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PREFACE

Advances in disease prevention and treatment have greatly improved the quality of 
life of patients and the general population. However, it is challenging to truly harness 
these advances in patient‐centered medical decision‐making for the uncertainty associated 
with disease risks and care outcomes, as well as the complexity of the technologies. 
This book contains a collection of cutting‐edge research studies that apply decision 
analytics and optimization tools in disease prevention and treatment. Specifically, the 
book comprises the following three main parts.

Part 1: Infectious Disease Control and Management. Common infectious 
 diseases are considered in this part, including tuberculosis (Chapter 1), HIV infection 
(Chapter 2), influenza (Chapter 3), chlamydia infection (Chapter 4), and hepatitis C 
(Chapter 6). Although not focusing on a specific type of infectious disease, Chapter 5 
deals with the costs and efficacy of detecting infectious agents in donated blood. 
Controls and decisions investigated in this part include budget allocation (Chapter 2), 
school closure or children vaccination (Chapter  3), screening scheme design 
(Chapters 4 and 5), and a whole set of interventions (Chapter 6) such as behavior and 
public health interventions. Disease modeling techniques introduced in this part 
include microsimulation (Chapter  1), stochastic transmission dynamic model 
(Chapter 3), compartmental model (Chapter 4), and Markov‐based model (Chapter 6).

In this part, Chapters 1 and 6 provide excellent overviews of decision‐analytic 
modeling research in developing policy guidelines. Between the two chapters, 
the former focuses more on the disease modeling, whereas the latter focuses more on 
the analysis with a holistic view covering screening, monitoring, and treatment. In 
addition, Chapter 6 deals with long‐term management of an infectious disease, which 
helps make the transition to the second part of the book.
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Part 2: Noncommunicable Disease Prevention. This part starts with Chapter 7, 
which examines screening strategies for the prevention of cervical cancers, which are 
mainly caused by human papillomavirus (HPV) infection. Chapter  7 concerns 
 disease progression from the viewpoint of HPV infection rather than the infectious 
disease itself. The chapter provides a good connection with the first part of the book. 
Other prevalent noncommunicable diseases considered in this part include breast 
cancer (Chapters 8 and 10), prostate cancer (Chapter 9), and cardiovascular diseases 
(Chapter 11). Methodologies introduced in this part cover simulation with model‐
based analyses for screening strategies (Chapter  7), Markov decision process 
(Chapter  8), partially observable Markov decision process (Chapter  9), cost‐
effectiveness analysis under a partially observable Markov chain model (Chapter 10), 
and agent‐based modeling (Chapter 11).

Part 3: Treatment Technology and System. In this part, optimization studies of 
several treatment decisions and technologies are reported, including high‐dose‐rate 
brachytherapy (Chapter 12), intensity‐modulated radiation therapy (Chapters 13 and 
14), volumetric modulated arc therapy (Chapter 14), cardiovascular disease preven-
tion and treatment (Chapter 15), and various treatment decisions for type II diabetes 
(Chapter 16). Methodologies introduced comprise multiobjective, nonlinear, mixed‐
integer programming model (Chapter 12), fluence map optimization (Chapter 13), 
sliding window optimization (Chapter  14), Markov modeling (Chapter  15), and 
Markov decision process (Chapter 16).

The book concludes with Chapter 17, which uniquely presents optimization‐based 
classification models for early detection of disease, risk prediction, and treatment 
design and outcome prediction. This chapter is expected to showcase extended 
potentials of optimization techniques and motivate more operations researchers to 
study biomedical data mining problems.

We believe this book can serve well as a handbook for researchers in the field of 
medical decision modeling, analysis, and optimization, a textbook for graduate‐level 
courses on Or applications in healthcare, and a reference for medical practitioners 
and public health policymakers with interest in health analytics.

Lastly, we would like to express our sincere gratitude to the following reviewers 
for taking their time to review book chapters and provide valuable feedback for our 
contributors in the blind‐review process: Turgay Ayer, Christine Barnett, Bjorn Berg, 
Margaret Brandeau, Brian Denton, Jeremy Goldhaber‐fiebert, Shadi Hassani 
Goodarzi, Karen Hicklin, Julie Ivy, Amin Khademi, Anahita Khojandi, Yan Li, 
Jennifer Lobo, Maria Mayorga, Nisha Nataraj, ehsan Salari, Burhan Sandikci, 
Joyatee Sarker, Carolina Vivas, fan Wang, Xiaolei Xie, Yiwen Xu, and Yuanhui 
Zhang. We would also like to acknowledge the great support we received from Wiley 
editors, Sumathi elangovan, Jon Gurstelle, Vishnu Narayanan, Kathleen Pagliaro, 
Vishnu Priya. r and former editor Susanne Steitz‐filler.
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1
OPTIMIZATION IN INFECTIOUS 
DISEASE CONTROL AND 
PREVENTION: TUBERCULOSIS 
MODELING USING 
MICROSIMULATION

Sze‐chuan Suen
Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern 
California, Los Angeles, CA, USA

Compared with many other optimization problems, optimization of treatments for 
national infectious disease control often involves a relatively small set of feasible 
interventions. The challenge is in accurately forecasting the costs and benefits of an 
intervention; once that can be evaluated for the limited set of interventions, the best 
one can be easily identified. Predicting the outcome of an intervention can be diffi-
cult due to the complexity of the disease natural history, the interactions between 
individuals that influence transmission, and the lack of data. It is therefore important 
to understand how a particular disease affects patients, spreads, and is treated in order 
to design effective control policies against it.

One such complex disease is tuberculosis (TB), which kills millions of people every 
year. It is transmitted through respiratory contacts, has a latent stage, and is difficult to 
diagnose and cure in resource‐constrained settings, and treatment success varies by 
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demographic factors like age and sex. Moreover, the mechanisms of disease transmission 
are not fully known, making modeling of transmission difficult, and it is particularly 
prevalent in areas of the world where reliable disease statistics are hard to find.

All of these characteristics make TB a difficult disease to model in the settings 
where choosing an optimal control policy is most important. Traditional compart-
mental disease models may become intractable if all relevant demographic and 
treatment stratifications are specified (state space explosion), so a microsimulation 
may be a good alternative for modeling TB dynamics. In a microsimulation, individual 
health and treatment states are probabilistically simulated over time and averaged 
together to form population statistics. This allows for greater modeling flexibility and 
a more tractable model but may also result in problems of model stochasticity.

In this chapter, we first discuss the epidemiology of the disease, illustrating why 
TB modeling is necessary and highlighting challenging aspects of this disease. In the 
second section, we provide a brief overview of simulation and then discuss in depth 
a microsimulation model of TB to illustrate subtleties of using microsimulation to 
evaluate policies in infectious disease control.

1.1 TUBERCULOSIS EPIDEMIOLOGY AND BACKGROUND

In order to understand how to pick a model framework and implement a useful 
model, it is important first to understand the epidemiological characteristics and 
background of the disease. TB is caused by the bacteria Mycobacterium tuberculosis, 
which can attack the lungs (pulmonary TB) or other parts of the body (extrapulmo-
nary TB). TB is a respiratory disease and transmitted through the air by coughing or 
sneezing. It has been declared a global public health emergency, killing 1.3 million 
people in 2012, while 8.6 million people developed the disease. The majority of 
cases were in Southeast Asia, African, or Western Pacific regions (Zumla et al. 2013). 
However, the disease varies by region and cannot be treated identically in all areas—
for example, many African cases are concurrent with HIV, while in other regions, 
like India, HIV prevalence is low although TB prevalence is high (World Health 
Organization 2013). This means that models for one country may not be easily 
adapted to another, since comorbidities and the driving factors of the epidemic may 
be quite different.

Once contracted, TB may stay latent for many years and only activates in about 
10% of cases. Latent TB is asymptomatic and cannot be transmitted. Activation rates 
depend on immunological health and have been observed to vary by demographic 
factors, like age (Horsburgh 2004; Vynnycky and Fine 1997), and behavioral factors, 
like smoking (Lin et al. 2007). Transmission of TB, which occurs through respiratory 
contact, may vary by age (Horby et al. 2011; Mossong et al. 2008), demographic 
patterns, and cultural trends but is poorly documented or understood.

Nondrug‐resistant strains of TB, whether latent or active, are treatable using anti-
biotics, but misuse of first‐line antibiotic regimens may lead to drug‐resistant or 
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multidrug‐resistant (MDR) TB, defined as strains that are resistant to at least isoniazid 
and rifampin, two first‐line TB drugs. Premature treatment default or failure can 
result in the development of drug resistance, and drug‐resistant strains may then be 
transmitted to other individuals. Drug‐resistant TB can be treatable, depending on 
the level of drug resistance (pan‐resistant TB strains have emerged), but require more 
expensive second‐line antibiotic regimens of longer duration (drugs need to be taken 
many times a week for up to 2 years) with higher toxicity rates and lower cure rates. 
Therefore optimization of treatment policies needs to take imperfect treatment 
behavior and potential drug resistance into account. Drug‐resistant TB prevalence 
varies by region, and this also contributes to the necessity of geographical specificity 
when evaluating potential TB control mechanisms.

Latent and active TB can be detected through a variety of different tests of varying 
sensitivity and specificity, and different tests may be preferred in different regions. For 
instance, Mantoux tuberculin skin test (TST) or interferon‐gamma release assay 
(IGRA) blood test are used to detect TB infection in many areas with low TB preva-
lence, whereas sputum smear microscopy tests are commonly used to identify active 
TB cases in areas of high prevalence (Global Health Education 2014). While sputum 
smear tests have fast turnaround times and low costs, sputum smear tests have low 
sensitivity and active TB cases may be overlooked. Bacteriological culture may take up 
to several weeks but is a more accurate diagnosis method and can be used for drug 
susceptibility testing (it can be used to identify drug‐resistant samples from susceptible 
TB samples). Initial diagnosis can also be passive (patients self‐present at local clinics) 
or targeted (active case finding, contact tracing, etc.). After entering treatment, patients 
may undergo different tests sequentially to monitor treatment efficacy and determine if 
second‐line treatment is necessary. The cost and the effectiveness of various screening 
policies vary by patient behavior, latent and active TB prevalence, and what treatment 
options are available. Identifying optimal region‐specific timing and type of diagnosis 
is an area of active research (Acuna‐Villaorduna et al. 2008; Winetsky et al. 2012).

TB infection and disease may be complicated by comorbidities. TB is often observed 
along with HIV, which can change the natural history of disease and complicate TB 
diagnosis and treatment. In 2012, 1.1 million of the 8.6 million new cases of TB were 
among people living with HIV (World Health Organization 2013). HIV patients have a 
higher risk of developing TB due to immune system compromise. Diabetes is another 
comorbidity that can change TB activation rates (World Health Organization 2011). 
While helping patients with multiple chronic diseases is an increasingly important part 
of TB control, modeling multiple diseases is challenging since the diseases interact and 
data to inform joint distributions on risks and rates may be scarce.

1.1.1 TB in India

India is the country with the largest number of TB cases—roughly 23% of the global 
total—despite large gains in the last few decades in decreasing TB mortality, incidence, 
and prevalence through TB treatment and diagnosis (World Health Organization 2015). 



6 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

India has a federally funded TB treatment program called the Revised National 
Tuberculosis Control Program (RNTCP). This program offers the approved antibac-
terial drug regimens for treating TB, called Directly Observed Treatment, Short 
Course (DOTS), where health workers help patients administer their drugs to help 
ensure that they are taken correctly. These regimens require treatment for at least 
6 months of treatment and may be longer for those patients who have previously been 
treated for TB (RNTCP 2010).

Despite this federally funded program, and unlike in many other countries with 
high TB burdens, many TB patients in India seek care in private sector clinics. Since 
the symptoms of TB can easily be mistaken for routine respiratory illnesses, many 
patients tend to first seek care from retail chemists or informal health providers in the 
private healthcare market. These private clinics may not have health practitioners 
trained in identifying and treating TB (Tu et al. 2010; Uplekar and Shepard 1991; 
Vandan et al. 2009), and patients using private clinics may use multiple clinics as 
they attain temporary relief from symptoms that then recur (Kapoor et al. 2012). This 
delay to getting appropriate TB care means that patients begin effective treatment at 
a later stage of their disease, may have infected others with TB, and may have been 
exposed to anti‐TB drugs that can select for drug resistance.

Combating drug‐resistant TB is a continuing challenge for India. More than half 
of the MDR‐TB cases notified in 2014 occurred in India, China, and the Russian 
Federation (World Health Organization 2015). India started the federally funded 
DOTS‐Plus MDR‐TB treatment program in 2007, where MDR‐TB patients can get 
access to the necessary 18–24 months of second‐line TB antibiotics. However, the 
long treatment duration and drug toxicity make treating MDR‐TB difficult, and 
patients may default from treatment, potentially generating more resistant disease 
strains. Cases of extensively drug‐resistant TB (XDR‐TB), where the MDR‐TB 
strain is additionally resistant to fluoroquinolone and a second‐line injectable antibi-
otic, have also been documented in India (Michael and John 2012).

While comorbidities can often complicate TB treatment, HIV comorbidity is 
relatively less common in India as in some other countries with high TB burdens: 4% 
of TB patients are HIV positive in India (as opposed to 61% in South Africa). For this 
reason we will be considering a simulation model of TB for India that does not spe-
cifically consider any comorbidities. We turn to simulations for disease control in the 
next section.

1.2 MICROSIMULATIONS FOR DISEASE CONTROL

A variety of model types can be used to model the diversity of issues in TB control 
and prevention. However, while natural disease dynamics and treatment policies can 
be approximated using difference equations, these may be difficult to solve analyti-
cally and require simulation to arrive at numerical answers. Simulations imitate the 
real system using a probability distribution to generate random events and obtain 
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statistical observations of system performance. Simulations can provide not only the 
epidemiological trends or costs of each treatment arm being considered but also 
 disease trajectories over time.

One common disease modeling method is to use a compartmental model, where 
states are formed using health, treatment, or demographic status, depending on the 
complexity of the model. State transition probabilities can be estimated from the 
published literature or estimated from survey data, and the probability of an individual 
or population acquiring disease, incurring treatment costs, or any other outcome of 
interest, can be estimated by starting the model in one state and applying transition 
probabilities as time advances. The model would then provide the mean performance 
outcome at every time period. These models can be very useful and may be appli-
cable for a variety of problems. They are discussed in detail in another chapter of 
this book.

Unfortunately, these models can quickly become intractable if the state space 
becomes too large, as can happen if a large number of stratifications are required. To 
illustrate this, suppose a hypothetical TB model included different transition proba-
bilities for individuals of different ages (age 0–15, 16–45, 46–60, and 60+), sexes 
(male or female), and TB status (healthy, infected, or active disease). It would have 
4 × 2 × 3 = 24 states, and the modeler needs to specify transition probabilities to each 
of the other states. One can easily see that the number of states would quickly become 
very large if the model wished to use a finer age stratification (i.e., 1 year age bins) 
and include demographic characteristics about treatment status, TB strain (i.e., dif-
ferent strains of TB by drug resistance), and past treatment status. The model would 
potentially become difficult to work with. However, these patient characteristics may 
be important to capture to accurately reflect TB dynamics.

A microsimulation overcomes this issue by simulating an individual unit (in this 
case, an individual) over time instead of estimating the mean outcomes for a 
population. This allows the modeler to specify behavioral characteristics at a very 
detailed level if necessary—probabilities of disease progression or treatment can 
depend on the individuals’ demographic characteristics and history. Using a random 
number generator, outcomes for each individual can then be probabilistically deter-
mined and recorded at each time period; a population of individuals of sufficient size 
should then generate the same average outcomes as those estimated in the compart-
mental model. However, in addition to providing the mean outcome measures of 
interest, the microsimulation can also provide the distribution of the measures of 
interest since every individual’s heath and treatment state is estimated at every time 
period. We will illustrate this in the second section of this chapter, in which we will 
describe in detail a microsimulation of TB in India.

However, before delving into that example, it may be useful to discuss and sum-
marize the advantages and disadvantages of simulation and microsimulation in 
particular. Simulation methods are powerful and can help us find numerical estimates 
for outcomes that are analytically intractable. Unlike some analytical models, they 
easily allow the modeler to examine transient effects, not just model outcomes in 
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steady state. Microsimulation also allows for a great deal of modeling flexibility, 
since the modeler can easily add characteristics to individuals without specifying 
another set of states. Organizational structure in a microsimulation is more robust 
than a compartmental state transition model, since the modeled population can have 
as many characteristics as a modeler needs without the number of compartments 
becoming intractably large. However, the modeler also needs to be careful about 
stochastic fade‐out, when no individuals have a certain characteristic just due to 
chance alone. For instance, since the number of individuals with TB compared with 
the total population of a country is small, it is likely that no individuals in the simu-
lation will have TB if the total simulation population is too small. For example, 
consider a country where the TB prevalence is 0.1%; if the simulation only models 
1000 individuals, and the individual with TB dies before transmitting the disease, it 
would look as if TB had been eradicated! Now imagine an analogous case where the 
modeler cared about TB in different subgroups of the population—then the number 
of individuals in these subgroups could be small, and the corresponding number of 
individuals with TB in that group would be even smaller. Therefore the larger the 
number of characteristics, the larger the modeled population is necessary so that 
individuals of all characteristics will be represented. If the number of individual char-
acteristics is large, this may mean long computation times (if the simulation 
population is large) or noisy outcome measurements (if the simulated population is 
too small).

1.3 A MICROSIMULATION FOR TUBERCULOSIS  
CONTROL IN INDIA

To illustrate how microsimulation can be used for disease control and prevention, we 
are going to discuss in detail a microsimulation of the TB epidemic in India (Suen et al. 
2014, 2015). This simulation was used to evaluate the impact of TB transmission pre-
vention versus improving treatment as well as to evaluate the cost‐effectiveness of 
treatment policies. The model uses a dynamic transmission model of TB that was cali-
brated to Indian demography and TB epidemiology from 1996 to 2010 and then pro-
jected into the future (until 2038 in the case of the transmission prevention analysis and 
until 2025 in the cost‐effectiveness analysis) and includes health and treatment charac-
teristics for nondrug‐resistant and drug‐resistant latent and active TB. Since TB 
dynamics and treatment trajectories can depend on age and sex, among other demo-
graphic factors, the model stratifies individuals these characteristics. This means that 
probabilities of mortality, transmission, activation, and treatment uptake and effective-
ness vary by age and sex in the model. This level of detail precluded the model from 
using the more common compartmental model structure due to the large state space; it 
makes more sense as a microsimulation. Inclusion of these stratifications allows 
treatment policies to differentially influence different demographics, which may be of 
particular interest if there are particular demographics a modeler is interested in 
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(i.e., the elderly, school‐aged children, etc.). Treatment availability and effectiveness 
were also included to estimate the effect of treatment policies that were already in effect.

Since not all TB dynamics parameters were known with certainty, this model was 
calibrated by changing activation and treatment uptake parameters until TB preva-
lence, incidence, and a variety of treatment demographic characteristics matched 
values from the literature. After validation, the model was used to estimate incidence, 
prevalence, and mortality from drug‐resistant and nondrug‐resistant strains of TB for 
projection into the future for scenarios where either treatment or diagnosis policies 
were improved. These estimates could then be used to provide insight on the effec-
tiveness of intervention policies and the cost delaying such efforts. With this 
information, one could better optimize treatment versus prevention policies for 
controlling TB in India. We will discuss the model building and analysis process, 
from population inputs to calibration to treatment, in detail in the next sections.

1.3.1 Population Dynamics

In this microsimulation, individuals are simulated from birth to death as they pass 
through various health and treatment states. To accurately recreate the Indian 
population dynamics, the population growth rate in the microsimulation matches 
historic and projected trends. Non‐TB mortality probabilities were calculated using 
World Health Organization (WHO) life tables for 1990, 2000, and 2009 (World 
Health Organization 2010a). All individuals in the microsimulation are exposed to 
age‐ and sex‐specific background mortality, and those with active TB have an addi-
tional disease‐specific risk of death. The resulting age structure in the model stabi-
lizes during the “burn‐in” period and shows population aging thereafter, especially 
over 2013–2038, as in reality. The “burn‐in” period is where the model is run until 
population demographics and disease prevalence levels stabilize to steady‐state 
levels that match observed pretreatment levels in India. This ensures that treatment 
policies implemented during the analysis period are due to the treatment arms of 
interest and not population dynamics effects.

The model uses a simulated population of 6.5 million people in 1996 that grows to 
10 million by 2038. Because the model considers a lesser number of simulated individ-
uals than in India in reality, these numbers were ultimately scaled to the total Indian 
population size to consider impacts on disease burden (thus, proportions of the modeled 
population are multiplied by the corresponding actual Indian population in a given year).

1.3.2 Dynamics of TB in India

After general population dynamics matched observed trends, the model needed to 
incorporate TB natural history. To do this, the model simulates individuals acquiring 
disease with some risk, activating from latent to active TB with some risk, and 
entering, defaulting, or failing treatment with some risk. Each of these probabilities 
is age and sex dependent to reflect medical and demographic data.
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There are many ways to simulate different mixing patterns for disease transmission. 
It is common to assume homogeneous mixing, where all patients capable of trans-
mission have equal probability of meeting, and infecting, a susceptible individual, as 
in classic susceptible–infected–susceptible (SIS) or susceptible–infected–recovered 
(SIR) models of infectious disease (Kermack and McKendrick 1927). In such models, 
individuals transition between disease‐susceptible and infected (and in the case of 
SIR models, recovered) health states according to a set of differential equations. 
The probability of acquiring TB for a susceptible individual is calculated using the 
proportion of transmitting individuals multiplied by the proportion of susceptible 
individuals, scaled by a transmission factor.

With a microsimulation, however, we can add a more detailed representation 
of transmission as needed. If the data is available, individuals can have higher or 
lower risks of infection if an infected individual is in their family group or 
community, or vary by age, if individuals of certain ages are more social or sus-
ceptible to acquiring infection. Complex infection dynamics can be easily 
simulated—the only difficulty is to ensure that the parameters reasonably reflect 
reality. Since data is often scarce and simple models should be preferred to 
 complex models, the most general modeling approach that still captures the rele-
vant disease dynamics should be used. In this microsimulation example, the 
model used a “who‐mixes‐with‐whom” transmission matrix to allow the probability 
of acquiring disease to vary by age while still assuming homogeneous mixing 
within age groups.

Figure 1.1 visually represents this matrix, where the colors represent the  frequency 
of contacts of susceptible individuals across different ages (0–5, 6–10, etc.). Therefore 
the product of this matrix with the proportion of infectious individuals in each age 
group, multiplied by the per‐contact probability of acquiring TB, should give a vector 
of probabilities of acquiring disease for susceptible of different age groups (the 
matrix need not be square, if different age brackets were used for infected and sus-
ceptible populations). During implementation, the microsimulation counts up the 
number of infected individuals in the population, calculates proportions, and applies 
this matrix to get the probability of infection and the number of newly infected indi-
viduals in this time period.

It is important to note that data should support the modeling assumptions made. 
In this case, the data about age‐specific mixing was calculated from the published 
literature on respiratory contacts, and the per‐contact infection probability, a scalar, 
was calibrated (Mossong et al. 2008). We discuss model calibration and validation 
further in the chapter.

1.3.3 Activation

Once an individual is infected with TB, TB may stay latent within the individual for 
years, or may never activate. Activation rates change over time from infection 
(Horsburgh 2004; Vynnycky and Fine 1997) and other factors like immune system 
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compromise (as with HIV) or exposure to smoke (such as through smoking or cook 
fires (Lin et al. 2007)). Unlike active TB, latent TB cannot be transmitted and does 
not cause decreased quality of life, so accurate modeling of activation rates is impor-
tant for capturing disease dynamics.

In the case of this microsimulation, activation rates varied over age as well as time 
from infection according to data from the literature (Horsburgh 2004). Generally, TB 
activation tends to be higher in the years right after infection and then declines 
(Horsburgh 2004; Vynnycky and Fine 1997), and this was reflected in the micro-
simulation activation rates. Since the simulation used data from a published medical 
study not conducted in India, the overall activation rate was calibrated in order to 
reflect the average activation rates in the country of interest (more on that in the cal-
ibration section).

1.3.4 TB Treatment

Before modeling treatment policies of interest, baseline treatment trends must be 
accurately captured—if treatment programs are already in effect, additional treatment 
policies must be evaluated compared with a baseline where these existent programs 
continue to act or risk overestimating the treatment policy. In India, a federal program 
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Figure 1.1 Who‐mixes‐with‐whom matrix for a microsimulation. Source: Suen et al. (2014). 
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that scaled up in the 1990s and 2000s is already in place. Since this microsimulation 
used 1990–2000 as its calibration period, it needed to simulate access to care, 
treatment uptake, treatment success, and default rates. In this case, since a key out-
come parameter was MDR‐TB prevalence and incidence, which can be caused by 
imperfect treatment adherence, these parameters were very important to model 
accurately. Therefore the microsimulation uses detailed representations of different 
treatment regimens used in India, shown in Figure 1.2, which vary by prior treatment 
status and whether the patient has tested positive for MDR‐TB. Monthly default and 
death rates, which vary over treatment regimen, were calculated from survey data 
from Bihar. These regimens were incorporated in the model by exposing patients on 
TB treatment to the appropriate death, default, and cure rates for their treatment 
 regimen for the appropriate duration. A schematic of the treatment module for the 
microsimulation is shown in Figure 1.2.
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Figure 1.2 Heath state transitions and treatment schematic for a microsimulation. Source: 
Suen et al. (2014). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089822 
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1.3.5 Probability Conversions

Clearly, the microsimulation relies heavily on the probabilities it uses—whether they 
describe activation, treatment default, or death, accurate measures are needed to get 
a valid estimation of disease measures. These probabilities can be calculated from 
data in the published literature or survey data, but often they will not be presented in 
a way that can be used directly. When calculating these probabilities, it is important 
to distinguish rates from probabilities and risk ratios from odds ratios.

Probabilities must lie between 0 and 1, and mutually exclusive, exhaustive events 
must sum to 1. They describe the possibility of an event occurring over a set time 
period. Rates, on the other hand, can be larger than 1 and are not associated with a 
time period—they are formally instantaneous rates. Usually rates are assumed to be 
constant over particular time periods (as in mortality tables, e.g., where death rates 
assumed to be constant for individuals between the ages of 0 and 1, 1–2, etc.)

Rates can be converted into probabilities using the following equation, where r is 
the instantaneous rate, p is the probability, and t is the time period. For instance, 
if one is converting an annual rate into a monthly probability, t would be 1/12:

 p rt1 exp  

The microsimulation uses probabilities, not rates, and they should be scaled to the 
correct duration. Scaling should be done on rates, not probabilities (this is easy to 
remember if one tries to double a probability larger than 50%—it becomes larger 
than 1, which cannot be a valid probability).

The literature will often also report relative risk ratios and odds ratios, which also 
need to be converted into probabilities. A relative risk is a ratio of probabilities—the 
probability of an event happening to one group divided by the probability of that even 
happening to another group. An odds ratio, on the other hand, is a ratio of odds—the 
odds of an event happening to one group divided by the odds of it happening to 
another group, where odds are equal to the probability of the event happening divided 
by the probability of it not happening (a 2‐to‐1 odds of something happening, for 
instance, means 2/3 probability it will happen and 1/3 it won’t). Relative risks and 
odds ratios cannot be converted into absolute probabilities in isolation, and a modeler 
will have to find the probability of that event happening to one of the groups and then 
solve for the probability of the event happening to the other group. To illustrate, if the 
relative risk of dying from TB for smokers to nonsmokers is 1.5, and the average 
probability of death for nonsmokers with active TB is 20%, then the probability of 
death is 1.5 times higher for smokers than nonsmokers (30%). In general, collecting 
and converting probabilities for all the demographics of interest may be a challeng-
ing task, so it is important to do carefully.

In our example microsimulation, the authors needed the probabilities of death, 
default, and failure stratified by age and sex. To do this, they used data from the litera-
ture that provided the odds ratio of male to female defaults, the proportion of males in 
treatment, the overall default probability, and the total number of people in treatment. 
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They then solved a system of equations using the definition of odds ratio to find the 
age‐ and sex‐specific probabilities of death and default. The system of equations for 
stratifying default by age is shown as follows, where the unknowns to solve for were 
A, B, C, and D (taken from Suen et al. 2014):

 

Odds ratio of male to female defaults / / /

Proportion of mal

A B C D

ees in treatment /

Overall default probability

A B A B C D

A CC A B C D

A B C D

/

Total number of people  

where

A = number of males defaulting

B = number of males not defaulting

C = number of females defaulting

D = number of females not defaulting

1.3.6 Calibration and Validation

Some probabilities may not be known, however, and that is where calibration 
comes in. In our example microsimulation, the overall transmission probability and 
the activation rate as well as overall treatment uptake probabilities were calibrated 
since little is known about these parameters in the published literature. Calibration 
involves identifying model parameters that allow model outputs to best fit certain 
output  targets, aptly called calibration targets. Models may also do this for param-
eters that are known but have wide uncertainty ranges. In this microsimulation, 
the calibration targets were WHO estimations of incidence and prevalence over the 
1990–2010 period.

There are many methods to go about calibrating a model. Essentially, this is just 
an optimization problem where the modeler tries to minimize some measure of dis-
tance between the calibration targets and model outputs by varying the uncertain or 
unknown model parameters over reasonable ranges. Since microsimulations are gen-
erally complex, it is usually not possible to represent this as an analytical problem. 
However, traditional algorithms for searching over the feasible space can be used 
(i.e., Nelder–Mead, etc.). In our example microsimulation, the modelers used a grid 
search to explore the feasible space since the feasible space was small and could be 
reasonably explored using this method. It was also relatively easy to implement and 
performed well (see Figure 1.3).

In the microsimulation, the calibration process was used to find two parameters 
related to overall TB and one parameter related to treatment seeking behavior. The 
parameters were (i) an activation rate, which determines the average time to 
activation for individuals with latent TB infections; (ii) the effective contact rate, 
a parameter that determines the average probability of TB transmission given a 



OPTIMIZATION IN INFECTIOUS DISEASE CONTROL 15

contact between a susceptible and infectious individual; and (iii) the average 
probability of undergoing TB testing among individuals.

Figure 1.3 provides a visual representation of how a microsimulation model out-
puts’ might look compared with empirical data. In this case, the model outputs were 
calibrated to WHO data for Indian TB prevalence and incidence over the 1995–2010 
period and measures drug resistance in 2008. During the calibration period, the 
model includes treatment present during that period, such as the federal treatment 
program. This is what drives the decrease in disease prevalence in Figure  1.3 
(leftmost panel), as the federal treatment program was scaled up over that period.

While a model cannot exactly match all empirical statistics of the population of 
interest—and attempting to do so would result in an overly complex model—it is 
important that the model behaves realistically enough to provide reasonable and use-
ful projections of the future. After calibration, it is important that the model is 
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validated against external epidemiological and demographic measures to confirm 
that the population and disease dynamics are consistent with reality. These are mea-
sures that were not calibrated to (which is why they are called external validation 
measures). The model should be validated against epidemiological measures that are 
important for the analysis (ensure that baseline prevalence is consistent with the lit-
erature, if the main outcome measure is prevalence, for instance).

Table 1.1 provides validation measures for the microsimulation. These include 
demographic measures such as life expectancy, for males and females, as well as 
disease and treatment metrics. These values depend on the rate of transmission and 
activation, so validating that they match observed values provides evidence that the 
calibration was reasonable.

1.3.7 Intervention Policies and Analysis

After the model is validated, we can finally begin our policy analysis. The treatment 
policies considered must first be translated into changes in model parameters—this 
is one reason that it is important to have clear treatment policies at the beginning, so 
the model can be built to capture pertinent treatment characteristics.

Microsimulations offer more flexibility than other types of models since there is 
no assumption of analytical form and individuals can behave differently. This can be 
particularly useful for examining subgroups (e.g., incidence of MDR‐TB in chil-
dren). In the case of our example microsimulation, the authors were interested in 
examining prevalence of transmitted versus acquired drug‐resistant TB (Suen et al. 
2014), and this could be done by counting the number of individuals activating with 
transmitted or acquired drug‐resistant TB without adding a separate compartment to 
stratify these populations (as would be needed in a compartmental model).

The microsimulation was used to evaluate the cost‐effectiveness of several pol-
icies that might improve diagnosis and treatment quality in India. The WHO 
approved Cepheid GeneXpert diagnostic systems (Cepheid, Sunnyvale, CA, 
USA) for TB in 2010, but while these systems may be able to provide faster and 
more accurate TB diagnoses, it was unclear at the time of the analysis that these 
expensive systems should be implemented in resource‐constrained settings like 
India. Using scarce public health treatment funds for improvements in diagnosis 
could trade off with other polices to combat TB, like improving the quality of 
care. For instance, since clinic quality in India may vary widely, pilot programs 
have been testing whether it would be effective to refer patients in low‐quality 
private clinics to federally sponsored clinics. However, at the time of the analysis, 
it was unclear such a public‐private mix (PPM) program would be cost‐effective 
at a national level.

The simulation was therefore used to evaluate the cost‐effectiveness of PPM, 
whether GeneXpert diagnostic systems should be used for all TB diagnosis or only 
for diagnosis of MDR‐TB (“drug sensitivity testing” (DST)), or whether GeneXpert 
and PPM should be used in combination. The six interventions evaluated were then 
(i) the status quo, (ii) GeneXpert for all TB diagnoses, (iii) GeneXpert for DST, 



  TABLE 1.1    Example Simulation Validation Measures 

Empirical Estimate
(95% CI, If Available)

Simulation Estimate
(95% CI) Source    

 Demographics   

Male life expectancy, 1990 (years) 57.2 55.9 (55.6–56.2) World Health Organization (  2010a  )  
Female life expectancy, 1990 (years) 57.9 55.7 (54.3–57.1) World Health Organization (  2010a  )  

 Tuberculosis   
Life expectancy post TB activation without 

treatment (years)
~3 years 3.11 (2.95–3.28) Tiemersma et al. (  2011  )  

Lifetime fraction of latent infections that activate 0.10–0.20 0.17 (0.15–0.18) Horsburgh (  2004  )  

 Treatment   
Average delay from symptom onset to RNTCP 

treatment (months)
2–7 6.1 (5.63–6.57) Kapoor et al. (  2012  ), Pantoja et al. (  2009  ), 

Rajeswari et al. (  2002  ), Selvam et al. 
(  2007  ), Tobgay et al. (  2006  )  

Median delay from symptom onset to RNTCP 
treatment (months)

2–7 3.9 (3.72–4.08)   

Default rates   
Category I 0.06 0.054 (0.047–0.061) Central TB Division, Directorate General 

of Health Services, and Ministry of 
Health and Family Welfare (  2010  )  

Category II 0.14 0.151 (0.119–0.183) Central TB Division, Directorate General 
of Health Services, and Ministry of 
Health and Family Welfare (  2010  )  

 MDR‐TB Incidence in 2008 Using WHO Calculation Methods   
% MDR among new TB cases 2.3 (1.8–2.8) 2.3 (2.1–2.5) World Health Organization (  2010b  )  
Number of MDR‐TB among incident new and 

relapse TB cases
55,000 (40,000–74,000) 52,000 (47,000–56,000)   

Number of incident acquired MDR‐TB cases 43,000 (33,000–56,000) 73,000 (52,000–94,000)   
Number of MDR‐TB among incident total TB cases 99,000 (79,000–120,000) 124,000 (99,000–150,000)

      Source: Suen et  al. (  2014  ) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089822 Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/
licenses/by/4.0/. 
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(iv) PPM, (v) PPM combined with GeneXpert for all diagnoses, and (vi) PPM 
combined with GeneXpert for DST.

These interventions were modeled in the simulation by changing input parameters 
(ex., using GeneXpert for diagnosis would increase diagnosis accuracy, so the prob-
ability of being correctly diagnosed in the simulation was increased to the appro-
priate level). The simulation was then run with these modified parameters in order to 
generate outcome measures associated with each intervention. In the next sections 
we discuss the outcome metrics of the simulation and how cost‐effectiveness was 
evaluated.

1.3.8 Time Horizons and Discounting

Common treatment measures are deaths averted, life years gained, QALYs or 
DALYs gained, and epidemiological measures like prevalence and incidence. 
A QALY is a life year adjusted for quality of life, such that a year of perfect health 
is worth one QALY and a year living with some health compromise is worth less 
(Weinstein et  al. 2009). A DALY is similar but measures life years lost (World 
Health Organization 2014a).

While epidemiological measures are commonly reported in number of cases per 
population of 100,000, QALYs/DALYs or treatment costs are often discounted and 
aggregated to values accumulated per lifetime. In a hypothetical case, a study looking 
at the effect of mammography screening may report that a particular screening 
strategy increases a 40‐year‐old woman’s lifetime discounted QALYs by 0.2, indi-
cating that the model follows the individual for their entire life span, counts the 
QALYs accumulated during that time, and discounts them to the net present value 
using a discount factor (conventionally 3%).

While the treatment period may be defined (say, at 10 or 25 years), the benefits of 
that policy may last much longer than that, particularly in the case of a transmissible 
disease. For instance, suppose a treatment policy increased cure of TB, which has the 
immediate benefits of reducing mortality and also preventing onward transmission. 
The policy has then also potentially saved the lives of those who would have been 
infected by that individual and the lives of those who would have been infected by 
those individuals even later on. Therefore each prevented transmission may have 
benefits far in the future, and it is important to capture those in the analysis. Perhaps 
it is easier to see why in handwashing, for instance, clearly, those who have the flu 
already are not benefited by washing their hands, but their friends are certainty happy 
that they did so when they themselves are not running a fever a few days after seeing 
them! In this example, only considering the immediate effects (inconvenience of 
handwashing) is outweighed by the future benefits (friends not getting sick later), 
and as a forward‐looking society, we should promote handwashing to prevent disease 
transmission.

But in a dynamic transmission model of an entire population, as in our example 
microsimulation of TB in India, there is no clear period after which to stop counting 
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benefits and costs. Since the entire population of India is modeled, there is no clear 
“lifetime” at which to stop counting the QALYs accumulated. One method is to run 
the microsimulation until the costs and benefits are so far in the future that their net 
present value is negligible—mathematically saying that we don’t care about those 
effects since they are so far away. Depending on the discount factor and the magni-
tude of costs and benefits, this may take different amounts of time. However, if 
 discount factors are low and benefits and costs are large, this approach may be unfea-
sible because it would require too much computation time or undesirable because it 
is unreasonable to expect that the disease/treatment behaves as we modeled so far 
into the future (since the model cannot take into account unexpected technological 
breakthroughs). Another approach is to stop the simulation at the end of the analysis 
period and ignore all costs and benefits accrued afterward. This may incur those 
disadvantages discussed earlier to different degrees depending on the length of the 
analysis duration. One could also take an intermediate approach, where transmission 
is not considered after a certain period, or the simulation considers only a certain 
cohort after some time. The necessity of these approaches depends on the computa-
tional intensity of the microsimulation, disease dynamics, and the magnitude of the 
treatment policy affects.

In our example cost‐effectiveness analysis, the modelers used such an intermediate 
approach, where they used a time horizon of 10 years from when the analysis was 
conducted in 2015, and then considered the lifetime costs and QALYs associated 
with those still alive at the end of those 10 years without further disease transmission. 
This approach reduces computational time and does not make assumptions unrealis-
tically far into the future (compared with running the simulation until the discount 
factor reduces costs and QALYs to essentially zero) and still captures some of the 
long‐term costs and QALYs generated by the intervention (unlike the approach 
where all costs and QALYs after the time horizon are not considered).

1.3.9 Incremental Cost‐Effectiveness Ratios and Net Monetary Benefits

Once calculated, the costs and benefits for each intervention are usually plotted on a 
cost–benefit plane, and the incremental cost‐effectiveness ratio (ICER) is calculated 
for each strategy. This is given as the incremental cost divided by the incremental 
benefits of each strategy between it and the next cheapest strategy. In essence, this 
provides the marginal cost to gain the marginal benefit and has units of dollars per 
QALY gained (or life year gained or DALY averted). A policy is generally said to be 
“cost‐effective” if it costs less than three times the GDP per capita to gain one QALY 
and is “very cost‐effective” if it costs less than the GDP per capita (R. Hutubessy 
et al. 2003).

The efficient frontier in Figure 1.4 (interventions on the blue line) highlights pol-
icies that are cost‐effective (those labeled in white boxes with ICER). Dominated 
policies are shown off the efficient frontier and labeled with gray boxes. Monte Carlo 
simulation sampling uncertainty for the costs and QALYs of each strategy is depicted 
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as red 95% confidence intervals. In this analysis, even the most expensive policy, 
PPM with GeneXpert for all diagnosis, is cost‐effective. It has an expected cost of 
$1103.58 per QALY gained, which is less than one GDP per capita in India ($1450). 
Even with sampling noise, this finding occurs with 99% probability.

Since it is often more intuitive to compare values in dollar units, the net monetary 
benefit is another way to represent intervention costs and benefits. It converts the 
total discounted lifetime benefits and costs into a single scalar value. It is calculated 
as the willingness‐to‐pay threshold times the total benefits minus the total costs. This 
willingness‐to‐pay threshold can therefore be thought of as the conversion factor 
between benefits (in units of QALYs or DALYs) to dollars; since there is no agreed‐
upon value for this conversion factor, the NMB can be calculated for a variety of 
willingness‐to‐pay thresholds. This can be useful for succinctly displaying uncer-
tainty in total costs and QALYs; often probabilistic sensitivity analyses will report 
the probability of a strategy having the highest net monetary benefit for as a measure 
of how cost‐effective it is.

While there is not a set number of microsimulation runs required for every simula-
tion, the number of simulation runs should be large enough that the simulation outcomes 
are not obscured by Monte Carlo noise. This may vary by the number of individuals in 
the microsimulation—a larger number of simulated individuals may generate more 
robust outcome estimates as each individual’s outcomes are averaged over a larger 
population. In the case of this model, the population size was large (6.5 million in the 
case of the cost‐effectiveness results), and only 10 runs were needed to reduce Monte 
Carlo noise to levels where the results were clear (see error bars on Figure 1.5).
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1.3.10 Sensitivity Analysis

It is important to note that a microsimulation will be subject to sampling uncertainty 
or Monte Carlo noise if the simulated population is not large enough, and this uncer-
tainty will further increase the uncertainty of cost and QALY outcomes of the mod-
eled interventions. This type of uncertainty is due to the model itself and can therefore 
be reduced by increasing the number of individuals in the simulation or running 
additional simulation runs and averaging across runs to form an estimate of the 
average costs and benefits for each intervention. Estimates of the uncertainty of 
the mean costs and benefits can then be formed using a bootstrapping method over 
the multiple simulation runs—because cost and benefits cannot be assumed to be 
Gaussian, the modeler can empirically determine the distribution of mean costs and 
benefits by sampling from the simulation runs (with replacement) and calculating the 
average cost and benefits for each sample. Multiple resamples will generate a distri-
bution of the costs and benefits, allowing the modeler to observe the distribution of 
average costs and benefits and quantify 95% confidence intervals (or other distribu-
tion characteristics) to describe the uncertainty due to Monte Carlo noise.

In contrast, parameter uncertainty reflects uncertainty in the outputs due to uncer-
tainty in the input parameters and reflects unknowns about the true state of the world. 
The only way to reduce this type of uncertainty is to gather more information (incor-
porate additional study from the literature, run more clinical trials, interview more 
patients, etc.) and incorporate that information into the model. Accurate portrayal of 
this type of uncertainty in the model outputs allows decision makers to make informed 
decisions about how confident they should be in the model results.

We illustrate this with the example of uncertainty around the costs and QALY 
inputs. In Figure 1.5, the simulation has been run multiple times, each time sampling 
a costs and QALY input from their distributions (instead of treating them as point 
estimates, as in Figure 1.4). Each run then generates a different output, and this is 
reflected in the dispersion of points for each intervention—each point in Figure 1.5 
panel a represents one simulation run. The results can be presented in a more com-
pact form (panel b), which gives the probability the strategy is cost‐effective over 
different willingness‐to‐pay levels. In this example, the strategy PPM + GeneXpert 
for all diagnosis is likely to be cost‐effective even at very cost‐effective willingness‐
to‐pay levels (one GDP per capita).

1.4 CONCLUSION

Microsimulation can be a useful tool for evaluating the optimality of disease control 
policies within a set of intervention options, particularly for infectious diseases, where 
transmission dynamics and individual behavior may make disease dynamics difficult to 
represent analytically or in compartmental simulations. Microsimulations are flexible 
and can accommodate a high level of stratification, which may be important when mod-
eling a disease with a complex natural history that is influenced by demographic and 
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behavioral factors. However, more stratifications make the model more complex, and 
joint distributions of risks may be unknown or uncertain. These aspects of the model 
may make communication of the analysis more difficult. Even so, microsimulations are 
an important tool for modeling infectious diseases, particularly when individual level or 
subgroup level analyses are desired. Once completed, they can be easily modified to 
include additional subgroups or treatment policies, provided the transition probability 
data is available. The output of these analyses can help policy makers assess the impact 
of different treatment programs on select subpopulations and help articulate the impact 
of difficult‐to‐predict behavioral changes on treatment effects. Used effectively, they 
may be an important tool in the fight against infectious disease.
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RESEARCH: MODELS TO IMPROVE 
HIV RESOURCE ALLOCATION
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2.1 INTRODUCTION

2.1.1 Background

The sixth United Nations Millennium Development Goal (United Nations 2009) 
called for universal access to antiretroviral therapy (ART) for all eligible HIV‐
infected individuals by 2010 and zero new HIV infections by 2015, but progress 
toward achieving this goal has lagged. Although HIV incidence has slowed by 
approximately one‐third in the last decade (Joint United Nations Programme on 
HIV/AIDS 2013), and ART has extended the lives of millions of HIV‐infected peo-
ple, the epidemic continues to spread. Currently some 35 million people worldwide 
are living with HIV, and in 2013 an estimated 2.1 million people became newly 
infected (Joint United Nations Programme on HIV/AIDS 2015). This corresponds to 
more than 5500 new infections per day.

Recently, the Joint United Nations Programme on HIV/AIDS (2013) set forth a 
number of ambitious goals for controlling HIV. These include goals to accomplish 
the following by 2015: halve sexual transmission of HIV and transmission of HIV 
among people who inject drugs; eliminate HIV infections among children; reduce 
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maternal deaths from HIV; enroll an additional 15 million people living with HIV in 
ART; and halve tuberculosis (TB) deaths among people living with HIV.

Additionally, recently issued World Health Organization guidelines call for earlier 
initiation of ART for HIV‐infected individuals, starting immediately upon diagnosis 
with HIV infection, rather than at a CD4 count of 500 cells/mm3 (World Health 
Organization 2015). This has increased by millions the number of HIV‐infected indi-
viduals who should receive ART.

Traditionally, HIV control in developing countries—where most of the world’s 
HIV infections occur—has relied on donations from foundations and governments in 
developed countries. However, in recent years, the global economic downturn 
combined with “donor fatigue” (donors have shown less willingness to donate as the 
HIV epidemic enters its fourth decade with no end in sight) has led to an ongoing 
shortfall in funding for HIV programs (Schwartlander et al. 2011; Wei 2012). This 
has created increasing pressure for health ministries and other decision makers to use 
existing HIV prevention and treatment funds as efficiently as possible.

However, allocating HIV control resources is complicated by several factors. 
First, a program that is effective in one setting may not yield similar results in a 
 different setting since the epidemic drivers and characteristics (e.g., prevalence, inci-
dence, risk groups) can vary significantly from region to region. For example, the 
HIV epidemics in sub‐Saharan Africa are typically slow growing, have high disease 
prevalence, and are driven by heterosexual transmission, whereas in Eastern Europe 
the lower prevalence, fast‐growing epidemics are driven by injection equipment 
sharing among injection drug users (IDUs). Second, as the epidemic evolves, previ-
ously effective control programs may become insufficient, since epidemic dynamics 
are nonlinear. For example, prevention programs targeted to key populations may be 
most appropriate in the early stages of an epidemic, whereas in the later stages of an 
epidemic, treatment and more broadly targeted prevention programs are likely to be 
part of an optimal response. Third, additional investments in HIV control programs 
may not yield the expected incremental results since there is often a nonlinear rela-
tionship between investment and program effectiveness. For example, programs that 
aim to change risk behaviors may first reach individuals who are most likely to 
change behavior and then, with additional investment, may be reaching individuals 
who are less likely to change. Fourth, individual behaviors shape epidemic dynamics, 
and behavior may change in response to epidemic status or control programs 
(so‐called elasticity of risk behavior). For example, efforts to educate the public 
about how HIV is transmitted may initially reduce risky behaviors, but as treatment 
programs are scaled up and become more widely available, people may engage in 
more risky behaviors since the disease is perceived as treatable. Conversely, as HIV 
prevalence in a population increases, people may reduce their level of risky behaviors 
to avoid infection.

To effectively control epidemic spread, decision makers need to choose the 
right set of prevention programs, balancing scarce resources between different pro-
grams and risk groups and determining the appropriate level of funding for each. 
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Moreover, decision makers need to find the appropriate balance between investments in 
prevention versus treatment. In many places, this balance has likely not been achieved: 
for every person recently enrolled in HIV treatment worldwide, an estimated two 
more people have become infected (Joint United Nations Programme on HIV/AIDS 
2010). Political considerations can add a layer of complexity to these investment 
decisions, since the impact of treatment programs (infected persons receiving life-
saving medications) is easy to demonstrate, whereas future negative consequences 
avoided via prevention programs (persons who do not become infected) are not as 
easy to demonstrate. In consequence, the tendency has been to spend incremental 
funds to treat those individuals who are already HIV infected rather than to invest 
more to prevent others from becoming infected.

2.1.2 Modeling Approaches

In this section we provide a brief description of approaches to modeling the HIV 
resource allocation problem. More comprehensive reviews of models of resource 
allocation for epidemic control are available elsewhere (Zaric 2003; Brandeau 2004).

In previous work we identified three main types of models used to support 
decisions regarding allocation of HIV control resources (Alistar and Brandeau 2012). 
These include linear models, dynamic epidemic models, and simulation models.

Linear models assume that the epidemic trajectory will be linear (e.g., Kaplan 
1998; Kaplan and Pollack 1998; Ruiz et al. 2001; Kaplan and Merson 2002). Such 
models may or may not account for nonlinearities in the relationship between intervention 
costs and effects as programs are scaled up. For example, Ruiz et al. (2001) considered 
a fixed prevention budget B that is to be allocated across risk groups and geographic 
regions. The decision variable is x

ij
, which is the amount of funds  allocated to programs 

targeting risk group j in geographic region i. In risk group j in geographic region i, 
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The goal is to maximize the expected number of new infections averted in 1 year, 
subject to the budget constraint and constraints on the maximum fraction of each risk 
group that can be reached.

Dynamic epidemic models account for the nonlinearity of epidemic growth and 
the impact of interventions on population outcomes, thus providing a more sophisti-
cated perspective on choices in epidemic control (e.g., Paltiel 1994; Kahn 1996; 
Richter et al. 1999). For example, Richter et al. (1999) considered two independent 
populations, each described by a susceptible–infected (SI) epidemic model with 
entry and exit. Let S

i
(t) and I

i
(t) denote the number of susceptible and infected indi-

viduals in population i at time t (i = 1, 2). Entry into the susceptible population occurs 
at rate δ

i
. Exit from the susceptible and infected compartments in population i occurs 

at rate μ
i1
 and μ

i2
, respectively. The rate of contact sufficient to transmit infection in 

population i is λ
i
. The parameter λ

i
 is a function of the number of contacts per unit 

time between susceptible and infected individuals and the risk of infection transmis-
sion per contact. Given these definitions, the equations of the epidemic model for 
each population i can be written as
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For this epidemic model, a closed‐form expression can be derived for the 
cumulative number of people infected in population i over a given time horizon, a 
quantity denoted by H

i
(λ

i
). The decision variable x

i
 is the expenditure on prevention 

in population i. The total available budget is B. Investment in prevention for 
population i reduces the sufficient contact rate λ

i
, so the contact rate after investment 

is λ
i
(x

i
). It is assumed that the initial sufficient contact rate in population i is λ

0i
 and 

the contact rate cannot be reduced below a
i
. There are N

i
 people in population i. The 

resource allocation problem is written as
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The goal is to minimize the number of new infections that occur over a given time 
horizon, subject to the budget constraint and constraints on the maximum attainable 
risk reduction in each population. The functions H

i
(λ

i
(x

i
)) are nonlinear functions of 

x
i
, reflecting the nonlinear epidemic dynamics.
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A third category of HIV resource allocation models uses simulation (e.g., micro-
simulation) to create projections of the epidemic under a variety of intervention 
implementation scenarios (e.g., Hogan et  al. 2005; Anderson et  al. 2014). Such 
models allow for a greater level of detail around individual behaviors, demographic 
dynamics, and other sexually transmitted diseases that may be present in the 
population. For example, individuals with riskier behaviors might be more likely to 
not use a condom in sexual contacts, share needles if injecting drugs, have lower 
adherence to treatment regimens, or quit treatment altogether; such characteristics 
can be granularly defined in a simulation‐based model.

Models also differ in the scope of their intended use, which can range from sim-
plified theoretical analyses designed to provide broad insights to models designed for 
practical use by decision makers.

One body of work uses simplified models for epidemic projections (e.g., grouping 
individuals into susceptible, infected, or treated compartments) or makes simplifying 
assumptions about time horizons to ensure tractability and allow deduction of gen-
eral insights. For example, Zaric and Brandeau (2001b) investigated the optimal 
resource allocation to control epidemic growth over short time horizons, as well as 
the optimal way to invest a limited budget allocated over multiple time periods and 
across several independent populations (Zaric and Brandeau 2002). Zaric and 
Brandeau (2007) and Lasry et al. (2007) focused on determining the optimal HIV 
resource allocation when decisions can be made at multiple levels (e.g., first at the 
country level and then at regional levels) and included considerations of equity when 
determining optimal choices. Brandeau et al. (2003) characterized the optimal solu-
tion (in certain situations) for controlling epidemics in multiple independent popula-
tions, each modeled with a simple SI structure (an SI model), using general cost 
functions to describe the relationship between program costs and benefits.

Another stream of work has used simulation to assess the effects of investment in 
different portfolios of available HIV prevention and treatment interventions for 
specific settings. For example, Hogan et al. (2005) compared the relative costs and 
benefits of a broad range of interventions (e.g., mass media campaigns, education 
delivered to several population groups, voluntary counseling and testing, and HIV 
treatment) in sub‐Saharan Africa and Southeast Asia and identified the best options 
for epidemic control in those regions. Zaric and Brandeau (2001a) analyzed the 
optimal portfolio of interventions to control the spread of HIV in a US population 
that included IDUs and nonusers. Anderson et al. (2014) used a dynamic mathematical 
model that included geographic information about epidemic characteristics to com-
pare the relative outcomes of a portfolio of HIV prevention interventions (male cir-
cumcision, behavior change communication, early ART and pre‐exposure prophylaxis 
(PrEP)) in Kenya with a budget allocated uniformly across geographic regions versus 
a portfolio that allows for a more tailored approach.

Finally, several researchers have created models intended for use by decision 
makers to inform practical decisions about allocating resources among HIV control 
programs. For example, the Goals model aims to estimate the impact of different 
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allocations of HIV control resources and to show how such allocations affect 
the  achievement of national goals such as reducing HIV prevalence and expand-
ing HIV care and support (Stover et al. 2003; Futures Group 2011). S4HARA is a 
spreadsheet‐based model designed to provide near‐optimal resource allocations that 
take into account influencing factors (barriers or facilitators, such as political power, 
ethics, culture, or religion) encountered in practice (Lasry et al. 2008). An influence 
diagram is used to show the impact—favorable or unfavorable to the allocation of 
resources for each program—of bodies or groups that influence the decision‐making 
process for HIV/AIDS resource allocation in low‐income settings (e.g., donors, 
advocacy groups, nongovernmental organizations (NGOs), government, commu-
nities, media).

Researchers at the US Centers for Disease Control and Prevention have developed 
several mathematical models to inform decision making, facilitate choices among 
various epidemic control programs, and improve effectiveness of HIV prevention 
efforts (Lasry et  al. 2008, 2011). Other researchers have developed HIV resource 
allocation models to support decision makers at the state and county level (Earnshaw 
et al. 2007; Richter et al. 2008). One study analyzed the sources of inefficiency in 
practical resource allocation settings and found that the efficiency of HIV prevention 
program portfolios was affected by the set of prevention programs selected and the 
targeted population groups, as well as the technical efficiency of each prevention 
program (Bautista‐Arredondo et al. 2008).

Creating HIV resource allocation models that are useful in practical situations can 
be particularly challenging for a variety of reasons (Lasry et al. 2009). For example, 
complexities of epidemic dynamics, individual risk behavior, and the effects of con-
trol programs must be modeled in a manageable way. Needed data may be missing 
or unreliable. Additionally, political and ethical considerations may impose non‐
quantitative constraints on allowable investments, and funding sources may be 
unreliable.

In prior work, we identified several elements that are typically missing in HIV 
resource allocation studies and that limit their practical use (Alistar and Brandeau 
2012). Model results are often not applicable across different settings. Models may 
not accurately reflect the changing relationship between intervention costs and effects 
as programs are scaled up. Resource allocation models often do not allow for both 
treatment and prevention interventions. Additionally, HIV resource allocation models 
often do not evaluate the broader resource needs for the healthcare system, such as 
human capital, infrastructure, and supplies. We found that to be useful in practice, 
models for HIV resource allocation need to include key features organized along three 
dimensions: input flexibility (capability for parameter customization and incorpora-
tion of uncertainty), technical capabilities (the ability to capture epidemic effects, 
production functions, and effects of combined interventions; incorporation of key 
constraints; optimization capability; and estimation of overall health and economic 
impact), and usability (user‐friendly design and structure, accessibility). Full descrip-
tions of these features are provided in our prior work (Alistar and Brandeau 2012).
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2.1.3 Chapter Overview

Our research on allocation of HIV control resources aims to bridge the gap between 
theory and practice. Toward this end, our work has focused on developing theory, 
performing practical analyses, and empowering decision makers. This chapter sum-
marizes our recent work in each of these areas. Specifically, we describe our work on 
the development of theory that can generate insight into appropriate HIV resource 
allocations (Section 2.2), practical analyses to address relevant HIV resource alloca-
tion problems in a timely fashion (Section  2.3), and a planning tool for use by 
decision makers who must allocate HIV prevention and treatment resources 
(Section 2.4). The studies we describe are summarized in Table 2.1. We conclude in 
Section 2.5 with discussion of the broader decision‐making context and key areas for 
further research.

2.2 HIV RESOURCE ALLOCATION: THEORETICAL ANALYSES

2.2.1 Defining the Resource Allocation Problem

We define the HIV resource allocation problem as follows: determine the optimal 
investment in available HIV control programs, subject to epidemic dynamics, budget 
constraints, and other constraints (e.g., equity constraints), where “optimal” is 
defined by some metric of epidemic control.

We can write the resource problem mathematically. We define a decision variable 
x = (x

1
, x

2
, …, x

n
) as the level of investment in a set of available interventions 1, 2, …, 

n. Without loss of generality, assume that there is a lower and upper limit on 
investment in each intervention i, denoted by xi

min and xi
max, respectively. Assume that 

a budget B is available. The goal is to maximize a health objective that depends on 
investment, which we denote by H(x). With this notation, the resource allocation 
problem can be written as

 
max

x
xH
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In general, the objective function depends on the investment in the interventions 
as well as epidemic dynamics. Different objectives may be appropriate. The objective 
might be, for example, to minimize the number of new HIV infections that occur or 
to maximize the number of quality‐adjusted life years (QALYs) experienced in the 
population, over some specified time horizon. Another potential objective is to min-
imize the reproductive rate R

0
, a standard epidemiological measure defined as the 



  TABLE 2.1    Summary of Models Reviewed 

Study Purpose Model Type Objective Key Findings    

 Resource Allocation   
 Brandeau and 

Zaric (  2009  ) 
Determine the optimal level of 

spending for an HIV prevention 
program targeted to a single 
population, incorporating 
production functions that relate 
investment in a prevention program 
with program effectiveness

Analytical 
optimization based 
on an SI epidemic 
model

Find the level of spending 
such that cost per HIV 
infection averted equals 
willingness to pay per 
infection averted

The optimal level of investment 
depends on the shape of the 
production function and the 
marginal cost of an averted HIV 
infection. For decreasing 
marginal cost, an all‐or‐nothing 
solution is optimal. For 
increasing marginal cost, it may 
be optimal to spend only a 
portion of the budget.  

 Brandeau et al. 
(  2005  ) 

Investigate the effect of knowledge of 
production functions (which relate 
investment in a prevention program 
with program effectiveness) on 
HIV resource allocation and 
subsequent health benefits

SI epidemic models, 
simulated

Minimize the number of 
new HIV infections that 
occur, subject to a 
budget constraint

Even incomplete knowledge of 
production functions can lead to 
better investment decisions than 
simple models that assume the 
relationship between prevention 
program expenditure and effect is 
linear.  

 Alistar et al. 
(  2014b  ) 

Determine the optimal allocation of a 
fixed budget between HIV 
prevention and treatment in 
multiple interacting populations

Analytical 
optimization based 
on an SIT epidemic 
model

Minimize  R  
0
 , the 

reproductive rate
Analytical conditions derived that 

show when it is optimal to invest 
in different programs and 
populations based on epidemic 
characteristics in each population 
and shapes of the production 
functions.  

Juusola and 
Brandeau 
(  2016  )

Determine the optimal mix of 
investment in HIV treatment and 
prevention, given a fixed budget

Analytical 
optimization based 
on linear 
approximation of 
epidemic

Minimize number of new 
HIV infections or 
maximize QALYs 
gained

The model provides a simple yet 
accurate means of determining 
optimal investment in HIV 
prevention and treatment.  



with program effectiveness solution is optimal. For 
increasing marginal cost, it may 
be optimal to spend only a 
portion of the budget.

Brandeau et al. 
(2005)

Investigate the effect of knowledge of 
production functions (which relate 
investment in a prevention program 
with program effectiveness) on 
HIV resource allocation and 
subsequent health benefits

SI epidemic models, 
simulated

Minimize the number of 
new HIV infections that 
occur, subject to a 
budget constraint

Even incomplete knowledge of 
production functions can lead to 
better investment decisions than 
simple models that assume the 
relationship between prevention 
program expenditure and effect is 
linear.

Alistar et al. 
(2014b)

Determine the optimal allocation of a 
fixed budget between HIV 
prevention and treatment in 
multiple interacting populations

Analytical 
optimization based 
on an SIT epidemic 
model

Minimize R
0
, the 

reproductive rate
Analytical conditions derived that 

show when it is optimal to invest 
in different programs and 
populations based on epidemic 
characteristics in each population 
and shapes of the production 
functions.

Juusola and 
Brandeau 
(2016)

Determine the optimal mix of 
investment in HIV treatment and 
prevention, given a fixed budget

Analytical 
optimization based 
on linear 
approximation of 
epidemic

Minimize number of new 
HIV infections or 
maximize QALYs 
gained

The model provides a simple yet 
accurate means of determining 
optimal investment in HIV 
prevention and treatment.

Portfolio Analysis
Alistar et al. 

(2011)
Estimate the effectiveness and 

cost‐effectiveness of strategies for 
expanding OST programs and ART 
in mixed HIV epidemics, using 
Ukraine as a case study

Compartmental 
epidemic model, 
simulated

Estimate cost per QALY 
gained

Scaling up OST is the most 
cost‐effective investment. Scaling 
up ART in addition to OST is also 
cost‐effective, averting 
significantly more infections than 
just scaling up OST. Addressing 
key epidemic drivers is essential 
when allocating scarce resources.

Alistar et al. 
(2014c)

Estimate the effectiveness and 
cost‐effectiveness of strategies for 
using oral PrEP in various 
combinations with MMT and ART, 
using Ukraine as a case study

Compartmental 
epidemic model, 
simulated

Estimate cost per QALY 
gained

Oral PrEP for IDUs can be part of 
an effective and cost‐effective 
strategy to control HIV in regions 
where injection drug use is a 
significant driver of the epidemic. 
Where budgets are limited, 
focusing on MMT and ART 
access should be the priority, 
unless PrEP has low cost.

Alistar et al. 
(2014a)

Estimate the effectiveness and 
cost‐effectiveness of strategies for 
oral PrEP and ART in South Africa

Compartmental 
epidemic model, 
simulated

Estimate cost per QALY 
gained

Scaling up ART is more cost‐
effective than scaling up 
untargeted PrEP. ART scale‐up 
efforts will be most efficient if 
delivered to individuals in earlier 
disease stages in addition to those 
with more advanced HIV. If 
targeted to high‐risk individuals, 
PrEP could be cost‐effective or 
even cost saving.

(Continued)



TABLE 2.1 (Continued)

Study Purpose Model Type Objective Key Findings    

 Decision Support Tool   
 Alistar et al. 

(  2013  ) 
Planning tool for use by regional and 

country‐level decision makers in 
evaluating potential HIV resource 
allocations

Compartmental 
epidemic model, 
simulated; also, 
optimization

Estimate a variety of 
health outcomes for a 
given allocation of 
resources; can also 
determine an optimal 
allocation

The optimal allocation of funds 
depends on the objective 
considered (minimize new HIV 
infections or maximize QALYs), 
the time horizon considered, and 
the available budget for HIV 
control.

      ART, antiretroviral therapy; HIV, human immunodeficiency virus; IDU, injection drug user; MMT, methadone maintenance therapy; OST, opiate substitution therapy;
PrEP, HIV pre‐exposure prophylaxis; QALY, quality‐adjusted life year; SI, susceptible–infected (epidemic model); SIT, susceptible–infected–treated (epidemic model).  
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number of new infections caused by an infected individual in a fully susceptible 
population (Anderson and May 1991). The choice of objective and time horizon will 
affect the optimal solution.

Investment is assumed to be limited by a fixed budget constraint, reflecting the 
availability of resources for HIV control. Decisions about fund allocation can be 
made one time at the beginning of the time horizon or reevaluated periodically to 
adjust for changes in epidemic dynamics.

Resources can be invested in a variety of epidemic control programs, including 
both prevention and treatment programs, which often reach different population sub-
groups. For example, needle exchange programs are targeted to IDUs, whereas HIV 
treatment scale‐up could be offered to all eligible individuals or could be targeted to 
specific population groups (e.g., women of childbearing age). Programs will also 
vary in how they affect the epidemic dynamics. For example, a program that aims to 
change risky sexual behavior will lower the rate at which uninfected people acquire 
HIV via sexual contact, whereas HIV treatment will extend the lives of individuals 
who receive it and will lower their infectiousness, thus reducing the chance that they 
transmit HIV to others. In addition, changes in individual behaviors in response to 
lesser or greater availability of certain interventions can modify the effects of 
programs.

To model disease transmission in the population, researchers have typically used 
simple approaches such as dividing the population into susceptible and infected com-
partments (SI models) with differential equations expressing the evolution of the 
epidemic over time (e.g., Richter et  al. 1999). The number of individuals in each 
compartment changes over time based on parameters that model disease transmis-
sion (e.g., rate of risky contacts), demographic changes (entry and death rates), and 
the impact of disease control programs. More sophisticated models may include mul-
tiple populations (e.g., IDUs and the general population) or more fine‐grained dis-
ease modeling, including compartments for individuals receiving treatment or 
individuals in intermediate disease stages with varying rates of infectiousness. 
Anderson and May (1991) provide a comprehensive exposition of epidemic models.

2.2.2 Production Functions for Prevention and Treatment Programs

One crucial relationship to model is the effect of investing additional resources on a 
program’s effectiveness. We refer to this as a “production function.” A standard 
assumption is that the “return on investment” for each incremental unit of resources 
invested is constant: for example, for each additional $5000 invested in an opiate 
substitution therapy (OST) program, it is assumed to be possible to treat one more 
IDU for 1 year. However, depending on the nature of the program, the relationship 
may be nonlinear, thus affecting the optimal resource allocation. For example, pro-
grams that aim to change behaviors (e.g., programs that aim to increase the rate of 
condom use) may exhibit decreasing returns to scale, since initial funds invested may 
reach individuals who are most likely to modify their behavior in the desired way, 
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whereas additional funds invested will need to be used to identify and reach individuals 
whose behavior is more difficult to change. Conversely, one can think of this rela-
tionship in terms of cost: it will cost more to get the same number of people to change 
their behaviors, as programs expand to include individuals who require additional 
expenditures to reach and/or whose behaviors are more challenging to change. In this 
case, the marginal cost to reach each additional person is increasing.

Brandeau and Zaric (2009) used production functions in a model to determine the 
optimal level of spending for an HIV prevention program targeted to a single 
population, with the goal of maximizing HIV infections averted. They assumed that 
the prevention program reduces the sufficient contact rate for disease transmission. 
Examples of such programs include interventions that promote higher rates of 
condom use and thus reduce sexual transmission of HIV, or needle exchange 
 programs, which lower the rates of needle sharing and thus reduce the rate of 
needle‐based HIV transmission.

The authors considered several shapes for the prevention program’s production 
function, including constant, increasing or decreasing returns to scale, as well as a 
combined “S‐shape,” in which a program incurs some initial start‐up costs, then 
exhibits increasing returns to scale, and finally exhibits diminishing returns for a 
large enough program. They found that the optimal level of investment depends on 
the shape of the production function and the marginal cost of an averted infection. 
For decreasing marginal cost, the optimal solution is to either spend the entire budget 
or nothing at all, whereas for increasing marginal cost, there may be situations where 
it is optimal to spend only a portion of the budget.

Interestingly, numerical illustrations using an SI model with replacement (i.e., an 
SI model with individuals entering and leaving the population at the same rate) 
showed that under a broad range of epidemic assumptions—fast versus slow growing, 
short versus long time horizons, low versus high prevalence—it is the shape of the 
production function that determines the shape of change in the sufficient contact rate 
as a function of investment rather than the epidemic characteristics. However, 
knowledge of the epidemic characteristics is needed to determine the optimal level of 
investment. The paper demonstrated the importance of production functions in deter-
mining optimal uses of funds for HIV control.

Further illustrating the impact of production functions, Brandeau et  al. (2005) 
quantified the potential losses caused by ineffective use of funds for the case of 
resources allocated between two prevention programs for two noninteracting populations. 
The authors assumed an SI epidemic dynamic for each population and prevention 
program production functions with an initial fixed start‐up cost and exponentially 
decreasing returns to scale as the programs get larger. The model was populated with 
HIV epidemic data from California, with men who have sex with men (MSM) and 
IDUs as the two independent populations. The prevention program production 
functions for each population were estimated based on published literature.

The authors evaluated the impact—quantified in terms of infections averted—of 
different allocations of HIV control resources between the two populations, assuming 
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the decision maker has no, incomplete, or complete knowledge about the shape of the 
production functions. The analysis showed that even incomplete knowledge of pro-
duction functions—for example, an assumption of decreasing returns to scale (either 
linear or exponential)—can yield better results than the simple heuristics typically 
used in practice, such as allocating funds proportional to estimated HIV incidence in 
each population. Use of the linear and exponential production functions led to a dif-
ferent allocation of funds between populations (100% of funds allocated to MSM for 
both production function shapes) than the heuristic (83% to MSM, 17% to IDUs) and 
averted more than three times as many HIV infections.

Surprisingly, complete or even partial knowledge of production functions that 
included the fixed program cost yielded a different, improved resource allocation 
(100% to IDUs), averting more than twice as many infections as when fixed cost was 
not considered in the production function. The authors suggested that even simple 
assumptions about production functions—in particular, an estimate of program fixed 
cost along with one point for estimated risk reduction obtained for additional 
investment—can significantly improve resource allocations for HIV control pro-
grams, particularly in settings where fixed program costs are high and budgets are 
tightly constrained.

2.2.3 Allocating Resources among Prevention and Treatment Programs

Recent work by Alistar et al. (2014b) considered the broader problem of allocating 
resources between HIV prevention and treatment. The authors examined the optimal 
allocation of resources between multiple interacting populations. To model epidemic 
dynamics, they used a susceptible‐infected‐treated framework (an SIT model) for 
each population and included the effects of both prevention programs, which lower 
sufficient contact rates for disease transmission, and treatment programs, which 
increase the rate at which individuals enter the “treated” compartment, thus gaining 
benefits to life span and to reduced infectivity. Each program was characterized by 
production functions (linear or exponential) that reflected typical patterns seen in 
practice. The authors considered the objective of minimizing R

0
 (the reproductive 

rate of infection) and also investigated how results would change with other choices 
of objective function (QALYs gained or HIV infections averted).

The work characterized the optimal resource allocation under different conditions, 
showing when it is optimal to invest in different programs and populations based 
on epidemic characteristics in each population and the shapes of the production 
functions. In broad terms, the conditions for choosing either treatment or preven-
tion compared the marginal benefit from investing additional funds in each 
program. In addition, since treatment extends the life of infected individuals, the 
optimal solution involves treatment only if the extension is life expectancy is 
 outweighed by the reduction in infectivity caused by taking ART. Since ART 
reduces infectivity by a factor of approximately 10, but extends life by a factor less 
than 10, this condition holds.
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Importantly, to instantiate the model, the authors developed an innovative technique 
for estimating production functions based on empirical data about intervention levels 
and HIV prevalence. To estimate the production functions, a functional form is 
assumed, and then, using the epidemic model and data on previous intervention 
levels, production function parameter values are estimated via least‐squares 
estimation comparing model‐projected HIV prevalence (as calculated with the 
assumed production functions) with actual HIV prevalence.

The authors populated the model with data from Uganda, which has a generalized 
heterosexual epidemic, and Russia, where the epidemic is concentrated in IDUs. 
Using historical data on epidemic evolution and the scale of treatment and prevention 
programs in each country, the authors estimated the shapes of production functions 
for each intervention and then evaluated the impact of alternative investment choices 
on R

0
. Model results indicated that for Uganda, increased investment in condom pro-

motion programs should be a priority, either alone or in combination with treatment 
programs. For Russia, continuing to invest funds per the status quo is a suboptimal 
use of resources: the optimal solution allocates significantly more HIV control funds 
to programs targeting IDUs. The optimal solution averts more than seven times as 
many infections as the status quo would and has a significantly greater impact on 
diminishing the HIV epidemic.

Juusola and Brandeau (2016) also considered the problem of allocating resources 
between HIV prevention and treatment. The goal is to maximize health benefits, 
either QALYs gained or HIV infections averted (an indirect measure of health bene-
fits), subject to investment constraints. Rather than using a nonlinear epidemic 
model, they developed a simpler model that approximates health benefits using linear 
functions. The linear estimate of health effects accounts for both primary health ben-
efits accruing to individuals who receive prevention or treatment and secondary 
health benefits accruing to other individuals who therefore avoid infection. Other 
studies have used a similar means of estimating health benefits, but not as part of a 
resource allocation model. The authors considered production functions that are 
linear or that have diminishing returns. Additionally, they explicitly modeled the 
effect of overlapping interventions to capture potential subadditivity in program ben-
efits; because the same infection cannot be prevented twice, it is likely that at a high 
enough level of investment, the health benefits of two HIV control programs imple-
mented simultaneously will be less than the sum of health benefits if the programs 
were implemented alone. The linear model has relatively simple data needs, and 
decision makers could easily solve the model in a spreadsheet after collecting and 
estimating model inputs.

To illustrate the approach, the authors analyzed the impact of three interven-
tions—community‐based education, ART, and PrEP—on the HIV epidemic among 
MSM in the United States. The analysis showed that education is a priority interven-
tion as it is relatively inexpensive and effective, followed by ART and then followed 
by PrEP. For this particular epidemic and set of interventions, intervention overlap 
effects were small when programs were implemented at a limited scale.
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These theoretical analyses expand the body of work that explores the resource 
allocation problem for epidemic control generally and for HIV in particular. We now 
describe our recent work on evaluating alternative portfolios of investment in HIV 
control programs in specific settings.

2.3 HIV RESOURCE ALLOCATION: PORTFOLIO ANALYSES

2.3.1 Portfolio Analysis

Portfolio analyses aim to compare the relative results of investing epidemic control 
funds across two or more interventions. The goal of portfolio analysis is not neces-
sarily to determine the optimal level of investment in each program, as in the resource 
allocation problems described in the previous section. Instead, the goal is to compare 
the impact of several possible HIV control strategies implemented singly or in 
combination and with varying levels of scale, thus identifying the best choice of 
control measures from a discrete set.

In such analyses, portfolios of interventions are evaluated using a common metric 
that captures the consequent health benefits. For portfolios that include only preven-
tion programs, HIV infections averted could be selected as the outcome metric, 
whereas for portfolios that also include HIV treatment, QALYs gained is a more 
appropriate outcome measure. Analyses that compare only the relative benefits of 
programs are referred to as “effectiveness analyses”; analyses that additionally 
include costs are referred to as “cost‐effectiveness analyses.”

Methods used to analyze the relative cost‐effectiveness of portfolios of interven-
tions are similar to those typically used in cost‐effectiveness analysis of single HIV 
interventions but modified to account for multiple interventions implemented simul-
taneously. An epidemic model is used to project HIV epidemic dynamics over time, 
and consequent costs and health outcomes are measured. Model parameters are 
adjusted to reflect the impact of the programs considered in each portfolio. For 
example, in the case of a condom availability program combined with ART scale‐up, 
parameters reflecting riskiness of sexual behavior would change, as would parame-
ters reflecting length of life and infectivity of infected individuals. The time horizon 
considered must be long enough to capture the benefits (and costs) of all interven-
tions considered. The results of the various strategies are compared with the status 
quo, which refers to the results that could be obtained by continuing to implement the 
interventions already in place at the same scale.

To facilitate the comparison of the different strategies, they are typically 
mapped on a standard cost‐effectiveness plane, which is an X–Y graph with the status 
quo at the origin and the two axes representing costs and health benefits (Gold et al. 
1996). Portfolios of interventions can fall into four categories. Those with lower 
costs and higher benefits than the status quo should always be considered for imple-
mentation. Those with higher costs and lower benefits should never be considered. 



40 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

Portfolios that are cheaper but also offer fewer health benefits may be considered by 
some decision makers, depending on the local circumstances.

Portfolios with higher costs and higher benefits are selected based on their 
ratio of costs to benefits, which may or may not meet a maximum threshold 
defined by the decision maker (known as “willingness to pay” (WTP)). One 
would first select the program with the lowest cost‐effectiveness ratio, verify 
that it meets the decision maker’s WTP, then use that point as the new reference 
point, and consider the best program to implement next. At each step, strategies 
with lower costs and benefits than the current “best” are eliminated from 
consideration. The process is repeated until there are no more strategies to con-
sider or the decision maker’s WTP has been exceeded. The World Health 
Organization suggests that programs that cost less than three times a country’s 
GDP per capita per QALY gained are cost‐effective and could be considered for 
investment, and programs that cost less than a country’s GDP per capita are very 
cost‐effective (Murray and Lopez 2002).

We now describe several recent portfolio analyses that we have carried out: two 
analyses for Ukraine (intended to be representative of Eastern Europe more broadly) 
and one analysis for South Africa.

2.3.2 Opiate Substitution Therapy and ART in Ukraine

Ukraine has one of the fastest‐growing HIV epidemics in the world (Joint United 
Nations Programme on HIV/AIDS 2008). The epidemic has been primarily 
driven by injection drug use, but over time an increasing level of heterosexual 
transmission has occurred, creating a mixed HIV epidemic where both needle‐
based and heterosexual transmission cause a significant proportion of new 
infections. Both ART and OST using methadone have been under consideration 
for scale‐up, but scarce resources have not allowed implementation at scale for 
both programs.

The overall impact of each program, as well as the impact of a portfolio that com-
bines them, is difficult to evaluate in the absence of a mathematical model, since the 
epidemic involves multiple population groups, and each program affects the epi-
demic in several ways. ART extends the life of infected individuals (either IDUs or 
non‐IDUs) and reduces their infectivity, thus reducing the chance that they transmit 
HIV to others. OST lowers the likelihood of needle sharing and other risky behaviors 
among IDUs, thus reducing needle‐based transmission among IDUs as well as sexual 
transmission to IDUs and non‐IDUs.

Alistar et al. (2011) considered portfolios of HIV control measures for Ukraine 
consisting of OST for IDUs and ART scale‐up for IDUs or non‐IDUs. They used a 
dynamic epidemic model that includes IDUs and non‐IDUs, with compartments that 
allow modeling different risk behaviors for IDUs who receive OST versus IDUs who 
do not. The model also includes compartments that reflect the stages of HIV disease 
progression according to a standard metric (CD4 cell count) and allows treatment 
initiation at the appropriate CD4 cell count. Disease transmission occurs through 
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risky sexual or needle‐sharing encounters among IDUs and risky sexual behavior 
involving IDUs, non‐IDUs, or both.

The authors considered strategies for implementing OST alone or in combination 
with ART, at various levels of scale‐up: up to 25% of IDUs in OST and up to 80% 
of eligible individuals receiving ART. Given the stigma associated with drug usage 
and the occasional political reluctance in the region to invest in programs that are 
mainly intended for drug users, the analysis included strategies that limit the 
number of OST slots available to approximately 3% of IDUs and strategies where 
ART scale‐up for IDUs is limited when compared with non‐IDUs (10% vs. 80%). 
The authors used the model to estimate the costs and benefits of each strategy over 
20 years, comparing them to the status quo in which no OST is available and ART 
scale‐up is limited.

The analysis yielded several key insights. First, scaling up OST is likely to be 
the most cost‐effective investment. Scaling up OST to 25% of IDUs cost $530/
QALY gained, far lower than Ukraine’s GDP per capita of approximately $7000, 
and reduced HIV prevalence significantly, averting infections in both IDUs (65% 
of averted infections) and non‐IDUs (35% of averted infections). This is because 
in a mixed HIV epidemic of the type occurring in Ukraine, a sizeable proportion 
of infections occurs via sexual transmission from the small, high‐prevalence IDU 
population to the large, low‐prevalence non‐IDU population. Hence a program 
that reduces disease transmission among IDUs will have sizeable secondary 
effects in the non‐IDU population. The dynamic compartmental model used in 
this work is able to capture these effects, and the analysis provides a strong 
argument in favor of OST programs.

Second, scaling up ART in addition to OST (OST at 25% scale, ART at 80% 
scale) was also cost‐effective, averting significantly more infections than just scaling 
up OST (OST at 25% scale). At a cost of $1120/QALY gained, ART scale‐up is still 
considered highly cost‐effective when compared with Ukraine’s GDP per capita. We 
note that the dynamic epidemic model captured the effects of overlapping interven-
tions: the infections averted by the combined OST and ART programs were slightly 
lower than the sum of the infections averted by individual programs. This is because 
the same infection cannot be prevented twice.

Finally, the analysis highlighted the losses (in terms of health benefits that could 
potentially be achieved) from implementing programs that exclude IDUs. A strategy 
to scale up ART to 80% of eligible non‐IDUs but only 10% of IDUs yielded less 
than half the benefits of a full ART scale‐up to 80% of all eligible individuals. 
Moreover, the limited ART scale‐up strategy reduced health benefits for both IDUs 
and non‐IDUs.

This work sheds light on the interactions of ART and OST programs in a mixed 
HIV epidemic and demonstrates the importance of addressing key epidemic drivers 
(in this case, needle‐based transmission) when allocating scarce resources. In the 
recently challenging political environment, Ukraine is struggling to maintain its OST 
programs, with the lack of access renewing the risk of explosive epidemic growth 
(Humphreys 2013; Holt 2014).
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2.3.3 Pre‐exposure Prophylaxis and ART

2.3.3.1 Pre‐exposure Prophylaxis and ART in Ukraine Models are particularly 
useful for evaluating the potential impact of new epidemic control interventions 
when only limited information is available about their effects over time and when 
such interventions are used in conjunction with other epidemic control programs. 
Oral PrEP is a recently introduced intervention in which healthy individuals receive 
a daily dose of antiretroviral medication so as to reduce their chance of acquiring 
HIV in risky sexual or needle‐sharing contacts. Recent clinical trials have demon-
strated reductions of up to 75% in HIV acquisition for heterosexual adults (Baeten 
et al. 2012; Thigpen et al. 2012) and up to 49% for IDUs (Choopanya et al. 2013), 
but little is known about the potential large‐scale impact of such programs, with cost 
being particularly uncertain.

Alistar et  al. (2014c) modeled a portfolio of HIV control interventions for 
Ukraine that included OST, ART, and oral PrEP. They extended their previously 
developed dynamic compartmental model (Alistar et al. 2011) to include compart-
ments for IDUs receiving PrEP. Individuals who receive PrEP have a reduced 
chance of acquiring HIV and an increased chance of early detection of HIV infec-
tion status if they do become infected. The authors considered strategies that scale 
up PrEP for up to 50% of uninfected IDUs, OST for up to 25% of IDUs, and ART 
for up to 80% of eligible individuals. They compared various portfolios combining 
the three interventions, estimating effectiveness (infections averted vs. status quo) 
and cost‐effectiveness (cost/QALY gained vs. status quo) over a 20‐year time 
horizon.

Model results indicated that at a lower scale (25% of IDUs), PrEP averted fewer 
infections than either OST or ART scale‐up; but when reaching 50% of IDUs, PrEP 
averted more infections than the alternatives. Furthermore, when added to large‐scale 
OST or ART programs, PrEP averted a significant number of additional infections 
and hence could be an effective part of a portfolio of interventions to control mixed 
HIV epidemics. As is the case for other HIV control interventions directed to IDUs, 
a sizeable proportion of the infections averted were in non‐IDUs, due to averted het-
erosexual transmission from IDUs to non‐IDUs.

