, (c) L-modes and two types
of T modes. The treatment in the main text restricting the incident EM field to the
T character can cover the most cases except for the matter excitations of purely
L-character in case (c).

The interaction Hamiltonians for the T and L modes derived from the standard
Hamiltonian of the coupled matter-EM field system in the Coulomb gauge are
different, i.e.,

HintL = −
∫

dr P · E , (5.150)

HintT = −1

c

∫
dr J0 · A , (5.151)

where J0 is defined in Eq. (2.13) and O(A2) term is omitted in HintT. The sec-
ond term HintT is Hint defined in Eq. (2.24). They are derived from the different
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sources, i.e., HintL is derived from the Coulomb potential UC (as shown below)
and HintT from the kinetic energy term

∑
(1/2m){ p − (e/c)A}2. As discussed in

detail in Sect. 5.3, there is no exact way to rewrite HintT in terms of E and P with-
out changing the matter Hamiltonian consisting of the sum of the kinetic energy
and Coulomb potential (plus relativistic correction). In the conventional theory of
macroscopic M-eqs, this distinction is not severely recognized, and very often the
form − ∫

dr P · E is used as the interaction Hamiltonian for both T and L modes.
However, as the careful consideration in this book shows, we should distinguish the
form of interaction Hamiltonian for T and L modes.

As a missing part of the main text, we give a description here about the matter
excitation by an EM field of L character. This contains the cases of electron energy
loss spectroscopy and the application of static electric field. Another example would
be the use of a “probe” to measure the response of a “sample”, as in the case
of scanning near-field optical microscopy (SNOM), where both probe and sample
consist of charged particles interacting via the EM field of L, as well as T, character.
More generally, if one separates matter into two parts, i.e., sample part and the rest,
these two parts can generally interact via the Coulomb interaction, even if they are
electronically separated. In these cases, the interaction between EL and P serves,
on the one hand, to detect the L response of matter (or sample), and contributes, on
the other, to the resonance energy of the response spectrum.

In the presence of the external potential φext(r, t) due to an external charge den-
sity ρext(r, t), i.e.,

φext(r, t) =
∫

dr ′ ρext(r ′, t)

|r − r ′| , (5.152)

we need to consider the interaction between φext(r, t) and the internal charge den-
sity, i.e., “matter” charge density ρ(r)

HintL =
∫

dr ρ(r) φext(r, t) , (5.153)

=
∫

dr
∫

dr ′ ρ(r, t) ρext(r ′, t)

|r − r ′| , (5.154)

= −
∫

dr P (L)(r) · EextL(r, t) , (5.155)

where we have used EextL(r, t) = −∇φext(r, t), ∇ · P (L)(r) = −ρ(r), par-
tial integration, and the assumption that the matter system is charge neutral, i.e.,∑
� e� = 0.
Generally speaking, an external field may contain both L and T components.

In that case, we need to add the interaction Hamiltonian HintT also to HintL. This
will lead to the complete expression of linear response of a given matter system.
However, we just give only the contribution of HintL below, since the consequence
of HintT is discussed in detail in Chap. 2.
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The current density induced by EextL is calculated in a similar manner as in
Sect. 2.2 by the time dependent perturbation theory for the matter Hamiltonian H (0)

and the matter-EM field interaction HintL. The expectation value of current density
is

I(r, ω) =
∑

ν

∫
dr ′ [gν(ω)I0ν(r)P

(L)
ν0 (r

′)

+hν(ω)Iν0(r)P
(L)
0ν (r

′)
]

· EextL(r ′, ω) ,
(5.156)

=
∫

dr ′χJEL(r, r ′, ω) · EextL(r ′, ω) , (5.157)

where we introduce the susceptibility for the induced current density due to the
external L field. Since we do not consider the presence of vector potential A in this
calculation, the term due to the A-dependent term in particle velocity

− 1

c
〈0|N̂ (r)|0〉 A(r, ω) (5.158)

does not exist in the expectation value. The products of the matrix elements of I
and P can be rewritten by those of two I’s, as shown in Sect. 3.2, which allows us
to unify the expressions of induced current densities by T and L fields.