A key consideration when analyzing portfolios containing PrEP is the annual cost 
per person, which is currently high (e.g., on the order of $25 per person per day in the 
United States (Paltiel et al. 2009)), but could be significantly lower if PrEP is imple-
mented at scale. The analysis showed that if PrEP cost is comparable with ART cost, 
then it is more affordable to first scale up OST and then ART, and only after that 
consider scaling up PrEP, which is still considered cost‐effective. Sensitivity analyses 
showed that when PrEP cost drops to two‐thirds the cost of ART, then it is more 
cost‐effective to scale up PrEP first and that PrEP has the potential to be cost saving 
if its cost drops below half that of ART.

The mathematical model developed in this work allowed for exploration of the 
potential of a new HIV control intervention and its role as part of portfolios of 
interventions for HIV control. The insights into intervention attractiveness based 
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on the relative cost of PrEP compared with ART are useful to decision makers 
who are looking to understand how best to prioritize interventions when resources 
are scarce.

2.3.3.2 Pre‐exposure Prophylaxis and ART in South Africa As medical research 
advances and guidelines for medical practice change, decisions about investment in 
HIV prevention and treatment programs need to be revisited, in particular when 
looking to find the best portfolio of interventions for a specific setting.

Until recently, World Health Organization guidelines recommended ART initia-
tion when an infected individual’s CD4 cell count is at or below 350 cells/mm3. This 
recommendation was changed in 2013 to 500 cells/mm3 after clinical trials demon-
strated health benefits to infected individuals and significant reductions in their 
infectivity (World Health Organization 2013a). In high‐prevalence countries such as 
South Africa, where approximately one‐fifth of adults aged 15–49 are infected (Joint 
United Nations Programme on HIV/AIDS 2010), implementation of the revised 
treatment guidelines will lead to significant numbers of people newly enrolled in 
ART. An alternative use of antiretroviral medication, PrEP for uninfected individ-
uals, has recently been suggested as a promising new intervention for controlling 
HIV in a variety of settings, including high‐prevalence settings such as South Africa.

Alistar et  al. (2014a) recently analyzed the impact of different strategies for 
investing in PrEP and expanding ART access to individuals in earlier stages of HIV, 
consistent with the new World Health Organization guidelines. The authors created a 
model of the HIV epidemic in South Africa that included heterosexual HIV transmis-
sion and allowed for treatment initiation at different disease stages. They considered 
two approaches for ART scale‐up at various levels (“guidelines” or “universal”) and 
two approaches for PrEP scale‐up (“general” or “focused”), as well as their combi-
nations. Under the “guidelines” scenario, ART scale‐up continues per South Africa’s 
most recent guidelines (Republic of South Africa National Department of Health 
2013), which still reflect the old World Health Organization standards. Under the 
“universal” scenario, ART is scaled up according to the new World Health 
Organization guidelines. The “general” scenario entails the provision of PrEP broadly 
in the population, while “focused” PrEP is targeted toward individuals at higher risk 
of HIV acquisition due to lower rates of condom use and higher number of partners. 
In each scenario, it was assumed up to 100% of eligible individuals could be reached 
with the program.

The authors estimated the costs and health benefits of each scale‐up strategy over 
20 years (here “strategy” refers to a single scenario or a combination of scenarios) 
and, for the case of full program scale‐up, established the maximum health benefits 
that could be obtained.

The analysis generated several key insights regarding choices for HIV control 
portfolios in South Africa. First, scaling up ART, either according to current guide-
lines or with universal treatment, is more cost‐effective than scaling up untargeted 
PrEP. Second, “universal” ART is cheaper and more effective than “guidelines” ART. 
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Hence ART scale‐up efforts will be most efficient if delivered to individuals in earlier 
disease stages in addition to those with more advanced HIV. At a cost of $160–$220/
QALY gained (depending on the scale of the program), “universal” ART is likely to 
be highly cost‐effective in South Africa. Third, untargeted (“general”) PrEP is likely 
to be expensive (at $7680/QALY) and to generate limited incremental benefits when 
added to ART. However, if PrEP can be accurately targeted to reach individuals at 
higher risk of HIV acquisition, then the intervention becomes a much better use of 
scarce resources and could even be cost saving. This result demonstrates the impor-
tance of tailoring epidemic control efforts to the specific challenges of each setting 
and matching the investment to curb the behaviors that drive increased HIV 
transmission.

2.4 HIV RESOURCE ALLOCATION: A TOOL 
FOR DECISION MAKERS

The range of interventions available for HIV control and the complexities of the 
epidemic dynamics make it challenging for decision makers with limited budgets to 
select the optimal portfolio of interventions for their setting and to determine the best 
level of investment in each intervention. Our previous work describes in detail some 
of these challenges (Alistar and Brandeau 2012). In the absence of mathematical 
approaches that are easy to use and that can be tailored to their specific settings, 
decision makers rely on political interests, personal values, historical patterns, and 
their own professional experience to guide their resource allocation process. 
Employing simple heuristics, such as allocating funds in proportion to past preva-
lence or incidence, can often lead to mismatches between where resources are allo-
cated and the current state of the epidemic and can even reward settings that are less 
efficient in managing resources (Ruiz et al. 2001).

Thus, there is a need for decision support tools that are based on mathematical 
projections of the epidemic in a given setting and that can inform resource allocation 
decisions from a data‐driven perspective.

2.4.1 REACH Model Overview

We designed the Resource Allocation for Control of HIV (REACH) model to be a 
flexible tool for use by decision makers in a variety of settings (e.g., governments, 
NGOs) to better understand the costs and benefits of various portfolios of HIV con-
trol interventions (Alistar et  al. 2013). The model is easily accessible since it is 
implemented in Microsoft Excel, a software available in most settings. REACH is 
designed to answer broad policy questions about resource allocation among interven-
tions and populations and can be customized to specific settings based on epidemic, 
demographic, and economic parameters. The model captures the dynamics of the 
epidemic and accounts for intervention overlap, as well as scale‐up effects in terms 
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of both costs and benefits, as described in our discussion of production functions in 
Section 2.2.2. In addition to the general population, the model can incorporate  several 
key populations: MSM, IDUs and sex workers (SWs). The model allows for scale‐up 
of both treatment and prevention interventions (e.g., condom promotion, OST, PrEP, 
ART) and identifies the optimal mix of interventions by evaluating costs and health 
benefits (HIV infections averted, life years gained, QALYs gained) over several time 
horizons (5, 10, or 20 years). In finding the optimal solution, the model takes into 
account any constraints imposed in the particular setting in terms of how much funds 
any particular program can receive. In addition to determining optimal investment, 
the model can also be used to analyze the costs and health benefits accruing from any 
investment portfolio specified by the user.

To illustrate the capabilities of the model, we have populated it with data from several 
countries: Uganda, Ukraine, Brazil, and Thailand. Insights gained from applying the 
model to Uganda and Ukraine are described elsewhere (Alistar et al. 2013). We present 
results from analyses for Brazil and Thailand in the next two sections.

2.4.2 Example Analysis: Brazil

Brazil has a stable epidemic that is concentrated in MSM: overall prevalence in the 
population is estimated to be 0.6%, whereas prevalence among MSM is estimated to 
be approximately 10.5% (Brazilian Ministry of Health 2012). The country has made 
significant efforts to scale up HIV treatment, providing ART for free to all individ-
uals in need. Currently in Brazil some 80% of eligible HIV‐infected individuals in 
the general population and 60% of eligible HIV‐infected MSM receive ART (World 
Health Organization 2013b).

We estimated that Brazil spends $310.0 million per year on HIV treatment under 
the status quo. One new prevention program proposed for uninfected MSM is PrEP, 
which has been shown to reduce the chance of acquiring HIV from an infected 
partner by approximately 70% among MSM (Grant et al. 2010). We considered a 
10% increase in the current budget, corresponding to incremental funds of $31.0 
million, which could be used for ART for MSM or other individuals in the population, 
as well as for PrEP for MSM. We estimated that the annual cost of ART in Brazil for 
one person is $1650 (World Health Organization 2013b) and that the annual cost of 
PrEP would be $3000 (Alistar et al. 2014c).

We populated the model using recent data from Brazil. Selected outputs from the 
analyses are shown in Table  2.2, which shows life years gained and HIV infections 
averted over 5 years and over 20 years for each of the budget allocations we considered.

If the new funds are invested proportionally to the current allocation—that is, no 
money is spent on PrEP for MSM, and all of the incremental funds are spent on ART, 
with 75.5% spent on ART for the general population and 24.5% spent on ART 
for MSM—then 26,700 life years are gained and 4,100 HIV infections are averted 
over 5 years and 186,700 life years are gained and 14,300 HIV infections are averted 
over 20 years.



  TABLE 2.2     REACH  Model Results: Brazil 

Status 
Quo

10% Budget 
Increase

Optimal: Maximize 
Life Years Gained 
(5 Years)

Optimal: Maximize 
Infections Averted 
(5 Years)

Optimal: Maximize 
Life Years Gained 
(20 Years)

Optimal: Maximize 
Infections Averted 
(20 Years)    

 Resources Allocated   
Treatment $310.0M $341.0M $341.0M $341.0M $341.0M $341.0M  
% to general population 75.5% 75.5% 65.0% 65.0% 65.0% 60.0%  
% to MSM 24.5% 24.5% 35.0% 35.0% 35.0% 40.0%  
Prevention—oral PrEP $0M $0M $0M $0M $0M $0M  
Life years gained (5 years) — 26,700 33,100 33,100 33,100 23,900  
Life years gained (20 years) — 186,700 314,000 314,000 314,000 270,000  
Infections averted (5 years) — 4,100 8,900 8,900 8,900 8,500  
Infections averted (20 years) — 14,300 41,500 41,500 41,500 42,800
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We used the optimization capability of the model to determine the investment that 
maximizes the number of life years gained over 5 years. In this case, it is best to 
continue to invest only in ART and not in PrEP for MSM, but a larger fraction of 
treatment funds are allocated to MSM than in the current allocation (35.0% vs. 
24.5%). This leads to 24% more life years gained than in the proportional allocation 
(33,100 vs. 26,700) and more than twice as many HIV infections averted (8,900 vs. 
4,100) over 5 years. This occurs because of the transmission benefits achieved by 
ART. Infected MSM are at higher risk of transmitting HIV than infected individuals 
in the general population. By putting relatively more MSM on treatment than in the 
status quo, more HIV infections are averted, which causes a gain of life years in 
the population. For a time horizon of 20 years, the life year‐maximizing solution is 
the same as that for the 5‐year time horizon.

We also determined the allocations that maximize infections averted over 5 years and 
over 20 years. For a 5‐year time horizon, the allocation that maximizes infections averted 
is the same as the allocation that maximizes life years gained. For a 20‐year time horizon, 
the allocation that maximizes infections averted still allocates all incremental funds 
to ART (and none to PrEP) but allocates a slightly higher fraction of treatment funds to 
MSM than when the time horizon is 5 years (40.0% vs. 35.0%). For this allocation, 3% 
more HIV infections are averted over 20 years than for the allocation that maximizes 
HIV infections over 5 years and maximizes life years over 5 and 20 years (42,800 vs. 
41,500), but 14% fewer life years are gained (270,000 vs. 314,000). The small change in 
the allocation of ART funds that occurs when maximizing HIV infections averted (allo-
cating 40.0% of treatment funds to MSM rather than 35.0%) increases the number of 
HIV infections averted but decreases the number of life years gained. The information 
provided by the model allows the decision maker to evaluate these and other trade‐offs 
when considering different potential portfolios of investment.

We note that unlike other countries such as Ukraine where the key population 
(IDUs) is responsible for a significant amount of HIV transmission to the general 
population, in Brazil the key population (MSM) does not spread HIV as significantly 
to the general population. For the case of Ukraine (described in Alistar et al. (2013)), 
when the time horizon increases from 5 to 20 years, it is best to increase the level of 
treatment funds devoted to the general population because of the spread of HIV from 
IDUs to the rest of the population; but for the case of Brazil, when the time horizon 
increases, it is best to slightly decrease the level of treatment funds devoted to the 
general population.

For this example, reallocating ART funds between the general population and 
MSM yields more health benefit than investing in PrEP for MSM. At current costs, 
ART is a better use of the limited available funds than PrEP. To achieve epidemic 
control goals, decision makers must make sure that the resource allocations they 
choose address the key populations most at risk of acquiring HIV. The appropriate 
level of investment in the available interventions is likely not obvious a priori, but 
can be determined using the model. Additionally, the model allows a decision maker 
to evaluate trade‐offs between HIV infections averted versus life years gained for 
different allocations of the same budget.
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2.4.3 Example Analysis: Thailand

Thailand has a large population of SWs—an estimated 125,000 individuals—who 
are considered to be one of the main drivers of the country’s HIV epidemic (Joint 
United Nations Programme on HIV/AIDS 2014). HIV prevalence among female 
SWs in Thailand is approximately 3.2% and is approximately 1.1% in the general 
population (Joint United Nations Programme on HIV/AIDS 2014). A strong condom 
promotion program in the 1990s helped keep HIV prevalence among SWs relatively 
low, but further progress is needed. The use of a method by which SWs could actively 
protect themselves, rather than relying on condom use by their male partners, has 
been proposed. One such method, currently being examined in a number of clinical 
trials, is topical PrEP, a vaginal gel containing HIV antiviral drugs (Lusti‐Narasimhan 
et al. 2014). It is estimated that topical PrEP could reduce the chance of a woman 
acquiring HIV by approximately 40% (Abdool Karim et  al. 2010; Celum and 
Baeten 2012).

ART access in the country is relatively high compared with other countries in the 
region: currently about 56% of eligible HIV‐infected individuals in the general 
population (Joint United Nations Programme on HIV/AIDS 2014) and an estimated 
25% of eligible HIV‐infected SWs receive ART (Kim et al. 2013).

Under the status quo, $45.9M is spent on ART annually, with the majority of ART 
focused on the general population. We considered a budget increase of approximately 
20%, corresponding to $9.9M in incremental funding. We assumed that the 
incremental funds could be spent on ART for SWs and the general public and on 
topical PrEP for SWs. We estimated that the annual per person cost of ART in 
Thailand is $500 (World Health Organization 2013b) and the annual per person cost 
of topical PrEP for SWs is $600 (Terris‐Prestholt et al. 2014).

We populated the model with recent epidemic information for Thailand. Table 2.3 
shows selected outputs from our analyses, including HIV infections averted and life 
years gained over 5 and 20 years for each of the budget allocations we considered.

Using the portfolio analysis capability of the REACH model, we evaluated a pro-
portional increase in the current budget, where all of the incremental funds are spent 
on ART and none is spent on topical PrEP for SWs. This allocation averts 5,600 new 
HIV infections and gains 31,500 life years over 5 years compared with the status quo.

Using the optimization capability of the model, we determined the allocation that 
maximizes life years gained over 5 years. In this case, it is optimal to invest all 
incremental funds in ART. The split of ART expenditure is different from the status 
quo, with 1% of ART funds spent on SWs versus 0.4% in the status quo. This alloca-
tion averts nearly 50% more HIV infections than the proportional allocation (8,300 
vs. 5,600 over 5 years) and gains 7% more life years (33,800 vs. 31,500 over 5 years), 
attesting to the importance of SWs in propagating the epidemic. By reducing the 
infectivity of SWs with ART, significant numbers of HIV infections can be averted 
and many life years can be gained. Notably, topical PrEP is not part of the optimal 
solution, due to its relatively low effectiveness when compared with ART (40% vs. 
90% effectiveness, for similar annual cost).



  TABLE 2.3     REACH  Model Results: Thailand 

Status 
Quo

20% 
Budget 
Increase

Optimal: Maximize 
Life Years Gained 
(5 Years)

Optimal: Maximize 
Infections Averted 
(5 Years)

Optimal: Maximize 
Life Years Gained 
(20 Years)

Optimal: Maximize 
Infections Averted 
(20 Years)    

 Resources Allocated   
Treatment $49.5M $59.4M $59.4M $59.4M $59.4M $59.4M  
% to general population 99.6% 99.6% 99.0% 98.0% 98.0% 98.0%  
% to SW 0.4% 0.4% 1.0% 2.0% 2.0% 2.0%  
Prevention—topical PrEP $0M $0M $0M $0M $0M $0M  
Life years gained (5 years) — 31,500 33,800 33,400 33,400 33,400  
Life years gained (20 years) — 242,700 328,300 350,000 350,000 350,000  
Infections averted (5 years) — 5,600 8,300 9,000 9,000 9,000  
Infections averted (20 years) — 37,500 79,100 92,100 92,100 92,100
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If the goal is to maximize life years gained over 20 years, then the optimal allocation 
is to spend all of the incremental funds on ART, with a higher percentage of ART 
funds (2.0%) targeted to SWs as compared with 0.4% in the status quo and 1.0% in 
the optimal 5‐year allocation. Over 20 years this allocation gains 11% more life years 
than the allocation that maximizes life years over 5 years (350,000 vs. 328,300) and 
averts 12% more HIV infections (92,100 vs. 79,100). The same allocation is optimal 
if the goal is to maximize infections averted over 5 or 20 years. A decision maker 
could use this information to understand the trade‐offs between maximizing HIV 
infections averted versus life years gained and to pick an appropriate portfolio of 
investments for his setting.

We note that the optimal allocations yield significantly greater health benefits (life 
years gained, HIV infections averted) than the proportional budget allocation because 
they devote more resources to SWs.

As was illustrated in the Brazil example earlier, in order to achieve epidemic con-
trol, it is important to address the key population groups. For Thailand, significantly 
higher health benefits can be achieved by increasing the investment in the most effec-
tive programs that reach SWs rather than investments targeted to the general 
population. Additionally, a greater fraction of funding may be allocated to treatment 
of key populations if the objective function (maximization of life years gained or 
HIV infections averted) is considered over a longer period of time.

2.5 DISCUSSION AND FURTHER RESEARCH

We have described a body of work that employs a variety of mathematical modeling 
techniques to understand how best to allocate HIV prevention and treatment funds. 
Although progress has been made in slowing the epidemic, millions of individuals 
continue to acquire HIV infection each year, so HIV control efforts will be needed 
for decades into the future. Millions of individuals will continue to need treatment, 
and prevention efforts must also be sustained. The model‐based work we have 
described can inform good decisions about investment of limited resources for 
HIV control.

A number of key areas for further work remain.
HIV resource allocation decisions are typically made in the face of significant 

uncertainty about epidemic characteristics, risk behaviors, and the potential impact 
of interventions. While established procedures exist for measuring standard epidemi-
ological parameters such as HIV incidence or prevalence, in many regions of the 
world, the data that is collected may be incomplete and/or highly uncertain. It is even 
more difficult to obtain accurate demographic and behavioral data about key popula-
tions, as such populations tend to be marginalized, though these populations are inte-
gral to epidemic spread. Additionally, until an HIV control program is implemented 
in a given setting, the true cost and impact of the program cannot be known with 
certainty. Thus, extension of existing HIV resource allocation models to allow for 
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systematic exploration of uncertainty is an important area for additional work. This 
should include, at the minimum, one‐way, multi‐way, and stochastic sensitivity 
 analysis of uncertain parameters. For some models, sensitivity analysis on model 
structure and key assumptions is also important. For example, recent work by Suen 
et al. (2017) demonstrates that the choice of how to discretize risk in compartmental 
epidemic models (e.g., division of a population into high‐risk and low‐risk groups) 
can influence predicted effectiveness of interventions. For such models, sensitivity 
analysis on choice of risk stratification is important. Model‐based analyses that 
include extended capabilities for sensitivity analyses can help quantify the impact of 
uncertainty and identify the uncertain parameters and key assumptions that have the 
greatest impact on potential decisions.

Many resource allocation studies are specific to a particular setting at a particular 
time. As the epidemic evolves in a given setting, resource allocation decisions need 
to be revisited periodically to ensure that funds are being put to the best available use. 
While most mathematical models account for impact of programs over time, it is less 
common to incorporate dynamic decision making and determine the optimal 
investment decisions over time. As the epidemic evolves, and parameters such as 
demographics, behavior, and costs change, the best investment in particular 
population groups or programs may change. A portfolio of HIV control programs 
that was previously optimal may no longer be the best means of achieving epidemic 
control. However, there are significant practical costs to revising an established 
course of action, and policies cannot be changed as often as would be optimal. 
Additional research is necessary to establish the frequency with which model results 
should be reevaluated. Based on such research, it may be possible to incorporate 
model functionality that suggests the appropriate time interval for policy revisions 
based on local circumstances.

Another question for future research is to explore the analytical basis for deter-
mining when it is reasonable to apply investment findings from one setting to another. 
The HIV epidemic varies widely among settings. Even among settings with similar 
HIV epidemics (e.g., certain countries in sub‐Saharan Africa where the HIV  epidemic 
is generalized in the adult population and the main mode of transmission is hetero-
sexual contact), a course of action that is optimal in one country may not be immediately 
applicable in another country due to slightly different demographic, economic, and 
epidemic parameters. While sensitivity analysis built into current models can help 
narrow down which parameters are critical to the evolution of the epidemic, 
systematic analyses of “how different is different enough” to warrant a full reevalua-
tion of results for a new setting are needed.

It has been said that “the era of AIDS exceptionalism is over” (Stolberg 1997; 
England 2008). Increasingly, governments and NGOs are also focusing on the con-
trol of other diseases (both communicable and noncommunicable) such as TB, 
malaria, and diarrheal diseases; on social conditions that influence health such as 
nutrition, sanitation, and education; and on the development of health infrastructure 
that is not focused solely on HIV prevention, care, and treatment. As we describe in 
the following text, future work on HIV resource allocation could support informed 
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policies by taking into account relevant co‐epidemic diseases, synergies with other 
parts of the healthcare delivery system, and allocation of resources across multiple 
diseases and perhaps other public investments.

The spread of HIV in different parts of the world has increased the spread of 
certain other communicable diseases, particularly TB and hepatitis C (HCV), as well 
as hepatitis B (HBV), malaria, and other diseases. In these co‐epidemics, the spread 
of HIV increases the transmission and progression of the other disease and vice 
versa. For example, in parts of Africa, India, and Eastern Europe, HIV is co‐epidemic 
with TB. Individuals who are HIV infected are more likely to develop active TB, and 
HIV infection progresses rapidly in individuals who have TB. In some parts of Africa 
and Asia, HIV is co‐epidemic with HBV. Among IDUs, HIV and HCV frequently 
co‐occur. Dynamic epidemic models of the type described in this chapter can be used 
to model the spread of such co‐epidemics and to evaluate the effectiveness and cost‐
effectiveness of potential control measures. Researchers have increasingly recog-
nized the importance of co‐epidemics when evaluating HIV control measures, and 
some work in this area has appeared, particularly in the areas of HIV–TB and HIV–
HCV coinfection (e.g., Currie et al. 2005; Long et al. 2008; Cipriano et al. 2012; 
Schackman et al. 2015). Further work is needed to evaluate the control of the HIV–
HCV and HIV–TB co‐epidemics in different settings, as well as other HIV‐related 
co‐epidemics such as HIV–HBV and HIV–malaria. Models that reflect the complex 
dynamics and interactions of these epidemics will need to include detailed disease 
projections, as well as functionality to explore the allocation of resources across 
control programs that significantly differ in nature (e.g., HIV medication must be 
taken for life, and the person cannot get reinfected, whereas TB medication requires 
a short timeframe and the patient can recontract the disease).

Additionally, there is increasing recognition that HIV needs to be addressed in the 
broader healthcare context of each country, particularly in the developing world. For 
example, efficient and effective delivery of HIV care services (e.g., programs for 
preventing mother‐to‐child transmission) requires integration with other healthcare 
services (e.g., programs for prenatal care) as well as a broad understanding of local 
conditions (e.g., nutrition, access to clean water, sanitation) (Kim et  al. 2013). 
A variety of important operational problems arise in this context, and these problems 
are well suited to OR‐based analysis. HIV resource allocation models could perhaps 
be extended to consider integration of HIV prevention and treatment programs into 
existing or planned healthcare delivery systems.

Finally, investment in HIV control can be considered in the broader context of 
investment in other disease control programs, other health programs, and other 
investments of public funds for social welfare. As described earlier, resource alloca-
tion models that consider investment in HIV and related co‐epidemic diseases could 
be developed. More broadly, resource allocation models could be developed to deter-
mine the allocation of funds across programs to control communicable diseases 
(including HIV) and noncommunicable diseases. At a higher level, it would be useful 
to develop a model for determining the appropriate allocation of funds across pro-
grams in health, education, and social services and to use such a model to analyze the 
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potential trade‐offs at a portfolio level. Establishing the theoretical basis for quanti-
fying such trade‐offs (i.e., developing methodology to compare benefits and costs 
across diverse investments) is an additional direction for further research.

By considering investments more broadly than just those targeted to HIV, plan-
ners can coordinate health efforts, thus helping to avoid duplication of services. 
Additionally, use of a broader investment framework enables planners to consider 
potential synergies or anergies between investments. Synergies might occur, for 
example, when investment in one disease control program also has the effect of 
helping to control another disease. For instance, efforts to reduce the spread of HIV 
may also reduce the spread of TB, as the two diseases are often co‐epidemic. 
Similarly, investment in the control of HIV may also reduce the spread of other sex-
ually transmitted infections (STIs). Synergies between multiple investments could 
also occur. For example, investment in a health screening program along with 
increased funding for treatment of HIV and other STIs could yield greater benefit 
than the sum of such interventions if implemented in isolation. Anergies between 
investments—when investment in two interventions yields a lesser health benefit 
than the sum of benefits if the interventions were implemented in isolation—could 
also occur. For example, two different HIV prevention programs may yield fewer 
HIV infections averted than the sum of infections averted if the programs were 
implemented in isolation. Consideration of potential interactions between invest-
ments is essential to the development of appropriate resource allocation models, both 
for investment in HIV prevention programs and for investment in health interven-
tions more broadly.

According to UNAIDS Executive Director Michel Sidibé, “the persistent burden 
associated with communicable diseases undermines efforts to reduce poverty, pre-
vent hunger and preserve human potential in the world’s most resource‐limited set-
tings” (Joint United Nations Programme on HIV/AIDS 2013). More efficient 
allocation of the limited disease control funds available can help countries achieve 
these goals and can lead to millions of lives saved.
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3.1 INTRODUCTION

The persistent threat of the emergence of novel viral pathogens (e.g., Ebola, SARS, 
H1N1, and H5N1 influenza) has generated public concern and triggered extensive 
efforts to develop better strategic plans to mitigate the health and economic impact 
of pandemics (Ferguson et al. 2005, 2006; Flahault et al. 2006; Germann et al. 2006; 
Lipsitch et al. 2003; Yang et al. 2009). The timely deployment of effective interven-
tions plays a central role in controlling epidemics. Recent successes in limiting the 
spread or delaying the emergence of pathogens have relied on the availability of 
surveillance data, and, increasingly, national and international public health organi-
zations have encouraged and invested in the development of more robust surveillance 
systems that can be used to guide the rational use of interventions (Henning 2004; 
Mandl et al. 2004).

These novel sources of health data offer new opportunities to actively monitor 
the emergence and spread of infectious disease and to inform more effective selec-
tion of interventional strategies. To harness this potential, an integrated framework 
is  required to translate real‐time surveillance data into deployable health policy 
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recommendations. The optimality of such health policies should be determined by 
their ability to reduce disease‐related morbidity and mortality while respecting 
 constraints on the availability of resources (e.g., budget, personnel, and supplies).

Utilizing accumulating epidemic data to inform cost‐effective decisions during 
epidemics requires a framework that integrates three main steps (see Figure 3.1). 
First, a transmission dynamic model must be developed based on domain‐specific 
expertise to describe the natural history and the transmission route of an infectious 
disease (Step 1, Figure 3.1). This model will be utilized to evaluate and compare the 
performance of different policies as well as to predict the future behavior of the epi-
demic. Next, the model must then be calibrated so that it captures the past trends and 
projects the future behavior of the epidemic within an acceptable degree of accuracy 
(Step 2, Figure 3.1). Finally, an optimizer is coupled to the calibrated model that 
identifies the optimal policy, specifying conditions where specific interventions 
should be employed (Step 3, Figure  3.1). The optimizer considers the available 
resources (e.g., budget, vaccine doses) as constraints and seeks to find a health policy 
that maximizes the expected population health while satisfying these resource 
constraints.

To illustrate the development and employment of adaptive health policies, we 
consider the spread of a novel viral pathogen (e.g., SARS, H1N1 and H5N1 influ-
enza) in a fully susceptible population. While vaccination remains the most effective 
intervention to mitigate the impact of epidemics (Germann et  al. 2006), vaccines 
against novel pathogens usually become available only in limited supply and with 
significant delay (Centers for Disease Control and Prevention 2009). In these cir-
cumstances, “transmission‐reducing” interventions, such as school or public place 
closure, are commonly considered as part of national and international pandemic 
mitigation protocols (Centers for Disease Control and Prevention 2007; Stern and 
Markel 2009; World Health Organization 2005). For example, closing schools aims 
to reduce contacts among school‐age children, who often play an important role in 
transmission, and consequently to interrupt or decrease the speed and extent of 
 transmission in the population (Cauchemez et al. 2009; Jackson et al. 2014).

Epidemic model Model calibration

Real-time data

Adaptive policy

Deployment of policy

Optimizer Available resources

1 2

3

Figure 3.1 A framework for adaptive decision‐making during epidemics.
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Despite these potential health benefits, the high social and economic costs associ-
ated with school or public place closure makes them an expensive control measure to 
be implemented only when the yield is high enough to offset the cost (Brown et al. 
2011; Chen et al. 2011; Sander et al. 2009). If, for example, public place closure were 
implemented too late in the epidemic, it would fail to have any meaningful mitigating 
effect while triggering the intervention too soon would incur unnecessary social and 
economic costs. Of equal importance is the decision about when to reopen schools. 
Lifting the intervention prematurely may result in a second epidemic peak and 
erosion of the accumulated benefit (Cauchemez et al. 2009). Here we consider the 
question about when we should employ and lift a transmission‐reducing inter-
vention, such as school or workplace closure, as the pathogen is spreading in the 
population.

3.2 PROBLEM FORMULATION

The spread of an infectious disease in a population triggers specific events that may 
result in observations, incur costs, affect population health status, and change 
resource availability. Examples of such events include incident infections, hospitali-
zations, or deaths of infectious individuals. We use the random variable Χ

k
 to denote 

events that may occur during the decision period k k, 1 , k 1 2 3, , , . While deter-
ministic epidemic models (Anderson and May 1991; Hethcote 2000) have been 
widely used to analyze the spread of infectious diseases, these models produce 
 epidemics with deterministic trajectories; if the epidemic trajectory was actually 
deterministic, it would be possible to identify an optimal series of interventions at the 
very beginning of an epidemic. We note that the future behavior of an epidemic is 
never known with certainty, and thus, in order to develop a framework that can pro-
vide adaptive decision support over the course of an epidemic, stochastic models are 
required. Several modeling approaches can be used to describe the random variable 
Χ

k
 to produce stochastic epidemic trajectories including stochastic compartmental 

models (Daley and Gani 1999; Yaesoubi and Cohen 2011) and agent‐based simula-
tion models (Bonabeau 2002; Epstein 2009; Germann et al. 2006) (see Section 3.3.2 
for an illustration).

Let   be the set of available control interventions (e.g.  {School closure,
Vaccinating children}) and ak 2  denote the set of control interventions in effect 
during the decision period [ , ]k k 1 , where 2 is the power set of  . Clearly, the 
interventions in effect during period [ , ]k k 1  will influence the set of epidemic events 
that may occur over this period. When this dependency should be made explicit, 
we  use Χ

k
(a

k
) instead of Χ

k
. An epidemic trajectory is defined as a realization of 

the stochastic process X k ka k( ), 1 , which we denote by k k, 1  (see 
Figure 3.2).

The stochastic process X k ka k, 1  is not fully observable and neither is 

the epidemic trajectory k k, 1 . However, during decision periods, the policy 
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maker may obtain observations on different epidemic measures, such as the number 
of disease‐related hospitalizations or deaths (triggered by realized events χ

k
). Let y

k
 

denote the vector of observations made during the period [ , ]k k 1  and h
k
 denote the 

history of the epidemic at decision point k defined as the sequence of past actions and 
observations up to the time point k. The history h

k
 is updated recursively according to 

h h a y kk k k k1 1 1 1, , , , where h
1
, the observed history at the first decision time 

point, is an empty set.
For a realized trajectory k k, 1 , we measure the overall outcome of the 

epidemic as the total discounted population’s net health benefit (NHB) (Briggs 
et al. 2006):

 k

K
k

k kr a
1

1 , , (3.1)

where r(a
k
, χ

k
) is the population’s NHB during the decision period [ , ]k k 1  if action 

ak 2  is in effect, and the events χ
k
 occur, and ( , ]0 1  is the discount factor. In 

Equation 3.1, the decision horizon K can be a constant predetermined by the decision‐
maker (e.g., 2 years) or can be a random variable representing the time when the 
disease is eradicated or some other stopping condition is met.

For a given epidemic trajectory k k, 1 , our goal is to maximize the 
objective function (3.1). To this end, we propose an analytical framework that con-
sists of three main steps: (i) the development of a transmission dynamic simulation 
model that describes the natural history and the transmission of the viral pathogen 
that allows us to project epidemic behavior over time and in response to interven-
tions, (ii) the calibration of the transmission dynamic model to available surveillance 
data, and finally (iii) the employment of a policy optimization procedure that 
 efficiently searches over the space of available strategies to identify a policy that 
maximizes the population’s expected total discounted NMB by specifying the 
 epidemic and resource availability conditions, which should trigger the employment 
or removal of specific control interventions.

When a pathogen first emerges in a population, many pathogen‐related parame-
ters will not be known. For example, the transmissibility of the pathogen (i.e., the 
probability that infection results from a relevant contact between an infectious 
individual and a susceptible individual) may be especially challenging to estimate 
based on limited data. We use 1 2, , , P  to denote the set of parameters that 

Decision time index 21

1

k k+1 k+2

Period 2 k k+1
Events χ1 χ2 χk χk+1

Actions a1 a2 ak ak+1

Observations y1 y2 yk yk+l

History h1 h2 hk hk+l

Figure 3.2 Sequence of events, actions, and observations during an epidemic.
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are not observable, but affect the epidemic random events Χ
k
. To predict the behavior 

of the epidemic, we use the transmission dynamic model  X { ( ), }Xk ka k 1 , where 
Xk ka( ) is the set of random epidemic events that the model projects for period [ , ]k k 1  
given the action a

k
. In Section 3.3.2, we detail the development of such model for a 

novel pathogen epidemic.
We denote the input parameters of this simulation model with the vector  

that contains estimates for the true epidemic parameter values θ. As the true 
value of important epidemic parameters are often unknown, the goal of model 
calibration is to identify values of the vector   such that the trajectories gener-
ated by the simulation model X is “sufficiently close” to the observed data from 
the epidemic.

Let H denote the set of all possible values that the history h
k
 can take. A policy 

:H A2  specifies the set of interventions to implement during a given decision 
interval [ , ]k k 1  based on the epidemic history h

k
 observed at the decision point k. 

The goal of policy optimization procedure at the decision point 1 2, ,  is to find 
a policy that maximizes the population’s expected total discounted NMB from the 
decision point κ onward:

 
E .





X
k

k
k kr h ,X  (3.2)

The expectation in Equation 3.2 is with respect to the stochastic process 




X Xk k ka , , which models the future events that may occur throughout the 
epidemic given the future actions  a hk k , k , ,1 . Here, hk

˜

 denotes the 
history at decision point k generated by the simulation model X. In Section 3.3.4, 
we develop an approximate policy iteration algorithm to approximate the optimal 
policy π* that maximizes the objective function (3.2).

3.3 METHODS

3.3.1 The 1918 Influenza Pandemic in San Francisco, CA

The 1918 influenza pandemic, better known as the “Spanish flu,” was caused by an 
influenza A virus (H1N1). In San Francisco, California, which had an approximate 
population of 550,000 in that year, 28,310 cases of the Spanish flu were reported 
during the autumn wave (September–November) (Crosby et al. 2003). During this 
period, neither an influenza vaccine nor antiviral drugs were available, and the con-
trol strategies relied on social distancing and hygienic measures such as isolation, 
prohibition of public events, and use of face masks. We use the daily number of cases 
reported during the autumn wave of the 1918 influenza pandemic in the city of San 
Francisco, California (see Figure 3.3), to calibrate a simple transmission dynamic 
model that can be used to evaluate and optimize the performance of different 
control policies.
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In the following subsections, we first describe the development of transmis-
sion dynamic models that can capture the outbreak of a novel viral pathogen. 
We then propose a calibration method to fit these epidemic models to the daily 
number of reported cases shown in Figure 3.3. We finally describe a dynamic 
decision model that can utilize the calibrated epidemic model to generate real‐
time recommendations.

3.3.2 Stochastic Transmission Dynamic Models

In this section, we develop a simple stochastic compartmental model for describing 
the spread of a novel viral pathogen such as H1N1 influenza that caused the 1918 
pandemic. While the calibration and policy optimization methods that we will 
describe in the later sections can work with any other modeling framework (such as 
agent‐based models), we chose to use a simple epidemic model to maintain the 
current focus on presenting the proposed calibration and policy optimization 
methods.

In this simplified transmission dynamic model (shown in Figure 3.4), population 
members are fully susceptible to the novel pathogen. A susceptible individual may 
become infected upon contract with an infectious individual. An infected individual 
is initially asymptomatic, but is nonetheless infectious. We assume that once an 
infectious individual becomes symptomatic, the severity of symptoms leads to their 
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Figure 3.3 Daily number of influenza notifications in San Francisco, CA, during the autumn 
wave of the 1918 influenza pandemic. Source: Chowell et al. (2007). Reproduced with permis-
sion of Interface.
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immediate diagnosis, and effective inpatient treatment will start soon after. Once 
treatment is initiated, the patient is no longer infectious. Individuals recovered from 
infection are assumed to acquire permanent immunity to the current viral strain. We 
note that this epidemic model is highly simplified and does not accurately reflect the 
natural history of influenza, in which most infections are not associated with symp-
toms and most affected individuals never will receive inpatient treatment. Our model 
also ignores disease‐related mortality. However, for the purposes of this illustrative 
example, this is a convenient structure. We show later how the proposed modeling 
framework is readily extended to models with more complicated natural history or to 
other modeling approaches (e.g., network models or agent‐based models).

Let ZS t( ) denote the number of susceptible individuals, Z I t( ) denote the number 
of infectious individuals, ZT t( ) denote the number of individuals receiving treatment, 
and ZR t( ) denote the number of recovered individuals at time t. Since influenza epi-
demics usually last for several months and the number of deaths is generally small 
relative to population size, it is reasonable to assume that the population size N does 
not change over the course of epidemic. For a population of a fixed size N, the state 
of the disease spread at any given time t can be identified by s Z Z Zt t tt S I T( ) ( ) ( ), , .

Let β(t) denote the probability that the next contact of a random susceptible 
individual is with an infectious person. We assume that a random susceptible 
individual will contact other population members at rate λ. When transmission‐
reducing interventions (e.g., school closure) are not used and mixing is homogenous, 
β(t) is equal to ( ) ( )t Z NtI / . Let φ(t) denote overall probability that a susceptible 
person becomes infected. This probability can be calculated as (Yaesoubi and 
Cohen 2011):

 t e et t tZ t NI1 1 / , (3.3)

where η denotes the probability that a susceptible individual becomes infected upon 
contact with an infectious person. Variable η may be modified by “hygienic interven-
tions” (reducing the chance of transmission given contact between infectious and 
susceptible individuals) and variable λ by “social distancing” (reducing the likelihood 
of contact between susceptible and infectious individuals). We assume that if either 
of these interventions is in effect during the interval [ , ]t t t , the probability φ(t) in 
Equation 3.3 will be reduced to ( ) /t e tZ t NI1 1 , where [ ]0 1,  is the 
fractional reduction in the infection transmission rate. We refer to the parameter σ as 
effectiveness of the transmission‐reducing intervention. Given the state of the epi-
demic at time t, that is, s Z Z Zt t tt S I T( ) ( ) ( ), , , the number of new infections during 
the interval [ , ]t t t  will have a binomial distribution with parameters (Z

S
(t), φ(t)) 

(Yaesoubi and Cohen 2011).

Susceptible Infection Infectious Hospitalization Treatment Recovery Recovered

Figure 3.4 A simple model for the outbreak of a novel viral pathogen.
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We assume that an infected individual will get hospitalized at a rate μ and will 
recover at a rate η once treatment is initiated (though we assume that they are not 
infectious as soon as the treatment starts). Therefore, given the state of the epidemic 
at time t, the number of newly hospitalized patients and the number of patients who 
will recover from the infection during the interval [ , ]t t t  will have binomial 
distributions with parameters Z etI

t( ),1  and Z etT
t( ),1 , respectively.

To generate trajectories for this epidemic model, we use Monte Carlo simula-
tion to sample from the Markov chain Z Z Z t t t tt t tS I T( ) ( ) ( ), , : , , , ,0 2 3 . 
The random events that govern the evolution of this Markov chain are (i) the infec-
tion of a susceptible individual, (ii) the hospitalization of an infectious individual, 
and (iii) the recovery of a hospitalized individual. The probability distributions 
of  these events are described previously. Therefore, in this epidemic model, the 
random variable Χ

k
(a

k
) (see Section 3.2) is a three‐dimensional vector representing 

the number of newly infected cases (change in health status), the number of newly 
diagnosed cases (triggering observations, incurring treatment costs, and change 
in health status), and the number of patients recovered from infection (change in 
health status).

3.3.3 Calibration

The goal of model calibration is to use the observations gathered throughout the 
epidemic to reduce the uncertainty around model input parameters (Alkema et al. 
2011; Birrell et al. 2011; Cauchemez et al. 2006a, b; Elderd et al. 2006; Wallinga and 
Teunis 2004). To decide which calibration method to use for the purpose of adaptive 
decision‐making, we note that the simulation model tuned by the calibration 
procedure will be used later in policy optimization. If the calibration procedure iden-
tifies only the “best fit” to the observed data, the performance of the resultant control 
policies will be extremely sensitive to the observed epidemic data. Therefore, in 
order to improve the robustness of control policies, rather than trying to find param-
eter estimates that yield the best fit to the observed data, we characterize a probability 
distribution for parameter values for a set of trajectories that are “sufficiently close” 
to the observed data. This set of trajectories will be later used in the optimization 
phase to evaluate performance of different control policies.

To describe the calibration procedure proposed here, we fit the epidemic model 
of Section 3.3.2 to the data gathered during the first 3 weeks of the Spanish flu in 
San Francisco (the first 21 data points in Figure 3.3). During the early stage of this 
pandemic, no particular control interventions were employed and the population’s 
reaction to the pandemic was apparently minimal. To calibrate the epidemic model 
of Section 3.3.2, we first note that, in this model, parameters λ and η occur as a 
multiplicative term (see Equation 3.3), and hence only one of them can be identified 
through calibration. We therefore fixed the value of 10 effective contacts per day 
and will try to estimate the pathogen infectivity, η, and the mean of infectious 
period, 1/μ.
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Let  ( ) denote the joint prior probability function of the true epidemic 
parameters 1 2, , , P , perceived by the policy maker at the beginning of 
the epidemic. This prior distribution can be characterized using the estimates 
from similar epidemics that have occurred before. To form a prior distribution for 
the parameters of our epidemic model, we note that for this model the basic 
reproduction number, R

0
, defined as the average number of secondary cases gen-

erated by a primary infectious case in a completely susceptible population, can 
be calculated as R0 / . We chose uniform prior distributions for R

0
 and 1/μ: 

R0 1 13[ . ],  and 1 18/ ,[ ].
Figure 3.5a compares the total number of cases by the end of day 21 observed 

during the Spanish flu in San Francisco, CA, with the histogram of the total number 
of cases estimated using our epidemic models. To obtain this probability function, we 
used 1000 simulation runs for which R

0
 and 1/μ were randomly drawn from uniform 

distributions [ . ]1 1 3,  and [ ]18, , respectively, and η was set to R0 / . Figure 3.5a 
demonstrates that the selected prior distributions for R

0
 and 1/μ fail to produce epi-

demic trajectories that capture the accumulating data during the first 21 days of the 
Spanish flu in San Francisco, CA. In this subsection, we describe an algorithm to 
identify parameter sets that produce a set of epidemic trajectories that are sufficiently 
close to the observed epidemic data. This algorithm will also provide a mechanism 
for sampling from these trajectories. These sampled trajectories can then be used for 
projection and policy evaluation (see Section 3.3.4).

The proposed algorithm relies on the use of common random numbers (Clark 
1990; Murphy et al. 2013) to simulate epidemic trajectories. This variance reduction 
technique is often used to improve the accuracy of the comparison between two or 
more alternative configurations by using the same streams of uniform random vari-
ates in simulating these alternatives. This approach allows us to retrieve any desired 
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Figure 3.5 Comparison of the total number of cases observed at day 21 during the autumn 
wave the Spanish flu in San Francisco, CA, with the prediction from the epidemic model. 
Histogram in (a) is created using 1000 simulation runs for which R

0
 and 1/μ are randomly 

drawn from prior distributions [ . ]1 1 3,  and [ ]18, , respectively. To construct histograms in 
(b) and (c), first, N

0
 = 25,000 simulation runs are obtained and then to decide which trajectories 

to keep, 0 02.  (for b) and 0 01.  (for c) are used. The remaining trajectories are resampled 
1000 times according to the mass probability function Π

z
 returned by the calibration procedure 

in Table 3.1.
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simulated trajectory when evaluating the performance of various control policies in 
the policy optimization step. In this method, to obtain one simulated epidemic trajec-
tory, we first specify the seed of the simulation’s random number generator (RNG) 
object. The simulator will then use the RNG object to generate a unique stream of 
random numbers that will be used to both draw a sample for epidemic parameters 
and generate one simulated trajectory. This approach will enable us to regenerate any 
desired trajectory by knowing the corresponding RNG seeds.

At a decision point { }1 2, , , we use the observed epidemic history hκ to con-
struct the observation matrix Y y y y1 2, , ,  and the sequence of past actions 
A a a a1 2 1, , , . Let ˆ ˆ ˆ ˆY y y yz z z z

1 2, , ,  denote the observation matrix generated by 
the simulation model  X { , }( )Xk ka k1 1 , in which actions over decision periods 
{ , , , }1 2 1  are set equal to the actions A a a a1 2 1, , ,  taken during the epidemic, and 
z  is the seed of the simulation RNG object.

To measure the fit of a model to accumulated observations, a popular approach is 
to use likelihood functions (Alkema et  al. 2011; Birrell et  al. 2011; Elderd et  al. 
2006). Let θ denote the model parameters (R

0
 and μ in this illustration). The likelihood 

of observations Y y y y1 2, , ,  is defined as

 
L Y L y y y y y y y

k
k k; , , , ; ,1 2

1
1 2 1 , , , ;  (3.4)

where  y y y yk k1 2 1, , , ;  is the probability of observing y
k
 given the previous 

observations y y yk1 2 1, , ,  and the model parameters θ. Calculating the exact 
likelihood function (3.4) for stochastic epidemic models is often not possible, so the 
likelihood function must be approximated (Bettencourt and Ribeiro 2008; Riley et al. 
2003). Here, we use an alternative approach to calculate the fit of a simulated trajec-
tory. To measure the distance between the matrices Yκ and Ŷ z, we first construct the 
matrix of relative errors:

 
d Y Y

Y Y

Y E
z

z

ˆ
ˆ

, , (3.5)

where the division is element wise and the matrix E has the same size as Yκ with all 
elements set to 1. The matrix E is added to ensure that the denominator in Equation 
3.5 is always greater than zero. Now, we use the Frobenius norm of the matrix 
d Y Yzˆ ,  to measure the distance between the matrices Yκ and Ŷ z. The Frobenius 

norm of a matrix M is defined as M m
F iji j

( )
,

2 , where m
ij
 is the (i, j) element 

of the matrix M (Golub 2013).
To decide if the epidemic trajectory corresponding to an RNG seed is considered 

“sufficiently close” to the observed data, we use the following approach. Let ( , ]0 1  
be a coverage ratio to represent the policy maker’s preference over different sets of 
simulated trajectories; smaller values of α implies the policy maker’s preference to 
identify simulated trajectories that are close to the observed data, whereas larger 
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values of α implies the policy maker’s preference to find trajectories that cover a 
larger neighborhood around the observed data. For example, in Figure 3.5b and c, 

0 02.  and 0 01. , respectively. Therefore, the simulated trajectories selected by 
the proposed calibration procedure are gathered more closely around the observed 
data (i.e., total number of cases at end of day 21) in Figure 3.5c compared with those 
in Figure 3.5b.

To build a set of trajectories that are considered sufficiently close to the observed 
epidemic data, the proposed algorithm first obtains N

0
 epidemic trajectories that are 

not eradicated by the decision point κ. Let the set Rκ contain the RNG seeds used to 
generate these N

0
 epidemic trajectories. We construct the set    by selecting 

⌊αN
0
⌋ seeds from the set Rκ that have resulted in trajectories with the smallest values 

of d Y Yz

F

ˆ ,  among the N
0
 simulated trajectories. Now to generate epidemic trajec-

tories for prediction or for evaluating control policies, at each simulation iteration, 

we select a random number z   with the probability z z zz
p p


, where 

p d Y Yz
z

F
1 ˆ , . Table  3.1 summarizes the steps of the calibration procedure 

 proposed here.
This calibration procedure can also be used to estimate the epidemic parameters. 

Figure 3.6 shows the estimated values of the basic reproductive number (R
0
) and the 

mean of the infectiousness period (1/μ) using the first 21 days of observations during 
the Spanish flu epidemic in San Francisco. To produce these estimates, we first 
employed the calibration procedure in Table 3.1 with N0 25 000,  and 0 01.  to 
find RNG set   and the probability mass function z z,   (here, 21 days). 
We then formed the histograms in Figure 3.6 by obtaining 1000 samples from the 
parameter values corresponding to the RNG seeds in the set   according to the 
probability mass function z z,  . The estimates shown in Figure 3.6 are consis-
tent with the results from previous studies (Chowell et al. 2007; Mills et al. 2004).

3.3.4 Optimizing Dynamic Health Policies

Classical approaches for identifying optimal strategies for infectious disease control 
use mathematical or simulation models of disease spread to evaluate the performance 
of a limited number of predetermined health strategies (Dushoff et  al. 2007; 
Ferguson et al. 2005, 2006; Flahault et al. 2006; Germann et al. 2006; Halloran et al. 
2008; Patel et al. 2005). Examples of predetermined health strategies might include, 
“Close schools for a duration of two weeks beginning from the fourth week after the 
first case of influenza” or “Do contact tracing during the first two weeks of an influ-
enza outbreak.” Although these approaches can provide insight into the comparative 
performance of each strategy, they are usually not structured to assist real‐time 
decision‐making as new data become available over the course of epidemic.

To address this shortcoming, we use dynamic optimization methods (Bertsekas 
2005; Puterman 1994) to define and optimize policies that inform health recommen-
dations based on the latest epidemiological data. At the epidemic decision point 
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TABLE 3.1 Calibration Procedure at the Epidemic Decision Point 1,2, ...

Step 0: Initialization

Step 0a. Specify the joint prior probability distribution of the epidemic parameters,  ( ).
Step 0b. Set the coverage ratio ( , ]0 1 .
Step 0c.  Use the observed epidemic history hκ to construct the observation matrix 

Y y y y( )1 2, , ,  and the sequence of past actions A a a a( )1 2 1, , , .
Step 0d. Set N

0
, the number of the simulated trajectories to initialize the algorithm.

Step 0e.  Set (the set of RNG seeds generating epidemic trajectories that are not 
eradicated by the decision point κ).

Step 0f.  Set (the set of RNG seeds generating epidemic trajectories which are 
considered “sufficiently close” to the epidemic data).

Step 1:
  Reset the seed of the random number generator (z 1);
 While 0N :
   Simulate: Generate one simulated trajectory using the simulation model 

 { , }( )k ka k1 1 , with the RNG seed z, where actions over decision 
periods { , , , }1 2 1  are set equal to the actions A a a a( )1 2 1, , ,  taken 
during the epidemic.

  If the simulated trajectory is not eradicated by decision time κ, then 
  { }z .
z z 1.

Step 2: 
   Construct the set   by selecting ⌊αN⌋ seeds from the set Rκ that have 

resulted in trajectories with the smallest values of d Y Yz

F

ˆ ,  among the 
N

0
 simulated.

For each z  , calculate the probability z z zz
p p


, where  

p
z
=1/d Y Yz

F

ˆ , .

Step 3: 
Return the set and the probability mass function ,z z  .
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Figure 3.6 Estimates for the basic reproductive number (a) and the mean of infectiousness 
period (b) using the first 21 observations during the Spanish flu in San Francisco, CA.
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1 2, , , the optimality equations to maximize the objective function (3.2) can be 
written as (White 1991)

 
v r a v ah h h hk

a
k k k k k k

k

* *max , ,   





2
1A

E , forx H, k , (3.6)

where v hk
*( )  is the optimal expected total discounted reward to be accrued from time 

index k onward, given the history hk. If we solve Equation 3.6 for v*( ), then the 
optimal choice at a given decision point k can be found by

 
a r a v ah h hk

a
k k k k k

k

* *arg max , ,  





2
1

A
E , forx

h kk H, . (3.7)

We define the optimal Q‐values Q ahk k
*
 ,  for the pair h ak k, H A2  as

 
Q a r a v ah h hk k k k k k k

* * ,  





, E , .x 1  (3.8)

And now, an optimal action given observing the epidemic history hk at the decision 
point k can be determined by

 
a Q a kh h hk

a
k k k

k

* *argmax , ,  

2A
H, for . (3.9)

Finding the optimal Q‐values Q ahk k
*
 ,  for each pair h ak k,  is not computa-

tionally feasible because the history space  can be an enormous and potentially 
unbounded set. We therefore approximate the optimal Q‐values using regression 
models that will be tuned through an iterative procedure. To approximate the optimal 
Q‐values, we use an approximate policy iteration algorithm. The details of this 
procedure, which is motivated by Lagoudakis and Parr’s approach (Lagoudakis and 
Parr 2004) and is modified for systems where states are only partially observable, are 
provided elsewhere (Yaesoubi and Cohen 2016).

To approximate the optimal Q‐values, this approach uses regression models Q( ) 
where regressors are simple statistics defined on the epidemic history such as “total 
number of cases observed so far” or “number of cases observed during the past week.” 
These statistics are usually referred to as features, and their role is to extract useful 
information from the epidemic history such that, for a given history‐action pair, the 
expected future reward can be well approximated by a regression model that is a 
function of these features. We use  ( ) to denote the feature extraction function that 
takes the epidemic history and calculates the value of defined features. As an example, 
suppose that schools have been open during the first 3 weeks of an epidemic and 2, 5, 
and 9 hospitalized cases have been recorded during weeks 1, 2, and 3, respectively. 
For this scenario, the epidemic history at the beginning of week 4 can be denoted by 
h4 2 5 9Open, ,Open, ,Open, . Now, if the feature extraction function  ( ) is defined 
to return the “total number of hospitalizations thus far” and “number of weeks schools 
have already been closed,” then   ( ) ( , ) ( )( ) ( )  h h h4 1 4 2 4 16 0, . We will discuss 
later how to define the feature extraction function  ( ) for different epidemics.
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The approach proposed in Yaesoubi and Cohen (2016) approximates the optimal 
Q‐values Q ah*( ),  with a regression model  Q h a( )( ), , where  ( )h  returns the values 
of features for the history h. Now, having observed the history hk at the decision 
point k, the control interventions to implement during the next decision period is 
determined by

 


  a ah Q hk
a

k k
k

argmax ,
2A

F . (3.10)

To define the feature extraction function, we note that the core goal of feature 
selection is to identify statistics defined within the historical observations of disease 
spread that can be used to accurately differentiate the current trajectory from the 
infinite set of possible trajectories. Based on our experience with applying the pro-
posed algorithm to epidemics with different characteristics, we make the following 
recommendations for selecting these features (see Yaesoubi and Cohen 2016) for 
additional details about how the choice of features would impact the performance of 
dynamic policies).

Policy makers are usually able to observe at least some fraction of incident cases 
of disease. For example, the number of individuals self‐presenting to the healthcare 
facility can be potentially observable. Several statistics can be defined based on these 
observations such as the number of new cases during the past week, the average or 
trend in the number of new notified cases during the past month, or the cumulative 
number of new notified cases since the beginning of the epidemic. Depending on the 
nature of the epidemic, some subset of these measures can be chosen as features.

When there is substantial stochasticity in the pattern of disease spread (a situation 
that is not unusual, especially during emergence of a novel pathogen), the number 
of new members appearing in observable compartments (e.g., diagnosed cases of 
disease) may not be a very strong feature; in these cases, the average or the total 
number of new members during the past few periods may be a more attractive fea-
ture to select. If the epidemic has an absorbing compartment, such as the “recovered” 
compartment in our model, the total number of members who enter into this 
compartment (perhaps defined through a serological survey to determine the fraction 
of the population with evidence of previous infection) can be a strong feature 
as well.

It is important to note that the process that generates observations during a given 
decision interval may be strongly influenced by the interventions that are being 
used. For example, during a tuberculosis (TB) epidemic, after switching from 
passive case finding to active (i.e., more vigorous) case finding, we would expect to 
observe a surge in TB case notification (Yaesoubi and Cohen 2013). Hence, it will 
be important in this setting to use information about which interventions were 
employed during the period over which observations have been gathered as features 
as well. Additionally, levels of available resources can also be important features. 
For example, for influenza epidemics, the number of available antiviral doses at 
each decision time can be a strong feature.
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Finally, when determining which features to include in the regression model 
for approximating the Q‐values, one should also ensure that features have rea-
sonably low multicollinearity. Correlation among features leads to unstable 
approximation and divergence of the proposed algorithm. In many situations, we 
would expect substantial correlation among the observations gathered during epi-
demics. For example, for most epidemics, case notifications will be correlated 
with the number of the infection‐associated deaths, and hence including both of 
these features leads to divergence of the proposed algorithm. This property may 
actually be advantageous in generating policies that are convenient to implement 
in practice since the policy maker needs only to gather data about features with the 
strongest predictive power and the least correlation with other potential features. 
For example, it is usually not practical to gather real‐time data on the number of 
TB deaths given the limited quality of vital registration systems in many coun-
tries, and therefore health policies may be generated using real‐time data on TB 
case notifications, since TB deaths are expected to be highly correlated with this 
more easily gathered measure.

3.4 NUMERICAL RESULTS

In this section, we demonstrate how the framework proposed here can be employed 
to support adaptive decision‐making over a course of an epidemic. To this end, we 
use the epidemic model developed in Section 3.3.2 and calibrated in Section 3.3.3 to 
evaluate the performance of control policies. We assume that the effectiveness of the 
transmission‐reducing intervention is 20% (i.e., 0 2. ). This implies that when this 
intervention is in effect, either the probability of infection transmission or the contact 
rate among population members is decreased by 20%. We have not attempted to do a 
sophisticated costing of the transmission‐reducing intervention in this  analysis, but 
to demonstrate the ability of the model framework to identify the cost‐effectiveness 
of such policies, we assume that the daily cost of employing this intervention is $50 
per week per capita. This weekly cost is motivated by previous studies of the societal 
and economic costs of school closure (Chen et al. 2011; Sadique et al. 2008; Sander 
et al. 2009).

A dynamic policy to inform the employment of transmission‐reducing inter-
vention consists of two figures: an affordability curve and a decision rule. The 
affordability curve (e.g., Figure 3.7a) returns the expected total costs as a function of 
the policy maker’s willingness to pay (WTP) for one additional case averted, while 
the decision rule (e.g., Figure 3.7b) specifies which intervention to employ during the 
next decision period given the value of selected features. To use the policy depicted 
in Figure 3.7, the policy maker must first select a level of WTP for health that sat-
isfies existing budget constraints. For example, for a budget of US$300 million, the 
policy maker may choose the WTP of $5000 per case averted from Figure  3.7a. 
Given the selected WTP, the policy maker can then generate decision rules similar to 
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those in the chart in Figure 3.7b to guide real‐time decision‐making throughout the 
epidemic based on the number of notified cases during the previous week and the 
cumulative notified cases thus far.

To illustrate how the decision rule in Figure 3.7b can be used, we overlay one 
epidemic trajectory (represented by the curve) on this decision rule. For the 
depicted trajectory, the dynamic policy recommends using the transmission‐
reducing intervention when the epidemic enters into the black region and 
recommends lifting the intervention when the epidemic trajectory enters into the 
gray region.

Using cost‐effectiveness planes (Briggs et al. 2006) (e.g., Figure 3.8), we compare 
the performance of dynamic policies with that of static policies that only specify an 
interval during which the transmission‐reducing intervention should be employed. In 
these figures the incremental costs (displayed on horizontal axes) and additional 
influenza cases averted (displayed on vertical axes) are calculated with respect to the 
baseline scenario where the transmission‐reducing intervention is never used during 
the epidemic. Figure 3.8 reveals that the cost‐effectiveness frontiers corresponding to 
dynamic policies dominate the cost‐effectiveness frontiers corresponding to static 
policies. This implies that for any given budget, the expected health gain by follow-
ing the appropriate dynamic policy is greater than the expected health gain from the 
static policy that satisfied the same budget limit.
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Figure 3.7 A dynamic control policy to inform decisions about the employment of a trans-
mission‐reducing intervention (e.g., school or public place closure). (a) Affordability curve 
returns the expected total cost if dynamic policies with different values of WTP for health is 
chosen to be implemented. The dark gray area represents the 95% confidence interval for the 
expected cost, while the light gray area represents the 95% confidence interval for the predicted 
total cost. (b) Decision rule for WTP = $5000 for one additional case averted. The black and 
gray areas represents, respectively, the region where the transmission‐reducing intervention is 
recommended to be employed or lifted. The curve corresponds to one simulated epidemic 
trajectory.
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3.5 CONCLUSION

The emergence of novel pathogens (e.g., Ebola, HIV, SARS, H1N1 and H5N1 strains 
of influenza) and the persistence of others (e.g., malaria, TB) along with their devas-
tating health and financial consequences on affected populations have highlighted 
the need for developing plans to confront new and existing infectious threats in a 
timely and efficient way. In this chapter, we proposed a mathematical framework to 
inform adaptive control policies that make recommendations based on accumulated 
real‐time data on disease occurrence and resource availability during an epidemic. 
The framework seeks to optimize a measure of population’s health (e.g., total infec-
tion cases or total expected quality‐adjusted life years) while satisfying resource 
constraints (e.g., budget or vaccine limitations) at each decision point.

The decision model proposed here is generalizable and can be used to identify 
dynamic health policies for various epidemics with very different characteristics, and 
hence a broad range of pharmaceutical and nonpharmaceutical interventions and their 
attendant logistical constraints can be incorporated into the underlying epidemic 
model. Furthermore, the calibration and the policy optimization procedures proposed 
here do not restrict the type of epidemic model, and hence various modeling frame-
works, including Markov chain (Daley and Gani 1999; Yaesoubi and Cohen 2011), 
agent‐based (Bonabeau 2002; Epstein 2009; Germann et al. 2006), or contact network 
(Meyers 2007; Reis et al. 2007) models may be used to describe the disease spread. 
We note, however, that computationally intensive epidemic models may fail to inform 
decisions in a timely fashion since generating epidemic trajectories to be used in cal-
ibration and optimization steps (Figure 3.1) can be substantially time‐consuming.
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Figure  3.8 Cost‐effectiveness plane comparing the performance of static versus dynamic 
transmission‐reducing (TR) policies. Each cost‐effectiveness frontier is obtained by optimizing 
the corresponding policy for different values of willingness to pay (WTP) for health.
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To simplify the description of the method to identify dynamic policies, we 
assumed that each intervention in the set   can be either on or off. Policies to 
inform the use of interventions that can be employed at different levels of intensity 
can be modeled in the same fashion. For example, to decide which age groups 
{<1, 1–5, 6–18, 19–24, 25+} should be considered for vaccination, we can use five 
switches to denote or describe which age groups are considered for vaccination. 
Now, vaccination age group {<1, 6–18} is modeled by turning the first and third 
switches on while keeping the remaining switches off.

A limitation of the proposed framework is the fact that the specific choice of 
 features and the approximation functions affect the optimality and stability of the 
generated policies. If these optimization settings are not appropriately selected the 
algorithm may converge to a suboptimal and/or oscillating solution. This problem 
can be mitigated to some degree through careful experimental design. The epidemic 
model described in this book chapter is very simple and not intended to realistically 
model disease spread or be used directly to guide the selection of interventions. We 
also have made crude assumptions about the costs of interventions. Accordingly, we 
do not intend for the actual costs of the interventions to reflect reality, but instead 
have elected to report these estimates to facilitate comparison of the relative cost and 
cost‐effectiveness across interventions.

As a final note, the successful implementation of the proposed framework to 
adaptively make decisions during epidemics rely on the ability to continuously 
examine the accuracy of the underlying epidemic model using accumulating real‐
time surveillance data. If new observations imply that the model needs to be 
recalibrated, this can be achieved by a broad range of calibration methods including 
the one described in this chapter. Clearly, inaccuracies in the surveillance and report-
ing system may result in suboptimal decisions, further stressing the tremendous 
importance of public health surveillance for the effective management of epidemics.
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4.1 INTRODUCTION

Infection with bacterium Chlamydia trachomatis, known in short as CT infection, 
is among the most commonly reported sexually transmitted diseases (STDs) in 
many developed countries. It inflicts significant human and economic costs (CDC 
2016). CT prevalence is estimated to be above 4% in the United States, and a large 
portion of these more than one million individuals do not know they are infected. 
Teenage girls and young women are at particularly high risk of infection if they are 
sexually active.

The majority of CT infections have no symptoms and thus often remain undiag-
nosed until the infection requires acute care. As a result, CT in women may lead to 

4
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major morbidities including acute pelvic inflammatory disease (PID), chronic 
pelvic pain, ectopic pregnancy, and infertility. Some of these morbidities may only 
be identified many years after the infection or during pregnancy. Although CT 
generally does not have serious negative consequences in men, sexually active 
men, if infected but undetected, may infect many women. At present, CT can be 
accurately diagnosed and can be easily treated when diagnosed early. Therefore, it 
is critical to conduct CT screening at the population level to identify infected but 
asymptomatic individuals. The CT screening strategy is currently recommended by 
the Centers for Disease Control (CDC 2016). From cost minimization viewpoint, 
the cost of screening a general population for CT may still offset the cost of few 
individuals needing treatment for the consequent acute and chronic diseases. 
Several economic studies have found CT screening to be cost‐effective and even 
cost saving (e.g., Howell et al. 1998; Welte et al. 2000; Kretzschmar et al. 2001; Hu 
et al. 2004, 2006). For literature reviews on economic studies, see Roberts et al. 
(2006) and Low et al. (2007, 2009).

In this chapter, we conduct a model‐based economic study of an average‐risk 
female adolescent population in the United States with the objective of making more 
detailed screening recommendations about screening age range and frequency. 
Currently, annual CT screening is recommended for women aged 25 or younger 
because they are generally at high risk. In addition, CT screening is recommended 
for older women with a new sex partner or multiple sex partners. However, it is 
unclear from a cost‐effectiveness viewpoint what an initial screening age should be: 
whether the same screening frequency should be applied to young women of all ages 
and whether CT screening of the general female population should end at age 25. 
Increasing evidence suggests that the CT infection rate among young women 
decreases with age (e.g., Arno et al. 1994; Datta et al. 2007; Teng et al. 2014) pos-
sibly due to more stabilized sexual partnership and increased immunological response 
to CT as women age. Hence, one would expect an optimal screening strategy to be 
age dependent.

In this chapter, we incorporate the age‐dependent CT infection rate into a partial 
differential equation (PDE)‐based compartmental epidemic model. We simulate a 
large number of screening initiation and termination ages and candidate screening 
frequencies to compare their costs and effectiveness. To the best of our knowledge, 
few economic studies have taken into account the age dependency of CT infection 
risk among young women. Hu et al. (2004, 2006) assumed a constant annual CT 
incidence in women from 15 to 19 years of age (Shafer et  al. 1999; Chlamydia 
Surveillance Data 2011) and a constant annual reduction in the incidence starting at 
age 20 (Halvorsen et al. 1988; Buhaug et al. 1989, 1990). However, limited screening 
strategies were assessed in their economic studies. We test more screening strategies 
and conduct sensitivity analysis to assess the impact of various cost and utility 
parameters.

The remainder of the chapter is organized as follows. In Section 4.2, we provide 
more background on CT biology and its screening. We also provide a literature 
review on computational modeling of CT transmission and control. In Section 4.3, 



ASSESSING REGISTER‐BASED CHLAMYDIA INFECTION SCREENING STRATEGIES 83

we develop an age‐structured compartmental model that captures CT epidemiology. 
We also present a PDE‐based compartmental model and report the model validation 
results. In Section 4.4, we present cost‐effectiveness analyses on a set of screening 
strategies differing in screening initiation and termination ages and screening 
 frequency. Finally, we draw conclusions and outline future research in Section 4.5.

4.2 BACKGROUND LITERATURE REVIEW

In this section, we describe the literature on the clinical background of CT infection, 
current CT screening programs, and modeling approaches to investigate CT and 
other STD intervention strategies. The modeling approaches reviewed include ODE/
PDE‐based compartmental models and stochastic network simulation models. ODE 
stands for ordinary differential equation; PDE stands for partial differential equation.

4.2.1 Clinical Background on CT Infection and Control

CT infection is an STD that can damage a woman’s reproductive organs (Chlamydia 
Surveillance Data 2011). It is one of the most commonly reported STDs in the United 
States (CDC 2016) and in many other developed countries (World Health Organization 
2001). CT can be transmitted during vaginal, anal, or oral sex. It can also be passed 
from an infected mother to her baby during vaginal childbirth. The infection risk 
increases as the number of sex partners increases. Teenage girls and young women are 
at particularly high risk for infection if they are sexually active. As a bacterial infection, 
CT infection is not known to produce host immunity and thus reinfection is common.

The prevalence of CT infection is high in the general US population. Among 
young adults (aged 18–26 years) who participated in a nationally representative 
longitudinal study on adolescent health during 2001–2002, CT prevalence was esti-
mated to be 4.2% (Miller et al. 2004). Figure 4.1 demonstrates the increasing trend 
in reported CT infections during the last 20 years. Figure 4.2 suggests that young 
women (age 15–24) have the highest infection risk among different age groups and 
between the two genders.

CT is often referred to as a “silent” disease as the majority of infected people have 
no symptoms. Even though CT screening activities have been expanded and more 
accurate diagnostic tests have been used over the years, a large portion of infected 
women are still not being identified (CDC 2016). Without prompt diagnosis of the 
disease, it can progress to serious health problems with both short‐ and long‐term 
consequences, including PID, chronic pelvic pain, ectopic pregnancy, and infertility 
(Cates and Wasserheit 1991). Fortunately, CT can be accurately diagnosed through a 
nucleic acid amplification test (NAAT) (Van Der Pol et al. 2006) and can be easily 
treated and cured with antibiotics. Figure 4.3 illustrates the disease progression 
for CT in women. Recent research on CT transmission dynamics addresses a variety 
of topics, including the long asymptomatic period and its duration (Molano et al. 
2005; Althaus et al. 2010), the fraction of infections that are symptomatic and 
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Figure 4.1 Reported CT infection rates by year in the United States, 1990–2010 (Chlamydia 
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that will prompt treatment‐seeking behavior (Korenromp et al. 2002), and whether 
natural clearance is followed by a period of temporary immunity (Brunham and 
 Rey‐Ladino 2005).

4.2.2 CT Screening Programs

A screening program refers to a continuing public health service that delivers screening 
at sufficiently regular intervals to a proportion of the target population to achieve a 
defined level of benefit at the population level while minimizing harm (Low 2007). 
Based on the way in which the screening services are organized and delivered, 
screening programs can be categorized into two main groups, register‐based screening 
and opportunistic screening. Register‐based screening (also known as population‐
based, proactive, cyclical, or systematic screening) keeps an up‐to‐date register of the 
target population to send invitations or reminders for screening repeatedly at appro-
priate intervals (Holland and Steward 2005). With opportunistic screening, health-
care professionals offer screening tests to patients attending care or other defined 
settings for any reason. Individuals who do not attend relevant health services will 
not get the screening service (Holland and Steward 2005). The screening programs 
being piloted in three regions of the Netherlands (Sheldon 2007) can be categorized 
as register‐based CT screening, whereas the National Chlamydia Screening 
Programme in England (NCSSG 2006) and the regional Infertility Prevention 
Programs in the United States (CDC 2010) can be categorized as opportunistic 
screening. Salisbury et al. (2006) suggested that a CT intervention program that com-
bines the advantages of both register‐based and opportunistic approaches might 
achieve higher coverage than either approach alone. For a systematic review of chla-
mydia screening programs, see Low et al. (2009). The Centers for Disease Control 
and Prevention and the US Preventive Services Task Force jointly recommend a 
screening strategy (CDC 2010) that suggests yearly CT testing among sexually active 
women aged 25 or younger, older women with risk factors for CT (e.g., those with a 
new sex partner or multiple sex partners), and pregnant women. However, there are 
only a few economic studies that have assessed the optimality of the recommended 
screening strategy.

4.2.3 Computational Modeling on CT Transmission and Control

Computational models have been used extensively in economic studies of CT control 
strategies, including population‐based screening programs. These models can be 
 categorized into two classes: (i) ODE/PDE‐based compartmental models and 
(ii) individual‐based stochastic network simulation models.

4.2.3.1 ODE/PDE‐Based Compartmental Models Althaus et al. (2010) developed 
an SEIRS (susceptible–exposed–infected–recovered–susceptible) model to analyze 
CT incidence and the impact of a screening program. The SEIRS model captures 
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the population dynamics among the five distinct groups. The authors considered 
yearly screening strategies with different screening rates (5%, 25%, or 50% of the 
population) and different durations (5 years, 10 years, or long term). A sensitivity 
analysis shows that (i) varying the fraction of infections that are symptomatic and the 
duration of the symptomatic period within the range of previously used parameter 
estimates has little effect on the transmission dynamics and (ii) uncertainties in the 
duration of temporary immunity and the asymptomatic period can result in large 
deviations on the predicted impact of a screening program. The authors concluded 
that (i) the impact of a screening program is more pronounced if the duration of the 
asymptomatic period is longer and (ii), after screening the cohort for a long enough 
time, more reduction in disease prevalence would only occur with a longer duration 
of the asymptomatic period.

Regan et al. (2010) developed a variant of the SEIRS model. A unique feature of 
the model is that it differentiates symptomatic and asymptomatic infections and their 
subsequent treatment and recovery rates. The model was populated with Australian 
sexual behavior and epidemiology data and stratified by age and gender. The authors 
used the model to evaluate a variety of annual screening strategies with different 
target age groups (15–19, 20–24, and 25–29), screening coverage levels (20%–80% 
in 10% incremental), and female‐to‐male ratios (1:0, 1:1, 4:1, and 0:1). The results 
show that (i) routine annual screening can significantly reduce CT prevalence within 
10 years, given adequate screening coverage, and (ii) the most effective screening 
strategies target the age group of 20–24 years old women. Heijne et al. (2010) devel-
oped a paired SIRS (susceptible–infected–recovered–susceptible) model that cap-
tures sexual partnership duration and reinfection. Ongoing sexual partnership may 
cause repeated CT infection after treatment. The paired model predicts a weaker 
impact of screening on reducing CT prevalence when compared directly with a single 
SIRS model that does not accommodate sexual partnerships explicitly. The study 
suggests that effective management of sex partners to prevent CT infection may need 
to be considered. Several other studies (e.g., Martin et al. 1996; Brunham et al. 2005; 
Sharomi and Gumel 2009) performed rigorous mathematical analysis of compart-
mental models to gain insights into CT transmission dynamics.

There are also studies on the effectiveness and cost‐effectiveness of screening and 
intervention for other STDs. For example, Müller et  al. (2000) and Huerta and 
Tsimring (2002) developed theoretical models to evaluate the effectiveness of contact 
tracing. Armbruster and Brandeau (2007a, 2010) investigated the cost and cost‐
effectiveness of mixing screening and contact tracing. Other studies include (i) dynamics 
of co‐infection (Porco et al. 2001; Long et al. 2008), (ii) resource allocation across an 
array of possible interventions (Zaric and Brandeau 2001, 2002; Brandeau et  al. 
2003; Zaric 2003), and (iii) behavior change interventions (Velasco‐Hernndez 
et al. 1996).

Age often has a strong influence on disease spread in a population. Increasing 
number of evidence has shown that the CT infection rate decreases with age 
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(e.g., Arno et al. 1994; Datta et al. 2007; Teng et al. 2014). Age‐structured models 
have been used to study the transmission and intervention of infectious diseases with 
age‐dependent infection risk. These models are typically described mathematically 
with sets of PDEs (e.g., Castillo‐Chavez and Feng 1998; Feng et al. 2000; Zhao et al. 
2000; Nelson et al. 2004; Huang and Rohani 2006), with derivatives taken in terms 
of both time and age.

In the remainder of this subsection, we present an age‐structured compartmental 
model for CT transmission, treatment, and natural clearance, as illustrated in 
Figure 4.4. The solid lines indicate disease transmission and progression. The main 
notation in the model is described in Table  4.1. Let t and τ be the time and age 
indices, respectively. At any time t ∈ [0, T], each population of age [ ]0,  is 
divided into five subgroups as follows. Susceptible people (S(t, τ)) get infected at an 
age‐dependent per capita rate of β(τ) > 0. They then move through an incubation 
period (E(t, τ)) at a rate γ > 0 to become either asymptomatically infected (I

a
(t, τ)) or 

symptomatically infected (I
s
(t, τ)). We denote f ∈ (0, 1) as the fraction of infections 

that become asymptomatic. Asymptomatically infected people recover through 
natural clearance at a rate r

a
 > 0 and develop temporary immunity to reinfection (R(t, τ)) 

for a duration of 1/μ time units. In the absence of screening, symptomatically infected 
people clear the infection at a rate r

s
 > 0, which can be interpreted as treating the 

infection with symptom onset and subsequently curing the disease. We assume that 
the treatment is sought immediately after symptom onset. We also assume that the 

S(t,τ) β(τ) E(t,τ) fγ

μ

Ia(t,τ)

Is(t,τ)

R(t,τ)ra

rs

(1–f)γ

Figure 4.4 Age‐structured compartmental model for CT transmission and treatment.

TABLE 4.1 Notation in the Age‐Structured Compartmental Model for CT 
Transmission and Intervention

S(t, τ) Susceptible f Fraction of asymptomatic infection
E(t, τ) Exposed 1/γ Incubation time
I

a
(t, τ) Asymptomatically infected r

a
Transition rate incurred by temporary 

immunity
I

s
(t, τ) Symptomatically infected 1/r

s
Duration of the symptomatic period

R(t, τ) Recovered 1/μ Duration of temporary immunity 
after natural clearance of 
asymptomatic infection

β(τ) Age‐dependent infection rate
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aforementioned treatment and infection clearance follow Poisson processes. The 
system dynamics are as follows:
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It is also seen in the literature that the age‐structured dynamics is described by 
integro‐differential equations, which are equations that involve both integral and 
derivative of a function. In our context, the integral captures the total number of 
infected people over the age range, and the infection in the model is dependent upon 
the number of both susceptible and infected people. Note that the SEIRS model in 
Althaus et al. (2010) considers the interaction with the cross‐term SI, and thus its 
straightforward age‐structured modeling extension would be described with a set of 
integro‐differential equations.

4.2.3.2 Stochastic Network Simulation Models Unlike compartmental models 
that capture the aggregate system phenomena over the studied cohort, individual‐
based simulation can efficiently track individuals’ behavior and record their contact 
histories with sex partners. Simulation models (Kretzschmar et al. 1996, 2001, 2009; 
Welte et  al. 2000; Turner et  al. 2006; Low et  al. 2007) have been developed for 
economic studies of CT. These models often consider an age‐structured population 
and a dynamic sexual partner network. They update individual characteristics on a 
daily basis or whenever necessary. These models are often referred to as individual‐
based stochastic network simulation.

Such simulation models have been developed by different research groups to evaluate CT 
screening strategies implemented in various European countries: (i) the RIVM model 
(Kretzschmar et al. 1996), developed at the Dutch National Institute for Public Health 
and the Environment (RIVM are the initials of the institute in Dutch); (ii) the Chlamydia 
Screening Studies (ClaSS) model (Low et al. 2007), developed to evaluate population‐
based screening using home‐collected specimens in the United Kingdom; and (iii) the 
Health Protection Agency (HPA) London model (Turner et  al. 2006), developed to 
inform the National Chlamydia Screening Programme in England. These three models 
all have an SIS model structure. Kretzschmar et al. (2009) presented a comparison of the 
three models. For viral infectious diseases (e.g., HIV and influenza), simulation models 
have been developed in the United States to study the effect of contact tracing (Armbruster 
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and Brandeau 2007b), concurrent partnerships (Morris and Kretzschmar 1997), and 
combination of treatment and nonpharmaceutical interventions (Halloran et al. 2008).

Stochastic network simulation has also been applied to modeling the spatial 
spread of infectious disease (Colizza et al. 2006, 2007a, b; Ajelli et al. 2010; Balcan 
et  al. 2009). Infected travelers leaving an infected area can bring the disease to 
another area not yet infected, which may cause a new outbreak. This mechanism is 
used to explain the rapid global spread of certain viral infectious diseases (e.g., H1N1 
and SARS). Balcan et al. (2010) developed the Global Epidemic model (GLEaM) 
(www.gleamviz.org/simulator), a discrete stochastic model that integrates sociode-
mographic and population mobility data into a spatially structured disease dynamic 
model to simulate the spread of epidemics worldwide. In the model, the world is 
defined as a network connecting various geographic census areas with human travel 
fluxes based on transportation infrastructures and mobility patterns.

Finally, the dynamic network theory has been applied to modeling infectious  disease 
transmission dynamics. Colizza et al. (2007c) modeled the spread of an SIS‐type infectious 
disease in a homogeneous human contact network as a reaction–diffusion process in a 
scale‐free network. The authors showed that the network topology could affect the sys-
tem’s phase diagram (e.g., shift in the critical point for an epidemic outbreak). Gmez‐
Gardenes et al. (2008) extended the SIS model to incorporate the effect of gender on the 
disease spread. The authors showed that an epidemic outbreak requires greater disease 
spread rates when considering the bipartite nature of the human contact network. 
They argued that gender should be taken into account when designing efficient STD 
screening and treatment strategies. Hooyberghs et al. (2010) suggested that when mod-
eling STD transmission dynamics in a heterosexual contact network, the network can be 
modeled as a bipartite scale‐free network. General references in this area include an 
introduction to communication network theory by Monge and Contractor (2003) and a 
review of scale‐free network modeling for biological systems (Ramezanpour 2004).

4.3 MATHEMATICAL MODELING

In this section, we present an age‐structured model that incorporates CT screening as 
well as a few additional features to reflect the stochastic nature of screening and 
treatment. We first describe the model and present the formulas for computing var-
ious system outcomes. We then discuss the model parameterization and validation.

4.3.1 An Age‐Structured Compartmental Model

We present an age‐structured compartmental model for CT epidemiology, including 
transmission, screening, acute treatment, natural clearance, and PID sequelae. 
The  model extends both the model in Figure  4.4 and the SEIRS model (Althaus 
et  al.  2010). We introduce two additional compartments to differentiate people 
who have developed PID. The difference between the two compartments is that the 
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subpopulation in one compartment has had PID symptom onset and the other has not. 
We use P

s
(t, τ) and P

a
(t, τ) to denote the populations in the two compartments, respec-

tively. Similar to f, we use f′ ∈ [0, 1] to denote the probability that an infected 
individual with PID remains asymptomatic. Similar to γ, we use r

PID
 to denote the 

rate of  developing acute PID from asymptomatic CT infection. Acute PID indicates 
that the disease has reached its symptomatic stage, thus getting clear attention from 
the patient. We introduce λ(τ) to denote the proportion of the entire population that is 
screened at age τ (i.e., each individual is screened on average within 1/λ(τ) years).

Additional considerations in the model are (i) sensitivity of diagnosing CT infection 
via NAAT, (ii) sensitivity of diagnosing acute PID, (iii) compliance of taking antibiotic 
medication once the CT test result is positive, (iv) effectiveness of treating CT infection 
with antibiotics, and (v) effectiveness of treating PID. The underlying assumptions for 
the aforementioned additions are that (i) likelihood of getting a positive response (i.e., 
correctly diagnosed for CT infection, denoted by p

sen
; correctly diagnosed for acute 

PID, denoted by psen; immediate seeking CT treatment and adherence to the medica-
tion, denoted by p

com
; effectiveness of CT antibiotic medication, denoted by p

CT
; and 

effectiveness of acute PID treatment, denoted by p
PID

) is constant among individuals in 
the studied cohort and over the screening program duration, (ii) these five likelihoods 
are independent for each individual in the cohort, and (iii) there is no state change for 
those individuals who get negative response from any of the five aforementioned 
dichotomies. With these assumptions, we essentially couple five independent Bernoulli 
random processes with the underlying stochastic processes depicting CT epidemi-
ology. We can adjust the transition rates in the  age‐structured model accordingly. For 
example, there are two competing transitions from I

s
 to S. One transition models the 

process of curing CT infection among those asymptomatically infected individuals 
whose infections are detected through screening. To determine the rate of this transition, 
we consider the sensitivity of detecting CT infection, the probability of seeking CT 
treatment once the test result is positive, and the probability of completely curing the 
infection. With the independence assumption, we have p

CT
p

com
p

sen
λ(τ).

The other transition models the process of curing CT infection among those 
asymptomatically infected individuals who develop symptoms. To determine this 
transition rate, we consider the rate at which individuals’ infections become symp-
tomatic as well as the probability of curing the infection. We thus have p

CT
r

s
. In 

Table 4.2, we summarize the additional notation in the model.
The system dynamics is described with the following PDEs (Figure 4.5):
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TABLE 4.2 Additional Notation in the Model

λ(τ) Age‐dependent screening rate
P

a
(t, τ) Acute PID without symptom onset

P
s
(t, τ) Acute PID with symptom onset

r
PID

Rate of developing acute PID development from asymptomatic CT
1/ sr Duration of the symptomatic period of acute PID (i.e., from diagnosis with 

symptom onset to recovery)
f′ Probability that someone’s CT infection progresses to PID without 

symptom
p

sen
Probability that someone with CT infection is correctly diagnosed via 

NAAT testing
psen Probability that someone with asymptomatic acute PID is correctly 

diagnosed
p

spe
Probability that someone without CT infection is correctly labeled via the 

testing
p

com
Probability that someone with a positive CT test result takes CT medication

p
sid

Probability of developing medication‐related side effects
p

CT
Probability that CT infection is completely cured

p
PID

Probability that acute PID is completely cured

pCT× pcom× psen× λ (τ)

pPID× pʹsen× λ (τ)

pCT× pcom× psen× λ (τ)

S(t,τ)
β(τ)

E(t,τ) Ia(t,τ)

Is(t,τ)
Ps(t,τ) Pa(t,τ)

R(t,τ)
fγ ra

pCT× rs

pPID× rʹs

(1–f)γ

μ

(l–fʹ)rPID fʹrPID

Figure 4.5 Age‐structured compartmental model for CT infection.
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In practice, a screening program typically estimates in advance the size of the 
cohort that can be screened based on its capacity and then keeps its size 
relatively constant by synchronizing the recruitment and exit processes. Without 
loss of generality, we set the cohort size to be 1 at any time point, that is, 

S t E t I t I t R t d ta s( ) ( ) ( ) ( ) ( ) ,, , , , , 1
0


. This specification simplifies 

the later computation of per capita care spending. Furthermore, a screening program 
often only targets those of age 0 (i.e., the smallest age to be considered for CT infec-
tion) for recruitment and terminates CT screening for those who reach   (i.e., the 
largest age to be considered for CT infection). We assume that the number of women 
with CT at the lowest screening age is negligible. That is, for any t, we have the 
boundary condition S(t, 0) = Λ, where Λ is denoted as the rate at which new recruits 
join the cohort and E(t, 0) = I

a
(t, 0) = I

s
(t, 0) = P

a
(t, 0) = P

s
(t, 0) = R(t, 0) = 0. We intro-

duce additional notation to set up the initial conditions, that is, S(0, τ) = S
0
(τ), E(0, τ) = E

0
(τ), 

I
a
(0, τ) = I

a0
(τ), I

s
(0, τ) = I

s0
(τ), P

a
(0, τ) = P

a0
(τ), P

s
(0, τ) = P

s0
(τ), and R(0, τ) = R

0
(τ). 

In  our cost‐effectiveness assessment of the screening strategies, we numerically 
specified the boundary conditions with the assumption that the system is in the steady 
state under the no‐screening scenario.

Given a screening profile λ(⋅) as well as the initial and boundary conditions, the 
state of the system (S, I

a
, I

s
, P

a
, P

s
, R) can be determined for any time point with 

the PDEs. The screening and treatment costs are accumulated accordingly over the 
program duration. Let c

s
 denote the unit time per capita cost of screening for CT 

infection, c
t
 denote the unit time per capita cost of treating CT infection with antibi-

otics, c
sid

 denote the unit time per capita cost of having side effects when treating CT, 
and c

PID
 denote the unit time per capita cost of treating acute PID and its sequelae. We 

consider three types of per capita cumulative cost over a screening period T as

 • CT screening cost:
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 • CT treatment cost:
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 • Acute PID and chronic sequelae treatment cost:
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When computing the cumulative CT screening cost, we exclude individuals 
with symptomatic PID as the symptoms are clear and thus initiate the acute care. 
When computing the cumulative CT treatment cost, we consider two possible 
cases: with and without side effects. The expected cost when considering both 
cases is c

t
 + p

sid
c

sid
. We do not consider any side effects caused by mistakenly 

receiving CT treatment due to false positive diagnoses. We specify the total 
cumulative cost as C

tot
(λ(τ)) = C

s
(λ(τ)) + C

t
(λ(τ)) + C

PID
(λ(τ)). In this chapter, we 

conduct a comparative cost‐effectiveness assessment on various screening strategies. 
We introduce the following effectiveness measure. We denote E

PIDinc
(λ(τ)) to be the 

cumulative PID incidence over the screening program duration and screening age 

range. Thus we have E r I t d dt
T

a

T

PIDinc PID ,
0 0

.

Alternatively, we can formulate an optimization problem as minλ(τ)
C

tot
(λ(τ)) 

 subject to the PDEs as well as the boundary and initial conditions introduced 
earlier. To solve this parameter optimization problem, we can discretize it to a 
finite‐dimensional linear program subject to a set of first‐order difference 
equations and solve it with standard linear programming solvers. Note that the 
discretization does not significantly affect the solution quality given that (i) many 
model parameters, for example, β(τ), have only age‐dependent point  estimates 
and (ii) it is not plausible to implement a screening strategy with continuously 
varying screening rate. For more information on the numerical optimization, see 
Teng (2012).

4.3.2 Model Parameterization and Validation

For the model parameterization, we examined several sources including MEDLINE, 
EMBASE, and EconLit. We carefully reviewed a few seminal papers on economic 
studies of CT screening to specify the parameter baseline values and ranges. We 
categorized the parameters into categories of clinical, screening, treatment, and asso-
ciated costs. We present the parameter names, baseline values, plausible ranges, and 
references in Table 4.3. All cost parameters listed in the table were inflated to 2010 
US dollars using the medical care component of the consumer price index (Bureau of 
Labor Statistics 2017).

Many of the parameters listed in Table 4.3 are directly used in the model. Their 
base‐case values are γ = 1/(14 days), f = 0.625, r

a
 = 1/(433 days), r

s
 = 1/(35 days), 

μ = 1/(90 days), p
sen

 = 0.9, p
spe

 = 0.99, p
CT

 = 0.96, p
com

 = 0.8, p
sid

 = 0.05, p
PID

 = 0.6, 
c

s
 = $16.5, and c

sid
 = $62.1. For those parameters not listed in Table 4.3, we first 

made additional assumptions on the model parameters whose values we could not 
acquire from the literature. Women who have symptomatic acute PID, typically, 
no longer need CT screening for the acute PID diagnosis. We assumed that these 
women seek medical care relatively promptly but may take longer to receive acute 
PID treatment after the onset of symptoms. We thus assumed r rs s. For women 
with asymptomatic acute PID, their infection would still need to be detected via 
NAAT. We assumed that the probability of correctly diagnosing this condition is 



TABLE 4.3 Model Parameter Values Extracted from the Literature

Parameter
Base 
Case Plausible Range References

Clinical
CT infection
CT incubation time 14 d [0,28] d Althaus et al. (2010), Brunham et al. (2005), Kretzschmar et al. 

(1996), and Turner et al. (2006)
Fraction of asymptomatic CT 0.625 [0.25,1] Althaus et al. (2010), Brunham et al. (2005), Kretzschmar et al. 

(1996), and Turner et al. (2006)
Duration of asymptomatic period 433 d [180,420] d Althaus et al. (2010), Brunham et al. (2005), Kretzschmar et al. 

(1996), and Turner et al. (2006)
Duration of symptomatic period 35 d [30,40] d Althaus et al. (2010), Brunham et al. (2005), Kretzschmar et al. 

(1996), and Turner et al. (2006)
Duration of temporary immunity after natural 

clearance
90 d [0, ∞)d Althaus et al. (2010), Brunham et al. (2005), Kretzschmar et al. 

(1996), and Turner et al. (2006)
Acute PID transition from CT after 6 months
Incidence rate 0.3 [0.0043,0.4] CDC (2001), Scholes et al. (1996), and Stamm et al. (1984)
Probability of symptomatic condition occurrence 0.4 [0.15,0.40] Stamm et al. (1984), Paavonen et al. (1985), and Weström et al. 

(1992)
PID sequelae
Probability of developing chronic pelvic pain 0.18 [0.15,0.20] CDC (2010), Weström et al. (1992), Ness et al. (2002), and 

Weström (1980)
Probability of developing ectopic pregnancy 0.09 [0.05,0.10] CDC (2010), Weström et al. (1992) and Weström (1980, 1994)
Probability of developing tubal infertility 0.20 [0.10,0.23] CDC (2010), Weström et al. (1992), Ness et al. (2002), and 

Weström (1980)

Screening and Treatment
Urine nucleic acid amplification test
Sensitivity 0.9 [0.65,0.96] Black et al. (2002) and Watson et al. (2002)
Specificity 0.99 [0.99,1] Black et al. (2002) and Watson et al. (2002)

Effectiveness of treatment for CT infection 0.96 [0.94,1] Lau and Qureshi (2002)
Probability of adhering to the antibiotics 0.8 [0.75,0.9] Katz et al. (1988) and Schwebke et al. (1997)
Probability of developing antibiotics‐related side 

effects
0.05 [0.01,0.10] Lau and Qureshi (2002) and Magid et al. (1996)

Effectiveness of treatment for acute PID 0.6 N/A Brihmer et al. (1989), Teisala et al. (1987), and Wølner‐Hansen 
and Weström (1983)

Direct Medical Costs, in 2010 $
NAAT 16.5 [8.9,50.7] Dean et al. (1998), Gift et al. (2002), and Steece (1997)
Treatment for acute urogenital CT infection
1 g Azithromycin 12.7 [12.7,38.0] Cardinale (1998) and Tao et al. (2002)
Short clinic visit 32.9 [13.9,55.7] Health Care Financing Administration (2000)
Treatment for azithromycin‐related side effects 62.1 N/A Magid et al. (1996) and Health Care Financing Administration (2000)
Treatment for acute PID
Outpatient 620 [304,620] Stratton et al. (2000), Rein et al. (2000), Washington et al. (1986), 

Washington and Katz (1991), and Yeh et al. (2003)
Inpatient 5970 [5970,18740] Stratton et al. (2000), Rein et al. (2000), Washington et al. (1986), 



Effectiveness of treatment for CT infection 0.96 [0.94,1] Lau and Qureshi (  2002  )  
Probability of adhering to the antibiotics 0.8 [0.75,0.9] Katz et al. (  1988  ) and Schwebke et al. (  1997  )  
Probability of developing antibiotics‐related side 

effects
0.05 [0.01,0.10] Lau and Qureshi (  2002  ) and Magid et al. (  1996  )  

Effectiveness of treatment for acute PID 0.6 N/A Brihmer et al. (  1989  ), Teisala et al. (  1987  ), and Wølner‐Hansen 
and Weström (  1983  )  

 Direct Medical Costs, in 2010 $   
NAAT 16.5 [8.9,50.7] Dean et al. (  1998  ), Gift et al. (  2002  ), and Steece (  1997  )  
Treatment for acute urogenital CT infection   
1 g Azithromycin 12.7 [12.7,38.0] Cardinale (  1998  ) and Tao et al. (  2002  )  
Short clinic visit 32.9 [13.9,55.7] Health Care Financing Administration (  2000  )  
Treatment for azithromycin‐related side effects 62.1 N/A Magid et al. (  1996  ) and Health Care Financing Administration (  2000  )  
Treatment for acute PID   
Outpatient 620 [304,620] Stratton et al. (  2000  ), Rein et al. (  2000  ), Washington et al. (  1986  ), 

Washington and Katz (  1991  ), and Yeh et al. (  2003  )  
Inpatient 5970 [5970,18740] Stratton et al. (  2000  ), Rein et al. (  2000  ), Washington et al. (  1986  ), 

Washington and Katz (  1991  ), and Yeh et al. (  2003  )  

Treatment for PID sequelae   
Chronic pelvic pain 1450 [600,19000] Stratton et al. (  2000  ), Rein et al. (  2000  ), Washington et al. (  1986  ), 

Washington and Katz (  1991  ), and Yeh et al. (  2003  )  
Ectopic pregnancy 5490 [1650,18100] Stratton et al. (  2000  ), Rein et al. (  2000  ), Washington et al. (  1986  ), 

Washington and Katz (  1991  ), and Yeh et al. (  2003  )  
Tubal infertility 6330 [6330,10765] Stratton et al. (  2000  ), Rein et al. (  2000  ), Washington et al. (  1986  ), 

Washington and Katz (  1991  ), and Yeh et al. (  2003  )  

 Time Costs, in 2010 $  Net Work Days 
Lost 

  

Acute urogenital CT infection 45.6 0.5 d Welte et al. (  2000  ), U.S. Department of Labor Bureau of Labor 
Statistics (  2001  ), and SIG Health Care Information Netherlands 
(  1994  )  

(Continued)



TABLE 4.3 (Continued)

Parameter
Base 
Case Plausible Range References    

Acute PID   
Outpatient 650 7.1 d Welte et al. (  2000  ), Washington et al. (  1986  ), U.S. Department of 

Labor Bureau of Labor Statistics (  2001  ), and SIG Health Care 
Information Netherlands (  1994  )  

Inpatient 1373 15.0 d Welte et al. (  2000  ), Washington et al. (  1986  ), U.S. Department of 
Labor Bureau of Labor Statistics (  2001  ), and SIG Health Care 
Information Netherlands (  1994  )  

PID sequelae   
Chronic pelvic pain 866 9.5 d Welte et al. (  2000  ), Rein et al. (  2000  ), Washington and Katz 

(  1991  ), and U.S. Department of Labor Bureau of Labor 
Statistics (  2001  )  

Ectopic pregnancy 1830 20 d Welte et al. (  2000  ), Rein et al. (  2000  ), Washington and Katz 
(  1991  ), and U.S. Department of Labor Bureau of Labor 
Statistics (  2001  )  

Tubal infertility 406 4.5 d Welte et al. (  2000  ), Rein et al. (  2000  ), Washington and Katz 
(  1991  ), and U.S. Department of Labor Bureau of Labor 
Statistics (  2001  )
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the same as for women with asymptomatic CT. That is, p psen sen. In summary, we 
had rs 1/(35 days); psen 0 9. . Second, we specified f ′ to be 1 minus the proba-
bility of developing symptomatic acute PID, that is, f ′ = 0.6. Third, we knew the 
probability of developing acute PID from CT after 6 months is 0.3. Then we 
computed the daily probability of developing acute PID. Given the 30% chance of 
the PID being asymptomatic, we computed the daily probability of developing 
asymptomatic acute PID, that is, r

PID
 = 0.3 × (1 − e(−1/180)). Thus, 1/r

PID
 ≈ 600 days. 

Next, we computed c
t
 to be the sum of the direct medical cost for the CT infection 

treatment (i.e., a combination of the costs incurred by 1 g of azithromycin, the 
antibiotics, and short clinic visit) and the associated time cost. Thus, c

t
 = $12.7 + $

32.9 + $45.6 = $91.2. Lastly, we computed c
PID

 to be the sum of the acute PID 
treatment costs (both inpatient and outpatient) and the costs of treating the three 
potential sequelae, that is, chronic pelvic pain, ectopic pregnancy, and tubal infer-
tility. Thus, c

PID
 = $3500. Similarly, we computed the upper and lower bounds for 

the plausible ranges.
As for β(τ), we followed the assumption made in Hu et  al. (2004). That is, 

we  assumed a constant annual incidence of 6% in women 15–19 years of age 
(Shafer et al. 1999; Chlamydia Surveillance Data 2011) with incidence decreasing 
by 13% per year beginning at age 20 (Halvorsen et al. 1988, Buhaug et al. 1989, 1990). 
For our numerical study, we performed discretization with 5 days as the 
minimum interval and took β(τ) values at corresponding discrete time points.

For the model validation, we considered the case where the CDC screening 
recommendation has been implemented and the underlying cohort is the overall 
average‐risk US female adolescent population with approximately 4% CT prevalence. 
We computed the sum of equilibrium CT prevalence and acute PID prevalence for 

given age groups [τ
1
, τ

2
], that is, I t I t P ta s a, , ,

1

2  when t is suffi-
ciently large so the system reaches a steady state. For this outcome, we obtained the 
statewide CT infection test positive results for all 50 states (Chlamydia Surveillance 
Data 2011). Since we were unable to know the number of tested people in each 
state, we considered the minimum and maximum over the states. See Table 4.4 for 
the comparison. The table shows that the simulated results fall within the ranges of the 
respective age groups. Moreover, we were able to replicate the age‐dependent trend. 
We thus gained confidence to use the proposed model for the cost‐effectiveness 
analyses.

TABLE 4.4 Model Validation with Respect to CT Infection Prevalence

Age group 15–19 20–24 25–29
Simulated outcome (%) 4.7 4.2 3.8

Statewide Test Positive (%)
Minimum 4.0 3.0 2.0
Maximum 16.5 13.0 7.5
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4.4 STRATEGY ASSESSMENT

We focused our cost‐effectiveness analysis on strategies that differ by their start and 
end ages as well as screening frequency. We first parameterized the PDE model 
and the mathematical expressions of two systems outcomes, with base‐case values 
listed earlier. We then identified cost‐effective and cost‐saving strategies. Finally, we 
conducted sensitivity analyses on one cost‐effective strategy to investigate its robustness 
with respect to several model parameters.

4.4.1 Base‐Case Assessment

We evaluated a total of 36 strategies with screening start age at 15, 16, and 17; end 
age at 23, 24, and 25; and screening frequency ranging from yearly to quarterly. See 
Table 4.5 for the set of strategies tested. The reference strategy, indexed by no. 11, 
resembles the CDC‐recommended screening guideline, with annual screening from 
15 to 25. Our selections are practically meaningful and some of them have been 
evaluated in the literature. Our assessment results are presented in Figure 4.6. On the 
X‐axis, we present the increase on the per capita public health spending for each 
tested strategy as opposed to the recommended strategy. Various components of the 
total societal spending (C

tot
) are described earlier. On the Y‐axis, we present the 

decrease on the PID incidence (i.e., E
PIDinc

 as introduced earlier). This quantity 
reflects the number of PID cases averted, which measures the effectiveness. We next 
describe the results we obtained.

First, our results show that 27 of the 35 strategies increase the number of PID 
cases averted, and at an affordable cost, compared with the current CDC recommendation. 
Of these, two are also cost saving and we call the other 25 strategies cost‐effective 
strategies whose average incremental cost‐effectiveness ratio is slightly above $5000 
per PID case averted. Note that the expected cost of treating acute PID and its 
sequelae is nearly $3500. Considering potential social stigma to people with acute 
PID and emotional devastation of those with PID sequelae, it is quite beneficial to 
avert these additional negative consequences with merely $1500.

Among the tested strategies, more tests each year, earlier screening start age, and 
later screening end stage would lead to lower PID incidence, but higher total 
spending. Later screening end age would lead to more cost increasing or less cost 
saving; earlier screening start age would generate the same effect although the effect 
is not as pronounced as moving the screening start age earlier. Among the 25 cost‐
effective strategies, none of them recommends annual screening unlike the remaining 
cost‐saving strategies. Only two cost‐saving strategies also lead to more PID cases 
averted. These two strategies are similar. They have the same screening end age at 23 
and same screening frequency of biannual, though the screening start ages are 17 and 
16, respectively.

Additionally, our results suggest that more frequent screening over a wider age 
range would avert more PID cases with a more affordable cost. For example, if we 
followed the CDC screening guideline but increased the screening frequency to 
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quarterly, we would spend the least amount, $556, for each PID case averted. 
Furthermore, the results suggest that delayed screening coupled with high screening 
frequency may be beneficial from an effectiveness viewpoint. For example, among 
the 25 cost‐effective strategies, the strategy of quarterly screening from age 17 to 25 
yielded the largest PID incidence reduction. This can be understood that delaying 
screening start age would better coincide with the trend of age‐dependent CT 

TABLE 4.5 Screening Strategies Tested

No. Start Age End Age Number of Tests per Year

 1 15 23 1
 2 15 23 2
 3 15 23 3
 4 15 23 4
 5 15 24 1
 6 15 24 2
 7 15 24 3
 8 15 24 4
 9 15 25 1
10 15 25 2
11 15 25 3
12 15 25 4
13 16 23 1
14 16 23 2
15 16 23 3
16 16 23 4
17 16 24 1
18 16 24 2
19 16 24 3
20 16 24 4
21 16 25 1
22 16 25 2
23 16 25 3
24 16 25 4
25 17 23 1
26 17 23 2
27 17 23 3
28 17 23 4
29 17 24 1
30 17 24 2
31 17 24 3
32 17 24 4
33 17 25 1
34 17 25 2
35 17 25 3
36 17 25 4
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infection risk. The results also suggest that early termination of screening would lead 
to increased PID incidence with less money spent. In fact, both cost‐saving strategies 
do biannual screening with the same end age at 23.

We conclude that a register‐based screening program should screen women in a 
wider age range and more frequently than recommended by the CDC. On the other 
hand, a smaller age range with modest screening frequency may be preferred because 
it is cost saving. If PID incidence reduction is emphasized, it is beneficial to keep the 
frequency high but delay both screening start and end ages for a female adolescent 
population.

4.4.2 Sensitivity Analysis

In this section, we present a small‐scale sensitivity analysis for the purpose of illus-
tration. We selected the strategy that starts biannual screening at age 15 and ends it at 
age 23. We used the no‐screening strategy as the reference. With this reference 
strategy, the cost‐effectiveness ratio is $7062 per PID case averted. We conducted 
several one‐way sensitivity analyses that varied p

sen
, p

spe
, p

com
, p

sid
, p

PID
, c

s
, c

t
, and c

PID
, 

respectively. The value ranges for the four probability parameters and the CT screen-
ing cost parameter are given directly in Table  4.3. For c

t
, the CT treatment cost 

parameter, we varied the costs of the CT medication and a short clinic visit sepa-
rately. We considered four extreme cases (i.e., two from varying the medication cost 
and two from varying the clinic visit charge) and selected the minimum and maximum 
cost‐effectiveness ratios among the four cases. For c

PID
, we varied five relevant cost 

parameters in the same way.
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Figure 4.6 Cost‐effectiveness analysis results.
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Table 4.6 suggests that the incremental cost‐effectiveness ratio is more sensitive 
to the cost of treating PID and its sequelae. Note that here we only varied one cost 
parameter attributing to this treatment cost at a time. It is likely in reality that these 
costs are positively correlated. So we expect that even wider ranges would be yielded 
when conducting n‐way sensitivity analyses. In addition, the result may be sensitive 
to the CT screening cost. Among the probability parameters, the CT screening sensi-
tivity seems to be the parameter that impacts the result the most.

4.5 CONCLUSIONS AND FUTURE RESEARCH

In this chapter, we present an age‐structured compartmental model to investigate the 
cost‐effectiveness of register‐based chlamydia infection screening strategies. Our 
model incorporates compartments to capture the transitions to PID and several 
dichotomous likelihoods to capture screening and treatment ineffectiveness as well 
as individual differences in medication compliance. Our analyses suggest that more 
frequent screening over a wider age range is cost‐effective when compared with the 
CDC’s recommended strategy of annual screening from age 15 to 25. Our assessment 
also offers quantitative insights into strategies that lead to lowered incidence of acute 
conditions and long‐term sequelae and strategies that are cost saving.

Our work has several limitations. First, our model does not account for different 
patterns in ongoing sexual partnerships and, more generally, the differences among 
various sexual networks. In addition, the model does not incorporate immunological 
and behavioral changes after the initial CT infection. It is evident that the average 
reinfection risk differs noticeably from the average first‐time infection risk (Katz 
et al. 1987; Batteiger et al. 2010; Teng et al. 2014). Additionally, we assume that 
screening and treatment effectiveness and medication compliance do not vary over-
time. Hu et al. (2004) provided rough estimates on the durations of several conditions 
related to CT epidemiology. Additionally, model parameterization is critical to 
establish the validity of the age‐structured models (Deriso 1980; Dimitriu 2003; 

TABLE 4.6 One‐Way Sensitivity Analysis Results

Parameter
Base‐Case Value 
(Plausible Range)

Minimum 
CERa

Maximum 
CERa

p
sen

0.9 (0.65–0.96) 6,713 9,067
p

spe
0.99 (0.99–1) 6,855 7,062

p
com

0.8 (0.75–0.9) 6,460 7,395
p

sid
0.09 (0.01–0.1) 7,017 7,067

p
PID

0.96 (0.94–1) 6,775 7,212
c

s
16.46 (8.86–50.65) 4,979 16,431

c
t

91.2 (72.2–116.5) 6,892 7,288
c

PID
3497 (3315–7145) 6,454 19,324

a CER, Cost‐effectiveness ratio; unit: 2010 USD per PID averted.
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Ackleh et al. 2005) and, subsequently, the practical relevance of recommended strat-
egies from the assessment. Although we conducted a comprehensive literature review 
to determine the value of most parameters, we did not have accurate estimates for all 
parameters. Finally, further work is needed in strategy assessment and sensitivity 
analysis. For example, it would be useful to incorporate quality‐of‐life parameters in 
the cost‐effectiveness analysis. Several quality weights are available in Hu et  al. 
(2004). In addition, probabilistic sensitivity analyses could be performed to further 
explore the joint effects of uncertainty sources; for example, it is more desirable by 
simultaneously studying parameters that are known to be correlated (e.g., those con-
stituting the direct medical cost). Our future research plan will be centered on dealing 
with these limitations, with emphasis on the sexual network modeling.
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5.1 INTRODUCTION AND CHALLENGES

5.1.1 Introduction

Blood products are vital healthcare commodities for the treatment of patients across 
all age groups and with a variety of treatment requirements. Patients undergoing 
major surgeries and cancer therapies need blood products, as well as trauma victims, 
certain premature infants, children with severe anemia, and pregnant women with 
complications. As a result, a large number of people need blood transfusion at some 
point in their lives (e.g., 40%–70% of the US population (Hay et al. 2006)). In the 
United States, the amount of blood collected in 2014 is about 16 million units, with 
around 14.5 million units transfused to about five million patients (American Red 
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Cross 2014a). Worldwide, it is estimated that more than 108 million units of blood is 
collected annually (WHO 2014a). Moreover, the need for blood can increase signif-
icantly because of mass casualty disasters (e.g., hurricane, earthquake) or armed 
conflict (American Red Cross 2017).

Unfortunately various infections can be transmitted through the use of blood 
products. These “transfusion‐transmittable infections” (TTIs) include the human 
immunodeficiency virus (HIV); hepatitis viruses, with the major ones being hepatitis 
viruses B and C (HBV and HCV); human T‐cell lymphotropic virus (HTLV); syphilis; 
West Nile virus (WNV); Babesia parasite; Chagas’ disease; and dengue virus; and 
new infections are continuously being discovered to be transmittable through blood 
transfusion (e.g., the dengue virus was discovered to be transmittable through 
transfusion only in 2002 (Katz 2010)). If transmitted, these infections can have dire 
consequences for the transfusion recipient. Consequently, post‐donation screening of 
the blood for TTIs is essential for the safe use of blood products.

Today, there still remains a non‐negligible risk of TTI even in developed 
 countries where high efficacy tests are in use (American Red Cross 2014b). 
For example, babesiosis, a tick‐borne disease caused by the Babesia parasite, can 
be deadly for vulnerable patients and is the leading cause of TTIs in the United 
States, with 162 reported cases of transfusion‐transmitted babesiosis between 
1979 and 2009 (Herwaldt et  al. 2011). The number is on the rise, with 1128 
 babesiosis cases reported in 2011 and 937 cases reported in 2012 (CDC 2012). 
The safety of blood is far from ideal in other parts of the world, especially in some 
developing countries. For example, up to 150,000 pregnancy‐related deaths 
worldwide could be avoided each year through access to safe blood (WHO 2014a). 
“Less than 30% of the countries have a well‐organized blood collection service in 
place” (American Red Cross 2010). Limited resources and a lack of infrastructure 
dictate that only 88% of blood donations worldwide are screened as recommended 
by the World Health Organization (WHO), which includes testing for HIV, HBV, 
HCV, and syphilis; and this number is only 48% in developing countries (WHO 
2014b). “For the blood donations collected in the remaining 41 countries, which 
account for 22% of the global donations reported to the WHO, the use of these 
basic quality assurance procedures is still unknown” (WHO 2014b). In Africa, 
with blood safety challenged by the HIV/AIDS and malaria epidemics, the 
situation is dire: the proportion of both existing and new HIV infections attribut-
able to blood transfusion in the sub‐Saharan Africa is estimated at 10%. With 
11 million HIV infections having occurred on the continent to date, the cumulative 
total of transfusion‐associated HIV infections in Africa may exceed 1 million. 
As many as 25% of HIV‐infected women and children in some areas of Africa 
acquired their infection from a blood transfusion; and 42% of HIV‐infected 
 children over the age of 1 year in Kinshasa, Zaire, acquired infection from a blood 
transfusion (McFarland et al. 2003). These numbers underscore the importance of 
adequate post‐donation testing of blood so that safe blood can be provided to 
those in need.
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5.1.2 The Challenges

Major challenges to providing safe blood products can be summarized as follows: 

1. Demand for blood products is high worldwide and blood products are highly 
perishable (e.g., the lifetime of red blood cells is 21 days). Therefore, a well‐
functioning healthcare system requires a high and constant flow of donations, 
leading to a high testing cost. However, healthcare resources are limited.

2. Multiple Food and Drug Administration (FDA)‐licensed blood screening tests 
are available for blood collection centers to choose from, and the tests are 
imperfectly reliable and come with different costs and measure different 
markers in the body (e.g., antibodies, antigens, genetic material of the virus). 
Furthermore, new testing technologies are always being developed, offering 
new options of price and efficacy (Dzik 2003; Jackson et al. 2003). Thus, it is 
often the case that multiple tests, with varying degrees of efficacy and costs, 
are available for screening for the same infection.

3. The FDA requires blood collection centers to screen for a given set of infec-
tions and recommends screening for some other infections, but does not specify 
which particular tests should be used. Therefore, the blood collection center 
must design an effective and efficient blood screening scheme that reduces the 
risk of TTI in a resource‐constrained environment. While doing so, the blood 
collection center needs to also determine whether to screen for infections 
 recommended by the FDA as well as whether to screen for infections that are 
not in the FDA list. For example, current FDA guidelines recommend, but do 
not require, WNV screening and neither require nor recommend Babesia 
screening. Due to the high uncertainty around the dynamics, prevalence, and 
transmissibility of emerging infections, combined with the already high cost of 
donated blood testing, it may take a long time for the FDA to develop appro-
priate guidelines, especially for emerging infections. The American Association 
of Blood Banks currently has 68 emerging infections on their watch list 
(American Association of Blood Banks 2016).

4. Infection dynamics and prevalence rates in the donor population are highly 
uncertain. For emerging infections, such as babesiosis and WNV, not much is 
known other than that they are highly seasonal and endemic only in certain 
regions (Korves et al. 2006; Moritz et al. 2014; Stramer et al. 2005). The uncer-
tainty around prevalence rates of well‐established infections also remains high 
even in countries with good surveillance systems. This is because all surveil-
lance methods (e.g., population‐based studies, seroprevalence surveys, sen-
tinel surveillances) are highly resource and time intensive and often study, due 
to data availability and resource limitations, subpopulations whose prevalence 
rates may significantly differ from the donor population (Arora et al. 2010; 
Busch et al. 2005; Chak et al. 2011; Grassly et al. 2004; Walker et al. 2001). 
In addition, many infections go undiagnosed or underreported. However, the 
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success of blood screening strategies is highly dependent on prevalence 
rates, and variations in prevalence rates and/or estimation errors may lead to 
an  increase in the TTI risk. Furthermore, it is difficult to change the testing 
scheme in the short term (e.g., on a yearly basis) due to the huge setup involved 
with the new testing equipment, testing protocol, and contracts with testing 
laboratories.

5. Consequences of the various infections differ and may also depend on the 
characteristics of the transfusion recipient. For example, elderly patients and 
patients with underlying hypertension, cerebrovascular disease, and diabetes 
are at a higher risk of developing complications from a WNV infection (Hayes 
et al. 2005). Similarly, it is believed that complicated babesiosis is more likely 
to occur in patients with asplenia, malignancy, HIV, and chronic heart, lung, 
and liver diseases; in patients who are taking immunosuppressive medications; 
or in patients with a history of organ transplantation. However, not all risk 
factors are well understood in the medical literature (Vannier et al. 2008), and 
therefore it is practically impossible to reliably classify each patient as a “high‐
risk” versus “low‐risk” patient for a certain infection prior to transfusion. 
This creates a huge challenge in formulating screening strategies based on risk 
characteristics of transfusion recipients.

6. Blood screening decisions have many other dimensions in addition to the test 
selection decision. For example, the blood collection center can utilize 
“universal” or “non‐universal” testing schemes: the former refers to the prac-
tice of administering the same test set to each and every donated blood unit, 
while the latter allows for differential testing, that is, the blood center would 
administer multiple test sets, each applied to a fraction of the total blood units. 
The main motivation of non‐universal testing is to make it feasible for the 
budget‐constrained blood center to administer the expensive tests, which 
 typically have a higher accuracy, to a portion of the donated blood. The 
differentiation can be random, or it can be targeted considering, for example, 
donation characteristics, such as the geographic region, donor demographics, 
and/or the donation season, which have all been shown to influence prevalence 
rates at statistically significant levels (Bish et al. 2014). Further, some tests can 
be administered on pooled blood units. In pooling, blood samples from mul-
tiple donors are combined into a single testing pool: if the pool tests positive, 
various retesting schemes are possible to identify the infected blood units (see, 
e.g., Aprahamian et al. 2016a,b). Pooling not only reduces the testing cost but 
also diminishes the test’s efficacy (Behets et al. 1990; Burns and Mauro 1987; 
Hwang 1976; Jackson et al. 2003; Kline et al. 1989; Leiby 2001; Stramer et al. 
2004; Weusten et al. 2002).

Currently, it is common practice for blood centers in the developed world, with well‐
organized blood collection systems in place, to use universal testing schemes. However, 
expensive testing technologies having higher accuracy are being developed continuously. 
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An example is the nucleic acid testing (NAT) technology for HIV, HBV, HCV, and 
WNV, which was recently approved by the FDA. NAT has significantly higher 
 efficacy than current serological tests (which are based on antibody and antigen 
detection), and it also comes with pooling flexibility (in pool sizes of 6–24), which 
reduces the test’s efficacy. This raises the question of whether the blood supply, as a 
whole, would be safer if the blood center were to use this expensive technology on a 
fraction of the donated blood, if they could not afford using it on all donated blood. 
For example, the American Red Cross routinely performs pooled NAT testing (in 
pool sizes of 16) for WNV but switches to the more reliable individual NAT testing 
in epidemic areas during epidemic time periods (American Red Cross 2014b). This 
can be seen as a form of non‐universal testing, with donations received in different 
seasons and regions undergoing different testing. From the society’s perspective, 
such a policy is equitable because it would reduce the risk for the whole blood supply, 
as a transfusion recipient could have blood screened by any of the test sets (the 
donor’s identity is not attached to the blood donation, except for rare cases where a 
family member or a friend would donate blood for an emergency situation). Such 
non‐universal testing schemes enable the decision maker to administer expensive, 
more reliable tests that would not have been budget feasible otherwise and have the 
potential to reduce the TTI risk over the current universal testing. However, these 
issues further complicate the testing decision.

In this setting, the resource‐constrained blood collection center needs to devise a 
post‐donation blood screening scheme so as to minimize the risk of an infectious 
donation being released into the blood supply. This decision is of utmost importance 
because of the dire consequences of transfusing infected blood units. A variety of 
tools have been applied to this decision problem, including standard cost‐effectiveness 
analysis (e.g., Busch et al. 2009; Leiby 2001; Sendi et al. 2003; Simon et al. 2013), 
mathematical programming‐based approaches (Aprahamian et al. 2016a; Bish et al. 
2011, 2014; El‐Amine et  al. 2016, 2017; Xie et  al. 2012), decision‐theoretic 
approaches (e.g., Marshall et al. 2004), Markov process models (e.g., Jackson et al. 
2003; Schwartz et al. 1990; Van Hulst et al. 2009), or simulation models (e.g., Custer 
et  al. 2005; Lefrere et  al. 1998). This chapter reviews a number of mathematical 
programming‐based models and concludes with a discussion of promising areas for 
future research.

5.2 THE NOTATION AND DECISION PROBLEM

The decision maker faces the problem of selecting a set of screening tests, from a set 
of commercially available tests, to administer to each unit of donated blood to test 
for a set of TTIs (infections) that are required and/or recommended for screening by 
the FDA/WHO, so as to minimize the overall TTI risk in blood transfusion, that is, 
the conditional probability that a blood unit classified as “infection‐free” is in fact 
infected.



114 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

Each screening test applies to a specific infection and provides binary results, with 
a “+” result indicating that the blood unit is infected and a “−” result indicating 
 otherwise. Tests are imperfect and are characterized in terms of their specificity 
(the conditional probability that the test result is “−,” given that the blood unit is 
not  infected) and sensitivity (the conditional probability that the test result is “+,” 
given that the blood unit is infected) (Pepe 2004). False‐positive and false‐negative 
test results are possible due to various reasons; see, for example, Dow (2000), 
Johnson (2010), and Moore et al. (2007). Due to the short shelf life of blood, all 
selected tests need to be administered concurrently (Hillyer 2001).

In practice the decision maker also needs to adopt a decision rule, which pre-
scribes when to classify the blood unit as “infection‐free” for a particular infection 
versus “infected,” when the selected test set contains multiple tests for the same 
infection. The “believe the positive (BP)” rule is commonly used in blood screening 
due to its conservative nature and fits well with the objective of minimizing the TTI 
risk.1 Under the BP rule, the blood unit is classified as “infected” for infection i if 
at least one test in the selected set for infection i returns a “+” result; equivalently, 
it is classified as “free” of infection i if all tests in the set come out “−.” We use the 
BP rule in all blood screening schemes that we consider.

5.2.1 Notation

Throughout, 


X Xi( ) denotes a vector, X denotes the complement of event X, and ϕ 
and Φ, respectively, denote the empty set and the universal event. Let Ψ denote the 
set of infections required and/or recommended for screening; Ω

i
 denote the set of 

tests available to the decision maker for infection i ∈ Ψ, with Ω = ∪
i∈Ψ Ωi

; and d(j) 
denote the infection test j, j ∈ Ω, applies to. When we discuss non‐universal testing 
schemes, we label all subsets of Ω as S

0
, S

1
, …, S

f
, where f = 2|Ω| − 1, S

0
 = ϕ, and S

f
 = Ω, 

and denote this index set by F f0 1, , , .

Decision variables:
Universal testing problem:
S ⊆ Ω: set of tests to administer to each blood unit
Non‐universal testing problem:
p

k
: proportion of blood tested with test set S

k
, k F

Consider a random blood unit to be tested. We define the following events and 
parameters:

Events:
Ai+, i ∈ Ψ: the event that the blood unit is infected by infection i, ( )A Ai i

T jj , : the event that test j provides a “+” result for infection d(j), ( )T Tj j

1 Bish et al. (2011) shows that under a universal testing scheme, the BP rule is the optimal decision rule for 
minimizing the TTI risk.



OPTIMAL SELECTION OF ASSAYS FOR DETECTING INFECTIOUS 115

T S T Sj S j( ) , : the event that the blood unit is classified as infection‐
free based on the administered test set S and under the BP rule, ( ( ) ( )T S T S   
 j S jT ).
We adopt the notation that when S = ϕ, T ( )  and Pr( ) j S jT 0.

Parameters:
Specificity (true‐negative probability) of test j T Aj

d jPr( | )( ) , j ∈ Ω
Sensitivity (true‐positive probability) of test j T Aj

d jPr( | )( ) , j ∈ Ω
c

j
, j ∈ Ω: unit cost of administering test j

C c k Fk j S jk
, : cost, per blood unit, of administering all the tests in set S

k

B: total budget available per blood unit for administering the screening tests
α: maximum allowable fraction on waste (i.e., the fraction of infection‐free blood 
falsely discarded)

5.2.2 Measures of Interest

Table 5.1 links the metrics of interest to the blood collection center to measures of 
accuracy, referred to as “classification probabilities” and “predictive values,” used in 
the medical literature for tests with binary outcomes. Since in blood screening there 
are multiple TTIs that need to be detected via a set of tests, we first expand the 
classification probabilities and predictive values to the multi‐infection multi‐test 
setting under the BP decision rule and link them to our metrics.

TABLE 5.1 Measures of Accuracy for Binary Diagnostic Tests

Universal Testing Schemes

Metrics

Single‐infection 
single‐test setting 
(Pepe 2004)

Multi‐infection multi‐test 
setting under the BP rule

Classification Probabilities
• False‐positive probability Pr{ | }T A

Pr |T Aj
j S

i

i
∪ ∩ Waste

• True‐positive probability Pr{ | }T A
Pr |T Aj

j S

i

i
 

Predictive Values
• Positive predictive valuea Pr{ | }A T

Pr |A Ti

i
j

j S
 

• Negative predictive value Pr{ | }A T
Pr |A Ti

i
j

j S
 

1 risk

a For completeness, we define the positive predictive value as 0 when S = ϕ.
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Classification probabilities and predictive values are valuable in different con-
texts. Classification probabilities, namely, the false‐positive probability (Pr{ | })T A  
and true‐positive probability (Pr{ | })T A , are useful in evaluating the diagnostic 
accuracy of a test and are commonly used in medical and biomedical research (e.g., 
Beutel 2000; Walter and Irwig 1988) as well as in engineering applications and 
statistical hypothesis testing (e.g., Ozekici and Pliska 1991; Raz and Kaspi 1991).2 
On the other hand, the positive predictive value ( )Pr{ | }A T  and negative predictive 
value (Pr{ | })A T  are valuable in clinical contexts, where the main focus is on how 
well the test outcome predicts the true infection or disease status. Unlike the 
classification probabilities, the predictive values depend not only on the test’s 
efficacy but also on the infection’s prevalence rate. As such, they cannot be used 
to describe the inherent accuracy of the test (which is where the classification 
probabilities are helpful), but they reflect the confidence on the test results. 
Obviously, there is a direct relationship between the classification probabilities 
and predictive values.

Thus, through focus on both risk and waste, the decision maker in the blood 
screening setting is concerned with both predictive metrics and classification metrics.

For non‐universal testing, the TTI risk can be expressed as

 

Risk nonuniv

p A T S

p T S
k F

k
i

k
i

k F
k k

( )

Pr , ( )

Pr{ ( )}



..

3

 

Further, in practice, different infections have different impacts on the society 
and the individuals, in terms of costs of treatment, disability, loss of productivity, 
etc. These costs/burdens depend on the specific TTI as well as on the characteris-
tics of the transfusion recipient. Measures such as quality‐adjusted life year 
(QALY) and disability‐adjusted life year (DALY) are commonly used in cost‐
effectiveness analysis to represent the overall burden of the infection (Marshall 
et al. 2004; Van Hulst et al. 2010), and one can expand the metrics in this section 
to incorporate the different impacts of the TTIs in the test selection decision; see 
Xie et al. (2012) for details.

2 For example, in engineering applications, the true‐positive and false‐positive probabilities are referred to 
as the “hit rate” and “false alarm rate,” respectively, while in statistical hypothesis testing, they are referred 
to as “statistical power” and “significance level,” respectively; see Pepe (2004, chapter 2).

3 Note the use of the expression k F k i ki

k F k k

p A T S

p T S

Pr , ( )

Pr{ ( )}

  for Risk(nonuniv) rather than the expres-

sion k F k i ki
p A T SPr ( )



. The former expression is the one that corresponds to the TTI risk under 
the non‐universal testing scheme, as it represents the proportion of infected blood within the blood pool 
classified as infection‐free (Bish et al. 2014).
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5.2.3 Model Formulation

In this setting, given a set of imperfectly reliable tests to select from to detect a set 
of infections, the primary objective of the decision maker is to minimize the TTI risk 
(or weighted risk), that is, the conditional probability that the blood unit classified as 
“infection‐free” is in fact infected. The decision maker is resource constrained and 
may also be concerned about the amount of infection‐free blood falsely discarded 
(waste). We model these constraints in the form of a budget constraint on the total 
test administration cost per unit blood and a waste constraint that limits the fraction 
of falsely discarded blood.

The mathematical formulations for the universal risk minimization problem 
(U‐RMP) and the non‐universal risk minimization problem (N‐RMP) under budget 
and waste constraints are as follows:

U‐RMP:

 
MinimizeS

i

i

Risk S A T S( ) Pr ( )


 (5.1)

 
subject to

j S
jc B (5.2)

 
Waste .Pr ( )T S Ai

i


 (5.3)

The U‐RMP model provides a universal testing scheme wherein the optimal test 
composition is administered to all donated blood units. In the non‐universal setting, 
however, different test compositions can be administered to different proportions of 
the total blood.

Non‐universal risk minimization problem (N‐RMP):

 

Minimize �
∪

p
k F

k
i

k
i

k F
k

Risk nonuniv

p A T S

p
( )

Pr , ( )

PPr{ ( )}T Sk

 (5.4)

 
subject to

k F
k kp C B (5.5)

 k F
k k

i

i

p T S APr ( )


 (5.6)

 k F
kp 1 (5.7)

 p k Fk 0, . (5.8)
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5.2.4 Relationship of the Proposed Mathematical Models 
to Cost‐Effectiveness Analysis

Resource allocation problems have long been studied by operations researchers (see, 
for instance, Brandeau 2004 for excellent review and references). A commonly used 
formulation that is somewhat related to our problem is the traditional knapsack 
problem, which selects, from a set of candidates, each with a known reward and cost, 
the optimal set that is budget feasible and that maximizes the total reward (e.g., 
Brandeau 2004). The classical knapsack problem is as follows:

 
Maximize x

j
j jR x  (5.9)

 
subject to

j
j jc x B (5.10)

 x jj binary   ,,  (5.11)

where all notation is as defined in Section 5.2.1, with the addition that R
j
 denotes 

the reward of using intervention j, j ∈ Ω. Decision variables include binary vari-
ables x

j
, j ∈ Ω, which equal 1 if intervention j is included in the optimal set and 

0 otherwise. This formulation assumes that rewards of the different interventions 
have constant returns to scale and are independent (Brandeau 2004; Sendi et al. 
2003; Van Hulst et al. 2010), which do not apply in the context of blood screening, 
as we elaborate in the succeeding text. However, even under these assumptions, the 
integer knapsack problem in (5.9)–(5.11) remains NP‐hard and has been well 
researched in the literature, with pseudo‐polynomial algorithms developed; see, for 
example, Andonov et al. (2000). Relaxing constraint (5.11), that is, assuming that 
the interventions are divisible, leads to the linear programming (LP) relaxation of 
the knapsack problem, whose optimal solution is to allocate the budget to the inter-
ventions in order of increasing cost‐effectiveness ratios (c

j
/R

j
) (Dantzig 1957). 

This allocation rule will result with at most one intervention selected at a fractional 
level in the optimal set.

In the context of the post‐donation test selection decision, interventions corre-
spond to individual tests, and reward R

j
 may correspond to the measure the decision 

maker is seeking to minimize, such as the TTI risk (with the objective in Equation 5.9 
changed to minimization), or the measure the decision maker is seeking to maximize, 
such as the number of infections averted or QALY or DALY gained as a result of 
intervention j. Then, the optimal solution to the LP relaxation of the knapsack 
problem corresponds to the cost‐effectiveness solution, wherein tests are compared 
with each other in terms of their cost‐effectiveness ratio (c

j
/R

j
); see, for example, 

Busch et al. 2009), Leiby 2001, Sendi et al. 2003, and Simon et al. (2013). However, 
as stated previously, the test selection problem for the donated blood setting has 
unique characteristics and exhibits major differences from the well‐studied integer or 
linear knapsack problems.
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Specifically, in the blood testing problem, candidate tests do not have constant 
returns to scale in the objective function (i.e., TTI risk or variations of it), that is, the 
test’s contribution to the TTI risk depends not only on the efficacy of the test itself but 
also on the efficacy of the entire set of tests selected and the decision rule adopted, that 
is, R x jj



, . There also exist other complications, as discussed in Section 5.1.2, 
such as the possibility of non‐universal schemes, the need to determine a decision rule 
and a pooling strategy along with a test set, the need to consider other, possibly 
conflicting, objectives, such as reducing the amount of blood wasted, etc., under 
uncertainty in prevalence rates. Even with the test selection problem considered in its 
most basic form, with all decisions other than the test selection decision removed from 
the model, the test selection problem falls into the general class of nonlinear knapsack 
problems with a non‐separable objective function, a problem considerably more diffi-
cult than other knapsack problems, which has received very limited attention in the 
literature (see Bretthauer and Shetty 2002 for a review). These characteristics compli-
cate the problem considerably; problems U‐RMP and N‐RMP are NP‐hard (Bish 
et al. 2011), and traditional knapsack results do not necessarily apply in this setting. 
In order to solve these test selection problems, Bish et al. (2011) develop an efficient 
algorithm for solving a special case of U‐RMP and propose a near‐optimal algorithm 
with a performance guarantee for the general U‐RMP and N‐RMP. We use these 
solution techniques to solve U‐RMP and N‐RMP in the remainder of this chapter.

In the remainder of this chapter, we discuss, through a case study, the implications 
of accurately modeling these dependencies among the tests and using mathematical 
programming‐based algorithms to optimize the test selection decision.

5.3 THE CASE STUDY OF THE SUB‐SAHARAN AFRICA REGION 
AND THE UNITED STATES

In this section, we summarize the findings from a case study and discuss the implications 
on the optimal test selection decision. All data sources, models, and algorithms are dis-
cussed in detail in Bish et al. (2011, 2014), El‐Amine et al. (2016), and Xie et al. (2012).

In the case study, we use realistic data from two regions: sub‐Saharan Africa and 
the United States. These two regions have very different characteristics in terms of 
infection prevalence rates, resource availability, and infrastructure (see, e.g., Busch 
et al. 2009; Owusu‐Ofori et al. 2010; Van Hulst et al. 2010). Our purpose for consid-
ering these two very different regions is to also highlight the major role regional 
characteristics play in the optimal test selection decision.

In sub‐Saharan Africa, an estimated 22.4 million people have HIV infections 
(around two‐thirds of the global total), and the HIV prevalence in this region varies, 
by country, from 2% to 26% (UNAIDS 2008) (we use 11.25% in our study). HBV, 
HCV, and HTLV prevalence rates are also high for this region (Kiire 1996; Madhava 
et al. 2002; Proietti et al. 2005); see Table 5.2. In the United States the prevalence 
rates are much lower. However, the TTI risk is still non‐negligible, as testing for 
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some emerging infections, such as babesiosis, the leading cause of TTIs in the United 
States, is not currently mandated by the FDA, but Babesia prevalence in the United 
States is on the rise; see Bish et al. (2015).

The WHO recommends screening for HIV, HBV, HCV, and syphilis (along with 
other infection based on local conditions) (WHO 2011), while the FDA adds HTLV 
and Chagas’ disease to this list as infections required for screening and recommends 
screening for WNV (FDA 2014a). In our case study, we consider all infections that 
are currently required/recommended for screening by the WHO and FDA, except for 
syphilis and Chagas’ disease, which we omit due to a lack of reliable data. Table 5.2 
displays the prevalence rates of these infections for sub‐Saharan Africa and the 
United States; see Bish et al. (2014) for data sources and details.

On the test side, we consider all FDA‐licensed tests that screen for these infec-
tions whose sensitivity and specificity data are publicly available (FDA 2016), and 
we use the testing cost data in Jackson et al. (2003). The number of tests we consider 
for HBV, HIV, HCV, WNV, and HTLV are 6, 16, 7, 2, and 2, respectively. These tests 
represent a wide range of cost and efficacy.

As discussed in Section 5.1.2, WHO and FDA guidelines list the infections that 
are required/recommended for screening but leave it to the blood collection center to 
determine which screening tests and testing schemes to perform to be in compliance 
with these requirements. For all infections considered in the case study, multiple 
FDA‐licensed tests, each with a different cost and efficacy, are available, leading to 
several test combinations that comply with WHO/FDA requirements. While checking 
for compliance, for the sub‐Saharan Africa region, we consider compliance with the 
WHO guidelines, and for the United States we consider compliance with the FDA 
requirements. Specifically, for each region we construct two different testing schemes 
that comply with the FDA/WHO guidelines: for each infection recommended by the 
WHO (for the sub‐Saharan Africa region) or required by the FDA (for the United 
States), the blood center selects the lowest cost test under the “min‐cost” scheme and 
selects the risk‐minimizing test for each infection under the “min‐risk” scheme. 
These two extreme cases provide ranges for budget requirements and the TTI risk for 
test schemes that comply with the FDA/WHO guidelines.

Table  5.3 reports, for sub‐Saharan Africa, the required budget and the 
corresponding TTI risk for the min‐cost and min‐risk test sets that satisfy the WHO 

TABLE 5.2 Prevalence Rates (in %) in Sub‐Saharan Africa 
and the United States (See Bish et al. (2011) for Data 
References)

Sub‐Saharan Africa United States

HIV 11.250 0.008
HBV 8.200 0.067
HCV 0.450 0.291
HTLV 3.000 0.010
WNV 1.000 0.010
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guidelines and the TTI risk corresponding to the optimal universal and optimal non‐
universal test sets obtained, respectively, by the U‐RMP and N‐RMP models at 
those budget levels. Table 5.4 reports the corresponding results for the United States, 
with the difference that the required budgets for the min‐cost and min‐risk test sets 
are determined in accordance with the FDA requirements. (In the case study, we do 
not consider the waste constraint in (5.3). However, a constraint on the proportion 
of wasted blood can be easily added to the formulation; we refer the interested 
reader to Xie et al. (2012) for a detailed discussion on how risk and waste figures 
vary with parameter α.)

From Table 5.3, to follow the WHO guidelines in the sub‐Saharan Africa region, 
the min‐risk scheme would cost $14 with a TTI risk of 5.32%, but with this $14 
budget U‐RMP reduces the risk to 2.069% and N‐RMP reduces it further to 
1.469%. We did not impose WHO guidelines in U‐RMP and N‐RMP, but in this 
case, both optimal solutions meet WHO guidelines; they just use less expensive 
tests for these TTIs, which allows them to include tests for the other prevalent TTIs 
in this region.

For the United States, from Table 5.4, the FDA requirements can be satisfied with 
as little as $17 (the min‐cost testing scheme), with a risk of 0.0120%, while at the 
same budget level, U‐RMP can reduce the risk to 0.01148%, and N‐RMP can 
further reduce it to 0.00745%, a considerable reduction. At the min‐risk budget of 
$22, N‐RMP and U‐RMP solutions are identical, but their solution differs from the 
min‐risk solution in that two tests for HCV are selected (the TTI having the highest 

TABLE 5.3 Sub‐Saharan Africa Region: Risk Values for Test Sets That Meet the WHO 
Recommendations and for the Optimal Universal and Optimal Non‐universal Test Sets

WHO‐Compliant Testing U‐RMP Solution N‐RMP Solution

Budget ($) Risk (%) Risk (%) Risk (%)

WHO min‐cost  9 5.640 5.640 5.640
WHO min‐risk 14 5.320 2.069 1.469

Source: Bish et al. (2014). Reproduced with permission of Taylor & Francis.

TABLE 5.4 United States: Risk Values for Test Sets That Meet the FDA Requirements 
and for the Optimal universal and Optimal Non‐universal Test Sets

FDA‐Compliant Testing U‐RMP Solution N‐RMP Solution

Budget ($) Risk (%) Risk (%) Risk (%)

FDA min‐cost 17 0.0120 0.01148 0.00745
FDA min‐risk 22 0.00194 0.00120 0.00120

Source: Bish et al. (2014). Reproduced with permission of Taylor & Francis.
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prevalence rate), bringing the risk from 0.00194% down to 0.00120%. These results 
demonstrate the significant risk reduction that can be achieved through optimiza-
tion‐based models and through non‐universal screening schemes.

In summary, this case study highlights the importance of generating region‐
specific test composition for blood screening that explicitly takes into account the 
prevalence rates of the TTIs. It also demonstrates that following the WHO and FDA 
guidelines is no guarantee of an optimal testing regime—sometimes it is better to 
deviate from the recommendations. Test selection is complex, and always choosing 
the risk‐minimizing test for each infection does not ensure an overall risk‐minimizing 
solution for a given budget level.

5.3.1 Uncertainty in Prevalence Rates

We next discuss the optimal test selection decision when infection prevalence rates 
are uncertain. In particular, we expand the U‐RMP formulation by considering an 
uncertainty set around infection prevalence rates and formulating the test selection 
decision as a robust optimization problem (El‐Amine et al. 2016). In particular, the 
robust optimization model determines an optimal set of tests to administer to each 
blood unit so as to minimize the maximum “Regret” incurred by committing to a test 
set without knowledge of the actual prevalence rate in a given year. The robust risk 
minimization problem (R‐U‐RMP) is as follows:

R‐U‐RMP:

 
Minimize ,S Regret Smax{ ( )}






 (5.12)

 
subject to ,

j S
jc B  (5.13)

where 


( )i i  denotes a possible realization of the prevalence rate vector 
for  the  infections in set Ψ and belongs to a convex uncertainty set  ; and 
Regret S Risk S Risk S( ) ( ) ( ( ), )*, ,

   

, with S*( )


 denoting the optimal test set 
(i.e., with minimum possible Risk) corresponding to prevalence vector 



, that is, it 
represents the additional risk incurred by committing to a test set S without knowledge 
of the actual prevalence rate vector, 



. In El‐Amine et al. (2016), we develop an exact 
algorithm to solve R‐U‐RMP for the special case where the uncertainty set,  , has 
an interval structure, that is,  l ui i i

, .
Continuing with the US case study, we compare the robust optimization solution 

with the min‐risk and min‐cost testing schemes that comply with the FDA require-
ments using prevalence rate data on HIV, HBV, HCV, babesiosis, and WNV from 
the literature. For example, Figure 5.1 presents the variation in regret and risk for the 
R‐U‐RMP optimal solution and the FDA min‐risk solution when the prevalence rate 
of each infection is varied over its range. Clearly, the ranges for both risk and regret 
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in the robust testing solution are significantly smaller than those for FDA min‐risk 
policies, underscoring the value of robust optimization in post‐donation screening; 
see El‐Amine et al. (2016) for details.

5.4 CONTRIBUTIONS AND FUTURE RESEARCH DIRECTIONS

In this chapter, we review mathematical models for an important problem faced by 
blood centers of selecting screening tests for donated blood. This decision has a 
significant impact on healthcare quality in both developed and developing countries. 
The work reviewed here generates insights on public policy on this important problem.

There are numerous avenues that are worthy of future research effort. An important 
direction is to expand the mathematical models to incorporate other important charac-
teristics of this problem discussed in Section 5.1.2. There are also important decisions 
to be made on a broader, health policy, level. For example, no data are perfectly accu-
rate, and the decision maker needs to allocate their limited resources among surveil-
lance efforts (i.e., gathering more accurate data on infection prevalence rates and test 
reliability measures) and blood screening. While the former provides the decision 
maker with better information, possibly leading to a test set that better represents 
reality, the latter actually reduces risk in blood. As a future direction, it is worthwhile 
to explore this trade‐off to devise effective resource allocation schemes among these 
efforts. Finally, it is important to incorporate the models and algorithms in decision 
support systems that can aid blood collection centers in their testing decision.
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6.1 INTRODUCTION

Major infectious diseases such as HIV and viral hepatitis have long latency periods 
and may lead to adverse health outcomes and death to infected individuals several 
decades after infection acquisition. Recent advancements in the treatment of these 
diseases have led to potential cure, or transformed them into manageable lifelong 
chronic conditions (Ghany et  al. 2009). However, treatment regimens for these 
 diseases are often complicated, risky, costly, and/or nonreversible. In this chapter, we 
discuss relevant methods in decision‐analytic modeling and highlight several recently 
published studies in the design and evaluation of screening, monitoring, and treatment 
strategies for chronic hepatitis C (HCV) care in the United States.

Chronic HCV is a liver disease affecting approximately 130–170 million peo-
ple  worldwide and 3–4 million Americans (Armstrong et  al. 2006). Major HCV 
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infection risk factors include blood transfusion before 1992, injection drug use, and 
lifestyle factors such as having greater than 20 lifetime sexual partners. More than 
half of HCV‐positive Americans may be unaware of their infection (Armstrong 
et al. 2006). If untreated, chronic HCV is a slow progressing disease that causes liver 
fibrosis and end‐stage liver diseases. Disease progression is often asymptomatic and 
can take up to 30 years to cause liver cirrhosis and hepatocellular carcinoma (HCC) 
(Salomon et  al. 2003). The majority of HCV patients in the United States are 
infected with genotype 1 HCV, which has been historically difficult to treat (Ghany 
et al. 2011). The first FDA‐approved drug, interferon monotherapy, appeared in 1991 
with a cure rate below 10% (Alter and Liang 2012). Major breakthroughs in the past 
two decades have improved treatment effectiveness with additions of pegylated inter-
feron and ribavirin as standard therapy, which required up to 48 weeks with an 
average 40% cure rate and substantial side effects (anemia, skin rash, depression, 
etc.). Recent advancements in years 2013–2016 include direct‐acting antiviral (DAA) 
drugs, such as daclatasvir, elbasvir/grazoprevir, ledipasvir/sofosbuvir, ombitasvir/
paritaprevir/ritonavir with dasabuvir, and simeprevir; up to 95% of patients with 
most genotypes of HCV infection going through treatment can now achieve sustained 
virologic response (SVR), with potential shorter treatment durations (as short as 
8  weeks). After decades of brilliant advancement in antiviral drug development, 
many HCV experts are seeing the possibility of the “beginning of the end” in the 
battle against HCV (Alter and Liang 2012).

Chronic HCV care delivery, however, is more likely to be at the “end of the 
beginning” stage. In year 2013, the Centers for Disease Control and Prevention 
(CDC) and the US Preventive Services Task Force (USPSTF) both recommended a 
one‐time HCV screening for all American adults born between 1945 and 1965 (Smith 
et al. 2012, Moyer 2013). The unrelenting pace of HCV drug development has caused 
considerable confusion in the delivery of care. The newest treatments come with 
substantially higher cost, reduced side effects, and potentially complex viral resis-
tance and drug interaction challenges. The average wholesale price tag of the newer 
drugs can reach $1,000 per day ($60,000–$100,000 for a course of treatment). The 
scramble to increase the joint effort in screening and treatment has great potential to 
improve population health at significant societal cost.

To design and evaluate chronic HCV care policies, recent modeling efforts are 
mainly cost‐effectiveness analysis (CEA) (Gold et al. 1996), which are economic 
studies comparing the long‐term costs and health outcomes of alternative healthcare 
interventions (e.g., policies on screening and treatment) and new medical technol-
ogies (e.g., drugs, procedures, devices, etc.), often using decision‐analytic methods 
(e.g., decision tree, Markov cohort model, Monte Carlo simulation, etc.). A growing 
literature on stochastic and dynamic models in medical decision making aims to 
optimize disease screening and treatment decisions over time, typically focusing on 
uncertainties in the disease process. Method such as Markov decision process 
(MDP) provides a framework for finding optimal solutions for sequential decision‐
making problems under uncertainty (Brandeau et al. 2004) and have been used in a 
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variety of health applications including organ transplantation (Alagoz et al. 2004, 
2005, 2007, 2010), breast cancer screening and treatment (Maillart et al. 2008, Ayer 
et al. 2012), HIV therapy sequencing (Shechter et al. 2008), and diabetes treatment 
(Mason et al. 2012).

This chapter discusses recent decision‐analytic modeling research in developing 
policy guidelines and applied decision theory for the screening, monitoring, and 
treatment of chronic HCV during a time of rapid therapeutic advances in the United 
States. This chapter can be used as a guide to model similar research questions in 
other disease areas using decision‐analytic approaches. In Section 6.2, we briefly 
review some of the modeling choices behind building disease natural history and 
intervention models and parameter estimation methods with examples on HCV dis-
ease progression and mortality rate estimation. Section 6.3 is organized into four 
sections. The first two sections highlight several CEA using decision‐analytic 
Markov models to evaluate alternative HCV care interventions. The next two  sections 
examine the optimal treatment adoption decisions from the patient’s perspective and 
the optimal treatment delivery decisions under resource constraints from the health-
care system’s perspective. Concluding remarks are made in Section 6.4.

6.2 METHOD

CEA can be conducted under a decision‐analytic modeling framework (Figure 6.1). 
It evaluates healthcare interventions by using mathematical models to simulate the 
disease natural history and interventions’ effect to project the long‐term outcomes of 
each strategy under consideration. Outcomes are typically expressed as expected 
number of events occurred (e.g., number of liver transplant, cases of liver cancer), 
lifetime costs, quality‐adjusted life years (QALYs) gained, and incremental cost‐
effectiveness ratios (ICERs). These models are compact representations of reality 
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Figure 6.1 Decision‐analytic modeling framework.
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and are used to simulate infeasible experiments, explore a large number of alternative 
scenarios, extrapolate from intermediate endpoint to downstream health outcomes 
beyond clinical trials, compare different interventions using common measures, and 
inform decision in the absence of data (Buxton et al. 1997). They are most appro-
priate at early stages of designing new health interventions. Recently updated panel 
recommendations on conducting CEA in health and medicine can be found in 
Sanders et al. (2016).

The methods for conducting CEA studies include decision tree, Markov cohort 
model, and microsimulation. They appear to be deceptively simple at first glance; 
however, high‐quality CEA studies are difficult to achieve due to the following meth-
odological challenges (Caro et al. 2012):

1. Accurately capturing the heterogeneity in the target population by patient 
demographic and clinical characteristics, disease severity, and mortality that are 
appropriate to the decision problem. Additional stratification requires more data 
for parameter estimation and leads to increasingly complex model structure.

2. Accurately capturing sufficient details of the proposed interventions (i.e., 
 prevention, screening, diagnostics, monitoring, treatment) to estimate their benefit 
and harm while preserving model transparency and computational efficiency. 
These details include frequency of service, treatment processes (drug dose, 
treatment duration, side effect, adherence), patients’ flow throughout the care 
chain, medical personnel requirement, and effects on quality of life and cost.

3. Extrapolating beyond observed data to estimate long‐term health outcomes 
(e.g., patient’s lifetime) and estimating achievable treatment effectiveness in 
real‐life practices as opposed to reported efficacy from controlled clinical 
trial settings.

4. Estimating disease natural history parameters given incomplete data.

5. Conducting systematic sensitivity analyses that include testing deterministic, 
probabilistic, and structural assumptions.

We encountered all of the aforementioned challenges in modeling chronic HCV 
interventions. We discuss several modeling choices and parameter estimation 
methods in the next section.

6.2.1 Modeling Disease Natural History and Intervention

Making the appropriate modeling choice to simulate the underlying disease natural 
history and intervention effect is a vital step before designing effective interventions. 
We provide a brief overview on several common modeling approaches here.

6.2.1.1 Discrete‐Time Markov Chains (DTMC) Discrete‐time Markov chain 
(DTMC) is the most common method used in decision‐analytic models to simulate 
long‐term outcomes of chronic diseases (Craig and Sendi 2002). It assumes that a 
patient is always in one of a finite number of discrete health states that are mutually 
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exclusive and collectively exhaustive. All events are represented as transitions from 
one state to another. One key assumption of a Markov model is called the Markov 
property, which means that given the current state and the past states, the conditional 
probability of transiting to the next state is independent of past states and depends 
only on the current state.

For example, chronic HCV natural history can be modeled as a nonstationary 
(time‐dependent) DTMC that simulates HCV disease progression (see Figure 6.2). 
The modeled cohort starts with a distribution of liver fibrosis stages characterized 
by  the Metavir scoring system that represents the degree of liver damage from F0 
(no fibrosis) to F4 (compensated cirrhosis). Successful treatment shifts people into 
recovered states that are stratified by their prior liver damage. Unsuccessfully treated 
patients continue to progress to end‐stage liver diseases such as decompensated cir-
rhosis and liver cancer. Both patients with decompensated cirrhosis and liver cancer 
may receive liver transplants. Death can occur from any state. In Figure 6.2, each 
bubble represents a Markov state, and each arrow represents a transition probability.

6.2.1.2 Hidden Markov Model (HMM) We often do not observe the true 
 underlying disease transition dynamics. In a hidden Markov model (HMM), disease 
progression is assumed to be a Markov process with unobserved/hidden states. 
The sequence of health state transition is not directly observable, but the output of 
some screening/diagnostic tests that correlate with the health state is observable. 
Each state has a probability distribution over the possible test scores. Therefore the 
sequence/trajectory of test scores generated by an HMM provides the basis for infer-
ring the true underlying disease transition. HMM makes an assumption that the 
system is Markovian, which means the probability of transitioning in the hidden state 
does not depend on the amount of time already spent in the current state. In cases that 
this assumption may not hold, a hidden semi‐Markov model (HSMM) assumes the 
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 probability of there being a transition in the hidden state depends on the amount of 
time that has elapsed since entering into the current state. HSMM is Markovian only 
at the specified transition instants. The HSMM structure requires more advanced 
solution method (Titman and Sharples 2010).

6.2.1.3 Continuous‐Time Markov Chain (CTMC) A continuous‐time Markov 
chain (CTMC) allows a patient to spend a continuous amount of time in any state, but 
in such a way as to retain the Markov property by assuming the length of time spent 
in a state (i.e., sojourn time) is exponentially distributed. There are some recent 
works on using CTMC and latent Markov models to estimate disease progression 
(Lange and Minin 2013). In Lang and Minin’s study, the assumption of exponential 
sojourn time distributions of the Markov property is questioned, and multiple latent 
states mapping to each disease state are proposed. A successful application of a con-
tinuous‐time progression model can be seen in estimating the progression of chronic 
obstructive pulmonary disease (COPD) (Wang et al. 2014).

6.2.1.4 Markov Decision Process (MDP) MDP is a method used for sequential 
decision making in an uncertain environment. The goal is to find an optimal policy 
that tells the decision maker what to do in any situation when the outcomes of actions 
are uncertain over time. MDP consisted of the state transition dynamics (e.g., how 
the disease evolves over time), the state of the system (e.g., liver fibrosis stage), the 
action in each period (e.g., treatment or no treatment), the uncertainty or disturbance 
of the system (e.g., uncertain disease progression), and the reward associated with 
the state and action (e.g., QALYs). The policy consists of the action in each decision 
period, which is a function of the state (e.g., treatment decisions in all states and in 
all periods).

For example, if we are interested in finding the liver fibrosis stage‐dependent 
optimal time to initiate HCV treatment, optimal treatment initiation can be modeled 
as an optimal stopping problem under the MDP framework. In a finite‐horizon MDP, 
decisions are made in N period; these types of models are common in the technology 
adoption literature (Smith and McCardle 2002, Smith and Ulu 2012). Finite‐horizon 
MDP can be solved by backward induction (i.e., solving the Bellman equations 
backward in time to obtain the optimal policy). Infinite‐horizon MDP may require 
stricter assumptions on stationary transitions to be solved by value iteration and 
policy iteration (e.g., age‐dependent mortality and disease progression rates may be 
problematic). Higher‐dimensional MDP is also of interest and has been studied in 
liver transplantation (Sandikci et al. 2008).

6.2.2 Estimating Parameters for Disease Progression and Death

Estimating parameter values from observed data can be challenging due to limita-
tions on the length and frequency of observation time, missing data, censored 
 observations, and heterogeneity in the population. This topic has been extensively 



MODELING CHRONIC HEPATITIS C DURING RAPID THERAPEUTIC ADVANCE 135

studied in statistics, machine learning, and medical informatics. We provide a brief 
discussion on several common approaches here.

6.2.2.1 Markov Models For DTMC, the transition probability matrix that 
describes disease progression is often estimated from observing a cohort of patients 
at common time intervals. When the cycle length of the model coincides with the 
observation interval and assuming the model is time‐homogeneous, the observed 
transitions between different periods can be pooled to form a transition count matrix. 
The maximum likelihood estimate of the transition matrix is the row proportions of 
the count matrix. When the cycle length does not coincide with the observation 
interval, a matrix decomposition method can be used. If the observation intervals are 
unequal in length, the expectation–maximization (EM) algorithm can be applied to 
impute the missing data and obtain the maximum likelihood estimators (Craig and 
Sendi 2002). For HMM, the best set of state transition probabilities and output prob-
ability given a sequence of observations can be estimated using the Baum–Welch 
algorithm, which derives a local maximum likelihood estimate of the parameters of 
the HMM.

6.2.2.2 Curving Fitting from Individual‐Level Data If only individual‐level data 
are collected at irregular times, which are common in electronic health record outside 
of clinical trials and observational studies, one method to impute disease transitions 
is through curve fitting on individual observations (e.g., least‐squares linear model, 
cubic smoothing spline, etc.) and then partition each curve into desired time  intervals. 
Next we count the number of transitions from each disease state to the other state at 
each chosen time interval and create a transition probability matrix of movements 
between disease states (Shechter 2006). Successful applications of this method can 
be seen in modeling CD4 count decline in HIV patients (Shechter et al. 2008).

6.2.2.3 Empirical Calibration When population mean parameter values are not 
observable and both individual‐level and cohort data are limited, we can use empirical 
calibration methods to reduce uncertainties. Calibration compares model outputs with 
empirical data as calibration targets (e.g., population disease prevalence and mortality 
rates). A number of different sets of plausible parameter estimates can be generated to 
fit the observed data, and these sets are selected by one or multiple goodness‐of‐fit 
metric (e.g., least squares, chi‐squared, and the likelihood). Parameter search methods 
include grid search, random search (e.g., Latin hypercube), gradient method, Nelder–
Mead, and simulated annealing, etc. (Vanni et al. 2011). Other Bayesian methods such 
as Markov chain Monte Carlo (MCMC) can also be used to generate a sample from 
the joint posterior density function of the model parameters (Vanni et  al. 2011). 
Successful applications of empirical calibration can be seen in estimating the natural 
history of human papillomavirus (HPV) and cervical cancer (Goldhaber‐Fiebert et al. 
2010), as well as chronic HCV progression (Salomon et al. 2002).

Next, we show two parameter estimation examples in HCV modeling.
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6.2.2.3.1 Estimating State Transition Probabilities In the literature, two frequently 
cited chronic HCV disease progression parameters set are from studies done by 
Salomon et al. (2002) and Thein et al. (2011). Salomon et al. developed an epidemi-
ologic model of HCV infection in the US population, which includes acquisition of 
infection, persistence, and progression (Salomon et al. 2002). Using empirical cali-
bration, age‐ and sex‐specific progression rates of liver fibrosis were obtained by 
matching model predictions with available data on infection prevalence and mortality 
from liver cancer. Thein et al. conducted a systematic review and meta‐analysis of 
published prognostic studies and derived the annual stage‐specific transition proba-
bilities using Markov maximum likelihood estimation (Thein et al. 2011). The results 
of the two studies are shown in Table 6.1. The two parameter sets are similar after 
considering age and fibrosis stage differences in the two studies.

6.2.2.3.2 Estimating Mortality Rates Quantifying mortality rates of HCV‐positive 
individuals allows for more accurate estimates of the potential benefits of HCV inter-
ventions. CEA of expanded HCV screening and treatment require methods to appro-
priately quantify patients’ differential mortality risks. No single study in the literature 
has provided sufficient data to estimate subgroup‐specific prevalence of HCV, risk 
factor status, and mortality risks that a modeler would need for his/her desired study 
population. Therefore, we provided a combined modeling approach to infer risk‐
group‐specific mortality rates for chronically HCV‐infected US adults (Liu et  al. 
2013, Liu et  al. 2014a). Estimates from public health data are incorporated into 
an alive–dead Markov model structure to infer the age‐, sex‐, race‐, risk‐, and HCV 
infection status‐specific mortality rates that best fit the overall US age‐specific 
population mortality rates. See Figure 6.3.

TABLE 6.1 Fibrosis Progression: Annual Probabilities; Mean (Ranges)

Salomon et al. Thein et al.

Age Males
Fibrosis 
Stage

Random Effects Model 
Meta‐Regression  
(All 111 Studies)

40–49 0.05 (0.03–0.09) F0–F1 0.117 (0.107–0.127)
50–59 0.12 (0.07–0.14) F1–F2 0.085 (0.078–0.093)
60–69 0.20 (0.12–0.30) F2–F3 0.121 (0.112–0.130)
>70 0.26 (0.14–0.38) F3–F4 0.115 (0.107–0.123)

Age Females
40–49 0.03 (0.01–0.06)
50–59 0.06 (0.03–0.11)
60–69 0.11 (0.04–0.21)
70–79 0.14 (0.08–0.24)
>80 0.20 (0.08–0.30)
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statistical analyses on HCV prevalence and risk factors We estimated the 
prevalence of risk factors and the prevalence of HCV among high‐ and low‐risk 
 individuals stratified by age, sex, and race using data from the US National Health 
and Nutrition Examination Survey (NHANES) (2001–2008). We defined a high‐risk 
person as someone having a history of injection drug use, transfusion prior to 1992, or 
greater than 20 lifetime sex partners. We combined all survey years to estimate preva-
lence for the 1952–1961 birth cohort in the base case using the 1962–1971 birth‐
cohort prevalence in sensitivity analyses (n = 5654). We used logistic regression to 
predict the prevalence of being high risk based on sex, race, and age accounting for 
sample weighting and NHANES complex sampling design. Similarly, we used logistic 
regression to predict the prevalence of individuals with HCV antibodies using sex, 
race, risk status, and age. We estimated HCV antibody prevalence for subgroups 
above age 40. Depending on subgroup, 15%–31% are high risk, and HCV antibody 
prevalence is higher for high‐risk individuals (11%–17%) compared with low‐risk 
individuals (2%–3%) (Liu et al. 2014a). See Figure 6.4.

Estimation:

Calibration:

NHANES III-linked
mortality

Continuous
NHANES

Mortality hazard ratios Prevalence of HCV and
risk factor

US life table16 alive and dead Markov model

Figure 6.3 A method for creating 16 life tables by sex (male, female), race (white, black), 
HCV infection status (positive, negative), and risk status (high, low).
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Figure 6.4 Risk factors and HCV prevalence in birth cohort 1952–1961 (birth year).
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statistical analyses on  background mortality We developed a combined 
modeling approach to infer risk‐group‐specific mortality rates for chronically HCV‐
infected US adults. We analyzed the NHANES III‐linked mortality data in which HCV 
status was assessed from 1988 to 1994 with mortality follow‐up of the same persons 
through year 2006 (n = 15,892). We constructed Cox proportional hazard models to 
estimate the mortality hazard ratios for all‐cause death by sex, race, HCV, risk status, 
interaction between HCV and risk status, age, and age‐squared variables for people 
between ages 17 and 60, excluding cases with missing risk information. Controlling for 
age, we used four hazard ratios (male, black, HCV positive, and high risk) to calculate 
the 16 mortality hazard ratios. See Table 6.2. Result showed that all‐cause mortality 
rates are higher in men (HR, 1.3 [1.1–1.7]); blacks (HR, 1.7 [1.5–2.1]); high‐risk indi-
viduals (HR, 1.4 [1.0–1.9]); and HCV‐infected individuals (HR, 3.5 [2.0–6.0]). To 
adjust for non‐liver‐related death, we adjusted the ratio for HCV infection down using 
a factor of 0.8 since it is estimated that for HCV‐infected individuals, 20% of mortality 
is liver related (Liu et al. 2014a).

Using the 16 estimated hazard ratios, we calculated the population‐weighted 
average mortality to match the 2006 US life table over ages 50–100 based on the 
prevalence of HCV and risk status by sex and race from NHANES (2001–2008) data 
analyses and the US 2009 census distribution for people aged 50–54 (non‐black male 
44%, non‐black female 45%, black male 5%, and black female 6%). See Figure 6.3. 
To avoid overestimation of death in the older ages, we linearly attenuated the 16 
hazard ratios starting from age 70 down to 1.0 by age 100. We inferred sixteen life 
tables by sex, race, risk, and HCV infection status. Result showed that within each 
subgroup, the life expectancy of high‐risk individuals is up to 3 years shorter; simi-
larly, the life expectancy of chronically HCV‐infected individuals is up to 9 years 
shorter. The life expectancy of a 50‐year‐old individual is shown in Figure 6.5.

TABLE 6.2 Mortality Hazard Ratios

Overall (95% CI)

Male 1.32 (1.05–1.66)
Black 1.74 (1.45–2.10)
HCV positive 3.46 (2.00–5.97)
High risk (≥20 sex partners) 1.41 (1.03–1.91)

Males White Black
<20 sex partners ≥20 sex partners <20 sex partners ≥20 sex partners

No HCV 1.32 1.85 2.29 3.23
HCV 3.64 5.12 6.34 8.92

Females White Black
<20 sex partners ≥20 sex partners <20 sex partners ≥20 sex partners

No HCV 1 1.41 1.74 2.45
HCV 2.76 3.89 4.81 6.77
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6.3 FOUR RESEARCH AREAS IN DESIGNING  
EFFECTIVE HCV INTERVENTIONS

In this section, we first discuss several CEAs that used decision‐analytic models 
to provide policy guidance on the design of HCV care interventions (Liu 2013). 
Next, we highlight two optimization studies that modeled the HCV treatment 
adoption and delivery decisions from the patient’s perspective and the healthcare 
system’s perspective.

6.3.1 Cost‐Effective Screening and Treatment Strategies

Back in year 2011, no consensus existed on a national HCV screening guideline to 
detect the estimated two million Americans who are unaware of their chronic HCV 
infections. Advisory groups differ, recommending birth‐cohort screening for baby 
boomers, screening only high‐risk individuals, or no screening. We evaluated risk‐
based versus birth‐cohort HCV screening to identify previously undiagnosed 
40–74‐year‐olds given newly available HCV treatments in Liu et  al. (2013). 
The study aimed to inform health policy makers on whether the United States should 
be investing healthcare resources in large‐scale population screening for HCV 
infection. Contemporary studies have shown that screening and treatment for 
chronic HCV are generally cost‐effective, though the answer depends on treatment 
efficacy, drug costs, patients’ initial disease stage, and adherence to treatment 
(Liu et al. 2011, 2012, 2013, Rein et al. 2011, Kabiri et al. 2014).
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Figure 6.5 Life expectancy of a 50‐year‐old by sex, race, HCV, and risk status.
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We assessed screening strategies in combination with treatment strategies 
(Figure 6.6). Screening strategies included (Liu et al. 2013):

(i) No screening: No systematic screening but HCV‐infected individuals may 
receive treatment after chance identification.

(ii) Risk factor guided screening: HCV screening is only offered to individuals 
classified as “high risk” through an imperfect assessment of their risk 
history.

(iii) Birth‐cohort screening: All individuals are offered HCV screening in the 
specified birth cohort.

Treatment‐eligible, chronically infected individuals have their HCV infection 
genotyped. Three response‐guided treatment strategies for HCV genotype 1 infected 
patients were:

(i) Standard therapy: Patients receive pegylated interferon with ribavirin.

(ii) Universal triple therapy: Patients receive pegylated interferon with ribavirin 
and a protease inhibitor.

(iii) IL‐28B‐guided triple therapy: Using IL‐28B genotyping, non‐CC‐type 
patients receive triple therapy because they are less likely to respond on 
 standard therapy, and CC‐type patients receive standard therapy.

Standard and triple therapy treatments employ specific response‐guided protocols 
(Liu et  al. 2012). In all cases, patients diagnosed with genotype 2 and 3 receive 

Cohort characteristics
Screening policy decision

HCV genotype 1 treatment policy decision

• Age (40–74)
No screening

Risk factor
guided screening

Birth-cohort
screening

Standard therapy

IL-28-B guided triple
therapy

Universal triple
therapy

CC

PEG-IFN+Rb

Genotype 1 treatment

PEG-IFN+Rb

PEG-IFN+Rb+PI

PEG-IFN+Rb+PI

Identified CC

Identified non-CC

Non-CC

CC

Non-CC

High risk

Low risk

HCV +

HCV +

HCV –

HCV –

“High risk”

“Low risk”

“HCV +”

“HCV +”

“HCV –”

“HCV –”

True health state Diagnosed health state

• Race (white, black)

• Sex (male, female)

• Sex- and race-speci�c
 prevalence of high risk

• Sex-, race-, and
 risk-group-speci�c
 prevalence of HCV

• Race-speci�c prevalence
 of IL-28B genotype
 (CC, non-CC)

• Fibrosis stage
 (F0, F1, F2, F3, F4)

Figure 6.6 HCV screening model schematics.
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24  weeks of standard therapy. Mortality rates were estimated using the method 
described in Section  6.2.2.3.2 for each sex, race, HCV status, and risk status 
subgroups.

For downstream treatment strategies, we also assessed the cost‐effectiveness of 
protease inhibitors and an IL‐28B genotyping assay to target treatment for chronic 
HCV patients in Liu et al. (2012). We found that both universal triple therapy and 
IL‐28B‐guided triple therapy are cost‐effective with the least expensive protease 
inhibitor for patients with advanced fibrosis. After combining screening strategies 
with downstream treatment options, we found that screening all individuals aged 
40–64 costs less than $100,000 per QALY gained (Liu et  al. 2013). The cost‐ 
effectiveness of one‐time birth‐cohort HCV screening for 40–64‐year‐olds is 
comparable with that of other screening programs, provided that the healthcare 
system has sufficient capacity to deliver prompt treatment and appropriate follow‐on 
care to many newly screen‐detected individuals. Results from this study contributed 
to national guideline change. In year 2013, CDC and USPSTF both recommended a 
one‐time HCV screening for all American adults born between 1945 and 1965 
(Smith et al. 2012, Moyer 2013).