The induced current density contains the components of both electric polarization
−iω < P > and magnetization c∇× < M >. Since the former is zero for ω = 0,
one may prefer < P > to < I > as an induced change of matter which is non-zero
for ω = 0. This is calculated in the same manner as

P(r, ω) =
∑

ν

∫
dr ′ [gν(ω)P0ν(r)P

(L)
ν0 (r

′)+ hν(ω)Pν0(r)P
(L)
0ν (r

′)
]

·EextL(r ′, ω) . (5.159)

The L electric field produced by this polarization is

E(L)(r, ω) = ∇
∫ ∇′ · P (L)(r ′)

|r − r ′| dr ′ =
∫ ∇′∇′ · P (L)(r ′)

|r − r ′| dr ′

= −4π P (L)(r, ω) , (5.160)

where we used partial integration, ∇∇· = ∇2 + ∇ × ∇×, ∇ × P (L) = 0, and
∇2(1/|r − r ′|) = −4πδ[r − r ′].



5.7 Problems of Longitudinal (L) field 127

5.7.3 L and T Fields Produced by a Moving Charge

An external charge density has been treated as a source of L electric field in the
previous subsections. When the charge density is moving, however, it can induce
T-, as well as L-field. Such a component is related with Cerenkov radiation and
Smith-Purcell radiation, as mentioned in Sect. 5.7.2. In this subsection, we calculate
the T- and L-field produced by a charged particle moving with a constant velocity.

Let us consider a particle with a charge Q moving in the x-direction with a veloc-
ity v. Following Yamaguti et al. [5], we write the associated charge density as

ρ(r, t) = Q δ(x − vt) δ(y) δ(z) , (5.161)

and the current density due to this moving particle as

J(r, t) = Qv x̂ δ(x − vt) δ(y) δ(z) . (5.162)

Here we use the definition of Fourier and its reverse transforms as

f (t) = 1

2π

∫
dω e−iωt f̄ (ω) , f̄ (ω) =

∫
dt eiωt f (t) (5.163)

g(x) = 1

2π

∫
dk eikx ḡ(k) , ḡ(k) =

∫
dx e−ikx g(x) . (5.164)

Then, the ω Fourier components of ρ and J are

ρ(r, ω) = Q

v
eikx x δ(y) δ(z) , (5.165)

J(r, ω) = Qx̂ eikx x δ(y) δ(z) , (5.166)

where the wave number in the x-direction is defined as kx = ω/v. Obviously these
definitions of ρ and J satisfy the continuity equation as seen from

∂ρ

∂t
= −iωρ (5.167)

∇ · J = i
Qω

v
eikx x δ(y) δ(z) . (5.168)

The L field EL is the solution of ∇ · EL = 4πρ. In the form of potential defined
by EL = −∇φ, the solution is

φ(r, ω) =
∫

dr ′ ρ(r ′, ω)
|r − r ′| . (5.169)

By the Fourier expansion of 1/|r − r ′|, we obtain
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φ(r, ω) = 1

8π3

∫
dq

∫
dr ′ 4π

q2
ρ(r ′, ω) exp[iq · (r − r ′)] (5.170)

= Q

πv

∫
dq

exp[iq · r]
|q|2 δ(qx − kx ) (5.171)

= Q

πv

∫
dqy

∫
dqz

exp(ikx x + iqy y + iqzz)

k2
x + q2

y + q2
z

(5.172)

= Q

v

∫
dqy

1

γ0
exp(ikx x + iqy y − γ0|z|) , (5.173)

where γ0 =
√

k2
x + q2

y . In evaluating the third equation, we used Cauchy theorem.

Thus we obtain

EL(r, ω) = i
Qω

v2

∫
dqy

1

γ0

(
1,

qy

kx
,±i

γ0

kx

)
exp[ikx x + iqy y − γ0|z|] . (5.174)

The ± signs for the z-component mean that (−) sign for z > 0, and (+) for z < 0.
This is the plane wave expansion in the (x,y) plane, which leads to the evanescent
L-field in the |z|-direction with the decay constant dependent on (kx , qy).