6.3.2 Cost‐Effective Monitoring Guidelines

Previous HCV treatment guidelines recommended only initiating treatment when a 
patient has demonstrated significant liver fibrosis progression from a liver biopsy 
result. Liver biopsy is the gold standard for assessing liver fibrosis and is used as a 
benchmark for initiating chronic HCV treatment, though it is expensive and carries 
risks of complications. FibroTest, a noninvasive biomarker assay for fibrosis, has 
been proposed as a screening alternative to biopsy. We assessed whether a noninva-
sive biomarker could be used as a cost‐effective alternative fibrosis assessment and 
monitoring tool and whether the recommended treatment delay is beneficial 
(Liu et al. 2011). We modeled six strategies of FibroTest and liver biopsy used alone 
or sequentially, with different interpretations on FibroTest cutoff thresholds and 
follow‐up frequencies. See Figure 6.7.

Results from the decision‐analytic model showed that treatment of chronic HCV 
without fibrosis screening is preferred for both men and women. In clinical settings 
where testing is required prior to treatment, FibroTest is more effective and less 
costly than liver biopsy. We concluded that early treatment of chronic HCV is 
superior to the other fibrosis monitoring strategies, especially with newly FDA‐
approved, highly effective HCV drugs (Liu et al. 2011).

6.3.3 Optimal Treatment Adoption Decisions

New medical interventions and technologies are frequently evaluated using CEA. 
However, the majority of such analyses ignore the influence of future technology 
improvement on the current treatment adoption decision. In this section, we discuss 



142 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

a modeling study that considers the question of how long a patient with a treatable 
chronic disease should wait for more effective treatments to emerge before accepting 
the best available treatment (Liu et al. 2017).

When an individual becomes ill, the action is usually immediate treatment. However, 
in situations where a slow progressing chronic disease that can take several decades to 
cause any major morbidity and mortality, and if the current treatment has low effective-
ness or high risk of side effects, the decision on immediate treatment is less clear. 
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Figure 6.7 Liver fibrosis assessment model: Six strategies.
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In the case of chronic HCV, only 5 years ago there was still a debate among physicians 
on limited evidence of long‐term mortality benefits of treatment, and screening guide-
lines recommended no screening in the general US population. The previous treatment 
guidelines recommended patients with genotype 1 HCV to start treatment when there 
is evidence of significant fibrosis progression (F2+). With more effective drugs, early 
treatment has the benefit of halting disease progression, while late treatment at the F4 
stage may show a decrease in treatment efficacy. Patients’ baseline characteristics (sex, 
age, race, lifestyle factors, genetic difference, disease severity, likelihood of adherence 
to treatment, comorbidities, prior treatment  failures) affect their rate of disease progres-
sion and likelihood of treatment success; thus they may receive differential benefits 
from waiting for better drugs. The study’s objective is to find HCV patients’ optimal 
treatment adoption decisions given uncertainty about future technological progress in a 
stylized decision theoretical model (Liu et al. 2017).

We modeled the patient‐level treatment adoption decision problem as an optimal 
stopping problem using a discrete‐time finite‐horizon MDP. A patient with a given 
chronic disease visits a physician periodically to monitor disease progression and 
determine whether to start treatment during the visit or else to continue waiting. 
Treatment effectiveness is improving over time with some known probability 
 distribution. At each visit the patient’s current health and future expected health and 
the current best available treatment are known. If the patient decides to adopt 
treatment in any given period, a terminal reward (e.g., expected QALYs) is received 
and the process terminates. If the patient decides to wait, an immediate reward (e.g., 
quality‐adjusted time until the next doctor visit) is accumulated for this period, and 
the patient reevaluates the treatment decision in the next period. The patient’s disease 
progression is deterministic and fully observable, and the chronic disease alone does 
not substantially increase the patient’s mortality rate during the decision horizon. If 
the patient fails treatment, retreatment is not considered (e.g., retreatment for HCV 
was less common due to low effectiveness among nonresponders and long treatment 
duration, especially with the older drugs). The objective is to maximize expected 
total health benefit for the patient. The notations are as follows:

 • N: Number of time periods; decision horizon.

 • k: Index for discrete time periods, k N0 1 1, , , .

 • T: A terminal state indicating that the patient has already been treated.

 • p
k
: State of the system; p

k
 denotes treatment effectiveness in period k when the 

patient has not been treated, expressed as the probability that the treatment will 
cure the patient’s disease; pk [ , ]0 1 . If the patient has been treated, p Tk .

 • w
k
: Improvement in treatment effectiveness in period k; w pk k~ , ( )U[ ]0 1 , 

where θ can be considered as a variable to characterize the range of belief on the 
bound of future treatment improvement. 0 1.

 • u
k
: Decision variable for time k; uk 1 treat at time k, uk 0 wait.

 • q
k
: Reward in period k without treatment; this represents the patient’s current 

health.
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 • H
k
: Expected total future health reward if treatment accepted in period k is 

 successful (e.g., expected quality‐adjusted life expectancy).

 • F
k
: Expected total future health reward if treatment accepted in period k is 

unsuccessful (e.g., expected quality‐adjusted life expectancy).

 • f
k
(p

k
, w

k
, u

k
): Function that describes the system dynamics; p f p w uk k k k k1 ( ), , .

 • g
k
(p

k
, w

k
, u

k
): Reward function for period k, k N0 1 1, , , .

 • g
N
(p

N
): Reward function for period N.

 • V
k
(p

k
): Value function for period k.

Using this notation, the system state dynamics are (see Figure 6.8)

 p f p w u k Nk k k k k1 0 1 1, , , , , ,  

where f
k
 is defined as
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We write the optimal value functions as
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,

1
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1 1 if

if TT
 (6.1)

We derived structural properties of the optimal solution and solved a three‐period 
problem analytically using backward induction. We then applied the model to an 
example of chronic HCV treatment decisions for patients with various demographic 
characteristics (Liu et al. 2017). Results showed that HCV patients should be more 
willing to accept immediate treatment when they are older, sicker (i.e., higher fibrosis 
stage), or have high comorbidities, assuming non‐decreasing future treatment 
 effectiveness with a uniform distribution on the amount of treatment improvement in 
each period (e.g., no prior information on the new drug’s effectiveness). This research 
demonstrates that analyses using non‐dynamic models that find relatively ineffective 
treatments to be cost‐effective for immediate use may suggest a suboptimal decision, 
especially for patients with minimal disease progression, and in situations where 
large increases in treatment effectiveness are expected based on current clinical 
trials’ report. It also provides a framework for modeling optimal treatment decisions 
for a chronic disease when treatments are improving over time.

6.3.4 Optimal Treatment Delivery in Integrated Healthcare Systems

Management of HCV care delivery is particularly relevant to integrated healthcare 
systems that are under severe budget and/or capacity constraints. Two examples of 
such healthcare systems may come to mind, both of which address to the healthcare 
needs of vulnerable populations in the United States. The first example is the Veterans 
Health Administration (VHA)—the largest single provider of HCV cares in the nation. 
Over 189,000 veterans were diagnosed with chronic HCV from 2000 to 2008 
(Goldhaber‐Fiebert et al. 2013). The second example is incarcerated populations (Liu 
et al. 2014a). Over 500,000 estimated individuals living with chronic HCV infections 
are currently incarcerated in federal, state, and local correctional facilities (many are 
unidentified due to low screening rate). It is estimated that 12%–35% prisoners are 
infected with HCV—nearly 10 times the overall population prevalence (Chak et al. 
2011, Spaulding and Thomas 2012, Larney et al. 2013). Recent research has shown 
that it is cost‐effective to treat veterans and prisoners using the newest DAAs, but 
affordability is a significant issue (Liu et  al. 2014b, 2016). Research on how to 
 optimally allocate limited resources for screening and treatment in these integrated 
healthcare systems could shed some light on this major targeted public health 
 opportunity. To date, few studies have examined the interaction and trade‐offs  between 
screening and treatment decisions of chronic HCV patients under budget/capacity 
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constraints of an integrated healthcare system. An interesting research question is to 
design a general model framework to answer systematic care delivery questions in 
situations where basic science is close to finding a cure for a disease, and healthcare 
systems need to find the best care strategies to maximize both individuals and 
population health during the rapid ramp‐up period of screening and treatment toward 
full control or eradication of the disease.

Resource allocation decisions in healthcare are often modeled using linear and 
nonlinear optimization method such as mixed‐integer programming (MIP). Two rel-
evant studies are done by Deo et al. In the first study, the authors explored the optimal 
fraction of patients to be screened and treated for HIV and the optimal staffing level 
in the Veterans Affairs (VA) healthcare chain under a one‐year look‐ahead budget 
planning horizon (Deo et al. 2015). The authors used a nonlinear MIP model to max-
imize patients’ health. The study did not consider treatment priorities between 
patients. The second study combined healthcare operations and clinical disease pro-
gression to optimize and evaluate care pathways (Deo et al. 2013). The study aimed 
to improve access to community‐based chronic care using a finite‐horizon stochastic 
dynamic program, solved by a myopic heuristic. On the question of determining 
treatment priority, healthcare systems typically treat patients on a first‐come‐first‐
serve (FCFS) basis. In the organ transplantation literature, the equity–efficiency 
trade‐off using simulation and priority queuing has been extensively studied (Su and 
Zenios 2006). One recent study also investigated setting HCV treatment priorities in 
the general US population (Cipriano et al. 2017).

The objective is to determine optimal implementation strategies for screening and 
treatment in HCV birth cohorts (born 1945–1975) to maximize population health 
during the next 10 years from the US healthcare payer’s perspective under spending 
budget constraints (Li et al. 2017). Figure 6.9 illustrates the various components of 
the integrated HCV care management system.

The main components of the system are the target screening population with 
unknown HCV status; the HCV+ population who are the treatment candidates, 
which consist of both the treatment‐naïve group (never previously treated for HCV 
infection) and the treatment‐experienced group (previously failed HCV treatment); 
and the HCV− population who know they are either not infected through screening 
or cleared past infections through treatment or spontaneous viral clearance. 
Screening programs can identify additional HCV+ individuals who become 
treatment  candidates. Patients from the treatment‐naïve group who fail treatment 
will join the treatment‐experienced group. Patients who are successfully treated will 
join the HCV‐treated group. Individuals who are infection‐free are susceptible to 
HCV reinfection; their risk of reinfection depends on age and lifestyle factors. Once 
reinfected or uncertain about HCV status, individuals again become targets for 
screening, though this process is often unobservable.

We developed a compartmental simulation model incorporating an MDP of 
chronic HCV natural history that mimics HCV transmission, progression, screening, 
treatment, and death in the healthcare system. The model can project the societal 
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benefit measured by the total discounted QALYs of the targeted birth cohorts 
with  given budget limits and optimized screening and treatment implementation 
 scenarios. At the beginning of each time period (e.g., quarterly), a manager needs to 
decide on the targeted numbers to screen and treat, or a proportion of the budget 
allocated to screening versus treatment for the current period. Resource constraint 
ensures only a moderate proportion of treatment candidates will receive treatment 
per period. Any resource spent on screening is resource away from treatment. The 
goal is to maximize population lifetime health over a planning horizon (i.e., 10 years) 
under a budget/capacity constraint per period. Depending on the number of decision 
periods, it is methodologically challenging to solve this sequential decision‐making 
problem. Advanced methods in simulation optimization were explored in developing 
novel solution algorithm to solve this problem (Huang et al. 2016).

We investigated a moderate budget ($5 billion/year) scenario and a low budget 
($1  billion/year) scenario for three birth cohorts born between 1945 and 1975 
(Li et al. 2017). Result showed that the best policy is to allocate a percentage of the 
budget to screening and then treat patients with the remaining budget and prioritize 
the sickest patients for treatment. When the budget is $1 billion/year, the best strategy 
is to allocate the entire budget to treatment. When the budget is $5 billion/year, it is 
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Figure 6.9 Model schematic of an integrated HCV care management system.
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optimal to allocate 60% of the budget to screening in the first 2 years and 0% there-
after for age cohort 40–49 and allocate 20% of the budget to screening starting in 
year 3 for age cohorts 50–59 and 60–69 under a 10‐year planning horizon. We con-
cluded that when budget is severely limited, all efforts should be focused on early 
treatment. With higher budget, better population health outcomes are achieved by 
reserving some budget for HCV screening while implementing a priority‐based 
treatment strategy. This work has broad applicability to diverse healthcare systems 
and can help determine how much effort should be devoted to screening versus 
treatment under resource limitations.

6.4 CONCLUDING REMARKS

This chapter presents one central theme: designing cost‐effective and optimal imple-
mentation of healthcare technologies and interventions for chronic disease care under 
uncertainty. We provide an overview on several published studies that modeled a set 
of screening, monitoring, and treatment strategies to improve chronic HCV patient 
care in the United States. Several CEAs highlighted in this chapter have made 
 practical impact by being incorporated into major US guidelines discussions (Moyer 
2013) and the decision‐making process of large healthcare organizations such as the 
VA (Goldhaber‐Fiebert et  al. 2013). The application of MDP models to medical 
decision making is relatively recent. There are many exciting opportunities for future 
research in this area. One could extend the theoretical framework of optimal treatment 
adoption to incorporate additional uncertainties about costs, health effects, and 
 technology improvements. Furthermore, finding the optimal treatment policy for 
 heterogeneous populations based on personalized medicine is an area of interest for 
US healthcare providers. At the intersection of management science and medical 
decision making, decision analysts are in a unique position to help evaluate the 
 benefits, harms, cost, and value of healthcare technology and interventions to improve 
patient care and healthcare policy design.
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7.1 INTRODUCTION

This chapter presents the application of operations research methods to the 
development of models that are designed for the evaluation of the performance of 
screening policies. As such, this chapter will be of interest to operations research 
practitioners looking to make contributions to the field of healthcare by developing 
quantitative models that can be used to analyze public health decisions. We describe 
the quantitative methods used to model a representative population, the progression 
and regression of the disease, and the effects of screening interventions over time. 
We discuss the data commonly required to build each model component, as well as 
available data sources.

The model presented in this chapter is specific to cervical cancer (CC) prevention, 
but the methods used are generalizable to the study of other preventable diseases 
that progress over time. CC is a relevant public health problem: it is the second 
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most common cancer in women worldwide (World Health Organization 2013). 
CC develops from persistent infection with some strains of human papillomavirus 
(HPV) (Muñoz 2000; Schiffman and Castle 2003). HPV is the most common sexu-
ally transmitted infection (STI) in the United States (Centers for Disease Control and 
Prevention 2017). Most HPV infections clear without treatment and without causing 
changes in the cervix. In some cases, a persistent infection can lead to precancerous 
cervical lesions. Left untreated, these lesions can progress to invasive cancer.

Screening for precancerous cervical lesions with cervical cytology has greatly 
reduced the incidence of CC. The primary screening tests include cervical cytology, 
HPV DNA testing, and colposcopy. These tests vary in both cost and accuracy. 
Cervical cytology screening, initiated with the Papanicolaou (Pap) test circa 1940, 
often fails to detect lesions due to its low sensitivity (Nanda et al. 2000). However, 
the lesions progress slowly, which permits detection over time with a program of 
regularly occurring screening. An HPV DNA test can indicate that a person is infected 
with oncogenic strains of HPV and is approved within recent screening guidelines 
(ACOG 2009; Saslow et al. 2012; Smith et al. 2010; Wright et al. 2007a). Colposcopy 
involves close examination of the cervix and is considered to be the gold‐standard 
diagnostic test. When primary screening test results are inconclusive, “triage” screen-
ing is performed in an effort to resolve the ambiguity. There have been different 
screening approaches studied and recommended, varying by the test used and testing 
schedule. Current recommendations include annual screening when using the Pap 
test for primary screening or every 3 years when using the Pap test in combination 
with the HPV DNA test. Note that these recommendations do not vary with the 
screening test used as triage (i.e., a repeat Pap test, the HPV DNA test, or colpos-
copy). The most commonly used measures of performance for CC screening pro-
grams (as well as many other public health policies) are the costs and the number of 
quality‐adjusted life years (QALYs) accumulated in the population with each 
alternative being evaluated. QALYs are a measure of health effectiveness and consist 
of weights that are assigned to health states. These weights range from zero to one, 
with one representing a state of perfect health.

In this chapter, we introduce various models used to represent the transition to 
CC, the outcomes of various screening tests, and the dynamics of risk factors within 
patients. Section 7.2 of this chapter includes a very brief introduction to the existing 
literature on applications of operations research to healthcare decisions related to 
disease prevention and treatment. This includes a brief overview of applications to 
screening and treatment decisions of various diseases, as well as applications specific 
to CC prevention.

In Section 7.3, we present the development of a simulation model of disease pro-
gression from infection with an oncogenic HPV strain to the development of precan-
cerous lesions and invasive CC. Our model incorporates screening programs that 
consist of different screening tests and account for the imperfect accuracy of the 
tests. It also includes a representation of the patient population based on the changes 
in known behavioral and demographic risk factors for HPV infection and the manner 
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in which these risk factors vary over a patient’s lifetime. We describe our use of prob-
ability computations and nonlinear optimization to estimate the values of data that 
were not readily available in the literature.

In Section 7.4 we illustrate an application of our model toward the study of the 
cost‐effectiveness of alternative screening strategies. We discuss the validation of the 
model output and a cost‐effectiveness analysis performed to compare different 
screening strategies. We describe the methods used to adjust the model to perform a 
sensitivity analysis. We end with some concluding remarks in Section 7.5.

7.2 LITERATURE REVIEW

Markov processes are often used to model the progression of a disease through dif-
ferent stages over time. They have been used to evaluate screening strategies for 
breast cancer (Chen et al. 1998) and colorectal cancer (Delco and Sonnenberg 2000), 
as well as a variety of other progressive diseases. Monte Carlo simulations of Markov 
models are used when it is necessary to contain a state space explosion, such as when 
decisions depend on past states or individual patient characteristics. Examples of this 
can be found in the evaluation of the cost‐effectiveness of intensified prevention 
programs for diabetic patients at different risks for foot ulcers and amputations 
(Ragnarson‐Tennvall and Apelqvist 2001), the analysis of the effect of hormone 
replacement therapy in patients at different risk levels for affected diseases (Col et al. 
1997; Perrault et al. 2005), the study of the effects of misclassification in randomized 
clinical trials of screening tests (Obuchowski and Lieber 2008), an evaluation of 
breast cancer screening strategies (Lee et al. 2008), a comparison of the cost‐effec-
tiveness of a one‐time birth‐cohort testing for hepatitis C infection with that of risk‐
based testing (McEwan et al. 2013), and a study of the healthcare cost savings of a 
community‐based dementia screening program (Saito et  al. 2014), among other 
applications.

Mathematical programming models are also used to represent diseases and the 
effect of healthcare interventions. Brandeau et al. (1991) constructed a model to 
evaluate screening programs for infection with human immunodeficiency virus 
(HIV). Long et  al. (2009) used differential equations to develop a model of HIV 
transmission and progression to evaluate the cost‐effectiveness of vaccination strat-
egies in the United States.

Influence diagrams are compact graphical and mathematical representations use-
ful for modeling decision problems with uncertainty and probabilistic dependence 
among variables and have been applied to prevention and treatment decisions. 
Examples of this include decisions about the treatment of neonatal jaundice (Gomez 
et al. 2007), the ranking of alternative radiation therapy plans for the treatment of 
prostate cancer (Meyer et al. 2004), and an estimation of the probability of incorrect 
breast cancer staging (Lee et  al. 2006). In addition, Norman et  al. (1998) used 
influence diagrams for patient‐specific recommendations of prenatal testing 
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strategies, Hazen (2004) analyzed joint replacement decisions, and van Gerven et al. 
(2007) defined treatment strategies for aggressive neuroendocrine tumors.

Markov decision processes (MDPs) and partially observable Markov decision 
processes (POMDPs) model the dynamic interaction between decisions and sto-
chastic processes, such as screening or treatment decisions throughout the progres-
sion of a disease. MDPs assume the Markov property and contain a set of possible 
states, a set of possible actions, and a reward function. Magni et al. (2000) used an 
MDP to find the optimal time to treat mild hereditary spherocytosis and compared 
the results to those obtained using a static decision model. Abdollahian and Das 
(2014) used an MDP to identify optimal intervention strategies for women who carry 
gene mutations that put them at higher risk for breast and ovarian cancers. POMDPs 
are MDPs in which the current state can only be observed indirectly via imperfect 
observations, which often applies to the assessment of health states using screening 
and diagnostic tests. Hauskrecht and Fraser (2000) used a POMDP to model therapy 
planning for patients with ischemic heart disease. Ayer et al. (2012) used a POMDP 
to find mammography screening schedules that maximize QALYs based on the 
personal risk characteristics and prior screening history of each woman.

Within the specific context of CC, there have been numerous studies that use 
operations research methodologies. Goldie et al. (1999) developed a Markov model 
to represent the natural history of CC and the effects of screening, diagnosis, and 
treatment and used it to evaluate the cost‐effectiveness of different CC screening 
strategies in HIV‐infected women. Myers et al. (2000) constructed a Markov model 
that simulates the natural history of HPV and CC in a hypothetical cohort of women. 
Using an extended version of this simulation model, Kulasingam et al. (2006b) eval-
uated the cost‐effectiveness of extending CC screening intervals among women with 
prior normal Pap tests. Goldie et al. (2004) evaluated the cost‐effectiveness of using 
the HPV DNA test in combination with the Pap smear for primary screening in 
women over 30. Kulasingam et al. (2011) evaluated screening strategies with and 
without the HPV test and different ages at which to begin screening in terms of the 
number of colposcopies per life year gained associated with each alternative. This 
metric was chosen to represent the trade‐off between the burden and benefits of 
screening. McLay et  al. (2010) used a simulation‐optimization model to design 
dynamic, age‐based screening policies by varying how many lifetime screenings to 
perform and at what ages.

Similar approaches are used to analyze the cost‐effectiveness of different triage 
strategies to follow up ambiguous primary screening test results (Johnson et al. 1993; 
Kim et  al. 2002; Kulasingam et  al. 2006a). Eggington et  al. (2006) performed a 
cost‐effectiveness analysis of different policies for referral to colposcopy after 
abnormal Pap results. Stout et al. (2008) used a simulation model to assess the bene-
fits and potential risks to the patient with screening strategies that differ by primary, 
triage, and frequency approaches. They enumerate the health‐related benefits and 
potential harms of different screening strategies to aid decision making by women 
and their primary care physicians.
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Vaccination against HPV infection is expected to reduce the prevalence of precan-
cerous cervical lesions, the necessary precursors to CC. With the introduction of 
vaccines to aid in the prevention of HPV infection, simulation models are being used 
to evaluate the cost‐effectiveness of vaccination programs. For example, Sanders and 
Taira (2003) evaluated the cost‐effectiveness of a potential vaccine that protects 
against infection with oncogenic HPV strains using a Markov model of the natural 
history of CC. Elbasha et al. (2007) evaluated alternative vaccination strategies with 
the quadrivalent HPV vaccine Gardasil. Kim et al. (2009) evaluated the cost‐effec-
tiveness of HPV vaccination in women aged 35–45 years, and Drolet et al. (2014) 
compared the cost‐effectiveness of the more recent nonavalent vaccine with that of 
the quadrivalent vaccine. Franco et al. (2009) estimated the impact of HPV vaccina-
tion on the predictive value of the Pap test by simulating populations with different 
lesion prevalence rates.

Models to study CC prevention have also been developed and applied to  low‐
resource settings (Goldie et al. 2001) and to other countries’ screening and vacci-
nation policies outside of the United States (Favato et al. 2007; Kohli et al. 2007; 
de Kok et  al. 2012; Siebert et  al. 2006; Vijayaraghavan et  al. 2010; Westra 
et al. 2013).

7.3 MODELING CERVICAL CANCER SCREENING

Simulation is often used to evaluate healthcare alternatives when modeling diseases 
that are age dependent and/or involve healthcare decisions that depend on patient 
history. Additionally, it is a good method to use when it is necessary to track changes 
in patient attributes in order to capture disease progression and/or healthcare options, 
as when modeling personalized or risk‐differentiated policies. The level of detail 
within a simulation model should be sufficient to accurately represent the population 
and disease under study and the alternatives under consideration. The simulation 
model should provide the outputs necessary to design and/or compare healthcare 
alternatives. The data necessary to populate a simulation model is often extensive and 
derived from various sources.

Our simulation model was designed to support comparative analyses of various CC 
screening strategies. It is a patient‐based discrete‐event simulation model constructed 
using Arena 12 (Rockwell Automation, Milwaukee, WI). It incorporates models of 
disease progression, screening, and life changes that impact the likelihood of acquiring 
an HPV infection. In the following sections, we describe the model components and 
the data used to populate them. Within the context of CC prevention, we describe how 
we model the natural history of the disease, screening interventions, and the changes 
in risk variables in a population of women. Models such as these are often a part of 
studies designed to evaluate public health guidelines, although the differentiated 
 components needed depend on the decisions being considered in each case. The data 
commonly required for this type of model include disease prevalence and health state 



160 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

transition probabilities, accuracy and costs of screening tests, effects of known risk 
factors, and measures of outcomes. We describe the input data used, as well as the 
quantitative methods used to infer data that were not available in the literature.

7.3.1 Model Components

7.3.1.1 Natural History A model of the natural history of a disease is used to 
represent transitions between patient health states when the condition is left unat-
tended. Health states relevant to the decisions being analyzed are included in the 
model. Note that as the types of decisions associated with a given disease vary 
from one study to the next, the models used may have different levels of detail and 
different endpoints. For a discrete‐time model, the unit of time associated with 
transitions must be identified. For example, a disease that progresses very rapidly 
will require smaller time intervals than a disease that progresses more slowly. 
In cases where transitions between health states are probabilistically dependent on 
age or other  conditions, age‐ or risk‐dependent state transition probabilities should 
be used in the model. The data commonly used include disease prevalence 
(to assign initial health states to the population being modeled) and disease inci-
dence and progression/regression rates. Prevalence is typically obtained from cross‐ 
sectional studies, while incidence and transition rates are typically from longitudinal 
cohort studies.

Our model examines the impact of a screening program for CC prevention. We 
model the disease progression from the point of infection with an oncogenic HPV 
strain through the various stages of precancerous lesions that lead to invasive CC. 
Our model of the natural history of the disease is depicted in Figure 7.1. Women who 
are not infected with oncogenic HPV are in the “noninfected” state, N. They can 
acquire an infection, which results in a transition to the infected state, I. Infections 
can clear or progress to precancerous lesions, known as cervical intraepithelial neo-
plasia (CIN). These lesions are graded by severity, from CIN1 to CIN3. Lesions can 
clear, progress to more serious lesions, regress to less serious lesions, or progress to 
invasive cancer, C. Women can remain in the lesion states for years before progress-
ing to invasive cancer, and they may transition to death by other cause prior to that. 
In moving between health states, some transition probabilities are age dependent. 
Within the model, a woman’s health state transitions are simulated over time until 
cancer is prevented (CP), cancer develops (C), or she dies by causes unrelated to CC 
(DO). When advanced precancerous lesions are identified and removed, the patient 
is placed under close monitoring and therefore removed from the preventive screen-
ing programs that are under consideration in this study. In our model, we consider 
this transition as a transition to “cancer prevented.” These three states, CP, C, and 
DO, are represented as end states within our model of a screening program. In 
Figure 7.1, age increases from left to right and is reflected as a subscript on the health 
states that are non‐end states. Thus, an infection that clears during the ith period is 
reflected as a transition from I

i
 to N

i+1
.
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With i denoting age, the health states are:

N
i
: not infected, no lesion

I
i
: infected, no lesion

CINi
, ℓ ∈ {1, 2, 3}

C: invasive cancer (end state)

CP: cancer prevented (end state)

DO: death by other cause (end state)

As the patient ages, it is possible to observe disease progression (e.g., a transition 
from I

i
 to CINi 1

1 ) and regression (e.g., a transition from I
i
 to N

i+1
).

Our model adopts a discrete‐time approach, and the issue of transition times 
must be resolved. Clinical studies have found the time between initial detection 
of infection with HPV and initial detection of CIN to be at least 2 years (Liaw 
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Figure 7.1 Markov model of natural history of disease progression.
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et al. 1999; Trottier et al. 2009) and that women with invasive cancer tend to be 
more than 10 years older than women with CIN3 (Moscicki et al. 2006; Schiffman 
and Kjaer 2003). Based on these studies, we considered 6‐month interval between 
health transitions to be sufficiently small and record health state transitions every 
6 months.

7.3.1.2 Patient Population Representation of the patient population is necessary 
for most models designed to analyze public health decisions. In many cases, 
patients are initiated within a model at the same age and with no distinguishing 
characteristics. Other times, the population is initiated with an age distribution 
that represents that of the country or region being studied. If there are risk factors 
that influence the natural history of the disease or healthcare decisions, the 
population modeled may consist of patients with specific levels of the risk factors 
that are tracked over time and that collectively represent the distribution of the 
risk factors in the population being studied. Additionally, changes in risk factors 
over time should be consistent with the way they change in the population being 
studied. A model to quantify how each patient’s risk factors influence disease 
progression and/or decisions may also be necessary. Common types of risk factors 
are demographic and behavioral variables, as well as genetic biomarkers. Data to 
model demographic variables can be obtained from the US Census Bureau, and 
data to model behavioral variables can be obtained from various Centers for 
Disease Control and Prevention (CDC) surveys.

A woman’s risk for contracting an oncogenic HPV infection varies over the course 
of her lifetime. We define a woman’s “risk” as the probability that she has an onco-
genic HPV infection. In order to model the changes in this risk over time, we inves-
tigated the quantitative relationship between known risk factors for HPV infection 
and a woman’s probability of being infected with an oncogenic HPV strain. These 
risk factors consist of behavioral and demographic characteristics. We performed a 
logistic regression analysis to quantify the associations between a patient’s character-
istics and her test results for an oncogenic HPV infection. This analysis yields a 
predictive multivariate logistic regression model that we use to calculate the proba-
bility of infection, given a set of characteristics.

We analyzed data from the National Health and Nutrition Examination Survey 
(NHANES), which includes patient demographic and behavioral data, as well as data 
on the presence or absence of oncogenic HPV infections. Details of the survey content 
and of the data collection and analysis methodologies are described by the National 
Center for Health Statistics (NCHS) (2014). Our analyses include data for 1120 
women from the 2003 to 2004 NHANES cycle, aged 20–59. These women answered 
the demographic, smoking, and sexual behavior questionnaires and submitted a self‐
collected vaginal swab specimen for HPV testing. Forty‐six women had missing 
values for one or more of the variables considered and were excluded from the multi-
variate analysis, resulting in a sample size of 1074 women for the multivariate analysis.

Independent variables were identified using “purposeful selection,” as described 
in Hosmer et al. (2013), which begins with a univariate analysis and then moves to a 
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multivariate analysis. We selected potential independent variables to be included in 
the model as predictors based on the existing literature about known risk factors for 
HPV infection (Dunne et al. 2007; Kahn et al. 2007; Moscicki et al. 2001; Sasagawa 
et al. 2005; Sellors et al. 2003; Winer et al. 2003; Wright et al. 2004). The demo-
graphic variables analyzed were age, education level, country of birth, race, below 
poverty index, and marital status. The sexual behavior variables were age at first 
intercourse, number of lifetime sex partners, number of recent sex partners (in the 
past 12 months), and history of chlamydia, genital herpes, and genital warts. We 
combined two variables from the NHANES smoking questionnaire into one variable 
defined as smoked at least 100 cigarettes in lifetime; if yes, current smoker; if no, 
former smoker.

We used NCHS weights to account for the unequal probabilities of selection and 
to adjust for nonresponse. In the univariate analysis (n = 1120), the Wald χ2 statistic 
was used to identify variables for inclusion in the multivariate analysis. Odds ratios 
were used to measure the magnitude of the associations, with each descriptor vari-
able considered to be significantly associated with the dependent variable if the value 
1 was not included in the 95% confidence interval of the odds ratio. Variables that 
were statistically significant at the p < 0.20 level in the univariate analysis were 
included in the preliminary multivariate model. For the multivariate analysis 
(n = 1074), the data for 834 women were randomly selected and used to develop the 
multivariate predictive model, and the remaining 240 were used for validation. There 
was no significant difference (α = 0.05) found between the parameter estimates 
obtained using the sample size of 834 and those obtained using the full sample 
(n = 1074). This does not appear to depend on the specific sample that was selected, 
as it was observed in four different random samples of 834 women. All pairwise 
interactions of variables included in the multivariate model were evaluated. To vali-
date the predictive model, we used the final multivariate model to estimate the prob-
ability of infection for the validation sample (n = 240). Goodness of fit was assessed 
using the Archer and Lemeshow F‐adjusted mean residual goodness‐of‐fit test, which 
is designed to be used with survey data (Archer and Lemeshow 2006; Archer et al. 
2007). All analyses were performed using Intercooled Stata 9.2 (StataCorp, College 
Station, TX).

The multivariate model excludes the variables that became nonsignificant in the mul-
tivariate analysis. Each variable that was not significant in the univariate analysis was 
added to the multivariate model to see if the parameter estimates or the goodness of fit of 
the model changed due to confounding. The variable below poverty index was included 
in the final multivariate model because it changed parameter estimates by more than 20% 
and resulted in an improved model fit. Interaction terms were not found to be significant 
at the 0.05 level. The Archer and Lemeshow F‐adjusted mean residual goodness‐of‐fit 
test did not indicate a lack of fit between the NHANES data and the model. From these 
analyses we quantified a predictive relationship between demographic and behavioral 
characteristics and a woman’s likelihood of having an oncogenic HPV infection at a 
given time. The final multivariate model included the following variables: age, marital 
status, below poverty index, and number of lifetime partners.
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Within the simulation, the representation of a patient includes these characteris-
tics, which change throughout her life, and a model of these changes over time was 
developed using probability distributions corresponding to changes within the US 
population. That is, a woman at time t is represented using risk characteristics: 
w

t
 = {age, marital status, poverty status, number of lifetime sex partners}. The predictive 

equation for the probability of an infection (i.e., P
I
(w

t
)) is calculated as

 
P w

e
I t wt

1

1
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Our model of patient risk includes changes in marital status: first and second 
marriage, first and second divorce, and becoming widowed. We randomly assign an 
age of first marriage, marriage durations, and divorce durations (i.e., the number of 
years between the end of a first marriage and the start of a second) based on proba-
bility distributions corresponding to data from the US population (Bramlett and 
Mosher 2002; Centers for Disease Control and Prevention 2002; U.S. Census 
Bureau 2001). We used the NCHS age‐specific all‐cause mortality rates for men to 
model transitions to widowhood. We do not model third‐ and higher‐order mar-
riages, primarily because only 2.3% of women marry three or more times (Centers 
for Disease Control and Prevention 2002). We model changes in the number of 
lifetime partners using the probability distributions corresponding to the number of 
new partners women acquire each year (O’Dowd 2003). Within the simulation, 
unmarried women are randomly assigned to one of four quantities of new partners 
(i.e., {0, 1, 2, 3}) based on the probability distribution specific to their age group. 
We model the probability of transitioning in and out of poverty each year conditioned 
on marital status using data from the US Census Bureau (2001–2003) (U.S. Census 
Bureau 2003).

We assume that females under the age of 13 are not infected. Because the data 
available from NHANES are for women aged 20–59, our logistic regression model 
only applies to women within this age group. For women outside this age range, we 
use age‐specific probabilities of infection (Kahn et al. 2007; Myers et al. 2000).

The logistic regression equation serves to calculate the probability that a woman 
has an oncogenic HPV infection (infection prevalence). To calculate the probability 
of infection incidence (i.e., acquiring a new infection) for use as a transition proba-
bility in our model from the state “not infected” to the state “infected,” we use the 
epidemiologic relationship

 Prevalence Incidence Duration*  (7.2)
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as described by Ashengrau and Seage (2003). To estimate infection incidence, we use 
an infection duration of 8 months for women under age 20 and 15 months for women 
over age 20 based on clinical findings (Ho et al. 1998; Muñoz et al. 2004; Richardson 
et al. 2003).

7.3.1.3 Screening Alternative screening and treatment strategies can be evalu-
ated by including their effects in the model and comparing their outcomes. The 
effects of the screening and treatment strategies are modeled as changes in the 
transition probabilities to health states such as death and disease survival. They can 
also result in the possibility of transitioning into new states such as treatment and 
surveillance (close monitoring). The accuracy of a screening test is defined by its 
sensitivity (i.e., the probability that the test result will be positive given that the dis-
ease is present) and specificity (i.e., the probability that the test result will be negative 
given that the disease is absent). To represent this, it is necessary to distinguish bet-
ween the health states and the test results in the model. For screening or treatment 
decisions that depend on several past test results and/or on other patient variables, the 
relevant history of each patient must be tracked in the model and used for decision 
making accordingly. The sensitivity and specificity of screening tests is typically 
found through clinical trials.

We modeled screening strategies consistent with the existing guidelines (e.g., 
ACOG 2009; Wright et  al. 2007a) for primary screening and triage screening for 
inconclusive primary screening results. For primary screening, we simulated the use 
of the Papanicolaou (Pap) test at different frequencies and a combination of the Pap 
test and the HPV DNA test every 3 years. For triage screening, we simulated the use 
of a repeat Pap test at 6 months, the HPV DNA test, and colposcopy. Combinations 
of different primary and triage alternatives represent different screening strategies. 
We also designed and evaluated risk‐differentiated screening strategies that screen 
each woman with the strategy deemed most appropriate for her particular risk for 
HPV infection.

We modeled the follow‐up tests and treatment of detected lesions in accor-
dance with the guidelines of the management of women with precancerous 
lesions (Wright et al. 2007b). Our model accounts for the fact that the screening 
tests have varying levels of precision (ALTS Group 2003; Kulasingam et  al. 
2006a; Nanda et al. 2000; Solomon et al. 2001). Additionally, the outcomes of 
screening tests are conditioned on the patient’s current health state to reflect the 
fact that the tests have different probabilities of detection depending on the state 
of the disease.

Common performance measures of screening and treatment strategies include 
the costs and the number of QALYs accumulated with each alternative being 
evaluated. Costs can include the costs of screening (including test costs, fees of 
health professionals, and administrative costs), the costs of treatment (which can 
vary by disease stage), costs to the patient (including time spent attending screen-
ing, anxiety over screening, and consequences of overscreening and overtreating 
in the case of false‐positive results), and costs of death (including the economic 
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burden of life years lost and the burden to surviving family members). It is not 
always possible to capture all of the costs and consequences in a model due to 
limitations on the availability of data. However, in most cases the screening and 
treatment costs can be derived from average Medicare charges. QALYs were 
developed as a measure of health effectiveness for cost‐effectiveness analysis 
(Weinstein et al. 2009) and consist of weights that are assigned to health states 
that range from zero to one, with one representing a state of perfect health. To 
determine how people value possible health states, preferences are elicited from 
a representative sample of the affected population (Weinstein et al. 2009). The 
Cost‐Effectiveness Analysis Registry (CEAR) (2013) has collected data on 
QALY weights elicited and used that correspond to health states associated with 
many diseases and treatments.

To evaluate the cost‐effectiveness of the various screening strategies, the total 
monetary costs and QALYs associated with each strategy were quantified. Data on 
the costs of screening tests were derived from average Medicare charges (Melnikow 
et al. 2010). The cost of an invasive CC case was estimated based on the cost of 
treatment and the economic burden per years of life lost for each person for whom 
the cancer resulted in death (estimated considering the average life expectancy). To 
evaluate the effectiveness of the strategies, the QALYs accumulated in the 
population were quantified; these were assigned to disease states using weights 
from the CEAR (2013).

7.3.2 Parameter Selection

Our model of the natural history of the disease requires data to represent transi-
tions between the various health states. The probability of acquiring an HPV 
infection was calculated based on levels of risk factors associated with each 
patient using (7.1) and (7.2). This probability varies for each woman based on her 
levels of risk factors at a given point in time. The transition probabilities for 
infection clearance and lesion progression and regression have been inferred 
from clinical cohort studies (e.g., Insinga et  al. 2007; Moscicki et  al. 1998; 
Sherman et al. 2003; Trottier et al. 2009) and have been compiled to be used as 
transition probabilities in past cost‐effectiveness analyses (Bergeron et al. 2008; 
Canfell et al. 2004; Goldie et al. 1999, 2001; Kohli et al. 2007; Myers et al. 2000; 
Sanders and Taira 2003). Rates of death from causes other than CC were esti-
mated by subtracting age‐specific CC mortality rates from age‐specific all‐cause 
mortality rates (NCHS 2010).

After conducting a thorough review of the literature, we found several data 
necessary to populate our model that are not reported in the current literature. For 
example, data on the true prevalence of lesions are not directly available in the 
literature. This is because the epidemiology studies only report the lesions that 
are detected, and the tests to detect lesions (i.e., Pap, colposcopy) have neither 
perfect sensitivity nor perfect specificity. We used probability computations and 
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peripheral data within an optimization model to estimate the values of data that 
are not readily available in the literature.

Our study considers the following:

 • Four lesion states, CINℓ, ℓ ∈ {0, 1, 2, 3}, where CIN0 represents the absence of 
a lesion

 • Three outcomes from a Papanicolaou test, Pr, r ∈ {+, −, 0}, indicating “positive,” 
“negative,” and “ambiguous,” respectively

 • Two outcomes from an HPV DNA test, Hr, r ∈ {+, −}, indicating “positive” or 
“negative” detection of high‐risk HPV strains, respectively

 • Relationships between test results and health states

For any combination of CINℓ and Pr,
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Estimates of P{CINℓ|P0}, P{P0}, P{P+ ∪ P0|CINℓ}, and P{P+|CINℓ} have been 
observed in clinical studies (ALTS Group 2003; Kulasingam et  al. 2002, 2006a; 
Manos et al. 1999). Additionally,
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and
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As such, Equations 7.3–7.5 represent P{CINℓ} and P{Pr|CINℓ} through related 
probabilities that have been estimated through clinical studies.

Our model also requires a relationship between HPV DNA test results and lesion 
status, P{CINℓ|Hr}. Estimates of P{Hr} have been observed in clinical studies 
(Kulasingam et al. 2002; Manos et al. 1999). In order to obtain P{CINℓ|H−}, note that
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Given that
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we obtain
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In order to obtain P{CINℓ|H+}, note that
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Estimates of P{H+|CINℓ} have been observed in clinical studies (ALTS Group 
2003; Kulasingam et al. 2006a; Manos et al. 1999). Thus, given the representation of 
P{CINℓ} in (7.3), we have mathematical descriptions of the remaining input param-
eters that are consistent with the laws of probability insofar as data observed through 
clinical studies are concerned.

Observation‐based estimates of various probabilities that appear in (7.3)–(7.9) are 
drawn from multiple sources, and in some cases conflicts are present. Our goal is to 
select a set of values as input to our simulation model that are consistent with the laws 
of probability and exhibit minimal deviation from values observed in clinical studies. 
Our approach to selecting values of our input parameters involves an optimization 
model. The objective function incorporates the squared deviations of the parameters 
from values observed in clinical studies, while the constraints represent consequences 
drawn from the laws of probability. In presenting the optimization model used for 
parameter selection, we distinguish between values that will be used as input to our 
simulation and those that have been observed in clinical studies. For example,

 • P{CINℓ|P0} represents the probability that a patient has CINℓ given that a Papanicolaou 
test yielded an ambiguous result, an input parameter for the simulation model.

 • P CIN P{ }��0  represents the fraction of patients with ambiguous results on their 
Papanicolaou tests that were observed with CINℓ, as reported in the literature 
(e.g., Kulasingam et al. 2006a).

The parameter selection problem is as follows:
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Input values for the simulation model were based on a solution to this optimization 
problem. This use of optimization models to infer data needed for disease modeling is a 
novel approach that can be useful when input data are not readily available in the literature. 
In this case, we used probability modeling to calculate the values of data required by the 
model that cannot be physically observed or measured due to the limitations of diag-
nostic tests. In those cases where data are available in the literature, our nonlinear 
programming model is designed to minimize the difference between the values that we 
use and the values reported in the literature while collectively satisfying the laws of 
probability. This approach can be especially useful when the data necessary to populate 
a simulation model are derived from multiple sources that do not coincide perfectly.

7.3.3 Implementation

We simulated theoretical cohorts of 100,000 women. The simulated populations 
were initialized in a manner consistent with the demographic distribution of the 
US population. The initial health states were randomly assigned using probability 
distributions from reports of the age‐specific prevalence of oncogenic HPV infection 
(Kahn et al. 2007) and from our estimates of the prevalence of lesions. The women 
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in each population were simulated sequentially, with disease progression, test results, 
and risk variables that evolved independently from woman to woman. Each woman 
in the simulation was followed through her screening years until she reached an end 
state, observing her health states and test results over time.

Each woman in the simulation is assigned an initial health state that is defined in 
terms of the existence or absence of oncogenic HPV infection and the various stages 
of precancerous cervical lesions; these are assigned according to our estimates of 
disease prevalence. The health state transitions are randomly generated using age‐
dependent transition probabilities consistent with available data regarding rates of 
disease progression and regression. Each woman is also assigned initial levels of the 
risk‐related demographic and behavioral variables, and these are randomly updated 
over time according to probability distributions derived using data from each of the 
life changes in the US population.

The outcome of each test result is randomly generated using the corresponding 
probability distributions of test sensitivity and specificity, which are dependent 
on the true health state at the time of screening. The screening events simulated 
consist of different tests, at different frequencies, and different follow‐up actions 
to resolve inconclusive results depending on the screening strategy being 
simulated and on each woman’s past test results. In the case of the risk‐differen-
tiated screening strategies, these events also depend on each woman’s specific 
risk level at a given time. Consequently, information on past test results for 
each woman was stored and used for decision making in the simulation model. 
Additionally, to simulate risk‐differentiated strategies that use the infection 
probability of up to 25 years in the past to assign a risk category, the infection 
probability history of each individual was tracked and stored in the model. We 
evaluated screening alternatives based on the outcomes observed in the simulated 
populations.

We validated our simulation model by comparing the number of incident CC 
cases to the reported number of incident CC cases in the US population based on 
data from the Surveillance, Epidemiology, and End Results (SEER) Program. 
The incidence rate of CC reported by SEER for 2004–2008 was 8.1 cases per 100,000 
women per year. Using the most commonly used screening strategy, our model 
reports 8.65 cases per 100,000 women. We also compared our results with SEER 
distribution of CC diagnoses by age at diagnosis by comparing the cumulative 
distribution of diagnoses by age as reported by SEER and as observed from our 
model and found a strong similarity between them. The precise cause of the dis-
crepancies between our results and the SEER data is not known, but might be 
attributable to the parameter values that we estimated using optimization models 
and to the simplifying assumptions that we made. In addition to this, the higher CC 
incidence rate in our model may be due in part to the fact that SEER quantifies the 
number of cancer cases that are detected and reported, while our output reflects 
the total number of cancer cases that occur, because the simulation environment 
allows us to register all health states.
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7.4 MODEL‐BASED ANALYSES

A model such as the one described in this chapter can be used to support a variety of 
analyses. For example, we created a new risk‐differentiated screening strategy that 
bases the screening protocols on the probability that the patient has an oncogenic 
HPV infection as indicated by the logistic regression equation presented in (7.1). 
This risk‐differentiated strategy was developed by simulating risk‐homogeneous 
populations with various probabilities of infection and determining the most cost‐
effective of the traditional screening strategies for each infection probability. 
The analysis indicated distinct screening strategies for each of three different risk 
levels, which we denoted as “low,” “medium,” and “high” risk levels. According to 
this classification, approximately 25% of a risk‐heterogeneous population modeled 
after the US population was in the low risk category, 25% was in the high risk 
category, and the remainder was in the medium risk category. Each component of the 
risk‐differentiated strategy refers to the combination of primary and triage screening 
approaches used. In all cases, the primary screening involved the Pap test with 
varying frequency and triage screening for ambiguous results using an HPV DNA 
test. For “low‐risk” women, triennial screening is applied. For “medium‐risk” 
women, biennial screening is applied. For high‐risk women, annual screening is 
applied. In this manner, higher‐risk women are screened more aggressively (i.e., 
more frequently) than lower‐risk women.

We considered multiple ways to implement a risk‐differentiated strategy. For 
example, one implementation would involve screening each woman as a function of 
her risk for infection at the time of screening. To account for the slow progression 
of the disease from infection to lesions and cancer, we also considered strategies 
that screen women as a function of their risk for infection in prior years. Thus, for a 
screening that takes place at time t, we investigated strategies based on the risk of 
infection i years prior to the time of screening, P

I
(w

t−i
), for i ∈ {5, 10, 15, 20, 25}.

7.4.1 Cost‐Effectiveness Analysis

Within our comparative analyses, the performance of a screening strategy was 
assessed based on the total costs incurred and the total QALYs accumulated within 
simulated populations of 100,000 women. The strategies were compared using 
incremental cost‐effectiveness ratios (ICER). Costs and QALYs are commonly used 
to calculate ICERs, which serve to compare the performance of alternatives in terms 
of both of these measures. The ICER for the more expensive and more effective of 
two strategies is the additional cost incurred divided by the additional QALYs gained. 
To calculate the ICERs, strategies are ordered by their total cost (from lowest to 
highest). Strategies that are both more costly and less effective in terms of QALYs 
than another strategy are considered dominated. The additional costs of a strategy are 
divided by the additional QALYs compared with the previous, less costly strategy. 
Following this approach, the strategy considered most cost‐effective is the one that 
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results in the highest number of QALYs while paying no more per QALY than an 
established threshold. In the United States, this threshold is typically $50,000/QALY 
(Eichler et al. 2004; Kulasingam and Myers 2003). In comparing two strategies, a 
more costly and more effective strategy is considered to be cost‐effective if the 
incremental cost per QALY gained is at most $50,000. Others (Goldhaber‐Fiebert 
et al. 2008; Kim et al. 2009) also considered strategies that fall within the range of 
$50,000–$100,000 per QALY gained to be cost‐effective. In our analyses we consid-
ered a cost‐effectiveness threshold of $50,000 per QALY gained.

The cost‐effectiveness analysis performed is shown in Table 7.1. In this analysis, 
we considered 12 strategies that screened and triaged all women in the population in 
the same manner and six variations of the risk‐differentiated strategy based on P

I
(w

t−i
) 

for i ∈ {0, 5, 10, 15, 20, 25} described earlier in this section. Within the table, the six 
non‐dominated strategies are presented in order of increasing costs.

As indicated in Table 7.1, the risk‐differentiated strategy with a 10‐year offset was 
found to be the most cost‐effective strategy. This strategy uses P

I
(w

t−10
), the proba-

bility of infection of 10 years before the time of screening to determine a woman’s 
risk level. To implement this screening strategy, the logistic regression equation 
would be used to estimate the P

I
(w

t−10
) for each woman based on her risk factors from 

10 years prior to the screening date.

7.4.2 Sensitivity Analysis

In our initial analyses, we modeled 100% adherence to screening guidelines, so that 
all women attend all screening appointments. We also modeled a population that is 
not vaccinated against HPV infections. In this section we expand our model in order 
to evaluate the performance of screening strategies in vaccinated populations and 

TABLE 7.1 Cost‐Effectiveness Analysis for Mixed‐Risk Populations

Strategy

Total Incremental
Comparison 
StrategyaCost QALYs Cost QALYs ICERa

1. Triennial 
Pap + DNA triage

325,301,969 7,917,211

2. R‐D screen, i = 0 351,032,712 7,923,237 25,730,744 6,026 4,270 1
3. R‐D screen, i = 5 360,775,487 7,923,945 9,742,775 708 13,761 2
4. R‐D screenb, i = 10 374,357,420 7,924,414 13,581,933 469 28,959 3
5. R‐D screen, i = 15 380,750,526 7,924,423 6,393,106 9 710,345 4
6. Annual Pap + DNA 

triage
501,691,553 7,926,014 127,334,133 1,600 79,584 4

a Incremental cost effectiveness ratio.
b Indicates the most cost‐effective strategy, based on a cost‐effectiveness threshold of $50,000/QALY.
“R‐D” indicates risk‐differentiated strategy.
“i” corresponds to the age offset in risk calculation.



MODELING DISEASE PROGRESSION AND RISK‐DIFFERENTIATED SCREENING 173

populations with imperfect adherence to the screening guidelines. Risk‐differentiated 
strategies are also found to be the most cost‐effective under these conditions.

7.4.2.1 Modeling the Effect of Vaccination To study the effect that a vaccinated 
population would have on the cost‐effectiveness of screening strategies, we adjusted 
our model to simulate a population of women vaccinated with the quadrivalent HPV 
vaccine most widely available at the time of our study (Gardasil), which protects 
against infection with the oncogenic HPV types 16 and 18. HPV types 16 and 18 
account for 14% of oncogenic HPV infections (Kahn et al. 2007) but are associated 
with 70% of CC cases (Clifford et al. 2006; Muñoz et al. 2004). The quadrivalent 
HPV vaccine also protects against HPV types 6 and 11, but these are non‐oncogenic 
and therefore not relevant to our study.

We modified our population model by adjusting the probability of acquiring a new 
infection to reflect the fact that vaccinated women will not contract infections with 
HPV strains 16 and 18. Given that strain‐specific disease progression rates are not 
readily available (Elbasha et al. 2007; McLay et al. 2010; Sanders and Taira 2003), 
we made adjustments to our model to approximately reflect a 14% reduction in the 
incidence of oncogenic HPV infections and a 70% reduction in CC cases within the 
vaccinated population. In particular, transition probabilities for lesion progression 
were reduced to simulate the effect of the subset of oncogenic HPV types other than 
16 and 18, which are less likely to progress to precancerous lesions and CC (Clifford 
et al. 2006; Muñoz et al. 2004). While the number of cancer cases was reduced by 
approximately 70%, the percentages of cancer cases for each age group remained 
similar to the output of the model without vaccination, thereby maintaining a distri-
bution of cancer cases similar to that of SEER (McLay et al. 2010). We performed 
this adjustment using the software system OptQuest (OptTek Systems, Boulder, CO) 
in combination with Arena to vary the lesion progression transition probabilities. 
OptQuest guides a series of simulations, searching for input values using scatter 
search, tabu search, and neural networks and evaluating whether the outputs satisfy 
the objectives and constraints defined (Glover et al. 1999).

We simulated a population in which all women are vaccinated and a population with 
the current vaccine coverage, which was approximately 33% (Centers for Disease 
Control and Prevention 2009). We assumed that vaccinated women have full immunity 
against the strains covered by the vaccine (Garland et al. 2007) and that immunity does 
not wane over time. The costs associated with the vaccine (Elbasha et al. 2007), which 
are incurred independent of the screening strategy used, were included in the analysis.

7.4.2.2 Modeling Imperfect Adherence In our model we assume that all women 
attend all screening appointments, which is usually not the case. Paskett et al. 2010 
found that approximately 68% of the population follows risk‐appropriate screening 
guidelines. Additionally, it is well known that women at higher risk for HPV and 
CC are less likely to adhere to screening guidelines (Basen‐Engquist et  al. 2003; 
Eggleston et al. 2007; Marcus et al. 1992; Paskett et al. 2010).
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To represent imperfect adherence in a way that reflects these findings, we would 
need data on the probability distribution of adherence, conditioned on different 
probabilities of infection. Since these data are not readily available, we made rough 
estimates of them that are consistent with the literature on adherence to CC screen-
ing in the following manner.

We classified the population by infection probability into low, medium, and high 
risk. We made estimates of probabilities of adherence conditioned on each risk level 
such that the probability of adherence of the overall population was approximately 
70% and that the probability of adherence was inversely proportional to the proba-
bility of infection; we studied three different estimates of this probability distribu-
tion. In our model these probabilities of adherence represent the probability that 
each patient will attend screening, at each instance in which she has a screening event 
programmed.

Analyzing scenarios involving vaccination and imperfect adherence using our 
model permits evaluation of screening strategies in simulated populations of women 
that are representative of the US population. For example, in the case of imperfect 
adherence, we found that a risk‐differentiated strategy that considers the risk level 10 
years prior to the time of screening continues to be most cost‐effective. In the case of 
vaccinated populations, we found that a screening strategy composed of risk‐differ-
entiated strategies for each of the vaccinated and non‐vaccinated populations to be 
cost‐effective. As such, models such as this can be applied to compare screening 
strategies in order to inform public health recommendations.

7.5 CONCLUDING REMARKS

Operations research methods can be applied to evaluate alternative screening strategies 
for disease prevention. In this chapter we have presented a series of models devel-
oped to represent the elements necessary to study risk‐differentiated CC screening 
strategies.

The model of the natural history of the disease represents the disease progression 
and regression through infection and lesion states. The patient population model rep-
resents the changes in risk factors over time and uses a multivariate logistic regres-
sion equation to estimate each patient’s infection probability conditioned on the 
levels of her risk variables. The model of primary and triage screening represents the 
tests that occur over time and their state‐specific probabilities of accurately detecting 
disease. These models are interdependent and form part of a discrete‐event simula-
tion model that was used to evaluate alternative screening strategies in simulated 
populations of women. Probability modeling and nonlinear programming were used 
to estimate input data not directly available in the literature.

Markov models are often used in studies of preventive screening and treatment. 
However, Greenhalgh et  al. (2013) noted that “in the case of diseases that are of 
lengthy duration with complex treatment pathways, patient‐level simulations rather 
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than the Markov approach better represents patient experience,” given that “Markov 
models require the definition of essentially homogeneous health states in which 
patients share common risks, utility and treatment costs regardless of their prior 
history.” We used a simulation model in order to represent the screening guidelines 
for CC (which consider several past test results in decision making). Additionally, the 
study of personalized risk‐differentiated screening strategies requires patient‐specific 
variables to be generated and tracked.

The methods described in this chapter can be applied to the development of 
quantitative models designed to evaluate screening or treatment alternatives for 
diseases that progress over time. Such studies require modeling of the progression 
(and regression, if applicable) of the disease. This includes the specification of state 
definitions and transition probabilities, such as described in this chapter. The effect 
of screening and/or treatment interventions (i.e., the costs and possible results) is 
another necessary aspect of such studies, and this should be represented accounting 
for the imperfect accuracy of the tests by using probability modeling, as shown here. 
The standard way of comparing healthcare alternatives is with a cost‐effectiveness 
analysis using QALYs, as illustrated in this chapter. Not all diseases have known risk 
factors, but those that do can be studied using logistic regression to estimate the 
probability of disease occurrence given specific levels of risk factors. We describe 
this approach to incorporate risk in a study, as well as our approach to modeling the 
manner in which risk factors evolve over a patient’s lifetime. For cases in which data 
cannot be obtained (e.g., because it is not physically possible to test, the diagnostic 
tests are imperfect, or the interventions or health transitions being evaluated have not 
been previously studied), we propose the use of optimization models to estimate 
these data. The sensitivity analyses that we performed included lack of adherence, 
which is a common issue in healthcare, and the use of vaccine, which may not be a 
factor that applies to other diseases.

This chapter illustrates an example of how operations research can be applied to 
study preventive screening alternatives. Studies such as this can be used to inform 
public health decisions at the population level, as well as to inform patient‐specific 
decisions by the patient and physician.
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8.1 INTRODUCTION

The American Cancer Society (ACS) estimates that approximately 231,840 women 
would be diagnosed with breast cancer in 2015, making breast cancer the most 
common non‐skin cancer affecting women in the United States. Breast cancer also 
accounts for the second leading cause of cancer death in women, after lung cancer, 
with approximately 40,290 deaths (ACS 2015). The National Cancer Institute (NCI) 
estimates that one out of every eight women will develop breast cancer in their life-
time (Kootstra et al. 2010). All of these statistics indicate that breast cancer is an 
important disease that has significant impacts on the overall health of women.
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While various breast cancer treatment options such as radiation therapy, chemo-
therapy, and hormone therapy have become available in recent years, early diag-
nosis still remains as the keystone of successful treatment (Fryback et  al. 2006; 
Alagoz et al. 2011). If the breast cancer is diagnosed at an early stage (stage I), the 
5‐year survival rate is about 100%; however if it is diagnosed in the more advanced 
metastatic stage, the 5‐year survival rate drops to 21% (Hayat et al. 2007). There 
exist several breast cancer screening (or diagnostic) methods such as magnetic res-
onance imaging (MRI), X‐ray mammography, and ultrasound. Among these tech-
niques, mammography is the current standard practice for identifying cancer early 
in asymptomatic women (Smith et al. 2015; Siu and U.S. Preventive Services Task 
Force 2016).

While there have been many studies that focus on the optimal breast cancer 
screening strategies (Maillart et al. 2008; Ivy 2009; van Ravesteyn et al. 2012; Batina 
et al. 2013; Munoz et al. 2014; Sprague et al. 2014; Stout et al. 2014; Lee et al. 2015), 
there have been relatively fewer studies that focus on improving breast cancer diag-
nosis. On the other hand, an important decision problem arises when a mammogram 
is performed and viewed by a radiologist. Based on the mammography findings, first, 
the woman’s risk of cancer needs to be accurately determined, and then appropriate 
management of the patients must be determined. There are three common options 
widely utilized by radiologists for managing patients: (i) immediate diagnostic 
actions including prompt biopsy, that is, examination of the breast tissue removed 
using a needle or surgical excision; (ii) routine follow‐up mammography in a year; 
and (iii) short‐term follow‐up mammography in six months. During this decision‐
making process, radiologists face a trade‐off between the early detection of cancer 
and avoiding the burden of unnecessary procedures.

Decisions regarding the recommendation of follow‐up exams are not trivial as the 
mammography results include extensive amount of information that needs to be 
interpreted. The accuracy of mammography interpretation varies with the radiolo-
gist’s skills and training (Beam et al. 1996; Barlow et al. 2004). There are several 
studies demonstrating the inefficiency of current clinical practice, suggesting that 
only 0.4% of mammograms requiring follow‐up investigations result in breast cancer 
diagnosis (Sickles 1991; Varas et al. 1992, 2002; Vizcaíno et al. 2001). Another study 
of the Breast Cancer Surveillance Consortium (BCSC) shows that the cancer detec-
tion rate is 8.4 per 1000 among short‐term follow‐up recommendations (Sickles et al. 
2005). In addition, there are several studies reporting significant variability among 
radiologists’ interpretation of mammograms and diagnostic decisions (Elmore et al. 
1994, 2015; Beam et  al. 1996). While the rate of recommendation for short‐term 
follow‐up is reported around 40% in Geller et al. (2002), Monticciolo and Caplan 
(2004) found that the rate varied by site from 1.1% to 12.2% in a study investigating 
the use of follow‐up recommendations in multiple sites.

To standardize mammography interpretation, the American College of Radiology 
(ACR) has developed a format called the Breast Imaging Reporting and Data System 
(BI‐RADS) (BI‐RADS 1998). BI‐RADS format enables describing mammograms 
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using standardized descriptors and classifying them into one of the six final 
assessment categories. However, BI‐RADS assessment alone does not provide 
enough information to overcome the interpretation variability. An effort in that 
direction has been made by computer‐aided diagnosis (CADx) models, which utilize 
BI‐RADS features to estimate the probability of breast cancer (Burnside et al. 2006; 
Chhatwal et al. 2009; Ayer et al. 2010a, b). Recently, this effort was taken further by 
using finite‐horizon Markov decision processes (MDPs) to determine the optimal 
probability thresholds for recommending biopsy or short‐term follow‐up for a given 
patient (Chhatwal et al. 2010; Ayvaci et al. 2012; Burnside et al. 2012; Alagoz et al. 
2013). This chapter primarily focuses on the finite‐horizon MDP models introduced 
in Chhatwal et al. (2010), Ayvaci et al. (2012), and Alagoz et al. (2013) and summa-
rizes the problem formulations, structural and clinical findings, and results of these 
three articles.

The rest of this chapter is organized as follows. In Section 8.2, we describe the 
model formulations of a general finite‐horizon MDP model for the optimal post‐
mammography diagnostic decision problem. In Section 8.3, we provide the struc-
tural properties of these MDP models. We then summarize the results of three MDP 
models in Section 8.4. We conclude with in Section 8.5.

8.2 MODEL FORMULATIONS

In this chapter, we will review three finite‐horizon MDP models from the literature 
to address the optimal post‐mammography diagnostic decision problem (Chhatwal 
et  al. 2010; Ayvaci et  al. 2012; Alagoz et  al. 2013). While each model includes 
problem‐specific assumptions and constraints, we will start with presenting a basic 
model formulation. For all these models, a woman undergoes a mammogram and a 
radiologist, who is the decision maker, examines the results. The radiologist makes a 
decision based on the woman’s risk of cancer, which can be estimated heuristically 
or using a computer‐aided prediction model. The objective of the decision maker is 
to maximize the woman’s total expected quality‐adjusted life years (QALYs). All of 
these studies assume that the radiologist is risk neutral so that they utilize total 
expected QALYs of the woman as the objective function. Finally, due to the lack of 
data on women with a history of biopsy, these models focus on women who did not 
have an earlier biopsy. In modeling terms, a woman is assumed to leave the decision 
process after a biopsy is performed. Next, we describe the formal definitions of these 
three MDP models.

Decision Epochs: t = 0, 1, 2, …, T, T . Here, t is defined as the number of years 
in Chhatwal et al. (2010) and the number of 6‐month periods in Ayvaci et al. (2012) 
and Alagoz et al. (2013), above the age of 40 years. The decision horizon ends at the 
age of 100 years, that is, T = 60 in Chhatwal et al. (2010) and T = 120 in Ayvaci et al. 
(2012) and Alagoz et al. (2013). While the total length of decision horizon differs, for 
all these models, the problem is formulated as a finite‐horizon MDP.
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States: s
t
 is defined as the system state at decision epoch t with 

s S S St  { , , , , , }0 1 1 2 . Here, {0, 1, …, S} represents the risk score for which 
all three models use the discretized version of probability of breast cancer with 
S = 100. For instance, if the probability of cancer is 0.281, then the corresponding risk 
score is 28. S + 1 represents the post‐biopsy state and S + 2 represents death.

Actions: Action space corresponding to decision epoch t and state s
t
 is defined as 

t ts Bx Am( ) { ( ), ( )}Biopsy Annual mammogram  in Chhatwal et  al. (2010), for 
t < T and s S St S �{ , }1 2 , and t ts( )  for t = T or s

t
 ∈ {S + 1, S + 2}. Ayvaci 

et al. (2012) and Alagoz et al. (2013) added a new action to their action space, namely, 
“short‐term follow‐up (Sf).”

Transition Probabilities: Transition probabilities follow a very similar structure 
for all three papers. Only a small difference occurs due to the inclusion of short‐term 
follow‐up. Here, we will provide a general transition probability structure. Let 
p s st

a
t t( | )1  denote the probability that the woman will be in state st 1   at time t + 1, 

given that the woman is in state s
t
 and the action is a   at time t. Then,
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t

t
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1

1
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1 1
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for s St S �{ }2  and p S St
Bx ( | )2 2 1 for all t < T.

Similarly, if the action is Sf, we have p S St
Sf ( | )1 1 1, p S St

Sf ( | )2 2 1, 
p S st

Sf
t( | )1 0 for all s St S �{ }1  and t < T. And if the action is Am, the transition 

probabilities can be defined using
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Transitions to the death state S + 2 require the analysis of different scenarios. Let 

t
nc S( )2  represent the probability of death during decision epoch t when the woman 

has no cancer. Similarly, let t
nt S( )2  represent the probability of death during 

decision epoch t when the woman has cancer but has not received any treatment. We 
can then define

 p S s w s S w s St
Sf

t t t
nc

t t
nt2 2 1 2( ) ( ), 

where w s st t( ) / 100 represents the probability of cancer at time t. When the 
action is Am,
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For the model with only two actions, where Sf is ignored, pt
Am  will be defined the 

same as the pt
Sf  definition earlier.
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Rewards: There are several alternative outcomes that can be used as reward. We will 
consider the most commonly used one in medical decision making, namely, expected 
QALYs (Pliskin et al. 1980; Drummond 2005). QALYs incorporate risk‐neutral utilities 
of health states and measure both the quality and quantity of the expected life years. 
QALYs have been used extensively in the operations research applications in medical 
decision making (Sandikci et al. 2008; Shechter et al. 2008; Alagoz et al. 2010; Akan 
et al. 2012; Ayer et al. 2012, 2016; Zhang et al. 2012a, b; Erenay et al. 2014). All three 
MDP models use similar rewards defined as QALYs, and there is only a small difference 
in considering the disutility of the action. Let r

t
(s

t
, Sf) represent the intermediate expected 

reward accrued between time t and t + 1, when the woman is in state s
t
 and the action is 

Sf, and r
t
(s

t
, Am) represent the intermediate expected reward accrued between time t and 

t + 2, when the woman is in state s
t
 and the action is Am. If the action is Bx, then 

(Chhatwal et al. 2010) assumed that the woman leaves the decision process having a 
post‐biopsy reward r

t
(s

t
, Bx) corresponding to their risk score s

t
. The definition of post‐

biopsy reward depends on whether the biopsy outcome is negative (benign), r
t
(s

t
, Bx, 

NC), or positive (malignant), r
t
(s

t
, Bx, C), and r

t
(s

t
, Bx) can easily be calculated as

 r s Bx r s Bx NC q NC s r s Bx C q C s dBx tt t t t t t t t t t, ,, , , , ( )  

where q
t
(NC|s

t
) and q

t
(C|s

t
) represent the probability of positive and negative biopsy 

outcomes when the woman is in state s
t
, respectively, and dBx(t) represents the dis-

utility of biopsy at time t. Ayvaci et al. (2012) and Alagoz et al. (2013) relaxed the 
assumption of leaving the decision process after a biopsy regardless of its outcome 
by assuming that a woman with benign biopsy outcome accrues an intermediate 
expected reward r

t
(s

t
, Bx, NC) between time t and t + 1 and moves to state 0.

Optimality Equations: Here, we will provide a general form of optimality 
equations that can account for the three‐action scenario. Given the discount factor 
γ ∈ [0, 1], the optimal policy for the aforementioned finite‐horizon MDP can be 
calculated by dynamically solving the following Bellman equations (Puterman 1994):

 

t t t t t t
s S

t
Sf

t ts r s Bx r s Sf p s s smax , ,, , 1

rr s Am p s s s s t Tt t
s S

t
Am

t t t, .2
2 0 1 2, , , , ,

 (8.1)

 

T T T T T T

s S
T
Sf

s r s Bx r s Sf

p s s

1 1 1 1 1 1

1

max , ,,

TT T Ts s1 1, .
 (8.2)

For t = T, we add a boundary condition as follows:

 T T T T T T T T Ts r s Sf r s Am r s Bx s, , ,, .  (8.3)
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Note that Ayvaci et al. (2012) also introduced an additional cost constraint that 
imposes an upper bound on the expected expenditures from follow‐up imaging and 
biopsy under a policy π. Let c

t
(s

t
, a

t
(s

t
)) represent the total cost of action a

t
(s)t in state 

s
t
 at time t and define Cπ as

 
C c s a s

t

T
t

t t t t 
0

1

, ,
 

where λ is the discount factor for cost. Then the budget‐constrained MDP model can 
be defined as follows:

 
, supC C C ,

 

where Cσ represents the total budget allocation.
Note that the authors use finite‐horizon MDP models for the post‐mammography 

diagnostic decision problem to incorporate the woman’s age into the models. As a 
woman gets older, her expected life years decrease, her history of biopsy or surgery 
may change, and her probability of death increases. To model the problem with an 
infinite‐horizon MDP, one needs to incorporate age into the state space, which will 
noticeably increase the size of it and will necessitate the use of approximate dynamic 
programming to solve the resulting numerically intractable model.

8.3 STRUCTURAL PROPERTIES

In this section, we summarize the structural properties of the three MDP models with 
their clinical relevance. These properties are especially helpful in helping clinical decision 
makers to obtain insights and managerial intuition for the optimal diagnostic policy. We 
will provide the properties for the setup where the number of possible actions is three. We 
start with providing the necessary assumptions that will be used in this section.

Assumption 8.1
The reward functions r

t
(s

t
, Sf), r

t
(s

t
, Am), and r

t
(s

t
, Bx) are all nonincreasing in s

t
 for 

all t and in t.

Assumption 8.1 implies that the woman’s resulting QALYs after each action do 
not increase with her risk of cancer or age.

Assumption 8.2
The transition probability matrices t

Sf
t
Sfp . .  and t

Am
t
Amp . .  satisfy the 

following:

 

s j

S

t
Sf

s j

S

t
Sf

s j

S

t
Am

s

p s i p s i

p s i

1 1

1

1

jj

S

t
Amp s i

1

1

 

for all i j S, S � 1 .
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Assumption 8.2 implies that the probability of woman moving to high‐risk states, 
including death, increases with increasing age.

We start with showing the monotonicity of ϑ
t
(s

t
) in s and t, which enables proving more 

comprehensive results and making them clinically relevant. To show the monotonicity of 
ϑ

t
(s

t
), we need the following definition, which is commonly used in the MDP literature on 

optimal decision/treatment problems (Alagoz et al. 2004, 2007a, b; Shechter et al. 2008).

Definition 8.1
(Barlow and Proschan 1965) A Markov chain is increasing failure rate (IFR) if its 
rows are in increasing stochastic order, that is, q i P j ij m

S( ) ( ) is nondecreasing in 
i for all m = 1, 2,…, S.

Proposition 8.1 provides a set of sufficient conditions for ϑ
t
(s

t
) to be nonincreasing 

in s, which implies that the woman’s total expected QALYs never increase with her 
risk score. Furthermore, Proposition 8.2 shows that ϑ

t
(s

t
) is nonincreasing in t, which 

similarly implies that the woman’s total expected QALYs never increase with her age.

Proposition 8.1
If t

Sf  and t
Am are IFR for t = 1, 2, …, T, then ϑ

t
(s) is nonincreasing in s, for s = 1, …, S 

and t = 0, 1, …, T − 1.

Proof: See the proof of Theorem 4.7.3 in Puterman (1994). ◾

Proposition 8.2
If Assumption 8.2 holds, then ϑ

t
(s

t
) is nonincreasing in t for all s St S �{ }1 .

Proof: See the proof of Proposition 2 in Chhatwal et al. (2010). ◾

Next we define a new type of structured policies proposed by Alagoz et al. (2013) 
for their problem context with three possible actions. The definition is an extension 
of control‐limit policies and inspired by the double‐threshold policies, which are 
used in the MDP literature on equipment maintenance problems. Similar to the con-
trol‐limit policies, these structured policies reduce the complexity of the optimal 
policy search, and furthermore, they are easier to implement in clinical practice.

Definition 8.2
(Alagoz et al. 2013) A policy a st t t T

*

, ,
( )

0 1
 is said to be a double‐control‐limit 

(DCL) policy if there exist thresholds s s St
l

t
u, S � 1  such that

 

a s

Am if s s

Sf if s s s

Bx if s s
t t

t t
l

t
l

t t
u

t t
u

*

 

for t = 0, 1, …, T − 1.

Figure 8.1 shows an example of a DCL policy. As can be seen from the figure, a 
DCL policy defines two thresholds for each state, divides the entire state space into 
three regions, and assigns an optimal action for each region.
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Next, we provide Theorem 8.1 on sufficiency conditions under which there exists 
an optimal DCL policy. Before stating the theorem fully, we present several lemmas 
that are used in the proof of Theorem 8.1.

Lemma 8.1
Let  p j it  for i, j = 1, 2, …, N be an IFR transition probability matrix 

with k i
k

t k i
k

tp k i p k i1 11
* *

 for i < k* ≤ N and t = 1, 2, …, T − 1. For any 
nonincreasing function f(i), we have

 

a

b

k

i

t t
k

i

t tp k i p k i f k p k i p k i f i
1 1

1 1( ) ( ).

k i

k

t t
k i

k

tp k i p k i f k p k i p k i f
1 1

1 1
* *

( ) (( )i 1 .
 

Proof: See the proof of Lemma 1 in Alagoz et al. (2004). ◾

The following lemma provides an upper bound on the difference in woman’s total 
QALY between annual mammogram and short‐term follow‐up.

Lemma 8.2
ϑ

t
(s

t
, Am) − ϑ

t
(s

t
, Sf) ≤ 2dSf(t) − dAm(t) for all s St S �{ }2  and t.

Proof: See the proof of Lemma 2 in Alagoz et al. (2013). ◾

In Lemma 8.2, ϑ
t
(s

t
, Am) and ϑ

t
(s

t
, Sf) represent the total expected QALYs, and 

dAm(t) and dSf(t) represent the disutility corresponding to Am and Sf when the 
woman is in s

t
 at time t, respectively.

Lemma 8.3 provides an upper bound, rt ( )0 , on ϑ
t
(0, Sf), where rt ( )0  represents the 

total expected QALYs of a woman if her risk score remains zero after time t and she 
never undergoes biopsy.
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Figure 8.1 An example of a DCL policy for optimal breast biopsy decision problem.
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Lemma 8.3
Let rt ( )0  be defined as

 
� �r r Sf p St t

i t

T
i t

j t

i

j
Sf( ) ( , )0 0 1 2 0

1
1 r Sfi 1 0( , ),

 

where r r Bxt t( ) ( , )0 0 . Then t tr( ) ( )0 0  for all t = 1, 2, …, T − 1.

Proof: See the proof of Lemma 4 in Chhatwal et al. (2010). ◾

In the final lemma before the main result, Theorem 8.1, we provide an upper 
bound on the reward if the recommended action is Sf.

Lemma 8.4
Let r s Sft t

max , ( ) be defined as follows:

 
r s Sf r s Sf p s s rt t t t

s s
t
Sf

t t
st

u

max , , � �
1

1 0( )
ss

t
Sf

t t

t
u

p s s r s Bx
1

1 ,  (8.4)

for all s St S �{ }1  and t, where rt 1 0( ) is as defined in Lemma 8.3 and st
u is defined 

as the optimal control‐limit threshold at time t, that is, the optimal action for any 
s st t

u at time t is Bx. Then max( , ) ( ,  )t t t tv s Sf r s Sf .

Proof: See the proof of Lemma 4 in Alagoz et al. (2013). ◾

Lemma 8.4 implies that if the recommended action is Sf, the maximum total 
reward is equal to the total reward attained by waiting for six months, plus either 
(i) the reward from biopsy if the risk of cancer increases beyond the biopsy threshold 
or (ii) the maximum reward she can attain if her risk score remains zero after time t 
and she never undergoes biopsy.

Finally, Theorem 8.1 shows the existence of an optimal DCL policy under some 
sufficiency conditions.

Theorem 8.1
(Alagoz et al. 2013) If t

Sf  and t
Am are IFR and the following hold for all s St S �{ }1  

and t = 1, 2, …, T − 1:

 

r s Bx r s Bx

r s Bx
p S s p St t t t

t t
t
Sf

t t
Sf, 1

1
1 1

2
2

,

,
11 st , (8.5)

 s s

S

t
Am

t
s s

S

t
Am

t

t t

p s s p s s
1 1

1 , (8.6)

 p i s p i s if i st
Sf

t t
Sf

t t1 , (8.7)

 p j s p j s if j st
Sf

t t t t1 , (8.8)

and
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s s

S

t
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p S s p S s dSf
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t

s
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t
Sf

t t
S
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1 1 1

1
0

1
ff

ts s dSf dAm2 ,

 (8.9)

and then there exists an optimal DCL policy.

Proof: See the proof of Theorem 1 in Alagoz et al. (2013). ◾

In Theorem 8.1, inequality (8.5) implies that as the risk score increases, the 
percentage reduction in the post‐biopsy reward is less than the increase in the risk of 
death related to waiting until next decision epoch. Inequality (8.6) implies that the 
transition rates to higher risk scores increase with the increasing current risk score, 
which is similar to IFR condition. Inequalities (8.7) and (8.8) imply that as the current 
risk score of the woman increases, the probability of transition to a lower risk score 
decreases, whereas the probability of transition to a higher risk score increases in 
the next decision epoch. Finally, (8.9) simply implies that as the current risk score of the 
woman increases, the relative benefit of the action Bx over Sf increases more than the 
relative benefit of action Sf over Am.

All of the structural analyses given earlier assume that there are three possible 
actions and no constraints on the budget. Note that the results can easily be applied 
to two‐action scenario, with the only change that optimal DCL policies will be 
replaced by optimal control‐limit policies (Chhatwal et  al. 2010). Chhatwal et  al. 
(2010) also presented an interesting theorem providing a set of sufficiency conditions 
that ensure that the optimal control threshold does not decrease with time in their 
problem context. This result is particularly interesting as, under certain conditions, it 
supports a clinical intuition that as the women get older, a higher probability threshold 
for biopsy should be set.

Theorem 8.2
(Chhatwal et al. 2010) For a transition matrix t

Am satisfying IFR assumption, if an 
optimal control‐limit threshold st

u exists for all t, then st
u is nondecreasing in t if

 
r s Bx r s Am p s s r p s st t

s s
t
Am

t
s s

t
Am, ,  1 0( ) r s Bxt 1 ,   (8.10)

for all s SS �{ }1

Proof: See the proof of Theorem 1 in Chhatwal et al. (2010). ◾

In Theorem 8.2, inequality (8.10) implies that for any state, the expected post‐
biopsy reward is greater than the upper bound on the total reward attained by waiting 
another year and using the same risk score as the control‐limit threshold. The clinical 
meaning of (8.10) is that benefit of delaying biopsy decreases with time due to a 
substantial reduction in potential benefits of biopsy.
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An extension to these MDP models is proposed by Ayvaci et al. (2012) by adding 
budget constraint to the optimal biopsy decision‐making problem. The addition of a 
budget constraint limits the expected expenditure under any policy. The expenditure 
of a policy is estimated by using the expected costs of short‐term follow‐up and biopsy 
following the suggestions of Poplack et al. (2005). Once the budget constraint is intro-
duced, the new model can no longer be solved using the Bellman equations (8.1), 
(8.2), and (8.3). Ayvaci et al. (2012) proposed a mixed‐integer program (MIP) formu-
lation, named “constrained finite‐horizon dual mixed‐integer program (CFDMIP),” to 
solve the constrained MDP problem. Here, we present their main results and findings 
and refer the reader to that article for the details of their model formulation.

Ayvaci et al. (2012) first proposed an equivalent linear program (LP) formulation, 
constrained finite‐horizon dual linear program (CFDLP), for the constrained MDP 
model. Note, however, that the existence of optimal deterministic policies will no 
longer be guaranteed by this model. In fact, an optimal policy will involve a randomized 
decision rule for some states. This brings a significant problem in the clinical interpre-
tation of the optimal policy, as clinical decision making cannot involve any randomi-
zation. To enforce the existence of optimal deterministic policies, the authors introduce 
a set of constraints involving binary variables and propose their CFDMIP model.

In the next theorem, the relation between the optimal value function and the allo-
cated budget is investigated. Since the marginal gains given in total expected QALYs 
decreases with the increasing budget, the optimal value function is concave in the 
available budget. The clinical explanation of this result is that increasing resources 
improves the health outcomes while diminishing the magnitude of these improvements.

Theorem 8.3
(Ayvaci et al. 2012) For CFDLP model, the optimal total expected QALYs is a con-
cave function of allocated budget on the feasible set.

Proof: See the proof of Theorem 1 in Ayvaci et al. (2012). ◾

Ayvaci et  al. (2012) also provided the following lemma, which shows that the 
optimal value function of CFDMIP model also displays diminishing gains similar to 
CFDLP model.

Lemma 8.5
For CFDMIP model, the optimal total expected QALY is subadditive in allocated 
budgets that are binding.

Proof: See the proof of Lemma 2 in Ayvaci et al. (2012). ◾

8.4 NUMERICAL RESULTS

In this section, we summarize some numerical results from Chhatwal et al. (2010), 
Ayvaci et al. (2012), and Alagoz et al. (2013) to illustrate the utilization of MDP 
models in post‐mammography diagnostic decision‐making problem. All of these 
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models provide optimal policies that are easy to implement in clinical practice. We 
will skip the details of parameter estimation including states, state transition proba-
bilities, and rewards and only summarize data sources for the model parameters and 
present some important results.

All three models use a clinical data set consisting of 65,892 consecutive mammo-
graphic findings from 18,269 patients collected at Medical College of Wisconsin, 
Milwaukee (MCS), between April 5, 1999, and February 9, 2004. They obtain the 
mammography outcomes through biopsy and also match them with the state cancer 
registries to include information about false‐negative cases and malignant cases 
missed during the lecture of mammograms.

Next we present the optimal probability thresholds for biopsy decisions in differ-
ent age groups from Chhatwal et al. (2010) in Figure 8.2. Chhatwal et al. (2010) used 
a discount factor γ = 1 over a year. Their optimal policy suggests to send a woman 
between the ages 40 and 42 for biopsy if the probability of cancer is 1% or higher. 
The threshold rises to 2% for a woman between the age of 43 and 63 and 3% for a 
woman between the ages of 64 and 82 and goes up to 20% for a 98‐year‐old woman. 
As Chhatwal et al. (2010) proved, under certain conditions, the optimal policy is of 
control‐limit type and the threshold is nondecreasing with the woman’s age.

In Figure 8.3, we present the optimal biopsy threshold from Alagoz et al. (2013). 
Note that there are three possible actions for this model, resulting in an optimal DCL 
policy with two thresholds. Their optimal policy suggests to send women between 
the ages 40 and 67 for biopsy if the probability of cancer is 2% or higher and recom-
mend short‐term follow‐up if the probability of cancer is between 1% and 2% and 
routine annual mammogram if the probability of cancer is below 1%. The threshold 
for biopsy rises to 3% for women between the ages of 67 and 78, while the short‐term 
follow‐up threshold stays the same. Following a similar manner, optimal thresholds 
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Figure  8.2 Optimal age‐dependent biopsy thresholds obtained by a finite‐horizon MDP 
model with two possible actions. Source: Chhatwal et al. (2010). Reproduced with permission 
of INFORMS.
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for all ages can be found using Figure 8.3. Again, as Alagoz et al. (2013) proved, 
under certain conditions, the optimal policy is of DCL type. Their results are partic-
ularly important to illustrate that by adding small changes to the model structure, one 
can obtain significant clinical benefits.

Finally, Figure  8.4 depicts an example of the optimal biopsy threshold from 
Alagoz et al. (2013) under moderate budget constraint. The optimal policy satisfying 
the budget constraint suggests that women between the ages 40 and 45 should get 
biopsy if the probability of cancer is 1% or higher and the biopsy threshold increases 
to 2% for women between the ages of 45 and 52. An interesting observation is that in 
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Figure  8.3 Optimal age‐dependent biopsy thresholds obtained by a finite‐horizon MDP 
model with three possible actions. Source: Alagoz et al. (2013). Reproduced with permission 
of INFORMS.
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Figure  8.4 Optimal age‐dependent biopsy thresholds obtained by a budget constrained 
finite‐horizon MDP model. Source: Ayvaci et  al. (2012). Reproduced with permission of 
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the optimal scenario, no women between the ages 40 and 52 should get short‐term 
follow‐up. As expected, the budget constraint increases the biopsy threshold for 
almost all of the women, recommending fewer women to be biopsied. Furthermore, 
Figure 8.4 is a great example showing that adding budget constraint to the MDP 
formulation alters the property of optimal biopsy/short‐term follow‐up threshold 
being nondecreasing with age.

8.5 SUMMARY

The significant variability in mammography interpretation urges the development of 
mathematical models that provide radiologists with optimal thresholds over which to 
recommend biopsy and/or short‐term follow‐up. In this chapter, we consider optimal 
decision‐making problems in the context of breast cancer screening. We focus on using 
finite‐horizon discrete‐time MDP models to address the optimal post‐mammography 
diagnostic decision‐making problem and present and compare the model formulations, 
structural properties, and findings of three models from the literature (Chhatwal et al. 
2010; Ayvaci et al. 2012; Alagoz et al. 2013). These models specifically aim to avoid 
unnecessary biopsies, which lead to anxiety and overtreatment (Chhatwal et al. 2010); 
to limit the excessive use of short‐term follow‐up (Alagoz et al. 2013); and to reduce 
the overall cost without sacrificing QALYs (Ayvaci et al. 2012).

Chhatwal et al. (2010) found the optimal age‐dependent biopsy threshold and showed 
that older women have a higher threshold than younger women. Alagoz et al. (2013) 
extended this model by adding short‐term follow‐up exam to the action space and 
provided an optimal policy that includes two thresholds, one for biopsy and the other for 
short‐term follow‐up. Finally, Ayvaci et al. (2012) introduced budget constraints to their 
setup and showed that using optimal thresholds obtained by a cost constrained model 
could save approximately 22% of total cost without sacrificing QALYs.

There are several limitations of these studies. As in the case of many medical 
studies, most of the limitations are related to the lack of relevant data. Ending the 
decision process after a biopsy, calculating transitions in between risk scores by 
ignoring age dependency, calculating the risk score solely based on mammography 
features, and having a limited action space are the examples of such limitations. 
Aside from these, radiologists are assumed to be risk neutral, and patient’s prefer-
ences are ignored. Relaxing any of these assumptions or overcoming the limitations 
could lead to potential future research directions on optimal breast cancer diagnostic 
decisions.
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SURVEILLANCE, AND TREATMENT: 
A BUDGETED SAMPLING 
APPROXIMATION METHOD

Jingyu Zhang1 and Brian T. Denton2

1 Enterprise Model Risk Management, Bank of America, Wilmington, DE, USA
2 Department of Industrial and Operations Engineering, University of Michigan, 
Ann Arbor, MI, USA

9.1 INTRODUCTION

Prostate cancer is the most common solid tumor in American men, with approxi‑
mately one in six men being diagnosed during their lifetime (American Cancer 
Society 2012). While clinical tests and procedures such as the prostate‐specific 
antigen (PSA) test and biopsy can help estimate the probability a patient has prostate 
cancer, the real cancer status cannot be known for certain until the prostate gland is 
pathologically examined following radical prostatectomy (RP), a surgery in which 
the prostate gland is removed. A PSA test is a simple blood test that can help detect 
initial signs of early asymptomatic prostate cancer for men under screening. PSA 
tests are also used to monitor cancer development or biochemical recurrence for 
prostate cancer patients under surveillance. A higher than normal PSA level is 
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associated with higher than normal risk of having prostate cancer, but some patients 
with high PSA do not have prostate cancer; thus PSA testing can result in false 
 positives. On the other hand, some patients with prostate cancer have low PSA; thus 
PSA testing can also result in false negatives.

Biopsy is recommended for patients who are at risk of having prostate cancer. 
It is a medical procedure that samples tissue from the prostate gland to see whether 
malignancy can be confirmed pathologically. If cancer is found, the pathologist 
reports a Gleason score, which is an estimate of aggressiveness of the cancer. 
Biopsy can have false‐negative outcomes due to its sampling nature. Moreover, 
biopsies are also painful, cause anxiety for patients, and in rare cases can result in 
a serious infection.

For patients who have biopsy‐detected prostate cancer, some form of treatment 
will be recommended. There are three common definitive treatment options for local‑
ized prostate cancer: RP, external beam radiation therapy, and brachytherapy 
(Hamilton et  al. 2011). In this chapter, RP is the only definitive treatment option 
under consideration because it is (i) reported to be the best treatment in terms 
of survival rates for all the ages (Nepple et al. 2013; Sooriakumaran et al. 2014), 
(ii)  historically the most common treatment (Burkhardt et al. 2002; Kawachi et al. 
2010; Hamilton et al. 2011), and (iii) the only treatment after which the real cancer 
state can be confidently determined by pathologically examining the removed 
prostate gland; thus this treatment has the most reliable survival data.

Due to the potential side effects and complications of definitive treatments like RP 
and the relatively low mortality risk from localized prostate cancer compared with 
other competing risks, treatment of localized prostate cancer is controversial. To 
address the concerns of overdiagnosis and overtreatment, an alternative response 
to prostate cancer diagnosis, active surveillance (AS), has become popular for low‐
risk prostate cancer (Thompson et al. 2007; Klotz 2010; Mohler et al. 2010, 2012). 
AS involves monitoring the patient through PSA tests and biopsies in order to delay 
and potentially avoid unnecessary definitive treatments. If there is evidence of 
aggressive prostate cancer progression, then a definitive treatment such as RP is 
 triggered;  otherwise the patient continues surveillance as long as it is deemed 
 beneficial given the competing risks.

AS protocols are defined by factors including PSA test frequency, biopsy fre‑
quency, and the trigger for initiating definitive treatment. Although various AS pro‑
tocols have been proposed by Carter et al. (2002, 2007), Kakehi et al. (2008), Dall’Era 
et al. (2008), van den Bergh et al. (2009), Klotz et al. (2010), Soloway et al. (2010), 
and Lawrentschuk and Klotz (2011), the optimal strategy remains unknown. There is 
also a debate about the efficacy of RP versus AS for patients in different risk groups. 
Several groups of researchers compared the effectiveness of AS versus RP through 
randomized clinical trials (Steineck et al. 2002; Walsh 2005; Roemeling et al. 2007; 
Thompson et al. 2007; Hayes et al. 2010; Bill‐Axelson et al. 2011; Wilt et al. 2012). 
However, clinical trials can test only a limited number of AS protocols and require 
a  very long follow‐up time to measure patient’s quality‐adjusted life expectancy. 
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The efficacy of AS is always underestimated unless the optimal AS protocol is iden‑
tified and used. Additionally, nontrivial errors or inaccuracies due to the imperfect 
sensitivity of biopsy result in the patients’ prostate cancer stage and grade not being 
completely observable.

From the aforementioned description, it is clear that there are many decisions to 
be made as part of screening, detection, and treatment of prostate cancer. Moreover, 
the optimal decisions must address the imperfect nature of information about the 
presence of cancer and the potential for unnecessary biopsies and treatments that 
could cause harm (Etzioni et al. 2002; Welch and Black 2010; Moyer 2012). The 
imperfect nature of information for making clinical decisions (e.g., PSA test results, 
biopsy results) makes this problem a natural candidate to be modeled as a partially 
observable Markov decision process (POMDP). A POMDP is a generalization of a 
Markov decision process (MDP) in which the states are not completely observable. 
In a POMDP the decision maker does not know exactly what state the process is in 
at each decision epoch; the probability of being in the states can be inferred based on 
observations of the system. Compared with MDPs, which are defined by a transition 
probability matrix and reward vector, POMDPs additionally require observations and 
an information matrix comprising the conditional probabilities of the observations 
given the underlying states, referred to as core states. Furthermore, the actions in a 
POMDP are defined on the belief state, which is a vector of probabilities of being in 
the core states.

POMDPs have been successfully applied in many industrial application areas. 
Machine maintenance and replacement (Eckles 1968; Ross 1971) and education 
(Karush and Dear 1967) were among the first areas of applications. Other industrial 
applications include structural inspection (Ellis et al. 1995), elevator control pol‑
icies (Crites 1996), fisheries (Lane 1989), and autonomous robot navigation 
(Simmons and Koenig 1995). Some earlier examples of applications (Hu et al. 1993; 
Peek 1999; Hauskrecht and Fraser 2000; Tusch 2000) demonstrated that POMDP 
models also fit the context of medical decision making where a patient’s true health 
state is not directly observable; instead, diagnostic tests provide imperfect 
information about a patient’s true health state. In such situations, physicians rely on 
test results that provide estimates of the probability with which a patient is in a 
certain health state. In such cases, a POMDP describes the decision‐making process 
more accurately than an MDP. Steimle and Denton (2017) provided a review of 
POMDPs in the medical context.

The remainder of this chapter is organized as follows. Section 9.2 introduces the 
basic concepts of a generic POMDP, provides its mathematical description, defines 
the notation used throughout this chapter, and reviews existing POMDP algorithms 
that have been proposed for solving POMDPs. In Section 9.3 a POMDP model is 
proposed specifically for prostate cancer screening, surveillance, and treatment. 
A new approximation method designed for solving finite‐horizon POMDP problems 
is described in Section 9.4. In Section 9.5, the performance of the proposed approx‑
imation method is evaluated through computational experiments in terms of 
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optimality gap and computation time compared with incremental pruning, a gold 
standard of POMDP exact algorithms. Discussions and conclusions are provided in 
Section 9.6.

9.2 REVIEW OF POMDP MODELS AND BENCHMARK ALGORITHMS

A POMDP is an MDP with states that are only partially observable. Core states 
define the true state of the system at a decision epoch, t, and are denoted by s

t
 ∈ S. 

Core state transitions are represented by a Markov chain with transition probabilities 
p

t
(s

t+1
|s

t
, a

t
). Let P(a

t
) denote the matrix form of transition probabilities where a

t
 ∈ A 

is the action in decision epoch t. At each decision epoch an observation is made by 
the decision maker. The core states are inferred from the observations through the 
conditional probabilities q
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 ∈ O known as the information matrix. 

Let π
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) ∈ [0, 1] denote the probability (also referred to as the belief) of being in core 
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t
 at decision epoch t. Let π
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 = {π
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(1), π
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(|S|)} denote the corresponding 

vector of beliefs for all s
t
 ∈ S. Bayesian updating is used to combine observations 

collected at each decision epoch with the prior belief to define the current belief state. 
The POMDP defined on the finite core state set, S, with finite action set, A, and finite 
observation set, O, can be transformed to a continuous and completely observable 
MDP defined on a continuous |S|‐dimensional probability space of π

t
 ∈ Π, where 

Π = [0, 1]|S|. After this transformation, the reward defined on the belief state
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is the expected reward over the core states in epoch t. The continuous belief state 
transition from π
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 to π
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 is defined by Bayesian updating as follows:
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Based on these definitions, the optimality conditions for the continuous state 
MDP can be written as
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and λ is the discount factor. For finite‐horizon POMDPs, the value function at the 
terminal decision epoch, v

N
(π

N
), depends on a terminal reward, r

N
(s

N
), as follows:
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POMDPs are often more difficult to solve than MDPs because they are defined 
on  a continuous belief state. The number of possible policies increases super‐ 
exponentially as the decision horizon increases in POMDPs. For instance, a policy 

for a finite‐horizon POMDP with horizon length N contains | |
| |

| |
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O
t

t

N
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possible observation histories. At each observation, |A| actions can be chosen, which 

makes the total number of possible policies A
O

O

N
1

1 .
Many algorithms for solving POMDPs have been proposed in the operations 

research, computer science, and artificial intelligence communities since the 1970s. 
Sondik (1971) and Smallwood and Sondik (1973) first proved that the continuous 
belief state MDP obtained from a finite‐horizon POMDP has a piecewise linear and 
convex value function at each decision epoch. Many subsequent algorithms solve the 
resulting continuous state MDP by taking advantage of this property. Each possible 
sequence of actions and observations, which defines a policy, corresponds to a hyper‑
plane in the belief space, commonly referred to as an α‐vector. The set of all the 
vectors corresponding to all the policies is called the α‐vector set, and the optimal 
value function is constructed by the epigraph of the vectors of all possible policies. 
Since some vectors in the α‐vector set may be dominated, the epigraph can often be 
represented by a smaller subset of α‐vectors, called the minimal α‐vector set, or par‑
simonious representation of the value function.

In the one‐pass algorithm of Smallwood and Sondik (1973), an α‐vector set is first 
generated for the final stage by enumerating all the possible action and observation 
combinations. In subsequent stages, in order to prune the α‐vector set to a minimal 
α‐vector set, each α‐vector is checked for dominance with respect to other α‐vectors 
by solving a linear program. The one‐pass algorithm can require excessive compu‑
tation since the number of constraints in each linear program is the total number of 
α‑vectors and the number of α‐vectors grows exponentially in the number of observa‑
tion and decision epochs. This shortcoming became the target of later algorithmic 
improvements that try to find the minimal α‐vector set more efficiently.

White (1991) proposed a more efficient routine to reduce the set of α‐vectors to 
the minimal set. This routine generates the minimal α‐vector set beginning with the 
null set. Thus, the linear program used to identify dominance of α‐vectors has fewer 
constraints than the linear program in the one‐pass algorithm, which enumerates all 
α‐vectors. Littman (1994) proposed the witness algorithm, which divides the problem 
into smaller subproblems, according to different actions, in order to reduce the 
number of constraints in each linear program for identifying the minimal α‐vector 
set. Each linear program finds a witness belief point at which another α‐vector is 



206 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

found dominating all other α‐vectors in the current minimal α‐vectors set of an action 
and is subsequently added into this set.

Zhang and Liu (1996) developed an algorithm called incremental pruning. Rather 
than searching the entire state space, it constructs each possible α‐vector in the minimal set 
in an incremental fashion by taking advantage of the decomposable nested structure of 
the value function of a POMDP. The minimal α‐vector set associated with a specific 
action can be decomposed into the vector subsets according to the corresponding 
observations. The vector subsets are added one by one, and the dominated vectors are 
pruned each time a new subset is added. This algorithm was shown to be more efficient 
than other exact algorithms, such as the witness algorithm, in some cases.

Much of the recent literature on POMDPs has focused on methods for solving 
stationary infinite‐horizon POMDPs. However, in the context of medical decision 
making, it is frequently the case that the underlying core state transitions are highly 
nonstationary and the horizon is most appropriately treated as a finite horizon. This 
is particularly true for chronic diseases such as cancer, cardiovascular disease, and 
diabetes, in which the risk of a patient having an adverse event increases with age. 
Finite‐horizon POMDP models built for such purposes could have varying decision 
horizon, changing transition probabilities, actions, and information matrices for dif‑
ferent decision epochs, which are some of the major differences when compared with 
prevailing stationary infinite‐horizon POMDPs.

9.3 A POMDP MODEL FOR PROSTATE CANCER SCREENING, 
SURVEILLANCE, AND TREATMENT

In this model, prostate cancer testing, biopsy, and treatment decisions are performed 
at each decision epoch, t, within a nonstationary finite horizon ending at epoch T (an 
upper bound on the maximum age for screening, surveillance, and treatment). At 
each decision epoch, a patient is in one of seven partially observable prostate cancer 
states including no cancer (NC), organ‐confined prostate cancer with Gleason score 
less than 7 (OCG1), organ‐confined prostate cancer with Gleason score equal to 7 
(OCG2), organ‐confined prostate cancer with Gleason score greater than 7 (OCG3), 
extraprostatic or lymph node‐positive prostate cancer (EPLN), no cancer recurrence 
following treatment (NRFT), possible cancer recurrence following treatment (PRFT), 
and two observable states, metastasis (M, also known as metastatic prostate cancer) 
and death (D). Note that NRFT and PRFT are not directly observable since there is 
no way to know if recurrence will be observed in the future. Let S denote the core 
state set and s St

i( )  index the state at epoch t and stage i. The possible transition 
between the core states is illustrated in Figure 9.1.

At each epoch there are three consecutive stages of actions: PSA testing, biopsy, 
and treatment. a PSA PSAt

( ) { }1 ,  denotes the first‐stage action at epoch t where 
PSA denotes the action to have a PSA test and PSA denotes no PSA test. a B Bt

( ) { }2 ,  
denotes the second‐stage action at epoch t where B means to have a biopsy and B 
denotes not to have a biopsy. a RP RPt

( ) { }3 ,  denotes the third‐stage action at epoch t 
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where RP means to have an RP and RP  denotes not to have an RP; then wait until the 
next epoch. While the first two stages, PSA testing and biopsy decisions, are 
assumed instantaneous and stay in the same epoch, it moves to the next epoch after 
the third stage, treatment decision. Due to the partially observable nature of some 
underlying cancer states, a belief state with probability distribution of being in each under‑
lying cancer state represents patient’s prostate cancer status at each decision epoch. 
Combinations of these three stages of actions for each belief state over the decision 
horizon define the policy for PSA testing, biopsy, and treatment for each belief state. 
The hierarchical nature of the decision process is illustrated in Figure 9.2.

The probability that the patient is in one of the core states at stage i ∈ {1, 2, 3} of 
epoch t is denoted by
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Figure  9.1 Markovian transitions among the prostate cancer states. Partially observable 
states are in the dotted box, completely observable states are in the solid box, and the triangle 
is the death from prostate cancer; transitions due to RP are represented by the dashed lines, and 
other transitions are represented using solid lines; death from other causes is possible from all 
states in the model but not shown in this figure.
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Figure 9.2 Recurring screening, surveillance, and treatment decision process for prostate 
cancer at decision epochs t, t + 1, …, T. The vector ( )i

t  denotes the patient’s belief state (prob‑
ability of being in different health states) at decision stage i, PSA and PSA denote having or 
not having a PSA test, B and B  denote having or not having a biopsy, and RP and RP denote 
performing or not performing RP, respectively. Death from any cause is possible but not shown 
in this figure.
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For the purpose of finding the optimal screening, surveillance, and treatment 
policy, the initial focus is on a population of men who have not been previously 
diagnosed with prostate cancer. Therefore patients are not in states NRFT, PRFT, 
M, or D at the beginning of the first decision epoch, and the belief state can be 
represented as

 t
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which is a five‐dimensional belief vector with four degrees of freedom because 
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( ) ( )( ) 1 for any decision epoch t and stage i.
In addition to the observable core states (M and D), the first‐stage observation set 

O(1) includes 5 PSA intervals: [0, 2.5], [2.5, 4], [4, 7], [7, 10], and [10, ). The second‐
stage observation set O(2) includes 4 biopsy results: negative biopsy result, Gleason 
score <7 (G1), = 7 (G2), and >7 (G3). The third‐stage decision has no observations 
except for the observable core states. Each of the three decision stages has core state 
transition probabilities. In this model p s s at t t( | , )( ) ( ) ( )2 1 1  denotes the state transition 
probability from health state st

( )1  to st
( )2  at epoch t given action at

( )1 , p s s at t t( | , )( ) ( ) ( )3 2 2  
denotes the state transition probability from health state st

( )2  to st
( )3  at epoch t given 

action at
( )2 , and p s s at t t( | , )( ) ( ) ( )

1
1 3 3  denotes the state transition probability from health 

state st
( )3  to st 1

1( )  at epoch t given action at
( )3 . P at

i( )( )  is the matrix form of the core state 
transition probabilities. Q at

i( )( )  is the information matrix of probabilities of observing 
a PSA interval or biopsy result conditional on the core states, where q o s at

i
t
i

t
i( | , )( ) ( ) ( )  

denotes the probability of observing o Ot
i i( ) ( ) given that the patient is in health state 

s St
i( )  where i ∈ {1, 2}.

The overarching objective of screening, surveillance, and treatment is to maxi‑
mize the expected quality‐adjusted life years (QALYs), where QALYs are esti‑
mated by decrementing a normal life year based on (i) the occurrence of biopsy, (ii) 
short‐term side effects of treatment, (iii) long‐term complications of treatment, and 
(iv) the complications of metastases. Thus the optimal screening, surveillance, and 
treatment policy obtained from solving the POMDP trades off the slow progression 
of prostate cancer, side effects and complications of biopsy and treatment, 
increasing competing risks when aging, and potential longer life expectancy due to 
treatment. The objective of the model is represented by the reward function of 
the POMDP.

The rewards for stages 1 and 2 are denoted by r s at t( )( ) ( )1 1,  and r s at t( )( ) ( )2 2,  and are 
zero if no PSA test or biopsy is done, and otherwise they equal the negative disutil‑
ities of PSA tests or biopsy. The reward for stage 3, r s at t( )( ) ( )3 3, , is the reward for 
living from epoch t to t + 1 given the patient is in cancer state st

( )3  and action at
( )3  minus 

the disutility of treatment if treatment is done. The expected reward of a belief state 
( )i
t  is r r s a st

i

s S t
i

t
i

t
i

t
i

t
i( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ,  for i ∈ {1, 2, 3} at any epoch t. Interested 
readers should refer to Zhang (2011) for complete details about the sources and 
values of all model parameters.
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9.4 BUDGETED SAMPLING APPROXIMATION

Exponential growth in the number of α‐vectors is a limiting factor for solving 
POMDPs. The approximation method described in this section uses sampling to 
limit the number of α‐vectors, and the number of sampled belief points, used to rep‑
resent the value function at each decision epoch. It uses a combination of inner and 
outer linearization to estimate error bounds on the value function at each decision 
epoch. The lower and upper bounds are described in Section 9.4.1, and the complete 
algorithm is summarized in Section 9.4.2.

9.4.1 Lower and Upper Bounds

For a maximization problem, a subset of the minimal α‐vector set results in a lower 
bound on the optimal value function for all π ∈ Π. Figure 9.3b illustrates the resulting 
lower bound for a two‐core‐state POMDP with the optimal value function in 
Figure 9.3a. Letting W

t
 denote the minimal α‐vector set at epoch t, the value function 

can be written as
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To control the size of the α‐vector subset, let L
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Figure 9.3 Illustration of the bounds of the approximation algorithm for a two‐core‐state 
POMDP with a scalar of fully represent the belief state. (a) The true value function represented 
by a minimal α‐vector set. (b) A lower bound on the value function formed by an outer linear‑
ization represented by a subset of the minimal α‐vector set. (c) An upper bound on the value 
function formed by an inner linearization represented by a set of sampled belief points and 
their values. Note that dots in (a) and (c) denote the sampled belief points and dashed lines in 
(b) and (c) denote the true value function.
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where (9.5) minimizes the expected difference between the true value function and 
the lower bound over the entire belief state space, Π. Note that f

t
(x) is the probability 

density function for the belief state induced by the optimal policy. In other words, the 
belief points at epoch t are distributed according to f

t
(x) given the optimal policy and 

the belief points of interest at the initial epoch. Also note that Lt
* becomes the true 

minimal α‐vector set W
t
 as c . Lt

* provides an outer linearization of the value 
function and therefore a lower bound at each epoch, t, which can be written as
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In order to obtain an upper bound on the value function, inner linearization is 
utilized to describe a new value function representation based on a set of belief 
points. Letting Y

t
 be the set of sampled belief points on the convex epigraph of the 

value function, the value function can be written as
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The number of points that can be used to represent the upper bound on the value 
function can be large. Therefore a constraint is defined on the maximum number of 
points. Let U
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 be a subset, U
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, such that |U

t
| ≤ k. The optimal subset for any epoch 
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where the objective sums the expected difference between the true value function and 
the upper bound. Figure 9.3c illustrates the upper bound for a two‐core‐state POMDP 
example. Note that the epigraph defined by Ut

* becomes the true value function when 
k . Ut

* provides an inner linearization of the value function and therefore an 
upper bound at each epoch, t, which can be written as
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Using (9.6) and (9.7) the following is a bound on the expected gap between the 
upper and lower bounds on the value function at decision epoch t:

 
t

x

t
UB

t
LB

tv x v x f x dx( ) ( ) ( ) . (9.10)

Clearly (9.10) is optimistic since finding Lt
* and Ut

* is generally not possible for 
three reasons. First, in (9.5), (9.8), and (9.10), the minimal α‐vector set W

t
 and point 

set Y
t
 at epoch t may be extremely large and computationally infeasible to enumerate. 

Second, due to the very large (possibly infinite in the continuous case) number of 
outcomes, it is generally not possible to compute the expectations in (9.5), (9.8), and 
(9.10) exactly. Third, the probability density function, f

t
(x), presumes the optimal 

policy for the POMDP is known.
In spite of the intractable nature of (9.5), (9.8), and (9.10), we show that suitably 

chosen subsets of W
t
 and Y

t
 can provide very good bounds. A budgeted sampling 

approximation that uses greedy sampling to select subsets of W
t
 and Y

t
 with the goal 

of finding near‐optimal solutions and tight error bounds is described in the next 
subsection.

9.4.2 Summary of the Algorithm

This approach uses a sampled belief point set for inner linearization where the sam‑
pling proceeds as follows. The sampled belief point set at epoch t is denoted by N

t
. 

Begin with one belief point of interest in the first decision epoch, 1, and let N1 1{ }. 
In each decision epoch, t, N

t
 is generated from N

t−1
 by sampling from all possible 

actions and observations. Observations are sampled based on the information 
matrix, Q(a

t
). Since the optimal action is unknown, a randomized policy is used to 

sample actions at each epoch. This policy is selected to trade off the competing needs 
for exploration and exploitation of the policy space (specific choices of the 
randomized policies used are provided in Section 9.5.2). The belief point sampling 
process is summarized in Algorithm 9.1.

The belief point sampling process results in at most k‐sampled belief points at 
each epoch t. Using the sampled belief point set, N

t
, the lower and upper bounds are 

computed as described in Algorithms 9.2 and 9.3, respectively.
In Algorithm 9.2, the lower‐bound solution at epoch t is exact if the number of 

minimal α‐vectors never reached the budget c in epochs [t, T]. Once the number of 
α‐vectors in the true minimal α‐vector set increases beyond c, step 3 proceeds with 
greedy selection of vectors using probability of dominance as a proxy for the impor‑
tance of retaining the vector. Note that if a c is chosen not less than k, the number of 
α‐vectors with nonzero probability of dominance cannot be more than c. In such a 
case it is not necessary to specify c, and k serves as the only tunable parameter in the 
lower‐bound algorithm. Also note that Algorithm 9.2 avoids solving any linear 
program, which could significantly improve computation time compared with exact 
algorithms.
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Algorithm 9.1 Belief Point Sampling

Set N1 1{ }, t = 1, and 1 1
repeat
 Find all the belief points with non-zero probability 
of being encountered at epoch t + 1 from the belief point 
set and their probability of being encountered at epoch 
t and the randomized policy
 if The number of belief points with non‐zero 
probability ≤ k then
  Add them to N

t+1

 else
  Add the k points with highest probability to N

t+1

 end if
 Let t = t + 1
until t = T return All the belief points in N

i
, ∀i ∈ [1, 

T] and their probabilities of being encountered

Algorithm 9.2 Value Function Lower‐Bound Algorithm

Initialize L̂T as the true minimal α-vector set, L
T

Set t = T − 1
repeat
 Find the dominating α-vector at each belief points in 
N
t
 using L̂t 1

 A probability of dominance for each α-vector is 
calculated as the sum of the probabilities of being 
encountered of the belief points for which this α-vector 
dominates
 if The number of dominating α‐vectors ≤ c
  Add all α-vectors to L̂t
 else
  Select c vectors with highest probability
 end if
 Let t = t − 1
until t = 1 return α-vector set L̂1
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Note that Algorithm 9.3 starts from an intermediate result of Algorithm 9.2, L̂t , 
at  t  because Algorithm 9.2 is still exact at t  (i.e., L̂t  is the minimal α‐vector set 
at epoch t ). Also, note that when k , N

t
 contains all the belief points that can 

be encountered for all t, and when c , Algorithm 9.2 obtains all the dominant 
α‐vectors. Therefore, as c and k tend to infinity, Algorithms 9.2 and 9.3 converge to 
the optimal solution.

9.5 COMPUTATIONAL EXPERIMENTS

The aforementioned approximation method was evaluated on a set of test instances 
based on the prostate cancer screening, surveillance, and treatment model presented 
in Section 9.3 and further described in Zhang (2011). In Section 9.5.1, details of the 
test instances are provided. Finally, in Section 9.5.2, results from solving the test 
instances are presented. All of the experiments were completed on a 64‐bit Intel 
Xeon 2.5 GHz CPU with 6 MB cache. The solution methods were implemented using 
R version 2.12.1 and IBM ILOG CPLEX version 12.2.

9.5.1 Finite‐Horizon Test Instances

Four finite‐horizon test instances of the POMDP model for prostate cancer in 
Section 9.3 are solved. PSA testing, biopsy, and treatment decisions are made every 
three months until a maximum age of 100 in all these instances. Instance 1 uses the 
base‐case parameter setting in the POMDP model provided by Zhang (2011). 

Algorithm 9.3 Value Function Upper‐Bound Algorithm

Let t be the last epoch at which there are fewer than k 
α-vectors in the true minimal α-vector set
Compute the value functions for all the points in Nt 
using L̂t obtained from Value Function Lower-Bound 
Algorithm
Let t t 1
repeat
 Compute the value function for all belief points in N

t
 

using Equation 9.2 in which all the needed value 
functions at epoch t + 1 are estimated by inner 
linearization for the value functions for all the points 
in N

t+1

 Let t = t − 1
until t = 1 return Value functions for belief points in N

1
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Instance 2 uses a lower bound on the probability of death from all other 
causes. Instance 3 uses an upper bound on the probability of curing prostate cancer 
after treatment. Instance 4 uses the upper‐bound value of the prostate cancer inci‑
dence rate. (The proposed test instances are available upon request from the authors.) 
Instances 2–4 provide some sensitivity analyses for some of the key parameters in 
instance 1. These four test instances are first solved for patients at age 40 with a prior 
belief of 1 of having no prostate cancer. The solutions imply that the optimal 
population‐based prostate cancer screening policy is for all ages above 40 because 
prostate cancer incidence rate is essentially 0 for general men population younger 
than 40. The four test instances are also solved for patients of age 70 with a prior 
belief of 0.5 of having no cancer and 0.5 probability of having organ‐confined 
prostate cancer.

9.5.2 Computational Experiments

The results of computational experiments are presented using the test instances and 
the budgeted sampling approximation method in Section 9.4.2 compared with using 
incremental pruning. Sensitivity analysis is conducted to evaluate sensitivity of the 
method to parameters that influence the performance of the approximation method, 
k, and the randomized policy. Note that c is not examined in the lower‐bound 
algorithm because the constraint on c is never active when letting c > k. Therefore k 
serves as the only tunable parameter of the capacity constraints.

In the computational experiments, the base‐case budget constraint parameter was 
set to k = 3000, and a uniformly randomized policy (equal probabilities for different 
actions) was used for sampling the belief space to generate N

t
. Tables 9.1 and 9.2 

illustrate the performance comparisons between the budgeted sampling approxima‑
tion algorithm and incremental pruning in terms of optimality gap and computation 
time using the base‐case budget constraint parameter settings. The objectives in 
Table  9.1 indicate the expected QALYs of healthy men at age 40 under optimal 
screening, surveillance, and treatment strategies, and the objectives in Table 9.2 cor‑
respond to the expected QALYs under the optimal strategies of 70‐year‐old men with 
50% risk of having extraprostatic prostate cancer.

There are small optimality gaps resulting from the budget sampling approximation 
algorithm in Table 9.1 but no gap in Table 9.2 because the finite‐horizon POMDP 
starting from age 40 leads to longer decision horizon than the finite‐horizon 
POMDP starting from age 70. Table 9.2 presents cases in which the approximation 
algorithm can obtain the same solution quality as exact algorithms. It can be observed 
that the budgeted sampling approximation significantly reduced computation time 
compared with incremental pruning for the finite‐horizon test instances. There are 
several reasons for this. First, the size of the linear program solved in the incremental 
pruning algorithm increases quickly with respect to the length of the decision horizon. 
The budgeted sampling approximation does not require the solution of linear pro‑
grams in computing the lower bound and only requires the solution of small linear 
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TABLE 9.1 Performance Comparison of the Budgeted Sampling Approximation 
Method and Incremental Pruning (IP) via the Four Test Instances Starting from Prior 
Belief of 1 in No Cancer at Age 40

Instance 1 Method IP LBA UBA Gap

Objective 37.774 37.618 37.787 0.169

Time (minutes) 3136 871

Instance 2 Method IP LBA UBA Gap

Objective 38.474 38.441 38.621 0.179

Time (minutes) 3108 926

Instance 3 Method IP LBA UBA Gap

Objective 37.661 37.623 37.806 0.183

Time (minutes) 4010 927

Instance 4 Method IP LBA UBA Gap

Objective 37.411 37.399 37.578 0.179

Time (minutes) 2974 906

LBA denotes the lower‐bound algorithm, UBA denotes the upper‐bound algorithm, and gap denotes the 
optimality gap between the bounds.

TABLE 9.2 Performance Comparison of the Budgeted Sampling Approximation Method 
and Incremental Pruning (IP) via the Four Test Instances Starting from Prior Belief of 0.5 
No Cancer and 0.5 Extraprostatic Prostate Cancer at Age 70

Instance 1 Method IP LBA UBA Gap

Objective 12.439 12.439 12.439 0.000

Time 46m22s  5m31s

Instance 2 Method IP LBA UBA Gap

Objective 12.939 12.939 12.939 0.000

Time 95m43s 19m11s

Instance 3 Method IP LBA UBA Gap

Objective 12.571 12.571 12.571 0.000

Time 127m50s 28m45s

Instance 4 Method IP LBA UBA Gap

Objective 12.409 12.409 12.409 0.000

Time 39m21s  5m36s

LBA denotes the lower‐bound algorithm, UBA denotes the upper‐bound algorithm, and gap denotes the 
optimality gap between the bounds. Time is reported in minutes (m) and seconds (s).
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programs (the number of decision variables in the linear program of (9.9) is restricted 
by k) in computing the upper bound. Second, the budgeted sampling approximation 
estimates the optimal value function and policy at a specific belief point of interest at 
the starting epoch, while incremental pruning computes the entire belief space.

The one‐way sensitivity analysis on algorithmic parameters of the budgeted 
 sampling approximation is the focus in the remainder of this subsection. Table 9.3 
illustrates how the results for instance 1 in Table 9.2 change with respect to k. Note 
that in the experiments, a c greater than k is used to guarantee that the number of 
α‑vectors with nonzero probability of dominating will not exceed c, so that c will not 
influence the results. For the nine‐dimensional POMDP problem, there must be at 
least 1 belief point of interest and nine belief points to compute the inner lineariza‑
tion for the upper bound on the value function, which makes it a total of at least 
10 belief points to set up the upper‐bound algorithm.

Table 9.3 illustrates that the budgeted sampling approximation can return tight 
error bounds within a short computation time compared with incremental pruning. 
Specifically, the optimality gap vanishes when k ≥ 12 for this instance. As k increases, 
the computation time does not increase significantly. When k increases to the base‐
case value, 3000, the computation time increases to the number shown for instance 1 
in Table 9.2. This suggests that the base‐case parameter of k is conservatively selected 
for results in Table 9.2 in which the computation time of the budget sampling approx‑
imation algorithm can be shortened by reducing k without loss of accuracy.

Table 9.4 illustrates how the results change as the randomized policy used to ini‑
tialize the budgeted sampling approximation changes for instance 1 in Table 9.2. In 
the POMDP, the randomized policy used for initialization can be determined by 
Pr(B), the probability of taking the action of biopsy (B). The uniformly randomized 

TABLE 9.3 The Performance of the Budgeted Sampling Approximation Method under 
Different Budget Constraints of k = 11, 12, 13, 30, 300, and 3000 Given c ≥ k Compared 
with Incremental Pruning (IP)

k 11 12 13

Method IP LBA UBA LBA UBA LBA UBA

Objective 12.439 12.439 12.453 12.439 12.439 12.439 12.439

Time 46m22s 1m45s 1m45s 1m45s

k 30 300 3000

Method IP LBA UBA LBA UBA LBA UBA

Objective 12.439 12.439 12.439 12.439 12.439 12.439 12.439

Time 46m22s 1m50s 2m41s 5m31s

LBA denotes the lower‐bound algorithm, and UBA denotes the upper‐bound algorithm. Time is reported 
in minutes (m) and seconds (s).
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policy can be defined as Pr( ) .B 0 5 where the two actions, biopsy and no biopsy, 
have equal probabilities. One‐way sensitivity analysis was performed on the 
randomized policy by varying Pr(B) from 0.1 to 0.9, while the other parameter, k, is 
varied from k = 11 to k = 13, respectively, which are the low and high k values selected 
from Table 9.3.

Table  9.4 shows that the budgeted sampling approximation algorithm is quite 
robust with respect to variation in the randomized policies used to initialize the 
algorithm. Moreover, the different randomized policies result in a difference in com‑
putation time no more than 1 second. The optimality gap was slightly larger at the 
high values of Pr(B).

9.6 CONCLUSIONS

In this chapter, prostate cancer screening, surveillance, and treatment are collec‑
tively modeled as a finite‐horizon POMDP with three stages in each decision 
epoch. This integrated formulation could potentially help the patients optimally 
decide when to have a PSA test, whether to follow up by a biopsy, and whether to 
subsequently initiate a definitive treatment at any age. The model took into 
account common risk factors such as age, PSA, and biopsy Gleason score, as well 
as disease‐ and age‐specific survival expectations, QALY decrements because of 
surveillance and treatment, and other‐cause mortality. The optimal strategy is not 

TABLE 9.4 The Performance of the Budgeted Sampling Approximation Method under 
Different Randomized Policies, Pr( ) 0.1B , 0.5, and 0.9 Compared with Incremental 
Pruning (IP)

k 11

Pr(B) 0.1 0.5 0.9

Method IP LBA UBA LBA UBA LBA UBA

Objective 12.439 12.439 12.439 12.439 12.453 12.439 12.453

Time 46m22s 1m45s 1m45s 1m45s

k 13

Pr(B) 0.1 0.5 0.9

Method IP LBA UBA LBA UBA LBA UBA

Objective 12.439 12.439 12.439 12.439 12.439 12.439 12.453

Time 46m22s 1m45s 1m45s 1m46s

LBA denotes the lower‐bound algorithm, UBA denotes the upper‐bound algorithm, LBACR denotes the 
lower‐bound algorithm with core state reduction, and UBACR denotes the upper‐bound algorithm with 
core state reduction. Time is reported in minutes (m) and seconds (s).
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the same for all patients but individualized depending on patient’s belief of being 
in different cancer states, which are Bayesian estimated by past observations of 
PSA and biopsy results.

The optimal prostate cancer screening and treatment policy obtained from the 
POMDP model has some characteristics that differ from other previous research 
(Zhang et al. 2012a, 2012b). First, the policy is based on the probability of being 
in one of several different cancer states, NC, OCG1, OCG2, OCG3, and EPLN, 
which is estimated from all of the patient’s PSA and biopsy history using 
Bayesian updating. Second, there is no fixed PSA or biopsy frequency if AS is 
suggested; rather, PSA tests and biopsies are referred according to patient’s age 
and the probabilities of being in different cancer states that maximizes the 
expected QALYs for the patient. Compared with the results under the assumption 
of treating the patients with RP immediately after diagnosis, the optimal surveil‑
lance and treatment strategy after including different cancer states and AS almost 
doubles the expected benefit of screening in terms of QALYs for the base‐case 
parameter setting.

Results for the budgeted sampling approximation method, which uses budget con‑
straints to restrict the numbers of sampled belief points and α‐vectors at each decision 
epoch, suggest that the method may outperform incremental pruning on some non‑
stationary finite‐horizon POMDPs. Specifically, the test instances in Table 9.3 dem‑
onstrated that the approximation method can generate solutions with zero optimality 
gap and significantly reduce the computation time compared with incremental 
pruning. The approximation methods are quite robust to the budge constraint, k, and 
the randomized policy used to initialize the budgeted sampling approximation 
method. Specifically for the test instances, k ≥ 12 can guarantee the optimality gap 
obtained from the budgeted sampling approximation less than 0.001 QALYs, and the 
optimality gap and computation time are robust to a wide range of randomized policy. 
On the other hand, as one of the limitations, tuning parameter k cannot be automati‑
cally determined, and its optimal setting, which achieves the highest computational 
efficiency with no optimality gap, could vary from problem to problem. When prob‑
lems scale up, it becomes more difficult to determine the tuning parameters of the 
approximation algorithm to keep a good balance between efficiency and accuracy, 
which could limit applicability of the algorithm especially when a user needs to 
guarantee zero optimality gap.

The three‐stage POMDP formulation can be generalized to a multistage POMDP 
formulation for other medical decision‐making problems. There are many examples 
of chronic diseases for which there are multiple tests with varying sensitivity and 
specificity for diagnosing a disease. For instance, bladder cancer has a similar sur‑
veillance process in which imperfect tests may be followed by biopsy and subsequent 
treatments. Examples of such tests include urine‐based markers for bladder cancer 
(Lotan and Roehrborn (2002); Toma et al. (2004)). Thus, the model and methodol‑
ogies described in this chapter are anticipated to be applicable to problems beyond 
the setting of prostate cancer.
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10.1 INTRODUCTION

Imperfect adherence to medical screening tests and treatments is a well‐recognized 
problem in the literature. Studies have shown that in the United States alone, nonad
herence to medications accounts for 3%–10% of total US healthcare costs, which 
amounts to $100–$300 billion of avoidable healthcare costs (Benjamin 2012). 
Adherence to medications, in general, is estimated to be around 50% in developed 
countries, and this number is even lower in developing countries (O’Donohue and 
Levensky 2006). In the context of breast cancer screening, based on a recent report 
by the Centers for Disease Control and Prevention (CDC), only 66.8% of women 
40  years of age and older had a mammogram between 2011 and 2013 (Center 
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for Disease Control and Prevention 2016), and based on a study by Patrin et al., less 
than 10% of women undergo annual mammograms over a period of 9–10 years 
(Partin et al. 2005).

Studies on patient’s adherence to screening and/or treatment can be categorized 
into two broad groups: (i) studies that aim to identify the adherence rate and the 
factors associated with it (Subramanian et  al. 2004; Wu et  al. 2007; Tejeda et  al. 
2009; Hassan et al. 2012; Madadi et al. 2014; Liang et al. 2016) and (ii) studies that 
characterize the effects of adherence on tests or treatment efficacy and/or optimize 
screening/treatment guidelines based on patients’ adherence behaviors (Brailsford 
et al. 2012; Mason et al. 2012; Ayer et al. 2015; Madadi et al. 2015).

The focus of the first group of studies is on understanding the underlying factors 
that affect an individual’s adherence to a screening test or medication. Different 
factors considered in these studies such as age, gender, race, insurance status, income, 
and family history of a specific disease. Understanding these factors assist the health 
providers in characterizing significant factors and predicting the adherence behavior 
of a patient. There are many studies in the literature addressing this issue for different 
chronic diseases, for example, breast cancer (Wu et  al. 2007; Tejeda et  al. 2009; 
Madadi et al. 2014) and colorectal cancer (Subramanian et al. 2004; Hassan et al. 
2012; Liang et al. 2016).

The second group of studies aims at optimizing screening or treatment guidelines 
based on a patient’s adherence to a screening or treatment strategy. This line of 
research tailors screening/treatment guidelines for each specific patient based on the 
factors that affect patient compliance. Unlike the first group of studies, there has been 
limited research in this area (Brailsford et al. 2012; Mason et al. 2012; Ayer et al. 
2015; Madadi et al. 2015). Brailsford et al. (2012) used a three‐phase discrete event 
simulation to model breast cancer and screening policies incorporating women’s 
adherence factors in their model. They assigned behavioral attributes to each 
simulated woman to control her compliance with the prescribed mammograms in 
their model. They compared a limited number of screening policies, including the 
current UK policy, in terms of the number of screen‐detected cancers and life years 
saved. Mason et al. (2012) developed a Markov decision process (MDP) model to 
optimize the treatment decision for patients with type 2 diabetes. Their model incor
porates a Markov model linking adherence to treatment effectiveness and long‐term 
health outcomes. In another study, Ayer et al. (2015) developed a partially observable 
MDP to analyze the role of behavioral heterogeneity in women’s adherence on 
optimal mammography screening recommendations. Madadi et al. (2015) evaluated 
a wide range of static and dynamic mammography screening policies for different 
adherence groups with different characteristics. They characterized the most efficient 
in‐practice and alternative screening policies for each adherence group in terms of 
quality‐adjusted life years (QALYs) and lifetime breast cancer mortality risk.

This book chapter falls into the second category and focuses on the cost‐effective 
analysis of different screening policies with consideration of interindividual adher
ence differences. More specifically, we aim to perform a cost‐effectiveness analysis 



COST‐EFFECTIVENESS ANALYSIS OF BREAST CANCER MAMMOGRAPHY 225

of mammography screening policies while incorporating the uncertainty in patients’ 
adherence behaviors. There are a lot of controversies on the mammography screen
ing recommendations, and there are varying guidelines from different health agencies 
on the best screening frequency and the age range that women should undergo mam
mography screenings. The US Preventive Services Task Force (USPSTF) issued a 
revised screening mammography guidelines in 2009 stating that the screening mam
mograms should be done every 2 years between ages 50 and 74 for women at average 
risk of breast cancer. In late 2015, the American Cancer Society (ACS) also revised 
its previous guideline of annual screenings starting at age 40 and issued a new guide
line. In the new ACS guidelines, women aged 45–54 years should be screened annu
ally, and women 55 years and older should transition to biennial screenings or have 
the opportunity to continue screening annually.

In this chapter, the objective is to characterize the most cost‐effective mammog
raphy screening policies for different adherence cases. To the best of our knowledge, 
this is the first cost‐effective analysis study incorporating uncertainty in adherence 
behaviors. In the following section, we will present a partially observable Markov 
chain to model and compute the expected remaining QALYs and the associated 
screening and treatment costs for different screening policies. We apply the model to 
breast cancer data to analyze different mammography screening policies for different 
adherence behaviors.

10.2 MODEL FORMULATION

A randomized discrete‐time partially observable Markov chain is developed to cal
culate the associated expected remaining QALYs as well as the expected screening 
and treatment costs for different screening strategies. A partially observable rather 
than fully observable Markov chain is developed to take into account the possi
bility of receiving inaccurate results from the mammography screening tests (false 
negatives and false positives). The state transition diagram of the underlying 
Markov chain presenting the natural history of breast cancer is shown in Figure 10.1. 
We represent patient’s health using the following five states: breast cancer‐free 
(state 0), early breast cancer (state 1), advanced breast cancer (state 2), death from 
breast cancer (state 3), and death from other causes (state 4). We define cancer 
stages in our model based on the American Joint Committee on Cancer (AJCC) 
cancer stage classification. For more details about the breast cancer stage 
classification, please refer to Madadi et al. (2015). In our model, the first three states 
(states 0, 1, and 2) are partially observable since we cannot identify the true health 
status of a patient due to imperfect nature of mammography test. We assume that 
the transitions occur in 6‐month intervals to capture the natural history of breast 
cancer, that is, to transition to the advanced breast cancer state, a patient should 
transition to the early breast cancer state first, which takes at least 6 months (Chen 
et al. 1996).
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Two methods of detection are considered in the model: screening mammography 
and self‐detection (SD), that is, breast self‐examination. We also incorporate the pos
sibility of interval cancer detection. Interval cancer and self‐detected cancers are 
separated since their incidence rates and detection processes are different. Interval 
cancer occurs when a patient is detected with cancer within 1 year of receiving a 
negative mammogram result (Burhenne et al. 1994). However, in the case of an SD, 
the patient has not undergone a screening mammogram within the year prior to can
cer diagnosis. Since it is very less likely to develop symptoms for a patient who 
received a negative mammogram result within the past year (interval cancer) com
pared with a patient whose last mammogram occurred more than 1 year prior to 
showing symptoms (SD), interval cancer detection and SD are distinguished.

At each epoch, there are two possible actions a patient can take: undergo a mam
mogram test or wait (do nothing). When the prescribed action is a mammogram, and 
the patient actually undergoes a mammogram test, she may receive a positive or a 
negative result. Since mammography is not a perfect test and has a relatively low 
sensitivity (the probability of receiving a true positive result), after a positive mam
mogram, a breast biopsy test is usually conducted to check if the result is true positive 
or not. Biopsy test is assumed to be perfect since it has a relatively high sensitivity 
and specificity (probability of receiving true negatives) rates. If the biopsy result is 
negative suggesting a false‐positive mammogram, the patient proceeds to the next 
epoch. However, if the biopsy is also positive (confirms the mammographic find
ings), cancer is detected and the screening process terminates. After a cancer detec
tion, we assume that the patient starts treatment. However, we do not model the 
treatment explicitly. Instead, we assume that when the patient is diagnosed with 
breast cancer, she receives a terminal (lump‐sum) reward or cost (depending on the 
method of detection) and leaves the model. When a negative mammogram result is 

Cancer
free (0)

Advanced
breast

cancer (2)

Death from
other causes

(4)

Death from
breast cancer

(3)

Early breast
cancer (1)

Figure 10.1 Natural history of breast cancer.
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received, two events are possible afterward: some symptoms show up within 1 year 
(interval cancer), or the woman proceeds to the next epoch without developing any 
symptoms. If the patient shows symptoms and the interval cancer is detected, the 
patient receives a lump‐sum reward or cost and leaves the model.

If the woman skips the recommended mammogram or the recommended action 
is  to wait, she may develop some symptoms suggesting that there may be cancer 
present. In this case, depending on the action in the previous epoch (6 months ago), 
we either have an SD (if the previous action was a wait) or an interval cancer (if the 
previous action was a mammogram). Note that the interval between two decision 
epochs in the process is 6 months. Therefore, if the action in the previous epoch was 
a mammogram and symptoms occur after the current epoch, we have an interval 
cancer and not an SD. We assume that when the woman feels a lump in her breast 
(symptom), she will go for a mammogram and if the result of the mammogram is 
positive, she would have a biopsy test to confirm that the cancer is present. If both the 
mammography and biopsy tests are positive, similar to the previous case, the patient 
leaves the model. However, if the follow‐up tests (i.e., mammogram or biopsy) are 
negative, the patient proceeds to the next epoch.

Let q(t) denote the probability of patient adherence to a prescribed mammogram 
at time t. The value of q(t) can be estimated based on the patient’s characteristics 
using previous research on adherence, discussed earlier. Section 10.3 discusses the 
resources used to estimate a patient’s adherence probability in more details. Let q

1
(t) 

and q
2
(t) be the lower and upper confidence bounds of the estimated adherence prob

ability at time t (q(t)). The expected objective value (QALYs or cost) for policy d at 
time t when the current occupancy distribution is π can be calculated as follows:
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where ( )a
tV  is the value function at time t when the occupancy distribution is π and 

action a is taken. Note that Equation 10.1 calculates the average value of the expected 
objective function over the interval [q

1
(t), q

2
(t)].

In this section, we present the model formulation for the screening and treatment 
costs associated with screening policies. The formulation for the expected QALYs is 
similar and is omitted for the purpose of brevity. Interested readers can find the model 
for QALYs in Madadi et al. (2015).

Suppose ( )a
tC  represents the cost associated with the screening policy under 

study when the belief state distribution is π and action a is taken at time t. The fol
lowing are the formulations to estimate ( )a

tC  when the prescribed action is to 
“undergo a mammogram test” (Equation 10.2) and to “wait and do nothing” 
(Equation 10.3). Note that in the following formulation, the time index of some 
notations such as occupancy distribution, states, actions, and observations are 
dropped for the brevity of notation.
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If the prescribed action at time t is a mammogram, then the expected associated 
cost is
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where π(s) is the probability that the patient is currently in health state s and Q o st
a  

is the probability of observing observation o when action a is taken and the patient is 
in state s at time t. λ is the discount factor and P s st

a  is the probability of transition
ing to state s′ when the patient is currently in state s and action a is taken at time t. 
LC

1, t
(s) and LC

2, t
(s) are the lump‐sum costs, or more specifically the total diagnostic 

costs and treatment cost upon cancer detection when the cancer is detected through 
symptoms and mammography screening tests at time t, respectively. The associ
ated treatment costs include initial, continuing, and terminal care costs. Note that 
the treatment costs for screen‐detected and symptomatic cancers are different due 
to the difference in the distribution of the stages at which the cancer would be 
detected under each diagnosis setting. SC

t
(s, a, o) is the associated screening costs 

when the patient is in state s and takes action a and observes o and is calculated in 
Equation 10.4.

The logic for Equation 10.2 is as follows. When a patient undergoes a mammo
gram, two outcomes are possible. She either receives a positive result or a negative 
result. The possible cases are discussed in the following.

If the patient is in the cancer‐free state and she receives a negative result, the only 
cost occurs for the current period is the mammography cost. In this case, the patient 
remains in the model, and her occupancy distribution at time t + 1 is updated. The 
updated occupancy distribution for epoch t + 1 is represented by ν(π, a, o), and its 
formulation is presented later in this section (Equations 10.5 and 10.6).

If the patient is in the cancer states but receives a negative result, then she may dev
elop some symptoms before the next time epoch with probability Q IC s st

M , , .1 2  
In this case, interval cancer is identified, and the incurred cost includes the treatment 
costs as well as the screening and follow‐up test costs to detect cancer (LC

1, t
(s)). 
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In  our model, we do not formulate the cancer post‐diagnosis explicitly. Instead, 
we assume that after a cancer is detected a lump‐sum cost (i.e., the expected total 
treatment and follow‐up diagnostic costs) incurs to the system and the patient leaves 
the model. We assume that interval cancers can only occur in the cancer states since 
even the fastest‐growing cancers cannot grow from a single cell to a symptomatic 
size within 6 months (Chen et al. 1996), which is the interval between two subsequent 
epochs in our model. If the patient is in one of the cancer states, receives a negative 
result, and does not develop any symptoms before the next time epoch, the only 
incurred cost is for the mammogram. In this case, she stays in the model and transits 
to the next time epoch.

If the patient is in the cancer‐free state and receives a positive mammography test 
result, she will undergo a follow‐up biopsy test. In this case, her actual health state is 
determined and she remains in the model. However, if she is in any of the two cancer 
states and receives a positive result, the costs incurred to the system are the associ
ated treatment and follow‐up costs, which are a function of her cancer state. In this 
case, the process is terminated and the patient leaves the model.

If the policy does not recommend a mammography test at time t (a
t
 = W), the 

expected screening and treatment cost is
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where I(t) is an indicator function representing whether there was a mammogram 
scheduled within the last 12 months (I(t) = 1) or not (I(t) = 0) and Q IC st  is the 
probability of diagnosing interval cancer within 1 year of a negative mammo
gram test.

When the current action at time t is “to wait,” for the cancer that develops symp
toms, two separate cases need to be considered to distinguish between an SD and an 



230 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

interval cancer. If a cancer is diagnosed through symptoms and the patient did not 
undergo a mammogram test in the previous year, the diagnosis is considered as an SD. 
However, if there was a negative mammogram within the previous 12 months, the 
diagnosed cancer is an interval cancer.

The following discusses the logic behind Equation 10.3. If the patient is in the 
cancer‐free state and does not show any symptoms, no cost incurs to the system for 
the current time epoch, and the patient remains in the model. However, if symptoms 
develop in a cancer‐free patient, the follow‐up test shows the true health state of the 
patient. In this case, the follow‐up costs, including mammogram and possible biopsy 
costs, incurs to the system, and the patient proceeds to the next epoch. If the patient 
is in one of the cancer states and does not develop any symptoms, there is no cost 
incurred to the system. In this case, she proceeds to the next time epoch. However, if 
she is in cancer states and shows some symptoms that result in cancer detection, 
depending on the action in the previous time epoch, we have either SD (when a

t−1
 = W) 

or interval cancer (when a
t−1

 = M). In such case, the cancer is detected, and the 
expected follow‐up test and future treatment costs are calculated, and the process is 
terminated. If the patient does not show any symptoms, she transits to the next epoch 
with no cost added to the system.

The associated costs of screening/diagnostic tests, SC
t
(s

t
, a

t
, o

t
), are calculated as 

follows:
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where CM and CB are the costs for mammography and biopsy test, respectively. Note 
that depending on the action taken and the observation received, this could include 
screening/diagnostic mammography costs and/or biopsy costs. More specifically, if 
the patient undergoes a mammogram, receives a negative result, and does not develop 
any symptoms until the next epoch, the associated screening cost is CM. If the patient 
is in the cancer‐free state and receives a positive result, she will be referred for biopsy. 
In such case, the associated screening cost is CM + CB. If the prescribed action is “to 
wait” and patient does not develop any symptoms until the next epoch, no screening 
cost is incurred. If the patient is in the cancer‐free state, the prescribed action is “to 
wait” and the patient develops symptoms (o

t
 = SD +), she will be prescribed a mam

mogram and cost CM will incur. However, it is possible that she receives a false‐
positive mammogram result (with probability Q Mt

M ( )0 ) in which case she will be 
referred for biopsy and therefore biopsy cost of CB will incur. Note that for the cases 
when the cancer is present and the test results are positive, the screening/diagnostic 
costs are added up to the lump‐sum costs of LC

1, t
(s) or LC

2, t
(s). Note that LC

1, 

t
(s) ≤ LC

2, t
(s) since it is more costly to treat a cancer in advanced stages.
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As mentioned earlier, after each observation the patient occupancy distribution 
needs to be updated. Updates take place in two steps. In the first step, the occupancy 
distribution is updated based on the information gathered at time t after a “mammo
gram test” or “no symptom” outcome. Equation 10.5 presents the formulation to 
update the occupancy distribution π after taking action a

t
 and receiving observation 

o
t
 at time t. Note that the time indices in ξ

π, a, o
(s) are dropped for the clarity of notation:
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In the second step (Equation 10.6), we need to account for the possibility of tran
sitioning from one health state to another during a time period (between time t and 
time t + 1). Therefore, at time t + 1 the updated occupancy distribution would be

 ( ) ( ) ., ,, ,a o s s P s sa o t
a  (10.6)

10.3 NUMERICAL STUDIES

In this section, we examine the performance of different screening policies including 
in‐practice guidelines and some alternative screening strategies. Estimations of 
parameters in the numerical analyses are adopted from the literature. Table 10.1 pres
ents the input data sources used in the numerical analyses.

We consider two adherence cases in this section: (i) perfect adherence case and (ii) 
general population adherence case. In the first adherence case, we assume that the 
patient complies with the recommended policy completely and undergo mammog
raphy screenings at the prescribed ages. In the second case, however, we consider the 
US population adherence probabilities adopted from Madadi et  al. (2014). These 
adherence probabilities (probability that the patient complies with a prescribed screen
ing) are age dependent and are extracted using the Health Information National Trends 
Survey (HINTS) data (Nelson et al. 2004). For the immediate reward in calculating 
the QALYs, we used the age‐ and state‐specific mammography and biopsy disutility 
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values provided in Stout et al. (2006). Post‐cancer life expectancies (the lump‐sum 
rewards) are calculated using age‐specific mortality rates for patients under cancer 
treatment from the SEER data based on the method described in Arias et al. (2012). 
Mammography and biopsy costs, as well as the expected treatment costs, are adopted 
from Tosteson et al. (2008). Note that all cost values in Tosteson et al. (2008) are in 
2005 US dollars. These costs estimates are adjusted to the calendar year 2016 dollars 
by using the Bureau of Labor Statistics Consumer Price Index (2016).

The old and new ACS policies, the USPSTF policy, and biennial and triennial 
policies are among the in‐practice policies investigated. Since the ACS does not 
specify a stopping age, two different stopping ages of 90 and 100 are considered. 
Stopping age of 100 is considered to be consistent with the US life tables reported by 
the CDC. We also considered stopping age of 90 since in the new ACS policy, it is 
stated that women should continue screening as long as they have a life expectancy 
of 10 years or more. As a result, there are two different alternatives for the old ACS 
policy. For the new ACS policy, as mentioned earlier, women are recommended to 
undergo either annual or biennial screening after 55. Considering the two different 
stopping ages, in total, there are four alternatives for the new ACS policy. We also 
examined the performance of several alternative policies in which screening interval 
changes in the patient lifetime to account for the dynamics of the breast cancer inci
dence and progression rate throughout the patient’s lifetime. These dynamic 
alternative screening strategies are represented by a vector (a

1
, i

1
, a

2
, i

2
, a

3
) where the 

TABLE 10.1 Sources for Parameter Estimation

Parameter References

Transition probabilities Maillart et al. (2008) and Epstein et al. (2001)
BSE sensitivity and specificity Baxter (2001)
Mammography sensitivity and specificity Kerlikowske et al. (2000)
Initial risk of early and advanced breast 
cancer

Gail model (National Cancer Institute 2016; 
Gail et al. 1999)

Lump‐sum rewards SEER (Jemal et al. 2009), Arias et al. (2012), 
and Wishart et al. (2008)

Intermediate rewards Sonnenberg and Beck (1993) and Stout et al. 
(2006)

Interval cancer rate Croteau et al. (2005)
Screening and diagnostic mammograms, 
biopsy, and treatment costs

Tosteson et al.(2008), Bureau of Labor 
Statistics Consumer Price Index (2016)

Stage distribution of screen‐detected 
breast cancer

Bleyer and Welch (2012)

Stage distribution of symptomatic breast 
cancer

Plevritis et al. (2007)

Adherence probabilities Madadi et al. (2014) and HINTS (Nelson 
et al. 2004)

Discount factor Gold et al. (1996)
Willingness to pay Hirth et al. (2000)
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vector’s elements represent the age at the first screening, first screening interval, 
switching age, second screening interval, and age at the last screening, respectively. 
For example, (45,1,50,2,90) presents a policy that recommends annual screenings 
between age 45 and 50 and biennial screenings afterward up to age 90.

Screening policies are compared in terms of the expected screening and treatment 
costs as well as the expected remaining QALYs. We calculate the cost‐effectiveness 
ratio (CER) that represents additional costs per additional QALYs gained for choos
ing an intervention strategy (Gold et al. 1996):

 
CER

C

Q

C C

Q Qp
p

p

p o

p o

, (10.7)

where C
p
, C

o
, Q

p
, and Q

o
 are the cost associated with policy p and “no screening” 

policies and QALYs associated with policy p and “no screening” policies, respectively.
Results are also interpreted using the net benefit framework, where net monetary 

benefit (NMB) is defined as

 NMB Q Cp p p , (10.8)

where γ represents the cost‐effectiveness threshold, or willingness to pay (WTP), in 
$/QALY. We use a common value for γ of $50,000 per additional QALY gained for 
an intervention provided in the literature (Hirth et al. 2000). Intervention programs 
inclusive of this CER threshold are considered cost‐effective.

10.4 RESULTS

We present the results for two adherence cases (perfect adherence and population‐
average adherence) in Sections 10.4.1 and 10.4.2, separately.

10.4.1 Perfect Adherence Case

Table  10.2 shows the incremental costs, QALYs, CER, and NMB for different 
screening strategies under the assumption of perfect adherence. Note that for this 
case, we assume that a woman undergoes a prescribed screening mammogram with 
probability 1, that is, q

1
(t) = q

2
(t) = 1.

As the results show, all policies are cost‐effective compared with “no screening” 
strategy using the WTP threshold of $50,000. Policy (45,1,50,2,90) is the most cost‐
effective policy with an NMB value of $20,715.83. Note that this policy is very 
similar to the new ACS policy with a slight difference in the screening frequency 
between age 50 and 55. Moreover, the two alternatives of the old ACS policy are the 
least cost‐effective policies with CER value of 9730.09 and 9818.62 for the stopping 
ages of 90 and 100, respectively. Results also imply that the dynamic screening pol
icies that alter screening intervals over the screening horizon are more effective than 
static policies such as the old ACS policies, every 2 years and every 3 years. The new 
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ACS policies (biennial alternative) are dominated by the alternative screening policy 
(45,1,50,2,90). However, note that the QALYs for theses screening policies are very 
close (37.5183 years for (45,1,50,2,90) vs. 37.5145 and 37.5144 for the new ACS 
biennial alternative with stopping ages of 90 and 100, respectively). Note that the 
new ACS policies outperform the old ACS policies in terms of both the remaining 
expected QALYs and the expected costs.

Figure 10.2 shows the trade‐off plot for different screening policies, that is, the 
incremental cost and QALYs compared to “no screening” policy. The USPSTF, 
(50,1,55,2,90), (45,1,50,2,90), and the annual alternative of the new ACS policy with 
stopping age of 90 are among the efficient frontier or dominant policies.

10.4.2 General Population Adherence Case

Table 10.3 presents the cost‐effectiveness analysis results for the general population 
adherence case. For the general population case since the adherence is not perfect, it is 
expected that the most effective policy (with the highest QALYs) to be more invasive 
compared to the perfect adherence case. As the results suggest, the old ACS policy with 
stopping age of 90 has the highest QALYs. However, the most cost‐effective policy for 
this case is the annual alternative of the new ACS policy with NMB value of $23,589.83.

Note that for both adherence cases, it is beneficial in terms of both QALYs and the 
expected cost to stop screening at age 90. In other words, the harms of screening at 
older ages outweigh the benefits. However, regarding the screening starting age, the 
results vary between the two adherence cases. For the general population case, due to 
non‐perfect adherence, starting screenings at age 40 would be beneficial, while for 

TABLE 10.2 Cost‐Effectiveness Analysis of Different Screening Policies Relative 
to a No Screening Policy (Doing Nothing) – perfect Adherence Case

Policy ΔCost ($) ΔQALYs (years) CER ($) NMB($)

USPSTF 1093.89 0.4113 2659.59 17,905.41
(50,1,55,2,90) 1569.26 0.4645 3378.39 19,846.61
Every 3 years (stopping at age 90) 1718.86 0.4366 Dominated 17,893.08
Every 3 years (stopping at age 100) 1724.57 0.4372 Dominated 17,915.42
(45,1,50,2,90) 2262.99 0.5041 4489.17 20,715.83
Every 2 years (stopping at age 90) 2479.03 0.4968 Dominated 19,850.00
Every 2 years (stopping at age 100) 2484.94 0.4965 Dominated 19,820.09
New ACS (stopping at age 90) 2642.33 0.5003 Dominated 19,733.51
New ACS (stopping at age 100) 2650.36 0.5002 Dominated 19,711.40
New ACS (annual alt.‐ stop at age 90) 3340.93 0.5060 6602.63 18,697.37
New ACS (annual alt.‐ stop at age 100) 3353.89 0.5030 Dominated 18,482.23
(40,1,50,2,90) 3691.68 0.4883 Dominated 16,854.73
(40,1,55,2,90) 4071.04 0.4845 Dominated 15,822.44
Old ACS (stopping at age 90) 4769.69 0.4902 Dominated 14,779.91
Old ACS (stopping at age 100) 4782.65 0.4871 Dominated 14,536.38
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Figure 10.2 Efficient frontier policies – perfect adherence case.

TABLE 10.3 Cost‐Effectiveness Analysis of Different Screening Policies Relative 
to a No Screening Policy (Doing Nothing) – general population Adherence Case

Policy ΔCost ($) ΔQALYs (years) CER ($) NMB($)

USPSTF 774.08 0.3748 2065.32 17,965.92
(50,1,55,2,90) 995.15 0.4250 2341.53 20,254.85
Every 3 years (stop at age 90) 1104.45 0.3941 Dominated 18,600.55
Every 3 years (stop at age 100) 1107.34 0.3949 Dominated 18,637.66
(45,1,50,2,90) 1368.54 0.4637 2951.35 21,816.46
New ACS (stop at age 90) 1544.08 0.4690 3292.28 21,905.92
New ACS (stop at age 100) 1548.37 0.4694 3298.61 21,921.63
Every 2 years (stop at age 90) 1609.82 0.4611 Dominated 21,445.18
Every 2 years (stop at age 100) 1612.98 0.4614 Dominated 21,457.02
New ACS (annual alt., stop at age 90) 1895.17 0.5097 3718.21 23,589.83
New ACS (annual alt., stop at age 100) 1900.86 0.5094 Dominated 23,569.14
(40,1,50,2,90) 2024.70 0.4704 Dominated 21,459.30
(40,1,55,2,90) 2200.42 0.4757 Dominated 21,584.58
Old ACS (stop at age 90) 2551.88 0.5164 4941.67 23,268.12
Old ACS (stop at age 100) 2557.58 0.5162 Dominated 23,252.42
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the perfect adherence case, the starting screening age of 45 is more effective. For 
both cases, static policies with fixed screening intervals are dominated by dynamic 
policies with a more invasive screening schedule in younger ages.

Figure 10.3 shows the trade‐off plot for different screening policies for the general 
population. For this case, the USPSTF policy, all alternatives of the new ACS policy, 
and both alternatives of the old ACS policy are among the efficient frontier or domi
nant policies.

It is difficult to directly compare our results with those of previously published 
analyses because past results did not incorporate the uncertainty in adherence 
behavior, and also they varied considerably, in part because of differences in the 
analytic assumptions (including the age structure of the study population, screening 
methods included, screening scenarios evaluated, etc.). However, our results reiterate 
the overall conclusion from these previous analyses that, in general, a screening 
mammography program can be cost‐effective compared with no screening 
(Mandelblatt et al. 2003; Stout et al. 2006).

10.5 SUMMARY

Current screening mammography guidelines assume that women’s adherence to the 
guidelines is perfect, that is, women undergo their mammograms as prescribed by 
their physicians/health providers. However, as previously shown, this is not the case. 
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Figure 10.3 Efficient frontier policies – general population adherence case.
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In this study, a randomized partially observable Markov chain is proposed to investi
gate the effectiveness and costs of various in‐practice as well as alternative screening 
policies. Policies are evaluated concerning QALYs, and the associated screening and 
treatment costs while incorporating women’ s adherence behavior to mammography 
guidelines. A cost‐effective analysis of the policies is performed by estimating the 
CER and the NMB values.

Two different adherence cases are considered: perfect adherence and the general 
population adherence case. For the perfect adherence case, the most cost‐effective 
screening policy is to perform annual screenings between 45 and 50 and then switch 
to biennial screening until age 90. This policy is very similar to the new ACS policy. 
For the general population case, the most cost‐effective policy is the annual alternative 
of the new ACS policy with annual screenings between ages of 45 and 90. The model 
presented in this study can also be used for an individualized assessment of different 
screening policies (Madadi et al. 2015).

Our results also indicate that as the policies get more invasive (more frequent 
screenings with earlier starting age), the general population case obtains higher QALYs 
compared with the perfect adherence case, because of the disutilities associated with 
mammogram screening tests. The old ACS policy with stopping age of 100 is the most 
invasive policy considered in the analyses, which results in QALYs of 37.5044 and 
37.5306 for the perfect adherence and the general population cases, respectively.

A set of efficient frontier policies with respect to incremental QALYs and 
incremental cost compared with “no screening” are extracted for different adherence 
cases. For the perfect adherence case, the USPSTF and the annual alternative of the 
ACS policy are among efficient frontier policies. For the general population, the 
USPSTF and all alternatives of the old and the new ACS policies are among efficient 
frontier policies.

The results of this study can help physicians/health providers tailor screening 
mammography recommendations based on their patients estimated adherence 
likelihood. In other words, based on the patient characteristics and estimated adher
ence level, physicians can decide if they should shorten or lengthen the interval 
between two subsequent mammograms and adjust the screening starting and stop
ping ages.
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11.1 INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the United States 
and the world (Alwan 2011). More than 2150 people die of CVD in the United 
States each day, and the annual direct and indirect costs associated with CVD have 
been estimated to be more than $300 billion in recent years (Go et  al. 2013). 
Although myocardial infarction (MI) and stroke events are serious and deadly, 
CVD is generally preventable if people maintain desirable cardiovascular health 
and reduce risk factors.

To better measure and improve cardiovascular health, the American Heart 
Association (AHA) developed the concept of ideal cardiovascular health, which is 
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also called “Life’s Simple 7” (Lloyd‐Jones et al. 2010). In particular, this definition 
means that a person is considered to have ideal cardiovascular health if he/she does 
not have CVD while also achieving optimal levels in seven health behaviors and 
factors, including not smoking, being physically active, eating a healthy diet, having 
a normal body weight, and maintaining optimal levels for blood glucose, blood 
pressure, and cholesterol. Table 11.1 presents a summary of how to measure Life’s 
Simple 7. Research has shown that the selected seven health behaviors and factors 
are important predictors of the prevalence of CVD and mortality due to CVD (Ford 
et al. 2012a). Specifically, people with healthy lifestyle behaviors (e.g., those who do 
not smoke, follow a healthy diet, and are physically active) have reduced mortality 
from all causes and CVD (Ford and Capewell 2011; Ford et al. 2012b). Based on the 
definition of ideal cardiovascular health, the AHA developed an impact goal that 
aims to improve the cardiovascular health of all Americans by 20% while reducing 
deaths from CVD by 20% by 2020 (Lloyd‐Jones et al. 2010). Despite the importance 
of having ideal cardiovascular health in CVD prevention, recent studies found that 
only about 3% of American adults have ideal cardiovascular health as defined by the 
AHA (Fang et al. 2012).

The low level of health behaviors associated with ideal cardiovascular health in 
the United States calls for the development of systems strategies to optimize the 
prevention and management of CVD. Computer simulation models and systems 
 science methodologies provide clinicians, community‐based organizations, and 
policy makers with the possibility of testing interventions and policies in a virtual 
and low‐cost environment; thus, simulation‐based approaches to understanding 
health progression and behaviors have attracted a great amount of attention in both 
research and practice. Unal et al. (2006) conducted a systematic literature review of 
coronary heart disease policy models and discussed their strengths and limitations. 
However, among the 42 policy models they reviewed, most were Markov‐based 

TABLE 11.1 Levels of Ideal Cardiovascular Health Based on Life’s Simple 7

Life’s Simple 7 Poor Intermediate Ideal

Blood pressure SBP ≥ 140 or DBP 
≥ 90 mmHg

SBP 120–139 or DBP 
80–90 mmHg

SBP < 120 or 
DBP < 80 mmHg

Physical activity None 1–149 minutes/week 
moderate

≥150 minutes/week 
moderate

Cholesterol ≥240 mg/dL 200–239 mg/dL <170 mg/dL
Healthy diet 0–1 components 2–3 components 4–5 components
Healthy weight BMI ≥ 30 kg/m2 BMI 25–29.9 kg/m2 BMI < 25 kg/m2

Smoking status Current smoker Former ≤ 12 months Never/quit ≥ 12 
months

Blood glucose ≥126 mg/dL 100–125 mg/dL <100 mg/dL

Source: Adapted from Lloyd‐Jones et al. (2010).
BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure.
1 component indicates a healthy dietary component such as fruits and vegetables, fish, and nuts.
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models that have limited capability in capturing non‐Markov disease progression, human 
behaviors, and population heterogeneity. Recently, Hirsch et al. (2010) developed a 
system dynamics (SD) model that incorporates the complex causal pathways associ-
ated with CVD progression and used the model to evaluate the effectiveness of 
 different interventions. Although SD is a promising and coherent modeling approach, 
a major limitation is that findings from the model are hard to generalize to populations 
with different characteristics (as individuals are homogeneous within the model).

In this chapter, we present an agent‐based model (ABM) based on the concept of 
ideal cardiovascular health developed by the AHA. This model allows us to track 
population cardiovascular health and the progression of CVD over time (years) and 
study the impact of interventions (especially lifestyle interventions) on population 
health outcomes. In particular, our model can generate a user‐specified population, 
capture each individual’s growth and dynamic changes of health behaviors and 
factors, simulate the implementation of several lifestyle interventions, and report a 
set of health outcomes and mortality over a time horizon of interest. The model struc-
ture, data sources, and some of the simulation results have been reported in our 
previous studies (Li et al. 2014a, b). This chapter provides readers with a detailed 
description of the ABM and combines results from our previous studies to show how 
the model could be used to inform public health decision making. The chapter also 
includes an in‐depth discussion of potential model extensions and points out future 
directions for the application of agent‐based modeling in studying other chronic 
health conditions.

11.2 METHODOLOGY

11.2.1 Agent‐Based Modeling

Agent‐based modeling is a class of computational models for simulating the behav-
iors and interactions of agents and how agents’ behaviors give rise to system‐level 
phenomenon over time. While standard statistical models strive to explore causal 
relationships based on observations from data, an ABM is more suitable to capture 
complex health problems (e.g., progression of chronic health conditions) given that 
it allows the integration of data and theories from many different sources and at many 
levels of analysis. Moreover, agent‐based modeling has been shown to be more 
advantageous than other systems science methodologies, such as discrete‐event sim-
ulation and SD, when it comes to modeling the behaviors of individuals in a diverse 
population (Rahmandad and Sterman 2008; Siebers et al. 2010). The advantages of 
agent‐based modeling can be summarized as follows:

 • The capability to capture demographic diversity by generating a population of 
agents with different attributes

 • Detailed individual‐level modeling of behaviors and health outcomes
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 • Flexibility of aggregating and disaggregating populations based on certain 
 criteria to inform decision making for different groups of interest (e.g., by age, 
geographic location)

 • Capability of representing stochastic variability due to uncertainties in demo-
graphic inputs and parameter estimation

 • Incorporation of history dependence in state transitions

 • Flexibility to incorporate agent interactions

By using simple rules of behavior and action, agent‐based modeling can be used 
to model complex social and health problems in an intuitive way that is appealing to 
policy makers (Macal and North 2010). For example, agent‐based modeling has been 
applied to solve complex problems in many fields, such as economics, political sci-
ence, and other empirical social sciences (Cederman 2002; Fagiolo et al. 2007; Bruch 
and Atwell 2015). In addition, Barnes et al. (2013) provided a literature review that 
summarizes the applications of agent‐based modeling in the context of healthcare 
operations management. However, to the best of our knowledge, agent‐based mod-
eling has not been used to model cardiovascular health using a comprehensive evi-
dence‐based framework such as Life’s Simple 7. This study aims to fill this research 
gap and provide a framework for future similar modeling efforts.

11.2.2 Model Structure

In our model, agents (persons) are defined by the factors in Life’s Simple 7 (i.e., 
smoking, physical activity, diet, body weight, cholesterol, blood pressure, blood 
glucose) as well as by age, by gender, and by whether or not having a history of MI 
or stroke. Age and gender are intrinsic factors (i.e., not affected by other factors). The 
basic time unit is 1 year, so each agent becomes 1 year older at each simulation time 
step. Each agent’s behaviors and health factors change simultaneously and interac-
tively based on the predefined rules during simulation. Figure 11.1 presents the state 
charts in the model to capture behavior changes (e.g., transitions between “healthy 
diet” and “unhealthy diet”), health factor changes (e.g., transitions between “normal 
blood pressure” and “hypertension”), and CVD‐related health outcome changes 
(e.g., transitions from “no CVD history” to “history of MI,” “history of stroke,” or 
“death”) at each time step (Li et al. 2014a). Note that the health states defined in our 
ABM are a simplified version of the health states defined by the AHA as shown in 
Table 11.1. In particular, in Figure 11.1, “not smoking” means a person never smoked 
or did not smoke for more than one year, “had a healthy diet” means a person ate five 
or more fruits or vegetables per day, “physically active” means a person had more 
than 150 minutes moderate physical activity per week, and “normal weight” means a 
person had a body mass index (BMI) lower than 25 kg/m2.

Our model allows correlation among health factors. For example, changes in body 
weight are correlated with the changes in the diet and physical activity status. These 
correlations among health factors, along with the normal progression of the disease, 
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will produce nonlinear emergent outcomes (e.g., incidences of CVD across different 
populations) that are difficult to capture with traditional statistical methods. In 
addition, we developed an intuitive user interface that allows users to define the 
population size, the simulated time horizon, and a set of basic demographic and 
health characteristics of the population of their interest. The user interface also 
includes an output window where users can observe time series of prevalence of 

Not smoking

Smoking

Had a
healthy diet

Did not have a
healthy diet

Physically
active

Physically
inactive

Normal weight

Overweight

No diabetes

Diabetes

No hypertension

Hypertension

No high
cholesterol

High cholesterol

No CVD history

History of MI History of stroke

Death

Health behavior state charts

Health factor state charts

CVD-related health outcome state chart

Figure 11.1 Eight parallel state charts capturing individual health progression. Source: 
Li et al. (2014a). Reproduced with permission of IEEE.
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several key risk factors and CVDs. We also developed a population health animation 
from which users can easily track and visualize population health outcomes and 
mortality. Finally, users can select different lifestyle interventions or combinations of 
different interventions to evaluate the effectiveness of different interventions over a 
specified time length.

11.2.3 Parameter Estimation

Model parameters determine the dynamics of health factors and the disease progression. 
Most parameters, such as transition probabilities among different states and the 
 correlations among different health factors, are estimated from the best available 
evidence published in clinical or behavioral studies. We follow several commonly 
used standards to estimate parameters. For example, when age‐specific transition 
probabilities are available, they are preferred than static transition probabilities. 
In addition, when there are two or more sources for estimating a specific transition 
probability, the more recent source is adopted. Table 11.2, also presented in Li et al. 
(2014a), summarizes major parameters and the corresponding data sources.

For the smoking state chart, we estimate transition probabilities based on age‐
specific smoking initiation and cessation rates. Figure 11.2 shows the age‐specific 
smoking initiation probabilities estimated from Escobedo et al. (1990). Note that 
smoking initiation probabilities are negligible for people younger than age 7 or 
older than age 35 and, thus, are assumed to be 0. Smoking cessation probabilities 
are estimated to be 0.054 for people of age 20–34 and 0.01 for people ages 35 or 
over based on Gilpin and Pierce (2002). For the healthy diet state chart, the annual 
transition probability from “did not have a healthy diet” to “had a healthy diet” is 

TABLE 11.2 Data Sources for Major Parameters

Parameters Data Sources

Smoking initiation and cessation Escobedo et al. (1990) and Gilpin and 
Pierce (2002)

Change of diet status Dalziel and Segal (2007)
Change of physical activity status Dalziel et al. (2006)
Body weight progression Ogden et al. (2007), Kaukua et al. 

(2003), and Pan et al. (2011)
Effect of diet status on body weight He et al. (2004)
Effect of physical activity status on body 

weight
Hu et al. (2003)

Blood glucose progression Bonora et al. (2004)
Blood pressure progression Vasan et al. (2002)
Cholesterol progression Panagiotakos et al. (2008)
Risks of CVD Anderson et al. (1991)
Mortality rates Heron et al. (2009)

Source: Li et al. (2014a). Reproduced with permission of IEEE.
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estimated to be 0.03 for people of all ages based on Dalziel and Segal (2007). We 
assume that the transition probabilities for both directions between the two states 
are equal. For the physical activity state chart, we also assume that the transition 
probabilities for both directions between the states physically active and physically 
inactive are equal, which is estimated to be 0.049 for people of all the ages according 
to Dalziel et al. (2006).

Due to lack of age‐specific data in the literature, annual transition probabilities for 
the body weight state chart are assumed to be age independent and are estimated 
based on three recent studies (Kaukua et al. 2003; Ogden et al. 2007; Pan et al. 2011). 
We also assume that the transition from normal weight to overweight is affected by 
diet and physical activity since it has been shown that both ideal diet and ideal 
physical activity reduce the risk of becoming obese (Pan et al. 2011). We capture this 
effect by multiplying the annual transition probability by the corresponding relative 
risks associated with having a healthy diet and being physically active (Hu et  al. 
2003; He et al. 2004).

We estimate the transition probabilities for the state charts for cholesterol, blood 
pressure, and blood glucose based on the age‐specific annual incidence rates for high 
cholesterol, hypertension, and diabetes estimated from the relevant literature (Vasan 
et al. 2002; Bonora et al. 2004; Panagiotakos et al. 2008). Figure 11.3 presents these 
incidence rates. It is clear that a person being overweight or obese has a higher risk 
of high cholesterol, hypertension, and diabetes. Thus, we estimate relative risks asso-
ciated with being overweight from published studies and adjust the transition proba-
bilities accordingly (Thompson et al. 1999).

We estimate transition probabilities from “no CVD history” to “history of MI” or 
“history of stroke” using the Framingham CVD risk calculator (Anderson et  al. 
1991), a parametric model that has been widely used to predict probabilities of CVD 
outcomes based on several important risk factors such as age, gender, smoking, blood 
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Figure 11.2 Annual smoking initiation probability. Source: Estimated from Escobedo et al. 
(1990).
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pressure, blood glucose, and cholesterol level. Since risk factors change dynamically 
during simulation, the transition probabilities in the CVD state chart are also dynamic 
and updated at each time step.