The T field ET can be calculated as E − EL. The total electric field E is easily
obtained from the equation for the vector potential A in Lorentz gauge

(
∇2 + ω2

c2

)
A(r, ω) = −4π

c
J(r, ω) (5.175)

together with the relation between A and E

E(r, ω) = ic

ω

[
ω2

c2
+ ∇∇·

]
A(r, ω) . (5.176)

The solution of Eq. (5.175) is obtained via Fourier expansion as

A(r, ω) = − Q

cπ
x̂

∫
dqydqz

exp(ikx x + iqy y + iqzz)

(ω/c)2 − k2
x − q2

y − q2
z
. (5.177)

Performing the qz-integration via Cauchy theorem, we obtain

E(r, ω) = i
ωQ

v2

∫
dqy

(
1 − β2,

qy

kx
,±i

�0

kx

)
exp(ikx x + iqy y − �0|z|)

�0
,

(5.178)
where

β = v/c . (5.179)
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The decay constant of the total E in the z-direction is

�0 =
√
(ω/v)2 − (ω/c)2 + q2

y , (5.180)

which is smaller than that of ET

γ0 =
√
(ω/v)2 + q2

y (5.181)

This leads to the expression of ET as

ET(r, ω) = i
ωQ

v2
eikx x

∫
dqy

[(
−β2 + 1,

qy

kx
,±i

�0

kx

)
exp(iqy y − �0|z|)

�0

−
(

1,
qy

kx
,±i

γ0

kx

)
exp(iqy y − γ0|z|)

γ0

]
.

(5.182)

For v → 0, ET is smaller than EL by the factor β2.

5.8 Dimension of the Susceptibilities in SI and cgs Gauss Units

One of the tedious aspects of SI units system is the different dimensions of E,
B, D, H , and hence, various susceptibilities. In writing the SI expressions of the
formulas, especially in Sect. 3.1, we need to pay particular attention to this point.
In this subsection, we present some consideration on this problem. We denote the
dimension of a physical quantity U as [U ], and those of length, time, electric charge,
and energy as L , T , [e], and E , respectively.

From the Faraday law in SI units, we have L−1[E] = T −1[B], so that

[E] = LT −1[B] . (5.183)

Similarly, from the decomposition of current density as I = ∂ P/∂t + ∇ × M, we
have

[M] = LT −1[P] . (5.184)

The dimension of the matrix elements in the expressions of χeE, χeB, χmB, χmE in
Sect. 3.1 are

[ J̄ν0] = [e]LT −1, Q̄(e2)
ν0 = [e]L2T −1, [M̄ν0] = [e]L2T −1 . (5.185)
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From the form of Coulomb potential, the square of electric charge has the dimension
[e2] = EL[ε0]. Using these results, we can evaluate the dimension of the suscepti-
bilities. For example,

[χeE] = [1/ω2V ][ḡν]
[

J̄ 2
ν0

]
= T 2L−3E−1[e2]L2T −2

= T L−3E−1EL[ε0]L2T −2 = [ε0] . (5.186)

In the similar way, we obtain

[χeB] = [1/ωV ]E−1EL[ε0]L3T −2 = [ε0]LT −1 , (5.187)

[χmE] = [1/ωV ]E−1EL[ε0]L3T −2 = [ε0]LT −1 , (5.188)

[χmB] = [1/V ]E−1EL[ε0]L4T −2 = [ε0]L2T −2 . (5.189)

This leads to

[χeE E] = [χeB B] = [ε0][E] , (5.190)

[μ0χmE] = [μ0ε0]LT −1 = L−1T , (5.191)

[μ0χmB] = [μ0ε0]L2T −2 = 1 , (5.192)

which can be used to judge the correct combinations of different quantities from
the dimensional viewpoint. For example, let us consider the case of rewriting the
microscopic Ampère law into macroscopic form in SI units. Substituting I =
∂ P/∂t + ∇ × M (P = χeE E + χeB B, M = χmE E + χmB B) into the microscopic
Ampère law, we have

1

μ0
∇ × (B − μ0 M) = ∂

∂t
(ε0 E + P) , (5.193)

where the dimension of

μ0 M = μ0χmE E + μ0χmB B (5.194)

is same as that of B, and the dimension of

P = χeE E + χeB B (5.195)

is [ε0][E], so that the combinations B − μ0 M and ε0 E + P are seen to be dimen-
sionally correct.

Contrary to the SI units system, we have much simpler relationship among the
fields E, B, D, H in the cgs Gauss units system. From the Faraday law, we have
[E] = [B] and from Ampère law [P] = [M], so that all the fields have the same
dimension, i.e., [E] = [B] = [D] = [H] = [P] = [M], and all the linear suscepti-
bilities χeE, χeB, χmB, χmE and (ε, μ) are non-dimensional.
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