Finally, mortality rates are based on cause of death, due to either CVD or other 
causes. We estimate the overall mortality rates based on the age‐ and gender‐specific 
data obtained from the US vital statistics report (Heron et al. 2009). The mortality 
rate due to CVD is a function of risk factors estimated dynamically using the 
Framingham risk calculator (Anderson et al. 1991). Then, the mortality rate due to 
other causes is estimated as the difference between the overall mortality rate and the 
mortality rate due to CVD.

11.2.4 User Interface

Figure  11.4 shows the user interface of our ABM model for ideal cardiovascular 
health. The input interface contains fields for users to define the population character-
istics and health profiles of the population of interest. Specifically, these input vari-
ables include population size, age and gender distributions, and proportions of people 
who are not currently smoking are physically active (more than 150 minutes/week of 
moderate physical activity), eat a healthy diet (five or more fruits/vegetables per day), 
have a normal body weight (BMI < 25), do not have diabetes, do not have hyperten-
sion, do not have high cholesterol, have a history of MI, and have a history of stroke.

In addition, the user interface allows users to select the lifestyle interventions of 
their interest and specify the time horizon of policy relevance. The animation helps 
users visualize population health outcome dynamics and, thus, may prove useful to 
engage decision makers in different sectors that may find the model results relevant 
to their work. The output interface presents the yearly prevalence dynamics for 
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Figure 11.3 Annual incidence rates for high cholesterol, hypertension, and diabetes. Source: 
Estimated from Bonora et al. (2004), Vasan et al. (2002), and Panagiotakos et al. (2008).
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cardiovascular health outcomes, diseases, and mortality. This presentation of simula-
tion results with respect to time may help decision makers evaluate both short‐term 
and long‐term outcomes of a certain intervention or program.

11.2.5 Model Validation

We have conducted internal validation and face validation by examining model struc-
ture and mathematical equations and consulting with CVD experts. Our model is a 
reasonable simplified representation of cardiovascular health progression with 
consideration of several important risk factors. In addition, we have conducted pre-
liminary predictive validation by comparing simulated results with real population 
statistics using multi‐year cross‐sectional dataset (Li et al. 2014a). As the development 
of an ABM is an iterative process, we will continue to improve model validity by 
incorporating more recent epidemiological evidence and high‐quality longitudinal 
data when they are available.
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Figure 11.4 User interface of the ABM of cardiovascular health.
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11.3 RESULTS

11.3.1 Simulating American Adults

In this numerical study, we estimated population characteristics and health profiles 
for American adults from the Behavioral Risk Factor Surveillance System (BRFSS) 
(Centers for Disease Control and Prevention 2007, 2012), which is a large‐scale tele-
phone‐based national survey targeting adults living in households. We drew data 
from the 2007 BRFSS for all American adults between ages 20 and 79. Table 11.3, 
adapted from Li et al. (2014a), presents these population characteristics.

Using the simulated population, we assessed the effectiveness of five hypothetical 
lifestyle interventions (i.e., “quit smoking,” “promote a healthy diet,” “improve 
physical activity,” “reduce obesity,” and “comprehensive”) in terms of incidence 
reductions for people with diabetes, a history of MI, and a history of stroke in 5, 10, 
15, and 20 years. Among these interventions, “quit smoking,” “promote a healthy 
diet,” “improve physical activity,” and “reduce obesity” are the lifestyle programs 
implemented to reduce by half the proportion of the population who smokes, eats 
less than five fruits and vegetables/day, exercises less than 150 minutes/week, and 
has a BMI of 25 or more, respectively. The “comprehensive” lifestyle program is the 
combination of the aforementioned four programs. We assume that the hypothetical 
interventions only work at the beginning of the simulation, which means some people 
may return to their unhealthy behaviors as the simulation continues. It is worth not-
ing that although the interventions we simulated are hypothetical, the model can 
simulate real‐world lifestyle interventions if relevant information (e.g., relative risk, 
adherence rate) about the intervention is available.

We generated 10,000 adults based on the relevant characteristics of BRFSS 
respondents and simulated the progression of the three health conditions with no 
intervention and with different lifestyle programs over different years. Figure 11.5 
reports the reduced number of people with these chronic conditions by implementing 
the lifestyle programs as opposed to not implementing any interventions.

The first chart in Figure 11.5 shows the most effective program for preventing 
diabetes is “comprehensive” and the least effective is “promote a healthy diet.” More 

TABLE 11.3 Population Characteristics of American Adults

Age (Mean)
Age (Standard 

Deviation) Female (%) No Smoking (%) BMI < 25 (%)
Physically 
Active (%)

45.5 15.2 51.1 80.0 34.2 36.9

Have 
healthy 
Diet (%)

No 
Diabetes  

(%)

No 
Hypertension  

(%)

No High 
Cholesterol 

(%)
History of  

MI (%)
History of  
Stroke (%)

24.4 91.7 73.1 70.5 3.7 2.3
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Figure 11.5 Prevention effects of five alternative lifestyle interventions in different time 
horizons. Source: Li et al. (2014a). Reproduced with permission of IEEE.
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specifically, among the simulated 10,000 persons, the “comprehensive” lifestyle 
program may reduce diabetes incidence by 200 in 5 years and by more than 450 in 
20 years. Given that the lifetime direct cost of treating diabetes is nearly $85,200 per 
person as given in Zhuo et  al. (2013), implementing a “comprehensive” lifestyle 
program may lead to substantial healthcare cost savings resulting from lifestyle 
changes. Although healthcare cost savings can be estimated from these expected 
 differences in diabetes incidence over 5 and 20 years, a precise economic evaluation 
would require consideration of intervention cost as well as a model with more 
 predictive accuracy.

The other two charts focus on the prevention effect on MI and stroke. The 
 “comprehensive” program may reduce the incidence of MI by 46 and the incidence 
of stroke by 8 in 20 years. The smaller reduction in incidence of MI and stroke 
 compared with diabetes may be due to the facts that the prevalence of diabetes is 
higher and incidence of diabetes is more sensitive to improvement in lifestyle. In 
addition, the reduction in disease incidence from interventions does not increase 
monotonically over years, which is likely caused by a reduced population size due to 
early mortality. Among all the non‐comprehensive interventions, “quit smoking” is 
the most effective program, whereas the other three lifestyle programs have a less 
significant effect in preventing MI and stroke.

11.4 SIMULATING THE MEDICARE‐AGE POPULATION 
AND THE DISEASE‐SPECIFIC SUBPOPULATIONS

In this numerical study, we simulated the US Medicare‐age population (i.e., insured 
adults 65 years old and over) because agent‐based modeling may prove particularly 
useful for assessing interventions within populations that tend to be targeted for 
careful management such as adults with Medicare Advantage insurance coverage or 
Medicare beneficiaries belonging to an accountable care organization. This 
population also has a much higher prevalence of CVD compared with other age 
groups. To study this population with more granularity, we further divided this 
population into three disease‐specific subpopulations, which are the US Medicare‐
age populations with diabetes, hypertension, and high cholesterol. Using the 2007 
BRFSS data, we estimated the population characteristics and health profiles of 
adults between the ages of 65 and 94 (inclusive) (Table  11.4). We studied this 
population in a previous study in which we demonstrated the potential of using 
agent‐based modeling to improve population health management in primary care 
settings (Li et al. 2014b).

Diabetes, hypertension, and high cholesterol are the health outcomes of interest 
because they are prevalent and are important risk factors for CVDs. We simulated 
health progression of these populations with implementation of the “comprehensive” 
lifestyle program for 1, 3, and 5 years. Table 11.5, also presented in Li et al. (2014b), 
compares the simulated health outcomes for normal health progression and a 
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TABLE 11.4 Characteristics of the Medicare‐Age Population and Three 
Disease‐Specific Subpopulations

All
Subpopulation 
Diabetes

Subpopulation 
Hypertension

Subpopulation 
High 
Cholesterol

Mean age (SD) 74.31 (6.64) 73.79 (6.29) 74.56 (6.57) 73.71 (6.29)
Female (%) 57.29 52.49 58.12 58.25
No currently 

smoking (%)
91.06 92.45 91.84 91.14

BMI < 25 (%) 35.97 20.63 29.72 32.25
Physically active (%) 33.05 25.65 30.08 32.73
Have healthy diet (%) 28.87 26.52 27.59 27.57
No diabetes (%) 80.39 74.74 76.67
No hypertension (%) 41.82 25.07 32.05
No high cholesterol (%) 49.41 39.82 40.92
History of MI (%) 13.26 21.10 16.17 16.90
History of stroke (%) 8.41 12.89 10.73 9.74

Source: Li et al. (2014b). Reproduced with permission of SAGE Journals.

TABLE 11.5 Simulated Population Health Outcomes for Normal Health Progression 
and Comprehensive Lifestyle Program

Diabetes (%) Hypertension (%) High Cholesterol (%)

NHP CLP p NHP CLP p NHP CLP p

All
Year 1 21.3 20.8 0.193 58.8 58.5 0.333 58.1 57.7 0.283
Year 3 24.3 23.1 0.023 60.9 60.2 0.155 68.9 67.9 0.064
Year 5 27.0 25.3 0.003 62.9 61.9 0.072 76.7 75.7 0.048

Subpopulation with Diabetes
Year 1 75.6 75.3 0.311 66.5 66.1 0.275
Year 3 76.9 76.3 0.158 75.4 74.5 0.071
Year 5 77.8 77.2 0.155 81.9 80.6 0.009

Subpopulation with Hypertension
Year 1 26.6 26.2 0.260 65.3 65.0 0.328
Year 3 29.6 28.4 0.031 73.9 73.1 0.100
Year 5 32.2 30.7 0.011 80.2 79.1 0.027

Subpopulation with High Cholesterol
Year 1 24.7 24.3 0.255 68.4 68.2 0.381
Year 3 28.0 26.8 0.029 70.0 69.4 0.178
Year 5 30.5 28.9 0.007 71.3 70.6 0.138

Source: Li et al. (2014b). Reproduced with permission of SAGE Journals.
CLP, comprehensive lifestyle program; NHP, normal health progression.
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comprehensive lifestyle program. We conducted one‐tailed two‐proportion z‐tests to 
assess the significance of the population health improvement with implementation of 
the comprehensive lifestyle program.

There would be a significant reduction (p < 0.05) in the proportion of the population 
with diabetes after the lifestyle program is implemented for 3 or 5 years for the 
Medicare‐age population and the two subpopulations with hypertension or high cho-
lesterol. Also, the lifestyle program would be effective in reducing the proportion of 
the population with high cholesterol after it is implemented for 5 years. In contrast, 
the lifestyle program might not be significantly effective in preventing hypertension 
over a time period less than 5 years. These simulation results can be useful to policy 
makers interested in the better allocation of resources to improve cardiovascular 
health of a population based on its specific characteristics.

11.5 FUTURE RESEARCH

Although our previous studies have demonstrated that an ABM of cardiovascular 
health has the potential of enhancing population health management (Li et al. 2014b), 
our current model structure still has limited capability in capturing the complex pro-
gression of CVD, which may impair the credibility of our model in informing public 
health decision making. We plan to extend and improve our model in the following 
three directions.

First, we will expand each of the eight behavior and health factor state charts to 
capture individual cardiovascular health progression with more realism. In the 
current model, most health behaviors and factors are captured by simple two‐state 
transitions. We will evaluate additional clinical evidence and design more realistic 
mechanisms that will guide the dynamic change and progression of health behaviors 
and factors. For example, smoking status could be modeled by three discrete states 
based on the “poor,” “intermediate,” and “ideal” definition of cardiovascular health 
(Lloyd‐Jones et al. 2010). Other factors could be modeled as continuous variables 
that will rely on differential equations to capture changes in values. The refined state 
change mechanisms are expected to improve the predictive validity of the model and 
also allow us to study the health outcomes that have not been included in the current 
model (e.g., overweight, complications from diabetes).

Second, we will incorporate social influence in modeling health behaviors and 
factors. Christakis and Fowler (2008) showed how social influences and social net-
works can influence smoking behavior dynamics. Recently, Hammond and Ornstein 
(2014) developed an ABM of social influence on body weight by drawing evidence 
and theories from physiology and social psychology and examined how body weight 
norms can affect the development and progression of obesity. These studies showed 
that social influences may have a significant impact on human behaviors and health 
and, thus, should not be ignored in modeling cardiovascular health. Incorporating 
social influences will help us capture the spillover effect of certain lifestyle interventions 
and further increase the predictive validity of the model.
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Finally, we will incorporate cost and quality of life parameters in our model so 
that it can be used for cost‐effectiveness analysis (CEA) of alternative lifestyle inter-
vention programs. Most model‐based CEA studies are based on Markov chains, 
which use aggregated health states and transition probabilities to capture the progression 
of the studied disease. The ABM‐based CEA is expected to outperform the tradi-
tional Markov‐based CEA in not only capturing the disease progression with more 
granularity but also incorporating patient preferences (compliance), healthcare‐seeking 
behaviors, population interactions, and heterogeneous characteristics across popula-
tions. In addition, ABMs can be built based on individual‐level data, which could 
result in a simulated population cohort that has a better representation of the real 
population. With the successful application of ABM‐based CEA for colorectal 
cancer screening policies as shown in Subramanian et  al. (2009), we believe our 
potential application of ABM‐based CEA for CVD prevention strategies will be 
promising and appealing to decision makers.

11.6 SUMMARY

In this chapter, we present a detailed overview of an ABM for ideal cardiovascular 
health and demonstrate the potential use of the model by assessing the impact of a set 
of hypothetical lifestyle programs on several CVD‐related health outcomes for dif-
ferent populations. We point out the limitations of the current model and discuss 
specific research directions to address these limitations and improve the model. 
Although we are still in the process of extending the model, the modeling framework 
presented here could be easily adapted to model other chronic diseases (e.g., diabetes, 
obesity, cancer) and capture the interplay among health behaviors, health factors, and 
disease progression. Nevertheless, the model provides a convenient tool for policy 
makers to gain new insights about the comparative effectiveness of alternative life-
style interventions for a variety of populations without the need to spend substantial 
resources testing and implementing the programs in the field.
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12.1 INTRODUCTION

Almost a million cancer patients in the United States receive some form of radiation 
therapy each year (American Cancer Society 2017). Radiation is delivered using either 
external beam technology or a procedure known as brachytherapy. Brachytherapy uses 
a radioactive substance sealed in needles, seeds, wires, or catheters, which are placed 
directly (permanently or temporarily) into or near the cancer. This allows a full 
tumoricidal effect to eradicate the tumor from within the cancer site while ensuring 
that minimal radiation reaches the healthy surrounding tissues. For high‐dose‐rate 
(HDR) brachytherapy, patients receive treatment through catheters during 3–10 
 outpatient sessions over a period of 5 days to 2 weeks. Brachytherapy preserves 
organs, usually with no loss of functionality; thus, it is rapidly becoming the choice 
of treatment for prostate, breast, cervix, and uterus cancer.
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Operations research (OR) has brought breakthrough advances in treatment‐planning 
optimization, as evidenced by the 2007 Franz Edelman Award work by Memorial 
Sloan Kettering Cancer Center (MSKCC), which saves half a billion dollars in yearly 
operations and delivery costs via intelligent real‐time OR‐based treatment‐planning 
approaches, while the tumor control probability (TCP) (i.e., the probability of extinction 
of clonogenic tumor cells by the end of treatment) improves from 65% to 95% (Lee 
and Zaider 2008).

The content of this chapter, starting from the next paragraph, is mostly excerpted 
from the Interfaces Wagner Prize published article (Lee et al. 2013).

Specifically this chapter summarizes our work on two first‐of‐its‐kind advances to 
HDR brachytherapy treatment design. First, TCP, which depends upon a highly com-
plex function that models the responses of cancer cells and normal cells to radiation, 
is incorporated into the planning objective. This is distinct from the dose‐based 
planning that is commonly employed in current treatment design. Second, positron 
emission tomography (PET) information, which relates cancer cell proliferation and 
distribution, is incorporated within the constraints, facilitating targeted, escalated 
dose delivery to improve the overall clinical outcome of HDR treatments.

This work is distinct from the MSKCC in three ways: (i) HDR brachytherapy uses 
temporary implants that require multiple sessions; in addition to determining seed 
positions, the dwell time also has to be optimized. (ii) This is the first time that TCP, 
an important measure of desired outcome, has been successfully incorporated in a 
treatment‐planning analytical model; we determine the TCP function from a com-
plex biological model and place it in the objective. (iii) This is the first time that PET 
tumor cell proliferation and distribution are incorporated within radiation therapy 
(external beam or brachytherapy) for dose‐escalation planning.

The optimization models we develop, which are TCP driven and PET image 
guided and permit HDR with dose escalation, initially prove to be intractable. The 
intractability arises from three sources. First, our models share the denseness prop-
erties of previous treatment‐planning models (Lee and Zaider 2008). We found that 
even without the complications that nonlinear TCP functions and PET‐based dose 
escalation introduce, we could not solve the associated treatment‐planning instances 
using competitive optimization software, even after we ran this software for several 
months of CPU time. Second, the extreme nonlinearity of the TCP functions increases 
the difficulties. Third, the competing PET‐based dose‐escalation constraints that 
seek to go between cancer pockets and critical normal tissues offer only a tight solu-
tion space.

The methodologies we develop are applicable to most types of cancer. In our 
discussion, we focus on treatment of cervical cancer. Cervical cancer ranks as the 
second most common cancer in women worldwide, with about 500,000 new cases 
and 270,000 deaths annually. Almost 85% of cervical cancer cases are in less devel-
oped countries (American Cancer Society 2017). The majority of cervical cancer 
cases (75%) are caused by the human papillomavirus (National Cancer Institute 
2013). The cancer grows slowly and in its early stages may not have any symptoms. 
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Thus, the mortality rate remains high at about 35%. In the United States in 2017, an 
estimated 12,820 women will be diagnosed with cervical cancer, and about 4,120 
women will die from it (American Cancer Society 2017). About 0.68% of women 
born today will be diagnosed with cervical cancer at some time during their lifetimes 
(Howlader et al. 2013).

When detected at an early stage, the 5‐year survival rate for women with invasive 
cervical cancer is 92%. If cervical cancer has spread to surrounding tissues or organs 
and/or the regional lymph nodes, the 5‐year survival rate is 57%. If the cancer has 
spread to a distant part of the body, the 5‐year survival rate is 17%. The choice of 
treatment depends on the stage of the cancer, the size of the tumor, the patient’s 
desire to have children, and the patient’s age. Standard treatments include surgery, 
chemotherapy, and radiation therapy. With advances in radiation therapy modalities 
and their organ‐preserving characteristics, it is rapidly becoming the treatment of 
choice for cervical cancer (Nag et al. 1999).

This chapter is mostly excerpted from the Interfaces Wagner Prize published 
article (Lee et al. 2013). We first describe our original treatment‐planning models as 
we applied them to cervical cancer. Next we describe our computational breakthroughs 
that permit rapid, accurate solutions. Our planning methods were implemented by 
Rush University Medical Center. To the best of our knowledge, Rush University 
conducted the first and only clinical trial in the United States in 2011 for HDR 
brachytherapy with PET‐based dose escalation applied to cervical cancer. We report 
on how, with modeling assistance, the Medical Center was able to increase its 
treatment success and improve its quality of care, thus reducing both mortality and 
personal and financial burdens for cervical cancer patients.

12.2 CHALLENGES AND OBJECTIVES

With advances in computed tomography (CT) and magnetic resonance (MR) imaging 
technology, it is possible to produce contours of gross tumor volume, clinical target 
volume (CTV), planning target volume (PTV), and organs at risk (OARs) and to 
view the radiation dose within these contours as radionuclide implant locations and 
dwell times are adjusted. This in turn enables the use of optimization technology to 
derive custom treatment plans that best achieve the clinical goals of delivering a full 
tumoricidal dose to eliminate the cancers while minimizing the doses to OARs 
(Gallagher and Lee 1997, Lee et  al. 1999, Kirisits et  al. 2005, Duan et  al. 2008, 
Holloway et al. 2009, Kang et al. 2010, Tanderup et al. 2010). Inverse planning and 
multi‐objective optimization with penalty costs have become more commonly used 
to address the trade‐off between treating the tumor and sparing the OARs, while the 
optimization solution process remains a major challenge (Lahanas et  al. 2003, 
Alterovitz et al. 2006, Morton et al. 2008, Kim et al. 2009, Ruotsalainen et al. 2010, 
Holm et  al. 2012). Because treatment planning is intrinsically combinatorial in 
nature, relaxation and heuristic algorithms (e.g., linear programming or simulated 
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annealing) have been typically employed (Alterovitz et al. 2006, Morton et al. 2008, 
Beliën et al. 2009, Karabis et al. 2009, Kim et al. 2009, Holm et al. 2012).

PET imaging is an important advance for cervical cancer brachytherapy treatment 
planning (Bailey et  al. 2005, Wachter‐Gerstner et  al. 2003). The ability of PET 
imaging to accurately define the primary lesion by including positive lymph nodes in 
the PTV facilitates treatment planning. The use of FDG‐PET (i.e., PET with fluoro-
deoxyglucose as a radiopharmaceutical tracer) offers a unique method for visualizing 
tumors, which permits treatment optimization (Malyapa et al. 2002). Integrated PET 
and CT for treatment planning for three‐dimensional conformal radiation therapy 
improves the standardization of volume delineation (Ciernik et  al. 2003). MR 
spectroscopy (MRS)‐guided dose escalation for prostate cancer indicates that the 
TCP can be dramatically improved if biological information can be included within 
a personalized treatment design (Zaider et al. 2000, Lee and Zaider 2008). This work 
differs from the dose‐escalation work of Zaider et al. (2000) in that, in addition to 
incorporating dose‐escalation constraints within the treatment constraints, our model 
incorporates, within the objective function, data on the radioresistance and sensitivity 
of both tumor and normal cells to drive the optimization process.

The crux and challenges of HDR brachytherapy treatment planning include the 
following: (i) The seed type, spatial configuration, and dwell time per treatment must 
be determined. (ii) Tumor control, a very complex biological relationship, depends on 
the time of the treatment, radioactive decay of the radioisotope, dose received, volume 
and density of tumor cells, and biological radiosensitivity and radioresistancy of the 
normal and tumor cells. (iii) Current therapies treat the diseased organ as a homoge-
neous mass; however, advances in PET imaging can now distinguish cell populations 
based on cell density, and the metabolic activities of tumor cells, clearly differentiating 
them from the normal healthy cells. Such capability demands advances in treatment‐
planning optimization where tumor biological knowledge is incorporated, if true person-
alized targeted treatment is to be realized and result in improvements in local TCPs.

This work reports complex biological treatment planning via an OR approach, as 
we describe in the following:

 • We derive novel OR‐based TCP‐driven PET‐image‐guided dose‐escalation 
treatment plans via multi‐objective nonlinear mixed‐integer programming 
(NMIP). This marks the first time that TCP is incorporated both within the 
treatment optimization and as a plan objective; this is also the first time in which 
PET‐image cell‐proliferation knowledge is coupled within the treatment‐plan 
solution space.

 • We derive generalized conflict hypergraphs and uncover new polyhedral theory 
and facial structures for these NMIP instances.

 • We design a rapid branch‐and‐cut and local‐search solution engine that couples 
novel cutting planes, matrix reduction, and intelligent geometric heuristics, 
along with a local hybrid genetic algorithm, to arrive at good solutions to these 
intrinsically NP‐hard and intractable treatment‐planning instances.
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We test the robustness of the resulting plans. The clinicians evaluate the quality of 
the plans based on the TCP, dose distribution, and other clinical metrics that are 
important indicators of treatment outcomes.

12.3 MATERIALS AND METHODS

12.3.1 High‐Dose‐Rate Brachytherapy

HDR brachytherapy treatment is given in 3–10 sessions, depending on the type of 
cancer being treated. The HDR system uses a single tiny highly radioactive source of 
Iridium‐192, which is laser welded to the end of a thin, flexible stainless steel cable. 
The source is housed in an afterloader, a remote control device that mechanically 
places the radioactive source at predetermined positions within the applicator and 
stores the source between treatments. The computer‐guided afterloader directs the 
source into the treatment catheters or applicator, which has been placed in the patient. 
The source travels through each catheter in predefined steps, called “dwell” posi-
tions. The distribution of radiation and dose is determined by the dwell positions at 
which the source stops and the length of time it dwell there. This ability to vary the 
dwell times is similar to having an unlimited choice of source strengths. This level of 
dose control is possible only with HDR brachytherapy.

A major advantage of HDR is that the final doses are known before any radiation 
treatment is given. Because the patient and implant position is the same as when the 
treatment plan is devised, the doses are accurate. Further, because of the high radio-
activity of the Iridium‐192 source, the treatment time takes only minutes, rendering 
little opportunity for the implant to move and deposit radiation dose where it is not 
intended.

The gynecological HDR procedure can be briefly summarized as follows. First, in 
the operating room, catheters are inserted into a patient who is under local, general, 
or spinal anesthesia. Interstitial catheters are inserted through the body tissue to 
encompass the tumor. For cervical treatment, a template is sutured to the skin to hold 
the treatment catheters in position. A CT scan is taken to determine the exact location 
of the catheters in relationship to the diseased organ and normal tissues. The CT 
images are used for treatment‐planning optimization. The dosimetrist (i.e., a spe-
cialist who has the expertise necessary to generate radiation dose distributions and 
dose calculations), in collaboration with a medical physicist and a radiation oncolo-
gist, designs the plan on a computer and customizes the radiation dose to conform to 
the target volume while minimizing the dose to the nearby normal tissues. After the 
physician has approved the treatment plan, the computer transfers the treatment‐plan 
instructions to the HDR remote afterloader. On the day of the treatment, the patient 
is moved into the brachytherapy treatment room. The ends of the treatment catheters 
that protrude outside the body are connected to “transfer” tubes, which are then 
connected to the afterloader. The programmed instructions guide the afterloader on 
where to direct the source and how long to leave the source in each dwell position. 
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The patient is alone in the treatment room as the treatment is being given, and the 
therapists and nurses continually monitor the treatment through an intercom and 
closed‐circuit TV cameras. The entire treatment process takes approximately 30–90 
minutes, depending on the size and complexity of the implant and the activity of the 
source. Upon treatment completion, the sutures holding the catheters in place are 
clipped and the implant is gently removed. Figure 12.1 depicts the delivery of HDR 
brachytherapy for cervical cancer.

12.3.2 PET Image

For our study of a group of cervical cancer patients, we obtained both PET images 
and CT scans. The biological PET image is first fused onto the treatment CT image 
(see Figure  12.2). PTVs, critical structures, and OARs are delineated from CT 
images. The enhanced PET signal allows the identification of dense pockets of 
cancer cells, which define the boost target volume (BTV). HDR plans are opti-
mized to deliver a prescribed dose of 35 Gy Ir192 to the PTV and 37–40 Gy to the 
BTV, following 45 Gy of external beam radiotherapy.

12.3.3 Novel OR‐Based Treatment‐Planning Model

The OR challenges we faced are the following:

i. Effectively modeling the TCP within the treatment‐planning objective

ii. Incorporating the PET‐image information for biological targeted dose escalation

iii. Advancing computational strategies to solve the associated intractable 
nonlinear combinatorial instances

12.3.3.1 Dose Calculation Dose calculation is based on guidelines from the 
American Association of Physicists in Medicine (AAPM) task groups for brachy-
therapy (Rivard et al. 2004). Briefly, let D r( ) denote the dose contribution per minute 
of a seed to a voxel that is r units away. The two‐dimensional dose‐rate calculation 
can be represented as D r( ), , which is calculated based on the AAPM task groups for 
brachytherapy TG43U1 and U2 (Rivard et al. 2004):
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Figure 12.1 The far left shows the cervix anatomy (top) and the associated HDR treatment with the applicator (bot-
tom). The remaining images on the top show the Ir192 radioactive seeds and the Vienna ring CT‐MR applicator. The 
bottom middle shows the CT image of the catheters and seed positions with respect to the diseased cervix. The image 
is used for treatment‐planning optimization. The bottom right shows a transverse view with isodose curves overlaid.
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12.3.3.2 Incorporating the  TCP within the  Treatment‐Planning Objective To 
the extent that PET can be taken to indicate the presence of faster‐proliferating and 
(or) a higher density of tumor cells, recognizing such regions in the organ could 
be consequential in terms of tumor control. We incorporate the TCP within our 
treatment‐planning process. Specifically, we are interested in (i) the maximal TCP 
gain obtainable by incorporating PET information in treatment planning and (ii) the 
largest fractional tumor pocket volume for which PET‐guided planning remains 
 useful. Clearly, if tumor cells are uniformly spread throughout most of the cervix 
volume, the gain would be insignificant.

We generalize the TCP based on a reliable biological model developed by Zaider 
and Minerbo (2000). The formulas are derived using the birth and death processes. 
For brachytherapy, the TCP equation is
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where n is the initial number (at time t 0) of tumor cells, S(t) is the survival proba-
bility of tumor cells at time t, and b and d are the birth and death rates of these cells, 
respectively.

The birth rate b and the death rate d relate to two parameters: potential doubling 
time T

pot
 and tumor cell loss factor ϕ, where b Tpot0 693. /  and d b/ . In the TCP 

calculation, the time t in Equation 12.2 is typically taken to be the duration of the 
treatment period or the expected remaining life span of the patient.

For simplicity and convenience in Equation 12.2, we use the linear quadratic 
expression for the survival function S D e D q t D( )

2

, where D is the dose delivered 
over the time interval t and q(t) makes explicit the repair of sublethal damage. In the 
case in which the dose rate decreases exponentially,

Figure 12.2 This figure shows a CT treatment image for the cervix (left) and the resulting 
image with an overlay of the PET image for plan design and optimization (right). We can 
clearly see the PET tumor pockets (bright spots) inside the cervix.
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where λ is the radioactive decay constant of the radioisotope ( 0 0094 1. d  for 192Ir), 
and 1 0/t , where t

0
 is the average time for the sublethal damage repair, typically in 

the order of 1 hour.
To complete the TCP calculation, we give numerical values to the parameters n, 

T
pot

, ϕ, α, β, and t
0
 to represent the response of the rapidly proliferating and (or) 

radioresistant segment of tumor cells.
The TCP value is sensitive to the volume and density of cells. We take the volume 

and density of cells in the cervical tumor ranges from 108 to 1010 3cells cm/ . 
The potential doubling time is taken as Tpot 15 or Tpot 20 days, and the cell loss 
factor is taken as 0 5.  or 0 75. . In addition, 0 487 1. Gy , 0 055 2. Gy  
for radiosensitive cells, and 0 155 1. Gy , 0 052 2. Gy  for radioresistant cells, 
whose values are determined from in vitro cell‐survival measurements. For the 
sublethal damage repair constant, we take t0 1 hour.

12.3.3.3 Novel TCP‐Driven PET‐Image‐Guided Treatment‐Planning Model We 
design a multi‐objective mixed‐integer programming (MIP) model for HDR brachy-
therapy treatment planning. The model incorporates the TCP as the objective function, in 
addition to the rapid dose falloff function to ensure dose conformity to the tumor region.

In our treatment‐planning model, we represent each anatomical structure by a 
collection of discretized voxels (three‐dimensional volumetric pixels) and choose 
sizes such that they are conducive for modeling. Each dwell location is modeled via 
two variables: a binary decision variable to indicate whether a radioactive seed will 
be deposited and a continuous variable to denote the associated dwell time.

Mathematically, let x
j
 be a 0/1 indicator variable for recording placement or non‐

placement of a seed in grid position j and t
j
 be the continuous variable for the dwell 

time of the seed in this grid position. The total radiation dose at voxel P is given by

 j
j jD P X t , (12.3)

where X
j
 is a vector corresponding to the coordinates of grid point j,  denotes the 

Euclidean norm, and D r  denotes the dose contribution per minute of a seed to a 
voxel that is r units away.

The target lower and upper bounds, L
P
 and U

P
, for the radiation dose at voxel P are 

represented by the following dose constraints:

 j
j j PD P X t L  (12.4a)

 j
j j PD P X t U . (12.4b)
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For each voxel P in each anatomical structure, a binary variable is used to capture 
whether or not the desired dose level is achieved. For simplicity, we use the BTV to 
represent the set of tumor voxels identified by the PET images.

The TCP‐driven PET‐image‐guided dose‐escalated multi‐objective treatment 
model is given by the following formulation:

Minimize max
j
t
j

Maximize 
P

P P
L

P P
Uv v

Maximize TCP

subject to 

 j
j jD P X t P PrDose in BTV (12.5)

 

j
j j P P

L
PD P X t M v L P

P

 1 in PTV BTV

in OARs
 (12.6)

 

j
j j P P

U
PD P X t N v U P

P

 1 , in PTV BTV

in OARs,
 (12.7)

 
BTV PTV ,

PTV BTVp
P
Lv  (12.8)

 j j jt T x  (12.9)

 j
jx MaxSeeds (12.10)

vP
L , vP

U, x j 0 1, , t j 0

The first objective deals with temporal delivery that governs the dwell times. 
The second objective is to find a treatment plan that satisfies as many bound 
constraints as possible; this is surrogate to rapid dose falloff, ensuring conformity of 
the prescribed dose to the tumor. The parameters η

P
 and μ

P
 allow us to prioritize the 

importance of various anatomical structures. Using a weighted sum is important for 
the cervical cancer cases to balance the volume of the cervix versus the nearby OARs 
(e.g., bladder, rectum, and bowel). The third objective function incorporates the TCP 
function, which depends on the duration of the treatment, radioactive decay of the 
radioisotope, dose received, volume and density of tumor cells, and the biological 
radiosensitivity and radioresistancy of the normal and tumor cells.

PrDose represents the clinical prescribed dose to the tumor, and λ ( 1) repre-
sents the dose‐escalation factor. This factor is guided by clinicians as well as its effect 
on normal tissue complication. Constraint (12.5) ensures that the PET‐identified 
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tumor voxels receive escalated doses. In Constraints (12.6) and (12.7), vP
L  and vP

U are 
0/1 variables. If a solution is found such that vP

L 1, then the lower bound for the dose 
level at point P is satisfied. Similarly, if vP

U 1, the upper bound at point P is satisfied 
(see Constraint 12.7).

The constants M
P
 and N

P
 are chosen appropriately for the PTV and for various 

OARS. For PTV, M
P
 corresponds to the underdose limit, whereas N

P
 corresponds to 

overdose limit, and L PrDoseP  corresponds to the prescription dose. M
P
 and N

P
 are 

strategically chosen so that the overall PTV dose remains relatively homogeneous 
(e.g., setting (N PrDoseP )/(PrDose MP) < 1.2), as the clinicians desire. For the 
OARs, N

P
 represents the maximum dose tolerance that the organs can sustain, without 

inflicting severe and permanent harm. These values are determined from clinical 
findings and are part of the planning procedures and guidelines. For cervical cancer 
treatment, Constraint (12.6) does not apply to any OAR.

In Constraint (12.8), α corresponds to the minimum percentage of tumor coverage 
required (e.g., 0 95. ). Because all the PET‐identified tumor voxels satisfy the 
prescribed dose bound (and beyond), we count those in PTV‐BTV and these BTV 
voxels to ensure that overall it satisfies α percent of the tumor volume. Here, |PTV| 
represents the total number of voxels used to represent the PTV of the cervix. 
Constraint (12.8) thus corresponds to the coverage level that the clinician desires. In 
Constraint (12.9), the duration t

j
 in grid position j is positive only when this position 

is selected. Its value is bounded by the maximum time limit T
j
. The time usually is 

bounded by the length of the treatment session, which is usually between 20 and 30 
minutes, depending on the tumor stage and prognosis condition. Constraint (12.10) 
limits the number of seeds used to MaxSeeds. The constant can be omitted; however, 
in some cases, clinicians know their desired numbers, which they tell the planner.

Note that BTV voxels are excluded in Constraint (12.7) because there is no reason 
to place an upper bound on the dose to these tumor voxels. Constraint (12.5) ensures 
that no underdose for PET‐identified voxels exists; thus, Constraint (12.6) is unneces-
sary for these voxels.

12.3.4 Computational Challenges and Solution Strategies

The treatment model has three objectives: (i) the temporal delivery objective that 
governs the dwell times; (ii) the dose volume‐based objective that, along with 
the temporal objective, guides the optimization engine to a solution that best satisfies 
the imposed dosimetric and volumetric constraints for conformal treatment; and 
(iii) the biological and clinical TCP objective.

To apply our multiple‐objective MIP solution strategies, we begin by first solving 
the MIP instance that requires the minimum PTV coverage while minimizing the 
maximum dwell time across all the possible seed locations.

For the dose volume‐based objective, these MIP instances inherit the dense dose 
matrix properties as in the MSKCC brachytherapy instances (Lee and Zaider 2008). 
Using a competitive commercial solver, the solver does not return a feasible solution, 



272 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

even after running for a month of CPU time on an Intel Xeon E5430 Quad Core Xeon 
Processors at 2.66 GHz, 1333 MHz FSB, and 12 MB cache per processor.

We employ hypergraphic polyhedral cuts to accelerate the solution process. In 
particular, Easton et  al. (2003) introduced the notion of uniform hypergraph and 
derived facial structures of uniform hypercliques. In their work, they showed that 
these hyperclique inequalities can help to solve the small, yet 100% dense, previ-
ously intractable market‐share instances successfully. Lee and Zaider (2008) showed 
that hypercliques, along with novel matrix‐reduction approaches and clever 
geometric‐based heuristics, can help solve these intractable MIP instances to opti-
mality. Furthermore, the solution process can be achieved within seconds; thus, the 
real‐time treatment‐planning process, which has since become standard across the 
United States for prostate permanent implants, was realized.

In our work, the challenges are more complex; these challenges include the multi‐
objective nature of our problem, the highly nonlinear TCP objective, and the com-
peting dose escalation and OAR dose distribution within the solution space.

We advance the polyhedral theory work of Easton et al. (2003) and introduce the 
concept of generalized conflict hypergraphs. Within this high‐dimensional construct, 
we derive new polyhedral theories, including generalized hyperclique, hyper‐oddholes, 
hyper‐antioddholes, hyper‐webs, hyper‐antiwebs, and hyper‐star facial structures 
and their associated Chvátal–Gomory (CG) ranks (Lee, Maheshwary and Wei 2016).

Computationally, we tackle the dose volume‐based and the biological tumor 
control objectives simultaneously using a branch‐and‐cut and local‐search approach. 
We caution that because TCP is highly nonlinear, it is difficult to convexify or line-
arize it for actual branch‐and‐cut solution exploration. Specifically, we solve the MIP 
instance with the dose volume‐based objective via a branch‐and‐cut algorithm that 
couples new polyhedral cuts, along with matrix reduction and intelligent geometric 
heuristics algorithms. When we obtain an integer solution or when a heuristic within 
the branch‐and‐cut setting returns a feasible solution, we perform a local search to 
examine the TCP values across the entire neighborhood. Given a seed configuration 
with dwell times, we calculate the associated TCP based on the resulting PTV and 
PET‐pocket dose–volume histograms. We then keep the best solution (i.e., the solu-
tion with the maximum TCP value) as the incumbent solution. The local search 
involves swapping and a hybrid genetic algorithm, where one can rapidly examine 
the neighborhood space to identify the best TCP‐value solutions. Such an approach 
guarantees the return of a feasible solution while exploiting the best possible TCP 
values within the neighborhood feasible space.

We examine multiple model variations to determine the one with the best 
performance in terms of dose distribution to various organs and the associated TCP. 
The variations include minimizing the overdose and underdose to the PTV and (or) a 
combination of these. The overdose and underdose can be obtained by transforming 
the binary variables vP

L  and vP
U in Constraints (12.6) and (12.7) into continuous vari-

ables to capture the dose differences. The weights in the objective function can be 
nonlinear to the overdose or underdose amount (e.g., it can be piecewise linear or 
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quadratic penalties). Other variations include maximizing the dose falloff from the 
prescribed PTV dose. In Lee et  al. (2016), we report further advances in directly 
addressing the TCP objective via the solution of successive MIP approximations.

12.4 VALIDATION AND RESULTS

To gauge the feasibility, characteristics, and potential benefit of PET‐image‐guided 
dose escalation, our initial validation consists of 15 cases of cervical cancer. Each 
patient had previously received a 45 Gy dose of external radiation. The PTV ranges 
from 82.8 to 137.47 cm3 and the BTV ranges from 10% to 41%. For each case, we 
contrast three alternative strategies: (i) a standard HDR plan with no dose escalation, 
(ii) a BTV escalation with the same PTV prescription dose, and (iii) a BTV escala-
tion with a reduced PTV prescription dose. For both escalation strategies, we 
consider two variations (a 37 Gy increase and a 40 Gy increase to the BTV) and 
observe the effects on PTV and OAR dose profiles and TCP quality.

Figure 12.3a illustrates the dose–volume histogram and dose profiles for a patient 
with a BTV that is 20.1% of the cervix. The y‐axis is the cumulative volume, and the 
x‐axis is the radiation dose received. In this figure, the standard plan is labeled by a 
square, escalated PET ≥ 37 Gy with 35 Gy PTV prescribed dose is labeled by circles, 
escalated PET ≥ 37 Gy with 33 Gy reduced PTV dose is labeled by an x, escalated 
PET ≥ 40 Gy with 35 Gy PTV prescribed dose is labeled by triangles, and escalated 
PET ≥ 40 Gy and 33 Gy reduced PTV dose is labeled by rhombuses. We can observe 
the escalated dose of the BTV versus the PTV. Further, compared with the standard 
plan, dose reduction occurs in the rectum and bladder in the escalated plans with a 
BTV ≥ 37 Gy. We observe a larger reduction when we increase the BTV to ≥40 Gy. 
This translates to a reduction in normal tissue toxicity and complications. Figure 12.3b 
illustrates similar trends for a small BTV volume (i.e., 10.4% of the PTV).

To contrast the dose distributions of the standard versus escalated plans, 
Figure 12.4 illustrates clear hot spots (i.e., high‐dose, 150% isodose curves) around 
the PET‐identified voxels in the escalated plan; however, they are absent in the 
standard plan.

For the 15 cases, the TCPs for standard plans range from 48% to 63%. For dose 
escalation with 35 Gy PTV prescribed dose, when an escalated dose of ≥37 Gy is 
placed in the PET‐identified tumor pockets, all escalated plans show a slight reduction 
of 0.5%–12.4% in the rectum and bladder dose, while 99% of the BTV receives over 
40 Gy. The resulting TCP values range from 82% to 99%. When the BTV is less than 
15% of the PTV, dose escalation can be delivered with a virtually identical PTV dose, 
as in the standard plan. When the BTV is over 20% of the PTV, dose escalation to 
PET‐identified voxels intrinsically increases the PTV dose by 1%. Boosting the BTV 
to 40 Gy results in no dose increase to the PTV in all plans.

When the PTV is prescribed as a reduced dose of 33 Gy, independent of the size 
of the BTV, escalation can be achieved, while the dose to the PTV, bladder, and 
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Figure 12.3 (a) This figure shows the dose–volume histogram for a cervical cancer patient with 
a PET pocket that is 20.1% of the PTV. □: Standard HDR plan (PTV prescribed dose = 35 Gy); 
there is no separate curve for the PET. ○: Escalated PET (PTV prescribed dose = 35 Gy, 
PET ≥ 37 Gy). *: Escalated PET and reduced PTV dose (PTV prescribed dose = 33 Gy, PET ≥ 37 Gy). 
Δ: Escalated PET (PTV prescribed dose = 35 Gy, PET ≥ 40 Gy).  : Escalated PET and reduced 
PTV dose (PTV prescribed dose = 33 Gy, PET ≥ 40 Gy). (b) This figure illustrates the dose–volume 
histogram for a cervical cancer patient with a PET pocket that is 10.4% of the PTV.
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Figure 12.4 This figure contrasts the isodose curves of a standard plan (a), an escalated plan with 35 Gy of PTV 
prescribed dose (b), and an escalated plan with 33 Gy of PTV prescribed dose (c). We can observe the very conformed 
100% isodose curves to the PTV contour. The 150% isodose curves in both escalated plans around the PET‐identified 
pockets are clearly absent from the standard plan. The 120% isodose curve is tighter in the bottom escalated plan, 
reflecting the lower dose to PTV because of the lower prescribed value (33 Gy vs. 35 Gy).
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rectum are reduced simultaneously. All plans can be generated within minutes. 
This allows for real‐time OR‐based treatment planning and on‐the‐fly dynamic 
reconfiguration.

Table 12.1 highlights the TCP for three representative patients: BTV ≤ 11% of 
PTV (small), 11%–25% (medium), and ≥25% (large). On all patients, the TCP of 
all escalated plans is over 82%. Specifically, when the BTV is boosted to over 
40 Gy, the resulting TCP is uniformly high (≥89%). We list the plans A–E 
according to improvements to the TCP. The best TCP (plan E) is achieved when 
we boost the PET‐identified pockets to over 40 Gy while maintaining the PTV 
dose at 35 Gy. This can be partially explained by the fact that there remain cancer 
cells loosely populated outside the PET‐identified pockets. Hence, a prescribed 
dose of 35 Gy is able to eliminate these cancer cells, but a prescribed dose of 
33 Gy may not be as effective. Table 12.2 contrasts the dose received by the OARs. 
For brevity, we focus on the plans where the PTV all receives 35 Gy prescribed 
dose (i.e., plans A, B, and E).

12.5 FINDINGS, IMPLEMENTATION, AND CHALLENGES

With the precision of the HDR brachytherapy delivery, a TCP improvement in 
treatment plans can be readily realized in the outcomes of actual treatments. TCP 
offers biological information about tumor and normal cells and their radiosensi-
tivity and radioresistancy to radiation doses; thus, incorporating such information 
in optimized personalized treatment plans is invaluable. Coupled with TCP 
knowledge, advances in biological and functional imaging offer new opportunities 
to incorporate radiobiological parameters within the planning process. The OR‐
based treatment‐planning algorithm we describe herein allows for TCP‐driven 
PET‐enhanced personalized treatment, which facilitates the targeted delivery of 
escalated doses and improvements in overall clinical outcomes.

TABLE 12.1 TCPs in Various Plans

PET/PTV Ratio Category Small Medium Large

Planning target volume (PTV in cc) 82.80 137.47 92.47
PET‐identified volume (BTV in cc) 8.60 27.63 29.74
Ratio: BVT/PTV 10.4% 20.1% 32.2%

Treatment‐planning model Tumor control probability (TCP)
A. Standard HDR plan (PTV dose = 35 Gy) 0.48 0.53 0.63
B. BTV ≥ 37 Gy, PTV = 35Gy 0.86 0.82 0.85
C. BTV ≥ 37 Gy, PTV = 33Gy 0.94 0.86 0.90
D. BTV ≥ 40 Gy, PTV = 33Gy 0.97 0.89 0.93
E. BTV ≥ 40 Gy, PTV = 35Gy 0.99 0.91 0.95

The boldface values represent the TCP associated with escalated plans.



  TABLE 12.2    Dose Distribution in Standard Plans versus Escalated Plans (Using the Same Prescribed  PTV  Dose) 

Patient

D90 (cGy) D 2 cc (cGy) Mean Dose (cGy)  

Plans PTV PET Pockets Bladder Rectum Bladder Rectum    

Small Standard 3735.8 4091.3 2650.37 2400.57 2272.5 2006.5  
B: BTV ≥ 37 Gy, PTV = 35 Gy −0.7% +3.2% −6.5% −0.2% −0.5% −0.9%  
E: BTV ≥ 40 Gy, PTV = 35 Gy −0.6% +4.6% −6.1% −0.2% −0.5% −0.8%  

Medium Standard 3675.4 4135 2602.77 2654.15 1782.2 2006.1  
B: BTV ≥ 37 Gy, PTV = 35 Gy +0.8% +3.8% +3.1% −3.2% −1.0% −0.9%  
E: BTV ≥ 40 Gy, PTV = 35 Gy +0.4% +6.5% +2.3% −2.0% −1.8% −2.6%  

Large Standard 3666.2 4046 2791.26 2881.11 1189.3 3042.2  
B: BTV ≥ 37 Gy, PTV = 35 Gy −0.7% +3.1% −8.5% −7.5% −6.4% −6.9%  
E: BTV ≥ 40 Gy, PTV = 35 Gy +0.1% +7.1% −5.0% −8.5% −1.7% −12.4%

  D90 (cGy) represents the dose received by 90% of the organ and D 2 cc is the minimum dose to the most exposed 2 cm 3  of OARs.  
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Our study reveals improvements both in local tumor control and OAR toxicity, 
two competing and desirable goals that were previously thought to be unachievable 
simultaneously. The work herein showcases the importance of novel modeling and 
breakthrough optimization solution strategies in personalized treatment‐planning 
advances. The dose escalation is sensitive to the size of the PET volume. In addition, 
we have demonstrated that it is possible to reduce the PTV dose while escalating 
doses to the PET pockets, as plans C and D, in which the PTV receives only 
33 Gy, show.

This work addresses three unique challenges:

 • The TCP function is complex and highly parametric and is sensitive to the 
density of cancer cells and the radiobiological characteristics of normal and 
tumor cells.

 • The biological‐driven MIP treatment models are intractable using existing 
methodologies and competitive solvers. They would require breakthroughs in 
polyhedral theory and computational advances. This is the first time that TCP 
is being incorporated within a treatment‐planning optimization modeling and 
solution process. This is also the first time that PET‐image‐guided dose esca-
lation is being performed.

 • The actual gain in local tumor control must be validated through clinical trials 
to quantify the associated treatment outcome improvements that are realized 
through PET‐guided dose escalation.

In practice, the sophisticated modeling and novel and fast optimization algorithm 
ensures that there is no increase in solution time for escalated dose planning. The 
radiation oncologists must guide us regarding the proper escalated dose values.

Rush University Medical Center began a clinical trial for PET hot HDR dose 
resteering in July 2011. All patients enrolled were diagnosed as having International 
Federation of Gynecology and Obstetrics (FIGO) IIB or IIIB cervical cancer. In a 
FIGO IIB cancer, the tumor has spread to the parametrial area (i.e., tissue surround-
ing the uterus); in a FIGO IIIB cancer, the tumor has grown into the pelvic wall and 
(or) causes hydronephrosis or nonfunctioning kidneys (American Joint Committee 
on Cancer 2009). The patient’s treatment included whole pelvic radiation therapy 
with concurrent chemotherapy. The radiation therapy treatment schemes included 
external beam treatments for the cervix and parametrium, along with HDR to the 
cervix with boosted PET‐positive doses. The HDR CTVs were delineated based on 
CT and MR imaging positive volumes. The PET‐positive volumes were boosted to 
50% higher doses than those delivered to CTVs. Some cases were treated with the 
Syed applicator; others were treated with the tandem–ring applicator, in conjunction 
with three or four parametrial interstitial needles.

All patients who entered the study received two treatment plans: one using the in‐
house treatment‐planning algorithm for dose escalation and another using a commercial 
algorithm (currently used in the clinic) with options for manual fine‐tuning. 
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The attending physician was responsible for selecting the final plan. Acceptable 
boost plans were achieved for all patients. These boosted plans were then success-
fully delivered to all patients. For the boosted plans, the PET pockets received 
elevated doses compared to the standard plans, while doses to the bladder and 
rectum were reduced. The clinician was pleased with the performance of the PET‐
image‐guided targeted dose escalation and the successful completion of the 
clinical study. The hospital is planning to continue the study by enrolling addi-
tional patients. The results thus far indicate that such dose escalation is feasible 
to deliver and is beneficial to the cancer patients. The techniques are applicable to 
the treatment of other types of cancer, including breast, lung, prostate, and esoph-
agus cancer.

12.6 IMPACT AND SIGNIFICANCE

As we state previously, cervical cancer is the second most common cancer in women 
worldwide; approximately 500,000 new cases are diagnosed each year (World Health 
Organization 2013). In developing nations, it is often the most common cause of 
cancer‐related death among women and a leading cause of death overall (National 
Cancer Institute 2013). In this section, we discuss the significance of our work.

12.6.1 Quality of Care and Quality of Life for Patients

 • Compared to standard HDR plans, PET‐guided dose‐escalation plans improve 
tumor control consistently across all patients. This translates to improvements 
in cure rates and reductions in mortality.

 • Clinical evidence shows a reduction of the radiation dose to the bowel, bladder, 
and rectum. Thus, our system reduces side effects and complications. This has 
a profound impact on both healthcare costs and the patient’s quality of life.

 • The planning process requires only seconds to return good treatment plans. This 
offers quality assurance in treatment delivery (image guided or not), independent 
of the training and experience of the operators. It helps to ensure a uniform 
quality of care among patients and across all hospital sites.

12.6.2 Advancing the Cancer Treatment Frontier

 • The work marks the first time that complex TCP is incorporated within treatment 
planning and as an objective in driving high‐quality treatment plans.

 • This work also marks the first time that PET images are incorporated within 
the treatment‐planning environment for targeted dose‐escalation planning 
optimization.

 • The fast solution engine and the seamless incorporation of functional imaging 
information allows treatment‐plan optimization and re‐optimization in real time 
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based on new images as the patients receive daily treatments. This opens up 
the potential for next‐generation adaptive real‐time image‐guided HDR 
brachytherapy.

 • With advances in biological imaging, such as PET and MRS, incorporation of 
such knowledge within treatment modalities will soon become a standard for 
personalized treatment planning. To the best of our knowledge, Rush University’s 
radiation therapy clinical trial is the first and only one in the country that delivers 
PET‐based dose‐escalation HDR brachytherapy for patients with cervical can-
cer. Our work has the potential to set the national standards and guidelines for 
biological image‐guided brachytherapy treatment.

 • Observing the clinical trend, brachytherapy is rapidly becoming the treatment 
of choice, because its side effects are generally less severe when compared with 
external beam radiation therapy and surgery and because of its effectiveness for 
early‐stage treatment. Further, brachytherapy preserves the organ and its func-
tionality. The latter is of special concern to younger early‐stage cancer patients 
who still look forward to bearing children.

 • The methodologies are applicable to brachytherapy (both high dose rate and 
low dose rate) for other types of cancer, including prostate, breast, bile duct, 
lung, and sarcoma, and for external beam radiation.

12.6.3 Advances in Operations Research Methodologies

 • This study marks the first use of sophisticated combinatorial optimization 
approaches to tackle the complexities inherent in incorporating TCP as a clinical 
objective within HDR brachytherapy. The resulting treatment plans offer 
superior TCPs with simultaneous toxicity reduction to OARs. This can be a 
precursor to subsequent clinical trials.

 • This study is the first in which PET images are incorporated within the planning 
optimization model, giving rise to the competing goals of escalating the dose to 
the tumor, while simultaneously not increasing (or reducing) the dose to the 
OARs.

 • The highly nonlinear multi‐objective MIP environment offers a powerful 
modeling paradigm. However, the resulting intractable instances demand 
theoretical and computational breakthroughs to solve these instances for actual 
clinical delivery.

 • We introduce a new concept of generalized conflict hypergraphs and derive 
polyhedral results, including hypercliques, hyper‐oddholes, hyper‐antiod-
dholes, hyper‐webs, hyper‐antiwebs, and hyper‐star facial structures and their 
associated CG ranks.

 • The branch‐and‐cut and local‐search approach described herein couples new 
polyhedral cuts, along with matrix reduction and intelligent geometric heuris-
tics. This approach can successfully address the highly complex and nonlinear 
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TCP function and the dose‐based objective. It can rapidly return good, feasible 
solutions.

 • Independently, this work motivates our polyhedral investigation on MIP con-
vexification of posynomial and signomial functions (Shapoval and Lee 2012a, b), 
an area that deserves advances in its own right, because many real‐world 
problems can be modeled as complex NMIPs that demand theoretical and 
computational advances.

Within the medical community, there is an urgent push to incorporate the radiobi-
ological characteristics of normal and tumor cells, and biological and functional 
imaging advances, within treatment delivery to realize and improve clinical out-
comes and tumor control. Our work provides proof of concept of the feasibility and 
potential clinical benefits of such personalized, targeted treatment‐planning design 
and delivery. Moreover, the resulting plans offer improvements in tumor control and 
reduce the radiation to the OARs, two competing and desirable characteristics that 
were previously thought to be unachievable simultaneously.

Our rapid operator‐independent biological treatment‐planning system provides 
the groundwork for advancing the technological frontier of image‐guided brachy-
therapy. It opens up opportunities to conduct complex clinical investigations that 
may otherwise be impossible, as evidenced in MRS‐guided dose‐escalation studies 
(Zaider et al. 2000, Zaider and Lee 2005, Lee and Zaider 2001, 2003a, 2003b, 2006). 
The sophisticated OR modeling paradigm provides great flexibility in realistically 
modeling the clinical problem, and the novel rapid solution engine objectively returns 
the best possible plans.
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13.1 INTRODUCTION

Cancer is among the leading causes of death worldwide, with annual cancer rates 
expected to increase from 14 million in 2012 to 22 million by 2032 (World Health 
Organization 2015). Radiation therapy is one of the most widely used approaches to 
treat cancer (American Cancer Society 2017); however, depending on the treatment 
site, long‐term side effects including infertility, bladder and kidney problems, dry 
mouth, and even paralysis can occur if treatments are not carefully designed to avoid 
healthy tissues (American Cancer Society 2017). While there are several forms of 
radiation therapy, for example, stereotactic radiosurgery and brachytherapy, the most 
common form of radiation therapy is intensity‐modulated radiation therapy (IMRT), 
wherein radiation is delivered to the patient via external beams. Unlike conformal 
radiation therapy, in IMRT, the radiation distribution of each beam can be finely 
controlled, allowing for very accurate treatments to target cancerous tissue while 
avoiding healthy cells.
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Prior to delivering radiation, a CT image is taken of the patient and the cancerous 
structures (called targets) and healthy structures (called organs at risk (OARs)) are 
contoured by hand. Using the CT image and the contours, the patient is discretized 
into 3D pixels called voxels (volume pixels), and each voxel belongs to a single 
 structure. A desired amount of radiation is designated for each structure, and a 
dosimetrist uses a commercial treatment planning software to design a treatment that 
meets the desired treatment guidelines as best as possible. The treatment is then 
reviewed by a clinical team and may be sent back to the dosimetrist for improvement. 
This process is repeated until a satisfactory treatment is obtained. IMRT optimization 
seeks to eliminate the iterative nature of treatment planning by improving the 
planning engine in the commercial treatment planning software so that a high‐quality 
treatment that meets or exceeds clinical guidelines is obtained on the first attempt.

Radiation in IMRT is delivered using a device called a linear accelerator 
(Figure 13.1a). To achieve unique radiation distributions for each beam, a multileaf 
collimator (MLC) is positioned in the linear accelerator, and the “leaves” (Figure 13.1b) 
move in and out to block or unblock radiation in parts of the beam, resulting in cus-
tomizable beam shapes (Figure 13.1c). The MLC moves as radiation is delivered, 
and leaving some areas of the beam blocked or unblocked longer than other areas 
results in nearly infinitely customizable radiation distributions. Typically, the MLC 
leaves can move in increments of 0.5 cm, and the leaves are also about 0.5 cm wide. 
Thus, the MLC allows us to effectively treat each beam, which is generally about 
40 cm × 40 cm in size, as hundreds of small 0.5 cm × 0.5 cm beamlets, the radiation 
intensities of which (called fluences) can be independently controlled. Depending 
on the specific linear accelerator and MLC make and model, there may exist rules 
governing the relative positions of adjacent leaves, but these restrictions do not limit 
the ultimate fluences that can be delivered.

In delivering the treatment to the patient, the treatment is divided into 25–35 
smaller fractions, which are administered daily to the patient. IMRT treatments are 
delivered by positioning the linear accelerator for a single beam orientation, delivering 
the appropriate fluence map, stopping the radiation, and then moving to the next 
beam and repeating for each beam. This process is called step‐and‐shoot delivery. 
An alternative approach is to continuously deliver radiation while the linear 
accelerator and MLC move in a process called volumetric modulated arc therapy 
(VMAT) (Otto 2008). VMAT is gaining in popularity for some treatment sites (most 
notably, prostate) (see, e.g., Craft et al. 2012; Men et al. 2010b), but step‐and‐shoot 
IMRT is currently more common in general.

To design an IMRT treatment, first, the beam orientations are selected. Generally, 
these beams are obtained solely from rotating the linear accelerator gantry (shown 
slightly rotated in Figure 13.1a), which sweeps out a disc of potential beam orien-
tations; such beam orientations are called coplanar. However, other components of 
the linear accelerator can also move, for example, the couch can be rotated translated 
in all dimensions, which would result a much larger set of candidate beam orienta-
tions called non‐coplanar beams. Clinically, most treatments use an odd number of 
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equi‐spaced coplanar beams, usually 5–11 beams, depending on the treatment site. 
Odd numbers are chosen to avoid parallel‐opposed beams, which conventionally are 
undesirable for most treatment sites (one notable exception is breast treatments). 
Once the beam orientations are selected, the fluences of each beam, called fluence 
maps, are obtained by selecting beamlet intensities and then identifying leaf 
positions to achieve these fluence maps or by selecting whole apertures (shapes) of 
the MLC directly. If beamlet‐based fluence maps are obtained, then the last step of 
planning is to identify a sequence of MLC movements to achieve the fluence maps. 

Photon
therapy
beam

Multileaf
collimator
system

Left and right
leaves form
aperture,
creating an
irregularly
shaped beam

(a)

(c)

(b)

Figure 13.1 IMRT treatment delivery devices. (a) Linear accelerator and (b) MLC (c) MLC 
impact on beam shape. Source: (a and b) Reproduced with permission of Varian Systems, Inc. 
(c) Romeijn and Dempsey (2008). Reproduced with permission of Springer.
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While multiple valid leaf sequences may exist, leaf sequences that result in shorter 
treatment times (i.e., sequences with fewer movements) are preferred.

IMRT treatment planning optimization is therefore typically divided into three 
consecutively solved decision‐making problems: (i) beam orientation optimization 
(BOO), (ii) fluence map optimization (FMO), and (iii) leaf sequencing optimiza-
tion (LSO). Alternatively, FMO and LSO can be combined into direct aperture 
optimization (DAO). While BOO, FMO, and LSO problems, and DAO to a lesser 
extent, are all well studied in the literature (see, e.g., the IMRT review paper by 
Romeijn and Dempsey (2008)), FMO has received the most attention by far, likely 
because it is the most computationally tractable and because the quality of the flu-
ence maps usually has a much larger impact on overall clinical treatment quality than 
the beams or the leaf sequences. The fractionation problem to optimally divide the 
treatment into fractions is not well studied, with few previous studies focusing on the 
problem from a rigorous mathematical optimization framework (Aleman et al. 2014).

An important consideration during the planning and delivery stages of IMRT 
treatment is uncertainty. Organs can shift and move due to breathing or setup errors 
during each individual treatment (called intrafraction motion) or can shift as time 
goes by from fraction to fraction (called interfraction motion). While most IMRT 
literature assumes a deterministic treatment scenario, attempts to predict and plan 
for intra‐ and interfraction motion are becoming more common, particularly robust 
optimization formulations to control worst‐case scenario treatment quality. Adaptive 
treatments (see, e.g., Chan and Mišić 2013; Men et al. 2009; Wu et al. 2008), where 
a new treatment is planned (or an existing treatment is updated) for each fraction, 
are also gaining popularity, though such multi‐plan modeling approaches will not be 
presented in this chapter.

This chapter focuses on computationally tractable single‐plan FMO modeling and 
optimization approaches for step‐and‐shoot delivery in deterministic and robust sce-
narios and is organized as follows. Section 13.2 explains the criteria used to evaluate 
treatment plans. Sections 13.3 and 13.4 elaborate how FMO models are posed and 
optimized, respectively. Finally, conclusions and future directions are presented in 
Section 13.5.

13.2 TREATMENT PLAN EVALUATION

While objective function values, optimality gaps, and computation times are the 
sole criteria for evaluating most optimization approaches regardless of application, 
in IMRT, solutions are evaluated almost exclusively on clinical treatment quality. 
Computation time is important to maintain real‐world usefulness (FMO should not 
take more than a few minutes), and optimality is important only insofar as it ensures 
consistent quality and standardization across treatment planners.

Clinical treatment metrics for IMRT broadly fall into two categories: physical 
dose measures and biological measures. The difference between these measures is 
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that the former captures measurable delivered dose, while the latter infers tissue 
responses to radiation (Bortfeld 1999). It is important to note that different clinics 
will use different treatment criteria, and criteria may vary with multimodal treatments 
(e.g., surgery and/or chemotherapy in conjunction with radiation).

13.2.1 Physical Dose Measures

Physical dose measures include dose–volume histograms (DVHs), isodose lines, and 
D

x
 and V

x
 specifications. The notation D

x
 for a particular structure means “the minimum 

dose received by ≥x% of the structure volume,” while V
x
 means “the percentage of the 

structure volume receiving ≥x% of the prescribed dose.” Note that minimum, maximum, 
and mean doses received by a structure can be expressed as D

100
, D

0
, and D

50
, respec-

tively. For the targets, which are generally the gross tumor volume (GTV) (the visible 
cancerous region in the CT) and the planning tumor volume (PTV) (the GTV plus 
some margin to account for microscopic tumor extension and potential uncertainty), D

x
 

and V
x
 are given in terms of percentage of the prescription dose. For OARs, they are 

given in terms of absolute dose.
Table 13.1 illustrates some common dose measures for common treatment sites in 

terms of Gy (“gray,” a common unit of radiation for therapeutic radiation delivery). 
As can be seen in the table, some OARs are constrained by maximum amount of 
dose (e.g., spinal cord), while others are constrained by dose to partial volumes (e.g., 
saliva glands). Organs that can receive high dose to partial volumes and still survive 
are called parallel structures (e.g., saliva glands), while organs that cannot survive 
after high dose to any portion are called serial structures (e.g., spinal cord).

Unlike D
x
 and V

x
, DVHs and isodose lines are visual representations of dose. As the 

name implies, DVHs are plots of dose vs. volume for each structure. Figure 13.2a illustrates 

TABLE 13.1 Common Physical Dose Criteria for Some Treatment Sites

Site Organ Prescription Dose Dose Criteria

Head and neck GTV 70 Gy D
95

 ≥ 100%, V
95

 ≥ 100%, V
110

 ≤ 5%
PTV 50 Gy D

95
 ≥ 100%, V

120
 ≤ 10%

Saliva glands — V
35Gy

 ≤ 50%
Spinal cord — V

45Gy
 ≤ 0%

Mandible — V
70Gy

 ≤ 0%
Prostate PTV 74 Gy V

95
 ≥ 98%, V

107
 ≤ 0%

Bladder — V
40Gy

 ≤ 25%, V
20Gy

 ≤ 50%
Rectum — V

70Gy
 ≤ 5%, V

40Gy
 ≤ 25%, V

20Gy
 ≤ 50%

Femoral heads — V
40Gy

 ≤ 5%
Lung PTV 66 Gy V

100
 ≥ 95%, V

113
 ≤ 3%

Lung — V
20Gy

 ≤ 30%, V
30Gy

 ≤ 20%, D
50

 ≤ 20 Gy
Spinal cord — V

45Gy
 ≤ 0%

Heart — V
40Gy

 ≤ 50%
Esophagus — V

55Gy
 ≤ 30%
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Figure 13.2 Visual evaluation measures of physical dose. (a) Example DVH and (b) CT slice 
with isodose lines and structure contours. LPG, left parotid gland; MB, mandible; RPG, right 
parotid gland; SC, spinal cord.
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sample DVHs of a target structure and an OAR. Ideally, target DVH curves should 
be flat at 100% volume up to 100% of the prescription dose (indicating that 100% 
of the structure receives 100% of the prescription dose) and then fall steeply to 0% 
(indicating that very little of the structure receives more than 100% of the prescription 
dose). Conversely, DVH curves for OARs should fall quickly to zero, indicating that 
very little of the structure receives significant dose. Isodose lines (Figure 13.2b) are 
contour lines of the dose overlaid on slices of the CT image and are often colored 
according to dose intensity. Isodose lines should be evaluated for each CT slice and 
should show tight conformity of the prescription isodose line to the targets, as well 
as homogeneity of dose in the target (no hotspots or coldspots) and acceptable dose 
to OARs.

13.2.2 Biological Dose Measures

Although physical criteria dominate IMRT optimization models and radiotherapy 
treatment evaluation, a few biological criteria should be discussed due to their clinical 
relevance. These criteria are the tumor control probability (TCP), normal tissue 
complication probability (NTCP), and equivalent uniform dose (EUD), which has 
several variants, the most common of which is the generalized EUD (gEUD). The 
functions to express TCP and NTCP (see, e.g., Mohan et al. 1992) are mathematically 
intractable for rigorous optimization (and, hence, very infrequently incorporated into 
IMRT optimization (Alber and Nusslin 1999; Levin‐Plotnik and Hamilton 2004)) 
and thus will not be discussed. We specifically note that most papers claiming to 
optimize TCP and NTCP are in fact using commercial treatment planning systems to 
obtain treatments (see, e.g., Semenenko et al. 2008; Witte et al. 2007), so the validity 
of the actual optimization process is unknown. EUD, on the other hand, can be 
formulated in an optimization‐friendly convex expression, though EUD formulations 
are still more complex than those based on physical criteria. It is worth noting that 
TCP and NTCP can be calculated from EUD (Romeijn et al. 2004; Wu et al. 2002), 
and TCP and NTCP are sometimes calculated after optimization to compare treatments.

EUD is meant to approximate dose response more closely than the dose–volume 
parameters used in physical criteria. We will focus on gEUD due to its prevalence 
and flexibility in IMRT optimization (Romeijn et al. 2004). Given dose z

js
 to voxel j 

in structure s containing a set of s  voxels, gEUD for structure s is defined by the 
following expression (Niemierko 1997; Wu et al. 2002):

 

gEUDs
s j

js
a

a

s

s

s

z
1

1

 

/

 (gEUD)

where a
s
 is a parameter specific to structure s describing the tumor or OAR‐specific 

dose–volume effect. As shown by the a value interpretations in Table 13.2, tumors 
are usually assigned large negative a values to control minimum dose, while OARs 
are usually assigned either small positive values or  if the OAR is parallel or 
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serial in structure, respectively. Because of its flexibility to capture dose prefer-
ences and its convex nature, gEUD is commonly used in IMRT optimization 
approaches (see, e.g., Craft et  al. 2007; Romeijn et  al. 2004; Wu et  al. 2002; 
Zinchenko et al. 2008).

13.3 FMO OPTIMIZATION MODELS

FMO formulations are varied and include linear programming (LP)‐based multi‐
criteria optimization (Breedveld et al. 2007; Craft et al. 2007; Hamacher and Küfer 
2002; Thieke et al. 2007) and mixed‐integer linear programming (MILP) (Bednarz 
et al. 2002; Ferris et al. 2006; Langer et al. 1990, 1996, Lee et al. 2003, 2006; Shepard 
et  al. 1999). The vast majority of FMO literature is based on the optimization of 
physical dose criteria, but some approaches based on biological criteria have been 
explored (Alber and Nusslin 1999; Craft et al. 2007; Das 2009; Jones and Hoban 
2000; Kallman et al. 1992; Mavroidis et al. 2001; Niemierko 1997; Niemierko et al. 
1992; Romeijn et al. 2004; Wu et al. 2002, 2003; Zinchenko et al. 2008). We will 
focus on modern techniques for modeling FMO in computationally tractable ways 
using physical criteria. We first present a generic FMO model and then possible 
objective functions and constraints.

Defining the set of OARs as   and the set of targets as  , the set of structures 
in a treatment is S O T . Each structure  s   has a set s  of voxels. Since 
FMO is performed given a fixed set of beams, the set of beamlets, B, is fixed. The 
decision variables in FMO are the fluences of each beamlet, defined as x

i
, i  . 

Dose z
js
 to voxel j in structure  s from beamlet intensities x is calculated using a 

linear sum:

 
z D x s jjs

i
ijs i s

B

S V,  (13.1)

where D
ijs

, called a dose deposition coefficient, is the fraction of dose from beamlet i 
reaching voxel j in structure s at unit intensity. A description of how to calculate dose 
deposition coefficients can be found in, for example, Aleman et al. (2008c).

TABLE 13.2 Interpretations of a Values in gEUD Equation

a gEUD Meaning

Maximum dose
Minimum dose

1 Arithmetic mean dose
0 Geometric mean dose

Source: Wu et al. (2002). Reproduced with permission of Elsevier.
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Say, a function F(z) exists to quantify the quality of voxel doses z, where smaller 
values of F(z) indicate better treatments. A generic FMO model to optimize voxel 
doses z arising from beamlet intensities x is then

 

Minimize

Subject to

F

z D x s j

x i

js
i

ijs i s

i

z

B

S V

B

,

0

 

(FMO)

Note that the constraint on z
js
 is used for notational convenience and is generally 

not considered a constraint. Since z is a function of x, any instance of z can be 
replaced by Dx as defined in Equation 13.1.

13.3.1 Objective Functions

Objective functions can optimize either physical (dose‐based) or biological (effect‐
based) measures. Common formulations for each approach are presented in this 
section.

13.3.1.1 Physical Objective Functions In 2004, Romeijn et  al. showed that 
convex penalty function criteria capture the vast majority of plan evaluation criteria 
in the medical physics literature. Since then, the most common approach to FMO 
objective function formulation is the following convex penalty approach that uniquely 
penalizes the over‐ and underdose of each voxel:

 
F w z T w T z

s j s
s js s

p

s s js

p

s

z
S V V

1  (13.2)

where (⋅)
+
 indicates max{ },0 ; Ts and T s are thresholds above and below which dose in 

structure s is penalized, respectively; and ws and ws are weights on over‐ and under-
dose for structure s, respectively. The penalty for each voxel is divided by the size of 
the structure to prevent large (but potentially unimportant) structures dominating 
small structures.

For OARs, T s and ws are typically zero, though either may be set to a positive value 
in recognition of the fact that a particular OAR may inevitably have to receive some 
dose. Commonly, T Ts s, though some new radiation optimization studies use unique 
values for each (see, e.g., Ghobadi et al. 2012). If T Ts s and w ws s, this function is 
a continuously differentiable quadratic function. Otherwise, it is a non‐smooth 
function with non‐differentiable points where z T Tjs s s, . Experimentally, these 
non‐differentiable points do not affect optimization performance (Aleman et al. 2010).

Quadratic variations of this penalty function with p = 2 are most common (Aleman 
et al. 2008a, 2008b, 2013; Men et al. 2009; Mišić et al. 2009, 2010; Romeijn et al. 2003, 
2006), though linear approaches with p = 1 have also been used for improved computa-
tional performance (Cao and Lim 2010; Lim and Cao 2012; Lim et al. 2008, 2014). 



294 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

Experimentally, the quadratic variation of this convex penalty function is often pow-
erful enough to not require hard constraints on any voxel doses; however, significant 
effort in tuning the threshold and weight parameters may be necessary.

In some robust FMO formulations to account for uncertainty in organ positions, 
the objective is often to simply minimize total dose to OARs (Bortfeld et al. 2008; 
Chan et al. 2006),

 

F z
s j

js

s

z
O V  

or weighted total dose to OARs (Chan et al. 2014b; Mahmoudzadeh et al. 2015):
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O V V
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Both these formulations are special instances of the convex penalty function in 
Equation 13.2. Other robust formulations, however, use a more standard version of 
the convex penalty approach in Equation 13.2 with p = 1 (Chu et al. 2005; Ólafsson 
and Wright 2006).

Despite the popularity of these objective functions, all but the simple minimization 
of total OAR dose rely on parameters to dictate the importance over‐ and underdosing 
and the importance of one structure compared with another. Tuning these parameters 
often requires significant effort and should be done across a large set of patients to 
ensure broad applicability of the final parameter values. It may be appropriate to 
generate unique parameter sets based on treatment site, target size, target proximity 
to OARs, or other measures that can be determined a priori. While there are no formal 
approaches to the parameter‐tuning process, graphical user interface (GUI) 
approaches to assist planners in selecting parameters and comparing plans generated 
by different parameters are growing in popularity (Ripsman et al. 2015b).

13.3.1.2 Biological Objective Functions As stated in Section 13.2.2, EUD and 
its variants are the only commonly used biological measures in radiotherapy optimi-
zation due their convex formulations. To use gEUD to optimize dose to targets ( ), 
simply sum the gEUD values for each target s   (gEUD

a
(s)) according to Equation 

gEUD:

 
F

s
s( )z



gEUD
 

Note that the negative sum of the gEUD values is taken since the general FMO 
model is a minimization, and, for targets, gEUDs are most commonly maximized. 
Values for a

s
 should be chosen from Table 13.2 according to the desired metric to 

optimize (e.g., as
 to maximize maximum dose or as  to maximize 

minimum dose). With any gEUD target objective, it is likely that a constraint will 
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be required to limit the maximum dose to the target voxels (see Section 13.3.2.1) 
to prevent overdose.

To use gEUD to optimize OAR () doses, again select appropriate a
s
 values for 

each s  and sum the OAR gEUD values:

 
F

s
s( )z



gEUD
 

Because it is desirable to keep OARs doses low, the gEUDs are directly mini-
mized, unlike the case of optimizing target gEUDs. When minimizing dose to OARs 
using gEUD, it is unlikely that any constraints will be required to explicitly control 
OAR dose; however, such constraints can be added if needed to guide the optimiza-
tion to clinically acceptable solutions.

As with physical dose objectives, it may be necessary to weigh the importance of 
structures in the objective function. For example, to weigh the gEUDs when mini-
mizing OARs to place more emphasis on select organs, simply add penalty weights 
to each structure’s gEUD (Romeijn et al. 2004):

 
F w

s
s sz



gEUD
 

where larger w
s
 values indicate more importance. As with the penalty parameters in 

physical dose objectives, w
s
 will have to be tuned to values that consistently yield 

quality treatments and may be specific to different sites and patient geometries.

13.3.2 Constraints

As with objective functions, constraints can control either physical or biological 
measures. Common formulations for each approach are presented in this section.

13.3.2.1 Full‐Volume Physical Dose Constraints Full‐volume constraints require 
that the dose in every voxel of a structure be within predetermined upper and lower 
bounds (Bednarz et  al. 2002; Hamacher and Küfer 2002; Lee et  al. 2003, 2006; 
Romeijn et al. 2003) and can be simply formulated as

 

z Z j

z Z j

js s s

js s s




 

where Zs and Zs are lower and upper bounds on dose to any voxel in structure s, respec-
tively. These constraints are often useful for ensuring target dose homogeneity. For serial 
OARs, where a maximum dose must be observed in order for the organ to continue 
functioning after treatment, the full‐volume upper bound constraint may be useful.

13.3.2.2 Partial‐Volume Physical Dose Constraints Partial‐volume constraints, 
also called DVH constraints, require that dose in only a subset of voxels be within 
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predetermined upper and/or lower bounds (Chan et al. 2014b; Lee et al. 2003, 2006; 
Mahmoudzadeh et al. 2015; Romeijn et al. 2003, 2005, 2006; Shepard et al. 1999). 
Approaches to add partial‐volume constraints generally included the introduction of 
a binary variable for every voxel and partial‐volume constraint, rendering the 
inclusion of these constraints computationally challenging until Romeijn et al. (2006) 
proposed a linear formulation for partial‐volume constraints using the financial 
engineering concept of conditional value at risk (CVaR), which constrains the mean 
upper and lower tails of a distribution. Since the CVaR approach is linear and does 
not cause an explosion of variables, it will be presented in detail here.

Romeijn et al. (2006) define two types of partial‐volume constraints that may be 
applied to a structure:

1. Mean dose to the (1 − α)% of voxels receiving the lowest amount of dose  
must be ≥Lα CVaR‐L

2. Mean dose to the (1 − α)% of voxels receiving the highest amount of dose  
must be ≤Uα CVaR‐U

Note that CVaR‐L applies to target structures, while CVaR‐U applies to OARs. 
We present CVaR‐U first. Define the upper mean tail dose at level α as
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where s ( )z  is equal to the lowest dose value among the ( )1 s  voxels receiving 
the highest dose. This expression can be written as
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Similarly, for CVaR‐L, the lower mean tail dose at level α is defined as
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Then, the following constraints are added to the FMO model:

 

s s s

s s s

s s

s

L s A

U s A

s A

z

z

T
O
T

,

,

,free

ffree s AsO,  



FLUENCE MAP OPTIMIZATION IN INTENSITY‐MODULATED RADIATION THERAPY 297

where As and Ā
s
 are the sets of desired α levels for constraints of types CVaR‐L and 

CVaR‐U, respectively. Full‐volume constraints are often used in conjunction with 
partial‐volume constraints to ensure that the tails of the dose distributions do not 
become overly long.

As presented by Romeijn et  al. (2006), the CVaR formulation has interesting 
properties relevant to radiation therapy optimization. When α = 0, both s ( )z  and 

s ( )z  are equal to the mean dose of the structure; for serial OARs, it is often impor-
tant to constrain mean dose, and such a constraint can then be easily represented 
using CVaR notation. Further,
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so minimum and maximum dose constraints can also be captured by CVaR formulations.

13.3.2.3 Biological Dose Constraints While biological constraints are more 
commonly present in objectives than in constraints, they can easily be placed in con-
straints to explicitly restrict biological dose effects. Lower and upper limits on gEUD 
can be simply applied to each structure s:

 

gEUD

gEUD
s s

s s

E s

E s


 

where Es and Ē
s
 are lower and upper bounds on gEUD in structure s, respectively. 

The parameter a
s
 in Equation gEUD for each structure s should be chosen according 

to the clinical opinion on each structure’s response to dose (Table 13.2). For OARs in 
particular, it may be appropriate to constrain gEUD for several values of a

s
, for 

example, constrain both the maximum dose ( as ) and the arithmetic mean dose 
(a = 1). Given that there are usually only a small number of OARs, additional con-
straints for multiple values of a

s
 are unlikely to significantly affect computation time.

13.3.3 Robust Formulation

Robust FMO formulations to capture intrafraction uncertainty in organ positions are 
gaining in popularity (see, e.g., Bertsimas et al. 2010; Chan et al. 2006; Chu et al. 
2005; Ólafsson and Wright 2006; Vrančić et al. 2009). The goal of robust formula-
tions is to design a treatment plan that, unlike stochastic recourse formulations, 
hedges against worst‐case motion outcomes that may not have been predicted a 
priori. Here, we present the formulation in Chan et al. (2006), as it based on physical 
criteria, is fully linear (and therefore computationally tractable) and has spawned 
many of the more recent robust investigations in IMRT.

This formulation seeks to capture motion caused by breathing, which can be 
considered a cyclical motion comprised of several phases. To this end, a motion 



298 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

probability density function (pdf) is created from 4D CT images to define the 
proportion of time the target spends in each breathing phase. The discretized pdf is 
called a probability mass function (pmf). Bounds that are on the uncertainty of 
the  motion distribution are provided, but the distribution itself is undefined, 
and thus the formulation is distribution‐free. The formulation will return a solution 
that is feasible for all breathing motions produced within the defined pmf uncer-
tainty set.

An assumption is made that any realized pmf during treatment will be 
wholly contained within the mean (nominal) pmf p plus or minus upper (p) and 
lower (p) error bars, respectively, yielding the largest realizable pmf domain 
 {[ , ] : , }p p p p p p0 0 . An uncertainty region U P  is defined as the 
locations where the realized pmf may deviate from the nominal pmf; in other words,   is 
the domain of breathing patterns that are expected. High irregularity in patient breathing 
results in   being equal or nearly equal to  , while regular breathing results in   being 
much smaller than  . Asymmetric adjustments to   can be made to address irregular-
ities in inhale versus exhale breathing phases. The pmf uncertainty set P  is then
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Note that the uncertainty set addresses breathing patterns that are possible ( ), 
but not explicitly planned for ( ).

To transform the deterministic FMO formulation to a robust formulation, we 
replace the dose deposition coefficients D

ijs
 with motion‐adjusted coefficients Dijs 

and incorporate the breathing pmfs into the dose calculation:
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The robust model is then to minimize z js
robust for all OARs with full‐volume 

constraints on z js
robust for target voxels. However, the dose calculation in Equation 13.3 

yields infinitely many constraints since there are infinitely many elements in P . We 
therefore instead reformulate the constraints on target voxel dose to instead limit the 
dose in the worst‐case realization, which can be thought of as the nominal dose plus 
an adjustment. Because it controls the worst‐case dose outcome, the model is said to 
be robust. The robust model is thus defined as
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where β
js
(x), the additional (negative) dose realized by a worst‐case variation, is the 

result of the following optimization model per voxel:
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Note that β
js
(x) is typically negative, since in the worst case, the target will be 

underdosed, not overdosed. A robust FMO variation that incorporates the CVaR 
approach to implement partial‐volume constraints can be found in Chan et  al. 
(2014b).

13.4 OPTIMIZATION APPROACHES

Approaches to solve FMO models depend on the tractability of the model formulation 
and are as varied as the model formulations. We focus on approaches that are appli-
cable to the computationally tractable model formulations presented in Section 13.3.

For linear and mixed‐integer linear FMO models, which include the CVaR and 
robust formulations presented, the most popular approach is commercial optimiza-
tion software, including CPLEX (IBM, Armonk, NY) and Gurobi Optimizer (Gurobi 
Optimization, Inc., Houston, TX) (see, e.g., Chan et al. 2006; Craft et al. 2007; Lim 
et  al. 2008; Romeijn et  al. 2006; Wu et  al. 2008). While commercial software is 
capable of solving these problems to optimality quickly, a practical drawback is that 
clinics might not have access to commercial software to implement the proposed 
FMO approaches, and commercial treatment planning system vendors may not be 
willing to incorporate other commercial software into their own platforms. Thus, 
custom‐built optimization approaches are popular in IMRT, even for relatively simple 
model formulations.

For linearly constrained FMO models with quadratic objectives, projected gra-
dient methods, are predominately used for their speed, lack of dependence on the 
Hessian calculations, and ease of implementation (see, e.g., Aleman et  al. 2008a, 
2008b, 2013; Lahanas et  al. 2003; Men et  al. 2009; Mišić et  al. 2010). Projected 
gradient approaches are widespread enough to have resulted in a review of their 
speed for IMRT optimization (Zhang et  al. 2004). However, projected gradient 
methods have no guarantee of optimality, and, while mathematical optimality is 
unimportant from a clinical perspective, the lack of guarantee on solution quality 
means that treatment plans may be inconsistent and non‐standardized and may 
depend on how long a particular dosimetrist is willing to allow the algorithm to run, 
not to mention the specifics of algorithm implementation. Notably, Aleman et  al. 
(2013) found that different line search strategies within the projected gradient routine 
yield drastic performance differences in IMRT (with quadratic interpolation 
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performing the fastest, but a customized nonuniform backtracking method yielding 
the best objective function values). They also found that a warm start (as opposed to 
the traditional near‐zero start) can significantly improve both final objective function 
value and total computation time by as much as an order of magnitude for very large 
treatment sites.

Custom interior point methods have been shown to be as fast as projected gradient 
approaches for linearly constrained quadratic FMO models, but with the benefit of 
guaranteed optimality gaps (see, e.g., Aleman et al. 2010, 2014). Reformulation of 
these quadratic FMOs to conic problems solved via commercial software (Chu et al. 
2005; Kim et al. 2012, 2013) or novel constraint‐generation interior point methods 
(Oskoorouchi et al. 2011) has also been shown to yield ϵ‐optimal solutions. While 
these approaches are empirically better than projected gradient approaches, and 
potentially similar or better in computation time, practical challenges may exist in 
real‐world implementation using commercial software or in gaining acceptance of 
complex, potentially non‐intuitive optimization approaches from clinicians.

Despite the rise in availability of multiprocessor and multi‐thread computing sys-
tems, very little IMRT optimization studies, let alone research focused on just FMO, 
have made systematic investigations into the use of parallel, distributed, and GPU 
computing. Among the first attempts at harnessing modern computing infrastructure 
for IMRT is that by Men et al. (2009), who developed a GPU‐based approach for 
projected gradient methods for FMO; this group also developed similar methods for 
DAO for adaptive radiation therapy (Men et al. 2010a) and dose calculation (Gu et al. 
2009; Jia et al. 2011). Ziegenhein et al. (2013) later developed a GPU‐based approach 
to IMRT optimization. Aleman et al. (2013) used parallelization to speed up dose 
calculation and gradient calculation in a projected gradient algorithm for FMO, 
finding almost linear time increase with the number of processors used; a complete 
algorithm description of the parallelized components is presented in their study. 
Earlier work from this group applied parallelization to neighborhood search 
approaches for beam orientation optimization in IMRT (Mišić et al. 2010).

13.5 CONCLUSIONS

FMO in IMRT has been widely studied, and a variety of computationally tractable 
linear and quadratic model formulations exist for both deterministic and robust 
scenarios. As speed in FMO computations is paramount, especially as the medical 
physics field looks more toward adaptive radiotherapy that requires re‐optimization 
of plans each day, future effort in the area of FMO should focus on fast optimization 
techniques that do not rely on commercial software. Specifically, incorporation of 
modern computing infrastructure including parallel, distributed, and GPU computing 
should be at the forefront of future FMO research. Additionally, reliance on time‐
intensive manual parameter tuning in FMO objectives is an important practical area 
needing more investigation, whether from an inverse planning perspective (Chan 
et al. 2014a) or from a human factors interface perspective (Ripsman et al. 2015a).
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14
SLIDING WINDOW IMRT AND VMAT 
OPTIMIZATION

David Craft and Tarek Halabi
Radiation Oncology, Department of Physics, Harvard Medical School, Boston, MA, USA

14.1 INTRODUCTION

Intensity‐modulated radiation therapy (IMRT) is a treatment technique for X‐ray 
irradiation of tumors that involves blocking the radiation beams—which come in 
from several angles around the patient—in order to create modulated, as opposed to 
uniform, fields of radiation. This allows the dose that is deposited within the patient 
to be sculpted to conform to the tumor and to avoid, as much as physically possible, 
large amounts of dose to normal tissues (Bortfeld 2006; Webb 2003).

The modulation of the X‐ray fluence is accomplished by a multi‐leaf collimator 
(MLC), which is a large bank of paired, parallel thick metal leaves that slide in and 
out of the radiation field. There are two techniques for using the MLC to create mod-
ulated fields: static and dynamic. In static IMRT, the leaves are first moved to a 
position to create a desired aperture shape, and then the beam is turned on and 
exposed for a certain duration of time. After this the beam is turned off, the leaves are 
repositioned to form the next aperture shape, and the beam is exposed again while the 
leaves are stationary (Galvin et  al. 1993; Xia and Verhey 1998). This process is 
repeated as necessary to build up the desired fluence profile. This process is also 
called step‐and‐shoot IMRT.

In dynamic IMRT, the leaves are moved continuously while the beam is on; thus 
the fluence profile is dynamically generated. In one form of dynamic IMRT, the 
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MLC leaves are swept unidirectionally across the field (Convery and Rosenbloom 
1992), which is called sliding window delivery. “Sliding window” refers to the (usually 
narrow) opening that “slides” across the field as the leaves move across. Converting 
a fluence map to a sliding window leaf trajectory that recreates that map is an 
 efficiently solvable problem (Spirou and Chui 1994; Stein et al. 1994; Svensson et al. 
1994) (indeed, it can be posed as a small linear or convex quadratic program). The 
unidirectional sweep idea can also be used for step‐and‐shoot delivery, as was 
 proposed by Bortfeld et al. (1994).

The delivery time for an IMRT field using a unidirectional leaf sweep is the sum 
of the time it takes the leaves to move across the entire field plus a term that reflects 
how much modulation there is across the field (i.e., a quantification of how many 
bumps there are in the fluence map). This latter term, which is called sum‐of‐positive 
gradients (SPG), adds up for each row all of the positive jumps in the discretized 
fluence map across the leaf row in the direction of the leaf motion. The maximum 
value of this across all the leaf rows is the SPG of the field. Thus, for continuous 
unidirectional leaf sweep, the following equation gives the delivery time T for an 
IMRT field:

 
T

W

v

f p

p

r
F

max
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d

d
max

 (14.1)

where W
F
 is the field width and v

max
 is the maximum leaf speed. 

d

d

f p

p
 is the local 

fluence gradient (this can be from a continuously represented fluence profile f(x) or, 
more commonly, a discrete one, in which case it is just the discrete difference  between 
neighboring bixels). p measures the position across the leaf row, and r is the (constant) 
dose rate. The (⋅)+ operator is shorthand for max(⋅, 0).

Many clinics prefer static IMRT delivery due to concerns about safety: static 
fields can more easily be monitored and tested. However, with modern real‐time 
dose verification techniques (Fuangrod et al. 2013) and improved control systems, 
dynamic delivery is likely to gain additional traction. Dynamic delivery using the 
sweep technique offers the chance to deliver arbitrarily shaped fluence maps in 
reasonable times, whereas for step‐and‐shoot delivery, planners try to keep the total 
number of apertures low since time to move from one aperture to the next and verify 
the collimator leaf positions adds to the total delivery time. Since the number of 
apertures is kept low, there is a greater discrepancy between the desired fluence map 
and the fluence map that you actually achieve, a discrepancy that need not occur in 
dynamic (sliding window) delivery (Xia et al. 2007). Dynamic delivery (in particular, 
unidirectional sliding window with constant dose rate) allows for achieving exactly 
the desired fluence map and also permits convex optimization‐based approaches to 
controlling the delivery time by adding fluence profile smoothing to the planning 
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optimization problem (Alber and Nüsslin 2000; Craft et  al. 2007b; Webb et  al. 
1998), thus allowing planners to have control between dose plan quality and delivery 
efficiency, which is fundamental to IMRT plan design although difficult to assess 
with current commercial planning systems. Sliding window delivery has also been 
exploited for its natural ability to compensate for organ motion during treatment 
(McMahon et al. 2008; Papiez and Rangaraj 2005; Xu et al. 2009). Finally, for a 
given fluence map, sliding window delivery with infinite leaf speed (vendors are 
always increasing the max leaf speed v

max
) gives the theoretical most efficient 

delivery time as per Equation 14.1. For these reasons, in this chapter we cover 
dynamic IMRT.

14.2 TWO‐STEP IMRT PLANNING

A common approximation used in IMRT optimization research is to first model the 
problem without explicitly including the MLC shapes. This is done by subdividing 
each treatment field into a discrete grid of “beamlets,” which are typically 1 × 1 cm2 
or smaller. The beamlet approximation uses the concept of a dose‐influence 
matrix D. The patient’s CT scan is discretized into an even grid of volume  elements, 
called voxels, that are on the order of 3 × 3 × 3 mm3. The dose‐influence matrix has 
the dimensions of number of voxels (order of 106) by number of beamlets (order 
of 104). The element D

vb
 is the dose delivered to voxel v from a unit amount of 

beamlet b.
Using the dose‐influence approximation and assuming a predecided set of beam 

angles (so that the D matrix is able to be computed), we have the following basic 
radiotherapy optimization problem:

 

Minimize

,

g d
Dx d
d C
x 0

 (14.2)

where g is a function that judges the quality of the dose distribution d, written as a 
vector; x are the individual beamlet fluence values to be optimized, also concatenated 
into a vector; and C is a constraint set on the dose vector. Note that due to the linear 
mapping from x to d, provided that the function g is convex and the set C is convex, 
this leads to a convex optimization problem that can in theory be solved efficiently. 
Smoothing terms can be added as constraints or an objective function on the x vector 
and still keep the problem convex; see, for example, Craft et al. (2007b).

After formulation (14.2) is solved, the optimal solution x needs to be converted 
into a set of linear accelerator (linac) machine instructions in order to form the 
 fluence maps with the MLCs. This step is called the leaf sequencing step or the 
segmentation step. The full procedure—first solving the optimization problem (14.2) 
and then sequencing the MLC leaves—is dubbed two‐step IMRT planning.
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14.3 ONE‐STEP IMRT PLANNING

The issue with the two‐step approach is that there is often a discrepancy between the 
idealized optimal fluence maps that you get from formulation (14.2) and the fluence 
maps you get after MLC sequencing. This has been addressed by many researchers 
in order to improve the two‐step approach; see, for example, Jelen et al. (2005), but 
one‐step approaches have become popular as well (called direct aperture optimiza-
tion (DAO)) (Hårdemark et al. 2003; Shepard et al. 2002; Siebers et al. 2002). In 
these, the MLC leaf patterns are directly optimized. For step‐and‐shoot IMRT, this 
leads to a nonconvex optimization problem since the mapping between leaf position 
and dose to a voxel is a nonconvex function (it is sigmoidal). Nonconvex formulations—
while potentially yielding good treatment plans—suffer from not being able to be 
solved to provable optimality: one never knows if a better solution exists when using 
a descent method for a problem like DAO.

For sliding window approaches, the fluence maps can be swept out exactly, 
although there may still be some discrepancy between the ideal fluence map and the 
achieved fluence map because aspects including leaf transmission, the tongue and 
groove effect, and MLC scatter are not taken into account in a two‐step sliding 
window approach. This motivates a one‐step method for sliding window delivery, 
where the unidirectionality of leaf motion is taken advantage of to keep the problem 
convex and MCL hardware properties are taken into account as well.

14.3.1 One‐Step Sliding Window Optimization

Several effects specific to MLC delivery are absent from the initial optimization of 
the two‐step approach. Beamlets, for example, are idealized narrow pencil‐like 
fluences with sharp lateral falloff that cannot be realized near aperture edges. The 
aperture edge of most leaf designs is round to maintain relatively constant penumbra 
across different position offsets from the central axis of the beam. Leakage radiation 
through the leaves is another example. Also, beyond exponential attenuation of 
 primary X‐rays, secondary radiation scattered from the MLC itself is initially 
ignored. Both workflow and plan quality would benefit from inclusion of these and 
other effects in the initial fluence map optimization.

The continuous and unidirectional motion of sliding window delivery facilitates 
convex methods for modeling these effects and others. In fact the full two‐step 
procedure can be consolidated into a single convex optimization for this technique 
(Papp and Unkelbach 2014). The unidirectional leaf motion across each field is criti-
cal for this to be modeled in a convex way, since with that assumption, the fluence 
delivered at a beamlet is proportional to the difference of the leaf passage times for 
the right and left leaves that expose that beamlet. Arbitrary leaf motion would neces-
sitate much more intricate (nonconvex) modeling. Our model that we present next 
extends the basic method of Papp and Unkelbach (2014) (where the time a beamlet 
is exposed is the difference of the leaf passing times for that beamlet) by modeling 
leaf transmission and, to first order, leaf scatter.
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While it is clear (see Spirou and Chui 1994) that intra‐leaf transmission can be 
included in one‐step convex formulations such as Papp and Unkelbach (2014), this is 
not so obvious for other effects such as leaf‐end penumbra and first‐order collimator 
scatter. The formulation given in the succeeding text demonstrates that these effects 
can in fact be modeled in a one‐step convex formulation of the unidirectional sliding 
window problem.

We model the leaves directly (leaf modeling is almost totally absent in the plan opti-
mization step of most two‐step approaches). We begin with the observation that the dose 
to a voxel for a treatment field exposed for u

T
 monitor units (constant dose rate is 

assumed throughout this section, which is a good assumption for sliding window 
delivery (Craft et al. 2014b; Papp and Unkelbach 2014) and makes the monitor units 
time proportional, which allows us to use them interchangeably) is equal to the dose 
delivered by the open field minus any dose that is blocked by the MLC leaves. We make 
the assumption that the blocking of the different leaves in different positions is additive. 
We compute the dose to voxel v (for one IMRT field) as the total dose if the field was 
fully exposed (leaves retracted) and subtract off the dose that is blocked by the left and 
right leaves in all of the positions they occupy throughout the delivery of that field:

 
d u R B u B u vv T v

l p
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vlp
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,

, (14.3)

where u
T
 is the total MU for the entire field exposure, R

v
 is the dose delivered per unit 

MU to voxel v with an open rectangular field, Bvlp
L  is the dose blocked per unit MU to 

voxel v by left (L) leaf l in position p, and ulp
L  is the number of MUs for which the leaf 

is in that position. Similarly for the right leaf R. Here note that we are representing a 
continuous leaf trajectory by a series of discrete points. This can be enhanced to 
model linear interpolation between the discrete points (Papp and Unkelbach 2014), 
which is how such trajectories are handled by hardware control systems, but for sim-
plicity we leave that out.

In practice, dose computation would be performed in two steps: (i) The computation 
of primary fluence that is allowed through open fields as well as fluence blocked by 
leaves. The latter is computed as primary fluence lost in the collimating leaf minus 
fluence that is scattered by the leaf. Fluence that may be further scattered by other 
leaves (for any allowable positioning of these other leaves) is ignored (to preserve addi-
tivity), which means that we also forgo modeling the tongue and groove effect (although 
we still permit the modeling of the individual tongues and grooves, just not their 
geometric interactions). (ii) The computation of dose deposited in voxels from the flu-
ence computed in (i), which can be handled by standard fluence map to dose conversion 
algorithms. This produces the B matrices in formulation (14.3). While (ii) would have 
to be computed per patient, (i) is performed only once for the machine and MLC being 
modeled, and the results are stored for future use. This computation is long—computa-
tions need to be made for every individual leaf as it takes on its various allowable 
positions and for a large set of jaw positions—but it is done in the initial software dose 
computation commissioning phase only and is fully parallelizable.
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The following constraint enforces that the opposing leaves in a leaf pair l do not 
collide by making sure the time spent in each discretized leaf position p is such that 
the left leaf always trails the right leaf (in a left to right sweep):

 q p
lq
L

q p
lq
Ru u l p,  (14.4)

If we enforce a nonzero minimum gap between moving leaves, which is a typical 
machine requirement, we can modify this such that the inequality is strict:

 q p
lq
L

q p
lq
Ru u l p ,  (14.5)

where ϵ is a small positive number.
We assume each leaf sweeps entirely across the field. For example, we can assume 

that the leaves start parked under one jaw and move all the way to the other jaw. The next 
constraints relate the total field time to the time for each pair to sweep across the fields:

 p
l
L

p
lp
R

Tu u u lp  (14.6)

Finally, since leaves have a maximum velocity, they have to spend at least some 
amount of time at each p location along the leaf sweep trajectory. Therefore we also 
enforce the constraints
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 (14.7)

This modeling allows a fully convex formulation of the deliverable sliding window 
radiotherapy problem, where the B matrices account for some of the physics of MLC 
fluence creation that normally gets ignored in beamlet‐based dose deposition matrix 
approaches:
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 (14.8)

This formulation is written for one field only. To extend it to multiple fields would 
require another index (the d

v
 equality would be a summation over fields), but we have 

suppressed this for readability. This formulation and extensions are currently being 
tested by our group.
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14.4 VOLUMETRIC MODULATED ARC THERAPY

Volumetric modulated arc therapy (VMAT) is gaining in popularity as a version of 
IMRT that is quicker to deliver than standard IMRT. In VMAT, the beam is kept on 
as the gantry rotates around the patient. The literature on VMAT and IMRT compar-
isons generally inflates the time savings the VMAT offers. In reality, the time savings 
of VMAT should be just the time it takes the gantry to rotate around the patient, 
which is about 1 minute, since this is the “dead time” during which an IMRT treatment 
is not treating but the clock is running. In practice, however, individual IMRT field 
gantry angle verifications and step‐and‐shoot delivery, with significant pauses in 
 between each aperture exposure, cause IMRT delivery times to be much more than 1 
minute longer than VMAT treatment times for the same patient. Nevertheless, VMAT 
does offer a potential time speedup over IMRT. In addition to the treatment time 
consideration, there is also the potential for higher‐quality treatment plans since dose 
can be delivered through any angles desired—there is no need to prespecify a limited 
number of gantry angles as is done in standard IMRT. However, the optimization 
problem is larger since dose‐influence matrices need to be precomputed at a fine 
angular resolution around the patients (typically 2°–4°).

In addition to the larger size of the optimization problem, VMAT is typically con-
sidered a fundamentally harder optimization problem than fixed field IMRT since leaf 
positions are coupled as the beam rotates around the patient. However, when viewed 
from the perspective of sliding window (or dynamic delivery in general) IMRT, where 
leaf positions are also coupled through time, the VMAT problem seems not harder. The 
issue is that most existing VMAT algorithms are based on step‐and‐shoot treatment optimi-
zation techniques (Otto 2008), where each aperture shape is independent of the previous 
and next aperture shape. Thus, step‐and‐shoot approaches, when applied to VMAT, 
need to be greatly modified. For example, at the most basic level, a set of step‐and‐
shoot apertures needs to be ordered such that the time taken to transition from one to 
the next is minimized. In addition, if the apertures are determined independently, then 
presumably they will be quite distinct. Therefore, when transitioning from one to the 
next, much extra fluence will be delivered, thus altering the desired fluence profile. 
This is typically handled in a post‐optimization step that further tweaks leaf positions 
and the dose rate. Attacking the VMAT problem therefore from first principles rather 
than trying to modify an unsuitable algorithm (step and shoot) is prudent.

The initial approaches to sliding window VMAT optimization involved optimizing 
fluence maps at about every 10° around the patient followed by sequencing those 
fluence maps. In Luan et al. (2008), each of the fluence maps is sequenced into k 
sliding window apertures (discrete unidirectional positions). Then, using these k 
apertures at each fluence map, k arcs around the patient (either full arcs or partial 
arcs) are defined, and during each of these k gantry sweeps, one of the apertures from 
each map is delivered. Graph algorithms are used to figure out the best choice for 
which apertures to use for each of the arcs. This method leads to prolonged delivery 
time since k gantry sweeps are done rather than one. To overcome this, Chen et al. 



314 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

(2011) and Wang et al. (2008) enforced that each fluence map is swept out entirely 
across the arc sector it is assigned to (i.e., the 10°) during a single gantry sweep. 
Graph algorithms are again used to compute how to do this in a time efficient manner, 
given that the leaf ending positions from one sector become the starting positions for 
another sector.

A newer approach to sliding window VMAT begins with a very fine gantry spac-
ing (2°) and optimizes fluence maps at those positions (Craft et al. 2012b; Gaddy 
and Papp 2016; Salari et al. 2012; Wala et al. 2012). Similar neighboring fluence 
maps are then successively merged. Merged maps are delivered as one fluence map, 
which is the sum of the two fluence maps that were merged; this decreases the total 
delivery time. After each merging step the plan is evaluated for dosimetric quality. 
Merging continues until dosimetric quality degrades too much. This plan can then 
be refined by local leaf refinement to compensate for both dose computation approx-
imations and the small angle approximation, which is used implicitly (Papp and 
Unkelbach 2014); see Figure 14.1. Solving the VMAT problem using the sliding 

Target
OAR

OAR

Figure 14.1 Sliding window VMAT optimization. Fluence maps are optimized at the angles 
represented by the solid lines around the patient. The fluence maps are delivered by sweeping 
them out with left to right sweeps and then right to left sweeps over the angular sectors as 
depicted by the dotted lines. Provided the resolution of the angular spacing is fine enough, the 
discrepancy between the dose delivered by the fluence map at the solid line and the dose deliv-
ered when the fluence map is swept out by a moving gantry over the angular sector shown by 
the dotted curve will be tolerable.
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technique with formulation (14.8) would be a useful extension as well, as would 
exploring a hybrid approach between sliding window delivery and larger/open field 
delivery characteristic of non‐sliding window VMAT approaches (discussed further 
in the succeeding text).

A full review of VMAT optimization techniques is given in Unkelbach et al. (2015).

14.5 FUTURE WORK FOR RADIOTHERAPY OPTIMIZATION

14.5.1 Custom Solver for Radiotherapy

While much work has gone on over the past 20 years to build custom solvers for 
IMRT (Breedveld et  al. 2012; Men et  al. 2009; Meng et  al. 2010; Zhu and Xing 
2009), the large majority of the algorithms are not designed to find a provable optimal 
solution to the problem. There is a need for convex formulations and accompanying 
solvers that are tailored to the radiotherapy problem given in formulation (14.2), 
particularly to handle very large‐scale instances that arise in both noncoplanar beam 
angle optimization and VMAT, as well as intensity‐modulated proton therapy 
(IMPT), which has more decision variables than IMRT due to multiple energy layers. 
It is still not clear which of gradient‐based methods (Llacer et al. 2003; Spirou and 
Chui 1998), interior point methods (Aleman et al. 2010) including barrier methods 
(Alber and Reemtsen 2007), projection methods (Xiao et  al. 2004), or simplex 
methods (Ólafsson and Wright 2006) is the best choice for solving (14.2). Robust 
optimization for IMPT, to deal with the uncertainties that arise from the sensitivity of 
the proton dose deposition to patient setup and internal geometry changes, leads to 
an even larger‐scale optimization problem, making the choice of a good solver all the 
more pertinent. The CORT dataset has been released to promote testing of algorithms 
on a common dataset (Craft et al. 2014a), and a Matlab radiation planning research 
software called matRad, written in Matlab and integrating the large‐scale interior 
point solver Ipopt, has been released (Cisternas et al. 2015).

14.5.2 Incorporating Additional Hardware Considerations 
into Sliding Window VMAT Planning

The treatment heads of the main linac vendors (Varian, Elekta, and Siemens) are 
different regarding jaw configurations and MLC leaf characteristics, and as such 
specialized information needs to be taken into account depending on which MLC is 
being modeled. The MLC unit, with the jaws, can be rotated during the treatment as 
well. Such collimator angle optimization has barely been considered to this point in 
the literature. Collimator angle choices can have a sizeable impact on delivery 
efficiency however due to the fact that, for example, a single bimodal field to block 
the patient’s spine can be delivered in one shot if the collimator leaves are aligned 
with the spine, but if the leaves are perpendicular to the spine, the delivery takes 
twice as long (Chen et al. 2015).
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14.5.3 Trade‐Off between Delivery Time and Plan Quality

Formulation (14.8) allows for controlling total treatment MU (which is proportional 
to treatment time for a fixed dose rate) by putting the u

T
 term, the total number of MU 

for a field, into the objective function or as a constraint. Radiation delivery naturally 
involves a trade‐off between plan quality and treatment delivery time: the more 
sculpted a dose distribution, the more time it takes to deliver it. Even though this 
trade‐off is fundamental to day‐to‐day treatment planning, the trade‐off is not explic-
itly considered in commercial planning systems. Planners end up guessing, for 
example, how many beams to use, and they often do not have time to explore other 
options.

One way to speed up a sliding window delivery is to not enforce that leaves slide 
all the way across the field. This idea has been explored in Chen et al. (2011), but 
extending this to allow for hybrid‐type deliveries—for example, VMAT deliveries 
where open fields are used over some angular sections or close in/open out leaf 
motions are used to efficiently create unimodal fluence humps—has yet to be 
explored. This would be promising in light of Equation 14.1, which has the nontrivial 
first term, which is the time for the leaves to cross the entire field: if we can eliminate 
or reduce this term for some of the fields around the patient, we can get more efficient 
deliveries.

Linacs come installed with a flattening filter, upstream of the MLC, which 
 produces a relatively flat beam fluence profile for creating uniform fields across 
entire targets. But such filters reduce the efficiency of the treatment machine, and 
with IMRT they are not needed since the MLC leaves can be used to create the 
desired fluence profile (Georg et al. 2011). Most clinics, for historical reasons and 
because they perform both IMRT and non‐IMRT treatments, use the flattening filter. 
But from a treatment delivery efficiency standpoint, it is worth considering removing 
the flattening filter and doing only IMRT in a clinic. Moving to only IMRT can also 
be beneficial from a workflow and safety point of view since fewer systems/modal-
ities need to be supported if all plans are IMRT. Limited segment IMRT can take the 
place of more traditional 3D conformal therapy (Khan and Craft 2014).

This paper has not covered the issue of noncoplanar VMAT arcs or beam angle 
optimization/selection for IMRT in general, but these are difficult (nonconvex) opti-
mization problems. Although much work has been done on them (see, e.g., Bangert 
et al. 2013; Papp et al. 2015), none of these strategies have yet to enter mainstream 
clinical software.

14.5.4 What Do We Optimize?

While out of scope for the topic of this paper, it bears mentioning that exactly what 
should be optimized in a radiation therapy plan is not clear. The conflicting desires to 
get a large dose to the targets and small doses to nearby healthy organs motivates the 
use of multicriteria optimization methods (Craft et al. 2006, 2007a; Hong et al. 2008; 
Pardo‐Montero and Fenwick 2010; Romeijn et  al. 2004), including prioritized 
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optimization approaches (Breedveld et al. 2007; Clark et al. 2008; Falkinger et al. 
2012; Jee et al. 2007; Wilkens et al. 2007), but deciding the underlying objective 
functions and constraint functions to use is still problematic. One of the reasons for 
this is that treatment planners and physicians often care about the physical location 
of the dose in the organs and the targets, and they judge that by observing the dose 
distribution in 3D. Functions used in optimization formulations almost never account 
for the spatial location of the doses (e.g., this information is not in the formulations 
given in this paper). Even if such spatial information could be incorporated (and it 
could be; it is just not clear exactly how it should be), one is still left with the 
fundamental trade‐off aspects of how to model and capture trade‐offs that physicians 
rarely make explicitly in their prescriptions. If a disease site has eight regions of 
interest, there are (8 × 7)/2 = 28 pairs of structures to potentially have to say something 
like “an x% drop in the maximum dose to organ A is worth the same as a y% drop in 
the mean dose to organ B,” and this is already a vast simplification because x and y 
will themselves depend on the absolute dose levels and fractionation schemes 
involved. Since such detailed information cannot possibly be conveyed for every 
patient case, some groups have adopted a multicriteria Pareto surface approach to 
allow physicians and planners to interactively navigate through treatment plan space 
(see e.g. Craft et al. (2012a); Monz et al. (2008); Wala et al. 2013)). Nevertheless this 
feels like an intermediate solution, and much discussion in the field is toward more 
automated approaches such as Breedveld et al. (2012), but fundamental to automated 
planning is the question of what should the goal of radiation therapy be. The idea of 
“maximizing the probability of uncomplicated tumor control” was put forth over two 
decades ago (Ågren et al. 1990) but has not entered wide clinical usage. Additionally, 
this concept, called p+, ignores the subtleties in managing toxicity risk versus poten-
tial tumor cure: it might be worth a certain type of complication if it means a greatly 
improved chance of survival. It also obfuscates the idea that patients differ in their 
risk preferences (van Tol‐Geerdink et  al. 2006), some opting for more aggressive 
treatments and some opting for milder ones.

Shared databases that shed light on the complex relationship between radiotherapy 
doses and delivery timing (fractionation), concomitant therapies such as chemo-
therapy, patient‐specific genetic profile, and health status, and patient outcomes will 
be a vital contribution to this (Efstathiou et al. 2013; McNutt et al. 2010; Roelofs 
et al. 2014; Westberg et al. 2014).

14.6 CONCLUDING THOUGHTS

Since the treatment delivery time can be handled exactly for sliding window delivery, 
either by using the SPG approach as in Equation 14.1 or by directly controlling the 
total MU parameter in formulation (14.8), sliding window IMRT optimization allows 
the planners to have complete control over the trade‐off between dose quality and 
treatment time. Also, due to the convexity of the formulations, sliding window 
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delivery allows treatment plans to be averaged in order to mix plans of different 
strengths and weaknesses to get the right trade‐off plan, which is a very desirable 
property for Pareto surface navigation (Craft et al. 2014b). Sliding window delivery 
allows one to get plans of the highest‐quality possible given the beam angles (IMRT) 
or gantry arc definition (VMAT) selected.

Dual arc VMAT (sending the gantry around the patient twice) is commonly done 
in clinical settings since it leads to higher plan quality, but in theory, one should be 
able to go around just one and slow the beam down (to modulate the fields) as much 
as necessary for a high‐quality plan. Thus, the prevalence of dual arc usage must be 
due to the fact that either (i) commercial VMAT solvers are not doing a good enough 
job in their single rotation treatments or (ii) linac VMAT control systems restrict the 
number of control points (leaf positions, gantry angles, and monitor unit information 
are passed to the control system in terms of discrete data points called control points), 
thus restricting the amount of modulation that a single arc can provide. As clinics 
upgrade to new hardware and control systems, where the number of control points 
restriction have been greatly relaxed, we should see dual arc treatments being less 
common, provided the commercial VMAT optimization algorithms are good.
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MODELING THE CARDIOVASCULAR 
DISEASE PREVENTION–TREATMENT 
TRADE‐OFF

George Miller
Center for Value in Health Care, Altarum, Ann Arbor, MI, USA

15.1 INTRODUCTION

It is frequently claimed that spending on prevention in the United States accounts for 
only 3% of national health expenditures, representing an inappropriate emphasis on 
treatment over prevention. In reality, the 3% figure appears to understate prevention 
spending: depending on what is counted as prevention, prevention spending 
approaches nearly 9% of national health expenditures (Miller et al. 2011a). But is 
this enough? Would we as a nation be healthier if we shifted some spending from 
treatment of existing disease to prevention?

As has been noted by Cohen, Neumann, and Weinstein (2008), this question 
ignores the fact that there are opportunities to improve the health of the nation by 
shifting resources from less cost‐effective interventions to more cost‐effective ones 
both within and between prevention and treatment. However, our intention is to 
investigate conditions under which shifting spending between treatment interven-
tions (TI) with “typical” cost‐effectiveness and prevention interventions (PI) with 
“typical” cost‐effectiveness would improve health. We make this concept more 
 precise in what follows.
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To address this question, we have developed a model to estimate the cost‐
effectiveness of alternative spending streams for disease treatment and prevention 
and for research into new TI and PI. We have exercised the model to develop insights 
into the optimal spending mix for prevention and treatment of cardiovascular disease 
(CVD) and into the ways in which investments in prevention and treatment interact. 
We consider CVD prevention to include both primary and secondary prevention, 
using standard definitions (as presented, e.g., by Miller et  al. (2011a)): primary 
 prevention consists of interventions to prevent the occurrence of disease or disability, 
while secondary prevention consists of interventions to detect and arrest disease or 
disability in its early asymptomatic stages. This means, for example, that spending to 
control hypertension and hyperlipidemia in patients without diagnosed CVD is 
 considered prevention, while similar spending on CVD patients is treatment.

A number of models have been developed to investigate the prevention and 
treatment of CVD. In a systematic review of such models, Unal, Capewell, and 
Critchley (2006) identify 42 models employing methods such as simulation, Markov 
or cell‐based structures, and life table analysis. These models and other methods 
have been used in numerous studies of the effectiveness of alternative CVD TI and 
PI. For example, Maciosek et al. (2006) used the results of previous cost‐effectiveness 
studies to prioritize clinical preventive services for a variety of diseases, including 
CVD. Among their conclusions was that aspirin use and smoking cessation efforts 
are two of the highest‐priority preventive measures in terms of their cost‐effectiveness 
and reduction of clinically preventable burden. Ford et al. (2007) used the IMPACT 
mortality model to identify the relative impact of alternative treatments and changes 
in risk factors (total cholesterol, systolic blood pressure, smoking prevalence, 
physical activity, body mass index, and diabetes prevalence) on the observed decline 
in US deaths from coronary heart disease between 1980 and 2000. They conclude 
that risk factor reduction accounted for approximately half of the decline, with the 
other half attributable to medical therapies. Unal, Critchley, and Capewell (2004) 
describe a similar study of the reduction in coronary heart disease in the United 
Kingdom. Among their conclusions is that nearly half of the observed decline in 
deaths could be attributed to smoking cessation. Kahn et al. (2008) conducted simu-
lations with the Archimedes model to establish the effects of 11 preventive measures 
(involving aspirin administration, cholesterol reduction, blood pressure reduction, 
control of glucose levels in diabetics, smoking cessation, and weight reduction) on 
the morbidity, mortality, and costs associated with CVD.

These and other studies contribute to an improved understanding of the relative 
merits of currently available alternatives for treating and preventing CVD. Our work 
is designed to complement these contributions by investigating two areas (and their 
interactions) that these studies do not explicitly address: (i) the trade‐offs between 
emphasis on treatment and on prevention of CVD in order to establish an ideal pre-
vention–treatment mix and (ii) the effects of research into new and improved CVD 
PI and TI on downstream costs and effectiveness and on the ideal prevention–
treatment mix. Our model was developed to generate insights to help educate the 
intuition of policy analysts regarding these interactions and trade‐offs. It was 
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therefore deliberately designed with a simple structure that allows interpretation and 
understanding of the dynamics that drive its results. Unlike the earlier models, it was 
not designed with the detail necessary to explore the effects of specific interventions, 
nor was it designed to generate precise recommendations regarding an optimal mix 
of prevention and treatment spending.

Some simple models have previously been developed to address the trade‐offs 
between treatment and prevention. Our model is in this latter category of more 
aggregate models that provide some general insights not easily gleaned from more 
detailed models such as those discussed earlier. Russell (2000) describes a simple 
relationship to show how the cost‐effectiveness of prevention changes with the intro-
duction of a new treatment therapy. Her analysis shows that a new, more expensive, 
and more effective treatment can cause the cost‐effectiveness of a PI to either improve 
or become worse, and it suggests that a highly cost‐effective PI is likely to become 
more cost‐effective when a new treatment is introduced. Homer and Hirsch (2006) 
develop a simple systems dynamics model of chronic disease prevention, which they 
use to illustrate the effects of different levels of investment in “onset prevention” 
versus “complications prevention.” Heffley (1982) uses a simple Markov model and 
optimization theory to identify the optimal allocation of resources between treatment 
and prevention. Heffley’s model is most similar to ours, but its structure differs from 
ours in important ways (e.g., his model allows for cures, while ours represents 
chronic conditions that can be controlled but not cured; his model does not capture 
deaths, whereas ours includes deaths from CVD and from other causes). However, 
his use of a Markov structure and the form of his equations representing the impact 
of prevention and treatment expenditures on transitions among disease states within 
this structure are very similar to our approach. All of these simple trade‐off models 
were developed for illustrative purposes rather than detailed research, none of them have 
been used to study prevention and treatment of CVD, and none of them explicitly 
address the allocation of resources to research into new treatment and  prevention 
alternatives. However, they provide a useful starting point for the research 
described here.

15.2 METHODS

15.2.1 Model Overview

We use a simple Markov model to represent the flow of a homogeneous population 
from birth to a healthy state, a single diseased state, and death (Figure  15.1). 
Population flows are represented with equations that relate spending on PI, TI, pre-
vention research (PR), and treatment research (TR) to transition rates from the 
healthy state to the diseased state and from the diseased state to death from CVD. 
(Non‐CVD deaths are represented with constant input mortality rates.) The impact of 
these equations on spending for TI and TR is illustrated in Figure 15.2. (The equations 
and data used to produce this graph are described in the following.) For a given 
research investment level, intervention spending produces diminishing returns as it 
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increases, and the impact of additional spending is assessed with respect to current 
spending levels. Thus, a 10% increase in treatment spending from its current level 
will cause the death rate to decline from 0.030 to 0.027. Though not shown in the 
exhibit, treatment spending also affects the average morbidity level of the sick 
population (again, with diminishing returns), measured as the annual fraction of a 
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quality‐adjusted life year (QALY) accrued by the average sick patient (where a 
healthy individual accrues 1.0 QALY per year). As shown in the figure, a specific 
level of research spending causes the intervention spending curve to shift down and 
to the left (for intervention spending greater than 0). The magnitude of this shift also 
exhibits diminishing returns as this research spending level increases. For given 
investment streams, the model produces time histories of the sizes of the healthy and 
diseased populations, total discounted QALYs associated with the investments, total 
discounted expenditures associated with the investments, and the resultant cost‐
effectiveness of the investments (the discounted cost associated with an investment 
per discounted QALY saved). The next section describes the model structure, 
including the forms of the equations, in detail.

The model, which is implemented in an Excel spreadsheet, can be run with input 
investment streams or can find the optimal mix of prevention and treatment spending. 
In the descriptive mode, updates to the investment streams (or other inputs) result in 
automatic recomputation of the simulated time history of spending, annual population 
in the healthy and sick states, annual deaths of each type, and average morbidity of 
the sick population. Optimization of the spending mix begins with a fixed total 
amount of per capita spending per year and repeats these computations in an iterative 
search (using the bisection method) until the model finds the fixed annual fraction of 
the resultant total spending to be applied to prevention in order to maximize total 
discounted QALYs accrued over an input time horizon.

The model was designed with a relatively simple structure in order to promote 
qualitative understanding of the complex interactions of spending on prevention, 
treatment, and research. This simple structure does not, however, allow for accurate 
quantitative predictions about the magnitude of changes in morbidity and mortality 
associated with specific changes in the allocation of spending. Results described in 
Section 15.3 should be interpreted with this limitation in mind.

15.2.2 Model Structure

The generic mathematical model used in this analysis was developed for investi-
gating the impacts of healthcare spending changes on multiple output measures 
related to the effects of disease. The disease of interest may be single and specific 
(e.g., diabetes), encompass a group of several related diseases (e.g., CVD including 
stroke, myocardial infarction, etc.), or may be entirely generic (as in the case of mod-
eling all chronic disease). Examples of output measures include number of deaths per 
year, number of QALYs gained, and cost‐effectiveness measures. The model may be 
used to maximize or minimize one or more output measures and, therefore, may also 
be used to design a spending plan that is optimal in some sense.

The model tracks an infinitely divisible population as its constituents, subpopula-
tions (SPs) whose size need not be integer; these transition between three health 
states—healthy, sick, and dead—from year to year. It is deterministic in that the rates 
of transition are not randomly generated, but rather are precisely determined though 
mathematical functions taking spending and health state populations as inputs. 
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The model can also be considered Markovian since the state transition history of an 
SP is ignored; only the SP’s current health state is considered in calculating transition 
rates to other states. Unlike many Markov processes, however, this one is not time‐
homogeneous: the rates assigned to various states may change over time as spending 
fluctuates and SPs within states grow or shrink in size. (Note that we use the short-
hand terminology “rate” to mean the yearly probability of transition, not the expected 
number of transitions per time unit.)

Many simplifying assumptions are made in this model, not because they are 
necessary to make its construction possible, but because of unexpected subtleties and 
complexities encountered in the output analyses of even this “simple” formulation. 
Adding extra complexity could potentially obfuscate the roles played by the more 
basic elements of the model and make determining a realistic set of input data more 
challenging while adding little value to the analysis. Chief among these simplifica-
tions are a single sickness state, no transitions back to healthy once sick (corresponding 
approximately to many chronic diseases), and no explicit effects of aging (i.e., each 
SP has groupwise transition rates independent of its age‐demographic makeup). This 
latter simplification should have a small effect on our results given that the age mix 
of each SP will likely change only modestly over time. Once the model’s output is 
better understood, each of these simplifications could be addressed in turn to examine 
its contributory effects.

Both prevention and treatment of disease are considered. Prevention spending 
affects the rate of transition from the healthy state to the sick state, while treatment 
spending affects the transition rate from the sick state to the death state. Spending is 
further divided into two additional categories: intervention and research. Intervention 
directly controls transition rates, while research affects the extent to which interven-
tion dollars have an impact.

Spending per capita is used to calculate intervention effects on transition rates and 
total spending for research effects. Intervention spending is transient in the sense that it 
must continually occur to have a continued effect, whereas research spending is 
cumulative over time (once research occurs, it is “remembered” from that point for-
ward). Additionally, all four types of spending—PR, PI, TR, and TI—are subject to 
user‐defined lags that indicate the time interval between commitment of funds and their 
ultimate effects on transition rates. (A lag of zero would indicate instantaneous effects.) 
Figure 15.1 (presented in the previous section) shows the basic flow of the model.

Clearly, the heart of the model lies in the functions that assign transition rates. 
Without loss of generality, we will discuss some properties of these functions by 
referring to the function that sets the rate of transition from healthy to sick (i.e., the 
sickness rate). There are several properties that one would wish to guarantee, including:

1. Monotonicity: As intervention spending per capita increases, the sickness rate 
should only decrease.

2. Diminishing returns: As intervention spending per capita increases, the change 
in sickness rate per dollar spent should lessen.
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3. The sickness rate should approach a nonnegative asymptote. A strictly positive 
asymptote would indicate a disease that cannot be eradicated even with infinite 
spending, given current research levels. A disease that could be eradicated 
would require a zero rate at some non‐infinite spending; however, for model 
simplicity, this is approximated by a zero asymptote.

4. Research spending should increase the purchasing power of each intervention 
dollar as well as decrease the asymptote mentioned earlier (while keeping it 
above zero). For simplicity, a single research factor (defined in the following) 
is used for both purposes.

A simple function that satisfies properties 1 to 3 is based on an exponential form:
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parameters represent current “real‐world” values. A similar function governs the 
death rate, with suitable modifications to superscripts (d replacing s), using the sick 
population in the denominator of the exponential term rather than the healthy 
population. For the rest of this discussion, the s superscripts will be omitted to reduce 
clutter, with the understanding that we are referring to the sickness rate equation.

The aforementioned defines an exponential function that passes through two 
particular points, namely, the sickness rate at zero spending r

0
 and the rate at 

current spending r
c
, and approaches the asymptotic rate r . In a typical scenario, r

c
 

is known and r  is assigned a value derived from expert opinion. r
0
 is usually 

unknown because it requires knowledge of the rate under no spending. However, 
r

0
 can be estimated from either the average or the marginal cost per QALY, the 

latter providing information concerning the derivative of the rate function at the 
current spending level and thus by extension the intercept value at zero spending 
(one can use the “Goal Seek” functionality of Excel to determine the value of r

0
 

necessary to achieve known marginal costs). Thus, while this exponential form is 
not itself derived from empirical observation, it possesses properties that reflect 
real‐world dynamics, and it can be fully specified by fitting its parameter values 
to data describing the impact of interventions on incidence or mortality rates. It is 
also the form previously used by Heffley (1982) to describe the impact of prevention 
spending on sickness rates.
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To address property 4, we introduce a PR factor that will be inserted into the rate 
function previously given. Let gPR

inc  denote an increment value for this factor and let 
xPR

inc  be an accompanying spending amount. Together, these determine the effect of 
research spending on the value of the research factor through the relation
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where xPR
base is the baseline amount of research funding assumed to have taken effect 

by the beginning of the modeling period (often assumed for simplicity to be zero). 
The interpretation of this relation is that for every xPR

inc  dollars spent on research, the 
factor is increased by gPR

inc  after the appropriate lag period. Note that lags for both 
research and intervention must be taken into account, since the effects of research 
spending do not manifest themselves until (i) the research lag is completed, allowing 
intervention money spent from that point forward to take advantage of the new 
technology, and (ii) the intervention spending itself takes effect, only after its own 
additional lag. The research factor is inserted into the rate equation thus
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where gPR(t) follows the research spending relation given earlier. Note that the 
requirements of property 4 are met by this formulation. Also note that the f multiplier 
of r

0
 becomes a function of not just intervention spending at one time period but also 

a function of an accumulation of research spending over multiple time periods. 
Furthermore, increased research expenditures produce diminishing returns in their 
impact on the effectiveness of a fixed level of intervention spending. Cases of 
t L LPR PI 0 may indicate a research commitment made previous to the start 
of the model timeframe coming to fruition or may be simply ignored or given a value 
of zero if dictated by the scenario under investigation. Again, a similar construction 
holds for the death rate formulation. Figure 15.2 (presented in the previous section) 
illustrates the effects of these equations.

In determining the number of QALYs generated by a spending stream, it is 
necessary to specify the number of QALYs each sick person generates in 1 year (a 
healthy person generates 1.0 QALY). It seems reasonable that as spending per sick 
person increases, the number of QALYs per sick person (QPS) would also increase, 
from some base level corresponding to no treatment at all to some upper level 
corresponding to unlimited spending. Furthermore, it seems plausible that the QPS 
value would approach this upper bound asymptotically. In addition, the QPS upper 
bound should be allowed to increase as TR money is spent (while never being allowed 
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to exceed 1). To satisfy these requirements, the following function is used in the 
model to determine the QPS value in a given year:
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where QPS(t) is the QPS measure at time (year) t and QPS
L
 and QPS

U
 are the lower 

bound and the unadjusted upper bound, respectively.
As mentioned earlier, a useful capability of the model is to determine an optimal 

mix of spending between prevention and treatment. One obvious optimization goal is 
to maximize the number of discounted QALYs generated by a fixed spending stream. 
In the baseline for this study, the total amount of per capita spending is fixed at $2118 
per person per year with 28% of that dedicated to prevention—the current observed 
real‐world values for CVD spending (Miller, Hughes‐Cromwick, and Roehrig 
2011b). For the purposes of optimization, however, we are free to divide that amount 
between prevention and treatment. Each year, some proportion p of all intervention 
spending is allocated to PI, and 1 − p to TI. The value of p remains fixed from year 
to year, and the goal of the optimization is to find its best value. The model is able to 
perform an iterative search over all possible values of p to determine the QALY‐
maximizing optimum. Through an extension of the iterative search into a higher‐dimen-
sional search space, the model can also determine the optimal apportioning of PI, TI, 
PR, and TR spending.

15.2.3 Model Inputs

We have populated the model with data representing prevention and treatment of 
CVD (Table  15.1). Within CVD, we include coronary heart disease, stroke, heart 
failure, peripheral artery disease, and arterial embolisms and thromboses (ICD‐10 
I20‐25, I50, I60‐70, I73‐74). Starting in the base year of 2009 (year 0 in the model), 
we track the US population over the age of 45 years, including annual “births” of new, 
healthy (i.e., free of CVD) 45‐year‐olds, transitions from this healthy state to sick 
(with CVD), and deaths from either the healthy or the sick state. Baseline incidence 
and death rates, per capita spending levels, parameters representing the effectiveness 
of spending on prevention and treatment, and time lags representing the delay bet-
ween research expenditures and the time at which the results of research are realized 
in improved effectiveness of prevention or treatment are set to represent as closely as 
possible recent history in the United States. We produce model results over a 100‐year 
horizon, and we discount future expenditures and QALYs at 3% per year.

Our methods for estimating baseline CVD spending are described by Miller, 
Hughes‐Cromwick, and Roehrig (2011b) and Miller et  al. (2012a). (Spending on 
prevention of CVD is considerably higher than for most conditions because it 
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TABLE 15.1 Baseline Parameter Values

Parameter Value Source

“Births”/year (age 45) 4.5 million US Census Bureau (2008)
Initial non‐CVD population 

(age 45+)
96.3 million National Center for Health Statistics 

(2010) and US Census Bureau (2008)
Initial CVD population 

(age 45+)
22.7 million Minino (2011) and US Census Bureau 

(2008)
CVD death rate 3.0% Minino (2011) and US Census Bureau 

(2008)
Death rate from other causes for 

CVD population
1.8% Minino (2011) and US Census Bureau 

(2008)
Death rate for non‐CVD 

population
1.2% Minino (2011) and US Census Bureau 

(2008)
CVD incidence rate with current 

prevention spending
2.0% Roger et al. (2011)

Time horizon 100 years —
Discount rate for money 3.0% Gold et al. (1996)
Discount rate for QALYs 3.0% Gold et al. (1996)
Prevention lag 10 years —
Annual CVD prevention and 

treatment spending per capita
$2,118 Authors’ analysis using methods and 

data from Miller, Hughes‐
Cromwick, and Roehrig (2011a)

Fraction of annual spending 
devoted to CVD prevention

28.1% Authors’ analysis using methods and 
data from Miller, Hughes‐
Cromwick, and Roehrig (2011a)

Marginal cost/QALY for current 
prevention spending

$16,918 Center for the Evaluation of Value and 
Risk in Health (2014)

Marginal cost/QALY for current 
treatment spending

$20,550 Center for the Evaluation of Value and 
Risk in Health (2014)

QALY/sick person‐year (lower 
bound)

0.45 Dyer et al. (2010)

QALY/sick person‐year (upper 
bound)

0.85 Dyer et al. (2010)

Impact of prevention research 
breakthrougha

100 million 
QALYs

—

Impact of treatment research 
breakthrougha

100 million 
QALYs

—

Research lag 23 years Authors’ analysis using methods and 
data from US Government 
Accountability Office (2006), 
Congressional Budget Office (2006), 
and Skinner and Staiger (2009)

a Several parameters combine to achieve this effect, which is applied only in model runs investigating the 
impacts of research.
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includes significant spending on hypertension and hyperlipidemia in patients without 
diagnosed CVD.) Note that spending is input as an annual per capita value, so that 
total spending will vary with the size of the population. Prevention expenditures are 
assumed to take effect after a 10‐year lag, representing the time between initial appli-
cation of a PI and the time at which the prevented condition might have occurred in 
the absence of the preventive measure. A 10‐year lag might correspond, for example, 
to the delay associated with the use of drugs to control hypertension by 50‐year‐olds. 
Because the magnitude of this lag varies by type of prevention, our analysis includes 
varying its value parametrically.

The effectiveness of spending on prevention and treatment is based on our anal-
ysis (Miller, Cohen, and Roehrig 2012b, Miller et al. 2012a) of CVD‐specific data 
from the Tufts Cost‐Effectiveness Analysis Registry (Center for the Evaluation of 
Value and Risk in Health 2014). The previous section describes our method for 
converting these values to parameters of the equations that describe the impact of 
spending on CVD sickness and death rates.

The bounds on QALYs per sick person‐year, which were inferred from the work of 
Dyer et al. (2010), represent average morbidity levels in the presence of no treatment 
spending (lower bound) and unlimited spending (upper bound). These bounds were not 
approached in any of our model runs; in the base case described in the following, 
QALYs per sick person‐year after 100 years was 0.75. While we recognize that some 
individuals in our “healthy” population will have some level of morbidity due to con-
ditions other than CVD, we represent their average morbidity level with a QALY value 
of 1.0. This overstatement has little impact on our overall results, because all reported 
cost‐effectiveness results are presented as differences from a reference case, where the 
result of interest is the difference in QALYs achieved between the two cases.

Although there is substantial evidence that past medical research has had a 
significant impact on morbidity and mortality (e.g., Congressional Budget Office 
2007, Lichtenberg 2006, 2010), we could find no reliable data describing the magni-
tude of the relationship between research spending and subsequent effectiveness of 
CVD prevention and treatment. For this reason (and for other reasons briefly dis-
cussed in Section 15.4), model runs that include either PR or TR are assumed to 
generate 100 million additional (discounted) QALYs over a 100‐year horizon. These 
values were selected merely to demonstrate the impact of a successful research 
program on the cost‐effectiveness of prevention and treatment of CVD. However, our 
analysis suggests that they are lower than the impact of cholesterol reduction as a risk 
factor on CVD mortality that is reported by Ford et al. (2007), which is largely the 
result of the introduction of statins. They also appear to be consistent with the impact 
of new laboratory procedures introduced between 1990 and 1998 on subsequent life 
years saved (though not associated only with CVD), as reported by Lichtenberg 
(2006). The magnitude of the lag between initiation of an ultimately successful 
research program and broad clinical use of its results is discussed further in 
Section 15.3.8; its derivation is described by Miller et al. (2012a).

Results in the following section are produced by varying these parameter values 
selectively.
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15.3 RESULTS

15.3.1 Base Case

Running the model with the data described in Table  15.1, but with no research 
spending, produces a set of baseline results with which we compare various other 
model runs. This model run produces the input values of 28.1% of spending allocated 
to prevention, a marginal treatment cost‐effectiveness of $20,550 per QALY, and a 
marginal prevention cost‐effectiveness of $16,918 per QALY. Figure 15.3 illustrates 
the resultant time history of the healthy, sick, and total population over the model’s 
100‐year time horizon.

We do not expect the model, with its many simplifications, to produce highly 
accurate population, morbidity, and mortality forecasts: as noted earlier, the model 
was developed to explore the dynamics of alternative spending streams, rather than 
to predict the effects of this spending precisely. As shown in Figure 15.3, the model’s 
projection of overall growth in the 45+ population is slightly higher than projections 
by the US Census Bureau (2008) until 2025 (corresponding to year 16 in the figure), 
when the two forecasts are equal. For subsequent years until 2050 (the last year of the 
Census forecast, which corresponds to year 41 in the figure), the model projects a 
slightly slower growth in the population and will be 8.7% lower than the Census 
projection by 2050 (170.7 million vs. 187.0 million). Among the reasons for this 
latter discrepancy are that our model does not represent net internal migration and 
uses a constant annual “birth” rate of 4.5 million 45‐year‐olds in order to retain our 
model’s simplicity (this rate grows to 5.3 million in the Census projections). When 
we use the model to find an optimal spending mix, we distribute per capita spending 
(rather than total spending) between prevention and treatment. As a result, the impact 
of any understatement of population size on the optimal spending mix is small, 
though the optimal value of the objective function is understated somewhat.
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Figure 15.3 Population growth in base case.
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The model forecasts a growth rate in deaths from CVD of 82% between 2010 and 
2050; this compares favorably with the forecast by Foot et al. (2005) of the growth in 
the heart disease death rate of 83%. (However, this latter forecast excludes stroke, 
which is included in the model.) Heidenreich et al. (2011) forecast a growth from 
2010 to 2030 in the prevalence of coronary heart disease, heart failure, and stroke of 
16.6%, 25% and 24.9%, respectively. Their numbers correspond to an overall growth 
in prevalence of all three diseases between 16.6% and 19.1%, depending on the 
degree to which more than one of these conditions is present in an individual. In 
comparison, the model forecasts that overall CVD prevalence will grow by 25.5% 
over the same period. Thus, while the model does not replicate other forecasts, it is 
somewhat consistent with them.

15.3.2 Interaction between Prevention and Treatment Spending

To investigate the interaction between the cost‐effectiveness of prevention and of 
treatment spending, we made a number of model runs in which we varied the treatment 
spending per sick person, while holding prevention spending per capita constant, and 
computed the marginal cost‐effectiveness of prevention using the standard definition 
of cost‐effectiveness, as described by Gold et al. (1996). By marginal cost‐effectiveness, 
we mean the slope of the cost‐effectiveness curve with respect to a change in treatment 
spending. We estimate this slope by adding a very small amount of annual prevention 
spending and computing the cost‐effectiveness of this spending as (C

1
 − C

0
)/ 

(Q
1
 − Q

0
), where C

1
 − C

0
 is the small incremental change in discounted prevention 

spending and Q
1
 − Q

0
 is the resultant change in discounted QALYs realized over the 

model’s 100‐year time horizon. Results are summarized in Figure 15.4.
As treatment spending grows, the figure shows that the marginal cost‐effectiveness 

of prevention first increases (becomes worse), because improved treatment results in 
a smaller benefit (in terms of avoiding lost QALYs) associated with prevention. 
However, as treatment spending becomes larger, the marginal cost‐effectiveness of 
prevention decreases (improves) for two reasons. Firstly, diminishing returns from 
the higher treatment spending result in high treatment costs with little additional 
treatment effectiveness. Secondly, because increasing treatment expenditures causes 
the CVD death rate to decline, the increasing size of the sick population leads to 
higher total treatment spending. The improved marginal cost‐effectiveness of preven-
tion in this situation is associated with avoiding these higher treatment costs. Note 
that if treatment spending per sick person is held constant, increased prevention 
spending per capita has no effect on the marginal cost‐effectiveness of treatment 
spending: the effects of treatment spending are not affected by prevention spending 
once an individual enters the sick population.

These results illustrate that the cost‐effectiveness of additional spending on 
 prevention depends on current treatment spending levels. As will be shown in 
Section  15.3.8, the cost‐effectiveness of prevention spending also depends on 
treatment capabilities. These two effects complicate efforts to measure the value of 
prevention.
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15.3.3 Impact of Discount Rate on Cost‐Effectiveness

It is sometimes argued that the generally accepted practice (Gold et al. 1996) of dis-
counting both cost and QALYs in cost‐effectiveness analysis at the same discount 
rate tends to bias such analyses in favor of TI over prevention (Menzel 2011). This is 
because prevention expenditures tend to produce results after a longer time delay 
(and the resultant effectiveness is therefore more heavily discounted) than with 
treatment spending. This effect grows as the discount rate increases. However, recent 
discount rate guidelines from the federal government recommend the use of discount 
rates that are lower than the commonly used value of 3% (Office of Management and 
Budget 2011). To illustrate the effect of changing the discount rate, Figure  15.5 
shows its impact on the marginal cost‐effectiveness of treatment and prevention for 
our CVD example, in which we assume that treatment effects occur immediately 
after the expenditure is made, whereas the impact of prevention spending is realized 
after a 10‐year delay.

As the exhibit shows, lowering the discount rate causes the marginal cost‐
effectiveness of both prevention and treatment to decrease (because either type of 
spending has downstream benefits that are discounted less as the discount rate 
decreases), but it decreases more rapidly for prevention. As a result, spending to prevent 
CVD appears more cost‐effective than treatment only if the discount rate does not 
exceed roughly 4%. Future use in cost‐effectiveness analyses of discount rates lower 
than 3% should cause PI to fare more favorably when compared with TI.
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15.3.4 Optimal Spending Mix

To investigate the extent to which the current mix of expenditures between prevention 
and treatment is appropriate from a societal perspective, we used the model to iden-
tify the percent of annual per capita spending that should be allocated to prevention 
to maximize the overall effectiveness of prevention and treatment expenditures. 
More precisely, we fixed per capita annual CVD spending on prevention and 
treatment combined to current levels and found the fixed percentage annual split 
between prevention and treatment of the resultant total funding that maximizes the 
total number of (discounted) QALYs realized during the model’s 100‐year time 
horizon. Results associated with this optimal allocation of expenditures are 
compared with base‐case values in Table 15.2.

The table indicates that it would be optimal (in the sense of our computations) to 
increase annual spending on prevention from 28.1% to 37.7% of total spending, 
 possibly helping to validate the concern of some that prevention is underfunded 
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TABLE 15.2 Optimization of Spending Mix (Percent of Annual Expenditures 
to Prevention)

Variable

Value

Base Optimized

Percent of expenditures to prevention 28.1% 37.7%
Healthy population at 100 years (million) 140.2 146.8
Sick population at 100 years (million) 47.2 43.8
Total population at 100 years (million) 187.4 190.7
Average QALYs/sick person at 100 years 0.75 0.74
Marginal treatment cost‐effectiveness ($/QALY) $20,550 $19,001
Marginal prevention cost‐effectiveness ($/QALY) $16,918 $18,782
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compared with treatment. (Note, however, that the limited empirical basis for some 
aspects of the model’s equations means that this precise optimal amount should not 
be taken as a recommendation.) Such a shift would increase the size of the healthy 
population at 100 years by 6.6 million and the size of the total population by 
3.3 million. The size of the sick population would decline by 3.4 million for two 
reasons: the increased spending on prevention would reduce the CVD incidence rate, 
and the diversion of expenditures from treatment to prevention would cause the CVD 
death rate to increase. The average morbidity level of the sick population after 100 years 
would be 0.74 QALYs per person‐year, slightly lower than the base‐case value of 
0.75. Because of diminishing returns, the increased spending on prevention would 
cause the marginal cost‐effectiveness for prevention to increase (worsen), while 
decreased spending on treatment would cause the marginal cost‐effectiveness of 
treatment to decrease (improve), so that the two types of investments would have 
nearly equal cost‐effectiveness. (Note that optimal allocation of a fixed budget 
 between prevention and treatment would result in the marginal cost‐effectiveness of 
prevention to exactly equal that of treatment. However, our optimization scheme 
allocates fixed per capita spending between prevention and treatment. Because the 
size of the population, and therefore the total expenditures being allocated, varies as 
the spending mix varies, our formulation does not produce equal marginal cost‐
effectiveness values at the optimal mix.)

Figure 15.6 shows how the discounted total QALYs (accrued over the model’s 
100‐year horizon), the prevention marginal cost‐effectiveness, and the treatment 
marginal cost‐effectiveness vary as the spending mix deviates from optimal. As indi-
cated in Table 15.2, total discounted QALYs are maximized when prevention expen-
ditures increase from 28.1% to 37.7% of expenditures, at which point the two 
marginal cost‐effectiveness values are nearly equal. Because of diminishing returns, 
the marginal cost‐effectiveness of prevention increases (worsens) as the prevention 
share of expenditures increases, while the marginal cost‐effectiveness of treatment 
decreases (improves).

15.3.5 Impact of Prevention Lag on Optimal Mix

Unlike treatment of existing disease, the effectiveness of prevention spending is usu-
ally realized after a significant lag following the investment in prevention. (In con-
trast, our analysis assumes that no lag is associated with realizing the effectiveness 
associated with treatment spending.) The duration of this lag depends on the nature 
of the preventive intervention. For example, the reduction in incidence of CVD asso-
ciated with a program to discourage smoking among teenagers will occur with a 
much greater lag than the reduction associated with the use of statins by a population 
of 50‐year‐olds. The impact of the duration of this lag on the optimal mix of spending 
between treatment and prevention is shown in Figure 15.7.

With a 3% discount rate, the optimal percent of spending on prevention ranges 
from 50% if there is no lag to 0% as the lag approaches 35 years. For comparison, 
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our base‐case (un‐optimized) spending mix assumes a 10‐year lag before it has an 
impact and allocates 28.1% of annual spending to prevention; as noted in the 
previous section, the optimal mix with a 10‐year lag is 37.7%. It can be argued that 
identifying near‐term benefits of prevention (such as the impact of smoking cessa-
tion on reducing the incidence of low birth weight in addition to its longer‐term 
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benefits in reducing CVD and other conditions) will help reinforce prevention’s 
value. This analysis  illustrates a reason for this argument.

15.3.6 Impact of Discount Rate on Optimal Mix

For reasons noted earlier, the impact of the prevention lag depends on the rate used 
to discount future costs and effectiveness. Figure 15.8 illustrates the extent of this 
impact. The figure indicates the optimal mix of spending between prevention and 
treatment as a function of the discount rate for three alternative lags in the time until 
prevention expenditures have an impact. In general, the optimal percent of spending 
allocated to prevention declines as either the discount rate or the lag increases 
(although, as noted earlier, the precise magnitude of this effect might differ 
somewhat from that predicted by the model). Thus, the relative value of PI with 
near‐term benefits (discussed in the previous section) declines with a reduction in 
the discount rate.

15.3.7 Impact of Time Horizon on Optimal Mix

A significant issue in cost‐effectiveness analysis involves establishing the time 
horizon over which a new intervention is assumed to have an impact (sometimes 
referred to as the analytic horizon). On the one hand, a long time horizon ignores the 
possibility that future technology will make current interventions obsolete or that 
future population changes will make projections of the costs and benefits of current 
interventions inaccurate. On the other hand, a short horizon neglects downstream 
costs and benefits that will accrue from near‐term application of a currently available 
intervention. For example, the Congressional Budget Office’s current cost projection 
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methods have been criticized for their mandated use of a 10‐year horizon, which 
captures near‐term intervention costs but not their effects on long‐term costs (Huang 
et al. 2009). Figure 15.9 indicates the effect of the time horizon on the optimal 
allocation of spending to prevention for our scenario and illustrates that adoption of 
a relatively short horizon tends to favor treatment over prevention, largely because of 
the time lag before which prevention expenditures become effective.

15.3.8 Impacts of Research

A research breakthrough in either prevention or treatment can have an impact on the 
cost‐effectiveness of additional expenditures in either type of intervention and can 
change the optimal mix of spending between the two. To investigate this impact, we 
hypothesize a successful prevention (or treatment) research program that begins at 
the start of our model run. Based on our analysis of data in the literature (US 
Government Accountability Office 2006, Congressional Budget Office 2006, 
Skinner and Staiger 2009), we assume that it will take 23 years for newly initiated 
research to become active in clinical use. This includes a 5‐year preclinical phase, a 
7‐year clinical phase, a 2‐year licensing phase, and 9 years for diffusion of the new 
intervention into common practice. (In reality, of course, each of these phases has a 
time distribution, resulting in a random time from initiation of research until adop-
tion of its results; for simplicity, we assume this lag has a fixed duration.) In the 
absence of more specific data, we assume that either type of research breakthrough 
generates 100 million additional discounted QALYs over our model’s 100‐year 
horizon. Table 15.3 presents the results of this exercise both for our current (un‐
optimized) spending pattern and for the optimal allocation of spending between 
treatment and prevention. Note that these results exclude any expenditure to fund 
the research itself.
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  TABLE 15.3    Impacts of Research Spending 

Variable

Not Optimized Optimized  

Base
Treatment 
Research

Prevention 
Research Base

Treatment 
Research

Prevention 
Research    

Percent of expenditures to prevention 28.1% 28.1% 28.1% 37.7% 30.7% 47.0%  
Healthy population at 100 years (millions) 140.2 141.0 163.9 146.8 142.8 184.8  
Sick population at 100 years (millions) 47.2 54.8 43.8 43.8 53.7 35.4  
Total population at 100 years (millions) 187.4 195.7 207.6 190.7 196.5 220.2  
Marginal treatment cost‐effectiveness ($/QALY) $20,550 $18,820 $21,442 $19,001 $18,433 $18,584  
Marginal prevention cost‐effectiveness ($/QALY) $16,918 $17,758 $13,683 $18,782 $18,254 $18,348
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Before optimization (where 28.1% of expenditures are allocated to prevention 
each year), TR causes both the healthy and the sick populations to increase over the 
base case, resulting in 4.4% growth of the total population at year 100. Growth in the 
sick population results from the reduced CVD death rate caused by the TR; the small 
growth in the healthy population results from the increase in per capita prevention 
expenditures (and resultant decrease in the sickness rate) associated with the addi-
tional total expenditures generated by the larger overall population. (Recall that 
annual per capita expenditures for the entire population—both healthy and sick—are 
fixed in the model.) The marginal cost‐effectiveness of treatment improves (a direct 
effect of the TR effort), while the marginal cost‐effectiveness of prevention becomes 
somewhat worse. This latter effect is similar to that observed in Section 15.3.2 and 
illustrates that the cost‐effectiveness of additional spending on prevention depends 
on current capabilities to treat. Because these capabilities change over time, decision 
makers should be aware that published estimates of the cost‐effectiveness of a PI do 
not necessarily reflect the intervention’s future value.

Before optimization, PR also causes the healthy population to increase and the 
sick population to decline (both primarily because of a reduction in the sickness rate 
caused by the research), resulting in a net 10.8% increase in the total population at 
year 100. The marginal cost‐effectiveness of prevention improves (primarily a direct 
effect of the PR breakthrough), while the marginal cost‐effectiveness of treatment 
worsens (because the larger total population and smaller sick population result in 
increased per capita spending on the sick population, producing diminishing returns).

Thus, while our two research examples produce the same overall effectiveness (as 
measured in additional QALYs achieved), they have substantially different impacts 
on the healthy and sick populations: each class of research causes the size of the 
target population (healthy or sick) and the total population to increase, but PR has the 
advantage of causing the sick population to decline, while TR decreases the severity 
of the illness for a larger sick population.

Maximizing total QALYs is achieved at a lower allocation of resources to preven-
tion in the presence of TR (30.7% rather than 37.7%) and at a higher allocation to 
prevention in the presence of PR (47.0%). With TR, the shift to more treatment 
spending in the presence of greater treatment effectiveness causes a decline in the 
size of the healthy population at 100 years, but the size of the sick population grows 
significantly (by 22.6%) because treatment spending is both higher and more effec-
tive at reducing the CVD death rate. With PR, the greater effectiveness and magni-
tude of prevention spending causes a 25.9% increase in the healthy population, a 
drop in the sick population, and a net increase in the total population of 15.5%. As 
with our earlier optimization runs, optimization in the presence of either type of 
research causes the marginal cost‐effectiveness of treatment and of prevention to 
approach each other in value.

It is interesting to compare the population trajectories over time for these cases. 
Figure 15.10 shows the time history for the total population for the non‐optimized 
research runs. (The curves have very similar shapes for the optimized runs.) 
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Note  that all three runs produce identical populations until the end of the 23‐year 
research lag, after which the TR case begins to show an increase in the population. 
After the additional 10‐year prevention lag, the PR case begins to diverge from the 
base case, with its population eventually exceeding that of the treatment case. These 
time trajectories illustrate the importance of considering time delays in assessing the 
impact of research expenditures, especially for PR, with its typical additional delay 
after the results of research have begun to be used.

15.4 DISCUSSION

Our model of the impacts of CVD prevention and treatment spending contains many 
simplifications: homogeneous healthy and sick populations, a constant annual “birth” 
rate, no explicit representation of aging, generic treatment of multiple CVD as a 
single condition, no distinction among specific PI or TI, deterministic treatment of 
lags, and no growth of per capita spending over time (which is inconsistent with 
historical CVD spending (Miller, Hughes‐Cromwick, and Roehrig 2011b)). The 
model shows the directions of various effects that result primarily from diminishing 
returns assumptions. We are comfortable with these assumptions and therefore are 
comfortable with the directions of the effects. However, we did not conduct empirical 
research into the rates at which returns diminish, so the sizes of these effects are not 
empirically based.

Although our model incorporates the impact of research spending on the effec-
tiveness of subsequent spending on prevention and treatment, lack of data describing 
such impact, as well as other technical issues, precluded including this impact in our 
analysis. (Instead, we hypothesized a research breakthrough of a specific magnitude 
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and explored its effects.) Among the other technical issues is the need to characterize 
research spending over time in a way that appropriately captures its downstream 
effects. Another technical issue relates to the model’s use of a fixed production 
function for research findings that incorporates diminishing returns. Over time, as 
the cumulative amount of research spending increases, this function specifies that 
returns to an additional dollar of research decrease. Using this function, we discov-
ered that it is optimal to front‐load research spending until the value of an additional 
dollar falls so low that it is better used elsewhere (e.g., for direct PI or TI). Once this 
point has been reached, research spending essentially ceases altogether, because the 
value of an additional dollar of research has reached a permanent point where it is 
outcompeted by other uses. In order to justify the regular annual spending on research 
that generally occurs in practice, it is necessary to change the model. For example, 
one could specify that the production function for healthcare research findings is not 
fixed but, instead, shifts upward each year due to continued investments elsewhere in 
pure research. In this way, the value of an additional dollar of healthcare research 
spent this year will be greater than that if spent last year because it will make use of 
new knowledge gained from ongoing pure research. (See, e.g., the disaggregated 
research production function proposed by Tassey (2005).) There are other ways to 
modify the research production function that justify regular annual spending, but this 
is a very complex area, and more study is needed in order to determine the best spec-
ification for our model.

In spite of these limitations, the model produces results that are reasonably con-
sistent with other projections of population growth and growth in CVD prevalence 
and death rates. At the same time, the model’s simplicity supports its use in describing 
and understanding the complex interactions associated with alternative spending 
streams for prevention and treatment of CVD and the impacts of advances in research 
to improve the efficacy of such spending. We have found that:

 • Spending on prevention and on treatment has interacting effects—the marginal 
cost‐effectiveness of prevention spending depends on both the level and effec-
tiveness of treatment spending.

 • The optimal mix of CVD spending (i.e., the spending mix that maximizes the 
overall QALYs achieved) requires a shift in spending from treatment to 
prevention.

 • The estimated cost‐effectiveness and optimal mix of prevention depend signifi-
cantly on assumptions used in the underlying analysis, including the discount rate 
used, the analysis time horizon, and the lag before preventive measures take effect.

 • A research breakthrough in prevention (or treatment) causes overall effective-
ness and the marginal cost‐effectiveness of prevention (treatment) to improve as 
expected, but the marginal cost‐effectiveness of treatment (prevention) tends to 
decline. While each class of research results in an increase in the size of the total 
population, PR causes the sick population to decrease, while TR decreases the 
severity of the illness for a larger sick population.
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These results have implications for the allocation of spending between prevention 
and treatment of CVD, the funding of CVD research, and the methods used to assess 
the cost‐effectiveness of specific interventions.
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TREATMENT OPTIMIZATION 
FOR PATIENTS WITH TYPE 2 
DIABETES

Jennifer Mason Lobo
Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA

16.1 INTRODUCTION

Diabetes is a chronic disease that affects over 29 million people in the United States 
(CDC 2014). The majority of these patients have type 2 diabetes. Risk factors for 
developing type 2 diabetes include being overweight, inactivity, family history of 
diabetes, and being 45 years old or older. Patients with type 2 diabetes are unable to 
effectively use insulin, a hormone produced by the pancreas that allows glucose to 
enter cells and be used for energy. When glucose builds up in the blood, there is an 
increased risk of stroke, coronary heart disease (CHD) events (e.g., heart attack), 
blindness, kidney damage, and nerve damage. Among adults with diagnosed diabetes, 
71% have high blood pressure or use blood pressure medication, and 65% have high 
cholesterol or use cholesterol medication (CDC 2014). Adults with diabetes are also 
at a greater risk of death compared with adults without diabetes, mainly due to 
increased rates of stroke and CHD events, including heart attacks (CDC 2014). Blood 
pressure and cholesterol medications can be used to reduce a patient’s risk for these 
adverse health events.

Patients with chronic diseases often take multiple medications to manage 
their conditions. Multiple medication use, also referred to as polypharmacy or 
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hyperpharmacotherapy, is common for diabetes patients in particular, given that 
these patients typically take medications to manage blood glucose, blood pressure, 
and cholesterol. The US guidelines for managing blood pressure and cholesterol can 
result in six or more medications being initiated over a patient’s lifetime to manage 
these two risk factors alone (Antonopoulos 2002; Chobanian et al. 2003). Forty per-
cent of diabetes patients have at least three comorbid conditions that are often also 
managed through the use of medications (Piette and Kerr 2006). While medications 
help a patient manage his or her disease, multiple medication use can put a patient at 
risk for adverse effects, drug–drug interactions, and drug–disease interactions 
(Hilmer and Gnjidic 2009). Along with these potential side effects of treatment, 
patients may incur excessive costs or the burden of managing treatment regimens that 
goes along with taking multiple medications. For example, polypharmacy is a risk 
factor for poor adherence to medication (Richter et al. 2003). The burden of taking 
multiple medications is particularly high for patients with chronic conditions since 
often the clinical intent is to continue taking medications throughout a patient’s life-
time (Chobanian et al. 2003; Snow et al. 2004; Vijan and Hayward 2004).

In this chapter we describe a Markov decision process (MDP) model to optimize 
the order and timing of blood pressure and cholesterol medications for patients with 
type 2 diabetes. We include constraints on the action space to reduce the total number 
of medications initiated over a patient’s lifetime, thus reducing polypharmacy. 
Outcomes of interest include effects on quality of life from medication use, stroke, 
and CHD events and overall costs of medication and treatment of events. Through 
this work we will answer the following research questions: What are the quality of 
life and cost effects of limiting the total number of blood pressure and cholesterol 
medications a patient can take over his or her lifetime? While taking fewer medica-
tions reduces the cost of medication, what effect does this have on the expected cost 
of treating events? We will investigate optimal treatment plans where the number of 
total blood pressure and cholesterol medications a patient can initiate is constrained 
by a medication budget, the maximum number of medications a patient is allowed to 
initiate over his or her life.

The remainder of this chapter is outlined as follows: In Section 16.2 we present a 
brief literature review of related optimal treatment models for patients with type 2 
diabetes. In Section 16.3 we present the MDP model formulation. In Section 16.4 we 
present the results of the numerical experiments. Finally, in Section 16.5 we present 
conclusions and potential future directions for the model.

16.2 LITERATURE REVIEW

Several models have been developed to evaluate and optimize treatment decisions for 
patients with diabetes. Denton et al. (2009) developed a nonstationary MDP model 
to determine the optimal start time of statins, a commonly used cholesterol‐lowering 
medication, for patients with type 2 diabetes. The authors explored the use of three 
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different cardiovascular risk models to estimate the annual risk of stroke and CHD 
events. The objective was to maximize the monetary rewards multiplied by quality‐
adjusted life years (QALYs) minus costs of treatment over the patient’s lifetime. A 
QALY is a number between 0 and 1 for 1 year of life where 1 equates to a year of 
perfectly healthy life and reductions from 1 represent reductions in quality of life due 
to factors such as medication use and adverse health events. While it is difficult to 
estimate QALY values, several methods have been developed to elicit QALY values 
from patients, including time trade‐off (Attema et al. 2013) and standard gamble (van 
Osch and Stiggelbout 2008). Denton et  al. (2009) found that it was optimal for 
patients to start statins as early as age 40, though the optimal timing of statin therapy 
was dependent not only on the risk model used but also on patient factors including 
age and gender. In related work, Kurt et al. (2011) formulated an infinite‐horizon 
MDP to determine the optimal start time of statins with an objective to maximize 
QALYs before a patient’s first major diabetes complication or death. The authors 
proved structural properties for the model including the sufficient conditions for an 
optimal control‐limit policy with respect to a patient’s cholesterol level (ratio of total 
cholesterol (TC) to high‐density lipoprotein (HDL)) and age. The numerical study 
highlighted the importance of individualizing treatment guidelines based on choles-
terol values, patient preferences, and response to statins.

Mason et al. (2012) extended the work of Denton et al. (2009) by determining the 
optimal time to initiate statins while also considering a patient’s adherence to the 
treatment, as this was not explicitly considered by Denton et al. (2009). Four adher-
ence states were defined to describe the percentage of days covered (PDC) (Bryson 
et  al. 2007) by medication over a year (nonadherent, PDC ≤ 10%; low adherence, 
10% < PDC ≤ 40%; medium adherence, 40% < PDC ≤ 80%; high adherence, PDC > 80%). 
A Markov model was developed to describe the adherence behavior and the 
corresponding effect on cholesterol levels. While 49% of patients were highly 
adherent (PDC > 80%) in the first year after initiating statins, this percentage 
decreased to 27% after 10 years. In addition, over 45% of patients were nonadherent 
to therapy (PDC ≤ 10%) in the long term (20 years after initiation). Mason et  al. 
(2012) found that it was optimal to delay initiation of statins given less than perfect 
adherence to treatment, although improving adherence to statins would provide a 
greater increase in QALYs. Mason et al. (2014) also extended the work of Denton 
et al. (2009) by developing an MDP model to optimize treatment for multiple medi-
cations to treat two risk factors—blood pressure and cholesterol. Treatment decisions 
were optimized over a patient’s lifetime by maximizing monetary rewards multiplied 
by QALYs minus costs for health services and medication. Optimal treatment plans 
were compared to US and international guidelines for managing blood pressure and 
cholesterol levels for patients with type 2 diabetes. Optimal treatment plans resulted 
in reduced costs and equal or greater life years and QALYs compared with the guide-
lines, primarily due to waiting longer between medication initiations than recom-
mended by the guidelines. This work highlighted the need for coordination of 
treatment for risk factors that both affect a patient’s risk of stroke and CHD events.
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Many models have also been developed to optimize glycemic control for patients 
with diabetes. A non‐exhaustive survey of this literature is provided. Zhang et  al. 
(2014) developed a population‐based Markov model for glycemic control for patients 
with type 2 diabetes. Zhang et  al. (2014) provided a comparison of alternative 
treatment intensification strategies following first‐line treatment of blood glucose 
with metformin with the primary prevention goal of delaying a patient’s first major 
complication due to diabetes. Strategies were compared using outcomes including 
treatment costs, life years, QALYs, and mean time to insulin dependence. Zhang 
et al. (2014) found that the second‐line therapy sulfonylurea provided comparable 
health outcomes with other strategies while being less costly. McEwan et al. (2015) 
used the Cardiff Diabetes Model, a stochastic simulation model (McEwan et  al. 
2006), to assess the cost‐effectiveness of varying blood glucose thresholds for therapy 
intensification. In the model, cohorts of 1000 patients are simulated for as long as 40 
years with age and clinical factors updated every 6 months. McEwan et al. (2015) 
found that a lower blood glucose threshold for initiation of secondary  medications 
led to reduced time on monotherapy (an average of 1.1 years), increased lifetime cost 
of therapy, and reduced overall complications. Higher thresholds minimized 
treatment‐related disutility due to delayed initiation of insulin. Basu et  al. (2016) 
developed a microsimulation model to compare cost‐effectiveness and clinical out-
comes for a treat‐to‐target strategy for blood pressure, cholesterol, and blood glucose 
and a risk‐based strategy for managing the risk of macrovascular and microvascular 
events. The model was used to guide treatment decisions for diabetes patients in 
low‐ and middle‐income countries with resource constraints. Basu et al. (2016) found 
that the risk‐based strategy was more cost‐effective and would avoid 24.4–30.5% 
more complications than the treat‐to‐target strategy. When insulin was not an avail-
able treatment option, the treat‐to‐target strategy was preferred for preventing micro-
vascular events. Other computer simulation models for predicting outcomes for 
patients with type 2 diabetes have been presented and refined through the regular 
Mount Hood Challenge meetings held since 2000. Palmer and the Mount Hood 5 
Modeling Group (2013) describe the findings of the Fifth Mount Hood Challenge 
Meeting in which eight modeling groups tested the ability of their models to simulate 
outcomes of four clinical trials for patients with type 2 diabetes. Overall, the models 
were generally able to predict the relative risk of events for interventions compared 
with controls; however, the models did not perform as well in estimating the absolute 
risk of events. Palmer and the Mount Hood 5 Modeling Group (2013) describe 
lessons learned from the meeting, including understanding the importance of assump-
tions for updating patient risk factors over time and correctly matching risk factors of 
the trial patients.

Other MDP models have been built to optimize treatment decisions for patients 
with other chronic conditions. Overviews of MDP models used to optimize treatment 
of other conditions, including HIV, hepatitis C, and ischemic heart disease, have been 
presented elsewhere (Alagoz et al. 2010; Zhang et al. 2013; Ayer et al. 2014). While 
previous MDP models have been used to optimize treatment decisions for patients 
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with chronic diseases, to our knowledge none of these studies have considered a 
limited action space to determine the effect of controlling medication use on out-
comes. In light of the potential for negative effects from polypharmacy, we build on 
previous work by Mason et al. (2014) to study outcomes associated with reducing the 
total number of medications a patient initiates. The base model from Mason et al. 
(2014) is extended to include a medication budget, and new results are included in 
this chapter to analyze the incremental cost‐effectiveness between policies with dif-
ferent medication budgets.

16.3 MODEL FORMULATION

We use an MDP to model the health status of a population of individuals from diag-
nosis of diabetes (with no medications) until the end of life. In the model we define 
patient health status (TC, HDL, and systolic blood pressure (SBP)), medication 
status, and the number of stroke and CHD events that have occurred. The objective 
of this model is to determine the optimal order and timing of blood pressure and 
cholesterol medications to effectively manage the risk of adverse events subject to 
polypharmacy constraints.

Figure 16.1 displays a simplified state transition diagram for the model. The bold 
arrows represent potential actions for initiating medications. As shown in the 

No medications (Ø)

Blood pressure medication (BP) Cholesterol medication (C)

Blood pressure and cholesterol
medications Stroke,

CHD event,
or death

LBP MBP HBP VBP LC MC HC VC

LBP,C MBP,C HBP,C VBP,C

LØ MØ HØ VØ

Figure 16.1 Simplified state transition diagram for the case of two medications, one blood 
pressure medication and one cholesterol medication. The occurrence of a stroke, a CHD event, 
or death can occur from any health state. When medications are initiated (actions denoted by 
the bold arrows), the risk factor values improve and the risk of adverse events is reduced.
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diagram, treatment decisions are irreversible; once a patient initiates treatment, he 
or she remains on that medication. Patients may incur a stroke, CHD event, or 
death from other causes from any state. The health states, represented by L (low), 
M (medium), H (high), and V (very high), are altered once medication is initiated 
to reflect the improvement in the risk factor value and the reduced risk of adverse 
events. Regardless of the medication state, patients move stochastically among 
health states over time. The following subsections outline the elements of our 
MDP model.

16.3.1 Decision Epochs

The decision process takes place over a finite decision horizon represented by a 
 discrete set of decision epochs indexed by t T1, , . The length of the decision 
epoch represents the time between doctor visits (e.g., yearly or every 6 months). 
Patients still alive at the end of the decision horizon do not initiate any new medica-
tions, and rewards are accrued based on their medication status at time T. The value 
of T is chosen to correspond to an age after which no new medications for managing 
blood pressure and cholesterol would be initiated.

16.3.2 States

We define a patient’s health state in each decision epoch by the patient’s TC, 
HDL, and SBP levels and history of adverse events. The metabolic states are 
defined by the following: ℒTC , , ,L M H V , ℒHDL , , ,L M H V , and 
ℒSBP , , ,L M H V . The threshold values used to define these states are based on 
clinically relevant cut points informed by treatment guidelines (Cleeman et al. 
2001). The history of adverse events is defined by the current number of each 
type of event the patient has incurred up to a maximum of k events of each type: 
ℒS , , ,0 1 k  and ℒCHD , , ,0 1 k . The complete set of health states is given by 
ℒ ℒ ℒ ℒ ℒ ℒTC HDL SBP S CHD. Elements of ℒ are indexed by ℓ. The death states 
are represented by the following:    S CHD O, ,  where S represents death 
from a stroke, CHD represents death from a CHD event, and O represents death 
from other causes.

Medication states are denoted by  m m m m mn i1 2 0 1, , , : , , 
i n1 2, , , where n denotes the number of medications. If medication i is not 

currently being taken, m
i
 = 0. If the patient is  taking medication i, then m

i
 = 1 and the 

patient remains on that medication, that is, m
i
 = 1, for all future time periods. 

A  proportional reduction in SBP occurs when a blood pressure medication is started. 
Likewise, a proportional decrease in TC and a proportional increase in HDL occur 
when a  cholesterol medication is started. The entire state space is given by L M D, 
and there are a total of 43 × (k + 1)2 × 2n + 3 states.
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16.3.3 Actions

The recurring decision at each decision epoch is to determine if it is optimal to  initiate 
a medication (I) or to do nothing (W). The constraint on the total number of medica-
tions that might be initiated is incorporated into the action definition. Given n total 
potential medications and a medication budget of n , where n n, we define the set 
of possible actions in the following way:
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where A m� � � ��, , , ,A A Am m mn1 2
 and action a ∈ A

(ℓ, m)
 denotes the action 

taken in state (ℓ, m). For a patient in state (ℓ, m) that takes action a, the subsequent 
medication state is given by m′, where mi  is defined as 1 for any medications i that 
are newly initiated by action a; the medication status remains the same for all other 
medications.

16.3.4 Probabilities

We include three types of probabilities in the model: probability of death from other 
causes, probability of fatal and nonfatal stroke and CHD events, and probabilities 
among health states. The nonstationary, age‐dependent (i.e., epoch‐dependent) prob-
ability of death from other causes is denoted by O

t . For patients in state (ℓ, m), a 
nonfatal stroke occurs with probability 



S ( , )t m , a fatal stroke occurs with proba-
bility 

S ( , )t m , a nonfatal CHD event occurs with probability 


CHD ( , )t m , and a fatal 
CHD event occurs with probability  

CHD ( ),t m . The event histories, ℓ
S
 and ℓ

CHD
, are 

incremented when stroke and CHD events occur, respectively. For a patient in state 
(ℓ, m) during epoch t, the probability of moving into one of the death states d   at 
the beginning of epoch t + 1 is denoted by p dt ( , )| m , where
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for , m L M. The death states are absorbing states: p d dt ( )| 1 for all t T1, , .
Transitions among health states are denoted by q

t
(ℓ′|ℓ). These probabilities are 

independent of medication status since they are computed from the natural history 
model that tracks health status in the absence of medication. While the probabilities 
among health states are independent from the medication status, the TC, HDL, and 
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SBP values themselves are altered based on medication status and the associated 
proportional changes. In other words, the values associated with the L, M, H, and V 
states are shifted by medication use. These altered medication values are used in the 
risk equations to calculate the risk of fatal and nonfatal events. The probabilities 
among health states are defined by the following:

 
p j p d q j jt

d
t t   , , ,m m1

D

Lfor . (16.3)

16.3.5 Rewards

We combine QALY and cost outcomes by multiplying the expected QALYs in the 
reward function by a willingness‐to‐pay (WTP) factor. This WTP factor represents 
the value society places on one QALY. The reward function is able to express the 
trade‐offs of treatment by incorporating the downside of medication use through 
reduction in quality of life and increases in cost and the positive consequences of 
treatment through improvements to expected quality of life and cost from reduced 
risk of adverse events. The reward function is defined by the following equation:

 r R C C C Ct      , , CF CFS CHD S CHD MEDm m m OO , 

(16.4)

for t T1, , , where R(ℓ, m) = RWTP(1 − dS(ℓ))(1 − dCHD(ℓ))(1 − dMED(m)) is the monetary 
reward for one QALY. RWTP is the WTP factor, and dS(ℓ), dCHD(ℓ), and dMED(m) are the 
decrements in quality of life from stroke, CHD events, and medication use, respec-
tively. The costs in the reward function include the cost of initial treatment for stroke 
(CS(ℓ)) and CHD (CCHD(ℓ)), the follow‐up costs for stroke (CFS(ℓ)) and CHD 
(CFCHD(ℓ)), the medication costs (CMED(m)), and the costs of all other treatment for 
diabetes patients (CO).

16.3.6 Value Function

The objective of the MDP is to maximize expected total rewards over a patient’s 
lifetime. The value function that maximizes rewards in each state for t T1 1, ,  is 
defined by the following recursive equation:

 
v r p j v jt t
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L D

1 mm a , (16.5)

where j is an index over the living and death states, m′(a) is defined as the medication 
state m that has been updated according to action a as described in Subsection 16.3.3, 
and λ ∈ [0, 1) is the discount factor. The value function boundary condition is defined 
by the following:

 v r ET T  , , Rewards ,m m m,  (16.6)
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where E[Rewards|ℓ, m] is the expected rewards accrued after the end of the decision 
horizon. During this period no new medications are initiated; all rewards are based 
on the treatment status at time T.

16.4 NUMERICAL RESULTS

In this section we present the findings from the numerical experiments. 
Subsection 16.4.1 provides an overview of the model development and inputs, and 
Subsection 16.4.2 provides a summary and discussion of the results.

16.4.1 Model Inputs

The model was developed using an observational dataset created from the Mayo 
Clinic Electronic Medical Records and Diabetes Electronic Management System 
(DEMS) from patients seen at Mayo Clinic in Rochester, MN (Gorman et al. 2000). 
Data elements included in the dataset include SBP, TC, HDL, HbA1c, age, gender, 
and medication use. This cohort of patients has been fully described previously 
(Mason et al. 2014).

We use yearly decision epochs with a time horizon that spans from age 40 
to age 100. Patients are newly diagnosed and on no blood pressure or cholesterol 
medications at age 40. Transition probabilities among the health states were 
 estimated using SBP, TC, and HDL values from the Mayo Clinic dataset. 
The threshold values for defining the states L, M, H, and V are the following: 120, 
140, and 160 mmHg for SBP; 160, 200, and 240 mg/dL for TC; and 40, 50, and 
60 mg/dL for HDL. The probabilities of fatal and nonfatal stroke and CHD events 
were calculated using the UK Prospective Diabetes Study (UKPDS) risk 
equations (Stevens et al. 2001, 2004; Kothari et al. 2002). These equations pro-
vide risk estimates for diabetes patients based on metabolic values, age, 
and  gender. In the numerical experiments, k = 1. The probabilities of death 
from  other  causes were estimated from the CDC mortality tables (Xu et 
al. 2010).

The cost inputs are found in Table 16.1, including the WTP factor for QALYs and 
the discount factor for discounting costs in the value function. The utility decrements 
for stroke and CHD events are also found in Table 16.1, and the utility decrements 
and costs for the medications are provided in Table 16.2. Statins were assumed to 
reduce TC by 14% and increase HDL by 7.3%, while fibrates reduced TC by 3.9% 
and increased HDL by 4.7%; the blood pressure medications each reduced SBP by 
the following amounts: 3.7% reduction from ACE inhibitors/ARBs, 5% reduction 
from thiazides, 4.6% reduction from beta blockers, and 2.5% reduction from calcium 
channel blockers (Mason et al. 2014). The medication effect percentage changes are 
assumed to be additive for patients taking multiple medications affecting the same 
risk factor.
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16.4.2 Optimal Treatment Policies to Reduce Polypharmacy

In this subsection we explore the trade‐offs involved with reducing polypharmacy. 
We compare policies obtained via solving the model in Section  16.3, hereafter 
referred to as optimal treatment, to the US guidelines when restricting the number of 
total medications that may be used. Comparisons are made for males and females, 
averaged over all combinations of TC, HDL, and SBP, for n 2 6, , . To provide 
baseline expected QALYs and costs for patients, we also consider the case of no 
treatment (n 0). The case of a medication budget of one medication (n 1) is not 
considered since it is not clinical practice for diabetes patients to be limited to one 
medication to control both blood pressure and cholesterol. Under the guidelines, 
blood pressure treatment is initiated when SBP > 130 (Antonopoulos 2002), and 
 cholesterol treatment is initiated when low‐density lipoprotein (LDL) ≥ 100 
(Chobanian et al. 2003). Consistent with these guidelines, statins were the first‐line 
cholesterol treatment, and blood pressure medications were initiated in the following 
order:  thiazides, ACE inhibitors/ARBs, beta blockers, and calcium channel blockers. 
The medication budget reduces the number of medications available to use when 
following the guidelines. When the guidelines called for two medications to be initi-
ated in the same year and the medication budget only allowed for one additional 
medication, a cholesterol medication was chosen.

TABLE 16.1 Summary of the Cost and Utility Inputs for the Model

Parameter Type Parameter Value Source

Cost inputs Initial cost for stroke (CS) $13,204 AHRQ (2006)
Initial cost for CHD (CCHD) $18,590 AHRQ (2006)
Follow‐up for stroke (CFS) $1,664 Thom et al. (2006)
Follow‐up for CHD (CFCHD) $2,576 Thom et al. (2006)
WTP factor (RWTP) $100,000 Rascati (2006)
Discount factor (λ) 0.97 Gold et al. (1996)

Utility inputs CHD decrement (dCHD) 0.07 Tsevat et al. (1993)
Stroke decrement (dS) 0.21 Tengs and Lin (2003)

TABLE 16.2 Summary of Medication Costs that Represent the Lower Bound 
on Treatment Costs in the United States (Red Book 2009) and Medication Disutility 
Values (Tengs and Wallace 2000; Pignone et al. 2006; Mason et al. 2014)

Medication Type Medication Cost ($)
Utility 
Decrement

Cholesterol medication Statins 212 0.003
Fibrates 652 0.003

Blood pressure medication ACE inhibitors/ARBs 48 0.005
Thiazides 48 0.005
Beta blockers 48 0.005
Calcium channel blockers 866 0.005
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From Figure 16.2 we see that as the number of available medications increases 
under optimal treatment, the expected QALYs increase with minimal increase in 
costs. The increase in QALYs is due to the reduced occurrence of stroke and CHD 
events, and small decreases in quality of life due to increased medication use; the 
small increase in costs is due to a decrease in costs from avoided events and an 
increase in costs from increased medication use. When more than four medications 
are allowed, the marginal benefit in QALYs is decreased, and the costs increase at a 
higher rate compared with the previous cost increases. The final medications initi-
ated have less effect on preventing adverse events. The US guidelines have nearly 
identical expected costs and QALYs when the medication budget is two (n 2). 
However, as more medications are allowed, the expected costs increase at a greater 
rate than the costs under optimal treatment. This is primarily due to the earlier timing 
of additional treatments under the US guidelines and the suboptimal order in which 
medications are initiated. The results are very similar for female patients, as shown 
in Figure 16.3, though there is an even greater difference in costs between optimal 
treatment and the US guidelines.
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Figure 16.2 Expected QALYs and expected costs for male patients when varying treatment 
policies—US guidelines or optimal treatment—and the maximum number of  medications a 
patient can initiate over his or her lifetime.
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With both the male and female results, the expected QALYs are higher for the US 
guidelines. This is due to the WTP factor used in the reward function (Equation 
16.4). The WTP factor used in the numerical experiments, RWTP = $100,000, is a 
commonly used value in the health economics literature to determine cost‐
effectiveness of a new healthcare intervention (Rascati 2006). Varying this value 
also allows for trade‐off between maximizing QALYs and minimizing costs, 
leading to different policies for medication initiation. If we set RWTP = 0, the objective 
of the value function would be to minimize costs. Alternatively, if we allow 
RWTP , the objective of the value function would be to maximize QALYs. Under 
this scenario the optimal treatment expected QALYs would be greater than those for 
the US guidelines.

While this is a population‐level model, individual treatment recommendations can 
be gleaned from the model. The optimal order and timing of medical treatments is 
dependent on gender and blood pressure and cholesterol values over time. For a male 
patient with very high TC, low HDL, and very high SBP at age 40, one health trajec-
tory would lead to the following optimal treatment recommendations with n 6: 
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Figure 16.3 Expected QALYs and expected costs for female patients when varying treatment 
policies—US guidelines or optimal treatment—and the maximum number of  medications a 
patient can initiate over his or her lifetime.
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begin statins at age 40, thiazides at age 46, beta blockers at age 49, ACE inhibitors/
ARBs at age 53, fibrates at age 60, and calcium channel blockers at age 77. An 
alternative health trajectory would lead to recommendations of delayed initiation of 
medications. As n  is reduced, the order and timing of medications remains the same 
with the medication budget removing the medications initiated latest in life. For 
female patients, the order of medication initiation is the same. Given the same TC, 
HDL, and SBP values as male patients, female patients will initiate treatments at the 
same age or older ages. For a female patient with very high TC, low HDL, and very 
high SBP at age 40, the same health trajectory as the example male patient would 
lead to the following optimal treatment recommendations with n 6: begin statins at 
age 40, thiazides at age 52, beta blockers at age 57, ACE inhibitors/ARBs at age 61, 
fibrates at age 64, and calcium channel blockers at age 80.

We calculate the incremental cost‐effectiveness ratio (ICER) (Gold et al. 1996) 
using the following formula to compare two alternative treatments T

A
 and T

B
:

 
ICER

Cost Cost

QALY QALY

T T

T T
B A

B A

 (16.7)

This calculation computes the rate of increase in cost per additional QALY 
 between the treatments being compared.

As shown in Tables 16.3 and 16.4, the ICERs are similar for males and females for 
each comparison, with females having slightly lower (more favorable) ICERs overall. 
For optimal treatment, the cost of increased QALYs received through additional 
medication use is much higher for n 4. The ICERs for n 4 are between five and 
seven times greater for optimal treatment than the ICER for n 4.

Comparisons of the optimal treatment ICERs with the US guideline ICERs further 
reveal the suboptimality of the guidelines. Under the guidelines, patients who choose 
to take fewer medications will pay greater amounts for increases in QALYs than 
patients under optimal treatment for incremental comparisons. The ICER for optimal 
treatment is also more favorable when considering the comparison of no medication 
budget restriction (n 6) relative to no medication (n 0) even though the US guide-
lines have greater increases in QALYs. For males, the optimal treatment ICER is 

TABLE 16.3 Comparison of QALYs, Costs ($), and ICERs ($/QALY) for Male Patients

Optimal Treatment US Guidelines

Scenario QALYs Costs ($) ICER QALYs Costs ($) ICER

n 0 75.09 19,896 — 75.09 19,896 —
n 2 76.15 23,333 3,240 76.1 24,347 4,412
n 3 76.45 23,859 1,753 76.35 28,131 15,455
n 4 76.67 24,250 1,831 76.6 29,964 7,260
n 5 76.76 25,213 10,112 76.85 32,787 11,133
n 6 76.83 25,834 9,837 76.96 38,318 49,086
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$3413/QALY compared with the guideline ICER of $9851/QALY. For females, the 
optimal treatment ICER is $3022/QALY compared with the guideline ICER of 
$9018/QALY.

16.5 CONCLUSIONS

The results show the cost and QALY trade‐offs for patients interested in reducing 
polypharmacy. The ICERs are most favorable when considering medication budgets 
of up to four medications. Patients who are concerned about the negative effects of 
polypharmacy would benefit from using the optimal guidelines to inform both the 
order of medications and the timing of treatment initiation. The results from this 
model serve as an additional piece of information for diabetes patients making blood 
pressure and cholesterol treatment decisions in consultation with their doctors. With 
this additional information, patients have more confidence in treatment decisions by 
understanding the trade‐offs that are involved.

This analysis provides a summary of the potential harms and benefits of limiting 
the number of medications to manage blood pressure and cholesterol for patients 
with type 2 diabetes. While medication disutilities and costs do capture some down-
sides of treatment, it is important to model the effects of reducing the total number of 
medications; the objective function may not sufficiently capture the negative effects 
of multiple medication use, including drug–drug interactions, drug–disease interac-
tions, and complex medication regimens.

There are several natural extensions for this work. For example, future work to 
optimize treatment decisions for patients with type 2 diabetes could include treatment 
decisions for glycemic control medications or consideration of medication use for 
other comorbid conditions. While this work used constraints on the action space to 
reduce polypharmacy, another approach would be to use constrained MDPs to incor-
porate medication budget constraints or restrictions in the amount of disutility a 
patient was willing to give up for medication use. In addition, given sufficient data 
for model calibration, more explicit modeling of the poor effects of polypharmacy 
could be incorporated, including modeling the percentage of patients that stop 

TABLE 16.4 Comparison of QALYs, Costs ($), and ICERs ($/QALY) for Female Patients

Optimal Treatment US Guidelines

Scenario QALYs Costs ($) ICER QALYs Costs ($) ICER

n 0 78.58 15,498 — 78.58 15,498 —
n 2 79.88 19,176 2,827 79.81 20,974 4,433
n 3 80.27 19,694 1,321 80.12 25,172 13,705
n 4 80.58 20,076 1,280 80.44 27,232 6,433
n 5 80.71 21,373 8,840 80.77 30,389 9,578
n 6 80.82 22,267 8,425 80.93 36,691 38,902
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medications due to interactions or poor adherence. Finally, while the example pre-
sented in this chapter is specific to managing blood pressure and cholesterol for 
patients with diabetes, the methods can be applied more generally to problems related 
to managing multiple risk factors for patients with chronic diseases.
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17.1 INTRODUCTION

Classification is a fundamental machine learning task whereby rules are developed 
for the allocation of independent entities to groups. Classic examples of applications 
include medical diagnosis (the allocation of patients to disease classes based on 
symptoms and laboratory tests) and credit screening (the acceptance or rejection of 
credit applications based on applicant data). Data are collected concerning entities 
with known group membership. This training data is used to develop rules for the 
classification of future entities with unknown group membership.

Cognitive science is the science of learning, knowing, and reasoning. Pattern recog-
nition is a broad field within cognitive science that is concerned with the process of 
recognizing, identifying, and categorizing input information. These areas intersect with 
computer science, particularly in the closely related areas of artificial intelligence, 
machine learning, and statistical pattern recognition. Artificial intelligence is associ-
ated with constructing machines and systems that reflect human abilities in cognition. 
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Machine learning refers to how these machines and systems replicate the learning pro-
cess, which is often achieved by seeking and discovering patterns in data, or statistical 
pattern recognition.

Discriminant analysis is the process of discriminating between categories or 
populations. Associated with discriminant analysis as a statistical tool are the tasks of 
determining the features that best discriminate between populations and the process 
of classifying new entities based on these features. The former is often called feature 
selection and the latter is referred to as statistical pattern classification.

Supervised learning is the process of developing classification rules based on 
entities for which the classification is already known. Note that the process implies 
that the populations are already well defined. Unsupervised learning is the process of 
discovering patterns from unlabeled entities and therefore discovering and describing 
the underlying populations. Semi‐supervised learning falls between supervised and 
unsupervised learning that uses a large collection of unlabeled entities jointly with a 
few labeled entities for improving classification performance. Models derived using 
supervised learning can be used for both functions of discriminant analysis—feature 
selection and classification. The model that we consider in Section 17.3 is a method 
for supervised learning, so we assume that populations are previously defined.

A fundamental problem in discriminant analysis, or supervised learning, concerns 
the classification of an entity into one of several a priori, mutually exclusive groups 
based upon k‐specific measurable features of the entity. Typically, a discriminant (pre-
dictive) rule is formed from data collected on a sample of entities for which the group 
classifications are known. New entities, whose classifications are unknown, will then be 
classified based on this rule. Such an approach has been applied in a variety of domains, 
and a large body of literature on both the theory and applications of discriminant  analysis 
exists (e.g., see early work from the bibliography in McLachlan (1992)).

In experimental biological and medical research, very often, experiments or tests 
are performed, and measurements are recorded under different conditions. A critical 
analysis involves the discrimination of different features under different conditions 
that will reveal potential predictors for biological and medical phenomena. Hence, 
classification techniques play an extremely important role in biological analysis as 
they facilitate systematic correlation and classification of different biological and 
medical phenomena. A resulting predictive rule can assist in early health risk and 
disease prediction and diagnosis, identifying new target therapeutic sites (genomic, 
cellular, and molecular) for drug delivery, disease prevention and early intervention, 
optimal treatment design, and treatment outcome prediction.

There are five fundamental steps in discriminant analysis:

1. Determine the data for input and the predictive output classes.

2. Gather a training set of data (including output class) from human experts or 
from laboratory experiments. Each element in the training set is an entity with 
corresponding known output class.

3. Determine the input attributes to represent each entity.
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4. Identify discriminatory attributes and establish the predictive rule(s).

5. Validate the performance of the predictive rule(s).

In our Center for Operations Research in Medicine and Healthcare, we have 
developed a general‐purpose machine learning framework that incorporates an 
 optimization‐based discriminant analysis model and a rapid solution engine for 
large‐scale complex biological and biomedical informatics analyses. Our 
classification model, the first discrete support vector machine, offers these distinct 
features simultaneously: 

1. It can classify any number of distinct groups.

2. It allows incorporation of heterogeneous, continuous, and temporal features 
as input.

3. It utilizes a high‐dimensional data transformation to reduce attribute dimension 
and minimize noise and errors.

4. It incorporates a reserved‐judgment region that provides a safeguard against 
overtraining.

5. It enables successive multistage classification capability (Brooks and Lee 2010, 
2014; Gallagher et al. 1996, 1997; Lee 2007, 2008, 2009; Lee et al. 2003).

Studies involving vaccine immunogenicity prediction, early detection of mild 
cognitive impairment (MCI) and Alzheimer’s disease (AD), CpG island aberrant 
methylation in human cancer, ultrasonic cell disruption in drug delivery, tumor 
volume identification, predicting early atherosclerosis using biomarkers, and finger-
printing native and angiogenic microvascular networks using functional perfusion 
data demonstrate that our approach is adaptable and can produce effective and 
 reliable predictive rules for a broad varieties of biomedical applications (Cao et al. 
2013; Feltus et al. 2003, 2006; Kazmin et al. 2017; Koczor et al. 2013; Lee 2007, 
2008, 2009; Lee et al. 2002, 2004, 2012, 2016; McCabe et al. 2009; Nakaya et al. 
2011, 2015; Querec et al. 2009).

Section  17.2 briefly describes the background of discriminant analysis. 
Section  17.3 describes the optimization‐based multistage discriminant analysis 
 predictive models for classification. The use of the predictive models on various 
biological and medical applications is presented in Section 17.4. This is followed by 
a brief summary in Section 17.5.

17.2 BACKGROUND

The main objective in discriminant analysis is to derive rules that can be used to 
classify entities into groups. Discriminant rules are typically expressed in terms 
of variables representing a set of measurable attributes of the entities in question. 
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Data on a sample of entities for which the group classifications are known (perhaps 
determined by extraordinary means) are collected and used to derive rules that can be 
used to classify new yet‐to‐be‐classified entities. Often there is a trade‐off between 
the discriminating ability of the selected attributes and the expense of obtaining 
 measurements on these attributes. Indeed, the measurement of a relatively definitive 
discriminating feature may be prohibitively expensive to obtain on a routine basis or 
perhaps impossible to obtain at the time that classification is needed.

Thus, a discriminant rule based on a selected set of feature attributes will typically 
be an imperfect discriminator, sometimes misclassifying entities. Depending on the 
application, the consequences of misclassifying an entity may be substantial. In such 
a case, it may be desirable to form a discrimination rule that allows less specific 
classification decisions or even non‐classification of some entities to reduce the 
probability of misclassification.

To address this concern, a number of researchers have suggested methods for 
deriving partial discrimination rules (Broffit et al. 1976; Gessaman and Gessaman 
1972; Habbema et  al. 1974; Ng and Randles 1986; Quesenberry and Gessaman 
1968). A partial discrimination rule allows an entity to be classified into some subset 
of the groups (i.e., rule out membership in the remaining groups) or be placed in a 
“reserved‐judgment” category. An entity is considered misclassified only when it is 
assigned to a nonempty subset of groups not containing the true group of the entity. 
Typically, methods for deriving partial discrimination rules attempt to constrain the 
misclassification probabilities (e.g., by enforcing an upper bound on the proportion 
of misclassified training sample entities). For this reason, the resulting rules are also 
sometimes called constrained discrimination rules.

Partial (or constrained) discrimination rules are intuitively appealing. A partial 
discrimination rule based on relatively inexpensive measurements can be tried first. 
If the rule classifies the entity satisfactorily according to the needs of the application, 
then nothing further needs to be done. Otherwise, additional measurements—albeit 
more expensive—can be taken on other, more definitive discriminating attributes of 
the entity.

One disadvantage of partial discrimination methods is that there is no obvious 
definition of optimality among any set of rules satisfying the constraints on the 
 misclassification probabilities. For example, since some correct classifications are 
certainly more valuable than others (e.g., classification into a small subset containing 
the true group vs. a large subset), it does not make sense simply to maximize the 
probability of correct classification. In fact, to maximize the probability of correct 
classification, one would simply classify every entity into the subset consisting of all 
the groups—clearly this is not an acceptable rule.

A simplified model, whereby one incorporates only the reserved‐judgment region 
(i.e., an entity is either classified as belonging to exactly one of the given a priori 
groups or it is placed in the reserved‐judgment category), is amenable to reasonable 
notions of optimality. For example, in this case, maximizing the probability of correct 
classification is meaningful. For the two‐group case, the simplified model and the 
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more general model are equivalent. Research on the two‐group case is summarized 
in McLachlan (1992). For three or more groups, the two models are not equivalent, 
and most work has been directed toward the development of heuristic methods for 
the more general model (e.g., see Beckman and Johnson 1981; Broffit et al. 1976; 
Gessaman and Gessaman 1972; Ng and Randles 1986; Quesenberry and 
Gessaman 1968).

Assuming that the group density functions and prior probabilities are known, 
Anderson (1969) showed that an optimal rule for the problem of maximizing the 
probability of correct classification subject to constraints on the misclassification 
probabilities must be of a specific form when discriminating among  multiple 
groups with a simplified model. The formulas in Anderson’s result depend on 
a  set of parameters satisfying a complex relationship between the density 
functions, the  prior probabilities, and the bounds on the misclassification 
 probabilities. Anderson’s model is appealing since it can handle any number 
of  groups. However, establishing a viable mathematical model to describe 
Anderson’s result and finding values for these parameters that yield an optimal 
rule are challenging tasks. Gallagher et al. (1997) presented the first computa-
tional model for Anderson’s results. And Brooks and Lee (2010, 2014) showed 
that the resulting decision model is NP‐complete.

A variety of mathematical programming models have been proposed for the 
discriminant analysis problem (Bajgier and Hill 1982; Bal and Örkcü 2011; Bennett 
and Bredensteiner 1997; Bennett and Mangasarian 1993; Cavalier et al. 1989; Freed 
and Glover 1981, 1986; Gehrlein 1986; Glen 1999; Glover 1990; Glover et al. 1988; 
Gochet et  al. 1997; Koehler and Erenguc 1990; Liittschwager and Wang 1978; 
Mangasarian 1993; Mangasarian et  al. 1995; Nakayama and Kagaku 1998; Pavur 
and Loucopoulos 1995; Stam and Joachimsthaler 1989; Stam and Ragsdale 1992). 
None of these studies deal formally with measuring the performance of discriminant 
rules specifically designed to allow allocation to a reserved‐judgment region. There 
is also no mechanism employed to explicitly constrain the level of misclassifications 
for each group, although some researchers manage to include it within their objective 
functions.

Many different techniques and methodologies have contributed to advances in 
classification, including artificial neural networks, decision trees, kernel‐based 
learning, machine learning, mathematical programming, statistical analysis, boost-
ing, and support vector machines (Bishop 1995; Breiman et al. 1984, Cristianini and 
Taylor 2000, Duda et  al. 2001; Dreiseitl and Ohno‐Machado 2002; Freund et  al. 
1999; Lim et  al. 2000; Müller et  al. 2001; Vapnik 1999). There are some review 
papers for classification problems with mathematical programming techniques. Stam 
(1997) summarized basic concepts and ideas and discussed potential research direc-
tions on classification methods that optimize a function of the L

p
‐norm distances. The 

paper focuses on continuous models and includes normalization schemes, computa-
tional aspects, weighted formulations, secondary criteria, and extensions from 
two‐group to multi‐group classifications. Wilson (1996) presented a series of integer 
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programming formulations for statistical classification problems and compared their 
performance on sample data. Zopounidis and Doumpos (2002) reviewed the research 
conducted on the framework of the multi‐criteria decision aiding, covering different 
classification models. Mangasarian (1997) and Bradley et al. (1999) gave an overview 
of using mathematical programming approaches to solve data mining problems. 
Byvatov and Schneider (2002) provided an overview on the theory and basic princi-
ples of support vector machine and their application to bioinformatics. Lee and 
Wu  (2007, 2009) provided a comprehensive overview of continuous and discrete 
mathematical programming models for classification problems and their usage 
within medicine.

17.3 MACHINE LEARNING WITH DISCRETE SUPPORT 
VECTOR MACHINE PREDICTIVE MODELS

In our computational center, we have been developing and advancing a general‐
purpose machine learning framework for classification in medicine and biology. The 
system consists of a pattern recognition module, a feature selection module, and a 
classification modeler and rapid solver module. The pattern recognition module 
involves automatic image analysis, “omic” pattern recognition, spectrum pattern 
extractions, and unstructured text mining capabilities. The feature selection module 
consists of a combinatorial selection algorithm where discriminatory patterns are 
extracted from among a large set of pattern attributes. These modules are wrapped 
around the classification modeler and solver into a machine learning framework. 
Our  system is applicable to a wide variety of applications, including biological, 
 biomedical, and logistics problems. Utilizing the technology of large‐scale discrete 
optimization and support vector machines, our classification model includes the 
 following features within a single modeling framework:

1. The ability to classify any number of distinct groups

2. The ability to incorporate heterogeneous and temporal type of attributes as 
input

3. A high‐dimensional data transformation that reduces attribute dimension, 
noise and errors

4. Constraints to limit the rate of misclassification and a reserved‐judgment 
region that provides a safeguard against overtraining (which tends to lead to 
high misclassification rates from the resulting predictive rule)

5. Successive multistage classification capability to handle data points placed in 
the reserved‐judgment region

Based on the description in Gallagher et al. (1996, 1997); Lee et al. (2003); Lee 
(2007, 2008, 2009), we summarize in the following text some of the classification 
models that we have developed.
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17.3.1 Modeling of Reserved‐Judgment Region for General Groups

When the population densities and prior probabilities are known, the constrained 
rules with a reject option (reserved judgment), based on Anderson’s results, call for 
finding a partition {R

0
, … , R

G
} of k that maximizes the probability of correct allo-

cation subject to constraints on the misclassification probabilities; that is,
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For G = 2 the optimal solution can be modeled rather straightforward. However, 
finding optimal λ

ih
 s for the general case, G ≥ 3, is a difficult problem, with the difficulty 

increasing as G increases. Our model offers an avenue for modeling and finding the 
optimal solution in the general case. It is the first such model to be computationally 
viable (Gallagher et al. 1996, 1997).

Before proceeding, we note that R
g
 can be written as R x L Lx xg

k
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G
( ) ( ) ( )

L xh( ), the functions L
h
, h = 1, … , G, can be redefined as

 

L x p x p x h Gh h h
i
i h

G

ih i
1

1, , ,  (17.6)

where p x f fx xi i tt

G
( ) ( )

1
. We assume that L

h
 is defined as in Equation 17.6 in 

our model.
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17.3.2 Discriminant Analysis via Mixed‐Integer Programming

Assume that we are given a training sample of N entities whose group classifications 
are known; say, n

g
 entities are in group g, where n Ngg

G

1
. Let the k‐dimensional 

vectors xgj, g = 1, …, G, j = 1, …, n
g
, contain the measurements on k available charac-

teristics of the entities. Our procedure for deriving a discriminant rule proceeds in 
two stages. The first stage is to use the training sample to compute estimates f̂h, either 
parametrically or nonparametrically, of the density functions f

h
 (e.g., see McLachlan 

1992) and estimates ˆ
h of the prior probabilities π

h
, h = 1, …, G. The second stage is 

to determine the optimal λ
ih
’s given these estimates. This stage requires being able to 

estimate the probabilities of correct classification and misclassification for any can-
didate set of λ

ih
 s. One could, in theory, substitute the estimated densities and prior 

probabilities into Equation 17.5 and directly use the resulting regions R
g
 in the inte-

gral expressions given in (17.1) and (17.2). This would involve, even in simple cases 
such as normally distributed groups, the numerical evaluation of k‐dimensional 
integrals at each step of a search for the optimal λ

ih
 s.

Computationally, we have designed an alternative approach. After substituting 
the  f̂h’s and ˆ

h’s into Equation 17.5, we simply calculate the proportion of training 
sample points that fall in each of the regions R

1
, …, R

G
. The mixed‐integer program-

ming (MIP) models discussed herein attempt to maximize the proportion of training 
sample points correctly classified while satisfying constraints on the proportions of 
training sample points misclassified. This approach has two advantages. First, it 
avoids having to evaluate the potentially difficult integrals in Equations 17.1 and 
17.2. Second, it is nonparametric in controlling the training sample misclassification 
probabilities. That is, even if the densities are poorly estimated (by assuming, e.g., 
normal densities for non‐normal data), the constraints are still satisfied for the 
training sample. Better estimates of the densities may allow a higher correct 
classification rate to be achieved, but the constraints will be satisfied even if poor 
estimates are used. Unlike most support vector machine models that minimize the 
sum of errors, our objective is driven by the number of correct classifications and will 
not be biased by the distance of the entities from the supporting hyperplane. Hence, 
our model returns a robust classifier.

A word of caution is in order. In traditional unconstrained discriminant analysis, 
the true probability of correct classification of a given discriminant rule tends to be 
smaller than the rate of correct classification for the training sample from which it 
was derived. One would expect to observe such an effect for the method described 
herein as well. In addition, one would expect to observe an analogous effect with 
regard to constraints on misclassification probabilities—the true probabilities are 
likely to be greater than any limits imposed on the proportions of training 
sample misclassifications. Hence, the α

hg
 parameters should be carefully chosen 

for the application in hand.
Our first model is a nonlinear 0/1 MIP model with the nonlinearity appearing in 

the constraints. Model 1 maximizes the number of correct classifications of the given 
N training entities. Similarly, the constraints on the misclassification probabilities are 
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modeled by ensuring that the number of group g training entities in region R
h
 is less 

than or equal to a prespecified percentage, α
hg

 (0 < α
hg

 < 1), of the total number, n
g
, of 

group g entities, h g G h g, ,1, , .
For notational convenience, let G = {1, …, G} and Ng = {1, …, n

g
}, for g G. Also, 

analogous to the definition of p
i
, define p̂i  by ˆ ( ) ˆ ( ) ˆ ( )p f fx x xi i tt

G

1
. In our model, 

we use binary indicator variables to denote the group classification of entities. 
Mathematically, let u

hgj
 be a binary variable indicating whether or not xgj lies in region 

R
h
, that is, whether or not the jth entity from group g is allocated to group h. Then 

model 1 can be written as follows:
DAMIP (model 1):

Maximize 
g G j N

ggj

g

u

subject to

 
L p x p x h g jhgj h h

gj

i G h
ih i

gjˆ ˆ ˆ , , ,
\

G Ng (17.7)

 y L h G g jgj hgjmax , : , , , ,0 1 G Ng (17.8)

 y L M u g jgj ggj ggj– , ,1 G Ng (17.9)

 y L u h g j h ggj hgj hgj1 , , , ,G Ng  (17.10)

 j N
hgj hg g

g

u n h g h g, , ,G  (17.11)

 L y uhgj gj ih hgj, , ,0 0 0 1,  

Constraint (17.7) defines the variable L
hgj

 as the value of the function L
h
 evaluated 

at xgj. Therefore, the continuous variable y
gj
, defined in constraint (17.8), represents 

max{L
h
(xgj): h = 0, …, G}, and consequently, xgj lies in region R

h
 if and only if y

gj
 = L

hgj
. 

The binary variable u
hgj

 indicates whether or not xgj lies in region R
h
, that is, whether 

or not the jth entity from group g is allocated to group h. In particular, constraint 
(17.9), together with the objective, forces u

ggj
 to be 1 if and only if the jth entity from 

group g is correctly allocated to group g. Constraints (17.10) and (17.11) ensure that 
at most ⌊α

hg
n

g
⌋ (i.e., the greatest integer less than or equal to α

hg
n

g
), group g entities 

are allocated to group h, h g. One caveat regarding the indicator variables u
hgj

 is that 
although the condition u

hgj
 = 0, h g, implies (by constraint (17.10)) that x Rgj

h, 
the converse need not hold. As a consequence, the number of misclassifications may 
be over‐counted. However, in our preliminary numerical study, we found that the 
actual amount of over‐counting is minimal. One could force the converse (thus, 
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u
hgj

 = 1 if and only if x Rgj
h) by adding constraints y

gj
 − L

hgj
 ≤ M(1 − u

hgj
), for example. 

Finally, we note that the parameters M and ε are extraneous to the discriminant anal-
ysis problem itself but are needed in the model to control the indicator variables u

hgj
. 

The intention is for M and ε to be, respectively, large and small positive constants.

17.3.3 Model Variations

We explore different variations in the model to grasp the quality of the solution and 
the associated computational effort.

A first variation involves transforming model 1 to an equivalent linear mixed‐
integer model. In particular, model 2 replaces the N constraints defined in (17.8) with 
the following system of 3GN + 2N constraints:

 y L h g jgj hgj , , ,G Ng (17.12)

 y L M v h g jhgj hgj hgj– , , ,1 G Ng (17.13)

 y p x v h g jhgj h h
gj

hgj
ˆ ˆ , , ,G Ng  (17.14)

 h G
hgjv g j1, ,G Ng (17.15)

 h
hgj gjy y g j



 , ,G Ng (17.16)

where yhgj 0 and v h g jhgj 0 1, , , ,G Ng. These constraints, together with the 
nonnegativity of y

gj
, force y

gj
 = max{0, L

hgj
: h = 1, … , G}.

The second variation involves transforming model 1 to a heuristic linear 
MIP  model. This is done by replacing the nonlinear constraint (17.8) with 
y L h g jgj hgj , , ,G Ng and including penalty terms in the objective function. In 
particular, model 3 has the objective

 
Maximize

g j
ggj

g j
gj

g g

u y
G N G N

,
 

where β and γ are positive constants. This model is heuristic in that there is nothing 
to force y

gj
 = max{0, L

hgj
: h = 1, … , G}. However, since in addition to trying to force 

as many u
ggj

’s to one as possible, the objective in model 3 also tries to make the y
gj
’s 

as small as possible; hence the optimizer tends to drive y
gj
 toward max{0, L

hgj
: 

h = 1, … , G}. We remark that β and γ could be stratified by group (i.e., introduce 
possibly distinct β

g
, γ

g
, g G) to prioritize the relative importance of certain groups 

to be correctly classified.
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A reasonable modification to models 1, 2, and 3 involves relaxing the constraints 
specified by (17.11). Rather than placing restrictions on the number of type g training 
entities classified into group h, for all h, g G, h ≠ g, one could simply place an upper 
bound on the total number of misclassified training entities. In this case, the G(G − 1) 
constraints specified by (17.11) would be replaced by a single constraint:

 g G h G g j N
hgj

g

u N
\

 (17.17)

where α is a constant between 0 and 1. We will refer to models 1, 2, and 3, modified 
in this way, as models 1T, 2T, and 3T, respectively. Of course, other modifications are 
also possible. For instance, one could place restrictions on the total number of type 
g points misclassified for each g G. Thus, in place of the constraints specified in 
(17.17), one would include the constraints u Nhgjj Nh G g g

g\
, g G, 

where 0 < α
g
 < 1.

We also explore a heuristic linear model of model 1. In particular, consider the 
linear program (DALP):

DALP:

 
Minimize

g G j N
gj gj

g

c w c y1 2  (17.18)

subject to

 
L p x p x h g jhgj h h

gj

i G h
ih i

gjˆ ˆ ˆ , , ,
\

G Ng (17.19)

 L L w h g h g jggj hgj gj– , , , ,0 G Ng (17.20)

 L w g jggj gj 0, ,G Ng (17.21)

 – , , ,L y h g jhgj gj 0 G Ng (17.22)

 L w yhgj gj gj ih, , , 0 

Constraint (17.19) defines the variable L
hgj

 as the value of the function L
h
 evaluated 

at xgj. As the optimization solver searches through the set of feasible solutions, the λ
ih
 

variables will vary, causing the L
hgj

 variables to assume different values. Constraints 
(17.20), (17.21), and (17.22) link the objective function variables with the L

hgj
 vari-

ables in such a way that correct classification of training entities and allocation of 
training entities into the reserved‐judgment region are captured by the objective 
function variables. In particular, if the optimization solver drives w

gj
 to zero for some 

g, j pair, then constraints (17.20) and (17.21) imply that L
ggj

 = max{0, L
hgj

: h  G}. 
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Hence, the jth entity from group g is correctly classified. If, on the other hand, the 
optimal solution yields y

gj
 = 0 for some g, j pair, then constraint (17.22) implies that 

max{0, L
hgj

: h  G} = 0. Thus, the jth entity from group g is placed in the reserved‐
judgment region. (Of course, it is possible for both w

gj
 and y

gj
 to be zero. One should 

decide prior to solving the linear program how to interpret the classification in such 
cases.) If both w

gj
 and y

gj
 are positive, the jth entity from group g is misclassified.

The optimal solution yields a set of λ
ih
 s that best allocates the training entities 

(i.e., “best” in terms of minimizing the penalty objective function). The optimal λ
ih
 s 

can then be used to define the functions L
h
, h  G, which in turn can be used to clas-

sify a new entity with feature vector x k by simply computing the index at which 
max{L

h
(x): h  {0, 1, …, G}} is achieved.

Note that model DALP places no a priori bound on the number of misclassified 
training entities. However, since the objective is to minimize a weighted combination 
of the variables w

gj
 and y

gj
, the optimizer will attempt to drive these variables to zero. 

Thus, the optimizer is, in essence, attempting either to correctly classify training 
entities (w

gj
 = 0) or to place them in the reserved‐judgment region (y

gj
 = 0). By varying 

the weights c
1
 and c

2
, one has a means of controlling the optimizer’s emphasis for 

correctly classifying training entities versus placing them in the reserved‐judgment 
region. If c

2
/c

1
 < 1, the optimizer will tend to place a greater emphasis on driving the 

w
gj
 variables to zero than driving the y

gj
 variables to zero (conversely, if c

2
/c

1
 > 1). 

Hence, when c
2
/c

1
 < 1, one should expect to get relatively more entities correctly 

classified, fewer placed in the reserved‐judgment region, and more misclassified than 
when c

2
/c

1
 > 1. An extreme case is when c

2
 = 0. In this case, there is no emphasis on 

driving y
gj
 to zero (the reserved‐judgment region is thus ignored), and the full 

emphasis of the optimizer is to drive w
gj
 to zero.

Table 17.1 summarizes the number of constraints, the total number of variables, 
and the number of 0/1 variables in each of the discrete support vector machine models 
and in the heuristic LP model (DALP). Clearly, even for moderately sized discriminant 
analysis problems, the MIP instances are relatively large. Also, note that model 2 is 
larger than model 3, both in terms of the number of constraints and the number of 
variables. However, it is important to keep in mind that the difficulty of solving an 
MIP problem cannot, in general, be predicted solely by its size; problem structure has 

TABLE 17.1 Model Size

Model Type Constraints Total Variables 0/1 Variables

1 Nonlinear MIP 2GN + N + G(G − 1) 2GN + N + G(G − 1) GN
2 Linear MIP 5GN + 2N + G(G − 1) 4GN + N + G(G − 1) 2GN
3 Linear MIP 3GN + G(G − 1) 2GN + N + G(G − 1) GN
1T Nonlinear MIP 2GN + N + 1 2GN + N + G(G − 1) GN
2T Linear MIP 5GN + 2N + 1 4GN + N + G(G − 1) 2GN
3T Linear MIP 3GN + 1 2GN + N + G(G − 1) GN
DALP Linear program 3GN NG + N + G(G − 1) 0
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a direct and substantial bearing on the effort required to find optimal solutions. The 
LP relaxation of these MIP models poses computational challenges as commercial 
LP solvers return (optimal) LP solutions that are infeasible. This is due to the equality 
constraints (17.7) linking very small‐magnitude and dense coefficients together and 
the use of big M and small ε in the formulation (constraints (17.9) and (17.10)).

It is interesting to note that the set of feasible solutions for model 2 is “tighter” 
than that for model 3. In particular, if F

i
 denotes the set of feasible solutions of 

model i, then

F L u y v L u y v F Fy y1 2 3, , , there exists such that: , , , , , ,    
(17.23)

The novelties of the classification models developed herein include the 
following: 

1. They are suitable for discriminant analysis given any number of groups.

2. They accept heterogeneous types of attributes as input.

3. They use a parametric approach to reduce high‐dimensional attribute spaces.

4. They allow constraints on the number of misclassifications and utilize a 
reserved judgment to facilitate the reduction of misclassifications. The latter 
point opens the possibility of performing multistage analysis.

Clearly, the advantage of an LP model over an MIP model is that the associated 
problem instances are computationally much easier to solve. However, the most 
important criterion in judging a method for obtaining discriminant rules is how the 
rules perform in correctly classifying and predicting new unseen entities. Once the 
rule is developed, applying it to a new entity to determine its group is trivial. Extensive 
computational experiments have been performed to gauge the qualities of solutions of 
different models (Gallagher et al. 1997; Lee 2007, 2008, 2009; Lee et al. 2003).

17.3.4 Theoretical Properties and Computational Strategies

Theoretically and empirically, DAMIP has many appealing characteristics 
including that:

1. The resulting classification rule is strongly universally consistent, given that the 
Bayes optimal rule for classification is known (Brooks and Lee 2010, 2014).

2. The misclassification rates using the DAMIP method are consistently lower 
than other classification approaches in both simulated data and real‐world data.

3. The classification rules from DAMIP appear to be insensitive to the specifica-
tion of prior probabilities yet capable of reducing misclassification rates when 
the number of training entities from each group is different.

4. The DAMIP model generates stable classification rules regardless of the pro-
portions of training entities from each group.



380 DECISION ANALYTICS AND OPTIMIZATION IN DISEASE PREVENTION

The DAMIP model and its variations described herein offer a computational 
avenue for numerically estimating optimal values for the λ

ih
 parameters in 

Anderson’s formulas. However, it should be emphasized that MIP problems are 
themselves difficult to solve. Anderson himself noted the extreme difficulty of 
finding an optimal set of λ

ih
’s (Anderson 1969). Indeed, DAMIP is proven to be 

NP‐complete when the number of groups is greater than 2 (Brooks and Lee 2010, 
2014). Nevertheless integer programming—and in particular those with 0/1 
 variables—is a powerful modeling tool, and a wide variety of real‐world problems 
have been modeled as mixed‐integer programs. Numerically, much effort has been 
invested in advancing computational strategies for solving difficult MIP problem 
instances.

The numerical work reported in Section 17.4 is based on an MIP solver that is 
built on top of a general‐purpose in‐house mixed‐integer programming solver, 
MIPSOL, which integrates state‐of‐the‐art MIP computational devices such as 
problem preprocessing, primal heuristics, global and local reduced‐cost fixing, and 
cutting planes within a branch‐and‐bound framework (Mitchell 2002; Savelsbergh 
1994). The solver has been shown to be effective in solving a wide variety of large‐
scale real‐world instances (Lee and Zaider 2008; Lee et al. 2013). For our DAMIP 
MIP instances, special techniques including variable aggregation, a heuristic branch-
ing scheme, and hypergraphic cut generation are employed (Brooks and Lee 2010, 
2014; Easton et al. 2003; Gallagher et al. 1997).

17.4 APPLYING DAMIP TO REAL‐WORLD APPLICATIONS

The main objective in discriminant analysis is to derive rules that can be used to 
classify entities into groups. Computationally, the challenge lies in the effort 
expended to develop such a rule. Feasible solutions obtained from our classification 
models correspond to predictive rules. Empirical results (Brooks and Lee 2010, 
2014; Gallagher et al. 1997; Lee et al. 2003) indicate that the resulting classification 
model instances are computationally very challenging and even intractable by 
competitive commercial MIP solvers. However, the resulting predictive rules 
prove to be very promising, offering correct predictive accuracy on new unknown 
data ranging from 80% to 100% on various types of biomedical problems. Our 
results indicate that the general‐purpose classification framework that we have 
designed has the potential to be a very powerful predictive decision tool for 
clinical setting.

The choice of MIP as the underlying modeling and optimization technology for 
our support vector machine classification model is guided by the desire to simulta-
neously incorporate a variety of important and desirable properties of predictive 
models within a general framework. MIP itself allows for the incorporation of 
 continuous and discrete variables and linear and nonlinear constraints, providing a 
flexible and powerful modeling environment.
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17.4.1 Validation of Model and Computational Effort

We performed 10‐fold cross‐validation and designed simulation and comparison 
studies on our preliminary models. The results, reported in Gallagher et al. (1997) 
and Lee et al. (2003), show that the methods are promising, based on applications to 
both simulated data and real‐application datasets from the machine learning database 
repository (Murphy and Aha 1994). Furthermore, our methods compare well with 
existing methods, often producing better results when compared with other 
approaches such as artificial neural networks, quadratic discriminant analysis, tree 
classification, and other support vector machines.

17.4.2 Applications to Biological and Medical Problems

Our mathematical modeling and computational algorithmic design shows great 
promise. Compared with well‐ known and competitive classifiers, the DAMIP pre-
dictive rules result in higher blind prediction accuracy on new data (with unknown 
group status). The rules are also robust and are insensitive to imbalance in sample 
size. This is partly due to the transformation of raw data via the set of constraints in 
(17.7) and the distinct features that occur simultaneously in a single modeling frame-
work. While most support vector machines (summarized in Lee and Wu 2007, 2009) 
directly determine the hyperplanes of separation using raw data, our approach 
 transforms the raw data via a probabilistic model before the determination of the 
supporting hyperplanes. Further, the separation is driven by maximizing the total 
number of correctly classified entities, instead of minimizing the sum of errors (rep-
resenting distances of entities from the hyperplanes) as in other support vector 
machines. The combination of these two strategies offers better and more robust 
classification  capability. Noise in the transformed data is not as profound as in the 
raw data. And the magnitudes of errors do not skew the determination of the sepa-
rating hyperplanes, since all entities have “equal” importance when correct 
classification is being counted.

To highlight the broad applicability of our approach, we briefly summarize the 
application of our predictive models and solution algorithms to seven different 
biological and medical problems. These projects were closely collaborated with 
experimental biologists and clinical investigators. We also include multi‐group 
classification using the UCI Repository of machine learning databases. Applications 
to finance and other industry applications are described elsewhere (Brooks and Lee 
2006, 2007; Gallagher et al. 1997; Lee et al. 2003).

17.4.2.1 Quick Test to Predict Immune Responses to Flu Shots The text herein 
is a summary of our work in Lee et al. (2016); Nakaya et al. (2011, 2015); Querec 
et al. (2009). Vaccines have drastically reduced the mortality and morbidity of many 
diseases. However, they have historically been developed empirically, and recent 
development of vaccines against current pandemics such as HIV and malaria has 
been met with difficulty. The path to licensure of candidate vaccines involves very 
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lengthy and expensive clinical trials to assess their efficacy and safety. These trials 
involve thousands of subjects and can cost  hundreds of millions of dollars to 
complete. As a result, very few vaccine concepts are tested.

A major challenge in vaccinology is that the effectiveness of vaccination can only 
be ascertained after vaccinated individuals have been exposed to infection. The 
ability to identify early predictive signatures of vaccine responses and novel and 
robust correlates of protection from infection will play an instrumental role in devel-
oping next‐generation rationally designed vaccines. It will facilitate rapid design and 
evaluation of new and emerging vaccines and the identification of individuals who 
are unlikely to be protected by a vaccine. This work focuses on predicting the immu-
nity of a vaccine without exposing individuals to infection. The study addresses a 
long‐standing challenge in the development of vaccines—that of only being able to 
determine immunity or effectiveness long after vaccination and, often, only after 
being exposed to infection.

Three studies involving nine trials of patient subjects were carried out. The first 
study aims to predict the body’s ability (shortly after immunization) to stimulate a 
strong and enduring immunity against yellow fever. Healthy individuals were vacci-
nated with YF‐17D and T‐cell and antibody responses in their blood were captured 
for 30 days. These blood samples were studied with genomic signatures character-
ized. There was a striking variation in the responses between individuals. Analysis of 
gene expression patterns in white blood cells revealed that in the majority of the 
individuals, the vaccine induced a network of genes involved in the early innate 
immune response against the viruses. DAMIP takes in these gene expression data 
and uses it to uncover discriminatory gene signatures to establish the classification 
rule that can classify the magnitude of induced T‐cell and antibody responses. To 
validate its predictive accuracy, and whether these gene signatures could actually 
predict immune response, a second group of individuals were vaccinated for 
independent blind predication.

To analyze the generalizability of this approach, we apply DAMIP to predict the 
effectiveness of other vaccines, including flu vaccines. The second study is based on 
a series of clinical studies during the annual flu seasons in 2007, 2008, and 2009. 
Healthy young adults were vaccinated with a standard flu shot (trivalent inactive 
vaccine). Others were given live attenuated vaccine nasally. Comprehensively sur-
veyed, the activity levels of all human genes in blood samples from the volunteers 
revealed that the activity of many genes involved in innate immunity and interferon 
and reactive oxygen species signaling were changing after flu vaccination. Biological 
analysis also identified genes in the “unfolded protein response,” necessary for cells 
to adapt to the stress of producing high levels of antibodies. These genomic expres-
sion data are then input into our DAMIP model to identify discriminatory gene 
 signatures that can classify patients who respond positively to the vaccine versus 
those who do not.

The yellow fever study offered a groundbreaking work in vaccine immunoge-
nicity. DAMIP identified signatures of gene expression in the blood of healthy 
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humans a few days after vaccination that could predict with up to 90% accuracy the 
strength of the immune response, weeks or months after yellow fever vaccination. In 
the flu analysis, being named 2011 Paper of the Year by the International Society of 
Vaccine, we extended this approach to the seasonal influenza vaccines over the 
course of three influenza seasons. By studying gene expression patterns in the blood 
a few days after vaccination, we were able to identify “signatures” that were capable 
of predicting the magnitude of the later immune response, with >90% accuracy. 
More importantly one of the genes in the signature, CAMK4, was negatively corre-
lated with antibody titers; our results revealed an unappreciated role for CAMK4 in 
B‐cell responses. This landmark study demonstrates the use of DAMIP in predicting 
vaccine efficacy and highlights one of the ways for the future of vaccinology—use of 
systems biology tools to perform sophisticated human studies that in turn returns 
specific hypothesis to be tested experimentally. This work was named the winner of 
the 2015 INFORMS Daniel H. Wagner Prize for Excellence in Operations Research 
Practice (Lee et al. 2016).

Encouragingly, some of the genes identified in the seasonal flu study were also pre-
dictors of the antibody response to vaccination against yellow fever. Further, DAMIP 
facilitates discovery of new functions for genes, even when scientists previously did not 
suspect their involvement in antibody responses (Ravindran et al. 2014, 2016). We have 
subsequently applied DAMIP in a malaria study that will assist with the first widely 
tested of the vaccine in Africa in 2018 (Kazmin et al. 2017; Christensen 2017).

17.4.2.2 Predictive Model for  Early Detection of  Mild Cognitive Impairment 
and Alzheimer’s Disease The text is an excerpt of our work in Lee et al. (2012). 
The number of people affected by AD is growing at a rapid rate, and the subsequent 
increase in costs will have significant impacts on the world’s economies and health-
care systems. Alzheimer’s Disease (AD), the sixth leading cause of death in the 
United States, is a progressive and irreversible brain disease, causing memory loss 
and other cognitive dysfunction severe enough to affect daily life. It is estimated that 
one in eight elderly Americans suffer from AD. The number of AD victims is briskly 
rising, with an estimated 35 million people worldwide currently living with AD or 
some forms of dementia. AD is currently incurable. Drugs are used to manage the 
symptoms, but no treatments to prevent or meaningfully slow the disease’s progres-
sion are known to exist.

Since changes in the brain triggered by AD develop slowly over many years and 
symptom onset coincides with advanced neurodegeneration, the need to identify new 
and noninvasive diagnostics before any symptoms occur has become a public health 
imperative. Creating new opportunities for early intervention is vital. Systems pre-
dictive analyses on noninvasive tests that can identify people who are at risk but 
currently have no symptoms are critical to curtail the rapid rise of this illness.

Neuropsychological tests are inexpensive and noninvasive and can be incorpo-
rated within an annual physical examination. Thus they can serve as a baseline for 
early cognitive impairment or AD risk prediction. We apply the DAMIP machine 
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learning framework for early detection of mild cognitive impairment (MCI) and 
AD. Anonymous data of neuropsychological tests from 35 subjects were collected 
at Emory Alzheimer’s Disease Research Center from 2004 to 2007. Eighteen types 
of neuropsychological tests were applied to the subjects, but only four of them were 
applied to all subjects, thus being used in our predictive model. These tests included 
Mini–Mental State Examination (MMSE), clock drawing test, word list memory 
tasks by the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD), 
and Geriatric Depression Scale (GDS).

The MMSE is a brief screening tool for cognitive impairment. It covers five areas 
of cognitive function, including orientation, registration, attention and calculation, 
recall, and language. The clock drawing test assesses cognitive functions, particu-
larly visuospatial abilities and executive control functions. The CERAD word list 
memory tasks assess the learning ability for new verbal information. The tasks 
include word list memory with repetition, word list recall, and word list recognition. 
The GDS is a screening tool to assess depression in older population.

There were 153 features, including raw data from the four neuropsychological 
tests as well as subjects’ age. Raw data from tests contained answers to individual 
questions in the tests. Discarding features that contained missing values or that were 
nondiscriminating (i.e., features that contained almost the same value among all sub-
jects), 100 features were used for feature selection and classification. The clinicians 
also summarize performance of subtotal scores in different tests, resulting in 9 scores 
for each patient.

Using two trials of patients with AD, MCI, and control groups, we show that one 
can successfully develop a classification rule based on data from neuropsychological 
tests to predict AD, MCI, and normal subjects where the blind prediction accuracy 
exceeds 90%. Table  17.2 illustrates one predictive rule obtained for this study. 
Further, our study strongly suggests that raw data of neuropsychological tests have 
higher potential to predict subjects from AD, MCI, and control groups than prepro-
cessed subtotal score‐like features, as contrasted in Table 17.3. When applying our 
predictive rule to a third trial of 200 patients, over 88% blind prediction accuracy is 

TABLE 17.2 Classification Results of Emory Data, 10‐Fold Cross‐Validation, 
and Blind Prediction

10‐Fold Cross‐Validation Blind Prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4  1 0 0.80 0.20 0.00 AD 2 0 0 1.00 0.00 0.00
MCI 0 11 0 0.00 1.00 0.00 MCI 1 4 0 0.20 0.80 0.00
Ctl 0  0 8 0.00 0.00 1.00 Ctl 0 0 4 0.00 0.00 1.00

Unbiased estimate accuracy: 96% Blind prediction accuracy: 91%

Five discriminatory features were selected (among the 100 features): MMSE:cMMtotal; 
WordList:cWL2Butter; WordList:cWL2Queen; WordList:cWL2Ticket; GDS:GDS13.
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achieved. The classification approach and the results offer the potential for 
development of a clinical decision‐making tool for early detection. Further study 
must be conducted to validate its clinical significance and its predictive accuracy 
among various demographic groups and across multiple sites.

17.4.2.3 Predicting Aberrant CpG Island Methylation in  Human Cancer  
We  summarize our findings from Feltus, Lee et al. (2003, 2006); McCabe et al. (2009) 
herein. Epigenetic silencing associated with aberrant methylation of promoter region 
CpG islands is one mechanism leading to loss of tumor suppressor function in human 
cancer. Profiling of CpG island methylation indicates that some genes are more fre-
quently methylated than others and that each tumor type is associated with a unique set 
of methylated genes. However, little is known about why certain genes succumb to this 
aberrant event. To address this question, restriction landmark genomic scanning 
(RLGS) is used to analyze the susceptibility of 1749 unselected CpG islands to de novo 
methylation driven by overexpression of DNMT1. We found that whereas the overall 
incidence of CpG island methylation was increased in cells overexpressing DNMT1, 
not all loci were equally affected. The majority of CpG islands (69.9%) were resistant 
to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identi-
fied a subset of methylation‐prone CpG islands (3.8%) that were consistently hyper-
methylated in multiple DNMT1‐overexpressing clones. Methylation‐prone and 
methylation‐resistant CpG islands were not significantly different with respect to size, 
C + G content, CpG frequency, chromosomal location, or gene or promoter association. 
To discriminate methylation‐prone from methylation‐resistant CpG islands, we devel-
oped a novel DNA pattern recognition model and algorithm (Lee et al. 2006) and cou-
pled our DAMIP predictive model described herein with the patterns found. The feature 
selection uncovered seven novel sequence patterns and their frequency of occurrence. 
The resulting rule was capable of discriminating methylation‐prone from methylation‐
resistant CpG islands with 90% correctness upon cross‐validation. It could blind pre-
dict new CpG islands (methylation status unknown to us) with 85% accuracy. The 
findings indicate that CpG islands differ in their intrinsic susceptibility to de novo 
methylation and suggest that the propensity for a CpG island to become aberrantly 
methylated can be  predicted based on its sequence context.

TABLE 17.3 Classification Results of the Same Emory Data, 10‐Fold Cross‐
Validation, and Blind Prediction from 9 Score‐Type Features Instead of Raw Data

10‐Fold Cross‐Validation Blind Prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00 AD 1 1 0 0.50 0.50 0.00
MCI 1 9 1 0.09 0.82 0.09 MCI 0 5 0 0.00 1.00 0.00
Ctl 0 2 6 0.00 0.25 0.75 Ctl 0 1 3 0.00 0.25 0.75

Unbiased estimate accuracy: 79% Blind prediction accuracy: 82%

Two discriminatory features were selected: MMSE:cMMtotal; Word List:cWLcorTotal.
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The significance of this research is twofold. Firstly, the identification of sequence 
pattern/attributes that can discriminate methylation‐prone CpG islands will lead to a 
better understanding of the basic mechanisms underlying aberrant CpG island 
 methylation. Because genes that are silenced by methylation are otherwise structur-
ally sound, the potential for reactivating these genes by blocking or reversing the 
methylation process represents an exciting new molecular target for chemothera-
peutic intervention. A better understanding of the factors that contribute to aberrant 
methylation, including the identification of sequence elements that may act to target 
aberrant methylation, will be an important step in achieving this long‐term goal. 
Secondly, the classification of the more than 29,000 known (but as yet unclassified) 
CpG islands in human chromosomes will provide an important resource for the 
identification of novel gene targets for further study as potential molecular markers 
that could impact on both cancer prevention and treatment. Extensive RLGS finger-
print information (and thus potential training sets of methylated CpG islands) already 
exists for a number of human tumor types, including breast, brain, lung, leukemias, 
hepatocellular carcinomas, and PNET (Costello et al. 2000a, b; Fruhwald et al. 2000; 
Rush et al. 2001). Thus, the methods and tools developed are directly applicable to 
CpG island methylation data derived from human tumors. Moreover, new microar-
ray‐based techniques capable of “profiling” more than 7000 CpG islands have been 
developed and applied to human breast cancers (Brock et al. 2001; Yan et al. 2000, 
2001). Indeed, we have shown that using the predictive rule established from the 
breast cancer cell line and applying it to lung cancer cells, the blind prediction 
 accuracy reaches over 80% (McCabe et al. 2009). We are uniquely poised to take 
advantage of the tumor CpG island methylation profile information that will likely 
be generated using these techniques over the next several years. Thus, our general‐
purpose predictive modeling framework has the potential to lead to improved 
 diagnosis and prognosis and treatment design for cancer patients.

17.4.2.4 Ultrasonic Assisted Cell Disruption for  Drug Delivery Although 
biological effects of ultrasound must be avoided for safe diagnostic applications, 
ultrasound’s ability to disrupt cell membranes has attracted interest as a method to 
facilitate drug and gene delivery. Our study in Lee et al. (2004) seeks to develop 
rules for predicting the degree of cell membrane disruption based on specified ultra-
sound parameters and measured acoustic signals. Too much ultrasound destroys 
cells, while cell membranes will not open up for absorption of macromolecules 
when too little ultrasound is applied. The key is to increase cell permeability to 
allow absorption of macromolecules and to apply ultrasound transiently to disrupt 
viable cells so as to enable exogenous material to enter without cell damage. Thus 
our task is to uncover a “predictive rule” of ultrasound‐mediated disruption of red 
blood cells using acoustic spectrums and measurements of cell permeability 
recorded in experiments.

DAMIP is applied to data obtained from a sequence of experiments on bovine red 
blood cells. For each experiment, the attributes consist of four ultrasound parameters, 
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acoustic measurements at 400 frequencies, and a measure of cell membrane disruption. 
To avoid overtraining, various feature combinations of the 404 predictor variables are 
selected when developing the classification rule. The results indicate that the variable 
combination consisting of ultrasound exposure time and acoustic signals measured at 
the driving frequency and its higher harmonics yields the best rule. Further, our 
method compares favorably with classification tree and other ad hoc approaches, 
with correct classification rate of 80% upon cross‐validation and 85% blind predic-
tion accuracy when classifying new unknown entities. Our methods used for deriving 
the prediction rules are broadly applicable and could be used to develop prediction 
rules in other scenarios involving different cell types or tissues. These rules and the 
methods used to derive them could be used for real‐time feedback about ultrasound’s 
biological effects. For example, it could assist clinicians during a drug delivery pro-
cess or could be imported into an implantable device inside the body for automatic 
drug delivery and monitoring.

17.4.2.5 Identification of Tumor Shape and Volume in Treatment of Sarcoma  
This project involves the determination of tumor shape for adjuvant brachytherapy 
treatment of sarcoma, based on catheter images taken after surgery (Lee et al. 2002). 
In this application, the entities are overlapping consecutive triplets of catheter 
 markings, each of which is used to determine the shape of the tumor contour. The 
triplets are to be classified into one of two groups: group 1 = [triplets for which 
the middle catheter marking should be bypassed] and group 2 = [triplets for which the 
middle marking should not be bypassed]. To develop and validate the classification 
rule, we used clinical data collected from fifteen soft tissue sarcoma (STS) patients. 
Cumulatively, this comprised 620 triplets of catheter markings. By careful (and 
tedious) clinical analysis of the geometry of these triplets, 65 were determined to 
belong to group 1, the “bypass” group, and 555 were determined to belong to group 2, 
the “do‐not‐bypass” group.

A set of attributes associated with each triplet is then determined. The choice of 
what attributes to measure to best distinguish triplets as belonging to group 1 or 
group 2 is nontrivial. The attributes involved distance between each pair of markings, 
angles, and curvature formed by the three triplet markings. Based on the selected 
attributes, DAMIP was used to develop a classification rule. The resulting rule pro-
vides 98% correct classification on cross‐validation and was capable of correctly 
predicting 95% of the shape of the tumor on new patients’ data. We remark that 
the current clinical procedure requires manual outline based on markers in films of 
the tumor volume. Our study was the first to automate the construction of tumor 
shape for sarcoma adjuvant brachytherapy (Lee et al. 2002).

17.4.2.6 Discriminant Analysis of Biomarkers for Prediction of Early Atherosclerosis  
Oxidative stress is an important etiologic factor in the pathogenesis of vascular dis-
ease (Lee 2007). This stress results from an imbalance between injurious oxidant 
and protective antioxidant events in which the former predominate (McCord 2000; 
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Sies 1985). This results in the modification of proteins and DNA, alteration in gene 
expression, promotion of inflammation, and deterioration in endothelial function in the 
vessel wall, all processes that ultimately trigger or exacerbate the atherosclerotic process 
(Chevion et al. 2000; Tahara et al. 2001). It was hypothesized that novel biomarkers of 
oxidative stress could predict early atherosclerosis in a relatively healthy nonsmoking 
population who are free from cardiovascular disease. One hundred and twenty‐seven 
healthy nonsmokers without known clinical atherosclerosis had carotid intima‐media 
thickness (IMT) measured using ultrasound. Plasma oxidative stress was estimated by 
measuring plasma lipid hydroperoxides using the determination of reactive oxygen 
metabolites (d‐ROMs) test. Clinical measurements include traditional risk factors 
including age, sex, low‐density lipoprotein (LDL), high‐density lipoprotein (HDL), tri-
glycerides, cholesterol, body mass index (BMI), hypertension, diabetes mellitus, 
smoking history, family history of CAD, Framingham risk score, and Hs‐CRP.

For this prediction, the patients are first clustered into two groups: (group 1: 
IMT ≥ 0.68, group 2: IMT < 0.68). Based on this separator 30 patients belong to group 1, 
and 97 belong to group 2. Randomly selecting 90 patients from these two groups 
as a training set, DAMIP trains and learns and returns the most discriminatory pat-
terns among the 14 clinical measurements, ultimately resulting in a prediction rule 
based on age, sex, BMI, HDLc, Fhx CAD < 60, hs‐CRP, and d‐ROM as discrimina-
tory attributes. The resulting rule provides 80% and 89% blind prediction accuracy 
on the remaining 37 patients classifying into group 1 and group 2, respectively. In 
particular, the importance of d‐ROM as a discriminatory predictor for IMT status 
was confirmed during the machine learning process. This biomarker was selected at 
each iteration as the “machine” learned and trained to develop a predictive rule to 
correctly classify patients in the training set. We also performed predictive analysis 
using Framingham risk score and d‐ROM; in this case the unbiased correct 
classification rates for groups 1 and 2 are 77% and 84%, respectively. This is the first 
study to illustrate that the measures of oxidative stress can be effectively used along 
with traditional risk factors to generate a predictive rule that can potentially serve as 
an inexpensive clinical diagnostic tool for predicting early atherosclerosis.

17.4.2.7 Fingerprinting Native and Angiogenic Microvascular Networks through 
Pattern Recognition and  Discriminant Analysis of  Functional Perfusion Data  
The cardiovascular system provides oxygen and nutrients to the entire body (Lee 
2007). Pathological conditions that impair normal microvascular perfusion can result 
in tissue ischemia, with potentially serious clinical effects. Conversely, development 
of new vascular structures fuels the progression of cancer, macular degeneration, and 
atherosclerosis. Fluorescence microangiography offers superb imaging of the 
functional perfusion of new and existent microvasculature, but quantitative analysis 
of the complex capillary patterns is challenging.

In Lee 2007, we developed an automated pattern recognition algorithm to system-
atically analyze the microvascular networks and then applied DAMIP to generate a 
predictive rule. The pattern recognition algorithm identifies the complex vascular 
branching patterns, and the predictive rule demonstrates 100% and 91% correct 
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classification on perturbed (diseased) and normal tissue perfusion, respectively. We 
confirmed that transplantation of normal bone marrow to mice in which genetic defi-
ciency resulted in impaired angiogenesis eliminated predicted differences and 
restored normal tissue perfusion patterns (with 100% correctness). The pattern rec-
ognition and DAMIP offers an elegant solution for the automated fingerprinting of 
microvascular networks that could contribute to better understanding of angiogenic 
mechanisms and be utilized to diagnose and  monitor microvascular deficiencies. 
Such information would be valuable for early detection and monitoring of functional 
abnormalities before they produce obvious and lasting effects, which may include 
improper perfusion of tissue, or support of tumor development.

The algorithm can be used to discriminate between the angiogenic response in a 
native healthy specimen compared with groups with impairment due to age or 
chemical or other genetic deficiency. Similarly, it can be applied to analyze angio-
genic responses as a result of various treatments. This will serve two important goals. 
First, the identification of discriminatory attributes that distinguish angiogenesis 
status will lead to a better understanding of the basic mechanisms underlying this 
process. Because therapeutic control of angiogenesis could influence physiological 
and pathological processes such as wound and tissue repairing, cancer progression 
and metastasis, or macular degeneration, the ability to understand it under different 
conditions will offer new insight in developing novel therapeutic interventions, mon-
itoring, and treatment, especially in aging and heart disease. Thus, our study and the 
results form the foundation of a valuable diagnostic tool for changes in the function-
ality of the microvasculature and for discovery of drugs that alter the angiogenic 
response. The methods can be applied to tumor diagnosis, monitoring, and prog-
nosis. In particular, it will be possible to derive microangiographic fingerprints to 
acquire specific microvascular patterns associated with early stages of tumor 
development. Such “angioprinting” could become an extremely helpful early diag-
nostic modality, especially for easily accessible tumors such as skin cancer.

17.4.3 Applying DAMIP to UCI Repository of Machine Learning Databases

UCI Machine Learning Repository maintains 404 data sets as a service to the machine 
learning community (Murphy and Aha 1994). We demonstrate the multi-group and 
multi-stage classification capabilities of DAMIP using some of these instances.

17.4.3.1 Determining the Type of Erythemato‐squamous Disease The differential 
diagnosis of erythemato‐squamous diseases is an important problem in dermatology. 
They all share the clinical features of erythema and scaling, with very little differ-
ences. The six groups are psoriasis, seborrheic dermatitis, lichen planus, pityriasis 
rosea, chronic dermatitis, and pityriasis rubra pilaris. Usually a biopsy is necessary 
for the diagnosis, but unfortunately these diseases share many histopathological fea-
tures as well. Another difficulty for the differential diagnosis is that a disease may 
show the features of another disease at the beginning stage and may have the 
characteristic features at later stages.
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The six groups consist of 366 subjects (112, 61, 72, 49, 52, 20, respectively) with 
34 clinical attributes. Patients were first evaluated clinically with 12 features. 
Afterward, skin samples were taken for evaluation of 22 histopathological features. 
The values of these histopathological features are determined by an analysis of the 
samples under a microscope. The 34 attributes include:

1. Clinical attributes: Erythema, scaling, definite borders, itching, Koebner 
phenomenon, polygonal papules, follicular papules, oral mucosal involvement, 
knee and elbow involvement, scalp involvement, family history, and age

2. Histopathological attributes: Melanin incontinence, eosinophils in the infil-
trate, PNL infiltrate, fibrosis of the papillary dermis, exocytosis, acanthosis, 
hyperkeratosis, parakeratosis, clubbing of the rete ridges, elongation of the rete 
ridges, thinning of the suprapapillary epidermis, spongiform pustule, Munro 
microabscess, focal hypergranulosis, disappearance of the granular layer, 
vacuolization and damage of basal layer, spongiosis, sawtooth appearance of 
retes, follicular horn plug, perifollicular parakeratosis, inflammatory mononu-
clear infiltrate, and band‐like infiltrate

Using 250 randomly selected subjects to develop the rule, our multi‐group DAMIP 
model selected 27 discriminatory attributes and successfully classified the patients 
into six groups, each with an unbiased estimate of greater than 93% accuracy (with 
100% correct rate for groups 1, 3, 5, 6) and an average overall accuracy of 98%. 
Blind prediction on the remaining 116 patients yields a prediction accuracy of 91% 
for each group.

17.4.3.2 Predicting Presence/Absence of  Heart Disease The four databases 
concerning heart disease diagnosis were collected by Dr. Janosi of Hungarian 
Institute of Cardiology, Budapest; Dr. Steinbrunn of University Hospital, Zurich; 
Dr. Pfisterer of University Hospital, Basel, Switzerland; and Dr. Detrano of V.A. Medical 
Center, Long Beach and Cleveland Clinic Foundation. Each database contains the 
same 76 attributes. The “goal” field refers to the presence of heart disease in the 
patient. The classification attempts to discriminate presence (values 1, 2, 3, 4, 
involving a total of 509 subjects) from absence (value 0, involving 411 subjects). The 
attributes include demographics, physio‐cardiovascular conditions, traditional risk 
factors, family history, personal lifestyle, and cardiovascular exercise measurements. 
This dataset has posed some challenges to past analysis via various classification 
approaches, resulting in less than 80% unbiased classification accuracy. Applying 
our classification model without reserved judgment, we obtain 79% and 85% correct 
classification for each group, respectively.

To gauze the usefulness of multistage analysis, we apply two‐stage classification. 
In the first stage, 14 attributes were selected as discriminatory. Specifically, 235 
(out of 276) absence subjects were classified correctly into group absence, and 203 
(out of 223) presence subjects were classified into group presence. This yields an 
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accuracy of 85% and 91%, respectively, for each group. The reserved judgment 
comprises the remaining 135 absence subjects and 286 presence subjects. In the 
second stage, 11 attributes were selected in which 100 absence subjects, and 229 
presence subjects were classified correctly into respective groups. Combining the 
two stages, we obtained a correct classification of 82% and 85%, respectively, for 
diagnosis of absence or presence of heart disease. Figure 17.1 illustrates the two‐
stage classification.

To gauge the predictive power, 600 subjects used for training via multistage 
DAMIP classification result in 85% and 84% accuracy for 10‐fold cross‐validation. 
Blind prediction on the remaining 320 subjects results in 85% and 83% prediction 
accuracy.

17.4.3.3 Prediction of Protein Localization Sites The protein localization data-
base consists of eight groups with a total of 336 instances (143, 77, 52, 35, 20, 5, 2, 2, 
respectively) each with seven attributes. The eight groups are eight localization 
sites  of protein, including cp (cytoplasm), im (inner membrane without signal 
sequence), pp (periplasm), imU (inner membrane, uncleavable signal sequence), om 
(outer membrane), omL (outer membrane lipoprotein), imL (inner membrane lipo-
protein), and imS (inner membrane, cleavable signal sequence). However, the last 

Clinical attributes

DAMIP classifier
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Reserved judgment
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100/135
(74%)

Absence
235/276
(85%)

Presence
203/223
(91%)

Presence
229/286
(80%)

920 subjects
411 absence
509 presence

Figure  17.1 A tree diagram for two‐stage DAMIP classification and prediction of heart 
disease.
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four groups are taken out from our classification experiment since the population 
sizes are too small to ensure significance.

The seven attributes include mcg (McGeoch’s method for signal sequence recog-
nition), gvh (von Heijne’s method for signal sequence recognition), lip (von Heijne’s 
signal peptidase II consensus sequence score), chg (presence of charge on N‐terminus 
of predicted lipoproteins), aac (score of discriminant analysis of the amino acid 
content of outer membrane and periplasmic proteins), alm1 (score of the ALOM 
membrane‐spanning region prediction program), and alm2 (score of ALOM program 
after excluding putative cleavable signal regions from the sequence).

In the classification there are four groups, 307 instances, each with seven attrib-
utes. Our classification model selected the discriminatory patterns mcg, gvh, alm1, 
and alm2 to form the predictive rule with unbiased correct classification rates of 
89%, compared with the results of 81% by other classification models (Horton and 
Nakai 1996). Using only 200 instances to train, the blind prediction accuracy on the 
remaining 107 instances reaches over 90% for each of the four groups.

17.4.3.4 Pattern Recognition in  Satellite Images for  Determining Types of 
Soil The Satellite Database consists of the multispectral values of pixels in 3 × 3 
neighborhoods in a satellite image and the classification associated with the central 
pixel in each neighborhood. The goal is to predict this classification given the multi-
spectral values. In the sample database, the class of a pixel is coded as a number. 
There are six groups with 4435 samples in the training dataset and 2000 samples in 
testing dataset; and each sample entity has 36 attributes describing the spectral bands 
of the image.

The original Landsat Multispectral Scanner (MSS) image data for this database 
was generated from data purchased from NASA by the Australian Centre for Remote 
Sensing. The Landsat satellite data is one of the many sources of information avail-
able for a scene. The interpretation of a scene by integrating spatial data of diverse 
types and resolutions including multispectral and radar data, maps indicating topog-
raphy, land use, etc. is expected to assume significant importance with the onset of an 
era characterized by integrative approaches to remote sensing (e.g., NASA’s Earth 
Observing System commencing this decade).

One frame of Landsat MSS imagery consists of four digital images of the same 
scene in different spectral bands. Two of these are in the visible region (corresponding 
approximately to green and red regions of the visible spectrum) and two are in the 
(near) infrared. Each pixel is an 8‐bit binary word, with 0 corresponding to black and 
255 to white. The spatial resolution of a pixel is about 80 m × 80 m. Each image con-
tains 2340 × 3380 such pixels.

The database is a (tiny) subarea of a scene consisting of 82 × 100 pixels. Each line 
of data corresponds to a 3 × 3 square neighborhood of pixels completely contained 
within the 82 × 100 subarea. Each line contains the pixel values in the four spectral 
bands (converted to ASCII) of each of the 9 pixels in the 3 × 3 neighborhood and a 
number indicating the classification label of the central pixel. The number is a code 
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for the following six groups: red soil, cotton crop, gray soil, damp gray soil, soil with 
vegetation stubble, and very damp gray soil. Running the DAMIP model, 17 discrim-
inatory attributes were selected to form the classification rule, producing a blind 
prediction accuracy of 85%.

17.5 SUMMARY AND CONCLUSION

In the chapter, we summarize a class of general‐purpose predictive models that we 
have developed based on the technology of large‐scale optimization and support 
vector machines (Gallagher et  al. 1997; Lee 2007, 2008, 2009; Lee et  al. 2003; 
Brooks and Lee 2010, 2014). Our models seek to maximize the correct classification 
rate while constraining the number of misclassifications in each group. The models 
incorporate the following features simultaneously: 

1. The ability to classify any number of distinct groups.

2. The ability to allow the incorporation of heterogeneous and temporal types of 
attributes as input.

3. A high‐dimensional data transformation that reduces dimension, noise, and 
errors in biological data.

4. Constraining the misclassification in each group and a reserved‐judgment 
region that provides a safeguard against overtraining (which tends to lead to 
high misclassification rates from the resulting predictive rule).

5. Successive multistage classification capability to handle data points placed in 
the reserved‐judgment region. The performance and predictive power of the 
classification models is validated through a broad class of biological and 
 medical applications.

Classification models are critical to medical advances as they can be used in 
genomic, cell, molecular, and system‐level analyses to assist in early risk prediction, 
diagnosis and detection of disease, intervention and monitoring, and treatment out-
come prediction. As shown in the vaccine immunogenicity prediction, the predictive 
signatures can guide the rapid development of vaccines against emerging infections 
and aid in the monitoring of suboptimal immune responses in the elderly, infants, or 
people with weakened immune systems. Neuropsychological tests are inexpensive 
and noninvasive, and it can be incorporated within an annual physical examination 
for baseline record. Our study on AD shows that neuropsychological tests can offer 
predictive capability for earliest diagnosis. Identifying individuals who are at risk but 
currently have no symptoms is critical to curtail the rapid rise of this illness. In the 
CpG island study for human cancer, such prediction and diagnosis opens up novel 
therapeutic sites for early intervention. The ultrasound application illustrates its 
application to a novel drug delivery mechanism, assisting clinicians during a drug 
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delivery process, or in devising implantable devices into the body for automated drug 
delivery and monitoring. Prediction of the shape of a cancer tumor bed provides a 
personalized treatment design, replacing tedious and subjective manual estimates by 
sophisticated automated computer predictive models. Prediction of early atheroscle-
rosis through inexpensive biomarker measurements and traditional risk factors can 
serve as a potential clinical diagnostic tool for routine physical and health mainte-
nance, alerting doctors and patients the need for early intervention to prevent serious 
vascular disease. Fingerprinting of microvascular networks opens up the possibility 
for early diagnosis of perturbed systems in the body that may trigger disease (e.g., 
genetic deficiency, diabetes, aging, obesity, macular degeneracy, tumor formation), 
identifying target sites for treatment and monitoring prognosis and success of 
treatment. Determining the type of erythemato‐squamous disease and the presence/
absence of heart disease helps clinicians to correctly diagnose and effectively treat 
patients. Thus classification models can serve as a basis for predictive health and 
precision medicine where the desire is to diagnose early and provide timely and 
 personalized target intervention. This has the potential to reduce healthcare costs, 
improve success of treatment, and improve quality of life of patients.

The modeling framework of the discrete support vector machines, DAMIP, 
offers great flexibility, enabling one to simultaneously incorporate the features as 
listed here in this section, as well as many other features. Further theoretical study 
will be performed on these models to understand their characteristics and the sen-
sitivity of the predictive patterns to model and parameter variations. We note that 
deriving the predictive rules for such problems can be computationally demanding 
due to the NP‐hard nature of MIP. However, blind prediction can be achieved in 
seconds, opening up real‐time predictive tools for routine usage. We continue to 
work on improving optimization algorithms utilizing novel cutting plane and 
branch‐and‐bound strategies, fast heuristic algorithms, parallel algorithms, and in‐
data computing in the cloud.
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